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Preface

This book is intended for the first course in thermodynamics required by most,
if not all, engineering departments. It is designed to supplement the required text
selected for the course; it provides a succinct presentation of the material so that
the student can more casily determine the major objective of each section of the
textbook. If proofs of theorems are not of primary importance in this first course,
the present Schaum’s Outline could itself serve as the required text.

The basic thermodynamic principles are liberally illustrated with numerous
examples and solved problems that demonstrate how the principles are applied to
actual or simulated engineering situations. Supplementary problems that provide
students an opportunity to test their problem-solving skills are included at the ends
of all chapters. Answers are provided for all these problems.

The material presented in a first course in thermodynamics is more or less the
same in most engineering schools. Under a quarter system both the first and
second laws are covered, with little time left for applications. Under a semester
system it is possible to cover some application areas, such as vapor and gas cycles,
nonreactive mixtures, and combustion. This book allows such flexibility. In fact,
there is sufficient material for a full year of study.

As U.S. industry continues to avoid the use of SI units, we have written about
25 percent of the examples, solved problems, and supplementary problems in
English units. Tables are presented in both systems of units.

The authors wish to thank Mrs. Michelle Gruender for her careful review of
the manuscript, Ms. Kelly Bartholemew for her excellent word processing, Mr.
B. J. Clark for his friendly and insightful advice, and Ms. Maureen Walker for her
efficient production of this book.

MERLE C. POTTER
CrAIG W. SOMERTON
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Chapter 1

Concepts, Definitions, and Basic Principles

1.1 INTRODUCTION

Thermodynamics is a science in which the storage, the transformation, and the transfer of energy
are studied. Energy is stored as internal energy (associated with temperature), kinetic energy (due to
motion), potential energy (due to elevation) and chemical energy (due to chemical composition); it is
transformed from one of these forms to another; and it is transferred across a boundary as either
heat or work. In thermodynamics we will develop mathematical equations that relate the transforma-
tions and transfers of energy to material properties such as temperature, pressure, or enthalpy.
Substances and their properties thus become an important secondary theme. Much of our work will be
based on experimental observations that have been organized into mathematical statements, or laws;
the first and second laws of thermodynamics are the most widely used.

The engineer’s objective in studying thermodynamics is most often the analysis or design of a
large-scale system—anything from an air-conditioner to a nuclear power plant. Such a system may be
regarded as a continuum in which the activity of the constituent molecules is averaged into
measurable quantities such as pressure, temperature, and velocity. This outline, then, will be
restricted to macroscopic or engineering thermodynamics. If the behavior of individual molecules is
important, a text in statistical thermodynamics must be consulted.

1.2 THERMODYNAMIC SYSTEMS AND CONTROL VOLUMES

A thermodynamic system is a definite quantity of matter most often contained within some closed
surface. The surface is usually an obvious one like that enclosing the gas in the cylinder of Fig. 1-1;
however, 1t may be an imagined boundary like the deforming boundary of a certain amount of mass as
it flows through a pump. In Fig. 1-1 the system is the compressed gas, the working fluid, and the
system boundary is shown by the dotted line.

All matter external to a system is collectively called its surroundings. Thermodynamics is con-
cerned with the interactions of a system and its surroundings, or one system interacting with another.
A system interacts with its surroundings by transferring energy across its boundary. No material
crosses the boundary of a given system. If the system does not exchange energy with the surroundings,
it is an isolated system.

In many cases, an analysis is simplified if attention is focused on a volume in space into which,
and or from which, a substance flows. Such a volume is a control volume. A pump, a turbine, an
inflating balloon, are examples of control volumes. The surface that completely surrounds the control
volume is called a control surface. An example is sketched in Fig. 1-2.

We thus must choose, in a particular problem, whether a system is to be considered or whether a
control volume is more useful. If there is mass flux across a boundary of the region, then a control
volume is required; otherwise, a system is identified. We will present the analysis of a system first and
follow that with a study using the control volume.

1.3 MACROSCOPIC DESCRIPTION

In engineering thermodynamics we postulate that the material in our system or control volume is
a continuum; that is, it is continuously distributed throughout the region of interest. Such a postulate
allows us to describe a system or control volume using only a few measurable properties.

1
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Consider the definition of density given by
. Am

P A]LI’TU AV (£.1)
where Am is the mass contained in the volume AV, shown in Fig. 1-3. Physically, AV cannot be
allowed to shrink to zero since, if AV became extremely small, Am would vary discontinuously,
depending on the number of molecules in AV. So, the zero in the definition of p should be replaced
by some quantity &, small, but large enough to eliminate molecular effects. Noting that there are about
3 X 10' molecules in a cubic millimeter of air at standard conditions, ¢ need not be very large to
contain billions and billions of molecules. For most engincering applications ¢ is sufficiently small that
we can let it be zero, as in (1.1).

Less dense

2. —~ Volume AV

More dense

Fig. 1-3

There are, however, situations where the continuum assumption is not valid; for example, the
re-entry of satellites. At an elevation of 100 km the mean free path, the average distance a molecule
travels before it collides with another molecule, is about 30 mm; the macroscopic approach is already
questionable. At 150 km the mean free path exceeds 3 m, which is comparable to the dimensions of
the satellite! Under these conditions statistical methods based on molecular activity must be used.
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CHAP. 1] CONCEPTS, DEFINITIONS, AND BASIC PRINCIPLES 3

1.4 PROPERTIES AND STATE OF A SYSTEM

The matter in a system may exist in several phases: as a solid, a liquid, or a gas. A phase is a
quantity of matter that has the same chemical composition throughout; that is, it is homogeneous.
Phase boundaries separate the phases, in what, when taken as a whole, is called a mixture.

A property is any quantity which serves to describe a system. The state of a system is its condition
as described by giving values to its properties at a particular instant. The common properties are
pressure, temperature, volume, velocity, and position; but others must occasionally be considered.
Shape is important when surface effects are significant; color is important when radiation heat
transfer is being investigated.

The essential feature of a property is that it has a unique value when a system is in a particular
state, and this value does not depend on the previous states that the system passed through; that is, it
is not a path function. Since a property is not dependent on the path, any change depends only on the
initial and final states of the system. Using the symbol ¢ to represent a property, that is stated
mathematically as

j;)ézd‘f’:d’z_qsl (1.2)

This requires that d¢ be an exact differential; ¢, — ¢, represents the change in the property as the
system changes from state 1 to state 2. There are quantities which we will encounter, such as work,
that are path functions for which an exact differential does not exist.

A relatively small number of independent properties suffice to fix all other properties and thus the
state of the system. If the system is composed of a single phase, free from magnetic, electrical and
surface effects, the state is fixed when any two properties are fixed; this simple system receives most
attention in engineering thermodynamics.

Thermodynamic properties are divided into two general types, intensive and extensive. An
intensive property is one which does not depend on the mass of the system; temperature, pressure,
density and velocity are examples since they are the same for the entire system, or for parts of the
system. If we bring two systems together, intensive properties are not summed.

An extensive property is one which depends on the mass of the system; volume, momentum, and
kinetic energy, are examples. If two systems are brought together the extensive property of the new
system is the sum of the extensive properties of the original two systems.

If we divide an extensive property by the mass a specific property results. The specific volume is
thus defined to be

vV
V== (1.3)
We will generally use an uppercase letter to represent an extensive property [exception: m for mass]

and a lowercase letter to denote the associated intensive property.

1.5 THERMODYNAMIC EQUILIBRIUM; PROCESSES

When the temperature or the pressure of a system is referred to, it is assumed that all points of
the system have the same, or essentially the same, temperature or pressure. When the properties are
assumed constant from point to point and when there is no tendency for change with time, a condition
of thermodynamic equilibrium exists. If the temperature, say, is suddenly increased at some part of the
system boundary, spontaneous redistribution is assumed to occur until all parts of the system are at
the same temperature.

If a system would undergo a large change in its properties when subjected to some small
disturbance, it is said to be in metastable equilibrium. A mixture of gasoline and air, or a large bowl on
a small table, is such a system.
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4 CONCEPTS, DEFINITIONS, AND BASIC PRINCIPLES {CHAP. 1

When a system changes from one equilibrium state to another the path of successive states
through which the system passes is called a process. If, in the passing from one statc to the next, the
deviation from equilibrium is infinitesimal, a quasiequilibrium process occurs and each state in the
process may be idealized as an equilibrium state. Many processes, such as the compression and
expansion of gases in an internal combustion engine, can be approximated by quasiequilibrium
processes with no significant loss of accuracy. If a system undergoes a quasiequilibrium process (such
as the slow compression of air in a cylinder) it may be sketched on appropriate coordinates by using a
solid line, as shown in Fig. 1-4(a). If the system, however, goes from one equilibrium state to another
through a series of nonequilibrium states (as in combustion) a nonequilibrium process occurs. In Fig.
1-4(b) the dashed curve represents such a process; between (V,, P,) and (V,, P,) properties are not
uniform throughout the system and thus the state of the system cannot be well defined.

P
A
P ——- /)
/
/ |
/ |
4 I
/
s {
s |
s
P |
pp————d P ————-T’ I
i |
1 I ' v
v, Vv,
(@) (b)
Fig. 14

EXAMPLE 1.1 Whether a particular process may be considered quasiequilibrium or nonequilibrium depends on
how the process is carried out. Let us add the weight W to the piston of Fig. 1-5. If it is added suddenly as one
large weight, as in part (a), a nonequilibrium process will occur in the gas, the system. If we divide the weight into
a large number of small weights and add them one at a time, as in part (), a quasiequilibrium process will occur.

Gas

7
7
7
é
g
Z
.
.
Z
Z
.
é
.
b

T
IO

(a) (b)

Fig. 1-5

Note that the surroundings play no part in the notion of equilibrium. It is possible that the
surroundings do work on the system via friction; for quasiequilibrium it is only required that the
properties of the system be uniform at any instant during a process.
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When a system in a given initial state experiences a series of quasiequilibrium processes and
returns to the initial state, the system undergoes a cycle. At the end of the cycle the properties of the
system have the same values they had at the beginning; see Fig. 1-6.

The prefix iso- is attached to the name of any property that remains unchanged in a process. An
isothermal process is one in which the temperature is held constant; in an isobaric process the
pressure remains constant; an isometric process is a constant-volume process. Note the isobaric and

the isometric legs in Fig. 1-6.

Fig. 1-6

1.6 UNITS

While the student is undoubtedly most at home with SI (Systéme International) units, much of the
data gathered in the United States is in English units. Therefore, a certain number of examples and
problems will be presented in English units. Table 1-1 lists units of the principal thermodynamic

Table 1-1
To Convert from English

Quantity Symbol SI Units English Units to SI Units Multiply by
Length L m ft 0.3048
Mass m kg lbm 0.4536
Time t s sec —
Area A m® ft? 0.09290
Volume |14 m3 ft> 0.02832
Velocity 4 m/s ft /sec 0.3048
Acceleration a m/s? ft /sec? 0.3048
Angular velocity © rad/s sec ! —_
Force, Weight F. W N Ibf 4.448
Density P kg/m’ Ibm /113 16.02
Specific weight v N/m? Ibf /ft3 157.1
Pressure, Stress P.r kPa Ibf /{12 0.04788
Work, Energy W,E U J ft-1bf 1.356
Heat transfer Q J Btu 1055
Power w A% ft-1bf/sec 1.356
Heat flux Q w Btu/sec 1055
Mass flux m kg/s Ibm/sec 0.4536
Flow rate ar m*/s ft?/sec 0.02832
Specific heat c ki/kg - K Btu/Ibm-"R 4,187
Specific enthalpy h kJ/kg Btu/lbm 2.326
Specific entropy s ki/kg - K Btu/Ibm-’R 4.187
Specific volume v m’ /kg ft3/ibm 0.06242
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Table 1-2
Multiplication
Factor Prefix Symbol
1012 tera T
10° giga G
10¢ mega M
107 kilo k
1072 centi* c
1077 milli m
10°° micro "
10-° nano n
1072 pico p

[CHAP. 1

2

* Discouraged except in cm, cm?, or cm”.

quantities. Observe the dual use of V' for volume and velocity; the context and the units will make
clear which quantity is intended.

When expressing a quantity in SI units certain letter prefixes may be used to represent multiplica-
tion by a power of 10; see Table 1-2.

The units of various quantities are interrelated via the physical laws obeyed by the quantities. It
follows that, in either system, all units may be expressed as algebraic combinations of a selected set of
base units. There are seven base units in the SI: m, kg, s, K, mol (mole), A (ampere), cd (candela). The
last two are rarely encountered in engineering thermodynamics.

EXAMPLE 1.2 Newton's second law, F = ma, relates a net force acting on a body to its mass and acceleration.
Thus, a force of one newton accelerates a mass of one kilogram at one m/s?; or, a force of onc Ibf accelerates
32.2 1bm (1 slug) at a rate of one ft/sec?. Hence, the units are related as

IN=1kg-m/s? or 1Ibf=32.2Ibm-ft/scc?
EXAMPLE 1.3 Weight is the force of gravity; by Newton’s second law, W = mg. As mass remains constant, the
variation of W with elevation is due to changes in the acceleration of gravity g (from about 9.77 m/s* on the

highest mountain to 9.83 m/s? in the decpest ocean trench). We will use the standard value 9.81 m/s? (32.2
ft /sec?), unless otherwise stated.

EXAMPLE 1.4 To express the energy unit J (joule) in terms of SI base units, recall that energy or work is force
times distance. Hence, by Example 1.2,

1J=(IN)(1m)=(1kg m/s’)(1m)=1kg m?/s’

In the English system both the Ibf and the lbm are base units. As indicated in Table 1-1, the primary energy
unit is the ft-ibf. By Example 1.2,

1 ft-bf = 32.2 Ibm-ft?/sec? = 1 slug-ft?/sec?
analogous to the SI relation found above.

1.7 DENSITY, SPECIFIC VOLUME, SPECIFIC WEIGHT

By (1.1), density is mass per unit volume; by (1.3), specific volume is volume per unit mass.
Therefore,

1
C= 2 1.4
v= (1.4)
Associated with (mass) density is weight density or specific weight vy:
14
Y=v (1.5)
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CHAP. 1] CONCEPTS, DEFINITIONS, AND BASIC PRINCIPLES 7

with units N/m? (Ibf /ft?). [Note that y is volume-specific, not mass-specific.] Specific weight is related
to density through W = mg:

y =pg (1.6)

For water, nominal values of p and y are, respectively, 1000 kg/m® (62.4 Ibm /ft*) and 9810 N/m?
(62.4 Ibf/ft®). For air the nominal values are 1.21 kg/m® (0.0755 lbm /ft?) and 11.86 N/m® (0.0755
Ibf /£t3).

EXAMPLE 1.5 The mass of air in a room 3 X 5 X 20 m is known to be 350 kg. Determine the density, specific
volume, and specific weight.

m 350

p=v=w=].167kg/m3 v =

= ——= = 0.857 m%/kg

y =pg = (1.167)(9.81) = 11.45 N/m?

1.8 PRESSURE

Definition

In gases and liquids it is common to call the effect of a normal force acting on an area the
pressure. If a force AF acts at an angle to an area A A (Fig. 1-7), only the normal component AF,

AF,
Surface

Fig. 1-7
enters into the definition of pressure:
AF
P = lim ! 1.7
aa-o AA (27)

The SI unit of pressure is the pascal (Pa), where
1Pa=1N/m?=1kg/m - s’

The corresponding English unit is Ibf /ft?, although Ibf/in? (psi) is commonly used.

By considering the pressure forces acting on a triangular fluid element of constant depth we can
show that the pressure at a point in a fluid in equilibrium (no motion) is the same in all directions; it is
a scalar quantity. For gases and liquids in relative motion the pressure may vary with direction at a
point; however, this variation is extremely small and can be ignored in most gases and in liquids with
low viscosity (e.g., water). We have not assumed in the above discussion that pressure does not vary
from point to point, only that at a particular point it does not vary with direction.

Pressure Variation with Elevation

In the atmosphere pressure varies with elevation. This variation can be expressed mathematically
by considering the equilibrium of the element of air shown in Fig. 1-8. Summing forces on the element
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Pressure force: (P + dP)A

]

Weight : pgAdz d:

Pressure force: PA

i}
m z2=0
Fig. 1-8
in the vertical direction (up is positive) gives
dP = —pgd:z (1.8)
Now if P is a known function of z, the above equation can be integrated to give P(z):
Z
P(z) - P, = —f pgdz (1.9)
0
For a liquid, p is constant. If we write (1.8) using dh = —dz, we have
dP = ydh (1.10)

where 4 is measured positive downward. Integrating this equation, starting at a liquid surface where
P = 0, results in
P =vyh (1.11)
This equation can be used to convert to Pa a pressure measured in meters of water or millimeters of
mercury.
In most thermodynamic relations absolute pressure must be used. Absolute pressure is gage
pressure plus the local atmospheric pressure:

Py =Poe + P,

gage atm

(1.12)
A negative gage pressure is often called a racuum, and gages capable of reading negative pressures
are vacuum gages. A gage pressure of —50 kPa would be referred to as a vacuum of 50 kPa, with the

sign omitted.
Figure 1-9 shows the relationships between absolute and gage pressure.

9

Bage

gage =

f}“?‘

o)
] P,.m (measured by a barometer)

(negative pressure, a vacuum) Pins

Z Fah\= 0

Fig. 1-9
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The word “gage” is generally used in statements of gage pressure; e.g., P = 200 kPa gage. If
“gage’” is not present, the pressure will, in general, be an absolute pressure. Atmospheric pressure is
an absolute pressure, and will be taken as 100 kPa (at sea level), unless otherwise stated. It should be
noted that atmospheric pressure is highly dependent on elevation; in Denver, Colorado, it is about 84
kPa, and in a mountain city with elevation 3000 m it is only 70 kPa.

EXAMPLE 1.6 Express a pressure gage reading of 35 psi in absolute pascals.
First we convert the pressure reading into pascals. We have

Ibf in2 kPa
3520 {144 1{0.04788 — 241 kP
( inz)( 2 )( lbf/ftz) agage

To find the absolute pressure we simply add the atmospheric pressure to the above value. Using P,
we obtain

= 100 kPa,

P =241 + 100 = 341 kPa

EXAMPLE 1.7 The manometer shown in Fig. 1-10 is used to measure the pressure in the water pipe. Determine
the water pressure if the manometer reading is 0.6 m. Mercury is 13.6 times heavier than water,

Ope
Pipe ?/ i

TR ue

H

a—l'— b

Fig. 1-10

To solve the manometer problem we use the fact that P, = P,. The pressure P, is simply the pressure P in
the water pipe plus the pressure due to the 0.6 m of water; the pressure P, is the pressure due to 0.6 m of
mercury. Thus,

P + (0.6 m)(9810 N/m?) = (0.6 m)(13.6)(9810 N/m?)
This gives P = 74 200 Pa or 74.2 kPa gage.

EXAMPLE 1.8 Calculate the force due to the pressure acting on the 1-m-diameter horizontal hatch of a
submarine submerged 600 m below the surface.
The pressurc acting on the hatch at a depth of 600 m is found from (7.17) as

P = pgh = (1000 kg/m*)(9.81 m/s?)(600 m) = 5.89 MPa

The pressure is constant over the area; hence, the force due to the pressure is given by
7(1)° :
F=PA4=(589x 10° N/mz) Tmz =462 x 10N

1.9 TEMPERATURE

Temperature is, in reality, a measure of molecular activity. However, in classical thermodynamics
the quantities of interest are defined in terms of macroscopic observations only, and a definition of
temperature using molecular measurements is not useful. Thus we must proceed without actually
defining temperature. What we shall do instead is discuss equality of temperatures.

Equality of Temperatures

Let two bodies be isolated from the surroundings but placed in contact with each other. If one is
hotter than the other, the hotter body will become cooler and the cooler body will become hotter;
both bodies will undergo change until all properties (e.g., electrical resistance) of the bodies cease to
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change. When this occurs, thermal equilibrium is said to have been established between the two
bodies. Hence, we state that two systems have equal temperatures if no change occurs in any of their
properties when the systems are brought into contact with each other. In other words, if two systems
are in thermal equilibrium their temperatures are postulated to be equal.

A rather obvious observation is referred to as the zeroth law of thermodynamics: if two systems are
equal in temperature to a third, they are equal in temperature to each other.

Relative Temperature Scale

To establish a temperature scale, we choose the number of subdivisions, called degrees, between
two fixed, easily duplicated points, the ice point and the steam point. The ice point exists when ice and
water are in equilibrium at a pressure of 101 kPa; the steam point exists when liquid water and its
vapor are in a state of equilibrium at a pressure of 101 kPa. On the Fahrenheit scale there are 180
degrees between these two points; on the Celsius (formerly called the Centigrade) scale, 100 degrees.
On the Fahrenheit scale the ice point is assigned the value of 32 and on the Celsius scale it is assigned
the value 0. These selections allow us to write

tp = %rc +32 (1.13)
5
te = 5ty = 32) (1.14)

Absolute Temperature Scale

The second law of thermodynamics will allow us to define an absolute temperature scale;
however, since we do not have the second law at this point and we have immediate use for absolute
temperature, an empirical absolute temperature scale will be presented.

The relations between absolute and relative temperatures are

Te =ty + 459.67 (1.15)
Ty =t + 273.15 (1.16)

(The values 460 and 273 are used where precise accuracy is not required.)
The absolute temperature on the Fahrenheit scale is given in degrees Rankine (°R), and on the
Celsius scale it is given in kelvins (K).

EXAMPLE 1.9 The temperature of a body is S0°F. Find its temperature in °C, K, and °R.
Using the conversion equations,

5
o= 5(50 - 32) = 10°C Ty =10+ 273 = 283K Tg = 50 + 460 = 510°R

Note that T will refer to absolute temperature and ¢ to relative temperature.

1.10 ENERGY

A system may possess several different forms of energy. Assuming uniform properties throughout

the system, the kinetic energy is given by
KE = %mV2 (1.17)

where V is the velocity of each lump of substance, assumed constant over the entire system. If the
velocity is not constant for each lump, then the kinetic energy is found by integrating over the system.
The energy that a system possesses due to its elevation h above some arbitrarily selected datum is its
potential energy; it is determined from the equation

PE = mgh (1.18)
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Other forms of energy include the energy stored in a battery, energy stored in an electrical
condenser, electrostatic potential energy, and surface energy. In addition, there is the energy
associated with the translation, rotation, and vibration of the molecules, electrons, protons, and
neutrons, and the chemical energy due to bonding between atoms and between subatomic particles.
These molecular and atomic forms of energy will be referred to as internal energy and designated by
the letter U. In combustion, energy is released when the chemical bonds between atoms are
rearranged; nuclear reactions result when changes occur between the subatomic particles. In thermo-
dynamics our attention will be initially focused on the internal energy associated with the motion of
molecules that is influenced by various macroscopic properties such as pressure, temperature, and
specific volume. In a later chapter the combustion process is studied in some detail.

Internal energy, like pressure and temperature, is a property of fundamental importance. A
substance always has internal energy; if there is molecular activity, there is internal energy. We need
not know, however, the absolute value of internal energy, since we will be interested only in its
increase or decrease.

We now come to an important law, which is often of use when considering isolated systems. The
law of conservation of energy states that the energy of an isolated system remains constant. Energy
cannot be created or destroyed in an isolated system; it can only be transformed from one form to
another.

Let us consider the system composed of two automobiles that hit head on and come to rest.
Because the energy of the system is the same before and after the collision, the initial KE must simply
have been transformed into another kind of energy—in this case, internal energy, primarily stored in
the deformed metal.

EXAMPLE 1.10 A 2200-kg automobile traveling at 90 kph (25 m/s) hits the rear of a stationary, 1000-kg

automobile. After the collision the large automobile slows to 50 kph (13.89 m/s), and the smaller vehicle has a

speed of 88 kph (24.44 m/s). What has been the increase in internal energy, taking both vehicles as the system?
The kinetic energy before the collision is (V = 25 m/s)

KE, = 3m V3 = (3)(2200)(25%) = 687500 )

After the collision the kinetic cnergy is
1 1 1 R
KE, = jmaVaz2 + jmefz = (7)(2200)(13.892) + (%)(1000)(24.44*) = 510900
The conservation of energy requires that
E,=E, KE, + U, =KE, + U,
Thus, U, — U, = KE, — KE, = 687500 — 510900 = 176 600 J or 176.6 kJ.

Solved Problems

1.1 Identify which of the following are extensive properties and which are intensive properties:
(a) a 10-m’ volume, (b) 30 J of kinetic energy, (c) a pressure of 90 kPa, (d) a stress of 1000
kPa, (¢) a mass of 75 kg, and (f) a velocity of 60 m/s. Convert all extensive properties to
intensive properties assuming m = 75 kg.

(a) Extensive. If the mass is doubled, the volume increases.

(b) Extensive. If the mass doubles, the kinetic energy increases.
(¢) Intensive. Pressure is independent of mass.

(d) Intensive. Stress is independent of mass.

(e) Extensive. If the mass doubles, the mass doubles.

www.20file.org



www.semeng.ir

12

1.3

1.4

fl*

Smhcad

1.5

CONCEPTS. DEFINITIONS, AND BASIC PRINCIPLES [CHAP. 1

(f) Intensive. Velocity is independent of mass.

Voo R E 30 m 75
= 75 = 0.1333mY/ ke — =52 =0.40)/ke — =z = 1.0ke/ks

~J
w

The gas in a cubical volume with sides at different temperatures is suddenly isolated with
reference to transfer of mass and energy. Is this system in thermodynamic equilibrium? Why
or why not?

It is not in thermodynamic equilibrium. If the sides of the containcr arc at different temperatures,
the temperature is not uniform over the entire volume, a requirement of thermodynamic equilibrium.
After a period of time clapsed. the sides would all approach the same temperature and equilibrium
would eventually be attained.

Express the following quantities in terms of base SI units (kg, m, and s): (a) power, (b) heat
flux, and (c¢) specific weight.

(a) Power = (forceXvelocity) = (N)(m /s) = (kg - m /s*Xm /s) = kg - m?/s’
(h) Heat flux = heat transfer/time =J/s=N-m/s=kg- — -m/s = kg - m?/s*

“.13

m h i
(¢)  Specific weight = weight /volume = N/m* = kg - gg/m"‘= kg/(s* - m*)

Dectermine the force necessary to accelerate a mass of 20 Ibm at a rate of 60 ft /sec? vertically
upward.

A free-body diagram of the mass (Fig. 1-11) is helpful. We will assume standard gravity. Newton’s
sccond law. L F = ma, then allows us to write

20
F-20= (—)(()()) S F=5731bf
322

W =20 1bf
]

!

|

F

Fig. 1-11

A cubic mcter of water at room temperature has a weight of 9800 N at a location where
g = 9.80 m /s°. What is its specific weight and its density at a location where g = 9.77 m /s°?

The mass of the water is

W 9800
m= = g8 = 1000 kg
Its weight where g = 9.77 m /s° is W = mg = (1000X9.77) = 9770 N.
. W 9770
Specific weight: Y= = _21_7._ = 9770 N/m’
. 1000
Density: b= - 0—10 = 1000 kg /m*
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Assume the acceleration of gravity on a celestial body to be given as a function of altitude by
the expression g =4 — 1.6 X 10™% m/s°, where h is in meters above the surface of the
planet. A space probe weighed 100 kN on carth at sca level. Determine (a) the mass of the
probe, (b) its weight on the surface of the planet, and (¢) its weight at an elevation of 200 km
above the surface of the planet.

(a) The mass of the space probe is independent of elevation. At the surface of the carth we find its
mass to be
w 100 000

m = 2 - 98l 10194 kg

(b) The value for gravity on the planet’s surface, with o = 0, is g = 4 m/s> The weight is then
W =mg = (10194)(4) = 40780 N
(¢) At h =200000 m, gravity is g =4 — (1.6 X 10 ®X2 x 10%) = 3.68 m/s>. The probe’s weight at
200 km is
W =mg = (10194)(3.68) = 37510 N

When a body is accelerated under water, some of the water is also accelerated. This makes
the body appear to have a larger mass than it actually has. For a sphere at rest this added
mass is equal to the mass of one half of the displaced water. Calculate the force necessary to
accelerate a 10-kg, 300-mm-diameter sphere which is at rest under water at the rate of 10
m/s? in the horizontal direction. Use py;., = 1000 kg/m".

The added mass is onc-half of the mass of the displaced water:

1(4 1\(4 0.3y
Mayaded = j(gﬂ'f}PH:o) = (7)(§)(7)(T) (1000) = 7.069 kg

The apparent mass of the body is then m, . ..
needed to accelerate this body is calculated to be

=m +m, .4 = 10+ 7.069 = 17.069 kg. The force

F = ma = (17.069)(10) = 170.7 N

This is 70 percent greater than the force (100 N) needed to accelerate the body in air.

The force of attraction between two masses m, and m, having dimensions that are small
compared with their scparation distance R is given by Newton’s third law, F = km ,m,/R?,
where & = 6.67 X 107! N - m?/kg®. What is thc total gravitational force which the sun
(1.97 x 10* kg) and the earth (5.95 x 10%* kg) cxert on the moon (7.37 X 10?? kg) at an
instant when the earth, moon, and sun form a 90° angle? The earth-moon and sun-moon
distances are 380 x 10* and 150 x 10° km, respectively.

A free-body diagram (Fig. 1-12) is very helpful. The total force is the vector sum of the two forces. It

r o R “(6.()7 X 10 1Y(7.37 x 102)(5.95 x 10%) ]

(380 x 10°)°
2 1/2
L[ (667 x 10711)(7.37 x 10%)(1.97 x 10)
(150 x 10%)°

1/2

= (4.10 X 10* + 18.5 x 10*") "~ = 4.75 x 10 N
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Fig. 1-12

1.9 Calculate the density, specific weight, mass, and weight of a body that occupies 200 ft> if its
zi&  specific volume is 10 ft? /Ibm.

Mathcad The quantitics will not be calculated in the order asked for. The mass is
Vo200
m = l_ = W = 20 lbm

The density is

11 3
p= —m—().llbm/ft

v
The weight is, assuming g = 32.2 ft/scc?, W = mg = (20X32.2/32.2) = 20 bf. Finally, the specific
weight is calculated to be

_w_ 20
YTV T 200
Note that using English units, (1.6) would give

0.1 Ibm /ft?
32.2 Ibm-ft /sec?-1bf

= 0.1 Ibf/ft

y=pg= (32.2 ft/scc?) = 0.1 Ibf/ft3

1.10 The pressure at a given point is 50 mmHg absolute. Express this pressure in kPa, kPa gage,
and m of H,O abs if P, = 80 kPa. Use the fact that mercury is 13.6 times heavier than

water.
The pressure in kPa is found, using (1.11), to be
P = yh = (9810)(13.6)(0.05) = 6671 Pa or 6.671 kPa
The gage pressure is
Poage = Pans = Pam = 6.671 — 80 = —73.3 kPa gage
The negative gage pressure indicates that this is a vacuum. In mcters of water we have

P 6671
h = 7 = m = 068m0fH20

1.11 A manometer tube which contains mercury (Fig. 1-13) is used to measure the pressure P, in
Lk the air pipe. Determine the gage pressure Py. vy, = 13.6yy 0

Mathcad

Air pipe

Hg
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Mathcad

Locate a point a on the left leg on the air-mercury interface and a point b at the same elevation on
the right leg. We then have

P, =P, P, = (3)[(9810)(13.6)] = 400200 Pa or 400.2 kPa

This is a gage pressure, since we assumed a pressure of zero at the top of the right leg.

A large chamber is separated into compartments 1 and 2, as shown in Fig. 1-14, which are
kept at different pressures. Pressure gage A reads 300 kPa and pressure gage B reads 120
kPa. If the local barometer reads 720 mmHg, determine the absolute pressures existing in the
compartments, and the reading of gage C.

A B C

e o O e |6

Fig. 1-14
The atmospheric pressure is found from the barometer to be

P, = (9810)(13.6)(0.720) = 96 060 Pa or 96.06 kPa

The absolute pressure in compartment 1is P, = P, + P, = 300 + 96.06 = 396.1 kPa. If gage C read
zero, gage B would read the same as gage A. If gage C read the same as gage A, gage B would read
zero. Hence, our logic suggests that

Pp=P,~P. or P.=P,~Py=300-120=180kPa
The absolute pressure in compartment 2 is P, = P. + P, = 180 + 96.06 = 276.1 kPa.

A tube can be inserted into the top of a pipe transporting liquids, providing the pressure is
relatively low, so that the liquid fills the tube a height A. Determine the pressure in a water
pipe if the water seeks a level at height A = 6 ft above the center of the pipe.

The pressure is found from (7.11) to be

P = yh = (62.4)(6) = 374 1bf/ft2 or 2.60 psi gage

A 10-kg body falls from rest, with negligible interaction with its surroundings (no friction).
Determine its velocity after it falls 5 m.

Conservation of energy demands that the initial energy of the system equal the final energy of the
system; that is,

1 1
E, =E, ij12+mgh1 = 7mV22+mgh2

The initial velocity V| is zero, and the elevation difference £, — k, = 5 m. Thus, we have

mg(h, — hy) = %mvg or  Vy=y2g(hy — hy) = Y(2)(981)(5) =9.90 m/s

A 0.8-Ibm object traveling at 200 ft /sec enters a viscous liquid and is essentially brought to
rest before it strikes the bottom. What is the increase in internal energy, taking the object and
the liquid as the system? Neglect the potential energy change.
Conservation of energy requires that the sum of the kinetic energy and internal energy remain
constant since we are neglecting the potential energy change. This allows us to write
1

E,=E, %mV12+U1=§mV22-+~U2
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The final velocity V, is zero, so that the increase in internal energy (U, — U,) is given by
Uy~ Uy = 3 mVi= (%)(0.8 lbm)( 2007 ft?/sec?) = 16,000 Ibm-ft2/sec’

We can convert the above units to ft-Ibf, the usual units on cnergy:

Us — U = 16,000 Ibm-ft? /sec?’
2 717 32.2 Ibm-ft /sec2-Ibf

= 497 fi-Ibf

Supplementary Problems

Draw a sketch of the following situations identifying the system or control volume, and the boundary of
the system or the control surface. (a) The combustion gases in a cylinder during the power stroke, () the
combustion gases in a cylinder during the exhaust stroke, (¢) a balloon exhausting air, (d) an automobile
tire being heated while driving, and (e) a pressure cooker during operation.

Ans.  (a) system (b) control volume (¢) control volume (d) system (e) control volume

Which of the following processes can be approximated by a quasiequilibrium process? (a) The expansion
of combustion gases in the cylinder of an automobile engine, () the rupturing of a membrane separating
a high and low pressure region in a tube, and (c¢) the heating of the air in a room with a baseboard
heater. Ans. (a) can (b) cannot (¢} cannot

A supercooled liquid is a liquid which is cooled to a temperaturc below that at which it ordinarily
solidifies. Is this system in thermodynamic equilibrium? Why or why not? Ans. no

Convert the following to SI units: (@) 6 ft, (b) 4 in?, (¢) 2 slugs, (d) 40 fi-1bf, (&) 2000 ft-Ibf/sec, ( £) 150

hp, (g) 10 ft*/sec.

Ans. (g) 1.829 m {b) 65.56 cm* (c)29.18 kg (d)5424 N m (e)2712W  (f)111.9kW
(g)0.2832 m%/s

Determine the weight of a mass of 10 kg at a location where the acceleration of gravity is 9.77 m /s°.
Ans. 977 N

The weight of a 10-1b mass is measured at a location where g = 32.1 ft /sec’ on a spring scale originally
calibrated in a region where g = 32.3 ft/sec?. What will be the reading? Ans. 991 Ibf

The acceleration of gravity is given as a function of elevation above sea level by the relation g = 9.8] —
3.32 x 107 % m/s? with h measured in meters. What is the weight of an airplane at 10 km elevation
when its weight at sca level is 40 kN? Ans. 399 kN

Calculate the force necessary to accelerate a 20,000-lbm rocket vertically upward at the rate of 100
ft /sec®. Assume g = 32.2 ft/sec. Ans. 82,100 Ibf

Determine the deceleration of (@) a 2200-kg car and (b) a 1100-kg car, if the brakes are suddenly applied
so that all four tires slide. The coefficient of friction 5 = 0.6 on the dry asphalt. (y = F/N where N is
the normal force and F is the frictional force.)  Ans. (a) 5886 m/s*> () 5.886 m /s>

The mass which enters into Newton’s third law of gravitation (Problem 1.8) is the same as the mass
defined by Newton’s second law of motion. (a) Show that if g is the gravitational acceleration, then
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g = km,/R*, where m, is the mass of the earth and R is the radius of the earth. (b) The radius of the
carth is 6370 km. Calculate its mass if the acceleration of gravity is 9.81 m /s>,

Ans. (b)) 5.968 x 10** kg
1.26 (a) A satellite is orbiting the earth at 500 km above the surface with only the attraction of the carth
acting on it. Estimate the speed of the satellite. [ Hint: The acceleration in the radial direction of a
body moving with velocity V' in a circular path of radius r is }2/r; this must be equal to the
gravitational acceleration (see Prob. 1.22 and 1.25).] Ans. 8210 m/s
(b) The first earth satellite was reported to have circled the earth at 27000 km/h and its maximum
height above the carth’s surface was given as 900 km. Assuming the orbit to be circular and taking
the mean diameter of the carth to be 12700 km, determine the gravitational acccleration at this
height using (a) the force of attraction between two bodies, and (b) the radial acceleration of a
moving object. Ans. (a) 7.55 m/s? (h) 776 m/s?
1.27 Complete the following if g = 9.81 m/s? and V = 10 m*.
v (m?/kg) p (kg/m?) y(N/m? m (kg) W (N)
(a) 20
(b) 2
(c) 4
(d) 100
(e) 100
Ans.  (a) 0.05, 0.4905, 0.5, 4.905 (b) 0.5, 19.62, 20, 196.2 (¢) 2.452, 0.4077, 4.077, 40
(d) 0.1, 10, 98.1, 981 (e) 0.981, 1.019, 10, 10.19
1.28 Complete the following if P, = 100 kPa (yy, = 13.6 vyy,0).
kPa kPa
gage absolute mmHg abs mH,O gage
(a) 5
(b) 150
(¢) 30
(d) 30
Ans.  (a) 105, 787, 0.5097 (b) 50, 1124, 5.097 (c) —96,4, -9.786 (d) 294.3, 394.3, 2955
1.29 Determine the pressure difference between the water pipe and the oil pipe (Fig. 1-15).

Ans. 514 kPa

Water pipe

Qil pipe
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A bell jar 250 mm in diameter sits on a flat plate and is evacuated until a vacuum of 700 mmHg exists.
The local barometer reads 760 mm mercury. Find the absolute pressure inside the jar, and determine the
force required to lift the jar off the plate. Neglect the weight of the jar. Ans. B00S Pa, 4584 N

A horizontal 2-m-diameter gate is located in the bottom of a water tank as shown in Fig. 1-16. Determine
the force F required to just open the gate. Ans. 77.0 kN

Sm F
A Hinge
's
T
Fig. 1-16

A temperature of a body is measured to be 26 °C. Determine the temperature in °R, K, and °F.
Ans. 538.8°R, 299 K, 78.8°F

The potential energy stored in a spring is given by %sz, where K is the spring constant and x is the
distance the spring is compressed. Two springs are designed to absorb the kinetic energy of a 2000-kg
vehicle. Determine the spring constant necessary if the maximum compression is to be 100 mm for a
vehicle speed of 10 m/s. Ans. 10 X 10° N/m

A 1500-kg vehicle traveling at 60 km /h collides head-on with a 1000 kg vehicle traveling at 90 km /h. If
they come to rest immediately after impact, determine the increase in internal energy, taking both
vehicles as the system. Ans. 521 kJ

Gravity is given by g = 9.81 — 3.32 X 10" m/s?, where h is the height above sea level. An airplane is
traveling at 900 km/h at an elevation of 10 km. If its weight at sea level is 40 kN, determine (a) its
kinetic energy and (b) its potential energy relative to sea level. Ans. (a) 127.4 M] (b) 3993 MJ
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Chapter 2

Properties of Pure Substances

2.1 INTRODUCTION

In this chapter the relationships between pressure, specific volume, and temperature will be
presented for a pure substance. A pure substance is homogeneous. It may exist in more than one
phase, but each phase must have the same chemical composition. Water is a pure substance. The
various combinations of its threc phases have the same chemical composition. Air is not a pure
substance, and liquid air and air vapor have different chemical compositions. In addition. only a
simple compressible substance will be considered, that is, a substance that is essentially frec of
magnetic, electrical, or surface tension effects. We will find the pure, simple, compressible substance
of much use in our study of thermodynamics. In a later chapter we will include some real effects that
cause substances to deviate from the ideal state presented in this chapter.

2.2 THE P-v-T SURFACE

It is well known that a substance can exist in three different phases: solid. liquid, and gas.
Consider an experiment in which a solid is contained in a piston-cylinder arrangement such that the
pressure Is maintained at a constant value; heat is added to the cylinder, causing the substance to pass
through all the different phases. Our experiment is shown at various stages in Fig. 2-1. We will record
the temperature and specific volume during the experiment. Start with the solid at some low
temperature; then add heat until it just begins to melt. Additional heat will completely melt the solid,
with the temperature remaining constant. After all the solid is melted, the temperature of the liquid
again rises until vapor just begins to form; this state is called the saturated liquid state. Again, during
the phase change from liquid to vapor, often called boiling, the temperature remains constant as heat
is added. Finally, all the liquid is vaporized and the state of saturated rapor exists, after which the
temperature again rises with heat addition. This experiment is shown graphically in Fig. 2-2a. Note
that the specific volume of the solid and liquid are much less than the specific volume of vapor. The
scale is exaggerated in this figure so that the differences are apparent.

If the experiment is repeated a number of times using different pressures, a 7T-¢ diagram results,
shown in Fig. 2-2b. At pressures that exceed the pressure of the critical point, the liquid simply
changes to a vapor without a constant-temperature vaporization process. Property values of the
critical point for various substances are included in Table B-3.

The data obtained in an actual experiment could be presented as a three-dimensional surface with
P = P(r,T). Figure 2-3 shows a qualitative rendering of a substance that contracts on freezing. For a
substance that expands on freezing, the solid-liquid surface would be at a smaller specific volume than
for the solid surface. The regions where only one phase cxists are labeled solid, liquid, and vapor.
Where two phases exist simultaneously the regions are labeled solid-liquid (S-L), solid-vapor (5-V),
and liquid-vapor (L-V). Along the triple line, a line of constant temperature and pressure, all three
phases coexist.

The P-¢-T surface may be projected unto the P-v plane, the 7-r plane, and the P-T plane, thus
obtaining the P-u, T-v, and P-T diagrams shown in Fig. 2-4. Again, distortions are made so that the
various regions are displayed. Note that when the triple line of Fig. 2-3 is viewed parallel to the ¢ axis
it appears to be a point, hence the name triple point. A constant pressure line is shown on the T-v
diagram and a constant temperaturc line on the P-u diagram.

Primary practical interest is in situations involving the liquid, liquid-vapor, and vapor regions. A
saturated rapor lies on the saturated vapor line and a saturated liquid on the saturated liquid line. The
region to the right of the saturated vapor line is the superheated rapor region; the region to the left of
the saturated liquid line is the compressed liquid region (also called the subcooled liquid region). A

19
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- Vapor 1
Solid N Liquid
(@) (b) (c) (d)
Fig. 2-1
T T
Critical point
P = const.
Vapor Vapor
/ Saturated liquid
Liquid Saturated / <
Solid vapor (T/D;
v v

(@) (D]

Fig. 2-2

supercritical state is encountered when the pressure and temperature are greater than the critical
values.

2.3 THE LIQUID-VAPOR REGION

At any state (T, v) between saturated points f and g, shown in Fig. 2-5, liquid and vapor exist as a
mixture in equilibrium. Let ¢, and v, represent, respectively, the specific volumes of the saturated
liquid and the saturated vapor. Let m be the total mass of a system (such as shown in Fig. 2-1), m, the
amount of mass in the liquid phase, and m, the amount of mass in the vapor phase. Then for a state
of the system represented by (T, ¢) the total volume of the mixture is the sum of the volume occupied
by the liquid and that occupied by the vapor, or

me = mety+ myp, (2.1)

The ratio of the mass of saturated vapor to the total mass is called the quality of the mixture,
designated by the symbol x; it is

x= =% (2.2)
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Recognizing that m = m, + m,, we may write (2.1), using our definition of quality, as

v=v;+x(v, ~vy)

tions, we often let the subscript fg denote this difference; that is,

Thus, (2.3) is

Note that the percentage liquid by mass in a mixture is 100(1 — x) and the percentage vapor is 100x.

Vg = Ug — Uy

v=uvpt g,

www.20file.org

(c)

(2.3)
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P = const.

Vapor

Fig. 2-5 A T-v diagram showing the saturated liquid
and saturated vapor points.

2.4 STEAM TABLES

Tabulations have been made for many substances of the thermodynamic properties P, ¢, and T
and additional properties to be identified in subsequent chapters. Values are presented in the
appendix in both tabular and graphical form. Table C-1 gives the saturation properties of water as a
function of saturation temperature; Table C-2 gives these properties as a function of saturation
pressure. The information contained in the two tables is essentially the same, the choice being a
matter of convenience. We should note, however, that in the mixture region pressure and temperature
are dependent. Thus to establish the state of a mixture, if we specify the pressure, we need to specify a
property other than temperature. Conversely, if we specify temperature, we must specify a property
other than pressure.

Table C-3 lists the properties of superheated water vapor. To establish the state of a simple
substance in the superheated region, it is necessary to specify two properties. While any two may be
used, the most common procedure is to use pressure and temperature. Thus, properties such as ¢ are
given in terms of the set of independent properties P and T.

Table C-4 lists data pertaining to compressed liquid. At a given temperature the specific volume
of a liquid is essentially independent of the pressure. For example, for a temperature of 100°C in
Table C-1, the specific volume ¢, of liquid is 0.001044 mr * /kg at a pressure of 100 kPa, whereas at a
pressure of 10 MPa the specific volume is 0.001038 m*/kg, less than a 1 percent decrease in specific
volume. Thus it is common in calculations to assume that the specific volume of a compressed liquid is
equal to the specific volume of the saturated liquid at the same temperature. Note, however, that the
specific volume of saturated liquid increases significantly with temperature, cspecially at higher
temperatures.

Table C-5 gives the properties of a saturated solid and a saturated vapor for an equilibrium
condition. Note that the value of the specific volume of ice is relatively insensitive to temperature and
pressure for the saturated-solid line. Also, it has a greater value (almost 10 percent greater) than the
minimum value on the saturated-liquid line.

EXAMPLE 2.1 Determine the volume change when 1 kg of saturated water is completely vaporized at a
pressure of (a) 1 kPa, (b) 100 kPa, and (¢) 10000 kPa.

Table C-2 provides the necessary values. The quantity being sought is 1, = ¢, — t,. Note that P is given in
MPa.
(a) 1kPa. Thus, t;, = 129.2 - 0.001 = 129.2 m?/kg.
(b) 100 kPa = 0.1 MPa. Again, Upp = 1.694 — 0.001 = 1.693 m3/kg.
(c) 10000 kPa = 10 MPa. Finally, ¢, = 0.01803 — 0.00145 = 0.01658 m* /kg.

Notice the large change in specific volume at low pressures compared with the small change as the critical point is
approached. This underscores the distortion of the P-i* diagram in Fig. 2-4.
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EXAMPLE 2.2 Four kg of water is placed in an enclosed volume of 1 m®. Heat is added until the temperature is
150 °C. Find (a) the pressure, (b) the mass of vapor, and (c) the volume of the vapor.

Table C-1 is used. The volume of 4 kg of saturated vapor at 150 °C is (0.3928X4) = 1.5712 m*. Sincc the given
volume is less than this, we assume the state to be in the quality region.

(@) In the quality region the pressure is given as P = 475.8 kPa.
(b) To find the mass of the vapor we must detcrmine the quality. It is found from (2.3), using ¢ = 1,/4 m*/kg,
s 0.25 = 0.00109 + x(0.3928 — 0.00109)
Thus, x = 0.2489,/0.3917 = 0.6354. Using (2.2), the mass vapor is
m, = mx = (4)(0.6354) = 2.542 kg
(c) Finally, the volume of the vapor is found from
V, = v,m, = (0.3928)(2.542) = 0.9985 m’

Note that in mixtures where the quality is not very close to zero the vapor phase occupies most of the volume. In
this example, with a quality of 63.54 percent it occupies 99.85 percent of the volume.

EXAMPLE 2.3 Four kg of water is heated at a pressure of 220 kPa to produce a mixture with guality x = 0.8.
Determine the final volume occupied by the mixture.

Use Table C-2. To determine the appropriate numbers at 220 kPa we linearly interpolate between 0.2 and
0.3 MPa. This provides, at 220 kPa,

{220 - 200
Ye = (‘300‘—— 200

Note that no interpolation is necessary for vy, since for both pressures vy is the same to four decimal places.
Using (2.3), we now find

v = v, +x(v, ~ v;) = 0.0011 + (0.8)(0.8297 — 0.0011) = 0.6640 m*/kg
The total volume occupied by 4 kg is V' = muv = (4 kgX0.6640 m> /kg) = 2.656 m>.

)(0.6058 — 0.8857) + 0.8857 = 0.8297 m* /kg vy = 0.0011 m?/kg

EXAMPLE 2.4 Two Ib of water is contained in a constant-pressure container held at 540 psia. Heat is added
unti! the temperature reaches 700 °F. Determine the final volume of the container.
Use Table C-3E. Since 540 psia lies between the table entry values, the specific volume is simply

v = 1.3040 + (0.4)(1.0727 — 1.3040) = 1.2115 ft*/Ibm
The final volume is then V = mv = (2X1.2115) = 2.423 ft?.

2.5 THE IDEAL-GAS EQUATION OF STATE

When the vapor of a substance has relatively low density, the pressure, specific volume, and
temperature are related by the simple equation

Pv=RT (2.6)

where R is a constant for a particular gas and is called the gas constant. This equation is an equation
of state in that it relates the state properties P, v, and T; any gas for which this equation is valid is
called an ideal gas or a perfect gas. Note that when using the ideal-gas equation the pressure and
temperature must be expressed as absolute quantities.

The gas constant R is related to a universal gas constant R, which has the same value for all gases,
by the relationship

- % (2.7)

where M is the molar mass, values of which are tabulated in Tables B-2 and B-3. The mole is that
quantity of a substance (i.e., that number of atoms or molecules) having a mass which, measured in
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grams, is numerically equal to the atomic or molecular weight of the substance. In the SI system it is
convenient to use instead the kilomole (kmol), which amounts to x kilograms of a substance of
molecular weight x. For instance, 1 kmol of carbon is a mass of 12 kg (exactly); 1 kmol of molecular
oxygen is 32 kg (very nearly). Stated otherwise, M = 12 kg / kmol for C, and M = 32 kg / kmol for O,.
In the English system one uses the pound-mole (Ilbmol); for O,, M = 32 Ibm / Ibmol.

The value of R is

R = 8.314kJ/(kmol - K) = 1545 ft-Ibf /(Ibmol-°R) (2.8)

For air M is 28.97 kg /kmol (28.97 Ibm /1bmol), so that for air R is 0.287 kJ /kg - K (53.3 ft-Ibf /lbm- °R),
a value used extensively in calculations involving air.
Other forms of the ideal-gas equation are

PV = mRT P =pRT PV = nRT (2.9)

where n is the number of moles.

Care must be taken in using this simple convenient equation of state. A low-density p can be
experienced by either having a low pressure or a high temperature. For air the ideal-gas equation is
surprisingly accurate for a wide range of temperatures and pressures; less than 1 percent error is
encountered for pressures as high as 3000 kPa at room temperature, or for temperatures as low as
—130°C at atmospheric pressure.

The compressibility factor Z helps us in determining whether or not the ideal-gas equation should
be used. It is defined as

Pv
Z = BT (2.10)

and is displayed in Fig. 2-6 for nitrogen. Since air is composed mainly of nitrogen, this figure is
acceptable for air also. If Z = 1, or very nearly 1, the ideal-gas equation can be used. If Z is not

approximately 1, then (2./0) may be used. Additional real gas effects (deviations from ideal-gas
behavior) are considered in a subsequent chapter.

Z 10

0.6

- H(JK:

| Critical
{ point

1.8
0.1 0.2 04 1 2 4 10 20 40
Pressure (MPa)

Fig. 2-6

www.20file.org



www.semeng.ir

CHAP. 2] PROPERTIES OF PURE SUBSTANCES 25

The compressibility factor can be determined for any gas by using a generalized compressibility
chart presented in Fig. H-1 in the appendix. In the generalized chart the reduced pressure Py and
reduced temperature Ty must be used. They are calculated from

P T
Pa=F Te= 7 (2.11)

where P, and 7, are critical-point pressure and temperature, respectively, of Table B-3.

EXAMPLE 2.5 An automobile tirc with a volume of 0.6 m? is inflated to a gage pressure of 200 kPa. Calculate
the mass of air in the tire if the temperature is 20 °C.

Air is assumed to be an ideal gas at the conditions of this example. In the ideal-gas cquation, PV = mRT, we
use absolute pressure and absolute temperature. Thus, using P, = 100 kPa,

P =200 + 100 = 300 kPa and T=20+273=293K

The mass is then calculated to be

_ PV _ _(300000N/m?)(0.6m’) .
" RT ~ (287N -m/kg - K)(23K) - X&

The units in the above equation should be checked.

EXAMPLE 2.6 The temperature in the atmosphere near the surface of the earth (up to an elevation of 10000 m)
can be approximated by T(z) = 15 — 0.00651z °C. Determine the pressure at an clevation of 3000 m if at z = 0,
P = 101 kPa.

Equation (1.8) relates the pressure change to the elevation change. We can put the idcal-gas equation for air
in the form

287
P = 287pT = (9—81)(yT) =293yT
Hence, (1.8) can be written as
P
P = - 5537 42
Using the given equation for T(z) we have
P

ap = - (29.3)(288 — 0.00651z) dz
where we have added 273 to express the temperature in kelvins. To integrate the above equation we must
separatc variables as

ar _ dz

P~ (29.3)(288 - 0.006512)

Now integrate between the appropriate limits:

fP ar _ _/3000 dz _ ( 1 )( 1 ) 300 —0.00651 dz
o1 P o (29.3)(288 — 0.00651z) ~ \29.3 /1 0.00651 j:) 288 — 0.00651:

[5.241n(288 — 0.006512)]3™ = —0.368

In b
D 161

There results P = (101)e~%*8) = 69.9 kPa.

2.6 EQUATIONS OF STATE FOR A NONIDEAL GAS

There are many equations of state that have been recommended for use to account for
nonideal-gas behavior. Such behavior occurs where the pressure is relatively high (> 4 MPa for many
gases) or when the temperature is near the saturation temperature. There are no acceptable criteria
that can be used to determine if the ideal-gas equation can be used or if the nonideal-gas equations of
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this section must be used. Usually a problem is stated in such a way that it is obvious that nonideal-gas
effects must be included; otherwise a problem is solved assuming an ideal gas.

The van der Waals equation of state is intended to account for the volume occupied by the gas

molecules and for the attractive forces between molecules. It is

RT a
qu—b_;f (2.12)

where the constants @ and b are related to the critical-point data of Table B-3 by

27R*T? RT,
a=64—Pc b= SPC (213)
These constants are also presented in Table B-8 to simplify calculations.
An improved equation is the Redlich—-Kwong equation of state:
RT a
pP= — 2.14
v=b  p(v+bWT ( )
where the constants are given by
R2T2‘5 RT
a = 04275 PC b = 0.0867 PC (2.15)

< <

and are included in Table B-8.

A virial equation of state presents the product Pv as a series expansion. The most common

expansion is

p="2 422 0] (2.16)

RT | B(T) , C(T) ..
v v v

where interest is focused on B(T) since it represents the first-order correction to the ideal gas law.

The functions B(T), C(T), etc., must be specified for the particular gas.

mathcad EXAMPLE 2.7 Calculate the pressure of steam at a temperature of 500°C and a density of 24 kg/m? using
(@) the ideal-gas equation, (b) the van der Waals equation, (c) the Redlich-Kwong equation, (d) the compress-
ibility factor, and (e) the steam table.

(a)

(b)

(c)

(d)

(e)

Using the ideal-gas equation, P = pRT = (24)(0.462)}(773) = 8570 kPa, where the gas constant for steam is
found in Table B-2.

Using values for a and b from Table B-8, the van der Waals equation provides

RT  a _ (0.462)(773)  1.703

P- = 7950 kP
c=b T T E 000069 (12 a

Using values for @ and b from Table B-8, the Redlich-Kwong equation gives
RT a _ (0.462)(773) 3 439
U=b o p(e+ BWT 3 — 000117 (L) (4 + 0.00117)V773

pP= = 7930 kPa

The compressibility factor is found from the genecralized compressibility chart of Fig. H-1 in the appendix.
To use the chart we must know the reduced temperature and pressure:
T 773 P 8000
TR:TC=W=1'19 PR=FC=m=O.362

where we have used the anticipated pressure from parts (a), (5), and (¢). Using the compressibility chart (it
is fairly insensitive to the precise values of T and Pg, so estimates of these values are quite acceptable) and
(2.10), we find

ZRT _ (0.93)(0.462)(773)

v 1/24

The stcam table provides the most precise value for the pressure. Using 7 = 500°C and v = 1/24 = 0.0417
m®/kg, we find P = 8000 kPa. Note that the ideal-gas law has an error of 7.1 percent, and the error of each
of the other three equations is less than 1 percent.

P= = 7970 kPa
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Solved Problems

For a specific volume of 0.2 m’?/kg, find the quality of steam if the absolute pressure is
(a) 40 kPa and (b) 630 kPa. What is the temperature of each case?

(a) Using information from Table C-2 in (2.3), we calculate the quality as follows:
v=rp+x(e, ) 0.2 = 0.001 + x(3.993 — 0.001) - x = 0.04985
The temperature is found in Table C-2 next to the pressure cntry: T = 75.9°C.

(b) We¢ must interpolate to find the correct values in Table C-2. Using the values at (1.6 and 0.8 MPa
we have

{003
- ( 02

)(0.2404 - 0.3157) + 0.3157 = 0.3044 v, = 0.0011

Using (2.3), we have
0.2 = 0.0011 +x(0.3044 — 0.0011) sox = 0.6558

The temperature is interpolated to be

T = (0(]'—023)(170.4 — 158.9) + 158.9 = 160.6°C
Calculate the specific volume of water at (@) 160°C and (b) 221°C if the quality is 85 percent.
(a) Using the entries from Table C-1 and (2.3) we find
v= 1y x(u, = rp) = 00011 + (0.85)(0.3071 - 0.0011) = 0.2612

(b) We must interpolate to find the values for ¢, and . Using entries at 220°C and 230°C, we

determine

v, = ()(0.07159 — 0.08620) + 0.08620 = 0.08474 vy = 0.00120
Using (2.3) ¢ = 0.00120 + (0.85X0.08474 — 0.00120) = 0.07221 m?/kg.

Ten Ib of steam is contained in a volume of 50 ft*. Find the quality and the pressure if the
temperature is 263 °F.

The temperature is not a direct entry in Table C-1E. We interpolate between temperatures of
260 °F and 270 °F to find

e = (15)(10.066 — 11.768) + 11.768 = 11.257 vy = 0017

From the given information we calculate

Y 0 3
I_E_I_O_S'Oft /lbm

The quality is found from (2.3} as follows:
5=0.017 + x(11.257 — 0.017) S o= 0.4433

The pressure is interpolated to be

P = (35)(41.85 — 35.42) + 35.42 = 37.35 psia

Saturated water occupies a volume of 1.2 m®, Heat is added until it is completely vaporized. If
the pressure is held constant at 600 kPa, calculate the final volume.

The mass is found, using ry from Table C-2, 1o be

V 1.2
m = U = 00011 = 1091 kg
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When completely vaporized, the specific volume will be ¢, so that

V=m, = (1091)(0.3157) = 3444 m*

Water is contained in a rigid vessel of S m* at a quality of 0.8 and a pressure of 2 MPa. If the
pressure is reduced to 400 kPa by cooling the vessel, find the final mass of vapor m, and mass
of liquid my.

The initial specific volume is found, using data from Table C-2, to be
r=uvp+x(v, —ry) =0.00118 + (0.8)(0.09963 — 0.00118) = 0.0799%4 m*/kg
Since the vessel is rigid, the specific volume does not change. Hence the specific volume at a pressurc of
400 kPa is also 0.07994. We can then find the quality as follows:
0.07994 = 0.0011 + x(0.4625 — 0.0011) sox o= 0.1709

The total mass of water is

|4 5
m=7=m9—4=62.55kg

Now (2.2) gives the mass of vapor: m, = xm = (0.1709X62.55) = 10.69 kg. The mass of liquid is then
mg=m—m,=6255— 10.69 = 51.86 kg

Water exists at the critical point in a rigid container. The container and water are cooled until
a pressure of 10 psia is reached. Calculate the final quality.

The initial specific volume as found in Table C-2E at a pressure of 3203.6 psia is ¢, = 0.05053
ft? /lbm. Since the container is rigid, the specific volume does not change. Hence, at P, = 10 psia we
have

15 = 0.05053 = 0.01659 + x,(38.42 — 0.01659) <. X, = 0.000884

This shows that the final state is very close to the saturated liquid line.

Two kg of Freon 12 is contained in a piston-cylinder arrangement, as sketched in Fig. 2-1. The
20-mm-dia, 48-kg piston is allowed to rise frecly until the temperature reaches 160°C.
Calculate the final volume.

The absolute pressure inside the cylinder results from the atmospheric pressure and the weight of
the piston:

(48)(9.81)
7(0.02)° /4

At this pressure and a temperature of 160 °C, the Freon 12 is superhcated. From Table D-3 the specific
volume is 1 = 0.0169 m?/kg. The volume is then

V= mr = (2)(0.0169) = 0.0338 m*

P=P = 1.60 x 10° Paor 1.6 MPa

atm

w
tI= 100000 +

A mass of 0.01 kg of steam at a quality of 0.9 is contained in the cylinder shown in Fig. 2-7.
The spring just touches the top of the piston. Heat is added until the spring is compressed
15.7 cm. Calculate the final temperature.

The initial pressure in the cylinder is due to the atmospheric pressure and the weight of the piston:

+ %’ — 100000 + {6081
7(0.2)* /4

The initial specific volume is found by interpolating in Table C-2:

vy =ty +a(eep) = 0.0011 + (0.9)(1.164 — 0.0011) = 1.048 m'/kg

P, =P

atm

= 150000 Pa or 0.150 MPa
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The initial volume contained in the cylinder is ¥, = v;m = (1.048)0.01) = 0.01048 m*. The height H
can now be calculated as follows:

2 2
v, =Ty 0.01048 = ™LA 5

7 7 L H=033m

The final volume is then

wd?
4

The final specific volume is

2
V, = T (H + 0.157) = @(0.334 +0.157) = 0.01543 m®

VY, 001543

1‘2 = W = W = 1543 m3/kg

The final pressure is
Kx 50000)(0.157
Py=P +—— = 150000+(—#
wd*/4 7(0.2)° /4
This pressure and specific volume allow us to determine the temperature. It is obviously greater than the
last table entry of 800 °C in the supcrheat table. We can extrapolate or use the ideal-gas law:

Py (400)(1.543)
TR T 04615

= 400000 Pa or 0.40 MPa

T, =1337K or 1064°C

Estimate the difference between the weight of air in a room that measures 20 X 100 x 10 ft
in the summer when T = 90 °F and the winter when T = 10°F. Use P = 14 psia.

The masses of air in the summer and winter are
PV (14)(144)[(20)(100)(10)]

ms = pr = (53.3)(90 + 480) = 1375.4 Ibm
_ (14)(144)[(20)(100)(10)]
W (53.3)(10 + 460) = 1609.5 Ibm

The difference in the two masses is Am = 1609.5 — 1375.4 = 234.1 Ibm. Assuming a standard gravity
the weight and mass are numcrically cqual, so that AW = 234.1 1bf.

A pressurized can contains air at a gage pressure of 40 psi when the temperature is 70 °F. The
can will burst when the gage pressure reaches 200 psi. At what temperature will the can
burst?
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We will assume the volume to remain constant as the temperature increases. Using (2.9), we can
solve for V7 and write

mRT,  mRT,
- P TP
Since m and R arc constant,
I _ T
PP
Using absolute valucs for the pressure and temperature, we find that
P, (200 + 14.7)(144)
T, =T,—= = (70 + 460) = 2080°R = 1620°F
- P, (40 + 14.7)(144)

Supplementary Problems

Using the stcam tables C-1 and C-2 in the appendix, plot to scale the (a) P-v, (b) P-T, and (¢) Tt
diagrams. Choosce cither a lincar-lincar plot or a log-log plot. Note the distortions of the various figures
in Scctions 2.2 and 2.3. Such distortions arc necessary if the various regions are to be displayed.

Calculate the specific volume for the following situations: (a) water at 200 °C, 80% quality; (b) Frcon 12
at —60°C, 90% quality; (¢) ammonia at 500 kPa, 85% quality.
Ans. (@) 01022 mY kg (M0OST36mi/ kg (¢)0.2133 mY/ kg

The quality of cach of the following substances is 809 . Calculate the specific volume. (a) Water at 500
psia; () Freon 12 at 80 psia; (¢) ammonia at 20 °F.
Ans. () 0.7466 f'/1bm () 0.4078 ft'/Ibm  (c) 4.733 ft'/ Ibm

Five kg of steam occupies a volume of 10 m*. Find the quality and the pressure if the temperature is
measured at (¢) 40 °C and (b) 86°C.
Ans. (a) 0.1024, 7.383 kPa (h) 0.7312, 60.3 kPa

Determine the final volume of a mixture of water and stecam if 3 kg of water is heated at a constant
pressure until the quality is 60 percent. The pressure is (@) 25 kPa and (b) 270 kPa.
Ans. (@) 11.6 m* (h) 1.24 m*

Two kg of saturated water at 125 kPa is completely vaporized. Calculate the volume (@) before and (b)
after. Ans. (@) 0.002m*  (b) 2.76 m’

The temperature of 10 Ib of water is held constant at 205°F, The pressure is reduced from a very high
value until vaporization is complete. Determine the final volume of the steam. Ans. 3072 ft?

