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Preface

Dynamics is the third volume of a three-volume textbook on Engi-
neering Mechanics. Volume 1 deals with Statics; Volume 2 contains
Mechanics of Materials. The original German version of this series
has been the bestselling textbook on mechanics for more than two
decades and its 11th edition has just been published.

It is our intention to present to engineering students the basic
concepts and principles of mechanics in the clearest and simp-
lest form possible. A major objective of this book is to help the
students to develop problem solving skills in a systematic manner.

The book developed out of many years of teaching experience
gained by the authors while giving courses on engineering me-
chanics to students of mechanical, civil and electrical engineering.
The contents of the book correspond to the topics normally co-
vered in courses on basic engineering mechanics at universities
and colleges. The theory is presented in as simple a form as the
subject allows without being imprecise. This approach makes the
text accessible to students from different disciplines and allows for
their different educational backgrounds. Another aim of the book
is to provide students as well as practising engineers with a solid
foundation to help them bridge the gaps between undergraduate
studies, advanced courses on mechanics and practical engineering
problems.

A thorough understanding of the theory cannot be acquired
by merely studying textbooks. The application of the seemingly
simple theory to actual engineering problems can be mastered
only if the student takes an active part in solving the numerous
examples in this book. It is recommended that the reader tries to
solve the problems independently without resorting to the given
solutions. In order to focus on the fundamental aspects of how the
theory is applied, we deliberately placed no emphasis on numerical
solutions and numerical results.
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Chapter 1

Motion of a Point Mass






1 Motion of a Point Mass

1.1

1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.2

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7

1.2.8

1.3
1.4

Kinematics ... ...
Velocity and Acceleration.............cooiiiiiiiiiinn.
Velocity and Acceleration in Cartesian Coordinates.....
Rectilinear Motion ...
Planar Motion, Polar Coordinates...........................
Three-Dimensional Motion, Serret-Frenet Frame........
KINEtiCS . e
Newton's Laws .........coooiiiiii
Free Motion, Projectiles....................oooiiiii.
Constrained Motion ...........ccooiiiiiiiiiii
Resistance/Drag Forces ............coccooiiiiiiiiiiiniinn.
Impulse Law and Linear Momentum, Impact.............
Angular Momentum Theorem................oooiiiiii..
Work-Energy Theorem, Potential Energy, Conservation
of Energy ..o
Universal Law of Gravitation, Planetary and Satellite

MOLION ...
Supplementary Examples..............coooiiii
SUMMANY .«

N ~NOo o

Objectives: We will first learn how one describes the mo-
tion of a point mass by its position, velocity, and acceleration in
different coordinate systems and how such quantities can be deter-
mined. Subsequently, we will concern ourselves with the equations
of motion, which prescribe the relation between forces and motion.
An important role will again be played by the free-body diagram
with whose help we will be able to properly derive the equations
of motion. Further, we will discuss important physical concepts

such as momentum, angular momentum, and work-laws and their
applications.

D. Gross et al., Engineering Mechanics 3,

DOI 10.1007/978-3-642-14019-8 1, © Springer-Verlag Berlin Heidelberg 2011
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1.1 Kinematics

1.1.1 Velocity and Acceleration
The subject of kinematics is the description of motion in space.
Kinematics can be thought of as the geometry of motion indepen-
dent of the cause of the motion.

The position of a point mass M in space is given by a point
P and is uniquely described by its position vector r (Fig. 1.1a).
This vector shows the momentary or instantaneous location of
M relative to a fixed reference point in space, 0. If M changes
location with time ¢, then r(¢) describes the trajectory or path of

M.
Av

v(t+A) (i A/:‘Nm

v(t)

P

Fig. 1.1

Let us now consider two neighboring locations for M, P and
P’ at two different times ¢ and ¢ + At (Fig. 1.1b). The change
in the position vector over the time interval At is given by Ar =
r(t + At) — r(t). The velocity of M is defined as the limit of the
change in position with respect to time:

o rE+A)—r(t) . Ar dr .
0= e ———— = e S = p = (L)

Thus, the velocity v is the time derivative of the position vector
r. We will usually denote time derivatives with a superposed dot.
Velocity is a vector. Since the change of the position vector, Ar,

1.1
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in the limit as At — 0 points in the direction of the tangent to the
trajectory of M, the velocity is always tangent to this curve. The
velocity points in the direction that the mass traverses the path in
space. In order to determine the magnitude of the velocity vector,
we introduce the arc-length s as a measure of distance covered
by M along its trajectory. Assume that the mass has moved a
distance s up to the location P and a distance s + As up to the
location P’. With |Ar| = As, one obtains from (1.1) the speed
. As ds .

|v|:v:AliIEOE:E:S. (1.2)
Velocity and speed have dimensions of distance/time and are often
measured in units of m/s. The units of km/h, which are used in
transportation applications, are related as 1km/h = % m/s
== m/sor1m/s=3.6km/h.

In general, velocity depends on time. In neighboring positions
P and P’ (Fig. 1.1c) the considered point mass has velocities v(t)
and v(t + At). Thus, the change in the velocity is given by Av =
v(t + At) — v(t). The acceleration is defined as the limit of this
change with respect to time:

vt A —o(t) g, Av _dv g
At—0 At At—0 At dt
Thus the acceleration a is the first derivative of v and the se-
cond derivative of r. Acceleration is a vector. But since Av (see
Fig. 1.1c) does not have an obvious relation to the trajectory, we
can not easily make statements about its direction and magni-
tude. Acceleration has dimensions of distance/time? and is often
measured in units of m/s2.

Velocity and acceleration have been introduced independent of
a coordinate system. However, to solve specific problems, it is
useful to introduce particular coordinates. In what follows, we
will consider three important coordinate systems.
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1.1.2 Velocity and Acceleration in Cartesian Coordinates

If we want to describe motion in Cartesian coordinates, we can
choose 0 as the origin of a fixed (in space) system z, y, z. With unit
vectors (basis vectors) e, ey, e, in the three coordinate directions
(Fig. 1.1a), the position vector is given as

r(t) =xz(t) es +y(t) ey + 2(t) e . (1.4)

This is a parametric description of the trajectory with ¢ as the
parameter. If one can eliminate time from the three component
relations in (1.4), then one has a time independent geometric de-
scription of the trajectory (cf. e.g. Section 1.2.2).

Using (1.1), one finds the velocity via differentiation (the basis
vectors do not depend on time):

v=r==3e,+ye,+ze,. (1.5)
Further differentiation gives the acceleration as

a=v=F==3%e,+je,+ze,. (1.6)
Thus the components of the velocity and acceleration in Cartesian

coordinates are given as

Vg = Z, Uy = Y, v, = Z, (1 7)

Ay = Vyp = &, ay = Uy =4, a, =V, = Z.
The magnitudes follow as

v=+/2%2+ 9>+ 22 and a=+i%+§>+ 22 (1.8)

1.1.3 Rectilinear Motion
Rectilinear motion is the simplest form of motion. Even so, it has
many practical uses. For example, the free fall of a body in the
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earth’s gravitational field or the travel of a train over a bridge are
rectilinear motions.

If a point mass M moves along a straight line, then we can
assume without loss of generality that the x-axis is coincident with
this line (Fig. 1.2). Then according to (1.4), the position vector r
to its current location P only has an z-component — likewise for
the velocity v and the acceleration a according to (1.5) and (1.6).
Thus, we can dispense with the vector character of the position,
velocity, and acceleration and obtain from (1.7)

v =, a=0==%. (1.9)

In the case that v or a is negative, this means that the velocity
respectively the acceleration is in the negative z-direction. An
acceleration that decreases the magnitude of the velocity is known
as a “deceleration”.

P

0 z T Fig.1.2

In a case of rectilinear motion, if the position x is known as a
function of time ¢, then the velocity and acceleration can be found
via differentiation as indicated in (1.9). Often, however, problems
are encountered where the acceleration is known and the velocity
and position need to be determined. In these cases, integration
is needed — a situation that is in general mathematically more
difficult than differentiation. The determination of kinematic un-
knowns from given kinematic variables constitute basic kinematic
problems. We take up these basic questions in what follows, whe-
re we will restrict ourselves to the most important special cases
— those where the given kinematic variable depends on only one
other variable. If the acceleration is taken as the given variable,
there are five basic kinematic problems which we would like to
treat.

1. a=0 If the acceleration is zero, then according to (1.9)
a = v = dv/dt = 0. Integration then says that the velocity is
constant:

v = const = vg .
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A motion with a constant velocity is known as a uniform motion.
The position z can be found from v = vy = dz/dt via integration.
To do so, a statement about the start of the motion is needed,
a so-called initial condition. Let us denote initial values by the
subscript 0, so that at time ¢t = tg the position is assumed as
x = xg. With integration we can follow two procedures:

a) Indeterminate Integration. After separation of variables, do =
v dt, indeterminate integration gives

/dx:/vodt — x=wvot+C;.

The constant of integration C; is determined by exploiting the
initial value:

zo=v9to+C1 — Ci=z9—19tp.
Thus the desired position as a function of time is
x=xp+ v (t—tp).

b) Determinate Integration. After separation of variables, da =
vp dt, a determinate integration (where the lower integration limits
are the initial values tg, zo) gives

x t
/di':/vodf —  x—x0 =19 (t—to)
Zxo t(]

or
$:$0+Uo(t—t0).

Note that the variables under the integral sign are denoted with
a bar, so that they are not confused with the upper limits of
integration.

In what follows we will alternatively use both integration me-
thods. Thus the initial conditions will either be used to determine
constants of integration or will be used to set the lower limits of
integration.
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2. a=ag A motion with a constant acceleration is called a
uniform acceleration. Let us assume that t; = 0 and the initial
conditions for the velocity and position are

#(0) = vo, z(0) = ¢ .

Then via integration of (1.9) the velocity and position follow as
v t
dv=aedt — /dﬁ:/aodf — wv=uvg+aot,
o 0

and

x t
dz —vdt  — /dj:/(vo+aof)df
o 0

t2
— xzxo+vot+a0§~

Fig. 1.3 shows the acceleration a, velocity v and position x
as functions of time. One sees from the graphs, that a constant
acceleration ag leads to a linear velocity agt+vg and to a quadratic
position-time dependency agt?/2 + vot + 0.

In nature, for example, one encounters uniform acceleration du-
ring free fall and other vertical motions in the earth’s gravitational
field. Galilei (1564-1642) discovered in 1638, that all bodies (igno-
ring air resistance) have a constant acceleration during free fall.
This acceleration is called the earth’s gravitational acceleration g.
At the earth’s surface, it has the value g = 9.81 m/s?, where small
variations with geographical latitude are neglected.

In what follows we will examine free fall and other vertical
motions of a body K. As shown in Fig. 1.4a, we introduce a z-
coordinate axis perpendicular to the earth’s surface with the po-
sitive direction taken as upwards. For initial conditions, assume
that

2(0) = vy, 2(0) = zp.
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a
Qo
t
acceleration-time velocity-time position-time
diagram diagram diagram
Fig. 1.3

Then taking into account the sign of the earth’s acceleration (in
the negative z-direction), we obtain

2:@:—97

Z=v=—gt+ v, (1.10)
gt?

ZZ—T+Uot—|-Zo.

Let us now consider the special case of free fall. The body is
dropped from a height zp = H with zero initial velocity (vop = 0).
Then from (1.10)

t2

a=-—g, v=—gt, z:—%—i—H.

If we wish to determine the time 7' that it takes for the body to
fall to the ground, then we simply have to set z = 0 to find

T2 2H
c=0=-92"4Hg - T= [
2 g

If we insert this time into the expression for the velocity, then we
will find the impact velocity

2H
vl:U(T):—gT:—g”TZf\/2gH.

The minus sign shows that the velocity is oriented in the direction
opposite to the positive z-direction (i.e., the negative z-direction).
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Fig. 1.4b shows the position of the body as a function of time.

ON
=
-— =
=
h

Fig. 1.4

We will now examine the vertical motion of a body that is
thrown vertically at time ¢t = 0 from the earth’s surface (29 = 0)
with initial velocity vy (Fig. 1.4c). It follows from (1.10), that

gt?

a=—g¢g, v=—gt+g, 2:77—1—’0015.

The body will reach its highest point (H), when the velocity is
zero. The time that it takes to reach this point follows as

v=0=—-—g9gT+v9g — =2
g

Substituting this time into the expression for position, one finds
the value for the highest point on the trajectory:

gT gU2 Vo v,
H:Z(T):_T-FUOT:—ag—g-l—vo;:i.

Fig. 1.4d shows the dependency of the body’s position with time.
Comparing this result with that of free fall, one sees the close
relationship between the two motions: a body that falls from a
height H hits the ground with a velocity |v;| = /2 g H, whereas a
body that is thrown vertically with a velocity vy reaches a height
of H=1%/2g.

3. a = a(t) Inthis case, the velocity v and the position « can be
directly found via two successive integrations of (1.9) with respect
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to time. With initial conditions v(ty) = vo, x(to) = zo one has

t

dv=qa(t)dt — v:vo—l—/a(f)dt_, (1.11)
to
¢
de =ov(t)dt — z:m0+/v(f)df. (1.12)
to

4. a=a(v) In this case the acceleration is a given function of
the velocity. Thus from (1.9) via separation of variables

dv dv
= — dt = —.
a(v) a a(v)
Determinate integration (with the lower limit as the initial condi-
tion t = tg, v(to) = vo) gives

t v v
_ dv do

dt = | — t=1 — = . 1.13
o= [y = oo o -

to Vo )
In this manner, the time ¢ is given as a function of the velocity
v. If one can solve this relation to find v = F(¢) (i.e., find the
inverse function F' = f~1), then the position can be determined

from (1.12) as
t
x:xo+/F(f)df. (1.14)
to
In this way, the position x is now given as a function of time ¢.

From a(v) one can directly determine the position x as a func-
tion of v. Using the chain rule

7dv7dvdx7dv

“TH% T dr At dz

and applying separation of variables gives

dz =2 dv.
a
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Determinate integration using the initial values vy and xg gives

v

x=x0+/ﬁd@. (1.15)

Vo

As an illustrative example, let us consider the motion of a point
mass whose acceleration a = —kwv, where k is a constant. Such
motions occur, for example, for bodies moving in viscous fluids
(cf. Section 1.2.4). Let x(0) = x¢ and v(0) = vy be given as initial
conditions.

From (1.13) it follows that

[ v 1. 1. v
T — Y= ).
i A
vo

Solving for v (determining the inverse function), gives
v=1vge = F(t).

Then from (1.14), one finds

t
_ it
x=ua(t) =z + /UO e Mt = xo + (_%) e—’ft‘
0
0

v
xo + Zo(l —e Rty

Using instead (1.15), we alternately have

[ v 1
xi.’ﬂ(v):.TO'F/_—MdT_/:l‘C)—E(’U*’Uo).

vo

If we substitute the velocity v = vge ", then we recover the
previously determined position-time relation

1
x=x0— E(voe_kt — ) =z + %0(1 —e My = x(t).

The result is shown in Fig. 1.5. Because the acceleration a is
proportional to —v, the point continuously decelerates. Thus the
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Vo

\

Fig. 1.5

velocity v continuously decreases and with smaller magnitude v
the deceleration also decreases. Only in the limit ¢ — oo does
the velocity reach zero. The position of the point asymptotically
approaches xo + vo/k. This value follows from z(¢) in the limit as
t — oo or from z(v) as v — 0.

5. a =a(z) Let us once again use the chain rule

_dv_dvdx_dv

‘T T At dz’

and separation of variables:
vdv = adz. (1.16)

Integration with initial conditions v(tg) = vg, x(to) = o gives

%UQZ%US—F/a(fc)dﬁc:f(x) — v=+/2f(z). (1.17)

In this way, we determine the dependency of velocity v in terms of
position z. From the relation v = dx/dt, one finds after applying
separation of variables and integrating, that

x

dz dz

T
v V2@) JV2f@) '

Thus, time ¢ is now known as a function of position. If one can
invert the relation ¢ = g(x) to yield x = G(t), then one also
obtains position as a function of time.

dt 1.18)
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As an example, let us study a motion with the given accele-
ration relation a = —w?r, where w? is a given constant. At time
to = 0 assume 2(0) = xo and v(0) = vy = 0. Substitution into

(1.17) gives

%UQ = /(—w2£)d§: = —w? (%2 - %8> = w—2(:rg —2%) = f(z)

—  v=dwy/zd —a2.

From (1.18) one obtains the time response as

1 . T T
= +— arcsin —

x
t=t(z) i/idj
= €Tr) =
wy/z3 — 12 w T
To

Zo

1 T s 1 T
=+— <arcsin— — —) = +— arccos —.
w xo 2 w To
Inverting, one then finds the position as a function of time:
xr = xg cos wt.

This motion is a harmonic oscillation (cf. Chapter 5). By diffe-
rentiation, one can also obtain the velocity and acceleration as
functions of time:

o(t) =i = —wagsinwt, a(t) =& = —w’zgcoswt = —w?z(t).

Fig. 1.6a displays the mass’s position and velocity as functions of
time.

z r=1xg cos wt

a T=—wxpsinwt 2w Fig. 1.6
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Often one is also interested in the dependency of the velocity
on the position. We can geometrically display this dependency in
an x,v-diagram as a phase curve or phase trajectory.

For the oscillation example, we have v = +wy/a3 — 2. Thus
it follows, that

2 2
v? =W (xt —2%) — <a?> + <v) =1.
Zo wxo

The phase curve is an ellipse with semi-axes xo and wzg (Fig. 1.6b).
Each point x,v on the phase curve corresponds to particular ti-
me points ¢: time is a parameter. Since the curve is closed in this
example, the motion repeats itself after each pass (oscillation =
periodic event). The figure shows distinct times and the directi-
on of the motion. The time it takes to complete a single cycle,
T = 27 /w, is known as the period of oscillation or for short the
period (cf. Chapter 5).

In other cases when velocity and position are known functions
of time, one needs to eliminate time from the relations #(t) and
z(t) in order to determine the phase curve.

As closure to the developments up to this point, Table 1.1 sum-
marizes the important relations associated with the basic kinema-
tic questions.

Table1.1
Given Sought
t - t -
a(t) v=uv9+ [a(t)dt r=ux0+ [v(t)dt
to tO
v do v odo
a(v) t=to+ - T =T+ -
1 aw 1o
9 9 N z dz
a(z) v =0v3+2 [a(@)dz | t=to+ [ -
x
o w2 +2 [ a(z)dz
Zo
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Example 1.1 A vehicle travelling on a straight path has, at time
to = 0, a velocity vgp = 40 m/s and acceleration ag = 5 m/s?. It
then experiences a linearly decreasing acceleration in time to a
value of @ = 0 at t = 6 s. Next, it travels a distance ss = 550
m in uniform motion and finally in a third phase of travel it is
uniformly decelerated with an acceleration |as| = 11 m/s? until it
stops.

