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Preface

This book on Continuum Mechanics and Thermodynamics (CMT) (together with the com-
panion book, by Tadmor and Miller, on Modeling Materials (MM) [TM11]) is a compre-
hensive framework for understanding modern attempts at modeling materials phenomena
from first principles. This is a challenging problem because material behavior is dictated by
many different processes, occurring on vastly different length and time scales, that interact
in complex ways to give the overall material response. Further, these processes have tradi-
tionally been studied by different researchers, from different fields, using different theories
and tools. For example, the bonding between individual atoms making up a material is
studied by physicists using quantum mechanics, while the macroscopic deformation of
materials falls within the domain of engineers who use continuum mechanics. In the end
a multiscale modeling approach – capable of predicting the behavior of materials at the
macroscopic scale but built on the quantum foundations of atomic bonding – requires a
deep understanding of topics from a broad range of disciplines and the connections between
them. These include quantum mechanics, statistical mechanics and materials science, as
well as continuum mechanics and thermodynamics, which are the focus of this book.

Together, continuum mechanics and thermodynamics form the fundamental theory lying
at the heart of many disciplines in science and engineering. This is a nonlinear theory dealing
with the macroscopic response of material bodies to mechanical and thermal loading.
There are many books on continuum mechanics, but we believe that several factors set our
book apart. First, is our emphasis on fundamental concepts. Rather than just presenting
equations, we attempt to explain where the equations come from and what are the underlying
assumptions. This is important for those seeking to integrate continuum mechanics within
a multiscale paradigm, but is also of great value for those who seek to master continuum
mechanics on its own, and even for experts who wish to reflect further upon the basis
of their field and its limitations. To this end, we have adopted a careful expository style,
developing the subject in a step-by-step fashion, building up from fundamental ideas and
concepts to more complex principles. We have taken pains to carefully and clearly discuss
many of the subtle points of the subject which are often glossed over in other books.

A second difference setting our CMT apart from other books on the subject is the inte-
gration of thermodynamics into the discussion of continuum mechanics. Thermodynamics
is a difficult subject which is normally taught using the language of heat engines and
Carnot cycles. It is very difficult for most students to see how these concepts are related
to continuum mechanics. Yet thermodynamics plays a vital role at the foundation of con-
tinuum mechanics. In fact, we think of continuum mechanics and thermodynamics as a
single unified subject. It is simply impossible to discuss thermomechanical processes in

xi

                                                                                            
                                              

                                                            



xii Preface
�

materials without including thermodynamics. In addition, thermodynamics introduces key
constraints on allowable forms of constitutive relations, the fundamental equations describ-
ing material response, that form the gateway to the underlying microscopic structure of the
material.

The third difference is that we have written CMT with an eye to making it accessible to
a broad readership. Without oversimplifying any of the concepts, we endeavor to explain
everything in clear terms with as little jargon as possible. We do not assume prior knowledge
of the subject matter. Thus, a reader from any field with an undergraduate education in
engineering or science should be able to follow the presentation. We feel that this is
particularly important as it makes this vital subject accessible to researchers and students
from physics, chemistry and materials science who traditionally have less exposure to
continuum mechanics.

The philosophy underlying CMT and its form provide it with a dual role. On its own,
it is suitable as a first introduction to continuum mechanics and thermodynamics for
graduate students or researchers in science and engineering. Together with MM, it provides
a comprehensive and integrated framework for modern predictive materials modeling. With
this latter goal in mind, CMT is written using a similar style, notation and terminology to
that of MM, making it easy to use the two books together.
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Notation

This book is devoted to the subject of continuum mechanics and thermodynamics. However,
together with the companion book by Tadmor and Miller, Modeling Materials (MM)
[TM11], it is part of a greater effort to create a unified theoretical foundation for multiscale
modeling of material behavior. Such a theory includes contributions from a large number
of fields including those covered in this book, but also quantum mechanics, statistical
mechanics and materials science. We have attempted as much as possible to use the most
common and familiar notation from within each field as long as this does not lead to
confusion. To keep the amount of notation to a minimum, we generally prefer to append
qualifiers to symbols rather than introducing new symbols. For example, f is force, which
if relevant can be divided into internal, f int , and external, f ext , parts.

We use the following general conventions:

• Descriptive qualifiers generally appear as superscripts and are typeset using a Roman (as
opposed to Greek) nonitalic font.

• The weight and style of the font used to render a variable indicates its type. Scalar
variables are denoted using an italic font. For example, T is temperature. Array variables
are denoted using a sans serif font, such as A for the matrix A. Vectors and tensors (in
the mathematical sense of the word) are rendered in a boldface font. For example, σ is
the stress tensor.

• Variables often have subscript and superscript indices. Indices referring to the compo-
nents of a matrix, vector or tensor appear as subscripts in italic Roman font. For example,
vi is the ith component of the velocity vector. Superscripts will be used as counters of
variables. For example, F e is the deformation gradient in element e. Iteration counters
appear in parentheses, for example f (i) is the force in iteration i.

• The Einstein summation convention will be followed on repeated indices (e.g. vivi =
v2

1 + v2
2 + v2

3 ), unless otherwise clear from the context. (See Section 2.2.2 for more
details.)

• A subscript is used to refer to multiple equations on a single line, for example,
“Eqn. (3.32)2” refers to the second equation in Eqn. (3.32) (“ai(x, t) ≡ . . . ”).

• Important equations are emphasized by placing them in a shaded box.

Below, we describe the main notation and symbols used in the book, and indicate the page
on which each is first defined.
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Mathematical notation

Notation Description Page

≡ equal to by definition 22
:= variable on the left is assigned the value on the right 283
∀ for all 22
∈ contained in 22
⊂ a subset of 107
iff if and only if 22
O(n) orthogonal group of degree n 32
SL(n) proper unimodular (special linear) group of degree n 217
SO(n) proper orthogonal (special orthogonal) group of degree n 32
R set of all real numbers 22
R

n real coordinate space (n-tuples of real numbers) 25
| • | absolute value of a real number 25
‖•‖ norm of a vector 25
〈•, •〉 inner product of two vectors 25
〈Dx•;u〉 nonnormalized directional derivative with respect to x in

the direction u

57

f [•] square brackets indicate f is a linear function of its arguments 24
AT transpose of a second-order tensor or matrix: [AT ]ij = Aji 19
A−T transpose of the inverse of A: A−T ≡ (A−1)T 43
a · b dot product (vectors): a · b = aibi 25
a × b cross product (vectors): [a × b]k = εijkaibj 29
a ⊗ b tensor product (vectors): [a ⊗ b]ij = aibj 39
A : B contraction (second-order tensors): A : B = AijBij 44
A · ·B transposed contraction (second-order tensors): A · ·B = AijBji 44
A(ij ) symmetric part of a second-order tensor: A(ij ) = 1

2 (Aij + Aji) 48
A[ij ] antisymmetric part: A[ij ] = 1

2 (Aij − Aji) 48
λA

α , ΛA
α αth eigenvalue and eigenvector of the second-order tensor A 49

Ik (A) kth principal invariant of the second-order tensor A 49
d̄ inexact differential 159
det A determinant of a matrix or a second-order tensor 21
trA trace of a matrix or a second-order tensor: trA = Aii 19
∇•, grad • gradient of a tensor (deformed configuration) 57
∇0•, Grad • gradient of a tensor (reference configuration) 77
curl • curl of a tensor (deformed configuration) 58
Curl • curl of a tensor (reference configuration) 77
div • divergence of a tensor (deformed configuration) 59
Div • divergence of a tensor (reference configuration) 77
∇2• Laplacian of a tensor (deformed configuration) 60
⇀
αe local node number on element e for global node number α 294
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ă, ăi acceleration vector (material description) 94
a, ai acceleration vector (spatial description) 94
B bulk modulus 241
B, Bij left Cauchy–Green deformation tensor 85
B matrix of finite element shape function derivatives 302
b̆, b̆i body force (material description) 122
b, bi body force (spatial description) 112
Cv molar heat capacity at constant volume 144
C, CIJ right Cauchy–Green deformation tensor 79



xx Notation
�

C, CIJ K L referential elasticity tensor 226
cv specific heat capacity at constant volume 320
c, cijkl spatial (or small strain) elasticity tensor 228
c, cmn elasticity matrix (in Voigt notation) 230
D, DiJ kL mixed elasticity tensor 227
D matrix representation of the mixed elasticity tensor 303
d, dij rate of deformation tensor 96
E total energy of a thermodynamic system 141
E Young’s modulus 235
E, EIJ Lagrangian strain tensor 87
E finite element strain operator matrix 302
ei orthonormal basis vectors 23
e, eij Euler–Almansi strain tensor 90
F frame of reference 196
F ext , F ext

i total external force acting on a system 10
F , FiJ deformation gradient 78
F matrix representation of the deformation gradient 301
f column matrix of finite element nodal forces 281
G material symmetry group 216
g specific Gibbs free energy 195
gi , gi contravariant and covariant basis vectors, respectively 28
H0 , H0i angular momentum about the origin 120
h outward heat flux across a body surface 173
h specific enthalpy 194
I identity tensor 41
I identity matrix 20
J Jacobian of the deformation gradient 79
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1 Introduction

A solid material subjected to mechanical and thermal loading will change its shape and
develop internal stress and temperature variations. What is the best way to describe this
behavior? In principle, the response of a material (neglecting relativistic effects) is dic-
tated by that of its atoms, which are governed by quantum mechanics. Therefore, if we
could solve Schrödinger’s equation for all of the atoms in the material (there are about
1022=10 000 000 000 000 000 000 000 atoms in a gram of copper) and evolve the dynamics
of the electrons and nuclei over “macroscopic times” (i.e. seconds, hours and days), we
would be able to predict the material behavior. Of course, when we say “material,” we are
already referring to a very complex system. In order to predict the response of the mate-
rial we would first have to construct the material structure in the computer, which would
require us to use Schrödinger’s equation to simulate the process by which the material was
manufactured. Conceptually, it may be useful to think of materials in this way, but we can
quickly see the futility of the approach: the state of the art of quantum calculations involves
just hundreds of atoms over a time of nanoseconds.

Fortunately, in many cases it is not necessary to keep track of all the atoms in a material
to describe its behavior. Rather, the overall response of such a collection of atoms is often
much more readily amenable to an elegant, mathematical description. Like the pocket watch
on the cover of this book, the complex and intricate inner workings of a material are often
not of interest. It is the outer expression of these inner workings – the regular motion of the
watch hands or macroscopic material response – that is of primary concern. To this end,
lying at the opposite extreme to quantum mechanics, we find continuum mechanics and
thermodynamics (CMT). The CMT disciplines completely ignore the discreteness of the
world, treating it in terms of “macroscopic observables” – time and space averages over the
underlying swirling hosts of electrons and atomic nuclei. This leads to a theory couched in
terms of continuously varying fields. Using clear thinking inspired by our understanding
of the basic laws of nature (which have been validated by experiments) it is possible to
construct a remarkably coherent and predictive framework for material behavior. In fact,
CMT have been so successful that with the exception of electromagnetic phenomena, almost
all of the courses in an engineering curriculum from aerodynamics to solid mechanics are
simply an application of simplified versions of the general CMT theory to situations of
special interest. Clearly there is something to this macroscopically averaged view of the
world. Of course, the continuum picture becomes fuzzy and eventually breaks down when
we attempt to apply it to phenomena governed by small length and time scales.1 Those are

1 Having said that, it is important to note that continuum mechanics works remarkably well down to extremely
small scales. Micro electro mechanical systems (MEMS) devices, which are fully functioning microscopic
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exactly the “multiscale” situations that we explore in depth in the companion book to this
one titled Modeling Materials: Continuum, Atomistic and Multiscale Techniques (MM)
[TM11]. Here, we focus on CMT.

Continuum mechanics involves the application of the principles of classical mechanics
to material bodies approximated as continuous media. Classical mechanics itself has a long
and distinguished history. As Clifford Truesdell, one of the fathers of modern continuum
mechanics, states in the introduction to his lectures on the subject [Tru66a]:

The classical nature of mechanics reflects its greatness: Ever old and ever new, it continues
to pour out for us understanding and application, linking a changing world to unchanged
law.

The unchanged laws that Truesdell refers to are the balance principles of mechanics:
conservation of mass and the balance of linear and angular momentum. Together with
the first law of thermodynamics (conservation of energy), these principles lead to a set of
coupled differential equations governing the evolution of material systems.2 The resulting
general theory of continuum mechanics and thermodynamics is applicable to arbitrary
materials undergoing arbitrarily large deformations. We develop this theory and explore
its applications in two main parts. Part I on theory focuses on the basic theory underlying
CMT, going from abstract mathematical ideas to the response of real materials. Part II on
solutions focuses on the application of the theory to solve actual problems.

Part I begins with Chapter 2 on scalars, vectors and tensors and the associated notation
used throughout the book. This chapter deals with basic physical and mathematical concepts
that must be understood before we can discuss the mechanics of continuum bodies. First and
foremost we must provide basic definitions for space and time. Without such definitions
it is meaningless to speak of the positions of physical objects and their time evolution.
Newton was well aware of this and begins his Principia [New62] with a preface called the
Scholium devoted to definitions. In many ways Newton’s greatness lies not in his famous
laws (which are based on earlier work) but in his ability to create a unified framework out
of the confusion that preceded him by defining his terms.3 Once space and time are agreed
upon, the next step is to identify suitable mathematical objects for describing physical
variables. We seek to define such things as the positions of particles, their velocities and
more complex quantities like the stress state at a point in a solid. A key property of all
such variables is that they should exist independently of the particular coordinate system
in which they are represented. Variables that have this property are called tensors or tensor
fields. Anyone with a mathematical or scientific background will have come across the
term “tensor,” but few really understand what a tensor is. This is because tensors are often

machines smaller than the diameter of a human hair (∼100 microns), are for the most part described quite
adequately by continuum mechanics. Even on the nanoscale where the discrete nature of materials is apparent,
continuum mechanics is remarkably accurate to within a few atomic spacings of localized defects in the atomic
arrangement.

2 The second law of thermodynamics also plays an essential role. However, in the (standard) presentation of the
theory developed here it does not explicitly enter as a governing equation of the material. Rather, it serves to
restrict the possible response to external stimuli of a material (see Chapter 6).

3 Amazingly, more than 300 years after Newton published Principia, the appropriate definitions for space and
time in classical mechanics remain controversial. We discuss this in Section 2.1.
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defined with a purely rules-based approach, i.e. a recipe is given for checking whether
a given quantity is or is not a tensor. This is fine as far is it goes, but it does not lead
to greater insight. The problem is that the idea of a tensor field is complex and to gain
a true and full understanding one must immerse oneself in the rarefied atmosphere of
differential geometry. We have placed ourselves squarely between these two extremes
and have attempted to provide a more nuanced fundamental description of tensors while
keeping the discussion as accessible as possible. For this reason we mostly adopt the
Cartesian coordinate system in our discussions, introducing the more general covariant and
contravariant notation of curvilinear coordinates only where necessary.

Our next step takes us away from the abstract world of tensor algebra and calculus to the
description of physical bodies. As noted above, we know that in reality bodies are made of
material and material is made of atoms which themselves are made of more fundamental
particles and – who knows – perhaps those are made of strings or membranes existing
in a higher-dimensional universe. Continuum mechanics ignores this underlying discrete
structure and provides a model for the world in which a material is infinitely divisible. Cut
a piece of copper in two and you get two pieces of copper, and so on ad infinitum. The
downside of this simplification is that it actually becomes more complicated to describe
the shape and evolution of bodies. For a discrete set of particles all we need to know is
the positions of the particles and their velocities. In contrast, how can we describe the
“position” that an evolving blob of material occupies in space? This broadly falls under
the topic of kinematics of deformation covered in Chapter 3. The study of kinematics is
concerned exclusively with the abstract motion of bodies, taking no consideration of the
forces that may be required to impart such a motion. As a result, kinematics is purely the
geometric, descriptive aspect of mechanics, phrased in the language of configurations that
a blob of material can adopt. In a sense one can think of a configuration being the “sheet
music” of mechanics. The external mechanical and thermal loading are what ultimately
realize this configuration, just as the musicians and their instruments ultimately bring a
symphony to life.

A continuum body can take on an infinity of possible configurations. It is convenient to
identify one of these as a reference configuration and to refer all other configurations to
this one. Once a reference configuration is selected, it is possible to define the concept of
strain (or more generally “local deformation”). This is the change in shape experienced by
the infinitesimal environment of a point in a continuum body relative to its shape in the
reference configuration. Since it is shape change (as opposed to rigid motion) that material
bodies resist, strain becomes a key variable in a continuum theory. An important aspect of
continuum mechanics is that shape change can be of arbitrary magnitude. This is referred to
somewhat confusingly as “finite strain” as if contrasting the theory with another one dealing
with “infinite strain.” Really the distinction is with theories of “infinitesimal strain” (like
the theories of strength of materials and linear elasticity taught as part of an engineering
curriculum). This makes continuum mechanics a nonlinear theory – very general in the sort
of problems it can handle, but also more difficult to solve.

Having laid out the geometry of deformation, we must next turn to the laws of nature
to determine how a body will respond to applied loading. This topic naturally divides into
two parts. Chapter 4 focuses on this question from a purely mechanical perspective. This
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means that we ignore temperature and think only of masses and the mechanical forces
acting on them. At the heart of this description are three laws taken to be fundamental
principles in classical mechanics: conservation of mass and the balance of linear and of
angular momentum. Easily stated for a system of particles, the extension of these laws
to continuous media leads to some interesting results. The big name here is Cauchy, who
through some clever thought experiments was able to infer the existence of the stress tensor
and its properties. Cauchy was concerned with what we today would call the “true stress”
or for obvious reasons the “Cauchy stress.” This is the force per unit area experienced by
a point in a continuum when cut along some plane passing through that point. The notion
of configurations introduced above means that the stress tensor can be recast in a variety
of forms that, although lacking the clear physical interpretation of Cauchy’s stress, have
certain mathematical advantages. In particular, the first and second Piola–Kirchhoff stress
tensors represent the stress relative to the reference configuration mentioned above.

The second set of the laws of nature that must be considered to fully characterize a
continuum mechanics problem are those having to do with temperature, i.e. the laws of
thermodynamics discussed in Chapter 5. In reality, a material is not just subjected to
mechanical loading which leads to stresses and strains in the body; it also experiences
thermal loading which can lead to an internally varying temperature field. Furthermore, the
mechanical and thermal effects are intimately coupled into what can only be described as
thermomechanical behavior. Thermodynamics is for most people a more difficult subject
to understand than pure mechanics. This is another consequence of the “simplification”
afforded by the continuum approximation. Concepts like temperature and entropy that
have a clear physical meaning when studied at the level of discrete particles become far
more abstract at the macroscopic level where their existence must be cleverly inferred
from experiments.4 The three laws of thermodynamics (numbered in a way to make C
programmers happy) are the zeroth law, which deals with thermal equilibrium and leads to
the concept of temperature, the first law, which expresses the conservation of energy and
defines energy, and the second law, which deals with the concept of entropy and the direction
of time (i.e. why we have a past and a future). Unlike a traditional book on thermodynamics,
we develop these concepts with an eye to continuum mechanics. We do not talk about steam
engines, but rather show how thermodynamics contributes a conservation law to the field
equations of continuum mechanics, and how restrictions related to the second law impact
the possible models for material behavior – the so-called “constitutive relations” described
next.

The theory we have summarized so far appears wonderfully economical. Using a handful
of conservation laws inferred from experiments, a very general theoretical formulation is
established which (within a classical framework) fully describes the behavior of materials
subjected to arbitrary mechanical and thermal loading. Unfortunately, this theory is not
closed. By this we mean that the theoretical formulation of continuum mechanics and
thermodynamics possesses more unknowns than equations to solve for them. If one thinks
about this for a minute, it is not surprising – we have not yet introduced the particular nature

4 A student wishing to truly understand thermodynamics is strongly encouraged to also explore this subject from
the perspective of statistical mechanics as is done in Chapter 7 of [TM11].
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of the material into the discussion. Clearly the response of a block of butter will be different
than that of steel when subjected to mechanical and thermal loading. The equations relating
the response of a material to the loading applied to it are called constitutive relations and
are discussed in Chapter 6. Since we are dealing with a general framework which allows for
arbitrary “finite” deformation, the constitutive relations are generally nonlinear. Continuum
mechanics cannot predict the particular form of the constitutive relations for a given material
– these are obtained either empirically through experimentation or more recently using mul-
tiscale modeling approaches as described in MM [TM11]. However, continuum mechanics
can place constraints on the allowable forms for these relations. This is very important,
since it dramatically reduces the set of possible functions that can be used for interpreting
experiments or multiscale simulations. One constraint already mentioned above is the re-
strictions due to the second law of thermodynamics. For example, it is not possible to have a
material in which heat flows from cold to hot.5 Another fundamental restriction is related to
the principle of material frame-indifference (or “objectivity”). Material frame-indifference
is a difficult and controversial subject with different, apparently irreconcilable, schools
of thought. Most students of continuum mechanics – even very advanced “students” –
find this subject quite difficult to grasp. We provide a new presentation of material frame-
indifference that we feel clarifies much of the confusion and demonstrates how the different
approaches mentioned above are related and are in fact consistent with each other. A third
restriction on the form of constitutive relations is tied to the symmetry properties of the
material. This leads to vastly simplified forms for special cases such as isotropic materials
whose response is independent of direction. Even simpler forms are obtained when the
equations are linearized, which in the end leads to the venerable (generalized) Hooke’s
law – a linear relation between the Cauchy stress and the infinitesimal strain tensor.

The addition of constitutive relations to the conservation and balance laws derived before
closes the theory. It is now possible to write down a system of coupled, nonlinear partial
differential equations that fully characterize a thermomechanical system. Together with
appropriate boundary conditions (and initial conditions for a dynamical problem) a well-
defined (initial) boundary-value problem can be constructed. This is described in Chapter 7.
Special emphasis is placed in this chapter on purely mechanical static problems. In this
case, the boundary-value problem can be conveniently recast as a variational problem, i.e. a
problem where instead of solving a complicated system of nonlinear differential equations,
a single scalar energy functional has to be minimized. This variational principle, referred to
as the principle of minimum potential energy (PMPE), is of great importance in continuum
mechanics as well as more general multiscale theories such as those discussed in MM
[TM11]. A key component of the derivation of the PMPE is the theory of stability, which
is concerned with the conditions under which a mechanical system is in stable equilibrium
as opposed to unstable equilibrium. (Think of a pencil lying on a table as opposed to one
balanced on its end.) We only give a flavor of this rich and complex theory, sufficient for
our purposes of elucidating the derivation of PMPE.

5 This is true for thermomechanical systems. However, if electromagnetic effects are considered, the application
of an appropriate electric potential to certain materials can lead to heat flow in the “wrong” direction without
violating the second law.
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The discussion of stability and PMPE concludes the first part of the book. At this stage,
we are able to write down a complete description of any problem in continuum mechanics
and we have a clear understanding of the origins of all of the equations that appear in the
problem formulation. Unfortunately, the complete generality of the continuum mechanics
framework, with its attendant geometric and material nonlinearity, means that it is almost
always impossible to obtain closed-form analytical solutions for a given problem. So how
do we proceed? There are, in fact, three possible courses of action, which are described in
Part II on Solutions. First, in certain cases it is possible to obtain closed-form solutions.
Even more remarkably, some of these solutions are universal in that they apply to all
materials (in a given class) regardless of the form of the constitutive relations. In addition to
their academic interest, these solutions have important practical implications for the design
of experiments that measure the nonlinear constitutive relations for materials. The known
universal solutions are described in Chapter 8.

The second option for solving a continuum problem (assuming the analytical solution is
unknown or, more likely, unobtainable) is to adopt a numerical approach. In this case, the
continuum equations are solved approximately on a computer. The most popular numerical
approach is the finite element method (FEM) described in Chapter 9. In FEM the continuum
body is discretized into a finite set of domains, referred to as “elements,” bounded by
“nodes” whose positions and temperatures constitute the unknowns of the problem.6 When
substituting this representation into the continuum field equations, the result is a set of
coupled nonlinear algebraic equations for the unknowns. Entire books are written on FEM
and our intention is not to compete with those. We do, however, offer a derivation of the
key equations that is different from most texts. We focus on static boundary-value problems
and approach the problem from the perspective of the PMPE. In this setting, the FEM
solution to a general nonlinear continuum problem corresponds to the minimization of the
energy of the system with respect to the nodal degrees of freedom. This is a convenient
approach which naturally extends to multiscale methods (like those described in Chapter 12
of [TM11]) where continuum domains and atomistic domains coexist.

The third and final option for solving continuum problems is to simplify the equations
by linearizing the kinematics and/or the constitutive relations. This approach is discussed
in Chapter 10. As noted at the start of this introduction, this procedure leads to almost all
of the theories studied as independent subjects in an engineering curriculum. For example,
few students understand the connection between heat transfer and elasticity theory. The
ability of continuum mechanics to provide a unified framework for all of these subjects is
one of the reasons that this is such an important theory. Most students who take a continuum
mechanics course leave with a much deeper understanding of engineering science (once
they have recovered from the shell shock). We conclude in Chapter 11 with some suggested
further reading for readers wishing to expand their understanding of the topics covered in
this book.

6 It is amusing that the continuum model is introduced as an approximation for the real discrete material, but that
to solve the continuum problem one must revert back to a discrete (albeit far coarser) representation.
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2 Scalars, vectors and tensors

Continuum mechanics seeks to provide a fundamental model for material response. It is
sensible to require that the predictions of such a theory should not depend on the irrelevant
details of a particular coordinate system. The key is to write the theory in terms of variables
that are unaffected by such changes; tensors1 (or tensor fields) are the measures that
have this property. Tensors come in different flavors depending on the number of spatial
directions that they couple. The simplest tensor has no directional dependence and is called
a scalar invariant to distinguish it from a simple scalar. A vector has one direction. For two
directions and higher the general term tensor is used.

Tensors are tricky things to define. Many books define tensors in a technical manner
in terms of the rules that tensor components must satisfy under coordinate system trans-
formations.2 While certainly correct, we find such definitions unilluminating when trying
to answer the basic question of “what is a tensor?”. In this chapter, we provide an intro-
duction to tensors from the perspective of linear algebra. This approach may appear rather
mathematical at first, but in the end it provides a far deeper insight into the nature of
tensors.

Before we can begin the discussion of the definition of tensors, we must start by defining
“space” and “time” and the related concept of a “frame of reference,” which underlie the
description of all physical objects. The notions of space and time were first tackled by
Newton in the formulation of his laws of mechanics.

2.1 Frames of reference and Newton’s laws

In 1687, Isaac Newton published his Philosophiae Naturalis Principia Mathematica or
simply Principia, in which a unified theory of mechanics was presented for the first time.
According to this theory, the motion of material objects is governed by three laws. Translated
from the Latin, these laws state [Mar90]:

1 The term “tensor” was coined by William Hamilton in 1854 to describe the norm of a polynome in his theory
of quaternions. It was first used in its modern sense by Woldemar Voigt in 1898.

2 More correctly, tensors are defined in terms of the rules that their components must satisfy under a change of
basis. A rectilinear “coordinate system” consists of an origin and a basis. The distinction between a basis and a
coordinate system is discussed further below. However, we will often use the terms interchangeably.
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I Every body remains in a state, resting or moving uniformly in a straight line, except
insofar as forces on it compel it to change its state.

II The [rate of] change of momentum is proportional to the motive force impressed, and
is made in the direction of the straight line in which the force is impressed.

III To every action there is always opposed an equal reaction.

Mathematically, Newton’s second law (also called the balance of linear momentum) is

F ext =
d

dt
(mv), (2.1)

where F ext is the total external force acting on a system, m is its mass and v is the velocity
of the center of mass. For a body with constant mass, Eqn. (2.1) reduces to the famous
equation, F ext = ma, where a is acceleration. (The case of variable mass systems is
discussed further on page 13.)

Less well known than Newton’s laws of motion is the set of definitions that Newton
provided for the fundamental variables appearing in his theory (force, mass, space, time,
motion and so on). These appear in the Scholium to the Principia (a chapter with explana-
tory comments and clarifications). Newton’s definitions of space and time are particularly
eloquent [New62]:

Space “Absolute space, in its own nature, without reference to anything external, remains
always similar and unmovable.”

Time “Time exists in and of itself and flows equably without reference to anything
external.”

These definitions were controversial in Newton’s time and continue to be a source of active
debate even today. They were necessary to Newton, since otherwise his three laws were
meaningless. The first law refers to the velocity of objects and the second law to the
rate of change of velocity (acceleration). But velocity and acceleration relative to what?
Newton was convinced that the answer was absolute space and absolute time. This view
was strongly contested by the relationists led by Gottfried Leibniz, who as a point of
philosophy believed that only relative quantities were important and that space was simply
an abstraction resulting from the geometric relations between bodies [DiS02].

Newton’s bucket The argument was settled (at least temporarily) by a simple thought ex-
periment that Newton described in the Principia.3 Take a bucket half filled with water
and suspend it from the ceiling with rope. Twist the rope by rotating the bucket as far as
possible. Wait until the water settles and then let go. The unwinding rope will cause the
bucket to begin spinning. Initially, the water will remain still even though the bucket is
spinning, but then slowly due to the friction between the walls of the bucket and the water,
the water will begin to spin as well until it is rotating in unison with the bucket. When the

3 The story of this experiment and how it inspired later thinkers such as Ernst Mach and Albert Einstein is
eloquently told in Brian Greene’s popular science book on modern physics [Gre04].
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water is spinning its surface will assume a concave profile, higher near the bucket walls
than in the center. The rotation of the bucket and water will continue as the rope unwinds
and begins to wind itself up in the opposite direction. Eventually, the bucket will slow to a
stop, but the water will continue spinning for a while, before the entire process is repeated
in the opposite direction. Not an experiment for the cover of Nature, but quite illuminating
as we shall see.

The key point is the fact that the surface of the water assumes a concave profile. The reason
for this appears obvious. When the water is spinning it is accelerating outward (in the same
way that a passenger in a turning vehicle is pushed out to the side) and since there is nowhere
for the water to go but up, it climbs up the walls of the bucket. This is certainly correct;
however, it depends on the definition of spinning. Spinning relative to what? It cannot be
the bucket itself, because when the experiment starts and the water appears still while the
bucket is spinning, one can say that the water is spinning in the opposite direction relative to
a stationary bucket – and yet the surface of the water is flat. Later when both the bucket and
water are spinning together, so that the relative spin is zero, the water is concave. At the end
when the bucket has stopped and the water is still spinning relative to it, the surface of the
water is still concave. Clearly, the shape of the water surface cannot be explained in terms
of the relative motion of the bucket and water. So what is the water spinning relative to? You
might say the earth or the “fixed stars,”4 but Newton countered with a thought experiment.
Imagine that the experiment was done in otherwise empty space. Since the experiment with
the bucket requires gravity, imagine instead two “globes” tied together with a rope. There is
nothing in the universe except for the two globes and the rope: “an immense vacuum, where
there was nothing external or sensible with which the globes could be compared” [New62].
If the rope is made to rotate about an axis passing through its center and perpendicular to
it, we expect a tension to be built up in the rope due to the outward acceleration of the
globes – exactly as in the bucket experiment. But now there is clearly nothing to relate the
spinning of the rope and globes to except absolute space itself. QED as far as Newton was
concerned.5 Absolute space and time lie at the heart of Newton’s theory. It is not surprising,
therefore, that Newton considered his discovery of these concepts to be his most important
achievement [Gre04].

Frame of reference In practice, Newton recognized that it is not possible to work directly
with absolute space and time since they cannot be detected, and so he introduced the
concepts of relative space and relative time [New62]:

4 Recall that the word planet comes from the Greek “planetai” meaning “wanderers,” because the planets appear
to move relative to the fixed backdrop of the stars.

5 Even Leibniz had to accept Newton’s argument, although he remained unconvinced about the reality of absolute
space: “I find nothing in . . . the Scholium . . . that proves, or can prove, the reality of space in itself. However, I
grant there is a difference between an absolute true motion of a body, and a mere relative change of its situation
with respect to another body” [Ale56]. Two hundred years later Ernst Mach challenged Newton’s assertion by
claiming that the water in the bucket is spinning relative to all other mass in the universe. Mach argued that if
it were possible to perform Newton’s experiment with the globes in an empty universe, then there would be no
tension in the rope because there would be no other mass relative to which it was spinning. Albert Einstein was
intrigued by Mach’s thinking, but the conclusion to emerge from the special theory of relativity was that in fact
there would be tension in the rope even in an empty universe [Gre04, p. 51].
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Relative space is some movable dimension or measure of the absolute spaces, which our
senses determine by its position to bodies and which is commonly taken for immovable
space; such is the dimension of a subterraneous, an aerial, or celestial space, determined
by its position in respect of the earth.

Relative, apparent, and common time is some sensible and external (whether accurate or
unequable) measure of duration by the means of motion, which is commonly used instead
of true time, such as an hour, a day, a month, a year.

Today, we refer to this combination of relative space and relative time as a frame of
reference. A modern definition is that a frame of reference is a rigid physical object, such
as the earth, the laboratory or the “fixed stars,” relative to which positions are measured,
and a clock to measure time.

Inertial frames of reference With the definition of absolute space and absolute time, Newton’s
laws of motion were made explicit. However, it turns out that Newton’s equations also hold
relative to an infinite set of alternative frames of reference that are moving uniformly relative
to the absolute frame. These are called inertial frames of reference.6

Consider an inertial frame of reference that is moving at a constant velocity v̄ relative
to absolute space. Say that the position of some object is (x1 , x2 , x3) in the absolute frame
and (x′

1 , x
′
2 , x

′
3) in the inertial frame.7 Assume the frames’ origins coincide at time t = 0.

The positions of the object and measured times in both frames are related through

x′
1 = x1 − v̄t, x′

2 = x2 , x′
3 = x3 , t′ = t,

where, without loss of generality, the coordinate systems associated with the two frames
have been aligned so that the relative motion is along the 1-direction. A mapping of this
type is called a Galilean transformation. Note that the velocities of the object along the
1-direction measured in the two frames are related through

v′1 =
dx′

1

dt
= v1 − v̄.

It is straightforward to show that Newton’s laws of motion hold in the inertial frame. The
first law is clearly still valid since an object moving uniformly relative to absolute space
also moves uniformly relative to the inertial frame. The third law also holds under the
assumption that force is invariant with respect to uniform motion. (This property of force,
called objectivity, is revisited in Section 6.3.3.) The fact that the second law holds in all
inertial frames requires more careful thought. The law is clearly satisfied for the case where
the mass of the system is constant. In this case, F ext = ma, which holds in all inertial
frames since the acceleration is the same:

a′
1 =

dv′
1

dt
=

d(v1 − v̄)
dt

=
dv1

dt
= a1 ,

6 See also Section 6.3, where the relationship between inertial frames and the transformation between frames of
reference and objectivity is discussed.

7 Locating objects relative to a frame of reference requires the introduction of a coordinate system (see Sec-
tion 2.3.2). Here a Cartesian coordinate system is used.
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where the fact that v̄ is constant was used. What about the case where the mass of the
system is variable, for example, a rocket which burns its fuel as it is flying or a rolling
cart containing sand which is being blown off as the cart moves? In these cases, a direct
application of Newton’s second law would appear to show a dependence on the motion of
the frame, since

d(mv′
1)

dt
=

dm

dt
v′

1 + m
dv′

1

dt
=

dm

dt
(v1 − v̄) + m

d(v1 − v̄)
dt

=
d(mv1)

dt
− v̄

dm

dt
. (2.2)

This result suggests that the rate of change of momentum for variable mass systems is
not the same in all inertial frames since it directly depends on the motion of the frame v̄.
The answer to this apparent contradiction is that there is another principle at work which
is not normally stated but is assumed to be true. This is the principle of conservation of
mass.8 Newton’s second law is expressed for a system, a “body” in Newton’s language,
and the mass of this body in a classical system is conserved. This appears to suggest that
variable mass systems are impossible, since m = constant. However, consider the case
where the system consists of two bodies, A and B, with masses mA and mB . The bodies
can exchange mass between them, so that mA = mA (t) and mB = mB (t), but their sum
is conserved, mA + mB = m = constant. In this case, the rate of change of momentum
is indeed the same in all inertial frames, since dm/dt in Eqn. (2.2) is zero and therefore,
d(mv′1)/dt = d(mv1)/dt. If one wants to apply Newton’s second law to a subsystem which
is losing or gaining mass, say only body A in the above example, then one must explicitly
account for the momentum transferred in and out of the subsystem by mass transfer. One
can view this additional term as belonging to the force which is applied to the subsystem.
This is the principle behind the operation of a rocket (see Exercise 2.1) or the recoil of a
gun when a bullet is fired.9

We have established that Newton’s laws of motion (with the added assumption of con-
servation of mass) hold in all inertial frames of reference. This fact was understood by
Newton, who stated in Corollary V to his equations of motion [New62]:

When bodies are enclosed in a given space, their motions in relation to one another are the
same whether the space is at rest or whether moving uniformly straight forward without
circular motion.

Once one inertial frame is known, an infinite number of other inertial frames can be
constructed through a Galilean transformation. The practical problem with this way of
defining inertial frames is that it is not possible to know whether a frame of reference is
moving uniformly relative to absolute space, since it is not possible to detect absolute space.
For this reason the modern definition of inertial frames does not refer to absolute space,
but instead relies on Thomson’s law of inertia, which is described shortly.

8 Many books on mechanics take the view that Newton’s laws only hold for systems of point particles that by
definition have constant mass. In this case, conservation of mass is trivially satisfied and need not be mentioned.
The view presented here is more general and consistent with the generalization of Newton’s laws to continuum
systems which is adopted in the later chapters.

9 Interestingly, the correct treatment of variable mass systems is not uniformly understood even by researchers
working in the field. See, for example, the discussion in [PM92].
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Problems with absolute space Despite the apparent acceptance of absolute space when it was
introduced, it continued (and continues) to trouble many people. Two main criticisms are
raised against it.

1. Metaphysical nature of absolute space
The absolute space which Newton introduced is an undetectable, invisible, all filling,
fixed scaffolding relative to which positions are measured. A sort of universal global
positioning system with a capital “G.” Regardless of one’s religious views, one wants
to say God’s frame of reference, and that is in some sense how Newton viewed it. The
almost spiritual nature of this medium is apparent. Here we have an invisible thing
that cannot be seen or sensed in any way and yet it has a profound effect on our
every day experiences since it determines the acceleration upon which the physical
laws of motion depend. Newton was strongly criticized for this aspect of his work by
philosophers of science. For example, Ernst Mach stated: “With respect to the monstrous
conceptions of absolute space and absolute time I can retract nothing. Here I have only
shown more clearly than hitherto that Newton indeed spoke much about these things,
but throughout made no serious application of them” [Mac60]; or according to Hans
Reichenbach: “Newton begins with precisely formulated empirical statements, but adds
a mystical philosophical superstructure . . . his theory of mechanics arrested the analysis
of the problems of space and time for more than two centuries, despite the fact that
Leibniz, who was his contemporary, had a much deeper understanding of the nature of
space and time” [Rei59]. These claims have more recently been debunked as stemming
from a misunderstanding of the role that absolute space plays in Newton’s theory,
a misunderstanding of Leibniz’s theoretical shortcomings and a misunderstanding of
Einstein’s theory of relativity in which spacetime plays a similar role to that of Newton’s
definitions [Ear70, Art95, DiS06].

2. Equivalence of inertial frames
The second complaint raised against Newton is that since all inertial frames are equiv-
alent from the perspective of Newtonian dynamics and there is no way to tell them
apart, it is not sensible to single out one of them, absolute space, as being special.
Instead, one must think of all inertial frames as inherently equivalent. The definition of
an inertial frame must therefore change since it can no longer be defined as a frame
of reference in uniform motion relative to absolute space. A solution was proposed
by James Thomson in 1884, which he called the law of inertia. It is paraphrased as
follows [DiS91]:10

For any system of interacting bodies, it is possible to construct a reference-frame
and time scale with respect to which all accelerations are proportional to, and in the
direction of, impressed forces.

This is meant to be added to Newton’s laws of motion as a fourth law on equal standing
with the rest. In this way inertial frames are defined as frames in which Newton’s second
law holds without reference to absolute space. The conclusion from this is that the often
asked question regarding why the laws of motion hold only relative to inertial frames is

10 Thomson’s law is revisited from the perspective of material frame-indifference (objectivity) in Section 6.3.3.
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ill-posed. The laws of motion do not hold relative to inertial frames, they define them
[DiS91]. This view on inertial frames is often the one expressed in modern books on
mechanics. With this interpretation, an inertial frame is defined as a frame of reference
in which Newton’s laws of motion are valid.

Relativistic spacetime Thomson’s definition of the law of inertia is not the end of the story,
of course. Just as the Newtonian picture was falling into place, James Clerk Maxwell
was developing the theory of electromagnetism. One of the uncomfortable conclusions to
emerge from Maxwell’s theory was that electromagnetic waves travel at a constant speed,
c = 299 792.458 km/s, relative to all frames of reference, a fact that was confirmed
experimentally for light. This conclusion makes no sense in the Newtonian picture. How
can something travel at the same speed relative to two frames of reference that are in relative
motion?

Surprisingly, a hint to the answer is already there in Newton’s words: “time exists in
and of itself and flows equably without reference to anything external.” Einstein showed
that this was entirely incorrect. Time does not exist “in and of itself.” It is intimately tied
with space and is affected by the motion of observers. The result is relativistic spacetime,
which is beyond the scope of this book. It is, however, interesting to point out that Einstein’s
spacetime, like Newton’s absolute space is something. In the absence of gravity, in the
special theory of relativity, Einstein speaks of an “absolute spacetime” not much different
philosophically from Newton’s absolute space [DiS06]. In general relativity, spacetime
“comes alive” [Gre04] and interacts with physical objects. In this way, the criticism that
space and time are metaphysical is removed.

Within this context, it may be possible to regard Newton’s absolute space as a legitimate
concept that can be considered a limiting case of relativistic spacetime. If this is true,
then perhaps the original definition of inertial frames in terms of absolute space is tenable,
removing the need for Thomson’s law of inertia. Philosophers of science are still arguing
about this point.

2.2 Tensor notation

Having introduced the concepts of space, time and frame of reference, we now turn to a
“nuts and bolts” discussion regarding the notation of tensor algebra. In the process of doing
so we will introduce important operations between tensors. It may seem a bit strange to
start discussing a notation for something that we have not defined yet. Think of it as the
introduction of a syntax for a new language that we are about to learn. It will be useful for
us later, when we learn the words of this language, to have a common structure in which
to explain the concepts that emerge. Walter Jaunzemis, in his entertaining introduction
to continuum mechanics, put it very nicely: “Continuum mechanics may appear as a
fortress surrounded by the walls of tensor notation” [Jau67]. We begin therefore at the
walls.
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2.2.1 Direct versus indicial notation

Tensors represent physical properties such as mass, velocity and stress that do not depend
on the coordinate system. It should therefore be possible to represent tensors and the
operations on them and between them without reference to a particular coordinate system.
Such a notation exists and is called direct notation (or invariant notation). Direct notation
provides a symbolic representation for tensor operations but it does not specify how these
operations are actually performed. In practice, in order to perform operations on tensors they
must always be projected onto a particular coordinate system where they are represented
by a set of components. The explicit representation of tensor operations in terms of their
components is called indicial notation. This is the notation that has to be used when tensor
operations involving numerical values are performed.

The number of spatial directions associated with a tensor is called its rank or order.
We will use these terminologies interchangeably. A scalar invariant, such as mass, is not
associated with direction at all, i.e. a body does not have a different mass in different
directions. Therefore, a scalar invariant is a rank 0 tensor or alternatively a zeroth-order
tensor. A vector, such as velocity, is associated with one spatial direction and is therefore a
rank 1 or first-order tensor. Stress involves two spatial directions, the orientation of a plane
sectioning a body and a direction in space along which the stress is evaluated. It is therefore
a rank 2 or second-order tensor. Tensors of any order are possible. In practice, we will only
be dealing with tensors up to fourth order.

In both indicial and direct notations, tensors are represented by a symbol, e.g. m for mass,
v for velocity and σ for stress. In indicial notation, the tensor’s spatial directions are denoted
by indices attached to the symbol. Mass has no direction so it has no indices, velocity has
one index, stress two, and so on: m, vi , σij . The number of indices is equal to the rank
of the tensor and the range of an index [1, 2, . . . , nd ] is determined by the dimensionality
of space.11 We will be dealing mostly with three-dimensional space (nd = 3); however,
the notation we develop applies to any value of nd . The tensor symbol with its numerical
indices represents the components of the tensor, e.g. v1 , v2 and v3 are the components of the
velocity vector. A set of simple rules for the interaction of indices provides a mechanism for
describing all of the tensor operations that we will require. In fact, what makes this notation
particularly useful is that any operation defined by indicial notation has the property that if
its arguments are tensors the result will also be a tensor. We discuss this further at the end
of Section 2.3, but for now we state it without proof.

In direct notation, no indices are attached to the tensor symbol. The rank of the tensor
is represented by the typeface used to display the symbol. Scalar invariants are displayed
in a regular font while first-order tensors and higher are displayed in a bold font (or with
an underline when written by hand): m, v, σ (or m, v, σ by hand). As noted above, the
advantage of direct notation is that it emphasizes the fact that tensors are independent of
the choice of a coordinate system (whereas indices are always tied to a particular selection).
Direct notation is also more compact and therefore easier to read. However, the lack of
indices means that special notation must be introduced for different operations between

11 See the discussion on finite-dimensional spaces in Section 2.3.
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tensors. Many symbols in this notation are not universally accepted and direct notation is
not available for all operations. We will discuss direct notation in Section 2.4, where tensor
operations are defined.

In some cases, the operations defined by indicial notation can also be written using the
matrix notation familiar from linear algebra. Here vectors and second-order tensors are
represented as column and rectangular matrices of their components, for example

[v] =

⎡⎣v1

v2

v3

⎤⎦ , [σ] =

⎡⎣σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤⎦ .

The notation [v] and [σ] is a shorthand representation for the column matrix and rectangular
matrix, respectively, formed by the components of the vector v and the second-order tensor
σ. This notation will sometimes be used when tensor operations can be represented by
matrix multiplication and other matrix operations on tensor components.

Before proceeding to the definition of tensors, we begin by introducing the basic rules
of indicial notation, starting with the most basic rule: the summation convention.

2.2.2 Summation and dummy indices

Consider the following sum:12

S = a1x1 + a2x2 + · · · + and xnd .

We can write this expression using the summation symbol Σ:

S =
nd∑
i=1

aixi =
nd∑
j=1

ajxj =
nd∑

m=1

am xm .

Clearly, the particular choice for the letter we use for the summation, i, j or m, is irrelevant
since the sum is independent of the choice. Indices with this property are called dummy
indices. Because summation of products, such as aixi , appears frequently in tensor op-
erations, a simplified notation is adopted where the Σ symbol is dropped and any index
appearing twice in a product of variables is taken to be a dummy index, over which a sum
is implied. For example,

S = aixi = ajxj = am xm = a1x1 + a2x2 + · · · + and xnd .

This convention was introduced by Albert Einstein in the famous 1916 paper in which
he outlined the principles of general relativity [Ein16]. It is therefore called Einstein’s
summation convention or just the summation convention for short.13

12 This section follows the introduction to indicial notation in [LRK78].
13 Although the summation convention is an extremely simple idea, it is also extremely useful and is therefore

widely used and quoted. This amused Einstein who is reported to have joked with a friend that apparently
“I have made a great discovery in mathematics; I have suppressed the summation sign every time that summation
must be made over an index which occurs twice . . .” [Wei11].
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Example 2.1 (The Einstein summation convention for nd = 3) Several examples are:

1. aixi = a1x1 + a2x2 + a3x3 .
2. aiai = a2

1 + a2
2 + a2

3 .
3. σii = σ11 + σ22 + σ33 .

It is important to point out that the summation convention only applies to indices that
appear twice in a product of variables. A product containing more than two occurrences of
a dummy index, such as aibixi , is meaningless. If the objective here is to sum over index i,
this would have to be written as

∑nd
i=1 aibixi . The summation convention does, however,

generalize to the case where there are multiple dummy indices in a product. For example a
double sum over dummy indices i and j is

Aijxiyj = A11x1y1 + A12x1y2 + A13x1y3

+ A21x2y1 + A22x2y2 + A23x2y3

+ A31x3y1 + A32x3y2 + A33x3y3 .

We see how the summation convention provides a very efficient shorthand notation for
writing complex expressions. Finally, there may be situations where although an index
appears twice in a product, we do not wish to sum over it. For example, say we wish to state
that the diagonal components of a second-order tensor are zero: A11 = A22 = A33 = 0.
In order to temporarily “deactivate” the summation convention we write:

Aii = 0 (no sum) or Ai i = 0.

2.2.3 Free indices

An index that appears only once in each product term of an equation is referred to as a free
index. A free index takes on the values 1, 2, . . . , nd , one at a time. For example,

Aijxj = bi.

Here i is a free index and j is a dummy index. Since i can take on nd separate values, the
above expression represents the following system of nd equations:

A11x1 + A12x2 + · · · + A1nd xnd = b1 ,

A21x1 + A22x2 + · · · + A2nd xnd = b2 ,

...
...

And 1x1 + And 2x2 + · · · + And nd xnd = bnd .

Naturally, all terms in an expression must have the same free indices (or no indices at all).
The expression Aijxj = bk is meaningless. However, Aijxj = c (where c is a scalar) is fine.
There can be as many free indices as necessary. For example, the expression Dijkxk = Aij

contains the two free indices i and j and therefore represents n2
d equations.
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2.2.4 Matrix notation

Indicial operations involving tensors of rank two or less can be represented as matrix
operations. For example, the product Aijxj can be expressed as a matrix multiplication.
For nd = 3 we have

Aijxj = Ax =

⎡⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎦⎡⎣x1

x2

x3

⎤⎦ .

We use a sans serif font to denote matrices to distinguish them from tensors. Thus, A is a
rectangular table of numbers. The entries of A are equal to the components of the tensor
A, i.e. A = [A], so that Aij = Aij . Column matrices are denoted by lower-case letters and
rectangular matrices by upper-case letters.

The expression Ajixj can be computed in a similar manner, but the entries of A must be
transposed before performing the matrix multiplication, i.e. its rows and columns must be
swapped. Thus, (for nd = 3)

Ajixj = AT x =

⎡⎣A11 A21 A31

A12 A22 A32

A13 A23 A33

⎤⎦⎡⎣x1

x2

x3

⎤⎦ ,

where the superscript T denotes the transpose operation. Similarly, the sum aixi can be
written

aixi = aT x =
[
a1 a2 a3

] ⎡⎣x1

x2

x3

⎤⎦ .

The transpose operation has the important property that

(AB)T = BT AT .

This implies that (ABC)T = CT BT AT , and so on.
Another example of a matrix operation is the expression, Aii = A11 +A22 +· · ·+And nd ,

which is defined as the trace of the matrix A. In matrix notation this is denoted as trA.

2.2.5 Kronecker delta

The Kronecker delta14 is defined as follows:

δij =
{

1 if i = j,

0 if i �= j.
(2.3)

14 The Kronecker delta is named after the German mathematician and logician Leopold Kronecker (1823–1891).
Kronecker believed all mathematics should be founded on whole numbers, saying “God made the integers, all
else is the work of man” [Wik10].



20 Scalars, vectors and tensors
�

In matrix form, δij are the entries of the identity matrix I (for nd = 3),

I =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ . (2.4)

Most often the Kronecker delta appears in expressions as a result of a differentiation of a
tensor with respect to its components. For example, ∂xi/∂xj = δij . This is correct as long
as the components of the tensor are independent.

An important property of δij is index substitution:

aiδij = aj .

Proof

aiδij = a1δ1j + a2δ2j + a3δ3j =

⎧⎨⎩
a1 if j = 1
a2 if j = 2
a3 if j = 3

= aj .

Example 2.2 (The Kronecker delta for nd = 3) Several examples are:

1. Aij δij = Aii = Ajj = A11 + A22 + A33 .
2. δii = δ11 + δ22 + δ33 = 3.
3. Aij − Aik δj k = Aij − Aij = 0.

2.2.6 Permutation symbol

The permutation symbol15 εijk for nd = 3 is defined as follows:16

εijk =

⎧⎨⎩
1 if i, j, k form an even permutation of 1, 2, 3,

−1 if i, j, k form an odd permutation of 1, 2, 3,

0 if i, j, k do not form a permutation of 1, 2, 3.

(2.5)

Thus, ε123 = ε231 = ε312 = 1, ε321 = ε213 = ε132 = −1, and ε111 = ε112 = ε113 =
· · · = ε333 = 0. (See Fig. 2.1 for a convenient way to remember the sign of the permutation
symbol.) Some properties of the permutation symbol are given below:

1. Useful identities:

εijk δij = εiik = 0, εijk εmjk = 2δim , εijk εijk = 6. (2.6)

15 The permutation symbol is also known as the Levi–Civita symbol or the alternating symbol.
16 It is possible to generalize the definition of the permutation symbol to arbitrary dimensionality, but since we

deal primarily with three-dimensional space we limit ourselves to this special case.
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Fig. 2.1 A convenient mnemonic for the sign of the permutation symbol. A triplet of indices obtained by traversing the circle in
a clockwise direction result in a positive permutation symbol. The reverse gives the negative.

2. The permutation symbol provides an expression for the determinant of a matrix:

εmnp detA = εijkAim AjnAkp = εijkAmiAnjApk . (2.7)

These identities can be proven by substitution. Note that Eqn. (2.7) demonstrates the fact
that detA = detAT . A separate expression for detA can be obtained by multiplying
the last expression in Eqn. (2.7) by 1

6 εmnp and using Eqn. (2.6)3 :

detA =
1
6
εijk εmnpAmiAnjApk = εijkA1iA2jA3k , (2.8)

where the last expression is obtained by expanding out the m, n, p indices and using the
symmetries of the permutation tensor.

3. The derivative of the determinant of a matrix with respect to the matrix entries will be
required later. To obtain this, start with the first equality in Eqn. (2.8). The derivative of
this is

∂(detA)
∂Ars

=
1
6
εijk εmnp [δrm δisAnjApk + δrnδjsAmiApk + δrpδksAmiAnj ]

=
1
2
εsjk εrnpAnjApk . (2.9)

Passage from the first to second lines above is accomplished by noting through ap-
propriate dummy index substitution that the three terms in the first line are equal.
Equation (2.9) is concise, but it is component based. We continue the derivation to
obtain a more general matrix expression. Replace εrnp in Eqn. (2.9) with εqnpδqr . Then
assuming that detA �= 0, there exists A−1 such that

δqr = AqiA
−1
ir .

This gives

∂(detA)
∂Ars

=
(

1
2
εsjkA−1

ir

)
(εqnpAqiAnjApk ) .

Using Eqn. (2.7) followed by Eqn. (2.6)2 , we obtain the final expression17

∂(detA)
∂A

= A−T detA. (2.10)

17 Although Eqn. (2.10) has been derived for the special case of nd = 3, it is correct for any value of nd .
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4. The following relation is referred to as the ε–δ identity:

εijk εmnk = δim δjn − δin δjm . (2.11)

This relation can be obtained from the determinant relation (Eqn. (2.7)) for the special
case A = I (See, for example, [Jau67]).

The permutation symbol plays an important role in vector cross products. We will see this
in Section 2.3.

Now that we have explained the rules for tensor component interactions, we turn to the
matter of the definition of a tensor.

2.3 What is a tensor?

The answer to the question “What is a tensor?” is not simple. Tensors are abstract entities
that behave according to certain transformation rules. In fact, many books define tensors
in terms of the transformation rules that they must obey in order to be invariant under
coordinate system transformations. We prefer the linear algebra approach where tensors
are defined independently of coordinate systems. The transformation rules are then an
output of the definition rather than part of it.

So how do we define a tensor? Let us begin by considering the more familiar case of a
vector, we can then generalize this definition to tensors of arbitrary rank. The typical high-
school definition of a vector is “an entity with a magnitude and a direction,” often stressed
by the teacher by drawing an arrow on the board. This is clearly only a partial definition,
since many things that are not vectors have a magnitude and a direction. This book, for
example, has a magnitude (the number of pages in it) and a direction (front to back), yet
it is not what we would normally consider a vector. It turns out that an indispensable part
of the definition is the parallelogram law that defines how vectors are added together. This
suggests that an operational approach must be taken to define vectors. However, if this is
the case, then vectors can only be defined as a group and not individually. This leads to the
idea of a vector space.

2.3.1 Vector spaces and the inner product and norm

A real vector space V is a set, defined over the field of real numbers R, where the following
two operations have been defined:

1. vector addition for any two vectors a, b ∈ V , we have a + b = c ∈ V ,
2. scalar multiplication for any scalar λ ∈ R and vector a ∈ V , we have λa = c ∈ V ,

with the following properties18 ∀a, b, c ∈ V and ∀λ, μ ∈ R:

18 We use (but try not to overuse) the standard mathematical notation. ∀ should be read “for all” or “for every,”
∈ should be read “in,” iff should be read “if and only if.” The symbol “≡” means “equal by definition.”
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1. a + b = b + a addition is commutative
2. a + (b + c) = (a + b) + c addition is associative
3. a + 0 = a addition has an identity element 0
4. a + (−a) = 0 addition has an additive inverse

5. λa = aλ multiplication is commutative
6. λ(μa) = (λμ)a multiplication is associative
7. 1a = a multiplication has an identity element 1

8. (λ + μ)(a + b) = λa + λb + μa + μb distributive properties of
addition and multiplication

At this point the definition is completely general and abstract. It is possible to invent
many vector objects and definitions for addition and multiplication that satisfy these rules.
An example that may help to show the abstract nature of a vector space is useful. Consider
the set of all continuously differentiable functions with derivatives of all orders, f(x),
on the interval X = [0, 1] such that f(0) = f(1) = 0. It is easy to show that this set,
called C∞(X ), is in fact a vector space under the usual definitions of function addition and
multiplication by a scalar.

The vectors that are familiar to us from the physical world have additional properties
associated with the geometry of finite-dimensional space, such as distances and angles.
The definition of the vector space must be extended to include these concepts. The result
is the Euclidean space named after the Greek mathematician Euclid who laid down the
foundations of “Euclidean geometry.” We define these properties separately beginning with
the concept of a finite-dimensional space.

Finite-dimensional spaces and basis vectors The dimensionality of a space is related to the
concept of linear dependence. The m vectors a1 , . . . ,am ∈ V are linearly dependent if
and only if there exist λ1 , . . . , λm ∈ R not all equal to zero, such that

λ1a1 + · · · + λm am = 0.

(Recall that the underline on the subscripts implies that the summation convention is not
applied, see Section 2.2.2.) Otherwise, the vectors are linearly independent. The largest
possible number of linearly-independent vectors is the dimensionality of the vector space.
(For example, in a three-dimensional vector space there can be at most three linearly
independent vectors.) This is denoted by dimV . We limit ourselves to vector spaces for
which dimV is finite.

Consider an nd -dimensional vector space V nd . Any set of nd linearly independent
vectors can be selected as a basis of V nd . A basis is useful because every vector in V can
be written as a unique linear combination of the basis vectors. Basis vectors are commonly
denoted by ei , i = 1, . . . , nd . Any other vector a ∈ V nd can be expressed as

a = a1e1 + · · · + and end = aiei , (2.12)
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where ai are called the components of vector a with respect to the basis ei . The basis vectors
are said to span the vector space, since any other vector in the space can be represented as
a linear combination of them. The proof for Eqn. (2.12) is straightforward:

Proof The basis vectors (e1 , . . . ,end ) are linearly independent, therefore the set
(a,e1 , . . . ,end ) must be linearly dependent. Hence, λ0a + λ1e1 + · · · + λnd end = 0. If
λ0 = 0, then the only solution is λ1 = λ2 = · · · = λnd = 0. This cannot be true since
a �= 0. Thus, λ0 �= 0, and ai = −λi/λ0 .

The choice of basis vectors is not unique; however, the components of a vector in a
particular basis are unique. This is easy to show by assuming the contrary and using
the linear dependence of the basis vectors. Next we introduce the concept of multilinear
functions that will be important for the definition of the inner product and later for the
general definition of tensors.

Multilinear functions Let us begin by considering a scalar linear function of one variable. A
real function f(x) is linear in x if it is additive: f(x+x′) = f(x)+ f(x′) ∀x, x′ ∈ R, and
homogeneous: f(λx) = λf(x) ∀x, λ ∈ R. These two conditions can be combined into the
single requirement:

f [λx + μx′] = λf [x] + μf [x′], ∀x, x′, λ, μ ∈ R,

where the square brackets are used to indicate that f is a linear function of its argument.
Clearly, f [x] = Cx, where C is a constant, is a linear function, whereas g(x) = Cx + D

is not linear since g(x + x′) = C(x + x′) + D �= g(x) + g(x′) = C(x + x′) + 2D.
The generalization of scalar linear functions of one variable to multilinear functions of

n variables is straightforward. A multilinear function or n-linear function is linear with
respect to each of its n independent variables. For example, a bilinear function must satisfy
the linearity condition for both arguments:

f [λx + μx′, y] = λf [x, y] + μf [x′, y], ∀x, x′, y, λ, μ ∈ R,

f [x, λy + μy′] = λf [x, y] + μf [x, y′], ∀x, y, y′, λ, μ ∈ R.

As before, f [x, y] = Cxy is a bilinear function, while g(x, y) = Cxy + D is not. In
general, for an n-linear function we require ∀xi, x

′
i , λ, μ ∈ R:

f [x1 , . . . , λxi + μx′
i , . . . , xn ] = λf [x1 , . . . , xi , . . . , xn ] + μf [x1 , . . . , x

′
i , . . . , xn ].

The concept of a linear function also generalizes to functions of vector arguments. In this
context the term linear mapping is often used. A real-valued linear mapping, f : V → R,
is a transformation that takes a vector a from V and returns a scalar in R that satisfies the
conditions:

f [λa + μa′] = λf [a] + μf [a′], ∀a,a′ ∈ V ,∀λ, μ ∈ R.

A bilinear mapping, f : V × V → R, is linear with respect to both arguments:

f [λa + μa′, b] = λf [a, b] + μf [a′, b], ∀a,a′, b ∈ V ,∀λ, μ ∈ R,

f [a, λb + μb′] = λf [a, b] + μf [a, b′], ∀a, b, b′ ∈ V ,∀λ, μ ∈ R.
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In the general case, a multilinear mapping of n arguments (also called an n-linear mapping),
f : V × · · · × V︸ ︷︷ ︸

n times

→ R, satisfies:

f [a1 , . . . , λai + μa′
i , . . . ,an ] = λf [a1 , . . . ,ai , . . . ,an ] + μf [a1 , . . . ,a

′
i , . . . ,an ],

∀ai ,a
′
i ∈ V and ∀λ, μ ∈ R.

We now turn to the definition of the Euclidean space.

Euclidean space The real coordinate space R
nd is an nd -dimensional vector space defined

over the field of real numbers. A vector in R
nd is represented by a set of nd real components

relative to a given basis. Thus for a ∈ R
nd we have a = (a1 , . . . , and ), where ai ∈ R.

Addition and multiplication are defined for R
nd in terms of the corresponding operations

familiar to us from the algebra of real numbers:

1. Addition: a + b = (a1 , . . . , and ) + (b1 , . . . , bnd ) = (a1 + b1 , . . . , and + bnd ).
2. Multiplication: λa = λ(a1 , . . . , and ) = (λa1 , . . . , λand ).

These definitions clearly satisfy the requirements given above for the addition and multi-
plication operations for vector spaces.

In order for R
nd to be a Euclidean space it must possess an inner product, which is

related to angles between vectors, and it must possess a norm, which provides a measure for
the length of a vector.19 In this book we will be concerned primarily with three-dimensional
Euclidean space for which nd = 3.

Inner product and norm An inner product is a real-valued bilinear mapping. The inner product
of two vectors a and b is denoted by 〈a, b〉. An inner product function must satisfy the
following properties ∀a, b, c ∈ V and ∀λ, μ ∈ R:

1. 〈λa + μb, c〉 = λ〈a, c〉 + μ〈b, c〉 linearity with respect to first argument
2. 〈a, b〉 = 〈b,a〉 symmetry
3. 〈a,a〉 ≥ 0 and 〈a,a〉 = 0 iff a = 0 positivity

For R
nd the standard choice for an inner product is the dot product:

〈a, b〉 = a · b. (2.13)

19 Some authors use E
n d to denote a Euclidean space to distinguish it from a real coordinate space without an

inner product and norm. Since this distinction is not going to play a role in this book, we reduce notation and
denote a Euclidean space by R

n d with the existence of a norm and inner product implied.
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The Euclidean norm is defined as20

‖a‖ =
√

a · a. (2.14)

This notation distinguishes the norm from the absolute value of a scalar, |s| =
√

s2 . A
shorthand notation denoting a2 ≡ a · a is sometimes adopted. A vector a satisfying
‖a‖ = 1 is called a unit vector.

A geometrical interpretation of the dot product is

a · b = ‖a‖ ‖b‖ cos θ(a, b), (2.15)

where θ(a, b) is the angle between vectors a and b and the norm provides a measure for
the length of a vector. Two vectors, a and b, that are perpendicular to each other satisfy the
condition a · b = 0. An additional important property that can be proven using the three
defining properties of an inner product given above is the Schwarz inequality:

|a · b| ≤ ‖a‖ ‖b‖ ∀a, b ∈ R
nd .

The property of scalar multiplication and the definition of the norm allow us to write a
vector as a product of a magnitude and a direction:

v = ‖v‖ v

‖v‖ = ‖v‖ ev , (2.16)

where ev is the unit vector in the direction of v. For example, if v is the velocity vector,
‖v‖ is the magnitude of the velocity (absolute speed) and ev is the direction of motion.

2.3.2 Coordinate systems and their bases

In the definition of a frame of reference in Section 2.1, we stated that positions are measured
relative to some specified physical object. However, the actual act of measurement requires
the definition of a coordinate system – a standardized scheme that assigns a unique set of
real numbers, the “coordinates,” to each position. The idea of “positions” is in turn related
to the concept of a “point space” as described next.

Euclidean point space Mathematically, the space associated with a frame of reference can
be regarded as a set E of points, which are defined through their relation with a Euclidean
vector space R

nd (called the translation space of E ). For every pair of points x, y in E ,
there exists a vector v(x, y) in R

nd that satisfies the following conditions [Ogd84]:

v(x, y) = v(x, z) + v(z, y) ∀x, y, z ∈ E , (2.17)

v(x, y) = v(x, z) if and only if y = z. (2.18)

20 An important theorem states that for a finite-dimensional space R
n d , all norms are equivalent in the sense that

given two definitions for norms, 1 and 2, the results of one are bounded by the other, i.e. m ‖a‖1 ≤ ‖a‖2 ≤
M ‖a‖1 , ∀a ∈ R

n d , where m and M are positive real numbers. This means that we can adopt the Euclidean
norm without loss of generality.
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A set satisfying these conditions is called a Euclidean point space. A position vector x for
a point x is defined by singling out one of the points as the origin o and writing:

x ≡ v(x, o). (2.19)

Equations (2.17) and (2.18) imply that every point x in E is uniquely associated with a
vector x in R

nd . The vector connecting two points is given by

x − y = v(x, o) − v(y, o).

The distance between two points and the angles formed by three points can be computed
using the norm and inner product of the corresponding translation space.

We now turn to the definition of coordinate systems.

Coordinate systems The most general type of coordinate systems we will consider are called
curvilinear coordinate systems. These consist of an origin relative to which positions are
measured (as described above), and a set of “coordinate curves” that correspond to paths
through space along which all but one of the coordinates are constant. At each position in
a three-dimensional space a set of three coordinate curves intersect. The tangent vectors to
these coordinate curves do not all lie in a single plane and therefore form a basis (as defined
in Section 2.3.1). The important point to understand is that for curvilinear coordinates, the
basis vectors change from position to position. Examples of curvilinear coordinate systems
include the polar cylindrical and spherical systems, both of which are discussed further in
Section 2.6.3. A special type of a curvilinear coordinate system is a rectilinear coordinate
system where the coordinate curves are straight lines.21 The basis vectors of rectilinear
coordinate systems point along the coordinate lines which are called axes in this case.
In contrast to a general curvilinear coordinate system, the basis vectors of a rectilinear
coordinate system are independent of position in space. An infinite number of rectilinear
coordinate systems can be associated with a given frame of reference, differing by their
origin and the orientation of their axes (or basis vectors). If the axes are orthogonal to each
other, the term Cartesian22 coordinate system is used (see Fig. 2.2).

Orthonormal basis and Cartesian coordinates The basis of a Cartesian coordinate system is
orthogonal, i.e. all basis vectors are perpendicular to each other. If, in addition, the basis
vectors have magnitude unity, the basis is called orthonormal. The requirements for an
orthonormal basis are expressed mathematically by the condition

ei · ej = δij , (2.20)

where ei are the basis vectors (see Fig. 2.2) and δij is the Kronecker delta defined in
Eqn. (2.3). By convention, we choose basis vectors that form a right-handed triad (this

21 Although we most often encounter the prefix “rect” in the word rectangle (where it means “right” as in a
90 degree angle), its occurrence in the word “rectilinear” does not refer to angles at all. In fact, in this case
the prefix recti has the alternative meaning “straight,” and thus, rectilinear means “characterized by straight
lines.”

22 “Cartesian” refers to the French mathematician René Descartes who among other things worked on developing
an algebra for Euclidean geometry leading to the field of analytical geometry.
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Fig. 2.2 The Cartesian coordinate system. The three axes and basis vectors ei are shown along with an alternative rotated set
of basis vectors e′

i . The origin of the coordinate system is o.

means that if we curl the fingers of the right hand, rotating them from e1 towards e2 , the
thumb will point in the positive direction of e3).

In an orthonormal basis, the indicial expression for the dot product is

a · b = (aiei) · (bjej ) = aibj (ei · ej ) = aibj δij = aibi ,

where we have used Eqn. (2.20) and the index substitution property of δij . Therefore,

a · b = aibi . (2.21)

The component of a vector along a basis vector direction is obtained by dotting the vector
with the basis vector. Consider a = ajej , and dot both sides with ei :

a · ei = aj (ej · ei) = aj δji = ai.

Thus, the standard method for obtaining vector components in an orthonormal basis is

ai = a · ei . (2.22)

Nonorthogonal bases and covariant and contravariant components The definitions given above
for an orthonormal basis can be extended to the nonorthogonal case. In R

3 , any set of three
noncollinear, nonplanar and nonzero vectors form a basis. There are no other constraints on
the magnitude of the basis vectors or the angles between them. A general basis consisting
of vectors that are not perpendicular to each other and may have magnitudes different from
1 is called a nonorthogonal basis. An example of such a basis is the set of lattice vectors
that define the structure of a crystal (see Section 3.3 in [TM11]). To distinguish such a basis
from an orthonormal basis, we denote its basis vectors with {gi} instead of {ei}. Since the
vectors gi are not orthogonal, a reciprocal23 basis {gi} can be defined through

gi · gj = δi
j , (2.23)

23 The reciprocal basis vectors of continuum mechanics are closely related to the reciprocal lattice vectors of
solid state physics discussed in Section 3.7.1 of [TM11]. The only difference is a 2π factor introduced in the
physics definition to simplify the form of plane wave expressions.
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where δi
j has the same definition as the Kronecker delta defined in Eqn. (2.3). Note that the

subscript and superscript placement of the indices is used to distinguish between a basis and
its reciprocal partner. The existence of these two closely related bases leads to the existence
of two sets of components for a given vector a:

a = aigi = ajg
j . (2.24)

Here ai are the contravariant components of a, and ai are the covariant components of a.
The connections between covariant and contravariant components are obtained by dotting
Eqn. (2.24) with either gk or gk , which gives

ak = gjkaj and ak = gikai, (2.25)

where24 gij = gi · gj and gij = gi · gj . The processes in Eqn. (2.25) are called raising or
lowering an index.

The existence of the parallel covariant and contravariant descriptions means that the dot
product can be expressed in different ways. In contravariant components, we have

a · b = (aigi) · (bjgj ) = aibj (gi · gj ) = aibj gij . (2.26)

Similarly, in covariant components

a · b = aibj g
ij . (2.27)

Continuum mechanics can be phrased entirely in terms of nonorthogonal bases, and
more generally in terms of curvilinear coordinate systems. However, the general derivation
leads to notational complexity that can obscure the main physical concepts underlying the
theory. We therefore mostly limit ourselves to Cartesian coordinate systems in this book
except where necessary.

2.3.3 Cross product

We have already encountered the dot product that maps two vectors to a scalar. The cross
product is a binary operation that maps two vectors to a new vector that is orthogonal to
both with magnitude equal to the area of the parallelogram spanned by the original vectors.
The cross product is denoted by the × symbol, so that c = a × b = A(a, b)n, where
A(a, b) = ‖a‖ ‖b‖ sin θ(a, b) is the area spanned by a and b and n is a unit vector normal
to the plane defined by them. This definition for the cross product is not complete since
there are two possible opposite directions for the normal (see Fig. 2.3). The solution is to
append to the definition the requirement that (a, b,a × b) form a right-handed set.

The cross product has the following properties ∀a, b, c ∈ R
3 and ∀λ, μ ∈ R:

1. a × b = −(b × a) anticommutative
2. (λa + μb) × c = λ(a × c) + μ(b × c) bilinear mapping

a × (λb + μc) = λ(a × b) + μ(a × c)
3. a · (a × b) = 0 and b · (a × b) = 0 perpendicularity

24 The quantities gij and gij are the components of the metric tensor g discussed further in Section 2.3.6.
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θ(a, b)
A(a, b)

Fig. 2.3 The cross product between vectors a and b. The direction of a × b resulting in a right-handed triad is n. The
magnitude of a × b is equal to the area of the shaded parallelogram.

Furthermore, if a × b = 0 and neither a nor b is zero, then we must have b = λa,
λ ∈ R, i.e. a is parallel to b. To obtain the indicial expression for a× b in R

3 we begin by
noting that for a right-handed orthonormal basis

e1 × e2 = e3 , e2 × e3 = e1 , e3 × e1 = e2 ,

e2 × e1 = −e3 , e3 × e2 = −e1 , e1 × e3 = −e2 ,

e1 × e1 = 0, e2 × e2 = 0, e3 × e3 = 0.

This can be written in shorthand using the permutation symbol (Eqn. (2.5)):

ei × ej = εijkek . (2.28)

Now consider a × b = (aiei) × (bjej ) = aibj (ei × ej ). Using Eqn. (2.28), we have

a × b = εijkaibjek , (2.29)

which is the indicial form of the cross product. Equation (2.29) can also be written in a
convenient form as a determinant of a matrix:

a × b = det

⎡⎣e1 e2 e3

a1 a2 a3

b1 b2 b3

⎤⎦ .

Another useful operation is the triple product (a × b) · c, which is equal to the volume
of a parallelepiped spanned by the vectors a, b, c forming a right-handed triad. This can
be readily shown using elementary geometry. In indicial notation we have (a × b) · c =
(εijkaibjek ) · cm em = εijkaibj cm (ek · em ). Using Eqn. (2.20) this becomes

(a × b) · c = εijkaibj ck , (2.30)
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or in determinant form

(a × b) · c = det

⎡⎣c1 c2 c3

a1 a2 a3

b1 b2 b3

⎤⎦ .

2.3.4 Change of basis

We noted earlier that the choice of basis vectors ei is not unique. There are, in fact, an
infinite number of equivalent basis sets. Consider two orthonormal bases eα and e′

i as
shown in Fig. 2.2. For the sake of clarity, we adopt Sokolnikoff notation where (with a wink
to ancient history) Greek indices refer to the “original” basis and Roman indices refer to
the “new” basis. We wish to find the relationship between eα and e′

i . Since the vectors eα

are linearly independent, it must be possible to write any other vector, including the vectors
e′

i , as a linear combination of them. Consequently, the two bases are related through the
linear transformation matrix Q:

e′
i = Qαieα ⇔

⎡⎣e′
1

e′
2

e′
3

⎤⎦ =

⎡⎣Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎤⎦T ⎡⎣e1

e2

e3

⎤⎦ , (2.31)

where Qαi = eα ·e′
i . Note the transpose operation on the matrix Q in Eqn. (2.31).25 Since the

basis vectors are unit vectors, the entries of Q are directional cosines, Qαi = cos θ(e′
i ,eα ).

The columns of Q are the components of the new basis e′
i with respect to the original basis

eα . Note that Q is not symmetric since the representation of e′
i in basis eα is not the same

as the representation of eα in e′
i .

As an example, consider a rotation by angle θ about the 3-axis. The new basis vectors
are given by e′

1 = cos θe1 + cos(90− θ)e2 , e′
2 = cos(90 + θ)e1 + cos θe2 , e′

3 = e3 . The
corresponding transformation matrix is

Q =

⎡⎣cos θ −sin θ 0
sin θ cos θ 0

0 0 1

⎤⎦ ,

where we have used some elementary trigonometry.

Properties of Q The transformation matrix has special properties due to the orthonormality
of the basis vectors that it relates. Beginning from the orthonormality of e′

i and using the
transformation in Eqn. (2.31), we have

δij = e′
i · e′

j = (Qαieα ) · (Qβjeβ ) = QαiQβj (eα · eβ ) = QαiQβj δαβ = QαiQαj .

25 Some authors define the transformation matrix as the transpose of our definition. We adopt this definition be-
cause it is consistent with the concept of tensor rotation discussed later in Section 2.5.1. Also, if nonorthonormal
bases are used, then Q−1 must be substituted for QT in Eqn. (2.31).
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We have shown that

QαiQαj = δij ⇔ QT Q = I. (2.32)

Similarly, we can show that QαiQβi = δαβ (i.e. QQT = I). Consequently,

QT = Q−1 . (2.33)

In addition, we can show that the determinant of Q equals only ±1.

Proof

det(QQT ) = det I → detQ detQT = 1 → (detQ)2 = 1 → detQ = ±1.

Based on the sign of its determinant, Q can have two different physical significances. If
detQ = +1, then the transformation defined by Q corresponds to a rotation, otherwise it
corresponds to a rotation plus a reflection. Only a rotation satisfies the requirement that the
handedness of the basis is retained following the transformation; transformation matrices
are therefore normally limited to this case.

Matrices satisfying Eqn. (2.33) are called orthogonal matrices. Orthogonal matrices with
a positive determinant (i.e. rotations) are called proper orthogonal. The set of all 3 × 3
orthogonal matrices O(3) forms a group under matrix multiplication called the orthogonal
group. Similarly, the set of 3 × 3 proper orthogonal matrices form a group under matrix
multiplication called the special orthogonal group, which is denoted SO(3).

We say that a set S constitutes a group G with respect to a particular binary operation �,
if it is closed with respect to that operation (i.e. ∀a, b ∈ S , a � b ∈ S ) and it satisfies the
following three conditions ∀a, b, c ∈ S :

1. (a � b) � c = a � (b � c) associativity
2. a � 1 = a existence of a right identity element 1
3. a � a−1 = 1, a−1 ∈ S existence of a right inverse element

It is straightforward to show from these properties that 1 is also the left identity element:

Proof Let c be the unique element in S associated with the product of 1 and a, i.e.
c = 1 � a. Multiplying both sides of this equation on the right by a−1 we find c � a−1 =
(1 � a) � a−1 . Using the associativity of the � operation, the existence of a right inverse
element and finally the existence of a right identity element leads to

c � a−1 = (1 � a) � a−1 = 1 � (a � a−1) = 1 � 1 = 1.

The last equality (c � a−1 = 1) shows that c = a because a−1 is the unique right inverse
of a. Substituting this into our starting equation we find 1 � a = a, which proves that 1 is
the left identity.
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The proof that a−1 is also the left inverse element of a follows a similar line of reasoning.
It is also straightforward to prove that O(3) is a group:

Proof First, for O(3) to be closed with respect to matrix multiplication, we need to show
that ∀A,B ∈ O(3) we have AB ∈ O(3): (AB)(AB)T = ABBT AT = AIAT = AAT =
I, so AB is orthogonal. The remaining three properties are also satisfied. Associativity is
satisfied because matrix multiplication is a linear operation. The identity element is I. The
inverse element is guaranteed to exist ∀A ∈ O(3) since detA �= 0, and it belongs to O(3),
since (A−1)T = (AT )T = A = (A−1)−1 .

The proof that SO(3) is a group is similar and left as an exercise for the reader. The fact
that O(3) and SO(3) are groups is not critical for us at this juncture. However, it is useful
to introduce the concept of groups, since groups will appear repeatedly in different settings
in the remainder of the book. It is exactly this ubiquitousness of groups that makes them
important. The general framework of group theory provides a powerful methodology for
establishing useful properties of groups. See, for example, [Mil72, McW02, Ros08].

2.3.5 Vector component transformation

We are now in a position to derive the transformation rule for vector components under a
change of basis. We require that a vector be invariant with respect to component transfor-
mation. Thus, for vector a we require a = aαeα = a′

ie
′
i , where aα are the components of

a in basis eα and a′
i are the components in e′

i . Making use of the transformation rule for
basis vectors in Eqn. (2.31), we have

a = aαeα = a′
ie

′
i = a′

i(Qαieα ),

which can be rewritten as

(aα − Qαia
′
i)eα = 0.

The basis vectors eα are linearly independent, therefore the coefficients must be zero:

aα = Qαia
′
i ⇔ [a] = Q [a]′ . (2.34)

The prime on [a]′ means that the components of a in the matrix representation are given in
the basis {e′

i}. The inverse relation is obtained by applying Qαj to both sides and making
use of the orthogonality relation for Q in Eqn. (2.32):

a′
i = Qαiaα ⇔ [a]′ = QT [a] . (2.35)

It is possible to use the transformation rules in Eqns. (2.34) and (2.35) as the definition of
a vector, by stating that a 3-tuple whose components transform in this way is a vector. This
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Fig. 2.4 The concept of a tensor. (a) The velocity v is a first-order tensor which returns the speed along any direction d. Thus, if
v is the velocity of a vehicle, then v evaluated at d is the speed with which the vehicle is moving in the d-direction.
(b) The stress σ is a second-order tensor which returns the force per unit area along direction d when bisecting a
body by a plane with normal n.

seems less transparent than the operational approach based on linear algebra that we have
adopted here.26

2.3.6 Generalization to higher-order tensors

We now have a clear definition for vectors, which we would like to generalize to higher-order
tensors. To do so requires us to consider vectors in a different manner.

Before going on to the technical definition which involves some subtle concepts in linear
algebra, a loose “hand-wavy” explanation may be helpful. We have stressed the fact that
a vector exists separately of a particular coordinate system. In this view, a vector is like
the proverbial “arrow,” oriented in space and projecting shadows of itself onto different
coordinate system bases. An alternative view is to consider the vector more abstractly as
an entity that carries with it all of the information related to the physical quantity that it
represents. For example, the velocity vector tells us everything about the velocity of some
object. In particular, it can tell us how fast an object is moving in any direction as illustrated
in Fig. 2.4(a). Therefore, we can think of the vector as a velocity “function” that takes a
direction and returns a speed. It turns out that these two views are distinct but intimately
tied to each other. Thus, every “arrow” vector is uniquely associated with a “function”
vector. The former is our standard vector. We call the latter a first-order tensor.

Now while some physical variables are only associated with a single direction, like
velocity, others require more. Unlike the “arrow” definition, the “function” viewpoint
of vectors readily generalizes to higher-order physical quantities; one simply adds more
arguments. For example, obtaining the stress at a point involves a two-step process as
illustrated in Fig. 2.4(b). First, an imaginary plane (defined by its normal) for bisecting the
body is specified, and then a direction along which the stress is required. The stress tensor
therefore takes two arguments: a normal to a plane and a direction in space. This is called
a second-order tensor. A tensor of any order can be defined in exactly the same way.

26 Broccoli analogy: Defining a vector based on the way in which its components transform is similar to defining
what broccoli is according to its taste. This approach provides a definite test (if it tastes like broccoli, then it
must be broccoli), but clearly this is not the most fundamental definition for this vegetable.
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Thus, the conceptual procedure we follow is to: (1) provide an independent definition for
vectors as members of a vector space; (2) define first-order tensors through their connection
with vectors; and (3) extend the first-order tensor definition to tensors of any order. With
these ideas in the back of our mind, let us now turn to the more technical presentation.27

We defined a vector as a member of a finite-dimensional Euclidean space and saw that
it could be represented as a set of components on a given basis. For example, a velocity
vector v is expressed as viei , where the component vi is the speed along direction ei . The
speed sd along any direction d (where ‖d‖ = 1) is then obtained by projecting v along d:

sd = v · d. (2.36)

Interpreted in this way, a vector is like a machine that operates on a direction and returns
the speed along it. Alternatively, we can view the projection operation in Eqn. (2.36) more
abstractly as a linear mapping that takes a direction and returns a real number (speed):

sd = v∗[d], (2.37)

where v∗ : R
nd → R. We have replaced the vector v with a linear mapping v∗[ ] that

provides the same “service.” The set of linear mappings from R
nd to R forms a new vector

space R
nd ∗, called the dual space28 of R

nd . The elements of R
nd ∗ are called dual vectors

or covectors29 to distinguish them from vectors belonging to the original vector space R
nd .

It can be shown that every vector v ∈ R
nd is uniquely associated with a covector

v∗ ∈ R
nd ∗ and vice versa, so that R

nd ∗ is isomorphic30 to R
nd . Hence vectors and

covectors occupy two parallel universes. In one we have the standard definition of a vector
and in the other, vectors are replaced by linear mappings. The connection between the two
representations follows from the requirement that sd in Eqns. (2.36) and (2.37) is the same:

v∗[d] = v · d. (2.38)

Thus, we can fully characterize the linear mapping v∗ by the vector v. What about the
reverse direction? Given the linear mapping v∗, how can we determine the associated
vector v (assuming that it is not known)? To answer this question, we begin by focusing on
the left-hand side of Eqn. (2.38) and use the linearity of v∗ to obtain

v∗[d] = v∗[diei ] = div
∗[ei ].

Using this in Eqn. (2.38) along with the component forms of v and d on the right gives

v∗[ei ]di = vidj (ei · ej ).

For an orthonormal basis, ei · ej = δij , so that v∗[ei ]di = vidi . Since d is arbitrary, this
implies that

v∗[ei ] = vi. (2.39)

27 Since our objective is to convey to the reader the true concept of a tensor in the simplest possible manner, the
presentation given below is limited to the special case of an orthonormal Cartesian coordinate system. For a
more general discussion, applicable to arbitrary coordinate systems, see, for example, [Ogd84, Section 1.4.3].

28 For a more thorough introduction to dual spaces, consult books on linear algebra ([LL09] has a succinct
introduction and worked examples) or books on tensor theory ([BG68] is particularly clear).

29 The term “1-form” is used for members of the dual space in differential geometry.
30 Two sets are said to be isomorphic if a one-to-one and onto mapping exists between their elements.
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Thus, the components vi of the vector v are obtained by evaluating the associated linear
mapping v∗ on the orthonormal Cartesian basis {ei}. This means that given v∗, we can
always revert to a vector representation, v = viei , where we define vi ≡ v∗[ei ].

Now we come to the point. We define the mapping v∗[ ] to be a first-order tensor. Thus, a
first-order tensor is a linear mapping of a vector to a real number.31 This definition may seem
like a useless exercise given the fact that a first-order tensor and a vector are isomorphic,
and in fact, have identical components in a Cartesian system. So what has been gained? The
advantage is that the definition given above for a first-order tensor (unlike the definition of
a vector) can be readily generalized to a tensor of any order:32

An n-th order tensor is a real-valued n-linear function of vectors.

In a more precise mathematical notation this says that an nth order tensor is a mapping

T : R
nd × · · · × R

nd︸ ︷︷ ︸
n times

→ R.

This constitutes a definition for tensors because vectors have been defined independently.
Thus, through the isomorphism between vectors and real-valued linear mappings, a defi-
nition for tensors of any rank is obtained. Given this definition, a second-order tensor T

is a bilinear function of two vector arguments, T [a, b]. Just as for a first-order tensor, the
components of a second-order tensor in a particular basis {ei} are defined as

Tij ≡ T [ei ,ej ]. (2.40)

Given two vectors, a = aiei and b = bjej , the real number returned by the second-order
tensor T is

T [a, b] = T [aiei , bjej ] = aibjT [ei ,ej ] = aibjTij . (2.41)

Consider, for example, the stress tensor σ mentioned above. This can be written as σ[d,n],
where d is a direction in space and n is the normal to a plane (see Fig. 2.4(b)). The scalar
σij dinj corresponds to the stress acting on the plane defined by n in the direction d.

2.3.7 Tensor component transformation

We have stressed the fact that tensors are objects that are invariant with respect to the
choice of coordinate system. However, at a practical level, when performing calculations
with tensors it is necessary to select a particular coordinate system and to represent the
tensor in terms of its components in the corresponding basis. The invariance of the tensor
manifests itself in the fact that the components of the tensor with respect to different bases

31 We will use the terms “vector” and “first-order tensor” interchangeably in the remainder of the book. However,
it should be clear from this discussion that these terms are isomorphic to each other, but not identical.

32 Actually, a tensor is still more general than this definition. The n-linear function can operate on covectors as
well as vectors. Thus, the more general definition states that a tensor is a real-valued multilinear function of
order (r, s), where r is the number of covector arguments and s is the number of vector arguments. See, for
example, [Ogd84, Section 1.4.3] for a particularly clear explanation.
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cannot be chosen arbitrarily, but must satisfy certain transformation relations. We have
already obtained these relations for vectors in Eqns. (2.34) and (2.35). We will now derive
them for tensors of arbitrary rank. The definition of a tensor as a linear function of vectors
makes this a very simple derivation. For a first-order tensor starting from the component
definition we have

a′
i ≡ a[e′

i ] = a[Qαieα ] = Qαia[eα ] = Qαiaα ,

where we have used Eqn. (2.31) and the linearity of a. The form is identical to the vector
transformation relation in Eqn. (2.35). For a second-order tensor the derivation is completely
analogous:

A′
ij ≡ A[e′

i ,e
′
j ] = A[Qαieα ,Qβjeβ ] = QαiQβjA[eα ,eβ ] = QαiQβjAαβ .

Thus

A′
ij = QαiQβjAαβ ⇔ [A]′ = QT [A]Q. (2.42)

Similarly for an nth-order tensor

B′
i1 i2 ...in

= Qα1 i1 Qα2 i2 · · ·Qαn in Bα1 α2 ...αn . (2.43)

For the general case, there is no direct notation equivalent to the matrix multiplication form
of the first- and second-order tensors.

In many texts, the component transformation laws are given as the definition of a ten-
sor. We see that in our case the transformation relations emerge naturally from a more
fundamental definition. However, the transformation relations provide a practical test for
determining whether a given quantity is a tensor or not.

Proving a quantity is a tensor We will see in the next section that tensor operations always
lead to the sums of products between tensor components as given by the indicial notation
defined in Section 2.2. Any quantity written in this form is a tensor provided the arguments
are tensors. For example, consider the product cα = Aαβ bβ , where A is a second-order
tensor and b is a first-order tensor. To prove that c is a first-order tensor, we need to show
that it transforms like one, i.e. that c′i = Qαicα .

Proof The definition of c holds for any basis, so we may write c′i = A′
ij b

′
j . Since A and b

are tensors, they transform as tensors must. Substituting in the transformation relations for
first- and second-order tensors in Eqns. (2.35) and (2.42), we have

c′i = A′
ij b

′
j = (QαiQβjAαβ )(Qγ j bγ )

= QαiAαβ bγ (QβjQγ j ) = QαiAαβ bγ δβγ = QαiAαβ bβ = Qαicα ,

where we have used the orthogonality of Q.
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The proof shown above can be generalized to the product of any number of tensors. Free
indices already transform appropriately since they belong to tensors, while the transforma-
tion matrices associated with dummy indices disappear due to the orthogonality condition.
In the interest of brevity, we will not give the general proof, but we will show some additional
examples when discussing specific tensor operations.

2.4 Tensor operations

We now turn to the description and classification of tensor operations.33 Tensor operations
can be divided into categories: (1) addition of two tensors; (2) magnification of a tensor;
(3) transposition of a tensor; (4) taking the product of two or more tensors to form a higher-
order tensor; and (5) contraction of a tensor to form a lower-order tensor. Together, tensor
products and tensor contraction lead to the idea of a tensor basis.

2.4.1 Addition

Addition is defined for tensors of the same rank. For example, for second-order tensors we
write

C[x,y] = A[x,y] + B[x,y].

To obtain the indicial form, substitute x = xiei and y = yjej and use the bilinearity of
the tensors. Moving all terms to one side, using Eqn. (2.41) and combining terms, we have

xiyj (Cij − Aij − Bij ) = 0.

This must be true for all x and y, thus

Cij = Aij + Bij ⇔ C = A + B.

The expression on the right is the direct notation for the addition operation. Indices i and
j are free indices using the terminology of Section 2.2. In that section we noted that each
term in a sum of tensor terms must have the same free indices. We see that this is simply a
different statement of the fact that addition is only defined for tensors of the same rank.

2.4.2 Magnification

Magnification corresponds to a rescaling of a tensor by scalar multiplication. For example,
for a second-order tensor A and a scalar λ, a new second-order tensor B is defined by

B[x,y] = λA[x,y].

The indicial form is obtained in the same manner as for addition:

Bij = λAij ⇔ B = λA.

The direct notation appears on the right.

33 The classification given here is partly based on the presentations in [Jau67] and [Sal01].
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2.4.3 Transpose

The transpose operation exchanges the positions of arguments of a tensor. It is normally
applied to second-order tensors:

B[x,y] = A[y,x].

The indicial form and direct notation are

Bij = Aji ⇔ B = AT .

We see from the indicial form that [B] = [A]T , where the superscript T denotes the matrix
transpose operation. The direct notation is adopted in analogy to the matrix notation.

2.4.4 Tensor products

Tensor products refer to the formation of a higher-order tensor by combining two or more
tensors. For example, below we combine a second-order tensor A with a vector v:

D[x,y,z] = A[x,y]v[z].

Substituting in x = xiei , y = yjej , and z = zkek , and using linearity we have

D[xiei , yjej , zkek ] = A[xiei , yjej ]v[zkek ]

xiyj zkD[ei ,ej ,ek ] = xiyj zkA[ei ,ej ]v[ek ]

xiyj zkDijk = xiyj zkAij vk .

The last equation must be true for any x, y and z, so we have

Dijk = Aij vk ⇔ D = A ⊗ v. (2.44)

Products of the form Aij vk are called tensor products. In direct notation, this operation is
denoted A ⊗ v, where ⊗ is the tensor product symbol. The rank of the resulting tensor
is equal to the sum of the ranks of the combined tensors. In this case, a third-order tensor
is formed by combining a first- and second-order tensor.

A particularly interesting case is the formation of a second-order tensor by a tensor
product of two vectors:

Aij = aibj ⇔ A = a ⊗ b. (2.45)
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This is called the dyad34 of the vectors a and b. Note that the order of the vectors in a dyad
is important, i.e. a ⊗ b �= b ⊗ a. In matrix notation the dyad is written as

[a ⊗ b] =

⎡⎣a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

⎤⎦ .

Let us prove that A = a ⊗ b is a tensor:

Proof
A′

ij = a′
ib

′
j = (Qαiaα )(Qβj bβ ) = QαiQβj aαbβ = QαiQβjAαβ .

Dyads lead to the important concept of a tensor basis. We return to this in Section 2.4.6
after we discuss tensor contraction.

2.4.5 Contraction

Contraction corresponds to the formation of a lower-order tensor from a given tensor by
summing two of its vector arguments. Given a tensor T [x1 , . . . ,xm ] of rank m, we define
the contraction operation on arguments i and j as35

Contij T = T [x1 , . . . ,xi−1 ,ek ,xi+1 , . . . ,xj−1 ,ek ,xj+1 , . . . ,xm ], (2.46)

where (e1 ,e2 ,e3) is an orthonormal basis and the summation convention is applied to the
index k. The result of the contraction is a new tensor of rank m − 2. For example, for a
third-order tensor D there are three possible contraction operations:

u[x] = Cont23 D = D[x,ej ,ej ],

v[y] = Cont13 D = D[ei ,y,ei ],

w[z] = Cont12 D = D[ei ,ei ,z],

where u, v and w are first-order tensors (vectors). The corresponding indicial expressions
are obtained by substituting in the component form for each of the vector arguments,
x = xiei , y = yjej , z = zkek , and using linearity:

ui = Dijj , vj = Diji , wk = Diik .

We see that in indicial notation, contraction corresponds to a summation over dummy
indices. Each contraction over a pair of dummy indices results in a reduction in the rank of

34 Some authors use the shorthand notation ab for the dyad of a and b, and more generally use this type of
juxtaposition to indicate tensor products (i.e. the tensor product in Eqn. (2.44) would be written D = Av).
Although this notation is self-consistent, it clashes with the standard notation from matrix algebra and abstract
linear algebra. Therefore, we prefer to use the ⊗ symbol.

35 More formally, the contraction operation is only defined for pairs of arguments where one is a vector and the
other is a covector, i.e. a member of the dual space. When dealing with orthonormal bases as we do here, the
distinction is obscured. See, for example, [Sal01] for the more general discussion.
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the tensor by two orders. There is no standard direct notation for tensor contraction. The
exception is contraction operations that lead to scalar invariants. These are discussed at the
end of this section.

Contracted multiplication Contraction operations can be applied to tensor products, leading
to familiar multiplication operations from matrix algebra. Consider the operation u =
Cont23(A ⊗ v), where A is a second-order tensor and u and v are vectors. Written
explicitly, this is

u[x] = Cont23 (A[x,y]v[z]) = A[x,ej ]v[ej ],

where x, y, z are vectors. Substituting in the component form of the vector arguments and
using linearity, we have

ui = Aij vj ⇔ u = Av. (2.47)

The indicial expression can be written in matrix form as [u] = [A] [v]. The direct notation
appearing on the right of the above equation is adopted in analogy to the matrix operation.
The matrix operation also lends to this operation its name of contracted multiplication. An
important special case of Eqn. (2.47) follows when A is a dyad. In this case, the contracted
multiplication satisfies the following relation:

(aibj )vj = ai(bj vj ) ⇔ (a ⊗ b)v = a(b · v). (2.48)

This identity can be viewed as a definition for the dyad as an operation that linearly
transforms a vector v into a vector parallel to a with magnitude ‖a‖ |b · v|.

The contraction operation in Eqn. (2.47) also leads to an alternative definition for a
second-order tensor as a linear mapping transforming one vector to another. We will adopt
this viewpoint later when discussing the properties of second-order tensors in Section 2.5.
We use Eqn. (2.47) to define the identity tensor I as the second-order tensor that leaves any
vector v unchanged when operating on it:

Iv = v.