A rigid vessel with a volume of 10 m® contains a water-vapor mixture at 400 kPa. If the quality is 60
percent, find the mass. The pressure is lowered to 300 kPa by cooling the vessel; find m,, and m,.
Ans. 3598 kg. 16.47 kg, 19.51 kg

Steam with a quality of 0.85 is contained in a rigid vesscl at a pressurc of 200 kPa. Heat is then added
until the temperature reaches (¢) 400°C and (b) 140°C. Determine the final pressurcs.

Ans.  (a) 415 kPa (b) 269 kPa

A rigid vessel contains water at 400 °F. Heat is to be added so that the water passes through the critical
point., What should the quality be at the temperature of 400 °F? Ans. 0.01728

Freon 12 is contained in a scaled glass container at 50°C. As it is cooled, vapor droplets are noted
condensing on the sidewalls at 20°C. Find the original pressure in the container. Ans. 650 kPa
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2.22

2.23

2.24

2.25

2.26

2.27

Two kg of water is contained in a piston-cylinder arrangement by a 16 000-kg, 2-m-diamcter, frictionless
piston. See Fig. 2-1. Heat is added until the temperature reaches (a) 400 °C, (b) 650°C, and (¢) 140°C.
Calculate the final volume. Ans. (a) 4.134 m? () 5.678 m? (c) 2.506 m®

Two kg of stcam at a quality of 0.80 is contained in the volume shown (Fig. 2-8). A spring is then brought
in contact with the top of the piston and heat is added until the temperature reaches 500 °C. Determine
the final pressure. (The force in the spring is Kx, where x is the displacement of the spring. This results
in a trial-and-crror solution.) Ans. 220 kPa

K =500 kN/m Frictionless

/pistun

16 000 kg '

Fig. 2-8

Determine the volume occupicd by 10 kg water at a pressure of 10 MPa and a temperaturc of (a) 5°C,

(b) 200°C, () 400°C, (d) 800°C, (e) 1500°C, and (f) —10°C.

Ans.  (a) 0.00996 m? (b) 0.0115 m? (¢) 0.2641 m* (d) 0.4859 m* (e) 0.8182 m*
(£)0.01089 m*

For air at 100 psia and 60 °F calculate (a) the density, (b) the specific volume, (¢) the specific weight if
g = 32.1 ft/sec?, and (d) the mass contained in 200 ft?,
Ans. (a) 0.5196 lbm /ft? (b) 1.925 ft*/lbm (¢)0.518 Ibf/ft? (d) 103.9 Ibm

Provide the missing information for air at an clevation where g = 9.82 m/s%.

P (kPa) T (°C) v (m?/kg) p (kg/m?) y (N/m?)
(a) 100 20
(b) 100 2
(c) 500 0.1
(d) 400 20
(e) 200 2

Ans. (a) 0.8409, 1.189, 11.68  (b) 53.53, 0.5, 4.91 (¢) —98.8, 10, 98.2, (d) 393.4, 0.491, 2.037
(e) 75.4, 0.5, 19.64

Assuming the atmosphere to be isothermal at an average temperature of —20°C, determine the pressurc
at elevations of (a) 3000 m and (b) 10000 m. Let P = 101 kPa at the earth’s surface. Compare with

measured values of 70.1 kPa and 26.5 kPa, respectively, by calculating the percent error.
Ans. (a) 67.3 kPa, —3.99% (b) 26.2 kPa, —1.13%
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(a) Assuming the temperature in the atmosphere to be given by 7 = 15 —0.00651z °C, dctermine the
pressure at an elevation of 10 km. Let P = 101 kPa at sca level. (b) Compare the result of (a) with a
measured value of 26.5 kPa by calculating the percent error, Ans. (a) 26.3 kPa, (b)y —0.74%

The gage pressure reading on an automobile tire is 35 psi when the temperature is 0 °F. The automobile
is driven to a warmer climate and the temperature increases to 120 °F, Estimate the increased pressure
in the tirc.

Ans. 47.97 psig

Nitrogen is contained in a 4-m” rigid vessel at a pressure of 4200 kPa. Determine the mass if the
temperature is (a) 30°C and (b) —120°C.
Ans. (a) 0.1867 kg (b) 0.3697 kg

Estimate the pressure of nitrogen at a temperature of 220 K and a specific volume of 0.04 m* /kg using
(a) the ideal-gas equation, (b) the van der Waals equation, (¢) the Redlich-Kwong cquation, and (d) the
compressibility factor.

Ans.  (a) 1630 kPa (b) 1580 kPa (¢) 1590 kPa (d) 1600 kPa

Ten kg of 600°C steam is contained in a 182-liter tank. Find the pressure using (a) the ideal-gas
equation, (b) the van der Waals equation, (¢) the Redlich-Kwong equation, (d) the compressibility
factor. and (¢) the stcam tables.

Ans. (a)22.2 MPa (b) 19.3 MPa (¢) 19.5 MPa (d) 19.5 MPa (e) 20 MPa

Freon 12 at 200°F has a density of 1.84 lbm/ft®. Find the pressure using (a) the idcal-gas equation,
(p) the van der Waals equation, (¢) the Redlich-Kwong equation, (d) the compressibility factor, and
(¢) the Freon 12 tables,

Ans. {(a) 108 psia (b) 101 psia (¢) 100 psia (d) 100 psia (e) 100 psia
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Chapter 3

Work and Heat

3.1 INTRODUCTION

In this chapter we will discuss the two quantities that result from energy transfer across the
boundary of a system: work and heat. This will lead into a presentation of the first law of
thermodynamics. Work will be discussed in detail and will be calculated for several common
situations. Heat, however, is a quantity that requires substantial analysis for its calculation. In most
engineering programs the subject of heat transfer is covered in a separate course. In thermodynamics,
heat is either a given quantity or it is calculated as an unknown in an algebraic equation.

3.2 DEFINITION OF WORK

The term work is so broad that we must be very particular in a technical definition. It must
comprehend, for example, the work done by expanding exhaust gases after combustion occurs in the
cylinder of an automabile engine, as shown in Fig. 3-1. The energy released during the combustion
process is transferred to the crankshaft by means of the connecting rod, in the form of work. Thus, in
this example, work can be thought of as energy being transferred across the boundary of a system, the
system being the gases in the cylinder.

Work, designated W, is often defined as the product of a force and the distance moved in the
direction of the force. This is a mechanical definition of work. A more general definition of work is the
thermodynamic definition: Work, an interaction between a system and its surroundings, is done by a
system if the sole external effect on the surroundings could be the raising of a weight. The magnitude
of the work is the product of the weight and the distance it could be lifted. Figure 3-2b shows that the
interaction of Fig. 3-2a qualifies as work in the thermodynamic sense.

The convention chosen for positive work is that if the system performs work on the surroundings
it is positive. A piston compressing a fluid is doing negative work, whereas a fluid expanding against a
piston is doing positive work. The units of work are quickly observed from the units of a force
multiplied by a distance: in the SI system, newton-meters (N - m) or joules (J); in the English system,
ft-1bf.

The rate of doing work, designated W, is called power. In the Sl system, power has units joules
per second (J /s), or watts (W); in the English system, ft-Ibf /sec. We will find occasion to use the unit
of horsepower because of its widespread use in rating engines. To convert we simply use 1 hp = 0.746
kW = 550 ft-1bf /sec.

The work associated with a unit mass will be designated w:

W= (3.1)

A final general comment concerning work relates to the choice of the system. Note that if the
system in Fig. 3-2 included the entire battery-resistor setup in part (a), or the entire battery-motor-
pulley-weight setup in part (b), no energy would cross the system boundary, with the result that no
work would be done. The identification of the system is very important in determining work.

3.3 QUASIEQUILIBRIUM WORK DUE TO A MOVING BOUNDARY

There are a number of work modes that occur in various engineering situations. These include the
work needed to stretch a wire, to rotate a shaft, to move against friction, to cause a current to flow
through a resistor, and to charge a capacitor. Many of these work modes are covered in other courses.

33
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Velocity +——

Cylinder
Connecting rod
Fig. 3-1
1
. 100%-efficient Frictionless
Resistance
motor pulley
T
V System boundary (}’/ System boundary
Weight
—
() (h)
Fig. 3-2

In this book we are primarily concerned with the work required to move a boundary against a pressure
force.

Consider the piston-cylinder arrangement shown in Fig. 3-3. There is a seal to contain the gas in
the cylinder, the pressure is uniform throughout the cylinder, and there are no gravity, magnetic, or
electric effects. This assures us of a quasiequilibrium process, one in which the gas is assumed to pass
through a series of equilibrium states. Now, allow an expansion of the gas to occur by moving the
piston upward a small distance di. The total force acting on the piston is the pressure times the area
of the piston. This pressure is expressed as absolute pressure since pressure is a result of molecular
activity; any molecular activity will yield a pressure which will result in work being done when the
boundary moves. The infinitesimal work which the system (the gas) does on the surroundings (the
piston) is then the force multiplied by the distance:

SW = PAdl (3.2)

Fig. 3-3
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The symbol 8W will be discussed shortly. The quantity Ad! is simply dV, the differential volume,
allowing (3.2) to be written in the form
W =Pdv (3.3)

As the piston moves from some position /, to another position /,, the above expression can be

integrated to give

W, , = flV:PdV (3.4)

A
3

where we assume the pressure is known for each position as the piston moves from volume V| to
volume V,. Typical pressure-volume diagrams are shown in Fig. 3-4. The work W, _, is the area under

the P-V curve.

P P

0] @**\ Py

- -/

P dV

{a) (h)

Fig. 3-4

Consideration of the integration process highlights two very important features in (3.4). First, as
we proceed from state 1 to state 2, the area representing the work is very dependent on the path that
we follow. That is, states 1 and 2 in Fig. 3-4(a) and (b) are identical, yet the areas under the P-V
curves are very different; in addition to being dependent on the end points, work depends on the
actual path that connects the two end points. Thus, work is a path function, as contrasted to a point
function, which is dependent only on the end points. The differential of a path function is called an
inexact differential, whereas the differential of a point function is an exact differential. An inexact
differential will be denoted with the symbol 8. The integral of 8W is W, ,, where the subscript
emphasizes that the work is associated with the path as the process passes from state 1 to state 2; the
subscript may be omitted, however, and work done written simply as W. We would never write W, or
W,, since work is not associated with a state but with a process. Work is not a property. The integral
of an exact differential, for example d7, would be

[lar =T, - T, (3.5)
T

where T, is the temperature at state 1 and 7T, is the temperature at state 2.

The second observation to be made from (3.4) is that the pressure is assumed to be constant
throughout the volume at each intermediate position. The system passes through each equilibrium
state shown in the P-V diagrams of Fig. 3-4, An equilibrium state can usually be assumed even though
the variables may appear to be changing quite rapidly. Combustion is a very rapid process that cannot
be modeled as a quasiequilibrium process. The other processes in the internal combustion engine
{expansion, exhaust, intake, and compression) can be assumed to be quasiequilibrium processes; they
occur at a slow rate, thermodynamically.

As a final comment regarding work we may now discuss what is meant by a simple system. as
defined in Chapter 1. For a system free of surface, magnetic, and electrical effects the only work mode
is that due to pressure acting on a moving boundary, For such simple systems only two independent
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variables are necessary to establish an equilibrium state of the system composed of a homogeneous
substance. If other work modes are present, such as a work mode due to an electric field, then
additional independent variables would be necessary, such as the electric field intensity.

EXAMPLE 3.1 One kg of steam with a quality of 20 percent is heated at a constant pressure of 200 kPa until
the temperature reaches 400 °C. Calculate the work done by the steam.
The work is given by

W= deV=P(V2 - V) =mP(ry ~v,)

To evaluate the work we must determine v; and v,. Using Table C-2 we find
vy =y + x(v, — vy) = 0.001061 + (0.2)(0.8857 — 0.001061) = 0.1780 m*/kg
From the superheat table we locate state 2 at T, = 400°C and P, = 0.2 MPa:
v, = 1.549 m*/kg
The work is then
W = (1)(200)(1.549 — 0.1780) = 274.2kJ
Note: With the pressure having units of kPa, the result is in kJ.

EXAMPLE 3.2 A 110-mm-diameter cylinder contains 100 cm® of water at 60°C. A 50-kg piston sits on top of
the water. If heat is added until the temperature is 200 °C, find the work done.

The pressure in the cylinder is due to the weight of the piston and remains constant. Assuming a frictionless
seal (this is always done unless information is given to the contrary), a force balance provides

7(0.110)°
mg=PA— P, A (50)(9.81) = (P ~ 100000) ——7—— - P = 151600 Pa

atm

The atmospheric pressure is included so that absolute pressure results. The volume at the initial state 1 is given
as
V,=100x 107 =10"* m*

Using ¢, at 60°C, the mass is calculated to be

v, 10-4

Al state 2 the temperature is 200°C and the pressure is 0.15 MPa (this pressure is within 1 percent of the
pressure of 0.1516 MPa, so it is acceptable). The volume is then

V, = mv, = (0.09833)(1.444) = 0.1420 m’

Finally, the work is calculated to be
W= P(V, — V) = 151(600)(0.1420 — 0.0001) = 21500) or21.5kJ

EXAMPLE 3.3 Energy is added to a piston-cylinder arrangement, and the piston is withdrawn in such a way
that the quantity PV remains constant. The initial pressure and volume are 200 kPa and 2 m?, respectively. If the
final pressure is 100 kPa, calculate the work done by the gas on the piston.

The work is found from (3.4) to be

V. v, C
W, ,=| Pdv=|3*5dV
[ [

where we have used PV = C. To calculate the work we must find C and V,. The constant C is found from

C =PV, = (200)(2) = 400 kJ
To find V, we use P,V, = P\V,, which is, of course, the equation that would result from an isothermal process
(constant temperature) involving an ideal gas. This can be written as

- - —4md
V, 7 100 4m
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Finaily,

4400 4
W, = fz - dV = 4001n 5 = 277k

This is positive, since work is done during the expansion process by the system (the gas contained in the cylinder).

EXAMPLE 3.4 Determinc the horscpower required to overcome the wind drag on a streamlined car traveling
90 km /h if the drag coefficient C,, is 0.2. The drag force is given by F, = $pV/24C,,, where A is the projected
area of the car and ¥ is the velocity. The density p of air is 1.23 kg/m”. Use 4 = 2.3 m°.

To find the drag force on a car we must cxpress the velocity in m /s: V= (90X1000 /3600) = 25 m /s. The
drag force is then

Fp

1pVAC,

(£)(1.23)(25%)(2.3)(0.2) = 177N
To move this drag force at 25 m /s the engine must do work at the rate

W = F,V = (177)(25) = 4425 W
The horsepower is then

4425 W

Hp = 226w/ hp

=593 hp

3.4 NONEQUILIBRIUM WORK

It must be emphasized that the area on a P-V diagram represents the work for a quasiequilibrium
process only. For nonequilibrium processes the work cannot be calculated using [PdV; either it must
be given for the particular process or it must be determined by some other means. Two examples will
be given. Consider a system to be formed by the gas in Fig. 3-5. In part (a) work is obviously crossing
the boundary of the system by means of the rotating shaft; yet the volume does not change. We could
calculate the work input by multiplying the weight by the distance it dropped, neglecting friction in the
pulley system. This would not, however, be equal to JPdV, which is zero. The paddle wheel provides
us with a nonequilibrium work mode.

e

8 Gas Vacuum

Gas

Weight

(a) (b)
Fig. 3-5

Suppose the membrane in Fig. 3-5b ruptures, allowing the gas to expand and fill the evacuated
volume. There is no resistance to the expansion of the gas at the moving boundary as the gas fills the
volume; hence, there is no work done. Yet there is a change in volume. The sudden expansion is a
noncquilibrium process, and again we cannot use [PdV to calculate the work.

EXAMPLE 3.5 A 100-kg mass drops 3 m, resulting in an increased volume in the cylinder of 0.002 m?® (Fig. 3-6).
The weight and the piston maintain a constant gage pressure of 100 kPa. Determine the net work done by the gas
on the surroundings. Neglect all friction.
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W]

[t

Gas

Fig. 3-6

The paddle wheel does work on the system, the gas, duc to the 100-kg mass dropping 3 m. That work is
ncgative and is

W= — (F)(d) = —(100)(9.81)(3) = —2940]

The work donce by the system on this frictionless piston is positive since the system is doing the work. 1t is
W = (PA)(h) = PV = (200000)(0.002) = 400]

where absolute pressure has been used. The net work done is thus

W,

net

= —2940) + 400 = —25407]

3.5 OTHER WORK MODES

Work transferred by a rotating shaft (Fig. 3-7) is a common occurrence in mechanical systems.
The work results from the shearing forces due to the shearing stress 7, which varies linearly with the
radius over the cross-sectional area, moving with angular velocity w as the shaft rotates. The shearing
force is

dF = 1dA = 1(2mrdr) (3.6)

Fig. 3-7

The linear velocity with which this force moves is rw. Hence, the rate of doing work. which is force
times velocity, is

. R
W= fArw dF = j;] (ro)r(27r)dr = ZWtuj[.)R-rrzdr (3.7)

where R is the radius of the shaft. The torque T is found from the shearing stresses by integrating
over the area:

o - R 5
I = fArdﬁ = 27,-f“ Tridr (3.8)

www.20file.org



www.semeng.ir

CHAP. 3] WORK AND HEAT 39

Combining this with (3.7) above, we have
W=To (3.9)

To find the work transferred in a given time, we simply multiply (3.9} by the number of seconds:
W=TwAt (3.10)
Of course, the angular velocity must be expressed in rad/s.

The work necessary to stretch a linear spring (Fig. 3-8) with spring constant K from a length x, to
x, can be found by using the relation

F = Kx (3.11)

where x is the distance the spring is stretched from the unstretched position. Note that the force is
dependent on the variable x. Hence, we must integrate the force over the distance the spring is
stretched; this results in

o [ _ 1 2.2 12
W= [ Fdx = [ ‘Kede = 1K(x} - x?) (3.12)
X Xy
Current
| —
Unstretched
posttion Battery v R < Resistance
F

Fig. 3-8 Fig. 3-9

As a final type let us discuss an electrical work mode, illustrated in Fig. 3-9. The potential
difference V across the battery terminals is the “force” that drives the charge g through the resistor
during the time increment At. The current i is related to the charge by

i= %—‘tl (3.13)
For a constant current the charge is
qg=1iAt (3.14)
The work from this nonequilibrium work mode, is then
W= ViAt (3.15)
The power would be the rate of doing work, or
W= Vi (3.16)

This relationship is actually used to define the electric potential, the voltage V, since the ampere is
a base unit and the watt has already been defined. One volt is one watt divided by one ampere.

EXAMPLE 3.6 The drive shaft in an automobile delivers 100 N - m of torque as it rotates at 3000 rpm.
Calculate the horsepower delivered_.
The power is found by using W = Tw. This requires w to be expressed in rad/s:

w = (3000)(27) (&) = 314.2 rad /s

31420

Hence W = (100X314.2) = 31420 W  or Hp = a6

= 42.1 hp
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EXAMPLE 3.7 The air in a circular cylinder (Fig. 3-10) is heated until the spring is compressed 50 mm. Find the
work done by the air on the frictionless piston. The spring is initially unstretched, as shown.

K = 2500 N/m

50 kg

}-— Il'!cm-———-!

Fig. 3-10

The pressure in the cylinder is initially found from a force balance:

0.1
PA =P A+ W le(4 X = (100000) =L ’T(O D, (50)(9.81)
. P, = 162500 Pa

To raise the piston a distance of 50 mm, without the spring, the pressure would be constant and the work
required would be force times distance:

W= PA x d = (162500) 7L )(005)~6381J

Using (3.72), the work requircd to compress the spring is calculated to be
W= 3K(x3 - x{) = (3)(2500)(0.05%) = 3.125]
The total work is then found by summing the above two values: W, = 63.81 + 3.125 = 66.94 J.

3.6 HEAT

In the preceding section we considered several work modes by which energy is transferred
macroscopically to or from a system. Energy can also be transferred microscopically to or from a
system by means of interactions between the molecules that form the surface of the system and those
that form the surface of the surroundings. If the molecules of the system boundary are more active
than those of the boundary of the surroundings, they will transfer energy from the system to the
surroundings, with the faster molecules transferring energy to the slower molecules. On this micro-
scopic scale the energy is transferred by a work mode: collisions between particles. A force occurs over
an extremely short time span, with work transferring energy from the faster molecules to the slower
ones. Our problem is that this microscopic transfer of energy is not observable macroscopically as any
of the work modes; we must devise a macroscopic quantity to account for this microscopic transfer of
energy.

We have noted that temperature is a property which increases with increased molecular activity.
Thus it is not surprising that we can relate microscopic energy transfer to the macroscopic property
temperature. This macroscopic transfer of energy that we cannot account for by any of the macro-
scopic work modes will be called heat. Heat is energy transferred across the boundary of a system due
to a difference in temperature between the system and the surroundings of the system. A system does
not contain heat, it contains energy, and heat is energy in transit.

To illustrate, consider a hot block and a cold block of equal mass. The hot block contains more
cnergy than the cold block due to its greater molecular activity, that is, its higher temperature. When
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the blocks are brought into contact with each other, energy flows from the hot block to the cold one by
means of heat transfer. Eventually, the blocks will attain thermal equilibrium, with both blocks
arriving at the same temperature. The heat transfer has ceased, the hot block has lost energy, and the
cold block has gained energy.

Heat, like work, is something that crosses a boundary. Because a system does not contain heat,
heat is not a property. Thus, its differential is inexact and is written as 8Q, where  is the heat
transfer. For a particular process between state 1 and state 2 the heat transfer could be written as
Q,_,, but it will generally be denoted by Q. The rate of heat transfer will be denoted by 0.

By convention, if heat is transferred to a system it is considered positive. If it is transferred from
a system it is negative. This is opposite from the convention chosen for work; if a system performs
work on the surroundings it is positive. Positive heat transfer adds energy to a system, whereas positive
work subtracts energy from a system. A process in which there is zero heat transfer is called an
adiabatic process. Such a process is approximated experimentally by insulating the system so that
negligible heat is transferred.

It should be noted that the energy contained in a system may be transferred to the surroundings
either by work done by the system or by heat transferred from the system. Thus, heat and work are
quantitatively equivalent and are expressed in the same units. An equivalent reduction in energy is
accomplished if 100 J of heat is transferred from a system or if 100 J of work is performed by a system.
In Fig. 3-11 the burner illustrates heat being added to the system and the rotating shaft illustrates
work being done on the system.

|

|

| (OE \ | o

{ \ [ _ 3 Rotating shaft
I Mtw

|

|

Qo
Burner

Fig. 3-11

It is sometimes convenient to refer to heat transfer per unit mass. Heat transfer per unit mass will

be designated g and defined by

q = ;E (3.]7)

EXAMPLE 3.8 A paddle wheel adds work to a rigid container by rotations caused by dropping a 50-kg weight a
distance of 2 m from a pulley. How much heat must be transferred to result in an equivalent effect?

For this non-quasiecquilibrium process the work is given by W = (mgXd) = (50X9.8X2) = 980 J. The heat Q
that must be transferred equals the work, 980 I.

Solved Problems

3.1 Four kg of saturated liquid water is maintained at a constant pressure of 600 kPa while heat is
-1+ added until the temperature reaches 600 °C. Determine the work done by the water.

e The work for a constant-pressure process is W = (PdV = P(V, — V|) = mP(v, — v,). Using cn-
trics from Table C-2 and Table C-3, we find

W = (4)(600)(0.6697 — 0.0011) = 1605 kJ
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Mathcad

WORK AND HEAT [CHAP. 3

Piston

Water vapor 50 mm

Liquid l

|-¢——100mm4—|

Fig. 3-12

The frictionless piston shown in Fig. 3-12 has a mass of 16 kg. Heat is added until the
temperature reaches 400 °C. If the initial quality is 20 percent, find (a) the initial pressure,
(b) the mass of water, (c) the quality when the piston hits the stops, (d) the final pressure, and
(e) the work done on the piston.

(2} A force balance on the piston allows us to calculate the initial pressure. Including the atmospheric

pressure, which is assumed to be 100 kPa, we have

0.1 2 ) 2
PA=W+P, A Pl”(—4)— = (16)(9.81) + (100000)”(071)

. P, =120000Pa or 120 kPa

(b) To find the mass, we need the specific volume. Using entries from Table C-2, we find

vy =y + x(r, — ¢) = 0.001 + (0.2)(1.428 — 0.001) = 0.286 m*/kg

The mass is then

7(0.1)° ( 0.05

m=Vy/vi= =3 \0286

) = 0.001373 kg
(c) When the piston just hits the stops, the pressure is still 120 kPa. The specific volume increases to

v, =V,/m =

7(0.1)° [ 008 \ N
3 (0.001373) = 0.458 m”/kg
The quality is then found as follows, using the entries at 120 °C:;
0.458 = 0.001 + x,(1.428 — .001) s x,=0320 or32.0%

(d) After the piston hits the stops, the specific volume ceases to change since the volume remains
constant. Using T; = 400°C and v = 0.458, we can interpolate in Table C-3, between pressure 0.6
MPa and 0.8 MPa at 400 °C, to find

P, = ( 0.5137 — 0.458

m)(o.s -~ 0.6) + 0.6 = 0.686 MPa

(e) There is zero work done on the piston after it hits the stops. From the initial state until the piston
hits the stops, the pressure is constant at 120 kPa; the work is then

W = P(r, — v,)m = (120)(0.458 — 0.286)(0.001373) = 0.0283kJ or28.3]J

Air is compressed in a cylinder such that the volume changes from 100 to 10 in®. The initial
pressure is 50 psia and the temperature is held constant at 100 °F. Calculate the work.
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The work is given by W = (P4}’ For the isothermal process the equation of state allows us to write
PV = mRT = const.

since the mass m, the gas constant R, and the temperature T are all constant. Letting the constant be
PV, the above becomes P = P\V, /V, so that

v.dV V,

W= PVf T =PV gt = (50)(144)(

100 ) 10 =959 ft-1bf

728 ™ 100 =

34 Six g of air is contained in the cylinder shown in Fig. 3-13. The air is heated until the piston
i+ raises 50 mm. The spring just touches the piston initially. Calculate (a) the temperature when
the piston leaves the stops and (b) the work done by the air on the piston.
Mathcad
(a) The pressure in the air when the piston just raises from the stops is found by balancing the forces
on the piston:

7T(U )“

PA=P A+ W (100000) =2

_”7’(2-2) + (300)(9.81)

5P =193700 Pa or 193.7 kPa
The temperature is found from the ideal-gas law:

(193.7)(0.15)(7)(0.2)° /4

mR (0.006)(0.287) = 330K

T =

(A) The work done by the air is considered to be composed of two parts: the work to raise the piston
and the work to compress the spring. The work required to raise the piston a distance of 0.05 m is

77'(() 2)

W= (F)(d) = (P)(A)(d) = (193.7) (0.05) = 0.304 kJ

The work required to compress the spring is W = 1Kx? = 3(400X0.05%) = 0.5 kI. The total work
required by the air to raisc the piston is

W =02304 + 0.5 = 0804 kJ

400 kN/m
/ Frictionless piston
300 kg P (kPa) @
Isotherm
Air 150 mm
100 - ® ®
— 0mm— ! Ly m)

Fig. 3-13 Fig. 3-14

35 Two kg of air experiences the three-process cycle shown in Fig. 3-14, Calculate the net work.

ol . .
The work for the constant-volume process from state 1 to state 2 is zero since dV = 0. For the

Mathcad CONstant-pressure process the work is

= deV= P(Vy = V) = (100)(10 — 2) = 800 kJ
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The work needed for the isothermal process is

vdV _ RTInA

Wy, = [Pav = f Tav- mRTf V3

To find W,_; we need the temperature. It is found from state 3 to be
PV (100)(10)
mR — (2)(0.287)

Thus, the work for the constant-temperature process is

T, = = 1742°R

Wi, = (2)(0.287)(1742)In % = —1609 kJ
Finally, the net work is

W, + Wy, + W, = 800 — 1609 = — 809 kJ

m.t

The negative sign means that there must be a net input of work to complete the cycle in the order shown
above.

3.6 A paddie wheel (Fig. 3-15) requires a torque of 20 ft-Ibf to rotate it at 100 rpm. If it rotates
i for 20 s, calculate the net work done by the air if the frictionless piston raises 2 ft during this

time.
Mathecad

Fig. 3-15

The work input by the paddlc wheel is

(100)(27)
60

W= —Tew At = (- 20 ft-1bf) rad /sec| (20 s) = —4190 ft-1bf

The negative sign accounts for work being done on the system, the air. The work needed to raise the
piston requires that the pressure be known. It is found as follows:

m(6)° ( )
PA=P, A+W P T = (14 7) + 500 .. P =324 psia

The work done by the air to raise the piston is then

W= (F)(d) = (P)(A)d) = (32.4)”(5’)2(2) = 1830 ft-Ibf

and the net work is W__, = 1830 — 4190 = —2360 ft-Ibf.

net

3.7 The force needed to compress a nonlinear spring is given by the expression F = 200x +
30x? N, where x is the displacement of the spring from its unstretched length measured in
meters. Determine the work needed to compress the spring a distance of 60 cm.

The work is given by

W= [Fax - fo‘”’(zoox +30x2) dx = (100 X 0.62) + (10 X 0.6%) = 38.16 ]
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3.8

3.9

3.10

3.11

3.12

Supplementary Problems

Two kg of saturated stcam at 400 kPa is contained in a piston-cylinder arrangement. The steam is heated
at constant pressure to 300 °C. Calculate the work done by the steam. Ans. 133.8 kJ

0.025 kg of stcam at a quality of 10 percent and a pressure of 200 KPa is heated in a rigid container until
the temperature reaches 200 °C. Find (a) the final quality and (b) the work done by the steam.
Ans.  (a) 0.7002 (h) 0.0

The frictionless piston shown in cquilibrium has a mass of 64 kg (Fig. 3-16). Encrgv is added until the
temperature reaches 220 °C. The atmospheric pressure is 100 kPa. Determine («¢) the initial pressure, (b)
the initial quality, (¢) the quality when the piston just hits the stops, () the final quality (or pressure if
superheat), (¢) the work done on the piston,

Ans.  (a) 120 kPa (h) 0.0620 (¢) 0.0963 (d) 1.52 MPa (e) 0.0754 KJ

Piston

Water vapor

/ quu1d

¥

Fig. 3-16

Saturated water vapor at 180°C is contained in a piston-cylinder arrangement at an initial volume of
0.1 m*. Encrgy is added and the piston withdrawn so that the temperature remains constant until the
pressure is 100 kPa.

(a) Find the work done. (Since there is no equation that relates p and V. this must be done
graphically.)

(b) Use the ideal-gas law and calculate the work.

(¢)  What is the percent error in using the ideal-gas law?

Ans. (a) 252 kI (b) 248 kJ (¢) —1.6%

A 75-1b piston and weights resting on a stop (Fig. 3-17). The volume of the cylinder at this point is 40 in’.
Energy is added to the 0.4 [bm of water mixture until the temperature reaches 300 °F. Atmospheric
pressure is 14 psia.

Frictionless

7
%

ights 7
Weights é

Z

Z

Piston 7

7
Stop ﬁ
Vapor é

=
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3.13

3.14

3.15

3.16

317

WORK AND HEAT [CHAP. 3

(a) What is the initial specific volume of the mixture of vapor and liquid?
(b) What is the temperature in the cylinder when the piston just lifts off the stop?

(¢) Determine the work done during the entire process.
Ans.  (a) 0.05787 ft? /Ibm () 228°F (¢) 25,700 ft-Ibf

Air is compressed in a cylinder such that the volume changes from 0.2 to 0.02 m®. The pressure at the
beginning of the process is 2000 kPa. Calculatc the work if (@) the pressure is constant, and (b) the
temperature is constant at 50 °C. Sketch cach process on a P-V diagram.

Ans. (a) =36 K] (b) —92.1kJ

Air contained in a circular cylinder (Fig. 3-18) is heated until a 100-kg weight is raiscd 0.4 m. Calculate
the work done by the expanding air on the weight. Atmospheric pressure is 80 kPa. Ans. 2.654 k]

Z Vi
é Frictionless é
% AN
é 100 kg Z
7 %

A process for an ideal gas is represented by PV = const., where n takes on a particular value for a
given process. Show that the expression for the work done for a process between states 1 and 2 is given
by

— Psz — P1V1

W l—-n

Is this valid for an isothermal process? If not, determine the correct expression.
Ans. No. PV, In(V,/V))

The pressure in the gas contained in a piston-cylinder arrangement changes according to P = a + 30/V
where P is in psi and V is in ft’. Initially the pressure is 7 psia and the volume is 3 ft*. Determine the
work done if the final pressure is 50 psia. Show the area that represents the work on a P-V diagram.
Ans.  —6153 ft-1bf

Air undergoes a three-process cycle. Find the net work done for 2 kg of air if the processes are

1 — 2: constant-pressure expansion
2 — 3: constant volume

3 — 1: constant-tcmpceraturc compression

The necessary information is 7, = 100°C, T, = 600°C, and P, = 200 kPa. Sketch the eycle on a P-V
diagram, Ans. 105 kJ
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3.18

3.19

3.20

321

3.22

3.23

An unstretched spring is attached to a horizontal piston (Fig. 3-19). Energy is added to the gas until the
pressure in the cylinder is 400 kPa. Find the work done by the gas on the piston. Use P, = 75 kPa.
Ans. 0.2976 kKJ

Air is expanded in a piston-cylinder arrangement at a constant pressure of 200 kPa from a volume of
0.1 m® to a volume of 0.3 m® Then the temperature is held constant during an cxpansion of 0.5 m®.
Dectermine the total work done by the air. Ans.  70.65 kJ

A 60-ft-diameter balloon is to be filled with helium from a pressurized tank. The balloon is initially

empty (r = 0) at an elevation where the atmospheric pressure is 12 psia. Determine the work done

by the helium while the balloon is being filled. The pressure varies with radius according to
= 0.04(r — 30)> + 12 where P is in psi. Ans. 2.54 X 10F fi-Ibf

Estimate the work necessary to compress the air in an air-compressor cylinder from a pressure of 100
kPa to 2000 kPa. The initial volume is 1000 cm®. An isothermal process is to be assumed.
Ans.  —0.300 kJ

An electric motor draws 3 A from the 12-V battery (Fig. 3-20). Ninety percent of the energy is used to
spin the paddle wheel shown. After 50 s of operation the 30-kg piston is raised a distance of 100 mm.
Determine the net work done by the gas on the surroundings. Usc £, = 95 kPa. Ans. —919]

Frictionless

Piston

8 Gas

| 300 mm !

Fig. 3-20

Motor

4B

A torque of 2 ft-Ibf is necessary to rotate a paddle wheel at a rate of 20 rad/s. The paddle wheel is
located in a rigid vessel containing gas. What is the net work done on the gas during 10 min of
operation?

Ans. 24,000 ft-1bf
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3.24

3.25

3.26

3.27

.23

3.29

3.30

33

k.7

333
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Estimate the work done by a gas during an unknown process. Data obtained that relates pressure and
volume are:

[ 200 250 300 350 400 450 500 kPa
] 800 650 550 475 415 365 360 cm?

P
v
Ans. 132

Wind is blowing at 80 kph around a 250-mm-diameter tower that is 100 m high. The drag cocfficient is
0.4 (see Example 3.4). Calculate the total force acting on the tower and the rate at which the wind docs
work on the tower. Ans. 3040 N, 0.0

Derive an expression for the work required to stretch an unstretched length of wire a relatively small
distance /. The force is related to the amount of stretch x by F = EAx /1., where L is the original length
of the wire, A is the cross-sectional area, and E is a material constant, and modulus of clasticity.

Ans. EAI’/2L

A linear spring with a free length of 0.8 ft requires a work input of 4 ft-Ibf to extend it to its maximum
usable length. If the spring constant is 100 |bf /ft, determine the maximum length of the spring.
Ans.  1.0828 ft

A linear spring requires 20 J of work to compress it from an unstretched length of 100 mm 10 a length of
20 mm. Find the spring constant. Ans. 6250 N/m

The force necessary to compress a nonlinear spring is given by F = 10x> N, where x is the distance the
spring is compressed, measured in meters. Calculate the work needed to compress the spring from 0.2 to
0.8 m. Ans. 1.681]

An automobile engine develops 100 hp, 96 percent of which is transferred to the drive shaft. Calculate
the torque transferred by the driveshaft if it is rotating at 300 rpm. Ans. 2280 N - m

A paddle wheel is placed in a small creek in an attempt to generate electricity. The water causes the tip
of the 2-ft-radius paddles to travel at 4 ft/sec while a force of 100 Ibf acts at an average distance of 1.2 ft
from the hub. Determine the maximum continuous amperage output which could be used to charge a
bank of 12-V batteries. Ans. 271 A

An electrical voltage of 110 V is applied across a resistor with the result that a current of 12 A flows
through the resistor. Determine (a) the power necessary to accomplish this and (b) the work done during
a period of 10 min. Ans. (a) 1320 W, (b) 792 kJ

A gasoline engine drives a small generator that is to supply sufficient clectrical energy for a motor home.
What is the minimum horsepower engine that would be necessary if a maximum of 200 A is anticipated
from the 12-V system? Ans. 3.22 hp
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Chapter 4

The First Law of Thermodynamics

4.1 INTRODUCTION

The first law of thermodynamics is commonly called the law of conservation of energy. In
elementary physics courses, the study of conservation of energy emphasizes changes in kinetic and
potential energy and their relationship to work. A more general form of conservation of energy
includes the effects of heat transfer and internal energy changes. This more general form is usually
called the first law of thermodynamics. Other forms of energy may also be included, such as
electrostatic, magnetic, strain, and surface energy. We will present the first law for a system and then
for a control volume.

4.2 THE FIRST LAW OF THERMODYNAMICS APPLIED TO A CYCLE

Having discussed the concepts of work and heat, we are now ready to present the first law of
thermodynamics. Recall that a law is not derived or proved from basic principles but is simply a
statement that we write based on our observations of many experiments. If an experiment shows a law
to be violated, either the law must be revised or additional conditions must be placed on the
applicability of the law. Historically, the first law of thermodynamics was stated for a cycle: the net
heat transfer is equal to the net work done for a system undergoing a cycle. This is expressed in
equation form by

SW=3Q (4.1)
or

W =$sQ (4.2)
pow -4

where the symbol ¢ implies an integration around a complete cycle.

The first law can be illustrated by considering the following experiment. Let a weight be attached
to a pulley-paddle-wheel setup, such as that shown in Fig.4-1a. Let the weight fall a certain distance
thereby doing work on the system, contained in the tank shown, equal to the weight multiplied by the
distance dropped. The temperature of the system (the fluid in the tank) will immediately rise an
amount AT. Now, the system is returned to its initial state (the completion of the cycle) by
transferring heat to the surroundings, as implied by the Q in Fig. 4-1b. This reduces the temperature
of the system to its initial temperature. The first law states that this heat transfer will be exactly equal
to the work which was done by the falling weight.

EXAMPLE 4.1 A spring is stretched a distance of 0.8 m and attached to a paddle wheel (Fig. 4-2). The paddle
wheel then rotates until the spring is unstretched. Calculate the heat transfer necessary to return the system to its
initial state.

The work donc by the spring on the system is given by

0.8)°
Wi = [ "Fac = [*"100xdx = (100) O _5Nem
0 0 2

Since the heat transfer returns the system to its initial state, a cycle results. The first law then states that
Q,, =W, =31

4.3 THE FIRST LAW APPLIED TO A PROCESS

The first law of thermodynamics is often applied to a process as the system changes from one state
to another. Realizing that a cycle results when a system undergoes scveral processes and returns to

49
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i

[ i

SRR

o

S

T

P

(a) (B)

Fig. 4-1

K =100 N/m

the initial state, we could consider a cycle composed of the two processes represented by A and B in
Fig. 4-3. Using the first law of (4.2), we can show that the difference of the two inexact differentials
(8Q — 8W) is an exact differential, designated dE:

80 — 6W = dE (4.3)
g ®
A
B
®
\%
Fig. 4-3

The quantity E is an extensive property of the system and can be shown experimentally to
represent the energy of the system at a particular state, Equation (4.3) can be integrated to yield

Q- Wi_,=E~ E, (4-4)

where Q,_, is the heat transferred to the system during the process from state 1 to state 2, W, _, is the
work done by the system on the surroundings during the process, and £, and E, are the values of the
property E. More often than not the subscripts will be dropped on Q and W when working problems.
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The property E represents all of the energy: kinetic energy KE, potential energy PE, and internal
energy U which includes chemical energy and the energy associated with the atom. Any other form of
energy is also included in the total energy E. Its associated intensive property is designated e.

The first law of thermodynamics then takes the form

Q,, - W, ,=KE,—KE, + PE, - PE, + U, - U,
=SV +mg -z + U - U (4.5)

If we apply the first law to an isolated system, one for which Q, , = W,_, = 0, the first law becomes
the conservation of energy; that is,
E, =E, (4.6)
The internal energy U is an extensive property. Its associated intensive property is the specific
internal energy u; that is, u = U/m. For simple systems in equilibrium, only two properties are
necessary to establish the state of a pure substance, such as air or steam. Since internal energy is a
property, it depends only on, say, pressure and temperature; or, for saturated steam, it depends on
quality and temperature (or pressure). Its value for a particular quality would be

u=u;+xu, —u) (4.7)
We can now apply the first law to systems involving working fluids with tabulated property values.

Before we apply the first law to systems involving substances such as ideal gases or solids, it is
convenient to introduce several additional properties that will simplify that task.

EXAMPLE 4.2 A 5-hp fan is used in a large room to provide for air circulation. Assuming a well-insulated,
sealed room determine the internal energy increase after 1 h of operation.
By assumption, O = 0. With APE = AKE = 0 the first law becomes — W = AU. The work input is
W= (=5hp)(1 h)(746 W/hp)(3600s/h) = —1.343 x 107 J
The negative sign results because the work is input to the system. Finally, the internal energy increasc is

AU = —(-1343x107) = 1.343 x 107 ]

EXAMPLE 4.3 A rigid volume contains 6 ft* of stcam originally at a pressure of 400 psia and a temperature of
900 °F. Estimate the final temperature if 800 Btu of heat is added.
The first law of thermodynamics, with AKE = APE = 0,is Q — W = AU. For a rigid container the work is

zero. Thus,
Q=AU=m(u, —u,)

From the stcam tables we find «, = 1324 Btu/Ibm and ¢, = 1.978 ft*/Ibm. The mass is then

m= t—/ = % = 3.033 Ibm
The energy transferred to the volume by heat is given. Thus,
800 = 3.033(u, — 1324) 5 U, = 1588 Btu/Ibm
From Table C-3E we must find the temperature for which v, = 1.978 ft! /Ibm and «, = 1588 Btu/lbm. This is
not a simple task since we do not know the pressure. At 500 psia if ¢ = 1.978 ft*/Ibm, then u = 1459 Btu/Ibm

and T = 1221°F. At 600 psia if ¢ = 1.978 ft®/lbm, then « = 1603 Btu/lbm and T = 1546 °F. Now we linearly
interpolate to find the temperature at u, = 1588 Btu/lbm:

1603 — 1588)(1546 - 1221) = 1512°F

T, = 1546 - ( 1603 = 1459

EXAMPLE 4.4 A frictionless piston is used to provide a constant pressure of 400 kPa in a cylinder containing
steam originally at 200 °C with a volume of 2 m>. Calculate the final temperaturc if 3500 kJ of heat is added.
The first law of thermodynamics, using APE = AKE =0, is Q — W = AU. The work done during the

motion of the piston is

W= [PdV =P(V, - V,) = 400(V, - V)
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The mass becore and after remains unchanged. Using the steam tables, this is expressed as
Vi
r

m = = 3.744 kg

2

—0.5342

The volume V., is written as V), = muv, = 3.744 v,. The first law is then, finding «, from the steam tables,
3500 — (400)(3.744r, — 2) = (u, — 2647) x (3.744)

This requires a trial-and-crror process. One plan for obtaining a solution is to guess a value for ¢, and calculate
u, from the equation above. If this valuc checks with the u, from the steam tables at the same temperature, then
the guess is the correct one. For example, guess ¢, = 1.0 m3/kg. Then the equation gives u, = 3395 kJ /kg. From
the steam tables, with P = 0.4 MPa, the u, value allows us to interpolate 7, = 654°C and the v, gives
T, = 600°C. Therefore, the guess must be revised. Try v, = 1.06 m*/kg. The cquation gives u, = 3372 kI /kg.
The tables are interpolated to give T, = 640°C; for v,, T, = 647°C. The actual v, is a little less than 1.06
m® /kg, with the final temperaturc being approximately

T, =644°C

4.4 ENTHALPY

In the solution of problems involving systems, certain products or sums of properties occur with
regularity. One such combination of properties can be demonstrated by considering the addition of
heat to the constant-pressure situation shown in Fig. 4-4. Heat is added slowly to the system (the gas
in the cylinder), which is maintained at constant pressure by assuming a frictionless seal between the
piston and the cylinder. If the kinetic energy changes and potential energy changes of the system are
neglected and all other work modes are absent, the first law of thermodynamics requires that

0-Ww=U,-U, (4.8)
[w] )

% 7

% Gas %

%

o %

T

Fig. 4-4 Constant-Pressure Heat Addition

The work done raising the weight for the constant-pressure process is given by
W =PV, -V)) (4.9)
The first law can then be written as
@=U+PV),—(U+PV), (4.10)

The quantity in parentheses is a combination of properties and is thus a property itself. It is called the
enthalpy H of the system; that is,

H=U+ PV (4.11)
The specific enthalpy 4 is found by dividing by the mass. It is
h=u+Pv (4.12)

Enthalpy is a property of a system and is also found in the steam tables. The energy equation can now
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be written for a constant-pressure equilibrium process as
0,,=H,-H, (4.13)

The enthalpy was defined using a constant-pressure system with the difference in enthalpies
between two states being the heat transfer. For a variable-pressure process, the difference in enthalpy
loses its physical significance. But enthalpy is still of use in engineering problems; it remains a
property as defined by (4.11). In a nonequilibrium constant-pressure process A H would not equal the
heat transfer.

Because only changes in enthalpy or internal energy are important, we can arbitrarily choose the
datum from which to measure # and u. We choose saturated liquid at 0°C to be the datum point for
water substance.

EXAMPLE 4.5 Using the concept of enthalpy solve the problem presented in Example 4.4.
The energy equation for a constant-pressure process is {with the subscript on the heat transfer omitted)
Q=H,~-H, or 3500 = (h, — 2860)m

Using the steam tablcs as in Examplc 4.4, the mass is

V 2
m= = 535343 = 3.744 kg
Thus,
3500
h,= 3944 + 2860 = 3795 kI /kg

From the steam tables this interpolates to

92.6

T2=600+(m

)(100) = 641°C

Obviously, enthalpy was very uscful in solving this constant-pressure problem. Trial and crror was unncces-
sary, and the solution was rather straightforward. We illustrated that the quantity we made up, enthalpy, is not
necessary, but it is quite handy. We will use it often in our calculations.

4.5 LATENT HEAT

The amount of energy that must be transferred in the form of heat to a substance held at constant
pressure in order that a phase change occur is called the latent heat. It is the change in enthalpy of the
substance at the saturated conditions of the two phases. The heat that is necessary to melt a unit mass
of a substance at constant pressure is the heat of fusion and is equal to h;; = h, ~ h,, where h, is the
enthalpy of saturated solid and h, is the enthalpy of saturated liquid. The heat of vaporization is the
heat required to completely vaporize a unit mass of saturated liquid; it is equal to h,, = h, — h,.
When a solid changes phase directly to a gas, sublimation occurs; the heat of sublimation is equal to
hiy=h,—h,

The heat of fusion and the heat of sublimation are relatively insensitive to pressure or tempera-
ture changes. For ice the heat of fusion is approximately 320 kJ /kg (140 Btu/lbm) and the heat of
sublimation is about 2040 kJ /kg (880 Btu/Ibm). The heat of vaporization of water is included as 4,
in Tables C-1 and C-2.

4.6 SPECIFIC HEATS

For a simple system only two independent variables are necessary to establish the state of the
system. Consequently, we can consider the specific internal energy to be a function of temperature
and specific volume; that is,

u=u(T,r) (4.14)
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Using the chain rule from calculus we express the differential in terms of the partial derivatives as
du du
=aT . dr + ar

Since u, v, and T are all properties, the partial derivative is also a property and is called the
constant-volume specific heat c; that is,

du le' (4.13)

du

€ =T

One of the classical experiments of thermodynamics, first performed by Joule in 1843, is illustrated in

Fig. 4-5. Pressurize volume 4 with an ideal gas and evacuate volume B. After equilibrium is attained,

open the valve. Even though the pressure and volume of the ideal gas have changed markedly. the

temperature does not change. Because there is no change in tcmperature, there is no net heat transfer

to the water. Observing that no work is done we conclude, from the first law, that the internal energy
of an ideal gas does not depend on pressure or volume.

(4.16)

i

M
|| Thermometer

For such a gas, which behaves as an ideal gas, we have

u
= 0 (4.17)
Combining (4.15), (4.16), and (4.17),
du = ¢, dT (4.18)
This can be integrated to give
Uy — Uy = Tlc‘,dT (4.19)

T
For a known ¢ (7') this can be integrated to find the change in internal energy over any temperature

interval for an ideal gas.
Likewise, considering specific enthalpy to be dependent on the two variables 7 and /7, we have

dh ah
d’l—:a—T-lPdTﬂ-ﬁT{”’ (4.20)
The constant-pressure specific heat c,, is defined as
ah .
¢ = 3T R (4.21)
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For an ideal gas we have, returning to the definition of enthalpy, (4.12),

h=u+Pv=u+RT (4.22)
where we have used the ideal-gas equation of state. Since u is only a function of T, we see that A is
also only a function of T for an ideal gas. Hence, for an ideal gas

oh
P

=0 (4.23)

and we have, from (4.20),
dh =c,dT (4.24)

Over the temperature range 7, to 7, this is integrated to give

TZ
hy = hy = [ e, dT (4.25)
1
for an ideal gas.
It is often convenient to specify specific heats on a per-mole, rather than a per-unit-mass, basis;
these molar specific heats are notated ¢, and ¢,- Clearly, we have the relations

¢, = Mc, and ¢, = Mc

t v 4 p

where M is the molar mass. Thus values of ¢, and ¢, may be simply derived from the values of ¢, and
¢, listed in Table B-2. (The “overbar notation’ for a molar quantity is used throughout this book.)

The equation for enthalpy can be used to relate, for an ideal gas, the specific heats and the gas
constant. In differential form (4.12) takes the form

dh = du + d( Pr) (4.26)
Introducing the specific heat relations and the ideal-gas equation, we have
¢, dT =c,.dT + RdT (4.27)
which, after dividing by dT, gives
c,=c.+R (4.28)

This relationship—or its molar equivalent ¢, = ¢, + R—allows c, to be determined from tabulated
values or expressions for ¢,. Note that the difference between ¢, and ¢, for an idcal gas is always a
constant, even though both are functions of temperature.
The specific heat ratio k is also a property of particular interest; it is defined as
¢

i
k= (4.29)
This can be substituted into (4.28) to give
k
¢, = Rt (4.30)
or R
c,.= 7(——1 (431)

Obviously, since R is a constant for an ideal gas, the specific heat ratio will depend only on
temperature.

For gases, the specific heats slowly increase with increasing temperature. Since they do not vary
significantly over fairly large temperature differences, it is often acceptable to treat ¢, and c, as
constants. For such situations there results

uy, —u; =c (7, -T)) (4.32)

hy~hy=c(Ty—T)) (4.33)

For air we will use ¢, =0.717 kl/kg -°C (0.171 Btu/Ibm-°R) and ¢, = 1.00 kl/kg -°C (0.24
Btu/Ibm- °R), unless otherwise stated. For more accurate calculations with air, or other gases, one
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should consult ideal-gas tables, such as those in Appendix F, which tabulate A(T) and w(T), or
integrate using expressions for ¢, (T) found in Table B-5.

For liquids and solids the specific heat ¢, is tabulated in Table B-4. Since it is quite difficult to
maintain constant volume while the temperature is changing, ¢, values are usually not tabulated for
liquids and solids; the difference ¢, — ¢, is usually quite small. For most liquids the specific heat is
relatively insensitive to temperature change. For water we will use the nominal value of 4.18
kJ/kg -°C (1.00 Btu/lbm- °R). For ice the specific heat in kJ /kg -°C is approximately c, =21+
0.00697, where T is measured in °C; and in English units of Btu/lbm- °F it is ¢, = 047 + 0.0017,
where T is measured in °F. The variation of specific heat with pressure is usually quite slight except
for special situations.

EXAMPLE 4.6 The specific heat of superheated steam at approximately 150 kPa can be dctermined by the
equation
T - 400

Cp=2‘07+ W

kJ/kg -°C

(a) What is the enthalpy change between 300 °C and 700 °C for 3 kg of steam? Compare with the steam tables.
(b) What is the average valuc of ¢, between 300 °C and 700 °C based on the equation and based on the tabulated
data?

(@} The enthalpy change is found to be

T - 400
1480

"5 7
AH=m[" ar=3["

(2.()7 +
T 300

) dT = 2565 klJ

From the tables we find, using P = 150 kPa,
AH = (3)(3928 - 3073) = 2565 kJ

(b) The average value ¢ is found by using the relation

P.ay
700 T — 400

T,
mep o AT =m (e, dT or  (3)(400c, ) =3[ Ym0~ ) 4T

(2.()7 +
7

0.4

The integral was evaluated in part (a); hence, we have

2565

Cr-2v = (3)(400)

= 2.14 kI /kg -°C

Using the values from the steam table, we have

Ah o
Cpow = AT = (3928 — 3073) /400 = 2.14 kJ /kg -°C
Because the steam tables give the same values as the lincar equation of this example, we can safely assume
that the ¢,(T) relationship for steam over this temperaturc range is closely approximated by a lincar relation.
This linear relation would change, however, for cach pressure chosen; hence. the steam tables are essential.

EXAMPLE 4.7 Dctermine the value of ¢, for steam at T = 800°F and P = 80 psia.
To determine ¢, we use a finite-difference approximation to (4.21). We usec the entrics at 7 = 900 °F and
T = 700 °F, which gives a better approximation to the slope compared to using the values at 800 °F and 750 °F or
at 900 °F and 800 °F. Table C-3E provides us with
_ Ah 1455.6 — 1338.0
Cp = KT = T =
Figure 4-6 shows why it is better to use values on cither side of the position of interest. If values at 900 °F
and 800 °F arc uscd (a forward difference), ¢, is too low. If values at 800 °F and 750 °C are used, (a backward
differcnce), ¢, is too high. Thus, both a forward and a backward value (a central difference) should be used,
resulting in @ more accurate estimate of the slope.

0.588 Btu /lbm- °F
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h Slope too high
(cp=0.602) Slope 100 low
14556 (c,=0.574)
]
|
1398.2 |- :
| Best approximation
| ] to slope
: : (cp=0.588)
1338.0 |- ! |
[ ! !
| I |
( I l
| | |
| | f
| [ [
| | |
] | I
| | | ’
700 800 900
Fig. 4-6

EXAMPLE 4.8 Dectermine the enthalpy change for 1 kg of nitrogen which is heated from 300 to 1200 K by
(a) using the gas tables, (b) integrating c,(T), and (c) assuming constant specific heat. Use M = 28 kg/kmol.

(a) Using the gas table in Appendix F, find the enthalpy change to be
Ah = 36777 — 8723 = 28054 kJ /kmol or 28054 /28 = 1002 kJ /kg

(b) The expression for c,(T) is found in Table B-5. The enthalpy change is

1200 T\ !9 T\ ? T\73
Ah=f300 [39.06—512.79(m) +107z.7(m) —820.4(m) dt

= (39.06)(1200 — 300) — (512_79)(_1%'(.]5)(12*“5 )

+(107z.7)(%)(12—1 —3 - (820.4)(1—_0%)(12‘2 - 32
= 28093 kJ/kmol or 1003 kJ /kg

(¢) Assuming constant specific heat (found in Table B-2) the enthalpy change is found to be
Ah = ¢, AT = (1.042)(1200 - 300) = 938 kJ /ke

Note the value found by integrating is essentially the same as that found from the gas tables. However, the
enthalpy change found by assuming constant specific heat is in error by over 6 percent.

4.7 THE FIRST LAW APPLIED TO VARIOUS PROCESSES

The Constant-Temperature Process

For the isothermal process, tables may be consulted for substances for which tabulated values are
available. Internal energy and enthalpy vary slightly with pressure for the isothermal process, and this
variation must be accounted for in processes involving many substances. The energy equation is

Q-W=AU (4.34)

For a gas that approximates an ideal gas, the internal energy depends only on the temperature
and thus AU = 0 for an isothermal process; for such a process

o=Ww (4.35)
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Using the ideal-gas equation PV = mRT, the work for a quasiequilibrium process can be found to be

v, dV

P
W= deV_ RTf ——-mRTan = mRT In 5+ (4.36)
2

The Constant-Volume Process
The work for a constant-volume quasiequilibrium process is zero, since dV is zero. For such a
process the first law becomes
Q=AU (4.37)
If tabulated values are available for a substance, we may directly determine AU. For a gas,
approximated by an ideal gas, we would have

Q =m["%, dT (4.38)

Tl

or, for a process for which ¢, is essentially constant,
Q =mc, AT (4.39)

If nonequilibrium work, such as paddle-wheel work, is present, that work must be accounted for in the
first law,

Equation (4.39) provides the motivation for the name ‘“specific heat” for c,. Historically, this
equation was used to define c,; thus, it was defined as the heat necessary to raise the temperature of
one unit of substance one degree in a constant-volume process. Today scientists prefer the definition
of ¢, to be in terms of properties only, without reference to heat transfer, as in (4.16).

The Constant-Pressure Process
The first law, for a constant-pressure quasiequilibrium process, was shown in Sec. 4.4 to be

Q= AH (4.40)

Hence, the heat transfer for such a process can easily be found using tabulated values, if available.
For a gas that behaves as an ideal gas, we have

Q=m c dT (4.41)
T

For a process involving an ideal gas for which ¢, is constant there results
Q =mc, AT (4.42)

For a nonequilibrium process the work must be accounted for directly in the first law and cannot
be expressed as P(V, — V,). For such a process (4.40) would not be valid.

The Adiabatic Process

There are numerous examples of processes for which there is no, or negligibly small, heat transfer,
g., the compression of air in an automobile engine or the exhaust of nitrogen from a nitrogen tank.
The study of such processes is, however, often postponed until after the second law of thermodynam-
ics is presented. This postponement is not necessary, and because of the importance of the adiabatic
quasiequilibrium process, it is presented here.
The differential form of the first law for the adiabatic process is

—éw =du (4.43)
or, for a quasiequilibrium process, using 8w = Pdv (there are no nonequilibrium work modes),
du + Pdv =0 (4.44)

The sum of the differential quantities on the left represents a perfect differential which we shall
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designate as dy, ¥ being a property of the system. This is similar to the motivation for defining the
enthalpy A as a property. Since
dy =du + Pdv (4.45)

is a property of the system, it is defined for processes other than the adiabatic quasiequilibrium

process.
Let us investigate the adiabatic quasiequilibrium process for an ideal gas with constant specific

heats. For such a process, (4.44) takes the form

¢, dT + 51—T dv =20 (4.46)
Rearranging, we have
c. dT dv
RT ™ 7T (4.47)
This is integrated, assuming constant ¢, between states 1 and 2 to give
. T '
Flng?=—-In2 (4.48)
1 1
which can be put in the form
T2 B v R/c‘,_ v, k-1
-] - (2 (44)
referring to (4.31). Using the ideal-gas law, this can be written as
T, P, (k—1)/k P, Y
T, ~ (r) 7= () (4.50)

Finally, the above three relations can be put in general forms, without reference to particular points.
For the adiabatic quasiequilibrium process involving an ideal gas with constant ¢, and c,, we have

Tv“~! = const. TP =%/k = const. Pr¥ = const. (4.51)

For a substance that does not behave as an ideal gas, we must utilize tables. For such a process we
return to (4.45) and recognize that dyr = 0, or ¢ = const. We do not assign the property ¢ a formal
name, but, as we shall show in Chap. 7, the ¢ function is constant whenever the quantity denoted by s,
the entropy, is constant. Hence, when using the tables, an adiabatic quasiequilibrium process between
states 1 and 2 requires s, = s,.

The Polytropic Process
A careful inspection of the special quasiequilibrium processes presented in this chapter suggests
that each process can be expressed as
PV" = const. (4.52)
The work is calculated

Py

v PV, - PV,
l_ln(V2]~n__ V]l—n)= 272 171

1—-n

_ v, . n V2 -n —
W= fv. PdV = PV! fv. Vordy = (4.53)

except (4.36) is used if n = 1. The heat transfer follows from the first law.
Each quasiequilibrium process is associated with a particular value for n as follows:

Isothermal: n=1
Constant-volume: n=ow
Constant-pressure: n=190
Adiabatic: n=k

The processes are displayed on a (In P) vs. (in V') plot in Fig. 4-7. The slope of each straight line is the
exponent on V in (4.52). If the slope is none of the values ®, k, 1, or zero, then the process can be
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In P
=0 V' =const.

T = const.
Polytropic = const.

P = const. n=0

n=1

InV
Fig. 4-7 Polytropic exponents for various processes.

referred to as a polytropic process. For such a process any of the equations (4.49), (4.50), or (4.51) can
be used with k simply replaced by n; this is convenient in processes in which there is some heat
transfer but which do not maintain temperature, pressure, or volume constant.

EXAMPLE 4.9 Determine the heat transfer necessary to increase the pressure of 70 percent quality steam from
200 to 800 kPa, maintaining the volume constant at 2 m>. Assume a quasiequilibrium process.

For the constant-volume quasiequilibrium process the work is zero. The first law reduces to Q = m(u, ~ u,).
The mass is found to be

Vv 2 2
m= -
v

T 0.0011 + {0.7)(0.8857 — 0.0011) = 0.6203
The internal energy at state 1 is
u, = 504.5 + (0.7)(2529.5 - 504.5) = 1922 kJ /kg

The constant-volume process demands that ¢, = ¢, = 0.6203 m>/kg. From the steam tables at 800 kPa we find,
by extrapolation, that

= 3.224 kg

i (0.6203 - 0.6181
42 =\ 0.6181 - 0.5601

Note that extrapolation was necessary since the temperature at state 2 exceeds the highest tabulated temperature
of 800 °C. The heat transfer is then

Q = (3.224)(3668 — 1922) = 5629 kJ

)(3661 — 3476) = 3668 kI /kg

EXAMPLE 4.10 A piston-cylinder arrangement contains 0.02 m* of air at 50 °C and 400 kPa. Heat is added in
the amount of 50 kJ and work is done by a paddle wheel until the temperature reaches 700 °C. If the pressure is
held constant how much paddle-wheel work must be added to the air? Assume constant specific heats.

The process cannot be approximated by a quasiequilibrium process because of the paddle-wheel work. Thus,
the heat transfer is not equal to the enthalpy change. The first law may be written as

Q — Woaage = m(hy — ) =mc (T, - T))
To find m we use the ideal-gas equation. It gives us

_ PV _ (400000)(0.02) _
™= RT ~ (287)(273 + 50) 0.0863 ke

From the first law the paddle-wheel work is found to be
Wiadae = @ — me, (T, — Ty) = 50 — (0.0863)(1.00)(700 — 50) = —6.095 kJ

Note: We could have used the first law as Q — W, = m(u, — u,) and then let W, 4y = W, — P(V, ~ V). We
would then need to calculate V.
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EXAMPLE 4.11 Calculate the work necessary to compress air in an insulated cylinder from a volume of 6 ft* to
a volume of 1.2 ft3. The initial temperature and pressure are 50 °F and 30 psia, respectively.

We will assume that the compression process is approximated by a quasiequilibrium process, which is
acceptable for most compression processes, and that the process is adiabatic due to the presence of the
insulation. The first law is then written as

—W=mu; ~u) =me(T, - T\)
The mass is found from the ideal-gas equation to be

_ v [(30)(144))(6)

™ = RT = (53.3)(460 + 50y _ 003 lom

The final temperature T, is found for the adiabatic quasiequilibrium process from (4.49); it is

poyE! gy14-t
T, = 71(7;) - (510)(%) = 970.9°R

Finally, W = (-0.9535 1bmX0.171 Btu/lbm-°RX970.9 — 510)°R = —75.1 Btu.

4.8 GENERAL FORMULATION FOR CONTROL VOLUMES

In the application of the various laws we have thus far restricted ourselves to systems, with the
result that no mass has crossed the system boundaries. This restriction is acceptable for many
problems of interest and may, in fact, be imposed on the power plant schematic shown in Fig. 4-8.
However, if the first law is applied to this system, only an incomplete analysis can be accomplished.
For a more complete analysis we must relate W,,, Q,,, W,,,, and Q,,, to the pressure and temperature
changes for the pump, boiler, turbine, and condenser, respectively. To do this we must consider each
device of the power plant as a control volume into which and from which a fluid flows. For example,
water flows into the pump at a low pressure and leaves the pump at a high pressure; the work input
into the pump is obviously related to this pressure rise. We must formulate equations that allow us to
make this necessary calculation. For most applications that we will consider it will be acceptable to
assume both a steady flow (the flow variables do not change with time) and a uniform flow (the
velocity, pressure, and density are constant over the cross-sectional area). We will, however, develop
the unsteady, nonuniform flow case which will find some application in our study of thermodynamics.
Fluid mechanics treats the more general unsteady, nonuniform situations in much greater depth.