At what time and in what location does the vehicle come to
a stop? Sketch the acceleration-, velocity-, and position-time dia-
grams.

Solution For each of the three time intervals of the motion, we
will introduce a new time variable (Fig. 1.7a). Variables at the
end of a time interval will be denoted with a star. The position
x will be computed relative to the location of the vehicle at time
to = 0.

1. Linear acceleration (0 < ¢1 < t7).

The time variation of the acceleration can be represented as a; =
ap(1—1t1/t7). Considering the initial conditions x4 (¢ =0) = 0 and
v1(t1 = 0) = v one obtains from (1.11) and (1.12) the velocity

t

1 i\ . G

v =v0+ [ ao 1_E dty =vo +ag 751—2tT
0

and position

ty
_ 28
= dt1 = vt - — .
T /U1 1= "0 1+a0(2 6tf>
0

At the end of this interval of the motion (t; =t7=6+s) we have

*

t
vi‘:v0+a051:40+5-3:55?,

t*2 62
x*l‘:vot’{+a0%:40-6+5-§:300m.
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2. Uniform motion (0 < to < t3).
In the second interval of the motion, the velocity is a constant
with value v2 = v} = 55 m/s. Thus the position is given by

XTo = x’{ + vty
At time ¢35 the vehicle has traveled a total distance of
x5 = 2] + s2 = 300 + 550 = 850 m .

From s9 = vy t5 = 550 m, follows the time

. s2 550 _
_— = — = S
27wy 55
v
) t3 13
- -4 50
m | |
| | | | il
f I T T s | |
0 - | thna t - | |
[2) t3 - | |
Il 1
0 6 16 2ls t
a C
a T
m
s? Lfinal
5 4
\ 16 21s
0 6
t 500
m
0
b d

Fig. 1.7

3. Constant deceleration (0 < t3 < t%).
The final conditions of the second time interval (23, v = vg) are
the initial conditions for the third time interval. Thus we find (as
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is the magnitude of the deceleration)

. *
v3 = vy — asts,
2

t
T3 :x§+v§t3—a3§3.
The time at which the vehicle comes to a stop follows from
vy bd
vy =vs —agts =0 th=-2=""—5s,
3 2 313 - 13 a3 11

and the final position is obtained as
[*2
Tfinal = Tg = T5 + U5 15 —ag,%
52
=850+55-5— 11-7 =987.5m.

The total time of travel is

linal =5 + 15 +15=6+10+5=21s.

Figs. 1.7b-d show the acceleration-, velocity-, and position-time
diagrams. At the time where the acceleration has a jump, the ve-
locity has a change in slope. In the position-time curve there is no
such change in slope as the vehicle has not experienced any jumps
in velocity. (Jumps in v only occur during impacts, cf. Section
2.5).

Example 1.2 A point mass M moves according to Fig. 1.8a along
a straight line. The square of the velocity decreases linearly with
2. The mass passes the location x = 0 at t = 0 with a velocity
vo > 0 and at the location x = 21 > 0 it has the velocity v1 = 0.

At what time does the point mass reach the position x; and
what is its acceleration?

Solution First, we need to describe the velocity. A linear relation
between v? and x can be generally written as v?2 = bx + c. The
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P
—o ‘
0 T T
Fig.1.8 a b
constants b and ¢ follow from consideration of the given values:
2 ¢ vg
v(e=0)=vy — c=v;, vE=21)=0 > b=——=——".
Ty Ty
Thus,
x
v=uv(r) =v04/1 — —
T

Figure 1.8b shows v(z) in the phase plane. From v = dz/d¢ it
follows by separation of variables and indeterminate integration

that
dx x x
t:/7:—2—1 1-—+C.
voy /1 — & wl @
The integration constant C' is determined from the initial condi-

tion z(0) = 0:
0=—22Vitc — c=22L.

Vo Vo
With this, the time ¢; when the mass reaches z = z; is found as

t=tx)=C=2"1.
v

The acceleration is determined by application of the chain rule:

dv dv dzr dov g 1 T v}
= —=— 0= ——9g /1 - —=— ——.
dt dz dt dx 211 x T 211

IS
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Since a = const, we see that the motion is a uniform acceleration.
As a check, we can compute the velocity and position via inte-
gration from the known acceleration:

2

Yo
v=at+vg=——14 v,
2.’£1
2
v
x:——0t2+v0t.

4501

Elimination of ¢ leads to the given velocity-position relation.

Example 1.3 A point mass M with current position P moves, as
shown in Fig. 1.9, along the z-axis with acceleration a = k+/v,
where the constant k& = 2 (m/s3)/2. At time t = 0, M passes the
location zp = 1/3m with a velocity vo = 1 m/s.

Find the location 1 of M at time ¢; = 2s. What are the
velocity and acceleration at this time?

P

0 o o r Fig. 1.9

Solution The acceleration is given as a function of velocity. Ac-
cording to (1.13), we have

v

o= [ =i - vv<t>(’“;+m)2-

Vo

Indeterminate integration of v gives

12 [kt ’
= dt=--|— C.
T / v 3% ( 5 + \/%) +
The integration constant C' is found using the initial condition
z(0) = zo:
12

1
3 32(f) +C C=0
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Thus, we arrive at the result

2 [kt s
$_3_k(7+\/%> )

g_a(tl)_2<22;2+ﬁ>_ =

As a check, we can easily see that the result is compatible with
the initially given acceleration formula: a = k \/v.

1.1.4 Planar Motion, Polar Coordinates

When a point mass M moves in a plane (e.g. in the x, y-plane),
one often finds it easiest to describe the motion using Cartesian
coordinates according to relations (1.4) to (1.8) (ignoring the com-
ponent orthogonal to the plane of motion). However, it is often
also useful to describe its current position P using polar coordina-
tes r, p; see Fig. 1.10a. Let us introduce orthogonal basis vectors
e, and e,, such that e, always points from the fized point 0 to
M. In this case, the position vector is

r=re,. (1.19)

To find expressions for the velocity and acceleration we need
to differentiate the position vector. Because the location of M
changes with time, the directions of e, and e, also change with
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Fig. 1.10

time. In contradistinction to the fixed-in-space basis vectors in a
Cartesian coordinate system, in polar coordinates the basis vectors
must also be differentiated. The basis vector e, is assumed to be
a unit vector. Its change due to an infinitesimal rotation dy over
a time dt gives according to Fig. 1.10b a vector de,, which is
orthogonal to e, (i.e. it points in the direction of e,) and has a
magnitude 1-de. Thus we can write

de, =dpe, — € = d;r = i—f€¢:¢6¢-

In a similar fashion, one can compute the change in the basis
vector e, from Fig. 1.10b:

d d
de, = —dpe, — éwzngd—ferz—gber.

It then follows from (1.19) that the velocity is given by
v=r=re +ré. =re.+rpe,. (1.20)

It has a radial component v, = 7 and an angular component v, =
r ¢. As noted before, the velocity is tangential to the trajectory.

Differentiation of (1.20) provides an expression for the accele-
ration:

a=v="re +T7€ +rpe,+rpe, +roe,
=(F—r¢?) e+ (rg+27¢) e, . (1.21)

It has a radial component a, = #*—r@? and an angular component
a, = r$ +27¢. As noted earlier, one can not easily make general
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statements about the orientation of the acceleration with respect
to the trajectory.

In summary, we have the following relations for planar motion
in polar coordinates:

r=re,,
V="Ure +Uy,€, =T€ +rPe,, (1.22)

a=arer+ape, = (F—r¢?) e, + (rg +27¢) e, .

Over a time interval dt the position vector changes by an angle
de. The time rate of change of this angle, ¢ = d¢/dt, is known
as the angular velocity. It is usually denoted by the letter w:

w=¢. (1.23)

The angular velocity has dimensions of 1/time.
Differentiation of w leads to the angular acceleration

O=¢. (1.24)

The angular acceleration is denoted by many authors by the letter
a but we will usually not adopt this convention. It has dimensions
of 1/time?.

An important special case of planar motion is circular motion;
see (Fig. 1.11a) where r = const. In this case

r=re, vV=rwe, a=-—Tw e +rie,. (1.25)
The velocity has only an angular component
V=, = TW, (1.26)

which points in the direction tangent to the circular path of the
point mass (Fig. 1.11b). The acceleration has a component in the
tangential direction

ap =TW (1.27)
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Fig. 1.11

and a component in the radial direction (orthogonal to the tra-
jectory, Fig. 1.11c¢)

ar = —rw?. (1.28)

The minus sign indicates that the radial component points inwards
— towards the origin. This component is called the centripetal ac-
celeration.

If in addition to r = const, the angular velocity w = const, then
the velocity has a constant magnitude rw, and the tangential acce-
leration is zero. In spite of this, there is still a radial acceleration of
magnitude rw?. It is needed to change the direction of the velocity
vector.

dA

dp

c Fig. 1.12

Another important case of planar motion is central motion. In
this case, the acceleration vector is assumed to continuously point
towards a single point, the center C' (Fig. 1.12). This occurs, for
example, with the motion of the planets, where the sun serves as
the center C'. If we place the origin of our coordinate system at the
center, then the angular component of the acceleration disappears:

1d
a,=0 — rw+27'“w:—5(r2w):0 — r?w=const. (1.29a)
T
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We can give this result a clever interpretation. Fig. 1.12 shows
that the ray r sweeps out an area dA = %rrdap in a time interval
dt. Calculating the differential ratio

dA 1 ,dp 1 4

D S 1.29b

at 2 a2 (1.29b)
shows that the rate of change of this area in a central motion is
constant (cf. (1.29a)). This observation is known as Kepler’s 2nd
Law of planetary motion (Friedrich Johannes Kepler, 1571-1630):
the ray from the sun to a planet sweeps out equal areas in equal
times. The result is also known as the Law of Equal Areas.

Example 1.4 A ship S moves as shown in Fig. 1.13a with a velocity
of constant magnitude v, where the angle o between the velocity
vector and the connecting line to the lighthouse L remains con-
stant.

What is the magnitude of the acceleration and what is the
trajectory of the ship?

Fig.1.13 a

Solution To describe the motion, we introduce polar coordinates
with the origin at L (Fig. 1.13b). The velocity has in this case
constant components

Up =0 COSQ, U, =0 Sina.

Since v, =7 and v, = r¢ (cf. (1.22)), it follows that

. . v sin «
r=vcosqa, = .
r

El.4
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Upon further differentiation, one finds

de . v sina v? sina cosa

Thus we find for the acceleration components

.. .9 v? sin® o
ap =7 —1¢” = = ———,
r
.. .. v? sina cosa v sina
Ap =TP + 270 =— ————— +2vC0SQ
r

v? sin o cosa

r
The magnitude of the acceleration is then found as

2

S 5 Visina ;s 5 2 sin a
a = ar—l—ay, = —Vsm“a+cosfax = — .
- r _r
The desired trajectory follows from

r=vcosa — dr =wv cosadt,

r¢o =vsina — rdy =vsinadt
via elimination of dt and separation of variables:

dr de

r tana

Indeterminate integration gives

Inr=
tan o

Assuming that the ship is a distance rg from the origin at angle
i =0, then C' = Inry. Substituting, one finds

T
Inr= +Inrg — In— = 1.4
tan o 0 tan «
or
_p
fana
r=rgpe .

This is the expression for a logarithmic spiral.
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Example 1.5 A flywheel (diameter d = 60 c¢m) is uniformly accele-
rated from a standstill such that at time ¢; = 20 s it has reached
a rotation rate of n = 1000 rpm (rpm = revolutions per minute).

a) What is the magnitude of the angular acceleration w of the
flywheel? b) How many revolutions N has the flywheel made at
time ¢1?7 ¢) What are the velocity and acceleration of a point on
the perimeter at time to = 1 s7

Solution a) For a uniformly accelerated circular motion the an-
gular acceleration is constant: w = wy = const. Noting the in-
itial condition w(0) = 0, the angular velocity is w = wqyt. With
w(t1) = wy it follows that

.o W

wo = E .
Rotation rate n (in rpm) and angular velocity w are easily related
to one another: with a rotation rate n one has an angle of revolu-
tion of n - 27 after one minute. Angular velocity is usually given
in units of 1/s (or equivalently rad/s); in this case

n-2T
60
With the given rotation rate, it follows that
1000 - 27
b= ———— =5245"2.
Wo = ooy 248

b) Integration of w = wgt with initial condition ¢(0) = 0 gives
the rotation angle

1. 5
= — te.
¥ 2w0

With the given values, we have at ¢ = ¢; a rotation angle
1
1 =p(t) = 3 5.24 - 400 = 1048 rad .

Thus the number of revolutions is

N = % = 166.

- ™

c) From (1.26) the angular velocity component is obtained as

E1.5
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v=rw=rwot.

The radial velocity is zero. From (1.27) and (1.28) the two acce-
leration components are

ap, =1y, Ay = —rw? = —r(wot)?.

For the given numerical values, at ¢ = {5 we have

v =r0gty =30-5.24-1=157.2cm/s,
a, =30-5.24 = 157.2 cm/s”,
ar = —30-(524-1)° = —823.7cm/s”
and

a=/d2 +a2=838.6cm/s’.

The centripetal acceleration a,., which points towards the center of
the flywheel, grows quadratically with ¢ and is thus, after a short
time, much larger than the time-independent angular acceleration
Q.

1.1.5 Three-Dimensional Motion, Serret-Frenet Frame

The general motion of a point mass in three dimensions can be
described with the previously introduced formulae either by Car-
tesian coordinates x, y, z or through cylindrical coordinates r, ¢, z.
By cylindrical coordinates, we mean a three-dimensional genera-
lization of polar coordinates (Fig. 1.14), whereby the basis vector
e, is a constant, so that with (1.22) one has in cylindrical coordi-
nates:

r=re, A ze,,

v=re +rpe,+ e, (1.30)

a=(F—-r¢?)e + (rg+2rp)e, + ze,.
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Fig.1.14

Note that r is not the magnitude of the vector r, but rather the
magnitude of its projection in the x, y-plane.

In many cases it is useful to introduce a third method of descri-
bing motion. To this end, we will introduce a means of describing
motion that moves with the point mass M along its trajectory.
The method of description is based upon the Serret-Frenet frame
(or triad). This triad of basis vectors at a point on the trajecto-
ry (Fig. 1.15a) is defined by three orthonormal vectors: e; in the
tangential direction, e, in the direction of the principal normal,
and ey in the direction of the binormal. The vectors e, e, and e,
in this order, create a right-handed system. The tangent and the
principal normal lie in the so-called osculating plane. The vector
e, locally points towards the center of curvature C'. If M is loca-
ted at P, the trajectory can be locally approximated by a circle,
whose radius p (distance CP) is called the radius of curvature.

path
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Using the arc-length s(t), it follows from the expression for the
position vector

r =r(s(t))
that the velocity is given by
pojodr_drds

o dt dsdt’

Since dr points in the direction of the tangent and |dr| = ds, one
has dr = ds e;. Noting that the speed (cf. (1.2)) is

ds
=lv|=—=3 1.31
v=lol= 5= (131)
we get
v=ve;. (1.32)

Differentiation of (1.32) yields the acceleration
a=v=ve;t+vé&.

We determine the time rate of change of the tangent vector, é;,
analogously to Section 1.1.4. The unit vector e; changes its di-
rection by an angle dy between two neighboring points P and P’
on the trajectory (Fig. 1.15b). The change de; points towards the
center of curvature C' and has a magnitude of 1-dp. As the change
in arc-length ds between P and P’ can be expressed in terms of
the angle dy and the radius of curvature p (ds = pdy), it follows
that

d d 1d
detzl-dgoen:—sen — &= ct i Y
p

— =—-—=e,=—¢€,.
dt pdt " p "
Substituting back gives an expression for the acceleration vector

in terms of the Serret-Frenet frame:

2
a:atet—i—anen:i)et—i—v—en. (1.33)
p
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Uy =Y !

path

e
Yy e,
AN p
e¢ N7
—_—
e, T

The acceleration is composed of two components: one is in the
direction of the tangent to the trajectory, namely the tangential
acceleration  a; = v, and one in the direction of the principal
normal, namely the normal acceleration a, = v*/p. Note that
the entire vector lies in the osculating plane.

In the special case of circular motion, p = r = const, s = r¢
and ¢ = w. This gives the following velocity and acceleration
components:

Fig. 1.16

) . ) v
V=§=rw, @=0=r10, a,=—=r1rw>. (1.34)
r

One can see that this result is consistent with (1.25) when one
notes that the direction of the principal normal e,, is opposite to
that of e,.

Between the kinematic variables for rectilinear motion and ge-
neral three-dimensional motion, one has the following analogous
relations:

Rectilinear Motion Three-Dimensional Motion
T s
V== V=8

a=0=2=1 at:i):[s'
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Thus all the formulae for rectilinear motion from Section 1.1.3
can be used for three-dimensional motion with the appropriate
variable substitutions. For example from Table 1.1, if one is given
a;(v), then the arc-length s can be determined from

. +/v 5 dp
“ ) a@)

Vo

The Serret-Frenet frame can, of course, also be used to des-
cribe planar motions. Fig. 1.16 illustrates three possibilities for
constructing an expression for the velocity vector v in the special
case of planar motion:

a) Cartesian Coordinates v==2e; +Jey,
b) Polar Coordinates vV=re +rpeg,,
¢) Serret-Frenet Frame vV ="Uve;.

Example 1.6 A point mass M moves in the z,y-plane along the
trajectory y = (a/2) x? with a constant speed v (Fig. 1.17).
Find the magnitude of its acceleration.

Y

path

I Fig.1.17

Solution From (1.33) it follows that a constant speed implies zero
tangential acceleration: a; = 0. Thus for this question the normal
acceleration a,, and the acceleration magnitude a are one and the
same. In order to determine the normal acceleration, we need to
find the radius of curvature p, which follows for planar curves as

d%y

da?

3/2
dy 2
1 =
()]
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For the example then,
1o
p o [1+ (ax)?]?/?

and we obtain
2

a=a _f? Qv
T T L (PR

As a check on our calculation, we can also solve the problem
using Cartesian coordinates. From the expression for the trajec-
tory it follows by differentiation with respect to time that

y=aQra.