In component form this is Iij vj = vi . Using vi = δij vj , this gives (Iij − δij )vj = 0.
This must be true for any vj , therefore, Iij = δij . Thus, the components of the identity
tensor (with respect to an orthonormal basis) are equal to the entries of the identity matrix
introduced in Eqn. (2.4):

[I] = I. (2.49)

Next, consider the operation C = Cont23(A⊗B), where A, B and C are second-order
tensors. Written explicitly this is

C[x,y] = Cont23 (A[x,u]B[v,y]) = A[x,ek ]B[ek ,y],
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where u, v, x and y are vectors. Substituting the component form of the vector arguments
and using linearity, we have

Cij = AikBkj ⇔ C = AB. (2.50)

On the right is the direct notation, which is again borrowed from matrix algebra. A series
of multiplications by the same tensor is denoted by an exponent:

A2 = AA, A3 = (A2)A = AAA, etc.

It makes sense to think of the tensor C in Eqn. (2.50) as a composition of the tensors
A and B. The term “composition” is used here in the sense of a “function composition,”
where one function is applied to the results of the other. For example, the real function
h : x → z is a composition of f : y → z and g : x → y, if h(x) = f(g(x)). This
is denoted h = f ◦ g. For the tensor C this interpretation follows from the definition in
Eqn. (2.47). Thus,

u = Cv = (AB)v = A(Bv).

We see that applying C to v is the same as first applying B and then applying A to the
result Bv. Thus, C is a composition of A and B.

Many other contractions are possible. For example, following the procedure outlined
above, the operation C = Cont24(A ⊗ B) leads to

Cij = AikBjk ⇔ C = ABT , (2.51)

where the superscript T corresponds to the transpose operation defined in Section 2.4.3. In
similar fashion we also obtain

Cij = AkiBkj ⇔ C = AT B and Cij = AkiBjk ⇔ C = AT BT .

(2.52)

The definition of tensor contraction allows us to define the inverse A−1 of a second-order
tensor A through the relation

A−1A = AA−1 = I, (2.53)
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where I is the identity tensor defined above. In indicial form this is A−1
ij Ajk = AijA

−1
jk =

δik , and in matrix form it is
[
A−1] [A] = [A]

[
A−1] = [I]. Comparing the last expression

with Eqn. (2.53), we see that
[
A−1] = [A]−1 . Consistent with this, the determinant of a

second-order tensor is defined as the determinant of its components matrix:

det A ≡ det [A] .

We will see later that det A is a scalar invariant and is therefore independent of the
coordinate system basis.

Given the above definitions, the expression in Eqn. (2.10) for the derivative of the
determinant of a square matrix can be rewritten for a tensor as

∂(det A)
∂A

= A−T det A, (2.54)

where A−T = (A−1)T .

Scalar contraction Of particular interest are contraction operations that result in the for-
mation of a zeroth-order tensor (i.e. a scalar invariant). Any tensor of even order can be
reduced to a scalar by repeated contraction. For a second-order tensor A, one contraction
operation leads to a scalar:

Cont12 A = A[ei ,ei ] = Aii. (2.55)

We see from the indicial expression that this contraction corresponds to the trace of the
matrix of components of A, since Aii = tr [A]. For this reason the direct notation for this
operation is also denoted by the trace:

trA = Cont12 A = tr [A] = Aii. (2.56)

It is straightforward to show that trA is a zeroth-order tensor.

Proof

A′
ii = QαiQβiAαβ = δαβ Aαβ = Aαα .

We see that a scalar invariant is indeed invariant with respect to coordinate basis trans-
formation. This is as it should be since a scalar invariant is a tensor. This brings up the
interesting point that not every scalar is a zeroth-order tensor. For example, a single com-
ponent of a tensor is a scalar but it is not a zeroth-order tensor, since it is not invariant with
respect to coordinate system transformation.
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Scalar contraction can also be applied to contracted multiplication. We have already seen
an example of this in the dot product of two vectors, a · b = aibi . The dot product was
defined in Section 2.3 as part of the definition of vector spaces. In terms of contraction, we
can write the dot product as a · b = Cont12(a ⊗ b).

Other important examples of contractions leading to scalar invariants are the double
contraction operations of two second-order tensors, A and B, which can take two forms:

A : B = tr[AT B] = tr[BT A] = tr[ABT ] = tr[BAT ] = AijBij , (2.57)

A · ·B = tr[AB] = tr[BT AT ] = tr[BA] = tr[AT BT ] = AijBji. (2.58)

The symbols ·, : and ·· are the direct notation for the contraction operations.36 It is worth
pointing out that the double contraction A : B is an inner product in the space of second-
order tensors. The corresponding norm is ‖A‖ = (A : A)1/2 . (For this reason some
books, like [Gur81], denote this contraction with the dot product, A ·B.) The definition of
the double contraction operation is also extended to describe contraction of a fourth-order
tensor E with a second-order tensor A:

[E : A]ij = EijklAkl , [E · ·A]ij = EijklAlk . (2.59)

Finally, we note that when scalar contraction is applied to a contracted multiplication of
the same vectors (a = b) or the same tensors (A = B) the results are scalar invariants of
the tensors themselves. From the dot product we obtain the length squared of the vector
aiai and from the tensor contractions, AijAij and AijAji .

2.4.6 Tensor basis

We conclude the discussion of tensor operations by showing how tensor products of vectors,
i.e. dyads, triads and so on, can be used to define a basis for tensors of rank two and above.
Let us first consider the case of a second-order tensor. Since a dyad is a second-order tensor,
an interesting question is whether any second-order tensor A can be written as a dyad. The
answer is no, since dyads are not general tensors; they satisfy the identity

det(a ⊗ b) = 0,

e.g. in two dimensions

det
[
a1b1 a1b2

a2b1 a2b2

]
= a1b1a2b2 − a1b2a2b1 = 0.

36 This convention is not universally adopted. Some authors reverse the meaning of : and ··. Others do not use
the double dot notation at all and use · to denote scalar contraction for both vectors and second-order tensors.
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However, an arbitrary tensor can be written as a linear combination of dyads, which is
called a dyadic. In two dimensions, two terms are required:

A = a ⊗ b + c ⊗ d,

where the pair of vectors a and c and the pair of vectors b and d are linearly independent
(see Section 2.3). In three dimensions, three terms are required:

A = a ⊗ b + c ⊗ d + e ⊗ f , (2.60)

where the triads a,c,e and b,d,f are linearly independent. Let us prove that a dyadic of two
dyads is insufficient to represent an arbitrary second-order tensor on R

3 .

Proof Start with A = a ⊗ b + c ⊗ d and apply an arbitrary vector v to both sides:

Av = (a ⊗ b)v + (c ⊗ d)v = a(b · v) + c(d · v),

where we have used the identity in Eqn. (2.48). The above equation suggests that the vector
formed by A operating on any vector v will always lie in the plane defined by a and c.
This is clearly not generally correct in three dimensions.

The dyadic description does not provide a unique decomposition for A since there are
more vector components than tensor components. However, it can be used to provide a
basis description for tensors analogous to the a = aiei of vectors:

A = a ⊗ b = (aiei) ⊗ (bjej ) = aibj (ei ⊗ ej ).

This expression was written for the special case of a single dyad; in the general case of a
dyadic with nd dyads, the components of the vectors combine to give the general form,

A = Aij (ei ⊗ ej ). (2.61)

For instance, in the case of nd = 3, the components Aij would be made up of combinations
of the components of the vectors a, b, c, d, e and f from Eqn. (2.60). The dyads ei ⊗ ej

can be thought of as the “basis tensors” relative to which the components of A are given.
It is straightforward to show that ei ⊗ ej form a linearly independent basis.

The basis description can be used to obtain an expression for the components of A.
Replace the dummy indices in Eqn. (2.61) with m and n, apply ej to both sides, and then
use Eqn. (2.48) to obtain

Aej = Amn (em ⊗ en )ej = Amn (en · ej )em = Amnδnjem = Amjem .

Next, dot both sides with ei to obtain the component relation

Aij = ei · Aej . (2.62)
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The concept of a tensor basis naturally extends to higher-order tensors. For example, the
basis descriptions for a third-order tensor D and a fourth-order tensor E are

D = Dijk (ei ⊗ ej ⊗ ek ), E = Eijkl(ei ⊗ ej ⊗ ek ⊗ el).

We see that all tensors can be represented as a linear combination of tensor products of
vectors. This provides an alternative approach to defining tensor operations which many
books adopt. Rather than defining operations for general tensors of arbitrary rank as we
have done, one defines operations for dyads, triads and so on, and from these builds up the
more general tensor operations.

As an example, consider the trace operation introduced above for the scalar contraction
of a second-order tensor. It is also possible to define the trace operator without reference to
contraction by the following relation:

tr[a ⊗ b] = a · b ∀a, b ∈ R
nd .

We can see that this definition is consistent with the contraction definition of the trace of a
second-order tensor A:

trA = tr [Aij (ei ⊗ ej )] = Aij tr [ei ⊗ ej ] = Aij (ei · ej ) = Aij δij = Aii = tr [A] .

In similar fashion, all contraction operations can be defined. See, for example, [Hol00].

2.5 Properties of tensors

Most of the tensors that we will be dealing with are second-order tensors. It is therefore
worthwhile to review the properties of such tensors. Before we do so, we provide an
alternative definition for a second-order tensor, which is less general than the definition
given in Section 2.3, but which is helpful when discussing some of the properties of
second-order tensors. The definition is:

A second-order tensor T is a linear mapping transforming a vector v into a vector w,
defined by w = Tv.

In a more precise mathematical notation this says that a second-order tensor is a mapping

T : R
nd → R

nd .

We now turn to the properties of second-order tensors.

2.5.1 Orthogonal tensors

A second-order tensor Q is called orthogonal if for every pair of vectors a and b, we have

(Qa) · (Qb) = a · b. (2.63)
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Geometrically, this means that Q preserves the magnitude of, and the angles between, the
vectors on which it operates.37 A necessary and sufficient condition for this is [Ogd84]

QT Q = QQT = I, (2.64)

or equivalently

QT = Q−1 . (2.65)

These conditions are completely analogous to the ones given for orthogonal matrices in
Eqns. (2.32)–(2.33). As in that case, it can be shown that det Q = ±1. An orthogonal tensor
Q is called proper orthogonal if det Q = 1, and improper orthogonal otherwise. When
viewed as a linear mapping of vectors to vectors, Q is called an orthogonal transformation.
A proper orthogonal transformation corresponds to a rotation. An improper orthogonal
transformation involves a rotation and a reflection. The groups O(3) and SO(3) defined
for orthogonal matrices in Section 2.3.4 also exist for orthogonal tensors.

Given the strong analogy between orthogonal matrices and orthogonal tensors, it is of
interest to see how the proper orthogonal transformation matrix Q is related to a proper
orthogonal tensor Q applying the associated rotation. Recall that the transformation matrix
links two bases {ei} and {e′

i} according to

e′
j = Qijei . (2.66)

This is an expression that decomposes the e′
j basis vectors into components with respect

to the ei basis vectors. A closely related, but distinct expression is a rigid-body rotation of
the basis vectors ej that maps them into the basis vectors e′

j . This can be written as

e′
j = Rej , (2.67)

where R is a proper orthogonal tensor. We wish to find the relation between the components
of the rotation R in the original basis {ei} and the components of the change of basis matrix
Qij . Substituting R = Rikei ⊗ ek into Eqn. (2.67) gives

e′
j = Rik (ei ⊗ ek )ej = Rikei(ek · ej ) = Rikeiδkj = Rijei . (2.68)

Comparing Eqns. (2.66) and (2.68), we see that Qij = Rij or Q = [R]. In other words,
given a transformation from basis {ei} to basis {e′

i}, the proper orthogonal tensor that
rotates an individual basis vector has the same components in the original basis ei as the
transformation matrix that defines the transformation. Thus,

⎡⎣e′
1

e′
2

e′
3

⎤⎦ = Q

⎡⎣e1

e2

e3

⎤⎦ and e′
i = Qei , (2.69)

37 In fact, it is sufficient to require that Q preserves the magnitude of all vectors. From this property alone, it is
possible to prove that Q also preserves the dot product, and thus the angles, between any two vectors.
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where [Q] = Q. It is important to understand that these two equations represent very
different ideas. Equation (2.69)1 is an example of writing a set of vectors as a linear
combination of basis vectors, whereas Eqn. (2.69)2 is an example of a rotation (which is a
special type of linear mapping) taking a vector to a different vector.

2.5.2 Symmetric and antisymmetric tensors

A symmetric second-order tensor S satisfies the condition

Sij = Sji ⇔ S = ST .

An antisymmetric tensor A (also called a skew-symmetric tensor) satisfies the condition

Aij = −Aji ⇔ A = −AT .

From this definition it is clear that A11 = A22 = A33 = 0. Thus since the diagonal elements
are zero and the off-diagonal elements are equal with a change of sign, an anti-symmetric
tensor has only three independent components. It is therefore not surprising that there exists
a unique one-to-one correspondence between an antisymmetric tensor A and a vector called
the axial vector w. The relation is defined by the condition:

Aa = w × a ∀a ∈ R
3 . (2.70)

This condition can be solved to obtain an explicit relation between w and A and vice versa:

wk = −1
2
εijkAij ⇔ Aij = −εijkwk . (2.71)

The proof is left as an exercise for the reader (see Exercise 2.12). The axial vector is used
in the definition of the differential curl operation in Section 2.6.

An important property related to the above definitions is that the contraction of any
symmetric tensor S with an antisymmetric tensor A is zero, i.e. S : A = SijAij = 0.

Proof SijAij = 1
2 Sij (Aij − Aji) = 1

2 (SijAij − SijAji). Now exchange the dummy
indices i and j on the second term and use the fact that Sij = Sji .

A tensor that is neither symmetric nor antisymmetric is called anisotropic. Any
anisotropic tensor Tij can be decomposed in a unique manner into a symmetric part
T(ij ) and a anti-symmetric part T[ij ] , so that Tij = T(ij ) + T[ij ] , where

T(ij ) ≡
1
2
(Tij + Tji), T[ij ] ≡

1
2
(Tij − Tji).

2.5.3 Principal values and directions

A second-order tensor G maps a vector v to a new vector w = Gv. We now ask whether
there are certain special directions, v = Λ, for which

w = GΛ = λΛ, λ ∈ R,
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i.e. directions that are not changed (only magnified) by the operation of G. Thus we seek
solutions to the following equation:

GijΛj = λΛi ⇔ GΛ = λΛ, (2.72)

or equivalently

(Gij − λδij )Λj = 0 ⇔ (G − λI)Λ = 0. (2.73)

A vector ΛG satisfying this requirement is called an eigenvector (principal direction) of
G with λG being the corresponding eigenvalue (principal value).38 The superscript “G”
denotes that these are the eigenvectors and eigenvalues specific to the tensor G. Nontrivial
solutions to Eqn. (2.73) require

det(G − λI) = 0.

For nd = 3, this is a cubic equation in λ that is called the characteristic equation of G:

−λ3 + I1(G)λ2 − I2(G)λ + I3(G) = 0, (2.74)

where I1 , I2 , I3 are the principal invariants of G:

I1(G) = Gii = trG, (2.75)

I2(G) = 1
2 (GiiGjj − GijGji) =

1
2
[
(tr G)2 − tr G2] = trG−1 det G, (2.76)

I3(G) = εijkG1iG2jG3k = det G. (2.77)

The characteristic equation (Eqn. (2.74)) has three solutions: λG
α (α = 1, 2, 3). Since the

equation is cubic and has real coefficients, in general it has one real root and two complex
conjugate roots. However, it can be proved that in the special case where G is symmetric
(G = GT ), all three eigenvalues are real. Each eigenvalue λG

α has an eigenvector ΛG
α

that is obtained by solving39 Eqn. (2.73) after substituting in λ = λG
α together with the

normalization condition
∥∥∥ΛG

α

∥∥∥ = 1.

An important theorem states that the eigenvectors corresponding to distinct eigenvalues
of a symmetric tensor S are orthogonal. This together with the normalization condition
means that

ΛS
α · ΛS

β = δαβ . (2.78)

38 It is also common to encounter eigenvalue equations on an infinite-dimensional vector space over the field
of complex numbers (see Part II of [TM11]). For example, in quantum mechanics the tensor operator is
not symmetric but Hermitian, which means that H = (H∗)T , where ∗ represents the complex conjugate.
Hermitian tensors are generalizations of symmetric tensors, and it can be shown that Hermitian tensors have
real eigenvalues and orthogonal eigenvectors just like symmetric tensors.

39 Actually, for each distinct eigenvalue λG
α there are two solutions to these equations. One is given by ΛG

α and
the other is given by its negative −ΛG

α . Both solutions are valid eigenvectors for the eigenvalue λG
α .
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The proof that the eigenvectors are orthogonal is straightforward.

Proof Start with

(Sij − λS
α δij )ΛS

αj = 0 (no sum on α)

and multiply with ΛS
βi to obtain

SijΛS
βiΛ

S
αj − λS

α ΛS
βiΛ

S
αi = 0. (2.79)

We adopt the convention of referring to the eigenvalue and eigenvector number with a Greek
index and use Roman indices to refer to spatial directions. The summation convention does
not apply to the Greek eigen indices. Now use the symmetry of S in the first term of
Eqn. (2.79) to replace Sij with Sji and then swap the dummy indices i and j to obtain

SijΛS
αiΛ

S
βj − λS

α ΛS
βiΛ

S
αi = 0.

The first term is equal to λS
β ΛS

βiΛ
S
αi , where we have used Eqn. (2.79) with α and β swapped.

We then have

(λS
β − λS

α )ΛS
βiΛ

S
αi = 0.

If α �= β and the eigenvalues are distinct (λS
β �= λS

α ), then the above equation is only
satisfied if ΛS

βiΛ
S
αi = 0, i.e. the eigenvectors are orthogonal.

In the situation where some eigenvalues are repeated the above proof does not hold.
However, it is still possible to generate a set of three mutually orthogonal vectors, although
the choice is not unique. If one root repeats (λS

1 = λS
2 = λ �= λS

3 ), then there exists a
plane such that any vector u in the plane satisfies the eigen equation, Su = λu. If all
roots are equal (λS

1 = λS
2 = λS

3 = λ), then the eigen equation is satisfied for any vector v.
A tensor satisfying this condition is called a spherical tensor or a second-order isotropic
tensor. Isotropic tensors are discussed in Section 2.5.6.

The fact that it is always possible to construct a set of three mutually orthonormal
eigenvectors for a symmetric second-order tensor S suggests using these eigenvectors as
a basis for a Cartesian coordinate system.40 This is referred to as the principal coordinate
system of the tensor for which the eigenvectors form the principal basis. An important
property of the eigenvectors that follows from this is the completeness relation:

3∑
α=1

ΛS
α ⊗ ΛS

α = I, (2.80)

where I is the identity tensor. The proof is simple.

Proof Any vector v = viei can be represented in the principal basis as

v =
3∑

α=1

(v · ΛS
α )ΛS

α .

40 The vectors should be suitably ordered so that a right-handed basis is obtained.
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Dotting both sides of the equation with ei gives

vi =
3∑

α=1

(vjΛS
αj )Λ

S
αi =

(
3∑

α=1

ΛS
αiΛ

S
αj

)
vj .

Substituting in vj = δij vi and rearranging gives[
3∑

α=1

ΛS
αiΛ

S
αj − δij

]
vj = 0.

This has to be true for all v and therefore Eqn. (2.80) is proved.

The principal coordinate system is important because S has a particularly simple form
in its principal basis. Using Eqn. (2.40), the components of S in the principal coordinate
system are obtained as follows:

Sαβ = eα ·(Seβ ) = ΛS
α ·(SΛS

β ) = ΛS
α ·(λS

β ΛS
β ) = λS

β (ΛS
α ·ΛS

β ) = λS
β δαβ (no sum),

where we have used the eigen equation and the orthogonality of the eigenvectors. We have
shown that in its principal coordinate system S is diagonal with components equal to its
principal values:

[S] =

⎡⎣λS
1 0 0
0 λS

2 0
0 0 λS

3

⎤⎦ .

This means that any symmetric tensor S may be represented as

S =
3∑

α=1

λS
α ΛS

α ⊗ ΛS
α . (2.81)

This is called the spectral decomposition of S. The invariants of S given in Eqns. (2.75)–
(2.77) take on a particularly simple form in the principal coordinate system:

I1(S) = λS
1 +λS

2 +λS
3 , I2(S) = λS

1 λS
2 +λS

2 λS
3 +λS

3 λS
1 , I3(S) = λS

1 λS
2 λS

3 . (2.82)

2.5.4 Cayley–Hamilton theorem

The Cayley–Hamilton theorem states that any second-order tensor T on R
3 satisfies its

own characteristic equation:41

−T 3 + I1T
2 − I2T + I3I = 0, (2.83)

or in indicial form

−Tim TmnTnj + I1Tim Tmj + I2Tij + I3δij = 0.

41 More generally the Cayley–Hamilton theorem holds for second-order tensors on R
n d for any nd .
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A general proof of the Cayley–Hamilton theorem is quite lengthy. However, for the case of
a symmetric tensor S one can easily obtain the following.

Proof Taking the spectral decomposition of S, Eqn. (2.81) (where the ΛS
α are chosen

orthonormal), and substituting into Eqn. (2.83) we find

3∑
α=1

[
−(λS

α )3 + I1(λS
α )2 − I2λ

S
α + I3

]
ΛS

α ⊗ ΛS
α = 0. (2.84)

The scalar term in square brackets is observed to be identically zero by the definition of the
eigenvalues of S (see Eqn. (2.74)).

The main consequence of the Cayley–Hamilton theorem is that a second-order tensor
T raised to the power n ≥ 3 can be expressed in terms of I , T , T 2 with coefficients that
depend only on I1 , I2 , I3 . For example, T 3 follows immediately from Eqn. (2.83):

T 3 = I1T
2 − I2T + I3I.

To get T 4 , multiply the above by T and then substitute T 3 into the right-hand side:

T 4 = I1T
3 − I2T

2 + I3T ,

= (I2
1 − I2)T 2 + (I3 − I1I2)T + I1I3I.

An expression for any higher power of T can be obtained in the same manner.

2.5.5 The quadratic form of symmetric second-order tensors

A scalar functional form that often comes up with the application of tensors is the quadratic
form Q(x) associated with symmetric second-order tensors:

Q(x) ≡ Sijxixj .

Special terminology is used to describe S if something definitive can be said about the sign
of Q(x), regardless of the choice of x:

Q(x)

⎧⎪⎪⎨⎪⎪⎩
> 0 ∀x ∈ R

nd ,x �= 0 S is positive definite,
≥ 0 ∀x ∈ R

nd ,x �= 0 S is positive semi-definite,
< 0 ∀x ∈ R

nd ,x �= 0 S is negative definite,
≤ 0 ∀x ∈ R

nd ,x �= 0 S is negative semi-definite.

Of these, positive definiteness will be the most important to us. A useful theorem states that
S is positive definite if and only if all of its eigenvalues are positive (i.e. λS

α > 0, ∀α).

Proof Write the quadratic form of S in its principal coordinate system:

Q(x) = Sαβ xαxβ =
nd∑

γ=1

λS
γ (xγ )2 .

This will be greater than zero for any x �= 0 provided that all λS
γ > 0.
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The term “positive definite” is a generalization of the concept of positivity in scalars to
second-order tensors. For example, just like a positive real number has a square root, so
does a positive-definite tensor. Thus, if S is a symmetric positive-definite tensor we can
always define a square root R of S, such that R2 = S. This is readily shown in the principal
coordinate system of S, where R can be expressed in terms of its spectral decomposition.
For example, for nd = 3,

R ≡
3∑

α=1

√
λS

α

(
ΛS

α ⊗ ΛS
α

)
.

We see from the definition of R that it has the same eigenvectors as S, but its eigenvalues
are the square roots of those of S. This means that both S and R have the same principal
coordinate system. In this system the components of R are:

[R] =

⎡⎢⎣
√

λS
1 0 0

0
√

λS
2 0

0 0
√

λS
3

⎤⎥⎦ .

From this it is obvious that R2 = S. It is important to point out that the square root R is
not unique, since each term

√
λS

i could be replaced with −
√

λS
i in the above definition.

There are, in fact, 2nd possible expressions for R, where nd is the dimensionality of space.
However, only one of these choices is positive definite (i.e. the one where all terms on the
diagonal are greater than zero). We can therefore say that every positive-definite tensor has
a unique positive-definite square root.

The quadratic form provides a geometrical interpretation for the eigenvalues and eigen-
vectors of a symmetric second-order tensor. To see this let us compute the extremal values
of Q(x) = Sijxixj , subject to the constraint ‖x‖ = 1. To do so we introduce a modified
quadratic form:

Q̃(x) = Sijxixj − μ(xixi − 1),

where μ is a Lagrange multiplier. Extremal values are then associated with the solutions to
the condition ∂Q̃/∂x = 0:

∂Q̃

∂xk
= Skjxj + Sikxi − 2μxk = 0.

Making use of the symmetry of S, this reduces to the eigen equation Sx = μx. We have
shown that the extremal directions of Q(x) are the eigenvectors of S and the corresponding
Lagrange multipliers are its eigenvalues! The physical significance of the eigenvalues
becomes apparent when we evaluate the quadratic form in the extremal directions:

Q(ΛS
α ) = Sij ΛS

αiΛ
S
αj = λS

α ΛS
αiΛ

S
αi = λS

α (no sum on α),

where we have used the eigen equation and the fact that eigenvectors are normalized. We
see that the eigenvalues are the extremal values associated with the extremal directions.
Geometrically, we understand this by noting that Q(x) = Sijxixj represents an ellipsoid.
The three eigenvectors point along the ellipsoid’s primary axes and the three eigenvalues
are the axes half-lengths.
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2.5.6 Isotropic tensors

An isotropic tensor is a tensor whose components are unchanged by coordinate transfor-
mation.42 For example, a second-order isotropic tensor must satisfy T ′

ij = Tij , where the
primed and unprimed components refer to any two coordinate system bases. Substituting
for T ′

ij using Eqn. (2.42), we can write this requirement in mathematical form as

QαiQβjTαβ = Tij , ∀Q ∈ SO(3).

This expression constitutes a constraint on the components of T . Isotropy is important
for constitutive relations where material symmetry implies that certain tensors must be
isotropic (see Section 6.4). Let us explore the constraints imposed on the form of tensors
of different rank by isotropy.

Zeroth-order tensors All zeroth-order tensors (scalar invariants) are isotropic.

Proof The proof is trivial since by definition for any scalar invariant s, s = s′.

First-order tensors The only isotropic first-order tensor (vector) is the zero vector.

Proof We require,

vi = Qαivα , ∀Q ∈ SO(3). (2.85)

This must be true for all Q ∈ SO(3), so in particular it has to be true for the following
choice:

Q =

⎡⎣−1 0 0
0 −1 0
0 0 1

⎤⎦ . (2.86)

Substituting Eqn. (2.86) into Eqn. (2.85) gives v1 = −v1 and v2 = −v2 , so we must have
v1 = v2 = 0. We prove that v3 = 0 by using either

Q =

⎡⎣−1 0 0
0 1 0
0 0 −1

⎤⎦ or Q =

⎡⎣1 0 0
0 −1 0
0 0 −1

⎤⎦ .

Second-order tensors All isotropic second-order tensors are proportional to the identity
tensor I .

Proof We require

Tij = QαiQβjTαβ , ∀Q ∈ SO(3).

42 Technically for a tensor to be isotropic it must be invariant with respect to improper as well as proper orthogonal
transformations. In other words, it must be unaffected by reflection as well as rotation. If a tensor is only invariant
with respect to proper orthogonal transformations (rotations) it is called hemitropic. This distinction is only
important for tensors of odd rank that can be hemitropic but not isotropic. Here we limit ourselves to proper
orthogonal transformations that retain the handedness of the basis, but still use the terminology isotropic.
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Using the following special choices for Q,

Q =

⎡⎣ 0 0 −1
−1 0 0
0 1 0

⎤⎦ and Q =

⎡⎣0 0 −1
1 0 0
0 −1 0

⎤⎦ ,

we find that⎡⎣T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤⎦ =

⎡⎣ T22 −T23 T21

−T32 T33 −T31

T12 −T13 T11

⎤⎦ =

⎡⎣ T22 −T23 −T21

−T32 T33 T31

−T12 T13 T11

⎤⎦ .

Carefully examining these relations, we see that T11 = T22 = T33 and that Tij = −Tij ,
∀i �= j, thus Tij = 0, ∀i �= j. In other words, we have proven that Tij = αδij , where α is
any constant. No further restrictions on α are obtained by considering any of the remaining
elements of SO(3).

Third-order tensors All isotropic third-order tensors are proportional to the permutation
symbol:43

Bijk = βεijk , β ∈ R.

In the interest of brevity we do not give the proof. For a proof, see, for example, [Jau67].

Fourth-order tensors All isotropic fourth-order tensors can be written in the following
form:

Cijkl = αδij δkl + βδik δjl + γδilδjk ,

where α, β, γ ∈ R are constants. For a proof, see, for example, [Jau67]. The general theory
for systematically obtaining such relations is known as group representation theory (see,
for example, [JB67, Mil72, McW02]).

2.6 Tensor fields

The previous sections have discussed the definition and properties of tensors as discrete
entities. In continuum mechanics, we most often encounter tensors as spatially and tempo-
rally varying fields over a given domain. For example, consider a (one-dimensional) rubber
band that is tied to a rigid fixed wall at one end and pulled at a constant velocity vend at
the other. Clearly different points along the rubber band will experience different velocities
ranging from zero at the support to vend at the end whose position is changing with time.
Consequently, the velocity in the rubber band is44

v(x, t) =
x

�(t)
vend , x ∈ [0, �(t)],

43 As noted earlier, the correct terminology for third-order tensors is hemitropic.
44 We assume that the rubber band is being stretched uniformly. In reality, the velocity distribution along the

rubber band may not be linear.
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where �(t) is the length of the rubber band at time t. In this example, the rubber band
is a one-dimensional structure and therefore the spatial dependence of the velocity is on
the scalar x. For three-dimensional objects, a tensor field T defined over a domain Ω is a
function45 of the position vector x = xiei of points inside Ω:

T = T (x, t) = T (x1 , x2 , x3 , t), x ∈ Ω(t).

Once we have accepted the concept of tensor fields, we can consider differentiation and
integration of tensors. First, we focus our attention on the Cartesian coordinate system
and introduce the differential operators in that context. In Section 2.6.3, we extend the
discussion briefly into curvilinear coordinates, but only so far as to obtain the essential
curvilinear results that we will need later in this book.

2.6.1 Partial differentiation of a tensor field

The partial differentiation of tensor fields with respect to their spatial arguments is readily
expressed in component form:46

∂s(x)
∂xi

,
∂vi(x)
∂xj

,
∂Tij (x)

∂xk
,

for a scalar s, vector v and second-order tensor T . To simplify this notation and make it
compatible with indicial notation, we introduce the comma notation for differentiation with
respect to xi :

(·),i ≡
∂(·)
∂xi

.

In this notation, the three expressions above are s,i , vi,j and Tij,k . Higher-order differen-
tiation follows as expected: ∂2s/(∂xi∂xj ) = s,ij . The comma notation works in concert
with the summation convention, e.g. s,ii = s,11 + s,22 + s,33 and vi,i = v1,1 + v2,2 + v3,3 .

Example 2.3 (Using the comma notation for derivatives) Several examples are:

1. xi,j = ∂xi/∂xj = δij .
2. (Aij xj ), i = Aij xj,i = Aij δj i = Aii . (Here A is a constant.)
3. (Tij (x)xj ), i = Tij,i xj + Tij δj i = Tij,ixj + Tii .

2.6.2 Differential operators in Cartesian coordinates

Four important differential operators are the gradient, curl, divergence and Laplacian.
These operators involve derivatives of a tensor field with respect to its vector argument.

45 Technically, when T is written as a function of components a different symbol should be used, e.g. T =
T (x, t) = T̄ (x1 , x2 , x3 , t), since the functional form is different. Here we use the same symbol for notational
simplicity.

46 Differentiation with respect to time is more subtle and will be discussed in Section 3.6.
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This requires a generalization of the definition of a derivative. For a scalar function s(r) of
a scalar argument (r ∈ R), we have

ds

dr
≡ lim

ε→0

s(r + ε) − s(r)
ε

.

For a scalar function s(x) of a vector argument (x ∈ R
3), we define the derivative with

respect to x through its role in computing the derivative in a given direction. The derivative
of s(x) in the direction of the vector u at point x0 is defined as

〈Dxs(x0);u〉 ≡ lim
η→0

s(x0 + ηu) − s(x0)
η

=
d

dη
s(x0 + ηu)

∣∣∣∣
η=0

, (2.87)

where η ∈ R. If u is a unit vector (i.e. ‖u‖ = 1), then 〈Dxs(x0);u〉 is called the directional
derivative of s in direction u. When this is not the case, we will use the term “nonnormalized
directional derivative.”47

Gradient To define the gradient, we introduce x = x0 + ηu, and formally write

〈Dxs(x0);u〉 =
d

dη
s(x(η))

∣∣∣∣
η=0

=
∂s

∂x
· dx

dη

∣∣∣∣
η=0

=
∂s

∂x
· u,

where the chain rule was used. We call ∂s/∂x the gradient of s and denote it by ∇s (or
grad s). The gradient is thus defined by the relation

〈Dxs(x0);u〉 = ∇s · u. (2.88)

Physically, the gradient provides the direction and magnitude of the maximum rate of
increase of s(x). The following example shows how the definition in Eqn. (2.88) can be
used in practice to compute a gradient.

Example 2.4 (Computing a gradient) Let s(x) = Ax ·x, where A is a constant second-order tensor.
The nonnormalized directional derivative of s is

〈Dxs; u〉 =
d

dη
[A(x + ηu) · (x + ηu)]

∣∣∣∣
η =0

=
d

dη

[
Ax · x + η(Ax · u + Au · x) + η2Au · u

]∣∣∣∣
η =0

= Ax · u + Au · x
= (Ax + AT x) · u.

Comparing the above expression with Eqn. (2.88), we see that the gradient is

∇s = Ax + AT x.

47 The subscript x in 〈Dx ·; ·〉 is included to explicitly indicate the independent quantity with respect to which
the derivative is being taken. Here, the only choice is x, but later (such as in Section 3.5) more options will be
available.
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The component form of ∇s relative to an orthonormal basis is obtained by rewriting
s(x) as a function of the components of x, s = s(x1 , x2 , x3). Therefore

〈Dxs(x0);u〉 =
ds

dη

∣∣∣∣
η=0

=
∂s

∂xi

dxi

dη

∣∣∣∣
η=0

=
∂s

∂xi
ui,

where we have used xi = x0i + ηui . Comparing this with Eqn. (2.88), we see that
[∇s]i = ∂s/∂xi , therefore

∇s =
∂s(x)
∂xi

ei . (2.89)

The gradient of a scalar field is a vector48 (see Exercise 2.16). The definition of the gradient
can be generalized to a tensor field B(x) of rank m ≥ 1:

∇B =
∂B(x)

∂xi
⊗ ei . (2.90)

For example, for a vector v and second-order tensor T :49

∇v =
∂v

∂xj
⊗ ej =

∂(viei)
∂xj

⊗ ej =
∂vi

∂xj
(ei ⊗ ej ),

∇T =
∂T

∂xk
⊗ ek =

∂[Tij (ei ⊗ ej )]
∂xk

⊗ ek =
∂Tij

∂xk
(ei ⊗ ej ⊗ ek ).

We see that the gradient operation increases the rank of the tensor by 1; [∇v]ij = vi,j are
the components of a second-order tensor, and [∇T ]ijk = Tij,k are the components of a
third-order tensor.

Curl The curl of a tensor field B(x) of rank m ≥ 1 is a tensor of the same rank denoted
by curl B. It is defined [Rub00]:

curl B ≡ −∂B(x)
∂xi

× ei . (2.91)

48 Actually, it is a vector field. We will often use the terms vector and vector field (and similarly tensor and tensor
field) interchangeably, where the appropriate meaning is clear from the context.

49 It is important to point out that a great deal of confusion exists in the continuum mechanics literature regarding
the direct notation for differential operators. The notation we introduce here for the grad, curl and div operations
is based on a linear algebraic view of tensor analysis. The same operations are often defined differently in other
books. The confusion arises when the operations are applied to tensors of rank one and higher, where different
definitions lead to different components being involved in the operation. For example, another popular notation
for tensor calculus is based on the del differential operator, ∇ ≡ ei ∂/∂xi . In this notation, the gradient, curl
and divergence are denoted by ∇�, ∇ × � and ∇ · �. This notation is self-consistent; however, it is not
equivalent to the notation used in this book. For example, according to this notation the gradient of a vector
v is ∇v = vj,iei ⊗ ej , which is the transpose of our definition. In our notation we retain an unbolded
∇ symbol for the gradient, but do not view it as a differential operator. Instead, we adopt the definition in
the text which leads to the untransposed expression, ∇v = vi,j ei ⊗ ej . We will use the notation introduced
here consistently throughout the book; however, the reader is warned to read the definitions carefully in other
books or articles.
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For example, for a vector v

curl v = − ∂v

∂xj
×ej = −∂(viei)

∂xj
×ej = − ∂vi

∂xj
(ei ×ej ) = −εijk

∂vi

∂xj
ek = εkji

∂vi

∂xj
ek ,

where we have used Eqn. (2.28). The curl of a vector can alternatively be defined through
the relation [Gur81]

(∇v −∇vT )a = (curl v) × a, ∀a ∈ R
3 .

This definition implies that curl v is the axial vector of the antisymmetric tensor (∇v−∇vT )
(see Eqn. (2.70)). Therefore from Eqn. (2.71), we have

[curl v]k = −1
2
εijk (vi,j − vj,i) = −1

2
εijk vi,j +

1
2
εijk vj,i = −εijk vi,j = εkjivi,j ,

which is the same as the definition given above.
The curl of a vector field is related to the local rate of rotation of the field. It plays an

important role in fluid dynamics where it characterizes the vorticity or spin of the flow
(see Section 3.6). The definition of a curl can be extended to higher-order tensors; see, for
example, [CG01].

Divergence The divergence of a tensor field B(x) of rank m ≥ 1 is a tensor of rank m− 1
denoted by div B. The expressions for the divergence of a vector v and tensor B(x) of
rank m ≥ 2 are

div v ≡ ∂v(x)
∂xi

· ei and div B ≡ ∂B(x)
∂xi

ei . (2.92)

For example, for a vector v and second-order tensor T

div v =
∂v

∂xj
· ej =

∂(viei)
∂xj

· ej =
∂vi

∂xj
(ei · ej ) =

∂vi

∂xj
δij =

∂vi

∂xi
,

div T =
∂T

∂xk
ek =

∂[Tij (ei ⊗ ej )]
∂xk

ek =
∂Tij

∂xk
(ei ⊗ ej )ek =

∂Tij

∂xk
eiδjk =

∂Tij

∂xj
ei ,

where in the second expression we have used Eqn. (2.48). We see that the divergence of
a vector is a scalar invariant, div v = vi,i , and the divergence of a second-order tensor is
a vector, [div T ]i = Tij,j . In instances where the divergence is taken with respect to an
argument other than x it will be denoted by a subscript. For example, the divergence with
respect to y of a tensor T is denoted divyT .

Two useful identities for the divergence of a vector and a second-order tensor that can
also serve as definitions for these operations are [Gur81]

div v = tr∇v, div T · a = div (T T a),

where a ∈ R
3 is any constant vector.
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The divergence of a tensor field is related to the net flow of the field per unit volume at a
given point. This will be demonstrated in the next section where we discuss the divergence
theorem.

Laplacian The Laplacian of a scalar field s(x) is a scalar denoted by ∇2s. The Laplacian
is defined by the following relation:

∇2s ≡ div∇s. (2.93)

In component form, we have

∇2s =
∂

∂xj

(
∂s

∂xi
ei

)
· ej =

∂2s

∂xi∂xj
(ei · ej ) =

∂2s

∂xi∂xj
δij =

∂2s

∂xi∂xi

= s,ii = s,11 + s,22 + s,33 ,

where we have used Eqns. (2.89), (2.92)1 , (2.20) and the index substitution property of the
Kronecker delta.

2.6.3 Differential operators in curvilinear coordinates

Often the geometry of a domain Ω makes it mathematically advantageous to use a set
of curvilinear coordinates θi to describe the position of points within Ω. In such systems
the basis vectors with respect to which the components of tensor fields are expressed
depend on the position in space (see Section 2.3.2). This is in contrast to rectilinear (and
in particular Cartesian) coordinate systems (with coordinates xi), where the basis vectors
are independent of position. Although it is straightforward to develop a general theory for
tensor fields defined with respect to an arbitrary curvilinear coordinate system,50 we will
need only two specific results from this theory – the gradient of a vector and the divergence
of a tensor:

∇v =
∂v

∂θi
⊗ gi , div B =

∂B

∂θi
gi , (2.94)

with

gi · gj = δi
j , and gi ≡

∂x

∂θi
. (2.95)

The vectors gi are called the “covariant basis vectors” and describe how the point in space
changes as the coordinates change. The “contravariant basis vectors” gi describe how the
coordinates change as the point in space changes. The contravariant basis vectors are bi-
orthogonal (reciprocal) to the covariant basis vectors, but are generally nonorthogonal (see
Section 2.3.2). Further, it is important to note that, generally, gi and gi are functions of θi .
The usual sums over i are implied in Eqn. (2.94) and the two quantities on the right-hand
side of Eqn. (2.94)2 are combined in a tensor contraction. So, if B is a tensor of order
m, then div B is a tensor of order m − 1. It is easy to verify that if we take θi = xi and

50 See, for example, [TT60].
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(a) (b)

Fig. 2.5 Definitions of (a) the polar cylindrical and (b) the spherical coordinate systems.

x = xiei , then Eqns. (2.94)1 and (2.94)2 reduce to Eqns. (2.90) and (2.92)2 , respectively.
However, the expressions are not so simple in other coordinate systems.

Polar cylindrical coordinates This coordinate system specifies the position of points in space
in terms of their distance r from a cylindrical axis, their angular orientation θ about that axis
(measured relative to an arbitrary direction), and the distance z along the cylindrical axis
from a chosen origin on the axis (see Fig. 2.5(a)). Thus, we have (θ1 , θ2 , θ3) = (r, θ, z).
Consider a point x, which in a Cartesian coordinate system has position components equal
to its coordinates xi , i.e. x = xiei . In the polar cylindrical coordinate system this point
will have components r, θ and z. The relationship between Cartesian and polar cylindrical
coordinates is usually taken to be

x1 = r cos θ, x2 = r sin θ, x3 = z. (2.96)

The inverse relations are

r = (x2
1 + x2

2)
1/2 , θ = arctan(x2/x1), z = x3 .

With these relations between the two coordinate systems, the point x can be written

x = xiei = x1e1 + x2e2 + x3e3

= (r cos θ)e1 + (r sin θ)e2 + ze3

= r(cos θe1 + sin θe2) + ze3

≡ rer + zez ,

where the last line serves to define the radial and axial basis vectors, er and ez , respectively.
The final basis vector, called the transverse basis vector, eθ , can be obtained from the
orthonormality condition and the condition that the ordered triplet (er ,eθ ,ez ) forms a
right-handed system. Accordingly, we find eθ = −sin θe1 + cos θe2 . Thus,

er = cos θe1 + sin θe2 , eθ = −sin θe1 + cos θe2 , ez = e3 . (2.97)
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Note that for the polar cylindrical coordinate system the basis vectors er and eθ are functions
of θ, i.e. er = er (θ) and eθ = eθ (θ), but ez is independent of position.

Now we are ready to compute the expressions for ∇v and div B in the polar cylindrical
coordinate system. First, we must compute the gi vectors. Referring to Eqn. (2.95)2 and
using Eqn. (2.97)2 , we have gr = ∂x/∂r = er , gθ = ∂x/∂θ = reθ , and gz = ∂x/∂z =
ez . Then applying Eqn. (2.95)1 , we obtain

gr = er , gθ =
1
r
eθ , gz = ez . (2.98)

Writing out Eqn. (2.94)1 gives the result for the gradient of a vector v:

∇v = vr,rer ⊗ er +
1
r
(vr,θ − vθ )er ⊗ eθ + vr,zer ⊗ ez

+ vθ,reθ ⊗ er +
1
r
(vθ,θ + vr )eθ ⊗ eθ + vθ,zeθ ⊗ ez

+ vz,rez ⊗ er +
1
r
vz,θez ⊗ eθ + vz,zez ⊗ ez . (2.99)

For the divergence of a second-order tensor T , we first write out Eqn. (2.94)2 as

div T =
∂T

∂r
er +

∂T

∂θ

1
r
eθ +

∂T

∂z
ez .

Substituting in the component expression for T (see Eqn. (2.61)) we have

div T =
(

∂Trr

∂r
er ⊗ er +

∂Trθ

∂r
er ⊗ eθ + · · · + ∂Tzz

∂r
ez ⊗ ez

+ Trr
∂er

∂r
⊗ er + Trθ

∂er

∂r
⊗ eθ + · · · + Tzz

∂ez

∂r
⊗ ez

+ Trrer ⊗
∂er

∂r
+ Trθer ⊗

∂eθ

∂r
+ · · · + Tzzez ⊗

∂ez

∂r

)
er

+
(

∂Trr

∂θ
er ⊗ er + · · · + Tzzez ⊗

∂ez

∂θ

)
1
r
eθ

+
(

∂Trr

∂z
er ⊗ er + · · · + Tzzez ⊗

∂ez

∂z

)
ez .

This equation has 81 terms. Performing the indicated differentiations and the various
contractions results in the final form for the divergence in polar cylindrical coordinates:

div T =
(

∂Trr

∂r
+

1
r

∂Trθ

∂θ
+

Trr − Tθθ

r
+

∂Trz

∂z

)
er

+
(

∂Tθr

∂r
+

1
r

∂Tθθ

∂θ
+

Trθ + Tθr

r
+

∂Tθz

∂z

)
eθ

+
(

∂Tzr

∂r
+

1
r

∂Tzθ

∂θ
+

Tzr

r
+

∂Tzz

∂z

)
ez . (2.100)

Spherical coordinates The spherical coordinate system identifies each point x in space by
its distance r from a chosen origin and two angles: the inclination (or zenith) angle θ
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between the position vector x and the e3 axis, and the polar (or azimuthal) angle φ between
the e1 axis and the projection of x into the e1–e2 subspace (see Fig. 2.5(b)). Thus, we
have51 (θ1 , θ2 , θ3) = (r, θ, φ). These are most easily understood through their relation to
the Cartesian coordinates:

x1 = r sin θ cos φ, x2 = r sin θ sin φ, x3 = r cos θ, (2.101)

and the inverse relations

r = (x2
1 + x2

2 + x2
3)

1/2 , θ = arccos(x3/r), φ = arctan(x2/x1).

The spherical coordinate basis vectors are given by

er = sin θ cos φe1 + sin θ sinφe2 + cos θe3 ,

eθ = cos θ cos φe1 + cos θ sinφe2 − sin θe3 , (2.102)

eφ = −sin φe1 + cos φe2 ,

where the ordered triplet (er ,eθ ,eφ) forms a right-handed system. Thus, in the spherical
coordinate system all three basis vectors are functions of φ and/or θ, and we have

∂er

∂θ
= eθ ,

∂eθ

∂θ
= −er ,

∂eφ

∂θ
= 0,

∂er

∂φ
= sin θeφ ,

∂eθ

∂φ
= cos θeφ ,

∂eφ

∂φ
= −sin θer − cos θeθ .

From the position vector x = rer and the above relations we find the vectors gi to be

gr = er , gθ =
1
r
eθ , gφ =

1
r sin θ

eφ . (2.103)

Writing out Eqn. (2.94)1 gives the gradient of a vector v in spherical coordinates:

∇v = vr,rer ⊗ er +
1
r
(vθ,r − vθ )eθ ⊗ er +

1
r sin θ

(vφ,r − sin θvφ)eφ ⊗ er

+ vθ,reθ ⊗ er +
1
r
(vθ,θ + vr )eθ ⊗ eθ +

1
r sin θ

(vθ,φ − cos θvφ)eθ ⊗ eφ

+ vφ,reφ ⊗ er +
1
r
vφ,θeφ ⊗ eθ +

1
r sin θ

(vφ,φ + sin θvr + cos θvθ )eφ ⊗ eφ .

(2.104)

51 Unfortunately, there are many different conventions in use for the spherical coordinate system. Various
names are often associated with the different conventions (see, for example, http://mathworld.wolfram.com/
SphericalCoordinates.html), but it is not clear that these are always used consistently. It seems the best course
of action is to be extremely careful when using reference materials and the spherical coordinate system. Always
double check each author’s definition of the coordinates.
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For the divergence, substituting in the gi vectors and the component expression for a
second-order tensor T (see Eqn. (2.61)) into Eqn. (2.94)2 , we obtain

div T =
(

∂Trr

∂r
er ⊗ er +

∂Trθ

∂r
er ⊗ eθ + · · · + ∂Tφφ

∂r
eφ ⊗ eφ

+ Trr
∂er

∂r
⊗ er + Trθ

∂er

∂r
⊗ eθ + · · · + Tφφ

∂eφ

∂r
⊗ eφ

+ Trrer ⊗
∂er

∂r
+ Trθer ⊗

∂eθ

∂r
+ · · · + Tφφeφ ⊗ ∂eφ

∂r

)
er

+
(

∂Trr

∂θ
er ⊗ er + · · · + Tφφeφ ⊗ ∂eφ

∂θ

)
1
r
eθ

+
(

∂Trr

∂φ
er ⊗ er + · · · + Tφφeφ ⊗ ∂eφ

∂φ

)
1

r sin θ
eφ .

Again, this equation has 81 terms. Performing the indicated differentiations and the various
contractions results in the final form for the divergence in spherical coordinates:

div T =
(

∂Trr

∂r
+

1
r

[
∂Trθ

∂θ
+ csc θ

∂Trφ

∂φ
+ 2Trr − Tθθ − Tφφ + cot θTrθ

])
er

+
(

∂Tθr

∂r
+

1
r

[
∂Tθθ

∂θ
+ csc θ

∂Tθφ

∂φ
+ cot θ(Tθθ − Tφφ) + Trθ + 2Tθr

])
eθ

+
(

∂Tφr

∂r
+

1
r

[
∂Tφθ

∂θ
+ csc θ

∂Tφφ

∂φ
+ Trφ + 2Tφr + cot θ(Tθφ + Tφθ )

])
eφ .

(2.105)

2.6.4 Divergence theorem

In continuum mechanics, we often deal with integrals over the domain of the solid. There
are a number of integral theorems that facilitate the evaluation of these integrals. These
include Stokes’ theorem relating line and surface integrals, and the divergence theorem
relating surface and volume integrals. The latter is particularly important in continuum
mechanics and is given in detail below.

Consider a closed volume Ω bounded by the surface ∂Ω with outward unit normal n(x)
together with a smooth spatially varying vector field w(x) defined everywhere in Ω and on
∂Ω. This is depicted schematically in Fig. 2.6(a), where the vector field is represented by
arrows. The divergence theorem for the vector field w states∫

∂Ω
wini dA =

∫
Ω

wi,i dV ⇔
∫

∂Ω
w · n dA =

∫
Ω
(div w) dV, (2.106)

where the integral over ∂Ω is a surface integral (dA is an infinitesimal surface element) and
the integral over Ω is a volume integral (dV is an infinitesimal volume element). Physically,
the surface term measures the flux of w out of Ω, while the volume term is a measure of
sinks and sources of w inside Ω. The divergence theorem is therefore a conservation law
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Fig. 2.6 (a) A domain Ω containing a spatially varying vector field w(x). (b) A small cube inside Ω.

for w. This is easy to visualize for a fluid (where w is the fluid velocity), but it is true for
any vector field.

There are different ways to prove the divergence theorem. A simple nonrigorous approach
that provides some physical intuition is to demonstrate the theorem for an infinitesimal cube
and to then construct the volume Ω as a union of such cubes. Consider a small cube C

inside Ω with sides Δx1 , Δx2 , Δx3 and one corner located at x (see Fig. 2.6(b)). The net
flux across the faces of C is∫

∂C

w · n dA =
∫

∂C1

w · n dA +
∫

∂C2

w · n dA +
∫

∂C3

w · n dA,

where ∂Ci are the faces perpendicular to ei . For example, for the ∂C1 face52∫
∂C1

w · n dA = [w(x1 , x2 , x3) · (−e1) + w(x1 + Δx1 , x2 , x3) · e1 ] Δx2Δx3

= [w1(x1 + Δx1 , x2 , x3) − w1(x1 , x2 , x3)] Δx2Δx3 .

Similar expressions are obtained for the other two terms. Adding the terms and dividing by
the volume of the cube, ΔV = Δx1Δx2Δx3 , we have

1
ΔV

∫
∂C

w · n dA =
w1(x1 + Δx1 , x2 , x3) − w1(x1 , x2 , x3)

Δx1

+
w2(x1 , x2 + Δx2 , x3) − w2(x1 , x2 , x3)

Δx2

+
w3(x1 , x2 , x3 + Δx3) − w3(x1 , x2 , x3)

Δx3
.

Now taking the limit Δxi → 0, the terms on the right become partial derivatives so that

lim
Δxi →0

1
ΔV

∫
∂C

w · n dA =
∂w1

∂x1
+

∂w2

∂x2
+

∂w3

∂x3
= div w. (2.107)

52 Since we plan to take the limit Δxi → 0, we take w(x) to be constant on the cube faces. A more careful
derivation would apply the mean-value theorem here (as is done, for example, in Section 4.2.3). However, this
would clutter the notation, so we avoid it here.
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This provides an intuitive definition for the divergence of a vector field as the net flow per
unit volume of the field at a point.

Next we consider the complete body Ω as a union of many adjoining cubes C(α) , where
α ranges from 1 to the number of cubes. The flux of w across an interface between two
adjacent cubes is zero since the flux out of one cube is the negative of the flux out of the
other. Consequently, the sum of the flux over all cubes is equal to the flux leaving Ω through
its outer surface:∫

∂Ω
w · n dA ≈

∑
α

∫
∂C (α )

w · n dA =
∑
α

(div w)(x(α))ΔV,

where we have used Eqn. (2.107) and x(α) is the position of a corner of cube C(α) . The
equality is only approximate due to the discretization error associated with the finite size
of the cubes. Taking ΔV → 0 we obtain the divergence theorem in Eqn. (2.106). As noted
earlier this is not meant to be a rigorous proof (as any mathematician reading this will point
out), however, it conveys the essence of the origin of the divergence theorem.

The divergence theorem can be generalized to a tensor field B of any rank:∫
∂Ω

Bn dA =
∫

Ω
div B dV. (2.108)

In Cartesian component form, this can be written as∫
∂Ω

Bijk...pnp dA =
∫

Ω
Bijk...p,p dV. (2.109)

For example, for a second-order tensor T this is∫
∂Ω

Tijnj dA =
∫

Ω
Tij,j dV.

Exercises

2.1 [SECTION 2.1] A rocket propels itself forward by “burning” fuel (mixing fuel with oxygen)
and emitting the resulting hot gases at high velocity out of a nozzle at the rear of the rocket.
As a result of the combustion process the mass of the rocket continuously decreases.
1. Show that the motion of the rocket is governed by the following equation:

m
dv

dt
+ v∗

ex
dm

dt
= F (t),

where v = v(t) is the velocity of the rocket, m = m(t) is the mass of the rocket, v∗
ex

is the velocity of the exhaust gas relative to that of the rocket, and F (t) is the external
force acting on the rocket. Hint: Compute the momentum of the rocket at time t and time
t + Δt, i.e. p(t) and p(t + Δt) = p + Δp. The mass of the rocket will be reduced by Δm

during this interval. Account for the momentum of the exhaust gas. Obtain dp/dt through
a limiting operation.
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2. Compute the maximum velocity, vm ax , that the rocket can achieve under the following
conditions. There is no external force acting on the rocket, F (t) = 0, the relative exhaust
velocity, v∗

ex , and rate of change of mass, ṁ, are constant, the initial velocity is zero,
v(0) = 0, the initial mass of the rocket is min it , the final mass of the rocket (after the
fuel is expended) is mfin . Given your result, what is the best way for a rocket engineer to
increase the maximum velocity?

2.2 [SECTION 2.2] Expand the following indicial expressions (all indices range from 1 to 3).
Indicate the rank and the number of resulting expressions.
1. ai bi .
2. ai bj .
3. σik nk .
4. Aij xixj (A is symmetric, i.e. Aij = Aji ).

2.3 [SECTION 2.2] Simplify the following indicial expressions as much as possible (all indices
range from 1 to 3).
1. δm m δn n .
2. xiδik δj k .
3. Bij δij (B is antisymmetric, i.e. Bij = −Bji ).
4. (Aij Bjk − 2Aim Bm k )δik .
5. Substitute Aij = Bik Ckj into φ = Am k Cm k .
6. εij k aiaj ak .

2.4 [SECTION 2.2] Write out the following expressions in indicial notation, if possible:
1. A11 + A22 + A33 .
2. AT A, where A is a 3 × 3 matrix.
3. A2

11 + A2
22 + A2

33 .
4. (u2

1 + u2
2 + u2

3 )(v2
1 + v2

2 + v2
3 ).

5. A11 = B11C11 + B12C21 A12 = B11C12 + B12C22

A21 = B21C11 + B22C21 A22 = B21C12 + B22C22 .
2.5 [SECTION 2.2] Obtain an expression for ∂A−1/∂A, where A is a second-order tensor.

This expression turns up in [TM11] when computing stress in statistical mechanics systems.
Hint: Start with the identity A−1

ik Ak j = δij . Use indicial notation in your derivation.
2.6 [SECTION 2.3] Show that, for two points with plane polar coordinates (r1 , θ1 ) and (r2 , θ2 ),

the addition (r, θ) = (r1 + r2 , θ1 + θ2 ) does not satisfy the vector parallelogram law and
therefore (r, θ) are not the components of a vector.

2.7 [SECTION 2.3] A classical system of N particles is characterized by n = 3N momentum
coordinates, p1 , . . . , pn , and n = 3N position coordinates, q1 , . . . , qn . The “Poisson bracket”
between two functions, f (q, p) and g(q, p), is defined by

{f, g} =
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
,

where the summation convention applies. The Poisson bracket is an important operator in
statistical mechanics. Prove that {f, g} is a bilinear operator (as defined in Section 2.3) with
respect to its arguments.

2.8 [SECTION 2.3] Consider a coordinate transformation from xα to x′
i . We have, xα = Qα ix

′
i ,

where Qα i = eα · e′
i = cos θ(eα , e′

i ). Here eα and e′
i are orthonormal basis vectors of the

unprimed and primed coordinate systems, respectively, and θ(eα , e′
i ) is the angle between eα

and e′
i measured in the counterclockwise direction.
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1. Calculate the coefficients Qα i for the particular transformation given in the table below
(the numbers are the angles between the basis vectors):

e′
1 e′

2 e′
3

e1 120◦ 120◦ 45◦

e2 45◦ 135◦ 90◦

e3 60◦ 60◦ 45◦

2. Verify that Q is proper orthogonal.
2.9 [SECTION 2.3] Express the following expressions in terms of tensor components:

1. v[e1 ].
2. v[e3 + 2e2 ].
3. v[ye1 − xe2 ].
4. T [e2 , e1 ].
5. T [e3 , 5e3 + 4e1 ].
6. T [e1 + e2 , e1 + e3 ].

2.10 [SECTION 2.3] Given that vi , Tij and Mijk are the rectangular Cartesian components of rank
one, two and three tensors, respectively, prove that the following are tensors:
1. Tij vi vj .
2. Mijj Tik .
3. Mijk vk .

2.11 [SECTION 2.4] Scalar contractions of tensors were defined in Section 2.4. The simplest example
is the dot product a · b. How can this contraction be obtained from the definition of a tensor as
a scalar-valued multilinear function of vectors where the vectors are written as a[x] and b[x]?

2.12 [SECTION 2.5] Prove that any antisymmetric tensor A has a one-to-one relation to a unique axial
vector w as shown in Eqn. (2.71). Hint: Start from the axial vector condition in Eqn. (2.70).
Write it out in indicial notation and manipulate the expression until you obtain the left-hand side
of Eqn. (2.71). The inverse relation is obtained by multiplying both sides by the permutation
tensor and using the ε–δ identity (Eqn. (2.11)).

2.13 [SECTION 2.5] Consider the dyad D = a ⊗ a constructed from the vector a.
1. Write out the components of D in matrix form.
2. Compute the three principal invariants of D : I1 , I2 , I3 . Simplify your expressions as much

as possible.
3. Compute the eigenvalues of D.

2.14 [SECTION 2.5] Let tensor A be given by A = α(I − e1 ⊗ e1 ) + β(e1 ⊗ e2 + e2 ⊗ e1 ),
where α, β are scalars (not equal to zero) and e1 , e2 are orthogonal unit vectors.
1. Show that the eigenvalues λA

k of A are

λA
1 = α, λA

2 ,3 = α/2 ±
(
α2/4 + β2)1/2

.

2. Show that the associated normalized eigenvectors ΛA
k are

ΛA
1 =

⎡⎢⎣0
0
1

⎤⎥⎦ , ΛA
2 =

1√
1 + (λA

2 /β)2

⎡⎢⎣ 1
λA

2 /β

0

⎤⎥⎦ , ΛA
3 =

1√
1 + (λA

3 /β)2

⎡⎢⎣ 1
λA

3 /β

0

⎤⎥⎦ .

3. Under what conditions on α and β (if any) is A positive definite?
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2.15 [SECTION 2.6] Solve the following problems related to indicial notation for tensor field
derivatives. In all cases indices range from 1 to 3. All variables are tensors and functions of
the variables that they are differentiated by unless explicitly noted. The comma notation refers
to differentiation with respect to x.
1. Write out explicit expressions (i.e. ones that only have numbers as indices) for the follow-

ing indicial expressions. In each case, indicate the rank and the number of the resulting
expressions.

a.
∂ui

∂zk

∂zk

∂xj
.

b. σij,j + ρbi = ρai .

c. uk ,j δj k − ui,i .
2. Expand out and then simplify the following indicial expressions as much as possible. Leave

the expression in indicial form.
a. (Tij xj ), i − Tii .

b. (xm xm xiAij ),k (A is constant).

c. (Sij Tjk ), ik .
3. Write out the following expressions in indicial notation.

a. Bi1
∂c1

∂xj
+ Bi2

∂c2

∂xj
+ Bi3

∂c3

∂xj
.

b. div v, where v is a vector.

c.
∂2T11

∂x2
1

+
∂2T12

∂x1∂x2
+

∂2T13

∂x1∂x3
+

∂2T21

∂x2∂x1
+

∂2T22

∂x2
2

+
∂2T23

∂x2∂x3
+

∂2T31

∂x3∂x1

+
∂2T32

∂x3∂x2
+

∂2T33

∂x2
3

.

2.16 [SECTION 2.6] Let f = f (x1 , x2 , x3 ) be a scalar field, and define hα ≡ ∂f/∂xα = f,α .
Show that upon transformation from one set of rectangular Cartesian coordinates to another,
the following equality is satisfied:

h′
i = Qα ihα .

This shows that hα are the components of a vector: h = (∂f/∂xα )eα = f,α eα . This vector
is called the “gradient of f (x)” and it is denoted by ∇f . Hint: In the unprimed coordinate
system, (·),α = ∂(·)/∂xα , and in the primed coordinate system, (·), i = ∂(·)/∂x′

i . To switch
from one to the other use the chain rule.

2.17 [SECTION 2.6] Prove the following identities, involving scalar fields ξ and η, vector fields u

and v, and tensor field T , using indicial notation:
1. curl∇η = 0.
2. div curl u = 0.
3. ∇2 (ξη) = ξ∇2η + η∇2ξ + 2∇ξ · ∇η.
4. div (T v) = (div T T ) · v + T : (∇v)T .

2.18 [SECTION 2.6] The divergence theorem for a region Ω bounded by a closed surface ∂Ω is
given in Eqn. (2.109).
1. Apply Eqn. (2.109) to a vector field, v = (ξ η,i )ei , where both ξ and η are scalar functions

of x and obtain ∫
∂ Ω

ξ η,ini dA =
∫

Ω
(ξ,i η,i + ξ η,ii ) dV, (∗)

which is known as Green’s first identity.
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2. Interchange the roles of ξ and η in Eqn. (∗) and subtract from the original version of Eqn. (∗)
to obtain ∫

∂ Ω
(ξ η,i − η ξ,i ) ni dA =

∫
Ω

(ξ η,ii − η ξ,ii ) dV, (∗∗)

which is known as Green’s second identity.
3. Write Eqns. (∗) and (∗∗) in coordinate-free (direct) notation, noting that∇ξ ·n = 〈Dxξ; n〉

is a normal derivative.



3 Kinematics of deformation

Continuum mechanics deals with the change of shape (deformation) of bodies subjected to
external mechanical and thermal loads. However, before we can discuss the physical laws
governing deformation, we must develop measures that characterize and quantify it. This
is the subject described by the kinematics of deformation. Kinematics does not deal with
predicting the deformation resulting from a given loading, but rather with the machinery
for describing all possible deformations a body can undergo.

3.1 The continuum particle

A material body B bounded by a surface ∂B is represented by a continuous distribution of
an infinite number of continuum particles. On the macroscopic scale, each particle is a point
of zero extent much like a point in a geometrical space. It should therefore not be thought
of as a small piece of material. At the same time, it has to be realized that a continuum
particle derives its properties from a finite-size region � on the micro scale (see Fig. 3.1).
One can think of the properties of the particle as an average over the atomic behavior within
this domain. As one moves from one particle to its neighbor the microscopic domain moves
over, largely overlapping the previous domain. In this way the smooth field-like behavior we
expect in a continuum is obtained.1 A fundamental assumption of continuum mechanics is
that it is possible to define a length � that is large relative to atomic length scales and at the
same time much smaller than the length scale associated with variations in the continuum
fields.2 We revisit this issue and the limitations that it imposes on the validity of continuum
theory in Section 6.6.

1 This is the approach taken in Section 8.2 of [TM11], where statistical mechanics ideas are used to obtain
microscopic expressions for the continuum fields. See also footnote 31 in that section.

2 This microscopically-based view of continuum mechanics is not mandatory. Clifford Truesdell, one of the
major figures in continuum mechanics who, together with Walter Noll, codified it and gave it its modern
mathematical form, was a strong proponent of continuum mechanics as an independent theory eschewing
perceived connections with other theories. For example, in his book with Richard Toupin, The Classical Field
Theories [TT60], he states: “The corpuscular theories and field theories are mutually contradictory as direct
models of nature. The field is indefinitely divisible; the corpuscle is not. To mingle the terms and concepts
appropriate to these two distinct representations of nature, while unfortunately a common practice, leads to
confusion if not to error. For example, to speak of an element of volume in a gas as ‘a region large enough
to contain many molecules but small enough to be used as a element of integration’ is not only loose but also
needless and bootless.” This is certainly true as long as continuum mechanics is studied as an independent
theory. However, when attempts are made to connect it with phenomena occurring on smaller scales, as in this
book and to a larger extent in [TM11], it leads to a dead end. Truesdell even acknowledged this fact in the
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2

1

B

∂B

P

P

Fig. 3.1 A material body B with surface ∂B. A continuum particle P is shown together with a schematic representation of
the atomic structure underlying the particle with length scale �. The small dots in the atomic structure represent
atoms.

3.2 The deformation mapping

A body B can take on many different shapes or configurations depending on the loading
applied to it. We choose one of these configurations to be the reference configuration of
the body and label it B0 . The reference configuration provides a convenient fixed state of
the body to which other configurations can be compared to gauge their deformation. Any
possible configuration of the body can be taken as its reference. Typically the choice is
dictated by convenience to the analysis. Often, it corresponds to the state where no external
loading is applied to the body.

We denote the position of a particle P in the reference configuration by X = X(P ).
Since particles cannot be formed or destroyed, we can use the coordinates of a particle in
the reference configuration as a label distinguishing this particle from all others. Once we
have defined the reference configuration, the deformed configuration occupied by the body
is described in terms of a deformation mapping function ϕ that maps the reference position
of every particle X ∈ B0 to its deformed position x:

xi = ϕi(X1 ,X2 ,X3) ⇔ x = ϕ(X). (3.1)

In the deformed configuration the body occupies a domain B, which is the union of all
positions x (see Fig. 3.2). In the above, we have adopted the standard continuum mechanics

text immediately following the above quote where he discussed Noll’s work on a microscopic definition of the
stress tensor [Nol55]. Noll, following the work of Irving and Kirkwood [IK50], demonstrated that by defining
continuum field variables as particular phase averages over the atomistic phase space, the continuum balance
laws were exactly satisfied. Truesdell consequently (and perhaps grudgingly) concluded that “those who prefer
to regard classical statistical mechanics as fundamental may nevertheless employ the field concept as exact in
terms of expected values” [TT60]. Irving and Kirkwood and Noll’s approach is discussed in Section 8.2 of
[TM11].
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1

2

P

X

P

x

B0

B

Fig. 3.2 The reference configuration B0 of a body (dashed) and the deformed configuration B. The particle P located at
position X in the reference configuration is mapped to a new point x in the deformed configuration.

convention of denoting all things associated with the reference configuration with upper-
case letters (as in X) or with a subscript 0 (as in B0) and all things associated with the
deformed configuration in lower-case (as in x) or without a subscript (as in B).

In order to satisfy the condition that particles are not destroyed or created, ϕ must be a
one-to-one mapping. This means that a single particle cannot be mapped to two positions
and that two particles cannot be mapped to the same position. The fact that ϕ is one-to-one
implies that it is invertible, i.e. it is always possible to define a unique inverse mapping,
X = ϕ−1(x), from B to B0 . This physically desirable property is not satisfied, in general,
for an arbitrary function ϕ. The deformation mapping must satisfy the inverse function
theorem as well as global invertibility conditions as described in Section 3.4.2.

Example 3.1 (Uniform stretching and simple shear) Two important examples of deformation map-
pings are shown in Fig. 3.3 and are detailed below:

1. Uniform stretching:

x1 = α1X1 , x2 = α2X2 , x3 = α3X3 ,

where αi > 0 are the stretch parameters along the axes directions. When all three are equal
(α1 = α2 = α3 = α) the deformation is called a uniform dilatation, corresponding to a uniform
contraction for α < 1 and a uniform expansion for α > 1.

2. Simple shear:

x1 = X1 + γX2 , x2 = X2 , x3 = X3 ,

where γ is the shear parameter measuring the amount of lateral motion per unit height. The
shearing angle is given by tan−1 γ (see Fig. 3.3(c)). This deformation plays an important role in
crystal plasticity where the passage of a dislocation can be described as a simple shear across an
interatomic layer (see Section 6.5.5 of [TM11]). In general, for a simple shear in a direction s on
a plane with normal n, we have

x = (I + γs ⊗ n)X .
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α3a

α2a
B
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1
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tan−1 γ

a

γa

B

(c)

Fig. 3.3 Examples of deformation mappings. Frame (a) shows the reference configuration where the body is a cube (dashed).
Frames (b) and (c) show the deformed configuration for uniform stretch and simple shear, respectively.

A time-dependent deformation mapping, ϕ(X, t), is called a motion. In this case the
reference configuration is often associated with the motion at time t = 0, so that ϕ(X, 0) =
X , and the deformed configuration is the motion at the “current” time t. For this reason
the deformed configuration is often alternatively referred to as the current configuration.

3.3 Material and spatial field descriptions

Consider a scalar invariant field g such as the temperature. We can write g as a function
over the deformed or the reference configuration:

g = g(x, t) x ∈ B, or g = ğ(X, t) X ∈ B0 .

The two descriptions are linked by the deformation mapping ğ(X, t) ≡ g(ϕ(X, t), t).
However, these are actually very different descriptions. In the first case, g = g(x, t) is
written in terms of spatial positions. In other words, g(x, t) provides the temperature at a
particular position in space regardless of which particle is occupying it at time t. This is
referred to as a spatial or Eulerian description.

The second description is written in terms of material particles not spatial positions, i.e.
g = ğ(X, t) gives the temperature of particle X at time t regardless of where the particle
is located in space. This is referred to as a material or referential description.3 If the body
occupies the reference state at t = 0, the term Lagrangian is used.4

For obvious reasons the coordinates of a particle in the reference configuration X are
referred to as material coordinates and the coordinates of a spatial position x are referred

3 There is actually a slight difference between the terms “material” and “referential.” The former applies to the
more abstract case where particles are identified by label (e.g. P ), whereas the latter refers to the case where the
positions of the particles in a reference configuration are used to identify them [TN65]. This subtle distinction
is inconsequential for the discussion here.

4 Rather unfortunately, the terms “Lagrangian” and “Eulerian” are historically inaccurate. According to Truesdell
[Tru52, footnote 5 on p. 139], material descriptions were actually introduced by Euler, whereas the spatial
description was introduced by d’Alembert.
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to as spatial coordinates.5 If the deformation mapping is available, then the link between
the spatial and material coordinates is given by x = ϕ(X).

A referential description is suitable for solids where a reference configuration can be
readily defined and particles which are nearby in the reference configuration generally
remain nearby in the deformed configuration. In contrast, a spatial description is advanta-
geous for fluid flow where material particles can travel large relative distances, and thus, a
reference configuration is all but meaningless.

3.3.1 Material and spatial tensor fields

As soon as one starts to consider higher-order tensor fields in the material and spatial
descriptions an additional complication is encountered. As discussed in Section 2.3 an nth-
order tensor is a real-valued n-linear function of vectors. Thus, in continuum mechanics
there are three parts to every tensor field: (i) an n-linear function, (ii) the vector space(s)
that serve as the domain(s) of the n-linear function and (iii) a point set (e.g. B0 or B) over
which the nth-order tensor field is defined.

To unambiguously define a tensor field, we must specify the vector spaces on which the
tensor acts as well as the point set over which the field is defined (see page 26). In a general
mathematical setting each point in space is associated with a distinct tangent translation
space. To see this, first consider two material points with coordinates X ′ and X and form
a material vector ΔX by subtracting them:

ΔXI = X ′
I − XI ⇔ ΔX = X ′ − X.

We say that this is a vector in the tangent translation space at X . Second, consider two
spatial positions with coordinates x′ and x and form the spatial vector Δx:

Δxi = x′
i − xi ⇔ Δx = x′ − x.

We say this is a vector in the tangent translation space at x.
When attention is restricted to Euclidean point spaces all tangent spaces become equiva-

lent and we can simply speak of the translation space (as we did in Section 2.3.1). However,
it is useful to retain the distinction between material vectors and spatial vectors, even when
considering Euclidean point spaces. Thus, in the above equations we have extended, to the
indices of coordinates and tensor components, the convention of using upper-case letters for
all things associated with the reference configuration (material description) and lower-case
letters for all things associated with the deformed configuration (spatial description). This
component notation becomes especially important when curvilinear coordinate systems are
used. In Section 8.2 we present an example using polar coordinates which illustrates many
of the subtle aspects of working with both material and spatial quantities.

5 In general, different coordinate systems may be used for the reference and deformed configurations. For
instance, Cartesian coordinates would be best suited to describe the reference configuration when B0 is box-
shaped. However, polar cylindrical coordinates would be best suited to describe the deformed configuration
when B is a sector of a hollow circular cylinder. In cases such as these, one must be careful to keep track of the
basis vectors and their dependence on the appropriate coordinates. See Section 8.2 for a number of examples
where the use of different coordinate systems is mathematically convenient.
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A vector field A[ΔX](X) – where we have explicitly indicated that the vector acts
on a material vector ΔX and is a field defined for points in the referential description –
is called a material vector field. Similarly, a vector field b[Δx](x) (acting on a spatial
vector Δx at each spatial position x) is called a spatial vector field. In component form,
we write AI and bi , where the dependence on the field coordinates has been suppressed.
Examples are the material and spatial surface normals N and n with components NI and
ni , respectively, which will be discussed later. It is possible to convert a material vector to
a spatial vector and a spatial vector to a material vector by processes which are referred to
as push-forward and pull-back operations, respectively. These operations will be discussed
further in Section 3.4 once the deformation gradient has been introduced. Finally, the
introduction of upper-case and lower-case indices means that the summation convention
introduced earlier now becomes case sensitive. Thus, AI AI will be summed, but biAI

will not.
The distinction between material and spatial vectors easily extends to higher-order ten-

sors. For instance, suppose A[B,C] is a second-order tensor whose two vector arguments
are both material vectors. Then we say that A is a material tensor or a tensor in the reference
configuration and denote its components as AIJ . Similarly, a[b, c], with components aij , is
called a spatial tensor or a tensor in the deformed configuration because its arguments are
both spatial vectors. However, for higher-order tensors, a third possibility exists where one
of the tensor’s arguments is a material vector and one is a spatial vector: A[B, c]. Tensors
of this type are called mixed or two-point tensors. The extension of the index notation
to tensors of rank three and higher is straightforward. As used above, upper-case tensor
symbols are typically used for two-point tensors to indicate that they have (at least) one
material vector argument.

At the other extreme are scalar invariant (zeroth-order tensor) fields, which possess
no indices to distinguish between material and spatial representations. The definition of
tensors indicates that even zero-order tensors are associated with a vector space. For a scalar
invariant field expressed in the spatial description, spatial vectors are the natural associated
vector space and such an entity is referred to as a spatial scalar field. Similarly, a scalar
invariant field expressed in the material description is called a material scalar field. With
this definition the labeling of all tensor fields as spatial, material, or two-point is complete
and justified. However, for scalar invariant fields the distinction is purely mathematical.

3.3.2 Differentiation with respect to position

The introduction of referential and spatial descriptions for tensor fields means that the
indicial and direct notation introduced earlier for differentiation (see Section 2.6) must
be suitably amended. When taking derivatives with respect to positions it is necessary
to indicate whether the derivative is taken with respect to X or x. In indicial notation,
the comma notation refers to the index of the coordinate. Again, we find that the case
convention for indices is necessary. Thus, differentiation with respect to the material and
spatial coordinates can be unambiguously indicated using the comma notation already
introduced as �,I or �,i , where � represents the tensor field being differentiated. The
direct notation for the gradient, curl and divergence operators with respect to the material
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Table 3.1. The direct notation for the gradient, curl and
divergence operators with respect to the material and spatial

coordinates

Operator Material coordinates Spatial coordinates

gradient ∇0� or Grad � ∇� or grad �
curl Curl � curl �
divergence Div � div �

1

2

X x

dX

dV0

dx

dV

B0

B

Fig. 3.4 Mapping of the local neighborhood of a material point X in the reference configuration to the deformed
configuration. The infinitesimal material vector dX is mapped to the spatial vector dx.

and spatial coordinates is given in Tab. 3.1. For example, ∇0 ğ = (∂ğ/∂XI )eI and ∇g =
(∂g/∂xi)ei .

We defer the discussion of differentiation with respect to time until Section 3.6, where
the time rate-of-change of kinematic variables is introduced.

3.4 Description of local deformation

The deformation mapping ϕ(X) tells us how particles move, but it does not directly
provide information on the change of shape of particles, i.e. strains in the material. This
is important because materials resist changes to their shape and this information must
be included in a physical model of deformation. To capture particle shape change, it is
necessary to characterize the deformation in the infinitesimal neighborhood of a particle.

3.4.1 Deformation gradient

Figure 3.4 shows a body in the position it occupies in the reference and deformed con-
figurations. A particle originally located at X is mapped to a deformed position x. The
infinitesimal environment or neighborhood of the particle in the reference configuration is
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the sphere of volume dV0 mapped out by X + dX , where

dX = M dS, (3.2)

is the differential of X , M is a unit material vector allowed to point along all possible
directions in the body and dS = ‖dX‖ is the magnitude of dX (or radius of dV0). The
neighborhood dV0 is transformed by the deformation mapping to a distorted neighborhood
dV in the deformed configuration. Expanding this mapping to first order we have

xi + dxi = ϕi(X + dX) = ϕi(X) +
∂ϕi

∂XJ

∣∣∣∣
X

dXJ = xi + FiJ dXJ .

From this relation it is clear that

dxi = FiJ dXJ ⇔ dx = F dX, (3.3)

where F is called the deformation gradient and is given by

FiJ =
∂ϕi

∂XJ
=

∂xi

∂XJ
= xi,J ⇔ F =

∂ϕ

∂X
=

∂x

∂X
= ∇0x. (3.4)

In general F is not symmetric. Clearly, the deformation gradient is a second-order two-point
tensor. This requires that the material and spatial indices of F transform separately like
vectors when separate coordinate transformations are performed for the material and spatial
coordinate systems, respectively. For the special case where parallel Cartesian coordinate
systems are used for the reference and deformed configurations, F satisfies the usual
transformation relations for a second-order tensor.

Proof Start with F ′
iJ = ∂x′

i/∂X ′
J and substitute in

x′
i = Qαixα , X ′

J = QAJ XA,

giving

F ′
iJ =

∂(Qαixα )
∂XA

∂XA

∂X ′
J

= Qαi
∂xα

∂XA
QAJ = QαiQAJ FαA .

The deformation gradient plays a key role in describing the local deformation in the
vicinity of a particle. It fully characterizes the deformation of the neighborhood of x given
by

dx = m ds, (3.5)

where m = FM/ ‖FM‖ is a unit spatial vector along the direction to which M is rotated
by the local deformation and ds = ‖dx‖ = ‖FM‖ dS is the new infinitesimal magnitude.
The ratio between ds and dS gives the stretch of the infinitesimal material line element
originally oriented along M :

α =
ds

dS
= ‖FM‖ .
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Deformation mappings for which the deformation gradient is constant in space are
referred to as homogeneous deformations (also called uniform deformations).

Example 3.2 (Deformation gradients for uniform stretching and simple shear) The deformation gra-
dients for the mappings given in Example 3.1 are given below.

(i) Uniform stretching:

[F ] =

⎡⎢⎣α1 0 0
0 α2 0
0 0 α3

⎤⎥⎦ .

(ii) Simple shear:

[F ] =

⎡⎢⎣1 γ 0
0 1 0
0 0 1

⎤⎥⎦ .

We see that the deformation gradients are constant in space indicating that these are homogeneous
deformations.

3.4.2 Volume changes

We can also compute the local change in volume due to the deformation. The volume of the
spherical neighborhood in the reference configuration is dV0 = 4

3 π(dS)3 . In the deformed
configuration this sphere becomes an ellipsoid with volume dV = 4

3 πabc, where a, b, c

are its half-lengths. To determine the half-lengths, consider the infinitesimal magnitude
squared: ds2 = (FM) · (FM)(dS)2 = M · (F T F )M(dS)2 = M ·CM(dS)2 , where
C is a symmetric second-order material tensor called the right Cauchy–Green deformation
tensor:

CIJ = FkI FkJ ⇔ C = F T F . (3.6)

The key role that this material tensor plays in describing local deformation will be discussed
later. For now, we recall the discussion of quadratic forms (see Section 2.5.5) and note that
consequently the eigenvalues of C correspond to the squares of the ellipsoid half-lengths
(i.e. a =

√
λC

1 , b =
√

λC
2 and c =

√
λC

3 ). Substituting these values into dV and dividing
by dV0 , we obtain the local ratio of deformed-to-reference volume:

dV

dV0
=
√

λC
1 λC

2 λC
3 =

√
det C =

√
det(F T F ) = detF = J, (3.7)

where J ≡ det F is the Jacobian of the deformation mapping. The Jacobian therefore
gives the volume change of a particle. A volume preserving deformation satisfies J = 1 at
all particles.

The definition of the Jacobian leads to a local condition for invertibility called the
inverse function theorem. Assuming that ϕ is continuously differentiable and J(X) �= 0,
then there exists a neighborhood of particle X where ϕ is a one-to-one mapping. Failure of
this condition means that dV /dV0 → 0, which implies that the volume at the point shrinks
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dX

dY

N

dA0

dx

dy
n

dA

F

Fig. 3.5 The mapping of the infinitesimal area dA0 in the reference configuration to dA in the deformed configuration.

to zero, a physically unacceptable situation. It is important to realize that even if the local
invertibility condition is satisfied at all points in the body, this does not guarantee that ϕ is
globally one-to-one. Consider, for example, a two-dimensional deformation taking a line
segment into a pretzel shape. The mapping is locally invertible at all points, however, some
distant points will be mapped to the same positions (the pretzel intersections) making the
mapping globally not one-to-one. It is impossible to catch a violation like this using a local
pointwise criterion.

Example 3.3 (Volume change for uniform stretching and simple shear) The Jacobians for the defor-
mation gradients in Example 3.2 are given below.

(i) Uniform stretching:

J = det F = α1α2α3 .

(ii) Simple shear:

J = det F = 1.

We see that uniform stretching is associated with a volume change, while simple shear is volume
preserving. The latter is also true for an arbitrary simple shear along direction s on a plane with
normal n, for which the deformation gradient is F = I + γs ⊗ n. The proof is left as an exercise
(see Exercise 3.4).

3.4.3 Area changes

We have seen that the determinant of the deformation gradient provides a measure for
local volume change. We are also interested in local area changes that are important when
discussing stress, which is defined as a force per unit area.

Consider two infinitesimal material vectors dX and dY (see Fig. 3.5). The area dA0

spanned by these vectors and the normal to the plane they define are, respectively,

dA0 = ‖dX × dY ‖ , N =
dX × dY

‖dX × dY ‖ . (3.8)

Together these variables define an element of oriented area in the reference configuration:
dA0 = N dA0 = dX×dY . As a result of the imposed deformation, characterized locally
by the deformation gradient F , the material vectors dX and dY are mapped to the spatial



81 3.4 Description of local deformation
�

vectors dx and dy of the deformed configuration. The corresponding element of oriented
area in the deformed configuration is

[dA]i = ni dA = [dx × dy]i = εijkdxjdyk

= εijk (FjJ dXJ )(FkK dYK )

= εijkFjJ FkK dXJ dYK .

Applying FiI to both sides and using Eqn. (2.7) gives

nidAFiI = (detF )εIJ K dXJ dYK = J [dX × dY ]I = JNI dA0 .

Finally, multiplying both sides by F−T , we obtain Nanson’s formula6 relating elements of
oriented area in the reference and deformed configurations:

ni dA = JF−1
I i NI dA0 ⇔ n dA = JF−T N dA0 . (3.9)

This relation plays a key role in the derivation of material and mixed stress measures, which
are tensors in the reference configuration and two-point tensors, respectively.

Example 3.4 (The effect of simple shear on oriented areas) Consider a simple shear deformation
along the 1-direction (see Example 3.2). Simple shear is volume preserving, so J = 1. The changes in
elements of oriented area oriented along the main directions of the axes in the reference configuration
(N 1 dA0 = e1 dA0 , N 2 dA0 = e2 dA0 ) are obtained from Nanson’s formula:

n1 dA1 = JF −T N 1 dA0 =

⎡⎢⎣ 1 0 0
−γ 1 0
0 0 1

⎤⎥⎦
⎡⎢⎣1

0
0

⎤⎥⎦ dA0 =

⎡⎢⎣ 1
−γ

0

⎤⎥⎦ dA0 = (e1 − γe2 ) dA0 ,

n2 dA2 = JF −T N 2 dA0 =

⎡⎢⎣ 1 0 0
−γ 1 0
0 0 1

⎤⎥⎦
⎡⎢⎣0

1
0

⎤⎥⎦ dA0 =

⎡⎢⎣0
1
0

⎤⎥⎦ dA0 = e2 dA0 .

This gives for the 1-direction dA1 = dA0
√

1 + γ2 and n1 = (e1 − γe2 )/
√

1 + γ2 , and for the
2-direction dA2 = dA0 and n2 = e2 = N 2 . Thus an element of area oriented along the 1-direction
in the reference configuration stretches and rotates with a simple shear applied in the 1-direction,
while area oriented along the 2-direction is unaffected.

6 This formula is named after Edward J. Nanson (1850–1936), a British mathematician educated at Trinity
College Cambridge who immigrated to Australia and became a professor of mathematics at the University of
Melbourne. Nanson derived the relation in the context of hydrodynamic theory [Nan74, Nan78]. Interestingly,
Nanson became far better known for his reform of the Australian voting system. The voting system proposed
by Nanson sometimes goes under the name of “Nanson’s rule” [Nio87]. Thus, Nanson has left formulas and
rules in very different disciplines.
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3.4.4 Pull-back and push-forward operations

With the introduction of the deformation gradient we have two mixed tensors that map
material vectors to spatial vectors: FiJ and F−T

iJ . Also, we can use FT
Ij and F−1

I j to
map spatial vectors to material vectors. Thus, the deformation gradient provides a natural
mechanism for mapping between material components and spatial components of a tensor
field. For example, consider the velocity field v(x, t), which is a spatial vector field with
components vi(x, t). We may convert this to a material vector field by a so-called pull-back
operation:

VI (X, t) ≡ F−1
I i (X, t)vi(ϕ(X, t), t),

where we have now used an upper-case V to emphasize that the pulled-back velocity field
is associated with the particular reference configuration under consideration. The two-point
tensor FT

I i can also be used to pull-back a spatial vector. However, it is important to note that
this operation produces a different material tensor field than the one obtained by the pull-
back operation using F−1 . These material tensors have no particular physical significance;
however, it is often convenient to work with such fields.7

In a similar manner we may identify two push-forward operations that convert material
vector fields to spatial vector fields. For example, imagine a constant material vector
field G(X) with unit length and which points in the 1-direction everywhere. That is,
G(X) = e1 , with components GI = δI1 . The push-forward of G is

Ği(x, t) ≡ FiI (ϕ−1(x, t), t)GI (ϕ−1(x, t)) = Fi1(ϕ−1(x, t), t),

where we have used the notation Ğ, this one time, to indicate the change from the material
form to the spatial form. Here we have retained the upper-case G in order to emphasize the
fact that, even though the vector field is a spatial one, its value depends on the reference
configuration. The push-forward operation has given us a spatial vector field Ğ which
changes from position to position in B. At any particular position x ∈ B, the magnitude
of this vector is equal to the stretch ratio α =

∥∥F (ϕ−1(x))e1
∥∥ for the material particle

currently located at x. Further, we see that the direction of the spatial vector is no longer
aligned with the 1-direction, but depends explicitly on the motion. This is an example of
a vector field which is said to be convected with the body; it is sometimes also called an
embedded material field. This is meant to indicate that changes in the value of the field are
entirely due to changes in the deformation mapping.

The idea of pull-back and push-forward operations can easily be extended to higher-order
tensor fields. For second-order spatial tensors four distinct types of pull-back operations
may be defined corresponding to the two different mappings available for transforming
each of the spatial vector arguments into material vector arguments. The situation is similar
for push-forward operations. For even higher-order tensor fields the number of possible

7 We will see an example of this in Section 4.4 where we derive the material form of the equations for the balance
of linear and angular momentum. No additional physical content is gained by recasting these equations in the
reference configuration, however, the resulting problem is often significantly easier to solve.
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pull-back and push-forward operations becomes significant, but fortunately, most of these
operations find little (or no) application within standard applications of the theory.

3.4.5 Polar decomposition theorem

The deformation gradient F represents an affine mapping8 of the neighborhood of a material
particle from the reference to deformed configuration. We state above that F provides a
measure for the deformation of the neighborhood. This is a true statement but it is not
precise. When we say “deformation” we are implicitly referring to changes in the shape
of the neighborhood. This includes changes in lengths or stretching and changes in angles
or shearing (see Example 3.1). However, the deformation gradient may also include a part
that is simply a rotation of the neighborhood. Since rotation does not play a role in shape
change, it would be useful to decompose F into its rotation and “shape-change” parts. It
turns out that such a decomposition exists and is unique. This statement is called the polar
decomposition theorem.

Polar decomposition theorem Any tensor F with positive determinant (det F > 0) can
be uniquely expressed as

FiJ = RiI UIJ = VijRjJ ⇔ F = RU = V R, (3.10)

called the right and left polar decompositions of F , where R is a proper orthogonal
transformation (finite rotation) and U and V are symmetric positive-definite tensors called,
respectively, the right and left stretch tensors.9 This theorem is true for any second-order
tensor (with positive determinant), but here it is applied to the two-point deformation
gradient. Thus, we find that R is a two-point tensor and U and V are material and
spatial second-order tensors, respectively. In accordance with our case convention, we have
used upper-case U and V to indicate that these tensors are associated with the reference
configuration.

Considering the right polar decomposition, it is natural to imagine a two-stage sequence
where a material neighborhood first changes its shape and then is rotated into the deformed
configuration, F dX = R(UdX). For the left decomposition, the neighborhood is first
rotated and then its shape is changed into the deformed configuration, F dX = V (RdX).
Although U is a material tensor and V is a spatial tensor, the two stretch tensors are
equivalent in the sense that they both fully describe the deformation of the neighborhood
of a particle. To see this, we begin by proving the polar decomposition theorem and, in the
process of doing so, we introduce a number of important variables and relations.

8 An affine mapping is a transformation that preserves collinearity, i.e. points that were originally on a straight
line remain on a straight line. Strictly speaking, this includes rigid-body translation, however, the deformation
gradient is insensitive to translation.

9 The name “stretch tensor” is a bit unfortunate since U and V include information on both stretching and shear.
We will see later that this terminology is related to the physical significance of the eigenvalues of these tensors.
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Proof Start with Eqn. (3.3):

dxi = FiJ dXJ .

We require det F > 0, so dx = 0 iff dX = 0. Therefore, dx · dx is a positive-definite
quadratic form:

dxkdxk = (FkI dXI )(FkJ dXJ ) = (FkI FkJ )dXI dXJ = CIJ dXI dXJ > 0, ∀dX �= 0.

C is symmetric and positive definite, which means that its square root exists. Let us make
the enlightened “guess” that U =

√
C, or in other words that

C = F T F = U 2 = UT U , (3.11)

where the last equality follows from the symmetry of U . Later we will also require the
determinants of C and U :

det C = det(F T F ) = det(F T ) det F = (detF )2 , (3.12)

det U = det
√

C = det F . (3.13)

Now, if F = RU , then we have

R = FU−1 . (3.14)

We need to prove that R, defined in this manner, is proper orthogonal, i.e. that it satisfies
the following two conditions:

1. RT R = I .

Proof

RT R = (FU−1)T FU−1

= U−T (F T F )U−1

= U−T (UT U)U−1 = (U−T UT )(UU−1) = II = I,

where Eqn. (3.11) was used to go from the second to the third line.

2. det R = +1.

Proof

det R = det(FU−1) = det F
1

det U
= det F

1
det F

= 1,

where Eqn. (3.13) was used.

So far we have found one particular decomposition, F = RU , with U defined in
Eqn. (3.11), that satisfies the polar decomposition theorem. We must still prove that this
is the only possible choice, i.e. that the decomposition is unique. Let us assume that there
exists another decomposition R̄Ū such that F = RU = R̄Ū . Then, F T F = U 2 = Ū 2 ,
so U = Ū . The last step is correct since any positive-definite tensor has a unique positive-
definite square root. The uniqueness of R then follows from (R − R̄)U = 0. We have
proven the right polar decomposition theorem.
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The proof for the left polar decomposition is completely analogous and leads to the
following definitions. The left Cauchy–Green deformation tensor B is

Bij = FiK FjK ⇔ B = FF T . (3.15)

B is symmetric and positive definite. The left stretch tensor V is defined through

B = FF T = V 2 , (3.16)

so that V =
√

B. The determinants of B and V are

det B = (detF )2 , det V = detF . (3.17)

Finally, we must prove that R is the same in both the right and left decompositions. We can
prove this by contradiction. Assume that the rotations in the right and left decompositions
are different:

F = RU = V R̃.

Now consider10

F = RU = RU(RT R) = (RURT )R.

The final expression has the same form as the left polar decomposition. By the uniqueness
of the left polar decomposition we then have

V = RURT , (3.18)

which is called the congruence relation and R̃ = R, which completes the proof of the
polar decomposition theorem.

In a practical calculation of the polar decomposition, it is necessary to compute U or
V , which are defined as the square roots of C and B. A convenient approach is to use
the spectral decomposition representation of the Cauchy–Green tensors. For example, to
compute U , we first write the spectral decomposition of C (see Eqn. (2.81)):

C =
3∑

α=1

λC
α ΛC

α ⊗ ΛC
α , (3.19)

where λC
α and ΛC

α are the eigenvalues and eigenvectors of C. Then U follows as

U =
3∑

α=1

√
λC

α ΛC
α ⊗ ΛC

α . (3.20)

10 See Exercises 3.5 and 3.6.
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Similarly, for V we have

V =
3∑

α=1

√
λB

α ΛB
α ⊗ ΛB

α , (3.21)

where λB
α and ΛB

α are the eigenvalues and eigenvectors of B. Now, using the congruence
relation (Eqn. (3.18)) we have

V = RURT

3∑
α=1

√
λB

α ΛB
αiΛ

B
αj = RiI

(
3∑

α=1

√
λC

α ΛC
αI Λ

C
αJ

)
RjJ

=
3∑

α=1

√
λC

α (RiI ΛC
αI )(RjJ ΛC

αJ ).

Due to the uniqueness of the polar decomposition we have11

λB
α = λC

α , ΛB
α = RΛC

α . (3.22)

Thus, the eigenvalues of C and B (as well as U and V ) are the same, and the eigenvectors
are related through the rotational part of the deformation gradient.

Example 3.5 (Polar decomposition for uniform stretching and simple shear) Consider the deforma-
tion mappings given in Example 3.1. The deformation gradients associated with these mappings are
given in Example 3.2. The right Cauchy–Green deformation tensors for these mappings are:

(i) uniform stretching:

[C ] =

⎡⎢⎣α2
1 0 0

0 α2
2 0

0 0 α2
3

⎤⎥⎦ ;

(ii) simple shear:

[C ] =

⎡⎢⎣1 γ 0
γ 1 + γ2 0
0 0 1

⎤⎥⎦ .

Let us explore the right polar decomposition for these cases.

1. For uniform stretching, the eigenvalues and eigenvectors of C are

λC
1 = α2

1 , λC
2 = α2

2 , λC
3 = α2

3 ,[
ΛC

1

]
= [1, 0, 0]T ,

[
ΛC

2

]
= [0, 1, 0]T ,

[
ΛC

3

]
= [0, 0, 1]T .

The right stretch tensor follows from Eqn. (3.20) as

[U ] =

⎡⎢⎣α1 0 0
0 α2 0
0 0 α3

⎤⎥⎦ ,

and then from Eqn. (3.14) R = I . In this simple case, the deformation gradient corresponds to
pure stretching without rotation.

11 More precisely, the most we can say is that ΛB
α = ±RΛC

α . However, if we require that the eigenvectors of
B and C individually both form right-handed systems, then choosing one of the eigenvectors, say the α = 1
case, such that ΛB

1 = RΛC
1 ensures that Eqn. (3.22) is satisfied for each α = 1, 2, 3.
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2. For simple shear, the eigenvalues and eigenvectors of C are

λC
1 = 1 − γβ−, λC

2 = 1 + γβ+ , λC
3 = 1,

[
ΛC

1

]
=

[
−β+ , 1, 0

]T

√
1 + (β+ )2

,
[
ΛC

2

]
=

[
β−, 1, 0

]T

√
1 + (β−)2

,
[
ΛC

3

]
= [0, 0, 1]T ,

where β± = 1
2 (
√

4 + γ2 ± γ) ≥ 1. The right stretch tensor follows from Eqn. (3.20):

[U ] =

√
1 − γβ−

1 + (β+ )2

⎡⎢⎣(β+ )2 −β+ 0
−β+ 1 0

0 0 0

⎤⎥⎦ +

√
1 + γβ+

1 + (β−)2

⎡⎢⎣(β−)2 β− 0
β− 1 0
0 0 0

⎤⎥⎦ +

⎡⎢⎣0 0 0
0 0 0
0 0 1

⎤⎥⎦ .