Steam (high-energy)

Turbine

) |

Cn } Steam I
| water (low-energy) :
! e System
: | boundary
| water |

Win T U Condenser :
: Pump |
!_ ___________________________ 1__________" Qou(

Fig. 4-8
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ir* Control surface

Control
H volume

Fig. 4-9

The Continuity Equation

Consider a general control volume with an area 4, where fluid enters and an area A, where fluid
leaves, as shown in Fig. 4-9. It could have any shape and any number of entering and exiting areas, but
we will derive the continuity equation using the geometry shown. Conservation of mass requires that

s (4.54)
control volume control volume within control volume

m - m, = Arnc,v.

( Mass entering ) _ ( Mass leaving ) ( Change in mass )

The mass that crosses an area A over a time increment At can be expressed as p AV At, where VAt is
the distance the mass particles travel and AV At is the volume swept out by the mass particles.
Equation (4,54) can thus be put in the form

prAV AL = py AV, At = Am (4.55)

where the velocities V, and V, are perpendicular to the areas A, and A,, respectively. We have
assumed the velocity and density to be uniform over the two areas, a good assumption for the
turbulent flows most often encountered entering and leaving the devices of interest.

If we divide by At and let Ar — 0, the derivative results and we have the continuity equation,

dmC.V.
pr AV, = p AV, = ar (4.56)

For the steady-flow situation, in which the mass in the control volume remains constant, the continuity
equation reduces to

AV, =p AV, (4.57)

which will find much use in problems involving flow into and from various devices.
The quantity of mass crossing an area each second is termed the mass flux rh and has units kg /s
(Ibm /sec). It is given by the expression

i = pAV (4.58)

The quantity AV is the flow-rate with units of m¥s (ft¥/sec).

If the velocity and density are not uniform over the entering and exiting areas, the variation across
the areas must be accounted for. This is done by recognizing that the mass flowing through a
differential area element dA each second is given by pl'dA, providing V is normal to dA. In this case
(4.58) is replaced by m = J,pV dA. Observe that for incompressible flow (p = constant), (4.58) holds
whatever the velocity distribution, provided only that V' be interpreted as the average normal celocity
over the area A.

EXAMPLE 4.12 Water is flowing in a pipe that changes diameter from 20 to 40 mm. If the water in the 2(-mm
section has a velocity of 40 m /s, determine the velocity in the 40-mm section. Also calculate the mass flux.
The continuity equation (4.57) is used. There results, using p, = p,,

02)° 04)°
AV, = AV, [—”%’2—)](40) = Lof—)—vz s Va=10m/s
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The mass flux is found to be
2
ho=pAV, = (1000)(1(0;10—2))(40) =12.57kg/s
where p = 1000 kg/m? is the standard value for water.

The Energy Equation
Consider again a general control volume as sketched in Fig. 4-10. The first law of thermodynamics

for this control volume can be stated as

Net energy Energy Energy Change of
transferred to ) + entering ) - leaving ) = energy in
the c.v. the c.v. the c.v. the c.v.
Q-w + E, - E, = AE_, (4.59
Q
Control [ ——

7=

Fig. 4-10

The work W is composed of two parts: the work due to the pressure needed to move the fluid,
sometimes called flow work, and the work that results from a rotating shaft, called shaft work W,. This

is expressed as

W =P, A4,V, At — PLAV, At + W (4.60)
where PA is the pressure force and V' At is the distance it moves during the time increment At. The
negative sign results because the work done on the system is negative when moving the fluid into the

control volume.
The energy E is composed of kinetic energy, potential energy, and internal energy. Thus,

E=3imV?+ mgz + mu (4.61)

The first law can now be written as
2

14
Q — W, — P,A,V, At + PLAV, At + plAlV,(—z—l +gz, + ul) At

VZ
—pzAsz(-Tz— + gz, + u;,_) At = AE_, (4.62)
Divide through by Az to obtain the energy equation
- ; . VZZ P2 . V]2 Pl dEc.vA
Q—Ws=m2(——2—+gzz+u2+-p—2- -—m1—2—+gzl+ul+p—l + = (4.63)
where we have used
. . w .
Q=% WS=A_t m=pAV (4.64)
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For steady flow, a very common situation, the energy equation becomes
O~ W, =rlhy—h +g(z,-2)) + (VZ-V})/2] (4.65)

where the enthalpy of (4.12) has been introduced. This is the form most often used when a gas or a
vapor is flowing.

Quite often the kinetic energy and potential energy changes are negligible. The first law then
takes the simplified form

Q‘_Ws=’h(h2"h1) (4.66)
or
q—w,=h,— h, (4.67)
where g = Q/m and w, = Ws/m This simplified form of the energy equation has a surprisingly large
number of applications.
For a control volume through which a liguid flows, it is most convenient to return to (4.63). For a
steady flow with p, = p, = p, neglecting the heat transfer and changes in internal energy, the energy
equation takes the form

Py- P Vi-Vi

—W, =m 5 5 +8(z; - 2)) (4.68)

This is the form to use for a pump or a hydroturbine. If Q and Awu are not zero, simply include them.

4.9 APPLICATIONS OF THE ENERGY EQUATION

There are several points that must be considered in the analysis of most problems in which the
energy equation is used. As a first step, it is very important to identify the control volume selected in
the solution of the problems; dotted lines are used to outline the control surface. If at all possible, the
control surface should be chosen so that the flow variables are uniform or known functions over the
areas where the fluid enters or exits the control volume. For example, in Fig. 4-11 the area could be
chosen as in part (a), but the velocity and the pressure are certainly not uniform over the area. In part
(b), however, the control surface is chosen sufficiently far downstream from the abrupt area change
that the exiting velocity and pressure can be approximated by uniform distributions.

It is also necessary to specify the process by which the flow variables change. Is it incompressible?
isothermal? constant-pressure? adiabatic? A sketch of the process on a suitable diagram is often of
use in the calculations. If the working substance behaves as an ideal gas, then the appropriate
equations may be used; if not, tabulated values must be used, such as those provided for steam. For
real gases that do not behave as ideal gases, specialized equations may be available for calculations;
some of these equations will be presented in a later chapter.

Often heat transfer from a device or an internal energy change across a device, such as flow
through a pump, is not desired. For such situations, the heat transfer and internal energy change may

ey

R ——
T

(a) (b)

Fig. 4-11
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be lumped together as losses. In a pipeline losses occur because of friction; in a pump, losses occur
because of poor fluid motion around the rotating blades. For many devices the losses are included as
an efficiency of the device. Examples will illustrate.

Kinetic energy or potential energy changes can often be neglected in comparison with other terms
in the energy equation. Potential energy changes are usually included only in situations where liquid is
involved and where the inlet and exit areas are separated by a large vertical distance. The following
applications will illustrate many of the above points.

Throttling Devices

A throttling device involves a steady-flow adiabatic process that provides a pressure drop with no
significant potential energy or kinetic energy changes. The process occurs relatively rapidly, with the
result that negligible heat transfer occurs. Two such devices are sketched in Fig. 4-12. If the energy
equation is applied to such a device, obviously there is no work done; neglecting kinetic and potential
energy changes, we have, for the adiabatic process [see (4.67)],

h,=h, (4.69)
where section 1 is upstream and section 2 is downstream. Most valves are throttling devices, for which
the energy equation takes the form of (4.69). They are also used in many refrigeration units in which

the sudden drop in pressure causes a change in phase of the working substance. The throttling process
is analogous to the sudden expansion of Fig. 3-5b.

G gy

‘ / .
(a) Orifice plate (b) Globe valve

Fig. 4-12

EXAMPLE 4.13 Steam enters a throttling valve at 8000 kPa and 300 °C and leaves at a pressure of 1600 kPa.
Determine the final temperature and specific volume of the steam.

The enthalpy of the steam as it enters is found from the superheat steam table to be #, = 2785 kJ /kg. This
must equal the exiting enthalpy as demanded by (4.69). The exiting steam is in the quality region, since at 1600
kPa h, = 2794 kJ /kg. Thus the final temperature is 7, = 201.4 °C.

To find the specific volume we must know the quality. It is found from

hy=h;+ x3hg, 2785 = 859 + 1935x, x, = 0.995
The specific volume is then v, = 0.0012 + (0.995X0.1238 — 0.0012) = 0.1232 m> /kg.

Compressors, Pumps, and Turbines

A pump is a device which transfers energy to a liquid flowing through the pump with the result
that the pressure is increased. Compressors and blowers also fall into this category but have the
primary purpose of increasing the pressure in a gas. A turbine, on the other hand, is a device in which
work is done by the fluid on a set of rotating blades. As a result there is a pressure drop from the inlet
to the outlet of the turbine. In some situations there may be heat transferred from the device to the
surroundings, but often the heat transfer can be assumed negligible. In addition the kinetic and
potential energy changes are usually neglected. For such devices operating in a steady-state mode the
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energy equation takes the form [see (4.66)]

~Wg=rm(h, —h)) or —wg=h, — h, (4.70)

where WS is negative for a compressor and positive for a gas or steam turbine. In the event that heat
transfer does occur, from perhaps a high-temperature working fluid, it must, of course be included in
the above equation.

For liquids, such as water, the energy equation (4.68), neglecting kinetic and potential energy
changes, becomes

—wg = 21 (4.71)

velocity of 200 m /s calculate the turbine power output. (@) Neglect any heat transfer and kinetic energy change.

:’.‘fi EXAMPLE 4.14 Steam enters a turbine at 4000 kPa and 500 °C and leaves as shown in Fig. 4-13. For an inlet
athcad (b) Show that the kinetic energy change is negligible.

Control
surface

-
[

V=200 m/s .

P, = 4000 kPa r- | Ws

T,=500°C | —t t >
|

d,=250 mm

v,
——_P2= 80 kPa
Xy=1.0

Fig. 4-13

(a) The energy equation in the form of (4.70) is — W, = (h, — h )ri. We find 71 as follows:

o 1 _ w(0.025)%(200)
m = P1A1V1 = U_IA]VI = —OW“— = 4,544 kg/s
The enthalpies are found from Tables C-3 and C-2 to be
hy, =3445.2kJ/ kg h, =26657kl/kg

The maximum power output is then WT = —(2665.7 — 3445.2¥4.544) = 3542 kJ /s or 3.542 MW.
(b) The exiting velocity is found to be

AV, 0.025)%(200 /0.08643
V. = 11P1=7T( ) ( 2/ )___1931_“/5
T Axp x(0.125)° /2.087

The kinetic energy change is then

vi-pk 2 _ 2002
AKE =m(2—21-) = (4.544) (u) = —62501/s or —6.25kl/s

This is less than 0.1 percent of the enthalpy change and is indeed negligible. Kinetic energy changes are
usually omitted in the analysis of a turbine.
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Fig. 4-14

o5+  EXAMPLE 4.15 Determine the maximum pressure increase across the 10-hp pump shown in Fig. 4-14. The
inlet velocity of the water is 30 ft /sec.

Mathcad The energy equation (4.68) is used. By neglecting the heat transfer and assuming no increase in internal
energy, we establish the maximum pressure rise. Neglecting the potential energy change, the energy equation
takes the form

—Wy=)h(P2_Pl + sz‘Vlz
L p )
The velocity V; is given, and V, is found from the continuity equation as follows:
1)? ] 5)°
p AV, = pAY, [i‘;)— (30) = "(145) v, .V, = 1333 ft /sec
The mass flux, needed in the energy equation, is then, using p = 62.4 lbm /ft>,
h=pAV = (62.4) Ty (30) = 10.21 Ibm /sec
) (4 X 144) )

Recognizing that the pump work is negative, the energy equation is

P, — P,) Ibf / ft? (13.33% — 30°) ft?/sec?
62.4 Ibm / ft3 (2)(32.2 Ibm-ft /sec?-1bf)

— (—10)(550) ft-Ibf /sec = (10.21 lbm/sec)[ (

where the factor 32.2 Ibm-ft /sec’-Ibf is needed to obtain the correct units on the kinetic energy term. This
predicts a pressure rise of
5500 13.33% — 302

_ = - = 2 i
P, - P, (62.4)[10.21 (2)(32.2)] 34,310 Ibf /ft2 or 238.3 psi

Note that in this example the kinetic energy terms are retained because of the difference in inlet and exit areas; if
they were omitted, only a 2 percent error would result. In most applications the inlet and exit areas will be equal
so that V, = V;; but even with different areas, as in this example, kinetic energy changes are usually ignored in a
pump or turbine and (4.71) is used.

Nozzles and Diffusers

A nozzle is a device that is used to increase the velocity of a flowing fluid. It does this by reducing
the pressure. A diffuser is a device that increases the pressure in a flowing fluid by reducing the
velocity. There is no work input into the devices and usually negligible heat transfer. With the
additional assumptions of negligible internal energy and potential energy changes, the energy equation
takes the form

v: vt

O=T—T+h2—'hl (4.72)
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Based on our intuition we expect a nozzle to have a decreasing area in the direction of flow and a
diffuser to have an increasing area in the direction of flow. This is indeed the case for a subsonic flow
in which V' < vkRT . For a supersonic flow in which V' > VART the opposite is true: a nozzle has an
increasing area and a diffuser has a decreasing area. This is shown in Fig. 4-15.

T+ == pE_ 1t =

Nozzle Diffuser Nozzle Diffuser

(a) Subsonic flow (&) Supersonic flow
Fig. 4-15

Three equations may be used for nozzle and diffuser flow; energy, continuity, and a process
equation, such as for an adiabatic quasiequilibrium flow. Thus, we may have three unknowns at the
exit, given the entering conditions. There may also be shock waves in supersonic flows or “choked”
subsonic flows. These more complicated flows are included in a compressible flow course. Only the
more simple situations will be included here.

Ll EXAMPLE 4.16 Air flows through the supersonic nozzle shown in Fig. 4-16. The inlet conditions are 7 kPa and
a 420°C. The nozzle exit diameter is adjusted such that the exiting velocity is 700 m/s. Calculate (a) the exit

Mathcad temperature, (b) the mass flux, and (¢) the exit diameter. Assume an adiabatic quasiequilibrium flow.

Control —=
surface

Fig. 4-16

(a) To find the exit temperature the energy equation (4.72) is used. It is, using Ak = ¢, AT,

L 4
2 TN T T Oh
We then have, using ¢, = 1000 J/kg - K,
1 400% — 700° o

(b) To find the mass flux we must find the density at the entrance. From the inlet conditions we have

P, 7000

= =1 _ " 3
P1 RT, (287)(693) 0.03520 kg /m
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The mass flux is then rir = p, AV, = (0.0352)X7X0.1)*(400) = 0.4423 kg/s.
(¢) To find the exit diameter we would use the continuity equation p,A,V, = p, A,V,. This requires the density
at the exit. It is found by assuming adiabatic quasiequilibrium flow. Referring to (4.49), we have

1/(k~1) 1/14-1)
py = pl(%) = (0.0352)(%%5) = 0.01784 kg/m°
Hence,
2 2
. pdiVy _ (0.0352)(0.2 )(400) _ . _
d; = FR7A (0.01784) (700) 0.0451 dy=0212m or212mm

Heat Exchangers

An important device that has many applications in engineering is the heat exchanger. Heat
exchangers are used to transfer energy from a hot body to a colder body or to the surroundings by
means of heat transfer. Energy is transferred from the hot gases after combustion in a power plant to
the water in the pipes of the boiler and from the hot water that leaves an automobile engine to the
atmosphere, and electrical generators are cooled by water flowing through internal flow passages.

Many heat exchangers utilize a flow passage into which a fluid enters and from which the fluid
exits at a different temperature. The velocity does not normally change, the pressure drop through the
passage is usually neglected, and the potential energy change is assumed zero. The energy equation
then results in

0 = (hy— h))rn (4.73)

since no work occurs in the heat exchanger.

Energy may be exchanged between two moving fluids, as shown schematically in Fig. 4-17. For a
control volume including the combined unit, which is assumed to be insulated, the energy equation, as
applied to the control volume of Fig. 4-17a, would be

0=my(hy —hy) +mp(hg, — hp) (4.74)

The energy that leaves fluid A is transferred to fluid B by means of the heat transfer Q. For the
control volumes shown in Fig. 4-17b we have

Q=m8(h32“h81) _Q=mA(hA2_hAl) (4.75)

. 4 =t 7 ‘] '.n,\
_‘Jf” t—— === —+—
m, g!l_ __Eoij;fﬁid—____ﬂ i, f’h
il Hotter fluid — N
LL ——————————— — .J_.l ir— l:- ;:Q _______ o)
1r 2 ,

(a) Combined unit (b) Separated control volumes

Fig. 4-17
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EXAMPLE 4.17 Liquid sodium, flowing at 100 kg /s, enters a heat exchanger at 450 °C and exits at 350 °C. The
specific heat of sodium is 1.25 kJ / kg - °C. Water enters at 5000 kPa and 20 °C. Determine the minimum mass flux
of the water so that the water does not completely vaporize. Neglect the pressure drop through the exchanger.
Also, calculate the rate of heat transfer.

The energy equation (4.75) is used as m (h,, — h,,) = m (h,, ~ h,), Or

rh.\’cp(Ts’l - TYZ) = mw(hwz - hwl)
Using the given values, we have (use Table C-4 to find 4,,,)
(100)(1.25) x (450 —~ 350) = m,(2792.8 — 88.7) som, = 4.623kg/s

where we have assumed a saturated vapor state for the exiting steam to obtain the maximum allowable exiting
enthalpy. The heat transfer is found using the energy equation (4.75) applied to one of the separate control
volumes.

Q = (h,, —h,;) = (4623)(2792.8 — 88.7) = 12,500kW  or 12.5 MW

Power and Refrigeration Cycles

When energy in the form of heat is transferred to a working fluid, energy in the form of work may
be extracted from the working fluid. The work may be converted to an electrical form of energy, such
as i1s done in a power plant, or to a mechanical form, such as is done in an automobile. In general,
such conversions of energy are accomplished by a power cycle. One such cycle is shown in Fig. 4-18. In
the boiler (a heat exchanger) the energy contained in a fuel is transferred by heat to the water which
enters, causing a high-pressure steam to exit and enter the turbine. A condenser (another heat
exchanger) discharges heat, and a pump increases the pressure lost through the turbine.

Qa\;‘\? —————————————————————————————— 1

|

: i Boiler Swfam }
: Turbine % C > W,

I A} water |

: steam :

| water |

| ~t Condenser |

| |

\KQC
Fig. 4-18

The energy transferred to the working fluid in the boiler in the simple power cycle of Fig. 4-18 is
the energy that is available for conversion to useful work; it is the energy that must be purchased. The
thermal efficiency m is defined to be the ratio of the net work produced to the energy input. In the
simple power cycle being discussed it is

g e We (4.76)
Oy

www.20file.org



www.semeng.ir

CHAP. 4] THE FIRST LAW OF THERMODYNAMICS 71

When we consider the second law of thermodynamics, we will show that there is an upper limit to
the thermal efficiency of a particular power cycle. Thermal efficiency is, however, a quantity that is
determined solely by first-law energy considerations.

Other components can be combined in an arrangement like that shown in Fig. 4-19, resulting in a
refrigeration cycle. Heat is transferred to the working fluid (the refrigerant) in the evaporator (a heat
exchanger). The working fluid is then compressed by the compressor. Heat is transferred from the
working fluid in the condenser, and then its pressure is suddenly reduced in the expansion valve. A
refrigeration cycle may be used to add energy to a body (heat transfer Q) or it may be used to extract
energy from a body (heat transfer Q).

\V/ Expansion
value

Condenser ——

Compressor

— Evaporator

Fig. 4-19 A Simple Refrigeration Cycle

It is not useful to calculate the thermal efficiency of a refrigeration cycle since the objective is not
to do work but to accomplish heat transfer. If we are extracting energy from a body, our purpose is to
cause maximum heat transfer with minimum work input. To measure this, we define a coefficient of
performance (abbreviated COP) as

cop-Le __Qr (4.77)
Wcomp QC_QE

If we are adding energy to a body, our purpose is, again, to do so with a minimum work input. In this
case the coefficient of performance is defined as

cop= L _ . QC. (4.78)
Woomp QC - QE

A device which can operate with this latter objective is called a heat pump; if it operates with the
former objective only it is a refrigerator.

It should be apparent from the definitions that thermal efficiency can never be greater than unity
but that the coefficient of performance can be greater than unity. Obviously, the objective of the
engineer is to maximize either one in a particular design. The thermal efficiency of a power plant is
around 35 percent; the thermal efficiency of an automobile engine is around 20 percent. The
coefficient of performance for a refrigerator or a heat pump ranges from 2 to 6, with a heat pump
having the greater values.
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Boiler Lo

600°C | .
Turbine =%b—> WT

Condenser

Fig. 4-20

Mathcas EXAMPLE 4.18 Steam leaves the boiler of a simple steam power cycle at 4000 kPa and 600 °C. It exits the
turbine at 20 kPa as saturated steam. It then exits the condenser as saturated water. (See Fig. 4-20.) Determine
the thermal efficiency if there is no loss in pressure through the condenser and the boiler.

To determine the thermal efficiency we must caiculate the heat transferred to the water in the boiler, the
work done by the turbine, and the work required by the pump. We will make the calculations for 1 kg of steam
since the mass is unknown. The boiler heat transfer is, neglecting kinetic and potential energy changes,
g = h; — h,. To find h, we assume that the pump simply increases the pressure [see (4.71)]:

wp = (P, — P;)u = (4000 — 20)(0.001) = 3.98 kI /kg
The enthalpy h, is thus found to be, using (4.70),
By =wp+h, =398 + 251.4 = 255.4 kI /kg

where h, is assumed to be that of saturated water at 20 kPa. From the steam tables we find 4, = 3674 kJ /kg.
There results

qg = 3674 — 255.4 = 3420 kJ /kg
The work output from the turbine is w; = h; — h, = 3674 — 2610 = 1064 kJ /kg. Finally, the thermal efficiency

18

_wr—wp 1064 -4 _
n = . =m0y = 0.310 or31.0%

Note that the pump work could have been neglected with no significant change in the results.

Transient Flow

If the steady-flow assumption of the preceding sections is not valid, then the time dependence of
the various properties must be included. The filling of a rigid tank with a gas and the release of gas
from a pressurized tank are examples that we will consider.

The energy equation is written as

.. dE., . (V? (Vi
Q—WS=T"+m272+822+h2)_m1(_21‘+821+h1) (4.79)

We will consider the kinetic energy and potential energy terms to be negligible so that E_, will
consist of internal energy only. The first problem we wish to study is the filling of a rigid tank, as
sketched in Fig. 4-21. In the tank, there is only an entrance. With no shaft work present the energy
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Valve L .
! m; = initial mass in c.v
my = final mass in c.v.
@ Control volume f e

Fig. 4-21

equation reduces to
. d )
Q= E(um) — myhy (4.80)

where m is the mass in the control volume. If we multiply this equation by dt and integrate from an
initial time ¢, to some final time ¢ £» We have

Q=um;—um; —mbh, (4.81)

]

where m; = mass that enters
m, = final mass in control volume
m; = initial mass in control volume

]

In addition, for the filling process the enthalpy #, is assumed constant over the time interval.
The continuity equation for the unsteady-flow situation may be necessary in the solution process.
Since the final mass is equal to the initial mass plus the mass that entered, this is expressed as
me=m; +m; (4.82)
Now consider the discharge of a pressurized tank. This problem is more complicated than the
filling of a tank in that the properties at the exiting area are not constant over the time interval of
interest; we must include the variation of the variables with time. We will assume an insulated tank, so

that no heat transfer occurs, and again neglect kinetic energy and potential energy. The energy
equation becomes, assuming no shaft work,

d ,
0= E(um) + i, (Pou, + uy) (4.83)
where m is the mass in the control volume. From the continuity equation,
dm .
a5 = ' (4.84)

If this is substituted into (4.83), we have
d(um) = (Pv, + u,) dm (4.85)
We will assume that the gas escapes through a small valve opening, as shown in Fig. 4-22. Just

Valve

X
@

m = mass in ¢.v.

Control volume

Fig. 4-22
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upstream of the valve is area 4, with properties P,, v,, and u,. The velocity at this exiting area is
assumed to be quite small so that P,, v,, and u, are approximately the same as the respective
quantities in the control volume. With this assumption (4.85) becomes

d(um) = (Pv + u)dm (4.86)
Letting d(um) = udm + mdu, there results
mdu = Pvdm (4.87)

Now we will restrict ourselves to a gas that behaves as an ideal gas. For such a gas du = ¢, dT and
Pr = RT, and we obtain

mc, dT = RTdm (4.88)
This is put in the form
c. dT _dm
AT = m (489)

which can be integrated from the initial state, signified by the subscript {, to the final state, signified by
the subscript f. There results

T.

¢

T m m T/ k=D
1 f f (f) (4.90)

c,
+ In= =In — or —= =
R T, m, m;

? 2

where we have used ¢, /R = 1/(k — 1); see (4.3]). In terms of the pressure ratio, (4.50) allows us to
write

1/k
7 (ﬁ) (4.91)

m, ~ \P,

Remember that these equations are applicable if there is no heat transfer from the volume; the
process is quasistatic in that the properties are assumed uniformly distributed throughout the control
volume (this requires a relatively slow discharge velocity, say, 100 m /s or less); and the gas behaves as

an ideal gas.

EXAMPLE 4.19 A completely evacuated, insulated, rigid tank with a volume of 300 ft? is filled from a steam
line transporting stcam at 800 °F and 500 psia. Determine (a) the temperature of steam in the tank when its
pressure is 500 psia and (b) the mass of steam that flows into the tank.

(a) The energy cquation used is (4.81). With Q =0 and m; = 0, we have ugm;=mh,. The continuity
equation (4.82) allows us to write me=my, which states that the final mass my in the tank is equal to the
mass m, that entered the tank. Thus, there results u, = 4. From Table-C3E, h; is found, at 800 °F and 500
psia, to be 1412.1 Btu/lbm. Using P, = 500 psia as the final tank pressure, we can interpolate for the
temperature, using u, = 1412.1 Btu /lbm, and find

( 1412.1 — 1406.0
;=

— (1 + 1100 = 1114.1°F
1449.2 — 1406.0)( 00)

(b) We recognize that my = my = V., /ts. The specific volume of the steam in the tank at 500 psia and
1114.1°F is

1114.1 - 1100
= ( 100
This gives m, = 300/1.845 = 162.6 lbm.

)(1.9518 — 1.8271) + 1.8271 = 1.845ft>/Ibm

EXAMPLE 4.20 An air tank with a volume of 20 m?> is pressurized to 10 MPa. The tank eventually reaches
room temperature of 25°C. If the air is allowed to escape with no heat transfer until P; = 200 kPa, determine the
mass of air remaining in the tank and the final temperature of air in the tank.
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The initial mass of air in the tank is found to be

PV 10 X 10°(20) _
m; = R—T’—'—(m'és—)“ —2338kg

Equation (4.91) gives, using k = 1.4,
Pk 2 5 \1/1.4
_ 4 - 2x10° -
m,—mi(T,‘f) = (2338)(10 v 106) = 143.0kg

To find the final temperature (4.90) is used:

m k-1
T, = T(#) = (298)(143,/2338)"* = 97.46 K or —175.5°C

A person who accidently comes in contact with a flow of gas from a pressurized tank faces immediate
freezing.

Solved Problems

4.1 A 1500-kg automobile traveling at 30 m/s is brought to rest by impacting a shock absorber
wix composed of a piston with small holes that moves in a cylinder containing water. How much
heat must be removed from the water to return it to its original temperature?

As the piston moves through the water, work is done due to the force of impact moving with the
piston. The work that is done is equal to the kinetic energy change; that is,

W= %sz = (%)(1500)(30)2 = 675000 ]

The first law for a cycle requires that this amount of heat must be transferred from the water to return it
to its original temperature; hence, ¢ = 675 kJ.

4.2 A piston moves upward a distance of 5 cm while 200 J of heat is added (Fig. 4-23). Calculate
the change in internal energy of the vapor if the spring is originally unstretched.

K = 50 kN/m

60 kg

Water
vapor

20 cm

Fig. 4-23
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4.3

4.4

4.5
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The work needed to raise the weight and compress the spring is

W= (mg)(h) + K + (Pum)(A)(H)

2
= (60)(9.81)(0.05) + (%)(50000)(0.05)2 + (100000)|L%2)—](o.05) =250

The first law for a process without kinetic or potential energy changes is
Q- W=AU
Thus, we have AU = 200 - 250 = —50 J.

A system undergoes a cycle consisting of the three processes listed in the table. Compute the
missing values. All quantities are in kJ.

Process Q w AE
1 -2 a 100 100
23 b -50 c

31 100 d —200

Use the first law in the form Q — W = AE. Applied to process 1 — 2, we have

a — 100 = 100 coa=200kJ
Applied to process 3 — 1, there results
100 ~d = -200 Sod =300k

The net work is then LW = W, _, + W,_; + W,_, = 100 — 50 + 300 = 350 kJ. The first law for a cycle
demands that

Q=W 200 + b + 100 = 350 b =50kJ
Finally, applying the first law to process 2 — 3 provides
50 -(-50)=c ¢ =100kJ

Note that, for a cycle, L AE = 0; this, in fact, could have been used to determine the value of c:
TAE=100+¢—-200=0 soc=100KkJ

A 6-V insulated battery delivers a 5-A current over a period of 20 min. Calculate the heat
transfer that must occur to return the battery to its initial temperature.

The work done by the battery is W,_, = VI Ar = (6X5H(20)60)] = 36 kJ. According to the first law,
this must equal —~(U, — U,) since Q,_, = 0 (the battery is insulated). To return the battery to its initial
state, the first law, for this second process in which no work is done, gives

Q,. _W;tlu =AU=U, -0,

Consequently, Q,_, = + 36 kJ, wherc the positive sign indicates that heat must be transferred to the
battery.

A refrigerator is situated in an insulated room; it has a 2-hp motor that drives a compressor.
Over a 30-minute period of time it provides 5300 kJ of cooling to the refrigerated space and
8000 kJ of heating from the coils on the back of the refrigerator. Calculate the increase in
internal energy in the room.

In this problem we consider the insulated room as the system. The refrigerator is nothing more than
a component in the system. The only transfer of energy across the boundary of the system is via the
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electrical wires of the refrigerator. For an insulated room (Q = 0) the first law provides

27— w=aAU
Hence, AU = —(—2 hpX0.746 kW /hp) (1800 s) = 2686 kJ.

A 2-ft3 rigid volume contains water at 120°F with a quality of 0.5. Calculate the final
temperature if 8 Btu of heat is added.

The first law for a process demands that O — W = m Au. To find the mass, we must use the specific
volume as follows:

vy = v+ x(0, — t;) = 0.016 + (0.5)(203.0 — 0.016) = 101.5 ft3/Ibm

v 2
M T T I01s

For a rigid volume the work is zero since the volume does not change. Hence, Q = m Au. The value of
the initial internal energy is

Uy =u;+ xu;, = 87.99 + (0.5)(961.9) = 568.9 Btu /Ibm
1 f f&

= 0.0197 Ibm

The final internal energy is then calculated from the first law:
8 = 0.0197(u, — 568.9) s Uy = 975 Btu/lbm

This is less than u,; consequently, state 2 is in the wet region with v, = 101.5 ft? /1bm. This requires a
trial-and-error procedure to find state 2:

At T = 140°F:
101.5 = 0.016 + x,(122.9 — 0.016) ~ox, = 0.826
975 = 108 + 948.2x, X, =0.914
At T = 150 °F:
ve = 96.99 .. slightly superheat
975 = 118 + 941.3x, sox, = 0912

Obviously, state 2 lies between 140 °F and 150 °F. Since the quality is insensilive to the internal energy,
we find T, such that v, = 101.5 ft*/lbm:

101.5 — 96.99
122.88 — 96.99

A temperature slightly less than this provides us with T, = 147°F.

T, = 150 — ( )(10) = 148°F

A frictionless piston provides a constant pressure of 400 kPa in a cylinder containing Freon 12
with an initial quality of 80 percent. Calculate the final temperature if 80 kJ /kg of heat is
transferred to the cylinder.
The original enthalpy is found, using values from Table D-2, to be
hy=h,+xhy, = 43.64 + (0.8)(147.33) = 161.5 kI /kg
For this constant-pressure process, the first law demands that
q=h,—h, 80 = h, — 1615 o hy = 241.5kI /kg

Using P, = 400 kPa and s, = 241.5 kJ /kg, we interpolate in Table D-3 to find

T, - (241.5 - 239.0

m)(lﬂ) + 80 = 83.7°C.

A piston-cylinder arrangement contains 2 kg of steam originally at 200°C and 90 percent
quality. The volume triples while the temperature is held constant. Calculate the heat that
must be transferred and the final pressure.
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The first law for this constant-temperature process is Q — W = m(u, — u;). The initial specific
volume and specific internal energy are, respectively,

v, = 0.0012 + (0.9)(0.1274 — 0.0012) = 0.1148 m>/kg
u, = 850.6 + (0.9)(2595.3 — 850.6) = 2421 kJ /kg
Using T, = 200°C and v, = (3X0.1148) = 0.3444 m?3/kg, we interpolate in Table C-3 and find the final

pressure P, to be

0.3444 — 0.2608

P, =038 - (0.3520 —0.2608

)(0.2) = 0.617 MPa

We can also interpolate to find that the specific internal energy is

0.617 — 0.6

U, = 2638.9 - (2638.9 - 26306)(W

) = 2638.2 kJ /kg

To find the heat transfer we must know the work W. It is estimated using graph paper by plotting P
vs. v and graphically integrating (counting squares). The work is twice this area since m = 2 kg. Doing
this, we find

W = (2)(227.8) = 455.6 k]
Thus Q = W + m(u, — u,) = 455.6 + (2X2638.2 — 2421) = 890 kJ.

Estimate the constant-pressure specific heat and the constant-volume specific heat for Freon
12 at 30 psia and 100°F.

We write the derivatives in finite-difference form and, using values on either side of 100°F for
greatest accuracy, we find

Ah  94.843 — 88.729

Cp = ﬁ = W =(.153 Btu/]bm- F
_Au _ Ak —Pu,+ Py 6.114 - [(30)(1.66) — (30)(1.5306)](144/778)
¢ = AT AT = 120 - 80

0.135 Btu/Ibm-°F

Calculate the change in enthalpy of air which is heated from 300 K to 700 K if
(@) ¢, =1006kI/kg °C.
(b) ¢, =0.946 + 0.213 x 10 °T — 0.031 x 107°T* kJ/kg °C.
(¢) The gas tables are used.
(d) Compare the calculations of (a) and (b) with (¢).
(a) Assuming the constant specific heat, we find that
Ak = ¢, (T, — T,) = (1.006)(700 — 300) = 402.4 kJ /kg

(b) If c, depends on temperature, we must integrate as follows:

Ak = frzc,, dT = f7°°(0.946 + 0213 x 107°T — 0.031 x 107°T?) dT = 417.7kJ /kg
7 300
(¢) Using Table F-1, we find Ak = h, — h, = 71327 — 300.19 = 413.1 kJ /kg.

(d) The assumption of constant specific heat results in an error of —2.59 percent; the expression for ¢,
produces an error of +1.11 percent. All three methods are acceptable for the present problem.

Sixteen ice cubes, each with a temperature of —10°C and a volume of 8 milliliters, are added
to 1 liter of water at 20°C in an insulated container. What is the equilibrium temperature?
Use (¢,)ie = 2.1 kI/kg -°C.

ice
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Assume that all of the ice melts. The ice warms up to 0°C, melts at 0°C, and then warms up to the
final temperature T,. The water cools from 20°C to the final temperature T,. The mass of ice is
calculated to be

m; =

= 000100 0.1174 kg

vV _ (16)(8 X 10-9)
i
where v; is found in Table C-5. If energy is conserved, we must have
Energy gained by ice = energy lost by water
mi[(cp)‘, AT + hip + (cp),, AT] =m,(c,) AT
0.1174[(2.1)(10) + 320 + (4.18)(T, — 0)] = (1000 x 1073)(4.18)(20 — T;,)
T, =9.33°C

4.12 A 5-kg block of copper at 300 °C is submerged in 20 liters of water at 0°C contained in an
insulated tank. Estimate the final equilibrium temperature.

Conservation of energy requires that the energy lost by the copper block is gained by the water. This
is expressed as

m(c,), (AT). = m,(c,), (AT),
Using average values of ¢, from Table B-4, this becomes
(5)(0.39)(300 — T,) = (0.02)(1000)(4.18)(7T, — 0) ~T,=6.84°C

413 Two Ib of air is compressed from 20 psia to 200 psia while maintaining the temperature
Kgli constant at 100 °F. Calculate the heat transfer needed to accomplish this process.

Mathcad The first law, assuming air to be an ideal gas, requires that
P ft-1bf 1 Btu 20
= 0 _ —1 = —_— ° —_— —_— = —
Q=W+A6"°=mRT In P, (2 lbm)(53.3 bm-°R )(560 R)( 778 ft-lbf) In 200 176.7 Btu

4.14 Helium is contained in a 2-m? rigid volume at 50 °C and 200 kPa. Calculate the heat transfer
needed to increase the pressure to 800 kPa.

The work is zero for this constant-volume process. Consequently, the first law gives
Q=mAu =mc,AT = %CU(T2 -T)

The ideal-gas law, PV = mRT, allows us to write
P P 200 800

T1_Tz m=T2 .'.T2=1292K

The heat transfer is then

Q= (;%3%(3.116)(1292 —323) = 1800 kJ

4.15  The air in the cylinder of an air compressor is compressed from 100 kPa to 10 MPa. Estimate

i the final temperature and the work required if the air is initially at 100 °C.
Mathcad Since the process occurs quite fast, we assume an adiabatic quasiequilibrium process. Then
P, )(kvl)/k 10000 \(14-D/14
T,=T| % = (373 (—) = 1390 K
2 1( P, (373) 100
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The work is found by using the first law with Q = 0:
w=—-Au= —c (T, - T;) = —(0.717)(1390 — 373) = —729 kJ /kg

The work per unit mass is calculated since the mass (or volume) was not specified.

Nitrogen at 100°C and 600 kPa expands in such a way that it can be approximated by a
polytropic process with n = 1.2 [see (4.52)]. Calculate the work and the heat transfer if the
final pressure is 100 kPa.

The final temperature is found to be

P (n—1)/n 1.2-1/1.2
T, = Tl(ﬁ) = (373)(%%%) =276.7K
The specific volumes are
RT 0.297)(373 RT. 0.297)(276.7
o= T = OBDOB) g jasmifis vy = T2 = CEDETD g g0 e

The work is then [or use (4.53)]
w= dev = P,u;‘fu“" dv = (600)(0.1846)"2(%)((}.822-0-2 ~ 0.1846792) = 143 kI /kg

The first law provides us with the heat transfer:

g-w=Au=c(T,-T) g — 143 = (0.745)(276.7 - 373) - g=T13K/kg

How much work must be input by the paddle wheel in Fig. 4-24 to raise the piston 5 in? The
initial temperature is 100 °F.

Frictionless
piston
7 7
/ 5 Ibf / Insulated
T é i . o é / cylinder
%’: 7 )
10" % /
. é o
%3 5 |
T %////7//’//"/////[/////’//(///////.4
| J
I e >
Fig. 4-24
The first law, with Q = 0, is
W=AU or —PA AR — W44 = me, (T, — Ty)
The pressure is found from a force balance on the piston:
_ 175 _ .
P=147+ - 4)2 18.18 psia
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The mass of the air is found from the ideal-gas law:

_ PV _ (18.18)(144)(m)(4)°(10) /1728

RT = (53.3)(560) = 0.0255 lbm

The temperature T, is

_ PV, _ (18.18)(144) (m)(4)’(15) /1728

mR (0.0255)(53.3) = 840°R

T,

Finally, the paddle-wheel work is found to be
Woaade = —PAAR —mc (T, - T)) = —(18.18)(#)(4)2(5/12) — (0.0255)(0.171)(778)(840 —~ 560)
— 1331 ft-Ibf

4.18 For the cycle in Fig. 4-25 find the work output and the net heat transfer if the 0.1 kg of air is
contained in a piston-cylinder arrangement.

P (kPa)
T = const.
800 F @
100 - (D¢ ®
1 1 V(m3)
0.08
Fig. 4-25
The temperatures and V, are
_ P, (100)(0.08) _ . _ (800)(0.08)
=R = onosy) ~ 27K =T = (51087 ~ 220K
V.
v~ 22 BOOB) _ g4

Py 100
Using the definition of work for each process, we find

p 800

;f = (0.1)(0.287)(2230)In 1p5 = 133.1KJ
W,_, =PV, - V;) = (100)(0.08 — 0.64) = —56 kI

The work output is then' W, = 0 + 133.1 — 56.0 = 77.1 kJ. Since this is a complete cycle, the first law

for a cycle provides us with

W,_,=0 W, , = mRT In

Quet = Wiy = 77.1KJ

net

4.19  Water enters a radiator through a 4-cm-diameter hose at 0.02 kg/s. It travels down through
all the rectangular passageways on its way to the water pump. The passageways are each
10 X 1 mm and there are 800 of them in a cross section. How long does it take water to
traverse from the top to the bottom of the 60-cm-high radiator?
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The average velocity through the passageways is found from the continuity equation, using
Pwaer = 1000 kg/m>:
_m 0.02
P24, — (1000)[(800)(0.01)(0.001)]
The time to travel 60 cm at this constant velocity is

t = % = % = 240 s or 4 min

m=pViA, =pV,4, -V

= 0.0025 m/s

A 10-m? tank is being filled with steam at 800 kPa and 400 °C. It enters the tank through a
10-cm-diameter pipe. Determine the rate at which the density in the tank is varying when the
velocity of the steam in the pipe is 20 m/s.

The continuity equation with one inlet and no outlets is [see (4.56)]:

dm_,
pAY, = d;' '
Since m_, = pV, where V is the volume of the tank, this becomes
dp 1 dp 1 2 dp
W = L‘_,AlVl IOW = (m)(ﬂ)(OOS) (20) E‘ = 0.04087 kg/m3 * 8

Water enters a 4-ft-wide, 1/2-in-high channel with a mass flux of 15 Ibm/sec. It leaves with a
parabolic distribution ¥(y) = V,, (1 — y?/h?), where h is half the channel height. Calculate
Vimax and V., the average velocity over any cross section of the channel. Assume that the
water completely fills the channel.

y _1;“ 15
g pA4 (62.4)[(4)(1/24)]

At the exit the velocity profile is parabolic. The mass flux, a constant, then provides us with

The mass flux is given by m = p AV, .; hence,

= 1.442 ft /sec

= prVdA

: T 4)(1/48
15 = pjthma,(1 - %)4 dy = (62.4)(4Vm)[y 3" (62.4)(4Vmax)[————( )X/ )]

S Viax = 2.163 ft/sec

Freon 12 enters a valve at 800 kPa and 30°C. The pressure downstream of the valve is
measured to be 60 kPa. Calculate the internal energy downstream.

The energy equation across the valve, recognizing that heat transfer and work are zero, is h, = h,.
The enthalpy before the valve is that of compressed liquid. The enthalpy of a compressed liquid is
essentially equal to that of a saturated liquid at the same temperature. Hence, at 30°C in Table D-1,
h, = 64.54 kJ /kg. Using Table D-2 at 60 kPa we find

hy=64.54 = h;+ xyh,, = —1.25 + 170.19x, .ox, = 0.387
The internal energy is then
uy=up+x(u, —ug) - 1.29 + (0.387)[153.49 — (- 1.29)] = 58.6 kI /kg

The pressure of 200 kg/s of water is to be increased by 4 MPa. The water enters through a
20-cm-diameter pipe and exits through a 12-cm-diameter pipe. Calculate the minimum
horsepower required to operate the pump.
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The energy equation (4.68) provides us with

The inlet and exit velocities are calculated as follows:

yoo 0 6366mys v= 2 768mys

LA (1000)(7)(0.1)°

The energy equation then gives

= —827200 W or 1109 hp

- 4000000  (17.68)° — (6.366)°
Wp= —200| —qg0  + 2

Note: The above power calculation provides a minimum since we have neglected any internal energy
increase. Also, the kinetic energy change represents only a 3 percent effect on W, and could be
neglected.

A hydroturbine operates on a stream in which 100 kg/s of water flows. Estimate the
maximum power output if the turbine is in a dam with a distance of 40 m from the surface of
the reservoir to the surface of the backwater.

The energy equation (4.68), neglecting kinetic energy changes, takes the form — W, = mig(z, — z,),
where we have assumed the pressure to be atmospheric on the water’s surface above and below the dam.
The maximum power output is then

Wy = —(100)(9.81)(—40) = 39240 W or 39.24 kW

A turbine accepts superheated steam at 800 psia and 1200 °F and rejects it as saturated vapor
at 2 psia (Fig. 4-26). Predict the horsepower output if the mass flux is 1000 Ibm/min. Also,
calculate the velocity at the exit.

800 psia
—_—
1200 °F

l"./T
e

~
1 2 psia
1

4 ft dia.

Fig. 4-26
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Assuming zero heat transfer, the energy equation (4.66) provides us with
1000
60

where Tables C-3E and C-2E have provided the enthaipies. By (4.58),

v (173.75)(1000/60) _ 1y /cc
7(2)

—W, =ri(hy — h)) = ( )(1116.1 - 1623.8) = —8462 Btu/sec or 11970 hp

Air enters a compressor at atmospheric conditions of 20 °C and 80 kPa and exits at 800 kPa
and 200 °C. Calculate the rate of heat transfer if the power input is 400 kW. The air exits at 20
m /s through an exit diameter of 10 cm.

The cnergy equation, neglecting kinctic and potential energy changes, is O — W\ = n'Icp(T2 - T
the mass flux is calculated to be

. P 800

m=pAV = jEAV = o)
Hence Q = (0.9257X1.00X200 — 20) + (—400) = —233.4 kW. Note that the power input is negative,
and a negative heat transfer implies that the compressor is losing heat.

7)(0.05)°(20) = 0.9257 kg /s

Air travels through the 4 X 2 m test section of a wind tunnel at 20 m/s. The gage pressure in
the test section is measured to be —20 kPa and the temperature 20 °C. After the test section,
a diffuser leads to a 6-m-diameter exit pipe. Estimate the velocity and temperature in the exit
pipe.
The encrgy cquation (4.72) for air takes the form
Vi=Vi+2c,(T, — T;) = 207 + (2)(1.00)(293 - T,)

The continuity equation, p, 4V, = p, A,V;, yields

Py 80 8 ,
oT V = P- a¥ o v ¥ 2 = 2 = ‘3 T
RT,A' | = p, AV, o,V {(0.287)(293)H.,.,(3)~](20) 5.384kg/m" - s
The best approximation to the actual process is the adiabatic quasiequilibrium process. Using (4.49),
letting p = 1 /1, we have
T, kot T,
T- = (&) Qr T—“ = 293 04 = 298.9
! P pP2" [80/(0.287)(293)]"
The above three equations include the three unknowns T,, V,, and p,. Substitute for T, and V, back
into the encrgy equation and find

5.2{;43 = 20% + (2)(1.00)[293 — (298.9)(p4*)]

3

This can be solved by trial and error to yield p, = 3.475 kg/m?. The velocity and temperaturce are then

3 .
p,= 2388 _ 33 s Ta = (298.9)(p%%) = (298.9)(3.475)"* = 492 or 219°C

Steam with a mass flux of 600 Ibm /min exits a turbine as saturated steam at 2 psia and passes
through a condenser (a heat exchanger). What mass flux of cooling water is needed if the
steam is to exit the condenser as saturated liquid and the cooling water is allowed a 15°F
temperature rise?

The energy equations (4.75) are applicable to this situation. The heat transfer rate for the steam is,
assuming no pressure drop through the condenser,

O, = rin,(h,, — h,) = (600)(94.02 — 1116.1) = —613,200 Btu/min

www.20file.org



www.semeng.ir

CHAP. 4] THE FIRST LAW OF THERMODYNAMICS 85

4.29

4.30

This energy is gained by the water. Hence,

0, = (b = hoy) = My (Toy = Toy) 613,200 = ri1,,(1.00)(15) rh,, = 40,880 Ibm /min

A simple steam power plant operates on 20 kg/s of steam, as shown in Fig. 4-27. Neglecting
losses in the various components, calculate (a) the boiler heat transfer rate, () the turbine
power output, (¢) the condenser heat transfer rate, (d) the pump power requirement, (e) the
velocity in the boiler exit pipe, and ( f) the thermal efficiency of the cycle.

Boiler d=30cm @ 600 €
/1' 10 MPa
Turbine === — W,
@ 10 MPa
40°C
. @ 10 kPa
Wy =10
Pump @ 10 cha Condenser
40 C N
\ QC
Fig. 4-27

(@) Qp = rilh; ~ hy) = (20X3625.3 — 167.5) = 69.15 MW, where we have taken the enthalpy #, to be
h; at 40°C.

(b) Wy =rilh, — hy) = —(20X2584.6 — 3625.3) = 20.81 MW.

(c) Q. =nmlh, ~h,) = (20X167.57 — 2584.7) = —48.34 MW.

(d) Wp=m(P, - P))/p = (20X10000 — 10,/1000) = 0.2 MW,

(e) V =rw/A = (20X0.03837)/7(0.15)* = 10.9 m/s.

(f) m =Wy — W)/Qp = (20.81 — 0.2)/69.15 = 0.298 or 29.8%.

An insulated 4-m® evacuated tank is connected to a 4-MPa 600 °C steam line. A valve is
opened and the steam fills the tank. Estimate the final temperature of the steam in the tank
and the final mass of the steam in the tank.

From (4.81), with Q = 0 and m; = 0, there results u, = &, since the final mass m, is equal to the
mass m, that enters. We know that across a valve the enthalpy is constant; hence,

hy = hy,, = 3674.4k) /ke

The final pressure in the tank is 4 MPa, achieved when the steam ceases to flow into the tank. Using
Py = 4 MPa and u; = 3674.4 kJ /kg, we find the temperature in Table C-3 to be

3674.4 — 3650.1

T, = (——3650_1 ~ e )(500) + 800 = 812.8°C

The specific volume at 4 MPa and 812.8°C is

(812.8 — 800
va = ————

=5 )(0.1229 ~ 0.1169) + 0.1229 = 0.1244 ft*/lbm

The mass of steam in the tank is then
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Supplementary Problems
An unknown mass is attached by a pulley to a paddle wheel which is inserted in a volume of water. The
mass is then dropped a distance of 3 m. If 100 J of heat must be transferred from the water in order to

return the water to its initial state, determine the mass in kilograms. Ans. 3.398 kg

While 300 J of heat is added to the air in the cylinder of Fig. 4-28, the piston raises a distance of 0.2 m.
Determine the change in internal energy. Ans. 12331

—~| | ¥in

;///I//II//II/IIII/I//IIIIIIII/I////I//III/II/III/IIIIIII/IIIIIIIIII/

10 kg % Y
7 7
7 = %
Z %
% 2
% %
2
/ r
% %
% 7
7 - 2
% — %
% 2
’ 2

A 777
| | | 21t |
I 1
10 cm | |
Fig. 4-28 Fig. 4-29

A constant force of 600 Ibf is required to move the piston shown in Fig. 4-29. If 2 Btu of heat is
transferred from the cylinder when the piston moves the entire length, what is the change in internal
energy? Ans.  0.49 Btu

Each of the letters (a) through (e) in the accompanying table represents a process. Supply the missing
values, in kJ.

Q w AE E, E,
(a) 20 5 7
(b) -3 6
(c) 40 30 15
(d) -10 20 10
(e) 10 -8 6
Ans. (a) 15,22 ()3, 14 (c) 25, 15 (d) =30, —10 (e) —4, —14

4.35 A system undergoes a cycle consisting of four processes. Some of the values of the energy transfers and
energy changes are given in the table. Fill in all the missing values. All units are kJ.

(a) —200 »o

Process Q w AU
1-2 —200 (a) 0
23 800 (b) (c)
34 (d) 600 400
4 -1 0 (e) —1200
(¢) 800 (d) 1000 (e) 1200
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A 12-V battery is charged by supplying 3 A over a period of 6 h. If a heat loss of 400 kJ occurs from the
battery during the charging period, what is the change in energy stored within the battery?
Ans. 378 kJ

A 12-V battery delivers a current of 10 A over a 30-min time period. The stored energy decreases by
300 kJ. Determine the heat lost during the time period for the battery. Ans. 84 klJ

A 110-V heater draws 15 A while heating a particular air space. During a 2-h period the internal energy
in the space increases by 8000 Btu. Calculate the amount of heat lost in Btu. Ans. 3260 Btu

How much heat must be added to a 0.3-m? rigid volume containing water at 200 °C in order that the
final temperature be raised to 800 °C? The initial pressure is 1 MPa. Ans. 1505 kJ

A 0.2-m’ rigid volume contains steam at 600 kPa and a quality of 0.8. If 1000 kJ of heat is added,
determine the final temperature. Ans. 787°C

A piston-cylinder arrangement provides a constant pressure of 120 psia on steam which has an initial
quality of 0.95 and an initial volume of 100 in®. Determine the heat transfer necessary 1o raise the
temperature to 1000 °F. Work this problem without using enthalpy. Ans. 6.277 Buu

Steam is contained in a 4-liter volume at a pressure of 1.5 MPa and a temperature of 200 °C. If the
pressure is held constant by expanding the volume while 40 kJ of heat is added, find the final
temperature. Work this problem without using enthalpy. Ans. 785°C

Work Prob. 4.41 using enthalpy. Ans. 6274 Btu
Work Prob. 4.42 using enthalpy. Ans. 787°C

Calculate the heat transfer necessary to raise the temperature of 2 kg of steam, at a constant pressure
of 100 kPa (a) from 50 °C to 400 °C and (b) from 400°C to 750 °C.
Ans. (a) 6140 kJ (b) 1531 KJ

Steam is contained in a 1.2-m> volume at a pressure of 3 MPa and a quality of 0.8. The pressure is held
constant. What is the final temperature if (a) 3 MJ and (b) 30 MJ of heat is added? Sketch the process
ona T — v diagram. Ans. (a)2339°C (b) 645°C

Estimate the constant-pressure specific heat for steam at 400 °C if the pressure is (a) 10 kPa, () 100
kPa, and (¢) 30000 kPa.
Ans. (a) 2.06 kJ/kg -°C (b) 207kl /kg -°C (c)134KI/kg-°C

Determine approximate values for the constant-volume specific heat for steam at 800 °F if the pressure
is (a) 1 psia, (b) 14.7 psia, and (c¢) 3000 psia.
Ans. (a) 0.386 Btu/lbm-°F () 0.388 Btu/Ibm-°F  (c) 0.93 Btu/Ibm-°F

Calculate the change in enthalpy of 2 kg of air which is heated from 400 K to 600 K if (a) ¢, = 1.006
ki/kg - K, (b) ¢, = 0.946 + 0.213 X 107°T — 0.031 X 107°T? kJ/kg - K, and (c) the gas tables are
used. Ans. (a) 402 kJ (b) 418 kKJ (c) 412 kJ

Compare the enthalpy change of 2 kg of water for a temperature change from 10°C to 60 °C with that
of 2 kg of ice for a temperature change from —60°C to —10°C. Ans. 418 kJ vs. 186 KJ

Two MJ of heat is added to 2.3 kg of ice held at a constant pressure of 200 kPa, at (a) ~60°C and (b)
0°C. What is the final temperature? Sketch the process on a T — ¢ diagram.
Ans. (a) 104°C (b) 120.2°C
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4.52 What is the heat transfer required to raise the temperature of 10 Ibm of water from 0 °F (ice) to 600 °F
(vapor) at a constant pressure of 30 psia? Sketch the process on a T — v diagram. Ans. 14,900 Btu
4.53 Five ice cubes (4 X 2 X 2 cm) at —20°C are added to an insulated glass of cola at 20 °C. Estimate the
final temperature (if above 0°C) or the percentage of ice melted (if at 0°C) if the cola volume is (a) 2
liters and (b) 0.25 liters. Use p,, = 917 kg/m>.  Ans. (a) 162°C  (b) 76.3%
4.54 A 40-1bm block of copper at 200 °F is dropped in an insulated tank containing 3 ft* of water at 60 °F.
Calculate the final equilibrium temperature. Ans. 62.7°F
4.55 A 50-kg block of copper at 0°C and a 100-kg block of iron at 200 °C are brought into contact in an
insulated space. Predict the final equilibrium temperature. Ans. 139.5°C
4.56 Determine the enthalpy change and the internal energy change for 4 kg of air if the temperature
changes from 100 °C to 400 °C. Assume constant specific heats. Ans. 1200 kJ, 860 kJ
4.57 For each of the following quasiequilibrium processes supply the missing information. The working fluid
is 0.4 kg of air in a cylinder.
Process | Q (kD) [ W (kD) | AU [ AH (kD) | T, (°C) | T, (°C) | P, (kPa) [ P, (kPa) [ V, (m*) | V, (m?)
a)| T=C 60 100 50
B Vv=cC 80 300 200
@] P=C 100 200 500
@|lg=0 250 0.1 0.48
Ans. (a) 60, 0, 0, 100, 203, 0.856, 0.211; (b) 574, 0, 57.4, 100, 130, 0.329, 0.329;
(¢) 28.3, 71.7, 100, 450, 500, 0.166, 0.109; (d) 0, —131, 131, 182, 706, 1124, 125
4,58 For each of the quasiequilibrium processes presented in the table in Prob. 4.57, supply the missing
information if the working fluid is 0.4 kg of steam. [Note: for process (a) it is necessary to integrate
graphically.}
Ans. (a) 494, 10.2, 11.8, 100, 101, 1.37, 0.671; (b) 62, 0, 62, 200, 167, 1.316, 1.316;
(¢) 23.5, 76.5, 100, 320, 500, 0.226, 0.177; (d) 0, —190, 190, 245, 550, 1500, 200
4.59 One thousand Btu of heat is added to 2 Ibm of steam maintained at 60 psia. Calculate the final
temperature if the initial temperature of the steam is (a) 600 °F and (b) 815°F.
Ans. (a) 1551°F (b) 1741°F
4.60 Fifty kJ of heat is transferred to air maintained at 400 kPa with an initial volume of 0.2 m®. Determine
the final temperature if the initial temperature is (@) 0°C and (b) 200°C.
Ans. (a) 49.0°C (b) 249.0°C
4.61 The initial temperature and pressure of 8000 cm® of air are 100°C and 800 kPa, respectively.
Determine the necessary heat transfer if the volume does not change and the final pressure is (a) 200
kPa and (b) 3000 kPa. Ans. (a) —12.0 kJ (b) 440 kJ
4.62 Calculate the heat transfer necessary to raise the temperature of air, initially at 10°C and 100 kPa, to a
temperature of 27°C if the air is contained in an initial volume with dimensions 3 X § X 2.4 m. The
pressure is held constant. Ans. 753 K1
4.63 Heat is added to a fixed 0.15-m> volume of steam initially at a pressure of 400 kPa and a quality of 0.5.

Determine the final pressure and temperature if (a) 800 kJ and (b) 200 kJ of heat is added. Sketch the
process on a P — ¢ diagram. Ans. (a) 1137 kPa, 314°C (b) 533 kPa, 154°C
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4.64

4.65

4.66

4.67

4.68

4.69

4.70

4.71

Two hundred Btu of heat is added to a rigid air tank which has a volume of 3 ft3. Find the final
temperature if initially (@) P = 60 psia and T = 30 °F and (b) P = 600 psia and T = 820 °F. Use the air
tables. Ans. (a) 1135°F (b) 1195°F

A system consisting of 5 kg of air is initially at 300 kPa and 20 °C. Determine the heat transfer necessary
to (a) increase the volume by a factor of two at constant pressure, (b) increase the pressure by a factor
of two at constant volume, (c) increase the pressure by a factor of two at constant temperature, and (d)
increase the absolute temperature by a factor of 2 at constant pressure.

Ans.  (a) 1465 kJ (k) 1050 kJ (c) =291 kJ (d) 1465 kJ

Heat is added to a container hoiding 0.5 m? of steam initially at a pressure of 400 kPa and a quality of
80 percent (Fig. 4-30). If the pressure is held constant, find the heat transfer necessary if the final
temperature is (@) 500 °C and (b) 675 °C. Also determine the work done. Sketch the processona T — v
diagram. Ans. (a) 1584 kJ (b) 2104 KJ

Fig. 4-30

A rigid 1.5-m> tank at a pressure of 200 kPa contains 5 liters of liquid and the remainder steam.
Calculate the heat transfer necessary to (a) completely vaporize the water, (b) raise the temperature to
400 °C, and (c) raise the pressure to 800 kPa. Ans. (a) 9.85 MJ (b) 12,26 MJ (c) 9.55 MJ

Ten Btu of heat is added to a rigid container holding 4 1bm of air in a volume of 100 ft>. Determine
AH. Ans. 14.04 Btu

Eight thousand cm® of air in a piston-cylinder arrangement is compressed isothermally at 30 °C from a
pressure of 200 kPa to a pressure of 800 kPa. Find the heat transfer. Ans. —222k]

Two kg of air is compressed in an insulated cylinder from 400 kPa to 15000 kPa. Determine the final
temperature and the work necessary if the initial temperature is (a) 200 °C and (b) 350 °C.
Ans. (a) —1230 kJ (b) —1620 kJ

Air is compressed in an insulated cylinder from the position shown in Fig. 4-31 so that the pressure
increases to 5000 kPa from atmospheric pressure of 100 kPa. What is the required work if the mass of
the air is 0.2 kg? Ans. —116 kJ
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800 mm

600 mm dia.

Fig. 4-31

4.72 The average person emits approximately 400 Btu of heat per hour. There are 1000 people in an
unventilated room 10 X 75 X 150 ft. Approximate the increase in temperature after 15 min, assuming
(a) constant pressure and (b) constant volume. (¢) Which assumption is the more realistic?
Ans. (a) 49.4°F (b) 69.4°F (¢) constant pressure

4.73 Two hundred kJ of work is transferred to the air by means of a paddle wheel inserted into an insulated
volume (Fig. 4-32). If the initial pressure and temperature are 200 kPa and 100°C, respectively,
determine the final temperature and pressure. Ans. 174.7°C, 240.1 kPa

Z

AN

\
§
m

2
2722222227/
Fig. 4-32

4.74 A 2-kg rock falls from 10 m and lands in a 10-liter container of water. Neglecting friction during the fall,
calculate the maximum temperature increase in the water. Ans. 4.69°C

4.75 A torque of 10 N - m is required to turn a paddle wheel at the rate of 100 rad/s. During a 45-s time
period a volume of air, in which the paddle wheel rotates, is increased from 0.1 to 0.4 m3, The pressure
is maintained constant at 400 kPa. Determine the heat transfer necessary if the initial temperature is
(a) 0°C and (b) 300°C. Ans. (a)373kJ () 373 K]

4.76 For the cycle shown in Fig. 4-33 find the work output and the net heat transfer, if 0.8 Ibm of air is
contained in a cylinder with T, = 800 °F, assuming the process from 3 to 1 is (a) an isothermal process
and (b) an adiabatic process. Ans.  (a) 7150 fi-1bf, 9.19 Btu (b) 9480 ft-1bf, 12.2 Btu
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P
A ® @ P
60 psia [- — — —
wL 4000kPa | (D> \Q)
3
@ 80°C
4 |®
' 1% i v
10 fi? 0.5m?
Fig. 4-33 Fig. 4-34
4.77 For the cycle shown in Fig. 4-34 find the net heat transfer and work output if steam is contained in a
cylinder. Ans. 1926 kJ, 1926 kJ
4.78 If 0.03 kg of air undergoes the cycle shown in Fig. 4-35, a piston-cylinder arrangement, calculate the
work output. Ans. 4.01 kJ
4.79 Air is flowing at an average speed of 100 m/s through a 10-cm-diameter pipe. If the pipe undergoes an
enlargement to 20 cm in diameter, determine the average specd in the enlarged pipe.
Ans. 25 m/s
P
®
!
| Isotherm
| @
}
|
) !
100 kPa |- — q———————== ©
I
—+ —\
0.002 m* 0.02m?
Fig. 4-35 Fig. 4-36
4.80 Air enters a vacuum cleaner through a 2-in-diameter pipe at a spced of 150 ft /sec. 1t passes through a
rotating impeller (Fig. 4-36), of thickness of 0.5 in., through which the air exits. Determine the average
velocity exiting normal to the impeller. Ans. 375 ft/sec
4.81 Air enters a device at 4 MPa and 300 °C with a velocity of 150 m/s. The inlet area is 10 cm? and the
outlet arca is 50 cm?. Determine the mass flux and the outlet velocity if the air exits at 0.4 MPa and
100 °C. Ans.  3.65 kg/s, 1953 m/s
4.82 Air enters the device shown in Fig. 4-37 at 2 MPa and 350 °C with a velocity of 125 m/s. At one outlet

arca the conditions arc 150 kPa and 150 °C with a velocity of 40 m/s. Determinc the mass flux and the
velocity at the second outlet for conditions of 0.45 MPa and 200°C. Ans. 6.64 kg/s, 255 m/s
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4.87
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v,
10cm
8cm

10em

Fig. 4-37

Steam at 400 kPa and 250 °C is being transferred through a 50-cm-diameter pipe at a speed of 30 m/s.
It splits into two pipes with equal diameters of 25 cm. Calculate the mass flux and the velocity in each of
the smaller pipes if the pressure and temperature are 200 kPa and 200 °C, respectively,

Ans. 4.95 kg/s, 109 m/s

Steam enters a device through a 2-in? area at 500 psia and 600 °F. It exits through a 10-in® area at 20
psia and 400 °F with a velocity of 800 ft /sec. What arc the mass flux and the entering velocity?
Ans.  2.18 Ibm/sec, 182.2 ft/sec

Steam enters a 10-m’ tank at 2 MPa and 600 °C through an 8-cm-diameter pipe with a velocity of 20
m/s. It leaves at 1 MPa and 400 °C through a 12-cm-diameter pipe with a velocity of 10 m/s. Calculate
the rate at which the density in the tank is changing. Ans. 001348 kg/m* - 5

Water flows into a 1.2-cm-diameter pipe with a uniform velocity of 0.8 m/s. At some distance down the
pipe a parabolic velocity profile is established. Determine the maximum velocity in the pipe and the
mass flux. The parabolic profile can be expressed as V(r) = V(1 — r°/R?), wherc R is the radius of
the pipe. Ans. 1.6 m/s, 0.0905 kg /s

Water enters the contraction shown in Fig. 4-38 with a parabolic profile V(r) = 2(1 — r2) m/s, where r
is measured in centimeters. The exiting profile after the contraction is essentially uniform. Detcrmine
the mass flux and the exit velocity. Ans. 0314 kg/s, 16 m/s

d,;=2cm
%
d,=05cm
27/ 77717/77777/7 7777
A/ LS TS 2

Fig. 4-38
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4.89

4.90

4.91

4.92

4.93

4.94

4.95

Air enters a 4-in. constant-diameter pipe at 100 ft /sec with a pressure of 60 psia and a temperature of
100 °F. Heat is added to the air, causing it to pass a downstream area at 70 psia, 300 °F. Calculate the
downstream velocity and the heat transfer rate. Ans. 1163 ft /sec, 121.2 Btu/sec

Water at 9000 kPa and 300 °C flows through a partially open valve. The pressure immediately after the
valve is measured to be 600 kPa. Calculate the specific internal cnergy of the water leaving the valve.
Neglect kinetic encrgy changes. ( Note: the enthalpy of slightly compressed liquid is essentially equal to
the enthalpy of saturated liquid at the same temperature.) Ans. 1282 kJ /kg

Steam at 9000 kPa and 600 °C passes through a throttling process so that the pressure is suddenly
reduced to 400 kPa. (a) What is the expected temperature after the throttle? (b) What area ratio is
nccessary for the kinetic energy change to be zero? Ans. (a) 569°C (b) 223

Water at 70 °F flows through the partially open valve shown in Fig. 4-39. The area before and after the
valve is the same. Determine the specific internal energy downstream of the valve.
Ans. 39.34 Btu/lbm

Fig. 4-39

The inlet conditions on an air compressor are 50 kPa and 20°C. To compress the air to 400 kPa, 5 kW
of energy is needed. Neglecting heat transfer and kinetic and potential energy changes, estimate the
mass flux. Assume an adiabatic, quasiequilibrium process. Ans. 0.021 kg/s

The air compressor shown in Fig. 4-40 draws air from the atmosphere and discharges it at 500 kPa.
Determine the minimum power required to drive the insulated compressor. Assume atmospheric
conditions of 25°C and 80 kPa and an adiabatic quasiequilibrium process. Ans. 571 kW

d =100 mm V= 100 m/s
\\ 7>
—_—— T\/ Motor
” /
Compressor
Fig. 4-40

The power required to compress 0.01 kg /s of steam from a saturated vapor state at 50 °C to a pressure
of 800 kPa at 200°C is 6 kW. Find the rate of heat transfer from the compressor. Ans.  3.53 kW

Two thousand Ib/h of saturated water at 2 psia is compressed by a pump to a pressure of 2000 psia.