Between the velocity components we also have the constraint that

22 2 2
T4y =g,

From these two relations we obtain the result that

P YT
1+ (ax)?’ 1+ (ax)?
Differentiating again, gives
v3 a? zv?
9 g — Y% 9 2 . N
B T O e T R
940 20208, ) ?zvd @ avd
= 7 — = — =
I+ (P T @aPy I ()P

With these expressions we obtain our previously derived result

\/ﬁ 042 ’Ué OZU%
X = .
Y 1+ (@2)2F 1+ (ax)2]32

In this example, the magnitude of the acceleration is maximal at

xz =0.
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1.2 Kinetics

1.2.1 Newton’s Laws

Up to now we have only utilized kinematic quantities (position,
velocity, acceleration) to describe motion. We know, however, from
experience that motion involves forces in general. We have already
studied the concept of forces in detail in Statics (cf. Volume 1). It
is now necessary to couple the concept of force to the kinematic
quantities. For this purpose, we will restrict our attention in this
chapter to the motion of a point mass. In a sense, we wish to
consider a body whose dimensions have no influence on its motion.
Therefore, the body can be represented as a point with a fixed
mass m. In what follows, we will usually refer to the body simply
as “mass m”.

The foundations of kinetics are established in Newton’s three
laws (1687). They are a summary of all experimental experience
and all inferences that can be drawn from them are compatible
with common experience. We take these laws — without proof —
to be true; i.e. we accept them as axioms.

Newton’s 1st Law

The momentum of a point mass is constant when it is free
of external forces.

By momentum we mean the kinetic variable p, which is the pro-
duct of the mass m and the velocity v:

p=muv. (1.35)

Momentum is a vector that points in the direction of the velocity.
Newton’s 1st Law can thus be stated as:

P = mv = const. (1.36)

It says that a point mass executes a uniform rectilinear motion as
long as it experiences no net force. Galilei had already formulated
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this experimental observation in 1638 as the Law of Inertia (v =
const).

The special case of statics is contained in Newton’s 1st Law by
considering the case where v = 0 (i.e. the body remains still for
all times).

Newton’s 2nd Law

The time rate of change of the momentum of a mass m is
equal to the net external force acting upon it.

In equation form, this law says:
dp d(mwo)
. dt

Since it is assumed here that the mass is constant, (1.37) can also

—F. (1.37)

be written as

d

md—:;:ma:F. (1.38)
In our study of the kinetics of a point mass, we will usually employ
this form of Newton’s 2nd Law, that says in words

Mass x Acceleration = Force.

The acceleration a has the same direction as the force F.

When the resultant external force is zero, Newton’s 1st Law
(1.36) follows from (1.37). Thus Newton’s 1st Law is simply a
special case of Newton’s 2nd Law. It is only for historical reasons
that we still state them as two separate laws.

The validity of Newton’s 2nd Law is subject to two restrictions:

a) The law as stated in (1.38) is valid only in an inertial refe-
rence system. For the majority of applications, the earth can be
considered as an inertial system. How one treats problems when
the reference system is non-inertial, i.e. when the reference system
is accelerating, will be shown in Chapter 6.

b) In the case where velocities approach the speed of light
(¢ ~ 300,000 km/s), one needs to consider the special theory
of relativity due to Einstein (1905). This is seldom the case in
engineering.
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If one releases a body in the vicinity of the earth’s surface, it will
move under the influence of the earth’s gravitational acceleration
g in the direction of the center of the earth (¢ = 9.81 m/s?).
Substituting g into (1.38), we see that during free fall the only
force acting on a body is the weight W, where

W =mg. (1.39)

A mass m in the earth’s gravitational field has a scalar weight
W = mg.

If one considers mass, position, and time as the fundamental
quantities, then force, according to (1.38), is a derived quantity
(cf. Volume 1, Section 1.6). The common unit for force is the
Newton (1 N =1 kg ms™2).

Newton’s 3rd Law
To each force there is an equal and opposite force:

actio = reactio.

The reaction force law (cf. Volume 1, Section 1.5) will make pos-
sible the transition from point masses to systems of point masses
and then finally to bodies of arbitrary extent.

In addition to these fundamental laws, in the study of kinetics
we will also utilize all the basic principles associated with forces
(e.g. force parallelograms, section cuts, free-body diagrams) that
we know from Statics.

1.2.2 Free Motion, Projectiles
Corresponding to the three possibilities for motion in space, a
point mass has three degrees of freedom. If the motion is not res-
trained in any direction, one speaks of a free motion. This motion
is described by the three components of the vector relations (1.38).
Considering this, one can pose two types of questions:

a) What are the necessary forces when the trajectory of the
motion is known? The solution to this question follows directly
from (1.38).
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b) What is the motion when the forces are known? This type
of question occurs often in engineering situations. From (1.38)
the forces directly lead to an expression for the acceleration. If we
wish to know the mass’s velocity and position we need to integrate
once and twice, respectively. For complicated force systems, the
integration of the equations of motion can be mathematically quite
difficult.

z z
m
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Fig.1.18

As a simple example, let us consider the case of projectile moti-
on. A projectile, modeled as a point mass m, is launched at time
t = 0 at an angle o with respect to the z-axis with an initial ve-
locity vy (Fig. 1.18a). If the air resistance is negligible, then the
only force acting on the mass is the weight W in the negative z-
direction. In Cartesian coordinates, the equations of motion (1.38)
read

mi=0, my=0 mZi=—-W=—-—mg.

Double integration, after cancellation of m, gives:
T = Ch, g = Cj, 2= —gt+Cs,
r=C0C1t+Cy, y=0C3t+0Cy, z= *gg-’-CstJrC@.

Out of the three second order differential equations, 3 -2 = 6
integration constants appear. These are determined from the 6
initial conditions:

#(0) =wvgcosae — Cp =wvpcosa, z(0)=0 — Cy=0,
y(0) =0 — C3=0, y(0)=0 — Cy4=0,

2(0) =vosinae — Cs5 =wgsina, 2(0)=0 — Cg=0.
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Substituting back provides a parametric solution (parameter t):

T = Vg COS y=0, z=—gt+ovsina,
£2 (1.40)
r =uvgcosa-t, y=020, z=—gg+vosina~t.

One sees that the point mass, which was launched in the z, z-
plane, remains in this plane for all time (y = 0). In hindsight, this
should have been expected as a point mass can not move in the
y-direction when there is no force in this direction and the initial
velocity ¢(0) is zero. It is also worth noting that the motion is
independent of the magnitude of the mass m.

By elimination of the time ¢ from (1.40) one obtains the equa-
tion for the curve describing the motion:

9

2
-5 t ST 1.41
2v800s204x Tlamasw (1.41)

z(x) =
This is a quadratic curve, a parabola: the motion of a point mass
projectile, launched at an angle, moves on a parabolic trajectory .

The projectile distance x4 follows from (1.41) under the condi-
tion z(x4) = 0:

902 cos2 2
Zq = tana —0 % % _ W0 04, (1.42a)
g g
Because sin2 a = sin(m—2 ) = sin 2 (7/2—a), one obtains the sa-
me projectile distance for the same initial velocity vy with launch
angles @ and o/ = 7/2 — « (shallow and steep launch angle,
see Fig. 1.18b). The maximum projectile distance occurs when
« = /4, and results in
2
v

Tdmax = ;0 . (142b)

The projectile time of flight ¢4 follows by substitution of the
projectile distance x4 into (1.40) as

tg=—"2  —2% gna. (1.43)
Vg COS Qv g

Comparing a shallow to a steep launch, one sees from (1.43) that
the time of flight is larger for a steeper launch angle.
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The maximal height zj, of the projectile is found from the con-
dition that at the apex the slope will be zero (the tangent will be
horizontal) (Fig. 1.18a):

dz g 103 .
az—mx—i—tana:() — .Ijh:i?SlHQOé
1 . 9
- zp=z(zp) = 2—(vos1na) . (1.44)
g

Due to the symmetry of the trajectory, x; = %xd. Thus the ma-
ximal height only depends upon the z-component 2(0) = vg sin «
of the initial velocity.

Example 1.7 A point mass is thrown from a tower (Fig. 1.19a) with
an initial velocity vg at an angle o with respect to the horizontal.
It lands at a distance L from the base of the tower.

a) What is the height H of the tower?

b) How long is the mass in the air?

¢) What is the speed of the mass at impact?

Fig. 1.19 a b !

Solution a) To start, let us introduce a coordinate system with
origin at the top of the tower (Fig. 1.19b). The coordinates of the
impact point are then x = L and z = —H. Substituting into the
equation for the trajectory (1.41) yields

g

272.[/2 — Ltan o.
2v§ cos? a

H =

b) Since the initial and final locations of the mass do not have
the same elevation, we can not determine the time of travel from

E1.7
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(1.43). We need to use the parametric representation (1.40) with
x =L and t =T, which gives

L
T=——.
Vg COS (X

¢) The velocity at impact time ¢ = T has, according to (1.40),
two components

T =wvgcosa, z=—gT+vgsina

and thus the magnitude

2
— 1/ 2 32 — 2 L
v = T4+ 2 ’UOCOS o+ ’U()SIHOZ— g —

Vg COS @

12
—\/ —2gLtana+ g2 —5——— = /v +29H .
vicosla VO "7

The value of the impact speed is seen to be independent of the
initial angle a.

1.2.3 Constrained Motion

When a point mass is restricted to move on a pre-defined surface or
curve, then one speaks of a constrained motion. In this situation,
the number of degrees of freedom is reduced from the three degrees
of freedom associated with the free motion in space.

The number of degrees of freedom is equal to the number of
coordinates necessary to uniquely specify the location of the mass.
If the mass moves on a pre-defined surface, then it has two degrees
of freedom, as a point on a surface requires two coordinates for its
specification. Any motion orthogonal to the surface is prevented
by the constraints. If the point mass is constrained to move on a
space-curve, then it has only one degree of freedom and its position
is specified by a single arc-length coordinate s.

In addition to the applied forces F(®) (e.g. the mass’s weight),
which are independent of the constraints, one also has constraint
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forces F(¢) which emanate directly from the constraint surface
or curve. These constraint forces are reaction forces that act or-
thogonal to the mass’s trajectory. They can be visualized using a
free-body diagram which also aids in determining them. With the
forces acting on a mass, F(® and F(), the dynamical law (1.38)
for a constrained mass can be written as

ma = F@ + F) (1.45)

v

T

™ smooth
Fig.1.20

a

As an example, let us consider the motion of a mass m on a
frictionless semi-circle of radius r (Fig. 1.20a). The mass is relea-
sed without an initial velocity at the highest point. As the mass
moves on the pre-defined curve (a circle), it has only one degree of
freedom. As a coordinate, we choose the angle ¢ with respect to
the horizontal (Fig. 1.20b). Shown in the free-body diagram are
the applied force W = mg and the constraint force N. If we des-
cribe the motion using a Serret-Frenet frame, then in components
(1.45) gives

ma, = F\Y + F . ma, = Ft(a)

(constraint forces do not have tangential components). In the fol-
lowing, we will indicate the direction of an equation of motion by
a properly oriented arrow (7:). For the example, we obtain with
a, = r¢? and a; = rj the equations in the normal and tangential
directions:

St mrp? = N — Wsin,

N: mrg=Wcosp.

These are two equations for the unknowns ¢ and N. From the se-
cond relation using ¢ = g—g (Cli—f =¢ g—g and separation of variables,

one has ¢ dp = Zcos pdy (cf. Section 1.1.3). By integration and
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using the initial condition, ¢(¢ = 0) = 0, one obtains

('.0—2 _— sin ¢

2 7 '
The speed is thus v = 1 = /2 grsin ; it takes on its largest value
Umax = V2 gr at the lowest point of the trajectory, ¢ = /2. If

one wishes to determine the path o(t), then by further separation
of variables one is led to the integral f .—90, which is no longer
sin

integrable in terms of elementary functions.
The constraint force can be determined from the first equation
of motion via substitution of the expression for ¢?:

N :mr2gsin<p+Wsin<p: 3Wsinp.
r

At the lowest point on the trajectory, the constraint force is three
times as large as it would be in a static situation.

Example 1.8 A horizontal circular plate rotates with constant an-
gular velocity wy (Fig. 1.21a). A point mass m moves in the radial
direction within a frictionless slot in the plate. Find the forces
acting on the mass under the requirement that it moves with a
constant velocity vy relative to the plate.

Solution The free-body diagram of the mass is shown in Fig. 1.21b.
It shows the two forces acting on the mass: a force F)., which is
necessary to achieve a constant velocity vg, and a force Ny, which
constrains the mass to remain in the slot.

Fig.1.21
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In polar coordinates, the equations of motion (1.45) read
S0 mar, =F.,, \: ma,=Ni.

From (1.22) with the help of

p=wy — =0, 7r=v9 — =0

we can obtain the acceleration components
a, = frwg, ay, = 209 wp .

Substituting into the equations of motion gives the desired forces
F,. = —mrwg, N1 =2muvywp.

The minus sign in F,. indicates that this force must act inwards.
For completeness, it should be mentioned that an additional force
N3y acts orthogonal to the plate; it holds the weight W of the mass
in equilibrium: Ny = W.

1.2.4 Resistance/Drag Forces
Resistance forces or drag forces hold a special place in the technical
theory of mechanics. These are forces that arise due to motion and
can be dependent upon the motion itself. Such forces are always
tangential to the trajectory and oppose the motion. Common ex-
amples include frictional forces between bodies and drag forces in
aerodynamics.

Let us first consider dry friction. We have already seen Cou-
lomb’s Friction Law

R=uN (1.46)

in Volume 1. Here, N is the normal force and p the coefficient of
friction. The friction force R is independent of the magnitude of
the sliding velocity.

As an example, consider a block of mass m, which, as shown in
Fig. 1.22a, slides on a rough plane with inclination angle . Figure
1.22b shows a free-body diagram with all acting forces: weight W,



46 1 Motion of a Point Mass

Y
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normal force N and friction force R. The equations of motion in

Fig.1.22

the tangential direction x and in the normal direction y are
N: m&é=mgsina—R, : my=N—mgcosa.

With the fact that §j = 0 (the body is constrained to remain on
the plane) it follows from the second equation that N = mg cos a.
Substitution of the friction law (1.46) into the first equation gives
the acceleration

% = g (sina — pcosa) = const .

From this expression one can directly determine the position and
velocity via integration with respect to time. Assuming the initial
conditions #(0) = 0, z(0) = 0, one has
t2
t=g(sina—pcosa)t, x=g(sina— ucosoz)5 .
If the block is released from a height h (see Fig. 1.22¢), then it
will slide the distance zg = h/sina in the time

2.’L‘E 2h
tg =t(rg) = - = - -
g (sina — pcosa) gsin a(sin a — pcos a)

with a final velocity of

: : 2gh .
vp =&(tp) =g (sina — pcosa)ty \/Sina (sina — pcosa)
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For o = 90° (vertical wall, free fall), N = 0. In this case, there will
be no frictional force and the final velocity vy will be the same as
the impact velocity vy = /2 gh from Section 1.1.3.

For the motion of a solid body in a liquid or gaseous medium,
one also has resistance forces, which are normally known as drag
forces. Out of the multitude of drag forces that one can determine
experimentally, we will focus our attention on two idealized cases.

At low velocities, flows are laminar. The drag force Fy in this
situation is proportional to the velocity:

Fy = k. (1.47a)

Here, the constant k depends upon the shape of the body and
the viscosity 1 of the fluid. George Gabriel Stokes (1819-1903)
determined in 1854 the relation for the drag force on a sphere of
radius 7 in a fluid with velocity v (or on a sphere which moves
with velocity v in a stationary fluid) as

Fy=6nmnruv. (1.47b)

A linear relation between velocity and resistance force will also
be seen to be a common assumption in the analysis of damped
oscillations (Chapter 5).

At larger velocities, the flow becomes turbulent. In this case,
the drag force can be estimated as

Fy = kv, (1.48a)

where the constant £ depends upon the geometry of the body and
the density of the fluid. This relation is often written in the form

Fy=0Cy g Av?. (1.48b)

Here, A is the projected area of the body onto the plane orthogonal
to the direction of the flow and the drag coefficient Cy accounts
for all other parameters. For example, for modern automobiles, it
has a value smaller than 0.3.

As an illustrative example, let us consider the velocity of a body
during free fall with drag. A body with weight W is released from
an arbitrary height with zero initial velocity. The drag force on
the body is assumed to be given by (1.48a). Using the notation
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introduced in Fig. 1.23a, the equation of motion reads
l: m& =W —F;=mg— ki?.

Introducing for convenience the constant k? = mg/k, one has

K
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a b ' Fig.1.23

By separation of variables and integration, we find
di .
_ g =t e
z g K
o(1-3)

Since at time ¢ = 0 the velocity #(0) = 0, we note that C' = 0.
Solving for @, gives the velocity function

¢
& = tanh 2.
K

For increasing ¢, the velocity asymptotically approaches the li-
miting value @, = &, since the hyperbolic tangent approaches
unity for large arguments. The motion becomes uniform. We can
also determine the terminal velocity @, directly from (a) under
the condition & = 0; this allows us to simply read-off the result
Tp = K.

Figure 1.23b shows the time history of the velocity. At the start
of the motion, the velocity is zero and thus according to (a) the
acceleration & = g¢: the initial slope d#/dt (equivalently the angle
«) is determined by the gravitational acceleration. For increasing ¢
the velocity & approaches the limiting value @, which it achieves
only in infinite time.
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Example 1.9 A conveyer belt moves with constant velocity vz = E1.9
3m/s. At time ¢t = 0 (see Fig. 1.24a) a crate with weight W = mg
and horizontal velocity vg = 0.5 m/s is placed on the belt at
position A; the coefficient of friction is = 0.2.
How long does the crate slide with respect to the belt? What is
the position of the crate once it stops sliding with respect to the
initial position it had on the belt?

W e
. . t=0 #*
L i
CALETD & T
(o) (o) (o] (o] o (o] ;47534»‘

a

Fig. 1.24

Solution Because vz > o, a frictional force R acts on the crate to
the right (Fig. 1.24b). From the equations of motion for the crate

—: mio =R,

it follows with N = mg and the friction law
R=pN=pmg,

that the acceleration is given by
So=ng.

Using the initial conditions $(0) = vg and s(0) = 0, we find via
integration
t2
S =vo = pugt+vy, sco :pgg +vot.