The rotation can be computed from Eqn. (3.14), but the analytical form is complex and we do not
give it here.

We have shown that the deformation gradient can be uniquely decomposed into a finite
rotation and stretch. But what is the physical significance of the stretch tensors and the
related Cauchy–Green deformation tensors? This is discussed next.

3.4.6 Deformation measures and their physical significance

The right and left stretch tensors U and V characterize the shape change of a particle
neighborhood, but they are inconvenient to work with because their components are irra-
tional functions of F that are difficult to obtain. This is clearly demonstrated for the simple
shear problem in Example 3.5. Instead, the right and left Cauchy–Green deformation ten-
sors C and B, which are uniquely related to the stretch tensors, are usually preferred. For
solids,12 the most convenient variable is C. Next, we discuss the physical significance of
the components of this tensor.

Let us start by considering changes in length of material vectors and see how this is
related to the components of the material tensor C. In Fig. 3.4, we show the mapping of
the infinitesimal material vector dX in the reference configuration to the spatial vector dx.
The lengths squared of these two vectors are

dS2 = dXI dXI ,

ds2 = dxidxi = (FiI dXI )(FiJ dXJ ) = (FiI FiJ )dXI dXJ = CIJ dXI dXJ ,

where we have used Eqns. (3.3) and (3.6). The change in squared length follows as

ds2 − dS2 = (CIJ − δIJ )dXI dXJ .

Next, we define the Lagrangian strain tensor E as

EIJ =
1
2
(CIJ − δIJ ) =

1
2
(FiI FiJ − δIJ ) ⇔ E =

1
2
(C − I) =

1
2
(F T F − I).

(3.23)

12 For fluids, measures of deformation are less important than rates of deformation that are discussed later.
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The change in squared length is then

ds2 − dS2 = 2EIJ dXI dXJ .

The 1
2 factor in the definition of the Lagrangian strain (which leads to the factor of 2 above)

is introduced to agree with the infinitesimal definition of strain familiar from elasticity
theory. We will see this later when we discuss linearization in Section 3.5.

The physical significance of the diagonal elements of C becomes apparent when con-
sidering the change in length of an infinitesimal material vector oriented along an axis

direction. For example, consider [dX] =
[
dX1 , 0, 0

]T
oriented along the 1-direction. The

length of this vector in the reference configuration and that of its image in the deformed
configuration are, respectively,

dS2 = dXI dXI = (dX1)2 ,

ds2 = CIJ dXI dXJ = C11(dX1)2 .

The stretch along the 1-direction is then

α(1) =
ds

dS
=
√

C11 ;

similarly for the 2- and 3-directions,

α(2) =
√

C22 , α(3) =
√

C33 .

We see that the diagonal components of C are related to stretching of material elements
oriented along the axis directions in the reference configuration.

The physical significance of the off-diagonal elements of C can be explored by con-

sidering two material vectors [dX] =
[
dX1 , 0, 0

]T
and [dY ] =

[
0, dX2 , 0

]T
, oriented

along the 1- and 2-directions. The vectors are mapped to the spatial vectors dx and dy.
The vectors dX and dY are orthogonal in the reference configuration. In the deformed
configuration, the angle θ12 between dx and dy is given by

cos θ12 =
dx · dy

‖dx‖ ‖dy‖ =
CIJ dXI dYJ

[CK LdXK dXL ]1/2 [CM N dYM dYN ]1/2

=
C12dX1dX2

(
√

C11dX1)(
√

C22dX2)
=

C12√
C11

√
C22

.

Similarly.

cos θ13 =
C13√

C11
√

C33
, cos θ23 =

C23√
C22

√
C33

.

We see that the off-diagonal components of C are related to angle changes between pairs
of elements oriented along the axis directions in the reference configuration.

In its principal coordinate system, C is diagonal:

[C] =

⎡⎣λC
1 0 0
0 λC

2 0
0 0 λC

3

⎤⎦ ,
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where λC
α are the eigenvalues of C. Given the physical significance of the components

of C, we see that λC
α are the squares of the stretches in the principal coordinate system,

i.e. the squares of the principal stretches. In the principal coordinate system, the stretch
tensor corresponds to uniform stretching along the principal directions.13 Recall that the
eigenvalues of the right stretch tensor are the square roots of the eigenvalues of C (see
Eqn. (3.20)). Therefore, the eigenvalues of U are the principal stretches. This is the reason
for the term “stretch tensor.”

Example 3.6 (Lagrangian strain for uniform stretching and simple shear) Consider the deformation
mappings given in Example 3.1. The right Cauchy–Green deformation tensors associated with these
mappings are given in Example 3.5. The corresponding Lagrangian strain tensors are:

(i) uniform stretching:

[E] =
1
2

⎡⎢⎣α2
1 − 1 0 0
0 α2

2 − 1 0
0 0 α2

3 − 1

⎤⎥⎦ ;

(ii) simple shear:

[E] =
1
2

⎡⎢⎣0 γ 0
γ γ2 0
0 0 0

⎤⎥⎦ .

Let us explore the stretching and angle changes for these deformations.

1. For uniform stretching, the stretches of elements originally oriented along the axes are

α(k ) =
√

Ck k =
√

α2
k = αk , k = 1, 2, 3.

Since C is diagonal, it is already expressed in its principal coordinate system and αk are the
principal stretches. The changes in angle between pairs of elements originally aligned with the
axes are

cos θk � =
Ck�√

Ck k

√
C� �

=
0

αk α�
= 0 ⇒ θk � = 90◦ k, � = 1, 2, 3, k 
= �.

As expected, elements originally aligned with the axes remain orthogonal under uniform stretching.
2. For simple shear, the stretches for elements originally oriented along the axes are

α(1) = 1, α(2) =
√

1 + γ2 , α(3) = 1.

It is clear from Fig. 3.3(c) that there is no change in length in directions 1 and 3, while an
application of Pythagoras’ theorem gives α(2) . The changes in angle between elements originally
aligned with the axes are

cos θ12 =
γ√

1 + γ2
, cos θ13 = cos θ23 = 0.

Again, these results are readily verified by considering the geometry of Fig. 3.3(c). The principal
stretches and directions can be obtained from the eigenvalues and eigenvectors of C given in
Example 3.5.

13 An important point to keep in mind is that all symmetric tensors C have a principal orientation (as shown
in Section 2.5.3). This means that every shape-changing deformation, including shear, is equivalent to three
direct stretches along some set of orthogonal directions.
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3.4.7 Spatial strain tensor

Consider the deformation from the perspective of the spatial description: X = ϕ−1(x).
The local deformation in an infinitesimal neighborhood of a continuum particle is14

dXI =
∂ϕ−1

I

∂xj
dxj = F−1

I j dxj . (3.24)

The lengths squared of dX and dx are, respectively,

dS2 = dXI dXI = F−1
I i F−1

I j dxidxj = (FiI FjI )−1dxidxj = B−1
ij dxidxj ,

ds2 = dxidxi = δij dxidxj .

The change in length squared follows as

ds2 − dS2 = (δij − B−1
ij )dxidxj = 2eij dxidxj ,

where we have defined the spatial Euler–Almansi strain tensor:

eij =
1
2
(δij − B−1

ij )

=
1
2
(δij − F−1

I i F−1
I j )

⇔
e =

1
2
(I − B−1)

=
1
2
(I − F−T F−1).

(3.25)

Although the Euler–Almansi strain tensor is associated with the reference configuration,
and should therefore be represented with an upper-case letter, the use of a lower-case e to
distinguish it from the Lagrangian strain tensor is conventional.

Example 3.7 (The spatial strain for uniform stretching and simple shear) Consider the deformation
mappings given in Example 3.1. The deformation gradients associated with these mappings are given
in Example 3.2. The left Cauchy–Green deformation tensors and the Euler–Almansi strain tensors
for these mappings are

(i) uniform stretching:

[B] =

⎡⎢⎣α2
1 0 0

0 α2
2 0

0 0 α2
3

⎤⎥⎦ ,

[e] =
1
2

⎡⎢⎣1 − α−2
1 0 0

0 1 − α−2
2 0

0 0 1 − α−2
3

⎤⎥⎦ ;

(ii) simple shear:

[B] =

⎡⎢⎣1 + γ2 γ 0
γ 1 0
0 0 1

⎤⎥⎦ ,

[e] =
1
2

⎡⎢⎣0 γ 0
γ −γ2 0
0 0 0

⎤⎥⎦ .

Compare these with the material strain measures in Example 3.6.

14 In Eqn. (3.24) we identify ∂ϕ−1/∂x with F−1 . It is easy to see that this is indeed the case. From Eqn. (3.3),
we have that dxi = FiJ dXJ , where FiJ = ∂ϕi/∂XJ . We denote the inverse mapping from x to X as
X = ϕ−1 (x). Let us denote the gradient of ϕ−1 as GJ i = ∂ϕ−1

J /∂xi , such that dXJ = GJ j dxj .
Substituting this into the expression for dxi above, we have that dxi = FiJ GJ j dxj . This implies that
FiJ GJ j = δij , which means that G = F−1 as we have stated above.
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x

P’u
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Fig. 3.6 The reference configuration B0 of a body (dashed), deformed configuration B (solid), and a configuration obtained
from B by an additional increment of deformation (dash-dotted). The particle P located at position X in the
reference configuration is mapped to a position x in the deformed configuration and then to a new position x + u

by the deformation increment (or displacement) u.

3.5 Linearized kinematics

The discussion so far has focused on a description of the deformation represented by
a given mapping ϕ(X). This mapping could, for instance, represent the deformation
of the body that brings it into equilibrium with a set of forces or displacements that
are prescribed on the boundary of the body. That is, ϕ(X) often corresponds to the
solution of an equilibrium boundary-value problem (as described later in Section 7.1). The
nonlinear nature of continuum mechanics problems necessitates (in almost all cases) that
these solutions be obtained numerically. Further, numerical solutions are usually obtained
by an incremental process. In such a process the prescribed boundary values are applied in
small parts (or increments) and an equilibrium solution is determined for each value of the
boundary conditions until, finally, the desired solution is obtained. In order to successfully
implement this solution procedure, it is important to know how to calculate the increments
of all quantities that ultimately make up the mathematical equations to be solved during each
step of the process. In particular, we will require the linearized or incremental expressions
for the kinematic quantities already discussed. These include the deformation gradient, the
Cauchy–Green stretch tensors, the Lagrangian strain tensor and the Jacobian.

If the resulting expressions are evaluated at the reference configuration, a linear theory
for material deformation called small-strain elasticity theory is obtained. This theory is
important because, when it is coupled with linear constitutive relations (see Section 6.5),
its boundary-value problems can be solved analytically for many problems of interest.

The situation to be investigated is illustrated in Fig. 3.6, which presents a body in
the deformed configuration B along with an additional small increment of deformation
characterized by the displacement field u(X), thus ϕ(X) → ϕ(X)+u(X). Let G[ϕ] be
a kinematic field which is a functional15 of the deformation mapping. An approximation to

15 A “functional,” as opposed to a function, is a mapping that takes as its argument a function rather than a variable.
To distinguish a functional from a function square brackets are used to enclose its arguments. (This is not to
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G after the increment may be obtained from a Taylor expansion,

G[ϕ + u] ≈ G[ϕ] + ∇ϕG[ϕ] · u + · · · ,

where ∇ϕG represents the variation of G in the direction of the vector field u(X). In
analogy to Eqn. (2.88), this term is given by16

∇ϕG · u = 〈DϕG;u〉 =
d

dη
G[ϕ + ηu]

∣∣∣∣
η=0

. (3.26)

The linear parts of some important kinematic fields are computed in the following example.

Example 3.8 (Linear parts of kinematic fields) Application of the nonnormalized directional deriva-
tive to important kinematic fields yields:

1. Deformation gradient F :

〈DϕF ; u〉 =
d

dη

[
∂

∂XJ
(ϕi + ηui )

]∣∣∣∣
η =0

=
∂ui

∂XJ

= ∇0u. (3.27)

2. Right Cauchy–Green deformation tensor C :

〈DϕC ; u〉 =
d

dη

[
∂

∂XI
(ϕi + ηui )

∂

∂XJ
(ϕi + ηui )

]∣∣∣∣
η =0

=
∂ui

∂XI
FiJ +

∂ui

∂XJ
FiI ,

which in direct notation is

〈DϕC ; u〉 = F T ∇0u + (F T ∇0u)T .

3. Left Cauchy–Green deformation tensor B:

〈DϕB; u〉 =
d

dη

[
∂

∂XI
(ϕi + ηui )

∂

∂XI
(ϕj + ηuj )

]∣∣∣∣
η =0

=
∂ui

∂XI
FjI +

∂uj

∂XI
FiI ,

which in direct notation is

〈DϕB; u〉 = ∇0u F T + (∇0u F T )T .

4. Lagrangian strain tensor E:

〈DϕE; u〉 = 〈Dϕ
1
2
(C − I); u〉 =

1
2
〈DϕC ; u〉 =

1
2

[
F T ∇0u + (F T ∇0u)T

]
.

be confused with the notation for linear functions used in Section 2.3.1.) For example, I [f ] =
∫ 1

0 f (x) dx is
a functional which given a function f (x) returns its integral over the domain [0, 1].

16 It is important to distinguish between the operators 〈DϕG; ·〉 and 〈DX G; ·〉. The first deals with the variation
of G as one changes the function ϕ(X) by adding the vector field u(X). The second deals with the derivative
of G as one changes the particle X in the reference configuration. For the latter case, we treat G as a function
(rather than a functional) of material coordinates, G = G(X), and consider the derivative as X → X + u,
where u is a vector not a vector field. Then 〈DX G; u〉 = ∇0 G · u.
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If the linearization is evaluated at the undeformed reference configuration (ϕ = I), then the
deformation gradient becomes the identity, FiJ = δiJ , and the distinction between the reference
and deformed coordinates disappears. Thus, ∇0 =∇ and the case of tensor indices is immaterial.
In this scenario 〈DϕE; u〉 is equal to the small-strain tensor ε familiar from elasticity theory:

εij =
1
2
(ui,j + uj,i ) ⇔ ε =

1
2

[
∇u + (∇u)T

]
. (3.28)

We can also see this by setting ϕ = X + u. The deformation gradient is then

F =
∂ϕ

∂X
= I + ∇0u, (3.29)

and the Lagrangian strain is

E =
1
2
(F T F − I) =

1
2

[
∇0u + (∇0u)T

]
+

1
2

(∇0u)T ∇0u.

The nonlinear part 1
2 (∇0u)T ∇0u is neglected in the small-strain tensor. (Note that for F = I ,

we have ∇0 = ∇.) In contrast to the Lagrangian strain tensor, the small-strain tensor is not
invariant with respect to finite rotations. See Exercises 3.12 and 3.13 for a discussion of this point.

5. Jacobian J :

〈DϕJ ; u〉 = 〈Dϕ det F ; u〉

=
∂ det F

∂FiJ
〈DϕFiJ ; u〉 = (det F )F−1

J i ui,J = J tr((∇0u)F −1 ),

where Eqns. (2.54) and (3.27) were used. If the linearization is about the undeformed reference
configuration (J = 1),

〈DϕJ ; u〉 = tr∇u = tr ε.

This is called the dilatation. It is a small-strain measure for the local change in volume.

3.6 Kinematic rates

In order to study the dynamical behavior of materials, it is necessary to establish the time
rate of change of the kinematic fields introduced so far in this chapter. To do so, we must
first discuss time differentiation in the context of the referential and spatial descriptions.

3.6.1 Material time derivative

The difference between the referential and spatial descriptions of a continuous medium
becomes particularly apparent when considering the time derivative of tensor fields. Con-
sider the field g, which can be written within the referential or spatial descriptions (see
Section 3.3),

g = g(x, t) = ğ(X(x, t), t).
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Here g represents the value of the field variable, while g and ğ represent the functional
dependence of g on specific arguments. There are two possibilities for taking a time
derivative:

∂ğ(X, t)
∂t

∣∣∣∣
X

or
∂g(x, t)

∂t

∣∣∣∣
x

,

where the notation �|X and �|x is used (this one time) to place special emphasis on the
fact that X and x, respectively, are held fixed during the partial differentiation. The first is
called the material time derivative of g, since it corresponds to the rate of change of g while
following a particular material particle X . The second derivative is called the local rate of
change of g. This is the rate of change of g at a fixed spatial position x. The material time
derivative is the appropriate derivative to use whenever considering the time rate of change
of properties tied to the material itself, such as the rate of change of strain at a material
particle. It is denoted by a superposed dot, �̇, or by D�/Dt:

ġ =
Dg

Dt
=

∂ğ(X, t)
∂t

. (3.30)

For example consider the case where g is the motion x = ϕ(X, t). The first and second
material time derivatives of x are the velocity and acceleration of a continuum particle X:

v̆i(X, t) = ẋ =
∂ϕi(X, t)

∂t
, ăi(X, t) = ẍ =

∂2ϕi(X, t)
∂t2

. (3.31)

Although these fields are given as functions over the reference body B0 , they are spatial
vector fields and therefore lower-case symbols are appropriate. Expressed in the spatial
description, these fields are

vi(x, t) ≡ v̆i(X(x, t), t), ai(x, t) ≡ ăi(X(x, t), t). (3.32)

In some cases, it may be necessary to compute the material time derivative within a spatial
description. This can be readily done by using the chain rule,

ġ =
Dg(x, t)

Dt
=

∂g(x, t)
∂t

+
∂g(x, t)

∂xj

∂xj (X, t)
∂t

=
∂g(x, t)

∂t
+

∂g(x, t)
∂xj

vj (x, t), (3.33)

where we have used Eqns. (3.31)1 and (3.32)1 . To clarify how this expression is used in
practice, let us take a specific example. Consider using a velocimeter (an instrument for
measuring the velocity of a fluid) to measure the velocity, at a position x, of a fluid flowing
through a channel. The velocimeter’s measurement v(x, t) provides the velocity at point x

as a function of time. At each instant of time a different particle will be passing through the
instrument. We wish to calculate the acceleration of the particle going through x at time t.
This is not the local rate of change of v,

∂v(x, t)
∂t

,
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which is the rate of change of the reading of the velocimeter at x. To obtain the acceleration
of the particle, we apply the material time derivative in Eqn. (3.33), which gives

ai =
∂vi

∂t
+ lij vj ⇔ a =

∂v

∂t
+ lv, (3.34)

where we have defined l as the spatial gradient of the velocity field,

lij = vi,j ⇔ l = ∇v. (3.35)

This result shows that we are able to compute material time derivatives entirely from
information available in the spatial description! Examples of material time differentiation
in the referential and spatial descriptions are given below.

Example 3.9 (The material time derivative) Consider the motion:

x1 = (1 + t)X1 , x2 = (1 + t)2X2 , x3 = (1 + t2 )X3 .

In the referential description, velocity and acceleration functions can be readily computed:

[v̆] =
[

∂x

∂t

]
=

⎡⎢⎣ X1

2(1 + t)X2

2tX3

⎤⎥⎦ , [ă] =
[

∂v̆

∂t

]
=

⎡⎢⎣ 0
2X2

2X3

⎤⎥⎦ .

Next let us consider the spatial description. What would be the velocity function measured at a point
x in the spatial description? First, we invert the motion to determine which particles pass through x

at time t. This gives

X1 = x1/(1 + t), X2 = x2/(1 + t)2 , X3 = x3/(1 + t2 ).

Next we substitute this into the velocity computed above (as in Eqn. (3.32)) to get

v1 = x1/(1 + t), v2 = 2x2/(1 + t), v3 = 2tx3/(1 + t2 ).

This is what a velocimeter located at x would measure. Now imagine that the velocimeter’s measure-
ment is the only information available17 and we wish to compute the acceleration of a particle passing
through it at time t. This is obtained from the material time derivative given in Eqn. (3.34):

a1 = − x1

(1 + t)2 +
1

(1 + t)
x1

(1 + t)
= 0,

a2 = − 2x2

(1 + t)2 +
2

(1 + t)
2x2

(1 + t)
=

2x2

(1 + t)2 ,

a3 = 2x3
1 + t2 − 2t2

(1 + t2 )2 +
2t

(1 + t2 )
2tx3

(1 + t2 )
=

2x3

1 + t2 .

Substituting in the motion xi (X , t), we find as expected that this is exactly the same as the acceleration
ă computed from the material description.

17 Realistically, in order to ascertain the material accelerations, one would need to use the velocimeter to
somehow estimate the velocity gradient, perhaps by taking velocity measurements at nearby points as well. In
this example, however, we have the benefit of knowing the full mathematical form of the motion.
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We can now turn to a calculation of the material rate of change of various kinematic
measures and relations.

3.6.2 Rate of change of local deformation measures

Recall Eqn. (3.3) for the local deformation of an infinitesimal material neighborhood. The
material time derivative of this relation is

˙dxi = ˙FiJ dXJ = ḞiJ dXJ ,

where the notation is meant to clarify that the dot is applied to the entire term beneath the
overbar. Now,

ḞiJ =
˙(

∂xi

∂XJ

)
=

∂v̆i

∂XJ
=

∂vi

∂xj

∂xj

∂XJ
= lijFjJ ,

thus the rate of change of the deformation gradient is

ḞiJ = lijFjJ ⇔ Ḟ = lF . (3.36)

The rate of change of local deformation follows as

˙dxi = lijFjJ dXJ = lij dxj . (3.37)

We see that in a dynamical spatial setting, the velocity gradient plays a role similar to F .

Rate of deformation and spin tensors Let us consider the material time derivative of the squared
length of a spatial differential vector, ds2 = dxidxi . This is

˙
ds2 = ˙(dxidxi) = 2dxi

˙dxi = 2lij dxidxj ,

where Eqn. (3.37) has been used. The product dxidxj is symmetric and therefore only
the symmetric part of l contributes to the above contraction since the contraction with the
antisymmetric part is zero (see Section 2.5.2). The symmetric part of l is called the rate of
deformation tensor and is denoted by d:

dij ≡ 1
2
(lij + lj i) =

1
2
(vi,j + vj,i). (3.38)

The rate of change of the squared length is then

˙
ds2 = 2dij dxidxj . (3.39)
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The antisymmetric part of l plays an important role in fluid mechanics. It is called the
spin tensor and it is denoted by w:

wij ≡ 1
2
(lij − lj i) =

1
2
(vi,j − vj,i). (3.40)

Rate of change of stretch Recall from Section 3.4 that the stretch α along an infinitesimal
line element is given by α = ds/dS, where ds =

√
dxidxi and dS =

√
dXI dXI . We wish

to compute the rate of change of α. We begin with the material time derivative of ds:

ḋs =
˙√

dxidxi =
dij dxidxj

ds
,

where Eqn. (3.37) was used and the antisymmetric part of l was discarded. Substituting in
dxi = mids, where m is a unit vector pointing along dx, and rearranging we have

1
ds

ḋs = dijmimj . (3.41)

Now, note that the material time derivative of α is α̇ = ḋs/dS. Dividing through by α and
using Eqn. (3.41) we have

˙ln α = dijmimj , (3.42)

where we have also used the identity

˙ln α = α̇/α. (3.43)

This is the logarithmic rate of stretch along direction m. Another useful relation can
be obtained between the rate of change of stretch and the velocity gradient. Start with
dxi = FiJ dXJ and substitute in dxi = mids and dXI = MI dS. Dividing through by dS

this is αmi = FiJ MJ . Taking the material time derivative of this relation we have

α̇mi + αṁi = ḞiJ MJ = lijFjJ MJ = lijFjJ
dXJ

dS
= lij

dxj

dS
= lijαmj .

Dividing through by α we have

α̇

α
mi + ṁi = lijmj . (3.44)

This relation is used next to clarify the physical significance of the eigenvalues and eigen-
vectors of the rate of deformation tensor.

Eigenvalues and eigenvectors of the rate of deformation tensor d We found earlier that the eigen-
values and eigenvectors of C (and E) correspond to the principal stretches and directions
of the material. It is of interest to similarly explore the significance of the eigenvalues
and eigenvectors of d. Consider Eqn. (3.44) for the special case where m = Λd is an
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eigenvector of d,

α̇

α
Λd

i + Λ̇d
i = (dij + wij )Λd

j

= λdΛd
i + wijΛd

j , (3.45)

where we have used dijΛd
j = λdΛd

i . Apply Λd
i to both sides of the equation:

α̇

α
Λd

i Λd
i + Λ̇d

i Λd
i = λdΛd

i Λd
i + wijΛd

i Λd
j . (3.46)

The above relation can be simplified by making use of the normalization condition of the

eigenvectors, Λd
i Λd

i = 1, and its material time derivative, 2Λ̇d
i Λd

i = 0. Also, wijΛd
i Λd

j = 0,
since w is antisymmetric and Λd

i Λd
j is symmetric. Using all of the above, Eqn. (3.46)

simplifies to

λd =
α̇

α
, (3.47)

which we recognize as the logarithmic rates of stretch from Eqn. (3.43). We have shown
that the eigenvalues of d are the logarithmic rates of stretch for the directions that undergo
pure instantaneous stretch. We can continue this analysis to gain insight into the physical
significance of the spin tensor. Substituting Eqn. (3.47) into Eqn. (3.45) and simplifying
gives

Λ̇d
i = wijΛd

j . (3.48)

The spin tensor is antisymmetric and is therefore associated with an axial vector ψ (see
Eqn. (2.71)),

ψk = −1
2
εijkwij = −1

2
εijk vi,j , (3.49)

where we have used Eqn. (3.40). In direct notation this is ψ = 1
2 curl v. The inverse of

Eqn. (3.49) is wij = −εijkψk . Substituting this into Eqn. (3.48) gives

˙
Λd = ψ × Λd. (3.50)

Thus, ψ (and w) correspond to the instantaneous rotation experienced by the eigenvectors
of d. Motions for which ψ = 0 are called irrotational. This is a particularly important
concept in fluid mechanics. In an inviscid (nonviscous) fluid, flow remains irrotational if it
starts out that way. Viscous fluid flow can only be irrotational if it is uniform and there are
no boundaries.

Rate of change of strain The material time derivative of the Lagrangian strain tensor
(Eqn. (3.23)) is

Ė =
1
2
(Ḟ T F + F T Ḟ ).
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Substituting in Eqn. (3.36) and using Eqn. (3.38), we have

ĖIJ = FiI dijFjJ ⇔ Ė = F T d F . (3.51)

The material time derivative of the spatial Euler–Almansi strain tensor (Eqn. (3.25)) is a
bit more tricky because it depends on the inverse of the deformation gradient,

ėij = −1
2

(
˙

F−1
I i F−1

I j + F−1
I i

˙
F−1

I j

)
. (3.52)

We need to find
˙

F−1 . Start with the identity FiJ F−1
J j = δij and take its material time

derivative. This gives

ḞiJ F−1
J j + FiJ

˙
F−1

J j = 0.

Apply F−1
I i to the above and use Eqn. (3.36) to obtain

˙
F−1

I j = −F−1
I i lij . (3.53)

Substitute Eqn. (3.53) into Eqn. (3.52) and use Eqn. (3.15) to obtain

ėij =
1
2
(lkiB

−1
kj + B−1

ik lkj ) ⇔ ė =
1
2
(lT B−1 + B−1l). (3.54)

An alternative relation is obtained by noting that B−1 = I − 2e. Substituting this into
Eqn. (3.54) gives

ė = d − lT e − el. (3.55)

Rate of change of volume The Jacobian provides a local measure for volume change. The
material time derivative of the Jacobian is

J̇ = ˙det F =
∂(det F )

∂F
: Ḟ = JF−T : Ḟ , (3.56)

where we have used Eqn. (2.54) and the definition J ≡ det F . Substituting in Eqn. (3.36)
and using the identity A : (BC) = (BT A) : C, this simplifies to

J̇ = JI : l.

This relation leads to two alternative forms. In one case, we note that I : l = I : ∇v =
div v. In the other case, we note that I : l = tr l = tr(d + w) = tr d (since trw = 0
because w is antisymmetric). Thus,

J̇ = Jdiv v = J tr l = J tr d. (3.57)



100 Kinematics of deformation
�

A motion that preserves volume, i.e. J̇ = 0, is called an isochoric motion. Thus the
conditions for an isochoric motion are

div v = vk,k = dkk = 0. (3.58)

These are key equations for incompressible fluid flow. For incompressible solids, the fol-
lowing requirement obtained from Eqn. (3.56) is more convenient:

F−T : Ḟ = 0. (3.59)

Rate of change of oriented area The material time derivative of an element of oriented area
(Eqn. (3.9)) is

˙dA =
[
J̇F−T + J

˙
F−T

]
dA0 .

Substituting in Eqns. (3.57) and (3.53) and using Eqn. (3.9) gives

˙dAi = [(vk,k )δij − lj,i ] dAj ⇔ ˙dA =
[
(div v)I − lT

]
dA. (3.60)

3.6.3 Reynolds transport theorem

So far we have discussed the time rate of change of continuum fields. Now, we consider
the rate of change of integral quantities. Consider an integral of the field g = g(x, t) over
a subbody E of the body B:

I =
∫

E

g(x, t) dV,

where dV = dx1dx2dx3 . The material time derivative of I is

İ =
D

Dt

∫
E

g(x, t) dV =
D

Dt

∫
E0

ğ(X, t)J dV0 ,

where we have changed the integration variables from x to X , dV0 = dX1dX2dX3 and
E0 is the domain occupied by E in the reference configuration. Since E0 is constant in
time the differentiation can be brought inside the integral:

İ =
∫

E0

�
ğJ dV0 =

∫
E0

[ ˙̆gJ + ğJ̇ ] dV0 =
∫

E0

[ ˙̆g + ğ(div v̆)]J dV0 ,

where we have used Eqn. (3.57). We now change variables back to the spatial description:

İ =
D

Dt

∫
E

g(x, t) dV =
∫

E

[ġ + g(div v)] dV. (3.61)

This equation is called Reynolds transport theorem. This relation can be recast in a differ-
ent form that sheds more light on its physical significance. Substituting Eqn. (3.33) into
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Eqn. (3.61) and simplifying gives

İ =
∫

E

[
∂g

∂t
+ div (gv)

]
dV.

Next, we apply the divergence theorem (Eqn. (2.108)) to the second term to obtain

İ =
∫

E

∂g

∂t
dV +

∫
∂E

gv · n dA. (3.62)

This alternative form for Reynolds transport theorem states that the rate of change of I is
equal to the production of g inside E plus the net transport of g across its boundary ∂E.

A useful corollary to Reynolds transport theorem for extensive properties, i.e. properties
that are proportional to mass, is given in Section 4.1.

Exercises

3.1 [SECTION 3.4] The most general two-dimensional homogeneous finite strain distribution is
defined by giving the spatial coordinates as linear homogeneous functions:

x1 = X1 + aX1 + bX2 , x2 = X2 + cX1 + dX2 .

1. Express the components of the right Cauchy–Green deformation tensor C and Lagrangian
strain E in terms of the given constants a, b, c, d. Display your answers in two matrices.

2. Calculate ds2 and ds2 − dS2 for dX with components (dL, dL).
3.2 [SECTION 3.4] The deformation of a plate in circular bending is given by

x1 = (X2 + R) sin
X1

R
, x2 = X2 − (X2 + R)

[
1 − cos

X1

R

]
, x3 = X3 ,

where L is the length of the plate and R is the radius of curvature.
1. Given a rectangular plate in the reference configuration with length L in the 1-direction

and height h in 2-direction, draw the shape of the plate in the deformed configuration for
some radius of curvature R.

2. Determine the deformation gradient F (X) at any point in the plate.
3. Determine the Jacobian of the deformation J(X) at any point in the plate.
4. Use the result for the Jacobian to show that the plate experiences expansion above the

centerline and contraction below it.
5. Determine the element of oriented area at the end of the plate in the deformed configuration.

In what direction is the end pointing and what is the change in its cross-sectional area?
6. Use the result for the oriented area to show that planes in the reference configuration remain

plane in the deformed configuration.
3.3 [SECTION 3.4] In a two-dimensional finite strain experiment, a strain gauge gave stretch ratios

α of 0.8 and 0.6 in the X1- and X2-directions, respectively, and 0.5 in the direction bisecting
the angle between X1 and X2 .
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1. Show in general that the stretch of an element oriented along the unit vector N in the
reference configuration is

α(N ) =
√

N · (CN ).

2. Determine the components of C and E at the position of the strain gauge.
3. Determine the new angle between elements initially parallel to the axes.
4. Determine the Jacobian of the deformation.

3.4 [SECTION 3.4] Prove that an arbitrary simple shear described by F = I + γs⊗N is volume-
preserving. Here γ is the shear parameter, s is the spatial shear direction, N is the material
shear plane normal (s · N = 0).

3.5 [SECTION 3.4] The identity RU (RT R) = (RURT )R was used to prove that the rotation
R appearing in the right polar decomposition is the same as that appearing in the left polar
decomposition. Verify this identity using indicial notation. (Compare with Exercise 3.6.)

3.6 [SECTION 3.4] Use indicial notation to show that the expression RU (RRT ) is nonsensical.
What is RU (RRT ) equal to? (This exercise demonstrates that the congruence relation is
unique.)

3.7 [SECTION 3.4] Consider the deformation defined by

x1 = X3 − X1 − 2X2 , x2 =
√

2(X1 − 2X2 ), x3 = X3 + X1 + 2X2 .

1. Calculate the deformation gradient, F .
2. Determine the polar decomposition of F = RU .
3. Consider a line element dX lying along the X1 axis with length dS. Under this deformation

the line element is stretched and rotated into the line element dx.
a. Calculate the length, ds = ‖dx‖.

b. Calculate the vector, dy = UdX , and show ‖dy‖ = ds. This shows that all the
stretching is represented by U .

c. Explain why dy is parallel to dX . Is this true in general?

d. Calculate the vector dz = RdX and show that ‖dz‖ = dS, i.e. R is a pure rotation
with no change in length.

3.8 [SECTION 3.4] The following mapping is an example of a “pure stretch” deformation:

x1 = (1 + p)X1 + qX2 , x2 = qX1 + (1 + p)X2 , x3 = X3 ,

where p > 0 and q > 0 are constants.
1. The above deformation mapping is applied homogeneously to a body which in the refer-

ence configuration is a cube with sides a0 . Draw the shape of the cube in the deformed
configuration. Provide the dimensions necessary to define the deformed shape.

2. Compute the components of the deformation gradient F and the Jacobian J of the defor-
mation. What conditions do the parameters p and q need to satisfy in order for the following
conditions to be met (each separately):
a. The deformation is invertible. Give an example of a situation where this condition is

not satisfied. Draw the result in the deformed configuration and describe the problem
that occurs.

b. The deformation is incompressible.
3. Compute the components of the right Cauchy–Green deformation tensor C .
4. Compute the components of the right stretch tensor U . Hint: First compute the eigenval-

ues and eigenvectors of C and then use the spectral decomposition of U to obtain the
components of U .
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5. Compute the components of the rotation part R of the polar decomposition of F . Given
this result, why do you think the deformation is referred to as “pure stretch”? Hint: If all
is well, this part should require no additional work.

3.9 [SECTION 3.4] The deformation gradient of a homogeneous deformation is given by

[F ] =

⎡⎢⎣
√

3 1 0
0 2 0
0 0 1

⎤⎥⎦ .

1. Write out the deformation mapping corresponding to this deformation gradient.
2. Compute the components of the right Cauchy–Green deformation tensor C . Display your

results in matrix form.
3. Compute the principal values (eigenvalues) and principal directions (eigenvectors) of C .
4. Determine the polar decomposition, F = RU . Write out in matrix form the components

of R and U relative to the Cartesian coordinate system.
5. To interpret F = RU , we write x = F X = Ry, where y = UX . Now consider a unit

circle in the reference configuration. To what does U map this circle in the intermediate
configuration y? Plot your result pointing out important directions. Next, Ry rotates
the intermediate configuration to the deformed configuration x. By what angle is the
intermediate configuration rotated? Plot the change from the intermediate to the deformed
configuration pointing out the angle of rotation.

6. Apply the congruence relation to obtain the left stretch tensor V . Verify that F = RU =
V R.

3.10 [SECTION 3.5] Compute the small-strain tensors ε corresponding to the Lagrangian strains for
uniform stretch and simple shear in Example 3.6.

3.11 [SECTION 3.5] Prove that the material Lagrangian strain tensor and the spatial Euler–Almansi
strain tensor for the uniform stretch and simple shear cases given in Example 3.6 and Exam-
ple 3.7 are the same to first order when |αi − 1| � 1 (i = 1, 2, 3) and γ � 1.

3.12 [SECTION 3.5] Consider a pure two-dimensional rotation by angle θ about the 3-axis. The
deformation gradient for this case is

[F ] =

⎡⎢⎣cos θ −sin θ 0
sin θ cos θ 0

0 0 1

⎤⎥⎦ .

1. Show that the Lagrangian strain tensor E is zero for this case.
2. Compute the small-strain tensor and show that it is not zero for θ > 0.
3. As an example, consider the case where θ = 30◦. Compute the small-strain tensor for this

case. Discuss the applicability of the small-strain approximation.
3.13 [SECTION 3.5] Consider a pure rotation deformation, ϕ(X) = RX with deformation gradient

F = R. Superposed on this is a small increment of displacement u: ϕ → ϕ + u. What is the
condition on u to ensure that the perturbation is also a rotation? What does this imply for the
small-strain tensor ε?

3.14 [SECTION 3.5] Consider the three-dimensional deformation mapping defined by

x1 = aX1 , x2 = bX2 − cX3 , x3 = cX2 + bX3 ,

where a, b and c are real-valued constants. The deformation is applied to a solid which in the
reference configuration is a cube of edge length 1 and aligned with the coordinate directions.
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1. Make a schematic drawing of the cube in the reference and deformed configurations,
shown as a projection in the 2–3 plane. Calculate the positions of the corners of the cube
and indicate the dimensions on the diagram.

2. Compute the deformation gradient F . Under what conditions is the deformation invertible?
3. Compute the Lagrangian strain tensor E. What happens to the Lagrangian strain tensor

when a = 1, b = cos θ, c = sin θ? What does this correspond to physically?
4. Compute the small-strain tensor ε relative to the reference configuration. What happens to

the small-strain tensor when a = 1, b = 1 and c 
= 0? Explain your result.
3.15 [SECTION 3.6] Consider the pure stretch deformation given in Exercise 3.8. Assume that

p = p(t) and q = q(t) are functions of time, so that

x1 = (1 + p(t))X1 + q(t)X2 , x2 = q(t)X1 + (1 + p(t))X2 , x3 = X3 .

1. Compute the time-dependent deformation gradient F (t).
2. Compute the components of the rate of change of the deformation gradient Ḟ .
3. Compute the inverse deformation mapping, X = ϕ−1 (x, t).
4. Verify that ḞiJ = lij FjJ . Hint: You will need to compute l for this deformation and show

that the result obtained from lij FjJ is equal to the result obtained above.
3.16 [SECTION 3.6] Consider the motion ϕ of a body given by

x1 =
X1

2 + X2
2

2B(1 + t)
, x2 = C tan−1 X2

X1
, x3 =

B

C
(1 + t)X3 ,

for times t ≥ 0 and where B and C are constants with dimensions of velocity and length,
respectively.
1. What constraints does the requirement of local invertibility place on constants B and C?
2. Are the constraints you obtained above sufficient to ensure that the motion ϕ is a 1–1

mapping? Explain.
For the remainder of the problem assume that the reference domain is limited to X1 ∈ [0, W ],
X2 ∈ [0, H ], X3 ∈ [0, D], where W > 0, H > 0 and D > 0.
3. Let us visualize the deformation for the special case B = C = D = H = L = 1.

Consider a regular square grid with 0.1 spacing in the reference domain. Use a computer
to plot the shape of the deformed grid in the deformed configuration in the plane x3 = 0
at times t = 0, 1, 2.

4. Find the inverse motion, X = ϕ−1 (x, t).
5. Find the velocity field in both the referential and spatial descriptions.
6. Consider a scalar invariant field, g, given in the referential description by g = G(X , t) =

AX1X2 , where A is a constant. Find the spatial description, g = g(x, t) = Ğ(ϕ(X , t), t).
7. Find the material time derivative of g using both its Lagrangian and Eulerian representations.

3.17 [SECTION 3.6] Equation (3.44) provides a relation between the rate of change of stretch α,
the velocity gradient l and a unit vector m defining a direction in the deformed configuration.
Using this relation, show that the following identities are satisfied:
1. α̈ + αm̈imi = αai,j mimj ,

2. α̈/α = ṁi ṁi + ai,j mimj ,

where ai = v̇i and ai,j = ∂ai/∂xj are the components of the acceleration gradient.
Hint: Note that ˙vi,j 
= ai,j . You will need to find the correct expression for ˙vi,j as part
of your derivation.

3.18 [SECTION 3.6] Given the velocity field

v1 = exp(x3 − ct) cos ωt, v2 = exp(x3 − ct) sin ωt, v3 = c = const :
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1. Show that the speed (magnitude of the velocity) of every particle is constant.
2. Calculate the acceleration components ai . (Note that the previous part implies that

aivi = 0.)
3. Find the logarithmic rate of stretching, α̇/α, for a line element that is in the direction of

(1/
√

2, 0, 1/
√

2) in the deformed configuration at x = 0.
4. Integrate the velocity equations to find the motion x = ϕ(X , t) using the initial conditions

that at t = 0, x = X . Hint: Integrate the v3 equation first.
3.19 [SECTION 3.6] A spherical cavity of radius A at time t = 0 in an infinite body is centered at

the origin. An explosion inside the cavity at t = 0 produces the motion

x =
f (R, t)

R
X , (∗)

where R = ‖X‖ =
√

XI XI is the magnitude of the position vector in the reference config-
uration. The cavity wall has a radial motion given in Eqn. (∗) such that at time t the cavity is
spherical with radius a(t).
1. Find the deformation gradient, F , and the Jacobian of the transformation, J .
2. Find the velocity and acceleration fields.
3. Show that if the motion is restricted to be isochoric, then f (R, t) = (R3 + a3 − A3 )1/3 .



4 Mechanical conservation and balance laws

In the previous chapter, we derived kinematic fields to describe the possible deformed
configurations of a continuous medium. These fields on their own cannot predict the
configuration a body will adopt as a result of a given applied loading. To do so requires a
generalization of the laws of mechanics (originally developed for collections of particles)
to a continuous medium, together with an application of the laws of thermodynamics. The
result is a set of universal conservation and balance laws that apply to all bodies:

1. conservation of mass;
2. balance of linear and angular momentum;1

3. thermal equilibrium (zeroth law of thermodynamics);
4. conservation of energy (first law of thermodynamics);
5. second law of thermodynamics.

These equations introduce four new important quantities to continuum mechanics. The con-
cept of stress makes its appearance in the derivation of the momentum balance equations.
Temperature, internal energy and entropy star in the zeroth, first and second laws, respec-
tively. In this chapter we focus on the mechanical conservation laws (mass and momentum)
leaving the thermodynamic laws to the next chapter.

4.1 Conservation of mass

A basic principle of classical mechanics is that mass is a fixed quantity that cannot be
formed or destroyed, but only deformed by applied loads. Thus, the total amount of mass
in a closed system is conserved. For a system of particles this is a trivial statement that
requires no further clarification. However, for a continuous medium it must be recast in
terms of the mass density ρ, which is a measure of the distribution of mass in space.

1 The balance of angular momentum (or moment of momentum) is taken to be a basic principle in continuum
mechanics. This is at odds with some physics textbooks that view the balance of angular momentum as a
property of systems of particles in which the internal forces are central. Truesdell discussed this in his article
“Whence the Law of Moment and Momentum?” in [Tru68, p. 239]. He stated: “Few if any specialists in
mechanics think of their subject in this way. By them, classical mechanics is based on three fundamental laws,
asserting the conservation or balance of force, torque, and work, or in other terms, of linear momentum, moment
of momentum, and energy.” Interestingly, it is possible to show that the two mechanical balance laws can be
derived from the balance of energy subject to certain invariance requirements. This was shown separately by
Noll [Nol63] and Green and Rivlin [GR64]. The equivalence of the two approaches is discussed by Beatty in
[Bea67].
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1

2 B0

B

E0 E

Fig. 4.1 A reference body B0 and arbitrary subbody E0 are mapped to B and E in the deformed configuration.

A continuum body occupies domains B0 and B in the reference and deformed configu-
rations, respectively (see Fig. 4.1). In the absence of diffusion, the principle of conservation
of mass requires that the mass of any subbody E0 remains unchanged by the deformation:

m0(E0) = m(E) ∀E0 ⊂ B0 .

Here m0(·) and m(·) are the mass of a domain in the reference and deformed configurations,
respectively. Let ρ0 ≡ dm0/dV0 be the reference mass density, so that

m0(E0) =
∫

E0

ρ0 dV0 .

Note that ρ0 = ρ0(X) is a material scalar invariant. Similarly ρ ≡ dm/dV is the mass
density in the deformed configuration, so that

m(E) =
∫

E

ρ dV,

where ρ = ρ(x) is a spatial scalar invariant. With the above definitions, conservation of
mass takes the following form:∫

E0

ρ0 dV0 =
∫

E

ρ dV, ∀E0 ⊂ B0 .

Changing variables on the right from dV to dV0 (dV = JdV0) and rearranging gives∫
E0

(Jρ̆ − ρ0) dV0 = 0 ∀E0 ⊂ B0 ,

where ρ̆(X) = ρ(ϕ(X)) is the material description of the mass density. When the de-
scription (material or spatial) is clear from the context we will sometimes suppress the �̆
notation. Thus, in the above equation ρ̆ becomes ρ. In order for this equation to be satisfied
for all E0 it must be satisfied pointwise, therefore

Jρ = ρ0 , (4.1)
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which is referred to as the material (referential) form2 of the conservation of mass
field equation. This relation makes physical sense. Since the total mass is conserved,
the density of the material must change in correspondence with the local changes in
volume.

It is also possible to obtain an expression for conservation of mass in the spatial descrip-
tion. If mass is conserved from one instant to the next, then

ṁ(E) =
D

Dt

∫
E

ρ dV = 0 ∀E ⊂ B.

Applying the Reynolds transport theorem (Eqn. (3.61)) gives

∫
E

[ρ̇ + ρ(div v)] dV = 0 ∀E ⊂ B.

To be true for any subbody this must be satisfied pointwise:

ρ̇ + ρvk,k = 0 ⇔ ρ̇ + ρ(div v) = 0. (4.2)

This is the spatial form of conservation of mass in terms of the material time derivative of
the density field. This relation can also be obtained directly from the material description
in Eqn. (4.1), by taking its material time derivative and using Eqn. (3.57).

An equivalent expression for Eqn. (4.2) is obtained by substituting in Eqn. (3.33) for the
material time derivative:

∂ρ

∂t
+ (ρvk ),k = 0 ⇔ ∂ρ

∂t
+ div (ρv) = 0. (4.3)

This is the common form of the continuity equation. However, Eqn. (4.2) is also referred
to by that name.

The continuity equation can be combined with the expression for material acceleration
to form a new relation, which is used in Section 4.2. Starting with the material acceleration
expression in Eqn. (3.34),

ρai = ρ

(
∂vi

∂t
+

∂vi

∂xj
vj

)
,

2 The term material form indicates that the corresponding partial differential equation is defined with respect to
material coordinates. For example, here we have J (X)ρ(X) = ρ0 (X) for X ∈ B0 .
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we add to this the continuity equation (Eqn. (4.3), which is identically zero) multiplied by
the velocity vector and then expand and recombine terms to obtain

ρai = ρ

(
∂vi

∂t
+

∂vi

∂xj
vj

)
+ vi

(
∂ρ

∂t
+ (ρvj ),j

)
= ρ

(
∂vi

∂t
+

∂vi

∂xj
vj

)
+ vi

(
∂ρ

∂t
+

∂ρ

∂xj
vj + ρ

∂vj

∂xj

)
=
(

∂ρ

∂t
vi + ρ

∂vi

∂t

)
+
(

∂ρ

∂xj
vivj + ρ

∂vi

∂xj
vj + ρvi

∂vj

∂xj

)
=

∂

∂t
(ρvi) +

∂

∂xj
(ρvivj ).

Thus as long as the continuity equation holds the following identity is satisfied:

ρai =
∂

∂t
(ρvi) + (ρvivj ),j ⇔ ρa =

∂

∂t
(ρv) + div (ρv ⊗ v). (4.4)

This relation plays an important role in the definition of the microscopic stress tensor in
Section 8.2 of [TM11].

4.1.1 Reynolds transport theorem for extensive properties

The conservation of mass can be used to obtain a useful corollary to the Reynolds transport
theorem in Eqn. (3.61), which is reproduced here for convenience:

D

Dt

∫
E

g(x, t) dV =
∫

E

[ġ + g(div v)] dV,

for the special case where g is an extensive property, i.e. a property that is proportional to
mass.3 This means that g = ρψ, where ψ is a density field (g per unit mass). Substituting
this into Eqn. (3.61) gives

D

Dt

∫
E

ρψ dV =
∫

E

[
˙ρψ + ρψ(div v)

]
dV

=
∫

E

[
ρψ̇ + ρ̇ψ + ρψ(div v)

]
dV

=
∫

E

[
ρψ̇ + ψ {ρ̇ + ρ(div v)}

]
dV.

The expression in the curly brackets is zero due to conservation of mass (Eqn. (4.2)) and
therefore

D

Dt

∫
E

ρψ dV =
∫

E

ρψ̇ dV. (4.5)

This is the Reynolds transport theorem for extensive properties.

3 See Section 5.1.3 for more on extensive properties.
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4.2 Balance of linear momentum

4.2.1 Newton’s second law for a system of particles

Anyone who has taken an undergraduate course in physics is familiar with the dynamics of
runaway sand carts with the sand streaming off as the cart speeds away, or rockets whose
solid core propellant burns away during the flight of the rocket. As explained in Section 2.1,
such problems are described in classical mechanics by Newton’s second law, also called the
balance of linear momentum:

D

Dt
L = F ext , (4.6)

where L is the linear momentum of the system and F ext is the total external force acting
on the system. Note the use of the material time derivative here. For a single particle with
mass m,

L = mṙ, F ext = f ,

where ṙ is the velocity of the particle and f is the force acting on it. If m is constant, then
Eqn. (4.6) reduces to the more familiar form of Newton’s second law

mr̈ = f .

For a system of N particles with positions rα and velocities ṙα (α = 1, 2, . . . , N ),
Newton’s second law holds individually for each particle,

d

dt
(mα ṙα ) = fα ,

where fα is the force on particle α and mα is its mass. It also holds for the entire system
of particles with

L =
N∑

α=1

mα ṙα , F ext =
N∑

α=1

fα , (4.7)

together with Eqn. (4.6). Examples where this formulation applies are celestial mechanics
and a system of interacting atoms. The latter case is considered extensively in [TM11]. In
particular, Section 4.3 of [TM11] describes the application of the Newtonian formulation
to a system of particles and the more general Lagrangian and Hamiltonian formulations
that include it.

The next step, which requires the extension of Newton’s laws of motion from a system
of particles to the differential equations for a continuous medium, involved the work of
many researchers over a 100 year period following the publication of Newton’s Principia in
1687 and culminating in Lagrange’s masterpiece Méchanique Analitique published in 1788
[Tru68, Chapter II]. The main figures included the Bernoullis (John, James and Daniel),
Leibniz, Euler, d’Alembert, Coulomb and Lagrange. The baton was then passed to Cauchy
who developed the concept of stress in its current form. For a discussion of the history of
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B

∂B

dm = ρdV

ẋ

b

dA

n

df surf = t̄dA

Fig. 4.2 A continuous body B with surface ∂B is divided into an infinite number of infinitesimal volume elements with mass
dm and velocity ẋ. Each volume element experiences a body force b per unit mass. In addition surface elements dA

on ∂B with normal n experience forces df surf as a result of the interaction of B with its surroundings.

continuum mechanics see, for example, [SL09] and references therein. The theory resulting
from these efforts is described in the next section.

4.2.2 Balance of linear momentum for a continuum system

Consider a continuous distribution of matter divided into infinitesimal volume elements as
shown schematically in Fig. 4.2. The linear momentum of a single volume element is

dL = ẋ dm,

where dm is the mass of the element. Integrating this over the body gives the total linear
momentum of B:

L(B) =
∫

B

dL =
∫

B

ẋ dm =
∫

B

ẋρ dV.

The balance of linear momentum follows from Eqn. (4.6) as

D

Dt

∫
B

ẋρ dV = F ext(B), (4.8)

where F ext(B) is the total external force acting on B. As shown in Fig. 4.2, the forces on
a continuous medium can be divided into two kinds:4

1. body forces – forces that act at a distance, such as gravity and electromagnetic fields;
2. surface forces – short-range interaction forces across ∂B resulting from the interaction

of B with its surroundings.

4 In reality, surface forces are also forces at a distance resulting from the interaction of atoms from the bodies
coming into “contact.” However, since the range of interactions is vastly smaller than typical macroscopic length
scales, it is more convenient to treat these separately as surface forces rather than as short-range body forces.
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The contributions of these two kinds of forces to the total linear momentum are treated
separately. Body forces are given in terms of a density field, b(x), of body force per unit
mass. The total body force on B is given by∫

B

b dm =
∫

B

bρ dV. (4.9)

For example, for gravity acting in the negative vertical direction, the body force density
is b = −ge2 , where g is the (constant) gravitational acceleration. The gravitational body
force follows as ∫

B

−ge2 dm = −ge2

∫
B

dm = −m(B)ge2 ,

where m(B) is the total mass of B.
Surface forces (also called contact forces) are defined in terms of a surface density field

of force per unit area called the traction field. Consider an element of area in the deformed
configuration ΔA on the surface of a deformed body. The resultant of the external interaction
forces across this surface is5 Δf surf . The limit of this force per unit spatial area is defined
as the external traction or stress vector t̄ (see Fig. 4.2):

t̄ ≡ lim
ΔA→0

Δf surf

ΔA
=

df surf

dA
. (4.10)

It is a fundamental assumption of continuum mechanics that this limit exists, is finite and
is independent of how the surface area is brought to zero. The total surface force on B is∫

∂B

df surf =
∫

∂B

t̄ dA,

and consequently the total force on the body B can now be written as a sum of the body
force and surface force contributions:

F ext(B) =
∫

B

ρb dV +
∫

∂B

t̄ dA. (4.11)

Substituting this into Eqn. (4.8) gives

D

Dt

∫
B

ρẋ dV =
∫

B

ρb dV +
∫

∂B

t̄ dA.

5 From a microscopic perspective, the force Δfsurf is taken to be the force resultant of all atomic interactions
across ΔA. Notice that a term Δmsurf accounting for the moment resultant of this microscopic distribution
has not been included. This is correct as long as electrical and magnetic effects are neglected (we see this
in Section 8.2 of [TM11] where we derive the microscopic stress tensor for a system of atoms interacting
classically). If Δmsurf is included in the formulation it leads to the presence of couple stresses, i.e. a field of
distributed moments per unit area across surfaces. Theories that include this effect are called multipolar. Couple
stresses can be important for magnetic materials in a magnetic field and polarized materials in an electric field.
See, for example, [Jau67] or [Mal69] for more information on multipolar theories.
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Applying the Reynolds transport theorem (Eqn. (4.5)) gives the spatial form of the global
balance of linear momentum for B:

∫
B

ρẍ dV =
∫

B

ρb dV +
∫

∂B

t̄ dA. (4.12)

4.2.3 Cauchy’s stress principle

In order to obtain a local expression for the balance of linear momentum it is first necessary
to obtain an expression like that in Eqn. (4.12) for an arbitrary internal subbody E. This
is not a problem for the body force term, but the external traction t̄ is defined explicitly
in terms of the external forces acting on B across its outer surfaces. This dilemma was
addressed by Cauchy in 1822 through his famous stress principle that lies at the heart
of continuum mechanics. Cauchy’s realization was that there is no inherent difference
between external forces acting on the physical surfaces of a body and internal forces acting
across virtual surfaces within the body. In both cases these can be described in terms of
traction distributions. This makes sense since in the end external tractions characterize the
interaction of a body with its surroundings (other material bodies) just like internal tractions
characterize the interactions of two parts of a material body across an internal surface. A
concise definition for Cauchy’s stress principle is

Cauchy’s stress principle Material interactions across an internal surface in a body can
be described as a distribution of tractions in the same way that the effect of external
forces on physical surfaces of the body are described.

This may appear to be a very simple, almost trivial, observation. However, it cleared up the
confusion resulting from nearly 100 years of failed and partly failed attempts to understand
internal forces that preceded Cauchy. Cauchy’s principle paved the way for the continuum
theory of solids and fluids.

To proceed, we consider a small pillbox-shaped6 body P inside B, as shown in Fig. 4.3,
and write the balance of linear momentum for it:∫

P

ρẍ dV =
∫

P

ρb dV +
∫

∂P

t dA.

Note the absence of the bar over the traction; t is now the internal traction evaluated on the
surfaces of P regarded as a subbody of B. Rearranging this expression and dividing the
boundaries of P into the top and bottom faces and cylindrical circumference (as shown in
Fig. 4.3), we have∫

P

ρ(ẍ − b) dV =
∫

∂P t o p

t dA +
∫

∂Pb o t

t dA +
∫

∂Pc y l

t dA.

6 Given that much of this book was written in Minnesota and Canada, perhaps a “hockey-puck” shaped body
would be a more appropriate choice of phrasing.
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B

∂B

∂Pcyl

∂Ptop

∂Pbot

h

n

−n

P

Fig. 4.3 A pillbox-shaped body P inside of a larger body B. The surfaces bounding the pillbox (∂P = ∂Pcyl ∪ ∂Pbot ∪
∂Ptop ), the normals to the top and bottom surfaces (n and−n) and its height h are indicated.

Next, take the limit as h → 0. The volume integral on the left-hand side and the surface
integral on ∂Pcyl go to zero, while the two integrals on the top and bottom faces of the
pillbox remain finite, so ∫

∂P t o p

t dA +
∫

∂Pb o t

t dA = 0.

Applying the mean-value theorem,7 this is t∗|∂P t o p
ΔA + t∗|∂Pb o t

ΔA = 0, where ΔA

is the area of the top (or bottom) of the pillbox, t∗ = t(x∗), and x∗ is a point on ∂Ptop

or ∂Pbot as appropriate. In the limit that the area of the pillbox faces is taken to zero this
becomes

t(x)|∂P t o p
= − t(x)|∂Pb o t

. (4.13)

To continue with the derivation, let us consider t more carefully. The internal tractions
are clearly a function of position and possibly time. However, since tractions are defined
in terms of surfaces, they must also be related to the particulars of the surface. The only
thing characterizing the surface of the pillbox is its normal8 n. Consequently, in general,
we expect that t = t(x,n). This means that there are an infinite number of tractions (stress
vectors) at each point and it is the totality of these, called the stress state, that characterizes
the internal forces at x. We have seen this idea of a vector quantity as a function of a vector
before in Section 2.3. If t is a linear function of n, then this suggests the existence of a
second-order tensor. But we have still not shown that this is the case here.

Returning to the pillbox, we saw in Eqn. (4.13) that the traction on the top of the pillbox
is equal to the negative of that on the bottom as the size of the pillbox is taken to zero. In

7 The mean-value theorem for integration states that the definite integral of a continuous function over a specified
domain is equal to the value of the function at some specific point within the domain multiplied by the “size”
of the domain. For a surface integral, I =

∫
S f (x) dA, this means that I = f (x∗)A, where x∗ ∈ S and A

is the total area of S . Similarly for a volume integral, I =
∫

Ω f (x) dV , this means that I = f (x∗)V , where
x∗ ∈ Ω and V is the total volume of Ω.

8 One may wonder whether a more general theory can be constructed where the traction depends on the surface
gradient (i.e. the curvature of the surface) in addition to the normal. However, it can be shown under very
general conditions that the traction can only depend on the surface normal [FV89].
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terms of coordinates and normals this statement is

t(x,n) = −t(x,−n). (4.14)

The pillbox shrinks to a single point x, but the normals to the top and bottom surfaces
remain opposite (Fig. 4.3). We have shown that the tractions on opposite sides of a surface
are equal and opposite. This is referred to as Cauchy’s lemma.

Another approach that leads to the same conclusion is Newton’s statement of action
and reaction [New62]: “To every action there is always opposed an equal reaction: as, the
mutual actions of two bodies on each other are always equal and directed to contrary parts.”
Consider two bodies B(1) and B(2) that are in contact across some surface. The force per
unit area that B(1) exerts on B(2) is t(12) and the force per unit area that B(2) exerts on B(1)

is t(21) . According to action–reaction, t(21) = −t(12) . This is referred to as Newton’s third
law, but since it is equivalent to Cauchy’s lemma, it can be considered to be a consequence
of Cauchy’s stress principle.

The last use we have for the pillbox is to obtain an expression for traction boundary
conditions. Consider the special case where one side of the pillbox (say the top) is on a
physical surface of the body, then

t̄(x) = −t(x,−n) ≡ t(x,n).

This equation relates the external applied tractions to the internal stress state. In fact, it
shows that the external tractions are boundary conditions for the internal tractions:

t(x,n) = t̄(x) on ∂B. (4.15)

4.2.4 Cauchy stress tensor

We have introduced the idea of a stress state, i.e. the fact that the internal forces at a point
are characterized by an infinite set of tractions t(n) (the explicit dependence on x has been
dropped for notational simplicity) for the infinite set of planes passing through the point.
We have also shown that t(n) = −t(−n), but this just tells us that t is an odd function of
n. To find the functional relation between t and n, we follow Cauchy and consider a small
tetrahedron T of height h with one corner at x, three faces ∂Ti with normals equal to −ei

and the fourth face ∂Tn with normal n, such that ni > 0 (Fig. 4.4). We denote the areas of
the four faces as ΔA1 , ΔA2 , ΔA3 and ΔAn . By simple geometric projection, we have

ΔAi = ΔAn(n · ei) = ΔAnni. (4.16)

The global balance of linear momentum for T is∫
T

ρ(ẍ − b) dV =
∫

∂T

t dA

=
∫

∂T1

t dA +
∫

∂T2

t dA +
∫

∂T3

t dA +
∫

∂Tn

t dA.

Applying the mean-value theorem (see footnote 7 on page 114), we have

ρ∗(ẍ∗ − b∗)
(

1
3
hΔAn

)
= t(−e1)∗ΔA1 + t(−e2)∗ΔA2 + t(−e3)∗ΔA3 + t(n)∗ΔAn ,
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Fig. 4.4 Cauchy’s tetrahedron. The four faces of the tetrahedron are indicated; ∂Ti are perpendicular to ei (i = 1, 2, 3) and
have areas ΔAi ; ∂Tn is perpendicular to n and has area ΔAn .

where we have used the expression for the volume of a tetrahedron, ΔV = 1
3 hΔAn , and

the ∗ superscript indicates that the function is evaluated in the volume or on the relevant
surface as appropriate. Dividing through by ΔAn and using Eqn. (4.16), we have

1
3
hρ∗(ẍ∗ − b∗) = t(−e1)∗n1 + t(−e2)∗n2 + t(−e3)∗n3 + t(n)∗.

Substituting in t(−ei) = −t(ei) (Eqn. (4.14)) and shrinking the tetrahedron to a point by
taking the limit as its height h goes to zero gives

t(n) = t1n1 + t2n2 + t3n3 = tjnj , (4.17)

where we have defined tj ≡ t(ej ). To obtain the component form of this relation, we dot
both sides with ei ,

ti(n) = (ei · tj )nj .

The expression in the parenthesis on the right-hand side is the ith component of the vector
tj . We denote these components by σij , i.e. σij ≡ ei · tj . The traction–normal relation then
takes the form

ti(n) = σijnj ⇔ t(n) = σn. (4.18)

This important equation is referred to as Cauchy’s relation. We now claim that σij are
the components of a second-order tensor σ called the Cauchy stress tensor. The proof is
straightforward.
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Fig. 4.5 Components of the Cauchy stress tensor. The components on the faces not shown are oriented in the reverse directions
to those shown.

Proof t and n are vectors so they transform according to

t′i = Qβitβ , n′
j = Qβjnβ , QT Q = I.

These vectors are related through

t′i = σ′
ij n

′
j .

Substituting in the transformation relations, we have

Qβitβ = σ′
ijQβjnβ .

Multiplying both sides by Qαi , the left-hand side becomes QαiQβitβ = δαβ tβ = tα , so

tα = (QαiQβjσ
′
ij )nβ .

But we also have tα = σαβ nβ , so σαβ = QαiQβjσ
′
ij . Thus σ is a second-order tensor.

The physical significance of the components of σ becomes apparent when considering
a cube of material oriented along the basis vectors (see Fig. 4.5). σij is the component9 of
the traction (i.e. the stress) acting in the direction ei on the face normal to ej . The diagonal
components σ11 , σ22 , σ33 are normal (tensile/compressive) stresses. The off-diagonal
components σ12 , σ13 , σ23 , . . . are shear stresses.

4.2.5 An alternative (“tensorial”) derivation of the stress tensor

Rather than the physical derivation of the Cauchy stress tensor given above, a more direct
tensorial derivation is possible. This elegant approach due to Leigh [Lei68] is in the same

9 We note that in some books the stress tensor is defined as the transpose of the definition given here. Thus they
define σ̃ = σT . Both definitions are equally valid as long as they are used consistently. We prefer our definition
of σ, since it leads to the Cauchy relation in Eqn. (4.18), which is consistent with the linear algebra idea that the
stress tensor operates on the normal to give the traction. With the transposed definition of the stress, the Cauchy
relation would be σ̃T n, which is less transparent. Of course, this distinction becomes moot if the stress tensor
is symmetric, which as we will see later is the case for nonpolar continua.
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spirit as the tensor definition given in Section 2.3. We begin with Cauchy’s stress principle.
Adopting tensorial notation (i.e. a tensor is a scalar-valued function of vectors), we write

t[d] = f(d,n),

where d is a direction in space and n is the normal to a plane. The function f looks like a
tensor, but we need to prove that it is bilinear. We already know that it is linear with respect
to d since t is a vector, which leaves the dependence on n. To demonstrate linearity with
respect to n, consider the balance of linear momentum for Cauchy’s tetrahedron. We saw
above that as the tetrahedron shrinks to zero

f(d,n) = − 1
ΔAn

[ΔA1f(d,n1) + ΔA2f(d,n2) + ΔA3f(d,n3)] . (4.19)

Note that in this expression we do not assume that the tetrahedron faces are oriented along
ei . This is a more general case than that assumed above and will result in a general proof.
Now from the divergence theorem (Eqn. (2.108)), it is easy to show that any closed surface
S satisfies ∫

S

n dA = 0.

Thus for Cauchy’s tetrahedron we have

n = − 1
ΔAn

(ΔA1n1 + ΔA2n2 + ΔA3n3) . (4.20)

Substituting Eqn. (4.20) into Eqn. (4.19) gives

f

(
d,−

3∑
i=1

ΔAi

ΔAn
ni

)
= −

3∑
i=1

ΔAi

ΔAn
f(d,ni).

This proves that f is linear with respect to n. We can therefore write

t[d] = σ[d,n], (4.21)

where σ is a second-order tensor that we called the Cauchy stress tensor. In this tensorial
approach, the components of the stress tensor in the basis ei ⊗ ej (see Eqn. (2.61)) are
defined as

σij ≡ σ[ei ,ej ].

To obtain Cauchy’s relation, we substitute d = diei and n = njej into Eqn. (4.21),

t[diei ] = σ[diei , njej ]

dit[ei ] = dinjσ[ei ,ej ]

diti = dinjσij

(ti − σijnj )di = 0.

This must be true for any direction d, therefore

ti = σijnj ,

which is Cauchy’s relation.
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4.2.6 Stress decomposition

A commonly employed additive decomposition of the Cauchy stress tensor is

σij = sij − pδij ⇔ σ = s − pI, (4.22)

where

p = −1
3
σkk ⇔ p = −1

3
tr σ (4.23)

is the hydrostatic stress or pressure, and

sij = σij + pδij ⇔ s = σ + pI (4.24)

is the deviatoric part of the Cauchy stress tensor. Note that tr s = trσ + (tr I)p =
trσ +3p = 0, thus s only includes information on shear stress. Consequently any material
phenomenon that is insensitive to hydrostatic pressure, such as plastic flow in metals,
depends only on s. A stress state with s = 0 is called spherical or sometimes hydrostatic
because this is the only possible stress state for static fluids [Mal69]. In this case all
directions are principal directions (see Section 2.5.3).

4.2.7 Local form of the balance of linear momentum

We are now ready to derive the local form of the balance of linear momentum in the spatial
description. Recall the global form of the balance of linear momentum for a body B in
Eqn. (4.12), ∫

B

ρ(ẍ − b) dV =
∫

∂B

t̄ dA.

As discussed in Section 4.2.3, we now assume that we can rewrite the balance of linear
momentum for an arbitrary subbody E internal to B and replace the external traction t̄

with the internal traction t,∫
E

ρ(ẍ − b) dV =
∫

∂E

t dA

=
∫

∂E

σn dA =
∫

E

(div σ) dV.

To pass from the first to the second line, we substitute in Cauchy’s relation (Eqn. (4.18))
and then apply the divergence theorem (Eqn. (2.108)). Gathering terms and substituting in
Eqn. (3.31) we have ∫

E

[div σ + ρb − ρa] dV = 0.
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This must be true for any subbody E and therefore the integrand must be zero, which gives
the local spatial form of the balance of linear momentum:

σij,j + ρbi = ρai ⇔ div σ + ρb = ρa x ∈ B. (4.25)

An alternative form of the balance of linear momentum is obtained by substituting Eqn. (4.4)
into the right-hand side of Eqn. (4.25):

σij,j + ρbi =
∂(ρvi)

∂t
+ (ρvivj ),j ⇔ div σ + ρb =

∂(ρv)
∂t

+ div (ρv ⊗ v).
(4.26)

Equation (4.26) is correct only if the continuity equation is satisfied (since it is used in the
derivation of Eqn. (4.4)). It is therefore called the continuity momentum equation. It plays
an important role in the statistical mechanics derivation of the microscopic stress tensor as
shown in Section 8.2 of [TM11].

Finally, for static problems the balance of linear momentum simplifies to

σij,j + ρbi = 0 ⇔ div σ + ρb = 0 x ∈ B. (4.27)

These relations are called the stress equilibrium equations.

4.3 Balance of angular momentum

In addition to requiring a balance of linear momentum, we must also require that the system
be balanced with respect to angular momentum. The balance of angular momentum states
that the change in angular momentum of a system is equal to the resultant moment applied
to it. This is also called the moment of momentum principle. In mathematical form this is

D

Dt
H0 = M ext

0 , (4.28)

where H0 is the angular momentum or moment of momentum of the system about the
origin and M ext

0 is the total external moment about the origin.
For a system of N particles,

H0 =
N∑

α=1

rα × (mα ṙα ), M ext
0 =

N∑
α=1

rα × f ext,α ,
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where f ext,α is the external force acting on particle α. We assume that internal forces
resulting from the interaction between particles can be written as a sum over terms aligned
with the vectors connecting the particles, and therefore do not contribute to the moment
resultant.10 These expressions readily generalize to a continuum. For a subbody E we have

H0(E) =
∫

E

x × (dmẋ) =
∫

E

x × (ρẋ) dV,

M ext
0 (E) =

∫
E

x × (ρb) dV +
∫

∂E

x × t dA.

Note that for a multipolar theory M ext
0 (E) would also include contributions from

distributed body couples and corresponding hypertractions. Substituting H0(E) and
M ext

0 (E) into Eqn. (4.28) gives

D

Dt

∫
E

x × (ρẋ) dV =
∫

E

x × (ρb) dV +
∫

∂E

x × t dA, (4.29)

or in indicial notation

D

Dt

∫
E

εijkxj ẋkρ dV =
∫

E

εijkxj bkρ dV +
∫

∂E

εijkxj tk dA.

Applying the Reynolds transport theorem (Eqn. (4.5)) to the first term and using Cauchy’s
relation (Eqn. (4.18)) followed by the divergence theorem (Eqn. (2.108)) on the last term
gives ∫

E

εijk (ẋj ẋk + xj ẍk )ρ dV =
∫

E

εijkxj bkρ dV +
∫

E

[εijkxjσkm ],m dV.

The first term in the parenthesis in the left-hand expression cancels since εijk ẋj ẋk =
[ẋ × ẋ]i = 0. Then carrying through the differentiation on the right-hand term and rear-
ranging gives ∫

E

εijkxj [ρẍk − ρbk − σkm,m ] dV =
∫

E

εijkσkj dV.

The expression in the square brackets on the left-hand side is zero due to the balance of
linear momentum (Eqn. (4.25)), so that∫

E

εijkσkj dV = 0.

This must be satisfied for any subbody E, so it must be satisfied pointwise,

εijkσkj = 0.

This is a system of three equations relating the components of the stress tensor:

σ32 − σ23 = 0, σ31 − σ13 = 0, σ21 − σ12 = 0.

10 This condition is always satisfied for a system of atoms interacting through a classical force field (see
Section 5.8.1 of [TM11]).
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The conclusion is that the balance of angular momentum implies that the Cauchy stress
tensor is symmetric:11

σij = σji ⇔ σ = σT . (4.30)

4.4 Material form of the momentum balance equations

The derivation of the balance equations in the previous sections is complete. However, it
is often computationally more convenient (see Chapter 9) to solve the balance equations
in a Lagrangian description. The convenience stems from the fact that in the reference
coordinates the boundary of the body ∂B0 is a constant, whereas in the spatial coordinates
the boundary ∂B depends on the motion, which is usually what we are trying to solve for.
Thus, we must obtain the material form (or referential form) of the balance of linear and
angular momentum. In the process of obtaining these relations we will identify the first and
second Piola–Kirchhoff stress tensors (and the related Kirchhoff stress tensor) that play
important roles in the material description formulation.

4.4.1 Material form of the balance of linear momentum

To derive the material form of the balance of linear momentum, we begin with the global
spatial form for an arbitrary subbody E:∫

E

ρa dV =
∫

E

ρb dV +
∫

∂E

σn dA, (4.31)

where a = ẍ is the acceleration. We rewrite each integral in the referential description
replacing the spatial fields with their material descriptions. The first integral is∫

E

ρai dV =
∫

E0

ρ̆ăiJ dV0 =
∫

E0

ρ0 ăi dV0 , (4.32)

where we have used Jρ̆ = ρ0 (Eqn. (4.1)). Similarly the second integral is∫
E

ρbi dV =
∫

E0

ρ0 b̆i dV0 . (4.33)

The third integral is a bit trickier. To obtain the material form of the surface integral we
must use Nanson’s formula (Eqn. (3.9)),∫

∂E

σijnj dA =
∫

∂E0

(Jσ̆ijF
−1
J j )NJ dA0 =

∫
∂E0

PiJ NJ dA0 , (4.34)

11 Note that in a multipolar theory with couple stresses, σ would not be symmetric since Eqn. (4.29) would
include an additional volume integral over body couples and a surface integral over the applied hypertractions.
The balance of angular momentum would then supply a set of three equations relating the Cauchy stress tensor
to the couple stress tensor (see Exercise 4.7). The existence of a couple stress tensor can be derived in a manner
similar to that used for the Cauchy stress tensor.
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where we have defined the first Piola–Kirchhoff stress tensor12

PiJ = JσijF
−1
J j ⇔ P = JσF−T , (4.35)

which is a two-point tensor. Equation (4.35) is referred to as the Piola transformation. The
inverse relation is

σij =
1
J

PiJ FjJ ⇔ σ =
1
J

PF T . (4.36)

Another stress variable (in the deformed configuration) that can be defined at this point is
the Kirchhoff stress tensor τ :

τij = Jσij ⇔ τ = Jσ, (4.37)

so that P = τF−T . Thus, we see that the first Piola–Kirchhoff stress is a pull-back of the
Kirchhoff stress (see Section 3.4.4).

It should be emphasized that the first Piola–Kirchhoff stress tensor is defined purely so
that the left- and right-hand sides of Eqn. (4.34) have completely analogous symbolic forms.
In this sense P is just another mathematical representation (defined for convenience) of
the Cauchy stress and does not represent a new physical quantity. To see that this definition
is consistent with the physical origin of Cauchy’s relation, start with its spatial form,
ti = σijnj , and substitute in ti = dfi/dA and Eqn. (4.36):

dfi =
1
J

PiJ FjJ nj dA.

Next, substitute in Nanson’s formula (Eqn. (3.9)) and rearrange to obtain

dfi

dA0
= PiJ NJ .

Finally, define the nominal traction as Ti ≡ dfi/dA0 (the traction t can then be called the
true traction) to obtain the material form of Cauchy’s relation:

Ti = PiJ NJ ⇔ T = PN . (4.38)

We see that P operates on the unit normal in the reference configuration in exact analogy
to σ acting in the deformed configuration. The first Piola–Kirchhoff stress corresponds to

12 This stress tensor is named after the Italian mathematician Gabrio Piola and the German physicist Gustav
Kirchhoff who independently derived the balance of linear momentum in the material form. Piola published
his results in 1832 [Pio32] and Kirchhoff in 1852 [Kir52]. For a discussion of the connection between the work
of these two researchers in relation to the stress tensor named after them, see [CR07].
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what is commonly called the engineering stress or nominal stress, because it is the force
per unit area in the reference configuration. The Cauchy stress, on the other hand, is the
true stress because it is the force per unit area in the deformed configuration. The fact that
there are different stress measures with different meanings is often something that is not
appreciated by nonexperts in mechanics, especially since these differences vanish if the
deformation is small (i.e. when the deformation gradient F ≈ I).

Returning to the derivation of the balance of linear momentum, substituting the three
integrals in Eqns. (4.32)–(4.34) into Eqn. (4.31) gives the global material form of the
balance of linear momentum∫

E0

ρ0(ăi − b̆i) dV0 =
∫

∂E0

PiJ NJ dA0 .

Applying the divergence theorem (Eqn. (2.108)) to the right-hand side, combining terms
and recalling that the resulting volume integral must be true for any sub-body E0 gives the
local material form of the balance of linear momentum:

PiJ,J + ρ0 b̆i = ρ0 ăi ⇔ Div P + ρ0 b̆ = ρ0 ă, X ∈ B0 . (4.39)

Again, we note that the definitions of the reference mass density and, more particularly,
the first Piola–Kirchhoff stress have been chosen in such a way that the spatial form of
the balance of linear momentum (Eqn. (4.25)) and the material form (Eqn. (4.39)) have
perfectly analogous symbolic forms. Further, we note that although Eqn. (4.39) is called
the material form of the balance of linear momentum, the equation is of a mixed nature. It
describes how a set of spatial fields ăi , b̆i and [Div P ]i (note the lower-case, spatial vector
index) must vary from material particle to material particle. That is, how the fields must
depend on XI ∈ B0 (note the upper-case, material coordinate index).

4.4.2 Material form of the balance of angular momentum

To obtain the material form of the balance of angular momentum, we start with its global
form in the spatial description: ∫

E

εijkσkj dV = 0,

where E is an arbitrary subbody. Transforming to the referential description and using
Eqn. (4.36) gives∫

E0

εijk

(
1
J

PkM FjM

)
J dV0 =

∫
E0

εijkPkM FjM dV0 = 0.

This must be true for any E0 , therefore

εijkPkM FjM = 0,
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which implies that PkM FjM is symmetric with respect to the indices jk:

PkM FjM = PjM FkM ⇔ PF T = FP T . (4.40)

Note, however, that the first Piola–Kirchhoff stress tensor itself is, in general, not symmetric
(i.e. P �= P T ).

4.4.3 Second Piola–Kirchhoff stress

As we saw earlier, stress comes from the definition of traction as the force per unit area
acting on a body. The force is a tensor defined in the deformed configuration. The area
can be measured in either the deformed or the reference configuration. This leads to the
two stress fields that we have encountered so far: the Cauchy stress that is defined as a
mapping of a spatial vector to a spatial vector and the first Piola–Kirchhoff stress that
is a two-point tensor that maps a material vector to a spatial vector. It turns out to be
mathematically advantageous to define a third stress field, which is a tensor entirely in the
reference configuration, by pulling the force back to the reference configuration as if it were
a kinematic quantity. This stress is called the second Piola–Kirchhoff stress tensor.

We begin with the force–traction relation that defines the first Piola–Kirchhoff stress:

df = T dA0 = (PN) dA0 .

We pull back df to the reference configuration and substitute in the nominal traction
definition to obtain

df 0 = F−1df = F−1T dA0 = F−1(PN) dA0 = SN dA0 ,

where

SIJ = F−1
I i PiJ ⇔ S = F−1P (4.41)

is the second Piola–Kirchhoff stress tensor. The relation between σ and S is obtained by
using the Piola transformation in Eqn. (4.35):

σij =
1
J

FiI SIJ FjJ ⇔ σ =
1
J

FSF T . (4.42)

Inverting this relation gives S = JF−1σF−T , from which it is clear that S is symmetric
since σ is symmetric. (This can also be seen by substituting Eqn. (4.41) into the material
form of the balance of angular momentum in Eqn. (4.40).)
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The second Piola–Kirchhoff stress, S, has no direct physical significance, but since it is
symmetric it can be more convenient to work with than P . The balance of linear momentum
in terms of the second Piola–Kirchhoff stress follows from Eqn. (4.39) as

(FiI SIJ ),J + ρ0 b̆i = ρ0 ăi ⇔ Div (FS) + ρ0 b̆ = ρ0 ă X ∈ B0 . (4.43)

The difference between σ, P and S is demonstrated by the following simple example.

Example 4.1 (Stretching of a bar) A bar made of an incompressible material is loaded by a force
R = Re1 , where e1 is the bar’s axis. The bar is uniform along its length and unconstrained in the 2-
and 3-directions. The stretch in the 1-direction is α. Assume the responses in the 2- and 3-directions
are the same and that no shearing deformation (with respect to the Cartesian coordinate system) takes
place in the bar as a result of the uniaxial loading. The cross-sectional area of the bar when it is not
loaded is A0 . Determine the 11-component of the Cauchy stress tensor (i.e. σ11 ) and of the first and
second Piola–Kirchhoff stress tensors in the bar.

Solution: Since there is no shearing and no difference between the 2- and 3-directions due to the
assumed symmetry, we expect a deformation gradient of the form

[F ] =

⎡⎢⎣α 0 0
0 α∗ 0
0 0 α∗

⎤⎥⎦ .

The material is incompressible and so J = det F = α(α∗)2 = 1, which means that α∗ = 1/
√

α.
The 11-component of the Cauchy stress is σ11 = R/A, where A is the deformed cross-sectional
area. We find A from Nanson’s formula (Eqn. (3.9)):

n dA = JF −T N dA0⎡⎢⎣1
0
0

⎤⎥⎦ dA =

⎡⎢⎣1/α 0 0
0

√
α 0

0 0
√

α

⎤⎥⎦
⎡⎢⎣1

0
0

⎤⎥⎦ dA0 =

⎡⎢⎣1
0
0

⎤⎥⎦ 1
α

dA0 .

Thus, dA = dA0/α and, since α is constant within the cross-section, A = A0/α. Therefore
σ11 = αR/A0 . The 11-component of the first Piola–Kirchhoff stress is simply P11 = R/A0 , and
the second Piola–Kirchhoff stress is obtained from the relation

[S] =
[
F −1 ] [P ] =

⎡⎢⎣1/α 0 0
0

√
α 0

0 0
√

α

⎤⎥⎦
⎡⎢⎣R/A0 0 0

0 0 0
0 0 0

⎤⎥⎦ =
R

αA0

⎡⎢⎣1 0 0
0 0 0
0 0 0

⎤⎥⎦ .

These results illustrate clearly that the first Piola–Kirchhoff stress and Cauchy stress are equivalent to
what are commonly referred to in undergraduate mechanics courses as the “engineering stress” and
“true stress,” respectively. The former is easy to obtain from a tensile test, because there is no need
to measure the changing cross-sectional area. However, the true stress experienced by the material at
each stage of the test is the Cauchy stress. This example is pursued further in Exercise 4.8.
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Fig. 4.6 Two configurations of dams (dark gray) with water (light gray) on the right. The dams and water are surrounded by air
at atmospheric pressure. The dimensions of the dam and the level of the water are indicated. The width of the dams in
the out-of-plane direction is W .

Exercises

4.1 [SECTION 4.1] Show that the continuity equation (Eqn. (4.2)) is identically satisfied for any
deformation of the form

x1 = α1 (t)X1 , x2 = α2 (t)X2 , x3 = α3 (t)X3 ,

where αi (t) are differentiable scalar functions of time. The mass density field in the reference
configuration is ρ0 (X).

4.2 [SECTION 4.2] Figure 4.6 shows two configurations of dams (dimensions are shown in the
figure). The width of the dams in the out-of-plane direction is W . The dams are subjected
to hydrostatic pressure due to the water on the right, atmospheric pressure pat due to the
surrounding air, and gravity which acts downwards. The density of the water is ρw and the
density of the dam material is ρd . Compute the total force (body and surface, not including
the reactions where the ground supports the dams) acting on the dam for both configurations.
Hint: The hydrostatic pressure increases linearly with depth below the water surface and is
proportional to ρw g, where g is the gravitational acceleration.

4.3 [SECTION 4.2] In an ideal nonviscous fluid there can be no shear stress. Hence, the Cauchy
stress tensor is entirely hydrostatic, σij = −pδij . Show that this leads to the following form,
known as Euler’s equation of motion for a frictionless fluid:

−1
ρ
∇p + b =

∂v

∂t
+ (∇v)v.

4.4 [SECTION 4.2] The rectangular Cartesian components of a particular Cauchy stress tensor are
given by

[σ] =

⎡⎢⎣a 0 d

0 b e

d e c

⎤⎥⎦ .

1. Determine the unit normal n of a plane parallel to the x3 axis (i.e. n3 = 0) on which the
traction vector is tangential to the plane. What are the constraints on a and b necessary to
ensure a solution?

2. If a, b, c, d and e are functions of x1 and x2 , find the most general forms for these functions
that satisfy stress equilibrium in Eqn. (4.27) in the absence of body forces.
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4.5 [SECTION 4.2] A rectangular body occupies the region −a ≤ x1 ≤ a, −a ≤ x2 ≤ a and
−b ≤ x3 ≤ b in the deformed configuration. The components of the Cauchy stress tensor in
the body are given by

[σ] =
c

a2

⎡⎢⎣−(x2
1 − x2

2 ) 2x1x2 0
2x1x2 x2

1 − x2
2 0

0 0 0

⎤⎥⎦ ,

where a, b > a and c are positive constants.
1. Show that σ satisfies the balance of linear momentum in the static case (Eqn. (4.27)) with

no body force.
2. Determine the tractions that must be applied to the six faces of the body in order for the

body to be in equilibrium.
3. Calculate the traction distribution on the sphere x2

1 + x2
2 + x2

3 = a2 .
4. The principal values (eigenvalues) of the stress tensor (principal stresses) are denoted σi

(i = 1, 2, 3), such that σ1 ≥ σ2 ≥ σ3 . These give the (algebraically) maximum and
minimum normal stresses at a point. It can be shown that the maximum shear stress is given
by τm ax = (σ1 − σ3 )/2. Calculate the principal stresses of σ as a function of position.
Then find the maximum value of τm ax in the domain of the body.

4.6 [SECTION 4.2] A state of plane stress is one where the out-of-plane components of the stress
tensor are zero, i.e. σ31 = σ32 = σ33 = 0. Show that for this case if

σ11 =
∂2φ

∂x2
2
, σ22 =

∂2φ

∂x2
1
, σ12 = − ∂2φ

∂x1∂x2
,

where φ(x1 , x2 ) is the Airy stress function, an unknown function to be determined, then the
static equilibrium equations are satisfied identically in the absence of body forces.

4.7 [SECTION 4.3] A material is subjected to a distributed moment field such that every infinitesimal
element (with volume dV = dx1dx2dx3 ) is subjected to a moment μ dV (where μ is the
moment per unit volume) about an axis parallel to the e1-direction. How will this affect the
symmetry of the stress tensor σ? Find an explicit expression for the relation between the shear
components of σ in a Cartesian coordinate system.

4.8 [SECTION 4.4] For the stretched bar in Example 4.1, do the following:
1. Determine the plane of maximum shear stress in the deformed configuration and the value

of the Cauchy shear stress on this plane.
2. Determine the material plane in the reference configuration corresponding to the plane of

maximum shear stress found above. Plot the angle Θ between the normal to this plane and
the horizontal axis as a function of the stretch in the 1-direction, α. Which plane does this
tend to as α → ∞?



5 Thermodynamics

Thermodynamics is typically defined as a theory dealing with the flow of heat and energy
between material systems. This definition is certainly applicable here, however, Callen pro-
vides (in his excellent book on the subject [Cal85]) an alternative definition that highlights
another role that thermodynamics plays in continuum mechanics: “Thermodynamics is the
study of the restrictions on the possible properties of matter that follow from the symmetry
properties of the fundamental laws of physics.” In this chapter (and the next), we address
both of these aspects of thermodynamic theory in the context of continuum mechanics.

The theory of thermodynamics boils down to three fundamental laws, deduced from
empirical observation, that all physical systems are assumed to obey. The zeroth law of
thermodynamics is related to the concept of thermal equilibrium. The first law of thermo-
dynamics is a statement of the conservation of energy. The second law of thermodynamics
deals with the directionality of thermodynamic processes. We will discuss each of these
laws in detail, but first we describe the basic concepts in which thermodynamics is phrased.

For the purposes of thermodynamic analysis, the universe is divided into two parts: the
system whose behavior is of particular interest, and the system’s surroundings (everything
else). The behavior of the surroundings is of interest only insofar as is necessary to char-
acterize its interactions with the system. In thermodynamics these interactions can include
mechanical interactions in which the surroundings do work on the system, thermal interac-
tions in which the surroundings transfer heat to the system and particle transfer interactions
in which particles are transferred between the surroundings and the system. Any change in
the system’s surroundings which results in work, heat or particles being exchanged with the
system is referred to as an external perturbation.1 A perturbation can be time dependent,
although for our purposes it is limited to a finite duration after which the properties of the
system’s surroundings remain fixed.

As an example, consider a cylinder with a movable piston containing a compressed gas
situated inside a laboratory. We can take the thermodynamic system of interest to be all the
gas particles inside the cylinder. Then the system’s surroundings include the cylinder, the
piston, the laboratory itself and, indeed, the rest of the universe. The system can interact
with its surroundings which can do work on it (the piston can be moved in order to change
the system’s volume), the atmosphere in the laboratory can transfer heat to the gas in the
cylinder (assuming the piston and cylinder allow such transfers) and it is even possible that
some molecules from the air in the laboratory can diffuse through the piston (if the piston

1 Note that we do not mean to imply by the use of the term “perturbation” that the change suffered by a system’s
surroundings during a perturbation is necessarily small in anyway.
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is permeable) and become part of the system. A fixed change to the surroundings related
to any of these modes of interaction would constitute a perturbation to the system.

In many cases, it is not necessary to consider the entire universe when studying a
thermodynamic system. Often a system may interact so weakly with its surroundings that
such interactions are negligible. Other times it is possible to identify a larger system that
contains the system of interest such that all interactions between this larger system and the
remainder of the universe may be ignored. We call such a system isolated. Specifically, we
define an isolated system as one that the external universe is unable to do work on and to
which it cannot transfer heat or particles. For example, our cylinder of gas could be put
into a sealed environmental chamber which does not allow external mechanical, thermal or
particle transfer interactions. Then what happens outside the chamber has no influence on
the behavior of the system and can be ignored.

Extensive observation of our universe has led to two realizations. First, all macroscopic
systems subjected to an external perturbation respond by undergoing a process that ulti-
mately tends towards a simple terminal state which is quiescent and spatially homogeneous.
Remarkably, these terminal states can be described by a very small number of quantities.
Second, when a system already in such a terminal state is subjected to an external pertur-
bation it transitions to another terminal state in a predictable and repeatable way that is
completely characterized by a knowledge of the initial state and the external perturbation.
The identification of the macroscopic quantities that characterize terminal states and per-
turbations, and the laws that allow predictions based on their knowledge are the goals of
the theory of thermodynamics.2

5.1 Macroscopic observables, thermodynamic equilibrium
and state variables

To begin we must identify the quantities with which the theory of thermodynamics is
concerned. We know that all systems are composed of discrete particles that (to a good
approximation, see Section 5.2 in [TM11]) satisfy Newton’s laws of motion. Thus, to have
a complete understanding of a system it is necessary to determine the number of particles
N that make up the system and their positions and momenta (a total of 6N quantities).

2 We do not presume to be able to provide in this short chapter a comprehensive treatise on thermodynamic theory.
Indeed, the difficulty of creating a clear and precise presentation of the subject is highlighted by the following
quote, attributed to the German atomic and quantum physicist Arnold Sommerfeld: “Thermodynamics is a
funny subject. The first time you go through it, you don’t understand it at all. The second time you go through it,
you think you understand it, except for one or two small points. The third time you go through it, you know you
don’t understand it, but by that time you are so used to it, it doesn’t bother you any more.” A similar sentiment
was expressed by Clifford Truesdell: “There are many who claim to understand thermodynamics, but it is best
for them by common consent to avoid the topic in conversation with one another, since it leads to consequences
such as can be expected from arguments over politics, religion, or the canons of female beauty. Honesty compels
me to confess that in several attempts, made over decades, I have never been able to understand the subject,
not only in what others have written on it, but also in my own earlier presentations” [Tru66b]. Keeping these
confessions from great men in mind, our goal is to present the theory as accurately as we can, while at the same
time pointing out and clarifying common pitfalls that lead to much confusion in the literature.
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However, as described further below, this is a hopeless task. Thus, we must make do with a
much smaller set; but what quantities will prove to be most useful? To answer this question
we first must consider the nature of macroscopic observation.

5.1.1 Macroscopically observable quantities

Fundamentally, a thermodynamic system is composed of some number of particles N ,
where N is huge (on the order of 1023 for a cubic centimeter of material). The mi-
croscopic kinematics3 of such a system are described by a (time-dependent) vector in a
6N -dimensional vector space, called phase space, corresponding to the complete list of
particle positions and momenta,

y = (r1 , . . . , rN ,m1 ṙ1 , . . . ,mN ṙN ),

where (m1 , . . . ,mN ) are the masses of the particles.4

Although scientific advances now allow researchers to image individual atoms, we can
certainly never hope (nor wish) to record the time-dependent positions and velocities of all
atoms in a macroscopic thermodynamic system. This would seem to suggest that there is
no hope of obtaining a deep understanding of the behavior of such systems. However, for
hundreds of years mankind has interrogated these systems using only a relatively crude set of
tools, and nevertheless we have been able to develop a sophisticated theory of their behavior.
The first tools that were used for measuring kinematic quantities likely involved things such
as measuring sticks and lengths of string. Later, we developed laser extensometers and laser
interferometers. All of these devices have two important characteristics in common. First,
they have very limited spatial resolution relative to typical interparticle distances (which
are on the order of 10−10 m). Indeed, the spatial resolution of measuring sticks is typically
on the order of 10−4 m and that of interferometry is on the order of 10−6 m (a micron).
Second, these devices have very limited temporal resolution relative to characteristic atomic
time scales, which are on the order of 10−13 s (for the oscillation period of an atom in
a crystal). The temporal resolution of measuring sticks and interferometers relies on the
device used to record measurements. The human eye is capable of resolving events spaced
no less than 10−2 s apart. If a camera is used, then the shutter speed – typically on the order
of 10−3 or 10−4 s – sets the temporal resolution. Clearly, these tools provide only very
coarse measurements that correspond to some type of temporal and spatial averaging of
the positions of the particles in the system.5 Accordingly the only quantities these devices
are capable of measuring are those that are essentially uniform in space (over lengths up to
their spatial resolution) and nearly constant in time (over spans of time up to their temporal
resolution). We say that these quantities are macroscopically observable. The fact that such

3 See the definition of “kinematics” at the start of Chapter 3.
4 Depending on the nature of the material there may be additional quantities that have to be known, such as the

charges of the particles or their magnetic moments. Here we focus on purely thermomechanical systems for
which the positions and momenta are sufficient. See Section 7.1 of [TM11] for more on the idea of a phase
space.

5 See Section 1.1 in [TM11] for a discussion of spatial and temporal scales in materials.
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quantities exist is a deep truth of our universe, the discussion of which is outside the scope
of our book.6

The measurement process described above replaces the 6N microscopic kinematic quan-
tities with a dramatically smaller number of macroscopic kinematic quantities, such as the
total volume of the system and the position of its center of mass. In addition there are
also nonkinematic quantities that are macroscopically observable, such as the total linear
momentum, the total number of particles in the system and its total mass.

If the volume of a thermodynamic system is large compared with the volumetric reso-
lution of our measurement device (for the interferometers mentioned above this would be
approximately one cubic micron or 10−18 m3), then we are able to observe these quantities
for subsystems7 of the system. The collection of all such measurements is what we refer
to when we speak of macroscopic fields which capture the spatial and temporal variation
of the macroscopic quantities such as the mass density field (mass per unit volume) or
conversely the specific volume field (volume per unit mass). Further, the arrangement of
the subsystems’ positions gives rise to additional macroscopic quantities that we call the
shape, orientation and angular velocity of a macroscopic system. For example, consider
the case where we restrict the shape of our thermodynamic system to a parallelepiped.
Thus as we have seen in Section 3.4.6, the shape and volume of the system may be char-
acterized by six independent kinematic quantities. For example,8 the parallelepiped’s three
side lengths, �1 , �2 , �3 , and three interior angles, φ1 , φ2 and φ3 . Now if we choose a set
of reference values, such as L1 = L2 = L3 = 1.0 m, and Φ1 = Φ2 = Φ3 = 90◦,
then we can use the Lagrangian strain tensor E to describe the shape and volume of the
system relative to this reference. Thus, for macroscopic systems there are macroscopic
quantities that describe global, total properties of the system and there are macroscopic
fields that describe how these total values are spatially distributed between the system’s
subsystems.

It turns out that not all of a system’s macroscopic observables are relevant to the theory of
thermodynamics. In particular, in most formulations of thermodynamics the total linear and
angular momenta of a system are assumed to be zero.9 We will also adopt this convention.
Additionally, the position (of the center of mass) and orientation of the system are assumed
to be irrelevant.10 From now on when we refer to “macroscopic observables,” we mean only
those macroscopic observables not explicitly excluded in the above list.

6 We encourage the reader to refer to Chapter 1 of Callen’s book [Cal85] for a more extensive introduction,
similar to the above, and to Chapter 21 of [Cal85] for a discussion of the deep fundamental reason for the
existence of macroscopically observable quantities (i.e. broken symmetry and Goldstone’s theorem).

7 The idea of a thermodynamic subsystem is related to the concept of a continuum particle introduced in
Section 3.1.

8 One could also consider, in addition to the side lengths and interior angles, the lengths of the parallelepiped’s
face-diagonals. However, once the three side lengths and three interior angles are prescribed all of the face-
diagonal lengths are determined. Thus, we say that there are only six independent kinematic quantities that
determine the shape and volume of a parallelepiped.