Neglecting heat transfer and kinetic energy change, estimate the power required by the pump.
Ans. 472 hp
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The pump in Fig. 4-41 increases the pressure in the water from 200 to 4000 kPa. What is the minimum
horsepower motor required to drive the pump for a flow ratc of 0.1 m?*/s? Ans. 346 hp

100 mm
Water
50 mm
- Mot
otor
s
Pump
Fig. 4-41

A turbine at a hydroclectric plant accepts 20 m?/s of water at a gage pressurc of 300 kPa and
discharges it to the atmosphere. Determine the maximum power output, Ans. 6 MW

Water flows in a creek at 1.5 m/s. It has cross-sectional dimensions of 0.6 X 1.2 m upstream of a
proposed dam which would be capable of developing a head of 2 m above the outlet of a turbine.
Determine the maximum power output of the turbine. Ans. 21.19 kW

Superheated steam at 800 psia and 1000 °F enters a turbine at a power plant at the rate of 30 Ib/sec.
Saturated steam exits at 5 psia. If the power output is 10 MW, determine the heat transfer ratc.
Ans.  —1954 Btu/sec

Superhcated steam enters an insulated turbine (Fig. 4-42) at 4000 kPa and 500 °C and leaves at 20 kPa.
If the mass flux is 6 kg/s. determine the maximum power output and the exiting velocity. Assume an
adiabatic quasiequilibrium process so that s> = 5. Ans.  6.65 MW, 80.8 m/s

Fig. 4-42

Air enters a turbine at 600 kPa and 100 °C through a 100-mm-diameter pipe at a speed of 100 m/s. The
air exits at 140 kPa and 20 °C through a 400-mm-diameter pipe. Calculate the power output, neglecting
heat transfer. Ans. 373 kW

A turbine delivers 500 kW of power by extracting cnergy from air at 450 kPa and 100°C flowing in a
120-mm-diameter pipe at 150 m/s. For an exit pressure of 120 kPa and a temperature of 20°C
determine the heat transfer rate. Ans.  ~70.5 kW

Water flows through a nozzle that converges from 4 in. to 0.8 in. in diameter. For a mass flux of 30
Ibm /sec calculate the upstream pressure if the downstrcam pressure is 14.7 psia. Ans. 1421 psia
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4.104

4.105

4.106

4.107

4.108

Air enters a nozzle like that shown in Fig. 4-43 at a temperature of 195°C and a velocity of 100 m/s. If
the air exits to the atmosphere where the pressure is 85 kPa, find (a) the exit temperature, (b) the exit
velocity, and (c) the exit diameter. Assume an adiabatic quasiequilibrium process.

Ans. (a) —3.3°C (b) 637 m/s (c) 158 mm

Q 500 kPa
e

100 m/s —
d, =200 mm .
Fig. 4-43

Nitrogen cnters a diffuser at 200 m /s with a pressure of 80 kPa and a temperature of —20°C. It lcaves
with a vclocity of 15 m/s at an atmospheric pressure of 95 kPa. If the inlet diameter is 100 mm,
calculate (@) the mass flux and (b) the exit temperature. Ans. (a) 1.672 kg/s (b)Y -0.91°C

Steam enters a diffuser as a saturated vapor at 220 °F with a velocity of 600 ft /sec. It lecaves with a
velocity of 50 ft/sec at 20 psia. What is the exit temperature? Ans. 237°F

Water is used in a heat exchanger (Fig. 4-44) to cool 5 kg/s of air from 400 °C to 200 °C. Calculate
(a) the minimum mass flux of the water and (b) the quantity of heat transferred to the water each
second. Ans. 239 kg/s, 1 MJ

20°C
—_— I
Water
Air Air
— Heeaa:changer Ip——
200°C 400°C
[— <
l —30C
Water
Fig. 4-44

A simple steam power plant, shown schematically in Fig. 4-45, operates on 8 kg/s of steam. Losses in
the connecting pipes and through the various components are to be neglected. Calculate (a) the power

Boiler 600 € -
/)V 8 MPa @ B
QB 50°C Turbine ::—» WT
k oA
@4 8MPa @Y 1-092
d =50 mm 20 kPa
, 20°C
Pump ) ~ 0 liPa Condenser Cooling water
® »c 50°C

Fig. 4-45
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output of the turbine, (b) the power needed to operate the pump, (¢) the velocity in the pump exit pipe,

(d) the heat transfer rate necessary in the boiler, (e) the heat transfer rate realized in the condenser,

(f) the mass flux of cooling water required, and (g) the thermal efficiency of the cycle.

Ans. (a)9.78 MW () 638 kW () 407 m/s (d)27.4 MW  (e) 17.69 MW  (f) 141 kg/s
(g) 35.5%

A feed water heater is used to preheat water before it enters a boiler, as shown schematically in Fig.
4-46. A mass flux of 30 kg /s flows through the system and, 7 kg /s is withdrawn from the turbine for the
feed water heater. Neglecting losses through the various pipes and components determine (a) the feed
water heater outlet temperature, (b) the boiler heat transfer rate, (c) the turbine power output, (d) the
total pump power required, (e) the energy rejected by the condenser, (f) the cooling water mass flux,
and (g) the thermal efficiency of the cycle.

Ans. (a) 197°C (b) 83.4 MW (¢) 30.2 MW (d) 289 kW (e) 53.5 MW (f)512 kg/s

(g) 35.9%
C
Boiler 600 >
10 MPa
’—.
Turbine 1/;\ - W,
/ \r
SMP 300°C
A 10MPa Feedwater 1.5 MPa 0 X =095
heater — 20 kPa
1.5 MPa
40°C
1.5 MPa 20 kPa o
Pump Pump P Condenser AT=257TC
40 C —_—
Cooling water
; W,
W, P
Fig. 4-46

A turbine is required to provide a total output of 100 hp. The mass flux of fuel is negligible compared
with the mass flux of air. The exhaust gases can be assumed to behave as air. If the compressor and
turbine (Fig. 4-47) are assumed adiabatic, calculate the following, neglecting all losses: (a) the mass flux
of the air, (b) the horsepower required by the compressor, and (c) the power supplied by the fuel.
Ans. (a)0.1590 kg /s (b) 37.7 hp (c) 126.1 kW

Fuel
Combustion -~ 1000 'C
chamber 500 kPa
c - Turbi
ompressor uromne
P o
100 kPa
Exhaust
gases
Fig. 4-47
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A steam line containing superheated steam at 1000 psia and 1200 °F is connected to a 50-ft? evacuated
insulated tank by a small line with a valve. The valve is closed when the pressure in the tank just
reaches 800 psia. Calculate (a) the final temperature in the tank and (&) the mass of steam that entered
the tank. Ans. (a) 1587°F (b) 33.1 iIbm

Air is contained in a 3-m® tank at 250 kPa and 25°C. Heat is added to the tank as the air escapes,
thereby maintaining the temperature constant at 25°C. How much heat is required if the air escapes
until the final pressure is atmospheric. Assume P, = 80 kPa. Ans. 503 kJ

An air line carries air at 800 kPa (Fig. 4-48). An insulated tank initially contains 20°C air at
atmospheric pressure of 90 kPa. The valve is opened and air flows into the tank. Determine the final
temperature of the air in the tank and the mass of air that enters the tank if the valve is left open.
Ans. 184°C, 25.1 kg

Air line 80 C

%

Fig. 4-48

An insulated tank is evacuated. Air from the atmosphere at 12 psia and 70 °F is allowed to flow into the
100-ft* tank. Calculate () the final temperature and (b) the final mass of air in the tank just after the
flow ceases. Ans. (a) 284°F  (b) 4.36 Ibm

(a) An insulated tank contains pressurized air at 2000 kPa and 30 °C. The air is allowed to escape to the
atmosphere (P, = 95 kPa, 7, = 30°C) until the flow ceases. Determine the final temperature in the
tank. () Eventually, the air in the tank will reach atmospheric temperature. If a valve was closed after
the initial flow ceased, calculate the pressure that is eventually reached in the tank.

Ans. (a) —146°C, (b) 227 kPa

An insulated tank with a volume of 4 m® is pressurized to 800 kPa at a temperature of 30°C. An
automatic valve allows the air to leave at a constant rate of 0.02 kg/s. (a) What is the temperature after
5 min? (b) What is the pressure after 5 min? (¢) How long will it take for the temperature to drop to
-20°C? Ans. (a)9.2°C (b) 624 kPa (¢) 11.13 min

A tank with a volume of 2 m® contains 90 percent liquid water and 10 percent water vapor by volume at
100 kPa. Heat is transferred to the tank at 10 kJ/min. A relief valve attached to the top of the tank
allows vapor to discharge when the gage pressure reaches 600 kPa. The pressure is maintained at that
value as more heat is transferred. (¢) What is the temperature in the tank at the instant the relief valve
opens? (b) How much mass is discharged when the tank contains 50 percent vapor by volume? (¢) How
long does it take for the tank to contain 75 percent vapor by volume?

Ans. (a) 1589°C (b) 815 kg (c)11.25h
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Chapter 5

The Second Law of Thermodynamics

5.1 INTRODUCTION

Watér flows down a hill, heat flows from a hot body to a cold one, rubber bands unwind, fluid
flows from a high-pressure region to a low-pressure region, and we all get old! Our experiences in life
suggest that processes have a definite direction. The first law of thermodynamics relates the several
variables involved in a physical process but does not give any information as to the direction of the
process. It is the second law of thermodynamics which helps us establish the direction of a particular
process.

Consider, for example, the situation illustrated in Fig. 5-1. Here, the first [aw states that the work
done by the falling weight is converted to internal energy of the air contained in the fixed volume,
provided the volume is insulated so that Q = (. It would not be a violation of the first law if we
postulated that an internal energy decrease of the air is used to turn the paddle and raise the weight.
This, however, would be a violation of the second law of thermodynamics and would thus be an
impossibility.

5.2 HEAT ENGINES, HEAT PUMPS, AND REFRIGERATORS

We refer to a device operating on a cycle as a heat engine, a heat pump, or a refrigerator,
depending on the objective of the particular device. If the objective of the device is to perform work it
is a heat engine; if its objective is to supply energy to a body it is a heat pump; if its objective is to
extract energy from a body it is a refrigerator. A schematic diagram of a simple heat engine is shown
in Fig. 5-2.

The net work produced by the engine in one cycle would be equal to the net heat transfer, a
consequence of the first law:

W'—"QH—QL (5-1)

If the cycle of Fig. 5-2 were reversed, a net work input would be required, as shown in Fig. 5-3. A
heat pump would provide energy as heat Q,, to the warmer body (e.g., a house), and a refrigerator
would extract energy as heat Q, from the cooler body (e.g., a freezer). The work would also be given
by (5.7). Here we use magnitudes only.

The thermal efficiency of the heat engine and the coefficients of performance of the refrigerator
and the heat pump are as defined in Sec. 4.9:

w _ Q.
n= Q_H COPrefrig 7

The second law of thermodynamics will place limits on the above measures of performance. The
first law would allow a maximum of unity for the thermal efficiency and an infinite coefficient of
performance. The second law, however, establishes limits that are surprisingly low, limits that cannot
be exceeded regardless of the cleverness of proposed designs.

One additional note concerning heat engines is appropriate. There are devices that we will refer
to as heat engines which do not strictly meet our definition; they do not operate on a thermodynamic
cycle but instead exhaust the working fluid and then intake new fluid. The internal combustion engine
is an example. Thermal efficiency, as defined above, remains a quantity of interest for such devices.
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H&:i[ - W Heat
engine pump

e

Fig. 5-1 Fig. 5-2

5.3 STATEMENTS OF THE SECOND LAW OF THERMODYNAMICS

As with the other basic laws presented, we do not derive a basic law but merely observe that such
a law is never violated. The second law of thermodynamics can be stated in a variety of ways. Here we
present two. the Clausius statement and the Kelvin—Planck statement. Neither is presented in
mathematical terms. We will, however, provide a property of the system, entropy, which can be used
to determine whether the second law is being violated for any particular situation. The first statement
of the second law is:

Clausius Statement It is impossible to construct a device which operates in a cycle and whose sole effect is the
transfer of heat from a cooler body to a hotter body.

This statement relates to a refrigerator (or a heat pump). It states that it is impossible to construct a
refrigerator that transfers energy from a cooler body to a hotter body without the input of work; this
violation is shown in Fig. 5-4a.

The second statement of the second law takes the following form:

Kelvin—Planck Statement [t is impossible to construct a device which operates in a cycle and produces no other
effect than the production of work and the transfer of heat from a single body.

In other words, it is impossible to construct a heat engine that extracts energy from a reservoir, does

work, and does not transfer heat to a low-temperature reservoir. This rules out any heat engine that is
100 percent efficient, like the one shown in Fig. 5-4(b).

Op=W

Device 0,=0y Device [—>

(a) (b)

Fig. 5-4
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Note that the two statements of the second law are negative statements. Neither has ever been
proved; they are expressions of experimental observations. No experimental evidence has ever been
obtained that violates either statement of the second law. It should also be noted that the two
statements are equivalent. This will be demonstrated with an example.

EXAMPLE 5.1 Show that the Clausius and Kelvin-Planck statements of the second law are equivalent.

We will show that a violation of the Clausius statement implies a violation of the Kelvin—Planck statement,
and vice versa, demonstrating that the two statements are equivalent. Consider the system shown in Fig. 5-5(a).
The device on the left transfers heat and violates the Clausius statement, since it has no work input. Let the heat
engine transfer the same amount of heat Q,. Then @}, is greater than Q; by the amount W. If we simply
transfer the heat Q, directly from the engine to the device, as shown in Fig. 5-5(b), there is no need for the
low-temperature reservoir and the net result is a conversion of energy (Q), — Q) from the high-temperature
reservoir into an equivalent amount of work, a violation of the Kelvin-Planck statement of the second law.

Conversely (Problem 5.13), a violation of the Kelvin—Planck is equivalent to a violation of the Clausius
statement.

y | |
Device Engine ——> W | Device Engine —Ib w
|
| A |
I o |
I |
K e i i i i e i i il
System
T boundary
(a) (b

Fig. 5-§

5.4 REVERSIBILITY

In our study of the first law we made use of the concept of equilibrium and we defined
equilibrium, or quasiequilibrium, with reference to the system only. We must now introduce the
concept of reversibility so that we can discuss the most efficient engine that can possibly be
constructed, an engine that operates with reversible processes only. Such an engine is called a
reversible engine.

A reversible process is defined as a process which, having taken place, can be reversed and in so
doing leave no change in either the system or the surroundings. Observe that our definition of a
reversible process refers to both the system and the surroundings. The process obviously has to be a
quasiequilibrium process; additional requirements are:

1. No friction is involved in the process.

2. Heat transfer occurs due to an infinitesimal temperature difference only.

3. Unrestrained expansion does not occur.
The mixing of different substances and combustion also lead to irreversibilities.

To illustrate that friction makes a process irreversible consider the system of block plus inclined
plane shown in Fig. 5-6. Weights are added until the block is raised to the position shown in part ().

Now, to return the system to its original state some weight must be removed so that the block will
slide back down the plane, as shown in part (c). Note that the surroundings have experienced a
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(a) (b) (c)
Fig. 5-6

significant change; the weights must be raised, which requires a work input. Also, the block and plane
are at a higher temperature due to the friction, and heat must be transferred to the surroundings to
return the system to its original state. This will also change the surroundings. Because there has been
a change in the surroundings as a result of the process and the reversed process, we conclude that the
process was irreversible.

To demonstrate the fact that heat transfer across a finite temperature difference makes a process
irreversible, consider a system composed of two blocks, one at a higher temperature than the other.
Bringing the blocks together results in a heat transfer process; the surroundings are not involved in
this process. To return the system to its original state, we must refrigerate the block that had its
temperature raised. This will require a work input, demanded by the second law, resulting in a change
in the surroundings. Hence, the heat transfer across a finite temperature difference is an irreversible
process.

For an example of unrestrained expansion, consider the high-pressure gas contained in the
cylinder of Fig. 5-7a. Pull the pin and let the piston suddenly move to the stops shown. Note that the
only work done by the gas on the surroundings is to move the piston against atmospheric pressure.
Now, to reverse this process it is necessary to exert a force on the piston. If the force is sufficiently
large, we can move the piston to its original position, shown in part (d). This will demand a
considerable amount of work, to be supplied by the surroundings. In addition, the temperature will
increase substantially, and this heat must be transferred to the surroundings to return the temperature
to its original value. The net result is a significant change in the surroundings, a consequence of
irreversibility.

Qo
: i 1/ ,
| = - = | J
Gas Gas Gas — F Gas
) = i )

(a) (b) (c) (d)
Fig. 5-7

5.5 THE CARNOT ENGINE

The heat engine that operates the most efficiently between a high-temperature reservoir and a
low-temperature reservoir is the Carnot engine. It is an ideal engine that uses reversible processes to
form its cycle of operation; thus it is also called a reversible engine. We will determine the efficiency of
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the Carnot engine and also evaluate its reverse operation. The Carnot engine is very useful, since its
efficiency establishes the maximum possible efficiency of any real engine. If the efficiency of a real
engine is significantly lower than the efficiency of a Carnot engine operating between the same limits,
then additional improvements may be possible.

The cycle associated with the Carnot engine is shown in Fig. 5-8, using an ideal gas as the working
substance. It is composed of the following four reversible processes:

1 —» 2:  Anisothermal expansion. Heat is transferred reversibly from the high-temperature reservoir
at the constant temperature T,. The piston in the cylinder is withdrawn and the volume
increases.

2 = 3 An adiabatic reversible expansion. The cylinder is completely insulated so that no heat
transfer occurs during this reversible process. The piston continues to be withdrawn, with the
volume increasing.

3 — 4:  An isothermal compression. Heat is transferred reversibly to the low-temperature reservoir
at the constant temperature 7,. The piston compresses the working substance, with the
volume decreasing.

4 — 1:  An adiabatic reversible compression. The completely insulated cylinder allows no heat
transfer during this reversible process. The piston continues to compress the working
substance until the original volume, temperature, and pressure are reached, thereby com-
pleting the cycle.

le

H

Insulator

Insulator

1—2 2—3 4—1

Fig. 5-8
Applying the first law to the cycle, we note that
QI-I - QI. = Wnct (53)

where Q, is assumed to be a positive value for the heat transfer to the low-temperature reservoir.
This allows us to write the thermal efficiency [see (4.76)] for the Carnot cycle as

_QH—QL_ _&
n= 0, =1 0, (5.4)

The following examples will be used to prove the following three postulates:

Postulate 1 It is impossible to construct an engine, operating between two given temperature reservoirs, that is
more efficient than the Carnot engine.
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Postulate 2 The efficiency of a Carnot engine is not dependent on the working substance used or any particular
design feature of the engine.

Postulate 3  All reversible engines, operating between two given temperature rescervoirs, have the same efficiency
as a Carnot engine operating between the same two temperature reservoirs.

EXAMPLE 5.2 Show that the efficiency of a Carnot engine is the maximum possible efficiency.

Assume that an engine exists; operating between two reservoirs, that has an efficiency greater than that of a
Carnot engine, also, assume that a Carnot engine operates as a refrigerator between the same two reservoirs, as
sketched in Fig. 5-9a. Let the heat transferred from the high-temperature reservoir to the engine be equal to the
heat rejected by the refrigerator; then the work produced by the engine will be greater than the work required by
the refrigerator (that is, Q; < Q,) since the efficiency of the engine is greater than that of a Carnot engine. Now,
our system can be organized as shown in Fig. 5-9b. The engine drives the refrigerator using the rejected heat from
the refrigerator. But, there is some net work (W’ — W) that leaves the system. The net result is the conversion of
energy from a single reservoir into work, a violation of the second law. Thus, the Carnot engine is the most
efficient engine operating between two particular reservoirs.

System

(a) h

Fig. 5-9

EXAMPLE 5.3 Show that the efficiency of a Carnot engine operating between two reservoirs is independent of
the working substance used by the engine.

Suppose that a Carnot engine drives a Carnot refrigerator as shown in Fig. 5-10a. Let the hecat rcjected by
the engine be equal to the heat required by the refrigerator. Suppose the working fluid in the engine results in

Ty

Engine [ —>Refrigerator

I System

I
QL ) :
I
% e _I boundary

T,

0y -0=W 0y -0, =W WsW’
(a) ("

Fig. 5-10
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@y, being greater than Q},; then W would be greater than W' (a consequence of the first law) and we would have
the equivalent system shown in Fig. 5-106. The net result is a transfer of heat (Q,, — Qf) from a single reservoir
and the production of work, a clear violation of the second law. Thus, the efficiency of a Carnot engine is not
dependent on the working substance.

5.6 CARNOT EFFICIENCY

Since the efficiency of a Carnot engine is dependent only on the two reservoir temperatures, the
objective of this article will be to determine that relationship. We will assume the working substance
to be an ideal gas and simply perform the required calculations for the four processes of Fig. 5-8.

The heat transfer for each of the four processes is as follows:

152 Q, =W, = [ PdV=mRT,In %
v, 1
23 Q,,=0

2 v,
34 Q= W, = - VVPdV= ~mRT, In 3+

(5.5)

4 -1 Q,,=0

Note that we want Q, to be a positive quantity, as in the thermal efficiency relationship; hence, the
negative sign. The thermal efficiency is then [see (5.4)]

0, T, nV,/V;
=1 - =t -1 4 L 43 5.6
m Oy I, InV,/V, (5:6)
During the reversible adiabatic processes 2 — 3 and 4 — 1, we know that [see (4.49)]
k-~ -
Lo(4)” T_(L) (5.7)
Ty Vi Ty Vi
Thus, we see that
V Vi Vi Vi 58
2N AN A 8
Substituting into (5.5), we obtain the result (recognizing that InV,/V, = —InV,/V;)
T,
n=1- T—: (5.9)

We have simply replaced Q, /Qy with T, /7T,. We can do this for all reversible engines or
refrigerators. We see that the thermal efficiency of a Carnot engine is dependent only on the high and
low absolute temperature of the reservoirs. The fact that we used an ideal gas to perform the
calculations is not important since we have shown that Carnot efficiency is independent of the working
substance. Consequently, the relationship (5.9) is applicable for all working substances, or for all
reversible engines, regardless of the particular design characteristics.

The Carnot engine, when operated in reverse, becomes a heat pump or a refrigerator, depending
on the desired heat transfer. The coefficient of performance for a heat pump becomes

QH QH 1

COP = = = 5.10
Wit Qu— o, 1-T, /Ty ( )
The coefficient of performance for a refrigerator takes the form
cop ~ 2L Q 1 (5.11)

Wi Qu-0, Tu/T, -1

The above measures of performance set limits that real devices can only approach. The reversible
cycles assumed are obviously unrealistic, but the fact that we have limits which we know we cannot
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exceed is often very helpful in evaluating proposed designs and determining the direction for further
effort.

EXAMPLE 5.4 A Carnot engine operates between two temperature reservoirs maintained at 200 °C and 20 °C,
respectively. If the desired output of the engine is 15 kW, as shown in Fig. 5-11, determine the heat transfer from
the high-temperature reservoir and the heat transfer to the low-temperature reservoir.

T, =20°C

Fig. 5-11

The efficiency of a Carnot engine is given by
N
On Ty

This gives, converting the temperatures to absolute temperatures,
w 15

Qu=T-T,/T, =~ T-293/473 = 3942kW

Using the first law, we have Q; = O, — W = 39.42 — 15 = 24.42 kW.

EXAMPLE 5.5 A refrigeration unit is cooling a space to —5°C by rejecting energy to the atmosphere at 20 °C.
It is desired to reduce the temperature in the refrigerated space to —25°C. Calculate the minimum percentage
increase in work required, by assuming a Carnot refrigerator, for the same amount of energy removed.

For a Carnot refrigerator we know that

_ 9 1

COP =3y = 7 77, =1

For the first situation we have W, = Q, (T, /T, — 1) = Q,(293/268 — 1) = 0.0933Q, . For the second situation
there results W, = ,(293 /248 — 1) = 0.181Q, . The percentage increase in work is then

W,— W, _ (0.1810, - 0.0933Q,
W, 0.09330,

)(100) = 94.0%

Note the large increase in energy required to reduce the temperature in a refrigerated spacc. And this is a
minimum percentage increase, since we have assumed an ideal refrigerator.

EXAMPLE 5.6 A Carnot engine operates with air, using the cycle shown in Fig. 5-12. Determine the thermal
efficiency and the work output for each cycle of operation. The thermal efficiency is found to be

T,
n=1-%=1—%=0-4 or 40%
H
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80 kPa

Fig. 5-12

To find the work output we can determine the heat added during the constant temperature expansion and
determine w from n = W/Qy = w/q,. We find g, from the first law using Au = 0:

_ (pdo—RE [ _ Rp D
Qy = way = [Pdv = RT,,L2 o = RTin 2
To find v, first we must find v

RT, _ (287)(300)

= —_ 3
v = p 000 = 1076 m*/ke

Using (4.49), we have
T t/(k—1}
vy = u,(—T—‘) = (1.076)(300,/500)"/"4"" = 0.300 m® /kg
2
Likewise, v = v,(T,/Ty)!/* =D = (10X300,/500)>% = 2.789 m* /kg. Hence,

2.789

Finally, the work for each cycle is w = g, = (0.4X320.0) = 128 kJ /ke.

Solved Problems

5.1 A refrigerator is rated at a COP of 4. The refrigerated space that it cools requires a peak
ci+  cooling rate of 30000 kJ /h. What size electrical motor (rated in horsepower) is required for

the refrigerator?
The definition of the COP for a refrigerator is COP = Q, /W,.,. The net power required is then

0, _ 30000/3600

et = COP 7] = 2.083kW or2.793 hp

W,

5.2 A Carnot heat engine produces 10 hp by transferring energy between two reservoirs at 40 °F
£+ and 212 °F. Calculate the rate of heat transfer from the high-temperature reservoir.

Mathcad The engine efficiency is

T,
L_ 500

n=1-7==1- %5 = 02560
H
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53

5.5

The efficiency is also given by n = W/QH. Thus,

W (10 hp)(2545 Btu /hr /hp)
- 0.2560

On = = 99,410 Btu/hr

An inventor proposes an engine that operates between the 27 °C warm surface layer of the
ocean and a 10°C layer a few meters down. The inventor claims that the engine produces 100
kW by pumping 20 kg/s of seawater. Is this possible?

The maximum temperature drop for the seawater is 17 °C. The maximum rate of heat transfer from
the high-temperature water is then

O = mec, AT = (20)(4.18)(17) = 1421 kW

The cfficiency of the proposed enginc is then n = W/QH = 100/1421 = 0.0704 or 7.04%. The effi-
ciency of a Carnot engine operating between the same two temperatures is

T,
n=17T—L=1~%=0.0567 or 5.67%
H

The proposed engine’s efficiency exceeds that of a Carnot engine; hence, the inventor’s claim is
impossible.

A power utility company desires to use the hot groundwater from a hot spring to power a heat
engine. If the groundwater is at 95 °C, estimate the maximum power output if a mass flux of
0.2 kg /s is possible. The atmosphere is at 20 °C.

The maximum possible efficiency is
q- L _ 8
n= Tn 368

assuming the water is rejected at atmospheric temperature. The rate of heat transfer from the energy
source is

= 0.2038

Oy = thc, AT = (0.2)(4.18)(95 — 20) = 62.7kW
The maximum power output is then

W =nQ, = (0.2038)(62.7) = 12.8kW

Two Carnot engines operate in series between two reservoirs maintained at 600 °F and 100 °F,
respectively. The energy rejected by the first engine is input into the second engine. If the first
engine’s efficiency is 20 percent greater than the second engine’s efficiency, calculate the
intermediate temperature.

The efficiencies of the two engines are
T 560

m =1~ 1080 m=1-=
where T is the unknown intermediate temperature in °R. It is given that 7, = 1, + 0.27,. Substituting
for n, and 7n, results in

1 - 7 1.2(1 - @)

1060 ~ T
or
T? + 212T - 712,320 = 0 - T=744.6°R or 284.6°F

A Carnot engine operating on air accepts 50 kJ /kg of heat and rejects 20 kJ /kg. Calculate
the high and low reservoir temperatures if the maximum specific volume is 10 m®/kg and the
pressure after the isothermal expansion is 200 kPa.
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The thermal cfficiency is

Hence, T, /T, = 0.4. For the adiabatic processes we know that (see Fig. 5-8)

k- \
I (‘—2) 222 0.425 = 0.1012
H ] Ly
The maximum specific volume is t5; thus, ¢, = 0.10122; = (0.1012X10) = 1.012 m*/kg. Now, the high
temperature is
Py, (200)(1.012)
R 0.287

The low temperature is then 7, = 0.4T,, = (0.4X705.2) = 282.1 K or 9.1°C.

= 7052 K ord32.2°C.

T, =

A heat engine operates on a Carnot cycle with an efficiency of 75 percent. What COP would a
refrigerator operating on the same cycle have? The low temperature is 0°C.

The efficiency of the heat cngine is given by n = 1 — T, /T},. Henee,
T, 273

T, = 7 ~T-07% = 1092 K
The COP for the refrigerator is then
T,
COP = L 21 03333

T, — 1, 1092 =273

Two Carnot refrigerators operate in series between two reservoirs maintained at 20 °C and
200 °C, respectively. The energy output by the first refrigerator is used as the heat energy
input to the second refrigerator. If the COPs of the two refrigerators are the same, what
should the intermediate temperature be?

The COP for a refrigerator is given by COP = T, /(T,, — T,). Requiring that the two COPs be
equal gives
293 T

— 2 = = = °
T=2903 ~ a3 =T or T- = 138589 or T=3723K=93°C

A heat pump is proposed in which 350 °F groundwater is used to heat a house to 70°F. The
groundwater is to experience a temperature drop of 12°F, and the house requires 75,000
Btu /hr. Calculate the minimum mass flux of the groundwater and the minimum horsepower
required.

The COP for the heat pump is

Ty, 530
COP =+ = S3p - 510 ~ 267
This is also given by
CoP = -Q—”— 265 = — 00 Q, = 72,170 Btu/hr
Oy — 0, 75,000 - Q,
The groundwater mass flux is then
Q, = thc, AT 72,170 = (r)(1.00)(12) = 6014 lbm /hr
The minimum horsepower required is found as follows:
COP = Q—u’/’ 265 = Eﬁﬂ W = 2830 Btu/hr or 1.11 hp

www.20file.org



www.semeng.ir

CHAP. 5] THE SECOND LAW OF THERMODYNAMICS 109

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

Supplementary Problems

A heat pump provides 75 MJ /h to a house. If the compressors require an electrical energy input of 4
kW, calculate the COP. Ans. 5.21

A power plant burns 1000 kg of coal each hour and produces 500 kW of power. Calculate the overall
thermal efficiency if each kg of coal produces 6 MJ of encrgy. Ans. 30%

An automobile that has a gas milcage of 13 km/L is traveling at 100 km /h. At this speed essentially all
the power produced by the engine is used to overcome air drag. If the air drag force is given by
1 pV ?4C,, determine the thermal efficiency of the engine at this speed using projected arca 4 = 2 m”,
drag coeflicient C,, = 0.28, and heating value of gasoline 9000 kJ/kg. Gasoline has a density of 740
kg/m-. Ans. 51.9%

Show that a violation of the Kelvin-Planck statement of the second law implies a violation of the
Clausius statement.

A battery docs work by producing an electric current while transferring heat with a constant-tcmperature
atmosphere. Is this a violation of the sccond law? Explain. Ans. No. This is not a cycle.

Show that all reversible engines, operating between two given temperaturc reservoirs, have the same
efficiency as a Carnot engine operating between the same two temperature reservoirs.

A Carnot cycle operates between 200 °C and 1200 °C. Calculate (a) its thermal efficicncy if it operates as
a power cycle, (b) its COP if it operates as a refrigerator, and (¢} its COP if it operates as a heat pump.
Ans. (a) 67.7% () 0.473 (c) 1.473

A Carnot cngine rejects 80 MJ of energy every hour by transferring heat to a rescrvoir at 10°C.
Determine the temperature of the high-temperature reservoir and the power produced if the rate of
energy addition is 40 kW. Ans. 236.4°C, 17.78 kW

A proposed power cycle is designed to operate between temperature reservoirs, as shown in Fig. 5-13. It
is supposed to producc 43 hp from the 2500 kJ of energy cxtracted each minute. Is the proposal feasible?
Ans. No

Proposed
engine

T,=20°C

Fig. 5-13
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5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

§.27
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(a) What is the maximum efficiency that can result from an enginc that operates on the thermal
gradients in the ocean? The surface waters at the proposed location are at 85°F and those at a
reasonable depth are at 50 °F. (b) What would be the maximum COP of a heat pump, operating between
the two layers, used to heat an off-shore oil rig? Ans. (a) 6.42% (b) 15.57

A Carnot engine opcrates between reservoirs at temperatures T, and T,, and a second Carnot engine
operates between reservoirs maintained at T, and T,. Express the efficiency n, of the third engine
operating between T, and T, in terms of the efficiencies 7, and 71, of the other two engines.

Ans. 7y + 71, —mm,

Two Carnot engines operate in series between two reservoirs maintained at 500 °C and 40 °C, respec-
tively. The energy rejected by the first engine is utilized as cnergy input to the second engine. Determing
the temperature of this intermediate reservoir between the two engines if the cfficiencies of both engines
are the same. Ans. 2189°C

A Carnot engine operates on air with the cycle shown in Fig. 5-14. If there are 30 kJ /kg of heat added

from the high-temperature reservoir maintained at 200 °C determine the work produced.
Ans. 16.74 k) /kg

P (kPa)

v (m‘/kg)

Fig. 5-14

A Carnot engine operates between a low pressure of 15 psia and a high pressure of 400 psia. The
corresponding volumes are 250 and 25 in®. If there is 0.01 Ibm of air, calculate the work output.
Ans. 178 ft - Ibt

A Carnot engine using hydrogen gas operates with the high-temperature reservoir maintained at 600 K. The
pressure ratio for the adiabatic compression is 15 to 1 and the volume during the heat-addition
process is tripled. If the minimum pressure is 100 kPa, determine the thermal efficiency and work
produced. Ans. 54.4%. 1480 kJ

A heat pump is to maintain a house at 20 °C when the outside air is at —25°C. It is determined that 1800
kJ is required each minute to accomplish this. Calculatc the minimum horsepower required.
Ans. 6.18 hp

If the heat pump of Prob. 525 is to be used as an air conditioner, calculate the maximum outside
temperature for which the inside temperature can be maintained at 23°C. Assume a lincar relationship
between temperature difference and heat flux, using the information from Prob. 5.25.

Ans. 71.7°C

A heat pump uses a 5-hp compressor while extracting 500 Btu of cnergy from groundwater each minute.
What is the COP (a) if the purpose is to cool the groundwater and (b) if the purpose is to heat a
building?

Ans. (a)2.36 (b) 3.36
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5.28

5.29

5.30

A Carnot refrigeration cycle is used to estimate the energy requirement in an attempt to reduce the
temperature of a specimen to absolute zero. Suppose that we wish to remove 0.01 J of energy from the
specimen when it is at 2 X 10~% K. How much work is necessary if the high-temperature reservoir is at
20°C? Ans. 1465 k]

A refrigerator is proposed that will require 10 hp to extract 3 MJ of energy each minute from a space
which is maintained at — 18 °C. The outside air is at 20 °C. Is this possible? Ans. Yes

A reversible refrigeration unit is used to cool a space to 5°C by transferring heat to the surroundings
which are at 25°C. The same unit is then used to cool the space to —20°C. Estimate the cooling rate
for the second condition if the cooling rate for the first is 5 tons. Ans. 712 kW
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Chapter 6

Entropy

6.1 INTRODUCTION

To allow us to apply the second law of thermodynamics to a process we will identify a property
called entropy. This will parallel our discussion of the first law; first we stated the first law for a cycle
and then derived a relationship for a process.

6.2 DEFINITION

Consider the reversible Carnot engine operating on a cycle consisting of the processes described
in Sec. 5.5. The quantity ¢ 8Q /T is the cyclic integral of the heat transfer divided by the absolute
temperature at which the heat transfer occurs. Since the temperature 7}, is constant during the heat
transfer O, and T; is constant during heat transfer (,, the integral is given by

8Q Ou Qo
b7 =T T (6.1)
where the heat Q, leaving the Carnot engine is considered to be positive. Using (5.4) and (5.9) we
see that, for the Carnot cycle,

QL 1, Qu Oy

—== = = or = 6.2
QH TH TH TL ( )

Substituting this into (6.1), we find the interesting result
8Q
SﬁT =0 (6.3)

Thus, the quantity §Q /T is a perfect differential, since its cyclic integral is zero. We let this perfect
differential be denoted by dS, where S represents a scalar function that depends only on the state of
the system. This, in fact, was our definition of a property of a system. We shall call this extensive
property entropy; its differential is given by

_ %0
ds = =¢

(6.4)

rey

where the subscript “rev’” emphasizes the reversibility of the process. This can be integrated for a
process to give

(6.5)

rev

AS=[IZ$

From the above equation we see that the entropy change for a reversible process can be either
positive or negative depending on whether energy is added to or extracted from the system during the
heat transfer process. For a reversible adiabatic process the entropy change is zero.

We often sketch a temperature-entropy diagram for cycles or processes of interest, The Carnot
cycle provides a simple display when plotting temperature vs. entropy. It is shown in Fig. 6-1. The
change in entropy for the first process from state 1 to state 2 is

Ty

The entropy change for the reversible adiabatic process from state 2 to state 3 is zero. For the process
from state 3 to state 4 the entropy change is numerically equal to that of the first process; the process

Sz—s,=f]2¥= O (6.6)
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[
~
_U) P

Fig. 6-1

from state 4 to state 1 is also a reversible adiabatic process and is accompanied with a zero entropy
change.

The heat transfer during a reversible process can be expressed in differential form [see (6.4)] as

8Q =TdS (6.7)

Hence, the area under the curve in the 7-S diagram represents the heat transfer during any reversible
process. The rectangular area in Fig. 6-1 thus represents the net heat transfer during the Carnot cycle.
Since the heat transfer is equal to the work done for a cycle, the area also represents the net work
accomplished by the system during the cycle. Here, Q_ .. = W, . = ATAS.

net net

The first law of thermodynamics, for a reversible infinitesimal change, becomes, using (6.7),
TdS — PdV =dU (6.8)

This is an important relationship in our study of simple systems. We arrived at it assuming a reversible
process. However, since it involves only properties of the system, it holds for an irreversible process
also. If we have an irreversible process, in general, W # PdV and 6Q # T dS but (6.8) still holds as
a relationship between the properties. Dividing by the mass, we have

Tds — Pdv = du (6.9)

where the specific entropy is defined to be

5= (6.10)

To relate the entropy change to the enthalpy change we differentiate (4.72) and obtain
dh = du + Pdv + vdP (6.11)
Substituting into (6.9) for du, we have
Tds =dh — vdP (6.12)

Equations (6.9) and (6.12) will be used in subsequent sections of our study of thermodynamics for
various reversible and irreversible processes.

6.3 ENTROPY FOR AN IDEAL GAS WITH CONSTANT SPECIFIC HEATS
Assuming an ideal gas, (6.9) becomes

du | Pdv dT dr
dS=T+—T =C“T+RT (6.13)

where we have used
du =c, dT Pv = RT (6.14)
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(6.13) is integrated, assuming constant specific heat, to yield

T, v,
s,—8 =c¢,Ins= +Rln-—-= 6.15
2 1 v Tl Ul ( )

Similarly, (6.12) is rearranged and integrated to give

T, P,
s;—s;=¢c,ln T, Rln P, (6.16)
Note again that the above equations were developed assuming a reversible process; however, they
relate the change in entropy to other thermodynamic properties at the two end states. Since the
change of a property is independent of the process used in going from one state to another, the above
relationships hold for any process, reversible or irreversible, providing the working substance can be
approximated by an ideal gas with constant specific heats.

If the entropy change is zero, as in a reversible adiabatic process (6.15) and {(6.16) can be used to

obtain
T2 v, k—1 T2 P2 (k—1Y/k
7-(z) 7, =7 (6.17)
These two equations are combined to give
P, vk
P, (b_z) (6.18)

These are, of course, identical to the equations obtained in Chap. 4 when an ideal gas undergoes a
quasiequilibrium adiabatic process. We now refer to such a process as an isentropic process.

EXAMPLE 6.1 Air is contained in an insulated, rigid volume at 20 °C and 200 kPa. A paddle wheel, inserted in
the volume, does 720 kJ of work on the air. If the volume is 2 m?, calculate the entropy increase assuming
constant specific heats.

To determine the final state of the process we use the energy equation, assuming zero heat transfer. We have
—W = AU = mc, AT. Thc mass m is found from the ideal-gas equation to be

PV (200)(2)

™= RT = (0.287)(203) ~ +70ke

The first law, taking the paddle-wheel work as negative, is then
720 = (4.76)(0.717)(T, ~ 293) . T, = 504.0K
Using (6.15) for this constant-volume process there results

T 504
AS = me,In 7 = (476)(0.717) In 357 = 1.851 kI/K

EXAMPLE 6.2 After a combustion process in a cylinder the pressure is 1200 kPa and the temperature is 350 °C.
The gases are expanded to 140 kPa with a reversible adiabatic process. Calculate the work done by the gases,
assuming they can be approximated by air with constant specific heats.

The first law can be used, with zero heat transfer, to give —w = Au = ¢ (T, — T)). The temperature T, is
found from (6.17) to be

P (k—1/k 14-1)/14
_2) 140 ) - 337K

T, = Tl( . - (623)(——1200

This allows the specific work to be calculated: w = ¢ (T} — T,) = (0.717(623 — 337) = 205 kJ /kg.
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6.4 ENTROPY FOR AN IDEAL GAS WITH VARIABLE SPECIFIC HEATS

If the specific heats for an ideal gas cannot be assumed constant over a particular temperature
range we return to (6.72) and write
dh vdP ¢, R
T -7 TP
The gas constant R can be removed from the integral, but ¢, = c,,(T) cannot. Hence, we integrate
(6.19) and obtain

ds = dpP (6.19)

(% P,
sz—sl—fT]TdT—Rln?l (6.20)

The integral in the above equation depends only on temperature, and we can evaluate its magnitude
from the gas tables. It is found, using the tabulated function ¢, to be

i
by — ¢y = fTT‘T" dT (6.21)

Thus, the entropy change is (in some textbooks s ° is used rather than &)
P
sz—s,=¢2—d),-Rlanf (6.22)

This more exact expression for the entropy change is used only when improved accuracy is desired.
For an isentropic process we cannot use (6.17) and (6.18) if the specific heats are not constant.
However, we can use (6.22) and obtain, for an isentropic process,

P, _ b, — ¢, _ exp (¢,/R) _ f(T)
7o (P - exp (6, /R) _ F(T)) (6.23)

Thus, we define a relative pressure P., which depends only on the temperature, as

P =e®/R (6.24)
It is included as an entry in the gas tables. The pressure ratio for an isentropic process is then

PZ PrZ

PP (6.25)

The volume ratio can be found using the ideal-gas equation of state. It is

v, PT

2o D 6.26

v, T A (6.26)
where we would assume an isentropic process when using the relative pressure ratio. Consequently,
we define a relative specific volume ¢, dependent solely on the temperature, as

T
U, = 7 (6.27)
Using its value from the gas tables we find the specific volume ratio for an isentropic process; it is
2 _Ln
o= (6.28)

rl

With the entries from the gas tables we can perform the calculations required in working problems
involving an ideal gas with variable specific heats.

ci+ EXAMPLE 6.3 Repeat Example 6.1 assuming variable specific heats.
Using the gas tablcs, we writc the first law as — W = AU = m(u, — u,). The mass is found from the idcal-gas
Mathcad equation to be

PV (200)(2)
M= RT T 0287203 0ke
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The first law is then written as

-720

u2="';'n—+ll[=‘_4—.7‘?

+ 209.1 = 360.4 kJ /kg

where 1, is found at 293 K in the gas tables by interpolation. Now, using this value for u,. we can interpolate to
find

T7,=5012K b, =2.222

The value for ¢, is interpolated to be ¢, = 1.678. The pressure at state 2 is found using the ideal-gas equation
for our constant-volume process:

P, P T 5012\
F=7  Ph=Pf- QOO)(W} - 342.1 kPa
Finally, the entropy change is
P, 342.1
AS=m|d, — ¢, —RIn P l= 4.7612.222 — 1.678 — 0.287In 200 ) =1.856kJ/K
1

The approximate result of Example 6.1 is secn to be less than 0.3% in error.

EXAMPLE 6.4 After a combustion process in a cylinder the pressure is 1200 kPa and the temperature is 350 °C.
The gases arc expanded to 140 kPa in a rcversible, adiabatic process. Calculate the work done by the gases,
assuming they can be approximated by air with variable specific heats.

First, at 623 K the relative pressure P, is interpolated to be P, (5X20.64 — 18.36) + 18.36 = 18.70. For an
1sentropic process.,
140

py=pb =t
e 1200

"?f = (18.70)( ) =2.182

With this valuc for the relative pressure at state 2,

7. (2182 - 2.149
27 (2.626 - 2.149

The work is found from the first law to be

)(2()) + 340 = 341K

W=, ~ U,

2,182 - 2.149

3
= ﬁ(%S.S - 450.1) + 450.1] - [(——_2.62() —> 149

)(257.2 — 242.8) + 242.8] = 208.6 kJ /kg

6.5 ENTROPY FOR SUBSTANCES SUCH AS STEAM, SOLIDS, AND LIQUIDS

The entropy change has been found for an ideal gas with constant specific heats and for an idecal
gas with variable specific heats. For pure substances, such as steam, entropy is included as an entry in
the tables. In the quality region, it is found using the relation

s = Sp+ x5, (6.29)

Note that the entropy of saturated liquid water at 0°C is arbitrarily set equal to zero. It is only the
change in entropy that is of interest; hence, this arbitrary datum for entropy is of no consequence. In
the superheated region it is tabulated as a function of temperature and pressure along with the other
properties.

For a compressed liquid it is included as an entry in Table C-4, the compressed liquid table, or it
can be approximated by the saturated liquid values s, at the given temperature. From the compressed
liquid table at 10 MPa and 100°C, s = 1.30 kJ /kg - K, and from the saturated steam table at 100 °C,

= 1.31 kJ /kg - K; this is an insignificant difference.

The temperature-entropy diagram is of particular interest and is often sketched during the
problem solution. A T-s diagram is sketched in Fig. 6-24; it is essentially symmetric about the critical
point. Note that the high-pressure lines in the compressed liquid region are indistinguishable from the
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' = const.
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Fig. 6-2

saturated liquid line. It is often helpful to visualize a process on a T-s diagram, since such a diagram
illustrates assumptions regarding irreversibilities.

In addition to a T-s diagram, an h-s diagram, which is also called a Mollier diagram, is often
useful in solving particular types of problems. The general shape of an A-s diagram is sketched in Fig.
6-2b.

For a solid or a liquid, the entropy change can be found quite easily if we can assume the specific
heat to be constant. Returning to (6.9), we can write, assuming the solid or liquid to be incompressible
so that dv = 0,

Tds =du =cdTl (6.30)
where we have dropped the subscript on the specific heat since for solids and liquids ¢, = ¢,.. Tables

usually list values for c¢_; these are assumed to be equal to ¢. Assuming a constant specific heat, we
find that

P;

dT T,

As = c—T—=cln T (6.31)

If the specific heat is a known function of temperature, the integration can be performed. Specific
heats for solids and liquids are listed in Table B-4.

EXAMPLE 6.5 Steam is contained in a rigid container at an initial pressure of 100 psia and 600 °F. The pressure
is reduced to 10 psia by removing energy via heat transfer. Calculate the cntropy change and the heat transfer
and sketch a 7-s diagram.

From the stcam tables, ¢, = ', = 6.216 ft*/1bm. State 2 is in the quality region. Using the above value for
U5, the quality is found as follows:

6.216 = 0.0166 + x(38.42 — 0.0166) x =0.1614
The entropy at state 2 is 5, = 0.2836 + (0.1614X1.5041) = 0.5264 Btu/lbm-° R; the entropy change is then
As =5, -5, =0.5264 — 1.7582 = —1.232 Btu/1bm-°R
The heat transfer is found from the first law using w = 0:
q =u, — u, = [161.2 + (0.1614)(911.01)] — 1214.2 = —906 Btu/Ibm
The process is displayed in the T-s diagram shown in Fig. 6-3.
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T
L 600°F P, =100 psia
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0.5264 1.7582 Btu / Ibm -°R

Fig. 6-3

6.6 THE INEQUALITY OF CLAUSIUS

The Carnot cycle is a reversible cycle and produces work which we will refer to as W,_,. Consider
an irreversible cycle operating between the same two reservoirs, shown in Fig. 6-4. Obviously, since
the Carnot cycle possesses the maximum possible efficiency, the efficiency of the irreversible cycle
must be less than that of the Carnot cycle. In other words, for the same amount of heat addition Q,,
we must have

Wiee < W,

v

(6.32)

From the first law applied to a cycle (W = Q,, — @, ) we sec that, assuming that (Q,,);, and (Q,,),..
are the same,

(QL)rev < (Ql.)irr (633)
This requires, referring to (6.7) and (6.3),

¢(§TQ) <0 (6.34)

since the above integral for a reversible cycle is zero.

> Wr:v = wxrr

(QL’ rev (Ql_) wT
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If we were considering an irreversible refrigerator rather than an engine, we would require more
work for the same amount of refrigeration Q,. By applying the first law to refrigerators, we would
arrive at the same inequality as in (6.34). Hence, for all cycles, reversible or irreversible, we can write

8Q
¢T <0 (6.35)
This is known as the inequality of Clausius. It is a consequence of the second law of thermodynamics.
EXAMPLE 6.6 [t is proposed to operate a simple steam power plant as shown in Fig. 6-5. The water is

completely vaporized in the boiler so that the heat transfer Q takes place at constant temperature. Does this
proposal comply with the inequality of Clausius? Assume no heat transfer occurs from the pump or the turbine.

Saturated
® steam
1000 kPa

Boiler

o
/ Saturated
QB @ water

1000 kPa

N\ x=18%
Pump Condenser

@ 20 kPa

Turbine

Fig. 6-5

The guantity that we seck is $ 8Q/T. Since the proposed heat transfer occurs at constant temperature, this
takes the form

From the steam tables we can find the following for each kilogram of water (m = 1 kg):
Tg = 1799°C T = 60.1°C Qg =m(hy — h,) =2778 — 763 = 2015kJ
Qc = m(hy — hy) = [251 + (0.88)(2358)] — [251 + (0.18)(2358)] = 1651k]J

Thus, we have

50 _ 2015 1651 _
$F - o529 ~ I

This is negative, as it must be if the proposed power plant is to satisfy the inequality of Clausius.

-0.507kJ/K

6.7 ENTROPY CHANGE FOR AN IRREVERSIBLE PROCESS

Consider a cycle to be composed of two reversible processes, shown in Fig. 6-6. Suppose that we
can also return from state 2 to state 1 along the irreversible process marked by path C. For the
reversible cycle we have

[ R [ R0 (6.36)

along A along 8

For the cycle involving the irreversible process, the Clausius inequality demands that

[: $+ fz' 5—TQ—<0 (6.37)

along A4 along C
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Fig. 6-6

Subtracting (6.36) from (6.37),

fz' ¥> fz‘ %Q (6.38)

along B along C
But, along the reversible path B, 8@ /T = dS. Thus, for any path representing any process,

AS > jiSTQ or dS > ? (6.39)

The equality holds for a reversible process and the inequality for an irreversible process.

Relationship (6.39) leads to an important conclusion in thermodynamics. Consider an infinitesi-
mal heat transfer 8Q to a system at absolute temperature T. If the process is reversible, the
differential change in entropy is 8Q /T if the process is irreversible, the change in entropy is greater
than 8Q/T. We thus conclude that the effect of irreversibility (e.g., friction) is to increase the entropy
of a system.

Finally, in our application of the second law to a process, (6.39) can summarize our results. If we
wish to investigate whether a proposed process satisfies the second law, we simply check using (6.39).
We see that entropy and the second law are synonymous in the same way that energy and the first {aw
are synonymous.

Finally, consider an isolated system, a system which exchanges no work or heat with its
surroundings. For such a system the first law demands that U, = U, for any process. Equation (6.39)
takes the form

AS >0 (6.40)

demanding that the entropy of an isolated system either remain constant or increase, depending on
whether the process is reversible or irreversible. Hence, for any real process the entropy of an isolated
system increases.

We can generalize the above by considering a larger system to include both the system under
consideration and its surroundings, often referred to as the universe. For the universe we can write

AS,.w = AS, + A5, =20 (6.41)

sys surr

where the equality applies to a (ideal) reversible process and the inequality to a (real) irreversible
process. Relation (6.41), the principle of entropy increase, is often used as the mathematical statement
of the second law. Often A S,,.. is called A Syniues OF A S,
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EXAMPLE 6.7 Air is contained in one half of the insulated tank shown in Fig. 6-7. The other side is completely
evacuated. The membrane is punctured and the air quickly fills the entire volume. Calculate the specific entropy
change of this isolated system.

Fig. 6-7

The entire tank is chosen as the system boundary. No heat transfer occurs across the boundary and no work
is done by the air. The first law then takes the form AU = mc (T, — T,) = 0. Hence, the final temperature is
equal to the initial temperature. Using (6.15) for the entropy change, we have, with T}, = T,

_ v, 533 _ o
As=RIn 2, = T8 In2 = 0.04749 Btu/lbm-°R

Note that this satisfies (6.39) since for this example Q = 0, so that {§Q/T = 0 < m As.

EXAMPLE 6.8 Two kg of superheated steam at 400°C and 600 kPa is cooled at constant pressure by
transferring heat from a cylinder until the steam is completely condensed. The surroundings are at 25°C.
Determine the net entropy change of the universe due to this process.

The entropy of the steam which defines our systermn decreases since heat is transferred from the system to the
surroundings. From the steam tables this change is found to be

AS,, = m(s; — 57) = (2)(1.9316 — 7.7086) = —11.55 kI /K

The heat transfer to the surroundings occurs at constant temperaturec. Hence, the entropy change of the
surroundings is

o
b5 [

The heat transfer for the constant-pressure process is
Q =mAh = 2(3270.2 — 670.6) = 5199 kJ
giving AS,,,, = 5199/298 = 17.45 kJ /K and
AS i = A8 + AS, = 1745 — 1155 = 590 kI/K

univ surr

6.8 THE SECOND LAW APPLIED TO A CONTROL VOLUME

The second law has been applied thus far in this chapter to a system, a particular collection of
mass particles. We now wish to apply the second law to a control volume, following the same strategy
used in our study of the first law. In Fig. 6-8 a control volume is enclosed by the control surface shown

(e e

— el dl
|

Device

|
: q‘#MzSI 3
|

S d
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with the dashed lines surrounding some device or volume of interest. The second law can then be
expressed over a time increment Ar as

Entropy change Entropy Entropy Entropy change
.. - . + ] . =0 (6.42)
of control volume exiting entering of surroundings
This is expressed as
AS., + mys, —ms, + g“" >0 (6.43)

surr
If we divide the above equation by At and use dots to denote rates, we arrive at the rate equation
J S . qurr
Sevtmys, —ms + 5 >0 (6.44)
Surr
The equality is associated with a reversible process. The inequality is associated with irreversibilities
such as viscous effects, which are always present in a material flow; separations of the flow from
boundaries where abrupt changes in geometry occur; and shock waves in high-speed compressible
flow.
For a steady-flow process the entropy of the control volume remains constant with time. We can
then write, recognizing that v, = m = m,
. . qurr
m(sz—sl)+T—>0 (6.45)
surr
By transferring energy to the body via heat transfer, we can obviously increase the entropy of the fluid
flowing from the control volume. However, we also note that for an adiabatic steady-flow process the
entropy also increases from inlet to exit due to irreversibilities since, for that case, (6.45) reduces to

53> 8, (6.46)

For the reversible adiabatic process the inlet entropy and exit entropy are equal, an isentropic process.
We use this fact when solving reversible adiabatic processes involving steam, such as flow through an
ideal turbine.

We may be particularly interested in the entropy production, we define the rate of entropy
production to be the left side of (6.44):

Spmd = Sc.v.+ ”.’252 - mlsl + g‘su"
surr
This production rate is zero for reversible processes and positive for irreversible processes.

One last comment is in order regarding irreversible steady-flow processes, such as that in an
actual turbine. We desire a quantity that can easily be used as a measure of the irreversibilities that
exist in a particular device. The efficiency sometimes called the adiabatic efficiency, of a device is one
such measure; it is defined as the ratio of the actual performance of a device to the ideal
performance. The ideal performance is often that associated with an isentropic process. For example,

the efficiency of a turbine would be w,
Ny =t (6.48)

A

(6.47)

where w, is the actual (specific) work output and w;, is the (specific) work output associated with an
isentropic process. In general, the efficiency is defined using the desired output as the measure; for a
diffuser we would use the pressure increase and for a nozzle the kinetic energy increase. For a
compressor the actual work required is greater than the ideal work requirement of an isentropic
process. For a compressor or pump the efficiency is defined to be

w

e =t (6.49)

a

The efficiencies above are also called the adiabatic efficiencies since each efficiency is based on an
adiabatic process.
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@ Steam

Insulation

Fig. 6-9

EXAMPLE 6.9 A preheater is used to preheat water in a power plant cycle, as shown in Fig. 6-9. The
supetheated steam is at a temperature of 250 °C and the entering water is subcooled at 45°C. All pressures are
600 kPa. Calculate the rate of entropy production.

From conservation of mass, m, = i, + m; = 0.5 + 4 = 4.5 kg/s. The first law allows us to calculate the
temperature of the exiting water. Neglecting kinetic-energy and potential-energy changes and assuming zero heat
transfer, the first law takes the form ri;h, = m,h, + k. Using the steam tables (4, is the enthalpy of
saturated water at 45°C),

4.5h, = (0.5)(2957.2) + (4)(188.4) - hy = 496 KJ /kg

This enthalpy is less than that of saturated liquid at 600 kPa. Thus, the exiting water is also subcooled. Its
temperature is interpolated from the saturated steam tables (find T that gives h, = 496 kJ /kg) to be

T = 496 — 461.3
3715037 — 461.3
The entropy at this temperature is then interpolated (using sf) to be s, = 1.508 kJ /kg - K. The entropy of the

entering superheated steam is found to be s, = 7.182 kJ /kg - K. The entering entropy of the subcooled water is
sp at Ty = 45°C, or 5 = 0.639 kI /kg - K. Finally, modifying (6.47), to account for two inlets, we have

)(10) + 110 = 118°C

S_ s = ritysy — ritys, — rinys, = (4.5)(1.508) ~ (0.5)(7.182) — (4)(0.639) = 0.639 kW /K

prod

This is positive, indicating that entropy is produced, a consequence of the second law. The mixing process
between the superheated steam and the subcooled water is indeed an irreversible process.

EXAMPLE 6.10 Superheated steam enters a turbine, as shown in Fig. 6-10a, and exits at 2 psia. If the mass flux

is 4 Ibm/sec, detcrmine the power output if the process is assumed to be reversible and adiabatic. Sketch the
process on a T-s diagram.

r O »

140 psia Py
— .
1000°F Wy @

Turbine :?_> / M

]

|

I

— !

2 psia s

1.8827 Btu / Ibm -°R
(@) b)

Fig. 6-10
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If we neglect kinetic-energy and potential-energy changes, the first law, for an adiabatic process, is
- WT = m(h, — h,). Since the process is also assumed to be reversible, the entropy exiting is the same as the
entropy entering, as shown in Fig. 6-10b (such a sketch is quite useful in visualizing the process). From the steam
tables,
h, = 1531 Btu/lbm s, = 5, = 1.8827 Btu/Ibm-°R
With the above value for s,, we see that state 2 is in the quality region. The quality is determined as follows:

Sy =85+ X35, 1.8827 = 0.1750 + 1.7448x, x, = 0.9787
Then hy = hy + xyhp, = 94.02 + (0.9787X1022.1) = 1094 Btu/Ibm and
W, = (4)(1531 — 1094) = 1748 Btu/sec or 2473 hp

EXAMPLE 6.1t The turbine of Example 6.10 is assumed to be 80 percent efficient. Determine the entropy and
temperature of the final state. Sketch the real process on a 7-s diagram.
Using the definition of efficiency, the actual power output is found to be

W, = (0.8)W, = (0.8)(1748) = 1398 Btu/sec

From the first law, — W, = rii(hy — h,), we have h, = h| — W, /m = 1521 — 1398/4 = 1182 Btu/Ibm. Using
this value and P, = 2 psia, we see that state 2’ lies in the superheated region, since h > h,. This is shown in
Fig. 6-11. At P, = 2 and h, = 1182 we interpolate to find the value of T,

o (1186 - 1182
r = '(1186‘—'1168

The entropy is s, = 2.0526 Btu/lbm-°R.

)(280 — 240) + 280 = 271°F

/ ©) !

1.8827 Bw /l1bm -°R

Fig. 6-11

Note that the irreversibility has the desired effect of moving state 2 into the superheated region, thereby
eliminating the formation of droplets due to the condensation of moisture. In an actual turbine, moisture
formation cannot be tolerated because of damage to the turbine blades.

Solved Problems

6.1 A Carnot engine delivers 100 kW of power by operating between temperature reservoirs at
100°C and 1000°C. Calculate the entropy change of each reservoir and the net entropy
change of the two reservoirs after 20 min of operation.

The efficiency of the engine is
L3
m= T, = '~ 1273

The high-temperature heat transfer is then QH= W/n = 100/0.7070 = 1414 kW. The low-

= 0.7070
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temperature heat transfer is

O, = Oy — W=141.4 — 100 = 41.4 kW

The entropy changes of the reservoirs are then

AS, = _% _ Q;HAI _ (141.4)1[2(72;))(60)] C _I133KI/K

_Qu _ QA (41.9)[(20)(60)] _
AS, = T, "I, " 373 =133.2kJ/K
The net entropy change of the two reservoirs is AS,, = AS,; + AS; = 1333 + 1332 = —-0.1 KI/K
This is zero, except for round-off error, in compliance with (6.2).

Two kg of air is heated at constant pressure of 200 kPa to 500°C. Calculate the entropy
change if the initial volume is 0.8 m?.

The initial temperature is found to be

V1 (200)(0.8)

T = %R = 2)(0.287)

=2787K

The entropy change is then found, using (6.16) to be

773

757 = 2.040kI/K

T
AS = m[c,, In = — Rin1| = (2)(1.00)In
1

Air is compressed in an automobile cylinder from 14.7 to 2000 psia. If the initial temperature
is 60 °F, estimate the final temperature.

Compression occurs very rapidly in an automobile cylinder; hence, we approximate the process with
an adiabatic reversible process. Using (6.17), we find the final temperature to be

Pz (k—1)/k 2000 0.4/1.4 ) .
= T(pl) = (520)(W) = 2117°R or 1657°F

A piston allows air to expand from 6 MPa to 200 kPa. The initial volume and temperature are
500 cm?® and 800 °C. If the temperature is held constant, calculate the heat transfer and the
entropy change.