The sliding ends at time t*, when the crate’s velocity equals the
conveyer belt’s velocity vy:

ve=vg — pgtt+vy=uvg.
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Using the given values, it follows from this result that the sliding
process occurs for a time

— 3—-0.5
p="8""%_ = 1.97s.
- g 0.2-9.81

At time t*, the crate has moved a distance
t*2
se=sa(t") = pg 5 + vp t*

1.272

=0.2-9.81- +05-1.27=22m.

In the same time, the location A on the conveyer belt has moved
a distance

sp=sp(t")=vpt"=3-127=38m

to the position A* (Fig. 1.24c¢). The distance b between the crate
and its initial location on the conveyer belt is thus

o

=sp—55=38-22=16m.

Example 1.10 A sphere (mass m, radius r) is dropped in a contai-
ner filled with liquid (Fig. 1.25a).

Determine the motion under the assumptions that the drag
force is given by Stoke’s Law and that the buoyancy force is ne-
gligible.

v : 2
- ] l”' P
. z (T)

-l

Solution As shown in Fig. 1.25b, let us take the positive z-
coordinate as pointing down. According to (1.47b), the motion can

Fig. 1.25
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be described by the equation

l: mz=W —Fyg=mg—67mnrz.
6mnr

Using the shorthand, =k, gives
Z=g—kz.
Separation of variables and integration lead to
dz kZ

1

If we assume the initial condition 2(0) = 0, then C; = 0. Inverting
this relation, one obtains the expression for the velocity:
._ 9 —kt
z==(1-e .
I(1—eH)
With an additional integration, one can determine the position of
the mass:

1
ZZ%(tJrEe_kt'FCQ) .

Using the initial condition z(0) = 0 gives Co = —1/k and thus

z:%[t—%(l—e—kt)] .

As kt — oo (the long-time limit), 2 tends towards the limiting
value

Zp = % = const .
In this limit, the position becomes a linear function of time. For
large k, e.g. for large viscosity n, this limit is practically instantly
reached. A measurement of the constant velocity Z;. can then serve
as a means for determining 7. Figure 1.25¢ shows the time history
of the velocity and position.
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1.2.5 Impulse Law and Linear Momentum, Impact
If one integrates Newton’s 2nd Law

d

—(mwv)=F

3 (M)

with respect to time, one obtains the Impulse Law or principle of

impulse and linear momentum

t
m’u—mvo:/th_. (1.49)
to

Thus, the change in the momentum p = m v between time ¢y and
an arbitrary time ¢ is equal to the time integral of the force. If F
is zero over this time interval, then the momentum is unchanged
(conservation of linear momentum):

P =muv=muvy = const .

The Impulse Law is often used to study impact processes. An
impact is defined by a large force that acts over a very short time
span (impact duration ¢;). In this situation, the mass experiences
a sudden change in velocity but the change in its position is negli-
gible. The precise time variation of F' during the impact is usually
unknown. In order to determine the velocity after an impact, we
introduce the concept of linear impulse 1:", the time integral of the
impact forces over the impact interval:

tq
F= /th. (1.50)
0

Thus from (1.49) for an impact process

mv—muvg = F. (1.51)

Let us consider now a body modelled as a point mass, which as
shown in Fig. 1.26a, obliquely strikes a wall. In what follows, we
will denote the velocity before the impact as v and after impact
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as v. With the given coordinate system, (1.51) reads
= MUy —muy = EFy, 1 mﬁyfmvy:]:—'y, (1.52)

where the arrow (e.g. —:) shows in which direction the Impulse
Law has been written. From Fig. 1.26a, we can see that

Uy = —VCOSQ, vy = vsina,

Uy = VCOS @, Uy = vsina.

Y ,/[‘

s\ Q F

S — —_—
~/ Qo T xT

@

a b

Fig.1.26

Let us further assume that the wall is frictionless. Then, no
forces can be generated in the y-direction and with F, = 0 it
follows from (1.52) that

Ty =0, (1.53)

The velocity component in the y-direction does not change during
frictionless impact.

To determine the xz-component of the velocity, we will decom-
pose the impact interval into two parts: the compression phase,
in which the body represented by the point mass is compressed
and its center of mass comes nearer to the wall, and the resti-
tution phase, during which the center of mass of the body moves
away from the wall. The force F,, = F', acting on the body during
the impact process (Fig. 1.26b), increases during the compression
phase to a maximal value Fy,.x and decreases during the restitu-
tion phase back to zero (Fig. 1.26¢). We now write the Impulse
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Law in the z-direction for the two phases:

Compression phase: m-0—muv, = FC,
. (1.54)
Restitution phase: muv, —m-0= Fg

(at the moment of maximal force the velocity is zero). The two
equations (1.54) contain three unknowns: the velocity o, and the
two linear impulses FC and Fg. To complete the system of equa-
tions, we need to make an assumption about the impact process
itself. There are three basic cases (or models) that are commonly
applied:

a) Ideal-elastic impact

We assume that the deformations and forces in the compression
phase and the restitution phase are mirror images of each other.
In this case, the linear impulses in both phases are assumed to be

equal. From Fr = F, it follows that
MUy = —MVy — Vg = — Uy
and from (1.53) it follows that

=v and a=«.

el

In an ideal-elastic impact (Fig. 1.27a), the incident and ricochet
angles and velocities are equal (cf. Reflection Law of Optics).

) v Y (TN Y
—\/ ST,
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b) Ideal-plastic impact

The deformation experienced by the body during the compression
phase is permanent; we assume that the linear impulse of the
restitution phase vanishes (Fz = 0). Then according to (1.54), it
follows that

o
Uy, =vcosa=0 — a=—.

2

The body is observed to slide with velocity v = v, = vy = vsina
along the frictionless wall after impact (Fig. 1.27c¢).

¢) Partially elastic impact

A real body responds in a fashion intermediate to the two limi-
ting cases of ideal-elastic and ideal-plastic impact. To model a real
body, one assumes a simple proportionality relation between the
linear impulses of compression and restitution. The proportiona-
lity constant e is known as the coefficient of restitution:

Fr=¢F,. (1.55)

In the limiting cases of ideal-elastic impact and ideal-plastic im-
pact, e = 1 and e = 0, respectively. For partially elastic impact,
the coefficient of restitution lies between these two limits; i.e.,

0<e<l. (1.56)
Substitution of (1.54) into (1.55) gives
miy =e(—muy) — Uy =—ev,. (1.57)

According to Fig. 1.27b this implies that tana = ?—y -
Uy — —€Ug
1tan a. Because e < 1 for partially elastic impact, tana@ > tan «
and thus @ > o
Using equation (1.57), one can also construct a working de-
finition of the coefficient of restitution in terms of the velocity
components orthogonal to the wall before and after the impact:
R (1.58)

Uz
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The minus sign appears because the two velocities are taken as
positive in the same direction. In the example, v, is negative and
thus e is positive.

The coefficient of restitution e can be determined experimental-
ly. If one drops a mass from a height hy onto a horizontal surface,
then the (downward) incident velocity is according to Section 1.1.3

’U:\/Qghl.

After impact, if the body has a (upwards) rebound velocity o,
then it will reach a height

h2:U_ 1_):\/2gh2.

Taking proper account of the signs, it follows from (1.58) that

v 2¢gho ha
e=——= — e=4/—. (1.59)
v V2ghy hy

Using this method, the coefficient of restitution can be directly
calculated from the heights before and after the impact. For an
ideal-elastic impact, ho = hy since e = 1; for an ideal-plastic
impact ho = 0 since ¢ = 0.

|

Example 1.11 A man (weight W3 = m; ¢) stands on the runners of
a sled (weight W = mg g) and kicks-off the ground at uniformly
separated times (separation At), such that the initially stationary
sled begins to move (Fig. 1.28a). The friction coefficient y between
the ground and the sled is given. To simplify the situation it will
be assumed that each kick occurs over a short time ¢, (t; < At)
and with a constant horizontal force P.
How large is the velocity v directly after the n-th kick?

Solution We can model the system (sled and man) as a point
mass (Fig. 1.28b). A horizontally oriented force P acts on the
mass during each impact of duration t;. Further, a friction force
R = uN acts on the mass over all times. Up through the n-th
kick, a time T' = (n — 1)At passes. Assuming an initial velocity
vo = 0 at time ¢y = 0, one computes from the Impulse Law (1.49)
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(P)

my+may|

Fig.1.28

for the total mass

T t T
—: (m +m2)v=/th:n/Pdt—/u(W1 + Wa)dt .
0 0 0
The sought velocity after the n-th kick is then
nPt
V= — n—1)At.
el (AU

Example 1.12 A hockey puck strikes a frictionless wall with velo-
city v at an angle a = 45° and bounces off at an angle g = 30°
(Fig. 1.29).

Find the ricochet velocity v and the coefficient of restitution.

N -
N

N e
(a] -5

Fig. 1.29

Solution For a frictionless wall the momentum parallel to the wall
must be conserved:

—: muvcosf=muv cosa.

E1.12
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From this, it follows that the velocity after the impact is

CoS « 2
= =4\/=-v.

cos@ V3

IS

Using the velocity components orthogonal to the wall,
vy = —vsina, U, =vsinf,
one can determine the coefficient of restitution e from (1.58):

vsinfl % B

- =
3V2

1o

2
3

e

—vsina

1.2.6 Angular Momentum Theorem
In the study of statics (cf. Volume 1), we introduced for the mo-
ment of a force relative to a point 0 the moment vector

MO =rxF. (1.60)

An analogous kinetic variable is the moment of momentum L(®).
It is defined as the vector product of r and p:

LY =rxp=rxmuv. (1.61)

The vector L(® is also known as the angular momentum vector. Tt
is orthogonal to the plane containing the position vector r (from
a fixed point 0 to the moving point mass) and the velocity vector
v (Fig. 1.30a). Its magnitude is given by the product of the ortho-
gonal projection r; (to the velocity) and the linear momentum
magnitude mv as LO) = rLmo.

We wish now to determine a relation between angular momen-
tum and moment. To this effect, we form the vector product of
the position vector with Newton’s 2nd Law (1.38):

X (m i—?) =rxF. (1.62)
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path

dr
dA

Fig.1.30

The right-hand side is the moment as defined in (1.60). The left-
hand side can be re-written with the help of the identity

i(r>< V) =T Xmuv+7r X dv
a e = A

which follows directly from the chain rule of differentiation. The
first term in this identity on the right-hand side vanishes since
7 = v. Thus,

r X d—v*i(rx v)*dL(O)
T T " T Ty

This allows us to write (1.62) as

dL©
— = MO, 1.63
dt (s

This is the angular momentum theorem: the time rate of change of
the angular momentum of a point mass relative to a fized arbitrary
point 0 is equal to the moment of the force acting on the point
mass relative to 0.

If the moment M) is zero, then the angular momentum re-
mains constant (conservation of angular momentum):

LO =9 x mwv = const .

A visual interpretation of angular momentum can be found by
considering Fig. 1.30b. In a time increment dt the position vector
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r sweeps out an area with magnitude dA = |r x dr|. If we
introduce the corresponding vectorial quantity

1 1
dA = E(T x dr) = 5(7‘ x vdt) ,

then the time rate of change of the swept out area is

dA 1( < v)
% = 3" xv).
Substituting back into (1.61) results in
dA
LO =2m—. 1.64
m- (1.64)

Thus, the angular momentum is proportional to the time rate of
change of the swept out area.

If for a given motion, the force points continuously towards a
fixed point 0, then the moment relative to 0 will vanish. In this
case, the angular momentum and the time rate of change of the
swept out area, according to (1.64), will be constant. For planetary
motion, this result is known as Kepler’s 2nd Law (or the Law of
Equal Areas): the ray from the sun to a planet sweeps out equal
areas in equal times (cf. Sec. 1.1.4).

If a point mass moves only in the z,y-plane (Fig. 1.31), then
the angular momentum vector and the moment vector only have
non-zero z-components. Thus in the angular momentum theorem
(1.63) only one component remains:

ar?

Y

L

Abb. 1.31 Abb. 1.32
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In this case we can drop the subscript z for simplicity. The angular
momentum — analogous to the moment — can either be expressed
using the orthogonal (with respect to the velocity) distance r
from the reference point or via components v, and v, and the
explicit expression for the vector product:

LO =y mv or LO=m(zv, —yu.). (1.66)

In the special case of circular motion (Fig. 1.32), we find using
v = rw that the angular momentum is

LO =mrv=mriw.
Let us introduce the symbol ©(® for the term ms2. This is known
as the mass moment of inertia or simply moment of inertia. Thus
the angular momentum can be expressed as L(®) = 0y, and
using the connection w = ¢ allows the angular momentum theo-
rem (1.65) to be written as

00g = MO, (1.67)

Oom
. l W =mg
Fig. 1.33 a b

As an example, let us consider the motion of a pendulum as
shown in Fig. 1.33a. There are two forces acting on m: a support
force S (pointing towards A) and the gravitational force W = myg
(Fig. 1.33b). Introducing a positive rotation angle ¢ as indicated
allows us to express the angular momentum and moment relative
to the fixed point A as

LA =Ilmv=1Imlp=mi*p, M) = —mglsinep.
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The angular momentum theorem (1.65) then furnishes an expres-
sion for the equation of motion:

ml2<,b=—mglsing0 — gb—l—%sin(p:O.

For small angles (sin¢ = ¢), this can be written as ¢ + % =0
(simple harmonic oscillation of an ideal pendulum, cf. Chapter 5).
With ©(4) = ml? one can also determine the equation of motion
from (1.67).

Example 1.13 A mass m executes a circular motion with an angu-

lar velocity wg on a frictionless horizontal plane. The mass is held

at a radius ro with a string (Fig. 1.34a, b). The string is threaded

through a hole A at the center of the plane.

a) If the string is pulled, such that the mass moves on a circular
trajectory with radius r, what will the angular velocity be?

b) What is the corresponding change of the force in the string?

,/ N ‘ 7,,0 ‘ //
// \\ 4 \
— i g
! y T ‘W 70A 5(1\1
/ {
/ \ s

Fig.1.34

Solution a) Let us denote the force in the string in the initial
state as Sy (Fig. 1.34c); this force has no moment about A. Thus
according to (1.65), the angular momentum must be constant du-
ring the motion and will remain so even after the string has been
pulled. The initial angular momentum about A is

LE)A) =ro(mrowy) = m7riwo
and after pulling the string

LW =r(mrw) =mr?w.
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Setting the two expressions equal gives

()
W=\ wo -
#
The angular velocity is inversely proportional to the square of the
radius of the trajectory.
2

b) Noting that the centripetal acceleration a, = v?/r = rw?,
the equation of motion in the initial state (Fig. 1.34c) gives

S oman =8y — S’ozmrowg.

In the same manner, for the final state, we have
T 4 T 3 7 3
ﬁzmrw2:mr(—0) w%z(—o) mrow?):(—o) So .
= r r r

The force in the string is inversely proportional to the cube of the
radius of the trajectory.

1.2.7 Work-Energy Theorem, Potential Energy, Conservation of
Energy

If we form the scalar product of Newton’s 2nd Law (1.38) with

dr, then we find

md—v~dr:F~dr.
dt

Substituting dr = v dt and integrating between two points ry and
r1 on a mass’s trajectory, gives

v1 1

2 2
/mv~dv:/F-dr - mvl—m—vo:/Fdr, (1.68)
Vo T0

where vy and vy are the mass’s velocity at these two points. The
right-hand side expresses the work U done by the force F' (cf. Vo-
lume 1, Chapter 8). The scalar quantity % mwv? = %m v? is called
the kinetic energy T

mv2

T="- (1.69)
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Using this, we obtain from (1.68) the work-energy theorem
T, —Ty=U. (1.70)

The work done by the forces acting on a mass between two points
on its trajectory is equal to the change in the mass’s kinetic energy.

Just as with work U, the dimensions of kinetic energy T are
force x distance. In many applications it is expressed using the
unit Joule, 1 J = 1 Nm, (James Prescott Joule, 1818-1889).

The forces acting on a point mass are composed of externally
applied forces F(*) and constraint forces F(¢). Since the constraint
forces are orthogonal to the trajectory of a mass, they do no work.
Thus, the work integral is given by

T1
U :/F(“) ~dr. (1.71)
To

As an example application consider a block sliding down a
rough inclined plane (Fig. 1.35a). The block is acted upon by an
applied gravitational force W = mg and a friction force R = ulV,
in addition to the constraint force N (Fig. 1.35b).

In moving from position (0) to position (1) the gravitational force
and the friction force do work:

Uy =mgsinar, Up=—-—Rr=—-—puNzx=—pmgcosax

b Fig.1.35

(the constraint force N does no work). If the block is released
from position (0) with zero initial velocity, then the work-energy
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theorem (1.70) tells us that
vt
2

Introducing the height h = z sin « allows us to express the velocity
in position (1) as

vy = /2gh(l — pcota).

The result shows that the motion is only possible if pcota < 1,
ie. p<tano.

The work done per unit time dU/dt is known as the power P.
Writing dU = F - dr gives

m— =mgsinax —mgcosac.

P=F.v. (1.72)

The most common unit of power is the Watt (James Watt, 1736-
1819):

N
1W=1-2
S

Another common unit for power is horsepower (hp); its relation
to Watt is given as

1hp=0.735 kW, 1LkW =1.36hp.

As with work done, the power due to constraint forces F(¢) is zero,
as they are orthogonal to a point mass’s velocity v.

In all machines, energy is lost due to frictional effects in sup-
ports and guides. Thus a part of all input or applied work is sim-
ply lost. One expresses the relationship between output or usable
energy Up and input or applied energy U, as the efficiency n:

= U
As a per unit time quantity, one has the instantaneous efficiency
as the ratio of the corresponding powers:

n (1.73)
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_Fo

n=p (1.74)

Due to the ever present losses n < 1.
As an example application let us compute the output drive

force F' of an automobile with a motor rated at P, = 30 kW

that is traveling at a velocity of v = 60 km/h on a flat road. We

will assume an efficiency n = 0.8. The output or drive power is

Py = Fuv, thus from (1.74)

:@ F:PAn73O-O.8

- — 144 kN.
Pa v 60/3.6

Ui

The work-energy theorem (1.70) takes on a particularly sim-
ple form when the applied forces emanate from a potential. Such
forces are known as conservative forces. Forces of this type are
characterized by the fact that the work they perform between two
fixed points in space (0) and (1) (Fig. 1.36) is independent of the
path taken between these points (cf. Volume 1, Chapter 8). Wri-
ting FF = F,e, + Fyey, + F.e, and dr = dre, +dyey, +dze,
the work done between the two points is given by

® ®
U:/F-dr:/{dem—&-Fydy—i—FZdz}. (1.75)
® ®

The integral is path independent only when the integrand is an
exact differential (total differential), which we will denote as —dV:

—dV =F,de+ F,dy+ F.dz. (1.76)

@

path II

path I

Fig. 1.36



1.2 Kinetics 67

The function V(x,y, 2) is called the potential energy or potential of
the force F'; the minus sign in the definition has been introduced
due to its utility with respect to physical interpretation as we will
see later.