9 In fact, one can develop a version of the theory where the energy and the total linear and angular momenta all
play equally important roles. See [Cal85, Part III] for further discussion and references on this point.

10 The argument is based on the presumed symmetry of the laws of physics under spacetime translation and
rotation. Again, see [Cal85, Part III] for more details.
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5.1.2 Thermodynamic equilibrium

When a system experiences an external perturbation it undergoes a dynamical process in
which its microscopic kinematic vector and, in general, its macroscopic observables, change
as a function of time. As mentioned above, it is empirically observed that all systems tend
to evolve to a quiescent and spatially homogeneous (at the macroscopic length scale)
terminal state where the system’s macroscopic observables have constant limiting values.
Also any fields, like density or strain, must be constant since the terminal state is spatially
homogeneous. Once the system reaches this terminal condition it is said to be in a state
of thermodynamic equilibrium. In general, even once a system reaches thermodynamic
equilibrium, its microscopic kinematic quantities continue to change with time. However,
these quantities are of no explicit concern to thermodynamic theory.

As you might imagine, thermodynamic equilibrium can be very difficult to achieve. We
may need to wait an infinite amount of time for the dynamical process to obtain the limiting
equilibrium values of the macroscopic observables. Thus, most systems never reach a true
state of thermodynamic equilibrium. Those that do not, however, do exhibit a characteristic
“two-stage dynamical process” in which the macroscopic observables first evolve at a high
rate during and immediately after an external perturbation. These values then further evolve
at a rate that is many orders of magnitude smaller than in the first stage of the dynamical
process. This type of system is said to be in a state of metastable thermodynamic equilibrium
once the first part of its two-stage dynamical process is complete.11

An example of a system in metastable equilibrium is a single crystal of metal in a
container in the presence of gravity. The crystal is not in thermodynamic equilibrium since,
given enough time, the metal would flow like a fluid in order to conform to the shape of its
container as its atoms preferentially diffuse towards the container’s bottom. However, the
time required for this to occur at room temperature is so long as to be irrelevant for typical
engineering applications. Thus, for all intents and purposes the crystal is in thermodynamic
equilibrium, which is what is meant by metastable equilibrium.

5.1.3 State variables

We have already eliminated certain macroscopic observables from consideration using
physical and symmetry-based arguments. We now further reduce the set of observables of
interest to those which directly affect the behavior of the thermodynamic system. We refer
to these special macroscopic observables as state variables and define them as follows.

The macroscopic observables that are well defined and single-valued when the system is
in a state of thermodynamic equilibrium are called state variables. Those state variables
which are related to the kinematics of the system (volume, strain, etc.) are called kinematic
state variables.

11 The issue of metastable equilibrium within the context of statistical mechanics is discussed in Section 11.1 of
[TM11].
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To explore the concept of state variables, consider the case of an ideal gas enclosed in
a rigid, thermally-insulated box. Let us assume this system to be in its terminal state of
thermodynamic equilibrium. Then on macroscopic time scales the atoms making up the gas
will have time to explore the entire container, flying past each other and bouncing off the
walls. If each atom were a point of light and we took a time-lapsed photograph of the box,
we would just see a uniform bright light filling the volume. Taking this view, we can say
that the positions of the atoms at the macroscale are simply characterized by the shape and
volume V of the box. The momenta of the atoms manifest themselves at the macroscale in
two ways: the temperature T (which is related to the kinetic energy of the atoms), and the
pressure p on the box walls (coming from the momentum transfer during the collisions).12

Formal macroscopic definitions for these quantities will have to wait until Sections 5.2 and
5.5.5. Based on empirical observation we know that the shape of the container plays no role
in characterizing the equilibrium state of the gas. This means that the shape (quantified by
the shear part of the strain tensor) is not a state variable of the gas system since it is not
single-valued at equilibrium. Thus, we say that the equilibrium state of the gas is associated
with (at least) four state variables: the number of particles N , the volume V , the pressure
p and the temperature T .

It turns out that the above conclusions for the gas apply to any system in true13 ther-
modynamic equilibrium. This is because given an infinite amount of time all systems are
fluid-like in the sense that their atoms can fully explore the available phase space. A con-
sequence of this is that any system in thermodynamic equilibrium, not just a gas, depends
on only one kinematic state variable – the volume V of the system.14

The identification of all kinematic state variables is more difficult when one considers
states of metastable thermodynamic equilibrium. Consider again the single crystal of metal
in a container described in the previous section. While it is true that given unlimited time
the metal would flow, our attention span is more limited so that over the hundreds or even
thousands of years that we watch it, the metal may remain largely unchanged. Over such time
scales the shape of the metal (quantified by the strain) is certainly necessary to characterize
its behavior. How then can we determine which macroscopic kinematic observables affect
the behavior of a system? To make this determination one can perform the following test.
Start with the system in a state of metastable thermodynamic equilibrium. Thermally isolate
the system and fix the number of particles as well as all independent kinematic quantities
except for one. Now, very slowly change the free kinematic quantity.15 If work is performed
by the system as a result of changing the kinematic quantity, then that quantity is a kinematic

12 See Chapter 7 of [TM11].
13 We use the term “true thermodynamic equilibrium” for systems that strictly satisfy the definition of thermo-

dynamic equilibrium as opposed to those that are in a state of metastable equilibrium.
14 See Section 7.4.5 of [TM11] for a proof, based on statistical mechanics theory, that in the limit of an infinite

number of particles (keeping the density fixed) the equilibrium properties of a system do not depend on
any kinematic state variables other than the system’s volume. Also see Chapter 11 of [TM11] for a detailed
discussion of the metastable nature of solids.

15 How slowly the quantity must be changed depends on the system under consideration. This illustrates the
difficulty (and self-referential nature) of carefully defining the concept of metastable thermodynamic equilib-
rium. One must always use qualifiers, as we have done here, which implicitly refer to the laws of equilibrium
thermodynamics. That is, the kinematic quantity must be changed slowly enough that the resulting identified
kinematic state variables for the system satisfy all of the standard laws of thermodynamics.
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state variable for the system, otherwise it is irrelevant to the system under consideration.
In other words, a kinematic quantity is a state variable if the system produces a force of
resistance (which does work) in response to the change of its kinematic quantity. Such a
“force of resistance” is referred to as a thermodynamic tension.16 For example, varying the
shape of a gas’s container at constant volume will not generate an opposing force (stress),
but there would be a stress generated if we deformed a solid by changing any one of the six
components of the Lagrangian strain tensor while holding the other five fixed. Thus, the
kinematic state variables associated with (metastable) equilibrium states of solid systems
include the full Lagrangian strain tensor, whereas gases only require the volume.

State variables can be divided into two categories: intensive and extensive. Intensive
state variables are quantities whose values are independent of amount. Examples include
the temperature and pressure (or stress) of a thermodynamic system. In contrast, extensive
variables are ones whose value depends on amount. Suppose we have two identical systems
which have the same values for their state variables. The extensive variables are those whose
values are exactly doubled when we treat the two systems as a single composite system.
Kinematic variables like volume are naturally extensive. For example, if the initial systems
both have volume V , then the composite system has total volume 2V . Strain, which is also a
kinematic variable, is intensive. However, we can define a new extensive quantity, “volume
strain” as V0E, where V0 is the reference volume. The kinematics of a system can therefore
always be characterized by extensive variables. In general, we write:

A system in thermodynamic (or metastable) equilibrium is characterized by a set of
nΓ independent extensive kinematic state variables, which we denote generically as
Γ = (Γ1 , . . . ,ΓnΓ ). For a gas, nΓ = 1 and Γ1 = V . For a metastable solid, nΓ = 6 and
Γ contains the six independent components of the Lagrangian strain tensor multiplied
by the reference volume.

Other important extensive variables include the number of particles making up the system
and its mass. A special extensive quantity which we have not encountered yet is the total
internal energy of the system U . Later we will find that most extensive state variables are
associated with corresponding intensive quantities, which play an equally important role.
(In fact, these are the thermodynamic tensions mentioned above.) Table 5.1 presents a list
of the extensive and intensive state variables that we will encounter (not all of which have
been mentioned yet), indicating the pairings between them.

To summarize, thermodynamics deals with quantities that are macroscopically observ-
able, well defined and single-valued at equilibrium. Such quantities are referred to as state
variables. When the state variables relate to the motion of the system (positions and shape),
we refer to them as kinematic state variables. The adjectives extensive and intensive indicate
whether or not a state variable scales with system size. Finally, for systems that are large
relative to the spatial and/or temporal resolution of the measuring device, it is also possible
to record position- and time-dependent fields of the state variables. Not all state variables

16 Thermodynamic tensions are discussed further in Section 5.5.5.
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Table 5.1. Extensive and intensive state variables. Kinematic state variables are
indicated with a∗

Extensive Intensive

internal energy (U) –
mass (m) –
number of particles (N ) chemical potential (μ)
volume (V )∗ pressure (p)
(Lagrangian) volume strain (V0E)∗ elastic part of the (second

Piola–Kirchhoff) stress (S(e ) )
entropy (S) temperature (T )

are independent. Our next task is to determine the minimum number of state variables that
must be fixed in order to explicitly determine all of the remaining values.

5.1.4 Independent state variables and equations of state

A system in thermodynamic equilibrium can have many state variables but not all can
be specified independently. Consider again the case of an ideal gas enclosed in a rigid,
thermally-insulated box as discussed in the previous section. We identified four state vari-
ables with this system: N , V , p and T . However, based on empirical observation, we know
that not all four of these state variables are thermodynamically independent. Any three will
determine the fourth. We will see this later in Section 5.5.5 where we discuss the ideal
gas law. In fact, it turns out that any system in true thermodynamic equilibrium is fully
characterized by a set of three independent state variables since, as explained above, all
systems are fluid-like on the infinite time scale of thermodynamic equilibrium. For a system
in metastable equilibrium the number of thermodynamically independent state variables is
equal to nΓ + 2, where nΓ is the number of independent kinematic state variables charac-
terizing the system, as described in the previous section. The two state variables required
in addition to the kinematic state variables account for the internal energy and the entropy
which we will encounter in Section 5.3 and Section 5.5.1, respectively.

We adopt the following notation. Let B be a system in thermodynamic (or metastable)
equilibrium and B = (B1 ,B2 , . . . ,Bν B ,BνB+1 , . . . ) be the set of all state variables, where
νB = nΓ + 2 is the number of independent properties. The nonindependent properties are
related to the independent properties through equations of state17

Bν B+j = fj (B1 , . . . ,Bν B), j = 1, 2, . . . .

As examples, we will see the equations of state for an ideal gas in Sections 5.3.2 and
5.5.5.

17 Equations of state are closely related to constitutive relations which are described in Chapter 6. Typically,
the term “equation of state” refers to a relationship between state variables that characterize the entire ther-
modynamic system, whereas “constitutive relations” relate density variables defined locally at continuum
points.
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5.2 Thermal equilibrium and the zeroth law of thermodynamics

Up to this point we have referred to temperature without defining it, relying on you, our
reader, for an intuitive sense of this concept. We now see how temperature can be defined
in a more rigorous fashion.

5.2.1 Thermal equilibrium

Our sense of touch provides us with the feeling that an object is “hotter than” or “colder
than” our bodies, and thus, we have developed an intuitive sense of temperature. But how can
this concept be made more explicit? We start by defining the notion of thermal equilibrium
between two systems.

Two systems A and B in thermodynamic equilibrium are said to be in thermal equilibrium
with each other, denoted A ∼ B, if they remain in thermodynamic equilibrium after
being brought into thermal contact while keeping their kinematic state variables and
their particle numbers fixed.

Thus, heat is allowed to flow between the two systems but they are not allowed to transfer
particles or perform work. Here, heat is taken as a primitive concept similar to force. Later,
when we discuss the first law of thermodynamics, we will discover that heat is simply a
form of energy.

A practical test for determining whether two systems, already in thermodynamic equi-
librium, are in thermal equilibrium, can be performed as follows: (1) thermally isolate both
systems from their common surroundings; (2) for each system, fix its number of particles
and all but one of its kinematic state variables and arrange for the systems’ surroundings
to remain constant; (3) bring the two systems into thermal contact; (4) wait until the two
systems are again in thermodynamic equilibrium. If the free kinematic state variable in
each system remains unchanged in stage (4), then the two systems were, in fact, in thermal
equilibrium when they were brought into contact.18

As an example, consider the two cylinders of compressed gas with frictionless movable
pistons shown in Fig. 5.1. In Fig. 5.1(a) the cylinders are separated and thermally isolated
from their surroundings. The forces FA and FB are mechanical boundary conditions applied
by the surroundings to the system. Both systems are in a state of thermodynamic equilib-
rium. Since the systems are already thermally isolated and the only extensive kinematic
quantity for a gas is its volume, steps (1)–(3) of the procedure are achieved by arranging for
FA and FB to remain constant and bringing the two systems into thermal contact. Thus, in
Fig. 5.1(b) the systems are shown in thermal contact through a diathermal partition, which
is a partition that allows only thermal interactions (heat flow) across it but is otherwise

18 Of course, at the end of stage (4) the systems will be in thermal equilibrium regardless of whether or not they
were so in the beginning. However, the purpose of the test is to determine whether the systems were in thermal
equilibrium when first brought into contact.
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(a) (b)

Fig. 5.1 Two cylinders of compressed gas, A and B, with movable frictionless pistons. (a) The cylinders are separated; each is
in thermodynamic equilibrium. (b) The cylinders are brought into contact via a diathermal partition.

impermeable and rigid. If the volumes remain unchanged, V A′ = V A and V B′ = V B, then
A and B are in thermal equilibrium.

The zeroth law of thermodynamics is a statement about the relationship between bodies
in thermal equilibrium:

Zeroth law of thermodynamics Given three thermodynamic systems, A, B and C, each
in thermodynamic equilibrium, then if A ∼ B and B ∼ C it follows that A ∼ C.

The concept of thermal equilibrium leads to a definition for temperature.19 If A ∼ B, we
say that the temperature of A is the same as that of B. Otherwise, we say that the hotter
system has a higher temperature.

5.2.2 Empirical temperature scales

In addition to defining temperature, thermal equilibrium also suggests an empirical approach
for defining temperature scales. The idea is to calibrate temperature using a thermodynamic
system that has only one independent kinematic state variable. Thus, its temperature is in
one-to-one correspondence with the value of its kinematic state variable. For example, the
old-fashioned mercury-filled glass thermometer is characterized by the height (volume) of
the liquid mercury in the thermometer. Denote the calibrating system as Θ and its single
kinematic state variable as θ. Now consider two systems, A and B. For each of these systems,
there will be values θA and θB for which Θ ∼ A and Θ ∼ B, respectively. Then, according
to the zeroth law, A ∼ B, if and only if θA = θB. This introduces an empirical temperature

19 For those readers who are excited about the mathematics of formal logic and set theory, we note that,
mathematically, thermal equilibrium is an equivalence relation. An equivalence relation ∼ is a binary relation
between elements of a set A which satisfies the following three properties: (1) reflexivity, i.e. if a ∈ A, then
a ∼ a; (2) symmetry, i.e. if a, b ∈ A, then a ∼ b implies b ∼ a; and (3) transitivity, i.e. if a, b, c ∈ A,
then a ∼ b and b ∼ c implies a ∼ c. If we consider two systems that are not in thermal equilibrium A �∼ B
and put them in thermal contact, heat will flow from one system to the other. Suppose it is observed that heat
flows from B to A, then we say that A is colder than B, A < B. Thus, the thermal equilibrium equivalence
relation ∼ and the colder than < relation define a “preordering” of systems in thermodynamic equilibrium. A
preordered set A is a set with binary relation ≤ such that for every a, b, c ∈ A the following two properties
hold: (1) reflexivity, i.e. a ≤ a and (2) transitivity, i.e. if a ≤ b and b ≤ c, then a ≤ c. If one adds the property
of antisymmetry, i.e. a ≤ b and b ≤ a implies a = b, then the relation is a “partial ordering.” However, this
is not the case here. For example, suppose A and B are two systems in thermodynamic equilibrium with the
same temperature. Then, A ≤ B and B ≤ A but A �= B. This preordering is what we call temperature.
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scale. Different temperature scales can be defined by setting T = f(θ), where f(θ) is a
monotonic function. In our example of the mercury-filled glass thermometer, the function
f(θ) corresponds to the markings on the side of the thermometer that identify the spacing
between specified values of the temperature T . The condition for thermal equilibrium
between two systems A and B is then

TA = TB. (5.1)

In fact, we will find that there exists a uniquely defined, fundamental temperature scale
called the thermodynamic temperature (or absolute temperature).20 The thermodynamic
temperature scale is defined for nonnegative values only, T ≥ 0, and the state of zero
temperature (which can be approached but never actually obtained by any real system) is
uniquely defined by the general theory. Thus, the only unambiguous part of the scale is the
unit of measure for temperature. In 1954, following a procedure originally suggested by
Lord Kelvin, this ambiguity was removed by the international community’s establishment
of the kelvin temperature unit K at the Tenth General Conference of Weights and Measures.
The kelvin unit is defined by setting the temperature at the triple point of water (the point
at which ice, water and water vapor coexist) to 273.16 K. (For a detailed explanation of
empirical temperature scales, see [Adk83, Section 2].)

5.3 Energy and the first law of thermodynamics

The zeroth law introduced the concepts of thermal equilibrium and temperature. The first
law establishes the fact that heat is actually just a form of energy and leads to the idea of
internal energy.

5.3.1 First law of thermodynamics

Consider a thermodynamic system that is in a state of thermodynamic equilibrium (charac-
terized by its temperature, the kinematic state variables and a fixed number of particles); call
it state 1. Now imagine that the system is perturbed by mechanical and thermal interactions
with its environment. Mechanical interaction results from tractions applied to its surfaces
and body forces applied to the bulk. Thermal interactions result from heat flux in and out
of the system through its surfaces and internal heat sources distributed through the body.
Due to this perturbation, the system undergoes a dynamical process and eventually reaches
a new state of thermodynamic equilibrium; call it state 2. During this process mechanical
work ΔWext

12 is performed on the system and heat ΔQ12 is transferred into the system. Next
consider a second perturbation that takes the system from state 2 to a third state, state 3.
This perturbation is characterized by the total work ΔWext

23 done on the system and heat
ΔQ23 transferred to the system. Now suppose we have the special case where state 3 coin-
cides with state 1. In other words, the second perturbation returns the system to its original

20 The theoretical foundation for the absolute temperature scale and its connection to the behavior of ideal gases
is discussed in Section 5.5.5
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state (original values of temperature and kinematic state variables) and also to the original
values of total linear and angular momentum. In this case the total external work is called
the work of deformation21 ΔWdef = ΔWext

12 + ΔWext
21 . This set of processes is called a

thermodynamic cycle, since the system is returned to its original state. Through a series
of exhaustive experiments in the nineteenth century, culminating with the work of English
amateur scientist James Prescott Joule,22 it was observed that in any thermodynamic cycle
the amount of mechanical work performed on the system is always in constant proportion
to the amount of heat expelled by the system:

ΔWdef = −JΔQ.

Here ΔWdef is the work (of deformation) performed on the system during the cycle, ΔQ

is the external heat supplied to the system during the cycle and J is Joule’s mechanical
equivalent of heat, which expresses the constant of proportionality between work and heat.23

Accordingly, we can define a new heat quantity that has the same units as work Q = JQ,
and then Joule’s observation can be rearranged to express a conservation principle for any
thermodynamic system subjected to a cyclic process:

ΔWdef + ΔQ = 0 for any thermodynamic cycle.

This implies the existence of a function that we call the internal energy U of a system in
thermodynamic equilibrium.24 The change of internal energy in going from one equilibrium
state to another is therefore given by

ΔU = ΔWdef + ΔQ. (5.2)

If we consider the possibility of changes in the total linear and angular momentum of
the system, we need to account for changes in the associated macroscopic kinetic energy
K. This is accomplished by the introduction of the total energy E ≡ K + U . Then the
total external work performed on a system consists of two parts: one that goes toward

21 Our definition of a thermodynamic equilibrium state involved the number of particles and macroscopically
observable state variables. The total linear and angular momentum was assumed to be zero. However, for our
discussion of the first law of thermodynamics we, temporally, relax this condition and allow nonzero (constant)
values of total linear and angular momentum. Thus, in the described cyclic process no external work goes
toward a change in linear or angular momentum and ΔWext = ΔWdef , the work of deformation.

22 Throughout most of his scientific career, Joule worked in his family’s brewery. Much of his research was
motivated by his desire to understand and improve the machines in the factory.

23 Due to the success of Joule’s discovery that heat and work are just different forms of energy, the constant
bearing his name has fallen into disuse because independent units for heat (such as the calorie) are no longer
part of the standard unit systems used by scientists.

24 To see this consider any two thermodynamic equilibrium states, 1 and 2. Suppose ΔU1→2 = ΔW + ΔQ for
one given process taking the system from 1 to 2. Now, let ΔU2→1 be the corresponding quantity for a process
that takes the system from 2 to 1. The conservation principle requires that ΔU2→1 = −ΔU1→2 . In fact, this
must be true for all processes that take the system from 2 to 1. The argument may be reversed to show that
all processes that take the system from 1 to 2 must have the same value for ΔU1→2 . We have found that the
change in internal energy for any process depends only on the beginning and ending states of thermodynamic
equilibrium. Thus, we can write ΔU1→2 = U2 −U1 , where U1 is the internal energy of state 1 and U2 is the
internal energy of state 2.



141 5.3 Energy and the first law of thermodynamics
�

a change in macroscopic kinetic energy and the work of deformation that goes toward a
change in internal energy: ΔWext = ΔK+ΔWdef . With these definitions, Eqn. (5.2) may
alternatively be given as

ΔE = ΔWext + ΔQ. (5.3)

Equation (5.3) (or equivalently Eqn. (5.2)) is called the first law of thermodynamics. In
words it is stated:

First law of thermodynamics The total energy of a thermodynamic system and its
surroundings is conserved.

Mechanical and thermal energy transferred to the system (and lost by the surrounding
medium) is retained in the system as part of its total energy, which consists of kinetic
energy associated with motion of the system’s particles (which includes the system’s gross
motion) and potential energy associated with deformation. In other words, energy can
change form, but its amount is conserved. Two useful conclusions can be drawn from the
above discussion:

1. Equation (5.2) implies that the value of U depends only on the state of thermodynamic
equilibrium. This means that it does not depend on the details of how the system
arrived at any given state, but only on the values of the independent state variables that
characterize the system. It is therefore a state variable itself. For example, taking the
independent state variables to be the number of particles, the values of the kinematic
state variables and the temperature, we have that25 U = Û(N,Γ, T ). Further, we note
that the internal energy is extensive.

2. Joule’s relation between work and heat implies that, although the internal energy is a
state variable, the work of deformation and heat transfer are not. Their values depend
on the process that occurs during a change of state. In other words, ΔWdef and ΔQ
are measures of energy transfer, but associated functions Wdef and Q (similar to the
internal energy U) do not exist. Once heat and work are absorbed into the energy of the
system they are no longer separately identifiable.

Another way of looking at this is that mechanical work and heat are just conduits
for transmitting energy. Consider the analogy depicted in Fig. 5.2. Two containers of
water are connected by two pipes, W and Q, with valves that control the flow of water.
The water flows from container A to container B. The total amount of water in both
containers is conserved, therefore the amount of water that flows through both pipes is

25 The symbol Û is used to indicate the particular functional form where the energy is determined by the values
of the number of particles, kinematic state variables and temperature.
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BA

Fig. 5.2 Analogy for the first law of thermodynamics. Two water containers, A and B, are connected by pipes, W and Q,
with valves. See text for explanation.

V + ΔVV F

(a)

F + ΔF

(b)

Fig. 5.3 Compressed gas in a cylinder with externally applied force equal to (a) F and (b) F + ΔF .

exactly equal to the amount of water lost by container A and gained by container B. (We
are assuming that no water is left in the pipes.) This is exactly what the first law states,
where the water represents energy, container A represents the surroundings, container
B represent the thermodynamic system and the pipes represent mechanical work and
heat transfer. Once the water from the two pipes has flowed into container B there is
no way to distinguish which water came through W and which water came through
Q. For this reason the amount of water transferred through one of the pipes, say W

(representing mechanical work, which we denoted ΔWdef ), is not the difference of a
function associated with B. This function, if it existed, would be the amount of water
in container B that flowed into it through pipe W . But there is no way to identify this
“special water” in system B after it has mixed in with the rest.

The following example demonstrates how the first law is applied to a physical system.

Example 5.1 (First law applied to a compressed gas) Consider a gas with a fixed number of N particles
in a thermally-isolated cylinder compressed by a frictionless piston with applied external force F > 0
as shown in Fig. 5.3. The cylinder has cross-sectional area A. Initially the gas is in thermodynamic
equilibrium and has a volume V (Fig. 5.3(a)). Then, the applied force is suddenly changed from F to
F + ΔF , after which it is held constant (Fig. 5.3(b)). This perturbation causes the gas to undergo a
dynamical process. As part of this process the piston moves and oscillates, but eventually the system
again reaches thermodynamic equilibrium with the new constant volume V + ΔV .

The first law tells us that the change of internal energy is equal to the external heat transferred to
the system plus the total work of deformation delivered to the system. Here, the system is thermally
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isolated, so only the work of deformation contributes. The force of F + ΔF does an amount of work
given by

ΔWdef = −(F + ΔF )
ΔV

A
.

Thus, the change of the internal energy of the gas is given by

ΔU = ΔWdef = −(F + ΔF )
ΔV

A
.

If we assume that the volume decreases (ΔV < 0) in response to an increase in force (ΔF > 0), or
vice versa – as we would expect from our physical experiences – then we see that the internal energy
increases during the process. However, it is interesting to note that the first law tells us nothing about
how ΔV is related to ΔF . In particular, nothing we have said so far prohibits the volume of the gas
from increasing when the external force is increased (in this case the internal energy would decrease
in accordance with the first law). In fact, we will have to wait until we introduce the second law of
thermodynamics in order to obtain a complete description of a thermodynamic system. Once such
a complete description is available we will be able to determine not only the direction in which the
piston will move, but also the distance it will move when the applied force is changed from F to
F + ΔF .

5.3.2 Internal energy of an ideal gas

It is instructive to demonstrate the laws of thermodynamics with a simple material model.
Perhaps the simplest model is the ideal gas, where the atoms are treated as particles of
negligible radius which do not interact except when they elastically bounce off each other.26

This idealization becomes more and more accurate as the pressure of a gas is reduced.27

The reason for this is that the density of a gas goes to zero along with its pressure. At very
low densities the size of an atom relative to the volume it occupies becomes negligible.
Since the atoms in the gas are far apart most of the time, the interaction forces between
them also become negligible.

Insight into the internal energy of an ideal gas was gained from Joule’s experiments
mentioned earlier. Joule studied the free expansion of a thermally-isolated gas (also called
“Joule expansion”) from an initial volume to a larger volume and measured the temper-
ature change. The experiment is performed by rapidly removing a partition that confines
the gas to the smaller volume and allowing it to expand. Since no mechanical work is
performed on the gas (ΔWdef = 0) and no heat is transferred to it (ΔQ = 0), the
first law (Eqn. (5.2)) is simply ΔU = 0, i.e. the internal energy is constant in any such
experiment.

26 The idea of noninteracting particles that can still bounce off each other may appear baffling to some readers.
The key property of an ideal gas is that its particles do not interact. However, collisions between particles
are necessary to randomize the velocity distribution (see, for example, [Les74]). The combination of these
incompatible behaviors is the idealization we refer to as an “ideal gas.”

27 In Section 5.5.5 we give the formal definition of pressure and other intensive state variables that arise naturally
as part of thermodynamic theory.
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Now, recall that volume is the only kinematic state variable for a gas, the total differential
of internal energy associated with an infinitesimal change of state is thus28

dU =
∂Û
∂N

∣∣∣∣∣
V ,T

dN +
∂Û
∂V

∣∣∣∣∣
N,T

dV +
∂Û
∂T

∣∣∣∣∣
N,V

dT

=
∂Û
∂N

∣∣∣∣∣
V ,T

dN +
∂Û
∂V

∣∣∣∣∣
N,T

dV + nCvdT, (5.4)

where n = N/NA is the number of moles of gas (with Avogadro’s constant NA =
6.022 × 1023 mol−1) and

Cv =
1
n

∂Û
∂T

∣∣∣∣∣
N,V

(5.5)

is the molar heat capacity at constant volume.29 The molar heat capacity of an ideal gas is a
universal constant. For a monoatomic ideal gas it is Cv = 3

2 NAkB = 12.472 J·K−1 ·mol−1 ,
where kB = 1.3807 × 10−23 J/K is Boltzmann’s constant (see Exercise 7.8 in [TM11] for
a derivation of Cv for an ideal gas based on statistical mechanics). For a real gas, Cv is a
material property which can depend on the equilibrium state.

For a Joule expansion corresponding to an infinitesimal increase of volume dV at constant
mole number, the first law requires dU = 0. Joule’s experiments showed that the temperature
of the gas remained constant as it expanded (dT = 0), therefore the first and third terms of

28 The “vertical bar” notation ∂�/∂T |X is common in treatments of thermodynamics. It is meant to explicitly
indicate which state variables (X ) are to be held constant when determining the value of the partial derivative.
For example ∂U/∂T |N ,V ≡ ∂Û(N, V, T )/∂T . However, ∂U/∂T |N ,p is completely different. It is the
partial derivative of the internal energy as a function of the number of particles, the pressure and temperature:
U = Ũ(N, p, T ). That is, ∂U/∂T |N ,p ≡ ∂Ũ(N, p, T )/∂T . The main advantage of the notation is that
it allows for the use of a single symbol (U ) to represent the value of a state variable. Thus, it avoids the
use of individual symbols to indicate the particular functional form used to obtain the quantity’s value:
U = Û(N, V, T ) = Ũ(N, p, T ). However, we believe this leads to a great deal of confusion, obscures the
mathematical structure of the theory and often results in errors by students and researchers who are not vigilant
in keeping track of which particular functional form they are using. In this book, we have decided to keep
the traditional notation while also using distinct symbols to explicitly indicate the functional form being used.
Thus, the vertical bar notation is, strictly, redundant and can be ignored if so desired.

29 Formally, the molar heat capacity of a gas at constant volume is defined as

Cv =
1
n

ΔQV

ΔT
,

where ΔQV is the heat transferred under conditions of constant volume and n is the constant number of
moles of gas. This is the amount of heat required to change the temperature of 1 mole of material by 1 degree.
For a fixed amount of gas at constant volume, the first law reduces to ΔU = ΔQ (since no mechanical work
is done on the gas), therefore the molar heat capacity is also

Cv =
1
n

∂Û
∂T

∣∣∣∣∣
N ,V

.

Similar properties can be defined for a change due to temperature at constant pressure and changes due to
other state variables. See [Adk83, Section 3.6] for a full discussion.
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the differential in Eqn. (5.4) drop out and we have30

∂Û
∂V

∣∣∣∣∣
N,T

= 0. (5.6)

This is an important result, since it indicates that the internal energy of an ideal gas does
not depend on volume:31

U = Û(n, V, T ) = nU0 + nCvT. (5.7)

Here the number of moles n has been used to specify the amount of gas (instead of
the number of particles N ) and U0 is the molar internal energy of an ideal gas at zero
temperature. Equation (5.7) is called Joule’s law. It is exact for ideal gases, by definition,
and provides a good approximation for real gases at low pressures.

Joule’s law is an example of an equation of state as defined in Section 5.1.4. Of course,
other choices for the independent state variables could be made. For example, instead of n,
V and T , we can choose to work with n, V and U , as the independent variables, in which
case the equation of state for the ideal gas would be

T = T̂ (n, V,U) = (U − nU0)/nCv .

Another possibility is to use n, p and T as the independent state variables, where p is
the pressure – the thermodynamic tension associated with the volume as described in
Section 5.5.5. In this case the internal energy would be expressed as U = Ũ(n, p, T ).
It is important to understand that in this case the internal energy would not be given by
Eqn. (5.7). It would depend explicitly on the pressure. See Section 7.3.5 in [TM11] for a
derivation of the equations of state for an ideal gas using statistical mechanics.

We now turn to two examples demonstrating how the first law can be used to compute
the change in temperature of a gas.

Example 5.2 (Heating of a gas) In Example 5.1 we saw that a change in the external force compressing
a gas in a thermally-isolated cylinder with a frictionless piston caused the gas to undergo a change of
state that led to a change of its volume and its internal energy. Now, suppose the gas is argon, which is
well approximated as an ideal gas, for which the molar heat capacity is Cv = 12.472 J ·K−1 ·mol−1 ,
and that in the initial state there are n = 2 mol at a temperature of T = 300 K, with initial volume
V = 0.5 m3 . The piston cross-sectional area is A = 0.01 m2 . The force is increased from F = 100 N
by ΔF = 30 N and as a result of the ensuing dynamical process the system changes its volume

30 Actually, the temperature of a real gas does change in free expansion. However, the effect is weak and Joule’s
experiments lacked the precision to detect it. For an ideal gas, the change in temperature is identically zero.
See Section 7.3.5 of [TM11].

31 This form for the internal energy may be obtained as follows. First, we use Joule’s result to obtain Û(n, V, T ) =
f (n, T ). Second, we note that Eqn. (5.5) gives ∂f/∂T = nCv , where Cv is a constant. Third, we integrate
this expression to obtain f = nCv T + g(n). Finally, we note that since U , n and V are extensive and T is
intensive we must have M Û(n, V, T ) = Û(Mn, MV, T ), where M is a positive real number. This implies
that g must be a first-order homogeneous function (equivalently, a linear function), i.e. g(n) = nU0 , where
U0 , is a constant.
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Fig. 5.4 A pendulum allowed to swing in a thermally-isolated fixed volume compartment containing an ideal gas.

by ΔV = −0.07 m3 (a value that depends on the original state of equilibrium and ΔF ). We are
interested in computing the new temperature of the gas.

From the solution to Example 5.1 we find that the change of internal energy is

ΔU = −(F + ΔF )
ΔV

A
= 910 J.

Using Eqn. (5.7) we find that ΔT = ΔU/nCv = 910 J/(2.0 mol ·12.47 J ·K−1 ·mol−1 ) = 36.5 K,
and finally we find the new temperature is T = 336.5 K.

Example 5.3 (Heating of a gas by a swinging pendulum) Figure 5.4 shows a pendulum swinging due
to gravity in a gas, which (for small amplitude oscillations) is an example of a damped harmonic
oscillator. The pendulum is thermally isolated, so that no heat is transferred to it, and has length L and
mass m. Suppose the pendulum is initially at rest at an angle θ0 and the system is in thermodynamic
equilibrium. Then the pendulum is released and after a dynamical process, where the gas interacts
with the pendulum as it swings back and forth, the pendulum eventually comes to rest at θ = 0. As a
result of this process, the gas undergoes a change of state and its temperature increases.

We will treat the gas and pendulum as a single system. The container does not change volume
and no heat is transferred to the system. However, gravity acts on the pendulum, and therefore, does
work on the system. Therefore, the first law (Eqn. (5.2)) reduces to ΔU = ΔWdef . The work done
by gravity in moving the pendulum from θ = θ0 to θ = 0 must then be equal to the change in the
internal energy of the gas

ΔU =
1
2
mgL(1 − cos θ0 ) ≈

1
2
mgLθ2

0 , (5.8)

where we have assumed that θ0 � 1 so that cos θ0 ≈ 1 − θ2
0 . Using Eqn. (5.7), the change in

internal energy is ΔU = nCv ΔT , where n is the number of moles of gas. Equating this relation with
Eqn. (5.8) gives

ΔT =
mg

2nCv
Lθ2

0 . (5.9)

As a numerical example, assume the following parameters for the pendulum: m = 1 kg, g =
9.81 m/s2 , L = 1 m, θ0 = 0.1. Take the gas to be air at normal room temperature and pressure for
which Cv = 20.85 J · K−1 · mol−1 and ρ = 1.29 kg/m3 . If the container is 2 m × 2 m × 2 m, then
the mass of the gas is mgas = 8ρ = 10.32 kg. The molar mass of air is M = 28.97× 10−3 kg/mol.
Thus, the number of moles of air in the container is n = mair/M = 356.2 mol. Substituting the
above values into Eqn. (5.9), the result is that the gas will heat by ΔT = 6.60 × 10−6 K.
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5.4 Thermodynamic processes

Equilibrium states are of great interest, but the true power of the theory of thermodynamics
is its ability to predict the state to which a system will transition when it is perturbed from
equilibrium. In fact, it is often of interest to predict an entire series of equilibrium states
that will occur when a system is subjected to a series of perturbations.

5.4.1 General thermodynamic processes

We define a thermodynamic process as an ordered set or sequence of equilibrium states.
This set need not correspond to any actual series followed by a real system. It is simply
a string of possible equilibrium states. For system B with independent state variables
B = (B1 ,B2 , . . . ,BνB), a thermodynamic process containing M states is denoted by

B = (B(1) ,B(2) , . . . ,B(M )),

where B(i) = (B(i)
1 ,B(i)

2 , . . . ,B(i)
ν B ) is the ith state in the thermodynamic process. The

behavior of the dependent state variables follows through the appropriate equations of
state. Examples 5.2 and 5.3 above concern thermodynamic systems that undergo a “two-
stage” (M = 2) thermodynamic process. If M = 3 and B(1) = B(3) , then we have a cyclic
three-stage process such as described in Section 5.3. A general thermodynamic process
can have any number of states M and there is no requirement that consecutive states in the
process are close to each other. That is, the values of the independent state variables for
stages i and i + 1, B(i)

α and B(i+1)
α , respectively, need not be related in any way.

5.4.2 Quasistatic processes

Although the laws of thermodynamics apply equally to all thermodynamic processes, those
processes that involve a sequence of small increments to the independent state variables
are of particular interest. In the limit, as the increments become infinitesimal, the process
becomes a continuous path in the thermodynamic state space (the νB-dimensional space of
independent state variables):

B = B(s), s ∈ [0, 1].

Here functional notation is used to indicate the continuous variation of the independent
state variables and s is used as a convenient variable to measure the “location” along the
process.32 Such a process is called quasistatic.33

Quasistatic processes are singularly useful within the theory of thermodynamics for two
reasons. First, such processes can be associated with phenomena in the real world where
small perturbations applied to a system (such as infinitesimal increments of the independent

32 The choice of domain for s is arbitrary and the unit interval used here bears no special significance.
33 In Section 5.5.5 we will consider the system’s interaction with its surroundings as it undergoes a quasistatic

process. There we will find that every such process is always to be associated with a specific amount of work
and a separate specific amount of heat (and not just a total amount of energy) that are transferred to the system.
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state variables) occur on a time scale that is significantly slower than that required for the
system to reach equilibrium. In the limit as the perturbation rate becomes infinitely slower
than the equilibration rate, the thermodynamic process becomes quasistatic. Technically, no
real phenomena are quasistatic since the time required for a system to reach true equilibrium
is infinite. However, in many cases the dynamical processes that lead to equilibrium are
sufficiently fast for the thermodynamic process to be approximately quasistatic. This is
particularly the case if we relax the condition for thermodynamic equilibrium and accept
metastable equilibrium instead. Indeed, the world is replete with examples of physical
phenomena that can be accurately analyzed within thermodynamic theory when they are
approximated as quasistatic processes.

Second, general results of thermodynamic theory are best expressed in terms of infinites-
imal changes of state. These results may then be integrated along any quasistatic process
in order to obtain predictions of the theory for finite changes of state. The expressions
associated with such finite changes of state are almost always considerably more complex
than their infinitesimal counterparts and often are only obtainable in explicit form once the
equations of state for a particular material are introduced.

5.5 The second law of thermodynamics and the direction of time

The first law of thermodynamics speaks of the conservation of energy during thermody-
namic processes, but it tells us nothing about the direction of such processes. How is it
that if we watch a movie of a shattered glass leaping onto a table and reassembling, we
immediately know that it is being played in reverse? The first law provides no answer – it
can be satisfied for any process. Consider the following scenario:

1. A rigid hollow sphere filled with an ideal gas is placed inside of a larger, otherwise
empty, sealed box that is thermally isolated from its surroundings.

2. A hole is opened in the sphere.
3. The gas quickly expands to fill the box.
4. After some time, the gas spontaneously returns, through the hole, to occupy only its

original volume within the sphere.

This scenario is perfectly legal from the perspective of the first law. In fact, we showed in
our discussion of Joule’s experiments in Section 5.3.2 that the internal energy of an ideal
gas remains unchanged by the free expansion in step 3. It is therefore clearly not a violation
of the first law for the gas to return to its initial state. However, our instincts, based on
our familiarity with the world, tell us that this process of “reverse expansion” will never
happen.

The thermodynamic process discussed in Examples 5.1 and 5.2 is another illustration
of this type of scenario. If one starts with the system in the initial equilibrium state and
then perturbs it by incrementing the applied force by a fixed finite amount, the system will
transition to a particular final equilibrium state. However, if one starts with the system in
the “final” equilibrium state and perturbs it by decrementing the applied force, we know
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Fig. 5.5 An isolated system consisting of a rigid, sealed and thermally isolated cylinder of total volume V ; an internal
frictionless, impermeable piston; and two subsystems A and B containing ideal gases. (a) Initially the piston is fixed
and thermally insulating and the gases are in thermodynamic equilibrium. (b) The new states of thermodynamic
equilibrium obtained following a dynamical process once the piston becomes diathermal and is allowed to move.

from observation that the system will not transition to the original “initial” state. Instead it
transitions to a third state that is distinct from the previous two. In other words, for finite
increments to the force, the two-stage thermodynamic process of Examples 5.1 and 5.2 has
a unique direction.34 The same can be said for the above scenario of an ideal gas undergoing
free expansion. In fact, we can relate this directionality of thermodynamic processes to our
concept of time and why we perceive that time always evolves from the “present” to the
“future” and never from the “present” to the “past.” Clearly, something in addition to the
first law is necessary to describe the directionality of thermodynamic processes.

5.5.1 Entropy

Suppose we have a rigid, sealed and thermally-isolated cylinder of volume V with a
frictionless and impermeable internal piston that divides it into two compartments, A and B

of initial volumes V A and V B = V −V A, respectively, as shown in Fig. 5.5(a). Initially, the
piston is fixed in place and thermally isolating. Compartment A is filled with NA particles
of an ideal gas with internal energy UA and compartment B is filled with NB particles
of another ideal gas with internal energy UB. Thus, the composite system’s total internal
energy is U = UA +UB. As long as the piston remains fixed and thermally insulating, A and
B are isolated systems. If we consider the entire cylinder as a single isolated thermodynamic
system consisting of two subsystems, the piston represents a set of internal constraints.
We are interested in answering the following questions. If we release the constraints by
allowing the piston to move and to transmit heat, in what direction will the piston move?
How far will it move? And, why is the reverse process never observed, i.e. why does the
piston never return to its original position? Since nothing in our theory so far is able to
provide the answers to these questions, we postulate the existence of a new state variable,
related to the direction of thermodynamic processes, that we call entropy.35 We will show
below that requiring this variable to satisfy a simple extremum principle (the second law of

34 We will see later that in the limit of an infinitesimal increment of force the process, in principle, can occur in
either direction.

35 The word entropy was coined in 1865 by the German physicist Rudolf Clausius as a combination of the Greek
words en- meaning in and tropē meaning change or turn.
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thermodynamics) is sufficient to endow the theory with enough structure to answer all of
the above questions.

We denote entropy by the symbol S and assume that (for all uniform systems whose state
are completely determined by the quantities N , Γ and U) it has the following properties:36

1. Entropy is extensive, therefore the entropy of a collection of systems is equal to the sum
of their entropies:

SA+B+C+ ... = SA + SB + SC + · · · . (5.10)

2. Entropy is a monotonically increasing function of the internal energy U , when the
system’s independent state variables are chosen to be the number of particles N , the
extensive kinematic state variables Γ and the internal energy U

S = S(N,Γ,U). (5.11)

Here S(·, ·, ·) indicates the functional dependence of S on its arguments.37 Note that this
monotonicity condition only applies to the function S(N,Γ, ·), where N and Γ are held
constant. Thus, this condition does not restrict, in any way, how the entropy depends on
N and Γ.

3. S(·, ·, ·) is a continuous and differentiable function of its arguments. This assumption
and the assumption of monotonicity imply that Eqn. (5.11) is invertible, i.e.

U = U(N,Γ,S). (5.12)

In Eqn. (5.12), we are using the number of particles, extensive kinematic state variables and
the entropy as the independent state variables to identify any given state of thermodynamic
equilibrium.

5.5.2 The second law of thermodynamics

The direction of physical processes can be expressed as a constraint on the way entropy can
change during any process. This is what the second law of thermodynamics is about. There
are many equivalent ways that this law can be stated. We choose the statement attributed to
Rudolf Clausius, which we find to be physically most transparent:

Second law of thermodynamics An isolated system in thermodynamic equilibrium
adopts the state that has the maximum entropy of all states consistent with the imposed
kinematic constraints.

36 At this stage, these assumptions are nothing more than educated guesses which can be taken to be axioms.
However, we will see below that with these properties entropy can be used to predict the direction of physical
processes.

37 This monotonicity condition should not be confused with the second law of thermodynamics. As we will
see in Section 5.5.4, the physical reason for requiring the monotonicity condition is that it ensures that the
temperature is always positive. However, it has nothing to do with the second law, which we see in the next
section is a statement about how the entropy function of an isolated system depends on N and Γ.



151 5.5 The second law of thermodynamics and the direction of time
�

Let us see how the second law is applied to the cylinder with an internal piston shown
in Fig. 5.5 and introduced in the previous section. The second law tells us that once the
internal constraints are removed and the piston is allowed to move and to transmit heat, the
system will evolve in order to maximize its entropy as shown in Fig. 5.5(b). At the end of
this process, the subsystems A and B are again in thermodynamic equilibrium with state
variables (NA, V A′

,UA′) and (NB, V B′
,UB′). We assume that the piston is impermeable

so that the numbers of atoms do not change (i.e. NA′ = NA and NB′ = NB). Since the
composite system is isolated, its total volume and internal energy must be conserved and
this implies that V B′ = V − V A′

and UB′ = U − UA′
. Thus, the equilibrium value of the

entropy S ′ for the isolated composite system is

S ′ = max
0≤V A′≤V ,

UA′∈R

[
SA(NA, V A′

,UA′
) + SB(NB, V − V A′

,U − UA′
)
]
,

where SA(·, ·, ·) and SB(·, ·, ·) are the entropy functions for the ideal gases of A and B,
respectively.38 The value of V A′

obtained from the above maximization problem determines
the final position of the piston, and thus provides the answers to the questions posed earlier
in this section. In particular, we see that any change of the volume of A away from the
equilibrium value V A′

must necessarily result in a decrease of the total entropy. As we
will see next, this would violate the second law of thermodynamics. This violation of the
maximum entropy law shows us why any real thermodynamic process (and therefore time)
has a unique direction and is never observed to occur in reverse.

It is useful to rephrase the second law in an alternative manner:

Second law of thermodynamics (alternative statement) The entropy of an isolated
system can never decrease in any process. It can only increase or stay the same.

Mathematically this statement is

ΔS ≥ 0, (5.13)

for any isolated system that transitions from one equilibrium state to another in response
to the release of an internal constraint. It is trivial to show that the Clausius statement of
the second law leads to this conclusion. Consider a process that begins in state 1 and ends
in state 2. The Clausius statement of the second law tells us that S(2) ≥ S(1) , therefore
ΔS = S(2) − S(1) ≥ 0, which is exactly Eqn. (5.13).

Note that the statements of the second law given above have been careful to stress that
the law only holds for isolated systems. The entropy of a system that is not isolated can
and often does decrease in a process. We will see this later.

It is worth emphasizing a subtle feature of the above discussion. In order to complete
the theory, we introduced a new state variable – the entropy – which exists for every
thermodynamic system, but whose value can be used to determine the direction and final

38 Note that, although the internal energy is extensive, it is not required to be positive. In fact, in principle UA′

may take on any value as long as UB′
is then chosen to ensure conservation of energy. Thus, the maximization

with respect to energy considers all possible values of UA′
.
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result only of processes that occur in isolated systems. Isolated systems are special in the
sense that all of their extensive state variables, except entropy, must be conserved (fixed)
during any process. In particular, all the kinematic state variables must be fixed. If this were
not the case, when any kinematic state variable changed work would be done on the system
by the external universe and the system would cease to be isolated. Thus, it is important
to use only conserved state variables in the set of independent state variables. Accordingly,
above we have introduced the entropy equation of state S = S(·, ·, ·) as a function of the
number of particles N , the kinematic state variables Γ and the internal energy U . This
function is the one to which it is appropriate to apply the extremum principle.

5.5.3 Stability conditions associated with the second law

Our discussion of equilibrium has so far been limited to spatially homogeneous states. We
now consider the conditions that the entropy function, S(N,Γ,U), must satisfy to ensure
the stability of the homogeneous state.

Consider an isolated composite system in thermodynamic equilibrium with N ′ = 2N

particles, kinematic state variables Γ′ = 2Γ and internal energy U ′ = 2U , consisting of
two identical subsystems with N particles, kinematic state variables Γ and internal energy
U each. Then the total entropy of the two subsystems is

S = S(N,Γ,U) + S(N,Γ,U) = 2S(N,Γ,U).

The second law tells us that the entropy is maximized in this state of equilibrium, where
both subsystems are in identical states. In other words, since the two systems are the
same, the composite system is spatially homogeneous. However, in general the spatially
homogeneous state need not maximize the entropy.

To see this, we consider what happens if some amount of energy ΔU is transferred from
one subsystem to the other. The total energy must be conserved because the composite
system is isolated. For such an energy transfer, the total entropy becomes

S = S(N,Γ,U + ΔU) + S(N,Γ,U − ΔU).

The properties, given in Section 5.5.1, for the entropy are not sufficient to determine the
sign of the entropy change ΔS = S(N,Γ,U + ΔU) + S(N,Γ,U −ΔU)− 2S(N,Γ,U).
If the entropy increases (ΔS > 0) due to energy transfers between subsystems a phase
transition occurs and the system becomes a spatially inhomogeneous mixture of two dis-
tinct equilibrium states. This is an example of a material instability, and we say that the
equilibrium state B of the system (identified by39 B = (N,Γ,U)) is unstable with respect to
changes of internal energy. An example of this is when a system of water vapor is cooled to
its dew point. When this occurs, some of the water transitions from vapor to liquid and the
previously spatially homogeneous vapor system splits into two subsystems: one subsystem
in the liquid phase and the other in the vapor phase.

39 Which is the same as that for U ′ = 2U , Γ′ = 2Γ, N ′ = 2N , or, in fact, any multiple of these values since
the state variables are extensive.
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The alternative case is where the entropy decreases (ΔS < 0) when the energy transfer
occurs such that

S(N,Γ,U + ΔU) + S(N,Γ,U − ΔU) ≤ 2S(N,Γ,U), for all ΔU . (5.14)

In this case we say that the equilibrium state B is stable with respect to changes of internal
energy. A necessary condition for stability in this sense is that the entropy function be
concave at B, i.e. the second partial derivative of the entropy function with respect to the
internal energy must be nonpositive:

∂2S
∂U2

∣∣∣∣
N,Γ

≤ 0. (5.15)

This can be obtained from Eqn. (5.14) by moving all terms to the left-hand side of the
inequality, dividing by (ΔU)2 and taking the limit as ΔU goes to zero. However, it is
important to note that this is not sufficient for stability. Although it ensures that Eqn. (5.14)
is satisfied for infinitesimal values of ΔU (i.e. dU) it does not guarantee that it is satisfied
for all values of ΔU . If a material’s entropy function satisfies Eqn. (5.14) for fixed, but
arbitrary, values of N , Γ and U , and for all ΔU , i.e. every equilibrium state is stable with
respect to changes of internal energy, then we say that the material is stable with respect to
changes of internal energy. The entropy function of such a material is concave everywhere
with respect to internal energy.

In the above discussion we have considered transfers of energy between the two sub-
systems, but there is nothing special about the energy; We could have instead considered
transfers of particles or transfers of any one of the kinematic state variables. The same
arguments can be carried out in each of these cases and similar results are obtained.40

Thus, if a material’s entropy function is concave everywhere with respect to N , then we
say that the material is stable with respect to particle transfers and similarly for changes
of the kinematic state variables. Finally, we can consider simultaneous transfers of two (or
more) quantities, e.g. a transfer of particles and volume between the subsystems. Again,
similar results are obtained. Thus, if a material’s entropy function is concave everywhere
with respect to all variables,41 then we say that the material is stable.

5.5.4 Thermal equilibrium from an entropy perspective

In order to see the connection between entropy and the other thermodynamic state variables
whose physical significance is more clear to us (e.g. temperature, volume and internal
energy), we revisit the conditions of thermal equilibrium between two subsystems of an
arbitrary isolated thermodynamic system discussed earlier in Section 5.2.

Let C be an isolated thermodynamic system made up of two subsystems, A and B, that are
composed of (possibly different) stable materials. We take the independent state variables

40 Again, we emphasize that these constraints apply to the particular functional form S(N, Γ,U). If different
independent state variables are used, then the functional form for entropy changes, and accordingly the
constraints take different functional forms as well.

41 Note that this implies that the matrix of all second-order partial derivatives of S is everywhere negative semi-
definite. Thus, it is necessary for stability (but not sufficient) that a relation such as Eqn. (5.15) is satisfied for
each of the arguments of S.



154 Thermodynamics
�

for each system to be the number of particles N , extensive kinematic state variables Γ and
the internal energy U . Since C is isolated, according to the first law its internal energy is
conserved, i.e. UC = UA + UB = constant. This means that any change in internal energy
of subsystem A must be matched by an equal and opposite change in B:

ΔUA + ΔUB = 0. (5.16)

Like the internal energy, entropy is also extensive and therefore the total entropy of the
composite system is SC = SA +SB. However, entropy is generally not constant in a change
of state of an isolated system. The total entropy is a function of the two subsystems’ state
variables NA, ΓA, UA, NB, ΓB and UB. The first differential of the total entropy is then42

dSC =
∂SA

∂NA

∣∣∣∣
ΓA,UA

dNA +
∑
α

∂SA

∂ΓA
α

∣∣∣∣
N A,UA

dΓA
α +

∂SA

∂UA

∣∣∣∣
N A,ΓA

dUA

+
∂SB

∂NB

∣∣∣∣
ΓB,UB

dNB +
∑

β

∂SB

∂ΓB
β

∣∣∣∣∣
N B,UB

dΓB
β +

∂SB

∂UB

∣∣∣∣
N B,ΓB

dUB.

Suppose we fix the values of A’s kinematic state variables ΓA and its number of particles
NA (then the corresponding values for B are determined by constraints imposed by C’s
isolation), but allow for energy (heat) transfer between A and B. Then the terms involving
the increments of the extensive kinematic state variables and the increments of the particle
numbers drop out. Further, since C is isolated, the internal energy increments must satisfy
Eqn. (5.16), so likewise dUA = −dUB. All of these considerations lead to the following
expression for the differential of the entropy of system C:

dSC =

[
∂SA

∂UA

∣∣∣∣
N A,ΓA

− ∂SB

∂UB

∣∣∣∣
N B,ΓB

]
dUA. (5.17)

Now, according to our definition in Section 5.2, A and B are in thermal equilibrium if they
remain in equilibrium when brought into thermal contact. This implies that the composite
system C, subject to the above conditions, is in thermodynamic equilibrium when A and
B are in thermal equilibrium. Thus, according to the second law of thermodynamics, the
first differential of the entropy, Eqn. (5.17), must be zero for all dUA in this case (since the
entropy is at a maximum). This leads to

∂SA

∂UA

∣∣∣∣
N A,ΓA

=
∂SB

∂UB

∣∣∣∣
N B,ΓB

(5.18)

as the condition for thermal equilibrium between A and B in terms of their entropy functions.
Now recall from Eqn. (5.1) that thermal equilibrium requires TA = TB or equivalently
1/TA = 1/TB. (Here, we are referring explicitly to the thermodynamic temperature scale.)
Comparing these with the equation above it is clear that ∂S/∂U is either43 T or 1/T . To

42 The notation ∂S/∂Γα

∣∣
N ,U refers to the partial derivative of the function S(N, Γ,U) with respect to the

αth component of Γ (while holding all other components of Γ, N , and U fixed). We leave out the remaining
components of Γ from the list at the bottom of the bar in order to avoid extreme notational clutter.

43 Instead of T or 1/T any monotonically increasing or decreasing functions of T would do. We discuss this
further below.
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decide which is the correct definition, we recall that the concept of temperature also included
the idea of “hotter than.” Thus, we must test which of the above options is consistent with
our definition that if TA > TB, then heat (energy) will spontaneously flow from A to B

when they are put into thermal contact.
To do this, consider the same combination of systems as before, and now assume that

initially A has a higher temperature than B, i.e. TA > TB. Since the composite system is
isolated, our definition of temperature and the first law of thermodynamics imply that heat
will flow from A to B which will result in a decrease of UA and a correspondingly equal
increase of UB. However, the second law of thermodynamics says that such a change of
state can only occur if it increases the total entropy of the isolated composite system. Thus,
we must have that

dSC =

[
∂SA

∂UA

∣∣∣∣
N A,ΓA

− ∂SB

∂UB

∣∣∣∣
N B,ΓB

]
dUA > 0.

Since we expect dUA < 0, this implies that

∂SA

∂UA

∣∣∣∣
N A,ΓA

<
∂SB

∂UB

∣∣∣∣
N B,ΓB

. (5.19)

The derivatives in Eqn. (5.19) are required to be nonnegative by the monotonically increas-
ing nature of the entropy (see property 2 on page 150). Therefore since TA > TB, the
definition that satisfies Eqn. (5.19) is44

∂S
∂U

∣∣∣∣
N,Γ

=
1
T

, (5.20)

where S, U and T refer to either system A or system B. The inverse relation is

∂U
∂S

∣∣∣∣
N,Γ

= T. (5.21)

Equations (5.20) and (5.21) provide the key link between entropy, temperature and the
internal energy.

To ensure that the extremum point at which dSC = 0 is a maximum, we must also require
d2SC ≤ 0. Physically, this means that the system is in a state of stable equilibrium. Let

44 As noted above, any monotonically decreasing function would do here, i.e. ∂S/∂U = f−(T ). The choice of
a particular function can be interpreted in many ways. From the above point of view the choice defines what
entropy is in terms of the temperature. From another point of view, where we apply the inverse function to obtain
f−1
− (∂S/∂U) = T , it defines the temperature scale in terms of the entropy. It turns out that the definition

selected here provides a clear physical significance to both the thermodynamic temperature and the entropy.
When viewed from a microscopic perspective, as is done in Section 7.3.4 of [TM11], this definition of entropy
has a natural physical interpretation. When viewed from the macroscopic perspective the thermodynamic
temperature scale is naturally related to the behavior of ideal gases as is shown in Section 5.5.5.
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us explore the physical restrictions imposed by this requirement. The second differential
follows from Eqn. (5.17) as

d2SC =

[
∂2SA

∂(UA)2

∣∣∣∣
N A,ΓA

+
∂2SB

∂(UB)2

∣∣∣∣
N B,ΓB

]
(dUA)2 . (5.22)

In Section 5.5.3, we established that for a stable material ∂2S/∂U2 ≤ 0. Therefore, we
immediately see that d2SC ≤ 0 and we have confirmed that the state of thermal equilibrium
between A and B satisfies the second law of thermodynamics.

At this stage, it is interesting to note the following identity:

∂2S
∂U2

∣∣∣∣
N,Γ

=
∂

∂U

∣∣∣∣
N,Γ

∂S
∂U

∣∣∣∣
N,Γ

=
∂

∂U

∣∣∣∣
N,Γ

(
1
T

)
= − 1

T 2

∂T̂

∂U

∣∣∣∣∣
N,Γ

= − 1
T 2nCv

≤ 0,

(5.23)
where we have used Eqns. (5.15) and (5.20), Cv is the molar heat capacity at constant
volume defined in Eqn. (5.5) and n is the number of moles. This shows that all stable
materials, necessarily, have Cv > 0.

The introduction of entropy almost seems like the sleight of hand of a talented magician.
This variable was introduced without any physical indication of what it could be. It was
then tied to the internal energy and temperature through the thought experiment described
above. However, this does not really provide a greater sense of what entropy actually is. An
answer to that question is outside the scope of this book. However, it is discussed in detail
within the context of statistical mechanics in Chapter 7 of the companion book to this one
[TM11], where we make a connection between the dynamics of the atoms making up a
physical system and the thermodynamic state variables introduced here. In particular, in
Section 7.3.4 of [TM11], we show that entropy has a very clear and, in retrospect, almost
obvious significance. It is a measure of the number of microscopic kinematic vectors
(microscopic states) that are consistent with a given set of macroscopic state variables.
Equilibrium is therefore simply the macroscopic state that has the most microscopic states
associated with it and is therefore most likely to be observed. This is what entropy is
measuring.

5.5.5 Internal energy and entropy as fundamental thermodynamic relations

The entropy function S(N,Γ,U) and the closely related internal energy function
U(N,Γ,S) are known as fundamental relations for a thermodynamic system. From them
we can obtain all possible information about the system when it is in any state of ther-
modynamic equilibrium. In particular, we can obtain all of the equations of state for a
system from the internal energy fundamental relation. As we saw in the previous section,
the temperature is given by the derivative of the internal energy with respect to the entropy.
This can, in fact, be viewed as the definition of the temperature, and in a similar manner we
can define a state variable associated with each argument of the internal energy function.
These are the intensive state variables that were introduced in Section 5.1.3. Thus, we have:
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1. Absolute temperature

T = T (N,Γ,S) ≡ ∂U
∂S

∣∣∣∣
N,Γ

. (5.24)

2. Thermodynamic tensions

γα = γα (N,Γ,S) ≡ ∂U
∂Γα

∣∣∣∣
N,S

, α = 1, 2, . . . , nΓ . (5.25)

A special case is where the volume is the kinematic state variable of interest, say
Γ1 = V . In this case we introduce a negative sign and give the special name, pressure,
and symbol, p ≡ −γ1 , to the associated thermodynamic tension. The negative sign is
introduced so that, in accordance with our intuitive understanding of the concept, the
pressure is positive and increases with decreasing volume. Thus, the definition of the
pressure is

p = p(N,Γ,S) ≡ − ∂U
∂V

∣∣∣∣
N,S

,

where all kinematic state variables, except the volume, are held constant during the
partial differentiation. In general, we refer to the entire set of thermodynamic tensions
with the symbol γ.

3. Chemical potential

μ = μ(N,Γ,S) ≡ ∂U
∂N

∣∣∣∣
Γ,S

. (5.26)

It is clear that each of the above defined quantities is intensive because each is given by the
ratio of two extensive quantities. Thus, the dependence on amount cancels and we obtain a
quantity that is independent of amount.

Fundamental relation for an ideal gas and the ideal gas law Recall that in Section 5.3.2, we found
the internal energy of an ideal gas as a function of the mole number, the volume and the
temperature (see Eqn. (5.7)):

U = Û(n, V, T ) = nU0 + nCvT, (5.27)

where U0 is the energy per mole of the gas at zero temperature. However, this equation is
not a fundamental relation because it is not given in terms of the correct set of independent
state variables. It is easy to see this. For instance, the derivative of this function with respect
to the volume is zero. Clearly the pressure is not zero for all equilibrium states of an
ideal gas. In order to obtain all thermodynamic information about an ideal gas we need
the internal energy expressed as a function of the number of particles (or equivalently the
mole number), the volume and the entropy. This functional form can be obtained from the
statistical mechanics derivation in Section 7.3.5 of [TM11] or the classic thermodynamic
approach in [Cal85, Section 3.4]. Taking the arbitrary datum of energy to be such that
U0 = 0, we can write

U = U(n, V,S) = nK exp
(

S
nCv

)(
V

n

)−Rg /Cv

, (5.28)
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where K is a constant and Rg = kBNA is the universal gas constant. Here, kB = 8.617 ×
10−5 eV/K = 1.3807×10−23 J/K is Boltzmann’s constant and NA = 6.022×1023 mol−1

is Avogadro’s constant. From this fundamental relation we can obtain all of the equations
of state for the intensive state variables:

1. chemical potential

μ = μ(n, V,S) =
∂U
∂n

= K exp
(

S
nCv

)(
V

n

)−Rg /Cv
[
1 +

Rg

Cv
− S

nCv

]
;

2. pressure

p = p(n, V,S) = − ∂U
∂V

= K exp
(

S
nCv

)(
V

n

)−( R g
C v

+1)
Rg

Cv
;

3. temperature

T = T (n, V,S) =
∂U
∂S = nK exp

(
S

nCv

)(
V

n

)−Rg /Cv 1
nCv

.

We may now recover from these functions the original internal energy function and
the ideal gas law by eliminating the entropy from the equations for the pressure and the
temperature. First, notice that the temperature contains a factor which is equal to the internal
energy in Eqn. (5.28), giving T = U/nCv . From this we may solve for the internal energy
and immediately obtain Eqn. (5.27) (where we recall that we have chosen U0 = 0 as
the energy datum). Next we recognize that the equation for the pressure can be written
p = U(1/V )(Rg/Cv ). Substituting the relation we just obtained for the internal energy in
terms of the temperature, we find that p = nRgT/V or

pV = nRgT, (5.29)

which is the ideal gas law that is familiar from introductory physics and chemistry courses.
From the ideal gas law we can obtain a physical interpretation of the thermodynamic

temperature scale referred to in Section 5.2.2 and defined in Eqn. (5.24). Since all gases
behave like ideal gases as the pressure goes to zero,45 gas thermometers provide a unique
temperature scale at low pressure [Adk83]:

T = lim
p→0

pV

nRg
.

The value of the ideal gas constant Rg appearing in this relation (and by extension, the
value of Boltzmann’s constant kB ) is set by defining the thermodynamic temperature
T = 273.16 K to be the triple point of water (see page 139).

45 See also Section 5.3.2 where ideal gases are defined and discussed.
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5.5.6 Entropy form of the first law

The above definitions for the intensive state variables allow us to obtain a very useful
interpretation of the first law of thermodynamics in the context of a quasistatic process.
Consider the first differential of internal energy

dU =
∂U
∂N

∣∣∣∣
Γ,S

dN +
∑
α

∂U
∂Γα

∣∣∣∣
N,S

dΓα +
∂U
∂S

∣∣∣∣
N,Γ

dS.

Substituting in Eqns. (5.24), (5.25) and (5.26), we obtain the result

dU = μdN +
∑
α

γαdΓα + TdS. (5.30)

Restricting our attention to the case where the number of particles is fixed, the first term in
the differential drops out and we find

dU =
∑
α

γαdΓα + TdS. (5.31)

If we compare the above equation with the first law in Eqn. (5.2), it is natural to associate
the first term which depends on the kinematic variables with the mechanical work ΔWdef

and the second term which depends on the temperature with the heat ΔQ. Therefore46

d̄Wdef =
∑
α

γαdΓα , d̄Q = TdS, (5.32)

which are increments of quasistatic work and quasistatic heat, respectively. We will take
Eqn. (5.32) as an additional defining property of quasistatic processes. An important special
case is that of a thermally isolated system undergoing a quasistatic process. In this situation
there is no heat transferred to the system, dQ = 0. Since the temperature will generally not
be zero, the only way that this can be true is if dS = 0 for the system. Thus, we have found
that when a thermally-isolated system undergoes a quasistatic process its entropy remains
constant, and we say the process is adiabatic.

Based on the identification of work as the product of a thermodynamic tension with
its associated kinematic state variable, it is common to refer to these quantities as work
conjugate or simply conjugate pairs. Thus, we say that γα and Γα are work conjugate, or
that the pressure is conjugate to the volume.

Equations (5.30) and (5.31) are called the entropy form of the first law of thermodynamics
and, as discussed above, they identify the work performed on the system and the heat
transferred to the system as it undergoes a quasistatic process. Thus, when a system’s
surroundings change in such a way that they cause it to undergo a quasistatic process

46 Here we use the notation d̄ in d̄Wdef and d̄Q to explicitly indicate that these quantities are not the differentials
of functions Wdef and Q. This will serve to remind us that the heat and work transferred to a system generally
depend on the process being considered. See Fig. 5.2 and the associated discussion on page 141.
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Fig. 5.6 A container with a screw press piston and n moles of an ideal gas.

B = B(s) beginning at state B(0) and ending in sate B(1) while keeping the same number
of particles (N(s) = N ), we say that the surroundings perform quasistatic work on the
system such that

ΔWdef =
∑
α

∫ 1

0

[
γα (N,Γ(s),S(s)) Γ̇α (s)

]
ds, (5.33)

where Γ̇α ≡ dΓα/ds is the rate of change of Γα along the quasistatic process. Similarly, in
the same process the system’s surroundings will perform a quasistatic heat transfer to the
system equal to

ΔQ =
∫ 1

0

[
T (N,Γ(s),S(s)) Ṡ(s)

]
ds, (5.34)

where Ṡ ≡ dS/ds is the rate of entropy change along the process.

Example 5.4 (Quasistatic work and heat) In Fig. 5.6 we see a container with n moles of an ideal gas
that is initially at temperature T0 . The container has a screw press piston which is used to change the
gas’s volume quasistatically from its initial value of V0 to V1 . We will consider two scenarios: (1) the
container is thermally isolated, i.e. the process is adiabatic, and (2) the container is diathermal and its
surroundings are maintained at the initial temperature T0 .

(1) Adiabatic volume changes We will determine the pressure, temperature and total amount of
quasistatic work performed by the screw press for any point along the quasistatic adiabatic process.
We start by considering the differential relations that must be satisfied along the quasistatic process
that occurs as the volume is changed from V0 to V1 and then integrate the results. Since the container is
thermally isolated, the system’s entropy remains constant, and the first law gives dU = d̄Wdef . Using
Eqn. (5.32)1 for the quasistatic work, the ideal gas law Eqn. (5.29) and Eqn. (5.7) (in its differential
form) for the internal energy of an ideal gas, we obtain nCv dT = −(nRg T/V )dV . This can be
integrated by separation of variables, and the ideal gas law can be used to obtain the temperature and
pressure as functions of the volume

T = T̊ (V ) = T0

(
V

V0

)−R g /C v

, p = p̊(V ) = p0

(
V

V0

)−(
R g
C v

+1)

,

where the ideal gas law has also been used to identify the initial pressure, p0 . The total quasistatic
work performed by the screw press is obtained from Eqn. (5.33) by recognizing that since the mole



161 5.5 The second law of thermodynamics and the direction of time
�

number and entropy are constant during the process the integral may be written as

ΔWdef = ˚ΔWdef (V ) =
∫ V

V 0

−p̊(V )dV = −
∫ V

V 0

p0

(
V

V0

)−(
R g
C v

+1)

dV

= nCv T0

[(
V

V0

)−R g /C v

− 1

]
.

It is interesting to note that once we realized that n and S remain constant during the quasistatic
process, we could have immediately obtained these results from the equations of state for an ideal
gas given in Section 5.5.5 without having to invoke the differential form of the first law.

(2) Volume changes at constant temperature In this case, the gas exchanges heat with its surroundings
and the quasistatic process proceeds with the gas always at a constant temperature equal to that of
its surroundings T0 . We will obtain the pressure in the gas, the total amount of quasistatic work
performed by the screw press and the total amount of quasistatic heat transferred to the gas by the
surroundings. We can obtain the pressure from the ideal gas law:

p = p̊(V ) =
nRg T0

V
.

The quasistatic work then follows as

ΔWdef = ˚ΔWdef (V ) = −nRg T0 ln
(

V

V0

)
.

In order to obtain the quasistatic heat transferred to the system we need to compute the total change
of the system’s entropy so that we can use Eqn. (5.34). From Eqn. (5.7) we know that at constant
temperature the ideal gas’s internal energy is independent of its volume, and thus, constant. The
differential form of the first law for the quasistatic process then tells us that dU = dWdef + dQ = 0.
Using this together with Eqn. (5.32)2 gives

T0dS = pdV.

Substituting the expression we just found for the pressure and integrating we find the system’s entropy
as a function of its volume

S = S̊(V ) = S0 + nRg ln
(

V

V0

)
,

where S0 is the entropy of the gas at the beginning of the process. The quasistatic heat transfer is then
given by

ΔQ = ΔQ̊(V ) = nRg T0 ln
(

V

V0

)
.

Notice that this confirms that the gas’s internal energy remains constant for the entire process, since
we find that ΔU = ΔWdef + ΔQ = 0.

5.5.7 Reversible and irreversible processes

According to the statement of the second law of thermodynamics in Eqn. (5.13), the entropy
of an isolated system cannot decrease in any process, rather it must remain constant or else
increase. Clearly, if an isolated system undergoes a process in which its entropy increases,
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then the reverse process can never occur. We say that such a process is irreversible. However,
if the process leaves the system’s entropy unchanged, then the reverse process is also possible
and we say that the process is reversible. Next, we will explore the differences between
these two fundamental types of processes.

We start by considering a general thermodynamic process C as defined in Section 5.4.
Suppose the isolated system of interest is a composite system C made up of some finite
number of subsystems containing stable materials and that internal constraints between
the subsystems exist. The process begins at a state of thermodynamic equilibrium for
the constrained composite system. Next, one or more internal constraints between the
subsystems are released. Because the subsystems are stable, it is easy to show that
the isolated composite system is stable with respect to variations of its unconstrained
state variables. Thus, there are three possibilities for the initial state of the process after the
internal constraints are released: (1) The initial state is a generic point on the total entropy
hypersurface (taken as a function of the unconstrained state variables, including those
associated with the released internal constraints). (2) The initial state is the maximum
point on the entropy hypersurface. (3) The initial state is one of a continuum of maxima
along the entropy hypersurface, i.e. the hypersurface has a flat region of constant maximum
entropy. We will consider each of these cases in turn.

1. In this case the entropy is not at its maximum value and the system, starting from
the initial state C(1) , undergoes a dynamical process that eventually ends in state C(2)

which is finitely removed from C(1) . That is the entropy and the unconstrained state
variables undergo finite changes. Due to the stability (concavity) of the system, this
necessarily corresponds to an increase of the total entropy. Thus, the two-stage process
C = (C(1) , C(2)) is irreversible. Similarly, any such general thermodynamic process with
any number of stages will also be irreversible.

2. The initial state corresponds to the entropy maximum for the system even after the
constraints are released. Thus, nothing changes and there is, in fact, no process.

3. In this case the system finds that it can take on any of a continuum of states contained in
the hypersurface, all of which have the same value of total entropy. In particular, starting
from the initial state on this hypersurface C(0), the system can change its state in a
continuous and arbitrary way along any path C(s) (for s ∈ [0, 1]) on the hypersurface,
such that it ends up in state C(1). Thus, because every such process consists of a
continuous variation of the state variables, it is quasistatic. Further, since the entropy is
constant everywhere along the process, it is reversible.47

From the above discussion we have learned two important things. First, we see that if a
process is reversible, then it must also be quasistatic. (However, the converse is not true.)
Second, we infer that most thermodynamic processes are irreversible. This is because the
probability of the initial state corresponding to case 1 is much higher than that of case 2

47 Note that in this and the previous items we have consistently used the notation introduced in Section 5.4. In
the first item, the process is found to be a general thermodynamic process, and thus, its discrete states are
labeled with superscript parenthesized integers, as in C(1) and C(2) . In the last item, the process is found to
be quasistatic, and thus, its states are given by the functions C(s), s ∈ [0, 1].
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which is much higher than that of case 3.48 In fact, due to the stability conditions, case 3 –
where a flat region exists in system C’s entropy function at the state C(0) – can occur only if
two or more of its subsystems have flat regions in their respective entropy functions for the
appropriate equilibrium state corresponding to C(0). This is so unlikely that it is fair to say
that no real process is ever truly reversible. However, it is possible, in theory, to construct
(very special) isolated systems with processes that are arbitrarily close to being reversible.
In order to understand exactly how to do so, let us explore the differences between reversible
and irreversible quasistatic processes.

Let C be an isolated composite system with two subsystems A and B. Since C is isolated,
knowledge of A’s kinematic state variables implies knowledge of the corresponding values
for B due to the extensive nature of the ΓC variables (i.e.49 ΓB = ΓC − ΓA). We may
therefore take ΓA as the unconstrained state variables for C. We suppose that C undergoes
a reversible quasistatic process C = C(s) in which C’s unconstrained state variables vary
continuously.50 The process is quasistatic, so we will study it by considering the differential
forms of the laws of thermodynamics for an arbitrary increment ds along the process. The
differential form of the extensivity relation between A and B’s kinematic state variables is
dΓB = −dΓA. Since the process is reversible we must also have that dSC = dSA+dSB = 0,
which gives dSB = −dSA and satisfies the second law. Finally because C is isolated and
the process is quasistatic, the subsystems exchange equal amounts of quasistatic work,
d̄Wdef ,B = −d̄Wdef ,A, and quasistatic heat, d̄QB = −d̄QA. This automatically satisfies
the first law and using the definitions for quasistatic work and heat in Eqn. (5.32) gives∑

α

γA
α dΓA

α = −
∑
α

γB
α dΓB

α , TAdSA = −TBdSB.

Introducing the above differential relations connecting the increments of the kinematic state
variables and the entropy and rearranging, we find∑

α

(
γA

α − γB
α

)
dΓA

α = 0,
(
TA − TB

)
dSA = 0. (5.35)

Since the system is free to explore increments of each individual dΓA
α and dSA separately,

these equations imply that A and B must be in equilibrium. That is, we must have γB = γA

and TB = TA. Our analysis is valid for an arbitrary state along the quasistatic process, and
thus its results must hold for every state in the process.

It should now be clear why a reversible quasistatic process is such a special process. The
subsystems must undergo changes of state, by exchanging heat and work, in such a way

48 This can be seen by realizing that case 2 requires the special condition that dS = 0 in the initial state and
that case 3 requires two special conditions: dS = 0 and d2S = 0. However, case 1 has no such special
requirements and is therefore the most likely situation to be encountered.

49 Here we are considering a special case where A and B have the same set of kinematic state variables and interact
with each other so that the described constraint is correct. Other scenarios are similar and follow as variations
of the case discussed here. For example, suppose A and B are ideal gases in two cylindrical containers of
different radius (say RA and RB, respectively) and that the movable pistons containing the gases are connected
by a rigid rod. Then, a change of system A’s volume ΔV A will correspond to a linear displacement of its
piston equal to Δx = ΔV A/(π(RA)2 ). Accordingly, system B’s piston will experience an equal and opposite
displacement which leads to a change of its volume ΔV B = −Δxπ(RB)2 = −(RB/RA)2 ΔV A.

50 We will assume here that the particle numbers of A and B remain constant.
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that they remain in equilibrium at all times. This is not possible in general. For example,
let us consider a hypothetical reversible process where A and B are both composed of
ideal gases and they are thermally insulated from each other so that they only interact by
the transfer of work. They must start the process in equilibrium. Now, imagine that the
constraint keeping V A and V B fixed is removed and one increment along the hypothetical
process occurs. Suppose this involves A expanding by an amount dV A. Necessarily, B’s
volume will decrease by the same amount. However, at the end of this process increment
the pressure in A is smaller than its original value and the pressure in B is larger. Thus, the
systems are no longer in equilibrium and it is, therefore, not possible for the next increment
of the process to occur reversibly.

In order to construct a quasistatic reversible process in which the ideal gas in subsystem
A increases its volume by a finite amount ΔV , one would need to have an infinite number of
additional subsystems Bm ,m = 1, 2, . . . ,∞ such that the volume in Bm is infinitesimally
larger than that in Bm−1 , i.e.51 Vm = Vm−1 +2dV . Such a system is illustrated in Fig. 5.7.
We can expand A by having it undergo an infinite series of infinitesimal processes, one
with each Bm in which A performs an increment of quasistatic work, at the end of which A

has reached its specified final volume and the total entropy change of the isolated system C

(consisting of A and all of the Bm s) is zero. In fact, since no heat was transferred, each of
the subsystems has exactly the same value of entropy at the end of the process as it did at
the beginning. The composite subsystem made up of all the Bm s is called a reversible work
source. Thus, a reversible work source supplies (or accepts) work from another system while
keeping its own entropy constant. A similar procedure can be used to construct a reversible
heat source that accepts heat from another system by undergoing a quasistatic process at
constant values of its particle number and kinematic state variables. This construction is
further explored in Exercise 5.10.

These idealized systems are useful because they can be used to construct reversible
processes. Indeed, for any system A and for any two of its equilibrium states A and A′, we
can always construct an isolated composite system – consisting of a reversible heat source,
a reversible work source and A as subsystems – for which there exists a reversible process
in which A starts in state A and ends in state A′. The second law may then be used to make
statements about how the equilibrium state of any system A (not necessarily isolated) must
change during a process.

For the described isolated system, there are many different processes that can occur for
which A starts in state A and ends in state A′. Each of these processes results in the same
amount of energy being transferred from A to the rest of the system. The distinguishing
factor between the processes is exactly how this total energy transfer is partitioned between
the reversible work and heat sources. Since the reversible work source does not change its
entropy during any of these processes, the second law tells us that the total entropy change
must satisfy

ΔS = ΔSA + ΔSRHS ≥ 0,

where ΔSRHS is the change in entropy of the reversible heat source (RHS) and the equality
holds only for reversible processes. Thus, we find that ΔSA ≥ −ΔSRHS. If we consider

51 For ideal gases this is equivalent to having the pressure infinitesimally decreasing, i.e. pm = pm −1 − dp.
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an infinitesimal change of A’s state, then this becomes dSA ≥ −dSRHS = −d̄QRHS/T RHS,
since the reversible heat source supplies heat quasistatically. Finally, if the reversible heat
source accepts an amount of heat d̄QRHS, then the heat transferred to A is d̄QA = −d̄QRHS.
Using this relation, we find that the minus signs cancel and we obtain (dropping the subscript
A to indicate that this relation is true for any system)

dS ≥ d̄Q
T RHS

. (5.36)

This is called the Clausius–Planck inequality, which is an alternative statement of the
second law of thermodynamics. It is emphasized that T RHS is not generally equal to the
system’s temperature T . Rather, T RHS is the “temperature at which heat is supplied to the
system.”

If we define the external entropy input as

dSext ≡ d̄Q
T RHS

,

then the difference between the actual change in the system’s entropy and the external
entropy input is called the internal entropy production and is defined as

dS int ≡ dS − dSext.

Then, according to the Clausius–Planck inequality, dS int ≥ 0. We can convert this into a
statement about the work performed on the system by noting that the change of internal
energy is, by definition, dU = TdS +

∑
α γαdΓα and that the first law requires dU =

d̄Q+ d̄Wdef for all processes. Equating these two expressions for dU , solving for dS and
substituting the result and the definition of dSext into the definition for the internal entropy
production we obtain

dS int = d̄Q
(

1
T

− 1
T RHS

)
+

1
T

(
d̄Wdef −

∑
α

γαdΓα

)
≥ 0. (5.37)

The equality holds only for reversible processes, in which case it is then necessary that
T = T RHS. We can further note that if d̄Q > 0 then T < T RHS and if d̄Q < 0 then
T > T RHS. Either way, the first term on the right-hand side of the inequality in Eqn. (5.37)
is positive. This allows us to conclude that for any irreversible process

d̄Wdef >
∑
α

γαdΓα .

That is, in an irreversible process, the work of deformation performed on a system is greater
than it would be in a quasistatic process. The difference goes towards increasing the entropy.
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Example 5.5 (Entropy production in adiabatic expansion of an ideal gas) The difference between
reversible and irreversible processes and how the first and second laws apply to them can be confusing.
Let us examine an irreversible process – free expansion of an ideal gas from volume V0 into a confining
box with volume V1 – and compare it with the quasistatic expansion of an ideal gas discussed in
Example 5.4. Assume that the system is insulated from its surroundings so that no heat is exchanged,
i.e. the process is adiabatic. Let the initial temperature be T0 and the initial entropy be S0 . The
pressure at the initial state follows from the ideal gas law, Eqn. (5.29),

p0 = nRg T0/V0 .

Let us compute the final state. From the first law, we know that ΔU = 0, since there is no
external work or heat input. Since U is unchanged, for an ideal gas the temperature is also unchanged
(T1 = T0 ). To determine the volume the gas occupies in its final equilibrium state, we must compute
the entropy as a function of volume and find its maximum. To do so, we use the entropy form of the
first law, which for an ideal gas is

dU = TdS − pdV.

This law tells us how changes in U , S and V are related along any quasistatic path. Free expansion
of a gas does not follow a quasistatic path; however, its end states are in thermodynamic equilibrium
and may be assumed to be known. We can therefore compute changes in the variables between the
end states by integrating the above equation along any quasistatic path that connects the initial and
final states. One option is to very slowly expand the gas by the controlled motion of a piston while
maintaining a constant temperature with appropriate heating as we did in Example 5.4(2).52 There
we found

S = S̊(V ) = S0 + nRg log
V

V0
.

This function monotonically increases with V . The maximum possible value is S(V1 ), therefore
according to the second law this will be the equilibrium state.53 The final pressure follows from
the ideal gas law, p1 = nRg T1/V1 . The pressure is reduced relative to p0 since T1 = T0 , while
V1 > V0 .

The difference between the irreversible free expansion process considered here and the quasistatic
isothermal expansion considered in Example 5.4 is very important. In both cases the gases have
the same starting and ending equilibrium states. The isothermal expansion process is reversible,
assuming that the gas interacts with reversible heat and work sources. In this case, the entropy of the
gas increases, but the entropy of the reversible heat source decreases by exactly the same amount so
that the total change in entropy is zero. In contrast, in the case of free expansion the gas is an isolated
system. Accordingly, it performs no work on and exchanges no heat with its surroundings. Since the
process is adiabatic (ΔQ = 0) the change in entropy is entirely due to internal entropy production
(Eqn. (5.37)), and the process is irreversible.

52 The heating is the key. In this case, the process occurs at constant temperature, whereas an adiabatic expansion
of the gas would result in a reduction in temperature as seen in Example 5.4(1). To maintain a constant
temperature in the process it is necessary to transfer heat to the system as the gas is expanded. The transferred
heat increases the entropy of the gas by increments of dS = d̄Q/T . This is exactly the entropy that is
generated internally in the irreversible free expansion process that we are calculating! See also Exercise 5.8
where an alternative quasistatic path is considered.

53 This result can be viewed as a confirmation that ideal gases are stable materials, and therefore, no phase
transformations – where the system splits into part gas and part liquid – can occur.
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So far, our discussion of thermodynamics has been limited to homogeneous thermo-
dynamic systems. We now make the assumption of local thermodynamic equilibrium and
derive the continuum counterparts to the first and second laws.

5.6 Continuum thermodynamics

Our discussion of thermodynamics has led us to definitions for familiar quantities such
as the pressure p and temperature T as derivatives of a system’s fundamental relation.
This relation describes the system only for states of thermodynamic equilibrium, which
by definition are homogeneous, i.e. without spatial and temporal variation. Accordingly, it
makes sense to talk about the temperature and pressure of the gas inside the rigid sphere
discussed at the start of Section 5.5 before the hole is opened. However, the temperature
and pressure are not defined for the system while the gas expands after the hole is opened.
This may seem reasonable to you because the expansion process is so fast (relative to the
rate of processes we encounter on a day-to-day basis) that it seems impossible to measure
the temperature of the gas at any given spatial position. However, consider the case of a
large swimming pool into which hot water is being poured from a garden hose. In this case
your intuition and experience would lead you to argue that it is certainly possible to identify
locations within the pool that are hotter than others. That is, we believe we can identify
a spatially varying temperature field. The question we are exploring is: Is it possible to
describe real processes using a continuum theory where we replace p, V and T with fields
of pressure p(x), density ρ(x) and temperature T (x)? As the above examples suggest, the
answer depends on the conditions of the experiment.

It is correct to represent state variables as spatial fields provided that the length scale
over which the continuum fields vary appreciably is much larger than the microscopic
length scale. In fluids, this is measured by the Knudsen number Kn = λ/L, where λ

is the mean free path (the average distance between collisions of gas atoms) and L is a
characteristic macroscopic length (such as the diameter of the rigid sphere from Section 5.5).
The continuum approximation is valid as long as Kn � 1. For an ideal gas, where the
velocities of the atoms are distributed according to the Maxwell–Boltzmann distribution
(see Section 9.3.3 of [TM11]), the mean free path is [TM04, Section 17.5]

λ =
kBT√
2πδ2p

,

where δ is the atom diameter. For a gas at room temperature and atmospheric pressure,
λ ≈ 70 nm. That means that for the gas in the rigid sphere the continuum assumption is
valid as long as the diameter of the sphere is much larger than 70 nm. However, if the sphere
is filled with a rarefied gas (p ≈ 1 torr), then λ ≈ 0.1 mm. This is still small relative to,
say, a typical pressure gauge, but we see that we are beginning to approach the length scale
where the continuum model breaks down.54

54 See [Moo90] for an interesting comparison between the continuum case (Kn → 0) and the free-molecular
case (Kn → ∞) for the expansion of a gas in vacuum.
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By accepting the “continuum assumptions” and the existence of state variable fields, we
are in fact accepting the postulate of local thermodynamic equilibrium. This postulate states
that the local and instantaneous relations between thermodynamic quantities in a system
out of equilibrium are the same as for a uniform system in equilibrium.55 Thus although
the system as a whole is not in equilibrium, the laws of thermodynamics and the equations
of state developed for uniform systems in thermodynamic equilibrium are applied locally.
For example, for the expanding gas, the relation between pressure, density and temperature
at a point:

p(x) =
kB

m
ρ(x)T (x),

follows from the ideal gas law in Eqn. (5.29) by setting ρ = Nm/V , where m is the mass
of one atom of the gas.

In addition to the spatial dependence of continuum fields, a temporal dependence is also
possible. Certainly the expansion of a gas is a time-dependent phenomenon. Again, the
definitions of equilibrium thermodynamics can be stretched to accommodate this require-
ment provided that the rate of change of continuum field variables is slow compared to the
atomistic equilibration time scale. This means that change occurs sufficiently slowly on the
macroscopic scale so that all heat transfers can be approximated as quasistatic and that at
each instant the thermodynamic system underlying each continuum particle has sufficient
time to reach a close approximation to thermodynamic (or at least metastable) equilibrium.

Since the thermodynamic system associated with each continuum particle is not exactly
in equilibrium, there is some error in the quasistatic heat transfer assumption and the use
of the equilibrium fundamental relations to describe a nonequilibrium process. However,
this error is small enough so that it can be accurately compensated for by introducing an
irreversible viscous, or dissipative, contribution to the stress. Thus, the total stress will have
an elastic contribution (corresponding to the thermodynamic tensions and determined by
the equilibrium fundamental relation) and a viscous contribution.

By definition, any process that we can accurately predict as a continuum time-dependent
process is one that satisfies the above requirements. Consider the following two examples.

1. Imagine placing a cold piece of metal in a hot oven. The metal will gradually heat to the
ambient temperature of the oven. During this transient phase the metal will be hottest
where it is in contact with the oven wall. Although the metal as a whole will not be
in thermodynamic equilibrium until the end of the process, it is possible to define a
temperature field in the metal and to describe the process using continuum mechanics.
This will be true as long as the oven is not so hot or the metal so small that the spatial
variations in the temperature field or its rate of change are too large.

2. Imagine hitting a piece of metal with a hammer. The head of the hammer striking the
metal will create a compressive stress wave in the material that will expand outward
from the impact site, racing through the metal, bouncing off its boundaries and gradually
dissipating as heat. This problem can also be formulated as a continuum mechanics
problem in terms of fields of stress and temperature. As before there are conditions. In

55 This is the particular form of the postulate given by [LJCV08].
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this case the hammer cannot be too small (so that the spatial variations are not too large)
and it cannot hit too hard (with resulting high deformation rates.)

Clearly, neither of the systems in these examples is in macroscopic equilibrium, however
since its solution is described in terms of fields of state variables, locally at each continuum
point there must exist a thermodynamic system that is nearly in thermodynamic equilibrium
at each step. These conditions will be satisfied as long as the system is “sufficiently close to
equilibrium.” There are no clear quantitative measures that determine when this condition
is satisfied, but experience has shown that the postulate of local thermodynamic equilibrium
is satisfied for a broad range of systems over a broad range of conditions [EM90c]. When it
fails, there is no recourse but to turn to a more general theory of non-equilibrium statistical
mechanics that is valid far from equilibrium. This is a very difficult subject that remains an
area of active research.56 In this book we will restrict ourselves to nonequilibrium processes
that are at least approximately in local thermodynamic equilibrium.

5.6.1 Local form of the first law (energy equation)

We now turn to the derivation of the local forms of the first and second laws of thermody-
namics. It is useful to introduce the rate of heat supply R ≡ d̄Q/dt and the rate of external
work (also called the external power) Pext ≡ d̄Wext/dt. Then, the first law is written in
terms of three variables: total energy E , external power Pext and heat transfer rate R. Let
us examine these quantities more closely for a continuous medium.

Total energy E Consider the infinitesimal volume element shown in Fig. 4.2. This con-
tinuum particle has a macroscopic kinetic energy, dK = 1

2 ρ ‖v‖2
dV , associated with

its gross motion. Any additional energy associated with the particle is called its internal
energy, dU = ρudV , where u is called the specific internal energy (i.e. internal energy
per unit mass).57 The specific internal energy includes the strain energy due to defor-
mation of the particle, the microscopic kinetic energy associated with vibrations of the
atoms making up the particle and any other energy not explicitly accounted for in the
system. (See Appendix A for a heuristic microscopic derivation of the internal energy,
and [AT11] for a more rigorous derivation based on nonequilibrium statistical mechanics.)
Integrating the kinetic and internal energy densities over the entire body B gives the total
energy,

E = K + U , (5.38)

where K is the total (gross) kinetic energy,

K =
∫

B

1
2
ρ ‖v‖2

dV, (5.39)

56 See, for example, [Rue99] for a review of this field.
57 This should not be confused with the differential of the internal energy.
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and U is the total internal energy,

U =
∫

B

ρu dV. (5.40)

The first law of thermodynamics in Eqn. (5.3) can then be written as

K̇ + U̇ = Pext + R. (5.41)

The rates of change of the kinetic and the internal energy are given by

K̇ =
D

Dt

∫
B

1
2
ρvivi dV =

∫
B

1
2
ρ(aivi + viai) dV =

∫
B

ρaivi dV, (5.42)

U̇ =
D

Dt

∫
B

ρu =
∫

B

ρu̇ dV, (5.43)

respectively, where we have used Reynolds transport theorem (Eqn. (4.5)).

External power Pext A continuum body may be subjected to distributed body forces and
surface tractions as shown in Fig. 4.2. The work per unit time transferred to the continuum
by these fields is the external power,

Pext =
∫

B

ρbivi dV +
∫

∂B

t̄ivi dA, (5.44)

where t̄ is the external traction acting on the surfaces of the body. Focusing on the sec-
ond term, we apply Cauchy’s relation (Eqn. (4.18)) followed by the divergence theorem
(Eqn. (2.108)):∫

∂B

t̄ivi dA =
∫

∂B

(σijnj )vi dA =
∫

B

(σij vi),j dV =
∫

B

(σij,j vi + σij vi,j ) dV.

Substituting this into Eqn. (5.44) and rearranging gives

Pext =
∫

B

(σij,j + ρbi)vi dV +
∫

B

σij vi,j dV.

Due to the symmetry of the stress tensor, σij vi,j = σij dij , where d is the rate of deformation
tensor (Eqn. (3.38)). Using this together with the balance of linear momentum (Eqn. (4.25))
to simplify the first term gives

Pext =
∫

B

ρaivi dV +
∫

B

σij dij dV.

Comparing this relation with Eqn. (5.42) we see that the first term is simply the rate of
change of the kinetic energy, so that

Pext = K̇ + Pdef , (5.45)
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where

Pdef =
∫

B

σij dij dV ⇔ Pdef =
∫

B

σ : d dV (5.46)

is the continuum form of the deformation power (corresponding to the rate of the work
of deformation d̄Wdef we encountered in Section 5.3). This is the portion of the external
power contributing to the deformation of the body with the remainder going towards kinetic
energy. We note that since d = ε̇ (see Eqn. (3.28)), Eqn. (5.46) can also be written

Pdef =
∫

B

σij ε̇ij dV ⇔ Pdef =
∫

B

σ : ε̇ dV. (5.47)

Returning now to the representation of the first law in Eqn. (5.41) and substituting in
Eqn. (5.45), we see that the first law can be written more concisely as

U̇ = Pdef + R, (5.48)

which is similar to the form obtained previously in Eqn. (5.2).

Alternative forms for the deformation power It is also possible to obtain expressions for the
deformation power in terms of other stress variables that are often useful. Starting with the
definition in Eqn. (5.46), we note that

Pdef =
∫

B

σij dij dV =
∫

B

σij vi,j dV =
∫

B0

σ̆ij
∂v̆i

∂XJ

∂XJ

∂xj
J dV0 ,

where we have used σ̆ij and v̆i to emphasize that the stress and velocity fields are expressed
in the material description. Now use

∂v̆i

∂XJ
=

∂

∂XJ

(
∂xi

∂t

)
=

∂

∂t

(
∂xi

∂XJ

)
= ḞiJ ,

∂XJ

∂xj
= F−1

J j

together with Eqn. (4.35) for the first Piola–Kirchhoff stress P to obtain the material form
of the deformation power:

Pdef =
∫

B0

PiJ ḞiJ dV0 ⇔ Pdef =
∫

B0

P : Ḟ dV0 . (5.49)

Substituting PiJ = FiI SIJ (inverse of Eqn. (4.41)) and using the following identity,

SIJ ĊIJ = SIJ ( ˙FiI FiJ ) = 2SIJ FiI ḞiJ ,

we find the material form of the deformation power in terms of the second Piola–Kirchhoff
stress S:

Pdef =
1
2

∫
B0

SIJ ĊIJ dV0 .
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Recalling the definition of the Lagrangian strain in Eqn. (3.23), we see that Ė = 1
2 Ċ, so

that

Pdef =
∫

B0

SIJ ĖIJ dV0 ⇔ Pdef =
∫

B0

S : Ė dV0 . (5.50)

Elastic and viscous (dissipative) parts of the stress As indicated at the beginning of this section,
generally a continuum particle will not be in a perfect state of thermodynamic equilibrium,
and so the stress will generally not be equal to the thermodynamic tensions that are work
conjugate to the strain, i.e. the stress is not a state variable. To correct for this, continuum
thermodynamic theory introduces the ideas of the elastic part of the stress σ(e) and the
viscous part of the stress [ZM67]:58

σ = σ(e) + σ(v ) . (5.51)

By definition, the elastic part of the stress is given by the material’s fundamental relation,
and therefore it is a state variable. The viscous part of the stress is the part which is not
associated with an equilibrium state of the material, and is therefore not a state variable.
Substituting Eqn. (5.51) into the definitions for the first and second Piola–Kirchhoff stresses,
we can similarly obtain the elastic and viscous parts of these stress measures.