The first law, using the work for an isothermal process, provides us with

P, PV Py
Q=W=mRT1nP (R]TI)RT In ——(6000)(500)(10 G)Inﬂ—IOZOU
The entropy change is then
B P, Pl __ (6000)(500 x 1079) 200
AS =mc,Inl —mRIn Fl T1 In P1 = — 073 In 5000 — 9.51J/K

A paddle wheel provides 200 kJ of work to the air contained in a 0.2-m? rigid volume, initially
at 400 kPa and 40 °C. Determine the entropy change if the volume is insulated.

The first law, with zero heat transfer because of the insulation, provides

(400)(0.2)) (0.717)(T, — 313) T, = 626.2K

—W =mAu = mc, AT ‘(—200)=W
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The entropy change is then found to be
_ T, _(400)(0.2) 626.2
AS =mc, In T, +mRInt = 0287 (313) (0.717)In =33 = 0.4428 kI /K

Air is compressed in an automobile cvlinder from 14.7 to 2000 psia. Predict the final
temperature if the initial temperature is 60 °F. Do not assume constant specific heat.

Since the process is quite rapid, with little chance for heat transfer, we will assume an adiabatic
reversible process. For such a process we may use (6.25) and find
P, 2000
P,= P"F, = (1.2147)(m) =165.3

where P, is found in Table F-1E. The temperature is now interpolated, using P,, to be

1653 — 141.5 _ o
T, = (m)(zm - 1900) + 1900 = 1973°R

This compares with 2117 °R of Prob. 6.3, in which the specific heat was assumed constant. Note the
significant error (over 7 percent) in T, of Prob. 6.3. This occurs for large AT.

Air expands from 200 to 1000 cm? in a cylinder while the pressure is held constant at 600 kPa.
If the initial temperature is 20°C, calculate the heat transfer assuming (a) constant specific
heat and (b) variable specific heat.

(a) The air mass is

_ PV (600)(200 X 10° %)

The final temperature is found using the ideal-gas law:
v 1000
T, =T, = (293 (—)= 1465 K
2 1 [/1 ( ) 200

The heat transfer is then (constant-pressure process)

Q = me (T, — T,) = (0.001427)(1.00)( 1465 ~ 293) = 1.672kJ

(b) The mass and T, are as computed in part (a). The first law again provides, using h, and h, from
Table F-1,

0 = m(hy — h,) = (0.001427)(1593.7 - 293.2) = 1.856 k]

This shows that a 9.9 pcrcent error results from assuming constant specific heat. This is due to the
large temperature difference between the end states of the process.

Water is maintained at a constant pressure of 400 kPa while the temperature changes from
20°C to 400°C. Calculate the heat transfer and the entropy change.

Using v = ¢, at 20°C [state 1 is compressed liquid],
w = P(r, — v,) = (400)(0.7726 — 0.001002) = 308.6 kI /kg
The first law gives g = u, — u, + w = 2964.4 — 83.9 + 308.6 = 3189 kJ /kg and the entropy change is
As =5, — 5, = 7.8992 — 0.2965 = 7.603 ki /kg - K

Two kg of steam is contained in a 6-liter tank at 60 °C. If 1 MJ of heat is added, calculate the
final entropy.
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The initial quality is found as follows:

V -3
b= 02 8207 601017 + x,(7.671 — 0.001) - x, = 0.0002585
m 2

The initial specific internal energy is then
uy=up+x(u, —ug) =251.1 + (0.0002585)(2456.6 — 251.1) = 251.7kJ /kg

The first law, with W = 0, gives
Q=m(u, —u) or u,=u; + % = 251.7 + léﬂ = 751.7kJ /kg

Using v, = ¢, = 0.003 m®/kg and u, = 751.7 kJ /kg, we locate statc 2 by trial and error. The quality
must be the same for the temperature selected.

T, = 170°C: 0.003 = 0.0011 + x,(0.2428 — 0.0011) 2 Xy = 0.00786

751.7 = 718.3 + x,(2576.5 — 718.3) - x, = 0.01797
T, = 177°C: 0.003 = 0.0011 + x,(0.2087 — 0.0011) ~oX, = 0.00915
751.7 = 750.0 + x,(2581.5 — 750.0) - x4 = 0.00093

A temperature of 176 °C is chosen. The quality from ¢, is used since it is less sensitive to temperature
change. At 176 °C, we interpolate to find

0.003 = 0.0011 + x,(0.2136 — 0.0011) s x, = 0.00894
whence §, = m(s; + x,55,) = (2)2.101 + (0.00894X4.518)] = 4.28 ki/K

Five ice cubes (each 1.2 in*) at 0 °F are placed in a 16-0z glass of water at 60 °F. Calculate the
final equilibrium temperature and the net entropy change, assuming an insulated glass.
The first law allows us to determine the final temperature. We will assume that not all of the ice

melts so that 7, = 32°F. The ice warms up and some of it then melts. The original water cools. First, we
calculate the mass of the ice (see Table C-5E) and the water:

_(5)(1.2/1728)
™= TT0.01745

The first law is expressed as m(c,), AT + m; Ah, = m (c,), AT, where m, is the amount of ice that
melts. This becomes

= (.199 Ibm, m, = 11lbm (a pint’s a pound)

(0.199)(0.49)(32 — 0) + (m,;)(140) = (1)(1.0)(60 — 32) ~omy = 0.1777 Ibm
The net entropy change of the ice and water is then
T. T.
AS, =mic,In T—i + m(s, —5;) +m,c,ln T_li
492 492
= (0.199)(0.49)In 60 (0.1777)[0.0 — (-0.292)] + (1)(1.0)In 0 = 0.00311 Btu/ °R

The steam in a Carnot engine is compressed adiabatically from 10 kPa to 6 MPa with
saturated liquid occurring at the end of the process. If the work output is 500 kJ /kg, calculate
the quality at the end of the isothermal expansion.

For a cycle, the work output equals the net heat input, so that

W = ATAs 500 = (275.6 — 45.8)(s, — 3.0273) s, = 5.203kJ/kg - K

This s, is the entropy at the end of the isothermal expansion. Using the values of Ly and Spp At 6 MPa,
we have
5.203 = 3.0273 + 2.8627x, soxy = 0.760
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The Freon 12 in a Carnot refrigerator operates between saturated liquid and vapor during the
heat rejection process. If the cycle has a high temperature of 50 °C and a low temperature of
—20°C, calculate the heat transfer from the refrigerated space and the quality at the
beginning of the heat addition process.

The cycle COP is given as

L 253
T, -1, 383-25
The COP is also given by COP = q, /w, where

w = AT As = [50 — (—20)](0.6792 — 0.3034) = 26.31 kJ /kg

Hence, the heat transfer that cools is g, = (COPXw) = (3.614)26.31) = 95.08 kJ /kg.

COP =

3 = 3.614

The quality at the beginning of the heat addition process is found by equating the entropy at the
end of the heat rejection process to the entropy at the beginning of the heat addition process:

0.3034 = 0.0730 + 0.6352x ~ox = 03627

Show that the inequality of Clausius is satisfied by a Carnot engine operating with steam
between pressures of 40 kPa and 4 MPa. The work output is 350 kJ /kg, and saturated vapor
enters the adiabatic expansion process.

Referring to Table C-2, the high and low temperatures are 250.4°C and 75.9 °C. The work output
allows us to calculate the entropy at the beginning of the heat-addition process as follows:

w= AT As 350 = (250.4 — 75.9) As . As =2.006k)/kg - K
The heat addition is then g, = T, As = (250.4 + 273X2.006) = 1049.9 kJ /kg, and the heat extrac-
tion is
q, =T, As = (75.9 + 273)(2.006) = 699.9 kJ /kg

For the (reversible) Carnot cycle the inequality of Clausius should become an equality:

80 Qu QO 10499 6999 _ B
T =T, T, ~ 534 3459 — 2006 -2.006=0 (OK)

A 5-1b block of copper at 200 °F is submerged in 10 Ibm of water at 50 °F, and after a period
of time, equilibrium is established. If the container is insulated, calculate the entropy change
of the universe.

First, we find the final equilibrium temperature. Since no energy leaves the container, we have,
using specific heat values from Table B-4E,

m(c,) (AT). = m,(cp) (AT), 5% 0.093(200 — T;) = (10)(1.00)(T, — 50) T, = 56.66°F

The entropy changes are found to be
T, 516.7 o
(AS). =mc,) In (T—l)c- = (5)(0.093)In %60~ = —0.1138 B/ °R

T
(TZ) = (10)(1.00)In 2167 _ 0.1305 Btu/ °R
1w

510
Since no heat leaves the container, there is no entropy change of the surroundings. Hence
AS = (AS). + (AS),, = —0.1138 + 0.1305 = 0.0167 Btu/ °R

(48), =m,(c,), In

universe

Two kg of saturated steam is contained in 0.2-m?> rigid volume. Heat is transferred to the
surroundings at 30 °C until the quality reaches 20 percent. Calculate the entropy change of
the universe.
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The initial specific volume is ¢, = 0.2/2 = 0.1 m?/kg. By studying Tables C-1 and C-2 for the
nearest v, we see that this occurs at P, = 2 MPa. We also observe that 7, = 2124°C, s, = 6.3417
kJ/kg - K and u, = 2600.3 kJ /kg. Since the volume is rigid, we can locate state 2 by trial and error as

follows.
Try P, = 0.4 MPa: ¢, = 0.0011 + 0.2(0.4625 — 0.0011) = 0.0934
Try P, = 0.3 MPa: v, = 0.0011 + 0.2(0.6058 — 0.0011) = 0.122
Obviously, v, = 0.1, so that state 2 is between 0.4 and 0.3 MPa. We interpolate to find

C( 0a2-01
P ‘(0.122_——0.0934

The entropy and internal energy are also interpolated as follows:
s, = 1.753 + (0.2)(5.166) = 2.786 k] /kg - K u, = 594.3 + (0.2)(2551.3 — 594.3) = 986 kJ /kg

)(0.1) + 0.3 = 0.377 MPa

The heat transfer is then, with W = 0 for the rigid volume,
O =m(u, —u,) = (2)(986 — 2600) = —3230kJ [heat to surroundings]
The entropy change for the universe is calculated as

3230
AS pniverse = M Ay + AS, = (2)(2.786 — 6.3417) + 53— = 3.55KI/K

A steam turbine accepts 2 kg /s of steam at 6 MPa and 600 °C and exhausts saturated steam at
20 kPa while producing 2000 kW of work. If the surroundings are at 30°C and the flow is
steady, calculate the rate of entropy production.

The first law for a control volume allows us to calculate the heat transfer from the turbine to the
surroundings:

Qr = rit(hy — hy) + Wy = (2)(2609.7 — 3658.4) + 2000 = —97.4 kW
Hence, O, = —Qr = +97.4 kW. The rate of entropy production is then found from (6.47) to be

97.4

305 = 1 80kW/K

Sored = Scy.+ sy — 5,) + —QT—— =0+ (2)(7.9093 — 7.1685) +

A rigid tank is sealed when the temperature is 0 °C. On a hot day the temperature in the tank
reaches 50 °C. If a small hole is drilled in the tank, estimate the velocity of the escaping air.

As the tank heats up, the volume remains constant, Assuming atmospheric pressure at the initial
state, the ideal-gas law yields

T.

323
P, = P,Tf = (100)(

7—,—5) = 118.3 kPa

The temperature at the exit, as the air expands from P, to P, as it escapes out of the hole, is found by
assuming an isentropic process:

100 (1.4-1}/14
(323)( 118.3)

where we have assumed pressure P, outside the tank to be atmospheric. The control-volume energy
equation is now used to find the exit velocity V;:

0

vi-

0= 25 +c(Ty-Ty)  Vs=/2¢,(T, — T3) =V(2)(1000)(323 - 307.9) = 173.8m/s

=3079K

P3 (k—1)/k
7)

- 133

Note that we have used ¢, = 1000 J/kg - K, not ¢, = 1.00 kI /kg - K. This provides the correct units;
thatis, J/kg - K= N-m/kg - K = m?/s? -
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Steam expands isentropically through a turbine from 6 MPa and 600 °C to 10 kPa. Calculate
the power output if the mass flux is 2 kg /s.

The exit state is at the same entropy as the inlet. This allows us to determine the exit quality as
follows (use entries at 10 kPa):

s, =5, = 7.1685 = 0.6491 + 7.5019x, - X, = 0.8690

The exit enthalpy is h, = h; + x,h,, = 191.8 + (0.8690X2392.8) = 2271 kJ/kg. The control-volume
energy equation then allows us to calculate

Wy = —ri(h, — hy) = —(2)(2271 — 3658.4) = 2774 kW

This is the maximum possible power output for this turbine operating between the temperature and
pressure limits imposed.

A steam turbine produces 3000 hp from a mass flux of 20,000 lbm/hr. The steam enters at 1000 °F
and 800 psia and exits at 2 psia. Calculate the efficiency of the turbine.

The maximum possible work output is calculated first. For an isentropic process, state 2 is located
as follows:

s, =5, = 1.6807 = 0.1750 + 1.7448x, < xy = 0.8630

The exit enthalpy is then h, =h+ x,h,, = 94.02 + (0.8630X1022.1) = 976.1 Btu/lbm. The work
output w, associated with the isentropic process is

w, = —(hy, — hy) = —(976.1 — 1511.9) = 535.8 Btu/lbm
The actual work output w, is calculated from the given information:

W = Wr _ (3000)(550)/778

« = T = T 20,000,/3600
The efficiency is found, using (6.48), to be

= 381.7 Btu/Ibm

w, 381.7
Ny = 7: = m = 0712 or 71.2%

Calculate the efficiency of the Rankine cycle shown in Fig. 6-12 if the maximum temperature
is 700 °C. The pressure is constant in the boiler and condenser.

The isentropic process from 2 to 3 allows us to locate state 3. Since P, = 10 MPa and T, = 700°C,
we find

S =8, = 7.1696 = 0.6491 + 7.5019x, ooxy = 0.8692

The enthalpy of state 3 is then hy = h; + x3h,, = 191.8 + (0.8692X2392.8) = 2272 kJ /kg. The turbine
output is

wy= —(hy— h,) = — (2272 — 3870.5) = 1598 kJ /kg

1—=2 boiler
2-+3 turbine
3—4 condenser
Steam 4=~1 pump
® / 10 kPa ;
“® ®
s
Fig. 6-12
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The encrgy input to the pump is

_ Pi—ps _ 10000 - 10 _
wp= T = - g = 999K ke

and, since —wp = h, — h,,
hy=h,—wp=191.8 — (-9.99) = 201.8kJ /kg
The encrgy input to the boiler is g = h, — Ay = 3870.9 — 201.8 = 3669 k] /kg, from which

_ wptwp 1598 —9.99 .
ncyt]c - dg = 3669 =0433 or 43.3%

Supplementary Problems

A Carnot engine extracts 100 kJ of heat from an 800°C reservoir and rejects to the surroundings at
20°C. Calculate the entropy change () of the reservoir and (b) of the surroundings.
Ans. (a) -0.0932 kJ/K () 0.0932 kJ/K

A Carnot refrigerator removes 200 kJ of heat from a refrigerated space maintained at —10°C. Its COP
is 10. Calculate the entropy change (a) of the refrigerated space and (b) of the high-temperature
rcservoir. Ans. (a) —0.76 KI/K (b)) 0.76 k) /5

A reversible heat pump requires 4 hp while providing 50,000 Btu /hr to heat a spacc maintained at 70 °F.
Calculate the entropy change of the space and the low-temperature reservoir after 10 min of operation.
Ans. 15.72 Btu/ °R, —-4.02 Btu/ °R

Compare the entropy increase of the high-temperature reservoir and the entropy decrease of the
specimen of Prob. 5.28. Ans. 5KI/K, =S kI/K

Verify that (6.17) results from (6.15) and (6.16).

A gas of mass 0.2 kg is compressed slowly from 150 kPa and 40°C to 600 kPa, in an adiabatic process.
Determine the final volume if the gas is (a) air, (b) carbon dioxide, (¢) nitrogen, and (d) hydrogen.
Ans. (a)0.0445m®  (H)0.0269 m> () 0.046 m*  (d) 0.246 m*

Two kg of gas changes state from 120 kPa and 27°C to 600 kPa in a rigid container. Calculate the
entropy change if the gas is («) air, (b) carbon dioxide. (¢) nitrogen, and (d) hydrogen.
Ans. (a) 231 kI/K (h)2.1kJ/K () 2.4 kI/K (d)32.4 kJ/K

Determine the entropy change of a gas in a rigid container that is heated from the conditions shown in
Fig. 6-13 to 100 psia, if the gas is () air, (b) carbon dioxide, (¢} nitrogen, and (4) hydrogen. Atmospheric
pressure is 13 psia.

Ans. (a) 0.349 Btu/ °R (b) 0.485 Btu/ °R (¢) 0.352 Btu/ °R (d) 0.342 Btu/ °R

Fig. 6-13
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The entropy change in a certain expansion process is 5.2 kJ /K. The gas, initially at 80 kPa, 27 °C, and 4
m® achieves a final temperature of 127°C. Calculate the final volume if the gas is (a) air, (b) carbon
dioxide, (c¢) nitrogen, and (d) hydrogen.

Ans. (@)254m®>  (B)195m®  (¢)255m®  (d)259m?

Nine kJ of heat is added to the cylinder shown in Fig. 6-14. If the initial conditions are 200 kPa and
47°C, compute the work done and the entropy change for (@) air (») carbon dioxide, (¢) nitrogen, and

(d) hydrogen.
Ans. (a)3541, 154 )/K; (b)421, 169 J/K; (c) 341,153 J/K; (d)2.481,15.2 J/K.

20cm

20 cm dia.

Fig. 6-14

A piston is inserted into a cylinder, causing the pressure to change from 50 to 4000 kPa while the
temperature remains constant at 27 °C. To accomplish this, heat transfer must occur. Determine the heat
transfer and the entropy change, if the working substance is (a) air, (b) carbon dioxide, (¢) nitrogen, and
(d) hydrogen.
Ans. (a) =377 kJ/kg, —1.26 kKJ/kg- K;  (b) —248 kl/kg, —0.828 kI /kg * K;

(¢) —390 kJ /kg, —1.30 kI /kg - K; (d) —5420 k) /kg, —18.1 kJ/kg - K

The temperature of a gas changes from 60 °F to 900 °F while the pressure remains constant at 16 psia.
Compute the heat transfer and the entropy change if the gas is (a) air, (b) carbon dioxide, (¢) nitrogen,
and (d) hydrogen.
Ans.  (a) 202 Btu/lbm, 0.24 Btu/lbm-°R;  (b) 170 Btu/Ibm, 0.202 Btu/lbm-°R;

(c) 208 Btu/lbm, 0.248 Btu/Ibm-°R;  (d) 2870 Btu/lbm, 3.42 Btu/lbm-°R

A rigid, insulated 4-m® volume is divided in half by a membrane. One chamber is pressurized with air to
100 kPa and the other is completely evacuated. The membrane is ruptured and after a period of time
equilibrium is restored. What is the entropy change? Ans. 0473 kJ/K

Four hundred kJ of paddle-wheel work is transferred to air in a rigid, insulated 2-m> volume, initially at
100 kPa and 57 °C. Calculate the entropy change if the working substance is (a) air, (b) carbon dioxide,
(¢) nitrogen, and (d4) hydrogen.

Ans.  (a) 0.889 kI /K () 0914 kJ /K (¢) 0.891 kJ /K (d) 0.886 kI /K

A torque of 40 N - m is needed to rotate a shaft at 40 rad /s. It is attached to a paddle wheel located in a
rigid 2-m>® volume. Initially the temperature is 47°C and the pressure is 200 kPa; if the paddle wheel
rotates for 10 min and 500 kJ of heat is transferred to the air in the volume, determine the entropy
increase (a) assuming constant specific heats and (b) using the gas table.

Ans. (a)2.81kJ/K () 2.83kI/K

Two Ib of air is contained in an insulated piston-cylinder arrangement. The air is compressed from 16
psia and 60°F by applying 2 X 10° ft-Ibf of work. Compute the final pressure and temperature, (a)
assuming constant specific heats and (b) using the gas table.

Ans. (a) 366 psia, 812 °F, (b) 362 psia, 785°F

www.20file.org



www.semeng.ir

CHAP. 6] ENTROPY 133

6.37

6.38

6.39

6.40

6.41

6.42

6.43

6.44

6.45

6.46

6.47

6.48

A piston-cylinder arrangement is used to compress 0.2 kg of air isentropically from initial conditions of
120 kPa and 27°C to 2000 kPa. Calculate the work necessary, (a) assuming constant specific heats and
(b) using the gas table. Ans. (a) —53.1 k) (b) —53.4KkJ

Four kg of air expands in an insulated cylinder from 500 kPa and 227°C to 20 kPa. What is the work
output (a) assuming constant specific heats and (5) using the gas table?
Ans. (a) 863 kJ (b) 864 kJ

Steam., at a quality of 85 percent, is expanded in a cylinder at a constant pressure of 800 kPa by adding
2000 kJ/kg of heat. Compute the entropy increase and the final temperature.
Ans. 295 kl/kg - K, 934°C

Two Ib of steam, initially at a quality of 40 percent and a pressure of 600 psia, is expanded in a cylinder
at constant temperature until the pressure is halved. Determine the entropy change and the heat
transfer. Ans. 1.158 Btu/ °R, 983 Btu

0.1 kg water is expanded in a cylinder at a constant pressurc of 4 MPa from saturated liquid until the
temperature is 600 °C. Calculate the work necessary and the entropy change.
Ans. 39KkJ, 0457 kI/K

Two kg of steam at 100°C is contained in a 3.4-m* cylinder. If the steam undergoes an isentropic
expansion to 20 kPa, determine the work output. Ans. 442 K]

Five kg of steam contained in a 2-m® cylinder at 40 kPa is compressed isentropically to 5000 kPa. What is
the work needed? Ans. 185 kJ

Ten 1b of water at 14.7 psia is heated at constant pressure from 40 °F to saturated vapor. Compute the
heat transfer necessary and the entropy change. Ans. 11,420 Btu, 17.4 Btu/ °R

Five kg of ice at — 20 °C is mixed with water initially at 20 °C. If there is no significant heat transfer from
the container, determine the final temperature and the net entropy change if the initial mass of water is
(a) 10 kg and (b) 40 kg. Ans. (a)0°C, 0.135 kJ /K, () 10.6°C, 1.93 kJ /K

A Carnot engine operates with steam on the cycle shown in Fig. 6-15. What is the thermal efficiency? If
the work output is 300 kJ /kg, what is the quality of state 1?7 Ans. 48.9%, 0.563

300°C @ @

20°C b--f-

Fig. 6-15

The steam in a Carnot engine is compressed adiabatically from 20 kPa to 800 kPa. The heat addition
results in saturated vapor. If the quality at the end of the heat rejection is 15 percent, calculate the net
work per cycle and the thermal efficiency. Ans. 433 kl/kg. 24.9%

A Carnot engine which operates with steam has a pressure of 8 psia and a quality of 20 percent at the
beginning of the adiabatic compression process. If the thermal efficiency is 40 percent and the adiabatic
expansion process begins with a saturated vapor, determine the heat added. Ans. 769 Btu/lbm
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6.55

6.56

6.57
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Fig. 6-16

A Carnot engine operates at 4000 cycles per minute with 0.02 kg of steam, as shown in Fig. 6-16. If the
quality of state 4 is 15 percent, (@) What is the power output? (b) what is the quality of state 3?
Ans. (a) 19.5 kW (b) 0.678

For a Carnot engine operating under the conditions of Prob. 5.17, show that the inequality of Clausius is
satisfied.

Using the information given in Prob. 5.22, verify that the incquality of Clausius is satisfied.
For the steam cycle of Prob. 6.46 show that the inequality of Clausius is satisfied.

One Ib of air is contained in a 6 ft* volume at a pressure of 30 psia. Heat is transferred to the air from a
high-temperature reservoir until the temperature is tripled in value while the pressure is held constant.
Determine the entropy change of (a) the air, (b) the high-temperature reservoir which is at 1000 °F, and
(¢) the universe. Ans. (a) 0.264 Buu/ °R (b) —0.156 Btu/ °R (c) 0.108 Btu/ °R

Two kg of air is stored in a rigid volume of 2 m? with the temperature initially at 300°C. Heat is
transferred from the air until the pressure reaches 120 kPa. Caliculate the entropy change of (a) the air
and (b) the universe if the surroundings are at 27°C. Ans. (a) —0452kJ/K (k) 0.289 XJ /K

Three kg of saturated steam at 200°C is cooled at constant pressure until the steam is completely
condensed. What is the net entropy change of the universe if the surroundings are at 20 °C?
Ans. 756 kJ/K

Steam at a quality of 80 percent is contained in a rigid vessel of a volume 400 cm®. The initial pressure is
200 kPa. Energy is added to the steam by heat transfer from a source maintained at 700 °C until the
pressure is 600 kPa. What is the entropy change of the universe? Ans. 0.611J/K

The fecdwater heater shown in Fig. 6-17 is used to preheat water in a power plant cycle. Saturated water
leaves the preheater. Calculate the entropy production if all pressures are 60 psia.
Ans.  0.423 Btu/scc-°R

1 Steam
Water T 500°F
— Feedwater
heater +————— 8 |bm /sec
Water  80°F
Fig. 6-17
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6.58

6.59

6.60

6.61

6.62

6.63

6.64

6.65

6.66

Air flows from a tank maintained at 140 kPa and 27 °C from a 25-mm-diameter hole. Estimate the mass
flux from the hole assuming an isentropic process. Ans. 0.147 kg/s

Air flows from a nozzle. The inlet conditions are 130 kPa and 150°C with a velocity of 40 m/s.
Assuming an isentropic process, calculate the exit velocity if the exit pressure is 85 kPa.
Ans. 309 m/s

The gases flowing through a turbine have essentially the same properties as air. The inlet gases are at
800 kPa and 900°C and the exit pressure is atmospheric at 90 kPa. Compute the work output assuming
an isentropic process if (a) the specific heats are constant and (b) the gas tables are used.

Ans. (a) 545 kl /kg (b) 564 KJ /kg

Saturated steam at 300 °F is compressed to a pressure of 800 psia. The device used for the compression
process is well-insulated. Assuming the process to be reversible, calculate the power needed if 6 Ibm/sec

of steam is flowing. Ans. 2280 hp

Every second 3.5 kg of superheated steam flows through the turbine shown in Fig. 6-18. Assuming an

isentropic process, calculate the maximum power rating of this turbine. Ans. 3.88 MW
1500 kPa
T,=600°C
| Turbine

Fig. 6-18

Two hundred kW is to be produced by a steam turbine. The outlet steam is to be saturated at 80 kPa and
the steam entering will be at 600°C. For an isentropic process determine the mass flux of steam.
Ans. 0.198 kg /s

A turbine produces 3 MW by extracting energy from 4 kg of steam which flows through the turbine every
second. The steam enters at 250 °C and 1500 kPa and exits as saturated steam at 2 kPa. Calculate the
turbine efficiency. Ans. 399 percent

A steam turbine is 85% efficient. Steam enters at 900°F and 300 psia and leaves at 4 psia. (¢} How much
energy can be produced? (b) If 3000 hp must be produced. what must the mass flux be?
Ans. (a) 348 Btu/lbm (b) 6.096 Ibm/sec

Determine the efficiency of an ideal piston engine operating on the Otto cycle shown in Fig. 6-19, if
T, = 60°C and T, = 1600°C. Ans. 47.5%

P ©
Air

Q=0

@ ®

—_—

0.2 l:O

rm'fkg

Fig. 6-19
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6.67-  Calculate the efficiency of the Rankine cycle shown in Fig. 6-20, if P, = 20 kPa, P, = P, = 4 MPa, and
T, = 600°C. Ans. 36.3%

@

Turbine
®

Pump

/ @ Condenser @\

5

Fig. 6-20 Fig. 6-21

6.68 Determine the efficiency of the Rankine cycle shown schematically in Fig. 6-21. Ans. 28%

6.69 For the diesel cycle shown in Fig. 6-22 the compression ratio v, /v, is 15 and the added heat is 1800 kJ
per kilogram of air. If T, = 20°C, calculate the thermal efficiency. Ans. 50.3%

P
©) ®
5 = const.
@
100KPa f~————————— o T ®
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Chapter 7

Reversible Work, Irreversibility, and
Availability

7.1 BASIC CONCEPTS

Reversible work for a process is defined as the work associated by taking a reversible-process path
from state A to state B. As stated previously, a reversible process is a process that, having taken place,
can be reversed and, having been reversed, leaves no change in either the system or the surroundings.
A reversible process must be a quasiequilibrium process and is subject to the following restrictions:

» No friction exists.

s Heat transfer is due only to an infinitesimal temperature difference.

s Unrestrained expansion does not occur.

¢ There is no mixing.

o There is no turbulence.

s There is no combustion or chemical reaction.

It can be easily shown that the reversible work or the work output from a reversible process going
from state A to state B is the maximum work that can be achieved for the state change from A to B.

It is of interest to compare the actual work for a process to the reversible work for a process. This

comparison is done in two ways. First, a second-law efficiency for a process or a device can be defined
as

W,

My = w—r:: (turbine or engine) (7.1)
W,

Ny = u’/"v (pump or compressor) (7.2)

where W, is the actual work and W, is the reversible work for the fictitious reversible process.
Second-law efficiency is different from the adiabatic efficiency of a device introduced in Chap. 6. It is
generally higher and provides a better comparison to the ideal.

Second, irreversibility is defined as the difference between the reversible work and the actual work
for a process, or

I= u/rcv u/a (73)
On a per-unit-mass basis,
P=w,, —w, (7.4)

Both irreversibility and second-law efficiency will allow us to consider how close an actual process
or device is to the ideal. Once the irreversibilities for devices in an actual engineering system, such as
a steam power cycle, have been calculated, attempts to improve the performance of the system can be
guided by attacking the largest irreversibilities. Similarly, since the maximum possible work will be
reversible work, irreversibility can be used to evaluate the feasibility of a device. If the irreversibility of
a proposed device is less than zero, the device is not feasible. [Section 7.2 develops the concepts of
reversible work and irreversibility.]

Availability is defined as the maximum amount of reversible work that can be extracted from a
system:

v = (W, (7.5)

CV)ITIBX
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or, on a per-unit-mass basis,
w = (wrcv)max (76)

The maximization in (7.5) and (7.6) is over the reversible path joining the prescribed initial state to a
final dead state in which system and surroundings are in equilibrium. [Section 7.3 develops the notion
of availability.]

7.2 REVERSIBLE WORK AND IRREVERSIBILITY

To obtain expressions for reversible work and irreversibility, we will consider a transient process
with specified work output and heat input and a uniform through-flow. We begin by allowing this to be
an irreversible process. Consider the control volume shown in Fig. 7-1. The first law for this control
volume can be written as

. v | Vi
Q- W =\h+ 5 +gz|my— |hy + 5 +gz )i +E., (7.7)
Using (6.47), with T, = T,, and qu" = —Q, we may write the second law as
S 0, — s - 2 - Si0g =0
et SaMMy = Sy = T T Sprod = (7.8)

Eliminate Q between (7.7) and (7.8) to obtain

. R . V2 V2 .
W,=-~-E + Tusc.v.“(hz + '2—2 + 8z, — Tnsz)mz + (h] + ‘2‘1 +8z, — T()sl)’hl = TySp0a (7.9)

Since SDrod is due to the irreversibilities, the reversible work rate is given by (7.9) when Spm is set
equal to zero:

2 2

. . . |14 V
Weo = —Eco T(]Sc.v._(hz + Tz 8z, - Tosz)mz + (hl + Tl 8z~ T(lsl)'hl (7.10)

Then a time integration yields
2

V_Z
W, = [m‘-(ui + —2'— + gz, — T(,s,-) - mf(uf + Tf + 8z, — Tosf)

cv.
2 2

4 V
+ ml(h1 + —2—1 + gz, — Tosl) - mz(h2 + 72 + gz, — Tosz) (7.11)

vl
Inlet @ /

/‘V( 3 Outlet @

QatT,

Fig. 7-1

www.20file.org



www.semeng.ir

CHAP. 7] REVERSIBLE WORK, IRREVERSIBILITY, AND AVAILABILITY 139

where the subscripts i and f pertain to the initial and final states of the control volume.
The actual work, if not given, can be determined from a first-law analysis [integrate (7.7)):

V2 Vi
W, = m,-(u, + —7_’— +gz,.) - mf(u,+ 5 +ng)

Ccv.

+ ml(h1 + Vle + gzl) - mz(h2 + VTzz +g22) +Q (7.12)
From (7.3), (7.11), and (7.12),
I=(mTys; —mTys;)  + Tomys, — Tymys, — Q (7.13)
For a steady flow with negligible changes in kinetic and potential energies, we have
W =ik = hy + To(s; = 51)] (7.14)
I=mTy(s,~s,)+Q (7.15)

It is important to realize that the basic results of this Section—(7.11), (7.12), and (7.13)—also
hold for a system, which is nothing other than a control volume for which m, = m, = 0 (and thus
m, = m,; = m). Because time plays no part in the thermodynamics of a system, we generally replace

1

the indices / and f by 1 and 2.

EXAMPLE 7.1 A steam turbine is supplicd with steam at 12 MPa and 700 °C, and exhausts at 0.6 MPa.

(¢} Determine the reversible work and irreversibility if the turbine is an ideal turbine.

(b) 1f the turbine has an adiabatic eflicicncy of 0.88, what is the reversible work, irreversibility, and second-law
cfficiency?

(a) The properties for the inlet state are obtained from the steam tables. Since an ideal turbine is isentropic,
s, =5, = 7.0757 kJ /kg - K. From the steam tables we note that the exit state must be superheated vapor.
We interpolate to obtain 7, = 225.2°C and h, = 2904.1kJ /kg. Then, from the first law for a control

volume,
w, =h; — h,=3858.4 — 2904.1 = 954.3 k) / kg

From (7.11), neglecting kinetic and potential cnergies,
[4)
Wiew = 1y — By — T(,(s,;/s'2) = 3858.4 — 2904.1 = 954.3 kJ/ kg

The irreversibility for an ideal turbine is i = w,, — w, = 954.3 — 954.3 = 0 k] /kg.

() Now let the adiabatic turbine have 7, = 0.88. The isentropic or ideal work was calculated in (a), so that the
actual work is w, = n;w 4. = (0.88X954.3) = 839.8 kI / kg. For this adiabatic process,

hy,=h, —w, =3858.4 — 839.8 = 3018.6 kl/ kg

From the steam tables we find that the exit state with P, = 0.6 MPa is supcrheated vapor, with
T, = 279.4°C and s, = 7.2946 kJ/kg. Then, assuming T,, = 298 K,

Weew = By = hy = Ty(s; — 5,) = 3858.4 — 3018.6 — (298)(7.0757 — 7.2946) = 905 kJ /kg

The sccond-law efficiency is n; = w, /w,, = 0.928, which is greater than the adiabatic efficiency. The
irreversibility is

i = Wy — w, = 905.0 ~ 839.8 = 65.2kJ/ kg

EXAMPLE 7.2 Measurcments arc made on an adiabatic compressor with supply air at 15 psia and 80 °F. The
exhaust air is measured at 75 psia and 440 °F. Can these measurements be correct?
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For steady flow in the control volume, with Q = 0, (7.15) becomes
i=Ty(s2—5y)
The entropy change is found, using values from the air tables, to be

= $, = d— & — RI PZ~()72438—()60078——53'3| 75—001‘«1348 lbm-°R
$y— 85 = ¢a | nPl— . . 77g 10 15 = 001 tu /lbm-

The irreversibility is then ¢ = (537X0.01334) = 7.16 Btu/lbm. As this is positive, the measurcments can be
correct. We assumed T,, 10 be 537°R.

7.3 AVAILABILITY AND EXERGY

According to the discussion in Section 7.1, ¥ is given by (7.11) when the final state (f) is
identified with the state of the surroundings (0):

a4

Vi Vi
Vo= mu, + =5 tgz, = Tysi | —mplug+ 5 +gzg — Tysy

C.v.

Vi Vi
tmh + 5 +gzy = Tys, | —my h, + -t 826~ TuSo (7.16)
For a steady-flow process (7.16) becomes
VZ _ VZ
l4’/=hl"hn+—]—2—2*’8(21—20)"Tu(sl—so) (7.17)

In carrying out a second-law analysis, it is often useful to define a new thermodynamic function
(analogous to enthalpy), called exergy:
2

v
E=h+ 3 +g2—Tys (7.18)

Comparing (7.18) to (7.17), we see that E, — E, = . We interpret this equation as a work-energy
relation: the extractable specific work ¢ exactly equals the decrease in useful energy E between the
entrance and dead states of the system. More generally, when the system passes from one state to
another, specific work in the amount —A £ is made available.

Certain engineering devices have useful outputs or inputs that are not in the form of work; a
nozzle is an example. Consequently, we generalize the notion of second-law efficiency to that of
second-law effectiveness:

_ (availability produced ) + (work produced ) + (adjusted heat produced )
fu = (availability supplied ) + (work used ) + (adjusted heat used )

(7.19)

Heat to or from a device is “‘adjusted” in (7.79) on the basis of the temperature T, of the heat
reservoir which is interacting with the device:

T()

adjusted heat = (l - T——)Q (7.20)
h.r.

EXAMPLE 7.3 Which system can do morc uscful work, 0.1 lbm of CO, at 440 °F and 30 psia or 0.1 Ibm of N, at
440 °F and 30 psia?

Assuming a dead state at 77 °F (537 °R) and 14.7 psia, we use Table F-4E 10 calculate the availability of the
CO,:

P
W =m|h - h, - T,,(d) - d),,—RlnF)]
[}]
).

3
= (%—l— ) [7597.6 - 4030.2 - 537 (56.07() - 51.032 — 1.9861n Tzqi )] = 3.77 Btu
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Similarly, for the N,

v = m[h - hy, - T(,(d> — ¢, - RIn Pﬁ)]
0

-3

Hence, the N, can do morc uscful work.

6268.1 — 32795 — (537)(49.352 — 45.743 ~ 1.9861n %07)] = 6.47 Btu

EXAMPLE 7.4 How much useful work is wasted in the condenser of a power plant which takes in steam of
quality 0.85 and 5 kPa and dclivers saturated liquid at the same pressure?

The maximum specific work available at the condenser inlet is ¢, = A, — h, — T(s, — s;); at the outlet it is
s =h, — hy — Ty(s, — sy). The useful work wasted is ¢, — ¢, = h; — hy, — Ty (s, — s5,).

From the steam tables, assuming T, = 298 K and using the quality to find A, and s,, we find

Wy — s = hy — hy — Ty(s, — 52) = 2197.2 — 136.5 — (298)(7.2136 — 0.4717) = 51.6 kJ /kg

EXAMPLE 7.5 Calculate the exergy of steam at 500 °F and 300 psia. The surroundings arc at 76 °F.
From the superheated steam tables, E = A — Tys = 1257.5 — (536X1.5701) = 415.9 Btu/lbm.

EXAMPLE 7.6 Determine the second-law effectivencss for an ideal isentropic nozzle. Air enters the nozzle at
1000 K and 0.5 MPa with negligible kinetic energy and exits to a pressure of (0.1 MPa.
Since the process is isentropic, we usce the air tables to find

P
¢;= ¢, — Rin 55 = 2968 - 0.286In5 = 2.506 ki /kg - K
2

Thus
T, = 657.5K hy = 667.8 kI /kg hy = 1046.1 kI /kg hy = 298.2kJ /kg
By the first law,
B hy e 2 vy = N2 (h — )" =N2 [(1046.1 — 667.8)(10%)]" = 1230
| =h = or ,=N2(h, —h,) —._[( 1 —667.8)(10%)] ~ = m/s

To evaluate the second-law effectiveness we need the availability produced:

V2 P,
‘bz:hz—hn*T_To 4’2_4’0'R1nﬁu

12302
= 667.8 — 2982 + —__ — 506 — 1.695 — (0.287)(0)] = 884 kI /k
6678 — 298.2 + {0y (298)[2.506 — 1.695 — (0.287)(0)] /ke

where P, = P; = 0.1 MPA. The availability supplied is
P
g, =h, —h, - T()(dJ1 —¢,— Rln ?1) = 1046.1 — 298.2 — (298)(2.968 — 1.695 — 0.287In5) = 506 kJ /kg
QO

Since there is no work or heat transfer, (7.19) gives

_ b _ 84

en=g =355 = 17

Note that second-law effectiveness is not bounded by 1 (much like the COP for a refrigeration cycle).

7.4 SECOND-LAW ANALYSIS OF A CYCLE

You may choose to study this section after Chapters 8 and 9.

In applying second-law concepts to a cycle two approaches may be employed. The first is simply to
evaluate the irreversibilities associated with each device or process in the cycle; this will identify
sources of large irreversibilities which will adversely affect the efficiency of the cycle. The second is to
evaluate e, for the whole cycle.
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Process
steam
Boiler +
e Turbine :%—» LS
Qoit
1® ®
Q ond
\ // ”
Pump t @ Condenser
W pump T
Make-up
water
Fig. 7-2

wiv

Mathcaa EXAMPLE 7.7 Consider the simple Rankine cycle with steam extraction shown in Fig. 7-2. Calculate the
second-law effectiveness for the cycle if the boiler produces steam at 1 MPa and 300 °C and the turbine exhausts
to the condenser at 0.01 MPa. The steam extraction occurs at 0.1 MPa, where 10 percent of the steam is removed.
Make-up water is supplied as saturated liquid at the condenser pressure, and saturated liquid leaves the
condenser.

We begin by traversing the cycle starting at state 1:

1-2 Ideal turbine: s, =5, =71237kl/kg - K
Comparing to s; and s, at 0.1 MPa, we have a two-phase mixture at state 2 with
52 - Sf

= 0.96

so that k, = h, + 0.96h;, = 2587.3 kJ /ke.
2—-3 Ideal turbine: 53 =s5,="7.1237kl/kg - K
Comparing 1o s, and s, at 0.01 MPa, we have a two-phase mixture at state 3 with

53— 8
x,=—7 =086
Sre
so that h, = h s+ 0.86h,, = 2256.9 kJ /kg. The second-law effectiveness is given by
WZ + pVturb

en = Yy + Woump + [1 = (To/T1)]Cron
The dead state for water is liquid at 100 kPa and 25°C:
ho=h;=104.9kJ /kg so =S =0.3672kJ /kg - K
Now the various quantities of interest may be calculated, assuming m; = 1 kg:
W, = my[h, — hy — To(s; — 59)] = (0.1)[2587.3 — 104.9 — (298)(7.1237 — 0.3672)] = 46.89 kJ
W, = m(hy — hy) + my(h, — hy) = (1.0)(3051.2 — 2587.3) + (0.9)(2587.3 — 2256.9) = 761.3kJ
W, =my[hy — hy — To(ss — 50)] = (0.1)[191.8 — 104.9 — (298)(0.6491 — 0.3671) = 0.28 kJ

AP (1000—10

Woump = =5~ = (1O 1000

pump ~

whence

) =099KkI  Quou=my(h, — hg) = (1.0)(3051.2 — 192.8) = 2858 kJ

46.89 + 761.3

N = 028+ 0.99 + (1 - 298/573)(28%8) _ O
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EXAMPLE 7.8 Perform an irreversibility calculation for each device in the ideal regenerative gas turbine cycle
shown in Fig. 7-3.

® s © burmer

Exhaust - +

}

Regenerator ©) / ®
t Burmner @

Compressor [

= 1 Turbi :@—»—W
urbine out
s —

Air
Fig. 7-3

The temperatures and pressures shown in Table 7-1 are given; 4 and ¢ are found in the air tables. For each
device we will calculate the irreversibility by

_ P,
i=T, qbl—(,bz—RlnP—7 -q

except for the burner, where we assume the heat transfer to occur at T,. The irreversibilities are:
Compressor: 0
Regenerator: 0

Burner: 206.3 kJ /kg
Turbine: 0

Table 7-1
State T (K) P (MPa) h (k) /kg) ¢ (kI /kg - K)
1 294 0.1 294.2 1.682
2 439 0.41 440.7 2.086
3 759 0.41 777.5 2.661
4 1089 0.41 1148.3 2.764
5 759 0.1 7717.5 2.661
6 439 0.1 440.7 2.086

The only irreversibility is associated with the burner. This suggests that large savings are possible by
improving the performance of the burner. However, in attempting such improvement we must bear in mind that
much of the irreversibility in the burner arises out of the combustion process, which is essential for the operation
of the turbine.

Solved Problems

7.1  The intake stroke for the cylinder of an internal combustion engine may be considered as a
i transient polytropic process with exponent —0.04. The initial pressure, temperature, and
volume are 13.5 psia, 560 °R, and 0.0035 ft*. Air is supplied at 14.7 psia and 520 °R, and the
final volume and temperature are 0.025 ft? and 520 °R. Determine the reversible work and the
irreversibility associated with the intake process.

Mathcad
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Table 7-2
Initial State Final State
Inlet State of C.V. of C.V.
T, = 520°R T, = 560°R T, = 520°R
P, = 14.7 psia P, = 13.5 psia u; = 88.62 Btu/lbm
h, = 124.27 Btu/lbm u;, = 95.47 Btu/lbm ¢, = 0.5917 Btu/lbm-"R
¢, = 0.5917 Btu/Ibm-"R ¢; = 0.6095 Btu /lbm-°R Ve = 0.025 ft?
Vv, = 0.0035 ft*

At the various states either we are given, or the air tables provide, the valucs shown in Table 7-2. In
the initial state,
PV, (13.5)(144)(0.0035)
T (53.3)(560)
The final state is produced by a polytropic process, so that

AN 0.0035 |~ .
Pf:P'(Vf) =(135)("m) =14.6p51a
. = V5 _ (14.6)(144)(0.025)

! RT; h (53.3)(520)
From conservation of mass, m, = m; — m, = (190 X 10%) = (2.28 X 10™*) = 1.67 1073 Ibm. Only

boundary work is actually performed; for the polytropic process we have
_ BV BV [(14.6)(0.025) — (13.5)(0.0035)](144)

a 1-—n (1 +0.04)(778)
The reversible work is given by (7.11) (neglect KE and PE, as usual):

=2.28 x 107* Ibm

m. =

‘

=

=1.90 x 1073 Ibm

= 0.057 Btu

Wiew =miu; — Tos;)) —mp(up— Tysp) + my(hy — Tysy)
The needed values of s; and s, are obtained from the ideal-gas relation
P
=¢ ~Rln 5
R

where P, is some reference pressure. Normally, we do not have to worry about P, since when we
consider an entropy change, P, cancels. It can be shown that even for this problem it will cancel, so that
W, =m(u,— Tyd, + T,RIn P) — m,(uf = Tod; + TyRIn Pf)
+ my(hy — Ty, + TyR In P,)=0.058 Btu

and, finally, I = W,,, — W, = 0.058 — 0.057 = 0.001 Btu.

ev

A supply pump for a power plant takes in saturated water at 0.01 MPa and boosts its pressure
to 10 MPa. The pump has an adiabatic efficiency of 0.90. Calculate the irreversibility and
second-law efficiency.

At the inlet and exit states either we are given, or the steam tables provide, the values given in
Table 7-3.

Table 7-3
Inlet state 1: saturated liquid phase Exit state 2: compressed liquid phase
T =1458°C P = 10 MPa
P = 0.01 MPa
h = 191.8kJ /kg

s = 0.6491 kI /kg - K
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The actual work is

_ Wigew _ AP 10000 -10

T T T T T 0eyaom)

Then, by the first law, A, = —w, + b, = —(—11.1) + 191.8 = 202.9 kJ /kg. Using this enthalpy, we can
interpolate for the entropy from the compressed liquid table and find s, = 0.651 kJ/kg - K. As in
Example 7.2, the irreversibility is given by

i=Ty(s, —5,) = (298)(0.651 — 0.6491) = 0.57 kI /kg

—11.1kJ /kg

whence

Wyey = i + wy = 0.57 + (—11.1) = —10.5 kJ /kg o= = —=2 =095

7.3 A power plant utilizes groundwater in a secondary coolant loop. Water enters the loop at
40°F and 16 psia and exits at 80 °F and 15 psia. If the heat transfer in the loop occurs at
100 °F, what is the irreversibility?
Data are presented in Table 7-4. The heat transfer is g = A, — h; = 48.1 — 8.02 = 40.1 Btu/lbm.
The irreversibility is given by
i=Ty(s; —5,) — g = (560)(0.09332 — 0.01617) — 40.1 = 3.1 Btu/Ibm

Table 7-4
Inlet state 1: compressed liquid phase Exit state 2: compressed liquid phase
T = 40°F T=280°
P = 16 psia P = 15 psia
h = 8.02 Btu/Ibm h = 48.1 Btu/Ibm
s = 0.01617 Btu/Ibm-°R s = 0.09332 Btu/lbm-°R

7.4 A reservoir of water is perched in the hills overlooking a valley. The water is at 25°C and 100
cls kPa. If the reservoir is 1 km above the valley floor, calculate the availability of the water from
the perspective of a farmer living in the valley.
Mathcad
The inlet and exit states are identified as follows:
Inlet state 1: T =25°C P = 0.1 MPa z=1km

Dead state 2: T =25°C P = 0.1 MPa z=0km

We have assumed that the availability of the water in the reservoir is due entirely to the elevation. Then

v =g(z,—z5) = (9.8)(1 — 0) = 9.8kI/kg

7.5 A feedwater heater extracts steam from a turbine at 600 kPa and 250 °C which it combines
with 0.3 kg/s of liquid at 600 kPa and 150 °C. The exhaust is saturated liquid at 600 kPa.
Determine the second-law effectiveness of the heater.

For data, see Table 7-5. By conservation of mass, i, = i1, + ri,. Then, the first law demands
rishy = iy + righ,. Solving simultaneously for 7y and iy

i, = 0.00504 kg /s ry = 0.305 kg/s

The second-law effectiveness is e;; = W,/(W, + ¥,). Taking the dead state as liquid water at 25°C and
100 kPa, we have

hy = 105 kI /kg so = 03672kl /kg - K
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s =7.1824kJ/kg - K

= 18422kl /kg ' K

Table 7-5
Inlet state 1: Inlet state 2: Exit state 3:
superheated vapor compressed liquid saturated liquid
T =250°C T = 150°C P = 0.6 MPa
P = 0.6 MPa P = 0.6 MPa T =158.9°C
h = 2957.2 h =6322kJ/kg h = 670.6 k] /kg

s = 19316 ki /kg - K

Then

[CHAP. 7

W, = ritlh, ~ hy — Tols; — 59)] = (0.305)670.6 — 105 — 298(1.9316 — 0.3672)] = 30.33 kW
W, = ri[h — by — Tolsy — so) = (0.00504)2957.2 — 105 — 298(7.1824 — 0.3672)] = 4.14 kW
W, = rinylhy — hy — Tyls, — 5] = (0.30)632.2 — 105 — 298(1.8422 — 0.3672)] = 23.63 kW

and

3033
‘0= 314 + 2363

1.09

7.6 Consider the ideal refrigeration cycle shown in Fig. 7-4 which utilizes Freon 12. The
condenser operates at 130 psia while the evaporator operates at 20 psia. Calculate the
second-law effectiveness for the cycle.

O

1O

Condenser

The given values and the Freon 12 tables in Appendix D allow us to set up Table 7-6.

Evaporator

S~

T~

Q

L

Fig. 7-4

e 4 comp

Table 7-6
State T (°F) P (psia) h (Btu/lbm) 5 (Btu/Ibm-°R}
1 (Saturated 104.4 140 0.0651
liquid phase)
2 (Two-phase) -8.13 20
3 (Saturated -8.13 20 0.1697
vapor phase)
4 (Superheated 140
phase)

www.20file.org



www.semeng.ir

CHAP. 7 REVERSIBLE WORK, IRREVERSIBILITY, AND AVAILABILITY 147

7.7

7.8

79

7.10

7.11

7.12

7.13

7.14

7.15

Now, traversing the cycle, the enthalpy remains constant across a valve, so that h, = h; = 30.84
Btu/Ibm. State 2 is two-phase, so that
hy —h; 3215 -6.77

X< h, =k, = T6a—g677 - 0364

and
53 =84 + x(s, — 5;) = 0.0155 + (0.364)(0.1697 — 0.0155) = 0.0716 Btu/Ibm-°R

State 4 results from an isentropic compression. At P, = 140 psia and s, = 0.1697 Btu/Ibm-°R, we
interpolate to find A, = 91.24 Btu/lbm. We now calculate the second-law effectiveness for the cycle:

T,
availability produced = (1 - TQ)Q,_ = (1 - %)(30.84 —~ 76.4) = 8.46 Btu/lbm
3

work used =W, hy —hy=912~- 764 = 14.8 Btu/lbm

comp

Supplementary Problems

Steam enters a turbine at 6 MPa and 500°C and exits at 100 kPa and 150°C. Dectermine (a) the
reversible work and (b) the irreversibility of the process. Ans. (a)864.2 kJ/kg (b) 2185 ki /ke

The inlet conditions to an adiabatic steam turbine are 800 psia and 700 °F. At the exit the pressure is 30
psia and the steam has a quality of 93 percent. Determine (a) the irreversibility, (b) the reversible work,
and (¢) the adiabatic efficiency for the turbine,

Ans.  (a) 17.67 Btu/lbm (b) 257.6 Btu/Ibm (c) 85.1%

A steam turbine with an isentropic efficiency of 85 percent operates between steam pressures of 1500
and 100 psia. If the inlet stcam is at 1000 °F, determine the actual work and the second-law cfficiency of
the turbine. Ans. 259 Btu/lbm, 94.2%

What docs irreversibility imply about an adiabatic steam turbinc which operates with inlet steam at 10
MPa and 700 °C and exhausts at 0.2 MPa with a quality of 90 percent?
Ans. i= —179kJ/kg (impossible)

A designer of gas turbines claims to have developed a turbine which will take hot combustion gases
(having the propertics of air) at 80 psia and 2500 °R and exhaust at 14.7 psia and 1200 °R. What is the
minimum amount of heat transfer which must occur for this turbine to be feasible?

Ans.  —44.3 Btu/lbm

Determine the availability of water in a hot water tank at 100 kPa and 95°C. Ans. 29.8 kl /kg
What is the availability of a 2-in? ice cube at 10°F and 14.7 psia? Ans. 2.54 Btu

Ideally, which fluid can do more work: air at 600 psia and 600 °F or steam at 600 psia and 600 °F?
Ans.  Steam (471 Btu/Ibm vs. 77.3 Btu/Ibm)

A piston-cylinder system with air undergoes a polytropic compression with n = 1.1 from 75°F, 15 psia,
and 0.2 liter to 0.04 liter. Determine (a) actual work, (b) heat transfer, (¢) reversible work, and
(d) irreversibility.

Ans.  (a) —26.64 ft-Ibf (b) —0.0257 Btu (c) —25.09 ft-Ibf (d) 1.55 ft-Ibf
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7.16

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

7.26

7.27

7.28

REVERSIBLE WORK, IRREVERSIBILITY, AND AVAILABILITY [CHAP. 7

Methane gas at 800 K and 3 MPa is contained in a piston-cylinder system. The system is allowed to
expand to 0.1 MPa in a polytropic process with n = 2.3. What is the second-law efliciency of the process?
Ans.  65.0%

Argon is contained in a sealed tank of 10 liters at 400 psia and 50 °F. What is the maximum work the
argon can do on carth at 536°R? Ans. 89.4 Btu

A rigid tank initially contains 0.5 Ibm of Freon 12 as saturated liquid at 30 psia. It is then allowed to
come to equilibrium with its surroundings at 70 °F. Determine (a) the final statc of the refrigerant and
(b) the irreversibility. Ans. (a) compressed liquid (b) 0.463 Btu

Air enters a compressor at 100 kPa and 295 K and exits at 700 kPa and 530 K with 40 kJ /kg of heat
transfer to the surroundings. Determine (a) reversible work, (b) irreversibility, and (c) second-law
efficiency for the compressor. Ans. (a) —227 kI /kg (b) 48.2 kI /kg (c) 82.5%

A compressor with an adiabatic efficiency of 90 percent intakes air at 500 °R and 15 psia and exhausts at
120 psia. Determine (@) the actual work and (b) the reversible work associated with this compressor.
Ans. (a) —108.2 Btu/lbm (b) —102.3 Btu/Ibm

The evaporator for an air-conditioning system is a heat cxchanger. Freon 12 enters at 0.05 kg/s and
—20°C as saturated liquid and leaves as saturated vapor. Air enters at 34°C and leaves at 18°C. (a)
What is the mass flow rate of air? (b) What is the irreversibility rate of the evaporator.

Ans. (a)0.502 kg/s  (b) 1.449 kW

A direct contact heat exchanger serves as the condenser for a steam power plant. Steam with quality of
50 percent at 100 kPa flows into the mixing tank at 2 kg/s. Groundwater at 10°C and 100 kPa is
available to produce saturated liquid flowing out of the mixing tank. The mixing tank is well-insulated.
Determine (a) the mass flow rate of groundwater required and (b) the irreversibility rate.

Ans.  (a) 6.00 kg/s (b) 650 kW

Steam is throttled across an adiabatic valve from 250 psia and 450°F to 60 psia. Dctermine (a) the
reversible work and (b) the irreversibility. Ans.  (a) 40,800 ft-Ibf /i1bm (b) 40,800 ft-1bf /Ibm

It has been proposed to utilize a nozzle in conjunction with a wind turbinc system. Air enters the
adiabatic nozzle at 9 m/s, 300 K, and 120 kPa and exits at 100 m/s and 100 kPa. Determine (a) the
irreversibility and (&) the reversible work. Ans. (a) 1058 kJ/kg  (b) 1558 k) /kg

In the burner for a gas turbine system 0.2 Ibm /sec of air at 20 psia and 900 °R is heated to 2150°R in a
constant-pressure process while hot combustion gases (assumed to be air) are cooled from 3000 °R to
2400 °R. What is the irreversibility rate of this process? Ans. 11.3 Btu/sec

Saturated water enters an adiabatic pump at 10 kPa and exits at 1 MPa. If the pump has an adiabatic
efficiency of 95 percent, determine (a) the reversible work and (b) the second-law efficiency.
Ans.  (a) —0.105 k] /kg (b) 10.0%

The pressurc of water is increased, by the use of a pump, from 14 to 40 psia. A rise in the water
temperature from 60 °F to 60.1°F is observed. Determine (a) the irreversibility, (b) the reversible work,
and (¢) the adiabatic efficiency of the pump. Ans. (a) 80.2 ft-1bf /Ibm (b) —57.6 ft-lbf /Ibm
(c)43.5%

Alr at 2200 °R and 40 psia enters a gas turbine with an adiabatic efficiency of 75 percent and exhausts at
14.7 psia. Determine (a) the availability of the exhaust air and (b) the reversible work.
Ans.  (a) 168 Btu/lbm (b) 109 Btu/lbm
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Chapter 8

Power and Refrigeration Vapor Cycles

8.1 INTRODUCTION

The ideal Carnot cycle is used as a model to compare all real and all other ideal cycles against.
The efficiency of a Carnot power cycle is the maximum possible for any power cycle; it is given by
TL

77=1—TH

(8.1)

Note that the efficiency is increased by raising the temperature 7,, at which heat is added or by
lowering the temperature 7, at which heat is rejected. We will observe that this carries over to real
cycles: the cycle efficiency can be maximized by using the highest maximum temperature and the
lowest minimum temperature.

We will first discuss vapor cycles that are used to generate power, then vapor cycles that are used
to refrigerate or heat a space. Chapter 9 will examine gas cycles with both power and refrigeration
applications.

8.2 THE RANKINE CYCLE

The first class of power cycles that we consider are those utilized by the electric power generating
industry, namely, power cycles that operate in such a way that the working fluid changes phase from a
liquid to a vapor. The simplest vapor power cycle is called the Rankine cycle, shown schematically in
Fig. 8-1a. A major feature of such a cycle is that the pump requires very little work to deliver
high-pressure water to the boiler. A possible disadvantage is that the expansion process in the turbine
usually enters the quality region, resulting in the formation of liquid droplets that may damage the
turbine blades.

The Rankine cycle is an idealized cycle in which losses in each of the four components are
neglected. The losses usually are quite small and will be neglected completely in our initial analysis.
The Rankine cycle is composed of the four ideal processes shown on the T-s diagram in Fig. 8-1b:

1-2 Isentropic compression in a pump

23 Constant-pressure heat addition in a boiler
34 Isentropic expansion in a turbine

4 - 1: Constant-pressure heat extraction in a condenser

If we neglect kinetic energy and potential energy changes, the net work output is the area under the
T-s diagram, represented by area 1-2-3-4-1; this is true since the first law requires that W, = Q...
The heat transfer to the working substance is represented by area a-2-3-b-a. Thus, the thermal
efficiency 7 of the Rankine cycle is

area 1-2-3-4-1

" = area a-2-3-b-a (8.2)

that is, the desired output divided by the energy input (the purchased energy). Obviously, the thermal
efficiency can be improved by increasing the numerator or by decreasing the denominator. This can be
done by increasing the pump outlet pressure P,, increasing the boiler outlet temperature 75, or
decreasing the turbine outlet pressure P,.

Note that the efficiency of the Rankine cycle is less than that of a Carnot cycle operating between
the high temperature T; and the low temperature 7, since most of the heat transfer from a
high-temperature reservoir occurs across large temperature differences.

149
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\QB High-pressure @

vapor : T
ma=tl 1~2 pump
@ 2—3 boiler
High-pressure 3—=4 turbine

water @ Low-pressure @ 4~1 condenser

Low-pressure
~1® ®

water '
)
i
)
1
b

W,,/Pump

(a) The Major Components (h) The T-s diagram
Fig. 8-1

I

It is possible for the efficiency of a Rankine cycle to be equal to that of a Carnot cycle if the cycle
is designed to operate as shown in Fig. 8-2a. However, the pump would be required to pump a mixture
of liquid and vapor, a rather difficult and work-consuming task compared to pumping all liquid. In
addition, the condensation of liquid droplets in the turbine would result in severe damage. To avoid
the damage from droplets, one could propose superheating the steam at constant temperature, as
shown in Fig. 8-2b. This, however, requires that the pressure for the constant-temperature super-
heated portion of the process decrease from the saturated vapor point to state 3. To achieve such a
decrease, the flow in the boiler pipes would have to be accelerated, a task that would require pipes of
decreasing diameter. This would be expensive, should it even be attempted. Thus it is proposed that
P, and T, be quite large (T; being limited by the temperature-resistance characteristics of the pipe
metal, typically about 600 °C). (See Fig. 8-2¢). It is also proposed that the condenser outlet pressure
be very low (it can be quite close to absolute zero). This would, however, result in state 4 being in the
quality region (a quality of 90 percent is too low) causing water droplets to form. To avoid this
problem it is necessary to reheat the steam, as will be discussed in the following section.

{a} (h ()

Fig. 8-2

By Section 4.8 and Fig. 8-1b,
qg =hy — h, we=0,(P, — P)) 4c = hy — h wp=hy — h, (8.3)

where w, and g, are expressed as positive quantities. In terms of the above, the thermal efficiency is

Wr — Wp

= T (8.4)

The pump work is usually quite small, however, compared to the turbine work and can most often be
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neglected. With this approximation there results

wr

4

This is the relation used for the thermal efficiency of the Rankine cycle.

n= (8.5)

Zix EXAMPLE 8.1 A steam power plant is proposed to operate between the pressures of 10 kPa and 2 MPa with a
maximum temperature of 400 °C, as shown in Fig. 8-3. What is the maximum efficiency possible from the power

Math
2 cyele?

T ®

Saturated liquid A Superheat

hy =h;= 191.8KkJ / kg hy = 3248kl /kg
/ s3 = 7.1279kJ /kg - K
@

/é) 10 kPa \@\

Fig. 8-3

Let us include the pump work in the calculation and show that it is negligible. Also, we will assume a unit
mass of working fluid since we are only interested in the efficiency. The pump work is [see (4.71) with v = 1/p]

wp = 0,(P, — P)) = (0.001)(2000 — 10) = 1.99k] /kg
Using (4.67) we find that h, = h; + w,, = 191.8 + 1.99 = 194 kJ/ kg. The heat input is found using gz = A5 —
h, = 3248 — 194 = 3054 kJ/ kg. To locate state 4 we recognize that 5, = s; = 7.1279. Hence,
4= Sp+ X4S5, - 7.1279 = 0.6491 + 7.5019x,
giving the quality of state 4 as x, = 0.8636. This allows us to find #, to be
h, = 192 + (0.8636)(2393) = 2259kJ /kg
The work output from the turbine is
wy=hy — h, = 3248 — 2259 = 989kl / kg
Consequently, the efficiency is
wr—Wwp 989 — 2
=Ty, T 3054
Obviously, the work required in the pumping process is negligible, being only 0.2 percent of the turbine work.
In engineering applications we often neglect quantities that have an influence of less than 3 percent, since

invariably there is some quantity in the calculations that is known to only +3 percent; for example, the mass flux,
the dimensions of a pipe, or the density of the fluid.

= 0.3232 or 32.32%

8.3 RANKINE CYCLE EFFICIENCY

The efficiency of the Rankine cycle can be improved by increasing the boiler pressure while
maintaining the maximum temperature and the minimum pressure. The net increase in work output is
the crosshatched area minus the dotted area of Fig. 8-4a, a relatively small change; the added heat,
however, decreases by the dotted area minus the crosshatched area of Fig. 8-4b. This is obviously a
significant decrease, and it leads to a significant increase in efficiency. Example 8.2 illustrates this
effect. The disadvantage of raising the boiler pressure is that the quality of the steam exiting the
turbine may become too low (less than 90 percent), resulting in severe water droplet damage to the
turbine blades and impaired turbine efficiency.
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@1®

(a) (b)

Fig. 8-4

Increasing the maximum temperature also results in an improvement in thermal efficiency of the
Rankine cycle. In Fig. 8-5a the net work is increased by the crosshatched area and the heat input is
increased by the sum of the crosshatched area and the dotted area, a smaller percentage increase than
the work increase. Since the numerator of (8.5) realizes a larger percentage increase than the
denominator, there will be a resulting increase in efficiency. This will be illustrated in Exampie 8.3. Of
course, metallurgical considerations limit the maximum temperature which can be attained in the
boiler. Temperatures up to about 600°C are allowable. Another advantage of raising the boiler
temperature is that the quality of state 4 is obviously increased; this reduces water droplet formation
in the turbine.