A comparison of the exact differential

Fz:_?‘j_vv Fy:_a_v Fz:_a_v- (1'77)
X

If we introduce the gradient

ov ov ov

gradeaew—l-afyey—&-a

€z,

then (1.77) can be written in vector form as:

F=—gradV. (1.78)

If we take the derivative of the first expression in (1.77) with
respect to y and the derivative of the second expression with re-
spect to z, then the right-hand sides of the two equations will be
the same. Thus one has that 0F,/dy = 0F, /0x. Cyclic permuta-
tion of the coordinates further shows that, if a potential exists for
a force, then

or, oF, 0F, OF, OF. O0F,

oy oz’ Fr oy’ Oz T oz (1.79)

Using these relations, one can easily check if a force F(x,y, z) can
emanate from a potential. If we introduce the definition of the
rotation of a force F
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e: ey, e,

o 9 0 or, OF, o
x dy 9dz| \ Oy 0z *
F, F, F.
N or, Or, o+ oF, 0F; o
0z Ox Y ox Ay =

then the conditions (1.79) can be compactly written in vector form
as

rot F' =

rot FF =0 (1.80)

(irrotational force field).
If a force has a potential, then from (1.75) and (1.76) one has

dU = —av, (1.81)

and it follows that the work done by the force is

O O
U:/dU:—/dvz—(Vl—Vo).
© ©

The potential energy itself is dependent upon a reference location;
its difference between two points (0) and (1), however, is indepen-
dent of the reference location.

Substituting for U in (1.70) leads to the Conservation of Energy
Law

Th—To=Vo -V

or

Ty + Vi =Ty + Vo = const . (1.82)



1.2 Kinetics 69

When the applied forces possess a potential, then the sum of the
potential and the kinetic energy remains a constant along the
trajectory of the system.

We wish now to review two classes of potentials which we have
already considered in Volume 1.

a) Potential of the gravitational force mg at a distance z from
the surface of the earth (gravitational potential near the earth’s
surface) :

V=mgz. (1.83)

b) Potential of a linear elastic translational spring force (with
spring constant k) at a displacement = and of a linear elastic
rotational spring torque (with spring constant kr) at a rotation

®:
1 2 1 2
V=gka®, V=ckeot (1.84)

In contrast to gravitational forces and spring forces, frictional
forces do not possess a potential energy. They are non-conservative;
the work they perform is path dependent. With motion, systems
subject to non-conservative forces dissipate energy which appears
as heat. Thus, one also calls such forces dissipative. The Conser-
vation of Energy Law (1.82) is no longer valid with such forces.
In this case, one needs to use the work-energy theorem (1.70), if
one is interested in the work of the forces.

The use of the conservation of energy or the work-energy theo-
rem often occurs when one wishes to find the velocity as a function
of position (or vice-versa).

Example 1.14 A point mass slides down a rough inclined plane
(coefficient of friction p) from a point A with zero initial velo-
city. The plane transitions smoothly (with same tangent) onto a
frictionless circular track (Fig. 1.37a).

At which height h above the apex B of the circular track must
the mass start in order that it remains on the track at B?

Solution The point mass will remain on the track up to the point

E1l.14
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smooth

Fig. 1.37

B, if the normal force N only first becomes zero at the apex. From
the equation of motion in the radial direction (cf. Fig. 1.37b)

2
Vs

l: ma,=m =mg+ N

the required velocity at B follows from the condition N = 0:

vE =1g. (a)

The relation between vg and the desired height A is found from
the work-energy theorem. The work of the gravitational forces
between A and B is U; = mgh. The frictional force, which is
oriented opposite to the motion, performs work Us = —RI. With
R = uN = pmgcosa and = (h+r+r cosa)/ sin «, it follows that
Us=—mgp cot a(h+r+r cos ). The kinetic energy at position A

is zero and at B it is Ts = $mv%. Substituting into (1.70) gives

3 mv% =mgh —mgucota (h+7+rcosa).
From (a) we can find the desired height:

1
g mrg = mgh (1 — pcot o) — mgpur cot a (1 + cos @)

T%—l—u(l—i—cosa)cota.
1 — pcota

—  h=

(b)

In the case that the plane is frictionless (i = 0), we can use the
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Conservation of Energy Law (1.82). Noting

1
0, Tp=_-mvy, Vi=mgh, V=0

T
A 2

it follows that £mv% = mgh and with relation (a) that
1 1
§mrg:mgh — hzér.

The same result also follows from (b), if one simply sets the coef-
ficient of friction to zero.

Example 1.15 A mass m is positioned at a height h above the
reference position of a spring (spring constant k); see Fig. 1.38.
The mass is released towards the spring with an initial vertical
velocity v in a frictionless guide.

Find the maximum compression of the spring.

T

@

o~
o=

Fig.1.38

Solution Since both gravitational and elastic spring potentials
exist, we can use the Conservation of Energy Law (1.82) to sol-
ve this problem. In the initial position (0) the mass has kinetic
energy To = mo3 /2 and potential energy Vo = mgh (the refe-
rence position is taken at the end of the uncompressed spring). At
maximal compression, Tmax, the mass will be in position (1) with
kinetic energy 77 = 0. The potential energy at this position will
be composed of the potential energy of the spring 1k a2, and
the gravitational potential —mg Tyax:

1
Vi = 3 k:z:?nax — Mg Tmax -

Thus conservation of energy says

E1.15
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Lo L, o

3 MY +mgh =0+ 5 k Ziax — MY Tmax -
Solving this quadratic equation gives

m
Tmax = Tg 1 (i) 1+ 3

In the special case where h = 0 and vg = 0, it follows that zymax =
2mg/k. Thus if one suddenly releases a mass directly above an
uncompressed spring, then the maximal compression is twice as
large as it is in the static case Zgtar = mg/k (which can be achieved
by slowly releasing the mass).

1.2.8 Universal Law of Gravitation, Planetary and Satellite
Motion

In addition to his three fundamental laws (cf. Section 1.2.1), New-

ton also formulated the Gravitational Law. According to this law,

between any two masses m and M there is a force (Fig.1.39a):

Mm

F=G—

: (1.85)

Here, G is the universal gravitational constant
3

—6. .10-11 m
G =6.673-10 kg2

and r is the distance between the masses.
One can show that Newton’s gravitational force emanates from
a potential. Tt follows from (1.81) that

V:—/PEM:—G%2+C (1.86)

(F is oriented opposite dr). If one sets the potential to zero at
infinity (r — o), then C' =0 and
M
Ve=-G—2. (1.87)

r
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In the special case that the mass M is the earth, then a mass m
above the earth’s surface experiences a gravitational force (weight)
F = mg. If the earth’s radius is R, it follows from (1.85) that

Mm _GM
-
Eliminating G in the Gravitational Law, we obtain the gravita-

tional force as a function of the distance from the center of the
earth:

F—mg (%)2, (1.88)

For the potential it follows from (1.86) that

mg =G

2
V:*ngT+C.

Setting the potential to zero at the earth’s surface r = R gives
C' =mg R and with r = R+ z (Fig. 1.39b) it follows that

2 mg
R=—""Rxz. 1.89
R+z+mg Rtz (1.89)

Near the earth’s surface (z < R) the gravitational potential sim-
plifies to (cf. (1.83)):

V=—mg

V =mgz.
m T
F z
P !
M Q\/‘(/ T Earth
Fig.1.39 2

With Newton’s Gravitational Law we can also describe the mo-
tion of planets and satellites. Such objects can be treated as point
masses as their dimensions are small in comparison to their paths.
We will denote the mass of a planet (or satellite) as m and the
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mass of the sun (respectively the earth) as M. The mass M will
be assumed stationary. As the motion of m is typically in a pla-
ne, it will be useful to utilize polar coordinates. In this context,
Newton’s 2nd Law (1.38), along with (1.22) and (1.85), gives in
the radial direction

mM
r2

m (i —r¢?) = -G (1.90)

and in the angular direction
(rg+27p) =0 — 1—d(?') 0
m(r 7p) = m——(r =0.
v v rats ¥

The second relation expresses Kepler’s 2nd Law (cf. (1.29a)), whe-
reby the rate of change of the area swept out by the position vector
is a constant:

r?p=C. (1.91)

To solve the first equation, we introduce a new variable u = 1/7.
With (1.91) and 7 = (dr/dy)¢, one has

C dr C d /1 du
= — =Cu?, = —=—C-—— |- )==-C"".
L vt de r2 dy <r> dy

Differentiating once more gives

d%u d%u
P Ol — CQ 2 .
" dp? v b dp?

Substituting into (1.90) leads to
d? 1
_o22S Y L o2t = - G M2
de?
or after rearrangement
d?u L GM
==
dy? C?
This second order inhomogeneous differential equation has the
general solution (cf. Chapter 5)
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GM
u= Becos(p—a)+ o
The distance r must therefore satisfy the following relation:
1 1
r=-—= .
GM
Beos(p—a)+ o2

Here, B and « are constants of integration. If one measures ¢ from
the point on the trajectory where 7 vanishes, then o = 0 and one
obtains the path equation

b
= 1.92
" 1+ecosy ( 2)
with
Cc? BC?
p= € (1.92b)

GM> ~ GM

Equation (1.92a) is the focal point relation for a conic section
whose type depends on the eccentricity €. For ¢ < 1, the path
will be an ellipse. This is Kepler’s 1st Law: Planetary motion is
elliptical and the sun is located at a focal point with distance e
from the center of the ellipse (Fig. 1.40).

Fig. 1.40

With the constant in the Law of Equal Areas (1.91) and the
area of an ellipse A = mab (a,b = semi-axes), one can determine
the orbital period T

B 2A _ 2mab

T — T
c C

A 1,. C C
a 279739 7 2
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Considering (1.92b), the equation of motion (1.90), and the ellipse
parameter p = b?/a one finds

GM C? B 472 a2 b2 B 472 a3

e L2
lar| = i = r¢ ‘_r—g_p,r,z - T2b2 , 272
—r
a
and thus
2m)2ad
T? = (7. 1.93

This is Kepler’s 3rd Law: the square of the orbital period T of a
planet is proportional to the cube of the semimajor axis of the
planet’s trajectory.

According to (1.92a), a body in a gravitational field moves on
a parabolic path if € = 1 and on a hyperbolic path if ¢ > 1. In
the computation of satellite motions, one must take into account
the gravitational fields due to multiple heavenly bodies (the many
body problem).

Example 1.16 What is the minimal amount of energy needed to
launch a satellite of mass m into a circular orbit with altitude h?

Fig. 1.41

Solution According to Newton’s Gravitational Law (1.88), a force
F = mg (R?/r?) acts on the satellite (Fig. 1.41). When the satel-
lite moves in a circular path with distance » = R + h from the
earth’s center, it has a velocity v that is found from the equation
of motion in the radial direction:

1)2 R2 9 R2

ma, =F — mT:mgr—2 — v'=gy
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The potential energy of the satellite is found from (1.89). At the
surface of the earth and in orbit is takes on the values

V=20 d V= —h
0 an 1 =mg Rin'
respectively. The corresponding kinetic energies are
mu? R?
Ty =0 d Ty = = .
0 e T T TS Ry

Thus the minimal amount of energy needed at launch, AFE, is

AE =F - Ey=(T1 + V1) — (To + Vo)

o R R L h _mgR (R+2h
M\ 2@®+n) "R+h)” 2 \R+n )

1.3 Supplementary Examples 13

Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
3, Springer, Berlin 2010, or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

Example 1.17 A point P moves on a given path from A to B E1.17
(Fig. 1.42). Its velocity v decreases linearly with the arc-length s
from the value vy at A to zero at B.

How long does it take P to reach point B?

Fig. 1.42

Result: see (B) tp — 0.
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Example 1.18 A radar screen tracks a rocket which rises vertically
with a constant acceleration
a (Fig. 1.43). The rocket is .
-
launched at ¢t = 0. !
Determine the angular ve- P

locity ¢ and the angular acce- s ' . |

leration ¢ of the radar screen. @ LT S
Calculate the maximum an- ‘

gular velocity ¢ and the cor- I ‘ Fig. 1.43

responding angle .

1
Results: see (B) o) = — - o D=

. a 3adtt 1 , 3vV3a
Sﬁ(t)<74—l3>'ﬁ, Prmax = i— o = 30°.
Example 1.19 Two point masses P, and P; start at point A with
zero initial velocities and travel on a circular path. P; moves with
a uniform tangential acceleration a;; and P, moves with a given
uniform angular velocity ws.
a) What value must a;; have
in order for the two masses
to meet at point B?
b) What is the angular veloci-
ty of P, at B?
¢) What are the normal acce-

lerations of the two masses
at B? Fig. 1.44

Results: see (A) ay = 2 wi(ts) = 2ws,
™

ap1 = 4rw§ , Qpg = rw% .

Example 1.20 A child of mass m jumps up and down on a trampo-
line in a periodic manner. The child’s jumping velocity (upwards)
is v and during the contact time At the contact force K (t) has a
triangular form.

Find the necessary contact force amplitude K and the jumping
period Tjp.
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L2 B ———
At TO

Fig. 1.45
21}0 2’1}0
Results: see (A) Top=—+ At, Ko = 2(— + 1)mg.
g gAt
Example 1.21 A car is travelling in a circular arc with radius R E1.21

and velocity vg when it starts to brake.

If the tangential deceleration is a;(v) =
—(ap + Kv), where ag and k are given con-
stants, find the time to brake ¢, the stopping
distance sp, and the normal acceleration a,,
during the braking.

1 .
Results: see (A) tp=— ln(l + @) 7 Fig. 1.46
K ap
sBza—gl%—an—F@)] ,
K ao ag

a? KU 2
0 —Kt
n=—= 1 —) -1 .
“ Rk? {( + ao ¢ }

Example 1.22 A point P moves on the quadratic parabola E1.22
y = b(x/a)? from A to B. Its positi-  y
on as a function of the time is given b
by the angle p(t) = arctanwy t (see
Fig. 1.47).

Determine the velocity wv(t) of
point P. How much time elapses un-
til P reaches point B? Calculate its
velocity at B.

Results: see (B)

a? . b a2 B2
v(t):?wos/l—i—élwot?, tg=——, vg = ?wo 1+4¥.

a W
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Example 1.23 A rod with length [ rotates about support A with

angular position given by ¢(t) = xt2.

A body G slides along the rod with po-

sition r(t) = (1 — K t2).

a) Find the velocity and acceleration of
G when ¢ = 45°.

b) At what angle ¢ does G hit the sup-
port?

Given: [ =2m, k = 0.2 2.

Results: see (A) Fig. 1.48

v=1.62m/s, a=257Tm/s’, op=1=(=57.3°).

Example 1.24 A mouse sits in a tower (with radius R) at point A
and a cat sits at the center 0.

If the mouse runs at a constant
velocity vy, along the tower wall and
the cat chases it in an Archimedian
spiral 7(p) = Rp/m, what must the
cat’s constant velocity vo be in order
to catch the mouse just as the mou-

se reaches its escape hole H? At what

time does it catch the mouse? Fig. 1.49
TR

Results: see (A) T=—, wvec=0.62vy .
UM

Example 1.25 A soccer player kicks the ball (mass m) so that
it leaves the ground at an angle o with the initial velocity wvg
(Fig. 1.50). The air exerts the drag force Fy = kv on the ball; it
acts in the direction opposite to the velocity.

Determine the velocity v(t) of the ball. Calculate the horizontal
component vy of v when the ball reaches the team mate at the
distance [.

Results: see (B)  @(t) = vp cos ag e Ft/™ |

kl
i(t) = %— (% + v sinao) e kt/m  yy = VoS A — —.
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Fig. 1.50

Example 1.26 A body with mass m
starts at a height h at time ¢ = 0
with an initial horizontal velocity vg. T "
If the wind resistance can be L
approximated by a horizontal force ¢

2, at what time tp and

location zp does it hit the ground?

H=cmz

Fig. 1.51

2h 1 2h
Results: see (A) tp=4/—, azp=—In (1+covm/—> .
g Co g

Example 1.27 A mass m slides on a rotating frictionless and mass-
less rod S such that it is pressed
against a rough circular wall (with
coefficient of friction u).

If the mass starts in contact with
the wall at a velocity vy, how many
rotations will it take for its velocity
to drop to vy/10?

Result: see (A)

_ In10

= 27TN . Fig. 1.52

Example 1.28 A car (mass m) is travelling with the constant ve-
locity v along a banked circular curve (radius r, angle of slope
a), see Fig. 1.53. The coefficient of static friction po between the
tyres of the car and the surface of the road is given.

E1.26

E1.27

E1.28
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~

Ho

®,

Abb. 1.53

Determine the region of the allowable velocity so that sliding
(down or up the slope) does not take place.

tan o — o 2

Result: see (B) ———— <

v tan o + po
1+ potana = gr

< .
~ 1— pptana

Example 1.29 A car (mass m) has the velocity vy at the begin-
ning of a curve (Fig. 1.54). Then it slows down with the constant
tangential acceleration a; = —ag. The coeflicient of static friction
between the road and the tyres is .

Calculate the velocity v of the car as a function of the arc-length
s. What is the necessary radius of curvature p(s) of the road so
that the car does not slide?

Fig. 1.54

vE — 2a9 s

Results: see (B) wv(s) = \/Mv pls) 2 \/ﬁ '
0 0

Example 1.30 A bowling ball (mass m) moves with the constant
velocity vp on the frictionless return of a bowling alley. It is lifted
on a circular path (radius r) to the height 2r at the end of the
return. The upper part of the circular path has a frictionless guide
of length r o (Fig. 1.55).

Given the angle ¢¢, determine the velocity vy such that the
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bowling ball reaches the upper level.

Result: see (B)

vg = (24 3cospa) gr for g < ¢ = arccos2/3,
v =dgr for o > g .