Power conjugate variables The three equations for the deformation power, Eqns. (5.47),
(5.49) and (5.50), provide three pairs of variables whose product yields a power density:
(σ, ε̇), (P , Ḟ ) and (S, Ė). These power conjugate variables fit the general form given
in Eqn. (5.32) except that for the continuum formulation the kinematic state variables are
intensive and written as rates. This allows us to use the general and convenient notation we
introduced in Section 5.1.3. Thus, in general, the deformation power is written

Pdef =
∫

B0

∑
α

(γα + γ(v )
α )Γ̇i

α dV0 , (5.52)

where Γi = (Γi
1 , . . . ,Γ

i
nΓ ) is a relevant set of nΓ intensive state variables that describe the

local kinematics of the continuum, and γ = (γ1 , . . . , γnΓ ) and γ = (γ(v )
1 , . . . γ

(v )
nΓ ) are the

thermodynamic tensions (work conjugate to Γi) and their viscous counterparts, respectively,
which when added together are power conjugate to Γ̇i. For example, for Eqn. (5.50) we can
make the assignment in Tab. 5.2, which is called Voigt notation.59

Heat transfer rateR The heat transfer rate R can be divided into two parts:

R =
∫

B

ρr dV −
∫

∂B

h dA. (5.53)

58 It is not definite that an additive partitioning can always be made. In plasticity theory, for example, it is common
to partition the deformation gradient into a plastic and an elastic part, instead of the stress. See [Mal69, p. 267]
for a discussion of this issue.

59 Voigt notation is a concatenated notation used for symmetric stress and strain tensors. The two coordinate
indices of the tensor are replaced with a single index ranging from 1 to 6. See more details in Section 6.5.1.
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Table 5.2. Power conjugate variables for a
continuum system under finite strain.

Representation in Voigt notation

α Γ̇i
α γα γ

(v )
α

1 Ė11 S
(e )
11 S

(v )
11

2 Ė22 S
(e )
22 S

(v )
22

3 Ė33 S
(e )
33 S

(v )
33

4 2Ė23 S
(e )
23 S

(v )
23

5 2Ė13 S
(e )
13 S

(v )
13

6 2Ė12 S
(e )
12 S

(v )
12

Here, r = r(x, t) is the strength of a distributed heat source per unit mass, and h =
h(x, t,n) is the outward heat flux across an element of the surface of the body with normal
n. Substituting Eqns. (5.43), (5.46) and (5.53) into Eqn. (5.48) and combining terms gives∫

B

[σij dij + ρr − ρu̇] dV =
∫

∂B

h(n) dA. (5.54)

It may seem that progress beyond this point would be material and environment specific
since it depends on the particular form of h(n). However, an explicit universal form for
h(n) can be obtained by following the same reasoning that Cauchy used for the traction
vectors (see Section 4.2):60

1. Rewrite Eqn. (5.54) for a pillbox and take the height to zero. This shows that

h(n) = −h(−n). (5.55)

2. Rewrite Eqn. (5.54) for a tetrahedron with three of its sides oriented along the Cartesian
axes and take the volume to zero. Together with Eqn. (5.55) this shows that

h(n) = q · n = qini, (5.56)

where q is called the heat flux vector.

Substituting Eqn. (5.56) into Eqn. (5.54), applying the divergence theorem and combining
terms gives ∫

B

[σij dij + ρr − ρu̇ − qi,i ] dV = 0.

This can be rewritten for any arbitrary subbody E, so it must be satisfied pointwise:

σij dij + ρr − qi,i = ρu̇ ⇔ σ : d + ρr − div q = ρu̇. (5.57)

60 This was first shown by the Irish mathematician Sir George Gabriel Stokes [Tru84].
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This equation, called the energy equation, is the local spatial form of the first law of
thermodynamics. It can be thought of as a statement of conservation of energy for an
infinitesimal continuum particle. The first term in the equation (σ : d) is the portion of the
mechanical power going towards deformation of the particle; the second term (ρr) is the
internal source of heat;61 the third term (−div q) is the inflow of heat through the boundaries
of the particle; the term on the right-hand side (ρu̇) is the rate of change of internal energy.
The energy equation can also be written in the material form:

PiJ ḞiJ + ρ0r0 − q0I ,I = ρ0 u̇0 ⇔ P : Ḟ + ρ0r0 − Div q0 = ρ0 u̇0 , (5.58)

where r0 , q0 and u0 are respectively the specific heat source, heat flux vector and specific
internal energy defined in the reference configuration.

5.6.2 Local form of the second law (Clausius–Duhem inequality)

Having established the local form of the first law, we now turn to the second law of
thermodynamics. Our objective is to obtain a local form of the second law. We begin with
the Clausius–Planck inequality (Eqn. (5.36)) in its rate form:

Ṡ ≥ Ṡext =
R

T RHS
, (5.59)

where T RHS is the temperature of the reversible heat source from which the heat is qua-
sistatically transferred to the body. We now introduce continuum variables. The entropy S
is an extensive variable, we therefore define the entropy content of an arbitrary subbody E

as a volume integral over the specific entropy s (i.e. the entropy per unit mass):

S(E) =
∫

E

ρs dV. (5.60)

The rate of heat transfer to E is

R(E) =
∫

E

ρr dV −
∫

∂E

q · n dA. (5.61)

This can be substituted into Eqn. (5.59), but to progress further we must address an important
subtlety. There can be a reversible heat source associated with every point on the boundary
of the body and the temperature of these sources is not, in principle, equal to the temperature
of the material point at the boundary. However, in continuum thermodynamics theory, it is
assumed that the boundary points are always in thermal equilibrium with their reversible
heat sources. The argument is that even if the boundary of the body starts a process at a
different temperature, a thin layer at the boundary heats (or cools) nearly instantaneously
to the source’s temperature. Also, it is assumed that the internal heat sources are always in

61 The idea of an internal heat source is used to model interactions of the material with the external world that
are like body forces but are otherwise not accounted for in the thermomechanical formulation. For example,
electromagnetic interactions may cause a current to flow in the material and its natural electrical resistance
will then generate heat in the material.
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thermal equilibrium with their material point.62 Accordingly, we can substitute Eqn. (5.61)
into Eqn. (5.59) and take the factor of 1/T inside the integrals where it is treated as a
function of position and obtained from the material’s fundamental relation. This means that
the external entropy input rate is

Ṡext(E) =
∫

E

ρr

T
dV −

∫
∂E

q · n
T

dA. (5.62)

Substituting Eqns. (5.60) and (5.62) into Eqn. (5.59), we have

D

Dt

∫
E

ρs dV ≥
∫

E

ρr

T
dV −

∫
∂E

q · n
T

dA.

Applying Reynolds transport theorem (Eqn. (4.5)) to the left-hand side of the equation and
the divergence theorem (Eqn. (2.108)) to the surface integral on the right gives∫

E

ρṡ dV ≥
∫

E

ρr

T
dV −

∫
E

div
q

T
dV.

Note that the use of the divergence theorem requires that q/T must be continuously
differentiable. Broadly speaking, this means that we are assuming there are no jumps in the
temperature field.63 Combining terms and recognizing that the inequality must hold for any
subbody E, we obtain the local condition

ṡ ≥ ṡext =
r

T
− 1

ρ
div

q

T
, (5.63)

where ṡext is the specific external entropy input rate. Equation (5.63) is called the Clausius–
Duhem inequality. This relation can also be obtained directly by considering a thermo-
dynamic system consisting of an infinitesimal continuum particle and accounting for the
heat transfer through its surfaces and from internal sources. (See Exercise 5.11 for a one-
dimensional example of this approach.) The specific internal entropy production rate, ṡint,
follows as

ṡint ≡ ṡ − ṡext = ṡ − r

T
+

1
ρ

div
q

T
. (5.64)

The Clausius–Duhem inequality is then simply

ṡint ≥ 0. (5.65)

This is the local analog to Eqn. (5.37).
This concludes our overview of thermodynamics. We have introduced the important

concepts of energy, temperature and entropy that will remain with us for the rest of the
book. In the next chapter we turn to the remaining piece of the continuum puzzle, the
establishment of constitutive relations that govern the behavior of materials. We will see that

62 However, some authors have argued that a different temperature should be used, see, for example, [GW66].
63 Heat flow across such a jump would be a source of additional entropy production.
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the Clausius–Duhem inequality derived above provides constraints on allowable functional
forms for constitutive relations. In the process of deriving these constraints, we will also
learn more about the nature of the second law for the types of materials considered in this
book.

Exercises

5.1 [SECTION 5.1] Consider a two-dimensional rectangular body made from a typical engineering
material. Assuming the solid can undergo only homogeneous deformation, it has three inde-
pendent macroscopic kinematic quantities. These are its two side lengths, L1 and L2 , and the
angle between two adjacent sides, γ.
1. Suppose we fix L1 and γ. Apply the test for state variables, discussed in Section 5.1.3, to

determine if L2 is a state variable. Use your intuition about the behavior of a typical solid
and explain your reasoning.

2. Now, suppose we fix L1 and L2 . Is γ a state variable? Again, use your intuition about the
behavior of a typical solid and explain your reasoning.

5.2 [SECTION 5.2] Consider, again, the two-dimensional solid of the previous problem. Fix L1

and γ. Also, consider a cylinder, similar to those in Fig. 5.1, containing an ideal gas of volume
V subject to a force F . Generally speaking, when these two systems are initially in thermal
equilibrium and they are brought into thermal contact, both their free kinematic state variables
will remain constant. When they are not initially in equilibrium, both their free kinematic state
variables will change. Now, suppose the temperature of the solid is Ts , the temperature of the
gas is Tg and Ts < Tg . The solid and gas are put into thermal contact.
1. Do you expect L2 and/or V to change? Why or why not? If you expect a change, use your

physical intuition to describe how these quantities will change.
2. Now suppose, instead of fixing L1 and γ, we fix L1 and L2 . In this case, γ does not change,

but V decreases. Based on the test for thermal equilibrium, this result seems to imply that
the solid is in thermal equilibrium with the gas, but the gas is not in thermal equilibrium
with the solid. Explain this apparent contradiction. Hint: Think carefully about the assumed
behavior of the solid.

5.3 [SECTION 5.3] A sealed and thermally insulated container of volume V = 1 m3 contains
n = 20 mol of an ideal gas at T = 250 K. A propeller is immersed in the gas and connected
to a shaft that passes through the container via a sealed frictionless bearing. A cable is wound
around the exterior part of the shaft and is attached to a 25 kg mass which is suspended
5 m above the ground. The mass is released and it falls to the ground under the influence of
gravity, causing the cable to unwind and spin the shaft with the propeller attached. After a
period of time, the propeller comes to rest and the gas in the container reaches thermodynamic
equilibrium. Determine the final temperature of the gas.

5.4 [SECTION 5.4] For each of the thermodynamic processes described below, identify the process
as either a quasistatic process or a general process.
1. A ball of molten steel is quenched in a bucket of ice water.
2. A glacier melts due to global warming.
3. A “solid” ball of pitch is placed in a funnel and very slowly drips on the floor. (See, http://

en.wikipedia.org/wiki/Pitch drop experiment.)
4. A nail becomes hot as it is pulled out of a wooden board with the claw of a hammer.
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5.5 [SECTION 5.5] Consider, again, the isolated system of Fig. 5.5, with its two subsystems A and
B that exchange heat and volume in order for the composite system to reach thermodynamic
equilibrium.
1. First, we will derive an identity that will be needed for the rest of the problem. The partial

derivatives of the entropy function can be directly related to the thermodynamic tensions.
This is accomplished by a careful application of the rules of partial differentiation. For
example, show that

∂S
∂V

∣∣∣∣
N ,U

=
1
T

p.

Start by carefully noting which variables are held constant during the above partial differ-
entiation, and then write the differential of U . From this expression and the definitions in
Section 5.5.5, you can obtain the desired result.

2. Show that the second law implies that the two subsystems must have equal temperatures
and pressures in the final state of thermodynamic equilibrium.

3. Assume that initially (when the piston is impermeable and fixed) the two subsystems are
in thermodynamic equilibrium. Their states are given by the values NA = N , NB = 2N ,
T A, T B, V A and V B. Find the final temperature Tf , pressure pf and volumes V A

f and V B
f ,

in terms of N , T A, T B, V A and V B.
5.6 [SECTION 5.5] Consider an isolated system consisting of two separate cylinders containing

ideal gases. The first gas cylinder system is called A and has a cross-sectional area of AA. The
second gas cylinder system is called B and has a cross-sectional area of AB < AA. Initially,
the two systems are mechanically and thermally isolated from each other and their initial states
are given by the values NA = N , NB = 2N , T A, T B, V A and V B. The two cylinders are
then allowed to interact thermally (heat may be transferred between them) and their pistons
are connected (they may perform work on each other) so that when the piston of A moves by a
distance d, the piston of B moves by the same amount in the opposite direction. Find the final
temperature Tf , pressures pA

f and pB
f and volumes V A

f and V B
f , in terms of AA, AB, N , T A,

T B, V A and V B.
5.7 [SECTION 5.5] Suppose the entropy function of a fixed amount of a material at a fixed value

of its internal energy is given by

S(V ) = V 2
0 (V0 − V )2 − 2(V0 − V )4 + SV 0 ,

where SV 0 is the value of the entropy at the reference volume V0 .
1. Using Eqn. (5.14), suitably modified to apply to changes of volume instead of changes of

internal energy, show that for the reference volume this system is unstable. That is, find a
value of ΔV for which the inequality in the modified version of Eqn. (5.14) is violated.

2. Now consider the volume V = V0/4. Prove that the system is stable for this volume.
3. Describe the behavior of this system as its volume is quasistatically increased from

V = V0/4 to V = 7V0/4 at constant internal energy. Be as quantitative as possible.
5.8 [SECTION 5.5] In Example 5.5, we considered the free expansion of an ideal gas in a container.

The change in state variables was computed using a quasistatic process with the same end
points where the gas is slowly expanded at constant temperature. As an alternative, consider a
two-part quasistatic process where the gas is first adiabatically expanded (as in Example 5.4)
and then reversibly heated to the correct temperature. Show that the same result for the change
in entropy and pressure as in Example 5.5 is obtained.

5.9 [SECTION 5.5] A closed cylinder of volume V contains n moles of an ideal gas. The cylinder
has a removable, frictionless, piston that can be inserted at the end, quasistatically moved to
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a position where the available volume is V/2 and then quickly (instantaneously) removed to
allow the gas to freely expand back to the full volume of the cylinder. This procedure is repeated
k times. The gas has a molar heat capacity at constant volume of Cv and a reference internal
energy U0 . The gas initially has temperature Tin it , internal energy Uin it , pressure pin it , and
entropy Sin it .
1. Obtain expressions for the temperature T (k), pressure p(k), internal energy U(k) and

entropy S(k) after k repetitions of the procedure.
2. Plot T (k)/Tin it and p(k)/pin it as a function of k. Use material constants for air.

5.10 [SECTION 5.5] Consider an ideal gas, with molar heat capacity Cv , contained in a rigid
diathermal cylinder.64 Suppose we have N + 1 large buckets of water with temperatures T0 ,
T1 ,. . . ,TN . The ratio of successive temperatures is constant, such that

Ti+1

Ti
=
(

TN

T0

)1/N

, i = 0, . . . , N.

Initially, the cylinder containing the gas is in the first bucket and in thermal equilibrium. Thus,
the gas has initial temperature T0 . The cylinder is then taken out of the bucket, placed into
the next bucket and allowed to reach thermal equilibrium. This process is repeated until the
cylinder and gas are in bucket N + 1 at a temperature of TN . The procedure is then reversed
and ultimately the cylinder and gas return to the first bucket at temperature T0 . The cylinder,
gas, and the N + 1 buckets of water form an isolated system and no work is performed as part
of the process. Assume the buckets contain enough water that any change in the value of their
temperature is negligible.
1. Determine the change in the entire system’s entropy that occurs between the beginning of

the procedure and the end of the first part of the procedure, where the gas is at temperature
TN .

2. Determine the change in the entire system’s entropy that occurs between the beginning and
end of the entire procedure, where the gas has been heated from T0 to TN and then cooled
back to T0 again.

3. Calculate the entropy change, computed in the previous part of this problem, in the limit
as N → ∞, while T0 and TN remain fixed. Hint: You will need to use the fact that, for
large N

N (x1/N − 1) ≈ ln x +
1

2N
(ln x)2 + · · · .

5.11 [SECTION 5.6] Consider a one-dimensional system with temperature T (x), heat flux q(x), heat
source density r(x), mass density ρ(x) and entropy density s(x). Construct a one-dimensional
differential element and show that for a quasistatic process the balance of entropy is

ρṡ =
ρr

T
− ∂

∂x

( q

T

)
,

in agreement with the Clausius–Duhem inequality. Hint: You will need to use the following
expansion: 1/(1 + δ) ≈ 1 − δ + δ2 − · · · , where δ = dT/T � 1, and retain only first order
terms.

64 This problem is based on Problem 4.4-6 of [Cal85].



6 Constitutive relations

In the previous two chapters, we explored the physical laws that govern the behavior
of continuum systems. The result was the following set of partial differential equations
expressed in the deformed configuration taken from Eqns. (4.2), (4.25) and (5.57):

conservation of mass: ρ̇ + ρ(div v) = 0 (1 equation),
balance of linear momentum: div σ + ρb = ρa (3 equations),
conservation of energy (first law): σ : d + ρr − div q = ρu̇ (1 equation),

along with the algebraic Eqns. (4.30) and the differential inequality (5.63):

balance of angular momentum: σT = σ (3 equations),

Clausius–Duhem inequality (second law): ṡ ≥ r

T
− 1

ρ
div

q

T
(1 equation).

Excluding the balance of angular momentum and the Clausius–Duhem inequality, which
provide constraints on material behavior but are not governing equations, a continuum
thermomechanical system is therefore governed by five differential equations. These are
called the field equations or governing equations of continuum mechanics.

The independent fields entering into these equations are:

ρ (1 unknown), σ (6 unknown), u (1 unknown), T (1 unknown),
x (3 unknowns), q (3 unknowns), s (1 unknown),

where we have imposed the symmetry of the stress tensor due to the constraint of the balance
of angular momentum. The result is a total of sixteen unknowns. The heat source r and body
force b are assumed to be known external interactions of the body with its environment.
The velocity, acceleration and the rate of deformation tensor are not independent fields.
They are given by

v = ẋ, a = ẍ, d =
1
2
(∇ẋ + (∇ẋ)T ).

Consequently, a continuum thermomechanical system is characterized by five equations
with sixteen unknowns. The missing equations are the constitutive relations (or response
functions) that describe the response of the material to the mechanical and thermal loading
imposed on it. Constitutive relations are required for u, T , σ and q [CN63]. These provide
the additional eleven equations required to close the system.

Constitutive relations cannot be selected arbitrarily. They must conform to certain con-
straints imposed on them by physical laws and they must be consistent with the structure
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of the material. To derive these constraints, we will take a fresh look at the theory of
continuum thermomechanical systems. Our approach will be to, temporarily, forget all
of the relationships among the thermodynamic variables that we discovered in the previ-
ous chapter, and instead take the above governing equations, and the five basic principles
given below, as fundamental. These principles and field equations will serve as our start-
ing point from which we will discover the constraints on constitutive relations that we
seek.

These constraints will help immensely to reduce the set of possible forms from which
all constitutive equations must be chosen. However, the relations that we will obtain are
still quite general. That is, there will be many possible choices of constitutive relations that
satisfy the constraints. In particular, we will find that the postulate of local thermodynamic
equilibrium described in Section 5.6 satisfies all of the constraints, and therefore is a
valid and consistent choice for the constitutive relations.1 However, it is important to note
that when formulated from this point of view, the theory of continuum thermomechanical
systems allows for a much broader set of possible constitutive relations than simply those
associated with the postulate of local thermodynamic equilibrium.

In this chapter, we will derive restrictions on the possible functional forms of constitutive
relations and present some important prototypical examples of such relations. The possi-
bility of computing constitutive relations directly from an atomistic model is discussed in
Chapter 11 of [TM11]. In such a case, one starts with an “atomistic constitutive relation,”
describing how individual atoms interact based on their kinematic description, and then use
certain averaging techniques to obtain the continuum-level relations.

6.1 Constraints on constitutive relations

Constitutive relations are assumed to be governed by the following fundamental principles.

I Principle of determinism
This is a fundamental philosophical statement at the heart of science that proposes
that past events determine the present. This principle was most optimistically stated in
1820 by the French mathematician Pierre-Simon de Laplace [Lap51]:

Present events are connected with preceding ones by a tie based on the evident
principle that a thing cannot occur without a cause which produces it. . . We ought
to regard the present state of the universe as the effect of its antecedent state and as
the cause of the state that is to follow. An intelligence knowing all the forces acting
in nature at a given instant, as well as the momentary positions of all things in the
universe, would be able to comprehend in one single formula the motions of the
largest bodies as well as the lightest atoms in the world, provided that its intellect

1 In Section 5.6 we started with the laws of equilibrium thermodynamics, assumed the postulate of local thermo-
dynamic equilibrium and then derived the Clausius–Duhem inequality. Here, in a sense, we make the converse
argument: we assume the existence of temperature and entropy fields and take the Clausius–Duhem inequality
as given and fundamental. Then we derive relations that admit the postulate of local thermodynamic equilibrium
as one (of many) possible constitutive relations.
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were sufficiently powerful to subject all data to analysis; to it nothing would be
uncertain, the future as well as the past would be present to its eyes. The perfection
that the human mind has been able to give to astronomy affords but a feeble outline
of such an intelligence.

The development of quantum mechanics over the following 100 years, initiated by
the experiments of Gustav Kirchhoff and others with black body radiation, spoiled
Laplace’s triumphant mood. We no longer believe in perfect determinism as a funda-
mental law of nature. Nevertheless, at the macroscopic level described by continuum
mechanics we still subscribe to determinism in the sense that the current value of any
physical variable can be determined from the knowledge of the present and past values
of other variables. For example, we assume that the stress at a material particle X in
a body at time t can be determined from the history of the motion of the body, its
temperature history and so on [Jau67]:

σ(X, t) = f(ϕt(·), T t(·), . . . ,X, t). (6.1)

Here, ϕt(·) and T t(·) represent the time histories of the deformation mapping and
temperature at all points in the body. A material that depends on the past as well as the
present is called a material with memory. The explicit dependence of f on X allows
for heterogeneous materials where the constitutive relation is different in different
parts of the body. The explicit dependence on t allows the response of a material to
change with time to account for material aging.

II Principle of local action
The principle of local action states that the material response at a point depends only
on the conditions within an arbitrarily small region about that point.2 We assume that
a physical variable in the vicinity of particle X can be characterized by a Taylor
expansion. For example, the deformation x = ϕ(X) near X is described by

x + Δx = ϕ(X) + F (X)ΔX +
1
2
∇0F : (ΔX ⊗ ΔX) + · · · ,

where F = ∇0ϕ is the deformation gradient and ∇0 is the gradient with respect to
the material coordinates. The stress function in Eqn. (6.1), under the assumption of
local action, is then

σ(X, t) = g(ϕt(X),F t(X), . . . , T t(X), (∇0T )t(X), . . . ,X, t), (6.2)

where a dependence on a finite number of terms in the Taylor expansion is assumed.
If the material has no memory, the expression simplifies to

σ(X, t) = h(ϕ(X, t),F (X, t), . . . , T (X, t),∇0T (X, t), . . . ,X, t). (6.3)

An example of such a model is the generalized Hooke’s law for a hyperelastic material3

under conditions of infinitesimal deformations, where the stress is a linear function of

2 This definition is originally due to Noll. See [TN65, Section 26] for a detailed discussion.
3 We define what we mean by “elastic” and “hyperelastic” materials in the next section.
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the small strain tensor at a point:

σij (X) = cijkl(X)εkl(X).

Here c is the small strain elasticity tensor. It is important to point out that the principle
of local action is not universally accepted. There are nonlocal continuum theories that
reject this hypothesis. In such theories, the constitutive response at a point is obtained by
integrating over the volume of the body. For example in Eringen’s nonlocal continuum
theory the Cauchy stress σ at a point is [Eri02]

σij (X) =
∫

B0

K(
∥∥X − X ′∥∥)tij (X ′) dV0(X ′), (6.4)

where the kernel K(r) is an influence function (often taken to be a Gaussian and of
finite support, i.e. it is identically zero for all r > rcut for some cutoff distance rcut > 0)
and tij = cijklεkl are the usual local stresses. Alternatively, Silling has developed a
nonlocal continuum theory called peridynamics formulated entirely in terms of forces
[Sil02].

Nonlocal theories can be very useful in certain situations, such as in the presence of
discontinuities; however, local constitutive relations tend to be the dominant choice due
to their simplicity and their ability to adequately describe most phenomena of interest.
In particular, in the context of the multiscale methods discussed in [TM11], continuum
theories are applied only in regions where gradients are sufficiently smooth to warrant
the local action approximation. The regions where such approximations break down
are described using atomistic methods that are naturally nonlocal. For more on this see
Chapter 12 of [TM11].

III Second law restrictions
A constitutive relation cannot violate the second law of thermodynamics, which states
that the entropy of an isolated system remains constant for a reversible process and
increases for an irreversible process. For example, a constitutive model for heat flux
must ensure that heat flows from hot to cold regions and not vice versa. The second
law for continuum thermomechanical systems takes the form of the Clausius–Duhem
inequality. The application of this inequality to impose constraints on the form of
constitutive relations was pioneered in the seminal 1963 paper of Coleman and Noll
[CN63]. The approach outlined in that paper is referred to as the Coleman–Noll
procedure.

IV Principle of material frame-indifference (objectivity)
All physical variables for which constitutive relations are required must be objective
tensors. An objective tensor is a tensor which is physically the same in all frames
of reference. For example, the relative position between two physical points is an
objective vector, whereas the velocity of a physical point is not objective since it will
change depending on the frame of reference in which it is measured. The condition of
objectivity imposes certain constraints on the functional form of constitutive relations,
which ensures that the resulting variables are objective or material frame-indifferent.
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V Material symmetry
A constitutive relation must respect any symmetries that the material possesses. For
example, the stress in a uniformly strained homogeneous isotropic material (i.e. a
material that has the same mechanical properties in all directions at all points) is the
same regardless of how the material is rotated before the strain is applied.

In addition to the five general principles described above, in this book we will restrict the
discussion further to the most commonly encountered types of constitutive relations with
two additional constraints:

VI Only materials without memory and without aging are considered
This, along with the principle of local action, means that the constitutive relations for
the variables u, T , σ and q only depend on the local values of other state variables
(including possibly a finite number of terms – higher-order gradients – from their
Taylor expansion) and their time rates of change.

VII Only materials whose internal energy depends solely on the entropy and deformation
gradient are considered
That is, we explicitly exclude the possibility of dependence on any rates of deformation
as well as the higher-order gradients of the deformation. This is consistent with the
thermodynamic definition in Eqn. (5.12).

In the next three sections we see the implications of the restrictions described above on
allowable forms of the constitutive relations.

6.2 Local action and the second law of thermodynamics

In this section we consider the implications of the principle of local action and the second
law of thermodynamics (principles II and III) along with constraints VI and VII for the
functional forms of the constitutive relations for u, T , σ and q. The implications of
principles IV and V will be considered later in the chapter.

6.2.1 Specific internal energy constitutive relation

The statement of the second law introduced the concept of entropy as a state variable and
the following functional dependence for the internal energy (Eqn. (5.12)):

U = U(N,Γ,S),

where Γ is a set of extensive kinematic variables. We can eliminate the particle number
from the list of state variables if we work with intensive versions of the extensive state
variables. Thus dividing all extensive state variables by the total mass of the particles, we
obtain the specific internal energy u (i.e. the internal energy per unit mass) as a function of
the specific entropy s and the intensive versions of the kinematic state variables Γi:

u = u(s,Γi). (6.5)
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For notational simplicity, we drop the “i” superscript on Γi in subsequent discussion, since
the extensive or intensive nature of Γ is clear from the context. As before, a bar or (other
accent) over a variable, as in u, is used to denote the response function (as opposed to the
actual quantity). Considering constraint VII, we obtain the functional form for the specific
internal energy constitutive relation:

u = u(s,F ). (6.6)

This is referred to as the caloric equation of state. A material whose constitutive relation
depends on the deformation only through the history of the local value of F is called a
simple material. A simple material without memory (depending only on the instantaneous
value of F ) is called an elastic simple material.

Before continuing, we note that it is necessary for some materials to augment constraint
VII to include additional internal variables that describe microstructural features (additional
kinematic state variables) of the continuum such as dislocation density, vacancy density,
impurity concentration, phase fraction, microcrack density and so on:4

u = ũ(s,F , δ1 , δ2 , . . . ).

The inclusion of these parameters leads to additional rate equations that model their evolu-
tion [Lub72].

Another set of possible constitutive relations, which we have excluded from discussion
via constraint VII, are those that include a dependence on higher-order gradients of the
deformation:5

u = û(s,F ,∇0F , . . . ).

The result is a strain gradient theory. This approach has been successfully used to study
length scale6 dependence in plasticity [FMAH94] and localization of deformation in the
form of shear bands [TA86]. See the discussion in Section 6.6. An alternative approach
is the polar Cosserat theory in which nonuniform local deformation is characterized by
associating a triad of orthonormal director vectors with each material point [Rub00]. These
approaches are beyond the scope of the present discussion.

4 In this chapter we use accents over a function’s symbol to indicate differences between functional forms. For
example, here we switch from u(s, F ) to ũ(s, F , δ1 , δ2 , . . . ) to emphasize the fact that these are two distinct
functional forms; however, the different accents (̂·, ·, ·̃ and ·̆ ) are not associated with any particular set of
functional arguments. In contrast, in Chapter 5 we used accents over a function’s symbol to indicate its specific
arguments (e.g. U(S, Γ) and Û(T, Γ), where · is identified with the functional arguments S and Γ, and ·̂ is
identified with the functional arguments T and Γ, respectively).

5 Interestingly, it is not possible to simply add a dependence on higher-order gradients without introducing
additional variables that are conjugate with the higher-order gradient fields, and modifying the energy equation
and the Clausius–Duhem inequality [Gur65]. For example, a second-gradient theory requires the introduction
of couple stresses. Therefore, classical continuum thermodynamics is by necessity limited to simple materials.

6 Each higher-order gradient introduced into the formulation is associated with a length scale. For example, a
second-order gradient has units of 1/length. It must therefore be multiplied by a parameter with units of length
to cancel this out in the energy expression. In contrast, the classical continuum mechanics of simple materials
has no length scale. This qualitative difference has sometimes led authors to call these strain gradient theories
“nonlocal.” However, this terminology does not appear to be consistent with the original definition of the term
“local.”
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6.2.2 Coleman–Noll procedure

In order to obtain functional forms for the temperature, heat flux vector and stress tensor,
it is advantageous to revisit the second law of thermodynamics and concepts of reversible
and irreversible processes. By doing so, we will be able to obtain the specific functional
dependence of the temperature and heat flux response functions. In addition, we will show
that the stress tensor can be divided into two parts: a conservative elastic part and an
irreversible viscous part. The procedure followed here is due to Coleman and Noll [CN63]
and Ziegler and McVean [ZM67].

We saw earlier in Eqn. (5.65) that the Clausius–Duhem inequality can be written in
abbreviated form as

ṡint ≡ ṡ − ṡext ≥ 0, (6.7)

where ṡint is the specific internal entropy production rate and

ṡext =
r

T
− 1

ρ
div

q

T
(6.8)

is the specific external entropy input rate. Substituting Eqn. (6.8) into Eqn. (6.7) and
expanding the divergence term, we have

ṡint = ṡ − r

T
+

1
ρ

div
q

T

= ṡ − r

T
+

(div q)T − q · ∇T

ρT 2

= ṡ − 1
ρT

[ρr − div q] − 1
ρT 2 q · ∇T ≥ 0.

Rearranging, we obtain

ρT ṡint = ρT ṡ − [ρr − div q] − 1
T

q · ∇T ≥ 0. (6.9)

The expression in the square brackets in Eqn. (6.9) appears in exactly the same form in the
energy equation (Eqn. (5.57)):

ρr − div q = ρu̇ − σ : d. (6.10)

Substituting Eqn. (6.10) into Eqn. (6.9) gives

ρT ṡint = ρT ṡ − ρu̇ + σ : d − 1
T

q · ∇T ≥ 0. (6.11)

Taking a material time derivative of Eqn. (6.6), we have

u̇ =
∂u

∂s
ṡ +

∂u

∂F
: Ḟ . (6.12)

Substituting Eqn. (6.12) into Eqn. (6.11) and rearranging gives

ρ

[
T − ∂u

∂s

]
ṡ +

[
σ : d − ρ

∂u

∂F
: Ḟ

]
− 1

T
q · ∇T ≥ 0. (6.13)
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Now, since σ is symmetric, we have σ : d = σ : l (where l is the velocity gradient). Recall
also that Ḟ = lF (Eqn. (3.36)), therefore

l = Ḟ F−1 . (6.14)

Replacing σ : d in Eqn. (6.13) with σ : l and substituting in Eqn. (6.14), we have

ρ

[
T − ∂u

∂s

]
ṡ +

[
σF−T − ρ

∂u

∂F

]
: Ḟ − 1

T
q · ∇T ≥ 0. (6.15)

The argument made by Coleman and Noll is that Eqn. (6.15) must be satisfied for every
admissible process. By selecting special cases, insight is gained into the relation between
the different continuum fields. This line of thinking is referred to as the Coleman–Noll
procedure. We apply it below to obtain the functional forms for the constitutive relations
for temperature, heat flux and stress.

Temperature constitutive relation Consider a process where the deformation is constant in
time (Ḟ = 0) and the temperature is uniform across the body, so that ∇T = 0. In this case,
Eqn. (6.15) reduces to

ρ

[
T − ∂u

∂s

]
ṡ ≥ 0. (6.16)

The rate of change of entropy ṡ can be assigned arbitrarily (e.g. by modifying an external
heat source r (see Eqn. (5.63)). Since the sign of ṡ is arbitrary, Eqn. (6.16) can only be
satisfied for every process if

T = T (s,F ) ≡ ∂u

∂s
, (6.17)

where the functional dependence follows from Eqn. (6.6). We see that the specific internal
energy density has the same relation to the local temperature as the total internal energy
does to temperature in a homogeneous system as given in Eqn. (5.21).

Heat flux constitutive relation Substituting Eqn. (6.17) in Eqn. (6.15), the second law in-
equality reduces to [

σF−T − ρ
∂u

∂F

]
: Ḟ − 1

T
q · ∇T ≥ 0. (6.18)

Again, considering a process where the deformation is constant (Ḟ = 0), we have

− 1
T

q · ∇T = − 1
T

qiT,i ≥ 0. (6.19)

This inequality is consistent with our physical intuition: heat flows from hot to cold. This
result does not provide an explicit form for the heat flux constitutive relation. However,
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since Eqn. (6.19) must be satisfied for any ∇T , the heat flux must depend on this variable.
For example, if we consider the two heat flux fields ∇T and −∇T , then Eqn. (6.19) must
be satisfied for both of these. This means that q must change sign in accordance with ∇T

to ensure that the inequality remains valid. We can therefore state in general that q must
have the following functional dependence:7

q = q(s,F ,∇T ). (6.20)

Cauchy stress constitutive relation Returning to Eqn. (6.18), consider the case where the tem-
perature is uniform across the body (∇T = 0). In this case, the second law inequality
is [

σF−T − ρ
∂u

∂F

]
: Ḟ ≥ 0. (6.21)

This equation must hold for any choice of Ḟ . This can only be satisfied for all Ḟ if

σF−T − ρ
∂u

∂F
= 0. (6.22)

Therefore, unless Eqn. (6.22) is satisfied, Eqn. (6.21) can be violated by a particular choice
of Ḟ . There is a problem with this conclusion. Equation (6.22) implies that all irreversibility
enters through the heat flux term in Eqn. (6.18) and consequently that no irreversibility is
possible under uniform temperature conditions. This is not consistent with experimental
observation. The implication of this is that the stress is not a state variable as anticipated
by the discussion on page 173. To proceed, we partition σ into two (as in Eqn. (5.51)):
an elastic reversible part that is a state variable and a “viscous,” or dissipative, part that is
irreversible:8

σ = σ(e) + σ(v ) . (6.23)

Substituting Eqn. (6.23) into Eqn. (6.18) gives[
σ(e)F−T − ρ

∂u

∂F

]
: Ḟ + σ(v ) : l − 1

T
q · ∇T ≥ 0. (6.24)

If we now assume that σ(v ) represents an irreversible process, then its entropy production
is always positive (the dissipated energy is converted into heat which causes the entropy to

7 It is curious to note that if electromagnetic effects are included, the heat flux constitutive relation will generally
include bilinear coupling between the temperature gradient and the electric current. This coupling gives rise
to the Thomson effect whereby, through the application of a suitable electric current through a specimen,
it is possible to violate Eqn. (6.19) and have heat flow from cold to hot. Do not despair, however; with the
appropriate formulation of thermodynamic theory it is found that this does not, in any way, violate the second
law of thermodynamics.

8 An additive partitioning of the stress may not always be appropriate. See footnote 58 on page 173.
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increase),

σ(v ) : d ≥ 0, (6.25)

where by replacing l with d, we have assumed that the viscous stress is symmetric.9 Since
the last two terms in Eqn. (6.24) have a fixed sign (always positive) and (by choice of Ḟ )
the first term can take on any value, the inequality can only be guaranteed to be satisfied if

σ(e) = σ(e)(s,F ) ≡ ρ
∂u

∂F
F T , (6.26)

or in component form

σ
(e)
ij = ρ

∂u

∂FiJ
FjJ .

Furthermore, we require that the inequality in Eqn. (6.25) must be satisfied for every
process. Similarly to the heat flux, this inequality on its own is not enough to obtain an
explicit form for σ(v ) . However, it does indicate that the viscous stress must depend on the
rate of deformation tensor, therefore

σ(v ) = σ(v )(s,F ,d). (6.27)

A material for which σ(v ) = 0, and for which an energy function exists, such that the stress
is entirely determined by Eqn. (6.26), is called a hyperelastic material.

Entropy change in reversible and irreversible processes Following the definition of the elastic
stress in Eqn. (6.26), the Clausius–Duhem inequality in Eqn. (6.24) is reduced to its final
form:

ρT ṡint = σ(v ) : d − 1
T

q · ∇T ≥ 0. (6.28)

This relation can be used to shed some light on local entropy changes in materials whose
stress can be decomposed according to Eqn. (6.23). Equating the expressions for ρT ṡint in
Eqns. (6.28) and (6.9), we obtain

ṡ =
r

T
− 1

ρT
div q +

1
ρT

σ(v ) : d. (6.29)

9 We prove that the elastic stress is symmetric immediately after Eqn. (6.105) and therefore the viscous stress
must also be symmetric in order for the balance of angular momentum to be satisfied. For now we treat both
σ(e ) and σ(v ) as symmetric tensors.
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If the process is reversible, then each of the terms in Eqn. (6.28) is zero (since a sum of two
positive terms is zero only if they are both zero):

σ(v ) : d = 0, − 1
T

q · ∇T = 0, (6.30)

and Eqn. (6.29) reduces to

ṡ = ṡrev =
r

T
− 1

ρT
div q. (6.31)

In this case, ṡ is exactly equal to ṡext in Eqn. (6.8), since (q/T )·∇T = 0. For an irreversible
process (where the system interacts with reversible heat and work sources), ṡ > ṡext and
the difference is exactly ṡint.

6.2.3 Onsager reciprocal relations

In Eqns. (6.20) and (6.27), we established guidelines for the constitutive forms of q and
σ(v ) that appear in the entropy production expression in Eqn. (6.28). However, the actual
functional forms are unknown. As a result, a phenomenological approach is normally
adopted where a functional form is postulated and the parameters appearing in it are
obtained by fitting to experimental measurements. The simplest possibility is to assume a
linear relation between the arguments. In general, we have

Ji = Lij Yj , (6.32)

where J is the viscous flux vector and Y is the corresponding generalized viscous force.
The entries of the matrix L coupling them are called the phenomenological coefficients. The
identities of J and Y are somewhat arbitrary. In our case, there are two sets of flux-force
pairs. We can choose σ(v ) (in concatenated Voigt form as shown in Tab. 5.2) and q/T to
be the generalized forces and d (suitably concatenated) and ∇T to be the corresponding
fluxes.10 Other terms are possible when additional irreversible phenomena are considered.

The heart of the phenomenological relations is the coefficient matrix L. What can be said
in general about this matrix? We established earlier that the contribution of each irreversible
term to entropy production must be nonnegative. Therefore, we must have that

JiYi = Lij YiYj ≥ 0, (6.33)

for all forces Y . This means that the matrix L must be positive definite (or at least positive
semi-definite), which imposes constraints on the coefficients Lij .

A second set of constraints can be inferred from the fact that the microscopic equations
of motion are symmetric with respect to time. This means that if the velocities of all atoms
are instantaneously reversed the atoms will retrace their earlier trajectories. In an important
theorem in nonequilibrium statistical mechanics, Lars Onsager proved that for systems
close to equilibrium the phenomenological coefficients matrix must be symmetric:

Lij = Lj i . (6.34)

10 The resulting linear constitutive relations are well known. The first relation describes the viscous response of
a Newtonian fluid and the second is called Fourier’s law of heat conduction. We explore both relations later.
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This is referred to as the Onsager reciprocal relations.11 For a symmetric matrix, the earlier
requirement of positive definiteness is equivalent to requiring that the eigenvalues of L be
positive.

6.2.4 Constitutive relations for alternative stress variables

Continuum formulations for solids are often expressed in a Lagrangian description, where
the appropriate stress variables are the first or second Piola–Kirchhoff stress tensors. The
constitutive relations for these variables can be found by suitably transforming the Cauchy
stress function.

The constitutive relation for the elastic part of the first Piola–Kirchhoff stress is obtained
by substituting Eqn. (6.26) into Eqn. (4.35). The result after using Eqn. (4.1) is

P
(e)
iJ = ρ0

∂u

∂FiJ
⇔ P (e) = ρ0

∂u

∂F
. (6.35)

The second Piola–Kirchhoff stress is obtained in similar fashion from Eqn. (4.41) as

S
(e)
IJ = ρ0F

−1
I i

∂u

∂FiJ
. (6.36)

We will see in Section 6.3 that due to material frame-indifference the internal energy can
only depend on F through the right stretch tensor U (or equivalently through the right
Cauchy–Green deformation tensor C or the Lagrangian strain tensor E). We therefore
rewrite Eqn. (6.36) using an alternative internal energy function, ũ(s,E), that depends on
the Lagrangian strain. Thus,

S
(e)
IJ = ρ0F

−1
I i

∂ũ

∂EM N

∂EM N

∂FiJ

= ρ0F
−1
I i

∂ũ

∂EM N
(FiN δM J + FiM δN J ) /2

= ρ0F
−1
I i

(
∂ũ

∂EJ N
FiN +

∂ũ

∂EM J
FiM

)
/2

= ρ0F
−1
I i FiM

∂ũ

∂EM J
,

where the symmetry of E was used in passing from the third to the fourth line. The F−1F

product gives the identity, so the final result is

S
(e)
IJ = ρ0

∂ũ

∂EIJ
⇔ S(e) = ρ0

∂ũ

∂E
. (6.37)

11 Onsager received the Nobel Prize in Chemistry in 1968 for the discovery of the reciprocal relations. See
de Groot and Mazur [dGM62] for a detailed discussion of the reciprocal relations and their derivation. The
application of Onsager’s relations to continuum field theories is not without controversy. Truesdell [Tru84,
Lecture 7] pointed to the arbitrariness of the definition of fluxes and forces and questioned Onsager’s basic
assumptions. In typical Truesdellian fashion, he attacked the proponents of “Onsagerism.”
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Equations (6.26), (6.35) and (6.37) provide the constitutive relations for the elastic parts
of the Cauchy and Piola–Kirchhoff stress tensors. These expressions provide insight into
the power conjugate pairs obtained earlier in the derivation of the deformation power in
Section 5.6. That analysis identified three pairs of power conjugate variables: (σ, ε̇), (P , Ḟ )
and (S, Ė). From Eqns. (6.35) and (6.37) we see that the elastic parts of the first and second
Piola–Kirchhoff stress tensors are conservative thermodynamic tensions work conjugate
with their respective kinematic variables. In contrast, the elastic part of the Cauchy stress
tensor cannot be written as the derivative of the energy with respect to the small strain tensor
ε. The reason is that unlike F and E, the small strain tensor ε is not a state variable. Rather
it is an incremental deformation measure. The conclusion is that σ(e) is not a conservative
thermodynamic tension. Consequently, a calculation of the change in internal energy using
the power conjugate pair (σ, ε̇) requires an integration over the time history.12

The constitutive relations derived above have taken the entropy and deformation gradient
as the independent state variables. For example, the stress response functions correspond
to the change in energy with deformation under conditions of constant entropy. Other
scenarios require a transformation from the specific internal energy to other thermodynamic
potentials. This is discussed next along with the physical significance of selecting different
independent state variables.

6.2.5 Thermodynamic potentials and connection with experiments

The mathematical description of a process can be significantly simplified by an appropriate
choice of independent state variables. A process occurring at constant entropy (ṡ = 0) is
called an isentropic process. A process where F is controlled is subject to displacement
control. Thus, u = u(s,F ) is the appropriate energy variable for isentropic processes under
displacement control. If, in addition to being isentropic, the process is also reversible, it
then follows from Eqn. (6.31) that

ρr − div q = 0. (6.38)

A process satisfying this condition is called adiabatic. It is important to note that for
continuum systems, adiabatic conditions are not ensured by thermally isolating the system
from its environment, which given Eqn. (5.61), only ensures that

R(B) =
∫

B

ρr dV −
∫

∂B

q · n dA =
∫

B

[ρr − div q] dV = 0. (6.39)

This does not translate to the local requirement in Eqn. (6.38), unless Eqn. (6.39) is assumed
to hold for every subbody of the body. This implies that there is no transfer of heat between
different parts of the body. The assumption is that such conditions can be approximately
satisfied if the loading is performed “rapidly” on time scales associated with heat transfer
[Mal69]. For example, if a tension test in the elastic regime is performed in a laboratory
where the sample is thermally isolated from its environment and is loaded (sufficiently
fast) by applying a fixed displacement to its end, the engineering stress (i.e. the first Piola–
Kirchhoff stress) measured in the experiment will be ρ0∂u(s,F )/∂F .

12 This has important implications for the application of constant stress boundary conditions in atomistic simu-
lations as explained in Section 6.4.3 of [TM11].
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Table 6.1. Summary of the form and properties of the thermodynamic potentials

Independent
Potential Functional form variables Dependent variables

internal energy u s, Γ T = ∂u/∂s γ = ∂u/∂Γ
Helmholtz free energy ψ = u − Ts T , Γ s = −∂ψ/∂T γ = ∂ψ/∂Γ
enthalpy h = u − γ · Γ s, γ T = ∂h/∂s Γ = −∂h/∂γ

Gibbs free energy g = u − Ts − γ · Γ T , γ s = −∂g/∂T Γ = −∂g/∂γ

In many cases, the loading conditions will differ. For example, if the tension test men-
tioned above is performed in a temperature-controlled laboratory with an uninsulated
sample, then the process is isothermal (i.e. it occurs at constant temperature) and the result
of the test will be different. Yet another result will be observed if the device controlling
the displacement of the test frame is replaced with a load control device that maintains
a specified force. The suitable energy variable in either of these cases is not the specific
internal energy. Instead, alternative thermodynamic potentials, derived below using Legen-
dre transformations, must be used (see also Exercise 6.1). The results are summarized in
Tab. 6.1. We write the expressions below in generic form for arbitrary kinematic variables
Γ and thermodynamic tensions γ and then give the results for two particular choices of Γ:
F and E.

Helmholtz free energy The Helmholtz free energy is the appropriate energy variable for
processes where T and Γ are the independent variables. Let us derive this potential. We
begin with the temperature T = T (s,Γ), which is given by T = ∂u/∂s (Eqn. (6.17)). We
seek an alternative potential P̂(T,Γ) which leads to the inverse relation,

s = ŝ(T,Γ) ≡ ∂P̂(T,Γ)
∂T

.

It is straightforward to show that the correct form is given by the following transformation
called a Legendre transformation:

P = sT − u.

The proof is elementary.

Proof Let P = P̂(T,Γ) = ŝ(T,Γ)T − u(ŝ(T,Γ),Γ). Then,

∂P̂
∂T

=
∂ŝ

∂T
T + ŝ − ∂u

∂s

∂ŝ

∂T
=

∂ŝ

∂T
T + ŝ − T

∂ŝ

∂T
= ŝ.

By convention, the negative of P is taken as the specific Helmholtz free energy ψ:

ψ = u − Ts. (6.40)
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The explicit expression showing the variable dependence is

ψ̂(T,Γ) = u(ŝ(T,Γ),Γ) − T ŝ(T,Γ),

with

s = −∂ψ̂(T,Γ)
∂T

, γ =
∂ψ̂(T,Γ)

∂Γ
.

The continuum stress variables at constant temperature for the two choices of Γ are

P (e) = ρ0
∂ψ̂(T,F )

∂F
, S(e) = ρ0

∂ψ̃(T,E)
∂E

. (6.41)

A potential closely related to the specific Helmholtz free energy is the strain energy
density function W . This is simply the free energy per unit reference volume instead of per
unit mass:

W = ρ0ψ. (6.42)

In some atomistic simulations, where calculations are performed at “zero temperature,” the
strain energy density is directly related to the internal energy, W = ρ0u. In this way strain
energy density can be used as a catch-all for both zero temperature and finite temperature
conditions. The stress variables follow as

P (e) =
∂Ŵ (T,F )

∂F
, S(e) =

∂W̃ (T,E)
∂E

. (6.43)

Enthalpy The specific enthalpy h:

h = u − γ · Γ, (6.44)

is the appropriate energy variable for processes where s and γ are the independent variables.
The explicit expression showing the variable dependence is

ĥ(s,γ) = u(s, Γ̂(s,γ)) − γ · Γ̂(s,γ),

with

T =
∂ĥ(s,γ)

∂s
, Γ = −∂ĥ(s,γ)

∂γ
.
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The continuum deformation measures at constant entropy are

F = −ρ0
∂ĥ(s,P (e))

∂P (e) , E = −ρ0
∂h̃(s,S(e))

∂S(e) . (6.45)

Gibbs free energy The specific Gibbs free energy (or specific Gibbs function) g:

g = u − Ts − γ · Γ, (6.46)

is the appropriate energy variable for processes where T and γ are the independent variables.
The explicit expression showing the variable dependence is

ĝ(T,γ) = u(ŝ(T,γ), Γ̂(T,γ)) − T ŝ(T,γ) − γ · Γ̂(T,γ), (6.47)

with

s = −∂ĝ(T,γ)
∂T

, Γ = −∂ĝ(T,γ)
∂γ

.

The continuum deformation measures at constant temperature are

F = −ρ0
∂ĝ(T,P (e))

∂P (e) , E = −ρ0
∂g̃(T,S(e))

∂S(e) . (6.48)

6.3 Material frame-indifference

Constitutive relations provide a connection between a material’s deformation and its entropy,
stress and temperature. A fundamental assumption in continuum mechanics is that this
response is intrinsic to the material and should therefore be independent of the frame of
reference used to describe the motion of the material. This hypothesis is referred to as
the principle of material frame-indifference. Explicitly, it states that (intrinsic) constitutive
relations must be invariant with respect to changes of frame.13

13 The principle of material frame-indifference has a long history (see [TN65, Section 19A] for a review). The
principle was first clearly stated by James Oldroyd who wrote in 1950 [Old50, Section 1]: “The form of
the completely general equations [of state] must be restricted by the requirement that the equations describe
properties independent of the frame of reference.” In Oldroyd’s formulation, invariance is guaranteed by
expressing constitutive relations in a convected coordinate system that deforms with the material and then
mapping them back to a particular fixed frame of reference of interest. In this book, we follow the work of
Walter Noll, where constitutive relations can be formulated in any frame of reference, but must satisfy certain
constraints to ensure invariance with respect to change of frame. Noll initially used the term “principle of
isotropy of space” to describe this principle. Later it was renamed the “principle of objectivity” and then again
to its current name [Nol04]. An early publication that describes Noll’s formulation is [Nol58].
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The application of the principle of material frame-indifference to constitutive relations
is a two-step process. First, it must be established how different variables transform under
a change of frame of reference. Variables that are unaffected, in a certain sense, by such
transformations are called objective. Second, variables for which constitutive relations are
necessary are required to be objective. The second step imposes constraints on the allowable
form of the constitutive relations. We discuss the two steps in order.

At the end of this section we briefly discuss a controversy surrounding the universality
of the principle of material frame-indifference. Some authors claim that this principle
is not a principle at all, but an approximation which is valid as long as macroscopic
time and length scales are large relative to microscopic phenomena. We argue that the
controversy is essentially a debate over semantics. Material frame-indifference is a principle
for intrinsic14 constitutive relations as they are defined in continuum mechanics. However,
these relations are an idealization of a more complex physical reality that is not necessarily
frame-indifferent.

6.3.1 Transformation between frames of reference

The description of physical events, characterized by positions in space and the times at
which they occur, requires the specification of a frame of reference; a concept introduced
in Section 2.1. A frame of reference F is defined as a rigid object (which may be moving),
relative to which positions are measured, and a clock to measure time. Mathematically, the
space associated with a frame of reference is identified with a Euclidean point space E (see
Section 2.3.1).15 An event in the physical world is represented in frame F as a point x in
E and a time t in R. The distance d(x, y) between two points x and y in E is computed
from the distance function of the associated inner-product vector space R

nd (the translation
space of E ):16

d(x, y) = ‖x − y‖ .

Here x and y are the position vectors of x and y relative to an origin o (see Eqn. (2.19)).
The choice of frame of reference is not unique, of course. There is an infinite number

of possible choices, each of which is associated with a different Euclidean point space and
a different clock. Thus, the same event will be associated with different points and times
depending on the frame of reference in which it is represented. We now consider two frames
of reference, frame F with points x ∈ E and times t ∈ R and frame F+ with x+ ∈ E+

and t+ ∈ R, which may be moving relative to each other. Since we are not dealing with

14 See Section 6.3.7 for a definition of “intrinsic” constitutive relations.
15 See [Nol04, Chapter 2] for a description of the formal process by which a Euclidean point space, which Noll

calls a “frame-space,” is constructed from a rigid material system.
16 An “event” in the physical world is an abstract concept. There is no way for us to know what those events

actually are, Noll calls them “atoms of experience” [Nol73]. In a classical model, all we assume is that using
our senses and brains we can measure the distance between the locations of two events and the time lapse
between them. This is the information used to make the connection with the mathematical representation of
physical reality. In particular, the inner product of the Euclidean vector space R

n d is constructed specifically
so that the distance computed for two points x and y in E coincides with the distance measured between the
physical events that x and y represent. Similarly, the difference between two times tx and ty in R equals the
time lapse between the corresponding physical events.
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relativistic phenomena, we can assume that it is possible for the clocks in both frames to
agree on the sequence of two events and the time difference between them. This means that
times in the two frames are related by

t+ = t − a,

where a is a constant. Since a plays no role in the subsequent derivation, we simplify by
setting a = 0, so that t+ = t. Physically, this means that it is possible for measurements
performed in both frames to agree that a particular event occurred at a particular instant.

The relation between the Euclidean point spaces of frames F and F+ is defined formally
by the following bijective (one-to-one and onto) transformation [Mur82, Nol87]:

αt : E → E+ ,

where αt is a linear mapping from E to E+ at time t. This means that an event at time
t, which according to frame F occurs at point x, is identified with point x+ = αt(x) in
frame F+ at time t. The transformation αt cannot be arbitrary. In order to qualify as a
transformation between frames of reference it must preserve distances between points, i.e.
d(x, y) = d(x+ , y+) for any x and y in E . We recall from Section 2.5 that transformations
that satisfy this condition must be orthogonal. Thus, in terms of relative positions in frames
F and F+ , we must have at time t [Nol87, Section 33]

x+ − y+ = Qt(x − y), (6.49)

where Qt = ∇αt is a spatially constant, time-dependent, orthogonal,17 linear transforma-
tion from R

nd to R
nd + (where R

nd + is the Euclidean vector space associated with E+ ).
We use a calligraphic symbol for Qt , to stress the fact that this transformation is different
from a proper orthogonal tensor Q, introduced in Section 2.5.1, which maps vectors in the
translation space of a single frame to the same translation space and which will be used
later to impose constraints on the functional form of constitutive relations.

To make the above discussion more concrete, consider the following example.

Example 6.1 (Different frames of reference) A two-dimensional physical world contains only a rigid
cross and a rigid rectangle that are translating and rotating relative to each other. The motion is
represented relative to two different frames of reference: the cross (frame F ) and the rectangle (frame
F+ ) as shown in Fig. 6.1. In frame F , the cross appears stationary and the rectangle is rotating and
translating (top row of images in Fig. 6.1). In frame F+ , the rectangle appears stationary and the cross
appears to be moving (bottom row of images in Fig. 6.1). The pair of points (x, y) and (x+ , y+ ) are
the representation of two points in the physical world in frames F and F+ , respectively. The distance
between the points is the same in both frames, but their orientation appears different in each frame
and is related through Eqn. (6.49). It is important to understand that the vectors x − y and x+ − y+

exist in different Euclidean vector spaces, so it is not possible (or necessary) to draw them together
on the same graph.

17 The concept of an “orthogonal” linear transformation between different Euclidean vector spaces is discussed
by Noll in [Nol73, Nol06] and Murdoch in [Mur03].
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Fig. 6.1 A two-dimensional example demonstrating how the physical world is represented in two different frames of reference
(see Example 6.1). In this example a cross and a rectangle are translating and rotating relative to each other. The top
row is a series of snapshots in time showing the two objects in which the cross is the frame of reference (F ). The
bottom row shows snapshots of the same process in which the rectangle is the frame of reference (F+ ). The gray
background represents the Euclidean point spaces, E and E+ associated with the two frames. The points x and x+

represent the location of the same physical event in the two frames. Similarly, y and y+ represent the same event.

Having defined the basic transformation formula between frames of reference in
Eqn. (6.49), we now obtain the transformation relations for important kinematic variables
that will be needed later. Equation (6.49) can be rewritten as

x+ = c+(t) + Qtx, (6.50)

where y+ has been moved to the right-hand side and c+(t) = y+ − Qty is a vector in
R

nd + . Equation (6.50) shows how the position vector of a point transforms between frames
of reference. In the context of a continuum body, x represents the deformed position of
a material particle X ∈ B0 through a motion ϕ(X, t), so that x = ϕ(X, t). Similarly,
x+ = ϕ+(X+ , t). The transformation of the velocity and acceleration of a particle follow
by material time differentiation of Eqn. (6.50) (see Section 3.6):

v+ = ċ+ + Q̇tx + Qtv, (6.51)

a+ = c̈+ + Q̈tx + 2Q̇tv + Qta. (6.52)

The transformation relation for the velocity gradient, l = ∇v, is obtained by taking the
spatial gradient with respect to x+ (denoted by ∇+ ) of v+ in Eqn. (6.51):

l+ = Q̇t∇+x + Qtl∇+x, (6.53)

where we have used the chain rule. From Eqn. (6.50), we have

∇+x = ∇+
[
QT

t (x+ − c+)
]

= QT
t . (6.54)
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Substituting Eqn. (6.54) into Eqn. (6.53) gives

l+ = Ω+ + QtlQT
t , (6.55)

where Ω+ = Q̇tQT
t is a second-order tensor over R

nd + . This is clear since Ω+ maps a
vector in R

nd + to another vector in R
nd + :

Ω+a+ = Q̇t(QT
t a+) = Q̇ta = b+ ,

where a+ , b+ ∈ R
nd + and a ∈ R

nd . The tensor Ω+ has the important property that it is
antisymmetric. The proof is straightforward:

Proof Start with QtQT
t = I+ , where I+ is the identity transformation on R

nd + [Mur03].
Taking a material time derivative, we have, (D/Dt)(QtQT

t ) = Q̇tQT
t + QtQ̇T

t = 0, and
therefore Q̇tQT

t = −QtQ̇T
t = −(Q̇tQT

t )T . Thus, Q̇tQT
t is antisymmetric.

We saw earlier that it is not l, but rather its symmetric part, the rate of deformation tensor
d, that appears in constitutive relations. Substituting Eqn. (6.55) into d+ = 1

2 [l+ + (l+)T ],
the antisymmetric term drops out and we have

d+ = QtdQT
t . (6.56)

So far we have only considered spatial measures. In order to obtain relations for the
transformation of reference measures, we must first consider how reference configurations
defined in the different frames transform. For simplicity, we assume that both frames of
reference adopt a Lagrangian description, which means that the reference configuration is
the configuration that a body of interest occupies at time t = 0. Since we have assumed
that both frames use the same clock, we have

X+ = c+(0) + Q0X, (6.57)

where X and X+ are particles in the reference configuration in frames F and F+ ,
respectively. The deformation gradient follows from Eqn. (6.50) as

F + = ∇0+x+ = Qt∇0+x = QtF∇0+X, (6.58)

where ∇0+ is the gradient with respect to X+ and where we have used the chain rule. The
gradient ∇0+X appearing in Eqn. (6.58) can be computed from Eqn. (6.57):

∇0+X = ∇0+
[
QT

0 (X+ − c+(0))
]

= QT
0 . (6.59)

Substituting Eqn. (6.59) into Eqn. (6.58), we have

F + = QtFQT
0 . (6.60)
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The right Cauchy–Green deformation tensor, C+ = (F +)T F + , follows as

C+ = Q0CQT
0 . (6.61)

We now turn to the definition of objective tensors which will be used later to establish the
material frame-indifference constraints.

6.3.2 Objective tensors

A tensor is called objective if it appears the same in all frames of reference. Exactly what
we mean by the “same” is discussed below. We will later argue that the variables for which
constitutive relations are required must be objective. But first we define the conditions under
which zeroth-, first- and second-order tensors are objective.

Objectivity condition for a scalar invariant A zeroth-order tensor (scalar invariant) s is objective
if it satisfies

s+ = s (6.62)

for all mappings αt . A zeroth-order tensor is just a real number, so objectivity simply means
that this number is the same in all frames of reference. It may seem that all scalar invariants
are objective since by definition they do not depend on coordinates. However, consider, for
example, the speed s = ‖v‖ at which an object is moving. ‖v‖ is a zeroth-order tensor;
however, it is not objective since the speed of an object depends on the frame of reference
in which it is represented. In Fig. 6.1, the speed of points on the cross is zero in frame F
and nonzero in frame F+ . Thus, speed is a subjective variable. We postulate that physical
variables, such as the mass density ρ, temperature T , entropy density s and so on are
objective.

Objectivity condition for a vector A first-order tensor (vector) u is objective if it satisfies

u+ = Qtu (6.63)

for all mappings αt (or equivalently, for all orthogonal transformations Qt). This definition
stems from the manner in which relative vectors transform between frames of reference
in Eqn. (6.49). Thus, a vector is objective if it differs only by the rotation that all relative
vectors experience. Vectors satisfying this condition have the same orientation relative to
actual “physical directions.” To explain what we mean by this, we introduce an orthonormal
basis {ei} in frame F . In Fig. 6.1, the horizontal and vertical lines of the cross can be used
to define basis vectors for F , so that e1 = (x− y)/ ‖x − y‖ and e2 is defined in a similar
manner along the vertical direction. This choice is not unique, of course. Any set of vectors
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obtained through a fixed (time-independent) rotation of these vectors is also a valid basis.
This simply corresponds to a change of basis in frame F .

Since the basis vectors are defined from relative position vectors, they transform accord-
ing to Eqn. (6.49):

e+
i (t) = Qtei . (6.64)

Here e+
i (t) is the unit vector in F+ constructed from the same events from which ei is

constructed. In frame F , the vector ei is constant, but in F+ its image, the vector e+
i (t),

will move according to the time-dependent transformation Qt , just as in Fig. 6.1 the cross
is moving in the lower row of images. This means that e+

i (t) is not a fixed basis for frame
F+ . We stress this by writing its explicit dependence on time.

We now consider an objective vector u in frame F with components, ui = u ·ei , relative
to the basis {ei}. Since u is objective it transforms according to Eqn. (6.63), therefore

u+ = Qtu = Qt(uiei) = ui(Qtei) = uie
+
i (t), (6.65)

where Eqn. (6.64) was used in the last step. We see that u has the same components along
the vectors ei and their images e+

i (t), which represent the same directions in the physical
world. Thus, although an objective vector appears differently in different frames it actually
has the same orientation relative to events in the physical world. This is the meaning of
objective.

Comparing Eqn. (6.63) with Eqns. (6.49)–(6.52), we see that the relative position between
points, x−y is objective, whereas the position, velocity and acceleration of a single point,
x, v and a, are not. The latter is not surprising since, naturally, the position and motion of
a physical point depends on the frame of reference in which it is represented. In particular,
the additional terms in Eqns. (6.51)–(6.52) relative to Eqn. (6.63), reflect the motion of the
frame of reference itself. This is clear if we repeat the procedure that led to Eqn. (6.65) for
a nonobjective vector like the position vector, x = xiei . We find

x+ = c+(t) + xie
+
i (t) = (c+

i (t) + xi)e+
i (t).

So the components of x+ relative to e+
i (t) are not the same as those of x relative to ei .

Objectivity condition for a second-order tensor A second-order tensor T is objective if it satisfies

T + = QtTQT
t (6.66)

for all transformations αt (or equivalently, for all orthogonal transformations Qt). This
relation can be obtained from the objective vector definition in Eqn. (6.63) as follows.

Proof The tensor T is objective, if for every objective vector a, the vector b defined by

b = Ta (6.67)
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is also objective. The corresponding expression in frame F+ is

b+ = T +a+ . (6.68)

Since a and b are objective, we have a+ = Qta and b+ = Qtb. Substituting this into
Eqn. (6.68) gives

Qtb = T +Qta. (6.69)

Substituting Eqn. (6.67) into Eqn. (6.69) and rearranging gives

(T +Qt −QtT )a = 0.

The above relation must be true for every objective vector a, therefore T +Qt = QtT ,
from which we obtain the result in Eqn. (6.66). (An alternative approach for obtaining
Eqn. (6.66) using the dyadic representation of a second-order tensor, which generalizes to
higher-order tensors, is discussed in Exercise 6.4.)

As for an objective vector, an objective tensor preserves components relative to a given
basis in a transformation between frames of reference, i.e. e+

i (t) · T +e+
j (t) = ei · Tej .

The proof is analogous to that given above for a vector.
Comparing Eqn. (6.66) with Eqns. (6.55)–(6.56), we see that the velocity gradient l is

not objective due to the presence of the extra term Ω+ ; however, the rate of deformation
tensor d is objective. Further, considering Eqns. (6.60) and (6.61) we see that F and C are
not objective.

6.3.3 Principle of material frame-indifference

The basic postulate of the principle of material frame-indifference is that all variables
for which constitutive relations are required must be objective tensors. To understand the
reasoning underlying this requirement, let us revisit Example 6.1 and Fig. 6.1. Imagine
that a spring is connected between the physical points that are labeled x and y in frame F .
Assume that the free length of the spring �0 is shorter than the distance ‖x − y‖ so that
the spring is in tension. What is the force in the spring? In frame F the spring is stationary.
In frame F+ (where its ends are located at points x+ and y+ ) the spring is translating
and rotating. According to material frame-indifference the force must be the same in both
cases.18 Understand that this is the same physical spring, the only difference is the frame
of reference in which its motion is represented.

In our case, we consider constitutive relations for four variables: the internal energy
density u, the temperature T , the heat flux vector q and the Cauchy stress tensor σ (separated
into elastic and viscous parts). We therefore require these variables to be objective.

The objectivity of the stress tensor is fundamentally tied to the objectivity of force. The
Cauchy stress tensor σ is defined by the Cauchy relation, t = σn, where t is the traction
vector and n is a normal to a plane. The normal to a plane is an objective vector since it
can be defined in terms of relative positions between particles, which is objective [Mur03].

18 We discuss the subtleties associated with this requirement at the end of this section where we address the
controversy surrounding material frame-indifference.
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Therefore, in order for the stress to be objective the traction must be objective (see proof
after Eqn. (6.66)). Now, traction is defined as force per unit area, and area (which also
depends on relative positions of particles) is objective. Thus, the requirement that stress is
objective translates to the basic postulate that force is objective.

The notion that the force f is an objective vector may seem at odds with Newton’s second
law, f = ma, since although mass is objective, acceleration is not. In fact, this is precisely
the origin of the concept of inertial reference frames discussed in Section 2.1. We start with
the assumption that force is objective and that we know, f = ma, in frame F . (This is
Thomson’s law of inertia discussed on page 14.) From this we can observe that Newton’s
second law holds only in inertial frames of reference, say F+ , for which (relative to F)
c̈+ = 0 and Q̇t = Q̈t = 0, and therefore according to Eqn. (6.52), a+ = Qta. Thus the
relation f = ma, which is true in frame F , is also satisfied in all inertial frames F+ , i.e.
f+ = ma+ . We see that the postulate that force is objective and that f = ma in at least
one frame of reference is equivalent to the fact that Newton’s laws hold in all inertial frames
of reference.

6.3.4 Constraints on constitutive relations due to material frame-indifference

Constitutive relations are required for scalar invariant, vector and tensor variables:

s = ŝ(γ), u = û(γ), T = T̂ (γ). (6.70)

Here γ represents a scalar invariant, vector or tensor argument. Of course, each constitutive
relation can have different arguments and more than one. We proceed with the derivation for
a single generic argument γ. The results can then be immediately extended to any specific
set of arguments of an actual constitutive relation.

According to material frame-indifference, the variables s, u and T in Eqn. (6.70) must
be objective. We therefore require according to Eqns. (6.62), (6.63) and (6.66) that

s+(γ+
t ) = ŝ(γt), u+(γ+

t ) = Qtû(γt), T +(γ+
t ) = Qt T̂ (γt)QT

t , (6.71)

for all motions (or equivalently, for all functions of time γt) and for all changes of frame.
Note that we do not assume that the functional forms in the two frames are the same,
only that the result is an objective variable. Further, we now indicate, with a subscript
t, all quantities that explicitly depend on time.19 Below (following [Nol06] in spirit), the
frame-indifference conditions are reformulated in a single frame of reference in order to
obtain constraints for a given functional form.

The variables γ+
t and γt are related through the appropriate frame of reference transfor-

mations derived earlier. We define Lt as the mapping taking γt to γ+
t at time t, thus

γ+
t = Ltγt , γt = L−1

t γ+
t . (6.72)

For example, from Eqn. (6.56), the rate of deformation tensor is mapped according to d+
t =

Ltdt = QtdtQT
t . We now rewrite Eqn. (6.71) explicitly accounting for the transformation

19 Recall that we have already eliminated the possibility that the constitutive relations depend explicitly on time
via constraint VI, which says that we are only considering materials without memory and without aging.
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of the arguments:

s+(Ltγt) = ŝ(γt), u+(Ltγt) = Qtû(γt), T +(Ltγt) = Qt T̂ (γt)QT
t . (6.73)

This relation must hold for all γt and for all frames F+ . In particular, consider the time20

t = 0. Then, Eqn. (6.73) gives

s+(L0γ) = ŝ(γ), u+(L0γ) = Q0û(γ), T +(L0γ) = Q0 T̂ (γ)QT
0 , (6.74)

which must hold for all γ, since γ0 will range over all possible values when all motions γt

are considered. Now, in Eqn. (6.73) write Ltγt = L0L−1
0 Ltγt = L0γ

∗
t with

γ∗
t ≡ L−1

0 Ltγt (6.75)

and apply Eqn. (6.74), i.e. s+(L0γ
∗
t ) = ŝ(γ∗

t ), to obtain

ŝ(γ∗
t ) = ŝ(γt), Q0û(γ∗

t ) = Qtû(γt), Q0 T̂ (γ∗
t )QT

0 = Qt T̂ (γt)QT
t . (6.76)

Here, γ∗
t can be interpreted as a second, different, motion measured in the frame F . Thus,

we have found that, for any given motion γt , the principle of material frame-indifference
implies a relation between the response associated with γt and the response associated with
the related motion γ∗

t in a single frame. However, Eqn. (6.76) is not the most convenient
mathematical form of the relation. Transferring the Q0 terms to the right and substituting
the definition of γ∗

t , we have

ŝ(L−1
0 Ltγt) = ŝ(γt), û(L−1

0 Ltγt) = Qtû(γt), T̂ (L−1
0 Ltγt) = Qt T̂ (γt)QT

t ,

(6.77)
where21

Qt = QT
0 Qt (6.78)

is a proper22 orthogonal tensor defined over the Euclidean vector space R
nd of frame F

(i.e. it maps vectors from R
nd into itself). Similarly, L−1

0 Ltγt is expressed in F . This
equation must be satisfied for all changes of frame and for all motions. Because Qt and
L−1

0 Lt depend only on the change of frame and γt depends only on the motion, it is clear
that Eqn. (6.77) must be satisfied for arbitrary and independent values of Q and γ. For this
reason the choice of the particular fixed time (t = 0 in this case) is unimportant. Thus, we
find that for all Q and for every γ the following must be true:

ŝ(L−1
0 Ltγ) = ŝ(γ), û(L−1

0 Ltγ) = Qû(γ), T̂ (L−1
0 Ltγ) = QT̂ (γ)QT ,

(6.79)

20 There is nothing special about t = 0. Any fixed time would do as we will see later.
21 Notice the difference in font between Qt and Qt , which is meant to distinguish these distinct entities. That

is, Qt is a proper orthogonal tensor mapping vectors in the translation space of frame F to itself; whereas Qt

is an orthogonal linear transformation mapping vectors in the translation space of frame F to vectors in the
translation space of frame F+ .

22 A proof that Qt is proper orthogonal is given later in this section.
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where we note that the value of L−1
0 Ltγ does not depend on the frame F+ or time t, but

does depend on the type of the variable γ. If γ is objective, then it transforms according to
Eqns. (6.62), (6.63) and (6.66), depending on whether it is a scalar invariant, a vector or a
tensor. The results for these three cases are:

L−1
0 Lts = s, L−1

0 Ltu = Qu, L−1
0 LtT = QTQT , (6.80)

where as before Q = QT
0 Qt . In addition, we will require the transformations for the

deformation gradient and the right Cauchy–Green deformation tensor. For F we have from
Eqn. (6.60) that LtF = QtFQT

0 . Consequently, L−1
0 LtF = QT

0 (QtFQT
0 )Q0 = QF .

The transformation for C is obtained in a similar manner. In summary,

L−1
0 LtF = QF , L−1

0 LtC = C. (6.81)

The proof that Qt (and thus Q) is proper orthogonal is similar to a proof by Murdoch
[Mur03], although the motivation and details are different. A sketch of the proof follows.

Proof Introduce the basis {e+
i } for F+ . Similar to the argument that led to Eqn. (6.64),

we have that the basis vectors are mapped to their images in F by ei(t) = QT
t e+

i . At time
t = 0, the mapping is ei(0) = QT

0 e+
i . Extracting e+

i from both expressions and equating
them, we have, Qtei(t) = Q0ei(0) and so

ei(t) = QT
t Q0ei(0) = (QT

0 Qt)T ei(0) = QT
t ei(0).

The handedness of ei(t) is arbitrary; however, this handedness must be preserved over
time. The reason for this is that ei(t) are the images of the basis {e+

i } that has a fixed
handedness and frames F and F+ are constructed from rigid physical bodies that over time
can translate and rotate relative to each other but cannot reflect. If the handedness of the
triad {ei(t)} has to be preserved, then ei(t) can only differ from ei(0) by a rotation and
hence QT

t (and therefore Qt) is proper orthogonal.

The distinction between Eqns. (6.73) and (6.79) is important. Equation (6.73) is a re-
lationship between the constitutive relations in two different frames of reference with
possibly different functional forms. The transformation Qt appearing in this relation is
an orthogonal mapping between two different vector spaces associated with the different
frames. This is the mathematical form of material frame-indifference corresponding to
the original statement: “constitutive relations must be invariant with respect to changes of
frame.”

In contrast, Eqn. (6.79) is a condition obtained in a single frame of reference for the
same functional form. The tensor Q appearing in this relation is a proper orthogonal tensor
defined over a single vector space. Equation (6.79) is not a direct statement of material
frame-indifference. Rather it is a constraint that all constitutive relations must satisfy in
their own frame of reference. It is straightforward to show that this constraint, along with
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the relations given by Eqn. (6.74), ensure that the mapping between any two frames obeys
Eqn. (6.73) and therefore material frame-indifference is satisfied. When expressed in this
form, material frame-indifference is sometimes referred to as invariance with respect to
superposed rigid-body motion.23

We demonstrate the application of material frame-indifference with a simple example.

Example 6.2 (Material frame-indifference in a two-particle system24) In motivating the application
of material frame-indifference to constitutive relations we used the example of a spring connected
between two points x and y in frame F . One can think of this as a two-particle system interacting
through a force field. What constraints does material frame-indifference place on the form of the
force between the particles?

Let f be the force on particle x due to particle y. In the most general case, the force can depend
on the position of both particles, f = f̃ (x, y). The requirement of material frame-indifference for
this function according to Eqn. (6.79)2 is

f̃ (L−1
0 Ltx,L−1

0 Lty) = Qf̃ (x, y). (6.82)

First, we must determine the form of L−1
0 Lt for position vectors. From Eqn. (6.50), we have,

Ltx = c+ (t)+Qtx. ThereforeL0x = c+ (0)+Q0x, with an inverseL−1
0 x+ = QT

0 (x+ −c+ (0)).
The composition L−1

0 Lt follows as

L−1
0 Ltx = QT

0
([

c+ (t) + Qtx
]
− c+ (0)

)
= QT

0 Qtx + QT
0
(
c+ (t) − c+ (0)

)
= Qx + c,

(6.83)
where Q = QT

0 Qt is a proper orthogonal tensor and c is an arbitrary vector in R
n d . Substituting

Eqn. (6.83) into Eqn. (6.82) gives

f̃ (Qx + c, Qy + c) = Qf̃ (x, y). (6.84)

This condition must be true for all Q ∈ SO(nd ) and for all c ∈ R
n d , therefore it must also be true

for the special case, Q = I and c = d − y, where d is an arbitrary point. Substituting these values
into Eqn. (6.84) gives f̃ (d + x − y, d) = f̃ (x, y). The only way this can be satisfied for any point
d is if f only depends on x − y, i.e.

f = f̃ (x, y) = f (x − y).

We have shown that the force that one particle exerts on another in a two-particle system can only
depend on the difference between their positions. We can say more, though.

The condition for material frame-indifference for the new functional form, f (x−y), follows from
Eqn. (6.79)2 together with Eqn. (6.80)2 :

f (Qu) = Qf (u), (6.85)

23 Equation (6.79) is the one normally given in textbooks, but since most books write the relation from the start
in a single frame of reference it is necessary to make the additional “assumptions” that the functional form of
constitutive relations is the same in different frames (this is sometimes referred to as form invariance) and that
Q is proper orthogonal. These assumptions are normally introduced without clear physical motivation. We
see here that these additional assumptions are unnecessary and are merely a consequence of the mathematical
“short-cut” of working in a single frame.

24 This example is based on a derivation in [Nol04, page 18].
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where u = x−y is the relative position vector. Equation (6.85) must be satisfied for all Q ∈ SO(nd ),
so it must also be satisfied for the special case Q∗ defined through the relation, Q∗u = u, i.e. Q∗ is
a rotation about u. Substituting Q∗ into Eqn. (6.85) gives f (u) = Q∗f (u). This is only satisfied if
f (u) is oriented along u, so that

f = f (u) = ϕ(u)
u

‖u‖ , (6.86)

where ϕ(u) is a scalar function. Substituting Eqn. (6.86) into Eqn. (6.85), we obtain the material
frame-indifference constraint on ϕ:

ϕ(Qu) = ϕ(u), (6.87)

for all Q ∈ SO(nd ). Now, consider another vector v = ‖u‖ e, where e is an arbitrary unit vector.
Equation (6.87) must hold for any vector u, so it must also hold for the new vector v. Therefore,

ϕ(Q ‖u‖ e) = ϕ(‖u‖ e). (6.88)

Equation (6.88) must hold for all Q ∈ SO(nd ), so it must also hold for the special case defined by
Qe = u/ ‖u‖. Substituting this into Eqn. (6.88) gives ϕ(u) = ϕ(‖u‖ e). This must be true for all
unit vectors e, which is only possible if ϕ(u) = ϕ̂(‖u‖). Combining this result with the form in
Eqn. (6.86), we have

f = ϕ̂(‖u‖) u

‖u‖ . (6.89)

Thus the force on a particle in a two-particle system can only depend on the distance between the
particles and must be oriented along the line connecting them. This result implies that a two-particle
system is conservative, since Eqn. (6.89) can be rewritten as the (negative) gradient of a scalar
(energy) function:

f = −∇x ê(‖u‖) = − ∂

∂x
ê(‖x − y‖) = −ê′(‖x − y‖) x − y

‖x − y‖ ,

so that ϕ̂(‖u‖) = −ê′(‖u‖). An extension to systems of more than two particles is discussed in
Section 5.3.2 of [TM11] and in Appendix A of [TM11].

6.3.5 Reduced constitutive relations

We have established in Eqn. (6.79) together with Eqns. (6.80) and (6.81), the general frame-
work for imposing constraints on constitutive relations. We now apply these constraints to
the specific constitutive relation forms obtained earlier in Section 6.2. The resulting func-
tional forms are called reduced constitutive relations.

Reduced internal energy density function The functional form of the internal energy density,
given in Eqn. (6.6), is

u = u(s,F ).

We require u to be objective, therefore according to Eqn. (6.79)1 together with Eqns. (6.80)1
and (6.81)1 for the arguments s and F , we have

u(s,QF ) = u(s,F ), ∀Q ∈ SO(3). (6.90)
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Equation (6.90) places a constraint on the way that the function u can depend on F . In fact,
we can show that Eqn. (6.90) is satisfied if and only if the dependence of u on F is through
the right stretch tensor, i.e.

u = û(s,U). (6.91)

Proof Assume u is objective, so that Eqn. (6.90) is satisfied. Substitute the right polar
decomposition of F (Eqn. (3.10)), F = RU , into the left-hand side of Eqn. (6.90):

u(s,QRU) = u(s,F ), ∀Q ∈ SO(3). (6.92)

Since Eqn. (6.92) is true for all Q ∈ SO(3), it must also be true for Q = RT , since R is
proper orthogonal. Substituting this into Eqn. (6.92) and noting that RT R = I , we have

u(s,U) = u(s,F ).

This shows that the value of the internal energy density is determined by the value of U and
implies the existence of the function û(s,U). Using Eqn. (3.11), we can write the original
function u in terms of this new function û:

u(s,F ) ≡ û(s,RT F ) = û(s,
√

F T F ). (6.93)

In the above proof we are careful to distinguish between the functional forms u(s,F )
and û(s,U). Although the two energy functions have the same value when evaluated at any
given symmetric second-order tensor, the derivatives of the two functions with respect to
their kinematic arguments are not equal. The former gives the first Piola–Kirchhoff stress
tensor which is work conjugate to the deformation gradient, while the latter is a symmetric
tensor that is work conjugate to the right stretch tensor. This indicates that they are, in fact,
two distinct functional forms. We demonstrate this in the following example.

Example 6.3 (Energy constitutive relations) Let us consider a simple example, ignoring for the
moment the dependence on the entropy density. Suppose

û(U ) = (L : U 2 ) : U 2 ,

where L is a fourth-order tensor. Then according to Eqn. (6.93),

u(F ) = (L : (F T F )) : (F T F ).

We will show that u(U ∗) = û(U ∗), and ∂u/∂F |F =U∗ 
= ∂û/∂U |U =U∗ for any symmetric U ∗.
First, we may simply evaluate the functions at the value of U ∗:

u(U ∗) =
(
L :

[
(U ∗)T U ∗

])
:
[
(U ∗)T U ∗

]
=
(
L : (U ∗)2) : (U ∗)2 = û(U ∗),

where we have used the symmetry of U ∗ in going from the first to the second equality.
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Second, we start by computing the derivatives of u and û. In indicial notation, we have

∂u

∂FiJ
=

∂

∂FiJ
(LA B C D (FaC FaD )(FbA FbB ))

= LA B J D FiD FbA FbB + LA B C J FiC FbA FbB

+ LJ B C D FaC FaD FiB + LA J C D FaC FaD FiA

and

∂û

∂UI J
=

∂

∂UI J
(LA B C D UC E UE D UA F UF B )

=
1
2
LA B I D UJ D UA F UF B +

1
2
LA B J D UI D UA F UF B

+
1
2
LA B C J UC I UA F UF B +

1
2
LA B C I UC J UA F UF B

+
1
2
LI B C D UC E UE D UJ B +

1
2
LJ B C D UC E UE D UI B

+
1
2
LA J C D UC E UE D UA I +

1
2
LA I C D UC E UE D UA J .

Above, we have used the facts that

∂FiJ

∂FkL
= δik δJ L ⇔ ∂F

∂F
= I ,

where I is the fourth-order identity tensor, and that

∂UI J

∂UK L
=

1
2
(δI K δJ L + δI L δJ K ) ⇔ ∂U

∂U
= I (s) ,

where I (s) is the “fourth-order symmetric identity” tensor (which accounts for the symmetry of U ).
Now, it is easy to see, upon substituting F = U ∗ and U = U ∗ into the above equations, that the
derivatives are not equal unless the tensor L has certain special symmetries.

We established above that u depends on deformation through the right stretch tensor.
Since U is uniquely related to the right Cauchy–Green deformation tensor, C = U 2 , and
therefore also to the Lagrangian strain tensor, E = 1

2 (C − I), we can also write

u = ũ(s,C) or u = ŭ(s,E), (6.94)

which are often more convenient forms to use in practice. The different accents over u

indicate different functional forms.
The temperature follows from Eqn. (6.17) as

T =
∂û(s,U)

∂s
or T =

∂ũ(s,C)
∂s

or T =
∂ŭ(s,E)

∂s
. (6.95)
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Reduced heat flux vector function The functional form of the heat flux vector, given in
Eqn. (6.20), is

q = q(s,F , τ ), (6.96)

where τ = ∇T is the temperature gradient vector. We require q to be objective, therefore
according to Eqn. (6.79)2 together with Eqns. (6.80)1 , (6.81)1 and (6.80)2 for the arguments
s, F and τ , we have

q(s,QF ,Qτ ) = Qq(s,F , τ ) ∀Q ∈ SO(3).

Substituting F = RU on the left, premultiplying by QT and rearranging, we have

q(s,F , τ ) = QT q(s,QRU ,Qτ ) ∀Q ∈ SO(3). (6.97)

Now, as we did for the internal energy density above, select the special case Q = RT , then
Eqn. (6.97) becomes

q(s,F , τ ) = Rq(s,U ,RT τ ).

This indicates that we can identify a function q̂(s,U , τ ) such that we have

q = Rq̂(s,U ,RT ∇T ). (6.98)

This relation shows that the functional form for the heat flux vector has to depend in a
very specific manner on the finite rotation part R of the polar decomposition of F . Further
progress can be made by assuming a linear relation between the temperature gradient and
heat flux vector as suggested in Section 6.2.3. Consider, for example, the simplest linear
heat flux relation (Fourier’s law), q = −k∇T , where k is the thermal conductivity of the
material. Fourier’s law is a special case of Eqn. (6.98), since

q = −k∇T = R(−kRT ∇T ). (6.99)

In this case, the dependence on R drops out. However, for more general constitutive forms
it does not. Finally, as for the internal energy density, Eqn. (6.98) can be more conveniently
rewritten in terms of C or E instead of U :

q = Rq̃(s,C,RT ∇T ) or q = Rq̆(s,E,RT ∇T ). (6.100)

Reduced elastic stress function The functional form of the elastic part of the stress tensor,
given in Eqn. (6.26), is

σ(e) = σ(e)(s,F ). (6.101)

According to Eqn. (6.79)3 , in order for σ(e) to be objective it must satisfy

σ(e)(s,QF ) = Qσ(e)(s,F )QT , (6.102)
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where we have used Eqns. (6.80)1 and (6.81)1 for the arguments s and F on the left-hand
side. For the elastic part of the stress tensor σ(e) , the Coleman–Noll procedure does more
than just identify the variables on which the constitutive relation depends. Equation (6.26)
provides a specific functional form for σ(e) in terms of the internal energy density:

σ(e)(s,F ) = ρ
∂u

∂F
F T =

ρ0

det F

∂u

∂F
F T , (6.103)

where ρ = ρ0/det F due to conservation of mass (Eqn. (4.1)). Let us verify that σ(e)

defined in this way is objective.

Proof We need to show that the functional form of σ(e) defined in Eqn. (6.103) satisfies
Eqn. (6.102). Substituting Eqn. (6.103) into the left-hand side of Eqn. (6.102), we have

σ(e)(s,QF ) =
ρ0

det QF

∂u(s,QF )
∂(QF )

(QF )T =
ρ0

det F

∂u(s,QF )
∂(QF )

F T QT , (6.104)

where we have used the fact that det QF = det F , since Q is proper orthogonal. Now,
from Eqn. (6.90), we have the following identity:

∂u(s,F )
∂F

=
∂u(s,QF )

∂F
= QT ∂u(s,QF )

∂(QF )
,

where the chain rule was used in the last step. Inverting this relation and substituting into
Eqn. (6.104), we have

σ(e)(s,QF ) = Q

(
ρ0

det F

∂u(s,F )
∂F

F T

)
QT = Qσ(e)(s,F )QT ,

which shows that Eqn. (6.102) is satisfied.

Next, we demonstrate that σ(e) is symmetric. We showed in Eqn. (6.91) that the depen-
dence of u on F must be through U (or equivalently through C). We therefore rewrite
Eqn. (6.103) in terms of ŭ(s,C) and apply the chain rule:

σ
(e)
ij = ρ

∂u

∂FiJ
FjJ = ρ

∂ũ

∂CM N

∂CM N

∂FiJ
FjJ

= ρ
∂ũ

∂CM N

∂(FkM FkN )
∂FiJ

FjJ

= ρ
∂ũ

∂CM N
[δM J FiN + δN J FiM ] FjJ = 2ρFiM

∂ũ

∂CM J
FjJ ,

where in the last step we used the symmetry of C. In direct notation the result is

σ(e) = 2ρF
∂ũ(s,C)

∂C
F T = σ̃(e)(s,C). (6.105)

Equation (6.105) shows that the elastic part of the stress tensor is symmetric, since(
σ(e)

)T

= 2ρ

(
F

∂ũ

∂C
F T

)T

= 2ρF

(
∂ũ

∂C

)T

F T = 2ρF
∂ũ

∂C
F T = σ(e) ,
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where the symmetry of C has been used. This result also establishes the symmetry of the
viscous part of the stress, σ(v ) , since the total stress, σ = σ(e) + σ(v ) , is symmetric due to
the balance of angular momentum. We assumed the symmetry of the viscous stress earlier
in the derivation of Eqn. (6.25). Our result here verifies the correctness of that assumption.

The stress expression derived above was obtained for an isentropic process where the
internal energy density is the appropriate energy variable. More commonly, experiments
are performed under isothermal conditions for which the specific Helmholtz free energy
ψ must be used, or more conveniently the strain energy density W defined in Eqn. (6.42).
Replacing u with ψ in Eqn. (6.105) and using Eqn. (4.1), we have

σ(e) =
2
J

F
∂W̃ (T,C)

∂C
F T , (6.106)

where J = det F is the Jacobian of the deformation. The reference stress variables follow
from Eqns. (4.35) and (4.41) as

P (e) = 2F
∂W̃ (T,C)

∂C
or S(e) = 2

∂W̃ (T,C)
∂C

. (6.107)

Reduced viscous stress function The functional form of the viscous part of the stress tensor,
given in Eqn. (6.27), is

σ(v ) = σ(v )(s,F ,d). (6.108)

We require σ(v ) to be objective, therefore according to Eqn. (6.79)3 together with
Eqns. (6.80)1 , (6.81)1 and (6.80)3 for the arguments s, F and d, we have

σ(v )(s,QF ,QdQT ) = Qσ(v )(s,F ,d)QT .

Following an analogous procedure to the one used in deriving the reduced heat flux consti-
tutive relation, we find

σ(v ) = Rσ̂(v )(s,U ,RT dR)RT . (6.109)

Thus, as before, the constitutive relation involves a function with arbitrary dependence on
its arguments together with an explicit dependence on R. The simplest constitutive relation
that satisfies this relation is a linear response model where the components of σ(v ) are
proportional to those of d (Newtonian fluid) as suggested in Section 6.2.3. In this case the
R terms cancel out. In more complex models the explicit dependence on R remains.
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Finally, more convenient forms of Eqn. (6.109) in terms of C and E are

σ(v ) = Rσ̃(v )(s,C,RT dR)RT and σ(v ) = Rσ̆(v )(s,E,RT dR)RT .

(6.110)

6.3.6 Continuum field equations and material frame-indifference

The complete set of field equations that a continuum body must satisfy are summarized on
page 180 at the start of this chapter. It can be shown that the continuity equation, balance of
angular momentum and energy equation are all frame indifferent (see, for example, [Cha99,
Section 4.3]) and can therefore be written in any frame of reference. However, we know
from Section 2.1 that the balance of linear momentum,

div σ + ρb = ρa, (6.111)

where a = ẍ, only holds in an inertial frame of reference. Let us assume that F is an
inertial frame and transform the balance of linear momentum to a noninertial frame F+ .
Since σ is objective, we can show that the first term in Eqn. (6.111) is an objective vector:

div+σ+ = div+QtσQT
t = Qt

(
∂σ

∂x

∂x

∂x+

)
Qt = Qt

(
∂σ

∂x
QT

t

)
Qt = Qtdiv σ,

(6.112)

where we have used Eqns. (6.54) and (6.66). Applying Qt from the left to Eqn. (6.111) and
using Eqns. (6.52) and (6.112) and ρ = ρ+ gives

div+σ+ + ρ+Qtb = ρ+(a+ − c̈+ − Q̈tx − 2Q̇tv).

This equation can be made to look like Eqn. (6.111),

div+σ+ + ρ+b∗ = ρ+a+ (6.113)

where a+ = ẍ+ , by defining a special body force

b∗ = Qtb + c̈+ + Q̈tx + 2Q̇tv. (6.114)

The first term is the external body force and the remaining terms are “fictitious” forces
resulting from the motion of the frame of reference. Thus, the motion of a body in a
noninertial frame can be represented as motion in an inertial frame where the additional
fictitious forces are treated as though they were real.25

6.3.7 Controversy regarding the principle of material frame-indifference

In a study in 1972, Ingo Müller [Mül72] demonstrated that constitutive relations derived
from the kinetic theory of gases violated the principle of material frame-indifference.

25 These fictitious forces are analogous to the Coriolis forces that appear in the analysis of rigid-body motion in
a rotating (noninertial) frame of reference.
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Briefly, the kinetic theory of gases is a microscopic theory that describes a gas in terms of a
distribution function f̂(x,v, t), where f̂(x,v, t)dxdv is the probability of finding an atom
with a velocity within dv of v and a position within dx of x at time t. The evolution of
f̂ is governed by the Boltzmann equation that explicitly considers collisions between gas
particles. The kinetic theory leads to expressions for stress and heat flux, which depend on
the rotation of the gas and are therefore “frame dependent.” We do not discuss further the
kinetic theory of gases in this book.

Müller’s study sparked off a long series of articles arguing whether his results constitute
a failure of the principle of material frame-indifference. There were more calculations
based on kinetic theory [EM73, Wan75, Mül76, Tru76, Söd76, HM83, Woo83, Mur83,
Ban84, Duf84, Spe87, SK95] and on molecular dynamics [HMML81, EH89], as well as
a series of theoretical discussions (only some of which are cited here) [Lum70, AF73,
BM80, Spe81, Mur82, BdGH83, Rys85, Eu85, LBCJ86, Eu86, AK86, Mat86, Kem89,
SH96, SB99, Mur03, Liu04, Mur05, Liu05, MR08, Fre09]. In our opinion, Müller’s results
do not constitute a failure of material frame-indifference, but rather a more basic failure
of continuum mechanics itself, and in particular the idea that it is possible to describe the
response of a material using constitutive relations that are intrinsic to the material, where
“intrinsic” means that the relations are not affected by whether the motion of the material
is represented in an inertial frame or not.

The basic issue is that materials, which are composed of a large number of particles
undergoing dynamical motion (not to mention the electromagnetic fields associated with
the electronic structure of the material), are inherently not frame-indifferent. The constitu-
tive relations of continuum mechanics provide an idealized description of materials. It is
reasonable to require that these constitutive relations should be frame-indifferent, but there
is no reason to expect that the real material shares this property.

As an example, let us consider the simplest case of a spring connected between two points
in physical space located at x and y in frame F (as shown in Fig. 6.1). We used this example
to motivate the idea that material frame-indifference leads to constraints on constitutive
relations. In Example 6.2, we showed that the constitutive relation for the spring, i.e. the
force in the spring based on the position of its end points, must be proportional to its length
and oriented along it. Clearly, a constitutive relation phrased in this way is independent of
the motion of the frame in which it is expressed. However, an actual spring is not a function
that returns a force based on the distance between its ends, but rather a material consisting
of a huge number of atoms arranged in a coiled structure that vibrate about their positions
with a mean kinetic energy determined by the temperature of the spring. The dynamical
motion of these atoms is governed by Newton’s second law which is not frame-indifferent
since acceleration is not an objective variable.

From the above discussion it is clear that there are no grounds for expecting a real
material to be frame-indifferent. In that sense the term “material frame-indifference” is a bit
misleading. A better term might be “constitutive frame-indifference.” However, normally,
the macroscopic motions associated with continuum deformation are so slow relative to
the microscopic scales that this effect is negligible and continuum constitutive relations
provide an excellent model for the behavior of a real material irrespective of the frame of
reference. Let us consider, though, what a failure of material frame-indifference means.
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Fig. 6.2 A two-dimensional example of material symmetry. A material with a square lattice structure is (a) subjected to a
homogeneous deformation F , or (b) first subjected to a rotation H by 90 degrees in the counterclockwise direction
and then deformed by F . The constitutive response of the material is the same in both cases due to the symmetry of
the crystal structure.

In this case, the basic separation between the continuum balance laws and the constitutive
relations that describe material response breaks down. The underlying dynamical behavior
of the material itself becomes important and must be solved together with the dynamics
of the overall system. This constitutes a basic failure of the entire continuum mechanics
framework. In that sense, one can argue that the principle of material frame-indifference,
being part and parcel of the continuum world view, cannot fail within this context.