A decrease in condenser pressure, illustrated in Fig. 8-5b, will also result in increased Rankine
cycle efficiency. The net work will increase a significant amount, represented by the crosshatched area,
and the heat input will increase a slight amount because state 1 will move to a slightly lower entropy
than that of state 1; this will result in an increase in the Rankine cycle efficiency. The low pressure is
limited by the heat transfer process that occurs in the condenser, The heat is rejected by transferring
heat to cooling water or to air which enters the condenser at about 20 °C; the heat transfer process
requires a temperature differential between the cooling water and the steam of at least 10 °C. Hence,
a temperature of at least 30 °C is required in the condenser; this corresponds to a minimum condenser
pressure (see the saturated steam tables) of approximately 4 kPa abs. This is, of course, dependent on
the temperature of the cooling and the temperature differential required in the heat exchanger.

®

JLLI T e

@

/@

(a) (b)
Fig. 8-5
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EXAMPLE 8.2 Increase the boiler pressure of Example 8.1 to 4 MPa while maintaining the maximum
temperature and the minimum pressure. Calculate the percentage increase in the thermal efficiency.

Neglecting the work of the pump, the enthalpy h, remains unchanged: h, = 192 kJ/ kg. At 400°C and 4
MPa the enthalpy and entropy are s, = 6.7698 kJ/ kg - K and 4; = 3214 k] /kg. State 4 is in the quality region.
Using s, = 5, the quality is found to be

‘= 547 5r  6.7698 — 0.6491
T Ty, 7.5019
Observe that the moisture content has increased to 18.4 percent, an undesirable result. The enthalpy of state 4 is

then

= 0.8159

hy=h;+x,hp = 192 + (0.8159)(2393) = 2144k /kg
The heat addition is gg = hy — h, = 3214 — 192 = 3022 kJ/ kg and the turbine work output is
wr=hy— h, = 3214 — 2144 = 1070 k] / kg
Finally, the thermal efficiency is

1070
= 3022

The percentage increase in efficiency from that of Example 8.1 is
0.3541 — 0.3232

0.3232

= 0.3541

)(100) = 9.55%

% increase = (

EXAMPLE 8.3 Increase the maximum temperature in the cycle of Example 8.1 to 600 °C, while maintaining the
boiler pressure and condenser pressure, and determine the percentage increase in thermal efficiency.

At 600°C and 2 MPa the enthalpy and entropy are h; = 3690 kJ/ kg and s; = 7.7032 kJ/ kg - K. State 4
remains in the quality region and, using s, = 53, we have

_7.7032 - 0.6491

X4 = —750W—. = 0.9403

Note here that the moisture content has been decreased to 6.0 percent, a desirable result. The enthalpy of state 4
is now found to be h, = 192 + (9.9403X2393) = 2442 kJ /kg. This allows us to calculate the thermal efficiency as
wr  hy—hy, 3690 — 2442

M= gy TR, =k, 3690 =192 - 0-3368

where h, is taken from Example 8.1. The percentage increase is

0.3568 — 0.3232
0.3232

In addition to a significant increase in cfficiency, note that the quality of the steam exiting the turbine exceeds

90%, an improved value.

% increase = ( )(100) = 10.4%

EXAMPLE 8.4 Decrease the condenser pressure of Example 8.1 to 4 kPa while maintaining the boiler pressure
and maximum temperature, and determine the percentage increase in thermal efficiency.

The enthalpies h, = 192 kJ/ kg and h; = 3248 kJ/kg remain as stated in Example 8.1. Using s, = s, =
7.1279, with P, = 4 kPa, we find the quality to be

S¢ = Sy 71279 - 0.4225

= S = g = 0837

Note that the moisture content of 16.7 percent is quite high. The enthalpy of state 4 is h, = 121
+(0.8327X2433) = 2147 kJ / kg. The thermal efficiency is then
hy —h, 3248 — 2147

M= R, Tk, - 3u8 =197 -~ 0-3603

The percentage increase is found to be
0.3603 — 0.3232

= 11.
0.3232 )(100) 1.5%

% increase = (
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8.4 THE REHEAT CYCLE

It is apparent from the previous section that when operating a Rankine cycle with a high boiler
pressure or a low condenser pressure it is difficult to prevent liquid droplets from forming in the
low-pressure portion of the turbine. Since most metals cannot withstand temperatures above about
600 °C, the reheat cycle is often used to prevent liquid droplet formation: the steam passing through
the turbine is reheated at some intermediate pressure, thereby raising the temperature to state S in
the T-s diagram of Fig. 8-6. The steam then passes through the low-pressure section of the turbine and
enters the condenser at state 6. This controls or completely eliminates the moisture problem in the
turbine. Often the turbine is separated into a high-pressure turbine and a low-pressure turbine. The
reheat cycle does not significantly influence the thermal efficiency of the cycle, but it does result in a
significant additional work output, represented in the figure by area 4-5-6-4'-4. The reheat cycle
demands a significant investment in additional equipment, and the use of such equipment must be
economically justified by the increased work output.

@1 1®

@ Turbine T

®

®©
L~
@

S)
®

Fig. 8-6

EXAMPLE 8.5 High-pressure steam enters a turbine at 600 psia and 1000 °F. It is reheated at a pressure of 40
psia to 600 °F and then expanded to 2 psia. Determine the cycle efficiency. See Fig. 8-6.

At 2 psia saturated water has an enthalpy of (refer to Table C-2E) &, = h, = 94 Btu/lbm. From Table C-3E
we find A; = 1518 Btu/lbm and s; = 1.716 Btu/lbm-°R. Setting s, = 5, we interpolate, obtaining

hy = (%)(1217 - 1197) + 1197 = 1200 Btu/Ibm
At 40 psia and 600 °F we have

hs = 1333 Btu/lbm and ss = 1.862 Btu/lbm- °R
In the quality region use s, = 55 and find

_1.862 - 0.175
to = 1.745

Thus, by = 94 + (0.9668X1022) = 1082 Btu/lbm. The energy input and output are
ay = (hs — hy) + (hy — hy) = 1333 — 1200 + 1518 — 94 = 1557 Btu/Ibm
wy = (hs — hg) + (hy — hy) = 1333 — 1082 + 1518 — 1200 = 569 Btu/lbm

The thermal efficiency is then calculated to be

= 0.9668

n =L == =0365 or 36.5%

8.5 THE REGENERATIVE CYCLE

In the conventional Rankine cycle, as well as in the reheat cycle, a considerable percentage of the
total energy input is used to heat the high-pressure water from 7, to its saturation temperature. The
crosshatched area in Fig. 8-7a represents this necessary energy. To reduce this energy, the water could
be preheated before it enters the boiler by intercepting some of the steam as it expands in the turbine
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(for example, at state 5 of Fig. 8-7b) and mixing it with the water as it exits the first of the pumps,
thereby preheating the water from T, to T,. This would avoid the necessity of condensing all the
steam, thereby reducing the amount of energy lost from the condenser. (Note that the use of cooling
towers would allow smaller towers for a given energy output.) A cycle which utilizes this type of
heating is a regenerative cycle, and the process is referred to as regeneration. A schematic representa-
tion of the major elements of such a cycle is shown in Fig. 8-8. The water entering the boiler is often
referred to as feedwater, and the device used to mix the extracted steam and the condenser water is
called a feedwater heater. When the condensate is mixed directly with the steam, it is done so in an
open feedwater heater, as sketched in Fig. 8-8.

©

Boiler

Turbine

@

@ Open feedwater
heater

————
my @_(_ e
Feedwater - Condenser
pump

Condensate
pump

Fig. 8-8

In analyzing a regenerative cycle we must consider a control volume surrounding the feedwater
heater, see Fig. 8-9. A mass balance would result in

the = rits + 1, (8.6)

An energy balance, assuming an insulated heater, neglecting kinetic and potential energy changes,
gives

mghg = mshg + myh, (8.7)
Combining the above two equations gives

(8.8)
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A closed feedwater heater, which can be designed into a system using only one main pump, is also
a possibility. Figure 8-10 is a schematic diagram of a system using a closed feedwater heater. The
disadvantages of such a system are that it is more expensive and its heat transfer characteristics are
not as desirable as heat transfer in which the steam and water are simply mixed, as in the open heater.
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@
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Fig. 8-10

The closed feedwater heater is a heat exchanger in which the water passes through in tubes and
the steam surrounds the tubes, condensing on the outer surfaces. The condensate thus formed, at
temperature T, is pumped with a small condensate pump into the main feedwater line, as shown, or it
passes through a trap (a device that permits only liquid to pass through) and is fed back to the
condenser or back to a lower-pressure feedwater heater. A mass and energy balance are also required
when analyzing a closed feedwater heater; if pump energy requirement is neglected in the analysis, the
same relationship [see (8.8)] results.

The pressure at which the steam should be extracted from the turbine is approximated as follows.
For one heater the steam should be extracted at the point that allows the exiting feedwater
temperature 7, to be midway between the saturated steam temperature in the boiler and the
condenser temperature. For several heaters the temperature difference should be divided as equally
as possible.

Obviously, if one feedwater heater improves thermal efficiency, two should improve it more. This
is, in fact, true, but two heaters cost more initially and are more expensive to maintain. With a large
number of heaters it is possible to approach the Carnot efficiency but at an unjustifiably high cost.
Small power plants may have two heaters; large power plants, as many as six.

The regenerative cycle is afflicted by the moisture problem in the low-pressure portions of the
turbine; hence, it is not uncommon to combine a reheat cycle and a regenerative cycle, thereby
avoiding the moisture problem and increasing the thermal efficiency. A possible combination cycle is
shown in Fig. 8-11. Ideal efficiencies significantly higher than for nonregenerative cycles can be
realized with this combination cycle.
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A final word about efficiency. We calculate the efficiency of a cycle using the turbine work output
as the desired output and consider the rejected heat from the condenser as lost energy. There are
special situations where a power plant can be located strategically so that the rejected steam can be
utilized to heat or cool buildings or the steam can be used in various industrial processes. This is often
referred to as cogeneration. Often one-half of the rejected heat can be effectively used, almost
doubling the “efficiency” of a power plant. Steam or hot water cannot be transported very far; thus,
the power plant must be located very close to an industrial area or a densely populated area. A college
campus is an obvious candidate for cogeneration, as are most large industrial concerns.

EXAMPLE 8.6 The high-temperature situation of Example 8.3 is to be modified by inserting an open feedwater
heater such that the extraction pressure is 200 kPa. Determine the percentage increase in thermal efficiency.
Refer to the T-s diagram of Fig. 8-7b and to Fig. 8-8. We have from Example 8.3 and the steam tables

h,=h,=192kJ/kg hg = hy = 505kJ /kg hy = 3690 kJ/kg h, = 2442kl /kg
Now, locate state 5. Using s5 = 5, = 7.7032 kJ /kg - K, we interpolate and find, at 200 kPa,

n. < (71:7032 - 7.5074
5= ( 7.7094 — 7.5074

We now apply conservation of mass and the first law to a control volume surrounding the feedwater heater. We
have, using m, = 1 kg, since we are only interested in efficiency [see (8.8)),

505 - 192
Ms = 7068 — 192

The work output from the turbine is
r=h;—hs+ (hs — hy)m, = 3690 — 2968 + (2968 — 2442)(0.8872) = 1189 kJ /kg

)(2971 — 2870) + 2870 = 2968 kJ /kg

= 0.1128 kg and m, = 0.8872 kg
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The energy input to the boiler is g5 = hy — h, = 3690 — 505 = 3185 kJ/ kg. The thermal efficiency is calculated
to be

1189
n= ?1—85_ = 0.3733
The increase in efficiency is
0.3733 — 0.3568
% increase = _-0—3568— (]00) = 4.62%

EXAMPLE 8.7 An open fecdwater heater is added to the reheat cycle of Example 8.5, Steam is extracted where
the reheater interrupts the turbine flow. Determine the efficiency of this reheat-regeneration cycle.
A T-s diagram (Fig. 8-12a) is sketched to aid in the calculations. From the steam tables or from Example 8.5,
h, = h, = 94 Btu/lbm hy = h, = 236 Btu/Ibm hy = 1518 Btu /1bm
hs = 1333 Btu/lbm h, = 1082 Btu /lbm h, = 1200 Btu /lbm
Continuity and the first law applicd to the heater give [see (8.8))
he —hy, 236 — 94
my = h:‘ —h, = T200= 93 ~ 0.1281bm  and  m, = 0.872lbm
The turbine work output is then
wy=hy—hy+ (he = hg)m, = 1518 — 1200 + (1333 — 1082)(0.872) = 537 Btu/Ibm
The cnergy input is gz = hy — hy = 1518 — 236 + (1333 — 1200X0.872) = 1398 Btu/lbm. The efficiency is
calculated to be

537
7= 1398

Note the significant improvement in cycle efficiency. (5.2%)

= 0.384 or 38.4%

l—nz4
g =1

——] Heater l— 1,

(a) (h)

Fig. 8-12

8.6 THE SUPERCRITICAL RANKINE CYCLE

The Rankine cycle and variations of the Rankine cycle presented thus far have involved heat
addition during the vaporization process; this heat transfer process occurs at a relatively low
temperature, say 250°C, at a pressure of 4 MPa, yet the hot gases surrounding the boiler after
combustion are around 2500°C. This large temperature difference makes the heat transfer process
quite irreversible; recall that to approach reversibility the heat transfer process must occur over a
small temperature difference. Hence, to improve the plant efficiency it is desirable to increase the
temperature at which the heat transfer takes place. This will, of course, also improve the cycle
efficiency since the area representing work will be increased. To get closer to the Carnot cycle
efficiency, the temperature of the working fluid should be as near the temperature of the hot gases as
possible. The supercritical Rankin cycle accomplishes this, as sketched on the 7-s diagram in Fig.
8-13a. Note that the quality region is never entered during the heat-addition process. At these high
pressures the pipes and associated fluid handling equipment must be quite massive, capable of
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resisting the large pressure forces. The added cost of this more massive structure must be justified by
the increase in efficiency and power output.

If the high-pressure superheated steam is expanded isentropically (insulated and without losses)
through the turbine to a rclatively low condenser pressure, it is obvious that a Rankine cycle will result
in too high a moisture content in the low-pressure portion of the turbine. To eliminate this problem
two reheat stages may be employed, and to maximize the cycle efficiency several regenerative stages
may be utilized. Figure 8-13b shows six regenerative stages and two reheat stages. Example 8.8
illustrates a cycle with two reheat and two regenerative stages.

T ®

30 MPa

or®

(a) ]

Fig. 8-13

£ix  EXAMPLE 8.8 A supercritical reheat-regeneration cycle is proposed to operate as shown in the 7-s diagram in
Fig. 8-14, with two rcheat stages and two open feedwater heaters. Determine the maximum possible cycle

Vathead efficicncy.
The enthalpics are found from the stcam tables to be
h, =h,=192kl/ kg hy=hs=1087kJ/kg hy = 3674 k) / ke
hy =305 =kJ/kg h, = 3444 kI / kg h,, =3174kI/ kg
6.2339 — 6.0709
$, = 8, = 6.2339 117(m (2961 — 2801) + 2801 = 2891 kJ /kg $y = §y = 7.3696

7.3696 — 7.2803

7.5074 — 7.2803

8.0636 — 0.6491
nxpy = e = 09883k, = 192 + (0.9883)(2393) = 2557k /kg

Next, we apply the first law to cach of the two heaters. Assume that 1 = 1 kg /s. The other mass fluxes are
shown on the T-s diagram in Fig. 8-15. We find, from the first law applied to the high-pressurc heater,

hs —hy 1087 —
hy = hymy + (1 — my)h, St = hj — hz = 2ggz - 282 =0.2439kg /s

)(2870 —2769) + 2769 = 2809kJ/kg 5,0 = $,, = 8.0636

From the first law applicd to the low-pressure heater, we find
(1 —my)hy = mghy + (1 =~y = rg) hy
I —m;Yhy — hy + nigh, 1 — 0.2439)(505) — 192 + (0.2439)(192
oy = ( s 7 he ks ( YO0 ( )(1%2) = 0.0904 kg /s
hy — h, 2809 — 192
The power from the turbine is calculated to be
Wy = (1)(hy = hy) + (1= rig)(hy = hy) + (1 =ity — a0y (hyy — hy))
= 3444 — 2891 + (0.7561)(3674 — 2809) + (0.6657)(3174 — 2557) = 1609 kW
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T
T, = Ty =600 °C1

Typ= 350 °C

Fig. 8-14 Fig. 8-15

The boiler energy input is

Op = (1)(he — hs) + (1 = rity)(hy — hy) + (1 = iy ~ mig)(hy — hy)
= 3444 — 1087 + (0.7561)(3674 — 2891) + (0.6657)(3174 — 2809) = 3192 kW
The cycle efficiency is fairly high at

1609

7= 3192

This higher efficiency results from the extremely high pressure of 30 MPa during the heat addition process. The

associated savings must justify the increased costs of the massive equipment needed in a high-pressure system.

Note: the fact that state 11 is in the quality region is not of concern since x,, is quite close to unity. As the next

section demonstrates, losses will increase the entropy of state 11, with the resuit that state 11 will actually be in
the superheated region.

= 0.504 or 50.4%

8.7 EFFECT OF LOSSES ON POWER CYCLE EFFICIENCY

The preceding sections dealt with ideal cycles assuming no pressure drop through the pipes in the
boiler, no losses as the superheated steam passes over the blades in the turbine, no subcooling of
the water leaving the condenser, and no pump losses during the compression process. The losses in
the combustion process and the inefficiencies in the subsequent heat transfer to the fluid in the pipes
of the boiler are not included here; those losses, which are in the neighborhood of 15 percent of the
input energy in the coal or oil, would be included in the overall plant efficiency.

There is actually only one substantial loss that must be accounted for when we calculate the actual
cycle efficiency: the loss that occurs when the steam is expanded through the rows of turbine blades in
the turbine. As the steam passes over a turbine blade, there is friction on the blade and the steam may
separate from the rear portion of the blade. In addition, heat transfer from the turbine may occur,
although this is usually quite small. These losses result in a turbine efficiency of 80 to 89 percent.

Turbine efficiency is defined as
wa
nr= 1w (8.9)
where w, is the actual work and w, is the isentropic work.
The definition of pump efficiency, with pump work taken into account, is
w
mp= ot (8.10)

W,

where the isentropic work input is obviously less than the actual input.
There is a substantial loss in pressure, probably 10 to 20 percent, as the fluid flows from the pump
exit through the boiler to the turbine inlet. The loss can be overcome by simply increasing the exit
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pressure from the pump. This does require more pump work, but the pump work is still less than 1
percent of the turbine output and is thus negligible. Consequently, we ignore the boiler pipe losses.

The condenser can be designed to operate such that the exiting water is very close to the
saturated liquid condition. This will minimize the condenser losses so that they can also be neglected.
The resulting actual Rankine cycle is shown on the T-s diagram in Fig. 8-16; the only significant loss is
the turbine loss. Note the increase in entropy of state 4 as compared to state 3. Also, note the

desirable effect of the decreased moisture content of state 4; in fact, state 4 may even move into the
superheated region, as shown.
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Fig. 8-16

iy EXAMPLE 8.9 A Rankine cycle operates between pressures of 2 MPa and 10 kPa with a maximum temperature

. of 600°C. If the insulated turbine has an efficiency of 80 percent, calculate the cycle efficiency and the
o temperature of steam at the turbine outlet.

From the steam tables we find h, = h, = 192 kJ /kg, h; = 3690 kJ /kg, and s; = 7.7032 kJ /kg - K. Setting
sy = 55 we find the quality and enthalpy of state 4’ (see Fig. 8-16) to be

Xg= w = 0.9403 o hy =192 + (0.9403)(2393) = 2442 kI /kg
From the definition of turbine efficiency,

w, _
0.8 = 3550 — 2343 Wo = P8kl /ke
The cycle efficiency is then

we 998

Note the substantial reduction from the ideal cycle efficiency of 35.7 percent as calculated in Example 8.3.

If we neglect kinetic and potential energy changes, the adiabatic process from state 3 to state 4 allows us to
write

w, =hy— h, 998 = 3690 — A, h, = 2692 k] /kg
At 10 kPa we find that statc 4 is in the superheated region. The temperature is interpolated to be

2692 — 2688
T,= | ———— ) (150-100) + 100 = 102 °C
2783 - 2688

Obviously, the moisture problem has been eliminated by the losses in the turbine; the losses tend to act as a small
reheater.

8.8 THE VAPOR REFRIGERATION CYCLE

It is possible to extract heat from a space by operating a vapor cycle, similar to the Rankine cycle,
in reverse. Work input is, of course, required in the operation of such a cycle, as shown in Fig. 8-17a.
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The work is input by a compressor that increases the pressure, and thereby the temperature, through
an isentropic compression process in the ideal cycle. The working fluid (often Freon 12) then enters a
condenser in which heat is extracted, resulting in saturated liquid. The pressure is then reduced in an
expansion process so that the fluid can be evaporated with the addition of heat from the refrigerated
space.

The most efficient cycle, a Carnot cycle, is shown in Fig. 8-17b. There are, however, two major
drawbacks when an attempt is made to put such a cycle into actual operation. First, it is not advisable
to compress the mixture of liquid and vapor as represented by state 1 in Fig. 8-17b since the liquid
droplets would cause excessive wear; in addition, equilibrium between the liquid phase and the vapor
phase is difficult to maintain in such a process. Hence, in the ideal refrigeration cycle a saturated
vapor state is assumed at the end of the evaporation process; this allows superheated vapor to exist in
the compressor, as shown by process 1-2 in Fig. 8-17¢. Second, it would be quite expensive to construct
a device to be used in the expansion process that would be nearly isentropic (no losses allowed). It is
much simpler to reduce the pressure irreversibly by using an expansion valve which employs a
throttling process in which enthalpy remains constant, as shown by the dotted line in Fig. 8-17¢. Even
though this expansion process is characterized by losses, it is considered to be part of the “ideal”
vapor refrigeration cycle. Because the expansion process is a nonequilibrium process, the area under
the T-s diagram does not represent the net work input.

The performance of the refrigeration cycle, when used as a refrigerator, is measured by

Q.

COp = =in 8.11
w. (8.11)

m

www.20file.org



www.semeng.ir

CHAP. 8] POWER AND REFRIGERATION VAPOR CYCLES 163

When the cycle is used as a heat pump, the performance is measured by

cop = Lou (8.12)

in

We do not calculate the efficiency of a refrigeration cycle since the efficiency is not of particular
interest. What is of interest is the ratio of the output energy to the input energy. The coefficient of
performance can attain values of perhaps 5 for properly designed heat pumps and 4 for refrigerators.
The condensation and evaporation temperatures, and hence the pressures, are established by the
particular situation that motivates the design of the refrigeration unit. For example, in a home
refrigerator that is designed to cool the freezer space to —18°C (0°F) it is necessary to design the
evaporator to operate at approximately —25°C to allow for effective heat transfer between the space
and the cooling coils. The refrigerant condenses by transferring heat to air maintained at about 20 °C;
consequently, to allow for effective heat transfer from the coils that transport the refrigerant, the
refrigerant must be maintained at a temperature of at least 28 °C. This is shown in Fig. 8-18.

AT — temperature differential
necessary for effective
heat transfer

or exterior air

Temperature of
cooled space

Fig. 8-18

To accomplish refrigeration for most spaces, it is necessary that the evaporation temperature be
quite low, in the neighborhood of —25°C, perhaps. This, of course, rules out water as a possible
refrigerant. Two common refrigerants in use today are ammonia (NH ;) and Freon 12 (CCl,F,). The
thermodynamic properties of Freon 12 are presented in Appendix D; of ammonia, in Appendix E.
The selection of a refrigerant depends on the two design temperatures shown in Fig. 8-18. For
example, temperatures well below —100°C are required to liquefy many gases. Obviously, neither
ammonia nor Freon 12 may be used at such low temperatures since they do not exist in a liquid form
below -—100°C. Also, it is desirable to operate a refrigeration cycle such that the low pressure is
above atmospheric pressure, thereby avoiding air contamination should a leak occur. In addition, for
most applications the refrigerant must be nontoxic, stable, and relatively inexpensive.

Deviations from the ideal vapor refrigeration cycle are shown on the 7-s diagram of Fig. 8-19b.
These include:

Pressure drops due to friction in connecting pipes.

Heat transfer occurs from or to the refrigerant through the pipes connecting the components.
Pressure drops occur through the condenser and evaporator tubes.

Heat transfer occurs from the compressor.

Frictional effects and flow separation occur on the compressor blades.

The vapor entering the compressor may be slightly superheated.

The temperature of the liquid exiting the condenser may be below the saturation temperature.
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(@) b
Fig. 8-19

Some of these effects are small and can be neglected, depending on the location of the
components and whether the components and pipes are insulated. Also, not all of the effects are
undesirable; the subcooling of the condensate in the condenser allows state 4 in Fig. 8-17¢ to move to
the left, thereby increasing the refrigerant effect. Example 8.11 illustrates the difference between an
ideal refrigeration cycle and an actual refrigeration cycle,

A “ton” of refrigeration is supposedly the heat rate necessary to melt a ton of ice in 24 hours. By
definition, 1 ton of refrigeration equals 3.52 kW (12,000 Btu /hr).

i+

Mathcae EXAMPLE 8.10 Freon 12 is used in an ideal vapor refrigeration cycle operating between saturation tempera-
tures of —20°C in the evaporator and 41.64°C in the condenser. Calculate the rate of refrigeration, the
coefficient of performance, and the rating in horsepower per ton if the refrigerant flows at 0.6 kg/s. Also,
determine the coeflicient of performance if the cycle is operated as a heat pump.

The T-s diagram in Fig. 8-20 is drawn as an aid in the solution. The enthalpy of each state is needed. From
Appendix D we find that &, = 178.6 kJ /kg, hy = h, = 76.3 kI /kg, and s, = 0.7082 kJ /kg - K. Using s, = s5,, we
interpolate at a pressure of 1.0 MPa, which is the pressure associated with the saturation temperature of 41.64 °C,
and find that

hy = (%%3—22—:—3%)(217.8 - 210.2) + 210.2 = 212.2 kJ /kg

The rate of refrigeration is measured by the heat transfer rate needed in the evaporation process, namely,

Qg = rir(hy — h,) = (0.6)(178.6 — 76.3) = 61.4 kW

Fig. 8-20
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The power needed to operate the compressor is
W, = m(hy — h;) = (0.6)(212.2 — 178.6) = 20.2 kW
The coefficient of performance is then calculated to be COP = 61.4,/20.2 = 3.04.
The horsepower per ton of refrigeration is determined, with the appropriate conversion of units, as follows:
Hp/ton = 2601'?4//03..75426
If the above cycle were operated as a heat pump, the coefficient of performance would be

hy—hy, 2122763
COP = 3 —%, = 12217856

= 1.55

= 4.04

Obviously, the COP for a heat pump is greater than the COP for a refrigerator, since Qom must always be greater
than Q. Note, however, that the heat pump in this problem heats the space with 4 times the energy input to the

device.

EXAMPLE 8.11 The ideal refrigeration cycle of Example 8.10 is used in the operation of an actual refrigerator.
It experiences the following real effects:

The refrigerant leaving the evaporator is superheated to —10°C.

The refrigerant leaving the condenser is subcooled to 40 °C.

The compressor is 80 percent efficient.

Calculate the actual rate of refrigeration and the coefficient of performance.
From Appendix D we find, using 75 = 40°C, that A, = h, = 74.5 kJ /kg. Also, from Table D-1 we
observe that P, = 0.15 MPa. From Table D-3, at P, = 0.15 MPa and T; = —10 °C,

h, = 185 k1 /kg 5, =0732kl/kg - K
If the compressor were isentropic, then, with s, = 5, and P, = 1.0 MPa,

e~ ( 0.732 — 0.7254
2=\ 0.7476 — 0.7254

From the definition of efficiency, n = w,/w,, we have

hy —h, 220 — 185
vy i 7, — 185 ~ohy, = 229kJ /kg
The rate of refrigeration is QE = (0.6X185 — 74.5) = 66.3 kW. Note that the real effects have actually
increased the capability to refrigerate a space. The coefficient of performance becomes

66.3
COP = 620 = 185) ~ 2!

The decrease in the COP occurs because the power input to the compressor has increased substan-
tially.

)(225.3 — 217.8) + 218 = 220 kJ /kg

0.8

8.9 THE MULTISTAGE VAPOR REFRIGERATION CYCLE

In Example 8.11 the subcooling of the condensate leaving the condenser resulted in increased
refrigeration. Subcooling is an important consideration in designing a refrigeration system. It can be
accomplished either by designing a larger condenser or by designing a heat exchanger that uses the
refrigerant from the evaporator as the coolant.

Another technique that can result in increased refrigeration is to place two refrigeration cycles in
series (a two-stage cycle), operating as shown in Fig. 8-214; the increased refrigeration is shown in Fig.
8-21b. This two-stage cycle has the added advantage that the power required to compress the
refrigerant is substantially reduced. Note that the high-temperature refrigerant leaving the low-
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pressure stage compressor is used to evaporate the refrigerant in the high-pressure stage. This
requires a heat exchanger, and, of course, two expansion valves and two compressors. The additional
costs of this added equipment must be justified by improved performance. For extremely low
refrigeration temperatures several stages may be justified.

The optimal value for the intermediate pressure P, is given by

P, =(P,P)""? (8.13)

where P, and P, are the respective high and low absolute pressures, shown in Fig. 8-21b. In this
discussion the same refrigerant is assumed in both systems; if different refrigerants are used, then the
appropriate T-s diagram must be used for each fluid.

To determine the relationship between the mass fluxes of the two systems we simply apply the first
law (an energy balance) to the heat exchanger. This gives

my(hs — hy) =m (h, — hy) (8.14)

where iy is the mass flux of the refrigerant in the high-pressure system and »1; is the refrigerant
mass flux in the low-pressure system. This gives

My  hy = hy

’hL - hs_h8 (8.15)
The low-pressure system actually performs the desired refrigeration. Thus, in the design process, it is
this system that allows us to determine n1,. If X tons = 3.52 X kilowatts of refrigeration is required,
then

m(h, — hy) =352X (8.16)
The mass flux is

352X
m, = F]—_——’Z“ (8.17)

EXAMPLE 8.12 A two-stage cycle replaces the refrigeration cycle of Example 8.10. Determine the rate of
refrigeration and the coeflicient of performance and compare with those of Example 8.10. Use m, = 0.6 kg/s.
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Refer to Fig. 8-21 for the various state designations. Using T, = —20°C, we find P, = 151 kPa. Also,
P, = 1000 kPa. Then, (8.13) results in

P, = (P_Py)"* = [(151)(1000)]'/* = 389 kPa
From Appendix D we find

h = 1786kl /kg s, =s,=07082kI/kg- K hy=hy =763kl /ke
hy=h, = (%)(43.6 ~37.1) + 37.1 = 427k /kg

o (389-1320
5= 56 = \ 900 — 320

hg = (M)(mm - 188.0) + 188.0 = 190.6 kI /kg

)(0.6928 — 0.6960) + 0.6960 = 0.6932 kJ /kg - K

400 - 320
At P, = 389 kPa we interpolate and obtain
T=10°C s =0.6993kJ/kg - K h =193.8kJ/kg
T=2°C s=0.7226kl/kg - K h = 2003 kJ/kg
This gives

b = (0.7082 — 0.6993
27 10.7226 — 0.6993

)(200.3 - 193.8) + 193.8 = 196.3 kJ /kg

Also, extrapolating, we find

b = (0.6932 ~— 0.7021
6~ 10.7254 — 0.7021

From the above, Q, = i (h, — hy) = (0.6X178.6 — 42.7) = 81.5 kW. This compares with a value of 61.4 kW
from the simple refrigeration cycle of Example 8.10. That represents a 32.9 percent increase in the rate of
refrigeration. The mass flux in the high-pressure stage is found from (8.15) to be

, . hy—hy 196.4 — 42.7
My =ML Ry T (0‘6)( 190.6 — 763

)(217.8 - 210.2) + 210.2 = 207.3 kJ /kg

) = 0.807 kg/s

The power input to the compressors is
W, =r,(h, — h)) + my(hg — hs) = (0.6)(196.3 — 178.6) + (0.807)(207.3 — 190.6) = 24.1 kW

The coefficient of performance is now calculated to be

This compares with a value of 3.04 from the refrigeration cycle of Example 8.10, a 11.5 percent increase. The
advantages of using two stages is obvious when considering the increased refrigeration and performance; the
equipment is much more expensive, however, and must be justified economically.

8.10 THE HEAT PUMP

The heat pump utilizes the vapor refrigeration cycle discussed in Sec. 8.8. It can be used to heat a
house in cool weather or cool a house in warm weather, as shown schematically in Fig. 8-22. Note that
in the heating mode the house gains heat from the condenser, whereas in the cooling mode the house
loses heat to the evaporator. This is possible since the evaporator and the condenser are similar heat
exchangers. In an actual situation, valving is used to perform the desired switching of the heat
exchangers.

The heat pump system is sized to meet the heating load or the cooling load, whichever is greater.
In southern areas where the cooling loads are extremely large, the system may be oversized for the
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(air, groundwater) (house)
QE QE
(a) Heating (b) Cooling
Fig. 8-22

small heating demand of a chilly night; an air conditioner with an auxiliary heating system may be
advisable in those cases. In a northern area where the large heating load demands a relatively large
heat pump, the cooling load on a warm day may be too low for effective use of the heat pump; the
large cooling capacity would quickly reduce the temperature of the house without a simultaneous
reduction in the humidity, a necessary feature of any cooling system. In that case, a furnace which
provides the heating with an auxiliary cooling system is usually advisable. Or, the heat pump could be
designed based on the cooling load, with an auxiliary heater for times of heavy heating demands.

I+

mathcas EXAMPLE 8.13 A heat pump using Freon 12 is proposed for heating a home that requires a maximum heating

load of 300 kW. The evaporator operates at —10°C and the condenser at 900 kPa. Assume an ideal cycle.

(a) Determine the COP.

(b) Determine the cost of electricity at $0.07 /kWh.

(¢} Compare the Freon 12 system with the cost of operating a furnace using natural gas at $0.50 /therm if there
are 100000 kJ /therm of natural gas.

(a) The T-s diagram (Fig. 8-23) is sketched for reference. From Appendix D we find 4, = 183.1 kJ/kg,
s, =5, =0.7014 k} /kg - K, and h; = h, = 71.9 kI /kg. Interpolating, there results

(0.7014 — 0.6982
h, =

m)(ﬂlﬁ —204.2) + 204.2 = 2058 kJ /ke
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The heat rejected by the condenser is

Qc = m(h, — hy) 300 = m(205.8 —~ 71.9)

This gives the refrigerant mass flux as m = 2.24 kg/s. The required power by the compressor is then

W, = m(h, —~ hy) = (2.24X205.8 — 183.1) = 50.8 kW. This results in a coefficient of performance of

cop = L - 30

=508 = 5.91

in

(b) Cost of electricity (50.8 kWX$0.07/kWh) = $3.56 /h
(¢) Assuming the furnace to be ideal, that is, it converts all of the energy of the gas into usable heat, we have

Cost of gas = [M

160060 ](0.50) = $5.40/h

8.11 THE ABSORPTION REFRIGERATION CYCLE

In the refrigeration systems discussed thus far the power input needed to operate the compressor
is relatively large since the refrigerant moving through the compressor is in the vapor state and has a
very large specific volume when compared with that of a liquid. We can markedly reduce this power if
we increase the pressure with a pump operating with a liquid. Such a refrigeration cycle exists; it is
the absorption refrigeration cycle, shown schematically in Fig. 8-24. Note that the compressor of the
conventional refrigeration cycle has been replaced with the several pieces of equipment shown on the
right of the cycle, The absorber, the pump, the heat exchanger, and the generator are the major
additional components that replace the compressor.

Saturated, low-pressure refrigerant vapor leaves the evaporator and enters the absorber where it
is absorbed into the weak carrier solution. Heat is released in this absorption process, and to aid the

Generator

Liquid

b

refrigerant T QG
I_ Condenser apor
—
Weak L..—]
: solution
Expansion 2] Heat
velve Regulating | exchanger Stichg
valye solution
Vapor Absorber
refrigerant
=y —
Evaporator — = —
/" — @
E .
2 W
Fig. 8-24
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process the temperature is maintained at a relatively low value by removing heat Q 4- The much
stronger liquid solution leaves the absorber and is pumped to the higher condenser pressure, requiring
very little pump power. It passes through a heat exchanger, which increases its temperature, and
enters the generator where the added heat boils off the refrigerant which then passes on to the
condenser. The remaining weak carrier solution is then returned from the generator to the absorber
to be recharged with refrigerant; on its way to the absorber the temperature of the carrier solution is
reduced in the heat exchanger and its pressure is reduced with a regulating valve.

The primary disadvantage of the absorption cycle is that a relatively high-temperature energy
source must be available to supply the heat transfer Q; this is typically supplied by a source that
would otherwise be wasted, such as rejected steam from a power plant. The additional heat QG must
be inexpensive, or the additional cost of the extra equipment cannot be justified.

For applications in which the refrigerated space is maintained at temperatures below 0°C,
the refrigerant is normally ammonia and the carrier is water. For air-conditioning applications the
refrigerant can be water and the carrier either lithium bromide or lithium chloride. With water as the
refrigerant a vacuum of 0.001 MPa must be maintained in the evaporator and absorber to allow for an
evaporator temperature of 7°C. Since the evaporator temperature must be about 10°C below the
temperature of the air that is cooling the space, such a low pressure is not unreasonable.

To analyze the absorption cycle we must know the amount of refrigerant contained in a mixture,
both in liquid form and in vapor form. This can be found with the aid of an equilibrium chart, such as
that for an ammonia-water mixture. At a given temperature and pressure the equilibrium diagram
displays the following properties:

1. The concentration fraction x’ of liquid ammonia:

4 — mass of liqu?d NH, (8.18)
mass of mixture

2. The concentration fraction x” of vapor ammonia:

f NH
o = mass o vapgr R (8.19)
mass of mixture

3. The enthalpy A, of the liquid mixture.
4. The enthalpy h, of the ammonia vapor.

These various properties are illustrated by Fig. 8-25.

_L T = const.

]
1
)
]
t
! P = const.
r
i
[}
1

Fig. 8-25

Finally, in the absorber and the generator two streams enter and one stream leaves. To determine
the properties of the leaving stream, it is necessary to use a mass balance and an energy balance on
each device; mass balances on both the refrigerant and the mixture are necessary.
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Solved Problems

8.1 A steam power plant is designed to operate on a Rankine cycle with a condenser outlet
temperature of 80 °C and boiler outlet temperature of 500 °C. If the pump outlet pressure is
2 MPa, calculate the maximum possible thermal efficiency of the cycle. Compare with the
efficiency of a Carnot engine operating between the same temperature limits.

To calculate the thermal efficiency we must determine the turbine work and the boiler heat
transfer. The turbine work is found as follows (refer to Fig. 8-1):

At state 3: hy = 3468 kg /kg sy=7432kl/kg - K
Al state 4: 5, =953 =7432=1.075 + 6.538x,

Thus x, = 0.9723, A, = 335 + (0.9723X2309) = 2580 kJ/kg, and wy = h; — h, = 3468 — 2580 = 888
kJ/kg. The boiler heat, assuming that h, = h, (the pump work is negligible), is g5 = h; ~ h, =
3468 — 335 = 3133 kJ /kg.*The cycle efficiency is then

_wr 888
N = gf = 3m3 = 0283 or283%

The efficiency of a Carnot cycle operating between the high and low temperatures of this cycle is

T, 353

T’=1__T—=l_ﬁ=0'543 or 54.3%
H

8.2 For the ideal Rankine cycle shown in Fig. 8-26 determine the mass flow rate of steam and the
cycle efficiency.

The turbine output is shown to be 20 MW. Referring to Fig. 8-1, we find
hy = 3422 k] /ke, 53 =6.881kJ/kg- K S, =353 = 6.881 = 0.649 + 7.502x,
~ox, = 0.8307 ~ohy =192 + (0.8307)(2393) = 2180 kI /kg

The mass flux is now calculated to be

. Wy Wy 20000
M=y T hi-F, 34222180 _ 0-1ke/s
N
o 6 MPa
Boiler S .
500 C WT =20 MW
Turbine :@Z—»
10 kP
Pump 2 Condenser
\ )
QC

Fig. 8-26
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The boiler heat transfer, neglecting the pump work so that A, = h,, is
gg =hy — h, =3422 — 192 = 3230 kJ /kg
The cycle efficiency is found to be

O Wr  Wr 20000
n= Qg = wag (16.1)(3230) = 0.385 or38.5%

A solar bank of collectors with an area of 8000 ft? supplies energy to the boiler of a Rankine
cycle power plant. At peak load the collectors provide 200 Btu /ft?-hr to the working fluid.
The Freon 12 working fluid leaves the boiler at 300 psia and 240 °F and enters the pump at
100 °F. Determine (a) the pump work, (b) the cycle efficiency, (¢) the mass flux of the Freon
12, and (d) the maximum power output.

(a) The pump work requirement for this ideal cycle is (refer to Fig. 8-1)

wp = (P, — P))v = [(300 — 131.9)(144)](0.01269) = 307,2 ft-Ibf /bm or 0.395 Btu/Ibm

(b) To calculate the thermal efficiency we must know the boiler heat input. It is gz = by — h, =
107.1 — (31.1 + 0.395) = 75.6 Btu/Ibm, where the enthalpy at the pump outlet, state 2, is the inlet
enthalpy A, plus wp.

We must also calculate the turbine work output. To locate state 4 we use the entropy as
follows: s; = 5, = 0.1842 Btu/lbm-°R. This is in the superheated region. Interpolating for the
state at P, = 131.9 psia and s, = 0.1842, we find that 4, = 99.5 Btu/lbm. This result requires a
double interpolation, so care must be taken. The turbine work is thus

wr=hy — h, =107.1 — 99.5 = 7.6 Btu/lbm
The cycle efficiency is

_ Wr — Wp _ 76 -04 _
n = s = —75¢ =0.095 or9.5%

(¢) To find the mass flux, we usc the total heat flux input from the collectors. O, = (200X8000) =
mqg = m(75.6). This results in /m = 21,160 Ibm /hr or 5.88 lbm /sec.

(d) The maximum power output is WT = riw; = (21,160X7.6) = 161,000 Btu /hr or 63.3 hp. We have
used the conversion 2545 Btu/hr = 1 hp.

The steam of a Rankine cycle, operating between 4 MPa and 10 kPa, is reheated at 400 kPa to
400 °C. Determine the cycle efficiency if the maximum temperature is 600 °C.

Referring to Fig. 8-6, we find from the steam tables the following:
h, = h; = 191.8kJ /kg, hy = 3674.4 kJ /kg, hs = 3273.4KJ /kg,
54 =53 =7369k]/kg - K 5 =85 = 7.899 k] /kg - K

For the two isentropic processes we calculate the following:

54 =7.369 o
P, =400 kPa Interpolate: h, = 2960 kJ /kg
5o = 7.898 = 0.649 + 7.501x, . xo= 09664 - he = 191.8 + 0.9664 X 2392.8 = 2504 kJ /kg

The heat transfer to the boiler is

gy =hy—hy+ hg — h, =3674 — 192 + 3273 — 2960 = 3795 ki /kg
The work output from the turbine is

wr=hy— h, + hg — hg = 3674 — 2960 + 3273 — 2504 = 1483 kI /kg
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8.5

8.6

The cycle efficiency is finally calculated to be
wr 1483

n = a = W =0.391 o0r39.1%

An ideal reheat Rankine cycle operates between 8 MPa and 4 kPa with a maximum
temperature of 600°C (Fig. 8-27). Two reheat stages, each with a maximum temperature of
600 °C, are to be added at 1 MPa and 100 kPa. Calculate the resulting cycle efficiency.

From the steam tables we find

h,=h,=121.5KJ/kg hy = 3642 kJ /kg hs = 3698 kJ /kg h, = 3705 kI /kg

sy =5, =7021kI/kg K ss =5, =8.030kl/kg - K 57 =33 =9.098kJ/kg - K
We interpolate at each of the superheated states 4, 6, and 8:

s, =7.021kJ/kg - K ) _ s, =8.030k] kg - K ) _

P,=1MPa <ohy = 2995 kJ /kg P, = 100 kPa cohy = 2972 k) /kg

sg =9.098kJ/kg - K . _

P, =4 kPa ~ohg = 2762 k] /kg

The boiler heat transfer is

gg=hy—h,+hy—h, + h, — h,= 3642 — 122 + 3698 — 2995 + 3705 — 2972 = 4956 kJ /kg
The turbine work is

wr=hy —hy +hs — hg + h; — hg = 3642 — 2995 + 3698 — 2972 + 3705 — 2762 = 2316 kJ /kg

The cycle efficiency is then calculated to be

Wi 2316

® 60

1

@ 4 kPa ®

®

Fig. 8-27

The condenser pressure of a regenerative cycle is 3 kPa and the feedwater pump provides a
pressure of 6 MPa to the boiler. Calculate the cycle efficiency if one open feedwater heater is
to be used. The maximum temperature is 600 °C.

The pressure at which the steam passing through the turbine is intercepted is estimated by selecting
a saturation temperature half way between the boiler saturation temperature and the condenser
saturation temperature; ie., referring to Fig. 8-7, T, = (3X275.6 + 24.1) = 149.8°C. The closest
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pressure entry to this saturation temperature is at 400 kPa. Hence, this is the selected pressure for the
feedwater heater. Using the steam tables, we find

h, = h, = 101 kJ /kg h, = hy = 6043 k] /kg
h, = 3658.4 kJ /kg 53 =35,=155=7.168kI/kg - K
For the isentropic processes we find

ss = 7.168 kI /kg - K
P;=0.4 MPa

s, =7.168 = 0.3545 + 8.2231x, ~oxy = 0.8286 o hy =101 + (0.8286)(2444.5) = 2126 kI /kg

} - hs = 2859 kJ /kg

If we assume m = 1 kg /s, we find from (8.8) that

) he —hy . 640 — 101
Ms = f =k, = (2859 — 101 )(1) = 0.195 kg/s

Then we have:

m,=nmg—ths=1-—0195 = 0.805kg/s

Qp = rig(hy — hy) = (1)(3658 — 604) = 3054 kW
Wy =ng(h, — hg) + my(hs — hy) = (1)(3658 — 2859) + (0.805)(2859 — 2126) = 1389 kW
The cycle efficiency is finally calculated to be

Wy 1389

n= Q— = m = 0455 ord45.5%
B

For the regenerative cycle shown in Fig. 8-28 determine the thermal efficiency, the mass flux
of steam, and the ratio of rejected heat to added heat. Neglect pump work.

Referring to Fig. 8-7b to identify the states and using the steam tables, we find
h,=h, =191.8kl/kg he=h, =762.8kJ/kg hy = 36253 kl/ke
The enthalpies of states 4 and 5 are determined by assuming an isentropic process as follows:

s5=15; =6904kJ/kg - K
Ps=1MPa

54 = 55 = 6.904 = 0.6491 + 7.5019x, - x, = 0.8338
- h, = 191.8 + (0.8338)(2392.8) = 2187 kJ /kg

/*

} < hs = 2932 k] /kg

B ‘]’ @ 10 MPa
oiler 600 °C
Turbine :6———> 20 MW
@ @ 1000 kPa
Closed feedwater @
heater 7 @ 10 kPa
Wl ————Pume -
® ® e
O Condenser |
Condensate
pump
Fig. 8-28
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8.8

An energy balance on the heater, which is assumed insulated, is ris(hs —~ hg) = my(h, — h,). A mass
balance provides (see Fig. 8-10) m; = mg + rir,. Assuming m, = 1 kg/s, the above two equations are
combined to give

hs — hg 2932 — 763

M= R =h, T hs —h, ~ 763 — 192 7 2932 ~ 763 _ 0-792ke/s

We then have g = 1 — ri, = 1 — 0.792 = 0.208 kg /s. The turbine power (with m, = 1 kg/s) can now
be calculated to be

Wy =nrm,(h; — hs) + my(hs — hy) = (1.0)(3625 - 2932) + (0.792)(2932 — 2187) = 1283 kW
The boiler heat rate is

Op = 1y (hy — hy) = (1.0)(3625 - 763) = 2862 kW

The cycle efficiency is calculated to be

Wy 1283
n=——= 28—62' =0.448 ord44.8%
Qs
The mass flux of steam is found as
W, 20
m, = — = = 15.59 kg/s
(WT )with rp=1 1.283
The ratio of rejected heat to added heat is )
&:M__.l__WZ:l_@:stz
Os Op Os 2862

A power plant operates on a reheat-regenerative cycle in which steam at 1000°F and
2000 psia enters the turbine. It is reheated at a pressure of 400 psia to 800 °F and has two
open feedwater heaters, one using extracted steam at 400 psia and the other using extracted
steam at 80 psia. Determine the thermal efficiency if the condenser operates at 2 psia.

Refer to the T-s diagram of Fig. 8-11 to identify the various states. The pump power requirements
are negligible. From the steam tables the enthalpies are

h, = h; = 94 Btu/lbm h, = 282 Btu/lbm hg = 424 Btu/Ibm
h, = 1474 Btu/lbm hg = 1417 Btu/lbm
The enthalpies of state 7, 9, and 10 are found assuming isentropic processes as follows:

s, =5, = 1.560 Btu/lbm-°R

P, = 400 psia } ~ h, = 1277 Btu/lbm

sy = sg = 1.684 Btu/lbm-°R ) _
P, = 80 psi -~ hg = 1235 Btu/Ibm
Si9 = 53=1.684 = 0.17499 + 1.7448x,, Soxpp = 0.8649

o hig = 94 + (0.8649)(1022) = 978 Btu/Ibm

Using an energy balance on each heater [see (8.8)], we find, assuming 77 = 1 Ibm/sec,

. hg — hy 424 — 282
hy = — (1) = 277 =283 = 0.1427 Ibm/sec

. _hy—h .
m":hz—hz(l—'"’):

(282—94

m)(l - 0.1427) = 0.1413 Ibm/sec
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A mass balance gives i, = 1 — ity ~ iy =1 — 0.1427 — 0.1413 = 0.716 Ibm /sec; now
Qs = (1)(hg — hs) + (1 — ri;)(hy — hy) = 1474 — 424 + (1 — 0.1427)(1417 — 1277) = 1170 Btu/sec

Wr = (1)(he = hy) + (1 = ring)(hg = ho) + rp(hy = hyg)
= 1474 — 1277 + (1 — 0.1427)(1417 — 1235) + (0.716)(1235 — 978) = 537 Btu/sec
WT 537
n= Q— = TI—.I—O' =0.459 ord45.9%
B

The turbine of Prob. 8.2 is 87 percent efficient. Determine the mass flow rate and the cycle
efficiency with W, = 20 MW.

Referring to Fig. 8-16 and using the steam tables; we find the following enthalpies:
hy = 3422 k) /kg h, =h; = 192kJ/kg Sy =53 = 6.881 = 0.649 + 7.502x,
soxy = 0.8307 sohy =192 + (0.8307)(2393) = 2180 kJ /kg
The calculation is completed as follows:
w, = hy — hy = 3422 — 2180 = 1242 kJ /kg
w, = nyw, = (0.87)(1242) = 1081 kJ /kg

18.5kg/s

W, Wy 20000
1T 0, m(hs-hy)  (185)(3422 - 192) 0317 or 31.7%

The turbine of a Rankine cycle operating between 4 MPa and 10 kPa is 84 percent efficient. If
the steam is reheated at 400 kPa to 400 °C, determine the cycle efficiency. The maximum
temperature is 600 °C. Also, calculate the mass flux of condenser cooling water if it increases
10°C as it passes through the condenser when the cycle mass flux of steam is 10 kg/s.

Referring to Figs. 8-6 and 8-16 and using the steam tables, we find the following enthalpies:

hy=h, = 192kJ/kg h, = 3674 kl /kg hg = 3273kl /kg
Sg =53 =7369k]/kg - K ) _

P, = 400 kPa o hy = 2960 kl /kg
5S¢ =55 = 7.899 = 0.649 + 7.501x,, o X = 0.9665

sohg = 192 + (0.9665)(2393) = 2505 kI /kg
We find the actual work from the turbine to be
wr = np(hy — hg) + np(hs — hg) = (0.84)(3674 — 2960) + (0.84)(3273 — 2505) = 1247 kJ /kg

To find the boiler heat requirement, we must calculate the actual h,:

w hy,—h 3674 — h
== ;,j - h:, 0.84 = 357 —75560 hy = 30741 /kg
Then
qg = h; — hy, + hg — h, = 3674 — 192 + 3273 — 3074 = 3681 ki /kg
s N L LA
n = 2 " 3681 T 0.339 or33.9%
To find the heat rejected by the condenser we must determine the actual hg:
w, hs—nh 3273 — h
M7= = h: — h:’ 0.84 = = —sie he = 2628 kJ /kg

Thus Q. = ra(h, — h,) = (10)(2628 — 192) = 24.36 MW. Because this heat is carried away by the
cooling water,

Q, = ¢, AT, 24360 = ri,,(4.18)(10) h,, = 583 kg/s
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8.11

8.12

8.13

i+

Mathcad

An ideal refrigeration cycle uses ammonia as the working fluid between saturation tempera-
tures of —40°F and 50°F. If the refrigerant mass flux is 2.0 lbm/sec, determine the rate of

refrigeration and the coefficient of performance.

Referring to Fig. 8-17¢, we find from Appendix E that
h, = 597.6 Btu/lbm hy =h, = 97.9 Btu/lbm s, = 1.4242 Btu/Ibm-°R

Recognizing that the ammonia is compressed isentropically in the ideal cycle, state 2 is located as

follows:
5, =5, = 1.4242 Btu/Ibm°R
P, = 89.2 psia

where P, is the saturation pressure at 50 °F. We can now calculate the desired information:
QO = ri(h, — hy) = (2)(597.6 — 97.9) = 999 Btu/sec (300 tons)
W, =m(h, — hy) = (2)(732 — 597.6) = 269 Btu/sec
O 99

} <. hy = 732 Btu/lbm

Freon 12 is compressed from 200 kPa to 1.0 MPa in an 80 percent efficient compressor (Fig.
8-29). The condenser exiting temperature is 40 °C. Calculate the COP and the refrigerant
mass flux for 100 tons (352 kW) of refrigeration.
From the Freon 12 table we find that
h, = 182.07 kJ /kg hy=h, =74.53kl/kg 5, =0.7035 kI /kg - K
State 2’ is located, assuming an isentropic process, as follows:
sy = s, =0.7035 kI /kg - K
P,= 1.0 MPa

The efficiency of the compressor allows us to determine the actual compressor work. It is
hy~hy 2106 — 182.07

} v hy = 210.6 kI /kg

M"s _ _ _
Wy = ot = T - = 35.7kJ /ke
The cycle COP is calculated to be
_hy—h,  182.07 - 74.53

COP = W, = 357 =3.01

The mass flux of refrigerant is found from Qg:
Op = r(h, — hy) 352 =m(18207 —~ 7453)  m=327kg/s
T @

Fig. 8-29

A two-stage refrigeration system operates between high and low pressures of 1.6 MPa and 100
kPa, respectively. If the mass flux of Freon 12 in the low-pressure stage is 0.6 kg /s, find (a)
the tons of refrigeration, (b) the coefficient of performance, and (¢) the mass flux of cooling
water used to cool the Freon 12 in the condenser if AT, = 15°C.
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The intermediate pressure is P, = (P, P, )'/? = [(1.6X0.1)]'/? = 0.4 MPa. Referring to Fig. 8-21,
the Freon 12 tables provide us with

h; =174.15kJ/ kg hs = 19097 kJ/ kg h, =hg =98.19kl/kg
hy=nh,=43.64kl/kg 5, =07171kI/kg - K ss = 0.6928 kJ/kg - K
Assuming the compressors to be isentropic, the enthalpies of states 2 and 6 are found by extrapolation
as follows:
s; =5, =07171ki/kg - K _
P,= 0.4 MPa hy = 198 kJ/ ke
S, =55 = 0.6928kJ/kg - K _
P.= 1.6 MPa he = 215 kI/ ke
The mass flux of the Freon 12 in the high-pressure stage is
) o hy—hy 04 198 — 43.64 0.998 k
=y, = O )( 19097 —o3.19) _ VOBke/s

(@) Qp =r(h, — hy)=(0.6X174.15 — 43.64) = 78.3 kW = 22.2 tons
(b) W, =rt,(hy — h)+ iylhy — hs) = (0.6X198 — 174.15) + (0.998X215 — 190.97) = 38.3 kW

_Q, 783
COP = —= m—z.(]‘i

]
(¢} Cooling water is used to cool the Freon 12 in the condenser. As energy balance on the condenser
provides

_(0.998)(215 - 98.19)

m, AT, =y, (h, — hy) (4.18)(15)

= 1.86kg/s

8.14 A heat pump uses groundwater at 12°C as an energy source. If the energy delivered by the
heat pump is to be 60 MJ/h, estimate the minimum mass flux of groundwater if the
compressor operates with Freon 12 between pressures of 100 kPa and 1.0 MPa. Also,
calculate the minimum compressor horsepower.

Referring to Fig. 8-17¢, the Freon 12 table provides
h, = 174.15kJ/ kg hy=h,=76206kl/kg 5, =07171kl/kg - K

State 2 is located assuming an isentropic process as follows:

s;=5, =07171kI/kg- K
2 PIZ — 1.0 MPa } o hy,=215KI/kg
The condenser delivers 60 MJ/ h of heat; thus,
. 600
QO = mpga(ha = hy) TO%O = (215 - 76.26) Song, = 0.120kg /s

The minimum mass flux of groundwater results if the water enters the evaporator at 12 °C and leaves at
0°C (the freezing point of water). Also, we have assumed an ideal cycle, providing us with a minimum
mass flux. An energy balance on the cvaporator demands that the cnergy given by the Frcon 12 be lost
by the groundwater;

tig,(hy — hy) = AT, s (0.120)(174.15 — 76.26) = rit, e, (4.18)(12 - 0)

water€p

Plypey = 0.234 kg /5

Finally, the minimum compressor power is

W, = titp(ha — hy) = (0.120)(215 — 174.15) = 4.90kW = 6.57 hp
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8.15

8.16

8.17

8.18

8.19

8.20

8.21

8.22

Supplementary Problems

A power plant operating on an ideal Rankine cycle has steam entering the turbine at 500°C and 2 MPa.
If the steam enters the pump at 10 kPa, calculate (¢) the thermal efficiency with pump work included.
(b) the thermal efficiency neglecting pump work, and (¢) the percentage error in efficiency neglecting
pump work. Ans. (a) 33.9% (b) 34.0% (c) 0.29%

An ideal Rankine cycle operates between temperatures of 500°C and 60°C. Determine the cycle
efficiency and the quality of the turbine outlet steam if the pump outlet pressure is (a) 2 MPa,
(b) 6 MPa, and (c) 10 MPa. Ans. (a) 31.6%, 0.932 (b) 36.4%, 0.855 (¢) 38.5%, 0.815

The influence of maximum temperature on the efficiency of a Rankine cycle is desired. Holding the
maximum and minimum pressures constant at 1000 psia and 2 psia, respectively, what is the thermal
efficiency if the boiler outlet steam temperature is (a) 800 °F, {(b) 1000 °F, and (c) 1200 °F?

Ans. (a) 37.0% (b) 38.7% (c) 40.4%

A power plant is to be operated on an ideal Rankine cycle with the superheated steam exiting the boiler
at 4 MPa and 500°C. Calculate the thermal efficiency and the quality at the turbine outlet if the
condenser pressure is (a) 20 kPa, (b) 10 kPa, and (c) 8 kPa.

Ans. (a) 34.7%, 0.884 (b) 36.3%, 0.865 (¢) 37.5%, 0.851

A power plant operates on a Rankine cycle between temperatures of 600°C and 40 °C. The maximum
pressure is 8 MPa and the turbine output is 20 MW. Determine the minimum mass flow rate of cooling
water through the condenser if a maximum temperature differential of 10°C is allowed.

Ans. 664 kg/s

Oil, with a heating value of 30 MJ /kg, is used in the boiler shown schematically in Fig. 8-30. If 85
percent of the energy is transferred to the working fluid, how much oil is needed per hour?
Ans. 13480 kg/h

oil 10 MPa
in Boiler 600 °C W =40 MW
/ Turbine :% —
Og
10 kPa
Pump - Condenser
Water
T~
0,
Fig. 8-30

Hot geyser water at 95°C is available to supply energy to the boiler of a Rankine cycle power plant.
Frcon 12 is the working fluid. The maximum possible mass flux of hot water is 2.0 kg/s. The Freon 12
exits the boiler as saturated vapor at 80 °C, and the condenser temperature is 40 °C. Calculate (a) pump
work rate, (») the thermal efficiency, and (c¢) the maximum possible power output. Assume that the hot
water can equal the Freon 12 temperature as it leaves the boiler.

Ans. (a) 1.07 kW (b) 9.8% (¢) 13.2 kW

Coal, with a heating value of 2500 Btu/Ibm, is used to provide energy to the working fluid in a boiler
which is 85 percent efficient. Determine the minimum mass flux of coal, in lbm/hr, that would be
necessary for the turbine output to be 100 MW. The pump reccives water at 2 psia, in the simple
Rankine cycle, and delivers it to the boiler at 2000 psia. Superheated steam is to leave the boiler at
1000 °F. Ans. 217,000 lbm /hr
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8.23

8.24

8.25

8.26

8.27

8.28
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Boiler 6MPa___ 500 € Turbine :
Ll W, =60 MW
J o U
: 600 kPa
Op
300°C
10 kPa
Pump Condenser
\ )
Q.
Fig. 8-31

For the ideal reheat cycle shown in Fig. 8-31, calculate the thermal efficiency and the pump mass flux.
Ans. 38.4%, 449 kg/s

The stcam passing through the turbine of the power cycle of Prob. 8.15 is rcheated at 100 kPa to 400 °C.
Find the thermal efficiency. Ans. 34.2%

The steam passing through the turbine of Prob. 8.165 is reheated to 300 °C at an extraction pressure of
(a) 100 kPa, (b) 400 kPa and (¢) 600 kPa. Calculate the thermal efficiency.
Ans. (a) 34.1% (b) 36.0% (¢) 36.3%

The power cycle of Prob. 8.17b is proposed for reheat. Calculate the thermal efficiency if the steam is
reheated to 1000 °F after being extracted at a pressure of (a) 400 psia, (#) 200 psia and (¢) 100 psia.
Ans. (a) 40.2%, (b) 40.6% (c) 40.4%

The steam passing through the turbine of Probiem 8.20 is reheated at 600 kPa to 400 °C and at 50 kPa to
400°C. (a) What is the resulting thermal cfficiency? (b) Calculate the oil needed per hour for the same
power output of the turbine of Problem 8.20.

Ans. (a) 40.3% () 14000 kg/h

For the ideal reheat cycle shown in Fig. 8-32, find (a) the thermal efficiency and (b) the mass flux of
steam. Ans. (a) 42.0% (b) 273 kg/s

Q,
Boiler 12 MPa 600 °C .
Turbine
— -
W, =50 MW
«— _ 800kPa T
00°Cc T
—— 100 kPa
7 400°C 0.

Pun}— 10 kPa Condenser

Fig. 8-32
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8.29

8.30

8.31

8.32

8.33

8.34

8.35

8.36

837

An open feedwater heater is to be designed for the power cycle of Prob. 8.15 by extracting steam from
the turbine at 400 kPa. Determine the thermal efficiency of the ideal regenerative cycle.
Ans.  35.6%

A portion of the steam passing through the turbine of Prob. 8.166 is extracted and fed into an open
feedwater heater. Calculate the thermal efficiency if it is extracted at a pressure of (a) 600 kPa,
(b) 800 kPa, and (c) 1000 kPa. Ans. (a) 38.7% (b) 38.8% (c) 38.7%

An open feedwater heater extracts steam from the turbine of Prob. 8.17(b) at 100 psia. Determine the
thermal efficiency if the superheated steam enters the turbine at (a) 700 °F, (b) 800 °F, and (¢) 1000 °F.
Ans. (a) 38.9% (b) 39.6% (c) 41.2%

A closed feedwater heater extracts steam from the turbine of Prob. 8.16b at 800 kPa. What is the
thermal efficiency of the resulting ideal regenerative cycle? Ans. 38.8%

Part of the steam passing through the turbine of Prob. 8.20 is extracted at 1000 kPa and fed into a closed
feedwater heater. Calculate (a) the thermal efficiency and (b) the mass flux of oil for the same power
output. Ans. (a) 44.8% (b) 12600 kg /h

To avoid a moisture problem in the turbine of Prob. 8.19 the steam is extracted at 600 kPa and reheated
to 400 °C, and an open feedwater heater, using extracted steam at the same pressure, is inserted into the
cycle. What is the resulting thermal efficiency and the mass flux of water flowing through the feedwater
pump? Ans. 44.7%, 13.59 kg/s

For the ideal reheat-regenerative cycle shown in Fig. 8-33 calculate (a) the thermal efficiency, (b) the
mass flux of water fed to the boiler, and (c) the mass flux of condenser cooling water.
Ans. (a)47.2% (b)67.8kg/s  (c) 2680 kg/s

1 MPa 600 °C .
Turbine
Boiler - —
600 °C 100 MW
< —
. Y
Qs TIO MPa 4 MPa s
Closed heaters 150 kPa 12 kPa .
Open . 2c
Condenser T Water
Pump heater Pump oo
T
P Trap
Fig. 8-33

A power plant is to operate on a supercritical steam cycle with reheat and regeneration. The steam
leaves the boiler at 4000 psia and 1000 °F. It is extracted from the turbine at 400 psia; part enters an
open feedwater heater and the remainder is reheated to 800°F. The condenser pressure is 2 psia.
Assuming an ideal cycle, calculate the thermal efficiency. Ans. 46.6%

For the steam power cycle, operating as shown in the T-s diagram of Fig. 8-34 two open feedwater
heaters are employed. Calculate the thermal efficiency. Ans. 50.5%
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8.38

8.39

8.40

8.41

8.42

8.43

8.44

8.45
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Fig. 8-34

Determine the cycle thermal efficiency if the turbine is 85 percent efficient in (a) Prob. 8.15, (b) Prob.
8.16a, (c) Prob. 8.17(d), and (d) Prob. 8.19.
Ans. (a) 28.8% (b) 26.9% (¢) 329% (d) 35.6%

If the turbine of Prob. 8.20 is 80 percent efficient, determine the mass flux of oil needed to maintain the
same power output. Ans. 16850 kg/h

Assume a turbine efficiency of 85 percent for Prob. 8.21 and calculate the thermal efficiency and the
expected power output. Ans. 82%, 11.2 W

For the simple Rankine cycle shown in Fig. 8-35 the turbine efficiency is 85 percent. Determine (a) the
thermal efficiency, (b) the mass flux of steam, (c¢) the diameter of the inlet pipe to the turbine if a
maximum velocity of 100 m/s is allowed, and (d) the mass flux of condenser cooling water.