Example 1.31 A point mass m is sub- y E1.31
ject to a central force F = mk?r, whe- _
re k is a constant and r is the distance T
of the mass from the origin 0. At time
t = 0 the mass is located at Py and
has velocity components v, = vy and l
vy = 0. - 5

Find the trajectory of the mass. Fig.1.56

2 2
Result: see (A) (vx/k> + (%) —1.
0 0

Example 1.32 A centrifuge with radius r ro- /\
tates with constant angular velocity wg. A
mass m is to be placed at rest in the centri- :

fuge and accelerated within a time ¢; to the

E1.32

angular velocity wg.
What will be the needed (constant) mo-
ment M acting on the mass? What is the

v T
power P of this moment? -
r?mwg r?mw?
L P

t1 t1

Results: see (A) M =

Example 1.33 A skier (mass m) has the velocity v4 = vy at point E1.33
A of the cross country course (Fig. 1.58). Although he tries hard
not to lose velocity skiing uphill, he reaches point B with only
the velocity vg = 2vy/5. Skiing downhill between point B and
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the finish C' he again gains speed and reaches C' with ve = 4 vg.
Between B and C assume that a constant friction force acts due
to the soft snow in this region; the drag force from the air on the
skier can be neglected.

Calculate the work done by the skier on the path from A to B
(here the friction force is negligible). Determine the coefficient of
kinetic friction between B and C.

Q ~
RN

VN

C
L0k F2|g.1.58
3 4
Results: see (B) U = m(gh — 21v3/50), p= 0~ g;—%

Example 1.34 A circular disk (radius R) ro-
tates with the constant angular velocity €.
A point P moves along a straight guide; its
distance from the center of the disk is given
by £ = Rsinwt where w = const (Fig. 1.59).

Determine the velocity and the accelera-

tion of P. Fig. 1.59
Results: see (B) v = Rwcoswte, + RQsinwte,,
a=-R(w*+ Q% sinwte, +2 RwQcoswt e, .

Example 1.35 A chain with length [ and mass m hangs over the
edge of a frictionless table by an amount e.

If the chain starts with zero initial ve- T
locity, find the position of the end of the €
chain as a function of time. i

Result: see (A) z(t) = ecosh % L. Fig.1.60
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1.4 Summary

Velocity is the time derivative of the position vector: v = 7. It
is tangential to the trajectory.

e Acceleration is the time derivative of the velocity vector: a = v.

For circular motion, the velocity, tangential acceleration, and
normal acceleration are given by

V=T, a=r¢Q, an:rabQ :1)2/7".

Newton’s 2nd Law: ma = F'.

e In general the following steps are required to determine the

motion of a point mass:

¢ Sketch a free-body diagram of the point mass.

¢ Choose an appropriate coordinate system.

¢ Determine the equations of motion.

¢ Integrate the equations of motion and use the initial con-
ditions.

t A
Impulse Law: mwv —muvo= [F(t)dt = F,
to

p=muv linear momentum.

- (0)

Angular momentum theorem: L~ = M©),

LO =7 xp=rxmuv angular momentum with respect to 0,
r position vector from 0 to the point mass.
Work-energy theorem: 717 — Ty =U,
U work of the forces between trajectory points @ und @,
T =mv?/2 kinetic energy.
Conservation of Energy Law: T + V =const,

V' potential energy (e.g. mgz, kx?/2, kre?/2).
N.B.: all forces must possess a potential (conservative

system).

1.4
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2.1 Fundamentals

Having concentrated so far on point masses, we now wish to study
systems of point masses. A system of point masses is understood
to be a finite collection of point masses that interact with each
other.

In natural and engineered systems one often finds systems com-
posed of multiple bodies that can be idealized as point masses for
the purpose of the analysis of their motion. In other problems,
one can idealize single bodies as being composed of multiple point
masses. From this point of view, one also recognizes that an under-
standing of the behavior of a system of point masses is a stepping
stone on the way to understanding the behavior of continuum
bodies with distributed mass.

In discussing the interactions of point masses in a system, one
distinguishes between two classes of interactions: kinematic coup-
lings and physical couplings. Typical kinematic couplings are of
the form of kinematic constraints, which are relations between the
coordinates of the masses. They are given by so-called geometric
or kinematic constraint equations. A simple example is shown in
Fig. 2.1a, where the two masses are connected by an inextensible,
massless rope. Let x1 and x5 be their vertical displacements from
arbitrary reference positions, then the vertical motion of one com-
pletely specifies the motion of the other (excluding the possibility
of horizontal motions). In this example the geometric constraint
equation is simply x1 = xs.

If the distance between two points in a system does not change,
then the constraint is termed a rigid constraint. As a simple ex-
ample, consider the dumbbell shown in Fig. 2.1b. The two point
masses m1 and me are connected by a rigid, massless rod which
enforces a constant separation | between them. This relation can
be expressed by the geometric relation (kinematic constraint):

(132 — I1)2 + (yz - y1)2 + (2’2 — 2’1)2 = 12. (2.1)

From the number of masses and the number of kinematic cons-
traints one can determine the number of degrees of freedom, f,
of a system. This latter number, tells us how many independent

2.1
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ma mso

Fig. 2.1

coordinates are needed to uniquely specify the configuration of a
system — that is the location of each mass in the system. In the
example shown in Fig. 2.1a, there is only one degree of freedom.
Of the two coordinates z7 and xs, only one can be independently
specified due to the geometric constraint equation x; = x5. For
the system shown in Fig. 2.1b, there are five degrees of freedom.
The locations of the two masses are given by 2-3 = 6 coordinates
(three for each point mass in three-dimensional space); however,
because of the geometric constraint equation (2.1), one only needs
to specify five of them (f = 2-3—1 = 5 degrees of freedom) in order
to determine all six. This could include the three independent
translations (in the z-, y-, and z-directions) and rotations about
two axes (neither co-linear with the dumbbell axis). Note that a
rotation about the dumbbell axis does not produce a change in
the configuration of the point masses and is thus not a degree of
freedom of the system.

In general, the number of degrees of freedom, f, of a system
composed of n masses in three-dimensional space is given by the
number of individual mass coordinates 3n minus r, the number
of kinematic constraints:
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f=3n—n. (2.2)

Accordingly, the 3-mass system shown in Fig. 2.1c with three rigid
constraints has f = 3 -3 — 3 = 6 degrees of freedom. If additional
point masses are rigidly connected to this system, the number
of degrees of freedom will remain at six as the rigid couplings
will not permit additional degrees of freedom. As a consequence,
a rigid body, which can be thought of as being composed of an
infinite number of point masses, has six degrees of freedom in
three-dimensional space.

For planar motions, i.e. those restricted to a two-dimensional
space, the number of degrees of freedom is given by

f=2n-—r. (2.3)

For a 3-mass system with three rigid constraints in a plane, there
are f = 2-3—3 = 3 degrees of freedom. Analogous to the discussion
above, a rigid body constrained to move in a two-dimensional
space, will have three degrees of freedom.

In contrast to a kinematical coupling, a physical coupling de-
fines a relation between the positions of the masses of a system
and the forces acting between them; see, for example, the spring
coupling in Fig. 2.1d and the gravitational coupling in Fig. 2.1e. In
these examples, the physical coupling is given by force-separation
relations — the spring law (Hooke’s law) and the gravitational law
(Newton’s law of gravitation), respectively.

In what follows, we will consider a system of n point masses
m; (i = 1,...,n) in three-dimensional space with arbitrary coup-
lings (Fig. 2.2). Conceptually, these masses will be separated from
masses outside of the system by an imaginary system boundary
that encloses all n of them.

Each point mass m; is subject to both internal as well as exter-
nal forces. The external forces F; emanate from outside the system
boundary. They can be applied forces (e.g. weight) or reaction
forces (e.g. support or constraint forces). The index ¢ indicates
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Fig. 2.2

that force F; acts on mass m;. The internal forces Fy; act between
the masses of the system. The indices on Fj; indicate a force that
mass m; exerts on mass m;. Alternately, F}; is a force that m;
exerts on m;. The line of action of the internal forces is always
directed along the connecting line between the two masses in ques-
tion. Because “actio = reactio” (Newton’s 3rd Law), F;; and F};
must have the same magnitude and be oppositely directed:

F;; = —F;. (2.4)

The motion of the masses of a system can be determined by
applying Newton’s 2nd Law (1.38) to each mass m,;. With position
vectors r;, it follows that

mi’i:i:E—f—ZEj, (i:l,...,n). (25)
J

The sum over j includes all internal forces acting on m;. Addi-
tionally, one needs to employ the kinematic and physical coupling
relations that express interactions between the masses for a com-
plete system of equations.

Example 2.1 The system shown in Fig. 2.3a consists of two weights
W1 = my g and Wy = my g that are connected by an inextensible,
massless rope via a set of massless pulleys.

Find the accelerations of the masses and the forces in the rope
when the system is released from rest.
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1KI Mag

a mig
Fig. 2.3 19

Solution The system is first separated using a free-body diagram
and the internal forces, .S;, and the external forces, W;, are ex-
plicitly drawn-in (Fig. 2.3b). If we assume that W5 moves down-
wards, then W; will move upwards. Thus we will measure the
positions of the masses using coordinates, 1 and x2, that are ta-
ken as positive in opposite directions. In this case, the equations
of motion (2.5) for m; and msy read

miEr =—mig—+S1+ 95, malas=maeg—Ss.

Here, the internal forces in the rope correspond to the coupling
forces in the system. Since the pulleys are assumed to be massless,
S| = S3 = S3 =.S5. Thus it follows that

mid1 =—myg+2S, mois=mog—S. (a)

The coordinates x7 and x5 are not independent: the system has
only a single degree of freedom. If ms moves downwards a distance
x2, then m; will move upwards half that distance. The kinematic
constraint can be expressed as

131:%1'2 — i’l:%‘fz — Zlié.’bz (b)
Between (a) and (b), we have three equations for the determina-

tion of the three unknowns &, 2, and S. Solving, gives
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. 1. 2mg —my 3mimag
B=sdy =g, =
2 mi1 +4mso mq +4mo

If Wy = 2Ws, then &1 = I = 0, S = W5, and the system is seen
to be in equilibrium.

2.2 Linear Momentum for a System of Point
Masses

From the equations of motion (2.5) for the individual point masses
(cf. Fig. 2.2)

m; ¥ = F+ Y Fy,
J

the laws of motion that hold for the whole system can be derived.
If we sum the equations of motion over all n masses, then we
have

Zmﬂ“z:ZFH-ZZFm (2.6)

The double sum on the right-hand side includes all internal forces
acting between the masses in the system. As these are pairwise
equal and opposite (F;; = — F};), the double sum is zero. Thus,

> mi#; =F, (2.7)

where F' = > F; is the resultant force of all the external forces

acting on thelsystem.

In order to simplify the left-hand side of (2.7), we introduce
the position vector r. for the system’s center of mass or center of
gravity C' (cf. Volume 1, Chapter 4):

1
Te = - Zmi r, —  mr.= Zmi ;. (2.8)
7 7
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Here, m = > m; is the total mass of the system. Taking two time

K3
derivatives of (2.8) and using definitions v = 7 and @ = ¥ = #,
yields

mvc:Zmivi and mac:Zmih. (2.9)
Substituting into (2.7) yields the equation of motion for the center
of mass:

ma,=F. (2.10)

It has the same form as the equation of motion (1.38) for a single
point mass. In words, (2.10) says:

The center of mass of a system moves as though it
were a point mass (with same total mass) subject to
the totality of forces acting on the whole system.

The equation of motion (2.10) is known as the law of motion for
the center of mass. Note that the internal forces have no influence
on the motion of the center of mass.

The vector equation (2.10) corresponds to three scalar equati-
ons — one for each component. For example, in Cartesian coordi-
nates

mi.=F,, miy.=F,, mzi.=1F,.

The total linear momentum p = >_ p; = > m; v; of the system
; i
can be expressed using (2.9) as

P=mu.. (2.11)

Thus, the total linear momentum can be determined from the
product of the total mass m and the center of mass velocity v..

If we take the time derivative of (2.11) and substitute into
(2.10), then we see that
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p=F. (2.12)

In words: the time rate of change of the total linear momentum
is equal to the total resultant of the external forces. As with the
single point mass case, we can integrate (2.12) with respect to
time to give an Impulse Law

t
pfpo:/Fdf:F, (2.13)
to

where we have used the initial condition py = p (t9p). The diffe-
rence in the linear momentum between two moments in time is
equal to the linear impulse — i.e. the time integral of the external
forces acting on the system, F.

In the special case that the external resultant is zero (F = 0),
then (2.13) gives

p =muv. = py = const . (2.14)

The linear momentum of the system is a constant (conservation
of linear momentum) and the center of mass moves uniformly
and in a straight line. Relation (2.14) is known as the principle of
conservation of linear momentum.

Example 2.2 A mass m in zero gravity moves with velocity v at an
angle o = 30° with respect to the horizontal. The mass suddenly
splits into three equal pieces m1 = mo = ms = m/3 (Fig. 2.4).
After splitting, masses m1 and mo travel at angles 5, = 60° and
B2 = 90°, respectively. Mass mg stays at rest.

Determine the velocities v; and vs.

Solution The mass m, before the split, and the masses my, ma,
and mg afterwards will constitute our system. No external forces
are acting on the system, thus according to (2.14) the linear mo-
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m myo
o +

Fig. 2.4

mentum of the system does not change (linear momentum before
splitting = linear momentum after splitting). Componentwise, the
principle of conservation of linear momentum gives
—:  muvcosa = my v cos 3,
T: musina=mjv;sinf; —mgvgsinfs.

Thus, one has two equations for the two unknowns v; and wvs.
Solving, gives

™ COSs o
v =v— =33,
= my cos (31

my vy 8in B — musina
v = - =3v.
= ma sin (B —

2.3 Angular Momentum Theorem for a System
of Point Masses

According to the angular momentum theorem (1.63), for each
point mass m;, one has that LZ(-O) = MZ-(O). Noting that m; is
subject to external forces F; as well as internal forces Fj; (cf.

2.3
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Fig. 2.2), one finds

(rixmivi)':rixﬂ—erixFﬁ.
J

Summing over all n masses gives

Z(’Pixmi’vi)'ZZ’l"iXE+ZZT¢XEj. (2.15)

i
The left-hand side of this relation is simply the time derivative of
the total angular momentum of the system

LO=3"L =3 " (r x mv) (2.16)
1 K3
with respect to the fixed point 0. Since the internal forces are
pairwise equal and opposite, F;; = —F};, and act along the line
connecting masses m; and m;, the double sum on the right-hand
side of (2.15) can be shown to be zero — only the total moment of
the external forces remains:

MO =3"M"=3"r;xF,. (2.17)
% [

Thus we find from (2.15) the angular momentum theorem for a
system of point masses:

LO© = p© (2.18)

The theorem states that the time rate of change of the total an-
gular momentum of a system of point masses relative to a fized
point 0 is equal to the resultant moment of all the external forces
about the same point.

If the resultant external moment is zero (M) = 0), then
L©® = 0 and the angular momentum is constant (conservation
of angular momentum).

As an important special case, let us examine a system of point
masses rotating about a fixed axis a-a to which they are rigidly
attached (Fig. 2.5). Without loss of generality, we place the origin
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0 on the axis of rotation and align the z-axis with it. Following
Section 1.2.6, the z-component of the angular momentum of a
mass m; is given by

Liz=Lig =m; 1} ¢. (2.19)

Here, r; is the orthogonal distance of m; from the axis of rotation.
For the components L;, and L;,, we have replaced the superscript
denoting the point of reference by a second subscript denoting
the axis of rotation (here z and a-a, respectively). This notational
convention can also be applied to the components of moments and
will often be used in what follows.

As all the masses move with the same angular velocity ¢, sum-
ming (2.19) over all masses gives

L:=Lo=)» L= mir}¢=0,¢. (2.20)
The variable

Ou =Y myr} (2.21)

1
a ™ axis of rotation

V2 ~
rr \,
m; \__//
Ay V=Y
//_-—\\
7 N
’ N
\ i
\
~ Qm

Fig. 2.5 at



E2.3

100 2 Dynamics of Systems of Point Masses

is called the mass moment of inertia of the system relative to the
rotation axis a-a.

If one observes that ©, = const (rigid constraints), then the
time derivative of (2.20) gives with the help of (2.18)

Oup=M,. (2.22)

This equation of motion for the rotation of a rigid system of point
masses about a fixed axis is analogous to the equation of motion
for the translation of a point mass m (e.g. mi = F,,). In place of
mass, we have the mass moment of inertia, in place of accelera-
tion we have angular acceleration, and in place of force we have
moment (cf. Table 3.1).

When applying (2.22), one should pay attention to the assumed
positive sense of rotation for ¢ and moment M,. If, for example,
 is taken as positive for clockwise rotation, then M, should also
be measured as positive for clockwise moments about a-a and
vice-versa.

Example 2.3 A pendulum consisting of a rigid, massless rod with
two masses mq and ms is suspended from a frictionless pivot A
(Fig. 2.6a). If the system is displaced from the equilibrium position
and released, then it will oscillate under the action of gravity in
the indicated plane.

Determine the equations of motion for the pendulum.

Fig. 2.6
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Solution The system executes a pure rotation about an axis a

through the fized point A. To describe its motion we will use the

angular momentum theorem. The angle ¢ will be taken as positive

for counter-clockwise rotations with the reference position being

the equilibrium position (the vertical position); see Fig. 2.6b.
With the mass moment of inertia

O, =m 1? +m2(2l)2 = (m1 +4m2) 2

and the moment of the external forces (here the weights) about
the axis a (mind the positive sense of rotation)

M, =—mqglsing —mag(2lsing) = —lg(my + 2ms2)sinp,
one obtains the equation of motion from (2.22) as

(m1 4+ 4m2)l*$ = —lg(my + 2my)sinp

. g m1t2my

i =0.
I mi1+4mse sy

For small angles (sin ¢ & ¢), this equation describes a harmonic
oscillation (cf. Chapter 5).

2.4 Work-Energy Theorem and Conservation of
Energy for a System of Point Masses

Following Section 1.2.7, the work-energy theorem for a single mass
m; in a system of point masses says

Ty —Toi = Us, (2.23)

where T7; = mivf /2 is the kinetic energy of mass m; at a time
t; and Ty, is the kinetic energy at an initial time tg; U; is the
work of the forces acting on m; between times ¢y and ¢;. With the
notation F; for the external forces and F;; for the internal forces,

101
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we can write the work as

T1i

Ui = / (E + ZFzJ> ~dry = Ui(e) + Ui(i)7 (2.24)
) J

Toi

where Ui(e) = f F; - dr; is the work of the external forces and
Ui(i) = f > F;; - dr; is the work of the internal forces.

Using the definitions U = Y U; and T = Y T; and summing
(2.23) over all n masses, yields the work-energy theorem for a
system of point masses:

T -To=U®1+U0% =U. (2.25)

The sum of the work of all the external and internal forces is equal
to the change in the total kinetic energy of the system.