6.4 Material symmetry

Most materials possess certain symmetries which are reflected by their constitutive relations.
Consider, for example, the deformation of a material with a two-dimensional square lattice
structure as shown in Fig. 6.2.26 The unit cell and lattice vectors of the crystal are shown.
In Fig. 6.2(a), the material is uniformly deformed with a deformation gradient F , so
that a particle X in the reference configuration is mapped to x = FX in the deformed
configuration. The response of the material to the deformation is given by a constitutive
relation, g(F ), where g can be the internal energy density function u, the temperature
function T , etc. Now consider a second scenario, illustrated in Fig. 6.2(b), where the material

26 The concepts of lattice vectors and crystal structures are discussed extensively in Chapter 3 of [TM11]. Here
we will assume the reader has some basic familiarity with these concepts.
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is first rotated by 90 degrees counterclockwise, represented by the proper orthogonal tensor
(rotation) H ,

[H] =
[
0 −1
1 0

]
,

and then deformed by F . One can think of this as a two-stage process. First, particles in the
reference configuration are rotated to an intermediate stage with coordinates y = HX .
Second, the final positions in the deformed configuration are obtained by applying F , so that
x = Fy = FHX . The constitutive relation is therefore evaluated at the deformation FH ,
the composition of the rotation followed by deformation. However, due to the symmetry of
the crystal, the 90 degree rotation does not affect its response to the subsequent deformation.
In fact, unless arrows are drawn on the material (as in the figure) it would be impossible to
know whether the material was rotated or not prior to its deformation. Therefore, we must
have that g(F ) = g(FH) for all F . This is a constraint on the form of the constitutive
relation due to the symmetry of the material.

In general, depending on the symmetry of the material, there will be multiple transfor-
mations H that leave the constitutive relations invariant. We define the material symmetry
group G of a material as the set of uniform density-preserving changes of its reference
configuration that leave all of its constitutive relations unchanged [CN63]. Thus, G is
the set of all second-order tensors H for which det H = 1 (density-preserving) and for
which

u(s,F ) = u(s,FH),

T (s,F ) = T (s,FH),

q(s,F ,∇T ) = q(s,FH,∇T ),

σ(e)(s,F ) = σ(e)(s,FH),

σ(v )(s,F ,d) = σ(v )(s,FH,d),

(6.115)

for all s, ∇T , d and F (i.e. all second-order tensors with positive determinants). Note that
the symmetry relations for mixed and material tensors take slightly different forms than
those shown in Eqn. (6.115). For example, the relations for the elastic part of the first and
second Piola–Kirchhoff stress tensors are

P (e)(s,F ) = P (e)(s,FH)HT and S(e)(s,F ) = HS(e)(s,FH)HT .

These may be obtained directly from Eqn. (6.115) by substituting Eqns. (4.36) and (4.42).27

The concept of a group was defined on page 32. It is straightforward to prove that G
constitutes a group. We need to show that G is closed with respect to tensor multiplication
and that it satisfies the properties of associativity, existence of an identity and existence
of an inverse element. We show the proof below for a generic constitutive relation g(F ),
which represents any of the relations in Eqn. (6.115).

27 When substituting on the right-hand side of Eqn. (6.115) do not forget that Eqns. (4.36) and (4.42) relate
σ(s, F ) to P (s, F ) and S(s, F ), respectively.



217 6.4 Material symmetry
�

Proof For G to be closed with respect to tensor multiplication, we need to show that
∀H1 ,H2 ∈ G we have H1H2 ∈ G . This means that we need to show that:

(i) det(H1H2) = 1,
(ii) g(F ) = g(FH1H2).

For (i), by definition, det H1H2 = det H1 det H2 = 1 · 1 = 1. For (ii), denote
K ≡ FH1 . Note that K has a positive determinant and therefore the material symmetry
operations must hold for K just as for F . Therefore g(KH2) = g(K) since H2 ∈ G .
Substituting in the definition of K gives g(FH1H2) = g(FH1) = g(F ), where the last
equality follows since H1 ∈ G . Thus, we have shown that H1H2 ∈ G .

The remaining three properties are also satisfied. Associativity is satisfied because tensor
multiplication is associative. The identity element is I . The inverse element is guaranteed to
exist∀H ∈ G since det H �= 0. Further, it belongs to G since det H−1 = (det H)−1 = 1
and, denoting L ≡ FH−1 , we have g(L) = g(LH) since H ∈ G . Substituting in the
definition of L gives g(FH−1) = g(FH−1H) = g(F ). Thus, indeed, H−1 ∈ G .

The largest possible material symmetry group is the proper unimodular group SL(3)
(also called the special linear group), which is the set of all tensors with determinant equal
to +1. This material symmetry group describes simple fluids which can be subjected to
any density-preserving deformation without a change to their constitutive response. Note
that if a tensor is proper unimodular this does not imply that it is also proper orthogonal.
For example, in two dimensions, the tensor with components

[A] =
[
1 2
3 7

]

is proper unimodular, since det A = 1, but it is not proper orthogonal, since AT �= A−1 .
An important material symmetry group for solids is the proper orthogonal group SO(3)

already encountered in Section 2.5.1. A member of this group represents a rigid-body
rotation of the material. Materials possessing this symmetry are isotropic. They have the
same constitutive response regardless of how they are rotated before being deformed.

The smallest possible material symmetry group is the set that contains only the identity
tensor I . This is the case for a material that possesses no symmetries. Crystals with this
property are called triclinic. Other crystals lie between the triclinic and isotropic limiting
cases. See Section 6.5.1 for the effect of symmetry on the elastic constants of crystals.
Also, see Chapter 3 of [TM11] for a detailed discussion of the symmetries associated with
different crystal structures.

Below, we apply the symmetry constraints together with material frame-indifference for
the two special cases of a simple fluid and an isotropic elastic solid, and derive simplified
stress constitutive relations. In the linear limit, these relations reduce to the well-known
linear viscosity relation (Newton’s law) for a Newtonian fluid and Hooke’s law for a linear
elastic isotropic solid.
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6.4.1 Simple fluids

A simple fluid is a simple material whose material symmetry group coincides with the full
proper unimodular group, G = SL(3). As noted above, this means that a simple fluid can
undergo any density-preserving change to its reference configuration without affecting its
constitutive response. For example, fish swimming in a level aquarium or one that has been
tilted are expected to report the same constitutive experience. This is consistent with our
concept of a fluid.

Our objective is to derive the most general form for the constitutive relation for the Cauchy
stress of a simple fluid. We treat the elastic and viscous parts of the stress separately. The
material symmetry condition for the elastic stress is

σ(e)(F ) = σ(e)(FH), (6.116)

for all H ∈ SL(3). Note that to reduce clutter, we have dropped the explicit dependence of
σ(e) on other variables which do not play a role in this derivation. Equation (6.116) must
hold for all H ∈ SL(3), therefore it must also hold for the following particular choice:

H∗ = J1/3F−1 , (6.117)

where J = det F is the Jacobian. This is a valid choice since det H∗ = det(J1/3F−1) =
J det F−1 = J/det F = J/J = 1 so H∗ ∈ SL(3). Substituting Eqn. (6.117) into
Eqn. (6.116) gives

σ(e)(F ) = σ(e)(FH∗) = σ(e)(FJ1/3F−1) = σ(e)(J1/3I). (6.118)

We see that σ̂(e) can only depend on F through its scalar invariant J . This makes sense,
since J is unaffected by density-preserving transformations.

Equation (6.118) places a strong constraint on the form of the elastic stress function for
a simple fluid. We can go even further, though, by considering the implications of material
frame-indifference for this case. The material frame-indifference constraint for the elastic
stress tensor is Qσ(e)(F )QT = σ(e)(QF ) for all Q ∈ SO(3) (Eqn. (6.102)). Substituting
in the functional dependence implied by Eqn. (6.118), we have

Qσ(e)(J1/3I)QT = σ(e)((det QF )1/3I) = σ(e)(J1/3I), (6.119)

where we have used det Q = 1. Equation (6.119) is satisfied for all proper orthogonal Q,
which means that σ(e)(J1/3I) is an isotropic tensor. We showed in Section 2.5.6 that a
second-order isotropic tensor is proportional to the identity tensor. Therefore, the elastic
stress of a simple fluid must have the following form:

σ(e) = f(J)I, (6.120)

where the 1/3 power is absorbed into the arbitrary functional form f(J). According to the
material form of the conservation of mass in Eqn. (4.1), J = ρ0/ρ, so Eqn. (6.120) can be
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written in the generally more convenient form:

σ(e) = f̂(ρ)I. (6.121)

We can draw two important conclusions from Eqn. (6.121) for the special case of a
simple elastic fluid, i.e. one that does not support viscous stresses so that σ = σ(e) :

1. Simple elastic fluids are incapable of sustaining shear stresses, since

σ
(e)
ij = 0 ∀i �= j.

2. The pressure p in a simple elastic fluid depends on the local density,

p = −1
3

trσ(e) = −f̂(ρ).

In fact, we see that f̂(ρ) is just the (negative) pressure function.

Next, we turn to the viscous part of the stress of a simple fluid. A similar procedure to the
one followed for the elastic stress leads to the following constraint due to material symmetry
and material frame-indifference on the form of the viscous stress:

σ(v )(J1/3I,QdQT ) = Qσ(v )(J1/3I,d)QT . (6.122)

Focusing on the dependence on d, we see that

σ(v )(QdQT ) = Qσ(v )(d)QT .

A function satisfying this condition is called an isotropic tensor function. Note that this
is different from the condition in Eqn. (6.119) which defines an isotropic tensor. It can be
shown that an isotropic tensor function can be represented in the following form [Gur81,
Section 37]:

σ(v )(d) = η0I + η1d + η2d
2 ,

where ηi are arbitrary scalar functions of the principal invariants of d,

I1(d) = tr d, I2(d) =
1
2
[
(tr d)2 − trd2] , I3(d) = det d.

Given the dependence of σ(v ) on the Jacobian, the scalar functions in the representation of
the viscous stress can also depend on J or equivalently on the density ρ. So, in general,

σ(v ) = ϕ̂0(ρ, Ii(d))I + ϕ̂1(ρ, Ii(d))d + ϕ̂2(ρ, Ii(d))d2 . (6.123)
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Adding the elastic and viscous parts of the stress in Eqns. (6.121) and (6.123), we have

σ =
[
f̂(ρ) + ϕ̂0(ρ, Ii(d))

]
I + ϕ̂1(ρ, Ii(d))d + ϕ̂2(ρ, Ii(d))d2 . (6.124)

Equation (6.124) is the most general possible form for the constitutive relation of a simple
fluid. A fluid of this type is called a Reiner–Rivlin fluid. When the dependence on d is
linear, we obtain as a special case a Newtonian fluid, for which

σ = f̂(ρ)I +
[
κ(ρ) − 2

3
μ(ρ)

]
(tr d)I + 2μ(ρ)d, (6.125)

where κ is the bulk viscosity and μ is the shear viscosity, which are material parameters that
in general can depend on density (see Exercise 6.9). Equation (6.125) provides an adequate
approximation for many fluids including water and air. For the even simpler case of an
incompressible fluid, Eqn. (6.125) reduces to Newton’s law,

σ = 2μd − pI,

which is the functional form that Isaac Newton proposed in 1687, giving this type of fluid
its name [TG06]. Here, p is an undetermined hydrostatic pressure whose value can only be
obtained as part of the solution to a boundary-value problem. (For an example of such a
procedure in the case of incompressible solids, see Section 8.2.)

When Reiner [Rei45] and Rivlin [Riv47] derived the constitutive form in Eqn. (6.124) in
the mid-1940s it was hoped that this form could provide a general framework for complex
fluids that could not be adequately described as Newtonian fluids. However, experimental
studies have shown that the Reiner–Rivlin form is inadequate and that in fact all fluids
that can be described in that form are actually Newtonian [Cha99]. This indicates that
memory effects play an important role in the flow of complex fluids. The Reiner–Rivlin
material is based on the simple viscous stress assumption in Eqn. (6.27) that depends
on the rate of deformation tensor, but not its history. More sophisticated models account
for memory effects either by including a dependence on the time derivatives of the rate of
deformation tensor (analogous to the approach used in the strain gradient theories described
in Section 6.2.1) or by having σ directly dependent on the history of the deformation, for
example,

σ(t) =
∫ t

−∞
G(t − t′)d(t′) dt′,

where t is the current time and G(t− t′) is called the relaxation modulus. This approach is
analogous to spatially nonlocal constitutive relations such as Eringen’s model in Eqn. (6.4).
For a more detailed discussion of constitutive relations for complex fluids, see, for example,
[TG06, Section 3.3].
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6.4.2 Isotropic solids

A simple isotropic material is a simple material (see page 185) whose material symmetry
group coincides with the proper orthogonal group, G = SO(3). As noted above, this
means that an arbitrary rigid-body rotation can be applied to the reference configuration
without affecting the constitutive response of the material. Crystalline materials are not
isotropic at the level of a single crystal, however, at the continuum level many materials
appear isotropic since the response at a point represents an average over a large number of
randomly oriented single crystals (or grains). We focus here on simple elastic materials,28

where σ = σ(e) . For this reason we drop the superscript on the stress terms in the following
derivation.

The material symmetry condition for the stress of an isotropic elastic solid is

σ(F ) = σ(FH), (6.126)

for all H ∈ SO(3). Substituting the left polar decomposition (Eqn. (3.10)), F = V R,
into the right-hand side of Eqn. (6.126) gives

σ(F ) = σ(V RH).

This relation is true for all H ∈ SO(3), so it is also true for H = RT , since R ∈ SO(3).
Therefore,

σ(F ) = σ(V ). (6.127)

We see that the stress can only depend on F through the left stretch tensor. This makes
sense, since V is insensitive to rotations of the reference configuration. Equation (6.127)
implies the existence of a function σ̂(B) that depends only on the left Cauchy–Green
tensor, B = FF T = V 2 . Thus, we can write

σ(F ) = σ̂(FF T ) = σ̂(B). (6.128)

Equation (6.128) constitutes a constraint on the form of the stress function due to the
isotropy of the material. A more explicit functional form is obtained by considering the
material frame-indifference condition for σ̂(B):

σ̂(QBQT ) = Qσ̂(B)QT ∀Q ∈ SO(3). (6.129)

Equation (6.129) shows that σ̂ is an isotropic tensor function (as explained above for the
viscous part of the stress of a simple fluid) and can therefore be represented as

σ = η0I + η1B + η2B
2 , (6.130)

where ηi are arbitrary scalar-valued functions of the principal invariants of B:

I1(B) = tr B, I2(B) =
1
2
[
(tr B)2 − trB2] , I3(B) = detB. (6.131)

28 Elastic materials are defined on page 185.
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Equation (6.130) is the most general form for the stress function of a simple elastic isotropic
solid.

Hyperelastic solids As defined on page 189, a simple hyperelastic material is one which
possesses a strain energy density W (F ) from which the stress may be obtained from
Eqn. (6.43). A procedure similar to that used to obtain Eqn. (6.130) shows that the most
general form of the strain energy density function for a simple hyperelastic isotropic solid
is

W = W (I1 , I2 , I3), (6.132)

where Ii are the principal invariants of the left Cauchy–Green deformation tensor B given
in Eqn. (6.131). In order to use Eqn. (6.43) to obtain the stress from the strain energy density
function, we will require expressions for certain derivatives of the principal invariants. First,
the derivative of B with respect to F is

∂Bij

∂FkL
= δikFjL + δjkFiL . (6.133)

Second, the derivatives of the principal invariants of B with respect to B and F are:

∂I1

∂Bij
= δij ,

∂I1

∂FiJ
= 2FiJ , (6.134)

∂I2

∂Bij
= I1δij − Bij ,

∂I2

∂FiJ
= 2(I1FiJ − BikFkJ ), (6.135)

∂I3

∂Bij
= I3B

−1
j i ,

∂I3

∂FiJ
= I3F

−1
J i . (6.136)

Using these expressions, we can write the stress in terms of the strain energy density. The
first Piola–Kirchhoff stress is

P = 2 [W,I1 + I1W,I2 ]F − 2W,I2 BF + I3W,I3 F
−T ,

where W,Ik
= ∂W/∂Ik . The second Piola–Kirchhoff stress follows from Eqn. (4.41) as

S = 2 [W,I1 + I1W,I2 ] F − 2W,I2 C + I3W,I3 C
−1 .

Using Eqn. (4.36), the Cauchy stress has the form

σ =
1
I3

(
I3W,I3 I + 2 [W,I1 + I1W,I2 ] B − 2W,I2 B

2) .

Notice that this expression is a special case of Eqn. (6.130) (as it must be). That is, an
isotropic hyperelastic material (which has a strain energy density function) is an isotropic
elastic material. However, the converse is not true. (Not all isotropic elastic materials with
constitutive relations of the form Eqn. (6.130) have a strain energy density function). Next,
we give an example of a constitutive relation for an isotropic hyperelastic material.

Blatz-Ko materials In [BK62] Blatz and Ko developed a series of isotropic material
models for foamed rubbers based on experimental tests. These tests showed that the
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stress–strain behavior of such materials is (nearly) independent of I1 . One of the most
common of these models has the following strain energy density function:29

W (I2 , I3) = c1

[
I2

I3
+ 2

√
I3 − 5

]
, (6.137)

where c1 is a constant. The first Piola–Kirchhoff stress tensor is

P = c1

[
(
√

I3 − I2/I3)F−T + 2
I1

I3
F − 2

I3
BF

]
, (6.138)

and the corresponding Cauchy stress is

σ = c1

[(
1√
I3

− I2

I2
3

)
I + 2

I1

I2
3
B − 2

I2
3
B2

]
.

Blatz and Ko showed that this model was capable of accurately predicting the behavior of
foamed polyurethane rubber under isothermal conditions for strains of up to 140%.

Constrained solids: incompressibility An important special class of isotropic hyperelastic mate-
rials are those which are incompressible. Many materials are approximately incompressible
and the study of ideal incompressible materials has been an important factor in the rigorous
and complete development of the theory of continuum mechanics (see Chapter 8 for more
on this). Incompressible materials, by definition, cannot change their volume, and we must
have that any admissible deformation ϕ satisfies the constraint det F = det(∇0ϕ) = 1
everywhere in B0 . Since the material is incompressible it is possible to apply an arbitrary
hydrostatic pressure without deforming the material. This means that the material’s consti-
tutive relation does not uniquely determine the hydrostatic part of the stress. The pressure
must be obtained as part of the solution to a particular boundary-value problem.30 Since
det F = 1 implies I3 = 1, the strain energy density for isotropic incompressible materials
is only a function of I1 and I2 . Below, we provide some common examples of nonlinear
constitutive laws for isotropic incompressible simple materials. For more discussion on
many of these models see [Ogd84].

Neo-Hookean materials One of the simplest possible incompressible constitutive rela-
tions, the neo-Hookean material model, has been extensively used in theoretical studies
where the focus is more on developing an understanding of general continuum mechanics
principles rather than obtaining results for a particular material. Motivated by experiments
that show the constitutive behavior of rubber to be nearly independent of I2 , the neo-
Hookean strain energy density is defined as

W (I1) = c1(I1 − 3). (6.139)

29 This is a simplified version of a more general form given in [BK62] which contains three parameters: (1) the
shear modulus μ (above we use the symbol c1 ), (2) Poisson’s ratio ν and (3) a parameter f which is more
difficult to describe in physical terms. Equation (6.137) results from the more general form when one takes
the parameter values f = 0 and ν = 1/4 (motivated by the experiments of Blatz and Ko). The shear modulus
and Poisson’s ratio are discussed in Section 6.5.1.

30 In general, the value of the hydrostatic pressure part of the stress will vary from point to point within the body.
See Section 8.2 for a practical example.
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The first Piola–Kirchhoff stress tensor, given by Eqn. (6.43), for a neo-Hookean incom-
pressible material is

P = 2c1F − c0F
−T , (6.140)

where the final term accounts for the undetermined part of the hydrostatic pressure c0 .
Using Eqns. (4.36) and (6.140) we find the Cauchy stress to be

σ = 2c1B − c0I,

where we have used J = 1 (which is due to the incompressibility condition). Notice that, in
general, the pressure p = − tr σ/3 = c0 − 2c1I1/3 has a contribution from W in addition
to the undetermined contribution c0 . For more on the stability of neo-Hookean materials,
see Example 7.1.

Moony–Rivlin materials This incompressible material model includes a dependence on
I2 and has a strain energy density given by

W (I1 , I2) = c1(I1 − 3) + c2(I2 − 3). (6.141)

The first Piola–Kirchhoff stress for a Moony–Rivlin material is given by

P = 2(c1 + c2I1)F − 2c2BF − c0F
−T , (6.142)

and the corresponding Cauchy stress is

σ = 2(c1 + c2I1)B − 2c2B
2 − c0I.

The neo-Hookean material is a special case of the Moony–Rivlin model (for c2 = 0).

Ogden materials In his book [Ogd84], Ogden describes a general class of incompressible
material models for which the strain energy density is given by a power-series:

W (I1 , I2) =
∞∑

p,q=0

cpq (I1 − 3)p(I2 − 3)q . (6.143)

It is easy to see that the Moony–Rivlin and neo-Hookean models are special cases of the
Ogden model. The first Piola–Kirchhoff stress is

P =
∞∑

p,q=0

2(I1−3)p(I2−3)q
[
(p + 1)c(p+1)qF + (q + 1)cp(q+1)(I1F − BF )

]
−c0F

−T ,

(6.144)
and the Cauchy stress is

σ =
∞∑

p,q=0

2(I1 − 3)p(I2 − 3)q
[
(p + 1)c(p+1)qB + (q + 1)cp(q+1)(I1B − B2)

]
− c0I.

Gent materials In [Gen96] Gent, using the experimental observation that the stress appears
to go to infinity as I1 asymptotically approaches a value Im , proposed the following
incompressible strain energy density function:

W (I1) = −c1Im

2
ln
(

1 − I1 − 3
Im − 3

)
. (6.145)
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Here c1 is a constant and Im is the limiting value that I1 is allowed to approach. The first
Piola–Kirchhoff stress and the Cauchy stress are, respectively,

P =
c1

1 − I1/Im
F − c0F

−T , σ =
c1

1 − I1/Im
B − c0I. (6.146)

Beyond isotropy As a prelude to our study of anisotropic linearized constitutive relations in
the next section, we now present an example of an anisotropic, (geometrically) nonlinear
material model.

Saint Venant–Kirchhoff materials These materials have strain energy density functions
that are simply quadratic in the Lagrangian strain E:

W̃ (E) =
1
2
(C : E) : E. (6.147)

Here C is a constant fourth-order tensor with both minor and major symmetries (see
Eqns. (6.152) and (6.153) in the next section). The second Piola–Kirchhoff stress is found,
from Eqn. (6.43), to be

S = C : E.

Thus, we see that the second Piola–Kirchhoff stress is linearly related to the Lagrangian
strain for Saint Venant–Kirchhoff materials. The first Piola–Kirchhoff stress and the Cauchy
stress follow as, respectively

P = F (C : E), σ =
1
J

F (C : E)F T . (6.148)

For more on the stability of Saint Venant–Kirchhoff materials, see Examples 7.2 and 7.3.

6.5 Linearized constitutive relations for anisotropic
hyperelastic solids

An anisotropic material has different properties along different directions and therefore has
less symmetry than the isotropic materials discussed above. The term hyperelastic, defined
on page 189, means that the material has no dissipation and that an energy function exists for
it. The stress then follows as the gradient of the energy function with respect to a conjugate
strain variable. For example, the Piola–Kirchhoff stress tensors for a hyperelastic material
are given in Eqn. (6.43) and reproduced here for convenience (dropping the functional
dependence on T for notational simplicity):

S(e) =
∂W̃ (E)

∂E
, P (e) =

∂Ŵ (F )
∂F

. (6.149)

Additional constraints on these functional forms can be obtained by considering material
symmetry (as done above in Section 6.4.2). This together with carefully planned experiments
can then be used to construct phenomenological (i.e. fitted) models for the nonlinear
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material response such as the examples given in the last section (see also, for example,
[Hol00] for a discussion of phenomenological constitutive relations). Alternatively, S̃(E)
can be computed directly from an atomistic model as explained in Chapter 11 of [TM11].
A third possibility that is often used in numerical solutions to continuum boundary-value
problems is an incremental approach, where the equations are linearized. This requires the
calculation of linearized constitutive relations for the material which involve the definition
of elasticity tensors. When the linearization is about the reference configuration of the
material this approach leads to the well-known generalized Hooke’s law.

The linearized form of Eqn. (6.149)1 relates the increment of the second Piola–Kirchhoff
stress dS to the increment of the Lagrangian strain dE and is given by

dSIJ = CIJ K LdEK L, ⇔ dS = C : dE, (6.150)

where

CIJ K L =
∂S̃IJ (E)
∂EK L

=
∂2W̃ (E)
∂EIJ EK L

⇔ C =
∂S̃(E)

∂E
=

∂2W̃ (E)
∂E2 , (6.151)

is a fourth-order tensor called the material elasticity tensor.31 Due to the symmetry of S

and E, the tensor C has the following symmetries:

CIJ K L = CJ IK L = CIJ LK . (6.152)

These are called the minor symmetries of C. In addition, hyperelastic materials have the
following additional major symmetry:

CIJ K L = CK LIJ , (6.153)

due to the fact that C is the second derivative of an energy with respect to strain and the
order of differentiation is unimportant.

Similarly, we may obtain the relationship between increments of the first Piola–Kirchhoff
stress dP and the deformation gradient dF by linearizing Eqn. (6.149)2 :

dPiJ = DiJ kLdFkL , ⇔ dP = D : dF , (6.154)

31 There should be no confusion between the fourth-order material elasticity tensor and the second-order right
Cauchy–Green tensor which are denoted by the same symbol C.
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where D is the mixed elasticity tensor given by

DiJ kL =
∂P̂iJ (F )

∂FkL
=

∂2Ŵ (F )
∂FiJ FkL

⇔ D =
∂P̂ (F )

∂F
=

∂2Ŵ (F )
∂F 2 . (6.155)

D does not have the minor symmetries that C possesses since P and F are not symmetric.
However, for a hyperelastic material it does possess the major symmetry, DiJ kL = DkLiJ ,
due to invariance with respect to the order of differentiation. We can obtain the relation
between D and C. First, we use Eqn. (3.23) to find the incremental relation

dE =
1
2
(dF T F + F T dF ). (6.156)

Next, we use Eqn. (4.41) to obtain the incremental relation

dS = F−1dP − F−1dFS,

where we have also used the identity dF−1 = −F−1dFF−1 , which is obtained in a
similar fashion to Eqn. (3.53). Finally, we substitute these relations into Eqn. (6.150),
simplify (taking advantage of the symmetries of C and S) and compare the result with
Eqn. (6.154) in order to find that

DiJ kL = CIJ K LFiI FkK + δikSJ L . (6.157)

For practical reasons, it is often useful to treat the deformed configuration as a new reference
configuration and then consider increments of deformation and stress measured from this
configuration. Suppose the deformed configuration is given by x = ϕ(X) and define the
new reference configuration as X∗ ≡ ϕ(X). Now we consider an additional deformation to
a “new deformed configuration” which we can represent as x∗ = ϕ∗(X∗) = ϕ∗(ϕ(X)).
The deformation gradients measured from the new and original reference configurations
are

F ∗ =
∂x∗

∂X∗ ≡ ∇∗ϕ
∗,

and

F 0 =
∂x∗

∂X
= (∇∗ϕ

∗)(∇0ϕ) = F ∗F ,

respectively. Using these expressions and Eqn. (3.23) we find that the Lagrangian strain
E0 measured from the original reference configuration can be written in terms of the
Lagrangian strain E∗ measured from the new reference configuration and the Lagrangian
strain E relating the original and new reference configurations as

E0 = F T E∗F + E.
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This allows us to define the strain energy density function measured from the new reference
configuration as

W ∗(E∗) ≡ W (F T E∗F + E)
J

, (6.158)

where we have divided by the Jacobian to ensure that W ∗ is the energy per unit volume in
the new reference configuration. The associated second Piola–Kirchhoff stress is given by
S∗ = ∂W ∗/∂E∗ and the linearized form of this relation is

dS∗
IJ = C∗

IJ K LdE∗
K L , (6.159)

where C∗ = ∂2W ∗/∂(E∗)2 . From Eqn. (4.42) we know that J∗σ = F ∗S∗(F ∗)T . Taking
the full differential of this equation and solving for the differential of the second Piola–
Kirchhoff stress dS∗ we find that

dS∗= J∗(F ∗)−1[dσ − dF ∗(F ∗)−1σ − σ(F ∗)−T d(F ∗)T +σ(F ∗)−T : dF ∗] (F ∗)−T ,

where we have also used the fact that dJ∗ = J∗(F ∗)−T : dF ∗. If we now consider the
above increments to be associated with dynamic motion, then we can divide by an increment
of time dt and take the limit to obtain the stress rate relation

Ṡ∗ = J∗(F ∗)−1
[
σ̇ − Ḟ ∗(F ∗)−1σ − σ(F ∗)−T (Ḟ ∗)T + σ(F ∗)−T : Ḟ ∗

]
(F ∗)−T

= J∗(F ∗)−1
[
σ̇ − lσ − σlT + σ tr l

]
(F ∗)−T

= J∗(F ∗)−1σ̊(F ∗)−T , (6.160)

where we have used Eqn. (3.36) and

σ̊ ≡ σ̇ − lσ − σlT + σ tr l (6.161)

is the objective Truesdell stress rate of the Cauchy stress tensor [Hol00].32 Also note that the
rate of Lagrangian strain is given by Ė∗ = 1

2 (F ∗)T (l+ lT )F ∗ = (F ∗)T ε̇F ∗. Substituting
these expressions into Eqn. (6.159), evaluating at the new reference configuration (where
F ∗ = I , J∗ = 1) and simplifying we find

σ̊ij = C∗
IJ K LδI iδJ j δK kδLl ε̇kl , (6.162)

or

σ̊ij = cijkl ε̇k l , (6.163)

32 See Exercise 6.6 for a discussion of objective stress rates.
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where c = C∗ is the spatial elasticity tensor.33 Note that c has the same minor and major
symmetries as its material counterpart:

cijkl = cjikl = cij lk = cklij . (6.164)

Using Eqn. (6.158) and the definitions of c, C∗ and C we can obtain the relation

cijkl = J−1FiI FjJ FkK FlLCIJ K L , (6.165)

where it is understood that C is evaluated at the deformed configuration corresponding to
the new reference configuration. Similarly, the relation between c and D is

cijkl = J−1 (FjJ FlLDiJ kL − δikFlLPjL ) . (6.166)

6.5.1 Generalized Hooke’s law and the elastic constants

When the new reference configuration considered above is taken to be the same as the
original reference configuration (which is assumed to be stress free), then we can again
start with Eqn. (6.159) and follow a procedure similar to the one used to obtain Eqn. (6.163).
However, instead of dividing the expression for the increment of second Piola–Kirchhoff
stress by dt, we simply evaluate it at the stress-free reference configuration (corresponding
to the values J∗ = 1, F ∗ = I , σ = 0) to obtain dS∗ = dσ. Evaluating Eqn. (6.156) in
the same manner, we find dE = dε. Next, we notice from Eqn. (6.165) that for the case
considered here c = C∗. Finally, since the reference configuration is stress-free we can
identify dσ with σ and dε with ε to obtain

σij = cijklεkl ⇔ σ = c : ε, (6.167)

which is valid for small strains. This is called the generalized Hooke’s law.34 The fourth-
order tensor c is the elasticity tensor. (The epithet “spatial” is dropped since all elasticity
tensors are the same in this case. The term “small strain elasticity tensor” is also used.)

33 Note that some authors use an alternative definition, c = JC∗, for the spatial elasticity tensor. As a result, the
corresponding expressions relating c with the material and mixed elasticity tensors will be slightly different
than the ones derived here.

34 For a discussion of the origin of Hooke’s law, see footnote 45 on page 235.



230 Constitutive relations
�

Hooke’s law can also be inverted to relate strain to stress:

εij = sijklσkl ⇔ ε = s : σ, (6.168)

where s is the compliance tensor. The corresponding strain energy density function, W , is

W =
1
2
σij εij =

1
2
cijklεij εkl =

1
2
sijklσijσkl . (6.169)

The strain energy density expression in terms of strain can also be written in terms of the
displacement gradient:

W =
1
2
cijklui,j uk,l , (6.170)

since the contraction of the antisymmetric part of ∇u with c is zero due to the symmetry
properties of the elasticity tensor (see Section 2.5.2). In the above relations, we assumed a
stress-free reference configuration. If this is not the case, then an additional constant stress
term σ0 is added to Eqn. (6.167), σ is replaced by σ − σ0 in Eqn. (6.168) and the energy
expression has an additional term linear35 in strain, (σ0 : ε)/2. In addition, a constant
reference strain energy density W0 can always be added to W .

Due to the symmetry of the stress and strain tensors, it is convenient to write Eqn. (6.167)
in a contracted matrix notation referred to as Voigt notation, where pairs of indices in the
tensor notation are replaced with a single index in the matrix notation (see also Tab. 5.2):

tensor indices ij: 11 22 33 23, 32 13, 31 12, 21
matrix index m: 1 2 3 4 5 6

Using this notation, the generalized Hooke’s law (Eqn. (6.167)) is⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ13

σ12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.171)

where c is the elasticity matrix.36 The entries cmn of the elasticity matrix are referred to as
the elastic constants. Therefore c is also called the “elastic constants matrix.” The stress and

35 Note, however, that the resulting stress–strain relations are no longer linear. Thus, in this case the principle of
superposition is not valid for solutions to boundary-value problems that use this type of stress–strain relation.

36 Note that we use a sans serif font for the elasticity matrix. This stresses the fact that the numbers that constitute
this 6 × 6 matrix are not the components of a second-order tensor in a six-dimensional space and therefore do
not transform according to standard tensor transformation rules.
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strain tensors can also be expressed in compact notation by defining the column matrices,

σ = [σ11 , σ22 , σ33 , σ23 , σ13 , σ12 ]
T

, ε = [ε11 , ε22 , ε33 , 2ε23 , 2ε13 , 2ε12 ]
T

.

Hooke’s law is then

σm = cmnεn or εm = smnσn , (6.172)

where s = c−1 is the compliance matrix.37

The minor symmetries of cijkl (and sijkl) are automatically accounted for in cmn (and
smn ) by the Voigt notation. The major symmetry of cijkl (and sijkl) implies that cmn (and
smn ) are symmetric, i.e. cmn = cnm (and smn = snm ). Therefore in the most general case
a material can have 21 independent elastic constants.

The material symmetry condition for the elastic stress tensor is given in Eqn. (6.126).
For the linear elastic case considered here this translates to the following set of constraints
on the elasticity tensor [FV96]:

cijkl = QipQjqQkrQlscpqrs ∀Q ∈ G ⊂ SO(3), (6.173)

whereG is the material symmetry group of the material, which for a solid is a subgroup of the
set of rotations38 SO(3). As an example, let us consider the simplest case where the material
has a symmetry plane normal to the 3-direction. We use the “direct inspection method”
described in [Nye85, pp. 118–120]. The symmetry reflection operation is represented by
the following transformation:

[Q] =

⎡⎣1 0 0
0 1 0
0 0 −1

⎤⎦ .

This takes any point X = [X1 ,X2 ,X3 ]
T to x = [X1 ,X2 ,−X3 ]

T . Substituting this into
Eqn. (6.173) gives the following relations between the elastic constants in Voigt matrix
notation:⎡⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

c44 c45 c46

sym c55 c56

c66

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 −c14 −c15 c16

c22 c23 −c24 −c25 c26

c33 −c34 −c35 c36

c44 c45 −c46

sym c55 −c56

c66

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

37 Note, however, that the fourth-order tensor s �= c−1 . This is because, strictly speaking, c is not invertible,
since c : w = 0, where w = −wT is any antisymmetric second-order tensor. This indicates that w is an
“eigentensor” of c associated with the eigenvalue 0, and further implies that c is not invertible. However, if c
and s are viewed as linear mappings from the space of all symmetric second-order tensors to itself (as opposed
to the space of all second-order tensors), then c : w is not a valid operation. In this sense, c is invertible and
only then do we have that s = c−1 .

38 Strictly speaking we should include lattice invariant shears in the material symmetry group G of crystalline
solids. These are shear deformations that carry all the atoms in an infinite crystal to other atomic positions
leaving the crystal unchanged. Such deformations do not affect the symmetry properties of the elasticity tensor
and therefore need not be considered here. For more on the importance of lattice invariant shears see [Eri77].
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We see by inspection that c14 = −c14 , which means that c14 = 0. Similarly, we see that
c15 = c24 = c25 = c34 = c35 = c46 = c56 = 0. The most general form for c for this
symmetry is therefore

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 c16

c22 c23 0 0 c26

c33 0 0 c36

c44 c45 0
sym c55 0

c66

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This form corresponds to the monoclinic symmetry class. We see that the number of distinct
elastic constants has been reduced from 21 to 13.

An interesting question is: how many distinct symmetry classes exist? Originally, a
crystallographic approach was taken to answer this question going back to the work of
Woldemar Voigt published in his 1910 magnum opus [Voi10]. The idea was to painstakingly
go through all of the crystal classes and to identify by brute-force inspection (along the
lines of the above example) the resulting distinct elasticity matrices. For example, Wallace
[Wal72, p. 28] classifies the symmetry classes according to the 11 crystallographic Laue
groups,39 since “all [crystal] classes in a given group have a common array of elastic
constants.” When limited to second-order elastic constants (i.e. the elasticity matrix), the
number of distinct symmetry classes is reduced to nine. Adding to this the isotropy group
gives the classical result that there are ten distinct symmetry classes for the elasticity
tensor.40 This is the result cited in many books including the classical book on the subject
by Nye [Nye85].

The crystallographic approach seems reasonable, but its conclusions are incorrect. The
modern approach is to pose the question mathematically by directly identifying the equiv-
alence classes corresponding to Eqn. (6.173) without considering crystallography at all.
This is a far more general approach since many materials of interest are not crystalline
(an important example is composite materials). Interestingly, despite the generality of the
approach, the conclusion to emerge from these studies is that there are in fact only eight
distinct symmetry classes. This was first conclusively shown by Forte and Vianello in
1996 [FV96] (although there were partial indications of this result earlier as noted in the
interesting historical review in this paper).

Forte and Vianello’s proof is based on harmonic and Cartan decomposition techniques.
Since then several additional proofs have been advanced including a simple one based on the
idea of mirror symmetry planes due to Chadwick et al. [CVC01]. In this paper, the authors
were able to connect their symmetry plane argument with Forte and Vianello’s classification

39 Crystallographically, there are 32 unique point groups, of which only 11 are centrosymmetric. These form 11
unique diffraction patterns. The diffraction patterns of the remaining noncentrosymmetric crystal structures
are each indistinguishable from one of the 11 centrosymmetric crystals, and thus we can organize the 32 point
groups into 11 distinct classes based on their diffraction patterns. These 11 classes are called the Laue classes.
It is interesting that crystals sharing the same diffraction pattern also share elastic symmetry.

40 The ten classes are called triclinic, monoclinic, orthotropic, hexagonal (7), hexagonal (6), tetragonal (7),
tetragonal (6), cubic, transversely isotropic and isotropic. Following each name in parenthesis is the number
of distinct elastic constants for this class. See, for example, [CM87, Table 1].
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Fig. 6.3 The eight distinct symmetry classes of the elasticity tensor. Note that ‘orthotropic’ is also called orthorhombic and
‘transverse isotropy’ is also called hexagonal. Reprinted from [CVC01], with permission from Elsevier. A similar figure
also appears in [BBS04].

and in this manner identify the distinct symmetry classes with the earlier crystallographic
categories. The names they give the symmetry classes are borrowed from the traditional
seven crystal systems (see Section 3.4 of [TM11]) based on the symmetry classes in which
these systems fall: triclinic, monoclinic, orthorhombic (the term ‘orthotropic’ is also used),
tetragonal, trigonal, hexagonal (the term ‘transverse isotropy’ is also used), cubic and
isotropic.41 The relation between the different symmetry classes is illustrated in Fig. 6.3.
The arrows indicate how one symmetry class is obtained from another through the addition
of symmetry planes.

In addition to knowing the number of symmetry classes, it is of course also of interest
to know the number of independent elastic constants in each case and the structure of the
elasticity matrix as shown above for the special case of monoclinic symmetry. Figure 6.4
provides this information for the eight symmetry classes,42 where the number in parentheses
after the name of the class is the number of distinct elastic constants. The diagrams are
based on the notation introduced by Nye [Nye85] (see the caption for an explanation). The
most general material belongs to the triclinic class with 21 independent constants,43 and

41 The relationship between the new terms and the traditional ten classes listed in footnote 40 above is as
follows (new = old): triclinic = triclinic, monoclinic = monoclinic, orthorhombic = orthotropic, trigonal =
hexagonal (6), tetragonal = tetragonal (6), cubic = cubic, hexagonal = transversely isotropic, isotropic =
isotropic. We see that the two classes that were dropped are hexagonal (7) and tetragonal (7).

42 The structures of the elasticity matrices given in Fig. 6.4 are the simple forms associated with basis vectors
that are suitably aligned with the crystallographic axes. For arbitrary basis vector orientation, the matrices can
be full, with all entries being functions of the independent elastic constants for the relevant symmetry class.

43 Actually, the maximum number of independent elastic constants is 18. The reason is that it is always possible
to orient the coordinate system in such a way that three of the constants are zeroed. Similarly, the number of
elastic constants for monoclinic symmetry can be reduced from 13 to 12. See, for example, [CVC01].
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Triclinic (21) Monoclinic (13) Orthorhombic (9)

Tetragonal (6)

Trigonal (6) Hexagonal (5) Cubic (3)

Isotropic (2)

Fig. 6.4 Symmetry classes of the elasticity matrix. Following the name of the class in parentheses is the number of distinct
elastic constants for this class. The arrays of dots, circles and×-symbols under the name are the elements of the
6 × 6 elasticity matrix for the symmetry class. Only half the matrix is shown since it is symmetric. Small dots
correspond to zero elements. Circles and×-symbols are nonzero elements. Elements are equal when connected by a
line. A white filled circle is equal to the negative of the black element to which it is connected. Elements marked with
an× are equal to 1

2 (c11 − c12).

this number is reduced with increasing symmetry of the material. Additional symmetry
in the monoclinic and orthorhombic classes implies that certain constants must be zero
(appearing as dots in the diagram) and therefore the number of distinct constants is reduced.
In the tetragonal class, symmetry also dictates that some constants must be equal (shown
connected by lines). We see that c11 = c22 , c13 = c23 , and c44 = c55 . There are therefore
six distinct constants: c11 , c12 , c13 , c33 , c44 and c66 . In the trigonal class, there are two new
features. The constants c15 and c25 are constrained to have opposite signs, i.e. c25 = −c15 ,
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which is indicated by the black and white circles. The constant c66 is equal to 1
2 (c11 − c12)

(indicated by the ×-symbol). The remaining classes can be seen in the diagram. We note
that for isotropic symmetry the elasticity tensor has two independent constants. This special
case is described below.

Hooke’s law for isotropic linear elastic materials The elasticity tensor for isotropic materials can
be written as

cijkl = λδij δkl + μ(δik δj l + δilδjk ), (6.174)

where λ = c12 and μ = c44 = (c11 − c12)/2 are called the Lamé constants (μ is also
called the shear modulus). (Note that there is no connection between the Lamé constants
introduced here and the viscosity coefficients in Newton’s law.) Substituting Eqn. (6.174)
into Eqn. (6.167), we obtain Hooke’s law for an isotropic linear elastic solid:

σ = λ(tr ε)I + 2με, (6.175)

This relation can be inverted, in which case it is more conveniently expressed in terms of
two other material parameters, Young’s modulus44, E, and Poisson’s ratio, ν:

ε = − ν

E
(tr σ)I +

1 + ν

E
σ. (6.176)

The two sets of material parameters are related through

μ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1 − 2ν)
or E =

μ(3λ + 2μ)
λ + μ

, ν =
λ

2(λ + μ)
.

(6.177)

Equation (6.176) can be reduced to one dimension by setting all stresses to zero, except
σ11 = σ, and solving for the strains. The result is the one-dimensional Hooke’s law:45

σ = Eε, (6.178)

where ε = ε11 is the strain in the 1-direction (see Exercise 6.13).

44 “Young’s modulus” is named after the English polymath Thomas Young and is often attributed to an article
that he published in 1807. Actually, as pointed out by Truesdell [Tru68], the “modulus of extension” was
introduced by Euler 100 years before Young. In fact, Young defined his modulus as the ratio of force to strain
(rather than stress to strain as Euler did). Young’s definition does not constitute a material property since it
depends on the geometry of the structure for which it is defined.

45 Robert Hooke’s original law was published in 1676 in the form of the anagram “ceiiinosssttuv,” which
unscrambles to the Latin “ut tensio sic vis” or in English “as the extension so the force.” The anagram, which
appeared at the end of an unrelated paper, was a way of establishing precedence without divulging the details
of the theory which was published several years later. In his work, Hooke was referring to the constitutive
relation for a linear spring. He had no understanding of the concepts of stress or strain. It was actually James
Bernoulli in 1704 who provides the first instance of a true stress–strain constitutive relation [Tru68, p. 103].
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It is important to stress in closing this section that the symmetry classes and corresponding
elasticity matrices are only valid for infinitesimal perturbations about the reference state.
Once the deformations become “large” (or finite) the original symmetries of the reference
structure are lost (except for special loadings that are consistent with the symmetry of the
structure) and the linear elastic constants no longer adequately describe the response of the
material.

6.6 Limitations of continuum constitutive relations

In our discussion of constitutive relations, we have made the assumption of local action
(see Section 6.2), according to which the strain energy density is a pointwise function
of the deformation gradient, W = Ŵ (F ). Since real materials are not continuous, it is
clear that the response at a “point” represents an average over a small domain surrounding
this point. We noted this at the very start of the discussion of continuum mechanics when
we introduced the notion of a “continuum particle” in Section 3.1. This begs the physical
question: just how large must this particle be for the continuum assumptions to work?

The answer depends on what we want to model, or more precisely on the characteristic
length scales of the structure or body relative to the characteristic length scales of the
material. It is also only easy to answer this question a posteriori, as it also depends on
the length scales over which the deformation gradient itself varies. Once we choose a
constitutive law of the form W (F ), the solutions we obtain will not respect any notion
of a material length scale. Instead, we will have to quantify the variations in F in any
obtained solutions and decide whether our assumptions about the size of a continuum
particle remain valid. We saw an example of this with the Knudsen number for a fluid in
Section 5.6. We seek a similar criterion for a solid under static conditions. Imagine that for
a certain displacement field, we can identify a sphere of radius rε such that

‖F (X + ξ) − F (X)‖ < ε (6.179)

for all X in the body and for all ‖ξ‖ < rε , where ε is the tolerance that defines some
limit of a “negligible” variability in F . The choice of a norm in Eqn. (6.179) is arbitrary
since all norms are equivalent in a finite-dimensional space (see footnote 20 on page 26).
A standard norm for second-order tensors is the scalar contraction operation defined at the
end of Section 2.4.5, according to which Eqn. (6.179) is

[(F (X + ξ) − F (X)) : (F (X + ξ) − F (X))]1/2
< ε. (6.180)

In words, this relation implies that the deformation field is such that F can be considered
constant within any sphere of radius rε .

The radius rε can now be compared to our material length scales in the context of the
constitutive assumptions we have made. For this purpose, we define a representative volume
element (RVE) of the material as a sphere of radius rRVE . The RVE must be large enough
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Fig. 6.5 Examples of how the representative volume element shown by the dashed circles, depends on the scale of the
material of interest. On the left is a single crystal of bcc Fe, in the center is the microstructure of a single bar of steel
and on the right is concrete reinforced by an array of steel bars.

that its response to a globally applied uniform F is the same as the response of any larger
volume of the same material.46

Figure 6.5 shows several examples. Imagine that we are interested in building a consti-
tutive model based on the assumption of a uniform, elastic, material response. A single
crystal of bcc Fe, represented on the left of Fig. 6.5 by an array of Fe atoms, might be
adequately modeled using an RVE whose size is on the order of the unit cell size of the
lattice. However, to study the macroscopic response of steel shown in the center of Fig. 6.5,
we need to consider not only a large number of randomly oriented and sized bcc Fe grains,
but grains of other phases as well; steel contains a complex mixture of different crystal
phases. As a result, the RVE may need to be as large as several microns in this case. Finally,
we might want to model an entire bridge made of concrete that is reinforced with steel bars.
In that case the RVE will need to contain one or more entire steel bars and the concrete that
surrounds them, as shown on the right in Fig. 6.5.

If the radius of homogeneous deformation, rε is less than the radius of the RVE, we expect
that our constitutive model assumptions will not hold; the deformation varies on a scale that
is finer than the material length scale and we must refine our constitutive description. On the
other hand, if the deformation gradient can be assumed constant over the scale of the RVE,
we can now trust a constitutive law based on that premise. In situations where Eqn. (6.179)
breaks down, it is necessary to resort to multiscale methods that combine lower-level
microscopic models with continuum models. Methods of this type are discussed in Part IV
of [TM11].

Exercises

6.1 [SECTION 6.2] The specific internal energy, u = û(s,Γ), is a function of the specific entropy
s and kinematic variables Γ. Depending on the thermal and mechanical loading conditions,
it is often more convenient to work with other thermodynamic potentials, where the control

46 Here we assume we have a homogeneous material for which the energy density function does not depend
explicitly on X.
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variables are the temperature T and/or the thermodynamic tensions γ . These alternative
potentials can be obtained via Legendre transformations.
1. Consider a vector function y = y(x) that is a gradient of a scalar field f (x), i.e. yi =

∂f (x)/∂xi . The Legendre transformation of f (x) is a new potential g(y) = x ·y−f (x).
Show that this function provides the inverse definition x = x(y), where xi = ∂g(y)/∂yi .

2. The specific Helmholtz free energy is defined as ψ = ψ̂(T, Γ) = û(ŝ(T, Γ), Γ) −
T ŝ(T, Γ). Show that s = −∂ψ̂/∂T |Γ and γ = ∂ψ̂/∂Γ|T .

3. The specific enthalpy is defined as h = ĥ(s, γ) = û(s, Γ̂(s, γ)) − γ · Γ̂(s, γ). Show that
T = ∂ĥ/∂s|γ and Γ = −∂ĥ/∂γ|s .

4. The specific Gibbs free energy is defined as g = ĝ(T, γ) = û(ŝ(T, γ), Γ̃(T, γ)) −
T ŝ(T, γ) − γ · Γ̃(T, γ). Show that s = − ∂ĝ/∂T |γ and Γ = − ∂ĝ/∂γ|T .

6.2 [SECTION 6.2] A tensile test is a one-dimensional experiment where a material sample is
stretched in a controlled manner to measure its response. The loading machine can control
either the displacement, u, applied to the end of the sample (displacement control) or the force,
f , applied to its end (load control). If displacement is controlled, the output is f/A0 , where A0

is the reference cross-sectional area. If load is controlled, the output is L/L0 = (L0 + u)/L0 ,
where L0 and L are the reference and deformed lengths of the sample. The mass of the sample
is m. Describe different experiments where the relevant thermodynamic potentials are:
1. the internal energy density, u;
2. the Helmholtz free energy density, ψ;
3. the enthalpy density, h;
4. the Gibbs free energy density, g.

In each case indicate what quantity is measured in the experiment (i.e. force or length) and
provide an explicit expression for it in terms of m and the appropriate potential. Hint: You
will need to consider thermal conditions when setting up your experiments.

6.3 [SECTION 6.2] A material undergoes a homogeneous, time-dependent, simple shear motion
with deformation gradient:

[F ] =

⎡⎢⎣1 γ(t) 0
0 1 0
0 0 1

⎤⎥⎦ ,

where γ(t) = γ̇t is the shear parameter and the shear rate γ̇ is constant. Consider the following
two cases:
1. The material is elastic, incompressible and rubber-like with a Helmholtz free energy density

given by Ψ = c1 (tr B − 3), where B = F F T is the left Cauchy–Green deformation
tensor, and c1 is a material constant. A material of this type is called neo-Hookean.
a. For constant temperature conditions, show that the Cauchy stress for a neo-Hookean

material is given by σ = −pI + μB, where p is the pressure, I is the identity tensor,
μ = 2ρ0c1 is the shear modulus and ρ0 is the reference mass density.

b. Compute the Cauchy stress due to the imposed simple shear. Present your results as a
3 × 3 matrix of the components of σ. Explicitly show the time dependence.

2. The material is a Newtonian fluid for which the Cauchy stress is given by σ = −pI +2μd,
where μ is the shear viscosity and d = 1

2 (∇v + ∇vT ) is the rate of deformation tensor.
a. Compute the Cauchy stress due to the imposed simple shear motion.

b. How can the pressure p(t) be determined?
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6.4 [SECTION 6.3] The dyad T = a ⊗ b, where a and b are vectors, is a second-order tensor. As-
suming that a and b are objective, show that T satisfies the objectivity condition in Eqn. (6.66).
(This can also be viewed as a way to obtain the objectivity condition.) How can this approach
be extended to establish the objectivity conditions for nth-order tensors with n ≥ 3?

6.5 [SECTION 6.3] The transformation relation between two frames of reference for the rate of
deformation tensor d = 1

2 (l + lT ) is given in Eqn. (6.56). The spin tensor is defined as
w = 1

2 (l − lT ). Find the relation between w and w+ . Is w an objective tensor?
6.6 [SECTION 6.3] Let σ̇ stand for the material time derivative of σ,

σ̇(x, t) ≡ ∂

∂t
σ(x(X , t), t)

∣∣∣∣
X

.

This is the rate-of-change of the Cauchy stress experienced by a fixed material particle.
1. Find a relation between σ̇ and σ̇+ , and show that this time derivative is not an objective

quantity.
2. The Jaumann stress rate (or corotational stress rate) is defined by

�
σ≡ σ̇ + σw − wσ,

where w is the spin tensor. Show that the Jaumann stress rate is an objective tensor.
Hint: You will need to use the result from Exercise 6.5.

3. Another example of an objective stress rate is the Truesdell stress rate defined by

σ̊ ≡ σ̇ − lσ − σlT + σ tr l,

where l is the velocity gradient. Show that the Truesdell stress rate is an objective tensor.
6.7 [SECTION 6.3] The material frame-indifference conditions in Eqn. (6.79) involve terms of the

form L−1
0 Lt γ, where γ represents a variable dependence of the constitutive relation. Show

that for γ = ρ (mass density), γ = v (velocity vector), and γ = l = ∇v (velocity gradient
tensor), L−1

0 Lt γ is given by
1. L−1

0 Lt ρ = ρ,
2. L−1

0 Ltv = QT
0 ċ+ + Q̇x + Qv,

3. L−1
0 Lt l = Q̇Q + QlQT ,

where Qt is an orthogonal linear transformation between the frames of reference, c+ is the
relative translation between the frames and Q = QT

0 Qt is a proper orthogonal, second-order
tensor.

6.8 [SECTION 6.3] Consider a constitutive equation for the Cauchy stress that is linear in the
velocity, v, and the velocity gradient, l = ∇v, namely

σij = Aij + Bijm vm + Cijm n lm n ⇔ σ = A + Bv + C : l,

where Aij , Bijm , Cijm n are tensor-valued functions of the density, ρ, and each are symmetric
in the indices i and j. Our objective is to obtain constraints on the tensor functions, A(ρ),
B(ρ) and C(ρ), due to material frame-indifference. Recall that the material frame-indifference
condition for the stress tensor is σ̂(L−1

0 Lt γ) = Qσ̂(γ)QT , where γ represents the arguments
of the stress function σ̂ (see Eqn. (6.79)). Hint: To do the following you will need to use
L−1

0 Lt ρ, L−1
0 Ltv and L−1

0 Lt l given in Exercise 6.7 and the properties of isotropic tensors in
Section 2.5.6.
1. Consider a deformation for which v = 0. In this case only the A(ρ) term exists. Show that

material frame-indifference implies that A = α(ρ)I , where α(ρ) is a real-valued function
of the density and I is the identity tensor.
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2. Consider a motion for which v is constant. Show that material frame-indifference implies
that B = 0.

3. Show that material frame-indifference implies that Cijk l (ρ) must have the following form:

Cijk l = β(ρ)δij δk l + μ(ρ)(δik δj l + δil δj k ),

where β(ρ) and μ(ρ) are real-valued functions of the density, and δij is the Kronecker
delta.

4. Based on the results in the previous three parts, show that after accounting for the constraints
due to material frame-indifference, the most general allowable form for Eqn. (6.8) is

σ = α(ρ)I + β(ρ)(tr d)I + 2μ(ρ)d,

where d is the rate of deformation tensor.
6.9 [SECTION 6.4] The constitutive relation for a Reiner–Rivlin fluid is given in Eqn. (6.124).

1. Show that by only retaining terms that are linear in the rate of deformation tensor, d, the
Reiner–Rivlin constitutive relation reduces to that of a Newtonian fluid in Eqn. (6.125).
Find expressions for the bulk viscosity, κ, and the shear viscosity, μ, in terms of functions
appearing in the Reiner–Rivlin form.

2. Consider the motion, x = α(t)X , where α(t) is a differentiable function of time, X

are coordinates in the referential description and x are coordinates in the spatial descrip-
tion. Assuming that the fluid is Newtonian, compute the stress in the fluid. This result
demonstrates why κ is called the bulk viscosity. Explain.

3. Consider the motion, x1 = X1 +γ(t)X2 , x2 = X2 , x3 = X3 , where γ(t) is a differentiable
function of time. Assuming that the fluid is Newtonian, compute the stress in the fluid. This
result demonstrates why μ is called the shear viscosity. Explain.

6.10 [SECTION 6.4] It can be shown that the most general form for the internal energy density
function, û(C), for an isotropic incompressible material is

û(C) = ψ(I1 , I2 ), (∗)

where C is the right Cauchy–Green deformation tensor, Ii are the principal invariants of C ,
ψ(·, ·) is an arbitrary function of its arguments and the domain of û is restricted to values of C

for which I3 = 1. It is convenient to employ the method of Lagrange multipliers which allows
us to work with functions on unrestricted domains. In this case, we introduce the augmented
energy function

u(C) = û(C) − p(I3 − 1), (∗∗)

where p is the undetermined pressure. Note that the augmented energy function u does not
have a physical meaning for values of I3 other than 1, but it is equal to û when I3 = 1. Show
that the second Piola–Kirchhoff stress corresponding to Eqn. (∗∗) is

S = 2ρ0

[(
∂ψ

∂I1
+ I1

∂ψ

∂I2

)
I − ∂ψ

∂I2
C

]
− ρ0pC−1 ,

when the incompressibility constraint is enforced by setting I3 = 1. Here ρ0 is the reference
mass density, and I is the identity tensor.

6.11 [SECTION 6.5] Derive Eqn. (6.157) following the procedure outlined in the text.
6.12 [SECTION 6.5] Show that linearizing the general stress function for isotropic materials in

Eqn. (6.130) gives Hooke’s law in Eqn. (6.175). Hint: Replace the left Cauchy–Green defor-
mation tensor B in Eqn. (6.130) by the appropriate small strain measure (see Example 3.8)
and retain only linear terms.
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6.13 [SECTION 6.5] Show that for a one-dimensional problem (where the only nonzero stress
component is σ11 = σ), Hooke’s law for an isotropic solid in Eqn. (6.175) reduces to σ = Eε,
where σ and ε are the stress and strain in the direction of loading and E = μ(3λ+2μ)/(λ+μ)
is Young’s modulus.

6.14 [SECTION 6.5] Under conditions of hydrostatic loading, σ = −pI , where p is the pressure, the
bulk modulus B is defined as the negative ratio of the pressure and dilatation, e = tr ε, so that
p = −Be. Starting with the generalized Hooke’s law in Voigt notation in Eqn. (6.172), obtain
expressions for the bulk modulus of the eight crystal symmetry classes presented in Fig. 6.4.
In particular, show that for tetragonal, trigonal and hexagonal symmetry the bulk modulus is
given by

B =
(c11 + c12 )c33 − 2c2

13

c11 + c12 − 4c13 + 2c33
,

and for cubic and isotropic symmetry the bulk modulus is

B =
c11 + 2c12

3
.

Also, show that for isotropic symmetry, the bulk modulus can also be expressed in terms of
the Lamé constants as B = λ + 2μ/3. Hint: This exercise is best performed on a computer
using a symbolic mathematics package.



7 Boundary-value problems, energy principles
and stability

In this final chapter of Part I, we discuss the formulation and specification of well-defined
problems in continuum mechanics. For simplicity, we restrict our attention to the purely
mechanical behavior of materials. This means that, unless otherwise explicitly stated, in
this chapter we will ignore thermodynamics. The resulting theory provides a reasonable
approximation of real material behavior in two extreme conditions. The first scenario
is that of isentropic processes (see Section 6.2.5), where the motion and deformation
occurs at such a high temporal rate that essentially no flow of heat occurs. In this sce-
nario the strain energy density function should be associated with the internal energy
density at constant entropy. The second scenario is that of isothermal processes (see Sec-
tion 6.2.5), where the motion and deformation occurs at such a low temporal rate that
the temperature is essentially uniform and constant. In this scenario the strain energy
density function should be associated with the Helmholtz free energy density at constant
temperature.

We start by discussing the specification of initial boundary-value problems in Section 7.1.
Then, in Section 7.2 we develop the principle of stationary potential energy. Finally, in
Section 7.3 we introduce the idea of stability and ultimately derive the principle of minimum
potential energy.

7.1 Initial boundary-value problems

So far we have laid out an extensive set of concepts and derived the local balance laws to
which continuous physical systems (which satisfy the various assumptions we have made
along the way) must conform. Now we pull these together into a formal problem state-
ment which consists of three distinct parts: (1) the partial differential field equations to
be satisfied; (2) the unknown fields that constitute the sought solution of the problem and
the relations between them; and (3) the prescribed data, which include everything else
that is required to turn the problem into one that can be solved. If we are interested in the
dynamic response of a system, then the problem is referred to as an initial boundary-value
problem and its three parts will all have a temporal component. If we are only inter-
ested in the static equilibrium state of our system, then the term boundary-value problem
is used.

In addition to the above considerations, continuum mechanics problems naturally divide
into two further categories: those which are formulated within the spatial description and
those that are formulated within the material description. The former category is most
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useful for fluid mechanics problems and the latter for solid mechanics problems. However,
solids or fluids problems can, in principle, be solved with either description.

7.1.1 Problems in the spatial description

We first describe the initial boundary-value problem in the spatial description: the so-called
Eulerian approach. The first part of a problem is the field equations which, in this case,
are the continuity equation (conservation of mass, Eqn. (4.3)) and the balance of linear
momentum (Eqn. (4.25)). The balance of angular momentum leads to the symmetry of the
Cauchy stress tensor (σ = σT ) that can be directly imposed. The resulting set of equations
for a system occupying spatial domain B is

∂ρ

∂t
+ div (ρv) = 0,

div σ + ρb = ρ
∂v

∂t
+ ρ(∇v)v,

⎫⎪⎬⎪⎭ x ∈ B, t > 0, (7.1)

where we have used Eqn. (3.34) to write the balance of linear momentum in terms of the
velocity field. Typically (in fluids problems), B is a constant control volume.1

The second part of a problem is the set of unknown fields. Here, the unknowns are taken
to be the fields ρ(x, t) and v(x, t). The aim of the problem is to determine these fields such
that they simultaneously satisfy Eqn. (7.1) subject to the conditions specified below.

The final part of a problem are the prescribed data. In this case the data include, in
addition to the (initial) domain B, the initial conditions and boundary conditions for the
unknown fields and the specification of functions that provide the body forces and the
Cauchy stress. The partial differential equations in Eqn. (7.1) are of first order in time.
Therefore, we will need to specify the initial velocity and density fields:

ρ(x, 0) = ρinit(x), v(x, 0) = vinit(x), x ∈ B ∪ ∂B.

For boundary conditions we must specify, at each point on the boundary of B, one quantity
for each unknown field component. Since the velocity field is a vector quantity we must
specify three values associated with the motion at each boundary point: one value for each
spatial direction. These values can correspond to either a velocity or a traction component.
If only velocities are prescribed, the problem is said to have velocity boundary conditions:

v(x, t) = v̄(x, t), x ∈ ∂B, t > 0,

where v̄(x, t) is a specified velocity field imposed at the surfaces of the body. Another
possibility is to impose traction boundary conditions where only tractions are applied:

σn(x, t) = t̄(x, t), x ∈ ∂B, t > 0.

Here n(x, t) is the outward unit normal to ∂B (which may, in fact, be constant) and t̄(x, t)
is a specified field of external tractions applied to the surfaces of the body. It is also possible
to combine traction and velocity boundary conditions. In this case the boundary is divided

1 There are many situations, such as when free surfaces exist, where B will be time dependent. However, we do
not consider the spatial formulation of such initial boundary-value problems in this book.
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into a part ∂Bt where traction boundary conditions are applied and a part ∂Bv where
velocity boundary conditions are applied, such that ∂Bt ∪∂Bv = ∂B and ∂Bt ∩∂Bv = ∅.
The resulting mixed boundary conditions are

σn(x, t) = t̄(x, t), x ∈ ∂Bt, t > 0,

v(x, t) = v̄(x, t), x ∈ ∂Bv , t > 0.

In particular, it is worth noting that “free surfaces,” i.e. parts of the body where no forces and
no velocities are specified, are described as traction boundary conditions with t̄ = 0. These
three cases do not, however, exhaust the list of possibilities. Another case is mixed–mixed
boundary conditions, where traction and velocity boundary conditions are individually
applied to different spatial directions at a single point on the surface. Thus, a point on
the surface may have a velocity boundary condition along some directions and traction
boundary conditions along the others. An example of a physical situation that corresponds
to such a boundary condition is a frictionless piston in a cylindrical container with an
external pressure (normal component of traction) p. The fluid in the container can move
the piston along the cylinder’s axis (if it generates a traction in that direction that is larger
than the constraining pressure p), but the fluid cannot move along the piston where no-slip,
zero velocity, conditions are assumed to hold. Assuming the axis of the cylinder is in the
direction n, the boundary conditions for the fluid at the piston would be: (σn) · n = −p,
and v− (v ·n)n = 0. An important point regarding mixed–mixed conditions that deserves
reiteration is that it is not possible to apply both traction and velocity boundary conditions
along the same direction at the same point. Doing so will generally result in an ill-posed
boundary-value problem for which no solution exists.

We have identified three boundary conditions associated with the three components of
the velocity field, but we still require one more condition associated with the density field.
However, in this case no further data need to be supplied. Instead, the appropriate boundary
condition takes the form of a consistency equation between the two unknown fields. This
condition ensures that the mass flux across the boundary of the body is equal to the density
at the boundary times the velocity, i.e.

(∇ρ − ρv) · n = 0, x ∈ ∂B, t > 0.

The final pieces of data required are the functions that determine how the body forces b

(three functions) and the stresses σ (six functions) depend on the unknown fields and, in
general, time. The body forces are governed by well-characterized physical principles and
are usually given by simple functions. As we saw in Chapter 6, the relations that describe
the stresses associated with a given state and history of a body – the constitutive relations –
have very few constraints on their functional form and commonly are given by complicated
nonlinear functions.

If the problem is one of steady state, this means that the time derivatives in Eqn. (7.1)
are zero and so the set of differential equations reduces to

div ρv = 0,

div σ + ρb = ρ(∇v)v,

}
x ∈ B. (7.2)
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We call these the steady-state stress equations. In this case, we are not interested in
how a system reaches steady state (the transient behavior that would be captured by the
initial boundary-value problem), and thus, initial conditions are not needed. Instead, ev-
erything is independent of time and only the (constant) boundary conditions must be
specified.

7.1.2 Problems in the material description

The continuum mechanics initial boundary-value problem can also be formulated in the
material description. This is referred to as a Lagrangian description. The first part of a
problem is the field equations. In the material description, the balance of linear momentum
is given by Eqn. (4.39) in terms of the first Piola–Kirchhoff stress or by Eqn. (4.43) in
terms of the second Piola–Kirchhoff stress. If we use the latter equation, we also enforce
the balance of angular momentum by requiring that the second Piola–Kirchhoff stress is
symmetric (S = ST ). Further, in deriving Eqn. (4.43) the conservation of mass (Eqn. (4.1))
has been used. Since the resulting equation depends only on the reference mass density ρ0 ,
which in the material description does not depend on time (and will be specified as part
of the problem data), it is not necessary to include the continuity equation. Thus, the field
equations for a problem in the material description are

Div [(∇0ϕ)S] + ρ0 b̆ = ρ0
∂2ϕ

∂t2
, X ∈ B0 , t > 0, (7.3)

where we have explicitly indicated that the body force is expressed in its material form.
The second part of a problem is the set of unknown fields, which in this case con-

sists of the deformation mapping ϕ(X, t). As shown in Chapter 3, knowledge of the
deformation mapping allows for the computation of all other kinematic quantities of
interest.

Just as in the spatial description, the final part of a problem is the prescribed data. For
a problem in the material description, the data include the initial conditions and boundary
conditions for the unknown deformation mapping field and the specification of functions
that provide the body forces and the second Piola–Kirchhoff stress. The partial differential
equations in Eqn. (7.3) are of second order in time. Therefore, we will need to specify the
initial reference configuration B0 , and the initial velocity fields:

ϕ(X, 0) = X, v̆(X, 0) =
∂ϕ(X, 0)

∂t
= v̆init(X), X ∈ B0 ∪ ∂B0 .

Once again, as in the spatial description, we must specify as many boundary conditions
at each point on the boundary of B0 as there are unknown field components. Since the
deformation mapping is a vector quantity we must specify three values associated with
the motion at each boundary point, one value for each spatial direction. These values can
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correspond to either the components of the traction or the position:2

SN(X, t) = F−1 T̄ (X, t), X ∈ ∂B0 , t > 0,

or

ϕ(X, t) = x̄(X, t), X ∈ ∂B0 , t > 0,

where N(X, t) is the outward unit normal of ∂B0 and T̄ (X, t) and x̄(X, t) are specified
fields of external reference tractions and positions applied to the surfaces of the body,
respectively. Often position boundary conditions are provided in terms of displacements
from the reference configuration. In this case, the boundary condition reads

ϕ(X, t) = X + ū(X, t), X ∈ ∂B0 , t > 0,

where ū(X, t) is the specified boundary displacement field. Clearly the two forms are
related by x̄(X, t) ≡ X + ū(X, t). The mixed boundary conditions are

SN(X, t) = F−1 T̄ (X, t), X ∈ ∂B0t , t > 0,

ϕ(X, t) = x̄(X, t), X ∈ ∂B0u , t > 0.

As for the spatial description, in the case of mixed boundary conditions, the boundary is
divided into a part ∂B0t where traction boundary conditions are applied and a part ∂B0u

where displacement boundary conditions are applied, such that ∂B0t ∪ ∂B0 = ∂B0 and
∂B0t ∩∂B0u = ∅. Again, it is worth emphasizing that “free surfaces,” i.e. parts of the body
where no forces and no positions are applied, are described as traction boundary conditions
with T̄ = 0. Mixed–mixed boundary conditions can also be defined for problems in the
material description. Here, a point on the surface may have a position boundary condition
along some directions and traction boundary conditions along the others. A pin sliding in a
frictionless rigid slot is an example of this. The pin can move freely along the slot direction
(the traction component is zero), but cannot move perpendicular to the slot (displacement
components are zero). Similarly to spatial description problems, it is not possible to apply
both traction and position (displacement) boundary conditions along the same direction at
the same point. Doing so will generally result in an ill-posed boundary-value problem for
which no solution exists. The final pieces of data required are the functions that determine

2 This is actually more complicated than it sounds when considered from a microscopic perspective. Since all
physical matter interacts through forces between atoms it is actually not possible to apply “position” boundary
conditions. This is clearly an approximation reflecting the relative rigidity of one material compared with another.
Consider, for example, a box placed on a floor. We may choose to model this with a position boundary condition
applied to the bottom of the box. In reality, though, the box will sink somewhat into the floor – a fact that is
neglected by the position boundary condition. This issue is part of a larger problem associated with the application
of boundary conditions at finite deformation. Since bodies always change their shape as a result of applied
loading, how can traction boundary conditions be specified? Tractions are defined as the force per deformed
surface area, but the deformed surface area is unknown before the force is applied and the body deforms.
This creates a difficult problem for experimentalists attempting to design experiments with well-characterized
boundary conditions at large deformation (see, for example, the discussions in [Tre48, RS51, CJ93]). This is
also the essential difficulty in applying accurate stress boundary conditions in atomistic simulations (see, for
example, Sections 6.4.3 and 9.5 of [TM11]).



247 7.2 Equilibrium and the principle of stationary potential energy (PSPE)
�

the body forces b (three functions) and the constitutive relations for the second Piola–
Kirchhoff stresses S (six functions) which were discussed in Chapter 6.

If the problem is static, the differential equation in Eqn. (7.3) reduces to the stress
equilibrium equation

Div [(∇0ϕ)S] + ρ0 b̆ = 0, X ∈ B0 , (7.4)

where we have explicitly indicated that the body force is expressed in its material form.

7.2 Equilibrium and the principle of stationary
potential energy (PSPE)

In this section, we reformulate the thermomechanical equilibrium (static) boundary-value
problem discussed above as a variational problem. This means that we seek to write the
problem in such a way that its solution is a stationary point (maximum, minimum or saddle
point) of some energy functional. In the next section, we will see that stable equilibrium
solutions correspond to minima of this functional. The reformulation we seek can be
performed for problems involving hyperelastic materials, i.e. the stress in the material is
given by the derivative of a strain energy density function with respect to strain (Eqn. (6.43)).
In this context we treat the strain energy density function as a purely mechanical quantity
and ignore its connection to thermodynamics (which is discussed in Section 6.2.5).

The appropriate energy functional for the continuum mechanics boundary-value problem
is the total potential energy Π. The total potential energy is defined as the strain energy
stored in the body together with the potential of the applied loads:3

Π =
∫

B0

W (F ) dV0 −
∫

B0

ρ0 b̆ · ϕ dV0 −
∫

∂B0 t

T̄ · ϕ dA0 , (7.5)

where ϕ is the deformation mapping, F = ∇0ϕ is the deformation gradient and W (F )
is the strain energy density (Eqn. (6.42)). Here, we are considering a body force field b̆

(expressed in its material form) and reference traction field T , corresponding to dead-
loading, i.e. fields whose magnitude and direction are constant and independent of the
deformation ϕ. The boundary conditions for a problem in the Lagrangian description are

P (F )N = T̄ on ∂B0t ,

ϕ = x̄ on ∂B0u ,

where P is the first Piola–Kirchhoff stress, and T̄ and x̄ can depend on X . For convenience,
we have expressed the displacement boundary condition directly in terms of the deformation
mapping ϕ, instead of the displacement field u = ϕ − X . However, since X is constant
the two approaches are equivalent. A displacement field (or deformation mapping field)

3 Notice that not all loads have a potential function. Thus, we are further restricted to considering problems where
conservative body forces and traction fields are applied.
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that satisfies the position boundary conditions is called admissible. The solution to the
boundary-value problem must be drawn from the set of admissible displacement fields.

We postulate the following variational principle:

Principle of stationary potential energy (PSPE) Given the set of admissible displace-
ment fields for a conservative system, an equilibrium state will correspond to one for
which the total potential energy is stationary.

Proof Assume that the potential energy Π is stationary at ϕ. This means that

〈DϕΠ; δu〉 =
d

dη
Π[ϕ + ηδu]

∣∣∣∣
η=0

= 0, ∀δu, (7.6)

where 〈DϕΠ; δu〉 is the functional variation of Π defined in Eqn. (3.26) and δu is a small
displacement field with δu = 0 on ∂B0u , so that ϕ + ηδu is kinematically admissible.
Substituting Eqn. (7.5) into Eqn. (7.6), we have

〈DϕΠ; δu〉 =
∫

B0

〈DϕW (F ); δu〉 dV0−
∫

B0

ρ0 b̆·δu dV0−
∫

∂B0 t

T̄ ·δu dA0 = 0, (7.7)

which must be true for all admissible displacement perturbation fields δu. Now, focus on
the integrand of the first integral in Eqn. (7.7):

〈DϕW (F ); δu〉 =
∂W

∂FiJ
〈DϕFiJ ; δu〉

= PiJ (F )
d

dη

[
∂(ϕi + ηδui)

∂XJ

]∣∣∣∣
η=0

= PiJ (F )
∂δui

∂XJ
= P (F ) : ∇0δu, (7.8)

where we have used Eqn. (6.43) and set P (F ) = P (e)(F ), since the material is hyperelastic
and we are only considering static configurations. Substituting Eqn. (7.8) into Eqn. (7.7)
we have

∫
B0

P : ∇0δu dV0 −
∫

B0

ρ0 b̆ · δu dV0 −
∫

∂B0 t

T̄ · δu dA0 = 0, ∀δu, (7.9)

which is a special case of the principle of virtual work.4 To continue, we focus on the first
term in Eqn. (7.9) and integrate it by parts:∫

B0

P : ∇0δu dV0 =
∫

∂B0

(PN) · δu dA0 −
∫

B0

(Div P ) · δu dV0 . (7.10)

4 The principle of virtual work is actually far more general than it appears here. It is not limited to conservative
systems and the stress and displacement fields appearing in it can be completely arbitrary as long as they
satisfy the balance laws and boundary conditions, respectively. In its general form, it is an important principle
that is broadly used both in theoretical and computational applications of continuum mechanics. See [Mal69,
Section 5.5] for a detailed explanation.
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g

(a) (b)

Fig. 7.1 Schematic diagram showing a pendulum consisting of a rigid rod and spherical mass connected to a fixed pin in
(a) stable and (b) unstable states of equilibrium. The direction of gravity is indicated by g.

Substituting the material Cauchy relation, PN = T , into Eqn. (7.10) and then substituting
this back into Eqn. (7.9), we have after rearranging terms:

−
∫

B0

(
Div P + ρ0 b̆

)
· δu dV0 +

∫
∂B0

T · δu dA0 −
∫

∂B0 t

T̄ · δu dA0 = 0. (7.11)

Although the integration bounds of the last two terms are not the same, they cancel since for
the middle integral δu = 0 on ∂B0u (as previously mentioned, δu must be zero wherever
displacements are prescribed for ϕ + δu to be kinematically admissible) and T = T̄ on
∂B0t . Therefore Eqn. (7.11) reduces to∫

B0

(
Div P + ρ0 b̆

)
· δu dV0 = 0. (7.12)

This equation must be satisfied for all admissible δu, which implies that

Div P + ρ0 b̆ = 0, (7.13)

but this is exactly the static equilibrium equation (Eqn. (4.39)) and hence the principle of
stationary potential energy is proved.

7.3 Stability of equilibrium configurations

In the previous section we discovered that finding a deformed configuration that satisfies
the PSPE is equivalent to finding a solution to the corresponding equilibrium boundary-
value problem. However, simply finding an equilibrium configuration is insufficient to gain
a clear understanding of the problem. In particular, at this point in the book, we are not
able to distinguish between stable and unstable forms of equilibrium. These concepts are
schematically illustrated in Fig. 7.1, which shows a pendulum consisting of a mass and
a rigid bar attached by a fixed pin-joint in two equilibrium configurations. Configuration
(a) corresponds to a state of stable equilibrium; the system will remain “close” to this
configuration following small perturbations about it. Configuration (b) corresponds to a
state of unstable equilibrium; the system will remain in this state if placed there, but any
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perturbation will diverge and cause it to move away. Both of these configurations correspond
to stationary points of the pendulum’s potential energy. Clearly, it is very important to know
if an equilibrium configuration is stable or unstable.

The theory of stability for equilibrium configurations has a long history. It is a complex
and beautiful theory which is built on the foundations of mechanics and continuum me-
chanics. It is also every bit as extensive and subtle as these foundations, and whole volumes
have been dedicated to its description. We cannot hope to provide a deep understanding of
the theoretical background and application of this theory within these few pages. Instead,
we will present two of the most commonly used techniques for investigating the stability
of an equilibrium configuration and show how these may be used to derive certain con-
straints on the constitutive relations for simple elastic materials. The reader interested in
gaining a more complete understanding should start with the theory of stability for finite-
dimensional systems (we recommend [Mei03] and [Kha02]). A good familiarity with the
finite-dimensional theory is necessary before tackling the extensive and rigorous mathe-
matical presentation of the modern theory of stability for infinite-dimensional structural
and continuum mechanics. For this, we highly recommend [CG95].5

7.3.1 Definition of a stable equilibrium configuration

Although we are interested in a static equilibrium configuration, stability is inherently a
concept related to dynamics. Its aim is to describe how a system dynamically evolves when
it is subjected to perturbations of its equilibrium configuration. Accordingly, the definition
of stability is phrased in terms of the solutions of initial boundary-value problems for
the system of interest. Suppose ϕeq(X) is the deformation mapping of an equilibrium
configuration, i.e ϕeq satisfies the static equilibrium equations of Section 7.1 for given
fixed values of the body forces, boundary displacements and tractions. Then, we say that
ϕeq represents a (Lyapunov) stable equilibrium configuration if for every ε > 0 there exists
a δ = δ(ε) > 0 such that if∥∥ϕ(X, 0) − ϕeq(X)

∥∥ < δ and ‖ϕ̇(X, 0)‖ < δ, (7.14)

then ∥∥ϕ(X, t) − ϕeq(X)
∥∥ < ε and ‖ϕ̇(X, t)‖ < ε, ∀ t, (7.15)

where ϕ(X, t) is the solution6 to the initial boundary-value problem with the body forces,
boundary displacements and tractions associated with the equilibrium solution ϕeq . The
initial configuration is ϕ(X, 0) = ϕinit(X) and the initial velocities are ϕ̇(X, 0) =
v̆init(X). In words, the equilibrium configuration is stable if all small disturbances (pertur-
bations of both configuration and velocities) lead to small responses. In Eqns. (7.14) and
(7.15) the norms are associated with the function spaces of admissible deformations and

5 Unfortunately, [CG95] is riddled with typesetting errors that make it difficult reading for the casual or less
mathematically inclined reader. However, this is essentially the only book we are aware of that treats the subject
with enough mathematical depth to obtain rigorous results.

6 In the dynamical systems literature, this would be called a trajectory of the system.



251 7.3 Stability of equilibrium configurations
�

velocity fields. For example, one possible choice of norm for the deformation map is

‖ϕ‖ ≡
[∫

B0

ϕ · ϕ dV0

]1/2

. (7.16)

Other norms are possible, and in general, the concept of stability depends on the particular
norm that is used. That is, an equilibrium configuration may be stable when the above norm
is used but unstable when a different norm is considered.7

7.3.2 Lyapunov’s indirect method and the linearized equations of motion

A straightforward approach to investigating the stability of an equilibrium configuration
is to consider the equations of motion for the system, linearized about the equilibrium
configuration. This technique is sometimes known as Lyapunov’s indirect method because
it works with the stability of the linearized equations of motion instead of directly with the
equations of motion themselves. The method is also known as Lyapunov’s first method.

The first step is to linearize the equations of motion in Eqn. (7.4) by applying to both
sides of the equations the first variation in terms of the displacements δu relative to the
deformed configuration:

〈Dϕ

(
Div [(∇0ϕ)S] + ρ0 b̆

)
; δu〉 =

〈
Dϕρ0

∂2ϕ

∂t2
; δu

〉
.

This leads to [(
δikSJ L + FiP FkQ

∂SP J

∂EQL

)
δuk,L

]
,J

= ρ0
∂2δui

∂t2
, (7.17)

where we have assumed that the material is hyperelastic and the symmetry of S and E has
been used. Referring to Eqns. (6.151) and (6.157), we see that the partial derivative of S

7 The distinction between stability with respect to different norms occurs only in continuum systems. This
is because, unlike finite-dimensional systems (see footnote 20 on page 26), not all norms are equivalent in
infinite-dimensional spaces. For example, consider the norm

‖ϕ‖∞ ≡ max
X∈B 0

[ϕ(X) · ϕ(X)]1/2 .

This norm appears to be the most natural choice to make when generalizing the finite-dimensional theory of
stability to continuous systems. In 1963, Shield and Green [SG63] showed that if one uses this norm, the
undeformed unloaded reference configuration of a solid sphere, made of an innocuous material, is unstable.
They proved that an arbitrarily small (in the sense of the ‖·‖∞ norm) spherically symmetric initial perturbation
will result in a short-term concentration of energy in an infinitesimal region near the center of the sphere. The
implication is that finite values (as opposed to infinitesimal values) of energy density, strain and most importantly
velocity occur within the sphere. The occurrence of finite velocities near the center of the sphere violates the
stability condition Eqn. (7.15)2 that requires the velocity to remain small everywhere in the sphere. This result
was controversial at the time of its publication; however, no one could refute its correctness. Almost immediately,
Koiter [Koi63] resolved the matter with the recommendation that it is more appropriate for continuous systems
to require average values to be small, instead of requiring small point-wise values. That is, it is more appropriate
to use the norm in Eqn. (7.16) than it is to use the ‖·‖∞ norm for continuous systems. With this norm, Shield
and Green’s example no longer poses a problem. The undeformed configuration is stable with respect to the
norm in Eqn. (7.16). For a more complete discussion of this subtle aspect of stability theory see [CG95].
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on the left-hand side is the material elasticity tensor C (relating dS to dE) and further that
the entire term in parentheses is the mixed elasticity tensor D (relating dP to dF ). Thus,

[DiJ kLδuk,L ],J = ρ0
∂2δui

∂t2
. (7.18)

This is a linear, second-order partial differential equation with nonconstant coefficients,
called the “wave equation,” which describes the small-amplitude motion of a system about
an equilibrium configuration ϕeq . The corresponding linearized boundary conditions are

DiJ kLδuk,LNJ = 0, X ∈ ∂B0t , t > 0,

δui = 0, X ∈ ∂B0u , t > 0.

The zero function, δu(X, t) = 0, is an equilibrium solution for this system and corresponds
to the equilibrium ϕeq of the nonlinear system.

Stability of ϕeq It turns out that for conservative systems, such as those considered here,
stability of the trivial solution δu(X, t) = 0 for the linearized system implies stability
of the equilibrium configuration ϕeq for the nonlinear system.8 Thus once we establish
the conditions for the stability of the linearized system, those of the nonlinear system will
follow.

Equation (7.18) is separable and admits solutions of the form δu(X, t) = y(X) sin(ωt).
Each such solution is an “eigenfunction” of the system and is associated with the eigenvalue
ω2 , where each ω is a natural cyclic frequency of the system. A solution of this form remains
bounded for all time if its natural frequency ω is a nonzero real number.9 If ω is imaginary,
i.e. ω = ω̄i (where ω̄ is real), then sin(ωt) becomes sinh(ω̄t), which diverges as t increases.
Thus, a sufficient condition for stability of the equilibrium configuration is for all of the
system’s natural frequencies to be real and nonzero. Equivalently, all of the eigenvalues ω2

must be positive. It can be shown (see, for example, [TN65]) that a necessary condition for
all natural frequencies to be real is

aibJ ak bLDiJ kL (F (X)) > 0, ∀a, b, and ∀X ∈ B0 , (7.19)

which can be rewritten as

(D : A) : A > 0, ∀A = a ⊗ b �= 0. (7.20)

A tensor D that satisfies this inequality is called a (strictly) “rank-one convex tensor”.10

Thus, D must be a rank-one convex tensor for each value of the deformation gradient F ,
obtained from ϕeq , that occurs within B0 . Further, when D is constant (for example, when

8 More generally, one must confirm that the nonlinear terms in the original system are small, in an appropriate
sense, in order to ensure that stability for the linearized system implies stability for the nonlinear system. (See
[CG95] for more details.)

9 In fact, if ω = 0 the solution is also bounded. However, here we avoid a number of technicalities by requiring
strictly nonzero real frequencies.

10 The term “rank-one” comes from the fact that A = a ⊗ b, viewed as a linear operator on vectors, is of
rank one. That is, the matrix of components of A has only one linearly independent row. This should not be
confused with the concept of a tensor’s rank which is equal to the number of vector arguments it takes (or
equivalently, the number of indices its component form has). The two ideas are completely distinct.
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the equilibrium configuration corresponds to a uniform configuration, i.e. ϕ0 = F 0X)
and the position of all boundary points is specified (i.e. ∂B0u = ∂B0 and ∂B0t = ∅) it
is found that the rank-one convexity condition in Eqn. (7.19) represents a necessary and
sufficient condition for stability of the equilibrium configuration. In the theory of partial
differential equations, the condition in Eqn. (7.19) is known as the “strong ellipticity”
condition.

We can now concisely state the stability results we have just discussed.

• If ∂B0u = ∂B0 and D is constant, then (strict) rank-one convexity of the elasticity
tensor D(F ) for every value of F ∈ {F | F = ∇0ϕeq(X) for some X ∈ B0} is a
necessary and sufficient condition for the equilibrium configuration ϕeq to be stable.11

• If ∂B0u �= ∂B0 , then (strict) rank-one convexity of the elasticity tensor D(F ) for every
value of F ∈ {F | F = ∇0ϕeq(X) for some X ∈ B0} is only a necessary condition
for the equilibrium configuration ϕeq to be stable.

Stability of all equilibrium configurations for a hyperelastic simple material Since the above results
depend only on the local properties of the material, they may be used to obtain a stability
condition that applies to entire classes of equilibrium configurations for any body composed
of a given hyperelastic simple material. For this purpose, the concept of rank-one convexity
is generalized for the strain energy density function. The strain energy density function
W (F ) is said to be a “rank-one convex function” if its second derivative is rank-one
convex for all values of the deformation gradient.12 That is, W (F ) is a rank-one convex
function if D(F ) is a rank-one convex tensor for all values of F . With this definition, two
results follow immediately from the above stability results.

• If ∂B0u = ∂B0 , then (strict) rank-one convexity of a material’s strain energy density
function is a necessary and sufficient condition for stability of every uniform (spatially
homogeneous) equilibrium configuration (see footnote 11).

• If ∂B0u �= ∂B0 , then (strict) rank-one convexity of a material’s strain energy density
function is only a necessary condition for stability of every equilibrium configuration.

In many instances, only one (stable) configuration of a hyperelastic material body is
observed in experiments whenever the body is deformed by specifying, entirely, the defor-
mation of its boundary. Rubber is the most common example of this type of material.13 In
other words, for many hyperelastic materials it is appropriate to require the strain energy
density to be a rank-one convex function.

11 Here we consider only displacements δu that are sufficiently smooth to ensure that δF is a continuous function
of X. If more general perturbations of the equilibrium configuration must be considered, then the rank-one
convexity condition is only necessary.

12 More mathematically precise definitions of a rank-one convex function may be formulated, but these will not
be necessary for the current discussion.

13 Important counterexamples include materials that exhibit phase transformations and metals and polymers
that exhibit shear-banding behavior (such as necking) which can be represented at the continuum level as a
softening of the constitutive response.
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Example 7.1 (Rank-one convexity of neo-Hookean models) Consider the neo-Hookean material
model in Eqn. (6.139), W (I1 ) = c1 (I1 − 3). The tensor D for the neo-Hookean material is obtained
by taking the second derivative of this relation with respect to F , to obtain

D = 2c1I ,

where I is the fourth-order identity tensor. Applying Eqn. (7.20), we find the condition

(D : a ⊗ b) : a ⊗ b = 2c1 ‖a‖2 ‖b‖2 > 0.

This is satisfied for all a and b whenever c1 > 0. Thus, when c1 > 0 the neo-Hookean strain energy
density is rank-one convex.

Example 7.2 (Rank-one convexity of Saint Venant–Kirchhoff models) The Saint Venant–Kirchhoff
strain energy density function in Eqn. (6.147), W̃ (E) = [(C : E) : E]/2, is never rank-one convex,
even when C is positive definite. (That is, when (C : E) : E > 0 for all E = ET 
= 0.)

To show this, we consider the homogeneous deformation given by ϕ = F X , where

F = α(e1 ⊗ e1 ) + 1(e2 ⊗ e2 ) + 1(e3 ⊗ e3 ),

and α is the stretch parameter. For this deformation the Lagrangian strain tensor is

E = [(α2 − 1)/2]e1 ⊗ e1

and the second Piola–Kirchhoff stress tensor is

S = [(α2 − 1)/2]C : e1 ⊗ e1 .

Now, to establish that W̃ is not rank-one convex, we need to find values of a, b and α for which
Eqn. (7.20) is not satisfied. Some reflection and intuition leads us to choose a = b = e1 . Using
Eqn. (6.157), we have

(D : e1 ⊗ e1 ) : e1 ⊗ e1 = D1111 =
1
2
(3α2 − 1)C1111 .

Now, since C is positive definite, C1111 > 0. Thus, for 0 < α < 1/
√

3, the inequality Eqn. (7.20)
is violated, regardless of the value of C1111 .

This result tells us that the Saint Venant–Kirchhoff material becomes unstable when subjected
to sufficient compression. This may be surprising, since these materials are, in a sense, the most
natural extension of a stable linear elastic material to the nonlinear regime. They provide a unique
and invertible mapping between the second Piola–Kirchhoff stress and the Lagrangian strain. This
would seem to suggest that, under all around displacement boundary conditions, there is a unique
solution to the equilibrium problem. However, it is easy to see that this is not the case if one considers
the Cauchy stress for these materials. The Cauchy stress for a Saint Venant–Kirchhoff material is
easily found to be a nonlinear function of the deformation gradient. Thus, we should generally not
expect these materials to have a relation mapping each value of Cauchy stress to a unique value of
the deformation gradient.

In the above examples it was straightforward to determine that the neo-Hookean strain
energy density function is rank-one convex and that the Saint Venant–Kirchhoff strain
energy density function is not. However, it is generally difficult to directly establish the
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rank-one convexity of a given material model. For this, and other technical reasons, a
number of additional convexity conditions have been introduced in the literature. The two
most commonly encountered are called quasiconvexity and polyconvexity. The interested
reader is referred to [Bal76] for further details on these concepts.

7.3.3 Lyapunov’s direct method and the principle of minimum
potential energy (PMPE)

In contrast to the indirect approach described above, Lyapunov’s direct method makes
straightforward use of the nonlinear equations of motion, but its success often requires
considerable cleverness. Fortunately, for conservative systems a general solution is avail-
able, and Lyapunov’s direct method leads immediately to the most commonly encountered
criterion for evaluating the stability of an equilibrium configuration. This criterion is known
as the principle of minimum potential energy (PMPE).

Lyapunov’s direct method is a general approach for demonstrating sufficient conditions
for ϕeq to be a stable equilibrium configuration. The method hinges on finding a special
functional, called a Lyapunov functional L(ϕ, ϕ̇), that satisfies the following conditions in
the neighborhood of the equilibrium solution:14

1. The Lyapunov functional is positive definite. That is, L(ϕ, ϕ̇) > 0 for all ϕ and ϕ̇

such that
∥∥ϕ − ϕeq

∥∥ < ε and ‖ϕ̇‖ < ε for some ε > 0. Here, ϕ and ϕ̇ are taken as
independent functions of X , and represent the set of all possible configurations and
velocity fields in the neighborhood of the equilibrium configuration. In other words, the
equilibrium configuration ϕeq (and its trivial velocity field ϕ̇e = 0) correspond to an
isolated (local) minimum of L.

2. The Lyapunov functional monotonically decreases along every solution of the equations
of motion. That is, (d/dt)[L(ϕ(t), ϕ̇(t))] ≤ 0 for all t and all solutions of the equations
of motion ϕ(t), with initial conditions satisfying

∥∥ϕ(0) − ϕeq

∥∥ < ε and ‖ϕ̇(0)‖ < ε.

The existence of one such Lyapunov functional is sufficient to guarantee the stability of ϕeq .
In general, finding a Lyapunov functional for a system is difficult and requires creativity
on the part of the investigator. However, for conservative systems a natural candidate for a
Lyapunov functional is readily available. It is the system’s total energy E , which consists of
kinetic energy K and its total potential energy Π, i.e.15 E = K + Π. Here, we will assume
that the datum of the total potential energy is taken at the equilibrium configuration of
interest. That is, Π(ϕeq) = 0. Since the system is conservative, its total energy is constant,
i.e. dE/dt = 0, for all solutions of its equations of motion, by definition. Thus, item 2
above is satisfied for all such systems. It only remains to determine if item 1 is satisfied. For
this, we first note that the kinetic energy for conservative systems is only a functional of
the velocity field, i.e. K = K(ϕ̇). Further, it is a positive-definite quadratic form. It follows
immediately that if the potential energy is a positive-definite functional in the neighborhood
of the equilibrium configuration, then the total energy is also a positive-definite functional

14 For notational simplicity, the dependence of ϕ on X is suppressed.
15 In the current purely mechanical setting, the total potential energy consists of the total strain energy plus the

potential of any applied loads and is given by Eqn. (7.5).
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in this neighborhood. This condition would then satisfy item 1 above and guarantee the
stability of ϕeq . Recalling that for conservative systems the equilibrium configuration ϕeq
is a stationary point of the potential energy, we have just proved the following principle.16

Principle of minimum potential energy (PMPE) If a stationary point of the potential
energy corresponds to a (local) isolated minimum, then the equilibrium is stable.

Lyapunov’s direct method provides sufficient conditions for stability of an equilibrium
configuration. However, for conservative systems, it is straightforward to show that the
PMPE is also a necessary condition for stability.17 For additional details and discussion of
the theory of stability and Lyapunov’s two methods see [CG95, KW73].

Extension of the PMPE to thermomechanical systems It can be shown that the PMPE is valid
for equilibrium configurations of thermomechanical systems [Koi71]. Such configurations
must have uniform temperature fields in order to ensure that the heat flux is zero. If this were
not the case, the configuration would not be in static equilibrium. Although the argument
is complicated (and even includes one or two additional, but reasonable, assumptions),
the result is the same as long as one associates the strain energy density W with the
Helmholtz free energy density. That is, if we take Ŵ (T,F ) = ρ0 ψ̂(T,F ), then for a
uniform temperature field, the PMPE states that a minimum of the total Helmholtz free
energy (Eqn. (7.5)) provides a stable equilibrium configuration.

Example 7.3 (Rivlin’s cube18) Consider a unit cube made of an isotropic Saint Venant–Kirchhoff
material (see Eqn. (6.147)) and subjected to nominal traction vectors T on each face. These tractions
all have the same magnitude p and their directions are opposite to their respective face normals.
That is, the nominal traction vector on a face with normal N is T = −pN . This state of loading
corresponds to a compressive (for positive p) dead-loading. It is similar to hydrostatic loading since
the associated second Piola–Kirchhoff stress is spherical, however, it is not the same. For hydrostatic
pressure loading the traction vector is always normal to the deformed surface, whereas for dead-
loading the direction of the traction vector does not change, even when the surface normal does. The

16 This principle may remind you of the second law of thermodynamics. In fact, it is straightforward to show
([Cal85, Chapter 5]) that maximizing the entropy is equivalent to minimizing the internal energy of homo-
geneous systems. One should not confuse this with the PMPE; The principles have many similarities, but
they are separate and distinct ideas. The second law is concerned with homogeneous systems that are in “true
thermodynamic equilibrium,” and therefore, does not consider dynamics of any kind. In contrast, the PMPE
is applicable to all equilibrium configurations (homogeneous and nonhomogeneous) and is fundamentally
based on the dynamical behavior of the system. However, in the limit where the equilibrium configuration is
homogeneous, the two principles are equivalent.

17 Certain technicalities associated with the case of a positive semi-definite potential energy are ignored here.
See [Koi65a, Koi65b, Koi65c] for further details.