Ans. (a)384%  (b)29.6kg/s (c)161cm  (d) 1480 kg/s

5.7 MPa
. 5.8 MPa 580 °C
Boiler = 4
800 € . 40 MW
¢ 35 °C Turbine —
5.9 MPa 12 kPa

10 kPa |~ 30°C water

6 MP 40°C ———— 20 °C Coolin
: @ Condenser ooling

Fig. 8-35
The actual turbine of Prob. 8.23 has an efficiency of 85 percent in the high-pressure side of the turbine

and 80% in the low-pressure side. Calculate the cycle thermal efficiency and the pump mass flux for the
same power output. Ans. 34.0%, 54.6 kg /s

Calculate the cycle thermal efficiency if the turbine is 85 percent efficient for the cycle of Prob. 8.28.
Ans. 35.7%

Calculate the cycle thermal efficiency if the turbine is 87 percent for the cycle of (a) Prob. 8.29, (b) Prob.
8.31b6 and (c) Prob. 8.32. Ans. (a) 31.0% (b) 34.5% (c) 33.8%

Determine the thermal efficiency for the cycle shown in Fig. 8-36 if the turbine is 85 percent efficient.
Ans. 29.0%
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8.46

847

8.48

8.49

8.50

8.51

475 °C
. P 5.8 MPa
Boiler 560?;02 Turbine
Oy 410°C .
AT=10 C
}6.2 MPa
35°C

@ 20°C Condenser

Fig. 8-36

If the turbine of Prob. 8.36 is 85 percent efficient, what is the thermal efficiency of the cycle?
Ans. 40.9%

An ideal vapor refrigeration cycle utilizes Freon 12 as the working fluid between saturation temperatures
of —30°C and 40°C. For a flow of 0.6 kg /s, determine (a) the ratc of refrigeration, (b) the coefficient of
performance, and (c) the coefficient of performance if used as a heat pump.

Ans. (a) 59.8 kW (b) 2.50 (c) 3.50

Freon 12 is used in an ideal refrigeration cycle between pressures of 120 and 1000 kPa. If the compressor
requires 10 hp, calculate (a) the rate of refrigeration, (b) the coeflicient of performance, and (c¢) the
coeflicient of performance if used as a heat pump. Ans. (a) 19.8 kW (b) 2.65 (¢) 3.65

An ideal refrigeration cycle using Freon 12 produces 10 tons of refrigeration. If it operates between
saturation temperatures of ~ 10°F and 120°F, determine (a) the COP (b) the power input needed for
the compressor, and (c) the volume rate of flow into the compressor.

Ans. (a)239  (b)197hp  (c) 1.64 ft3/sec

Use ammonia as the working fiuid and rework Prob. 8.49.
Ans. 2,54, 18.5 hp, 0.892 ft>/sec

For 20 tons of refrigeration calculate the minimum work input to the compressor for the cycle shown in
Fig. 8-37 if the working fluid is (a) Freon 12, () ammonia, and (c) water.
Ans. (a) 31.6 kW (b) 229 kW (c) 19.4 kW

Oc
Condenser lf‘z MPa
Expansion W
valve Compressor -
Evaporator 120 kPa
Oy
Fig. 8-37
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8.52 The turbine shown in Fig. 8-38 produces just enough power to operate the compressor. The Freon 12 is
mixed in the condenser and is then separated into mass fluxes i1, and 1,. Determine i1, /rit, and
Qg/Qk- Ans. 1.51, 2.49

0,
120 kPa 120°C
Evaporator > Boiler

3 MPa )

[~ Q
Compressor 1\/ Turbine 6
Expansion
valve
m, 40°C 40°C "y
T Condenser > Pump
Fig. 8-38

8.53 Assume that the refrigerant leaving the condenser of Prob. 8.47 is subcooled to 35°C. Calculate the
coefficient of performance. Ans. 2.62

8.54 The compressor of a refrigeration cycle accepts Freon 12 as saturated vapor at 200 kPa and compresses
it to 1200 kPa; it is 80 percent efficient. The Freon 12 leaves the condenser at 40 °C. Determine (a) the
COP and (b) the mass flux of Freon 12 for 10 tons of refrigeration. Ans. (a)2.70 (b)0.327 kg /s

8.55 Freon 12 enters a compressor at 15 psia and 0°F and leaves at 180 psia and 200 °F. If it exits the
condenser as saturated liquid and the system produces 12 tons of refrigeration, calculate (a) the COP,
(b) the mass flux of refrigerant, (¢) the power input to the compressor, (d) the compressor efficiency, and
(e) the volume rate of flow entering the compressor.
Ans. {(a) 1.62 (b) 0.976 Ibm /sec (¢) 35.1 hp (d) 719.5% (e) 2.56 ft>/sec

8.56 A refrigeration cycle circulates 0.2 kg /s of Freon 12. Saturated vapor enters the compressor at 140 kPa
and leaves at 1200 kPa and 80°C. The temperature at the condenser exit is 45°C. Determine (a) the
COP, (b) the tons of refrigeration, (c) the required power input, (d) the efficiency of the compressor,
and (e) the mass flux of condenser cooling water if a temperature rise of 10°C is allowed.
Ans. (a) 1.87 (b) 5.58 tons (c) 10.5 kW (d) 3% (e) 0.721 kg /s

8.57 A refrigeration cycle uvtilizes a compressor which is 80 percent efficient; it accepts Freon 12 as saturated
vapor at —25°C. The liquid leaving the condenser is at 800 kPa and 30°C. For a mass flux of 0.1 kg/s
calculate (a) the COP, (b) the tons of refrigeration, and (c¢) the mass flux of condenser cooling water for
a temperature rise of 10°C. Ans. (a) 2.73 (b) 3.18 tons (¢) 0.366 kg /s

8.58 The refrigeration cycle of Prob. 8.48 is replaced with an ideal two-stage cycle with an intermediate
pressure of 320 kPa. If 10 tons of refrigeration is produced, calculate the mass fluxes in both loops and
the COP. Ans. 0.253 kg /s, 0.362 kg /s, 2.79

8.59 An ideal two-stage with an intermediate temperature of 50 °F replaces the refrigeration cycle of Prob.
8.49. Determine the COP and the necessary power input. Ans. 2.83,16.7 hp
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8.60

8.61

8.62

8.63

(a) For a 20-ton refrigeration cycle like that shown in Fig. 8-39, operating with Freon 12 between
pressures of 1000 and 160 kPa, determine the maximum coefficient of performance and the minimum
power input. (b) Determine the maximum COP and the minimum power input for a single-stage system
operating between the same pressures. Ans. {(a) 3.65, 19.3 kW; (b) 3.26, 22.3 kW

0
1000 kPa Condenser
N
Expansion Compressor 4
valve Heat exchanger .
AW ¥in
————
AWM
V¥
) H
Expansion Compressor
valve -
Evaporator
160 kPa pe
Q
Fig. 8-39

A two-stage refrigeration system using Freon 12 operates between pressures of 1.0 MPa and 90 kPa with
a mass flux of 0.5 kg/s in the high-pressure stage. Assuming ideal cycles, calculate (a) the tons of
refrigeration, (&) the power input, (¢) the rating in compressor horsepower per ton of refrigeration, and
(d) the mass flux of condenser cooling water if a 20 °C temperature rise is allowed.

Ans. (a)13.7tons  (b) 180kW  (c) 1.76 hp/ton (d) 0.791 kg /s

A heat pump using Freon 12 as the refrigerant provides 80 MJ/h to a building. The cycle operates
between pressures of 1000 and 200 kPa. Assuming an ideal cycle, determine (a) the COP, (b) the
compressor horsepower, and (¢) the volume flow rate into the compressor.

Ans. (a)4.70 (b) 620 hp (¢) 0.0138 m3/s

A home heating system uses a heat pump with Freon 12 as the refrigerant. The maximum heating load
results when the temperature of 1000 ft*/min of circulation air is raised 45°F. If the compressor
increases the pressure from 30 to 160 psia, calculate (a) the COP, (b) the compressor power needs, and
(¢) the mass flux of Freon 12. Assume an ideal cycle.
Ans. (a)424  (B)491hp  (c) 0.257 Ibm/sec
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Chapter 9

Power and Refrigeration Gas Cycles

9.1 INTRODUCTION

Several cycles utilize a gas as the working substance, the most common being the Otto cycle and
the diesel cycle used in internal combustion engines. The word “cycle” used in reference to an
internal combustion engine is technically incorrect since the working fluid does not undergo a
thermodynamic cycle; air enters the engine, mixes with a fuel, undergoes combustion, and exits the
engine as exhaust gases. This is often referred to as an open cycle, but we should keep in mind that a
thermodynamic cycle does not really occur; the engine itself operates in what we could call a
mechanical cycle. We do, however, analyze an internal combustion engine as though the working fluid
operated on a cycle; it is an approximation that allows us to predict influences of engine design on
such quantities as efficiency and fuel consumption.

9.2 GAS COMPRESSORS

We have already utilized the gas compressor in the refrigeration cycles discussed earlier and have
noted that the control volume energy equation relates the power input to the enthalpy change as
follows:

Wome = m(h, — h,) (9.1

comp

where h, and h; are the exit and inlet enthalpies, respectively. In this form we model the compressor
as a fixed volume into which and from which a gas flows; we assume that negligible heat transfer
occurs from the compressor and ignore the difference between inlet and outlet kinetic and potential
energy changes.

There are three general types of compressors: reciprocating, centrifugal, and axial-flow. Recipro-
cating compressors are especially useful for producing high pressures, but are limited to relatively low
flow rates; upper limits of about 200 MPa with inlet flow rates of 160 m?/min are achievable with a
two-stage unit. For high flow rates with relatively low pressure rise, a centrifugal or axial-flow
compressor would be selected; a pressure rise of several MPa for an inlet flow rate of over 10000
m’/min is possible.

The Reciprocating Compressor

A sketch of the cylinder of a reciprocating compressor is shown in Fig. 9-1. The intake and
exhaust valves are closed when state 1 is reached, as shown on the P-v diagram of Fig. 9-2a. An
isentropic compression follows as the piston travels inward until the maximum pressure at state 2 is
reached. The exhaust valve then opens and the piston continues its inward motion while the air is
exhausted until state 3 is reached at top dead center. The exhaust valve then closes and the piston
begins its outward motion with an isentropic expansion process until state 4 is reached. At this point
the intake value opens and the piston moves outward during the intake process until the cycle is
completed.

During actual operation the P-v diagram would more likely resemble that of Fig. 9-2b. Intake and
exhaust valves do not open and close instantaneously, the airflow around the valves results in pressure
gradients during the intake and exhaust strokes, losses occur due to the valves, and some heat transfer
may take place. The ideal cycle does, however, allow us to predict the influence of proposed design
changes on work requirements, maximum pressure, flow rate, and other quantities of interest.

The effectiveness of a compressor is partially measured by the volumetric efficiency, which is
defined as the volume of gas drawn into the cylinder divided by the displacement volume. That is,

186
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(e}

(9.2)

The higher the volumetric efficiency the greater the volume of air drawn in as a percentage of the
displacement volume. This can be increased if the clearance volume V; is decreased.

To improve the performance of the reciprocating compressor, we can remove heat from the
compressor during the compression process 1 — 2. The effect of this is displayed in Fig. 9-3, where a
polytropic process is shown. The temperature of state 2’ would be significantly lower than that of state

Isentropic: n = k

Q=0

\ Polytropic
\ g<0

Fig. 9-3
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2 and the work requirement for the complete cycle would be less since the area under the P-v diagram
would decrease. To analyze this situation let us return to the control volume inlet-outlet description,
as used with (9.7). The required work is, for an adiabatic compressor,

woomp=h2—hl =Cp(T2— Tl) (93)

assuming an ideal gas with constant specific heat. For an isentropic compression between inlet and
outlet we know that

P2 (k—1)/k
T, = T\| 5 9.4
=1 %) (9.4)
This allows the work to be expressed as, using ¢, given in (4.30),
kR [ p.\(k=D/k ]
Weomp = § =T 11 (?f) - 1J (9.5)
For a polytropic process we simply replace k& with n and obtain
nR [ P (n-1)/n
Weomp = 77— 11 (P—f) -1 (9.6)

The heat transfer is then found from the first law.

By external cooling, with a water jacket surrounding the compressor, the value of n for air can be
reduced to about 1.35. This reduction from 1.4 is difficult since heat transfer must occur from the
rapidly moving air through the compressor casing to the cooling water, or from fins, This is an
ineffective process, and multistage compressors with interstage cooling are often a desirable alterna-
tive. With a single stage and with a high P, the outlet temperature T, would be too high even if n
could be reduced to, say, 1.3.

Consider a two-stage compressor with a single intercooler, as shown in Fig. 9-4a. The compres-
sion processes are assumed to be isentropic and are shown in the 7-s and P-v diagrams of Fig. 9-45.

@ ®

— e
low P
- et
1st stage ntercooler
@ 2nd stage

(a)

—» high P

(b)

Fig. 9-4
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Referring to (9.5), the work is written as

(fl)(k—l)/k _ l

P, +c, 7T,

mep = Cp

(k—1)/k P (k-1)/k
n 7

P, \k- Dk
> -1 =¢,T,|| 5 +
P, P P, P,

where we have used P, = P; and 7, = T, for an ideal intercooler. To determine the intercooler
pressure P, that minimizes the work, we let dw,,,,,/dP, = 0. This gives
P, P,

P, = (P,P“)l/2 or P,"P, (9.8)

(9.7)

That is, the pressure ratio is the same across each stage. If three stages were used, the same analysis
would lead to a low-pressure intercooler pressure of

1/3
Py = (P,2P6) (9.9)
and a high-pressure intercooler pressure of
P, = (P,P)'" (9.10)

where P, is the highest pressure. This is also equivalent to equal pressure ratios across each stage.
Additional stages may be necessary for extremely high outlet pressures; an equal pressure ratio across
each stage would yield the minimum work for the ideal compressor.

Centrifugal and Axial-Flow Compressors

A centrifugal compressor is sketched in Fig. 9-5. Air enters along the axis of the compressor and is
forced to move outward along the rotating impeller vanes due to the effects of centrifugal forces. This
results in an increased pressure from the axis to the edge of the rotating impeller. The diffuser section
results in a further increase in the pressure as the velocity is reduced due to the increasing area in
each subsection of the diffuser. Depending on the desired pressure-speed characteristics, the rotating
impeller can be fitted with radial impeller vanes, as shown; with backward-curved vanes; or with
forward-curved vanes.

I ——— Outlet I

Rotating
impeller

lnle[ ——

Stationary —'[
diffuser Q/
Fig. 9-5
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Stators

Blades

Annular
flow area

Rotors

Fig. 9-6

An axial-flow compressor is illustrated in Fig. 9-6. It is similar in appearance to the steam turbine
used in the Rankine power cycle. Several stages of blades are needed to provide the desired pressure
rise, with a relatively small rise occurring over each stage. Each stage has a stator, a series of blades
that are attached to the stationary housing, and a rofor. All the rotors are attached to a common
rotating shaft which utilizes the power input to the compressor. The specially designed airfoil-type
blades require extreme precision in manufacturing and installation to yield the maximum possible
pressure rise while avoiding flow separation. The area through which the air passes decreases slightly
as the pressure rises due to the increased density in the higher-pressure air. In fluid mechanics the
velocity and pressure at each stage can be analyzed; in thermodynamics we are concerned only with
inlet and outlet conditions.

EXAMPLE 9.1 A reciprocating compressor is to deliver 20 kg/min of air at 1600 kPa. It receives atmospheric
air at 20 °C. Calculate the required power if the compressor is assumed to be 90 percent efficient. No cooling is

assumed.

The efficiency of the compressor is defined as

_ isentropic work Ay — A,
~ actualwork A, -k

where state 2 identifies the actual state reached and state 2’ is the ideal state that could be reached with no
losses. Let us find the temperature T, first. It is

P, \k Dk 14-1/1.4
Ty = Tl(_P_?) = (293)(%) = 647K

Using the efficiency, we have

n= cp(TZ' - Tl)
Cp(TZ - Tl)

o Ty=Ty+ +(Ty - T,) = 293 + g ) (647 - 299) = 686 K

The power required to drive the adiabatic compressor (no cooling) is then

W,

comp

=ri(hy — hy) = mc (T, — T,) = (-2%)(1.006)(686 - 293) = 131.9kW
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EXAMPLE 9.2 Suppose that, for the compressor of Example 9.1, it is decided that because T, is too high, two
stages with an intercooler are necessary. Determine the power requirement for the proposed two-stage adiabatic
compressor. Assume 90 percent efficiency for each stage.

The intercooler pressure for minimum power input is given by (9.8) as P, = /P, P, = y/(100)(1600) = 400
kPa. This results in a temperature entering the intercooler of

400 )0.2857

= 293(—-

P, 14-1/14
) 100 =435K

T2' = TI(E

Since T, =T, and P,/P,=P,/P,, we also have T, = (293X400,/100)*2%7 = 435 K. Considering the
efficiency of each stage allows us to find

T,=T, + %(TZ. ~T)) =293 + (0—19)(435 - 293) = 451 K

This will also be the exiting temperature T,. Note the large reduction from the single-stage temperature of 686 K.
Assuming no heat transfer in the compressor stages, the power necessary to drive the compressor is

20

Weomp = 1, (Ty = Ty) + i, (T, — Ts) = (—) X (1.00)(451 — 293) + (%)(1.00)(451 — 293) = 105 kW

60

This is a 20 percent reduction in the power requirement.

9.3 THE AIR-STANDARD CYCLE

In this section we introduce engines that utilize a gas as the working fluid. Spark-ignition engines
that burn gasoline and compression-ignition (diesel) engines that burn fuel oil are the two most
common engines of this type.

The operation of a gas engine can be analyzed by assuming that the working fluid does indeed go
through a complete thermodynamic cycle. The cycle is often called an air-standard cycle. All the
air-standard cycles we will consider have certain features in common:

Air is the working fluid throughout the entire cycle. The mass of the small quantity of injected
fuel is negligible.

There is no inlet process or exhaust process.

The combustion process is replaced by a heat transfer process with energy transferred from an
external source.

The exhaust process, used to restore the air to its original state, is replaced with a constant-volume
process transferring heat to the surroundings; no work is accomplished with a constant-volume
process.

All processes are assumed to be in quasiequilibrium.
The air is assumed to be an ideal gas with constant specific heats.

A number of the engines we will consider make use of a closed system with a piston-cylinder
arrangement, as shown in Fig. 9-7. The cycle shown on the P-v and T-s diagrams in the figure is
representative. The diameter of the piston is called the bore, and the distance the piston travels in one
direction is the stroke. When the piston is at top dead center (TDC), the volume occupied by the air in
the cylinder is at a minimum; this volume is the clearance volume. When the piston moves to bottom
dead center (BDC), the air occupies the maximum volume. The difference between the maximum
volume and the clearance volume is the displacement volume. The clearance volume is often implicitly
presented as the percent clearance c, the ratio of the clearance volume to the displacement volume.
The compression ratio r is defined to be the ratio of the volume occupied by the air at BDC to the
volume occupied by the air at TDC, that is, referring to Fig. 9-7,

Vl
v,

(9.11)
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The mean effective pressure (MEP) is another quantity that is often used when rating piston-
cylinder engines; it is the pressure that, if acting on the piston during the power stroke, would produce
an amount of work equal to that actually done during the entire cycle. Thus,

Wayae = (MEP)(Vgpe — Vinc) (9.12)

In Fig. 9-7 this means that the enclosed area of the actual cycle is equal to the area under the MEP
dotted line.

MEP

v =const.

Fig. 9-7

EXAMPLE 9.3 An engine operates with air on the cycle shown in Fig. 9-7 with isentropic processes 1 — 2 and
3 > 4. If the compression ratio is 12, the minimum pressure is 200 kPa, and the maximum pressure is 10 MPa
determine (a) the percent clearance and (b) the MEP.

(a) The percent clearance is given by

v
€=y V2(100)
But the compression ratio is r = V,/V, = 12, Thus,

V, 100
c= -121/2—_1/2(100) = T = 9.09%

(b) To determine the MEP we must calculate the area under the P-V diagram,; this is equivalent to calculating
the work. The work from 3 — 4 is, using PV* = C,

Py, — PV,

av _C _ _
W3_4=deV=CfW=ﬁ(V4‘ Kovithy = 2T

where C = PV} = P,V¥. But we know that V,/V, = 12, so

V.
Wi 4= ﬁ(lZPa )
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Likewise, the work from 1 — 2 is
V.
Wi_,= ﬁ(l)z ~12P))
Since no work occurs in the two constant-volume processes, we find, using V, = V,,

W,

cycle

V.
= 125 (12P, ~ Py + P, — 12P))

The pressures P, and P, are found as follows:

_p () - 00)(12)"* = 1665 kP P,=P v\ 10000)( )" = 308 kP
P=P( 7] = @0)(12)' = t665kPa  Po= Py 7] = (10000)( 7] = 308 KPa
whence
1%
Wegeie = —g 7 [(12)(308) ~ 10000 + 1665 — (12)(200)] = 20070V,
But W, = (MEPXV, - V,) = (MEPX12V, — V,); equating the two expressions yields
MEP = %017—0 = 1824 kPa

9.4 THE CARNOT CYCLE

This ideal cycle was treated in detail in Chapter 5. Recall that the thermal efficiency of a Carnot
engine,
I

=1- 4+ (9.13)

exceeds that of any real engine operating between the given temperatures.

ncamo(

9.5 THE OTTO CYCLE

The four processes that form the cycle are displayed in the 7-s and P-V diagrams of Fig. 9-8. The
piston starts at state 1 at BDC and compresses the air until it reaches TDC at state 2. Combustion
then occurs, resulting in a sudden jump in pressure to state 3 while the volume remains constant (this

) ®

Fig. 9-8
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combustion process is simulated with a quasiequilibrium heat addition process). The process that
follows is the power stroke as the air (simulating the combustion products) expands isentropically to
state 4. In the final process heat transfer to the surroundings occurs and the cycle is completed.

The thermal efficiency of the Otto cycle is found from

n = Wnel — Qin - Qout =1- Qout

Qin Qin Qin
Noting that the two heat transfer processes occur during constant-volume processes, for which the
work is zero, there results

(9.14)

Qin = mcl'(TB - TZ) Qoul = rhCr(Td - Tl) (915)
where we have assumed each quantity to be positive. Then
IL,-T

=1 - 74/ 9.16
n T3 — Tz ( )
This can be written as
B T 1,/T, -1
n= 1~ Tz T;/—T;:_l— (9.17)
For the isentropic processes we have
T, (V% k-1 T, v, k-1
T] = (72) and TA = Vs (918)
But, using V, = ¥, and V; = V,, we see that
7, T,
T, "7, (9.19)
Thus, (9.17) gives the thermal efficiency as
T Pkt 1
=1__1=1_(_2) - 9.20
n T, V, k-1 ( )

We see, then, that the thermal efficiency in this idealized cycle is dependent only on the compression
ratio r: the higher the compression ratio, the higher the thermal efficiency.

EXAMPLE 9.4 A spark-ignition engine is proposed to have a compression ratio of 10 while operating with a low
temperature of 200°C and a low pressure of 200 kPa. If the work output is to be 1000 kJ /kg, calculate the
maximum possible thermal efficiency and compare with that of a Carnot cycle. Also calculate the MEP.

The Otto cycle provides the model for this engine. The maximum possible thermal efficiency for the engine
would be

n=1- ! =1—;04=0.602 or 60.2%

Sk (10)

Since process 1 — 2 is isentropic, we find that
. v k-1
_ 13! 0.4
T, = T‘(z'_) = (473)(10)"" = 1188 K
)

The net work for the cycle is given by
] 1]
Whet = Wi_2 + ‘szz + w3, t )54-1 =c(T, - Ty) +c(T, - Ty) or

1000 = (0.717)(473 — 1188 + T, — T,)

www.20file.org



www.semeng.ir

CHAP. 9] POWER AND REFRIGERATION GAS CYCLES 195

But, for the isentropic process 3 — 4,
vy k-1 04
T, = T,,(U—) = (T,))(10)" = 2.512T,
3

Solving the last two equations simultaneously, we find T; = 3508 K and T, = 1397 K, so that

T, 473

T, =1~ 350 = 0.865 or86.5%

=1 -

ncar‘no(

The Otto cycle efficiency is less than that of a Carnot cycle operating between the limiting temperatures because
the heat transfer processes in the Otto cycle are not isothermal.
The MEP is found by using the equation

Whee = (MEP)(2y — 1)

We have
RT 0.287)(473 v
v, = P—xl - (0.281)(473) 20)(& ) _0678m’/kg  and vy = 10
Thus
MEP = et 1000 _ 1640 kPa

v, -0, (0.9)(0.6788)

9.6 THE DIESEL CYCLE

If the compression ratio is large enough, the temperature of the air in the cylinder when the
piston approaches TDC will exceed the ignition temperature of diesel fuel. This will occur if the
compression ratio is about 14 or greater. No external spark is needed; the diesel fuel is simply injected
into the cylinder and combustion occurs because of the high temperature of the compressed air. This
type of engine is referred to as a compression-ignition engine. The ideal cycle used to model the
compression-ignition engine is the diesel cycle, shown in Fig. 9-9. The difference between this cycle
and the Otto cycle is that, in the diesel cycle, the heat is added during a constant-pressure process.

Fig. 9-9

www.20file.org



www.semeng.ir

196 POWER AND REFRIGERATION GAS CYCLES [CHAP. 9

The cycle begins with the piston at BDC, state 1; compression of the air occurs isentropically to
state 2 at TDC; heat addition takes place (this models the injection and combustion of fuel) at
constant pressure until state 3 is reached; expansion occurs isentropically to state 4 at BDC; constant
volume heat rejection completes the cycle and returns the air to the original state. Note that the
power stroke includes the heat addition process and the expansion process.

The thermal efficiency of the diesel cycle is expressed as

W .
n = .ne! =1- Q‘oul (9_21)
Qin Qin
For the constant-volume process and the constant-pressure process
Qou = e (T, — T)) Qi = ric(T; — T,) (9.22)

The efficiency is then

c (T, - T)) _ ,-T,

=1~ = =1 - = 9.23
K ,(T: — 1)) k(T; - T;) ( )
This can be put in the form
_ T, T,/T, -1
ﬂ—l—k—T2T3/T2_1 (9.24)

This expression for the thermal efficiency is often written in terms of the compression ratio » and

the cutoff ratio r. which is defined as 1, /V,; there results
1 k-1

n= 1 F_—l m (9. 25)
From this expression we see that, for a given compression ratio r, the efficiency of the diesel cycle is
less than that of an Otto cycle. For example, if r = 10 and r. = 2, the Otto cycle efficiency is 60.2
percent and the diesel cycle efficiency is 53.4 percent. As r, increases, the diesel cycle efficiency
decreases. In practice, however, a compression ratio of 20 or so can be achieved in a diesel engine;
using r = 20 and 7, = 2, we would find n = 64.7 percent. Thus, because of the higher compression
ratios, a diesel engine typically operates at a higher efficiency than a gasoline engine.

The decrease in diesel cycle efficiency with an increase in r. can also be observed by considering
the T-s diagram shown in Fig. 9-10. If we increase r_, the end of the heat input process moves to state
3. The increased work output is then represented by area 3-3—4'—4-3. The heat input increases
considerably, as represented by area 3-3-a-b-3. The net effect is a decrease in cycle efficiency, caused

@

b

Fig. 9-10
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obviously by the convergence of the constant-pressure and constant-volume lines on the 7-s diagram.
For the Otto cycle note that two constant-volume lines diverge, thereby giving an increase in cycle
efficiency with increasing 7.

EXAMPLE 9.5 A diesel cycle, with a compression ratio of 18 operates on air with a low pressure of 200 kPa and
a low temperature 200 °C. If the work output is 1000 kJ/ kg, determine the thermal efficiency and the MEP. Also,
compare with the efficiency of an Otto cycle operating with the same maximum pressure.

The cutoff ratio r, is found first. We have

RT )
v, = —P—' = %73—) =06788m’°/kg and v, =uy,/18 =0.03771 m’/kg
1

Since process 1 — 2 is isentropic, we find

T, = T,(:—;)H = (473)(18)°* = 153K and P, = P,(Z—;)k = (200)(18)"* = 11.44 MPa
The work for the cycle is given by
Woet = et =923 + a1 = (T3 — 1) + c(T) = T)
1000 = (1.00)(T, — 1503) + (0.717)(473 — T,)

For the isentropic process 3 — 4 and the constant-pressure process 2 — 3, we have

VK-l 0.4
_rfe\ T (e VL L 1508
Ti= TB( u,) = 73( 0.6788) v "0, - o0s7n ~ 0860

The last three equations can be combined to yield
1000 = (1.00)(39860v; — 1503) + (0.717)(473 — 46 54003*)
This equation is solved by trial and error to give
vy = 0.0773 m%/ kg .. Ty = 3080 K T,=1290K
This gives the cutoff ratio as r, = v, /v, = 2.05. The thermal efficiency is now calculated as

1 k-1 1 (205" -1

- ~0.629 or 62.9%
K P k(. - 1) (18)"* (1.4)(205 - 1) or ?

Also, MEP = w,_, /(v; — v;) = 1000/(0.6788 — 0.0377) = 641 kPa.
For the comparison Otto cycle,
0.6788 1

Fotto = U1 /U3 = 0073 = 8.78 Moo = 1 — U = (0.581 or58.1%

9.7. THE DUAL CYCLE

An ideal cycle that better approximates the actual performance of a compression-ignition engine
is the dual cycle, in which the combustion process is modeled by two heat-addition processes: a
constant-volume process and a constant-pressure process, as shown in Fig. 9-11. The thermal
efficiency is found from

=1 Lou (9.26)
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v = const.

@
Qo
®
A 5
Fig. 9-11
where
Q()ul = ’hcr(TS - T]) Qin = mcL‘(T3 - TZ) + mcp(Tlt - T3) (927)
Hence, we have
=1 s~ Ty 9.28
U S 0 (9.28)
If we define the pressure ratio r, = P, /P,, the thermal efficiency can be expressed as
1 rprf -1
n=1- (9.29)

k1
r* = kr(r. 1) +r, -1

If we let r, = 1, the diesel cycle efficiency results; if we let r, = 1, the Otto cycle efficiency results. If
r, > 1, the thermal efficiency will be less than the Otto cycle efficiency but greater than the diesel
cycle efficiency.

EXAMPLE 9.6 A dual cycle, which operates on air with a compression ratio of 16, has a low pressure of
200 kPa and a low temperature of 200°C. If the cutoff ratio is 2 and the pressure ratio is 1.3, calculate the
thermal efficiency, the heat input, the work output, and the MEP.

By (9.29),

1 1 (1.3)2)"" -1
T e (HIHE - F 13-
The heat input is found from q,, = ¢ (T, = T;) + c (T, — T), where

=0.622 or 62.2%

7=

v \o! P
T, = T,(U—‘) = (473)(16)"" = 1434K T, = szi = (1434)(1.3) = 1864K
2 2

b,
T, = TJLi = (1864)(2) = 3728K
3

Thus, g;, = (0.717X1864 — 1434) + (1.00X3728 — 1864) = 2172 kI / kg. The work output is found from

Wour = NGin = (0.622)(2172) = 1350kJ /kg

Finally, since
RT,  (0.287)(473)
= g

U= 5

P = 0.6788 m*/ kg
1

we have

MEP Wout 1350

T n(-r,/r)  (0.6788)(15/16) = 2120 kPa
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9.8 THE STIRLING AND ERICSSON CYCLES

The Stirling and Ericsson cycles, although not extensively used to model actual engines, are
presented to illustrate the effective use of a regenerator, a heat exchanger which utilizes waste heat. A
schematic diagram is shown in Fig. 9-12. Note that for both the constant-volume processes of the
Stirling cycle (Fig. 9-13) and the constant-pressure processes of the Ericsson cycle (Fig. 9-14) the heat
transfer g,_, required by the gas is equal in magnitude to the heat transfer g,_, discharged by the gas.

@ Regenerator @
®
] #——»w out
Isothermal . Isothermal
compressor Oout Oin turbine
ou
Fig. 9-12
® T

T = const.

[ s

Fig. 9-13 Stirling cycle

v s

Fig. 9-14 Ericsson cycle
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This suggests the use of a regenerator that will, internally to the cycle, transfer the otherwise wasted
heat from the air during the process 4 — 1 to the air during the process 2 — 3. The net result of this
is that the thermal efficiency of each of the two ideal cycles shown equals that of a Carnot cycle
operating between the same two temperatures. This is obvious because the heat transfer in and out of
each cycle occurs at constant temperature. Thus, the thermal efficiency is

m=1- 7= (9.30)

Note that the heat transfer (the purchased energy) needed for the turbine can be supplied from
outside an actual engine, that is, external combustion. Such external combustion engines have lower
emissions but have not proved to be competitive with the Otto and diesel cycle engines because of
i problems inherent in the regenerator design and the isothermal compressor and turbine.
mathcad EXAMPLE 9.7 A Stirling cycle operates on air with a compression ratio of 10. If the low pressure is 30 psia, the

low temperature is 200 °F, and the high temperature is 1000 °F, calculate the work output and the heat input.
For the Stirling cycle the work output is

Wou = W34 + W, = RTy In Z—: +RT,In Z—f = (53.3)(14601n 10 + 6601n0.1) = 98,180 ft-Ibf/Ibm

where we have used (4.36) for the isothermal process. Consequently,

T, 660 ~ Wow  98,180/778

1 = (.548 Qin_'_n—_w—_

n=1-7-=1- g 230 Btu/Ibm

EXAMPLE 9.8 An Ericsson cycle operates on air with a compression ratio of 10. For a low pressure of 200 kPa,
a low 100°C, and a high temperature of 600 °C, calculate the work output and the heat input.
For the Ericsson cycle the work output is
Wout = Wioa T Wy 3 + wa_, + w,_; = RT} ln +P2(v3 - Uy) +RT3ln—4 + Pi(vy, — vy)
U3

We must calculate P,, vy, v,, and v,. We know

Ul= — = w = 0.5353 m®/kg

For the constant-pressure process 4 — 1,

T, T, 873 3713 _ 3
%S0, 5. = 05353 vy = 1253 m>/kg
From the definition of the compression ratio, v, /v, = 10, giving v, = 0.1253 m?/kg. Using the ideal-gas law, we
have
_, _ RT, (0.287)(373)
P,=P,= 5, = 0%y = 854.4 kPa

The final necessary property is vy = RT,/P; = (0.287X873)/854.4 = 0.2932 m*/kg. The expression for work
output gives

Woue = (0.287)(373)In D422+ (854.4)(0.2932 — 0.1253)
+0.287 X 873 Ingamey + (200)(0.5353 — 1.253) = 208 ke
Finally,
T, 378 Wou | 208
R L I - L
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9.9 THE BRAYTON CYCLE

The gas turbine is another mechanical system that produces power. It may operate on an open
cycle when used as a tank engine or truck engine, or on a closed cycle when used in a nuclear power
plant. In open cycle operation, air enters the compressor, passes through a constant-pressure
combustion chamber, passes through a turbine, and then exits as products of combustion to the
atmosphere, as shown in Fig. 9-154. In closed cycle operation the combustion chamber is replaced
with a heat exchanger in which energy enters the cycle from some exterior source; an additional heat
exchanger transfers heat from the cycle so that the air is returned to its initial state, as shown in Fig.
9-15b.

The ideal cycle used to model the gas turbine is the Brayton cycle. It utilizes isentropic
compression and expansion, as indicated in Fig. 9-16. The efficiency of such a cycle is given by

n=1 %=1_M= _L /T -1 (9.31)
0, =T | LT /T~ 1 |
Using the isentropic relations
P, (T, k/(k—1) P, (T, k/tk-1) 0.7
P o\T 7\ (932)
/Fuel
@ Combustor @

Compressor

Turbine

Products of
Combustion

(a) Open Cycle (b) Closed Cycle

Air

Fig. 9-15

Fig. 9-16
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and observing that P, = P; and P, = P,, we see that

T, T, T, T,
7. * T°T, (939)
Hence, the thermal efficiency can be written as
T p.\ -k
=1 -} 1 _ |21
n=1 7, 1 (Pz) (9.34)
In terms of the pressure ratio r, = P, /P, the thermal efficiency is
n=1- r;““’/" (9.35)

Of course, this expression for thermal efficiency was obtained using constant specific heats. For more
accurate calculations the gas tables should be used.

In an actual gas turbine the compressor and the turbine are not isentropic; some [osses do occur.
These losses, usually in the neighborhood of 15 percent, significantly reduce the efficiency of the gas
turbine engine.

Another important feature of the gas turbine that seriously limits thermal efficiency is the high
work requirement of the compressor, measured by the back work ratio Wmmp /W The compressor
may require up to 80 percent of the turbine’s output (a back work ratio of 0.8), leaving only 20 percent
for net work output. This relatively high limit is experienced when the efficiencies of the compressor
and turbine are too low. Solved problems illustrate this point.

EXAMPLE 9.9 Air enters the compressor of a gas turbine at 100 kPa and 25°C. For a pressure ratio of 5 and a
maximum temperature of 850°C determine the back work ratio and the thermal efficiency using the Brayton
cycle.

To find the back work ratio we observe that
Weomp - Cp(TZ -T) - ,-T
Werb Cp(T3 - T4) T3 - 7:1

The temperatures are T, = 298 K, T, = 1123 K, and

PI
The back work ratio is then

k=1)/k (k-1)/k 0.2857
T, = Tl(;) = (298)(5)"*" = 4720K T, = 73(—) - (1123)(5) = 709.1K

Weomp 4720 — 298
Wor 1123 — 709 =0.420 or42.0%

The thermal efficiency is 7 = 1 — r=%% = | — (5)~02857 = (369 (36.9%).

EXAMPLE 9.10 Assume the compressor and the gas turbine in Example 9.9 both have an efficiency of 80
percent. Using the Brayton cycle determine the back work ratio and the thermal efficiency.
We can calculate the quantities asked for if we determine w Weurb» and g,,. The compressor work is

comp?®

W, ¢
comp, 5 P
W = = (T - Ty)
comp ncomp ncomp
where W, , is the isentropic work. T, is the temperature of state 2’ assuming an isentropic process; state 2 is

the actual state. We then have, using T,. = T, from Example 9.9,
1.00
Weomp = (W)(MZ -~ 298) = 217.5k) /kg

Likewise, there results wy,p = TumWeum, s = Thuw Cp(T5 — Ty} = (0.8X1.00X1123 — 709.1) = 331.1kJ /kg, where
T, is T, as calculated in Example 9.9. State 4 is the actual state and state 4' is the isentropic state. The back work
ratio is then

wcomp 2175

Weorh = W = 0.657 or 65.7%
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The heat transfer input necessary in this cycle is g, = b3 — by = ¢ (T; — T,), where T, is the actual tempera-
ture of the air leaving the compressor. It is found by returning to the compressor:

Weomp = €,{Ty — T}) 217.5 = (1.00)(T, — 298) ~ T, =5155K
Thus, g;, = (1.00X1123 — 515.5) = 607.5 kJ /kg. The thermal efficiency of the cycle can then be written as

_ Wha _ Wwrb ~ Weomp _ 331.1 - 2175

n= 'q—m— = . = 6075 =0.187 or18.7%

9.10 THE REGENERATIVE GAS-TURBINE CYCLE

The heat transfer from the simple gas-turbine cycle of the previous section is simply lost to the
surroundings—either directly, with the products of combustion, or from a heat exchanger. Some of
this exit energy can be utilized since the temperature of the flow exiting the turbine is greater than the
temperature of the flow entering the compressor. A counterflow heat exchanger, a regenerator, is
used to transfer some of this energy to the air leaving the compressor, as shown in Fig. 9-17. For an
ideal regenerator the exit temperature 7, would equal the entering temperature Ts; and, similarly, T,
would equal Tg. Since less energy is rejected from the cycle, the thermal efficiency is expected to
increase. It is given by

W —
n= turb woomp (936)
9in

Using the first law, expressions for q;, and w,, are found to be

qin = ¢,(Ty — T3) W = Cp(Ty = T5) (9.37)
Products of Regenerator
combustion «—— MWWAWWWWAWWY
—MM/WM/MAVAV Combustor @
-4

© = ®
j&:% —t

Compressor |-

b
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Hence, for the ideal regenerator in which 7, = T, gq;, = w,,,, and the thermal efficiency can be
written as

w T,-T T, T,/T, - 1
=1- 2 =1 - F -1 222 9.38
n W T,- T, N = (9:-38)
Using the appropriate isentropic relation, this can be written in the form
T, (PyP)* ™ -1 Ty -
n=1-+ — =1- 5 rk-l/k 9.39
Tot = (P fe” )

Note that this expression for thermal efficiency is quite different from that for the Brayton cycle. For a
given pressure ratio, the efficiency increases as the ratio of minimum to maximum temperature
decreases. But, perhaps more surprisingly, as the pressure ratio increases the efficiency decreases, an
effect opposite to that of the Brayton cycle. Hence it is not surprising that for a given regenerative
cycle temperature ratio, there is a particular pressure ratio for which the efficiency of the Brayton
cycle will equal the efficiency of the regenerative cycle. This is shown for a temperature ratio of 0.25 in
Fig. 9-18.

0.75 - .
Regenerative
cycle
T, / T,=0.25
n osSFpF——HMm—Mm———----—--—- - - ——— —————— — =
Brayton
025 - cycle
1 L i ] 1 L TN I N DU |
2 4 6 8 10 11.32
r
p
Fig. 9-18

In practice the temperature of the air leaving the regenerator at state 3 must be less than the
temperature of the air entering at state 5. Also, T, > T,. The effectiveness, or efficiency, of a
regenerator is measured by

hy —h,
nrcg = h5 — hZ (940)
This is equivalent to
-1,
T = T, =T, (9.41)

if we assume an ideal gas with constant specific heats. Obviously, for the ideal regenerator T, = T
and 7., = 1. Regenerator efficiencies exceeding 80 percent are common.

EXAMPLE 9.11 Add an ideal regenerator to the gas-turbine cycle of Example 9.9 and calculate the thermal
efficiency and the back work ratio.
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The thermal efficiency is found using (9.39):
T, [ P,k D/ 208

n=1- 2|22 =1 (==

T\ P, ( 1123

This represents a 57 percent increase in efficiency, a rather large effect. Note that, for the information given, the
back work ratio does not change; hence, w,mp/ Wiy = 0.420.

)(5)"'2857 = 0.580 or 58.0%

9.11 THE INTERCOOLING, REHEAT, REGENERATIVE GAS-TURBINE CYCLE

In addition to the regenerator of the previous section there are two other common techniques for
increasing the thermal efficiency of the gas turbine cycle. First, an intercooler can be inserted into the
compression process; air is compressed to an intermediate pressure, cooled in an intercooler, and then
compressed to the final pressure. This reduces the work required for the compressor, as was discussed
in Sec. 9.2, and it reduces the maximum temperature reached in the cycle. The intermediate pressure
is determined by equating the pressure ratio for each stage of compression; that is, referring to Fig.
9.19 [see (9.8)],

P P
2 _ 4
=P (9.42)
Products of Regenerator
combustion ’V\NVVWVWV\
4
W @ Combustor
Compressor Compressor Qc

v
Fig. 9-19

The second technique for increasing thermal efficiency is to use a second combustor, called a
reheater. The intermediate pressure is determined as in the compressor; we again require that the
ratios be equal; that is,

Py Py

i P (9.43)
Since Py = P| and P, = P,, we see that the intermediate turbine pressure is equal to the intermediate
compressor pressure for our ideal-gas turbine.
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Finally, we should note that intercooling and reheating are never used without regeneration. In
fact, if regeneration is not employed, intercooling and reheating reduce the efficiency of a gas-turbine
cycle.

EXAMPLE 9.12 Add an ideal intercooler, reheater, and regenerator to the gas-turbine cycle of Example 9.9 and
calculate the thermal efficiency. Keep all given quantities the same.
The intermediate pressure is found to be P, = ﬂ’, P, = \[(100)(500) = 223.6 kPa. Hence, for the ideal

isentropic process,

P (k- 1)zk
2) =3750K

223.6 0.2857
n )

T, = T,( - (298)(W

The maximum temperature Ty = T, = 1123 K. Using P, = P, and F, = P,, we have

P (k-1D/k
’) =8923K

T, = Ts(_

2236 0.2857
7 )

= (1123)( <00
Now all the temperatures in the cycle are known and the thermal efficiency can be calculated as

W, Wb ~ Weomp _ Cp(TIS - T?) + Cp(TS - T‘)) - Cp(TZ - Tl) - Cp(T4 - T3)

out __

n= e  4ct4r (T, — Ts) + Cp(Tx - T)

230.7 + 230.7 - 77.0 - 77.0
= 3307 + 3307 = 0.666 or 66.6%
This represents a 14.9 percent increase over the cycle of Example 9.11 with only a regenerator, and an 80.5
percent increasc over the simple gas-turbine cycle. Obviously, losses in the additional components must be

considered for any actual situation.

9.12 THE TURBOJET ENGINE

The turbojet engines of modern commercial aircraft utilize gas-turbine cycles as the basis for their
operation. Rather than producing power, however, the turbine is sized to provide just enough power
to drive the compressor. The energy that remains is used to increase the kinetic energy of the exiting
exhaust gases by passing the gases through an exhaust nozzle thereby providing thrust to the aircraft.
Assuming that all of the air entering the engine passes through the turbine and out the exhaust
nozzle, as shown in Fig. 9-20, the net thrust on the aircraft due to one engine is

thrust = m(V5 — V) (9.44)

Burner T

Compressor

Exhaust
gases

®

Nozzle

Fig. 9-20
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where m is the mass flux of air.passing through the engine. The mass flux of fuel is assumed to be
negligibly small. In our ideal engine we assume that the pressures at section 1 and section 5 are equal
to atmospheric pressure and that the velocity at section 1 is equal to the aircraft speed. A solved
problem will illustrate the calculations for this application.

EXAMPLE 9.13 A turbojet engine inlets 100 Ibm/sec of air at 5 psia and — 50 °F with a velocity of 600 ft /sec.
The compressor discharge pressure is 50 psia and the turbine inlet temperature is 2000 °F. Calculate the thrust
and the horsepower developed by the engine.

To calculate the thrust we must first calculate the exit velocity. To do this we must know the temperatures T,
and T exiting the turbine and the nozzle, respectively. Then the energy equation can be applied across the nozzle
as

neglect

1% V2
4+h4= —zi +hs o Vi=2c,(T,—Ty)

Let us find the temperatures 7, and T. The temperature T, is found to be (using T; = 410°R)
P, \k=/k
2) = 791.6°R

50 02857
T, = Tl( P, )

= (410)( =

Since the work from the turbine equals the work required by the compressor, we have A, — h; = hy — h, or
T,-T,=T, - T, Thus, T, = 2460 — (791.6 — 410) = 2078 °R. The isentropic expansion through the turbine
yields

20787

T4 k/Ck—1) 35
) =(50)(m) = 27.70psia

P4=P3(T‘3'

The temperature T at the nozzle exit where P5 = 5 psia is found, assuming isentropic nozzle expansion, to be

p. (k- 1k
5) = 1274 °R

TS = T4(_

5 0.2857
" )

- (2078)( —

The energy equation then gives
Vs = [2¢,(T, - T5)]"/* = [(2)(0.24)(778)(32.2)(2078 ~ 1274)]"/* = 3109 ft/sec

[Note: We use ¢, = (0.24 Btu/Ibm-°R) X (778 ft-Ibf /Btu) X (32.2 Ibm-ft /Ibf-sec?). This provides the appropri-
ate units for cp.]
The thrust is: thrust = m(Vs — V;) = (100/32.2X3109 — 600) = 7790 Ibf. The horsepower is

_ (thrust)(velocity)  (7790)(600)
- 550 B 550

hp = 8500 hp

where we have used the conversion 550 ft-Ibf/sec = 1 hp.

9.13 THE COMBINED BRAYTON-RANKINE CYCLE

The Brayton cycle efficiency is quite low primarily because a substantial amount of the energy
input is exhausted to the surroundings. This exhausted energy is usually at a relatively high
temperature and thus it can be used effectively to produce power. One possible application is the
combined Brayton-Rankine cycle in which the high-temperature exhaust gases exiting the gas turbine
are used to supply energy to the boiler of the Rankine cycle, as illustrated in Fig. 9-21. Note that the
temperature T, of the Brayton cycle gases exiting the boiler is less than the temperature T; of the
Rankine cycle steam exiting the boiler; this is possible in the counterflow heat exchanger, the boiler.
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Fig. 9-21

To relate the air mass flux 71, of the Brayton cycle to the steam mass flux sz, of the Rankine
cycle, we use an energy balance in the boiler; it gives (see Fig. 9-21),

”"a(hg —hy) = ’hs(hs —h,) (9.45)
assuming no additional energy addition in the boiler, which would be possible with an oil burner, for
example. '

The cycle efficiency would be found by considering the purchased energy as Q;,, the energy input
in the combustor. The output is the sum of the net output Wy from the gas turbine and the output
W from the steam turbine. The combined cycle efficiency is thus given by

_ Wor+ Ve
Qin

An example will illustrate the increase in efficiency of such a combined cycle.

(9.46)

EXAMPLE 9.14 A simple steam power plant operates between pressures of 10 kPa and 4 MPa with a maximum
temperature of 400 °C. The power output from the steam turbine is 100 MW. A gas turbine provides the energy
to the boiler; it accepts air at 100 kPa and 25°C, has a pressure ratio of 5, and a maximum temperature of 850 °C.
The exhaust gases exit the boiler at 350 K. Determine the thermal efficiency of the combined Brayton-Rankine
cycle.

1f we neglect the work of the pump, the enthalpy remains unchanged across the pump. Hence, h, = h; = 192
kJ/kg. At 400°C and 4 MPa we have h; = 3214 kJ /kg and s, = 6.7698 kJ /kg - K. State 4 is located by noting
that s, = s, so that the quality is

S¢ 757 6.798 — 0.6491

¥o= 5= =~ 75010 - 0819
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Thus, hy = hy + xhp, = 192 + (0.8159X2393) = 2144 kI /kg. The steam mass flux is found using the turbine
output as follows:

Wer = i, (hy — hy) 100000 = ri,(3214 — 2144) rir, = 93.46 kg /s

Considering the gas-turbine cycle,

P (k-1/k 0.2857
T, = Ts(ﬁ—) = (298)(5)"*" = 4720K
Also,
P, (k-1D/k 1 0.2857
Ty = T,(Pj) = (1123)(3) =709.1K
Thus we have, for the boiler,
i (hy — hy) = rit,c (T — Ty) (93.46)(3214 — 192) = (ri,)(1.00)(709.1 — 350)

m, = 786.5kg/s

The output of the gas turbine is (note that this is not Wwgr)

W,

turb

=r,c,(T; — Tg) = (786.5)(1.00)(1123 - 709.1) = 325.5 MW
The energy needed by the compressor is

Wcomp

= e, (Ty — Ts) = (786.5)(1.00) (472 — 298) = 136.9 MW

Hence, the net gas turbine output is W = W, — W, = 325.5 — 136.9 = 188.6 MW. The energy input by

comp
the combustor is
Q,-n = 1, c,(T; — Tg) = (786.5)(1.00)(1123 — 472) = 512 MW
The above calculations allow us to determine the combined cycle efficiency as

_ Wer + War 100 + 188.6

0 573 = 0.564 or 56.4%

Note that this efficiency is 59.3 percent higher than the Rankine cycle (see Example 8.2) and 52.8 percent higher
than the Brayton cycle (see Example 9.9). Cycle efficiency could be increased even more by using steam reheaters,
steam regenerators, gas intercoolers, and gas reheaters.

9.14. THE GAS REFRIGERATION CYCLE

If the flow of the gas is reversed in the Brayton cycle of Sec. 9.9, the gas undergoes an isentropic
expansion process as it flows through the turbine, resulting in a substantial reduction in temperature,
as shown in Fig. 9-22. The gas with low turbine exit temperature can be used to refrigerate a space to
temperature 7, by extracting heat at rate Q'i“ from the refrigerated space.

Figure 9-22 illustrates a closed refrigeration cycle. (An open cycle system is used in aircraft; air is
extracted from the atmosphere at state 2 and inserted into the passenger compartment at state 1. This
provides both fresh air and cooling.) An additional heat exchanger may be used, like the regenerator
of the Brayton power cycle, to provide an even lower turbine exit temperature, as illustrated in Fig.
9-23. The gas does not enter the expansion process (the turbine) at state 5; rather, it passes through an
internal heat exchanger (it does not exchange heat with the surroundings). This allows the tempera-
ture of the gas entering the turbine to be much lower than that of Fig. 9-22. The temperature T, after
the expansion is so low that gas liquefication is possible. It should be noted, however, that the
coefficient of performance is actually reduced by the inclusion of an internal heat exchanger.
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Fig. 9-22

A reminder: when the purpose of a thermodynamic cycle is to cool a space, we do not define a
cycle’s efficiency; rather, we define its coefficient of performance:

desired effect Qin
energy that costs ~ yj7

n

COP = (9.47)

- where Wi = (W mp — Wiur)-

mathcad EXAMPLE 9.15 Air enters the compressor of a simple gas refrigeration cycle at —10°C and 100 kPa. For a
compression ratio of 10 and a turbine inlet temperature of 30°C calculate the minimum cycle temperature and
the coefficient of performance.

Assuming isentropic compression and expansion processes we find

Pl =Lk 0.2857
Ty = TZ(F;) = (263)(10)**%7 = 508 K
(k=1)/k 1 0.2857
TI=T4(F:) =(303)(ﬁ) = 157K = —-116°C

The COP is now calculated as follows:
qin = ¢,(T; — T}) = (1.00)(263 — 157) = 106 kJ /kg
Weomp = €,(T3 — T,) = (1.00)(508 — 263) = 245 kJ /kg
W = €,(Ty — Ty) = (1.00)(303 — 157) = 146 kJ /kg
din _ 106
w, - w 245 — 146

comp turb

.. COP = =1.07
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This coefficient of performance is quite low when compared with that of a vapor refrigeration cycle. Thus gas
refrigeration cycles are usual only for special applications.

EXAMPLE 9.16 Use the given information for the compressor of the refrigeration cycle of Example 9.15 but
add an ideal internal heat exchanger, a regenerator, as illustrated in Fig. 9-23, so that the air temperature
entering the turbine is — 40 °C. Calculate the minimum cycle temperature and the coeflicient of performance.

Internal .
heat Cou

@ exchanger @

:
2

@

1®

Turbine

W
il

P = const,

Fig. 9-23

Assuming isentropic compression we again have T, = T;(P,/P)* ™14 = (263X10)"*% = 508 K. For an
ideal internal heat exchanger we would have Ty = T, =263 K and 7T, = T, = 233 K. The minimum cycle
temperature is

=17k 0.2857
T, = T,,(—) = (233)(E) = 121K = —152°C
For the COP:

Gin = ¢,(Ty = T)) = (1.00)(233 ~ 121) = 112k /kg

wcomp =

c,(T, ~ T5) = (1.00)(508 - 263) = 245kJ /kg
Way = €,(To = T1) = (1.00)(233 — 121) = 112kJ /kg

Gin = 112
Weomp — Wiarp 245 — 11

.. COP = 5 = 0.842

Obviously, the COP is lower than that of the cycle with no internal heat exchanger. The objective is not to
increase the COP but to provide extremely low refrigeration temperatures.
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Solved Problems

An adiabatic compressor receives 20 m*/min of air from the atmosphere at 20°C and
compresses it to 10 MPa. Calculate the minimum power requirement.

An isentropic compression requires the minimum power input for an adiabatic compressor. The
outlet temperature for such a process is

P (k- 1)/k (1.2857
T, = T,(PZ) = (293)(%) = 1092K

To find the mass flux, we must know the density. It is p = P/RT = 100/(0.287X293) = 1.189 kg/m>.
The mass flux is then (the flow rate is given) m = p(AV) = (1.189X20/60} = 0.3963 kg/s. The
minimum power requirement is now calculated to be

Wiomp = m(hy — hy) = rirc (T, ~ T,) = (0.3963)(1.00)(1092 ~ 293) = 317 kW

comp

A compressor receives 4 kg /s of 20 °C air from the atmosphere and delivers it at a pressure of
18 MPa. If the compression process can be approximated by a polytropic process with
n = 1.3, calculate the power requirement and the rate of heat transfer.

The power requirement is [see (9.6)]

(n—1)/n 3/13
(ﬁ) ’ } (4)@@(293)[(18000)0 ’ —1]=3374kW

iya 100

The first law for the control volume [see (4.66)] surrounding the compressor provides us with

. ) ) P (n—1}/n
Q =mAh + I/V;:omp = mcp(TZ Tl) + W comp mcpTl (F?) -1+ I"Vcomp
03/13
= (4)(1. 00)(293)[ 1?880 - 1] 3374 = —661 kW

In the above, we have used the compressor power as negative since it is a power input. The expression of
(9.6) is the magnitude of the power with the minus sign suppressed, but when the first law is used we
must be careful with the signs. The ncgative sign on the heat transfcr means that heat is leaving the
control volume.

An adiabatic compressor is supplied with 2 kg /s of atmospheric air at 15°C and delivers it at
5 MPa. Calculate the efficiency and power input if the exiting temperature is 700 °C.

Assuming an isentropic process and an inlet temperature of 15°C, the exit temperature, would be

P (k—1)/k 0.2857
Ty = T,(P—f) = (288)(%) = 880.6 K

The efficiency is then

w, ¢ (Ty —Ty)  880.6 — 288
S e = (T, TTy ~ 938 - 0.865 or 86.5%

a

The power input is Wmmp me (T, — T)) = (2X1.00X973 — 288) = 1370 kW.
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An ideal compressor is to compress 20 Ibm/min of atmospheric air at 70°F at 1500 psia.
Calculate the power requirement for (a) one stage, (b) two stages, and (c) three stages.

(a)

(b)

(c)

For a single stage, the exit temperature is

P (k-1)/k 0.2857
—Tl( 2) —(530)(%) = 1987°R

The required power is
Wmm =nmc (T,-T)) = (—2—9)[(0.24)(778)](1987 — 530) = 90,680 ft-Ibf/sec or 164.9 hp

With two stages, the intercooler pressure is P, = (P,P,)'/? = [(14.7X1500)]!/2 = 148.5 psia. The
intercooler inlet and exit temperatures are (see Fig. 9-4)

P (k~-1/k 0.2857

T, = T,(—,rf) 530( L ) ~ 1026°R
P (k—1D/k 0.2857

T, = 73(},“) 530( llfg(;) = 1026°R

The power required for this two-stage compressor is
Woomp = e, (Ty — Ty) + riac,(Ty — T3)
= (%)[(0.24)(778)](1026 — 530 + 1026 — 530) = 61,740 ft-1bf /sec

or 112.3 hp. This represents a 31.9 percent reduction compared to the single-stage compressor.
For three stages, we have, using (9.9) and (9.10),

P, = (P?py)"7 = [(14.7) (1500)] = 68.69 psia

= (P,P2)"”* = [(14.7)(1500)Y] " = 321.0 psia
The high temperature and power requirement are then
P, (k—~1)/k 68.69 102857
T,=T,=T,=T,| 2 =530(—) = 8233°R
2 4 6 l( 131 ) ( ) 147

Womp = 3c,(Ty — T)) = (3)(-2%)[(0.24)(778)](823.3 —~ 530) = 54,770 ft-Ibf /sec

or 99.6 hp. This represents a 39.6 percent reduction compared to the single-stage compressor.

The calculations in Prob. 9.4 were made assuming constant specific heats. Recalculate the
power requirements for (a) and (b) using the more accurate air tables (Appendix F).

(a)

(b

For one stage, the exit temperature is found using P,. At stage T, = 530°R: A, = 126.7 Btu/lbm,
(P), = 1.300. Then,
1500
(P), = (P),P e 300)( 147) = 1327
This provides us with 7, = 1870°R and h, = 469.0 Btu/lbm. The power requirement is

Wiomp = (ks — hy) = (%)(469 — 126.7)(778) = 88,760 ft-Ibf /sec or 161.4 hp
With two stages, the intercooler pressure remains at 148.5 psia. The intercooler inlet condition is
found as follows:

(P), = (P)IP —(1300)(1144875) =13.13
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whence T, = 1018 °R and &, = 245.5 Btu/lbm. These also represent the compressor exit (see Fig.
9-4), 50 that

Wcomp = m(hZ - hl) + m(h4 - h3)

= (%)(245.5 ~ 126.7 + 245.5 — 126.7)(778) =~ 61,620 ft-Ibf /sec

or 112.0 hp. Obviously, the assumption of constant specific heats is quite acceptable. The
single-stage calculation represents an error of only 2 percent.

A Camot engine operates on air between high and low pressures of 3 MPa and 100 kPa with a
low temperature of 20 °C. For a compression ratio of 15, calculate the thermal efficiency, the
MEDP, and the work output.

The specific volume at TDC (see Fig. 6-1)is v, = RT,/P, = (0.287X293)/100 = 0.8409 m>/kg. For
a compression ratio of 15 (we imagine the Carnot engine to have a piston-cylinder arrangement), the
specific volume at BDC is

vy3= 13 = —p5— = 0.05606 m*/kg

The high temperature is then Ty = Pyv;/R = (3000X0.05606) /0.287 = 586.0 K.

The cycle efficiency is calculated tobe n =1 - T, /T;; = 1 — 293 /586 = 0.500. To find the work
output, we must calculate the specific volume of state 2 as follows:

Pyu, = Pw, = (100)(0.8409) = 8409  Pwl® = Pyl® = (3000)(0.05606)"* = 53.12
o vy = 03171 m®/kg

The entropy change (s, — s5,) is then

_ Uy _ 03171 .
As=c,In1 +RIn 7, 0+ 0.287In 08400 = 0.2799kJ /kg - K
The work output is now found to be w,, = AT [As| = (586 — 293X0.2799) = 82.0 k] /kg. Finally,
Wy = (MEP)(v, — v,) 82.0 = (MEP)(0.8409 — 0.3171) MEP = 156.5 kPa

An inventor proposes a reciprocating engine with a compression ratio of 10, operating on
1.6 kg /s of atmospheric air at 20 °C, that produces 50 hp. After combustion the temperature
is 400 °C. Is the proposed engine feasible?

We will consider a Carnot engine operating between the same pressure and temperature limits; this
will establish the ideal situation without reference to the details of the proposed engine. The specific
volume at state 1 (see Fig. 6-1) is

v, = 5 = ———20 = (0.8409 m3/k
i P, 100 /ke
For a compression ratio of 10, the minimum specific volume must be v4 = v, /10 = 0.8409/10 = 0.08409.
The specific heat at state 2 is now found by considering the isothermal process from 1 to 2 and the
isentropic process from 2 to 3:

0.287(673)

Pou, = P, = 100 X 0.8409 = 84.09 Pk = 00809

(0.08409)'* = 71.75

Uy = 0.6725 m?/kg
The change in entropy is

0.6725

- Y2 _ 0.675
As=RIn Pl 0.287In 08400 =

—0.0641 ki /kg - K
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The work output is then w,, = AT |As| = (400 — 20X0.0641) = 24.4 kJ /kg. The power output is

W = rw,,, = (1.6)(24.4) = 39.0kW or52.2 hp

The maximum possible power output is 52.2 hp; the inventor’s claims of 50 hp is highly unlikely, though
not impossible.

9.8 A six-cylinder engine with a compression ratio of 8 and a total volume at TDC of 600 mL
ik intakes atmospheric air at 20°C. The maximum temperature during a cycle is 1500 °C.
Assuming an Otto cycle, calculate (a) the heat supplied per cycle, (b) the thermal efficiency,
and (c) the power output for 4000 rpm.

(a) The compression ratio of 8 allows us to calculate T, (see Fig. 9-8):
Vi ko 04
T,=T|3] = (@3)8)* =6731K
2
The heat supplied is then g, = ¢ (T, — T,) = (0.717X1773 — 673.1) = 788.6 kJ /kg. The mass of

air in the six cylinders is
_ BV (100)(600 X 107%)
RT, ~  (0.287)(293)
The heat supplied per cycle is Q;, = mg;, = (0.004281X788.6) = 3.376 kJ.
(b) n=1-r"%=1-8"=05647 or 56.5%.
(c) Wy =nQ,, = (0.5647X3.376) = 1.906 kJ.

= 0.004281 kg

For the idealized Otto cycle, we assume that one cycle occurs each revolution. Consequently,

W = (Wou) (cycles per second) = (1.906)(4000,/60) = 127kW or 170 hp

9.9 A diesel engine intakes atmospheric air at 60°F and adds 800 Btu/lbm of energy. If the
i+  Mmaximum pressure is 1200 psia calculate (a) the cutoff ratio, (») the thermal efficiency, and
(¢) the power output for an airflow of 0.2 lbm /sec.