For rigid constraints the work of the internal forces, U@ | is zero.
In order to show this, consider masses m; and m; and the internal

-\
1

’//; dry;

\-l (
dr; 4

Q F Fji  my

L7 dr

Fig. 2.7

forces acting between them: Fj; and Fj; = —F;; (Fig. 2.7). For
infinitesimal displacements dr; and dr;, it follows that

d’l"j =dr; + d’l“ij s

where dr;; must be orthogonal to the line connecting the two
masses due to their fixed separation; thus dr;; is also orthogonal
to Fj;. The work dUi(;) of both forces is then given as
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The work U = dU(;) for a finite motion is thus also zero;
this result further holds for all other internal forces in the system.
For systems composed of only rigid constraints, the work-energy
theorem reads

T, —To=U® =U. (2.26)

If the external and internal forces are conservative forces, i.e. are
derivable from potentials V(¢) and V() (e.g. gravitational forces,
spring forces), then the work of the forces is equal to the negative
of the difference in the potentials at times ¢; and #g:

U = — (Vl(e) _ Vo(e))’ U — _ (Vl(i) - Vo(i)).
Substituting into (2.25) results in the conservation of energy law
T+ V9 + VO =7+ V9 + VP = const. (2.27)

This equation states that the sum of the kinetic energy and the
potential energy is an invariant of the motion. In this situation,
one calls the system a conservative system. If the internal forces
do no work (e.g. rigid constraints), then U(®) = —(V( 2 V(Z)) 0,
and from (2.27) we have

T + Vl(e) =Ty + Vo(e) = const . (2.28)

Example 2.4 The system in Fig. 2.8a (cf. Example 2.1) is released
from rest.

Assuming that the rope is massless and inextensible, and that
the pulleys are massless, find the velocity of mass m; as a function
of its displacement.

Solution Since only conservative forces (weights) are acting on
the system and the internal forces do not contribute to the work
(inextensible rope), we can employ the conservation of energy re-
lation (2.28). We measure the coordinates z1 and x5 (Fig. 2.8b)
from the initial position and assume the potentials to be zero for
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myg

Fig.2.8
21 = x2 = 0. Accounting for the kinematic constraint
To =211 — ITo=21I
we have that
Vo(e) =0, Vl(e) =mygx1 —magxs = (mp —2ms) g1,
To=0, T,= %mlx'%wL%mg:tg :%(m1 +4mg) @7 .

Substituting into (2.28) gives the velocity 41 as a function of po-
sition x7:

1 )
§(m1+4m2)xf+(m1 —2mg) gz =0
. 2mo —my
=44/2 — .
- 1 m1+4mggx1

Since the term under the radical must be positive, if 2mg > mq,
then 1 must also be positive (m; moves upwards). In this case the
positive sign for the square-root applies. In the case that 2msy <
m1, then x1 must be negative and the negative sign for the square-
root applies (i1 < 0).
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2.5 Central Impact

The sudden collision of two bodies which causes a change in their
velocities is called an impact. During a very short period of time
large forces are exerted on the bodies. Since these forces lead to
time-dependent deformations in the vicinity of the points of con-
tact, a comprehensive treatment of a problem involving impact is
rather difficult. However, applying several idealizations will allow
us to determine the changes of the velocities in a relatively simple
way. We assume:

a) The impact duration ¢; is so small that the changes in the
positions of the bodies during the impact can be neglected.

b) The impulsive forces at the points of contact are so large
that all the other forces (e.g., the weights of the bodies) can be
neglected during impact.

c¢) The deformations of the bodies are so small that they may
be neglected when describing the changes of the velocities (i.e.,
the bodies are assumed to be rigid when the laws of motion are
formulated).

Fig. 2.9a shows two bodies during impact. The point of contact
P lies in the plane of contact. The normal to the contact plane
that passes through P is called the line of impact. We refer to a
collision as being direct if the velocities of the points of contact of
both bodies have the direction of the line of impact immediately
before the impact. An impact that is not direct is called oblique. If
the line connecting the centers of mass of the two bodies coincides
with the line of impact, the impact is called central, otherwise it
is eccentric. In this section we restrict ourselves to central impact

eccentric impact central impact

~~—contact normal =~

contact tangent

contact tangent

Fig.2.9

2.5
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as it occurs, for example, in the collision of two spheres (Fig. 2.9b).

At first let us consider problems involving direct impact. Fig.
2.10a shows two bodies, modelled as point masses m; and mgy
which move along a straight line with velocities v; and vs, respec-
tively (v1 > vg2). At time ¢t = 0, contact begins. The force F(t)
which the two bodies exert on each other first increases with time
(Fig. 2.10b). It attains its maximum value at time ¢ = ¢*. During
the time interval t < t*, the compression phase, both bodies are
compressed in the vicinity of P. At time t* (largest compression),
both masses have the same velocity v*.

Subsequently, the deformations are partially reduced or com-
pletely removed and the impulsive force decreases. The restitution
phase ends at t = t; where t; is the impact duration. Afterwards
the force F is zero and the two masses move independently with
the velocities 77 and v, (Fig. 2.10a).

before impact during impact after impact
my U me Uo ) my U my Uy

m1 (1) mo

F F elastic impact F plastic impact
Fo En FC:FR\\ ﬂﬁﬁo
* i1 t* ti t tt=1t; t
) vt Pt i

Fig.2.10

Since the precise time variation of F'(t) (Fig. 2.10b) during the
impact is usually unknown, we apply the concept of linear impulse
F as we did in Section 1.2.5. We write down the linear impulse for
the compression phase and for the restitution phase, respectively:
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F, :/F(t) dt, FR:/F(t) dt. (2.29)
0 t*

The total linear impulse is then given by

ti
F= /F(t) dt = F, + Fg. (2.30)
0

If the two bodies behave ideally elastic, the linear impulses in the
compression phase and in the restitution phase are assumed to
be equal: Fo = Fr (Fig. 2.10¢). On the other hand, if the bodies
display an ideally plastic behavior, the deformations experienced
during the compression phase are permanent. The force F' is then
reduced to zero at t = ¢* (Fig. 2.10d) and we obtain Fr = 0. In
this case, both masses have the same velocity v* after the collision.

A real body responds in a fashion intermediate to the two li-
miting cases. A partially elastic impact is modelled by (cf. (1.55))

Fr=eF, with 0<e<1. (2.31)

The constant e is the coefficient of restitution. It depends on the
materials of the bodies, their form, and to a certain extent on
the velocities. It can be determined experimentally. In the case
of an ideal-elastic impact we have e = 1, an ideal-plastic impact
is characterized by e = 0, and for a partially elastic impact we
have 0 < e < 1 (see (1.56)). Table 2.1 displays several values
of the coefficient of restitution for two spheres made of the same
material.

During an impact, the masses experience sudden changes in
their velocities (the changes in the positions are negligible). To
determine the changes of the velocities we apply the Impulse Law
to both masses. Note that the forces and therefore also the li-
near impulses which are exerted on m; and mso are of the same
magnitude but of opposite directions (action = reaction). Thus,
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Table 2.1
material coefficient of restitution e
wood/wood ~ 0.5
steel/steel 0.6...0.8
glass/glass 0.94
cork/cork 0.5...0.6

the Impulse Law (1.51) for the compression phase is given by

my(v* —vy) = — Fi,
AC (2.32)
ma(v* —wva) = + Fg
and the Impulse Law for the restitution phase reads
ml(z_)l — 1)*) = 7FR,
(2.33)

mg(ﬁg - U*) = -I—FR.
If the coefficient of restitution e is known, we have five equations

(2.31) - (2.33) for the five unknowns Uy, U2, v*, Fo and Fg. They
can be solved, for example, for the velocities after the impact:

. my v1 + mg vy — ema(vy — vg)
1= )
mi + mo

my v1 + ma vy + emy(vy — v2) (2.34)

my1 + mo

In the case of an ideal-plastic impact (e = 0), (2.34) yields

M1 + Mo U2
mi + me

This is the velocity v* at the end of the compression phase.
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An ideal-elastic impact (e = 1) leads to

_ 2move + (M1 —ma)v1 2my v + (Mg — mq)vy
v = s Vg =
my + ma my + mo
In the special case of two equal masses (m; = mg = m) this
results in

U1 = V2, U2 =71.

In this case an exchange of the velocities takes place. If, for ex-
ample, mass mo is at rest before an impact, then it takes on the
initial velocity of m, after the impact, whereas m; will be rest.

Regardless of the type of impact, the total momentum of the
system (masses mq and mg) remains unchanged:

1
- - 2
my U1 + mo s = ————[m7 vy +mymavy — emyma(vy — vg)
my + mo
2
+mymav1 + ms v + emy ma(vy — v2)]

= M1 V1 +mMovy.

If we calculate the difference v9 — v7 of the velocities after the
impact, we obtain
e (v1 — va)(my + ma)

Vg — V1 = =e(vy —v2).
2 1 M1+ s (1 2)

Here, (v; — vy) is the relative velocity of approach (just before
the impact) of the masses, and (3 — 71) is the relative velocity of
separation (immediately after impact). Thus, we have

V1 — Vg

(2.35)

e= 5
U1 — V2

Accordingly, the coefficient of restitution is equal to the ratio of
the relative velocity of separation to the relative velocity of ap-
proach. In the following, we will usually apply (2.35) instead of
(2.31).

The loss of mechanical energy (plastic deformation, generation
of heat) during impact is given by the difference AT of the kinetic
energies before and after impact. Applying (2.34) we obtain
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2 2 =2 =2
miy vy ma v5 miy vy ma v5

AT = —
("5 ) - (M)
_1—62 mi me

(2.36)
_mimo RY
2 mq+mse (v = v2)"
There is no loss of energy in the case of an elastic impact (e = 1),
whereas AT attains a maximum value for a plastic impact (e = 0).

In certain applications, for example, during forging or while
driving a pile into the ground, the mass ms is at rest before the
impact (v2 = 0). We define the blow efficiency n as the ratio of
the energy loss AT (= work done to cause the deformation) to
the applied energy T' = Fmy v. Then we obtain with (2.36)

mo 1

:£:(1—62)7:(1—62)7ml- (2.37)

K T mi + me 1

ma

It is the aim of forging to deform bodies plastically. Here, the
blow efficiency 7 should be large. This can be achieved using a
small ratio my/mg (large mass ms of the anvil including the work
piece). On the other hand, a pile or a nail should not deform during
driving. Therefore, m; /ms should be sufficiently large (large mass
my of the hammer).

We now extend our investigation to analyse oblique central
impact. For simplicity we restrict ourselves to plane problems
(Fig. 2.11a). We assume that the surfaces of the masses are smooth
(frictionless); rough surfaces will be considered in Section 3.3.3.
Then the contact force F(t) and hence also the linear impulse 3
have the direction of the line of impact (Fig. 2.11b). Using the
coordinate system shown in Fig. 2.11a, the Impulse Law in the
y-direction yields

my Uy —mivy =0 — U1y = vy,
(2.38)

Mo U2y — M2 Vay = 0 — Vay = Vay -

Thus, the components of the velocities perpendicular to the line
of impact remain unchanged in the case of smooth surfaces.
The equations in the direction of the line of impact (the z-axis)
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\
contact normal )‘ )
, x
vy 7 2
/'],/V \—
| [
(T N 2
Do,
7
.My

N
contact N

a tangent b

Fig. 2.11

and Equation (2.35) are the same as those of direct impact. Note,
however, that the velocities of a direct collision have to be replaced
now by the velocity components in the direction of the line of
impact. In contrast to (2.32) and (2.33) we will write here the
Impulse Laws for the total impact duration t;:

M1y — My v, = — F,
R (2.39)
Mooy — Mo Vo = + F.
Equation (2.35) now becomes
o= _ Nz~ V2w (2.40)

Vig — V2

These are three equations for the three unknowns vy, U2, and F.
Solving for 1, and Uy, yields the results which are already known
from (2.34).

Example 2.5 Two masses (m; = m, ma = 2m) collide in a straight
path (Fig. 2.12). The velocity v, of m; is given.

Determine vy so that my is at rest after the collision (coefficient
of restitution e). Calculate the velocity of mq after the impact.

m.
(3] 2

e U1 2
- ]

Fig. 2.12

E2.5
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Solution The velocities after the collision in a direct central impact
are given by (2.34). We assume that positive velocities are directed
to the right. Then we obtain (note the direction of vs)

my vy —mag vy —ems (v + v2)

U] = ,
m1 + mo

B my v1 — mave + emq (v1 + v2)
Vo = .
mi + ma

The condition v; = 0 leads to

mi1 v — Mo U2 —€m2(1}1 +1}2) =0

mi — ems 1—2e¢
- L=un =

ma(1+e) UlZ(l—l—e)'

Inserting vy into vs yields

_ 1—-2e 1—-2e
:2: 3—m mv1—2mvlm+em<vl +’U1m):|
_ Je
%0 te

Mass mo has to be at rest before the collision for e = 1/2. If
e > 1/2, the direction of vq is reversed. In this case, mass mo has
to move to the right before impact.

Example 2.6 A mass m; slides down a smooth path from rest at
point A. It collides with a mass ms = 3m, which is at rest at
point B (Fig. 2.13). The path is horizontal at B.

Determine the coefficients of restitution e which lead to a mo-
tion where mass mj moves uphill after the collision. Calculate the
height h* which is attained by m; for e = 1/2 and determine the
travel distance w of mao.

Solution The velocities of m; and mo immediately before impact
are v1 = /2 gh (conservation of energy) and vs = 0. Equation
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[~ >

Fig.2.13

(2.34) yields the velocities after impact:

— 1-3
gz Mzem _1-3e oo

mi + mo 4
_ mi(l+e) l+e ,—
2 my -+ msy v 4 g

If my is supposed to move uphill, the velocity v; has to be negative.
Therefore, the coefficient of restitution has to satisfy the condition

1
1-3e<0 — e>§.

In the special case e = 1/2 we obtain

1712—%\/29}1, 5222\/29}1.

The height h* is found from the conservation of energy:

1, o2 h
om0l =myght o b=k =
g ML= g =729 o4

The distance w follows from (1.41) with @ = 0 and z(z = w)
—h:

2h
g

=~ w
=

w = V3
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Example 2.7 A mass my (velocity v1) collides with a mass mq
which is at rest. The plane of contact has the direction given by
the angle 45° (Fig. 2.14a). The surfaces of the bodies are smooth.

Determine the velocities of the masses after the impact (coeffi-
cient of restitution e).

m
-

U1y
1\ V1 - -\,’ \ml ey U1 \ )
—_ = 1 —_ - A
\_14 NN U N B F
45° . ) Ula ay \
; L ;
my my N\ 45° Omz

Fig. 2.14

Solution We choose the coordinate system shown in Fig. 2.14b;
the z-axis is the line of impact. Since the surfaces are smooth,
the linear impulse F acts in the direction of the line of impact
(Fig. 2.14c¢). The Impulse Laws for both masses and the hypothesis
(2.35) are given by

ml('Dl;v - vlw) =-F, ml(ﬁly - vly) =0,

ma(U2y — V2z) = +F7 ma(V2y — vay) = 0,

1_)193 - @2:10
e=—
Vig — V2g
With
V2
Vig = Viy = —— V1, Uz = Uy =0

2

we obtain the velocities after the impact:

_ \/5 mi — emso _ \/5
Vg = (7 V1 ———————— Viy = 7 U1
2 mi +mo Y ’
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Thus, mass me moves with the velocity v = v9, in the direction
of the line of impact (Fig. 2.14b). The velocity v; and the angle
ay are given by

v 1
@::,/T;fx+1‘;fy:m\/m§+(1—e)m1m2+§(l+e2)m§,

_ Uy omp+mg
tanoyy = — = ———— .
Vg mip —emso

2.6 Bodies with Variable Mass

Up to now we have always assumed that the mass of a system is
constant. We will now extend the theory to systems which have a
variable mass. An example for the motion of such a system is the
flight of a rocket whose mass decreases with time.

Let us first consider a body B which initially has mass mg and
velocity vy (Fig. 2.15). At a certain time a mass Am is ejected
from B with the velocity w. Then the mass of the body is reduced
to mo—Am and the velocity is changed to v1 = vg+Aw. The mass
flow velocity w is the velocity of Am relative to the body after the
ejection. The mass Am therefore has the absolute velocity v +w
(cf. Chapter 6). We assume that the system under consideration
consists of both masses. Then, only internal forces act during the
ejection.

after ejection

Fig. 2.15 mo mo—Am

2.6
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The momentum of the system before the ejection
Po = Mo Vo
and the momentum afterwards
p1 = (mo — Am)vy + Am(vy + w)
have to be equal according to (2.14): po = p1. This yields the
change in the velocity of the body B due to the ejected mass:
Av:’vlf'vo:fA—mw. (2.41)
mo

This change increases with an increasing mass Am and an incre-
asing velocity w. The negative sign in (2.41) indicates that Av
and w are oppositely directed. If a mass Am hits the body B
with a relative velocity w and is absorbed by B (the body gains
mass instead of losing mass), then the algebraic sign in (2.41) is
reversed.

v+dv+w
dm*/

F+dF v+dv
B _— -
F » /i// m —dm*
B, path of B
- m time t+d¢
time ¢ Fig. 2.16

Consider now a body B which ejects mass continuously and
which is subjected to an external force F (Fig. 2.16). The body
has mass m and velocity v at time ¢. During a time interval dt it
ejects mass dm™ with a mass flow velocity w. At time ¢ + dt its
mass is therefore m — dm™; its velocity has been changed by dv.
The momentum of the system at time ¢ is given by
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and at time ¢t + dt it is
p(t+dt) = (m—dm™)(v + dv) + dm™ (v + dv + w)
=mv+mdv+dmn*w=p(t)+dp.
Thus, (2.12) yields

dp _ dv  dm®
a a dt

where dm*/dt = p is the mass which is ejected per unit time (the

w=F (2.42)

rate at which mass is being ejected). The rate of change of the
mass dm/dt of the body is given by —dm*/dt (rate of mass loss):

dm dm*
- _ - — . 2.43
dt dt a (243)

Now we introduce the thrust T

T=—pw. (2.44)

Then (2.42) can be written as

dv
mE_FJrT. (2.45)

This equation has the same form as Newton’s law of motion. Note,
however, that the mass of the body now depends on time: m =
m(t). Also, it contains the thrust T in addition to the external
force F'. The thrust describes the action of the ejected mass on
the body. It is proportional to the ejected mass p and to the mass
flow velocity w; it acts on the body in the direction opposite to w.
For example, if a rocket expels mass backwards, the thrust acts
on the rocket forwards. The thrust increases with increasing mass
flow velocity w.