18 Ronald Rivlin investigated the problem of homogeneous deformations of an elastic cube under dead-loading in
1948 [Riv48]. He revisited the problem in 1974 [Riv74]. The problem has since become known as the “Rivlin
cube” problem and is a standard example for illustrating the ideas of stability, bifurcation and nonuniqueness
of equilibrium solutions in continuum mechanics problems. For example, it is used by [MH94] and [Gur95],
to name just two popular expositions on continuum mechanics. For more on Rivlin’s pivotal role in the
development of the modern theory of continuum mechanics, see Chapter 8.
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unstressed reference configuration of the body is a unit cube centered at the origin. We will assume the
center of the cube is fixed (to eliminate rigid-body translations) and restrict attention (for simplicity)
to homogeneous deformations of the form ϕ = F X with F =

∑3
i=1 αiei ⊗ ei (this eliminates,

among other things, the rigid-body rotations).
We will explore the equilibrium solutions to this boundary-value problem. We start with the total

potential energy, Eqn. (7.5) and substitute Eqn. (6.147) for the strain energy density to obtain

Π =
∫ 1/2

−1/2

∫ 1/2

−1/2

∫ 1/2

−1/2

[
1
2
(C : E) : E

]
dX1dX2dX3

−
∫ 1/2

−1/2

∫ 1/2

−1/2
p(e3 ) ·

(
α1X1e1 + α2X2e2 + α3

(
−1

2

)
e3

)
dX1dX2

−
∫ 1/2

−1/2

∫ 1/2

−1/2
p(−e3 ) ·

(
α1X1e1 + α2X2e2 + α3

(
1
2

)
e3

)
dX1dX2

−
∫ 1/2

−1/2

∫ 1/2

−1/2
p(e1 ) ·

(
α1

(
−1

2

)
e1 + α2X2e2 + α3X3e3

)
dX2dX3

−
∫ 1/2

−1/2

∫ 1/2

−1/2
p(−e1 ) ·

(
α1

(
1
2

)
e1 + α2X2e2 + α3X3e3

)
dX1dX3

−
∫ 1/2

−1/2

∫ 1/2

−1/2
p(e2 ) ·

(
α1X1e1 + α2

(
−1

2

)
e2 + α3X3e3

)
dX3dX1

−
∫ 1/2

−1/2

∫ 1/2

−1/2
p(−e2 ) ·

(
α1X1e1 + α2

(
1
2

)
e2 + α3X3e3

)
dX3dX1 .

Taking E = 1
2

∑3
i=1 (α

2
i − 1)ei ⊗ ei and Eqn. (6.174) for the isotropic form of C and simplifying

the integrals, the total potential energy becomes

Π(α1 ,α2 , α3 ; p)

=
1
8
[
(λ + 2μ)α4

1 + (λ[α2
2 + α2

3 ] − 2(3λ + 2μ))α2
1 + 8pα1 + (3λ + 2μ)

+ (λ + 2μ)α4
2 + (λ[α2

3 + α2
1 ] − 2(3λ + 2μ))α2

2 + 8pα2 + (3λ + 2μ)

+ (λ + 2μ)α4
3 + (λ[α2

1 + α2
2 ] − 2(3λ + 2μ))α2

3 + 8pα3 + (3λ + 2μ)].

We see that Π is a simple fourth-order polynomial function of the three stretches. It is also interesting
to note that the potential energy is invariant with respect to all permutations of the stretches. This
symmetry property can be useful for finding solutions to the equilibrium equations because it implies
that if Π(α1 , α2 , α3 ; p) is a stationary value of the potential energy for some particular p, then so are
Π(α2 , α1 , α3 ; p), Π(α2 , α3 , α1 ; p) and so on.

Next, we obtain the equilibrium equations by applying the PSPE. Thus, the first partial derivatives
of the total potential energy with respect to the three stretches must be zero:

1
2
[(λ + 2μ)α3

1 + (λ[α2
2 + α2

3 ] − (3λ + 2μ))α1 + 2p] = 0,

1
2
[(λ + 2μ)α3

2 + (λ[α2
3 + α2

1 ] − (3λ + 2μ))α2 + 2p] = 0,

1
2
[(λ + 2μ)α3

3 + (λ[α2
1 + α2

2 ] − (3λ + 2μ))α3 + 2p] = 0.
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This is a set of three cubic polynomial equations in the three unknowns αi with one parameter p. In
general we can expect to find 33 = 27 roots to these equations, however, some of these roots may be
complex. These solutions are best obtained using numerical methods.

For p = 0 the only physical solution for these equilibrium equations is the reference configuration
αi = 1. It is instructive to use the PMPE to show that this is a stable equilibrium configuration
provided that the following assumptions are satisfied:

μ > 0 and λ > −2μ/3. (7.21)

The necessary and sufficient conditions for the function Π(α1 , α2 , α3 , 0) to have an isolated local
minimum at point αi = 1 are that this point corresponds to a stationary point and that the matrix of
second derivatives of Π is positive definite. The value of this matrix of derivatives, evaluated for the
general case of αi = α, is found to be

1
2

⎡⎢⎣(5λ + 6μ)α2 − (3λ + 2μ) 2λα2 2λα2

2λα2 (5λ + 6μ)α2 − (3λ + 2μ) 2λα2

2λα2 2λα2 (5λ + 6μ)α2 − (3λ + 2μ)

⎤⎥⎦ .

The eigenvalues of this matrix are

(9λ/2 + 3μ)α2 − (3λ/2 + μ) and (3λ/2 + 3μ)α2 − (3λ/2 + μ). (7.22)

The eigenvalue in Eqn. (7.22)2 occurs twice. In the reference configuration α = 1 and the eigenvalues
reduce to (3λ + 2μ) and 2μ. When the assumptions of Eqn. (7.21) hold, they ensure that the matrix
is positive definite and therefore the reference equilibrium configuration is stable.

Next, we explore equilibrium solutions for nonzero values of the applied load. We continue to
consider the case where all stretches are equal αi = α. The equilibrium equations degenerate to a
single equation in this case and it is easy to show that there is a continuous branch of equilibrium
solutions passing through the reference configuration. Solving the equilibrium equation one finds the
traction–stretch relation for this branch to be

p(α) = −3λ + 2μ

2
(α2 − 1)α.

Thus, there is a unique equilibrium configuration, with all equal stretches, associated with each
stretch value α > 0. In order for this equilibrium configuration to be stable, the eigenvalues of the
matrix of second derivatives, obtained above, must be positive. By simple algebraic manipulations
it is easy to show that the first eigenvalue Eqn. (7.22)1 is negative for 0 < α < 1/

√
3 and positive

for α > 1/
√

3. The second eigenvalue Eqn. (7.22)2 is negative for 0 < α <
√

1/2 + 3λ/4μ and
positive for α >

√
1/2 + 3λ/4μ. Thus, the matrix will be positive definite if the stretch is bigger

than the critical stretch

αcrit = max(1/
√

3,
√

1/2 + 3λ/4μ).

That is, the cubic configuration is unstable for αi = α < αcrit and stable for α > αcrit . With the
assumed inequalities in Eqn. (7.21) for μ and λ, we have

αcrit =

{√
1/2 + 3λ/4μ, if λ > −2μ/9,

1/
√

3, if −2μ/3 < λ < −2μ/9.

Finally, it is interesting to consider the (algebraically) maximum value of p for which a stable cubic
equilibrium configuration is possible. From the p(α) relation given above it is clear that p is positive
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when 0 < α < 1 and negative when α > 1. Thus, the maximum value of p is dictated by αcrit . The
desired relation is

pmax =

⎧⎪⎨⎪⎩
(3λ + 2μ)(2μ − 3λ)

16μ

√
1/2 + 3λ/μ, if αcrit =

√
1/2 + 3λ/4μ,

(3λ + 2μ)/
√

3, if αcrit = 1/
√

3.

In this example we have studied the equilibrium and stability properties of cubic configurations of
the Rivlin cube. However, this is only part of the story. As hinted at above, the cubic configurations
are not the only possible equilibrium states for this system. In fact, there exist tetragonal (two equal
stretches not equal to the third) and orthorhombic (all stretches distinct) equilibrium branches.19 Many
of these branches actually intersect with the cubic branch at the critical stretch values (where one or
more of the eigenvalues of the stability matrix become zero). Thus, in any neighborhood (no matter
how small) of the critical stretch there are multiple distinct equilibrium configurations. Equilibrium
configurations with this property are known as bifurcation points because they represent the points
where the number of (real) solutions to the equilibrium equations changes. The theory of bifurcation
is intimately connected to the theory of stability, but clearly, it is concerned with ideas that are distinct
from those of stability. The interested reader is encouraged to consult [Tho82], [IM02] and [BT03]
for more information on bifurcation theory.

This completes our brief introduction to energy principles and stability. Although we
have dedicated only a few pages to these topics, we would like to emphasize their impor-
tance. These ideas are central players in essentially every modern science and engineering
investigation. Thus, we encourage the reader to seek out a more complete understanding of
these issues. The books listed in Chapter 11 are a good place to start.

Exercises

7.1 [SECTION 7.1] Consider a right circular cylinder of unit radius and length L. The front and
back ends of the cylinder are represented by the surfaces X2

1 + X2
2 ≤ 1; X3 = ±L/2. The

lateral surface of the cylinder is given by X2
1 + X 2

2 = 1,−L/2 ≤ X3 ≤ L/2.
1. The cylinder is subjected to tensile dead-loads of magnitude F which are uniformly dis-

tributed over its ends. Express the complete set of boundary conditions for this equilibrium
boundary-value problem in the material description in terms of the reference traction vector.

2. Using the reference traction vector values from the previous part, write these boundary
conditions in terms of the Cartesian components of the first Piola–Kirchhoff stress compo-
nents.

3. Explain why the imposition of two different traction vectors on the circular edges of the
cylinder (X2

1 + X2
2 = 1 and X3 = ±L/2) does not create incompatible relationships

between the values of the first Piola–Kirchhoff stress components.

19 If we relaxed our assumptions to allow for shear deformation in addition to axial stretching, then even more
equilibrium branches are possible.
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7.2 [SECTION 7.1] Consider the thin plate subjected to axial compression shown in the figure below.
The plate is bounded above and below by the planes x3 = ±h, respectively, and 2h � (b−a).

2

1

F Fθo

x1 = a x1 = b

1. Using the traction-free conditions, write an expression for the relationship between the
Cartesian components of the Cauchy stress tensor along the tapered edges of the plate.

2. Using the traction-free conditions, write an expression for the relationship between the
polar cylindrical components of the Cauchy stress tensor along the tapered edges of the
plate.

3. Assuming no body forces are acting on the plate, find a simple equilibrium stress field for
this problem. You may choose any distribution of the force F over the vertical ends of the
plate, so long as the resultant has magnitude F and is aligned along the 1-axis. Hint: Focus
on finding a divergence-free stress field that satisfies the traction free boundary conditions.

4. We can find an approximation to the displacements in this plate by making the following
series of approximations. First, we reduce the problem to one dimension and treat it as a
bar with varying cross-sectional area A(x). Second, we assume the displacement gradients
are small so that we can use the small strain equation ε = u,x , where u is the displacement
in the axial direction. Finally, we assume a linear one-dimensional force–strain constitutive
law F = EAε, where E is Young’s modulus and A is the cross-sectional area. These
considerations lead to the following displacement-based equilibrium equation

(EAu,x ),x = 0.

Assuming the plate is fixed at its left-hand edge (u(a) = 0) find the equilibrium displace-
ment field u(x).

7.3 [SECTION 7.2] For the one-dimensional model of the tapered plate in Exercise 7.2 the potential
energy is given by

Π =
1
2

∫ b

a

EA[u,x ]2 dx + Fu(b),

where the last term accounts for the potential energy of the applied compressive load (of
magnitude F ) and we recall the displacement boundary condition u(a) = 0. Show by explicit
calculation that the PSPE is satisfied when the equilibrium equation quoted in Exercise 7.2
and the appropriate boundary conditions are used. Hint: Apply the fundamental theorem of
calculus to the loading term.

7.4 [SECTION 7.3] Show, using the definition of stability, that the equilibrium solution x(t) = 0
for the one-dimensional second-order dynamical system

ẍ − 2Cẋ + Bx = 0

is unstable. Assume B and C are constants and that B > C2 > 0. Hint: Find the general
solution for x(t), then choose |x(0)| < ε and |ẋ(0)| < ε such that |x(t)| > ε or |ẋ(t)| > ε for
some t > 0.
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7.5 [SECTION 7.3] Starting from Eqn. (7.3) and the mixed boundary conditions given on page 246,
derive the linearized field Eqn. (7.18) and the corresponding boundary conditions.

7.6 [SECTION 7.3] Consider the Saint Venant–Kirchhoff material and deformation mapping given
in Example 7.2. Assume the tensor C takes the form of Eqn. (6.174) with λ = μ.
1. Find the components of the first Piola–Kirchhoff stress tensor P . Now, plot the nonzero

components of P normalized by μ (i.e. PiJ /μ) as a function of the stretch parameter α. In
Example 7.2 we found that the Saint Venant–Kirchhoff material loses rank-one convexity
for this deformation as α approaches 1/

√
3 from the undeformed reference value of α = 1.

Using your plots explain what is special, if anything, about the value α = 1/
√

3. Explain
the physical importance of any identified special property.

2. Find the components of the Cauchy stress tensor σ. Now, plot the nonzero components of
σ normalized by μ (i.e. σij /μ) as a function of the stretch parameter α. Compare the two
sets of plots you have created as part of this problem. Explain the differences between them
using physical terms.

7.7 [SECTION 7.3] Repeat the calculations of Example 7.3 for the case where the cube is subjected
to a true hydrostatic pressure p. That is, where the potential energy of the applied pressure is
given by −pV , so that the total potential energy has the form

Π =
∫ 1/2

−1/2

∫ 1/2

−1/2

∫ 1/2

−1/2

[
1
2
(C : E) : E + pα1α2α3

]
dX1dX2dX3 .
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8 Universal equilibrium solutions

In this chapter we study solutions to the equations of continuum mechanics instead of
the equations themselves. In particular, our aim will be to obtain general equilibrium
solutions to the field equations of continuum mechanics that are independent, in a specific
sense, of the material from which a body is composed.1 Such solutions are of fundamental
importance to the practical application of the theory of continuum mechanics. This is
because they provide valuable guidance to the experimentalist who would like to design
experiments for the determination of a particular material’s constitutive relations. Generally,
in an experiment it is only possible to control and measure (to a greater or lesser extent) the
tractions and displacements associated with the boundary of the body being studied. From
this information one would like to infer the stress and deformation fields within the body
and ultimately extract the functional form of the material’s constitutive relations and the
values of any coefficients belonging to this functional form. However, if the interior stress
and deformation fields explicitly depend on the functional form of the constitutive relations,
then it is essentially impossible to infer this information from a practical experiment.

According to Saccomandi [Sac01], a deformation which satisfies the equilibrium equa-
tions with zero body forces and is supported by suitable surface tractions alone is called a
controllable solution. A controllable solution that is the same for all materials in a given
class is a universal solution.2 This chapter is devoted to a brief discussion of the best-known
universal solutions. The reader interested in some examples of controllable solutions that
are not universal is referred to the discussion in [Ogd84, Section 5.2]. Throughout this
chapter, except where explicitly indicated, we restrict our attention to the purely mechanical
formulation of continuum mechanics.

8.1 Universal equilibrium solutions for homogeneous
simple elastic bodies

Universal solutions were first systematically investigated by Jerald Ericksen [Eri54, Eri55].
In fact, the problem of determining all universal equilibrium solutions for a given class

1 The content of this chapter is largely based on the highly recommended review article [Sac01].
2 Unfortunately there is not a consensus in the literature on this nomenclature. Many authors (including [SP65],

[Car67] and [PC68]) do not consider the concept of a controllable solution as defined by Saccomandi. Rather they
use the term “controllable solution” to refer to Saccomandi’s universal solution. We prefer, and have adopted,
Saccomandi’s nomenclature because of its more evocative nature and its more finely grained classification of
solutions.
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of materials is now commonly referred to as Ericksen’s problem. For the class of all
homogeneous simple elastic bodies, Ericksen’s theorem [Eri55] states that the only universal
equilibrium solutions are the homogeneous deformations. This is a remarkable result that in
many ways explains the extensive coverage of homogeneous deformations that is commonly
found in books on continuum mechanics. In fact, it is quite easy to demonstrate Ericksen’s
Theorem.3

Proof It is trivial to see that the homogeneous deformations are always solutions to the
equations of equilibrium. The fact that they are also the only solutions that satisfy the
equilibrium equations for all simple elastic materials is much less obvious. To prove that
this is true, we show that the homogeneous deformations are the only universal solutions
for members of the class of simple isotropic, hyperelastic materials. Then, since this is
a subclass of all simple elastic bodies, it follows that the homogeneous deformations are
also the only universal solutions of all simple elastic bodies. That is, if homogeneous
deformations are the only universal solutions for simple isotropic hyperelastic bodies, then
it is not possible for the class of simple elastic bodies (which include simple isotropic
hyperelastic bodies as a subset) to have more universal solutions.

As explained in Section 6.4.2, a general isotropic hyperelastic material can be represented
by a strain energy density function that depends only on the three principal invariants of the
left Cauchy–Green deformation tensor, i.e. W (I1 , I2 , I3). In the absence of body forces and
under equilibrium conditions, the local material form of the balance of linear momentum
in Eqn. (4.39) becomes

Div P = 0, (8.1)

where the first Piola–Kirchhoff stress for the hyperelastic material is given by (see
Eqn. (6.43))

P =
3∑

i=1

∂W

∂Ii

∂Ii

∂F
. (8.2)

Now, consider the special case W =
∑

i μiIi , where the μi are arbitrary constants. Substi-
tuting this into the expression for P , and the result into the equilibrium equation, we find
that for Eqn. (8.1) to be satisfied for all values of μi , we must have

Div
∂Ii

∂F
= 0, for i = 1, 2, 3. (8.3)

Similarly, if we consider a material with strain energy density given by W =
∑

i μiI
2
i ,

where again μi are arbitrary constants, generally unrelated to μi , we obtain

∇0Ii = 0, for i = 1, 2, 3. (8.4)

Here we have used Eqn. (8.3). This is appropriate because we are searching for deformations
that satisfy the equilibrium equations for all strain energy density functions simultaneously.

3 The proof that follows is adapted from [Sac01] who attributes it to R. T. Shield [Shi71].
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The gradient (with respect to the reference coordinates) of Eqn. (8.4) with i = 1 is found
using Eqn. (6.134) to be

ϕi,J ϕi,J K = 0, (8.5)

where ϕ is the deformation mapping. Taking the divergence of this expression, we obtain

ϕi,J K ϕi,J K + ϕi,J ϕi,J K K = 0,

which we can simplify by recognizing that Eqn. (8.3) for i = 1 gives Div F = 0 or
ϕi,J J = 0 in indicial notation. Thus, the second term on the left-hand side above drops out
and we are left with the expression

ϕi,J K ϕi,J K = 0.

This is a sum of squares which allows us to directly infer that

ϕi,J K = 0,

and conclude that the deformation map must be affine (see footnote 8 on page 83). This
proves that the only universal solutions for the class of simple isotropic hyperelastic materi-
als are the homogeneous deformations. Further, as noted above, it is also sufficient to prove
that they are also the only universal solutions for the class of simple elastic materials.

Finally, we note that in [PC68] it is shown that the analogous result for simple ther-
momechanical elastic materials (for which W = ρ0ψ, where ψ is the Helmholtz free
energy density) is that only constant temperature fields with homogeneous deformation are
universal solutions.

Simple shear of isotropic elastic materials One of the most interesting general results that can be
obtained from the homogeneous deformation universal solutions is known as the Poynting
effect, named after the British physicist John Henry Poynting who first reported on it in
1909 [Poy09]. The Poynting effect refers to the observation that wires subjected to torsion
in the elastic range exhibit an increase in their length by an amount proportional to the
square of the twist [Bil86]. A similar effect occurs for materials undergoing finite simple
shear where, since displacement perpendicular to the direction of shearing is precluded, the
material develops normal stresses. We illustrate this case below and show that it leads to a
remarkable universal relationship between the normal stresses and shear stress under simple
shear conditions. To do so, we refer back to the discussion of simple shear in Example 3.2.
Using Eqn. (6.130), we find the Cauchy stress to be

[σ] =

⎡⎣η0 + η1(1 + γ2) + η2(1 + 3γ2 + γ4) η1γ + η2(2γ + γ3) 0
η1γ + η2(2γ + γ3) η0 + η1 + η2(1 + γ2) 0

0 0 η1 + η2 + η3

⎤⎦ ,
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where we recall that γ is the shear parameter, and ηi are functions of the principal invariants
of the left Cauchy–Green deformation tensor. The presence of normal stresses is clear.
From this expression, a little algebra reveals the relation

σ12 =
σ11 − σ22

γ
. (8.6)

This is an excellent example of the type of amazing results that can be obtained from
universal solutions. We see that regardless of the form of the functions ηi , the Cauchy stress
components for a simple isotropic elastic material, subjected to homogeneous simple shear,
must satisfy Eqn. (8.6)! (For more on this relation see Exercise 8.1.)

8.2 Universal solutions for isotropic and incompressible
hyperelastic materials

Ericksen’s theorem provides a complete set of universal solutions for simple elastic materi-
als. However, if we restrict our attention to more specialized classes of materials, it becomes
possible for additional (more interesting) universal solutions to exist. The most famous and
fruitful results of this type are for the class of simple incompressible hyperelastic materi-
als. Again, Ericksen [Eri54] was the first to consider the problem systematically. Ericksen
identified four families of universal solutions in addition to the homogeneous deforma-
tions.4 All of these solutions had been previously discovered by Ronald Rivlin during the
late 1940s and early 1950s (see Rivlin’s collected works [BJ96]).5 Ericksen’s systematic
approach showed that the existence of more universal solutions was possible, but he was
unable to discover any such solutions and the problem of identifying all universal solutions
for this class of materials was left unanswered. In the intervening years significant progress
toward the final answer to Ericksen’s problem has been made and a fifth family of universal
solutions has been discovered. However, it is still unknown whether this list of universal
solutions is complete. Many researchers consider this one of the major open theoretical
questions in the theory of elasticity.

In the remainder of this section we present the six known families of universal equilibrium
solutions for simple isotropic hyperelastic materials.6 However, two comments are in order

4 Of course, only the volume-preserving homogeneous deformations are valid universal solutions for this class
of materials.

5 Technological advances during World War II led to a general interest by researchers in the nonlinear finite
deformation behavior of rubber materials which are well approximated as simple isotropic and incompressible
hyperelastic materials. In fact, it was Rivlin’s discovery of the universal solutions for these materials that
rekindled a theoretical interest in the general nonlinear theory of continua. Indeed, in the two decades following
Rivlin’s breakthrough paper of 1947 there was an explosion of new development and a general effort (lead by
Clifford Truesdell and his collaborators [TT60, TN65]) to formalize and consolidate all that was known at the
time in regard to the mechanics of continua. The result of these efforts is what we now know as “continuum
mechanics.” In this sense, Rivlin can fairly be called the father of modern continuum mechanics theory.

6 The homogeneous family plus the five families mentioned above.
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before we begin. First, the names and numbering of these families have become standard
in the literature and often authors simply refer to “Family 0,” “Family 1” and so on. The
families are also given (standard) descriptive names. These descriptions use material bodies
of specific shape that are convenient for visualizing the associated deformations. However,
it is emphasized that all of the deformations discussed below satisfy the field equations of
equilibrium identically. Thus, they are applicable to bodies of any shape.

Second, we remind the reader that we have restricted consideration to a purely mechanical
setting. However, the results given below are also valid for steady-state heat conduction,
when supplemented with a constant temperature field, within a thermomechanical setting.
The only known nontrivial universal solutions (i.e. having nonconstant temperature field)
for the thermomechanical formulation are associated with homogeneous deformations (see
[PC68]).7 These are discussed as part of Family 0.

For brevity, below we only describe the known families without proving that they iden-
tically satisfy the equilibrium equations, except for one example (in Family 3) to give the
reader a taste of how such proofs are carried out. For help visualizing the nature of each
family of deformation, the reader is directed to Exercises 8.2–8.7.

8.2.1 Family 0: homogeneous deformations

Any homogeneous deformation with det∇0ϕ = 1 is a universal solution. For steady-state
heat conduction there are three cases. First, we have the “trivial” case which consists of
a constant temperature field and a homogeneous deformation. The second case, shown
in [PC68], consists of a temperature field of the form T = k + qx3 coupled with a
homogeneous deformation of the form (ignoring an arbitrary rigid motion)

x1 = CA−1/2X1 − DB−1/2X2 ,

x2 = DA−1/2X1 + CB−1/2X2 ,

x3 = (AB)1/2X3 ,

(8.7)

where k, q, A > 0, B > 0, C and D are constants and C2 +D2 = 1. The third case consists
of a temperature field of the form T = k + pθ coupled with homogeneous deformations of
the form

r = C−1/2R, θ = Θ, z = CZ, (8.8)

where k, p and C > 0 are constants and where (r, θ, z) and (R,Θ, Z) are deformed and
reference polar cylindrical coordinates, respectively. Notice that this last scenario must be
restricted to cases for which the shape of the body ensures that the temperature field is
single-valued.

7 It is known, however, that no such nontrivial universal solutions exist with deformations found in Families 1–5
[PC68].
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8.2.2 Family 1: bending, stretching and shearing of a rectangular block

The deformation mapping for Family 1 is

r =
√

2AX1 , θ = BX2 , z =
1

AB
X3 − BCX2 , (8.9)

where A, B and C are constants and where (r, θ, z) and (X1 ,X2 ,X3) are deformed
polar cylindrical and reference Cartesian coordinates, respectively. This deformation is
most simply described using these two coordinate systems. To show that this deformation
satisfies the equilibrium equations in Eqn. (8.1), it is best to convert the reference Cartesian
coordinates to polar cylindrical, assume a strain energy density function of the form W =
W (I1 , I2) (since I3 = 1 due to incompressibility) and then use Eqns. (2.99) and (2.100) to
obtain the equilibrium equations in polar cylindrical coordinates.8

8.2.3 Family 2: straightening, stretching and shearing of a sector
of a hollow cylinder

The deformation mapping for Family 2 is

x1 =
1
2
AB2R2 , x2 =

1
AB

Θ, x3 =
1
B

Z +
C

AB
Θ, (8.10)

where A, B and C are constants and where (x1 , x2 , x3) and (R,Θ, Z) are deformed
Cartesian and reference polar cylindrical coordinates, respectively. Again, this family of
universal solutions is most simply described using these two coordinate systems, but a
transition from polar cylindrical to Cartesian reference coordinates will expedite an effort
to verify that these deformations satisfy the equilibrium equations.

8.2.4 Family 3: inflation, bending, torsion, extension and shearing
of an annular wedge

The deformation mapping for Family 3 is

r =
√

AR2 + B, θ = CΘ + DZ, z = EΘ + FZ, (8.11)

where A, B, C and D are constants and A(CF − DE) = 1. Here (r, θ, z) and (R,Θ, Z)
are deformed and reference polar cylindrical coordinates, respectively. Although the name
of this family refers to an annular wedge, it is also applicable to cylindrical bodies that
surround the origin as long as E = 0 and C = 1, which ensure that the displacements
are single-valued. Thus, solutions such as the eversion of a circular tube are also contained
within this family of universal solutions.

8 The conversion to polar cylindrical coordinates for both deformed and reference coordinates is necessary since
we have not presented the general theory for dealing with arbitrary coordinate systems in this book. However, the
reader should note that most discussions of this topic in other books and the technical literature take advantage
of the general theory of tensor fields using curvilinear coordinates. For more on this theory, consult the books
listed in Chapter 11.
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Example 8.1 (Extension and torsion of a solid circular cylinder) Limiting ourselves to the values B =
0, C = 1, E = 0 and AF = 1 leads to a deformation that corresponds to the extension and torsion
of a solid circular cylinder. Substituting these values along with the following change of notation
D = Ψ and F = α gives

r =
R√
α

, θ = Θ + ΨZ, z = αZ, (8.12)

where the relation Aα = 1 has been used to obtain the equation for r. Here α is referred to as the
material stretch ratio and Ψ is referred to as the material twist rate.

We will demonstrate that this deformation is, in fact, a universal solution. The simple isotropic, in-
compressible, hyperelastic materials have strain energy density functions of the form W = W (I1 , I2 ).
Therefore, the first Piola–Kirchhoff and Cauchy stresses are, respectively, given by

P = 2W,I1 F + 2W,I2 (I1F − BF ) − c0F
−T ,

σ = 2W,I1 B + 2W,I2 (I1B − B2 ) − c0I ,

where W,Ik = ∂W/∂Ik and the constant c0 accounts for the undetermined part of the hydrostatic
pressure. The deformation mapping is ϕ̆ = rer (θ) + zez and we would like to start by computing
the deformation gradient. However, there is a problem: we have not discussed how to take the material
gradient of a spatial vector field when curvilinear coordinate systems are employed. Instead of using
Eqn. (2.99) directly, we will return to the general definition of the gradient in Eqn. (2.94)1 . First, we
write the deformation mapping in the material description by substituting in Eqn. (8.12):

ϕ =
R√
α

er (Θ + ΨZ) + αZez .

Second, Eqn. (2.94)1 states that

F = ∇0ϕ =
∂ϕ

∂R
⊗ er (Θ) +

∂ϕ

∂Θ
⊗ (

1
R

eθ (Θ)) +
∂ϕ

∂Z
⊗ ez ,

where we have used Eqn. (2.98). Finally, expanding the partial derivatives (and recalling that
∂er /∂θ = eθ ) gives the following tensor form for the deformation gradient:

F =
[

1√
α

er (Θ + ΨZ)
]
⊗ er (Θ) +

1
R

[
R

α
eθ (Θ + ΨZ)

]
⊗ eθ (Θ)

+
[

R√
α

Ψeθ (Θ + ΨZ) + αez

]
⊗ ez

=
1√
α

er (θ) ⊗ er (Θ) +
1√
α

eθ (θ) ⊗ eθ (Θ) +
ΨR√

α
eθ (θ) ⊗ ez + αez ⊗ ez . (8.13)

This form explicitly displays the two-point nature of the deformation tensor. The basis vectors on the
left in each tensor product are evaluated at the point (r, θ, z), whereas the basis vectors on the right
in each tensor product are evaluated at the point (R, Θ, Z). In matrix form (with respect to the above
two-point basis) we have

[F ] =

⎡⎢⎣1/
√

α 0 0
0 1/

√
α ΨR/

√
α

0 0 α

⎤⎥⎦ . (8.14)
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The left Cauchy–Green tensor is B = F F T . Since this is a spatial tensor, it is most natural to write
it in the spatial description. Thus, we form the matrix product9 [F ] [F ]T using Eqn. (8.14) and then
substitute for R and Z with the expressions R = r

√
α and Z = z/α, respectively, to obtain

[B] =

⎡⎢⎣1/α 0 0
0 1/α + Ψ2r2 Ψαr

0 Ψαr α2

⎤⎥⎦ . (8.15)

The basis is now evaluated only at (r, θ, z). It is interesting and important to note that the polar
cylindrical components of B depend only on r and are independent of θ and z. The principal
invariants are

I1 = α2 + 2/α + Ψ2r2 , I2 = 2α + 1/α2 + Ψ2r2/α, I3 = 1.

Notice that I3 is equal to 1 which confirms that this is a volume preserving deformation.
We continue by considering the equations of equilibrium in the deformed configuration

(Eqn. (4.27)) with zero body forces. Solving the equations in the deformed configuration is the
simplest way to make progress, since we can simply use Eqn. (2.100) to take the divergence of a
spatial (or material) tensor.10 Substituting B into the above expression for the Cauchy stress and
simplifying results in the following (polar cylindrical) components:

σrr = 2[αW,I1 + (1 + α3 + Ψ2αr2 )W,I2 ]/α2 − c0 ,

σθ θ = 2[α(1 + Ψ2αr2 )W,I1 + (1 + α3 + Ψ2αr2 )W,I2 ]/α2 − c0 ,

σz z = 2α2 (W,I1 + 2W,I2 /α) − c0 ,

σθ z = 2Ψα(W,I1 + W,I2 /α)r,

σr z = 0,

σr θ = 0.

(8.16)

Taking the divergence with respect to the deformed polar cylindrical coordinates (using Eqn. (2.100))
we obtain

0 = div σ

=
(

4Ψ2r

[
− 1

2
W,I1 +

1
α

W,I2 +
1
α

W,I1 I1 +
2 + α3 + Ψ2αr2

α2 W,I1 I2

+
1 + α3 + Ψ2αr2

α3 W,I2 I2

]
− ∂c0

∂r

)
er − 1

r

∂c0

∂θ
eθ − ∂c0

∂z
ez . (8.17)

This is a set of uncoupled, linear, first-order differential equations for the undetermined part of the
hydrostatic pressure c0 (r, θ, z). These equations can be easily integrated, and thus we are ensured that
there exists a function c0 for which div σ = 0. Thus, we have finally arrived at the conclusion that
the deformation given by Eqn. (8.12) is, in fact, a universal solution for the class of simple, isotropic,
incompressible hyperelastic materials.

It is instructive to take this process one step further and write down the explicit solution of a well-
defined boundary-value problem. However, to do this we must choose a particular strain energy density
function. Here we will consider the neo-Hookean material discussed previously in Section 6.4.2. In

9 This is equivalent to the corresponding tensor product FF T in this case because we are using an orthonormal
basis. If nonorthonormal basis vectors are employed this is generally not true.

10 To obtain the divergence of a mixed tensor (such as the first Piola–Kirchhoff tensor) we would have to perform
a procedure similar to the one we just used to compute F .
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this case the equilibrium equation reduces to

0 = −
[
2c1Ψ2r +

∂c0

∂r

]
er − 1

r

∂c0

∂θ
eθ − ∂c0

∂z
ez ,

which has the general solution c0 (r, θ, z) = −c1Ψ2r2 + d, where d is a constant. With this solution
for the undetermined part of the hydrostatic pressure, the Cauchy stress components reduce to

σrr = c1 (2/α + Ψ2r2 ) − d,

σθθ = c1 (1/α − Ψ2r2 ) − d,

σz z = c1 (2/α2 + Ψ2r2 ) − d,

σθz = 2c1Ψαr,

σr z = 0,

σr θ = 0,

(8.18)

and the hydrostatic pressure (given by Eqn. (4.23)) is

p =
(

d − c1

[
1
α

+
2

3α2

])
− c1Ψ2r2

3
.

Now, suppose the undeformed cylinder has radius R1 and length L. We must consider the three
surfaces r = R1/

√
α, z = 0 and z = αL, with outward unit normals er , −ez and ez , respectively.

According to Eqn. (4.18), and using Eqn. (8.18), the traction vectors on these three surfaces are

t(R1/
√

α, θ, z) =
[ c1

α
(2 + Ψ2R2

1 ) − d
]
er ,

t(r, θ, 0) = −2c1Ψαreθ +
[
d − c1

(
2
α2 + Ψ2r2

)]
ez ,

t(r, θ, αL) = 2c1Ψαreθ −
[
d − c1

(
2
α2 + Ψ2r2

)]
ez .

Thus, we see that, for given values of α and Ψ, the traction on the lateral surface of the cylinder has
a magnitude that is always a constant and a direction perpendicular to the surface. The tractions on
the ends of the cylinder include an axial component whose magnitude varies with the square of the
distance from the center of the cylinder. There is also a shear component that varies linearly with the
distance from the cylinder’s center.

We now return to the general solution to derive a curious universal property of isotropic, incom-
pressible, solid circular cylinders with traction free lateral surfaces. We will compare the axial force
required to stretch the cylinder by α without torsion to the torsional stiffness associated with an
infinitesimal spatial twist rate applied to the stretched cylinder. Thus, we will need expressions for
the total axial force without torsion (for arbitrary α and Ψ = 0) and the total moment applied to the
ends of the cylinder (for arbitrary values of α and Ψ).

Consider a cylinder with a traction-free lateral surface and suppose it is initially of length L and
radius R1 . When Ψ = 0 the equation for c0 indicates that it is a constant. Using the traction-free
lateral surface condition we obtain the particular value

c0 = 2[αW ∗
,I1 + (1 + α3 )W ∗

,I2 ]/α2 .

Here the superscript ∗ indicates that the derivatives of the strain energy density are evaluated at the
values I1 = α2 + 2/α and I2 = 2α + 1/α2 . The traction vector at the end z = αL is t = σn,
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where n = ez . The axial force applied to this end of the cylinder is

N (α) =
∫ R 1√

α

0

∫ 2π

0
t · ez rdrdθ =

∫ R 1√
α

0

∫ 2π

0
(σez ) · ez rdrdθ =

∫ R 1√
α

0

∫ 2π

0
σz z rdrdθ.

Substituting for σz z from Eqn. (8.16), using the above expression for c0 and noting that σz z is
constant (in space) when Ψ = 0 results in

N (α) = 2πR2
1 (α − 1/α2 )[W ∗

,I1 + W ∗
,I2 /α]. (8.19)

We proceed similarly to obtain the applied moment (about the center of the cylinder at z = αL).
The expression for arbitrary values of α and Ψ is

M (α, Ψ) =
∫ R 1√

α

0

∫ 2π

0
[t × (rer )] · ez rdrdθ

=
∫ R 1√

α

0

∫ 2π

0
[(σez ) × (rer )] · ez rdrdθ

=
∫ R 1√

α

0

∫ 2π

0
σθz r2drdθ.

Substituting for σθz we obtain

M (α, Ψ) = 4πΨα

∫ R 1√
α

0
[W,I1 + W,I2 /α]r3dr.

Next, we define the moment, m(α, ψ) ≡ M (α, ψα), as a function of the material stretch ratio and
the spatial twist rate, ψ = Ψ/α, and take the derivative with respect to ψ:

m,ψ = 4πα2
∫ R 1√

α

0
[W,I1 + W,I2 /α]r3dr + 4πψα2

∫ R 1√
α

0

∂

∂ψ
[W,I1 + W,I2 /α]r3dr.

Evaluating this at ψ = 0 results in

m,ψ (α, 0) = 4πα2
∫ R 1√

α

0
[W ∗

,I1 + W ∗
,I2 /α]r3dr = πR4

1 [W
∗
,I1 + W ∗

,I2 /α], (8.20)

which can be identified as the (initial) torsional stiffness of the stretched cylinder. Finally, we form
the ratio of the axial force to the torsional stiffness(

N (α)R2
1

m,ψ (α, 0)

)
= 2

(
α − 1

α2

)
, (8.21)

where we have included the factor of R2
1 in order to obtain a dimensionless ratio. It is remarkable that

all terms related to the material’s constitutive relations cancel out of this ratio. This means that the
ratio of the axial force to the torsional stiffness for arbitrary extension of a cylinder with traction-free
lateral surface is independent of the material model!

8.2.5 Family 4: inflation or eversion of a sector of a spherical shell

The deformation mapping for Family 4 is

r = (±R3 + A)1/3 , θ = Θ or θ = π − Θ, φ = Φ, (8.22)
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where A is a constant and where (r, θ, φ) and (R,Θ,Φ) are deformed and reference
spherical coordinates, respectively.

8.2.6 Family 5: inflation, bending, extension and azimuthal shearing
of an annular wedge

The deformation mapping for Family 5 is

r =
√

AR, θ = D ln (BR) + CΘ, z = FZ, (8.23)

where A, B, C, D and F are constants and ACF = 1. Here (r, θ, z) and (R,Θ, Z) are
deformed and reference polar cylindrical coordinates, respectively.

8.3 Summary and the need for numerical solutions

In this chapter we took the following approach to finding solutions of continuum mechanics
theory. We first looked for exact solutions to the equilibrium field equations for various
classes of material constitutive relations and then considered what boundary-value problems
are solved by the obtained solutions. It is clear that there exists an extremely limited (but
important) set of problems for which analytical solutions are available. This set includes
the universal solutions discussed above and controllable solutions such as those found in
[Ogd84, Section 5.2]. In addition, if one considers the approximate theory of small strain
linear elasticity (see Section 10.4), then a wide range of analytical solutions for important
problems becomes available. However, in almost all other cases we must resort to numerical
methods whenever we are interested in a problem that is not included in the set just listed.
In the next chapter we start by identifying a particular boundary value problem of interest
and then seek an accurate approximate solution for this problem. To this end, we develop
the finite element method which is a general methodology for numerically computing
approximate solutions to a given, well-defined, boundary-value problem.

Exercises

8.1 [SECTION 8.1] Consider a unit cube of material (whose sides are aligned with the coordinate
axes in the reference configuration) subjected to the simple shear

x1 = X1 + γX2 , x2 = X2 , x3 = X3 ,

with Cauchy stress components given by

[σ] =

⎡⎣σ11 σ12 0
σ12 σ22 0
0 0 σ33

⎤⎦ .
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1. Compute the traction components on the six faces of the deformed cube. Since nothing
changes in the 3-direction, for the rest of the problem we will treat the body as a two-
dimensional object. In the 1–2 plane, draw the deformed geometry, a rhombus, and the
tractions that act on the edges of this rhombus. These tractions are independent of the X3
component and can, therefore, be plotted as a (two-dimensional) vector at each point on
these edges.

2. Show by writing the sum of forces in the 1- and 2-directions and the sum of moments in the
3-direction that the deformed rhombus is in static equilibrium for any value of γ and that
these equations provide no restrictions on the Cauchy stress components σ11 , σ12 and σ22 .
This shows that for a stress tensor with the above form, the equilibrium conditions place
no further restrictions on the nonzero stress components. Thus, Eqn. (8.6) is a result based
purely on the isotropy properties of the constitutive relation and does not depend explicitly
on the particular (simple shear) geometric configuration of the body.

8.2 [SECTION 8.2] Consider a unit cube of an isotropic incompressible hyperelastic material.
1. Plot the reference and deformed configurations associated with Eqn. (8.7) and shade the

deformed configuration to indicate the variation of temperature throughout the body. Ex-
periment with the free parameters k, q, A, B and C to show the variety of deformed
configurations described by this deformation mapping.

2. Repeat part 1 for Eqn. (8.8), experimenting with the free parameters k, p and C .
8.3 [SECTION 8.2] Consider a unit cube of an isotropic incompressible hyperelastic material. Plot

the reference and deformed configurations associated with Eqn. (8.9). Experiment with the
free parameters A, B and C to show the variety of deformed configurations described by this
deformation mapping.

8.4 [SECTION 8.2] Repeat Exercise 8.3 for Eqn. (8.10).
8.5 [SECTION 8.2] Repeat Exercise 8.3 for Eqn. (8.11), experimenting with the free parameters

A, B, C and D.
8.6 [SECTION 8.2] Repeat Exercise 8.3 for Eqn. (8.22), experimenting with the free parameter A.
8.7 [SECTION 8.2] Repeat Exercise 8.3 for Eqn. (8.23), experimenting with the free parameters

A, B, C and D.
8.8 [SECTION 8.2] Consider a brick-shaped body, composed of a neo-Hookean material, bounded

by the following planes: X1 = ±L, X2 = Y ± W , where Y > W , and X3 = ±H . Using
the deformation mapping for Family 1 in Eqn. (8.9):
1. Show that the deformed configuration satisfies the equilibrium field equations and find the

explicit form of the (polar cylindrical) stress components, including the integrated form for
the undetermined part of the hydrostatic pressure c1 .

2. Write expressions for the nominal tractions that are required to act on each of the six surfaces
of the body in order to bring about this deformation, and plot the deformed configuration
projected on the 1–2 plane with the traction vectors shown.

8.9 [SECTION 8.2] Consider a spherical shell, composed of a neo-Hookean material, with inner
radius R = Ri and outer radius R = Ro . Use the special case of the deformation mapping for
Family 4 in Eqn. (8.22):

r = (R3
o + R3

i − R3 )1/3 , θ = Θ, φ = Φ,

which corresponds to the eversion of the sphere.
1. Show that the deformed configuration satisfies the equilibrium field equations and find the

explicit form of the (spherical) stress components, including the integrated form for the
undetermined part of the hydrostatic pressure c1 .

2. Write expressions for the nominal tractions that are required to act on each surface of the
body in order to bring about this deformation.



9 Numerical solutions: the finite element method

The rapid growth of computer power since the 1960s has been accompanied by a sim-
ilarly rapid growth and development of computational methods, to the point where the
stress analysis of complex components is a routine part of almost any engineering de-
sign. To demonstrate how continuum mechanics problems can be accurately and efficiently
solved by an approximate numerical representation on a computer, we will focus on the
solution of static problems in solid mechanics, and we will not consider the effects of
temperature. While there is certainly no shortage of numerical techniques to solve fluid
mechanics, heat transfer or other continuum problems, our focus on solids reflects the
emphasis of this book in general. And while we will start out on a relatively general foot-
ing applicable to many of the computational techniques available for solid mechanics, our
focus will be on the finite element method (FEM). This is because the FEM has clearly
emerged as the most common and powerful approach for solid mechanics and materials
science. Further, we view the FEM as a natural bridge between continuum mechanics
and atomistic methods. In Part IV of the companion book to this one [TM11], we ex-
plicitly use it as a way to build multiscale models combining atomistic and continuum
frameworks.

A perusal of Chapter 11 on Further Reading makes it clear that the FEM is a subject
that can easily fill an entire book on its own. Here, we provide a very brief introduction
to the FEM which explains how this method works and why it is useful. Our development
is somewhat nonconventional when compared with the usual approach taken in the FEM
literature, reflecting our particular interest in making the connection to the atomic scale
in Chapters 12 and 13 of the companion volume [TM11]. It also has the advantage of
connecting to the variational approaches described in Chapter 7. In Section 9.3.7, we make
the connection between our description and the more common approaches taken in other
FEM introductions.

9.1 Discretization and interpolation

The problem we wish to solve is the static boundary-value problem of Fig. 9.1 subject
to mixed boundary conditions as described in Section 7.1.2. A body B0 in the reference
configuration has surface ∂B0 with surface normal N . This surface is divided into a portion
∂B0u over which the displacements are prescribed as ū and the remainder (∂B0t) which is
either free or subject to a prescribed traction, T̄ . Our goal is to determine the stress, strain
and displacement fields throughout the body due to the applied loads.
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B0

∂B0u ∂B0t

T = T̄

N

u = ū

Fig. 9.1 A general continuum mechanics boundary-value problem and an arbitrary set of nodes selected to discretize it for
solution by the FEM.

We adopt a Lagrangian, finite deformation framework for hyperelastic materials. This has
several implications. First, the choice of a Lagrangian framework means that we will write
all quantities in terms of the undeformed, reference configuration of the body, B0 . Second,
finite strain implies that we expect, in general, that the gradients of the displacements in
the body will be too large for the simplifications of small strain elasticity (described in
Section 10.4) to be accurate. Finally, the hyperelasticity assumption restricts our attention
to materials for which we can write a strain energy density function, W , in terms of some
suitable strain measure (see Section 6.2.5).

The static boundary-value problem is conveniently posed using the principle of stationary
potential energy of Section 7.2. The total potential energy, Π, given in Eqn. (7.5), in the
absence of body forces takes the following form:

Π =
∫

B0

W (F (X))dV0 −
∫

∂B0 t

T̄ · u dA0 . (9.1)

We seek a displacement field u(X) for which Π is stationary subject to the constraint that
u(X) = ū for X ∈ ∂B0u . Our first step is to replace the continuous variable u(X) with
a discrete variable,1 u(X), stored at a finite set of points in the body, called nodes, as shown
schematically in Fig. 9.1. The goal will be to approximate the continuous displacements
from these discrete values using interpolation. For efficient computer implementation, we
write u and X as column matrices with ndof = nnodes × nd entries (where nnodes is the
number of nodes and nd is the number of spatial dimensions):

X =

⎡⎢⎢⎢⎣
X1

X2

...
Xnn o d e s

⎤⎥⎥⎥⎦ , u =

⎡⎢⎢⎢⎣
u1

u2

...
unn o d e s

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
1

u1
2

u1
3
...

unn o d e s
1

unn o d e s
2

unn o d e s
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9.2)

1 We adopt the sans serif font in this chapter in a manner that is essentially consistent with the convention described
in Section 2.2.4, in that u and X are vectors whereas u and X are column matrices. In some instances, these
column matrices behave as first-order tensors (e.g. u behaves as a tensor in the R

n d o f space on which it is
defined), but we do not make use of tensorial properties here. As such, we retain the notation mainly as a way
to differentiate between the continuum variables and their discrete representation as column matrices.
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where Xα and uα are the nodal coordinate and displacement vectors associated with node
α. The latter will be obtained as part of the solution process.

A brief comment about notation Before we get too far along, it is worth warning the reader that this
chapter is going to be notationally challenging. We have tried to use a notation that is accurate and
detailed, but still sufficiently clear to follow. A brief description of the notation now will help us as
we proceed. It is sometimes convenient to refer to the nodal displacements in either invariant form
(as simply a bold-faced u), or alternatively in indicial form as uβ̄ (β̄ = 1, . . . , ndof ). The overbar on
the subscript reminds us that this is an index spanning nodes and coordinates (i.e. 1, . . . , ndof ). It is
sometimes convenient to split up the index implied by β̄ and write uα

i to indicate the ith component
of displacement associated with node α, and thus i = 1, . . . , nd and α = 1, . . . , nnodes . At other
times, the displacements of only a specific node α are required, again in either invariant form as
uα or indicial form as uα

i . All of these are essentially the same quantities (or subsets of each other)
presented in different forms. We adopt the convention that Latin subscripts refer to spatial components
(i = 1, . . . , nd ), and Greek indices will serve double duty. When they appear as subscripts with
an overbar, they refer to the index embodied in Eqn. (9.2), ranging over ᾱ = 1, . . . , ndof . Greek
superscripts refer to node numbering and thus range over α = 1, . . . , nnodes . The Einstein summation
convention will be applied to repeated subscript indices as usual.

Despite the discrete representation of u, Eqn. (9.1) will still require a continuous dis-
placement field defined throughout the body in order to be evaluated. This is achieved
through a set of so-called shape functions that interpolate the discrete displacements to all
points between the nodes to yield an approximate displacement field, ũ. (Throughout this
chapter, we use the ·̃ notation to indicate FEM approximations to continuous quantities.) In
terms of the reference position vectors, X , this can be written generally as

u(X) ≈ ũ(X) = Su =
[
S1(X) S2(X) . . . Snn o d e s (X)

]
⎡⎢⎢⎢⎣

u1

u2

...
unn o d e s

⎤⎥⎥⎥⎦ , (9.3)

where S is a 3×3nnodes matrix in three dimensions. In indicial notation this is ũi = Siᾱuᾱ ,
where Siᾱ refers to the components of the 3 × 3nnodes matrix of shape functions defined
in Eqn. (9.3). Each entry in this matrix is a scalar shape function related to a specific node,
interpolating one entry in the displacement matrix onto one component of the continuous
displacement field. Normally, the same functional form is used for interpolating all three
components of ũ. Also, it is not physically sensible to use information from one degree
of freedom to interpolate the other (e.g. displacements in the X1-direction should not
depend on displacements in the X2-direction.) Thus, for the case of a three-dimensional
displacement field, Eqn. (9.3) becomes

ũ(X) = Siᾱuᾱ =

⎡⎣S1 0 0 Snn o d e s 0 0
0 S1 0 . . . 0 Snn o d e s 0
0 0 S1 0 0 Snn o d e s

⎤⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
1

u1
2

u1
3
...

unn o d e s
1

unn o d e s
2

unn o d e s
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where Sα (X) is a scalar shape function associated with node α. An equivalent, but often
more transparent way of writing Eqn. (9.3) is

ũi(X) =
nn o d e s∑
α=1

Sα (X)uα
i . (9.4)

Finite element formulations have the desirable property that

uα = ũ(Xα ) =
nn o d e s∑
β=1

Sβ (Xα )uβ , (9.5)

meaning that the approximate displacement field exactly interpolates the displacement, uα ,
stored at each nodal position, Xα . This implies that Sβ (Xα ) = δαβ , where δαβ is the
Kronecker delta, as we shall see later in Eqn. (9.22).

Equations (9.3) and (9.4) represent two alternative notations that we will employ in this
chapter. Analogous to how we used indicial and invariant notation in continuum mechanics,
these two notations are equivalent, but for certain purposes one or the other is more
convenient for illustrating a particular derivation or expression. We will often present key
expressions in both forms for this reason.

Given a solution vector u, one can now obtain an approximation to the displacements
everywhere in the body. Since the energy of Eqn. (9.1) depends on the displacements
through the deformation gradient, we require that the interpolation be suitably smooth to
provide piecewise bounded first derivatives of the displacements everywhere. Recalling
from Eqn. (3.29) that the deformation gradient is defined as F = I +∂u/∂X , we can find
an approximate deformation gradient F̃ as

F̃iJ = δiJ +
∂ũi

∂XJ
= δiJ +

∂Siᾱ

∂XJ
uᾱ , (9.6)

where δiJ is the Kronecker delta. Alternatively if we start from Eqn. (9.4)

F̃iJ = δiJ +
nn o d e s∑
α=1

∂Sα

∂XJ
uα

i . (9.7)

The strain energy density can now be written as a function of the nodal displacement
through the deformation gradient, W (F̃ (u)), and the approximate potential energy becomes

Π̃ =
∫

B0

W (F̃ (u)) dV0 −
∫

∂B0 t

T̄ · Su dA0 . (9.8)

Let us assume for the moment that a suitable set of shape functions has been chosen
for Eqn. (9.3). The solution procedure is then to determine a stationary point of Eqn. (9.8)
with respect to the nodal displacements, u, subject to appropriate boundary conditions.
Stationary points of the energy functional satisfy

− ∂Π̃
∂uᾱ

= 0.

Note that the negative sign is added only for convenience, so that we can refer to forces
instead of gradients. For an out-of-equilibrium displacement field we have a residual force
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vector, f ∈ R
nd o f , such that

fᾱ (u) ≡ − ∂Π̃
∂uᾱ

= −
∫

B0

∂W

∂F̃iJ

∂F̃iJ

∂uᾱ
dV0 +

∫
∂B0 t

T̄iSiᾱ dA0 .

We recognize the derivative ∂W/∂F in the first integral as the first Piola–Kirchhoff stress,
P , and note that from Eqn. (9.6)

∂F̃iJ

∂uᾱ
=

∂Siᾱ

∂XJ
. (9.9)

This leads to the following expression for the residual force vector:

fᾱ (u) = −
∫

B0

PiJ (F̃ (u))
∂Siᾱ

∂XJ
dV0 +

∫
∂B0 t

T̄iSiᾱ dA0 . (9.10)

These are the out-of-balance forces on the nodes for a given displacement vector. For an
equilibrium displacement vector, these out-of-balance forces must be zero.

Finding the displacement vector that renders Π̃ stationary will generally require an
iterative solution since P is a nonlinear function of the displacements for a hyperelastic
material. In many cases we are only interested in stable equilibrium configurations. For this
reason, in the rest of this chapter we will employ the principle of minimum potential energy
(PMPE) and focus on energy minimization. Thus, in the next section we elaborate on the
details of nonlinear energy minimization (or more generally “optimization”).

9.2 Energy minimization

The search for minima of a nonconvex, multidimensional function is one of the great
challenges of computational mathematics, and in nonlinear finite elements it is the principal
computational effort associated with finding static solutions. It is interesting that the human
eye and brain can look at a hilly landscape and almost immediately find the point of
lowest elevation, in addition to establishing where most of the other local minima lie. To
do the same with a high-dimensional mathematical function on a computer is much more
difficult. Although finding any minimum is not too difficult, finding it quickly is a bit more
of a challenge, and finding the global minimum confidently and quickly is still an open
field of research. The entire branch of numerical mathematics known as “optimization” is
essentially dedicated to this goal. It is not our intention to exhaustively discuss the latest
in nonlinear optimization. Rather, we present the theory and implementation of the most
common workhorse used in finite elements, the Newton–Raphson (NR) method. The core
ideas of the NR algorithm serve as the basis for more advanced optimization approaches,
which form the subject of entire optimization textbooks (see, for example, [Pol71, Rus06]).
Strictly speaking, what we describe herein is a modified NR approach since standard NR
is a method for finding roots (i.e. stationary points of a function) and not a minimization
approach. However, for simplicity we refer to it as “NR.”
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Fig. 9.2 An energy landscape in two dimensions. Points A–C represent different initial guesses, and the path from C to the
minimum for the steepest descent method is shown.

9.2.1 Solving nonlinear problems: initial guesses

Our goal is to find a minimum of a generic energy function Π̃(u), where u (referred to as
the “configuration”) represents a ndof -dimensional column matrix of variables upon which
the energy depends. In the context of finite elements, this function is given by Eqn. (9.8)
and u is the nodal displacement vector, but the minimization process is, of course, perfectly
general. The method proceeds by evolving the system from some initial configuration u(0)

(with energy Π̃(u(0))) to the configuration umin that locally minimizes Π̃.
Figure 9.2 illustrates an energy landscape for a system with ndof = 2, [u]T = [X,Y ]T .

There are several local minima, with the global minimum occurring at about [X,Y ]T =
[0.75, 0.80]T . A minimization method will invariably converge to different minima depend-
ing on the initial guess one makes for the configuration. In Fig. 9.2, for instance, starting
from point “A” is likely to take the system to the minimum near [X,Y ]T = [0.70,−0.05]T ,
while starting from point “B” will converge to the global minimum.

In physical terms, the need for an initial guess, and the dependence of the solution on
that guess may or may not be problematic. Sometimes, we may not even be interested in the
true global minimum, but rather a local minimum that is nearby some physically motivated
starting point for the system. In plasticity models, for example, loading is typically applied
incrementally from zero, such that an equilibrium solution is found for each quasistatic2

load step along the way and used as the initial guess for the next load step. However, the
plasticity formulation is path dependent, meaning it depends on such details as the size of
the load steps and whether multiple loads are incremented simultaneously or in series. As

2 See Section 5.4 for the definition of quasistatic processes.
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Algorithm 9.1 A generic minimization algorithm

1: n := 0
2: f(0) := −∇uΠ̃(u(0))
3: while

∥∥∥f(n)
∥∥∥ > tol do

4: find the search direction d(n)

5: find step size α(n) > 0
6: u(n+1) := u(n) + α(n)d(n)

7: f(n+1) := −∇uΠ̃(u(n+1))
8: n := n + 1
9: end while

10: umin := u(n)

such, the question of what is the appropriate initial guess is replaced by the question of
whether the loading program is physically realistic and of sufficient numerical accuracy. For
other problems, however, it is not clear what the initial guess should be, and the dependence
of the solution on this arbitrary choice is disconcerting. In the absence of good physical
grounds for a particular initial guess, it may be necessary to run multiple simulations from
different starting points to assess the sensitivity of the solution. In the companion book to
this one [TM11, Chapter 6], we talk about this in more detail in the context of atomistic
systems, where the true global minimum is usually a perfect crystal but we are interested in
more complex configurations containing such defects as dislocations and grain boundaries.

While energy minimization can be achieved without directly computing the forces (en-
ergy gradients), gradient methods are almost always more efficient for problems of interest
to us here. We have already seen the forces on the finite element nodes in Eqn. (9.10),
and later we will develop efficient ways to evaluate them. Let us begin by considering the
generic approach one takes given an expression for the energy and forces.

9.2.2 The generic nonlinear minimization algorithm

Given an energy function Π̃(u) and its gradient (forces) f(u) = −∇uΠ̃(u), we seek the
configuration umin such that Π̃(umin) is a local minimum. This corresponds to a point
where the forces on all the degrees of freedom are zero, so we typically test for convergence
using some prescribed tolerance on the force norm:

if ‖f(u)‖ < tol, umin := u. (9.11)

We adopt the notation := to denote “is assigned,” to distinguish it from an equality. In other
words, the above statement takes the current value of u and “overwrites” it into umin .

If the forces are nonzero, we can lower the energy by iteratively moving the system along
some search direction, d, that is determined from the energy and forces at the current and
possibly past configurations visited during the minimization. As such, all minimization
methods are based on the simple steps presented in Algorithm 9.1.
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The methods differ principally in how they determine the search direction, d at line 4
and the step size α at line 5 of Algorithm 9.1. Generally, the more local information one
has about the function being minimized, the more intelligently these things can be chosen.
Higher derivatives of the energy, if they are not too onerous to compute, are usually a good
source of such information. For example the NR method requires the stiffness or Hessian
matrix of the system (the second derivative of the energy), which can greatly improve
convergence rates.

9.2.3 The steepest descent method

The steepest descent method is generally an inefficient approach to finding a local minimum,
but it has several advantages. First and foremost, it is a very simple algorithm to code
without error. If one is more concerned with reliability than speed (or if one wants to do as
little coding and debugging as possible) it is a good choice. Second, the steepest descent
trajectory followed in going from the initial configuration to the minimized state has a
clear physical interpretation as an overdamped dynamical system. This can be important
when one is actually interested in entire pathways in configuration space, as opposed to
just the minimum. Third, the steepest descent method is robust. It may be slow, but it
almost always works. Finally, the steepest descent method is pedagogically useful as an
introduction to energy minimization. Once you understand the steepest descent algorithm,
you are equipped to understand the more complicated methods discussed later.

As the name “steepest descent” suggests, the idea is simply to choose the search direction
at each iteration to be along the direction of the forces. This corresponds to the steepest
“downhill” direction at that particular point in the energy landscape. Referring to the generic
minimization method in Algorithm 9.1, line 4 becomes

d ≡ f for steepest descent.

In the absolutely simplest implementation of the steepest descent method, the step size
α may be prescribed to be some fixed, small value, although a check needs to be made
to ensure that taking the full step does not lead to an increase in energy (something that
could happen if u is already near the minimum and the full step αf overshoots it). In more
sophisticated implementations, the system is moved some variable amount α along the
direction of the forces until the one-dimensional minimum along that direction is found.
In other words, the multi-dimensional minimization problem is replaced by a series of
constrained one-dimensional minimizations. Details of this line minimization process are
discussed below, but for now we note the essential idea: for a fixed u and d we seek a
positive real number α such that Π̃(u + αd) is minimized with respect to α, and then
update the system as

u := u + αd.

The new u is used to compute a new force, and the process repeats until the force norm is
below the set tolerance. The steepest descent method is summarized in Algorithm 9.2.

The steepest descent algorithm is an “intuitive” one: from where you are, move in the
local direction of steepest descent, determine the new direction of steepest descent and
repeat. It is not especially fast, however, because for many landscapes the most direct route
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Algorithm 9.2 The steepest descent algorithm

1: n := 0
2: f(0) := −∇uΠ̃(u(0))
3: while

∥∥∥f(n)
∥∥∥ > tol do

4: d(n) = f(n)

5: find α(n) > 0 such that φ(α(n)) ≡ Π̃(u(n) + α(n)d(n)) is minimized.
6: u(n+1) := u(n) + α(n)d(n)

7: f(n+1) := −∇uΠ̃(u(n+1))
8: n := n + 1
9: end while

10: umin := u(n)

to the minimum is not in the direction of steepest descent. Consider a long narrow trench
dug straight down the side of a mountain. At a short distance up either side of the trench,
the steepest descent direction is back into the trench bottom, which is almost at right angles
to the “global” downhill direction taking us down the mountain. Taking the steepest descent
path results in many short hops back and forth across the trench floor, gradually moving us
down the mountain. This is illustrated by the jagged line in Fig. 9.2.

9.2.4 Line minimization

Most multi-dimensional minimization algorithms are carried out by a series of one-
dimensional constrained minimizations (for example, see line 5 of Algorithm 9.2). Since it
is used many times, the efficiency of the line minimization (or line search) is important.

Line minimization is an interesting area of computational mathematics because we can
actually gain overall efficiency in this part of the algorithm through sloppiness; it is not
necessary to find the line minimum exactly, so long as each line minimization does a
reasonable job of lowering the energy of the system. In other words, we would like to
replace line 5 of Algorithm 9.2 with

find α(n) > 0 such that φ(α(n)) ≡ Π̃(u(n) + α(n)d(n)) is sufficiently reduced.

If we can quantify “sufficiently reduced” we can avoid wasting time unnecessarily polishing
our effort to minimize φ when starting along a new search direction would be more efficient.
One approach is a combination of backtracking and the so-called “sufficient decrease”
condition,3 as follows. First, we must choose some sensible initial guess for α. This can be
tricky in some methods, since d need not have the same units as u. However, this is not the
case in the NR method, where it is most efficient4 to start with α = 1. We then march along

3 The sufficient decrease condition makes up part of the so-called “Wolfe Conditions” described in more detail
in [NW99].

4 As we shall see in Section 9.2.5, the NR method converges exactly in one step if the function to be minimized
is quadratic. For this reason, α = 1 should be tried as the initial step size in case the system is sufficiently close
to the minimum that the quadratic approximation will move it directly to within tolerance of the minimum. For
other minimization algorithms, more sophisticated and robust methods of choosing the step size α are described
in [NW99, Chapter 3].
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φ

α0 αmax

c1 = 1 c1 = 0.25

Fig. 9.3 The sufficient reduction condition determines a maximum value for α. In this case, it is pictured for a value of
c1 = 0.25. The region where the function φ is less than the dashed line is the range of acceptable values for α.

d until we find two points such that 0 < α1 < α2 and

φ(0) > φ(α1) < φ(α2), (9.12)

so that there must be a minimum in the interval (0, α2). Now, we can approximate the
function φ as a parabola passing through φ(0), φ(α1) and φ(α2), and through simple
algebra arrive at the minimum of the parabola at αp :

αp =
φ(0)[α2

2 − α2
1 ] − φ(α1)α2

2 + φ(α2)α2
1

2 (φ(0)[α2 − α1 ] − φ(α1)α2 + φ(α2)α1)
. (9.13)

Now, we can make α := αp our initial guess and determine whether φ(α) is sufficiently
decreased compared to φ(0). This condition requires α to satisfy

φ(α) ≤ φ(0) − c1αf(u(n)) · d(u(n)),

for some value of c1 ∈ (0, 1). Note that −f(u(n)) · d(u(n)) = φ′(0), i.e. this is equivalent
to

φ(α) ≤ φ(0) + c1αφ′(0),

and as such it is just a way to estimate the expected decrease in φ based on the slope at
α = 0. When c1 = 1, the last term is exactly the expected decrease in the energy based on a
linear interpolation from the point u(n) , and this will limit α to very small values as shown
in Fig. 9.3. Typically, a value of c1 on the order of 10−4 is chosen. Figure 9.3 shows how
this condition imposes a maximum value on α, and provides a way to decide when to quit
searching along a particular direction d, as outlined in Algorithm 9.3. There, ρ is a scaling
factor ρ ∈ (0, 1) typically chosen on the order of ρ = 0.5. This algorithm would replace,
for example, line 5 in Algorithm 9.2.
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Algorithm 9.3 Line minimization using quadratic interpolation

1: choose ρ, such that 0 < ρ < 1, c1 and a tolerance tol
2: find 0 < α1 < α2 , such that φ(0) > φ(α1) < φ(α2)
3: compute αp using Eqn. (9.13).
4: α := αp

5: while φ(α) > φ(0) − c1αf(u) · d(u) do
6: α := ρα

7: if α ≤ tol then
8: exit with error code {Line minimization has failed.}
9: end if

10: end while

9.2.5 The Newton–Raphson (NR) method

Suppose that the strain energy is a simple quadratic function of the configuration

Π̃(u) =
1
2
uT Ku − fT u, (9.14)

where K is a constant, positive-definite matrix and f is a constant vector. The condition for
a stationary point of this function amounts to finding u such that

∇uΠ̃ = Ku − f = 0.

If we are willing to invert the stiffness matrix, we can solve this directly:

u = K−1f.

The NR method applies this same approach iteratively to more general functions. We start
from the Taylor expansion of the energy about the current guess at the configuration, u(n) :

Π̃(u) ≈ 1
2
(u − u(n))T K(n)(u − u(n)) − (f(n))T (u − u(n)) + Π̃(u(n)),

where as usual

f(n) = − ∂Π̃(u)
∂u

∣∣∣∣∣
u=u(n )

, K(n) =
∂2Π̃(u)
∂u∂u

∣∣∣∣∣
u=u(n )

,

so that

∇uΠ̃(u) ≈ K(n)(u − u(n)) − f(n) . (9.15)

Now instead of solving for the next approximation to u by setting the above expression
to zero (which could result in convergence to a maximum or saddle point rather than a
minimum), we search for a solution by heading in the direction of the minimum of this
quadratic approximation to the real energy. Thus we only use Eqn. (9.15) to obtain the
search direction. Setting Eqn. (9.15) to zero gives us

d(n) ≡ u − u(n) = (K(n))−1f(n) , (9.16)
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Algorithm 9.4 The NR algorithm

1: n := 0
2: f(0) := −∇uΠ̃(u(0))
3: K(0) := ∂2Π̃(u(0))/∂u∂u

4: while
∥∥∥f(n)

∥∥∥ > tol do

5: d(n) := (K(n))−1f(n)

6: find α(n) > 0 using line minimization (Algorithm 9.3). If this fails, set d(n) := f(n)

and retry the line minimization.
7: u(n+1) := u(n) + α(n)d(n)

8: f(n+1) := −∇uΠ̃(u(n+1))
9: K(n+1) := ∂2Π̃(u(n+1))/∂u∂u

10: n := n + 1
11: end while

and then we move the system by a line minimization in the usual way:

u(n+1) = u(n) + α(n)d(n) , (9.17)

where α(n) > 0 is obtained from line minimization (Algorithm 9.3). This approach can
fail when K(n) is not positive definite, in which case d(n) may not be a descent direction.
In this case, one option is to abandon NR for the current step and set d(n) to the steepest
descent direction. Alternatively, K(n) can be modified in some way to force it to be positive
definite (see, for example, [FF77]). The NR method is summarized in Algorithm 9.4.

The FEM is particularly well suited to the NR method, since the stiffness matrix takes
on a relatively simple form that permits efficient storage and inversion. Essentially, the
foundations of the FEM to be presented in Section 9.3 revolve around developing an
efficient way to compute the stiffness matrix.

9.2.6 Quasi-Newton methods

Often, one may want to use Eqn. (9.17), but it is too expensive or difficult to obtain and
invert the Hessian matrix. There are several methods to produce approximations to K−1 ,
or more generally to provide an algorithm for generating search directions of the form of a
matrix multiplying the force vector. These methods are broadly classified as “quasi-Newton
methods,” and they can be advantageous for problems where the second derivatives required
for the Hessian are sufficiently complex to make the code either tedious to implement or
slow to execute.5 For more details, the interested reader may try [Pol71, Rus06, PTVF08].

5 The more sophisticated of the quasi-Newton methods are amongst the fastest algorithms for finding stationary
points. Wales [Wal03] argues that one such method in particular, Nocedal’s limited memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) method, is in fact currently the fastest method that can be applied to relatively
large systems.
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9.2.7 The finite element tangent stiffness matrix

In order to implement the NR method within finite elements, it is necessary to compute the
tangent stiffness matrix (or Hessian), K

Kᾱ β̄ (u) = − ∂fᾱ
∂uβ̄

∣∣∣∣
u

=
∂2Π̃

∂uᾱ ∂uβ̄

∣∣∣∣∣
u

. (9.18)

This can be obtained from Eqn. (9.10) as

Kᾱ β̄ =
∫

B0

∂PiJ

∂FmN

∂FmN

∂uβ̄

∂Siᾱ

∂XJ
dV0 =

∫
B0

DiJ mN

∂Smβ̄

∂XN

∂Siᾱ

∂XJ
dV0 , (9.19)

where the last expression makes use of Eqn. (9.9) and the definition of the mixed elasticity
tensor D from Eqn. (6.155).

If the strain energy were a quadratic function of u, as would be the case for a linear
elastic material subjected to small strains, the solution would be directly obtained from
inverting the stiffness matrix. For nonlinear problems, we can use the NR method as we
just described, and iteratively update the displacements according to Eqn. (9.17).

9.3 Elements and shape functions

To summarize up to this point, the approach of the FEM is as follows. Starting from a suitably
accurate approximation to the potential energy, Π̃, achieved through a discretization of the
displacement variables, the minimization of the energy proceeds once we have an efficient
scheme for computing the energy Π̃, the residual f and the tangent stiffness K. In terms of
the discretized displacement variables, these quantities are:

Π̃ =
∫

B0

W (F̃ (u)) dV0 − fext
ᾱ uᾱ , (9.20a)

fᾱ = f int
ᾱ + fext

ᾱ , (9.20b)

Kᾱ β̄ =
∫

B0

DiJ mN (F̃ (u))
∂Smβ̄

∂XN

∂Siᾱ

∂XJ
dV0 , (9.20c)

where we have defined the internal nodal force vector, f int and external nodal force vector,
fext with components

f int
ᾱ = −

∫
B0

PiJ (F̃ (u))
∂Siᾱ

∂XJ
dV0 , fext

ᾱ =
∫

∂B0 t

T̄iSiᾱ dA0 . (9.21)
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u = ū

T = T̄

Fig. 9.4 Elements connecting the nodes to form a finite element mesh.

We will discuss the external nodal forces in Section 9.3.5. For now, we simply note that they
are independent of the solution variable, u. Thus, we confine our attention to techniques
for the calculation of the internal force vector and stiffness matrix.

As written, Eqns. (9.20) do not permit a computationally efficient implementation with-
out further consideration. We mention in passing an active area of research in “meshless
methods” [BKO+96, OIZT96, BM97, AZ00, AS02, SA04], whereby continuum mechan-
ics is discretized using an unstructured array of points and shape functions that are not
dependent on a finite element mesh. While these methods are beyond the scope of this
work, we note here that meshless methods also start from Eqns. (9.20).

The key to the efficiency of FEM lies in the restrictions imposed on the shape functions.
These functions are defined with respect to a very general tessellation (mesh) of the body
into elements as shown in Fig. 9.4. These elements need not be triangular (or tetrahedral
in three dimensions), although triangles represent the simplest geometry that can be used
to fill the space between the nodes. Also, the elements need not all be the same type or
size, but they must not overlap nor leave any gaps.6 Each element is associated with a strict
number of nodes, and conversely each node is associated only with the elements that it
touches. The shape function for node α, Sα , is defined to have the following properties:

• C0 continuity The shape function should be continuous across element boundaries but
can have a discontinuous first derivative: such a function is referred to as having C0

continuity. The continuity demanded of the shape functions is dictated by the shape
function derivatives that appear in Eqns. (9.20), which we see are first derivatives. Since
these equations must be integrable, the integrands can be discontinuous across element
boundaries but they must be finite within each element.

• The Kronecker delta property Sα must satisfy

Sα (Xβ ) = δαβ =

{
1, when α = β,

0, when α �= β.
(9.22)

6 There are variations of the FEM that do allow elements to overlap or to leave gaps. Examples include the so-
called “natural element method” [SMB98] and others that share features with both finite elements and meshless
techniques.
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This ensures that the value of the interpolated displacement field at the position of node
α is equal to the nodal value, since

ũi(Xα ) =
nn o d e s∑
β=1

Sβ (Xα )uβ
i =

nn o d e s∑
β=1

δαβ uβ
i = uα

i . (9.23)

This permits a direct physical interpretation of the values in u.
• The interpolation property For the special case when the displacements are equal at

every node in the mesh, the interpolated field should be exactly uniform. This property
ensures the physically sensible behavior that a uniform displacement of all the nodes
(which corresponds to a rigid translation of the body) produces a uniform interpolated
displacement field and thus no strain in the body. Given a constant displacement vector,
ūi , we see that if all nodal displacements are the same, uα

i = ūi , we have

ũi(X) =
nn o d e s∑
α=1

Sα (X)uα
i = ūi

nn o d e s∑
α=1

Sα (X),

so we require that the shape functions satisfy
nn o d e s∑
α=1

Sα (X) = 1, (9.24)

for all X . For this reason, shape functions are sometimes referred to as a partition of
unity.

• Compact support Sα is defined to be identically zero in any element not touching node
α. It is this feature of the FEM shape functions that makes the method computationally
very attractive, as we shall see next.

Without loss of generality, the integrals in Eqns. (9.20) can be treated as sums over
integrals on each individual element, i.e.

Π̃ =
n e l e m∑
e=1

∫
B e

0

W (F̃ (u)) dV0 − fext
ᾱ uᾱ , (9.25a)

fᾱ = −
n e l e m∑
e=1

∫
B e

0

PiJ (F̃ (u))
∂Siᾱ

∂XJ
dV0 + fext

ᾱ , (9.25b)

Kᾱ β̄ =
n e l e m∑
e=1

∫
B e

0

DiJ mN (F̃ (u))
∂Smβ̄

∂XN

∂Siᾱ

∂XJ
dV0 , (9.25c)

where Be
0 is the domain of element e. This element-by-element parceling of the integrals is

only useful, however, if the compact support property of the shape functions is exploited,
as demonstrated by a simple one-dimensional example.

Example 9.1 (One-dimensional shape functions) Figure 9.5 shows a one-dimensional region dis-
cretized by seven nodes between X = a and X = b. The simplest possible choice of mesh is to
define each element by two nodes (elements labeled A–F in Fig. 9.5(b)). Imposing the restrictions
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(b)
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(c)

X = a
X = XP

X = b

S3 S7

S3 S6

Fig. 9.5 Shape functions for a one-dimensional domain: (a) discretized domain; (b) linear elements A–F; (c) quadratic
elements I–III.

listed previously leads to shape functions as shown for node 3 and node 7. These will necessarily be
linear functions within each element, since Eqns. (9.22) and (9.24) effectively require the lowest-order
function that can satisfy S = 1 at the node of interest and S = 0 at the other nodes in the element.
The shape functions within a single element are shown in Tab. 9.1. The effect of this choice of shape
functions is a piecewise linear interpolation of the displacements, as illustrated in Fig. 9.6(b).

Due to the compact support property, the interpolated displacements ũ within each element
depend only on the nodes connected to the element. For example, the displacement at position XP in
Fig. 9.5(a) is completely determined from the displacement of nodes 2 and 3. Precisely, we have

ũ(XP ) = S2 (XP )u2 + S3 (XP )u3 =
X3 − XP

X3 − X2 u2 +
XP − X2

X3 − X2 u3 .

Note that the superscripts are node numbers, not exponents. Derivatives of this displacement field,
which determine the strains and stresses at each point, are found from this equation and therefore
they also depend only on the nodes connected to the element. Thus, an integral over any one element
can be completely determined by considering only the displacements of these nodes.

Alternatively, we could divide the domain in Fig. 9.5 into three elements, each containing a node at
each end and one in the center. These choices lead to quadratic shape functions, as illustrated for nodes
3 and 6 in Fig. 9.5(c) and given in detail in Tab. 9.1. This produces a piecewise quadratic interpolation
of the displacements, as shown in Fig. 9.6(c). Quadratic interpolation generally improves the accuracy
of the results for a fixed number of nodes, but also increases the computational effort by making the
integration more difficult.

At this stage, we have an element-by-element description of the energy, residual forces
and stiffness. Further, the compact support of the shape functions has ensured that the
integration within an element is dependent only on the displacements of nodes connected
to it. This paves the way for rapid and efficient computation of Eqns. (9.25) once a suitable
numerical integration scheme is chosen.
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Table 9.1. Linear and quadratic elemental shape functions for a one-dimensional domain. Superscripts
denote node numbers

Linear elements

S1 (X) =
X2 − X

X2 − X1

S2 (X) =
X − X1

X2 − X1

S1 (X) =
X · X − X(X2 + X3 ) + X2X3

X1 · X1 − X1 (X2 + X3 ) + X2X3

Quadratic elements
S2 (X) =

X · X − X(X1 + X3 ) + X1X3

X2 · X2 − X2 (X1 + X3 ) + X1X3

S3 (X) =
X · X − X(X1 + X2 ) + X1X2

X3 · X3 − X3 (X1 + X2 ) + X1X2

1 2 3 4 5 6 7

u3

u5

X

u

(a)

|||||||

approx.Linear

FA EDCB

(b)

||||

approx.Quadratic

IIIIII

(c)

Fig. 9.6 One-dimensional example of interpolation with linear elements. In (a), the exact function is shown, whereas
(b) and (c) show the interpolated functions given the exact values uα at each node. Note that the nodal values will
not generally be a perfect match to the exact function as shown in (a); the point of this figure is only to illustrate
the different interpolations in (b) and (c).

9.3.1 Element mapping and the isoparametric formulation

In the simple one-dimensional case outlined in Example 9.1, one may envision some com-
putational scheme by which to evaluate each integral in the sums of Eqns. (9.25). The
domain in one dimension is always a simple line and the functions to be integrated are
generally polynomials, so a straightforward scheme like Simpson’s rule may be used. How-
ever, in higher dimensions the problem becomes considerably more complex, as illustrated
in Fig. 9.4. In this case of two-dimensional triangular elements, the domain of integration
differs for each element, and setting up a general, efficient and accurate routine to perform
these integrals is not straightforward. But the compact support of the shape functions al-
lows us to perform the integrations, not over the physical space Be

0 , but over the space of a
so-called parent element Ω into which each element is mapped. The idea is to interpolate
both the displacements and the reference configuration of the body itself. The advantage is
that every integral is over the same domain, and once some preprocessing is completed and
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Fig. 9.7 Elements of arbitrary size and shape are first referred to a local node numbering scheme, and then mapped to a parent
element for efficient implementation.

a data structure stored, the integral over each element requires exactly the same computer
operations.

Consider the highlighted element in Fig. 9.7, which connects the three nodes numbered
10, 21 and 19. We would like to map this element and its nodes to the parent element
shown, for which we define a new set of shape functions, sα (ξ), for each parent node α.
These shape functions interpolate over the transformed parent space ξ. For the example of
the three-noded triangular elements shown, the parent-domain shape functions are

s1(ξ) = ξ1 , s2(ξ) = ξ2 , s3(ξ) = 1 − ξ1 − ξ2 . (9.26)

We can readily verify that the interpolation and Kronecker delta properties hold for these
shape functions. The numbering refers to the numbering on the parent element shown in
Fig. 9.7, and so each element mapping must be accompanied by a mapping from the global
node numbers (in this example, 10, 21 and 19) to the local parent node numbers.

We redefine the shape function matrix SI ᾱ introduced in Eqn. (9.3) as follows:

SIᾱ (ξ, e) =

{
sβ (ξ) if ᾱ maps to node β of element e,

0 otherwise.
(9.27)

Now, the mapping between physical coordinates and the parent coordinates within each
element is obtained using these shape functions:

X̃e
I (ξ) = SI ᾱ (ξ, e)Xᾱ . (9.28)

To write this in the alternative notation introduced in Eqn. (9.4) requires the introduction of
a new symbol to map between the global node numbers and the local node numbers of the
parent element, which we indicate with ⇀

αe . If a global node numbered α is attached to the
element e in which the interpolation is being performed, then ⇀

αe is the local node number
in the parent element and the appropriate shape function is s

⇀
αe (In the example of Fig. 9.7,

α = 10 maps to ⇀
αe = 1, α = 21 maps to ⇀

αe = 2 and α = 19 maps to ⇀
αe = 3). Otherwise,
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the shape function is zero by compact support. Thus we write

X̃e
I (ξ) =

nn o d e s∑
α=1

s
⇀
αe (ξ)Xα

I , (9.29)

Similarly to the interpolation of the physical coordinates, the nodal displacements can
be interpolated inside the parent element as

ũe(ξ) = S(ξ, e)u or ũe
i (ξ) =

nn o d e s∑
α=1

s
⇀
αe (ξ)uα

i . (9.30)

When the displacements and the coordinates are interpolated using the same shape functions
in this way, it is referred to as the isoparametric formulation. This is the most common
formulation of the FEM, but it is by no means the only one. For example, one could
interpolate the displacements using shape functions of a lower order than those used
for the coordinates, in what is referred to as the subparametric formulation. Conversely, if
the displacements are interpolated using higher-order shape functions than those used for
the coordinates, it is referred to as a superparametric formulation. Such formulations are
useful when it is known, for instance, that the displacement field is likely to be much more
(or less) difficult to interpolate than the geometry of the body.

Tables 9.2 and 9.3 show a sampling of isoparametric elements in two and three dimen-
sions, respectively, together with their shape functions. In Fig. 9.8, we illustrate how such
elements can be mixed within a mesh, although it is common for a single element type to
be used throughout a model. Since the number of nodes determines the polynomial order of
the interpolation (as evidenced by the shape functions), mixing of element types is usually
limited to those of the same polynomial order, to ensure that continuity of the interpolated
displacements across the element boundaries is satisfied.

The integrals in Eqns. (9.25) now require a change of variables from the physical to the
parent coordinates, which depends on the Jacobian determinant, Ĵ , of the mapping7 from
X̃ to ξ:

Ĵ = det J = det∇ξ X̃,

where we adopt the notation Ĵ to distinguish this Jacobian from the one defined in Eqn. (3.7).
We obtain Je for element e from the interpolation in Eqn. (9.28)

Je
IJ =

∂X̃e
I

∂ξJ
=

∂SI ᾱ

∂ξJ
Xᾱ ,

or equally well from Eqn. (9.29) as

Je
IJ =

nn o d e s∑
α=1

∂s
⇀
αe

∂ξJ
Xα

I . (9.31)

7 This mapping is precisely the same, mathematically, as a mapping between a reference and a deformed
configuration as discussed in Chapter 3. The symbol J plays the same role in the element mapping as the
deformation gradient plays in a deformation mapping (see Section 3.4, Eqn. (3.4)). J and F have all the same
properties and must obey the same rules to be physically sensible. In particular, the requirement Ĵ > 0 implies
that the mapping of nodes from physical space to the parent space must not turn the element “inside-out.”
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Table 9.2. Geometry, shape functions and Gauss point information for some common isoparametric parent elements
in two dimensions ∫

Ω h(ξ) dΩ =
∑n q

g =1 wg h(ξg )

Element Shape functions ξg wg

s
1 = ξ1 ( 1

3 , 1
3 ) 1

2
s

2 = ξ2

s
3 = 1 − ξ1 − ξ2

s
1 = ξ1 (2ξ1 − 1) ( 1

2 , 1
2 ) 1

6
s

2 = ξ2 (2ξ2 − 1) (0, 1
2 ) 1

6
s

3 = (1 − ξ1 − ξ2 )[1 − 2(ξ1 + ξ2 )] ( 1
2 , 0) 1

6
s

4 = 4ξ1ξ2

s
5 = 4ξ2 (1 − ξ1 − ξ2 )

s
6 = 4ξ1 (1 − ξ1 − ξ2 )

s
1 = (1 − ξ1 )(1 − ξ2 )/4 (+ 1√

3
, + 1√

3
) 1

s
2 = (1 + ξ1 )(1 − ξ2 )/4 (+ 1√

3
,− 1√

3
) 1

s
3 = (1 + ξ1 )(1 + ξ2 )/4 (− 1√

3
, + 1√

3
) 1

s
4 = (1 − ξ1 )(1 + ξ2 )/4 (− 1√

3
,− 1√

3
) 1

s
1 = (−ξ1 + ξ2

1 )(−ξ2 + ξ2
2 )/4 (−

√
3
5 ,−

√
3
5 ) 25

81

s
2 = (ξ1 + ξ2

1 )(−ξ2 + ξ2
2 )/4 (0,−

√
3
5 ) 40

81

s
3 = (ξ1 + ξ2

1 )(ξ2 + ξ2
2 )/4 (

√
3
5 ,−

√
3
5 ) 25

81

s
4 = (−ξ1 + ξ2

1 )(ξ2 + ξ2
2 )/4 (−

√
3
5 , 0) 40

81

s
5 = (1 − ξ2

1 )(ξ2
2 − ξ2 )/2 (0, 0) 64

81

s
6 = (ξ2

1 + ξ1 )(1 − ξ2
2 )/2 (

√
3
5 , 0) 40

81

s
7 = (1 − ξ2

1 )(ξ2
2 + ξ2 )/2 (−

√
3
5 ,
√

3
5 ) 25

81

s
8 = (ξ2

1 − ξ1 )(1 − ξ2
2 )/2 (0,

√
3
5 ) 40

81

s
9 = (1 − ξ2

1 )(1 − ξ2
2 ) (

√
3
5 ,
√

3
5 ) 25

81
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Table 9.3. Geometry, shape functions and Gauss point information for some common isoparametric parent elements
in three dimensions ∫

Ω h(ξ) dΩ =
∑n q

g =1 wg h(ξg )

Element Shape functions ξg wg

s
1 = ξ1 ( 1

3 , 1
3 , 1

3 ) 1
6

s
2 = ξ2

s
3 = ξ3

s
4 = 1 − ξ1 − ξ2 − ξ3

s
1 = 1

8 (1 + ξ1 )(1 − ξ2 )(1 − ξ3 ) (+ 1√
3
, + 1√

3
, + 1√

3
) 1

s
2 = 1

8 (1 + ξ1 )(1 + ξ2 )(1 − ξ3 ) (+ 1√
3
, + 1√

3
,− 1√

3
) 1

s
3 = 1

8 (1 + ξ1 )(1 + ξ2 )(1 + ξ3 ) (+ 1√
3
,− 1√

3
, + 1√

3
) 1

s
4 = 1

8 (1 + ξ1 )(1 − ξ2 )(1 + ξ3 ) (+ 1√
3
,− 1√

3
,− 1√

3
) 1

s
5 = 1

8 (1 − ξ1 )(1 − ξ2 )(1 − ξ3 ) (− 1√
3
, + 1√

3
, + 1√

3
) 1

s
6 = 1

8 (1 − ξ1 )(1 + ξ2 )(1 − ξ3 ) (− 1√
3
, + 1√

3
,− 1√

3
) 1

s
7 = 1

8 (1 − ξ1 )(1 + ξ2 )(1 + ξ3 ) (− 1√
3
,− 1√

3
, + 1√

3
) 1

s
8 = 1

8 (1 − ξ1 )(1 − ξ2 )(1 + ξ3 ) (− 1√
3
,− 1√

3
,− 1√

3
) 1

(a) (b)

Fig. 9.8 Examples of mixing element types in the same mesh. In (a), continuity of the shape functions across the element
boundaries is preserved since both elements are quadratic. Strictly speaking, the mixing of linear triangles with
quadratic rectangles in (b) is not permitted, but such combinations are sometimes used in special circumstances.

Infinitesimal volume elements then transform (cf. Eqn. (3.7)) as

dV0 = ĴdΩ,

where dΩ is an infinitesimal volume in the parent space, while the volume in the physical
space is dV0 . Derivatives of the shape functions appearing in Eqns. (9.25) are evaluated
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using the chain rule
∂SI ᾱ

∂X̃e
J

=
∂SI ᾱ

∂ξK

∂ξK

∂X̃e
J

=
∂SI ᾱ

∂ξK
(Je

K J )−1 ,

or alternatively we can use

∂sα

∂X̃e
J

=
∂sα

∂ξK

∂ξK

∂X̃e
J

=
∂sα

∂ξK
(Je

K J )−1 ,

when considering the scalar shape function at each node. Finally the integral expressions
in Eqn. (9.25) become

Π̃ =
n e l e m∑
e=1

∫
Ω

W (F̃ (u))Ĵ e dΩ − fext
ᾱ uᾱ , (9.32a)

fᾱ = −
n e l e m∑
e=1

∫
Ω

PiJ (F̃ (u))
∂Siᾱ

∂ξR
(Je

RJ )−1 Ĵ e dΩ + fext
ᾱ , (9.32b)

Kᾱ β̄ =
n e l e m∑
e=1

∫
Ω

DiJ mN (F̃ (u))
∂Smβ̄

∂ξS
(Je

SN )−1 ∂Siᾱ

∂ξR
(Je

RJ )−1 Ĵ e dΩ, (9.32c)

where the shape functions S are now all functions of ξ rather than X . Note that the
deformation gradient must be found using a chain rule differentiation as

F̃iJ = δiJ +
∂Siᾱ

∂ξK
(Je

K J )−1uᾱ or F̃iJ = δiJ +
nn o d e s∑
α=1

∂s
⇀
αe

∂ξK
(Je

K J )−1uα
i . (9.33)

Further, it is important to remember that F̃iJ depends on ξ because both the shape functions
and the Jacobian are functions of ξ in the above equations.

9.3.2 Gauss quadrature

Through the compact support of the shape functions and the mapping from the reference
to the parent domain, the integrals in Eqn. (9.32) have been reduced to a sum of different
integrals over the same domain (the parent element). These integrals can be efficiently eval-
uated using numerical integration (or quadrature). Consider the general one-dimensional
integral

H =
∫ 1

−1
h(x) dx.

Any quadrature scheme to evaluate H can be expressed by the general formula

H ≈
nq∑

g=1

wgh(xg ), (9.34)

where the function h(x) is evaluated at nq distinct quadrature points, xg , g = 1, . . . , nq .
Each h(xg ) is then multiplied by an appropriate weight wg and the sum is computed. If we
know nothing about the nature of the function h(x), it is natural to choose the points xg to be
equally spaced by a distance h, and choose the weights based on an assumed interpolation
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Table 9.4. Gaussian integration points and weights in one dimension∫ 1
−1 h(x) dx =

∑n q
g =1 wg h(xg )

Polynomial order
of h(x), m nq xg wg

1 1 0 2
3 2 ±

√
1/3 1

5 3
0 8/9

±
√

3/5 5/9

7 4
±0.33998104 0.65214515
±0.86113631 0.34785485

9 5
0 0.56888889

±0.53846931 0.47862867
±0.90617985 0.23692689

15 8

±0.18343464 0.36268378
±0.52553241 0.31370665
±0.79666648 0.22238103
±0.96028986 0.10122854

scheme between the points that approximates the function. The well-known Simpson’s rule,
for instance, quadratically interpolates between the points to lead to weights h/3, 2h/3 or
4h/3 depending on the location of the point along the line.

Gauss recognized that the positions xg of the points represented unused degrees of
freedom that could improve the accuracy of the integration. Specifically, it is possible to
show that an integrand h(x) of known polynomial order m can be exactly integrated with
only (m + 1)/2 points, provided the positions of these points are optimal.8 This optimized
quadrature scheme is known as Gaussian quadrature. The optimization is achieved if the
integrand is represented in terms of a set of orthogonal polynomials, such as the Legendre
polynomials [AW95], and the points xg chosen at the polynomial roots. Table 9.4 shows
the optimal choice of the quadrature points and weights for polynomials of different order.
Extension of this approach to two- and three-dimensional parent domains is conceptu-
ally straightforward but mathematically cumbersome. Therefore, we simply include some
typical examples of Gauss points and weights in Tabs. 9.2 and 9.3.

If we closely consider the integrals in Eqn. (9.32), we see that while we can determine
the polynomial order of most terms, the quantities W , P and D are general functions of
the deformation gradient F . If the polynomial order of this relationship is known, such as
in the special case of linear elements (in which F is constant within the element) we can,
in principle, determine the number of Gauss points necessary to integrate the functions
exactly. In general though, this is not the case. However, it has been shown that number of

8 It is also known that it is generally impossible to obtain the exact result using less than (m + 1)/2 points,
regardless of where these points are located. Thus, Gauss quadrature is optimal in the sense that it obtains the
exact value using the minimal amount of computational effort possible.
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Gauss points should not be chosen for exact integration. Rather, the most effective choice
is the minimum number of points required to ensure that the same rate of convergence with
decreasing element size is preserved as when exact integration is used. This is due to a very
interesting curiosity of FEM. In essence, there is an advantageous cancellation of errors
that occurs between discretization errors on the one hand and integration accuracy on the
other. More discussion of this can be found in [ZT05].

Using the convergence rate as the criterion for the required accuracy of integration
makes it possible to determine the number of Gauss points independently of the functional
form of W , P and D. This is because the convergence rate is dominated by the fact that
at a sufficiently small element size, the displacement variation becomes linear and the
deformation gradient is uniform within each element. As such, the number and location of
the Gauss points is strictly determined by the element type, as shown in Tabs. 9.2 and 9.3.

We are now in a position to apply Gaussian quadrature to each of the integrals in
Eqns. (9.32). First, we note that each quantity in Eqns. (9.32) is a sum over contributions
independently obtained from each element:

Π̃ =
n e l e m∑
e=1

U e − fext
ᾱ uᾱ , fᾱ =

n e l e m∑
e=1

f int,e
ᾱ + fext

ᾱ , Kᾱ β̄ =
n e l e m∑
e=1

Ke
ᾱ β̄ , (9.35)

where the elemental quantities (denoted by the superscript e) are the Gauss quadrature
expressions for each of the integrals in the equations:

U e ≡
nq∑

g=1

wgW (F̃
g
(u))Ĵ e , (9.36a)

f int,e
ᾱ ≡ −

nq∑
g=1

wgPiJ (F̃
g
(u))

∂Siᾱ

∂ξR
(Je

RJ )−1 Ĵ e , (9.36b)

Ke
ᾱ β̄ ≡

nq∑
g=1

wgDiJ mN (F̃
g
(u))

∂Smβ̄

∂ξS
(Je

SN )−1 ∂Siᾱ

∂ξR
(Je

RJ )−1 Ĵ e . (9.36c)

These are the sums to be evaluated for each element.
Note that for all but linear shape functions, the shape function derivatives and the Jacobian

vary through the element, and therefore take a different value at each Gauss point. This
is to say that even though we only explicitly show a dependence on g for the deformation
gradient and the Gauss weight, it is tacitly contained in the other factors as well. The
deformation gradient at each Gauss point, F̃

g
(u), depends on the current displacement

vector and therefore needs to be evaluated during each iteration as outlined in Section 9.2,
but the remaining quantities, i.e. the shape function derivatives and the Jacobian matrix,
need to be computed only once and stored when the initial mesh is set up.

It is sometimes convenient to rewrite the residual in a form that explicitly separates the
node number and the components. If we start from Eqn. (9.4) to define the displacements
and Eqn. (9.7) for the deformation gradient in Eqn. (9.1) we obtain the form

fαi = fext,α
i −

n e l e m∑
e=1

nq∑
g=1

wgP
g
iJ

∂s
⇀
αe

∂ξK
(Je

K J )−1 Ĵ e . (9.37)
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9.3.3 Practical issues of implementation

It is worth spending some time looking at the practical implementation of the method
just outlined. For an NR minimization approach, this amounts to the iterative solution of
Eqn. (9.16) until ‖f‖ is less than some tolerance. Therefore, we expect to have to evaluate
Eqns. (9.35) multiple times during the solution, building the residual vector and constructing
and inverting the stiffness matrix.

For the sake of concise notation, we have indicated that the elemental quantities in
Eqns. (9.36) depend on the entire array of shape functions and displacements, but we know
that the compact support of the shape functions will make most of these contributions zero.
Thus, in practical implementation, local elemental arrays of displacements are extracted
from the global vector, and these are used to produce small elemental vectors and matrices
which are then added, one component at a time, to their global counterparts. A specific
example helps to demonstrate this. We will consider a mesh of three-dimensional, four-node
tetrahedral elements. Thus the number of dimensions is nd = 3 and the number of nodes
per element nen = 4. The shape functions for this element are shown in Tab. 9.3.

The terms in Eqns. (9.36) arise from the formal differentiation of the approximate energy
functional, but they are not in a form that is especially amenable to efficient computer
implementation. Specifically, we would like to recast our tensor quantities in matrix form
(similar to the Voigt notation of Section 6.5.1) in order to avoid contractions over tensors
of higher order. With this goal in mind, it is possible to rearrange terms as follows. We start
by treating the quantities PiJ and FiJ as column matrices, defining

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P11

P21

P31

P12

P22

P32

P13

P23

P33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F11

F21

F31

F12

F22

F32

F13

F23

F33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
1
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u1/∂X1

∂u2/∂X1

∂u3/∂X1

∂u1/∂X2

∂u2/∂X2

∂u3/∂X2

∂u1/∂X3

∂u2/∂X3

∂u3/∂X3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9.38)

We identify the first term in F as the identity tensor I written as a column matrix. The
second term can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u1/∂X1

∂u2/∂X1

∂u3/∂X1

∂u1/∂X2

∂u2/∂X2

∂u3/∂X2

∂u1/∂X3

∂u2/∂X3

∂u3/∂X3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Eu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂/∂X1 0 0
0 ∂/∂X1 0
0 0 ∂/∂X1

∂/∂X2 0 0
0 ∂/∂X2 0
0 0 ∂/∂X2

∂/∂X3 0 0
0 ∂/∂X3 0
0 0 ∂/∂X3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣u1

u2

u3

⎤⎦ , (9.39)
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which defines the “strain operator” E. Within an element, u can be approximated by the
interpolated finite element displacements, ũ using Eqn. (9.3). However, the compact support
we have introduced for the shape functions means that we can limit the extent of the matrices
to only shape functions that are nonzero within the element in question. Specifically we
write for each element e

ũ = Seue =

⎡⎣s1 0 0 s2 0 0 s3 0 0 s4 0 0
0 s1 0 0 s2 0 0 s3 0 0 s4 0
0 0 s1 0 0 s2 0 0 s3 0 0 s4

⎤⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
1

u1
2

u1
3

u2
1

u2
2

u2
3

u3
1

u3
2

u3
3

u4
1

u4
2

u4
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9.40)

where the numbering now refers to the nen = 4 nodes of the tetrahedron in Tab. 9.3, rather
then the totality of nnodes nodes in the mesh. Combining Eqns. (9.40), (9.39) and (9.38)
we define a matrix operator Be as

Fe = I + ESeue = I + Beue , (9.41)

where

Be ≡ ESe (9.42)

is a 9 × 3nen matrix in three dimensions that will play the role of the shape function
derivatives in our computer implementation. Roughly speaking,

∂Siᾱ

∂ξR
(Je

RJ )−1 → Be

in our implementation-friendly formulation.
Now we consider, for example, the elemental internal force vector in Eqn. (9.36b). This

can be written in terms of the local elemental matrices as

f int,e = −1
6
Ĵ e(Be)T P, (9.43)

where the 1/6 is the Gauss weight for the single Gauss point of a tetrahedral element and
the matrix Be takes the place of the quantity (∂Siᾱ /∂ξR )(Je

RJ )−1 . Note that fe is a 3nen ×1
(=12 × 1) vector, (Be)T is 3nen × 9 (=12 × 9) and P is 9 × 1.

Similarly, the elemental stiffness matrix from Eqn. (9.36d) is a 12 × 12 matrix that can
be found from the multiplication

Ke =
1
6
Ĵ e(Be)T DBe , (9.44)
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where D is a 9 × 9 symmetric matrix containing the unique components of DiJ kL (there
are 45 unique entries due to symmetries). Specifically,

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1111 D1121 D1131 D1112 D1122 D1132 D1113 D1123 D1133

D1121 D2121 D2131 D2112 D2122 D2132 D2113 D2123 D2133

D1131 D2131 D3131 D3112 D3122 D3132 D3113 D3123 D3133

D1112 D2112 D3112 D1212 D1222 D1232 D1213 D1223 D1233

D1122 D2122 D3122 D1222 D2222 D2232 D2213 D2223 D2233

D1132 D2132 D3132 D1232 D2232 D3232 D3213 D3223 D3233

D1113 D2113 D3113 D1213 D2213 D3213 D1313 D1323 D1333

D1123 D2123 D3123 D1223 D2223 D3223 D1323 D2323 D2333

D1133 D2133 D3133 D1233 D2233 D3233 D1333 D2333 D3333

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is possible, but tedious, to show that summing Eqns. (9.43) and (9.44) over the Gauss
points in the element is equivalent to Eqns. (9.36b) and (9.36c). The advantage is the
elimination of the higher-order tensors and the many zeroes and symmetries that they
concealed. As a result, the equations can be much more rapidly evaluated on a computer.

Spatial forms; material and geometric stiffness matrices Often, a constitutive law is given entirely
in terms of the spatial quantities, i.e. c and τ (recall that τ = Jσ). It is therefore convenient
to transform Eqns. (9.43) and (9.44) to a form that operates directly on these quantities. We
start by defining a matrix form of Eqn. (4.35) such that

P = VT t,

where

VT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F̃−1
11 0 0 0 F̃−1

13 F̃−1
12

0 F̃−1
12 0 F̃−1

13 0 F̃−1
11

0 0 F̃−1
13 F̃−1

12 F̃−1
11 0

F̃−1
21 0 0 0 F̃−1

23 F̃−1
22

0 F̃−1
22 0 F̃−1

23 0 F̃−1
21

0 0 F̃−1
23 F̃−1

22 F̃−1
21 0

F̃−1
31 0 0 0 F̃−1

33 F̃−1
32

0 F̃−1
32 0 F̃−1

33 0 F̃−1
31

0 0 F̃−1
33 F̃−1

32 F̃−1
31 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

τ11

τ22

τ33

τ23

τ13

τ12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (9.45)

from which we can rewrite Eqn. (9.43) as

f int,e = −1
6
Ĵ e(Be)T P = −1

6
Ĵ e(Be)T VT t = −1

6
Ĵ e(Be

c )
T t.

We have defined a new matrix

Be
c = VBe (9.46)

that transforms the Kirchhoff stress column matrix directly to the nodal forces.
The stiffness matrix calculation is not quite as simple, but it is still possible to write it in

terms of the spatial quantities. Recalling Eqn. (6.166) we have

DiJ mN = J (cijmn + δim σjn ) F−1
J j F−1

N n ,
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which we can insert into Eqn. (9.36c) to obtain two distinct terms:

Ke
ᾱ β̄ =

nq∑
g=1

wgJcijmn F̃−1
J j F̃−1

N n

∂Smβ̄

∂ξS
(Je

SN )−1 ∂Siᾱ

∂ξR
(Je

RJ )−1 Ĵ e

+
nq∑

g=1

wgδim τjn F̃−1
J j F̃−1

N n

∂Smβ̄

∂ξS
(Je

SN )−1 ∂Siᾱ

∂ξR
(Je

RJ )−1 Ĵ e .

We have dropped the explicit dependence on the Gauss points to streamline the notation,
but recall that c, τ and F all depend on the deformation and the location in the element at
which we are evaluating the terms. These two sums are referred to as the material stiffness
and the geometric stiffness, respectively, to emphasize the dependence of the former on the
material property c and the latter on the current state of stress and deformation. Analogous
to Eqn. (9.44), this can be written in a compact matrix form as

Ke = Ke
mat + Ke

geo , (9.47)

where

Ke
mat =

1
6
Ĵ eJ(Be

c )
T cBe

c , Ke
geo =

1
6
Ĵ e(Be

T)T TBe
T . (9.48)

In these expressions, c is the 6 × 6 form of the spatial stiffness in Voigt notation (see
Eqn. (6.171)) and T is a 9×9 matrix that represents δim τjn analogous to how D represents
DiJ mN . Specifically, T is the symmetric matrix

T =

⎡⎣τ11I τ12I τ13I

τ12I τ22I τ23I

τ13I τ23I τ33I

⎤⎦ ,

where I is the 3 × 3 identity matrix.
The matrix Be

c in Eqn. (9.48)1 has already been defined in Eqn. (9.46), whereas Be
T

plays a similar role in Eqn. (9.48)2 , but has different dimensions due to the difference in
the symmetries of δim τjn versus cijmn . In analogy with Eqn. (9.45)1 , we define a matrix
U such that

UT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F̃−1
11 0 0 F̃−1

12 0 0 F̃−1
13 0 0

0 F̃−1
11 0 0 F̃−1

12 0 0 F̃−1
13 0

0 0 F̃−1
11 0 0 F̃−1

12 0 0 F̃−1
13

F̃−1
21 0 0 F̃−1

22 0 0 F̃−1
23 0 0

0 F̃−1
21 0 0 F̃−1

22 0 0 F̃−1
23 0

0 0 F̃−1
21 0 0 F̃−1

22 0 0 F̃−1
23

F̃−1
31 0 0 F̃−1

32 0 0 F̃−1
33 0 0

0 F̃−1
31 0 0 F̃−1

32 0 0 F̃−1
33 0

0 0 F̃−1
31 0 0 F̃−1

32 0 0 F̃−1
33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
from which we build

Be
T = UBe .
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Note that in the spatial form the matrices Be
T and Be

c depend directly on the state of
deformation through F−1 . This means that they must be recomputed at each step in the
iterative solution. The matrix Be , on the other hand, is constant.

Data stored prior to NR iteration Further steps to an efficient implementation can now be made
apparent. For example, Be comprises terms which do not depend on the solution vector u,
but only on the nodal coordinates and the location of the Gauss point. Thus, when each
element is initially defined, the following steps can be taken:

• For each Gauss point, a matrix of shape function derivatives with respect to the parent
coordinates, evaluated at the Gauss point, is loaded into memory. In this example of a
three-dimensional tetrahedral element, we require a 3 × 4 matrix and there is only one
Gauss point:

∇ξS
e =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂s1

∂ξ1

∂s2

∂ξ1

∂s3

∂ξ1

∂s4

∂ξ1

∂s1

∂ξ2

∂s2

∂ξ2

∂s3

∂ξ2

∂s4

∂ξ2

∂s1

∂ξ3

∂s2

∂ξ3

∂s3

∂ξ3

∂s4

∂ξ3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣1 0 0 −1
0 1 0 −1
0 0 1 −1

⎤⎦ .

Note that this matrix is the same for every element of the same (linear tetrahedral) type.
• A matrix of the coordinates of the nodes defining the element is extracted from the global

coordinate array. In this case, we have the 4 × 3 matrix:

Xe =

⎡⎢⎢⎣
X1

1 X1
2 X1

3
X2

1 X2
2 X2

3
X3

1 X3
2 X3

3
X4

1 X4
2 X4

3

⎤⎥⎥⎦ ,

which permits the calculation of the 3×3 Jacobian matrix, Je , from Eqn. (9.31), but with
nnodes replaced with the number of nodes on the element, nen = 4. The determinant
of Je is stored as Ĵ e for each element, e. The Jacobian matrix and its determinant are
different for every element, but they does not change during the solution iterations since
they are independent of the displacement vector. Thus, they can be computed and stored
for each element once as a preprocessing step.

• The inverse of Je is computed and stored to be used in subsequent computations of F̃ ,
which is dependent on the displacements and is computed during each minimization
step.

• The inverse of Je is used to find the components of Be which are stored for the element.
While it is tempting, because of the simple code which would result, to directly implement
Eqns. (9.43) and (9.44) exactly as they appear as matrix multiplications, this approach
would not be especially efficient due to many multiplications by zero. Alternatively and
more efficiently, the gradient of the shape functions with respect to the global coordinate,
∇0S

e , can be stored as a 3 × 4 matrix analogous to ∇ξS, but now containing unique
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values for each element:

∇0S
e =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂s1

∂X1

∂s2

∂X1

∂s3

∂X1

∂s4

∂X1

∂s1

∂X2

∂s2

∂X2

∂s3

∂X2

∂s4

∂X2

∂s1

∂X3

∂s2

∂X3

∂s3

∂X3

∂s4

∂X3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (9.49)

from which Eqns. (9.43) and (9.44) can be more carefully coded. It is the use of this kind
of optimization that typically makes FEM code tedious to write and hard to read.

The quantities P and D are dependent on the displacements through F̃ , and as such must
be computed at each iteration during the solution. Rapid computation of the deformation
gradient at a Gauss point is achieved by extracting a local elemental displacement vector
and evaluating Eqn. (9.41). The deformation gradient can then be passed to an independent
routine that returns P and D, which are used to compute the elemental internal force
(Eqn. (9.43)) and elemental stiffness (Eqn. (9.44)). The entries of these matrices can be
added to the global force and stiffness through the mapping of the local node numbering
within the parent element and the global node numbers. This will be illustrated for a simple
one-dimensional example in the next section.

The FEM solution algorithm Figure 9.9 is a sketch of the flow of the FEM solution process,
and helps to illustrate the benefits of the rearrangement of terms and element-by-element
treatment. Primarily, it illustrates the modularity of the FEM. For example, we see that the
constitutive model is completely contained in D and P for a given deformation gradient,
and it is therefore entirely independent of the type of element used and the dimensionality
of the problem. Also, the elemental data stored in Be can be computed once at the start of
the process, and a carefully written code can easily swap between element types (since this
only changes the size of the Be matrices and the number of Gauss points). Every element
is independent from every other element in the sense that a problem can contain elements
with different constitutive responses and different shapes. Well-written FEM code can be
used for multiple element types and multiple materials, without loss of efficiency.

The main iterative loop of the algorithm shown in Fig. 9.9 is essentially the NR process
explained in Section 9.2.5, containing three main processes (as well as the simple conver-
gence test). The first is the element-by-element construction of the forces, indicated by the
first loop over the elements. If the forces have not converged, we start the second main
process, which is to build the stiffness matrix, K, again element-by-element.9 The third
and final process, comprising the “solve” and “update” steps, is to invert K and take an NR
step to update the displacement field. In Section 9.3.5, we discuss the application of the
boundary conditions required within the “solve” process.

9 The process of efficiently assembling K is described in Section 9.3.4. A similar process is used in assembling
f . The details are obvious from the discussion of the stiffness matrix assembly.
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(9.42)eqn.

(9.52)eqn.

(6.155)eqn.

(6.107)eqn.(9.41)eqn.

(9.41)eqn.

(9.43)eqn.

(9.4)eqn.

u

fext

e:=0

e:=0

e := e 1+

e := e 1+

compute

Be

fext + f int

compute D

compute Fe

compute Fe build Ke

definitionnode

compute P

(9.44)eqn.

Δu = K−1f

u := u + αΔu

build f int,e

compute Be

compute fext

initialize u

constitutive
modelconverged?

update
end

f int

n>e elem?

n>e elem?

output P

output u
K

generationmesh

NO

NO

NO

solve

preprocessing

postprocessing

parent

element
element
assemblyYES

YES

YES

Fig. 9.9 Flow chart of the FEM solution process. Solid lines indicate the flow of the algorithm, while dashed lines indicate the
flow of data as they are computed or used by various processes. The counter e refers to the element number. The chart
highlights the modularity of the elements, constitutive law, and pre- and post- processing aspects of the FEM.

9.3.4 Stiffness matrix assembly

In the previous section, we computed the elemental stiffness matrix, Ke . Note that this
matrix contains (nd · nen) × (nd · nen) entries, where nen is the number of nodes per
element and nd is the number of dimensions of the problem. The final step before solving
the matrix equation is to assemble these elemental matrices into the global stiffness matrix.

The elemental stiffness matrix was computed with reference to a local numbering scheme
for the nodes, but the numbering of the nodes in the global displacements u must be followed
in the final equation. However, a straightforward mapping can be used to insert the elemental
stiffness entries into the global stiffness matrix.
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Fig. 9.10 Simple one-dimensional mesh with three linear elements and four randomly numbered nodes.

Consider a specific mesh in a simple one-dimensional domain, containing four nodes and
three elements as shown in Fig. 9.10. The elements are labeled A, B and C, but for generality
the nodes have been numbered in a random order. Assume that we have computed elemental
stiffness matrices KA , KB and KC . For example, we have found KA by considering nodes
2 and 4, and found values that we will denote by10

KA =

[
KA

11 KA
12

KA
21 KA

22

]
.

Similar notation will be used for elements B and C. Note that the subscripts 1 and 2 in KA

refer to the local node numbering within the element, and globally these nodes are numbers
2 and 4. Globally, then, this matrix relates the forces and displacements of nodes 2 and 4,
but contributes nothing to interactions between any other pair of nodes. Conceptually, we
can expand the elemental stiffness matrix to global size as follows:

KA
global =

⎡⎢⎢⎣
0 0 0 0
0 KA

11 0 KA
12

0 0 0 0
0 KA

21 0 KA
22

⎤⎥⎥⎦ ,

and similarly expand KB and KC :

KB
global =

⎡⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 KB

22 KB
21

0 0 KB
12 KB

11

⎤⎥⎥⎥⎦ , KC
global =

⎡⎢⎢⎢⎣
KC

22 0 KC
21 0

0 0 0 0
KC

12 0 KC
11 0

0 0 0 0

⎤⎥⎥⎥⎦ ,

since element B connects nodes 3 and 4, while element C joints nodes 1 and 3. The global
stiffness matrix from Eqn. (9.35)3 is then

K =
n e l e m∑
e=1

Ke
global = KA

global + KB
global + KC

global

and therefore

K =

⎡⎢⎢⎢⎣
KC

22 0 KC
21 0

0 KA
11 0 KA

12

KC
12 0 KB

22 + KC
11 KB

21

0 KA
21 KB

12 KA
22 + KB

11

⎤⎥⎥⎥⎦ . (9.50)

We emphasize that this is a conceptual process only. It would be extremely wasteful to
build the Kglobal matrices on the computer, since they would be mostly filled with zeroes.

10 Often, and certainly for a hyperelastic material, Ke is symmetric and therefore Ke
12 = Ke

21 .
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This expansion and summation can be efficiently carried out through the storage of a book-
keeping array that maps each element to its place in the global problem (see the discussion
on sparse matrix storage and inversion in [PTVF92, Saa03]).

9.3.5 Boundary conditions

In Section 7.1, we discussed the nature of boundary conditions for continuum mechanics
problems. Here, we see how those boundary conditions translate into constraints on the
solution to an FEM problem. Boundary conditions for static problems consist of two
types:11 the so-called “natural” (or traction) boundary condition and the “essential” (or
displacement) boundary condition. As the name suggests, the traction boundary condition
arises “naturally” from the potential energy due to the applied loads in Eqn. (9.1), and
manifests itself as a constant external force vector (Eqn. (9.21)2) applied to the nodes.
Later, we will discuss why displacement boundary conditions are indeed “essential” to the
solution process as the name suggests, but we first look at the external nodal forces more
closely.

Traction boundary conditions We specified the boundary-value problem with a general trac-
tion applied to part of the body’s surface. Recall that this gives rise to a contribution to the
nodal forces (Eqn. (9.21)2):

fext
ᾱ =

∫
∂B0 t

T̄iSiᾱ dA0 .

The tractions are assumed to be prescribed independently from the solution variable, and
therefore this integral needs to be evaluated only once at the time that the model is initialized.

Rigorous treatment of this term is often glossed over in the finite element literature
because of its complexity and also because of the difficulty of exactly prescribing a traction
boundary condition in the first place (see footnote 2 on page 246). In practice, a traction
boundary condition is often either relatively simple and treatable as a special case (e.g.
constant pressure over a surface), too complex to know exactly (e.g. contact forces), or
more easily represented as a displacement boundary condition (e.g. the end conditions in a
fixed-grip tensile experiment). If, at the end of the day, one still wants to apply a traction,
the exact traction needed to mimic the experiment is probably sufficiently vague that any
reasonable approximation to the equivalent nodal forces will be good enough.12

To rigorously evaluate fext in three dimensions for a general case is tricky since we
must carry out an integration of an arbitrary function (the traction vector as a function of
position on the surface) over an irregularly-shaped surface. However, it is possible to write
the applied traction in terms of the reference surface normal as

T̄ = P̄N , (9.51)

11 There can also be “mixed” boundary conditions, as discussed in Section 7.1. Their application in FEM is a
straightforward extension of the discussion herein.

12 The fact that the nodal forces need not be exactly derived from the surface tractions is related to Saint Venant’s
principle, which states that the stresses, strains and displacements “far” from the location of the applied traction
do not depend explicitly on the details of the traction distribution. Rather, they depend only on the resultant
force (and moment) that the traction creates. For a rigorous statement of this principle see, for example, [Ste54].
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where P̄ is an applied stress that gives rise to the correct tractions. If the loading and
geometry are relatively simple, it is not difficult to work out the functional form of P̄ .
When this is the case, we can use Nanson’s formula (Eqn. (3.9)) to carry out a mapping
into the parent space13

fext
ᾱ =

n e l e m∑
e=1

∫
∂Ω t

(Je
RJ )−1N̂RSiᾱ P̄iJ Ĵ e da, (9.52)

where N̂ is the normal to the surface in the parent space (which is a constant on each facet
of the parent element) and da is an element of area in the parent space. It is now possible
to carry out this integration using appropriately located Gauss points for the reduced-
dimensional facet of the parent element. Of course, this need only be evaluated for the
subset of element facets upon which nonzero tractions act.

Displacement boundary conditions Displacement boundary conditions are called “essential”
because they take the form of constraints that serve to make the stiffness matrix invertible.
In three dimensions, any finite element mesh has six degrees of freedom that do not change
the energy of the system (three translations and three rotations). Mathematically, these
zero-energy eigenmodes of the stiffness matrix render it uninvertible. We must constrain
enough nodes to make rigid rotations and translations impossible, with the mathematical
effect of building a reduced stiffness matrix that will be invertible. This is achieved by
constraining nodes on ∂B0u to the prescribed displacements there. This means that we no
longer want to “solve” for the displacement of these nodes but rather use them to eliminate
some of the equations governing an NR iteration.

The process is best illustrated by a simple rearrangement of the order of the scalar
equations in Eqn. (9.16). Practically speaking, this amounts to a renumbering of the nodes,
although efficient FEM implementations can perform this operation through appropriate
book-keeping without actual renumbering. Imagine we renumber so that all the nodes
which have fixed displacement appear first in the vector u. Then we can partition our matrix
equation as [

KCC KCF

KFC KFF

] [
ΔuC

ΔuF

]
=
[
fC

fF

]
.

Here, the subscript C refers to the “constrained” degrees of freedom where the displacement
is prescribed and the subscript F means “free.” Assuming that the displacement of the
constrained nodes is already imposed, then ΔuC = 0. This set of equations can now be
written as two separate equations:

KCFΔuF = fC , KFFΔuF = fF . (9.53)

The second of these can be inverted to find displacement increments of the free nodes:

ΔuF = K−1
FF fF . (9.54)

13 Note by comparing the definitions of J and F that the parent space here plays the role of the reference
configuration in the derivation of Nanson’s formula.
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A

Fig. 9.11 Example meshes for the patch test. Node A is an example of an interior node on which the forces must be identically
zero under uniform deformation. It is an interior node because it is surrounded by elements on all sides.

Generally, forces will arise on the constrained nodes due to the fact that they are held fixed.
These forces can now be computed directly from Eqn. (9.53)1 if they are desired.

9.3.6 The patch test

In order to be useful, the FEM should converge in the limit of high nodal density. Once
elements are small enough in this limit, it is reasonable to expect that all fields can be
approximated as uniform within an element, and thus we should require that the FEM
reproduces uniform fields exactly. The test of this convergence property is the so-called
patch test. It derives its name from an arbitrary patchwork of elements like those illustrated
in Fig. 9.11, and is succinctly stated as follows.

Patch test A method passes the patch test if, for any arbitrary arrangement of nodes
with nodal displacements consistent with a uniform deformation, the residual force on
internal nodes is identically zero.14

In other words, we take any of the patches shown in Fig. 9.11 and apply displacements
to all of the nodes of the form

uα
i = (F app

iJ − δiJ )Xα
J , (9.55)

where F app is a constant deformation gradient. The resulting residual force on any internal
node must be exactly zero. Note that we do not require the residual on the boundary nodes
to be zero. We think of this as the physical problem of applying displacement boundary
conditions consistent with a uniform deformation gradient. In Section 8.1 we saw that
homogeneous deformation of uniform material is a universal equilibrium solution that can
be sustained by application of appropriate boundary tractions. Thus, we should expect that,
no matter what simple elastic constitutive relation is used, the uniformly deformed FEM
mesh for the patch test will be in equilibrium away from the boundary nodes. In other
words, the internal nodes will be at equilibrium positions with zero out-of-balance forces.

14 In the computational literature a weaker form of the patch test is often invoked. Instead of requiring the residual
to be identically zero, a method must only satisfy this condition to a specified numerical tolerance in order to
pass the test. We prefer the strict definition used here.
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FEM formulations using so-called “conforming elements” (the type with which we have
contented ourselves here) satisfy the patch test, and this is one of the reasons why they are
so widely and successfully used. To see this, we need to prove two things. First, we need to
show that the nodal displacements above, consistent with an applied F app that is constant,
also produce the same constant deformation gradient inside each element. Once we have
that, we will need to show that this results in zero residual on the internal nodes.

Proof Within each element, the deformation gradient is given by the expression in
Eqn. (9.33)2 . Inserting the prescribed displacement field from Eqn. (9.55) gives us

F̃iJ = δiJ + F app
iM

nn o d e s∑
α=1

∂s
⇀
αe

∂ξK
(Je

K J )−1Xα
M − δiM

nn o d e s∑
α=1

∂s
⇀
αe

∂ξK
(Je

K J )−1Xα
M .

Note that by the definition of Je in Eqn. (9.31), this becomes

F̃iJ = δiJ + F app
iM Je

M K (Je
K J )−1 − δiM Je

M K (Je
K J )−1 .

The summation convention on the repeated indices allows us to cancel the first and third
terms while simplifying the second to give

F̃iJ = F app
iJ .

Thus the deformation gradient is equal to the constant applied value in every element. Since
we assume that the constitutive law is the same in each element and a function only of F ,
this further implies that the stress P and stiffness D are also constant everywhere.

Now consider the residual, as defined in Eqn. (9.37), for the special case of no externally
applied forces. Since P is constant we can take it outside the sums to yield

fα
i = −PiJ

n e l e m∑
e=1

nq∑
g=1

wg
∂s

⇀
αe

∂ξK
(Je

K J )−1 Ĵ e . (9.56)

We know the polynomial order of all terms within the sums, so we can choose the quadrature
points and weights such that the integral is evaluated exactly. Next, we remind ourselves
what this integral is by returning to the analytical integration over the real space instead of
the mapped parent space

fα
i = −PiJ

n e l e m∑
e=1

∫
B e

0

∂s
⇀
αe

∂XJ
dV0 . (9.57)

By the compact support of the shape functions, this is an integral over the elements touching
the node α, since the shape functions are identically zero outside this support. In the example
patch of Fig. 9.11, a typical interior node A is shown along with the shaded region over
which this integral needs to be considered. Using the divergence theorem (Eqn. (2.106))
allows us to transform this integral over the volume of each element to an integral only over
the element surfaces, and the residual becomes

fαi = −PiJ

n e l e m∑
e=1

∫
∂B e

0

s
⇀
αe NJ dA0 , (9.58)
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where N is the outward normal to the element surface. If we perform this integration
element by element, going around each element facet-by-facet, we see that along the facets
that do not touch node α, the contribution is zero since the shape function must be zero
on this facet. On the other hand, contributions from facets which include node α may be
nonzero, but they will always be canceled by the contribution from a neighboring element.
This follows from the assumed continuity of the shape functions across element boundaries,
and from the fact that N on a face of one element is −N for the same face of a neighboring
element. Thus, as long as node α is completely surrounded by elements (as it must be on any
interior node), this evaluates to zero. The patch test is therefore identically satisfied.

Advanced modifications to the FEM include types of elements for which it is not possible
to show that the patch test is generally satisfied as we have here. In some instances, one
can show a numerical patch test is satisfied. In other cases, care must be taken as to how
the elements are used, and such FEM formulations are best left to the FEM experts. On the
other hand, the relatively simple FEM approach outlined in this book can be implemented
and used by FEM novices with confidence that the results will generally be reliable, stable
and accurate. An essential reason for this reliability is the satisfaction of the patch test.

9.3.7 The linear elastic limit with small and finite strains

An important limit of continuum mechanics and finite element solutions is the case of
linear elastic, small strain (see Sections 3.5, 6.5 and 10.4). In this limit, the gradients
of the displacement, ui,j , are small and the strain energy density function becomes (see
Eqn. (6.170))

W =
1
2
cijklui,j uk,l , (9.59)

from which the Cauchy stress follows as

σij = cijkluk,l . (9.60)

In effect, the small-strain assumption is that all components of ∇0u are small compared
with unity. From this, we can say that for small strains

F = I + ∇0u ≈ I (9.61)

and

J = detF ≈ 1. (9.62)

We can now use this to simplify the relations between the various stress measures and
elastic moduli. Equations (4.35) and (4.41) clearly lead to

σ ≈ P ≈ S, for small strains.

For the moduli, we start from Eqn. (6.166) and insert Eqn. (9.60) to eliminate the stress
from the equation. Using Eqns. (9.61) and (9.62) this becomes

DiJ kL ≈ δJ j δLl (cijkl + δikum,ncjlmn ) for small strains.
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We note that by the assumption of small ∇0u, the second term in the parentheses is much
smaller than the first, and we can therefore simply write

DiJ kL ≈ δJ j δLlcijkl for small strains. (9.63)

Finally, we can insert Eqns. (9.59), (9.60) and (9.63) into Eqns. (9.35) and (9.36) to get the
small-strain, linear elastic form of the governing equations:

Π̃ =
1
2
Kᾱ β̄ uᾱuβ̄ , (9.64a)

fᾱ = Kᾱ β̄ uβ̄ + fext
ᾱ , (9.64b)

Kᾱ β̄ =
n e l e m∑
e=1

nq∑
g=1

wgcijmn

∂Smβ̄

∂ξS
(Je

Sn )−1 ∂Siᾱ

∂ξR
(Je

Rj )
−1 Ĵ e . (9.64c)

These equations can be implemented in a more compact form than our previous version,
due to the symmetries of cijkl and σij . We can define a small-strain version of the strain
operator as (cf. Eqn. (9.39)):⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1,1

u2,2

u3,3

u2,3 + u3,2

u1,3 + u3,1

u1,2 + u2,1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= Essu =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂/∂X1 0 0
0 ∂/∂X2 0
0 0 ∂/∂X3

0 ∂/∂X3 ∂/∂X2

∂/∂X3 0 ∂/∂X1

∂/∂X2 ∂/∂X1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣u1

u2

u3

⎤⎦ , (9.65)

from which Be
ss = EssS

e , allowing a compact expression for implementation of the stiffness
matrix:

K =
n e l e m∑
e=1

nq∑
g=1

Ĵ ewg (Be
ss)

T cBe
ss ,

where c is the 6 × 6 form of the spatial stiffness in Voigt notation (see Eqn. (6.171)), and
the stiffness matrix assembly process of Section 9.3.4 is implied. The column matrix form
of the stress, obtained from cBe

ssu, can be stored as a 6 × 1 matrix instead of a 9 × 1 one
thanks to the symmetry of the Cauchy stress.

In this small-strain limit, the equations become completely linear in the solution variable,
u, and therefore the solution is exactly obtained in a single iteration of the NR process. How-
ever, this formulation does not take into account the effects of geometric nonlinearity, and
must therefore be used carefully. The most striking manifestation of this is the dependence
of the energy on rigid-body rotations (see Exercise 3.12), which can lead to considerable
error in the results. Take, for example, a slender beam in bending. Although the strains may
be small everywhere, the rotations of many elements are large and the resulting errors in
the finite element solution will be substantial. For this reason, finite elements are normally
formulated in terms of the Lagrangian strain tensor even when the material is linear elastic.
In this case the constitutive law becomes

W =
1
2
CIJ K LEIJ EK L , (9.66)
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where C is the Lagrangian elasticity tensor. This is precisely the Saint Venant–Kirchhoff
material discussed in more detail in Section 6.4.2. This strain measure is nonlinear in the
displacement, and so the overall formulation is nonlinear even though the stress is linear in
the strain. This is clear from the term F T F in E, which is quadratic in the displacement
from Eqn. (9.41), and explicitly highlights the role of the geometric nonlinearity.

Exercises

9.1 [SECTION 9.2] Write a program that implements the steepest descent method in Algorithm 9.2
to minimize a real, multivariate scalar function. Instead of line 5, use a fixed value α(n ) = α0 .
Note that α0 is a dimensional constant in this algorithm, and therefore must be chosen carefully.
Since the units of α0 are the same as the units of r = ‖u‖ / ‖f‖, one approach is to set α0 to
be some small fraction of the initial value of r. Explore the effect of changing the magnitude
of α0 .

9.2 [SECTION 9.2] Write a subroutine that implements the line minimization method of Algo-
rithm 9.3. Incorporate this subroutine into the steepest descent code from the previous exercise
by using it to find α(n ) for each step. Explore how well this improves the rate of convergence
to the solution. Explore the effects of varying ρ and c1 .

9.3 [SECTION 9.3] Verify that Eqn. (9.24) is satisfied for the shape functions shown in Tab. 9.1.
9.4 [SECTION 9.3] Verify that the interpolation and Kronecker delta properties hold for the three-

noded triangular element of Eqn. (9.26).
9.5 [SECTION 9.3] Use Gaussian quadrature to integrate the quadratic function h(x) = Ax2 +

Bx + C on the domain −1 ≤ x ≤ 1.
1. Verify that using two Gauss points at xg = ±1/

√
3 and wg = 1 yields the exact integral.

2. Compute the error if xg = ±1/2 and wg = 1 are used instead.
9.6 [SECTION 9.3] Using the shape functions from Tab. 9.2, verify that the configuration of ele-

ments in Fig. 9.8(a) satisfies continuity of the interpolated displacements across the element
boundaries. Similarly, show that this continuity is lost in Fig. 9.8(b).

9.7 [SECTION 9.3] Reproduce the derivation of Section 9.3.3 for the simpler case of a two-
dimensional, three-node triangular element. Assume plane strain (i.e. F13 = F23 = F31 =
F32 = 0 and F33 = 1), and optimize all matrices for the two-dimensional case (eliminate un-
necessary storage of zeroes). Be sure to note the size of each matrix if it is not explicitly written
out in one of the steps. Note that plane strain does not imply plane stress, but out-of-plane
stress components can be treated separately and computed, if desired, as a postprocessing step.

9.8 [SECTION 9.3] Analogously to Eqn. (9.46), derive a matrix Be
s that relates the second Piola–

Kirchhoff stress to the internal nodal force vector. In other words, find Be
s such that

f int ,e = −1
6
Ĵ e (Be

s )
T z,

where z is a column vector of the six independent components of the second Piola–Kirchhoff
stress tensor, z = [S11 , S22 , S33 , S23 , S13 , S12 ]T .

9.9 [SECTION 9.3] Consider the case of a square body spanning the domain from (X1 , X2 ) =
(−10 m,−10 m) to (X1 , X2 ) = (10 m, 10 m). The top face of the body (X2 = 10 m)
experiences a compressive dead-load traction of 100 MPa, i.e. P̄iJ = −pδiJ , where
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p = 100 MPa in Eqn. (9.51). (Note that this is similar to hydrostatic loading, but not ex-
actly the same since the surface normal may not remain parallel to the traction vector, see
Example 7.3.) Verify that if the body is represented by a single four-noded square element,
then Eqn. (9.52) leads to an external force of 1000 MN/m in the downward direction on each
of the top corner nodes.



10 Approximate solutions: reduction
to the engineering theories

Continuum mechanics is in many ways the “grand unified theory” of engineering science.
As long as the fundamental continuum assumptions are valid and relativistic effects are
negligible, the governing equations of continuum mechanics1 provide the most general
description of the behavior of materials (solid and fluid) under arbitrary loading.2 Any
such engineering problem can therefore be described as a solution to the following coupled
system of equations (balance of mass, linear momentum, angular momentum and energy):

∂ρ

∂t
+ div (ρv) = 0, (10.1)

div σ + ρb = ρ

[
∂v

∂t
+ (∇v)v

]
, (10.2)

σ = σT , (10.3)

σ : d + ρr − div q = ρ

[
∂u

∂t
+ v · ∇u

]
, (10.4)

together with the appropriate constitutive relations and initial and/or boundary conditions.3

As discussed in Chapter 8, the difficulty is that due to the nonlinearity (material and geo-
metric) of the resulting initial/boundary-value problem, analytical solutions are unavailable
except in very few cases. This leaves two options. Either a numerical solution must be
pursued or the governing equations and/or constitutive relations must be simplified, usually
through linearization. We discussed numerical solutions of the continuum boundary-value
problem using the finite element method in Chapter 9. In this chapter, we discuss various
simplifications of the continuum equations that lead to more approximate theories that
nevertheless provide great insight into physical behavior.

The fact that most of the courses taught in an engineering curriculum are closely related to
and derive from the common source of continuum mechanics is lost on most undergraduate
and even some graduate engineering students.4 Figure 10.1 illustrates the connections

1 We include thermodynamics under this heading.
2 It is also possible to include electromagnetic effects in the theory. However, we have not pursued this here.
3 Recall that we have required the constitutive relations to satisfy the Clausius–Duhem inequality a priori, and

therefore this inequality does not enter into the formulation explicitly.
4 This state of affairs is not universal to all the engineering disciplines. In chemical engineering, for example,

undergraduate students enjoy a more sophisticated view of engineering science due to the groundbreaking book
by Bird, Stewart and Lightfoot on Transport Phenomena [BSL60], which was first published in 1960 and which
presents a unified view of momentum, energy and mass transport. There are other examples of similar books,
but generally the typical undergraduate engineering education remains fragmented.

This comment should not be understood as a call to restructure all engineering education by beginning with
continuum mechanics and then specializing to the various engineering subjects. We believe that the current
approach, which begins with simpler subjects like statics and gradually builds up to more sophisticated theories,
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MECHANICSCONTINUUM
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Statics StabilityFluidStabilityElastic

MechanicsContact TheoryLubrication
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Fig. 10.1 Continuum mechanics as the “grand unified theory” of engineering science. Many of the courses taught in an
engineering curriculum can be obtained as special cases of the general framework of continuum mechanics. Lines
without arrows indicate that the lower course is a subset of the course it is connected with above. Lines with an arrow
indicate that some sort of approximation is associated with the lower course relative to the one it comes from
(typically linearization of the governing equations and/or the constitutive relations).

between continuum mechanics and engineering courses in the form of a flow chart. The
names in the boxes are to be understood as titles of courses in an undergraduate/graduate
engineering curriculum. At the very top of the figure is Continuum Mechanics where the
most general coupled nonlinear governing equations (balance of mass, momentum and
energy) are solved for general nonlinear constitutive relations. Under this we have Solid
Mechanics, Heat and Mass Transfer and Rheology. These courses involve the application
of the continuum mechanics framework to a particular type of problem (deformation of
solids, transfer of heat or mass in rigid materials, flow of complex fluids). Although these
courses do not normally involve simplification of the equations, they do compartmentalize
the different subjects. For example, most engineering students have no idea that heat transfer
is intimately coupled with deformation.

is both more in tune with the historical development of these theories and provides greater physical understanding
to the students. It is at the graduate level that engineering students should begin to perceive the connections
between the different subjects that they have been taught. For these students, a course in continuum mechanics
is the ideal mechanism for demonstrating the unified framework for engineering science. Having said that, it
also would not hurt to educate undergraduate students as much as possible during their standard educational
curriculum by repeatedly pointing out the relationship between the different subjects as they are developed.
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At the next level, we have courses that involve some level of simplification. Courses on
Elasticity Theory usually involve linearization of the governing equations and the constitu-
tive relations. Courses on Fluid Mechanics normally focus on Newtonian fluids which leads
to the Navier–Stokes equations. A course on Aeroelasticity, normally taught in aerospace
departments, stands between these two courses and deals with solid–fluid interactions. We
have also placed courses on Plasticity Theory and Turbulence Theory at this level. Both
involve “failure” at some level (either within the material or in the nature of the flow). Both
courses also involve additional phenomenological assumptions absent from the continuum
mechanics framework.

Below this level are specialized courses that emerge from Elasticity Theory and Fluid
Mechanics. These are divided into two major categories. The branches heading left involve
additional simplifications and are often encountered in undergraduate curricula. Elasticity
Theory simplifies to Strength of Materials, by introducing additional approximations due
to specialized geometries (two-dimensional plate and shell structures and one-dimensional
beam structures). Dynamics adds on the additional constraint of rigid bodies and the most
basic course on Statics also assumes equilibrium. On the fluids side, Hydrodynamics deals
with the flow of a particular fluid, water, and Hydrostatics deals with its equilibrium
states.

The branches heading down under Elasticity Theory and Fluid Mechanics are specialized
courses where the governing equations of the parent subject are applied to particular
applications. On the solids side, we have courses from Stress Waves to Composite Materials
and on the fluids side, courses from Aerodynamics to Lubrication Theory. There are some
parallels between the solids and fluids courses. Aerodynamics and Hypersonic Flows deal
with dynamic phenomena as do Stress Waves and the Theory of Vibration. The courses on
Fluid Stability and Elastic Stability deal with similar issues as do Lubrication Theory and
Contact Mechanics, which are both important in the science of tribology.

Missing from the diagram are electromagnetic courses since these topics are not covered
in this book. It is possible, however, to formulate a complete continuum theory that includes
electromagnetic phenomena. See for examples the books by Eringen and Maugin [EM90a,
EM90b], Kovetz [Kov00], and Hehl and Obukhov [HO03]. The diagram could then be
expanded to include many of the courses in an electrical engineering curriculum as well.

Below we show how four main engineering theories, Mass Transfer, Heat Transfer, Fluid
Mechanics and Elasticity Theory are derived as special cases of the continuum mechanics
equations.

10.1 Mass transfer theory

The theory of mass transfer begins with the continuity equation (Eqn. (10.1)):

∂ρ

∂t
+ div (ρv) = 0.
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Define j ≡ ρv as the mass flux vector and make the constitutive assumption, referred to as
Fick’s law, that

j = −D̂(ρ)∇ρ(x, t), (10.5)

where D = D̂(ρ) is the diffusion coefficient, which can in general depend on the density
ρ. Substituting Fick’s law into the continuity equation, we obtain the nonlinear diffusion
equation:

∂ρ

∂t
− div

[
D̂(ρ)∇ρ

]
= 0. (10.6)

If D̂ = D is a constant, the result is the linear diffusion equation:

∂ρ

∂t
= Dρ,kk ⇔ ∂ρ

∂t
= D∇2ρ, (10.7)

where ∇2 is the Laplacian. See [TT60, Sect. 295] for a more in-depth discussion of the
diffusion equation.

10.2 Heat transfer theory

As the name suggests, the theory of heat transfer focuses entirely on the transfer of energy
via heat. Energy flux due to mechanical work (which couples with the balance of linear
momentum) is neglected. The energy equation is then an independent equation. Formally,
this is achieved by assuming a rigid material so that Eqn. (10.4) reduces to5

ρr − div q = ρ
∂u

∂t
. (10.8)

We add to this two constitutive postulates:

1. The local form of Joule’s law (Eqn. (5.7)),

u = u0 + cvT, (10.9)

where u0 is a reference internal energy density and cv = ∂u/∂T |V is the specific
heat capacity at constant volume, which is the amount of heat required to change the
temperature of a unit mass of material by one degree. The specific heat capacity cv is
related to the molar heat capacity Cv , defined earlier in Eqn. (5.5), through

cv =
Cv

M
, (10.10)

where M is the molar mass (the mass of one mole of the substance).

5 Strictly, the variables appearing in this equation should be replaced with their reference counterparts. We retain
the spatial notation to be consistent with the notation used in the engineering literature.
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2. Fourier’s law (Eqn. (6.99)),

q = −k∇T, (10.11)

where k is the thermal conductivity of the material.

Substituting the two constitutive laws into the energy equation, we obtain

ρr + k∇2T = ρcv
∂T

∂t
. (10.12)

In the absence of internal heat sources (r = 0), Eqn. (10.12) reduces to

kT,kk = ρcv
∂T

∂t
⇔ k∇2T = ρcv

∂T

∂t
, (10.13)

which is called the heat equation. Note that it has the same mathematical form as the
diffusion equation in Eqn. (10.7), although physically the equations describe different
phenomena.

10.3 Fluid mechanics theory

The basic theory of fluid mechanics deals with the flow of Newtonian fluids for which, as
we showed earlier (Eqn. (6.125)), the constitutive relation is

σ = −p(ρ)I +
[
κ(ρ) − 2

3
μ(ρ)

]
(tr d)I + 2μ(ρ)d,

where p(ρ) is the elastic pressure response and κ and μ are the bulk and shear viscosities.
Substituting this relation into the balance of linear momentum (Eqn. (10.2)) gives

−∇p︸ ︷︷ ︸
pressure gradient force

+∇
[(

κ − 2
3
μ

)
trd

]
+ 2div (μd)︸ ︷︷ ︸

viscous forces

+ ρb︸︷︷︸
body forces

= ρ

[
∂v

∂t
+ (∇v)v

]
.

These equations are called the Navier–Stokes equations. The terms on the left represent
the forces acting on a volume element of fluid as indicated by the descriptions under the
braces. Together, the terms on the right make up the acceleration of the fluid element. Note
that the equations are nonlinear due to the convective part of the acceleration, (∇v)v. The
generalized Navier–Stokes equations can describe the most general kinds of laminar flows,
i.e. flows in which the fluid elements move in parallel layers, that Newtonian fluids can
undergo. The application to turbulent flows that involve both chaotic and regular motion
over a broad range of temporal and spatial scales constitutes a separate area of research (see,
for example, [MM98]). The transition from laminar flow to turbulent flow is reminiscent
of the phenomenon of yielding in solids in which plastic flow associated with the motion
of microstructural defects is initiated.
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The Navier–Stokes equations are often simplified by making some additional approxi-
mations. If κ and μ are assumed to be material constants that do not depend on the density
or position, then the Navier–Stokes equations become

−∇p +
(

κ +
1
3
μ

)
∇(div v) + μ∇2v + ρb = ρ

[
∂v

∂t
+ (∇v)v

]
, (10.14)

where some differential identities were used. Further simplification is obtained by assuming
incompressible flow for which div v = 0 (Eqn. (3.58)):

−∇p + μ∇2v + ρb = ρ

[
∂v

∂t
+ (∇v)v

]
. (10.15)

This is the form of the Navier–Stokes equations that is most familiar to engineers and is
used most often in practical applications. For an ideal nonviscous fluid, μ = 0, and we
obtain the Euler equation,

−∇p + ρb = ρ

[
∂v

∂t
+ (∇v)v

]
, (10.16)

which represents the flow of frictionless incompressible fluids. Finally, in the static case
(v = 0), we obtain the hydrostatic equations:

∇p = ρb, (10.17)

which describe the behavior of a stationary fluid subjected to body forces.

10.4 Elasticity theory

In elasticity theory attention is restricted to linear elastic materials. Most materials only
exhibit a linear response for small perturbations about the reference state. For this reason, a
further simplification introduced in the theory is to assume that the displacement gradients
are small relative to unity, so that the Lagrangian strain tensor,

E =
1
2
[
∇u + (∇u)T + (∇u)T ∇u

]
,

where u is the displacement field, can be approximated by the small-strain tensor,

ε =
1
2
[
∇u + (∇u)T

]
.

The appropriate constitutive relation for this case is the generalized Hooke’s law (given in
Eqn. (6.167)),

σij = cijklεkl = cijkluk,l ,

where cijkl is the elasticity tensor representing the elastic stiffness of the material and where
in the last term we have used the symmetry of cijkl with respect to the indices k and l.
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Substituting Hooke’s law into the balance of linear momentum (Eqn. (10.2)) and assuming
small perturbations, we obtain

(cijkluk,l),j + ρbi = ρ
∂2ui

∂t2
, (10.18)

which are called the Navier equations for a linear elastic solid. The form of the elasticity
tensor for different forms of symmetry was discussed in Section 6.4. For the simplest case
of a homogeneous isotropic material, the elasticity tensor is given in Eqn. (6.174), and the
Navier equations take the form:

μui,kk + (λ + μ)uk,ki + ρbi = ρ
∂2ui

∂t2
⇔ μ∇2u + (λ + μ)∇(div u) + ρb = ρ

∂2u

∂t2
.

(10.19)

Unlike the Navier–Stokes equations for a fluid (Eqn. (10.15)), the Navier equations are
linear and for this reason closed-form solutions for elasticity problems are much easier to
find than those for fluid mechanics. In fact, much of the work in elasticity theory focuses
on obtaining such solutions, for special cases. This is particularly true for the special case
of static boundary-value problems for which the Navier equations reduce to

μ∇2u + (λ + μ)∇(div u) + ρb = 0. (10.20)

Further simplification is possible by restricting the equations to two dimensions and making
certain kinematic assumptions about the response of the material. If the body is very thin in
the third direction, plane stress conditions are assumed to hold. Conversely, if the body is
“infinite” in the third direction, plane strain conditions are assumed. Under these conditions
(which are surprisingly useful, both because of the significant mathematical simplifications
they produce and because of their applicability to a wide range of real engineering prob-
lems), powerful techniques exist for obtaining accurate closed-form approximations and
exact closed-form solutions, respectively. It is beyond the scope of this book to go into
such methods. See, for example, the classic texts by Timoshenko and Goodier [TG51] and
Sokolnikoff [Sok56].

Afterword

We have endeavored herein to lay out the full story of continuum mechanics, starting with
very general mathematical ideas and ending with the practical engineering approximations
outlined above. We hope that you found the book as interesting to read as we found it to
write, and that you can appreciate that continuum mechanics is a rich and extensive subject.
Since we have tried to keep this book relatively concise we were not able to cover all topics
in full detail. If you are interested in learning more on any of these topics, we direct you to
the suggestions for further reading provided in the next chapter.
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The suggestions for further reading given below are divided according to the two parts of
the book: theory and solutions.

11.1 Books related to Part I on theory

There exists an impressive assortment of books addressing the topics contained in the first
part of this book. Here we list either those books that have become standard references in
the field, or titles that focus on specific aspects of the theory and therefore provide a deeper
presentation than the relatively few pages of this book will permit.

• Readers interested in the connection between continuum mechanics and more funda-
mental microscopic theories of material behavior are referred to the companion book to
this one, written by two of the authors, called Modeling Materials: Continuum, Atomistic
and Multiscale Techniques and also published by Cambridge University Press [TM11].
That book includes a concise summary of the continuum theory presented in this book
(which serves as a good abbreviated reference to the subject), followed by a discussion
of atomistics (quantum mechanics, atomistic models of materials and molecular statics),
atomistic foundations of continuum concepts (statistical mechanics, microscopic expres-
sions for continuum fields and molecular dynamics) and multiscale methods (atomistic
constitutive relations and computational techniques for coupling continuum and atom-
istics). [TM11] is consistent in spirit and notation with this book and is likewise targeted
at a broad readership including chemists, engineers, materials scientists and physicists.

• Although published in 1969, Malvern’s book [Mal69] continues to be considered the
classic text in the field. It is not the best organized of books, but it is thorough and
correct. It will be found on most continuum mechanicians’ book shelves.

• A mathematically rigorous presentation is provided by Truesdell and Toupin’s volume in
the Handbuch der Physik [TT60]. This authoritative and comprehensive book presents
the foundations of continuum mechanics in a deep and readable way. The companion
book [TN65] (currently available as [TN04]) continues where [TT60] left off and dis-
cusses everything known (up to the original date of publication) regarding all manner
of constitutive laws. Surprisingly approachable and in-depth, both of these books are a
must read for those interested in the foundations of continuum mechanics and constitutive
theory, respectively.
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• Ogden’s book [Ogd84] has long been considered to be an important classic text on the
subject of nonlinear elastic materials. Mathematical in nature, it provides a high-level
authoritative discussion of many topics not covered in other books.

• A very concise and yet complete introduction to continuum mechanics is given by
Chadwick [Cha99]. This excellent book takes a self-work approach, where many details
and derivations are left to the reader as exercises along the way.

• A mathematically concise presentation of the subject, aimed at the advanced reader, is
that of Gurtin [Gur95]. More recently, Gurtin, Fried and Anand have published a much
larger book [GFA10] covering many advanced topics, which can serve as a reference for
the advanced practitioner.

• Holzapfel’s book [Hol00] presents a clear derivation of equations and provides a good
review of tensor algebra. It also has a good presentation of constitutive relations used in
different applications.

• Salençon’s book [Sal01] provides a complete introduction from the viewpoint of the
French school. The interested reader will find a number of differences in the philosophical
approach to developing the basic theory. In this sense, the book complements the above
treatments well.

• Truesdell’s A First Course in Rational Continuum Mechanics [Tru77] is a highly math-
ematical treatment of the most basic foundational ideas and concepts on which the
theory is based. This title is for the more mathematically inclined and/or advanced
reader.

• Marsden and Hughes’ book [MH94] is a modern, authoritative and highly mathematical
presentation of the subject.

• We would also like to mention a book by Jaunzemis [Jau67] that is not well known in the
continuum mechanics community.1 Published at about the same time as Malvern’s book,
Jaunzemis takes a completely different tack. Written with humor (a rare quality in a
continuum text) it is a pleasure to read. Since the terminology and some of the principles
are inconsistent with modern theory, it is not recommended for the beginner, but a more
advanced reader will find it a refreshing read.

• Lanczos’s classic The Variational Principles of Mechanics [Lan70] provides an accessible
discussion and exploration of variational principles including the principle of virtual work
and the principles of stationary and minimum potential energy.

• Timoshenko and Gere’s Theory of Elastic Stability [TG61] is a classic that takes a
practical engineering approach to the study of the stability of continuous structures.

• Thompson’s book [Tho82] provides a very readable introduction to the ideas of bifurca-
tion, instabilities and catastrophes from an engineering perspective.

• Como and Grimaldi’s book [CG95] was extensively cited in Section 7.3 and provides a
rigorous mathematical discussion of stability and bifurcation theory.

1 We thank Roger Fosdick for pointing out this book to us. Professor Fosdick studied with Walter Jaunzemis as an
undergraduate. He still has the original draft of the book that also included a discussion of the electrodynamics
of continuous media which was dropped from the final book due to length constraints.
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11.2 Books related to Part II on solutions

Universal solutions of some type are discussed in every book on continuum mechanics.
However, few volumes, if any, have been devoted entirely to the subject. In contrast, there
are probably hundreds of books written on the finite element method (FEM), and many of
them are very good. Finite elements are as often used by civil engineers as mechanical or
materials engineers, and so many of the books have a slant towards “structural” elements
like beams or plates. Our focus has been on solid elements that can be used for modeling
materials. Here, we mention a handful of references that we like.

• The collected works of Rivlin [BJ96] contain the original groundbreaking papers in
which most of the currently known universal solutions were first discovered.

• The three-volume set The Finite Element Method by Zienkiewicz and Taylor is currently
in its sixth edition [ZT05] and has been a popular reference on the subject of FEM since
the first edition was published in 1967. The book is comprehensive and clear, and in
the later editions it features many interesting example problems from diverse fields. Our
personal preference is for the fourth edition [ZT89, ZT91], as it is our view that some of
the clarity has been lost as the length of the book has grown, but it is still an essential
reference. The accompanying website for the book provides lots of useful finite element
code.

• The FEM book by Hughes [Hug87] has been popular for long enough that it has been
made into an inexpensive paperback by Dover. As such, it is still a great reference on the
subject but it can be acquired inexpensively.

• The writing and teaching style of Ted Belytschko make his coauthored book on FEM
a good introduction to the subject [BLM00]. Since it is focused on applications to
continuum mechanics, it provides a refreshingly concise take on the field.

• Older FEM books, like that of Grandin [Gra91], are a little dated in terms of the computer
code they provide, but many (and Grandin’s in particular) do a good job of clearly laying
out the fundamentals. Older books are often better than newer books at laying out clear
details for someone writing their own subroutines, since they do not depend on the benefit
of a web-based suite of codes.



A Heuristic microscopic derivation of the
total energy

In Section 5.6.1, we stated that the internal energy accounts for the strain energy due to
deformation and the microscopic vibrational kinetic energy. To motivate that this is indeed
the case, we recall the concept of a continuum particle (see Fig. 3.1). The particle P

represents a microscopic system with characteristic length �. The volume of the particle is
dV ∼ �3 and its mass is dm = ρdV . The total energy of the N atoms represented by P is
given by the Hamiltonian (see Section 4.3 of [TM11]),

H(r1 , . . . , rN , ṙ1 , . . . , ṙN ) =
N∑

α=1

1
2
mα ‖ṙα‖2 + V(r1 , . . . , rN ;F ),

where rα and ṙα are, respectively, the position and velocity of atom α, and
V(r1 , . . . , rN ;F ) is the potential energy of the atoms constrained by the deformation
gradient F at particle P in the body.1 We associate the continuum total energy density with

the temporal average of the Hamiltonian density, i.e. dE/dV = H̃, where

H̃ =
1

dV
H, H̃ =

1
τ

∫ τ

0
H̃ dt, (A.1)

where the Hamiltonian depends on time through its arguments (the atomic positions and
velocities) and τ is a time interval long enough for the microscopic system to achieve
local thermodynamic equilibrium, but short relative to continuum timescales over which
continuum variables vary appreciably.2

The velocity v of the continuum particle is identified with the time-averaged velocity of
the center of mass of the microscopic system,

v = ẋ ≡ 1
τ

∫ τ

0

[
1

dm

N∑
α=1

mα ṙα

]
dt, (A.2)

where dm =
∑

α mα is the total mass of the microscopic system, which is equal to the
mass of the continuum particle. Define the velocity of an atom relative to the continuum
velocity as Δvα ≡ ṙα − v, so that

ṙα = v + Δvα . (A.3)

Note that unless the center of mass is constant, Δvα is not the velocity of atom α relative
to the instantaneous velocity of the center of mass (called the “center of mass velocity” and

1 The calculation of the potential energy from atomistic considerations subject to the constraint of the continuum
deformation gradient is described in Chapters 8 and 11 of [TM11]. Here it is treated as a known function.

2 The derivation given here is only meant to be a heuristic exercise to gain insight into the continuum energy
variable. A rigorous derivation based on nonequilibrium statistical mechanics is given in [AT11].
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denoted vα
rel). Substituting Eqn. (A.3) into Eqn. (A.1)1 gives

H̃ =
1

dV

[
N∑

α=1

1
2
mα ‖v + Δvα‖2 + V

]

=
1

dV

[
N∑

α=1

1
2
mα ‖v‖2 +

N∑
α=1

mαv · Δvα +
N∑

α=1

1
2
mα ‖Δvα‖2 + V

]

=
1
2
ρ ‖v‖2 +

1
dV

[
v ·
(

N∑
α=1

mαΔvα

)
+

N∑
α=1

1
2
mα ‖Δvα‖2 + V

]
.

Passing from the second to the third equation, we have used (
∑

α mα )/dV = dm/dV = ρ.
The temporal average of H̃, defined in Eqn. (A.1)2 , is

H̃ =
1
2
ρ ‖v‖2 +

v

dV
·

N∑
α=1

mα

[
1
τ

∫ τ

0
Δvα dt

]
+

1
τdV

∫ τ

0

[
N∑

α=1

1
2
mα ‖Δvα‖2 + V

]
dt.

(A.4)

The second term in this equation is identically zero as a result of the definition of Δvα :

N∑
α=1

mα

[
1
τ

∫ τ

0
Δvα dt

]
=

1
τ

∫ τ

0

N∑
α=1

mα (ṙα − v) dt

= dm

{[
1
τ

∫ τ

0

1
dm

N∑
α=1

mα ṙα dt

]
− v

}
= dm(v − v) = 0.

Consequently Eqn. (A.4) takes the form,

H̃ =
1
2
ρ ‖v‖2 + ρu, (A.5)

where u is the specific internal energy:

u =
1

τdm

∫ τ

0

[
N∑

α=1

1
2
mα ‖Δvα‖2 + V(r1 , . . . , rN ;F )

]
dt. (A.6)

The total energy E follows as

E =
∫

B

H̃ dV = K + U , K =
∫

B

1
2
ρ ‖v‖2

dV, U =
∫

B

ρu dV, (A.7)

where K and U are the total kinetic and internal energies. We see that the microscopic
derivation leads to the macroscopic definitions given in Eqns. (5.38), (5.39) and (5.40) with
the added benefit that the significance of the internal energy is made clear by Eqn. (A.6).

Under conditions of thermodynamic equilibrium, the velocity of the center of mass is
constant and so Δvα = vα

rel . It follows from Eqns. (A.6) and (A.7)3 that

U = H. (A.8)



B Summary of key continuum
mechanics equations

This appendix presents a brief summary of the main continuum mechanics and thermody-
namics equations derived in Part I to serve as a quick reference. Each entry includes the
relevant equation number in the main text, the equation in both indicial and invariant form
(where applicable) and a brief description. The reader is referred back the text for details
of the derivation and variables appearing in the equations.
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Kinematic relations

(3.1) xi = ϕi(X1 ,X2 ,X3) x = ϕ(X) deformation mapping

(3.4) FiJ =
∂ϕi

∂XJ
=

∂xi

∂XJ
= xi,J F =

∂ϕ

∂X
=

∂x

∂X
= ∇0x deformation gradient

(3.10) FiJ = RiI UIJ = VijRjJ F = RU = V R polar decomposition

(3.6) CIJ = FkI FkJ C = F T F right Cauchy–Green deformation tensor

(3.15) Bij = FiK FjK B = FF T left Cauchy–Green deformation tensor

(3.7) J = 1
6 εijk εmnpFmiFnjFpk J = det F Jacobian

(3.9) ni dA = JF−1
I i NI dA0 n dA = JF−T N dA0 Nanson’s formula

(3.23) EIJ = 1
2 (CIJ − δIJ ) E = 1

2 (C − I) Lagrangian strain tensor

(3.25) eij = 1
2 (δij − B−1

ij ) e = 1
2 (I − B−1) Euler–Almansi strain tensor

(3.28) εij = 1
2 (ui,j + uj,i) ε = 1

2

[
∇u + (∇u)T

]
small-strain tensor

Kinematic rates

(3.35) lij = vi,j l = ∇v velocity gradient tensor

(3.36) ḞiJ = lijFjJ Ḟ = lF deformation gradient rate

(3.38) dij = 1
2 (lij + lj i) d = 1

2 (l + lT ) rate of deformation tensor

(3.40) wij = 1
2 (lij − lj i) w = 1

2 (l − lT ) spin tensor

(3.51) ĖIJ = FiI dijFjJ Ė = F T dF Lagrangian strain rate tensor

(3.54) ėij = 1
2 (lkiB

−1
kj + B−1

ik lkj ) ė = 1
2 (lT B−1 + B−1l) Euler–Almansi strain rate tensor

(3.57) J̇ = Jvk,k = Jdkk J̇ = Jdiv v = J trd Jacobian rate

(3.61)
D

Dt

∫
E

g(x, t) dV =
∫

E
[ġ + g(div v)] dV =

∫
E

∂g

∂t
dV +

∫
∂E

gv · n dA Reynolds transport theorem
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Conservation of mass

(4.1) Jρ = ρ0 conservation of mass (material form)

(4.2) ρ̇ + ρvk,k = 0 ρ̇ + ρ(div v) = 0 conservation of mass (spatial form I)

(4.3)
∂ρ

∂t
+ (ρvk ),k = 0

∂ρ

∂t
+ div (ρv) = 0 conservation of mass (spatial form II)

(4.4) ρai =
∂

∂t
(ρvi) + (ρvivj ),j ρa =

∂

∂t
(ρv) + div (ρv ⊗ v) conservation of mass (spatial form III)

(4.5)
D

Dt

∫
E

ρψ dV =
∫

E
ρψ̇ dV Reynolds transport theorem for extensive ψ

Balance of momentum

(4.18) ti(n) = σijnj t(n) = σn Cauchy’s relation (spatial form)

(4.25) σij,j + ρbi = ρẍi div σ + ρb = ρẍ balance of linear momentum (spatial form)

(4.26) σij,j + ρbi =
∂(ρvi)

∂t
+ (ρvivj ),j div σ+ρb =

∂(ρv)
∂t

+div (ρv⊗v) continuity momentum equation

(4.27) σij,j + ρbi = 0 div σ + ρb = 0 stress equilibrium

(4.30) σij = σji σ = σT balance of angular momentum (spatial form)

(4.35) PiJ = JσijF
−1
J j P = JσF−T first Piola–Kirchhoff stress

(4.37) τij = Jσij τ = Jσ Kirchhoff stress

(4.38) Ti = PiJ NJ T = PN Cauchy’s relation (material form)

(4.39) PiJ,J + ρ0 b̆i = ρ0 ăi Div P + ρ0 b̆ = ρ0 ă balance of linear momentum (material form)

(4.40) PkM FjM = PjM FkM PF T = FP T balance of angular momentum (material form)

(4.41) SIJ = F−1
I i PiJ S = F−1P second Piola–Kirchhoff stress

(4.43) (FiI SIJ ),J + ρ0 b̆i = ρ0 ăi Div (FS) + ρ0 b̆ = ρ0 ă balance of linear momentum (alt. material form)

331



Thermodynamics

(5.24) T = T (N,Γ,S) ≡ ∂U
∂S

∣∣∣∣
N,Γ

temperature

(5.25) γα = γα (N,Γ,S) ≡ ∂U
∂Γα

∣∣∣∣
N,S

thermodynamic tensions

(5.26) μ = μ(N,Γ,S) ≡ ∂U
∂N

∣∣∣∣
Γ,S

chemical potential

(5.2) ΔU = ΔWdef + ΔQ first law for internal energy

(5.3) ΔE = ΔWext + ΔQ first law for total energy

(5.13) ΔS ≥ 0 second law for an isolated system

(5.31) dU =
∑

α γαdΓα + TdS entropy form of the first law

(5.36) dS ≥ d̄Q
T RHS

Clausius–Planck inequality

(5.41) K̇ + U̇ = Pext + R first law for continuum systems

(5.45) Pext = K̇ + Pdef external power

(5.46) Pdef =
∫

B
σij dij dV Pdef =

∫
B

σ : d dV deformation power (spatial form)

(5.49) Pdef =
∫

B0
PiJ ḞiJ dV0 Pdef =

∫
B0

P : Ḟ dV0 deformation power (material form I)

(5.50) Pdef =
∫

B0
SIJ ĖIJ dV0 Pdef =

∫
B0

S : Ė dV0 . deformation power (material form II)

(5.56) h(n) = qini h(n) = q · n heat flux relation (spatial form)

(5.57) σij dij + ρr − qi,i = ρu̇ σ : d + ρr − div q = ρu̇ energy equation (spatial form)

(5.58) PiJ ḞiJ + ρ0r0 − q0I ,I = ρ0 u̇0 P : Ḟ + ρ0r0 − Div q0 = ρ0 u̇0 energy equation (material form)

(5.63) ṡ ≥ r

T
− 1

ρ

(qi

T

)
,i

ṡ ≥ r

T
− 1

ρ
div

q

T
Clausius–Duhem inequality
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Constitutive relations

(6.40) ψ = u − Ts Helmholtz free energy density

(6.42) W = ρ0ψ strain energy density

(6.44) h = u − γ · Γ specific enthalpy

(6.46) g = u − Ts − γ · Γ specific Gibbs free energy

(6.94) u = u(s,C) reduced internal energy density function

(6.95) T =
∂u(s,C)

∂s
reduced temperature function

(6.100) qi = RiJ q̃J (s, CK L ,RjM T,j ) q = Rq̃(s,C,RT ∇T ) reduced heat flux function

(6.106) σ
(e)
ij =

2
J

FiJ
∂W̃

∂CJ K
FjK σ(e) =

2
J

F
∂W̃

∂C
F T Cauchy stress function (elastic part)

(6.107) P
(e)
iJ = 2FiK

∂W̃

∂CK J
P (e) = 2F

∂W̃

∂C
first Piola–Kirchhoff stress (elastic part)

(6.107) S
(e)
IJ = 2

∂W̃

∂CIJ
S(e) = 2

∂W̃

∂C
second Piola–Kirchhoff stress (elastic part)

(6.110) σ
(v )
ij = RiJ σ̃

(v )
J K (s, CLM ,RjN djkRkP )RjK σ(v ) = Rσ̃(v )(s,C,RT dR)RT Cauchy stress function (viscous part)

(6.150) dSIJ = CIJ K LdEK L dS = C : dE incremental stress–strain relation (material form)

(6.154) dPiJ = DiJ kLdFkL dP = D : dF incremental stress–strain relation (alt. material form)

(6.163) σ̊ij = cijkl ε̇k l σ̊ = c : ε̇ incremental stress–strain rate relation

(6.167) σij = cijklεkl σ = c : ε generalized Hooke’s law

(6.151) CIJ K L =
∂S̃IJ (E)
∂EK L

=
∂2W̃ (E)
∂EIJ EK L

C =
∂S̃(E)

∂E
=

∂2W̃ (E)
∂E2 material elasticity tensor

(6.157) DiJ kL = CIJ K LFiI FkK + δikSJ L mixed elasticity tensor

(6.165) cijkl = J−1FiI FjJ FkK FlLCIJ K L spatial elasticity tensor

(6.166) cijkl = J−1 (FjJ FlLDiJ kL − δikFlLPjL ) spatial elasticity tensor
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acceleration field, 94
transformation between frames, 198

action reaction, 10
adiabatic process, see thermodynamic,

process, adiabatic
affine mapping, 83
aging of materials, 182, 184
Airy stress function, 128
anisotropic material, 225

defined, 225
linearized constitutive relations,

225–236
anisotropic tensor, see tensor, anisotropic
antisymmetric tensor, see tensor,

antisymmetric
area, element of oriented, 80
area changes, see deformation, area

changes
axial vector, 48

balance of
angular momentum, see momentum,

balance of angular
linear momentum, see momentum,

balance of linear
basis, 23, 27

change of, 31
nonorthogonal, 28–29
orthogonal, 27–28
orthonormal, 27–28
reciprocal, 28
tensors, 45
vectors, 23, 27, 28

bending of a plate, 101
BERNOULLI, JOHN, JAMES AND DANIEL,

110, 235n
bifurcation point, 259
bilinear function, 24
bilinear mapping, 24
Blatz–Ko material, 222–223
body force, see force, body
Boltzmann equation, 214
boundary-value problem, 5, 91, 242–247

material description, 245–247
spatial description, 243–245
steady-state, 244

variational form, 247
boundary conditions

at finite deformation, 246n
in finite elements, see finite element

method, boundary conditions
material description

displacement, 246, 310
mixed, 246
mixed–mixed, 246
position, 246
traction, 246

spatial description
mixed, 244
mixed–mixed, 244
traction, 243
velocity, 243

traction, 115
bulk modulus, 241

for different crystals symmetries, 241

CALLEN, HERBERT B., 129
caloric equation of state, 185
Cartesian coordinate system, see

coordinate system, Cartesian
case convention of continuum

mechanics, 73, 75
Cauchy’s lemma, 115
Cauchy’s relation (traction), 116, 118

material form, 123
Cauchy’s stress principle, 113
Cauchy’s tetrahedron, 115
CAUCHY, AUGUSTIN-LOUIS, 4, 110, 113
Cauchy–Green deformation tensor

left, 85, 92
right, 79, 87, 92
transformation between frames, 200

Cauchy stress tensor, see stress, tensor,
Cauchy

Cayley–Hamilton theorem, 51
center of mass

coordinates, 327
of a system of particles, 327

change of basis, see basis, change of
characteristic equation, 49, 51
chemical potential, 157

ideal gas, 158

CLAUSIUS, RUDOLF JULIUS EMMANUEL,
149n, 150

Clausius–Duhem inequality, 175–176,
180, 183

Clausius–Planck inequality, 166, 175
CMT (Continuum Mechanics and

Thermodynamics), xi
Coleman–Noll procedure, 183,

186–190
column matrix, see matrix, column
comma notation, 56

reference versus deformed, 76
compact support, 291
completeness relation, 50
compliance

matrix, 231
tensor, 230

components, 16
covariant and contravariant, 28–29
tensor, 36, 45

transformation law, 36
vector, 24, 28

broccoli analogy, 34n
transformation law, 33

compressive stress, see stress, normal
computational mechanics, 277–316
configuration

current, 74
deformed, 72
of a continuum body, 3, 72
reference, 3, 72

congruence relation, 85
conservation of

energy, see energy, conservation of
mass, see mass, conservation of

conservative system, 248
constitutive relations, 5, 180–237, 244

constraints on the form of, 181–184
determination of, 265
intrinsic, 214
limitations of continuum theory,

236–237
linearized, 225–236
local action restrictions, 184–195
material frame-indifference

restrictions, 5, 183, 203–207
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constitutive relations (cont.)
material symmetry restrictions, 5, 184,

215–225
nonlocal, 183
reduced, 207–213
second law restrictions, 5, 183,

184–195
contact force, see force, surface
continuity equation, 108, 319
continuity momentum equation, 120
continuum mechanics

as a “grand unified theory”, 317
governing equations, 180
summary of equations, 329

continuum particle, 71, 236, 327
contravariant components, see

components, covariant and
contravariant

controllable solution, 265
control volume, 243
coordinate curves, 27
coordinate system, 26–29

Cartesian, 27–28
curvilinear, 27, 60–64, 271
polar cylindrical, 27, 61–62
principal, 50
rectilinear, 27
right-handed, 27
spherical, 27, 62–64

Cosserat theory, 185
COULOMB, CHARLES AUGUSTIN, 110
couple stress, 112n
covariant components, see components,

covariant and contravariant
covector, see vector, dual
cross product, see vector, cross product
crystal systems

cubic, 233, 241
hexagonal, 233, 241
monoclinic, 232
orthorhombic, 233
tetragonal, 233, 241
triclinic, 217, 233
trigonal, 233, 241

curl of a tensor, see tensor field, curl
current configuration, see configuration,

current

D’ALEMBERT, JEAN LE ROND, 74n, 110
dead-load, 247
DECARTES, RENÉ, 27n
deformation

angle changes, 88
area changes, 80
gradient, 77, 92

in finite elements, 280

quantifying the uniformity of, 236
rate of change of, 96
transformation between frames, 199

homogeneous, 79, 266
Jacobian, 79, 93

for finite element mapping, 295
rate of change of, 99

kinematics of, 3, 71–101
local, 3, 77–90
mapping, 72–74

admissible, 248
local invertibility, 79

measures
physical significance of, 87

power, see power, deformation
pure stretch, 102
simple shear, 73, 79, 80, 81, 86, 89,

90, 102, 267–268
time-dependent (motion), 74
uniform stretching, 73, 79, 80, 86, 89,

90
volume change, 79

rate of change of, 99
deformed configuration, see

configuration, deformed
density, see mass, density
determinant of a

matrix, 21
second-order tensor, 43

determinism, principle of, 181
diathermal partition, 137
differential operators, 56

confusion regarding, 58n
curl, see tensor field, curl
divergence, see tensor field, divergence
gradient, see tensor field, gradient

diffusion coefficient, 320
diffusion equation, 320
dilatation, 73, 93, 241
directional derivative, 57
direct notation, 16
displacement

control, 192, 238
field, 91

admissible, 248
divergence of a tensor, see tensor field,

divergence
divergence theorem, 64, 312
dot product, 25
dual space, see space, dual
dual vector, see vector, dual
dummy indices, 17
dyad, 40, 41, 44
dyadic, 45
dynamical process, see thermodynamic,

process, dynamical

eigenfunction, 252
eigenmodes, zero-energy, 310
eigenvalues/eigenvectors of a

second-order tensor, 49
Einstein’s summation convention, see

summation convention
EINSTEIN, ALBERT, 11n, 15, 17
elastic constants, see also elasticity

tensor
matrix, 229–236

cubic symmetry, 233, 241
direct inspection method, 231
hexagonal (transverse isotropy)

symmetry, 233, 241
isotropic symmetry, 233, 235, 241
monoclinic symmetry, 232
orthorhombic (orthotropic)

symmetry, 233
tetragonal symmetry, 233, 241
triclinic symmetry, 233
trigonal symmetry, 233, 241

elastic material, 185, 222
elasticity matrix, see elastic constants,

matrix
elasticity tensor, see also elastic

constants
major symmetry, 226, 231
material, 226
minor symmetries, 226, 231
mixed, 227, 289

matrix form, 303
small strain, 183, 230
spatial, 229

elasticity theory, 91, 313–315, 322–323
element, finite, see finite element method
element of oriented area

rate of change of, 100
energy

conservation of, 139–146, 180
derivation of other balance laws

from, 106n
frame invariance of, 213

internal, 135, 140
constitutive relation, 184–185, 207
microscopic definition, 328
specific, 170

kinetic, 141
microscopic derivation, 327–328
potential, see potential energy
total, 140, 170

energy equation, 175
engineering education, authors’ view on,

318n
engineering theories, 6, 317–323
enthalpy, 194
entropy, 136, 149–150
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change in reversible and irreversible
processes, 189

external input, 166, 176
internal production, 166, 176
microscopic significance, 156
origin of the word, 149n
specific, 175

equation of state, 136
equilibrium

equations of stress, 120, 249
metastable, 133
stable, 155, 249, 250–251
thermal, 137–139

entropy perspective, 153–156
thermodynamic, 133

local, 168, 181
metastable, 133

unstable, 249
Ericksen’s problem, 266, 268
Ericksen’s theorem, 266
ERICKSEN, JERALD LAVERNE, 265, 268
Eringen’s nonlocal continuum theory,

183
essential boundary conditions, 310
Euclidean point space, see space,

Euclidean point
Euclidean space, see space, Euclidean
EULER, LEONHARD, 74n, 110, 235n
Euler’s equation of motion, 127, 322
Euler–Almansi strain tensor, see strain,

tensor, Euler–Almansi
Eulerian description, 74, 243
event, 196
extensive variables, see variables,

extensive
external power, see power, external

Fick’s law, 320
field equations, see continuum

mechanics, governing equations
finite element method, 6, 277–316

boundary conditions, 309–311
deformation gradient, 280
discretization, 277–281
displacements, 278
elemental B-matrix, 302
elemental force vector, 300
elements, 289–298

conforming, 312
four-node tetrahedron, 301–306
table of, 293, 296, 297

external nodal force vector, 289, 309
Gauss points and weights

table of, 296, 297, 299
Gauss quadrature, 298–300
implementation, 301–306

internal nodal force vector, 289
isoparametric formulation,

293–298
linear elasticity in, 313–315
mapping Jacobian, 295
node, 278
notation, 279
parent space, 294
patch test, 311–313
rate of convergence, 300
residual forces, 281
shape function, 279, 289–298

linear, 291, 294
one-dimensional, 291–292
properties of, 290
quadratic, 292

solution flow chart, 306
spatial form of, 303
stiffness matrix

assembly of, 307–309
elemental, 300, 307
geometric, 303
material, 303
small-strain, 314

strain operator, 302
subparametric formulation, 295
superparametric formulation, 295

first law, see thermodynamics, first law
first Piola–Kirchhoff stress, see stress,

tensor, first Piola–Kirchhoff
fixed stars, 11
fluid mechanics theory, 321–322
force

body, 111
fictitious, 213
in finite elements, 281
objectivity of, 202, 206
surface, 111
total external, 10, 110, 111

form invariance, 206n
Fourier’s law of heat conduction, 190n,

210, 321
frame-indifference, see material

frame-indifference
frames of reference, 12, 196

inertial, 12, 14
relation to objectivity, 203

transformation between, 196–200
free energy

Gibbs, 195
Helmholtz, 193

free indices, 18
free surface, see surface, free
fundamental relations, see

thermodynamic, fundamental
relations

Galilean transformation, see
transformation, Galilean

Gauss quadrature, see finite element
method, Gauss quadrature

Gent material, 224–225
Gibbs free energy, see free energy,

Gibbs
gradient of a tensor, see tensor field,

gradient
Green’s identities, 69
group

defined, 32
material symmetry, 216
orthogonal, 32, 47
proper orthogonal, 32, 47, 217
proper unimodular, 217

group theory, 33

HAMILTON, WILLIAM ROWAN, 9n
Hamiltonian, derivation of the total

energy, 327–328
harmonic oscillator, 146
heat, 139–142

distributed source, 174
equation, 321
flux, 174

constitutive relation, 187, 210
vector, 174

quasistatic, 159
rate of transfer, 173

heat capacity
constant volume, 144
positivity of, 156

heat transfer theory, 320–321
Helmholtz free energy, see free energy,

Helmholtz
Hermitian tensor, 49n
Hessian

defined, 284
in finite elements, 289

homogeneous deformation, see
deformation, homogeneous

Hooke’s law, 5, 235
for an isotropic material, 235
generalized, 182, 229–236

matrix form, 230
one-dimensional, 235
original publication of, 235n

HOOKE, ROBERT, 235n
hydrostatic equations, 322
hyperelastic material, 222–223,

247
defined, 189
linearized constitutive relations,

225–236
stability of, 253–255
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ideal gas, 134, 136, 157–158
defined, 143
entropy production in adiabatic

expansion, 167
free expansion, 143, 167
internal energy of, 143–146
local constitutive relation, 169
temperature scale based on, 158

ideal gas law, 158
identity matrix, see matrix, identity
identity tensor, see tensor, identity
index substitution, 20
indicial notation, 16
inertial frame of reference, see frames of

reference, inertial
initial boundary-value problem, see

boundary-value problem
initial conditions

material description
position, 245
velocity, 245

spatial description
density, 243
velocity, 243

initial-value problem, see
boundary-value problem

inner product, 25
of second-order tensors, 44

intensive variables, see variables,
intensive

internal constraints, 149
internal energy, see energy, internal, 136
interpolation function, see finite element

method, shape function
invariant notation, see direct notation
inverse function theorem, 73, 79
irreversible process, see thermodynamic,

process, irreversible
irrotational motion, 98
isentropic process, see thermodynamic,

process, isentropic
isochoric motion, 100
isolated system, see thermodynamic,

system, isolated
isomorphism, 35
isotropic elastic solid, 221–225, 235
isotropic incompressible elastic solid,

223
isotropic material, 5, 217
isotropic tensor, see tensor, isotropic
isotropic tensor function, 219, 221

Jacobian, see deformation, Jacobian
JAUNZEMIS, WALTER, 15
Joule expansion, 143
Joule’s law, 145, 320

Joule’s mechanical equivalent of heat,
140

JOULES, JAMES PRESCOTT, 140, 143

KELVIN, LORD, see THOMSON, WILLIAM

kelvin temperature unit, 139
kinematic rates, 93–101
kinematics, see deformation, kinematics

of
kinetic energy, see energy, kinetic
kinetic theory of gases, 213
KIRCHHOFF, GUSTAV ROBERT, 123n, 182
Kirchhoff stress, see stress, tensor,

Kirchhoff
Knudsen number, 168, 236
KRONECKER, LEOPOLD, 19n
Kronecker delta, 19

LAGRANGE, JOSEPH-LOUIS, 110
Lagrangian

description, 74, 122, 191, 199, 245,
247

strain tensor, see strain, tensor,
Lagrangian

Lamé constants, 235, 241
LAPLACE, PIERRE-SIMON DE, 181
Laplacian of a tensor, see tensor field,

Laplacian
lattice invariant shears, 231n
Laue classes, 232
law of inertia, 14, 203
Legendre transformation, 193, 238
LEIBNIZ, GOTTFRIED WILHELM VON, 14,

110
opposition to Newton, 10, 11n

length scale
introduced by strain gradient theories,

185
lack of in local continuum mechanics,

185n
linear dependence/independence, 23
linear function, 24
linear mapping, 24
linear momentum, see momentum,

balance of linear
linearized equations of motion, 251–255
linearized kinematics, 91–93
load control, 193, 238
local action, principle of, 182, 184–195,

236
local deformation, see deformation, local
local invertibility, see deformation

mapping, local invertibility
local thermodynamic equilibrium, see

equilibrium, thermodynamic,
local

logarithmic rate of stretch, 97
lower-case convention, see case

convention of continuum
mechanics

Lyapunov’s direct method, 255–259
Lyapunov’s indirect method, 251–255
Lyapunov functional, 255

MACH, ERNST

opposition to Newton, 11n, 14
macroscopically observable quantities,

131–132
macroscopic kinematic quantities, 132
mass

conservation of, 4, 13, 106–109, 180
frame invariance of, 213

density, 106
reference, 107

variable, 13
mass transfer theory, 319–320
material

coordinates, 74
description, 74–77
form of balance laws, 122–127
instability, 152
stability, 152–153
symmetry, 184, 215–225

group, 216
time derivative, see time derivative,

material
material frame-indifference (objectivity),

5, 195–215
controversy regarding, 213–215
failure of, 214
history of, 195n
of a two-particle system, 206
principle of, 183, 202–203

mathematical notation, 22n
matrix, 19

column, 19
identity, 20
multiplication, 19
orthogonal, 32
proper orthogonal, 32
rectangular, 19

matrix notation, 17, 19
sans serif font convention, 19

MAXWELL, JAMES CLERK, 15
mean-value theorem for integration,

114n
mean free path, 168
Méchanique Analitique, 110
memory

effects in a fluid, 220
material with, 182

MEMS devices, 1n
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meshless methods, 290
metastability, see equilibrium, metastable
metric tensor, see tensor, metric
minimization, 281–289

generic algorithm, 283–284
initial guess, 282–283
line, 284, 285–286

algorithm, 287
Newton–Raphson method, see

Newton–Raphson method
search direction, 283
steepest descent method, see steepest

descent method
MM (Modeling Materials), xi
mole, 144
moment (torque)

total external, 120
moment of momentum principle, see

momentum, balance of angular
momentum

balance of angular, 4, 120–122,
180

frame invariance of, 213
local material form of, 124

balance of linear, 4, 10, 110–120, 126,
180

lack of frame invariance, 213
local material form of, 122
local spatial form of, 119

Mooney–Rivlin material, 224
motion, see deformation, time-dependent

(motion)
MÜLLER, INGO, 213
multilinear function, 24
multilinear mapping, 25
multipolar theory, 112n, 121, 122n

n-linear function, 24
n-linear mapping, 25
Nanson’s formula, 81, 310
NANSON, EDWARD J., 81n
natural frequency, 252
Navier–Stokes equations, 321
Navier equations, 323
neo-Hookean material, 223–224, 238,

272
rank-one convexity of, 254

NEWTON, ISAAC, 2, 9, 110, 220
Newton’s bucket, 10
Newton’s law (for a fluid), 220
Newton’s laws of motion, 9–15

second law, 10, 110, 203
third law, 115

Newton–Raphson method, 287–288
algorithm, 288
modified, 281

Newtonian fluid, 190n, 212, 220
node, see finite element method, node
NOLL, WALTER, 71n, 195n
nonorthogonal basis, see basis,

nonorthogonal
nonlocal constitutive relations, see

constitutive relations, nonlocal
nonlocal, misuse of term, 185n
norm

equivalence (in finite-dimensional
spaces), 26n

Euclidean (vector), 26
in infinite-dimensional spaces, 251n
of a second-order tensor, 44

Nye diagrams, 233
Nye direct inspection method, 231

objective tensor, see tensor, objective
objectivity, see material

frame-indifference
Ogden material, 224
OLDROYD, JAMES GARDNER, 195n
ONSAGER, LARS, 190, 191n
Onsager reciprocal relations, 190–191
optimization, see minimization
order, see tensor, order
oriented area, see element of oriented

area
origin, 27
orthogonal basis, see basis, orthogonal
orthogonal group, see group, orthogonal
orthogonal matrix, see matrix,

orthogonal
orthogonal tensor, see tensor, orthogonal
orthogonal transformation, 47
orthonormal basis, see basis,

orthonormal

parallelogram law, 22
partition of unity, 291
pendulum, 146
peridynamics, 183
permutation symbol, 20
perturbation, see thermodynamic,

system, external perturbation to
phase space, 131
phase transition, 152
phenomenological coefficients

(Onsager), 190
phenomenological models, 225
PIOLA, GABRIO, 123n
Piola transformation, 123
plane strain, 315, 323
plane stress, 128, 315, 323
plasticity, 282
Poisson’s ratio, 223n, 235

Poisson bracket, 67
polar coordinates, see coordinate system,

polar cylindrical
polar decomposition theorem, 83–87
polyconvexity, 255
position vector, see vector, position
positive definite tensor, see tensor,

positive definite
postulate of local thermodynamic

equilibrium, see equilibrium,
thermodynamic, local

potential energy, 141
principle of minimum, see principle of

minimum potential energy
principle of stationary, see principle of

stationary potential energy
total, 247

power
deformation, 172–173
external, 171

power conjugate variables, see variables,
power conjugate

POYNTING, JOHN HENRY, 267
Poynting effect, 267
pressure

hydrostatic, 119, 241
in an ideal gas, 158
thermodynamic definition, 157

principal basis, 50
principal coordinate system, 50
principal directions, 48
principal invariants, 49
principal stresses, 128
principal stretches, 89
principal values, 48
Principia, 2, 9–10, 110

Scholium to the, 2, 10, 11n
principle of isotropy of space, 195n
principle of material frame-indifference,

see material frame-indifference,
principle of

principle of minimum potential energy,
5, 255–256

defined, 256
for thermomechanical systems, 256
relation to second law of

thermodynamics, 256n
principle of objectivity, see material

frame-indifference, principle of
principle of stationary potential energy,

247–249
defined, 248

principle of virtual work, 248
process, see thermodynamic, process
proper orthogonal group, see group,

proper orthogonal
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proper orthogonal matrix, see matrix,
proper orthogonal

proper orthogonal tensor, see tensor,
proper orthogonal

pull-back, see tensor, pull-back operation
push-forward, see tensor, push-forward

operation

quadratic form, 52
quadrature, see finite element method,

Gauss quadrature
quasi-Newton method, 288
quasiconvexity, 255
quasistatic heat transfer, 160
quasistatic process, see thermodynamic,

process, quasistatic
quasistatic work, 160

rank, see tensor, rank
rank-one convex function, 253
rank-one convex tensor, 252
rate of deformation tensor, 96

eigenvalues and eigenvectors of,
97

transformation between frames,
199

reciprocal basis, see basis, reciprocal
reference configuration, see

configuration, reference
referential description, 74
reflection, 32, 47
REICHENBACH, HANS

opposition to Newton, 14
REINER, MARKUS, 220
Reiner–Rivlin fluid, 220, 240
relationists, 10
relaxation, see minimization
representative volume element, 236
response functions, see constitutive

relations
reversible heat source, 165
reversible process, see thermodynamic,

process, reversible
reversible work source, 165
Reynolds transport theorem, 100

for extensive properties, 109
right-hand rule, see coordinate system,

right-handed
Rivlin’s cube, 256–259
RIVLIN, RONALD SAMUEL, 220, 256n,

268
“father” of modern continuum

mechanics, 268n
rocket, 13, 66
rotation, 32, 47, 83
rubber, 222, 223, 268n

Saint Venant’s principle, 309n
Saint Venant–Kirchhoff material, 225,

256, 315
rank-one convexity of, 254

sans serif matrix notation, see matrix
notation, sans serif font
convention

scalar contraction, 43
scalar invariant, 9, 16, 43
scalar multiplication, 22, 38
scalar, objective, 200
Scholium, see Principia, Scholium to the
Schwarz inequality, 26
second law, see Newton’s laws of motion,

see thermodynamics, second law
shape function, see finite element

method, shape function
shear modulus, 223n, 235
shear parameter, 73
simple fluid, 218–220
simple material, 185, 221
simple shear, see deformation, simple

shear
skew-symmetric tensor, see tensor,

anti-symmetric
small-strain tensor, see strain, tensor,

small
Sokolnikoff notation, 31
SOMMERFELD, ARNOLD JOHANNES

WILHELM, 130n
space

absolute, 10, 14
definition in Newton’s Scholium, 10
dual, 35
Euclidean, 23, 25
Euclidean point, 26, 196
finite-dimensional, 16, 23
tangent translation, 75
translation, 26, 75

spacetime, 15
spatial coordinates, 75
spatial description, 74–77
spatial strain tensor, see strain, tensor,

spatial
special orthogonal group, see group,

proper orthogonal
specific heat, see heat capacity
spectral decomposition, 51
spherical coordinates, see coordinate

system, spherical
spherical tensor, see tensor, spherical
spin tensor, 97

physical significance of, 98
square brackets, 24
square root of a tensor, see tensor, square

root of a

stability theory, 5, 249–259
hyperelastic simple material, 253–255

stable material, see material, stability
state variables, 133–136

independent, 136
kinematic, 133, 135

steady-state stress equations, 245
steepest descent method, 284–285

algorithm, 285
poor efficiency of, 284

stiffness matrix, see Hessian
STOKES, GEORGE GABRIEL, 174n
strain

defined, 3, 77
finite, 3
gradient theory, 185
rate of change of, 98

strain energy density
defined, 194
of a linear elastic material, 230

strain tensor
Euler–Almansi, 90, 99
Lagrangian, 87, 92, 98
small, 93, 192
spatial, 90

stress
constitutive relation, 188,

210–213
decomposition, 119
deviatoric, 119
elastic part, 173, 188, 210
engineering, 124, 126
equilibrium equations, see equilibrium

equations of stress
hydrostatic, 119
microscopic definition, 72n
nominal, 124
normal, 117
objectivity of, 202
shear, 117
true, 4, 124, 126
vector, see traction
viscous part, 169, 173, 188,

212
stress rate

Jaumann, 239
objective, 239
Truesdell, 228, 239

stress state, 114
hydrostatic, 119
spherical, 119

stress tensor
Cauchy, 4, 115, 118, 188
first Piola–Kirchhoff, 4, 123, 125, 172,

191–192
Kirchhoff, 123
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second Piola–Kirchhoff, 4, 125, 172,
191–192

symmetry of, 122, 189, 211–212
stretch parameter, 73
stretch ratio, 78, 88, 89

rate of change of, 97, 104
stretch tensor

left, 83
right, 83, 89

strong ellipticity, 253
sufficient decrease condition, 285
summation convention, 17, 279
superposed rigid-body motion

invariance with respect to, 206
surface force, see force, surface
surface, free, 244
surface gradient, 114n
symmetric tensor, see tensor, symmetric
system of particles, 110

angular momentum of, 120
linear momentum of, 110

tangent translation space, see space,
tangent translation

temperature
absolute, 139, 157, 158
constitutive relation, 187
empirical scale of, 138–139
of an ideal gas, 158
relation to internal energy and entropy,

155, 187
zero, see zero temperature conditions

tensile stress, see stress, normal
tensile test, 238
tensor, 2, 9

addition, 38
anisotropic, 48
antisymmetric, 48
basis, 44
components, see components, tensor
composition, 42
contracted multiplication, 41
contraction, 40
convected with the body, 82
embedded material field, 82
first-order, 34
fourth-order identity, 209
fourth-order symmetric identity, 209
hemitropic, 54n
identity, 41
in the deformed configuration, 76
in the reference configuration, 76
inverse of a second-order, 42
isotropic, 50, 54
magnification, 38
material, 75–76

metric, 29n
mixed, 76
multiplication, see tensor, contracted

multiplication
notation, 15–22
objective, 183, 200–202
operations, 38–46
order, 16
origin of the word, 9n
orthogonal, 46
positive definite, 52
principal

basis, 50
directions, 48
invariants, 49
values, 48

product, 39
proper orthogonal, 47

in material frame-indifference, 204
properties, 46–55
proving a quantity is a, 37
pull-back operation, 76, 82–83
push-forward operation, 76, 82–83
rank, 16
second-order, 34, 46

defined, 46
objective, 201

spatial, 75–76
spherical, 50
square root of a, 53
symmetric, 48
two-point, 76, 271
what is a, 22–38
zeroth-order, 43

tensor field, 2, 9, 55–66
curl, 58, 77
divergence, 59, 77

in curvilinear coordinates, 62, 64
gradient, 57, 77

in curvilinear coordinates, 62, 63,
271

Laplacian, 60
partial differentiation of, 56

thermal conductivity, 321
thermodynamic cycle, 140
thermodynamic equilibrium, see

equilibrium, thermodynamic
thermodynamic fundamental relations,

156–158
thermodynamic potentials, 192–195
thermodynamic process, 147–148

adiabatic, 159, 192
dynamical, 133
general, 147
irreversible, 161–167, 186, 189
isentropic, 192, 242

isothermal, 193, 242
quasistatic, 147–148, 169
reversible, 161–167, 186, 189

thermodynamic stability, 152–153
thermodynamic state space, 147
thermodynamic system, 129

external perturbation to, 129
isolated, 130

thermodynamic temperature, see
temperature, absolute

thermodynamic tension, 135, 157
thermodynamics, 129–177

first law, 4, 139–146, 180
entropy form, 159–161
local form, 170–175

of continuum systems, 168–177
second law, 4, 148–168, 180

Clausius statement, 150
local form, 175–176
relation to potential energy

principle, 256n
zeroth law, 4, 137–139

THOMSON, JAMES, 14
THOMSON, WILLIAM, LORD KELVIN,

139
three-dimensional space, see space,

finite-dimensional
time

absolute, 10
definition in Newton’s Scholium, 10
direction of, 148

time derivative
local rate of change, 94
material, 93

TOUPIN, RICHARD, 71n
trace of a

matrix, 19
second-order tensor, 43, 46

traction
defined, 112
external, 112, 171
internal, 113
nominal and true, 123

transformation
Galilean, 12
matrix

defined, 31
properties of, 31
relation to rotation tensor, 47

orthogonal, 197
translation space, see space, translation
transport phenomena, 317n
transpose of a

matrix, 19
second-order tensor, 39

triple point, 139, 158
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triple product, see vector, triple product
TRUESDELL, CLIFFORD AMBROSE

error in Lagrangian and Eulerian
terminology, 74n

on “Onsagerism”, 191n
on the “corpuscular” basis of

continuum mechanics, 71n
on the balance of angular momentum,

106n
on the greatness of mechanics, 2
on the origin of Young’s modulus,

235n
on thermodynamics, 130n

uniform deformation, see deformation,
homogeneous

uniform stretching, see deformation,
uniform stretching

unit vector, see vector, unit
universal equilibrium solutions, 6,

265–275
for homogeneous simple elastic

bodies, 265–268
for isotropic and incompressible

hyperelastic materials,
268–275

simple shear of isotropic elastic
materials, 267–268

thermomechanical, 267, 269

upper-case convention, see case
convention of continuum
mechanics

variables
extensive, 109, 135
intensive, 135, 173
internal, 185
objective, 196
power conjugate, 173, 192
state, see state variables
work conjugate, 159, 173,

192
vector, 9, 16

addition, 22
components, see components, vector
cross product, 29
dual, 35
high-school definition, 22
material, 75, 76
norm, see norm, Euclidean (vector)
objective, 200
position, 27

transformation between frames,
198

space, 22
spatial, 75, 76
triple product, 30
unit, 26

velocity field, 94
transformation between frames, 198

velocity gradient, 95
transformation between frames, 198

viscosity
bulk, 220, 240
shear, 220, 240

VOIGT, WOLDEMAR, 9n, 232
Voigt notation, 173, 230
volume

change, see deformation, volume
change

specific, 132

wave equation, 252
Wolfe conditions, 285n
work

external, 140
of deformation, 140
quasistatic, 159

work conjugate variables, see variables,
work conjugate

Young’s modulus, 235, 241
YOUNG, THOMAS, 235n

zero temperature conditions, 139, 194
zeroth law, see thermodynamics, zeroth

law
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