As an illustrative example let us consider a rocket which has
the initial mass m; (including the fuel); see Fig. 2.17a. It takes
off vertically from the surface of the earth with a constant thrust
and a constant rate of expelled mass. The forces acting on the
rocket are the thrust T (directed opposite to the velocity w) and
the time-dependent weight m(t) g (Fig. 2.17b). We neglect the
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m(t)

T :
m(t)g
f

T

a b Fig. 2.17

aerodynamic drag and assume g to be constant. Then the motion
of the rocket is described according to (2.45) by

mt)v=—mt)g+T
where

T=pw=—rw.
(The condition for lift off is ¥(0) > 0. Therefore, the thrust has to
satisfy T' > m; g). Inserting yields

dv 1 dm

—=—g—-——w.
dt m dt
Since T and p are assumed constant, we also have w = const.
Thus, integration and application of the initial condition v(0) =0

yields the velocity

m(t)
dm t
v(t) = —gt—w / Tm :fgtfwlnm —wln 2L —gt.
m mr m(t)
mr
From r = — p we obtain m(t) = m; — ut which leads to
v(t) =w In— L —gt.

my — ut
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The maximum velocity is reached at the time ¢t = ¢t when the
fuel has run out. With the final mass m(tr) = mp it follows as

mr
Umax = W lnm— —gtp .
P

It increases with increasing w and increasing ratio my/mp.

Example 2.8 A boat (total mass mg) at rest can move without
resistance in the water. Two masses m; and mso are thrown off
the boat in the same direction with a mass flow velocity w.
Determine the resulting velocities of the boat if
a) the two masses are thrown at the same time and
b) if mass my is thrown first and subsequently mass meo.

mq +m2

[AH
W — 1, —_—
v v

mo—(my+ms)

mo, Vo=0
a
my mo
* 9 Uy « Q (o
— w—p —_—
s L na
mg, vo=0 mo—my (mo—my) —ma
b
Fig.2.18

Solution Fig. 2.18a shows the situations before and after the ejec-
tion of the masses in case a). The ejected mass m; + mg moves
relative to the boat with the velocity w to the left. If the boat
moves with the velocity v, to the right, then the masses mj + mg

have the absolute velocity w — v, to the left. Since the initial mo-
mentum is zero (vo = 0), the principle of conservation of linear

momentum for the total system is given by
(mg —my —mag) v, — (M1 +ma)(w—1v,) =0.
Solving for the velocity v, of the boat after the ejection yields

m1+m2
—_—w
mo

a

E2.8
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In case b) the velocity v of the boat after the ejection of the

first mass my (Fig. 2.18b) is obtained as
(mp—my)vp —mi(w—v;)=0 — v = m
mo

Application of the principle of conservation of linear momentum
to the system (mgo—m;1) before and after the ejection of the second
mass mo leads to

(mo — ma) vy = (mo —m1 —m2) vy, — ma(w — vp)
B <m+&> w.
mo mo — may

After simple algebraic manipulation the velocity v, can be written
as

mi1ma

mi + mo mimso
= + W=+ —F
mo mo(mo — m1) mo(mo — m1)
Since mg > mq, the velocity of the boat in case b) is larger than
the velocity in case a).

The results for v, and v, can also be obtained by a repeated
application of (2.41).

Example 2.9 The end of a chain with mass mo and length [ is
pulled upwards with a constant acceleration ag (Fig. 2.19a).
Determine the necessary force H.

T ag 1 H
= & Yo

T
a b Fig. 2.19
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Solution We consider the part of the chain which is already
suspended to be a body whose mass is continuously increasing.
This body is subjected to the force H, the time-dependent weight
m(t) g and the “thrust” T. We assume the force T' to be acting
upwards (Fig. 2.19b). With the z-coordinate of the point of app-
lication of H as shown, Equation (2.45) yields

mit)s = H—m(t)g+ T, (a)
where the thrust is given according to (2.43) and (2.44):
T=rw. (b)

The part of the chain which is still at rest has a “velocity” in the
negative z-direction relative to the part moving with the velocity
2. Thus,

w=—z. (c)

Integration of the given acceleration ap and application of the
initial conditions 2(0) = 0 and z(0) = 0 leads to the velocity and
the position (= length of the moving part):
1
é:a,(), ,é:aot, z:§a0t2. (d)
This yields the mass of the body and its change of mass:

z moag ,o
m=moy- =

;= o b ()

mo ap

= O ()

If we introduce (b)-(f) into (a) and solve for H we obtain

H— mOQO(;’laO"’_g) t2 :m0(3a0+g)

~I

This result is valid only as long as the mass of the body changes
(z <1).
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2.7 Supplementary Examples

Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
3, Springer, Berlin 2010, or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

Example 2.10 Two vehicles (masses m1 and mg, velocities v; and
vg) crash head-on, see Fig. 2.20. After a plastic impact the vehicles
are entangled and slide with locked wheels a distance s to the right.
The coefficient of kinetic U1 2

friction between the wheels

and the road is p.

Calculate vy if v and s

are known. Fig. 2.20

Result: see (B) v = 2 vy + <1 + @) V24ugs.
mi mq

Example 2.11 A block (mass mg) rests on a horizontal platform
(mass my) which is also initially at rest (Fig. 2.21). A constant
force F' accelerates the plat- | I |

form (wheels rolling without | |

friction) which causes the B m, F
block to slide on the rough ten
surface of the platform (co- O @)

efficient of kinetic friction
) Fig. 2.21

Determine the time t* that it takes the block to fall off the
platform.

Result: see (A) t* = \/

21m1
F — pg (my +mg)

Example 2.12 A railroad wagon (mass m1) has a velocity v; (Fig.
2.22). Tt collides with a wagon (mass mg) which is initially at rest.
Both wagons roll without friction after the collision. The second
wagon is connected via a spring (spring constant k) with a block
(mass mg) that lies on a rough surface (coefficient of static friction

1o)-
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Assume the impact to be plastic and determine the maximum
value of v; so that the block stays at rest.

U1
—_—

e po
Fig. 2.22
m, m m
Result: see (B)  v1max = Homsg \/ﬁ
my k

Example 2.13 A point mass m; strikes a point mass mo which is

suspended from a string (length [, negli-

gible mass) as shown in Fig. 2.23. The T
l

maximum force S* that the string can
sustain is given.

Assume an elastic impact and de-
termine the velocity vg that causes the Yo
. o —
string to break. Fig.2.23 ™M1 My
my +m
Result: see (B) wvo > % V(S /ma —g).
ma

Example 2.14 A ball (1) (mass mq) hits a second ball (2) (mass
mg, velocity vy = 0) with a velocity v; as shown in Fig. 2.24.
Assume that the impact
is partially elastic (coeffi-
cient of restitution e) and
all surfaces are smooth.

m
Given: 1o = 3ry, mg = @ 1/~| ,-
4 mi. @ — -:
Determine the veloci-
ties of the balls after the Fig.2.24
collision.
1-3e IVE]

Results: see (A) 01 1 vy, Up= ?(1 +e)vy.

Example 2.15 A hunter (mass mq) sits in a boat (mass ms =

2m4) which can move in the water without resistance. The boat

is initially at rest.

a) Determine the velocity vp, of the boat after the hunter fires a
bullet (mass mg = m4,/1000) with a velocity vp = 500 m/s.

E2.13

E2.14

E2.15
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b) Find the direction of the velocity of the boat after a second
shot is fired at an angle of 45° with respect to the first one.

Results: see (A) a)wvp, =0.167m/s, b) a=225°.

Example 2.16 A car (2) goes into a skid on a wet road and co-
mes to a stop sideways across the road as shown in Fig. 2.25. In
spite of having fully applied the brakes a distance s; from car (2)
a second car (1) (sliding with the coeffi-
cient of kinetic friction p) collides with f
car (2). This causes car (2) to slide a distan- 5
ce So. Assume a partially elastic central i @)
impact. Given: m; =2ma, p=1/3, e =
0.2, s1 =50m, so = 10m.

Determine the velocity vg of car (1) s
before the breaks were applied.

—_—— =

i
. 3 . Vo
Result: see (A) wvo = 74.6km/h. |t| Fig. 2.25
Example 2.17 Two cars (point masses m; and ms) collide at an
intersection with the velocities v; and v, at an angle « (Fig. 2.26).
Assume a perfectly plastic

collision.

Determine the magnitu- % ; ,ﬁzl
de and the direction of the my |:|—»O; 7;L

velocity immediately after ”
the impact. Calculate the : O P

loss of energy during the col- ma
lision.
Results: see (A) Fig. 2.26
V= #\/(mlvlﬁ + 2mymavivg cos a + (Mav2)?,
mi + mo
MoV Sin (v
tan 8 = 22

)
mi1v1 + MaV2 COS &
mimsa

AT = T2
2(m1 +m2)

(v} + v3 — 2v1v5 cos ) .
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Example 2.18 A bullet (mass m) has a velocity vy (Fig. 2.27). An
explosion causes the bullet to break into two parts (point mas-
ses my and mg). The directions «; and ay of the two parts and

the velocity v; immediately after T
the explosion are given. m”
Calculate mq and vs. Determi- Lomy
ne the trajectory of the center of Y ™
m a1 =
mass of the two parts. O o 2
Results: see (A) o \J\OQ v
Vo AN
m1 = m—tanasg, @
v1 Uy
v : e \ )
vy = 0 ye =0. Fig.2.27

cos g — Z—‘l’sin oy’

Example 2.19 A ball (point mass m1) is attached to a cable. It is
released from rest at the height hy (Fig. 2.28). After falling to the
vertical position at A it collides with
a second ball (point mass ma = 2my)
which is also initially at rest. The co-

efficient of restitution is e = 0.8. my E
Determine the height hy which the :

first ball can reach after the collision 1% A

and the velocity of the second ball im- _Qm™

mediately after impact. Fig.2.28

Results: see (A) hy =0.04hy, U3 =0.6+2gh;.

Example 2.20 The rigid rod (negligible
mass) in Fig. 2.29 carries two point mas-
ses. It is struck by an impulsive force F
at a distance a from the support A.
Determine the angular velocity of the
rod immediately after the impact and

the impulsive reaction at A. Calculate a

e~ ~
°
13
[

so that the reaction force at A is zero.  Fig.2.29 onm

Results: see (B) (D:Bl;:n’ Ax(1%>F, a=>51/3.

E2.18

E2.19

E2.20
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2.8 2.8 Summary

e Determination of the motion of the individual point masses:
o Derivation of the equations of motion.
o Formulation of the kinematic equations.

e Law of motion for the center of mass: ma, = F,

a. acceleration of the center of mass of the system,

F  resultant of the external forces.
e Conservation of linear momentum:
pP=muv. =), m;v; = const,

v, velocity of the center of mass of the system.

Note: no external forces are acting.

+ (0)

e Angular momentum theorem: L'~ = M©),

L©® =3 (r; x m;v;) moment of momentum.
e Work-energy theorem: T) — Ty = U +U®),
in the case of rigid constraints U® =0.

e Conservation of energy: T + V() + V() = const,
in the case of rigid constraints T + V(¢ = const.

e Impact problems:
o Choice of a coordinate system: line of impact (), tangent

(y)-
¢ Application of the Impulse Law for each point mass.
Vig — O
¢ Application of the hypothesis e = o ew
Vig — V2x
e Systems with variable mass: ma=F + T,

T=—pw=rmw thrust,

w mass flow velocity.



Chapter 3 3
I

Dynamics of Rigid Bodies



3 Dynamics of Rigid Bodies

3.1

3.1.1
3.1.2
3.1.3
3.14
3.2

3.2.1
3.2.2
3.23
3.3

3.3.1
3.3.2

3.33
3.4
34.1
3.4.2
3.4.3
3.4.4
3.5
3.6

Kinematics ... ... 129
Translation ... 129
Rotation ... 130
General Motion ............coooiiii 133
Instantaneous Center of Rotation........................... 141
Kinetics of the Rotation about a Fixed Axis............. 147
Principle of Angular Momentum ..................coooeaes 147
Mass Moment of Inertia ................oooiin. 149
Work, Energy, Power ................. 153
Kinetics of a Rigid Body in Plane Motion................ 158
Principles of Linear and Angular Momentum ............ 158
Impulse Laws, Work-Energy Theorem and Conservation

Of ENErgy ..o 169
Eccentric Impact.........cooo 174
Kinetics of a Rigid Body in Three Dimensional Motion 182
Principles of Linear and Angular Momentum ............ 183
Angular Momentum, Inertia Tensor, Euler's Equations 185
Support Reactions in Plane Motion ........................ 194
The Torque-Free Gyroscope...........cocovviiiiiiiiiinn.. 197
Supplementary Examples................cooci 199
SUMMANY . 207

Objectives: A rigid body may be considered to be a sys-

tem of an infinite number of particles whose relative distances
remain unchanged when the body is loaded. As was explained in
Section 2.1, it has six degrees of freedom in space: three transla-
tions (in the z-, y-, and z-directions) and three rotations (about
the z-, y-, and z-axes). In the following chapter we will derive the
equations which describe the motion of rigid bodies and we will
explain how these equations are applied to specific problems. Of

particular interest will be plane motion and the rotation about a

fixed axis.

D. Gross et al., Engineering Mechanics 3,
DOI 10.1007/978-3-642-14019-8 3, © Springer-Verlag Berlin Heidelberg 2011
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3.1 Kinematics

In this section we will study the kinematics of a rigid body, i.e.,
the geometry of motion without reference to its cause.

A rigid body may be considered to be a system of an infinite
number of particles whose relative distances remain unchanged
when the body is loaded. It has six degrees of freedom in space (see
Section 2.1). Three translations (in the z-, y-, and z-directions)
and three rotations (about the z-, y-, and z-axes) correspond to
the six degrees of freedom. In the following we will show how
the general motion of a rigid body may be understood as the
composition of a translation and a rotation.

3.1.1 Translation

A motion that leaves the direction of the straight line between any
two arbitrary points A and P of a rigid body unchanged is called
a translation (Fig. 3.1). In this case, every particle of the body
undergoes the same displacement dr during a time interval dt.
Therefore, all the particles have the same velocity and the same
acceleration:

dr dv d3r
v = 57 a — E = —dt2 . (31)
L
>, pathof P
A _
ST path of A
p 1
Fig.3.1 X Y

The paths of different points all have the same shape. Thus, the
motion of a single point of the body arbitrarily chosen represents
the motion of the complete body.

3.1
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3.1.2 Rotation

During a rotation all the particles of a rigid body move about a
common axis. In the special case that this axis is fixed in space,
the motion is called a rotation about a fized axis. If on the other
hand the axis only passes through a fixed point without keeping
its direction, then the motion is referred to as a rotation about a
fized point or a gyroscopic motion.

fixed axis \7[

of rotation

Fig.3.2

Let us first consider the motion of a rigid body about a fixed
axis (Fig. 3.2). In this case each point of the body moves in a
circle whose plane is perpendicular to the axis. The radius vectors
from the axis to the individual points of the body sweep out the
same angle dy during the same time interval d¢. Thus, the angular
velocity w = ¢ and the angular acceleration w = ¢, respectively,
are the same for every point. The velocity and the acceleration of
an arbitrary point P at a distance r from the axis are therefore
the same as for a particle in a circular motion (see (1.25) - (1.28)):

Vp =y €y, Qp=0r€r + a0y ey (3.2a)
where
Vo =TW, Ay =—Tw?  a, =T1d. (3.2b)

We now consider the rotation about a fixed point A (Fig. 3.3).
Let the instantaneous direction of the axis of rotation be given by
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the unit vector e,. Assume that the body undergoes a rotation
about this axis with the angle d¢ during the time interval dt.
Then all the particles of the body instantaneously move in circles.

/\ instantaneous
Fig.3.3 axis of rotation

The displacement drp of an arbitrary point P is given by (see
Fig. 3.3)

drp = (ew x r4p) de. (3.3)

Here, the vector e, x r4p is perpendicular to e, and r, p; its ma-
gnitude is equal to the orthogonal distance r of point P from the
instantaneous axis of rotation. We now introduce the infinitesimal
vector of rotation de and the angular velocity vector w:

de

dp =dpe, and w:E:gbew:wew. (3.4)

Then the velocity vp = drp/dt of point P follows from (3.3):
Vp =W X Typ- (3.5)

It should be noted that the infinitesimal rotation d¢ and the
angular velocity w = de/dt are vectors, however, a finite rotation
cannot be represented by a vector. In order to show this we subject
a body to different finite rotations from an initial position to a final
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,\;J/‘ig

P o=
AL
€T
initial position
final position
z
z
z ™
— — (= —
\4 1
4y 1
Yy / r - Yy
/ Pae=75
T T Z

final position

T
b initial position

Fig. 3.4

position. For example, if the block in Fig. 3.4 is first rotated about
the z-axis (angle of rotation , = 7/2) and subsequently rotated
about the y-axis (angle of rotation ¢, = m/2), then the final
position shown in Fig. 3.4a is attained. On the other hand, if we
first rotate the body about the y-axis and then about the z-axis,
we obtain a different final position, see Fig. 3.4b. According to
the commutative law of vector addition, the result of an addition
of vectors has to be independent of the sequence of the addition.
Since finite angles of rotation do not obey this law, they cannot
be classified as vectors.

The acceleration of P is obtained through differentiation of
(3.5):

dvp

ap = I =W XTyptwWXrTyp.

Since point A is fixed in space (74 = 0), we have ¥,p = 7p =
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=vp = w X 14p. Thus,

ap =w X Typ+wX(wxXryp). (3.6)

Equations (3.5) and (3.6) reduce to (3.2a,b) in the special case
of a rotation about a fixed axis.

3.1.3 General Motion

The general motion of a rigid body can be understood as a com-
position of a rotation and a translation. To show this, we first
consider the case of plane motion, where all the particles move in
the z, y-plane or in a plane parallel to it (Fig. 3.5a). Position vec-
tors to arbitrary points P and A which are fixed in the body are
connected by rp = 74 +74p. Let us introduce the unit vectors e,.
(in the direction from A to P) and e, (perpendicular to 7,p).

Y
AP
Yp P?»
€, T
€y
Ya
T
T
O~
Z‘A Z‘P x
a b
a¥ =rw .
AP TW COSp
L.p - ----- = P
TW SN

2 sing

rw

Fig.3.5 ¢ ) d
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They are also fixed in the body and therefore move with the body.
Since r,p =