Mathcad
(a) The compression process is isentropic. The temperature at state 2 (see Fig. 9-9) is calculated to be

p. k- 1k 1200 \0-2857
T,=T,( 32 — (520 (—) — 1829°R
2 1( P, ) 520\ 177
The temperature at state 3 is found from the first law as follows:
i =, (T3 — T3) 800 = (0.24)(7; — 1829) ~ Ty = 5162°R

The specific volumes of the three states are
RT,  (53.3)(520)
P (14.7)(144)

RT,  (53.3)(5162)
Py T (1200)(144)

_ RT, _ (53.3)(1829)

= = 3 ' = /5 = —7 N7 1 = 3
vy 13.09 ft* /1bm v2= B = Canoy(idz) = 0642 1°/bm

= 1.592 ft*/lbm

Uy =

The cutoff ratio is then r. = vy/v, = 1.592 /0.5642 = 2.822.
(b) The compression ratio is r = v, /v, = 13.09/0.5642 = 23.20. The thermal efficiency can now be
calculated, using (9.25):
1 k-1 o1 (2.822)'* - 1
rk=Vk(r. = 1) (23_2)0-4 (1.4)(2.822 - 1)

n=1- = 0.6351 or 63.51%

(€) Wy = 10in = ni1g;, = [(0.6351X0.2X800))(778) = 79,060 ft-Ibf /sec or 143.7 hp.
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A dual cycle is used to mode! a piston engine. The engine intakes atmospheric air at 20 °C,
compresses it to 10 MPa, and then combustion increases the pressure to 20 MPa. For a cutoff
ratio of 2, calculate the cycle efficiency and the power output for an airflow of 0.1 kg/s.

The pressure ratio (refer to Fig. 9-11) is r, = P;/P, = 20/10 = 2. The temperature after the
isentropic compression is

=1k
) = 1092 K

10 000 )0‘2857

T, = T| 5 = (293) —pn—
P, 100

The specific volumes are

_ RT, _ (0.287)(293) 3 _ RT, (0.287)(1092)
UI_TI_T_O'8409m/kg LZ—P_z_W

The compression ratio is then r = v, /v, = 0.8409/0.03134 = 26.83. This allows us to calculate the
thermal efficiency:
gt el 1 @@ -1
n Tk (ro-1) +r,— 1 (2683 02 -1 +2-1

= 0.03134 m? /kg

= 0.8843

To find the heat input, the temperatures of states 3 and 4 must be known. For the constant-volume heat
addition,
T, T,

P
P, =P, Ty = sz—z = (1092)(2) = 2184 K

For the constant-pressure heat addition,

T, T ' !
Sk ATy = Tym

4
= (2184)(2) = 4368 K
L = 2189)(2)

U,
The heat input is then
Qin =€ (T35 — T;) + ¢ (T, — T3) = (0.717)(2184 — 1092) + (1.00)(4368 — 2184) = 2967 kJ /kg

so that
Wou = Nd;n = (0.8843)(2967) = 2624 kJ /kg

The power output is W, = riw,,, = (0.1X(2624) = 262.4 kKW.

out

Air at 90 kPa and 15°C is supplied to an ideal cycle at intake. If the compression ratio is 10
and the heat supplied is 300 kJ /kg, calculate the efficiency and the maximum temperature for
(a) a Stirling cycle, and (b) an Ericsson cycle.

(a) For the constant-temperature process, the heat transfer equals the work. Referring to Fig. 9-13, the
first law gives

Gope = W12 = RT, In % = (0.287)(288)In 10 = 190.3 kJ /kg
2

The work output for the cycle is then w,,, = g;, — gou = 300 — 190.3 = 109.7 kJ /kg. The effi-
ciency is
W, 109.7

out
= —— = —==— = 0.366
" Din 3

The high temperature is found from

T, T, 288

n=1-7 “Ty= 125 = T=oas = 44K

(b) For the Ericsson cycle of Fig. 9-14, the compression ratio is v4/v,. The constant-temperature heat
addition 3 — 4 provides

i = W3_4 = RT, In =% +300 = (0.287)T, In =
Uy Uq
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The constant-pressure process 2 — 3 allows

T, _ T, _ 288
v; Uy /10

The constant-pressure process 4 —» 1 demands
7, T, ﬁ 90

= 313.6

vy Uy R 0.287

Recognizing that T; = T}, the above can be combined to give

300 = (0.287)(313.60,)In :'—4 vy = 0.108902
3
The above two equations are solved simultaneously by trial and error to give
vy =3.94m?/kg vy = 1.69 m*/kg
Thus, from the compression ratio, v, = v,/10 = 0.394 m*/kg. The specific volume of state 1 is
RT  (0.287)(288) 3
vy = 5 = —pr—F = 09184 m” /k
I 90 /ke
The heat rejected is then
v 0.9184
qom = RT; In i = (0.287)(288)In 039 = 70.0 kJ /kg

The net work for the cycle is wy, = g, — Goue = 300 ~ 70.0 = 230 kJ /kg. The efficiency is then
N = Wou/qin = 230/300 = 0.767. This allows us to calculate the high temperature:
T, 288

17=1—T—‘ O.767=1—T— STy =1240K
H H

9.12 A gas-turbine power plant is to produce 800 kW of power by compressing atmospheric air at
i+ 20°C to 800 kPa. If the maximum temperature is 800 °C, calculate the minimum mass flux of

the air.
Mathcad

The cycle is modeled as an ideal Brayton cycle. The cycle efficiency is given by (9.35):

800 ) -04/14

100 = 0.4479

The energy added in the combustor is (see Fig. 9-15) Q,, = W,,./n = 800/0.4479 = 1786 kW. The
temperature into the combustor is

n=1—r§,“")/"=1—(

(k= 1)/k
) = 530.7K

800 )0.2/857

T, = TI(P—f = (293)(m

With a combustor outlet temperature of 1073 K, the mass flux follows from a combustor energy balance:
Qm =ric (T, — T,) 1786 = (m)(1.00)(1073 - 530.7) ~om=3293kg/s

This represents a minimum, since losses have not been included.

9.13 If the efficiency of the turbine of Prob. 9.12 is 85 percent and that of the compressor is 80
L percent, calculate the mass flux of air needed, keeping the other quantities unchanged. Also

calculate the cycle efficiency.
Mathcad

The compressor work, using 7, = 530.7 from Prob. 9.12, is

W,
Wepmp = o = ch(rz, -T) = (%)(1.00)(530.7 — 293) = 297.1kJ /kg

com,
P Ncomp Mcomp
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The temperature of state 4', assuming an isentropic process, is

P, (k—1)/k 100 102857
T, = T3(E) = (1073)(W) = 5924K
The turbine work is then
Ware = T’turbwturh‘s = T’turbcp(Td’ - T3) = (085)(100)(592‘4 - 1073) = 408.5 kJ/kg
The work output is then wy,, = Wy — Weomp = 408.5 — 297.1 = 111.4 kJ /kg. This allows us to deter-
mine the mass flux:
W, = mwy, 800 = (m)(111.4) oo =7.18kg/s
To calculate the cycle efficiency, we find the actual temperature 7T,. It follows from an energy
balance on the actual compressor:
Weomp = €,(Ty — Ty) 297.1 = (1.00)(T, — 293) ~T,=5901K
The combustor rate of heat input is thus Q;, = (T, — T,) = (7.18X1073 — 590.1) = 3467 kW. The
efficiency follows as
Wow _ 800
n=——= a5z = 02307
0., 467

Note the sensitivity of the mass flux and the cycle efficiency to the compressor and turbine efficiency.
9.14 Assuming the ideal-gas turbine and regenerator shown in Fig. 9-24, find Q'in and the back
Ealk- work ratio.
Mathcad

— | W= 800 hp
Compressor [—— 1 Turbine _—_%—>
Air 147 cpma 15 psia AW Combustor
80 F
~ AW :
Regenerator Ci

Fig. 9-24

The cycle efficiency is (see Fig. 9-17)
T] 540 75 0.2857
=1 2tpte-nzk g (2204 120 -
n=1-Fr 1 ( 1660 )( 14.7) 0.4818

The rate of energy input to the combustor is

W,. _ (800)(550,/778)
n 0.4818

O = = 1174 Btu/sec

The compressor outlet temperature is

: (k—1)/k 75 0.2857
7, = Tl(P—l) = (540)(m) = 860.2°R
The turbine outlet temperature is
P\ 1/k 147 \0-2857
T, =Ty 5 = (1660 (—) = 1042°R
4 3( p3 ) ( ) 75
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9.15

LI+

Mathcad

The turbine and compressor work are then

w, T, — T,) = (1.00)(860.2 — 540) = 320.2 Btu/Ibm

comp = Cp(
Weurs = Cp(T3 — T2) = (1.00)(1660 — 1042) = 618 Btu/lbm
The back work ratio is then weop,/Wen = 320.2/618 = 0.518.

To Prob. 9.14 add an intercooler and a reheater. Calculate the ideal cycle efficiency and the
back work ratio.

The intercooler pressure is (see Fig. 9-19), P, = /PP, = V(14.7)(75) = 33.2 psia. The tempera-
tures T, and T, are

33.2 )0.2857

= (540)(Tﬁ = 681.5°R

p, k-
Py

T,=1T,= Tl(——
Using P; = P, and P, = P,, there results

P (k—1/k . 0.2857
Ty=T, = T,,(?Z) = (1660)(%) = 1315°R

The work output of the turbine and input to the compressor are
Wis = C(Tg — Ty) + ¢,(Tg — T7) = (0.24)(778)(1660 — 1315)(2) = 128,800 ft-1bf /Ibm
Weomp = €p(Ty — T3) + ¢,(T, — T)) = (0.24)(778)(681.5 — 540)(2) = 52,840 ft-Ibf /ibm
The heat inputs to the combustor and the rcheater are
Geomy = €,(Tg — T5) = (0.24)(1660 — 1315) = 82.8 Btu/lbm
Greneater = C{(Ty — T3) = (0.24)(1660 — 1315) = 82.8 Btu/Ibm
The cycle efhiciency is now calculated to be

Wour __ Wiurb ™ Weomp (128,800 — 52,840) /778
9in 9comb + Qreheater 82.8 + 82.8

n = = 0.590

The back work ratio is we,mn/ Wy = 52,840,/128,800 = 0.410

A turbojet aircraft flies at a speed of 300 m/s at an elevation of 10000 m. If the compression
ratio is 10, the turbine inlet temperature is 1000 °C, and the mass flux of air is 30 kg/s,
calculate the maximum thrust possible from this engine. Also, calculate the rate of fuel
consumption if the heating value of the fuel is 8400 kJ /kg.

The inlet temperature and pressure are found from Table B-1 to be (see Fig. 9-20)

T,=2233K P, =0.2615 P, = 26.15kPa

The temperature exiting the compressor is

PZ k-bsk 0.2857
) = (223.3)(10)"* = 431.1K

T2 = TI(P#]

Since the turbine drives the compressor, the two works are equal so that
(T = Ty) =c,(T; - T,) T -T,=T,-T,

Since T = 1273, we can find T, as T, =T, + T, — T, = 1273 + 2233 — 431.1 = 1065.2 K. We can
now calculate the pressure at the turbine exit to be, using £, = P, = 261.5 kPa,

1065.2

T4 k/k=1) 3.5
) - (261.5)(W) — 140.1 kPa

P4=P3(f
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The temperature at the nozzle exit, assuming an isentropic expansion, is

P (k—1)/k
n=r(z)

The energy equation provides us with the exit velocity Vi = [2¢,(T, - Ty)]'/? = [(2X1000)
(1065.2 — 659.4)]'/2 = 901 m/s, where ¢, = 1000 J/kg - K must be used in the expression. The thrust
can now be calculated as

6.1 0.2857
2615 ) = 659.4 K

- (1065.2)(m

thrust = m(Vs ~ V) = (30)(901 — 300) = 18030 N
This represents a maximum since a cycle composed of ideal processes was used.

The heat transfer rate in the burner is 0 = ric (Ty — T,) = (30X1.00X1273 — 431.1) = 25.26 MW.
This requires that the mass flux of fuel i, be

8400ri, = 25260 .. ri, = 3.01kg/s

A gas-turbine cycle inlets 20 kg /s of atmospheric air at 15°C, compresses it to 1200 kPa, and
heats it to 1200 °C in a combustor. The gases leaving the turbine heat the steam of a Rankine
cycle to 350 °C and exit the heat exchanger (boiler) at 100 °C. The pump of the Rankine cycle
operates between 10 kPa and 6 MPa. Calculate the maximum power output of the combined
cycle and the combined cycle efficiency.

The temperature of gases leaving the gas turbine is (see Fig. 9-21)

Py \ k- 17k 100 \02857
Ty =T,| 5 = (1473 (—) =T7242K
5 7( P7) (1473)| 1200
This temperature of the air exiting the compressor is
P (k-Dsk 0.2857
T, Ts(?ﬁ) - (288)(%) - 585.8 K
]

The net power output of the gas turbine is then
WGT = qurh - Wcomp =rc, (T, ~ Ty) — mc, (T, — Ts)

= (20)(1.00)(1473 — 724.2 — 585.8 + 288) = 9018 kW

The temperature exiting the condenser of the Rankine cycle is 45.8°C. An energy balance on the
boiler heat exchanger allows us to find the mass flux ri, of the steam:

mac (Tg — Tg) = m(hy — h;) (20)(1.00)(724.2 — 100) = m (3043 — 191.8)
m, = 3379kg/s
The isentropic process 3 — 4 allows h, to be found:
5, =83 = 6.3342 = 0.6491 + 7.5019x, ~oxg = 0.7578
sohy = 191.8 + (0.7578)(2392.8) = 2005 kJ /kg

The steam turbine output is Wy = m(hy — h,) = (3.379X3043 — 2005) = 3507kW. The maximum
power output (we have assumed ideal processes in the cycles) is, finally,

Wou = Wor + Wep = 9018 + 3507 = 12525kW or 12.5 MW

The energy input to this combined cycle is O, = e (T7 — Tg) = (20X1.00X1473 — 585.8) = 17.74
MW. The cycle efficiency is then

W, .
n=—="= —-l% > _0.70

www.20file.org



www.semeng.ir

CHAP. 9] POWER AND REFRIGERATION GAS CYCLES 221

9.18

9.19

A simple gas cycle produces 10 tons of refrigeration by compressing air from 200 kPa to 2
MPa. If the maximum and minimum temperatures are 300 °C and —90°C, respectively, find
the compressor power and the cycle COP. The compressor is 82 percent efficient and the
turbine is 87 percent efficient.

The ideal compressor inlet temperature (see Fig. 9-22) is T, = T,(P,/P) k" 1/k =
(573X200/2000)°357 = 296.8 K. Because the compressor is 82 percent efficient, the actual inlet
temperature T, is found as follows:

W, Cp(TJ - TZ)

s Ctis T ) o e - -
Teomo = 5 = (T =T ATy = (0'82)[(0.82)(573) 573 + 296.8] = 236.2K

The low-temperature heat exchanger produces 10 tons = 35.2 kW of refrigeration:

Oy, = ric (T, - T)) 35.2 = rn(1.00)(236.2 — 183) - 1 =0.662kg/s

The compressor power is then W, = me (T, — T,) = (0.662X1.00X573 — 236.2) = 223 kW. The

comp
turbine produces power to help drive the compressor. The ideal turbine inlet temperature is

0.2857
2000) ~3533K

- (183)(W

The turbine power output is W, = mnyq,c (Ty — T)) = (0.662X0.87X1.00X353.3 ~ 183) = 98.1 kW.
The cycle COP is now calculated to be

P (k—1)/k
e

Py

net

Air enters the compressor of a gas refrigeration cycle at —10°C and is compressed from 200
kPa to 800 kPa. The high-pressure air is then cooled to 0°C by transferring energy to the
surroundings and then to — 30 °C with an internal heat exchanger before it enters the turbine.
Calculate the minimum possible temperature of the air leaving the turbine, the coefficient of
performance, and the mass flux for 8 tons of refrigeration. Assume ideal components.

Refer to Fig. 9-23 for designation of states. The temperature at the compressor outlet is

P (k—1)/k 0.2857
T, = n(ﬁ) - (283)(%) = 4205K

The minimum temperature at the turbine outlet follows from an isentropic process:

p. k- Dk
‘) =163.5K

T, = T,,(—

200 0.2857
2 )

= (243)( 300
The coefficient of performance is calculated as follows:
Gin = ¢,(T, — T)) = (1.00)(243 — 163.5) = 79.5 kl /kg

Weomp = €p(Ty — T3) = (1.00)(420.5 — 283) = 137.5 kI /kg

comp

Wars = €p(Ts = Ty) = (1.00)(243 — 163.5) = 79.5 kJ /kg

. _ Gin _ 79.5 _
OO = W~ 375795 ~ 1Y
We find the mass flux as follows:
Q'm = g, (8)(3.52) = (m)(79.5) m = 0354 kg/s
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Supplementary Problems

An ideal compressor receives 100 m®/min of atmospheric air at 10°C and delivers it at 20 MPa.
Determine the mass flux and the power required. Ans. 2.05 kg/s, 2058 kW

A adiabatic compressor receives 1.5 kg /s of atmospheric air at 25°C and delivers it at 4 MPa. Calculate
the required power and the exiting temperature if the efficiency is assumed to be (a) 100 percent, and
(b) 80 percent. Ans. (a) 835 kW, 582°C (b) 1044 kW, 721°C

An adiabatic compressor receives atmospheric air at 60 °F at a flow rate of 4000 ft*/min and delivers it
at 10,000 psia. Calculate the power requirement assuming a compressor efficiency of (a) 100 percent and
(b) 82 percent. Ans. (a)4895hp  (b) 5970 hp

A compressor delivers 2 kg/s of air at 2 MPa having received it from the atmosphere at 20°C.
Determine the required power input and the rate of hcat removed if the compression process is
polytropic with (a) n = 1.4, () n = 1.3,(c) n = 1.2, and (d) n = 1.0.

Ans. (a) 797 kW, 0 (b) 726 kW, 142 kW (c) 653 kW, 274 kW (d) 504 kW, 504 kW

The heat transfer from a compressor is one-fifth the work input. If the compressor reccives atmospheric
air at 20 °C and delivers it at 4 MPa, determine the polytropic exponent assuming an ideal compressor.
Ans.  1.298

The maximum temperature in the compressor of Prob. 9.22(a) is too high. To reduce it, several stages
are suggested. Calculate the maximum temperature and the isentropic power requirement assuming
(a) two stages and (b) three stages. Ans. (a) 860°F, 2766 hp (b) 507.8°F, 2322 hp

A compressor receives 0.4 Ibm/sec of air at 12 psia and 50°F and delivers it at 500 psia. For an 85
percent efticient compressor calculate the power requirement assuming (@) one stage, and (b) two stages.
Ans. (a) 155 hp (b) 115 hp

Rather than assuming constant specific heats, use the air tables (Appendix F) and rework (a) Prob. 9.20
and (b) Prob. 9.22(a). Compute the percentage error for the constant specific heat assumption.
Ans. (@) 2003 kW, 2.8% (b) 4610 hp, 6.2%

A threce-stage compressor receives 2 kg/s of air at 95 kPa and 22°C and delivers it at 4 MPa. For an
ideal compressor calculate (2) the intercooler pressures, (b) the temperatures at each state, (¢) the
power required, and (d) the intercooler heat transfer rates.

Ans.  (a) 330 kPa, 1150 kPa (b) 148°C, 22°C (c) 756 kW (d) 252 kW

An engine with a bore and a stroke of 0.2 X 0.2 m and a clearance of 5 percent experiences a minimum
pressure of 120 kPa and a maximum pressure of 12 MPa. If it operates with air on the cycle of Fig. 9-7,
determine (a) the displacement volume, (b) the compression ratio, and (¢) the MEP.

Ans.  (a) 6.28 liters (b) 20 (c) 245 kPa

An air-standard cycle operates in a piston-cylinder arrangement with the following four processes: 1 — 2
—isentropic compression from 100 kPa and 15°C to 2 MPa; 2 — 3—constant-pressurc heat addition to
1200 °C; 3 — 4—isentropic expansion; and 4 —» l—constant-volume heat rejection.

(a) Show the cycle on P-v and T-s diagrams, (b) calculate the heat addition and (c) calculate the cycle
efficiency. Ans. (b) 522 kJ/kg () 22.3%

An air-standard cycle operates in a piston-cylinder arrangement with the following four processes: 1 — 2
—constant-temperature compression from 12 psia and 70°F to 400 psia; 2 — 3—constant-pressure
expansion to 1400 °F; 3 —» 4—isentropic expansion; and 4 — 1—constant-volume process.

(a) Show the cycle on P-t and T-s diagrams, (b) calculate the work output, and (c) calculate the cycle
efficiency. Ans. (b) 118,700 ft-1bf /Ilbm (c) 47.8%
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9.32

9.33

9.34

9.35

9.36

9.37

9.38

9.39

9.40

9.41

A Carnot piston engine operates with air between 20°C and 600 °C with a low pressure of 100 kPa. If it
is to deliver 800 kJ /kg of work calculate (a) the thermal efficiency, (b) the compression ratio, and (c) the
MEP. See Fig. 6-1. Ans. (a) 54.7% (b) 1873 (c) 952 kPa

A Carnot engine operates on air as shown in Fig. 9-25. Find (a) the power output, (b) the thermal
efficiency, and (c¢) the MEP. See Fig. 6-1. Ans. (a) 207 kW (b) 45.4% (c) 146.6 kPa

120 kPa 40°C 2.0kg/s

Compressor

W
. out
Turbine :% —_—

Compressor

Q.L QII

300 C

Fig. 9-25

A Carnot engine has heat addition during the combustion process of 4000 Btu/sec. If the temperature
limits are 1200 °F and 30 °F, with high and low pressures of 1500 psia and 10 psia, dctermine the mass
flux of air and the MEP. See Fig. 6-1. Ans. 674 lbm/sec, 12.5 psia

A Carnot engine operates between the temperatures of 100 °C and 600 °C with pressure limits of 150 kPa
and 10 MPa. Calculate the mass flux of air if the rejected heat flux is (a) 100 kW, (&) 400 kW, and
(c¢) 2 MW. See Fig. 6-1. Ans. (a) 1.23 kg/s () 0.328 kg /s (¢) 0.0655 kg /s

A piston engine with a 0.2 X 0.2 m bore and stroke is modeled as a Carnot engine. [t operates on 0.5
kg /s of air between temperatures of 20 °C and 500 °C with a low pressure of 85 kPa and a clearance of 2
percent. Find (a) the power delivered, (b) the compression ratio, (c) the MEP, and (d) the volume at top
dead center. See Fig. 6-1. Ans. (a) 104 kW (b)Y 51.0 (¢} 214 kPa (d) 0.1257 liter

A spark-ignition engine operates on an Otto cycle with a compression ratio of 9 and temperature limits
of 30 °C and 1000 °C. If the power output is 500 kW, calculate the thermal cfficiency and the mass flux of
air. Ans. 58.5%, 2.19 kg /s

An Otto cycle operates with air entering the compression process at 15 psia and 90 °F. If 600 Btu /Ibm of
encrgy is added during combustion and the compression ratio is 10, determinc the work output and the
MEP. Ans. 281,000 ft-1bf /lbm, 160 psia

The maximum allowable pressure in an Otto cycle is 8 MPa. Conditions at the beginning of the air
compression are 85 kPa and 22 °C. Calculate the required heat addition and the MEP, if the compression
ratio is 8. Ans. 2000 kJ /kg, 1300 kPa

A maximum temperature of 1600 °C is possible in an Otto cycle in which air enters the compression
process at 85 kPa and 30 °C. Find the heat addition and the MEP, if the compression ratio is 6.
Ans. 898 kJ /kg, 539 kPa

If the Otto cycle shown in Fig. 9-26 operates on air, calculate the thermal efficiency and the MEP.
Ans. 57.5%, 383 kPa
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Fig. 9-26
9.42 A spark-ignition engine with a compression ratio of 8 operates on an Otto cycle using air with a low
temperature of 60 °F and a low pressure of 14.7 psia. If the energy addition during combustion is 800
Btu/Ibm, determine (a) the work output and () the maximum pressure.
Ans.  (a) 352,000 ft-Ibf /Ibm (b) 1330 psia
9.43 Use the air tables (Appendix F) to solve (a) Prob. 9.38 and (&) Prob. 9.41. Do not assume constant
specific heats. Ans. (a) 254,000 ft-1bf /1bm, 144 psia (b) 54.3%, 423 kPa
9.44 A diesel engine is designed to operate with a compression ratio of 16 and air entering the compression
stroke at 110 kPa and 20°C. If the energy added during combustion is 1800 kJ /kg, calculate (a) the
cutoff ratio, (b) the thermal efficiency, and (c) the MEP.
Ans. (a)3.03 (b) 56.8% (c) 1430 kPa
9.45 A diesel cycle operates on air which enters the compression process at 85 kPa and 30°C. If the
compression ratio is 16, the power output is 500 hp, and the maximum temperature is 2000 °C, calculate
(a) the cutoff ratio, (b) the thermal efficiency, and (¢) the mass flux of air.
Ans. (a)247  (b)59.2% (c) 0.465 kg /s
9.46 Air enters the compression process of a diesel cycle at 120 kPa and 15°C. The pressure after
compression is 8 MPa and 1500 kJ /kg is added during combustion. What are (a) the cutoff ratio, (») the
thermal efficiency, and (¢) the MEP? Ans. (a) 2.57 (b) 62.3% (c) 1430 kPa
9.47 For the cycle shown in Fig. 9-27 find the thermal efficiency and the work output.
Ans.  67%, 205,000 ft-1bf /1bm
P T
1200 psia -+~ @ @ 3000 °F
1Spsia 4+ ~ - — — - — "= 60°F —
v 5
Fig. 9-27
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9.48

9.49

9.50

9.51

9.52

9.53

9.54

P (MPa)

A diesel engine has a 0.6 X 1.2 m bore and stroke and operates with 5 percent clearance. For a power
output of 5000 hp calculate the compression ratio and the rate of heat input if the cutoff ratio is 2.5.
Ans. 21,5890 kW

Use the air tables (Appendix F) to solve (a) Prob. 9.44 and (b) Prob. 9.47. Do not assume constant
specific heats. Ans. (a) 2.76, 50.6%, 1270 kPa (b) 62.2%, 240,000 ft-Ibf /lbm

A dual cycle with r = 18, r, = 2, and r, = 1.2 operates on 0.5 kg /s of air at 100 kPa and 20°C at the
beginning of the compression process. Calculate (a) the thermal efficiency, (b) the energy input, and
(¢) the power output. Ans. (a) 63.7% (b) 1250 kJ /kg (c) 534 hp

A compression-ignition engine operates on a dual cycle by receiving air at the beginning of the
compression process at 80 kPa and 20 °C and compressing it to 60 MPa. If 1800 kJ /kg of energy is added
during the combustion process, with one-third of it added at constant volume, determine (a) the thermal
efficiency, (&) the work output, and (¢) the MEP.

Ans. (a)812%  (b) 1460 kJ/kg  (c) 1410 kPa

An ideal cycle operates on air with a compression ratio of 12. The low pressure is 100 kPa and the low
temperature is 30 °C. If the maximum temperature is 1500 °C, calculate the work output and the heat
input for (a) a Stirling cycle and (b) an Ericsson cycle.

Ans.  (a) 1048 kJ /kg, 1264 kI /kg (b) 303 kI /kg, 366 kI /kg

An ideal cycle is to produce a power output of 100 hp while operating on 1.2 Ibm /sec of air at 14.7 psia
and 70°F at the beginning of the compression process. If the compression ratio is 10, what is the
maximum temperature and the energy input for (a) a Stirling cycle and (b) an Ericsson cycle?

Ans. (a) 443°F, 142.5 Btu/lbm  (b) 605°F, 117 Btu/Ibm

Calculate the work output and thermal efficiency for the cycles shown in Fig. 9-28a and b. Air is the
operating fluid. Ans. (a) 831 XJ /kg, 60% (b) 1840 kJ /kg, 80%

v (m¥Ykg)

(a) (h)

Fig. 9-28
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9.56

9.57

9.58

9.59

9.60

9.61

9.62

9.63

9.64

9.65
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Air enters the compressor of a gas turbine at 85 kPa and 0 °C. If the pressure ratio is 6 and the maximum
temperature is 1000 °C, find (a) the thermal efficiency and (&) the back work ratio for the associated
Brayton cycle. Ans. (a) 40.1% (b)0.358

Three kg of air enters the compressor of a gas turbine cach second at 100 kPa and 10°C. If the pressure
ratio is 5 and the maximum temperature is 800 °C, determine (a) the horsepower output, (b) the back
work ratio, and (¢) the thermal efficiency for the associated Brayton cycle.

Ans. (a) 927 hp (b) 0.418 (¢) 36.9%

Determine the compressor outlet pressurc that will result in maximum work output for a Brayton cycle in
which the compressor inlet air conditions are 14.7 psia and 65°F and the maximum temperature is
1500 °F. Ans. 147 psia

Alr enters the compressor of a Brayton cycle at 80 kPa and 30°C and compresses it to 500 kPa. If 1800
kJ /kg of energy is added in the combustor, calculate (a) the compressor work requirement, (b) the net
turbine output, and (¢) the back work ratio. Ans. (a) 208 kJ /kg (b) 734 XJ /kg (¢) 0.221

Find the back work ratio and the horsepower output of the cycle shown in Fig. 9-29.
Ans.  0.365, 799 hp

500 kPa 1000 °C

Combustor

Iy fa | . :% W
‘ Compressor =, Turbine
Air
m=2kg/s
T,=20 C
P = 100 kPa
Fig. 9-29

Calculate the thermal efficiency and the back work ratio of the gas turbine of Prob. 9.55 if the respective
compressor and turbine efficiencies are (a) 80%, 80%, and (b) 83%, 86%.
Ans.  (a) 0.559, 23.3% (b) 0.502, 28.1%

Determine the efficiency of the compressor and turbine (the efficiencics are equal) that would result in a
zero thermal efficiency for the gas turbine of Prob. 9.55. Ans. 59.8%

Calculate the thermal efficiency and the back work ratio of the Brayton cycle of Prob. 9.58 if the
compressor and turbine efficiencies are (a) 83%, 83% and (b) 81%, 88%.
Ans.  (a) 30.3%, 0.315 (b) 32.8%, 0.304

Determine the efficiency of the compressor and turbine (the efficiencies arc equal) of the Brayton cycle
of Prob. 9.58 that would result in no net work output. Ans. 43.7%

The efficiency of the turbine of Prob. 9.59 is 83 percent. What compressor efficiency would reduce the
Brayton cycle thermal efficiency to zero? Ans. 44%

Use the air tables to find the thermal efficiency and the back work ratio for (a) Prob. 9.55, (b) Prob. 9.58,
and (¢) Prob. 9.59. Do not assume constant specific heats.
Ans. (a) 38.1%, 0.346 () 37.1%, 0.240 (c) 34.8%, 0.355
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9.66

9.67

Air
100 kPa
20°C

9.68

9.69

9.70

9.71

9.72

25°C
100 kPa

A regenerator is installed in the gas turbine of Prob. 9.58. Determine the cycle efficiency if its
effectiveness is (a) 100 percent and (b) 80 percent. Ans. (a) 88.4% (b) 70.3%

For the ideal-gas turbine with regencrator shown in Fig. 9-30 find W,,, and the back work ratio.
Ans. 899 kW, 0.432.

— | W,
Compressor —— C ] Turbine % —_—
500 kPa R00°
AW Combusior e
4 kg/s
Regenerator
Fig. 9-30

Assume that the efficiencies of the compressor and turbine of Prob. 9.67 are 83 percent and 86 percent,
respectively, and that the cffectiveness of the regenerator is 90 percent. Determine the power output and
the back work ratio. Ans. 540 kW, 0.604

Temperatures for the ideal regenerative gas-turbine cycle of Fig. 9-17 are T, = 60°F, T, = 500°F,
T, = 700°F, and T, = 1600 °F. Calculate the thermal efficiency and the back work ratio if air is the
working fluid. Ans. 51.1%, 0.489

Air enters a two-stage compressor of a gas turbine at 100 kPa and 20 °C and is compressed to 600 kPa.
The inlet temperature to the two-stage turbine is 1000°C and a regenerator is also used. Calculate
(a) the work output, (b) the thermal efficiency, and (c) the back work ratio assuming an idcal cycle.
Ans. (a) 171 kI /kg (b) 70.3% (¢) 0.297

One stage of intercooling, one stage of reheat, and regencration are added to the gas turbine of Prob.
9.59. Calculate (a) the power output, (b) the thermal efficiency, and (c¢) the back work ratio assuming an
ideal cycle. Ans. (a) 997 hp (b) 71% (c) 0.29

(a) For the ideal components shown in Fig. 9-31 calculate the thermal efficiency. (b) For the same
components, with an air mass flux of 2 kg/s, determine W, Q... Qg, and Q-
Ans. (a) 80.3% (b) 1792 kW, 2232 kW, 220 kW, 1116 kW

Regenerator )
Exhaust gases g’\MA, Qc

——AW— Combustor
900 kPa
Compressor [= Turbine Turbine :%
Oou Q%
Fig. 9-31
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9.73 A turbojet engine inlets 70 kg/s of air at an altitude of 10 km while traveling at 300 m/s. The
compressor provides a pressure ratio of 9 and the turbine inlet temperature is 1000 °C. What is the
maximum thrust and horsepower that can be expected from this engine? Ans. 41.5 kN, 16 700 hp

9,74 Rework Prob. 9.73 with realistic efficiencies of 85 percent and 89 percent in the compressor and turbine,
respectively. Assume the nozzle to be 97 percent efficient. Ans.  35.5 kN, 14300 hp

9.75 An aircraft with two turbojet engines requires a thrust of 4300 Ibf for cruise conditions of 800 ft /sec. If
each engine has a mass flux of 30 lbm/sec of air, calculate the pressure ratio if the maximum
temperature is 2000 °F. The aircraft flies at an altitude of 30,000 ft. Ans. 10

9.76 Calculate the thermal efficiency of the combined cycle shown in Fig. 9-32. Ans. 56%

} .

4 MPa 350°C

Wp = SOMW
2 Turbine :% —_

Heat
exchanger 10 KPa
100°C —é—o—— Condenser

Turbine

Combustor

750 kPa 150 kPa -
Compressor ater
50°C pump
Air
Fig. 9-32

9.77 A gas-turbine cycle intakes 50 kg /s of air at 100 kPa and 20 °C. It compresses it by a factor of 6 and the
combustor heats it to 900°C. It then enters the boiler of a simple Rankine cycle power plant that
operates on steam between 8 kPa and 4 MPa. The heat exchanger-boiler outlets steam at 400 °C and
exhaust gases at 300 °C. Determine the total power output and the overall cycle efficiency.

Ans. 16 MW, 47%

9.78 The compressor and turbine of the gas cycle of Prob. 9.77 are 85 percent efficient and the steam turbine
is 87 percent efficient. Calculate the combined cycle power output and efficiency.
Ans. 11.6 MW, 35.8%

9.79 Air flows at the rate of 2.0 kg/s through the compressor of an ideal gas refrigeration cycle where the
pressure increases to 500 kPa from 100 kPa. The maximum and minimum cycle temperatures are 300°C
and —20°C, respectively. Calculate the COP and the power needed to drive the compressor.

Ans. 173, 169 hp

9.80 Rework Prob. 9.79 assuming the cfficiencies of the compressor and turbine arc 84 percent and 88
percent, respectively. Ans. 0.57, 324 hp

9.81 An ideal internal heat exchanger is added to the cycle of Prob. 9.79 (see Fig. 9-23) so that the low
temperature is reduced to —60°C while the maximum temperature remains at 300 °C. Determine the
COP and the compressor power requirement. Ans. 143,233 hp
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9.82 What is the COP for the ideal air cycle shown in Fig. 9-33 if it is (a) used to refrigerate a space, and
(b) used to heat a space? Ans. (a) 1.28 (b)2.28

QO
0 W< /
180 psia AAAA 30 psia
w.
_— % Turbine
QDU(
Fig. 9-33

9.33 Assuming the compressor and turbine of Prob. 9.82 are each 87 percent efficient and the effectiveness of
the internal heat exchanger is 90 percent, rework the problem. Ans. (a)0.83 () 1.72
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Chapter 10

Thermodynamic Relations

10.1 THREE DIFFERENTIAL RELATIONSHIPS
Let us consider a variable z which is a function of x and y. Then we may write

2= f(x,y) dz=(g—§)ydx+(g§)xdy (10.1)

This relationship is an exact mathematical formulation for the differential z. Let us write dz in the
form

dz = Mdx + Ndy (10.2)
where
az az
M=(‘—9}—)y N=(6_y)x (10.3)
If we have exact differentials (and we will when dealing with thermodynamic properties), then we have
the first important relationship:
oM IN
(W)f(ﬁ)y (10.4)
This is proved by substituting in for M and N from our previous equations:
9%z 2%z
dyox dx dy (10.5)

which is true providing the order of differentiation makes no difference in the result, which it does not
for the functions of interest in our study of thermodynamics.

To find our second important relationship, first consider that x is a function of y and z, that is,
x = f(y, z). Then we may write

dax dax
dx = (W)zdwa(E)ydz (10.6)

Substituting for dz from (10.1), we have

b= (2) e (Z)](2) @ (2] o] (107)

o[- e [ s oo

The two independent variables x and y can be varied independently; i.e., we can fix x and vary y, or
fix y and vary x. If we fix x, then dx = 0; hence the bracketed coefficient of dy must be zero. If we fix
y, then dy = 0 and the bracketed coeflicient of dx is zero. Consequently,

or, rearranging,

dx dz
- (%), (&), -0 (10.9)
and
ax 0z ax
(E)y(W)XJ’(W)z:O (10.10)
230
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The first equation gives

dx az
(5),(3), = (10.11)
which leads to our second important relationship:
ax 1
(ﬁ)y‘ DN (10.12)
Now rewrite (10.10) as
dx az ax
FE)5)--(5). (10:13)
Dividing through by (dx /dy), and using (10.12),
dx -t dy
I:(W)z] = (E)z (10.14)
we obtain the cyclic formula
dx dz dyy _
()5 ) (5). - - (10.15)

EXAMPLE 10.1 Estimate the change in the specific volume of air, assuming an ideal gas, using the differential
form for du, if the temperature and pressure change from 25°C and 122 kPa to 29 °C and 120 kPa. Compare with
the change calculated directly from the ideal-gas law.

Using v = RT /P, we find

(v v R RT , (0.287 (0.287)(300) B X

where we have used average values for P and T.
The ideal-gas law provides

RT, RT, (0.287)(302) (0.287)(298)
= - 22

- 3
7, 7, 120 0.02125 m° /kg

Obviously the change in statc of 4°C and —2 kPa is sufficiently small that the differential change dv
approximates the actual change Av.

10.2 THE MAXWELL RELATIONS

For small (differential) changes in the internal energy and the enthalpy of a simple compressible
system, we may write the differential forms of the first law as

du=Tds — Pdv (10.16)
dh = Tds + vdP (10.17)

We introduce two other properties: the Helmholtz function a and the Gibbs function g:

a=u-—1Ts (10.18)
g=h-Ts (10.19)
In differential form, using (10.16) and (10.17), we can write
da = —Pdv — sdT (10.20)
dg = vdP — sdT (10.21)

Applying our first important relationship from calculus [see (10.4)] to the four exact differentials
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above, we obtain the Maxwell relations:

(g_LT‘)f —(%)l (10.22)
(%)f (%)P (10.23)
(%) - (g_i)r (10.24)
(%)ﬁ - (gls_’)r (10.25)

Through the Maxwell relations changes in entropy (an immeasurable quantity) can be expressed in
terms of changes in r, T, and P (measurable quantities). By extension, the same can be done for
internal energy and enthalpy (see Sec. 10.4).

EXAMPLE 10.2 Assuming that A = h(s, P), what two differential relationships does this imply? Verify one of
the relationships using the steam tables at 400 °C and 4 MPa.

If A = h(s, P) we can write
dh oh
dh = (E)Pds + (ﬁ)sdP
But the first law can be written as [see (10.17)] dh = Tds + vdP. Equating coeflicients of ds and dP, there

results
dh ah
r=(%), o=,

Let's verify the constant-pressure relationships. At P = 4 MPa and using central differences (use entries on
either side of the desired state) at T = 400°C, we have from the superheat table

(3h ) 3330 — 3092
P

75 ), = 6937 = 6383 — 072Kor399°C

This compares favorably with the specified temperature of 400 °C.

10.3 THE CLAPEYRON EQUATION

We may use the Maxwell relations in a variety of ways. For example, (10.24) allows us to express
the quantity 4, (the enthalpy of vaporization) using P, v, and T data alone. Suppose we desire A 7z At
the point (r, T,,)) of Fig. 10-1. Since the temperature remains constant during the phase change, we

Fig. 10-1
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can write
s,— S
(Qi) S A (10.26)
av T=T, UR - Uf
Consequently, (10.24) gives
aP _ Sre
(ﬁ)wn =1, (10.27)
But, we can integrate (J0.77), knowing that P and T are constant during a phase change:
0
[dn = [Tyds — [vaf”  or  hy=Tos, (10.28)
This is substituted into (10.27) to give the Clapeyron equation:
P hee B aP
(b‘f)l:,,o - T O hg- T(,L,g(ﬁ)m" (10.29)

The partial derivative (3P/dT),_, can be evaluated from the saturated-state tables, using the
central-difference approximation
dP _P,-P
(3—7—‘)(:=u0 =T,°71, (10.30)
where T, and T, are selected at equal intervals above and below T;. (See Example 10.3.)

For relatively low pressures, the Clapeyron equation can be modified when v, > v,. We may treat
the saturated vapor as an ideal gas, so that

Ufg=Ug_U/5Ug=¥ (10.31)
Then (10.29) becomes (dropping the subscript 0)
daP thg
35),- 2

This is often referred to as the Clausius—Clapeyron equation. It may also be used for the sublimation
process involving a solid to vapor phase change.

During a phase change, the pressure depends only on the temperature; hence, we may use an
ordinary derivative so that

apP dpP
(7). - (7)., (1039
Then (10.32) can be rearranged as
dP hye (dT
(F)..- (5, (10-34)
This is integrated between two saturation states to yield
P 2 ~ hfs 1 1
sat sat

where we have assumed h e tO be constant between state 1 and state 2 (hence the “approximately
equal to” symbol). Relationship (/0.35) may be used to approximate the pressure or temperature
below the limits of tabulated values (see Example 10.4).

EXAMPLE 10.3 Predict the value for the enthalpy of vaporization for water at 200 °C assuming steam to be an
ideal gas. Calculate the percent error.

At 200°C and 155.4 kPa the specific volume of the saturated steam is, in the ideal-gas approximation,
v, =RT/P= (0.462X473) /155 = 0.1406 m>/kg. For liquid water the density is approximately 1000 kg/m? so
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that v, = 0.001 m>/kg (or we can use vy from the steam table). Hence we find

aP 1906 — 1254
hpe = Tu,g(ﬁ)v = (473)(0.1406 — 0.001)(m0—) = 2153 kI /kg
This compares with hy, = 1941 kJ /kg from the steam tables, the error being

2153 — 1941
% error = (T)(IOO) = 10.9%

This error is due to the inaccuracy of the value for ¢,.

EXAMPLE 10.4 Suppose the steam tables started at P, =2 kPa (7, = 17.5°C) and we desired T, at
P, = 1 kPa. Predict T,,, and compare with the value from the steam tables.

Since the pressure is quite low, we will assume that v, > v, and that v, is given by the ideal-gas law, Using
values for ki, at P, = 4 kPa, 3 kPa, and 2 kPa we assume that at P,, = 1 kPa, h, = 2480 kJ /kg. Then (10.35)
provides us with

P, heg( 1 1 . 2480 1 1 o
nfz), - Fln-n), - (c@)(ms ) n-meserec

This is very close to the value of 6.98 °C from the steam tables.

10.4 FURTHER CONSEQUENCES OF THE MAXWELL RELATIONS

Internal Energy
Considering the internal energy to be a function of T and ¢, we can write

du du au
du=(ﬁ)vdT+ (W)Tdv=cud7’+ (%)Tdu (10.36)
where we have used the definition ¢, = (du/9T),. The differential form of the first law is
du =Tds — Pdv (10.37)
Assuming s = f(T, v), the above relationship can be written as
as as as as
du = T[(W)r a7 + (a—v)rdu] — Pdv = T(ﬁ)v dT + [T(%)T - P] dv  (10.38)
When this expression for du is equated to that of (10.36), one obtains
as
¢, = T(ﬁ)r (10.39)
du as apP
(5 ), = 7(5), - P=7(37), -7 (10-40)

where we have used the Maxwell relation (10.24). We can now relate du to the properties P, v, T,
and c,. by substituting (10.40) into (10.36):
oP

du = c, dT + [T(ﬁ)u - P] dv (10.41)

This can be integrated to provide (u, — u,) if we have an equation of state that provides the
relationship between P, v, and T so that (9P /dT), is known.

Enthalpy
Considering enthalpy to be a function of T and P, steps similar to those above result in
c, = T(gsf) (10.42)
P
v
dh=c,dr + v - T(37) |ap (10.43)

which can be integrated to give (h, — A,) if an equation of state is known.
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Since we know that A = u + Pv, we have
hy, —h, =u, —u, + P, — P, (10.44)

Hence, if we know P = f(T,v), we can find (4, — u,) from (10.41) and (h, — h,) from (10.44). If we
know v = f(P, T), we can find (h, — h,) from (10.43) and (u, — u,) from (10.44). In the first case we
know P explicitly as a function of T and v; in the second case we know ¢ explicitly as a function of P
and T. For an ideal gas, Pv = RT so that the bracketed quantities in (10.41) and (10.43) are zero, as
we have assumed earlier in our study of an ideal gas in which « = u(T) and h = A(T). For a nonideal
gas an equation of state will be provided so that one of the bracketed quantities can be evaluated.

Entropy

Finally, let us find an expression for ds. Consider s = s(T', v). Then, using (10.39) and (10.24), we
have

ds as c, apP
ds=(a—T-) dT+(av) du=7.-dT+(ﬁ)rdu (10.45)

Alternatively, we can let 5 = s(T, P). Then, using (10.42) and (10.25), we find

v

aT) dP (10.46)

ds = pdT (

These two equations can be integrated to yield

_/Tz dT + [( ).du=fr“’dr f‘"’( )dp (10.47)

For an ideal gas these equations simplify to the equations of Chap. 7. See Sec. 10.7 for actual
calculations involving real gases.

EXAMPLE 10.5 Derive an expression for the enthalpy change in an isothermal process of a gas for which the
cquation of state is P = RT/(v — b) — (a/v?).

Since P is given explicitly, we find an expression for Au and then use (10.44). For a process in which dT = 0,
(10.41) provides

P! aP v2f TR RT a 1 1
Au=[ [T(W)l._P]dU=];‘(U_—E_U_——5+U_2)dL‘=—a(Z‘;_E)

The expression for Ah is then

h, —h,=Au + Pv, — Py, —a(i—i)+P2L Py,
by

EXAMPLE 10.6 We know that ¢, = A + BT along a low-pressure isobar P = P*. If the equation of state is
P =RT/(v — b) — (a/v?) find an expressxon for As.
Since we know P explicitly, we use (10.47) to find As:

7,C, v2f 9P .
(fdT+ [ (ﬁ:)l»db
1 U1

Our expression for ¢, holds only along P = P*, Rather than integrating directly from 1 to 2, as shown in
Fig. 10-2, we proceed isothermally from 1 to 1*, then along P = P* from 1* to 2*, and finally isothermally from

As =
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Fig. 10-2

2* to 2. This results in

_pt(aPY . [TEce v2f P\,
As = —f (ﬁ)(dl +-/.Tl*TdT+[,3(ﬁ)(dL

L]

t R T3 A ©1 R
=—fl. —— dt +[T*(T+B)dT+j;3———u_bdu
1 !
o~ b T 5= b
=Rinb— +Aln g2 + B(T, - T,) + RIn 23—
vy - 1 vy — b

([CHAP. 10

We could calculate a numerical value for As if the initial and final states, 4, B, P*, a, and b were provided for a

particular gas.

10.5 RELATIONSHIPS INVOLVING SPECIFIC HEATS

If we can relate the specific heats to P, v, and T, we will have completed our objective of relating

the “hidden” thermodynamic quantities to the three measurable properties.
The exact differential ds = MdT + NdP was written in (10.46) as

_ % _ av
ds——de (b—f)pdp

Using (10.4), we can write

or, rearranging,

If we start with (10.45), we obtain

| = [(5) ]

dc, 2P
(%), - T(aT)

resulting in
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Consequently, knowing an equation of state, the quantities (dc, /3P); and (dc,/dr ), can be found for

an isothermal process.
A third useful relation can be found by equating (70.48) and (10.45):

Cp v C, P
TdT—(ﬁ)PdP=—T—dT+(a—T—)I‘dL (10.53)
so that
av /T aP/aT).,.
a7 = F@e/0)p o\ TEP/T), (10.54)
c, —C, c, —C,
14 L Y4 t
But, since T = T(P, v), we can write
oaT aT
dT=(ﬁ)vdP+(a—L¢)Pd1 (10.55)
Equating the coefficients of dP in the above two expressions for dT gives
au) (ap) (31')2(6P)
—¢, =Tz} |3%) = T} |5 10.56
Cp = Co T(aT A7), aT |\ 3 )+ (10.56)

where we have used both (10.12) and (10.15). The same relationship would have resulted had we
equated the coefficients of dv in (10.54) and (10.55). We can draw three important conclusions from
(10.56):

1. ¢, = c, for a truly incompressible substance (v = const.). Since (3t /3T ), is quite small for a
liquid or solid, we usually assume that ¢, = c,.

2. ¢, > c, as T — 0 (absolute zero).

3. ¢, = c, since (3P /3v); < O for all known substances.

Equation (10.56) can be written in terms of the volume expansivity

1{dv
8- 3(57), (10.57)
and the bulk modulus
aP
B = —b(a—U)T (10.58)
as
¢, — ¢, =vTB’B (10.59)

Values for B and B can be found in handbooks of material properties.
EXAMPLE 10.7 Find an expression for ¢, — ¢, if the equation of state is P = RT /(v ~ b) — (a/v?).

Equation (/0.56) provides us with
du aP
o ~e.=T(37),57),

Our given equatijon of state can be written as
1 a
= F[P(U - 6) + (v - b)]
so that (3T/dv)p = (P — a/v* + 2ab/v®) /R = 1/(3v /8T)p
Hence c,—C, = TRZ/[(P +a/v? + 2ab/e?) (v - b)]

This reduces to ¢, — ¢, = R if @ = b = 0, the ideal-gas relationship.

EXAMPLE 10.8 Calculate the entropy change of a 10-kg block of copper if the pressure changes from 100 kPa
to 50 MPa while the temperature remains constant. Use 8 = 5 x 107° K~! and p = 8770 kg/m".
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Using one of Maxwell's equations and (10.57), the entropy differential is

as as 0 av
ds = (a—’;)rdP+ (ﬁ)’/n" - ~(ﬁ)PdP= —cBdP

Assuming ¢ and B to be relatively constant over this pressure range, the entropy change is
1 1 -
$2751= = 5B(Py = P) = — g (5 X 10 )[(50 — 0.1) x 10°] = -0.285J/kg - K
If we had considered the copper to be incompressible (di = 0) the entropy change would be zero, as observed
from (10.47). The entropy change in this example results from the small change in volume of the copper.

10.6 THE JOULE-THOMSON COEFFICIENT

When a fluid passes through a throttling device (a valve, a porous plug, a capillary tube, or an
orifice) the enthalpy remains constant, the result of the first law. In the refrigeration cycle such a
device was used to provide a sudden drop in the temperature. A drop does not always occur: the
temperature may remain constant or the temperature may increase. Which situation occurs depends
on the value of the Joule-Thomson coefficient,

w, = (%12),, (10.60)

If u, is positive, a temperature decrease follows the pressure decrease across the device; if u ; Is
negative, a temperature increase results; for u; = 0, a zero temperature change results. Let us express
p; in terms of P, ¢, T, and c, as we did with the other properties in Sec. 10.4. The differential
expression for dh is given in (10.43) as

dh = c, dT + [u - T(%)P] dp (10.61)
If we hold A constant, as demanded by (10.60), we find

0=c,dT + [l‘ - T(j—;)p] dp (10.62)
or, in terms of partial derivatives,

= (), - 21,

Since u; is quite easy to measure, this relationship provides us with a relatively easy method to
evaluate c,. For an ideal gas, h = h(T) or T = T(h). Therefore, when A is held constant, T is held
constant, and so 47 /9P = u; = 0.

EXAMPLE 10.9 Find the Joule-Thomson coefficient for steam at 400°C and | MPa using both expressions
given in (10.63).

We can use (/0.42) and find ¢
T(é%) — ol T3 3k /ke - K
P

-
“p = (ar),, A 450 — 350
Then (10.63) gives, using ¢, = 2130 J/kg - K,

[ (e 1 (1 0.3304 — 0.2825 ~ 6
= E;[T(ﬁ)’) - 1] = (m)[(m)(w—) - 0.3066] = 7.40 X 107° K/Pa

n

Using the other expression in (10.64) we find (we hold enthalpy constant at 3264 kJ /kg)

_ (g) _ 4037 - 3962
i \oP)w ™ (15 - 05) x 10°

=750% 10" K/Pa

Since u, is positive, the temperature decreases due to the sudden decrease in pressure across a throttling device.
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10.7 ENTHALPY, INTERNAL-ENERGY, AND ENTROPY CHANGES OF REAL GASES

Gases at relatively low pressure can usually be treated as an ideal gas so that Pv = RT. For ideal
gases, the relations of the previous sections reduce to the simplified relations of the earlier chapters in
this book. In this section we will evaluate the changes in enthalpy, internal energy, and entropy of real
(nonideal) gases using the generalized relations of Sec. 10.4.

The general relation for the enthalpy change is found by integrating (10.43):

hy —h, = [TT’C,, aT + j:z[v - T(%)P]dz) (10.64)
1 1

The change in a property is independent of the path selected. Rather than going directly from 1 to 2,
let us select the path shown in Fig. 10-3 that takes us to such a low pressure P* that the process from
1* to 2* involves an ideal gas. Certainly P* = 0 will work, so let’s set P* = (. The processes from 1 to
1* and from 2* to 2 are isothermal, so that

* _ = 0 y — (éﬁ) ]

Kt — h, /P[z, T(57),|._. P (10.65)
—_— — Pz L _ai'

h, hg_/o [L T(aT)P]T:TZdP (10.66)

P"= 0 (ideal gas)

Fig. 10-3
For the ideal process from 1* to 2* we have
k _ Lk n
h - it _[r. ¢, dT (10.67)

The enthalpy change is then
hy = hy = (B = hy) + (k3 = hY) + (hy — hY) (10.68)
The ideal-gas change (h3 — 47) is found using the c,(T) relationship or the gas tables. For the
isothermal changes of the real gas we introduce the equation of state Pv = ZRT, where Z is the
compressibility factor. Using ¢ = ZRT /P, the integrals of (10.65) and (10.66) can be put in the form

h*—h 5 (Pr| 02 dpP,

-l (i], 5
where the reduced temperature T, = T/T, and the reduced pressure P, = P/P. have been used. The
quantity (h* — h) /T, is called the enthalpy departure and has been determined numerically using a

graphical integration of the compressibility chart. The result is presented in Fig. I-1 using molar units.
Obviously, A* — h = 0 for an ideal gas, since & = A(T) and the process is isothermal.

www.20file.org



www.semeng.ir

¢4
v

Mathcad

240 THERMODYNAMIC RELATIONS [CHAP. 10

The internal-energy change is found from the definition of enthalpy [see (10.44)] and is
u,—u,=h,—h, —R(Z,T, - Z,T)) (10.70)
where we have used Pv = ZRT.

The change in entropy of a real gas can be found using a technique similar to that used for the
enthalpy change. For an isothermal process (10.47) provides the entropy change as

Py v
5, — 8 = —fplz(ﬁ)PdP (10.71)

We again integrate from the given state along an isothermal path to a low pressure where an ideal gas
can be assumed, resulting in

P (du
s — sk = —fl)lw(ﬁ)PdP (10.72)

where the asterisk denotes an ideal-gas state. The above equation, integrated along an isotherm from
the ideal-gas state to any state that is approximated as an ideal gas, takes the form

s* — st = —[ —dP (10.73)
Pl(yw
Subtracting the above two equations provides, for an isothermal process,
«_o_ _ (PR _ (‘22
s* —s [P [P o7 )| 4P (10.74)
Introducing the nonideal-gas equation of state Pv = ZRT, we have
dapP
s* —s=R f (Z—l)+T(Z =k (10.75)
Jow Pr PR

which is called the entropy departure. This has also been determined numerically from the compress-
ibility charts and is presented in Appendix J using molar units. We can now find the entropy change
between any two states using

S =51 = (57 —83) + (57 —s7) + (s —51) (10.76)

In this equation the quantity s3 — s represents the entropy change between the two given states, on
the assumption that the gas behaves as an ideal gas; it does not represent a change along the P* =
path illustrated in Fig. 10-3.

EXAMPLE 10.10 Calculate the enthalpy change, the internal-energy change, and the entropy change of
nitrogen as it undergoes a process from —50°C, 2 MPa, to 40°C, 6 MPa. Use (a) the equations for an ideal gas
with constant specific heats, (b) the ideal-gas tables, and (c) the equations of this section.

(@) Ah =c, AT = (1.042)[40 — (—50)] = 93.8 kJ /kg Au = ¢, AT = (0.745){40 ~ (—50)] = 67.0 kI /kg
As=c,1 L — RIn 5= =1.0421 313 - 0.2971 6—002701<.I kg - K
s=c¢,ln T, P1 = n 553 . nz =0 /kg

(b) Interpolating in the ideal-gas table (Table F-2) gives
Ah = hy — by = (9102 — 6479) /28 = 93.7 kJ /kg Au = u, — u, = (6499 — 4625) /28 = 66.9 kJ /kg

P
As=¢,— ¢, - RIn 7,1 = (192.9 - 183.0) /28 — 0.297In (6/2) = 0.0273 kJ /kg - K
1

(¢) Using (10.69) and the enthalpy departure chart in Appendix I we find

T, 223 P 2
T, 313 _P2_6_
Ta= 7" = T35 7 = 248 Pro= 7 = 339 = 177
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The enthalpy departure chart (Appendix I) provides us with

1.6)(126.
= 1.6 kJ /kmol - K h:—h,=i——)g—éz—6zl=7.21 kJ /kg

= 2.5 kI /kmol - K L hS—hy= (—2~'—5)—%26'—2)=11.27U/kg

Consequently,
Ah=(h,—h3)y+ (At —h) + (A5 - A7) =-1127+721 + (1.042)[40 — (-50)] = 90kJ /kg

To find the internal energy change we use (10.70). The Z values are found, using the compressibility
chart with the above Ty and Py values, to be Z, = 0.99 and Z, = 0.985. Then

Au = Ah — R(Z,T, — Z,T,) = 90 — (0.297)[ (0.985)(313) — (0.99)(223)] = 64 kI /kg

To find the entropy change we first find s — s, and s¥ — s, using the entropy departure chart in Appen-

dix J.
5F -5, =1.0kJ/kmol - K st =5, =1.0/28 =0.036 kI /kg - K
5% — 3§, =12kJ/kmol - K o5 —5,=12/28=0.043kJ/kg- K
The entropy change is then
As = (5, —s¥) + (sF —5,) + (53 —sf) = —0.043 + 0.036 + 1.042In % - 0.297In g =0.02kJ/kg - K

Note that the real-gas effects in this example were not very pronounced. The temperatures were quite
high compared to 7, and the pressures were not excessively large. Also, accuracy using the small charts is
quite difficult.

Solved Problems

10.1 Verify (10.15) using the equation of state for an ideal gas.

The equation of state for an ideal gas is Pv = RT. Let the threc variables be P, ¢, T. Relationship
(10.15) takes the form
ap) (AT\ (o) _ |
(57).(5).39), -
The partial derivatives are

("_’3)—1(.’17_)_5 (H) _A(Ry _P a0\ _ 8 (RT\ _ RT
o). oTlw ] v v p—av(R),,—R (), - #(F),~

Form the product and simplify:

(7). (), 35, - 25(-52) - -5 -
aT |, au,,aP)T‘?ﬁ Pl Pr

The relationship is verified.

10.2  Derive the Maxwell relation (10.23) from (10.22) using (10.15).
The right side of the Maxwell relation (70.23) involves ¢, s, and P so that

(@)@ () o (5) - () (5). ¢

(5 ).(37).- (&),

From calculus,
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Using (/0.22) the above relation is written as

~(3).(5), - (5),

(%), (37),

Substituting this into (/) provides

which is the Maxwell relation (10.23).

10.3  Verify the third Maxwell relation (10.24) using the steam table at 600 °F and 80 psia.

We approximate the first derivative using central differences if possible:

P _ (100 - 60)(144) n
(ar)(_:,m = 8576 - 3482 - 13 Ibt/ft°F

3s _ 17582 — 1.8165 10 o
(5;)T=(m = %316 10425 = 0-0139 Buu/ft’°R  or 10.8 Ibf/ft2-°R

The difference in the above is less than 5 percent, which is due primarily to the fact that the entries in
the steam table are relatively far apart. A table with more cntries would result in less error.

10.4 Verify the Clapeyron equation for Freon 12 at 500 kPa.

The Clapeyron equation is (3P /3T), = hfg/Tl‘,g. From Table D-2 for Freon 12 we find, at 500
kPa using central differences,

(ap) _ 800 =400 _ 4 4s kPa/ °C

aT ).~ 22-815

it

We also observe that at P = 500 kPa, T = 15.6°C, hfg

143.35 kJ /kg, and v, = 0.03482 — 0.0007438 =
0.03408 m?/kg.

Checking the above Clapeyron equation, we have

\ 143.35 ~
1444 = 5 7003808y '+

This is quite close, verifying the Clapeyron equation.

10.5  Find an expression for the change in internal energy if P = RT/(v — b) — (a/v?) and
¢, = A + BT. Simplify the expression for an ideal gas with constant specific heats.

We integrate (10.41) as follows:

Bu = fc dT + f[r(%) - P] de

=](A+BT)dT+f[Tr—I_e—b—L‘—R;T—b+:—2]dr

= ["(4+BT)yar + [ 5
T, e U

1
=A(T,-T)) +3B(T:-T}) - a(E - u—l)

For an ideal gas P = RT/v so that a = b =0, and if ¢, = const., we set B = (. Then the above
expression simplifies to Au = A(T, = T)) = ¢ (T, — T)).
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10.6  Find an expression for ¢, — ¢, if the equation of state is

_RT _ a

v P—R—T‘+b

From the equation of state we find (3v/8T)p = (R/P) + (a/RT?). To find (4P/3T), we first
write the equation of state as

P=RT(U —b+ 7%)_[

so that

(E) _(v=b)R+2a/T

T/)e (v —b+a/RT)

Using (10.56) the desired expression is
c—c—(zﬁ L)(L‘—b)R+2a/T
o P " RT) (v~ b +a/RT)

This reduces to ¢, — ¢, = R for an ideal gas; that is, for a = b = 0.

10.7  The specific heat c,. of copper at 200°C is desired. If ¢, is assumed to be equal to ¢,
estimate the error. Use B = 5 X 107° K~!, B = 125 GPa, and p = 8770 kg/m".

Equation (10.59) provides the relation

1

CF - C, = L‘Tﬁ“B = (m

)(473)(5 x 10-5)%(125 x 10%) = 16.85 I /kg - K

From Table B-4 the specific heat of copper is approximated at 200°C to be about 0.40 kJ/kg - K.
Hence,

¢, =c,— 001685 =0.4 - 0.01685 = 0.383 ki /kg - K
Assuming ¢, = 0.4 kJ/kg - K,

0.4 —0.383
% error = (W—)(IOO) =4.4%

This error may be significant in certain calculations.

108  The Joule-Thomson coefficient is measured to be 0.001 °R-ft*/Ibf for steam at 600 °F and
Lk 100 psia. Calculate the value of c,,.

Mathcad Equation (10.63) is used to evaluate ¢,. With values from the steam table at 600 °F and 160 psia

we find
1 a 1 4.243 — 3.440
=% 7(57), - L’} - (m)[“%”)(w) B 3-848]

= 408 ft-Ibf /Ibm-°R  or 0.524 Btu /Ibm-°R

10.9 Calculate the change in enthalpy of air which is heated from 300 K and 100 kPa to 700 K and
2000 kPa using the enthalpy departure chart. Compare with Prob. 4.10(c).

The reduced temperatures and pressures arc

T, 300 P, 100

To = 7 = 133 = 226 Pri = B = 370 = 0027
700 2000

TRE = m =5.26 PRZ = m = 0532
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The enthalpy departure chart provides h% — s, = 0 and A} — h, = 0, so that
hy, —h, =h% — hf = 713.27 - 300.19 = 413.1 kJ /kg

where we have used the ideal-gas tables for the ideal-gas enthalpy change h% — AT. Obviously, the
real-gas effects in this problem are negligible and the result is the same as that of Prob. 4.10(c).

10.10  Nitrogen is compressed in a steady-flow device from 1.4 MPa and 20°C to 20 MPa and
200°C. Calculate (a) the change in enthalpy, (&) the change in entropy, and (c) the heat
transfer if the work input is 200 kJ /kg.

The reduced temperatures and pressures are

T, 293 Py 1.4
Tm=1 = 162=2%  Pu=7p =335 =048
473 20
Ty = 763 = 3.75 Pg, = 339 = 5.90

(a) The enthalpy departure chart allows us to find

- %
P . ‘-£ (03)(

¢

1262) = 1.4kl /kg

el

3-h T
T

= (2. 5)( 126. 2) = 6.8klJ/kg

RI’“*

hz_h'z

The enthalpy change is found to be
hy—hy=(hY —h)+ (h,—h3)+ (A5 - hT)=14 - 68 + (1.04)(200 — 20)
= 182 kJ /kg.
(b) The entropy departure chart provides

* =
5] — 8§, 0.1

S’lk“-sl = M = 2_8 =U.004kJ/kg-K
%
$3-s,= it % - 0.02kl/kg - K
The entropy change is then
Sy =5 =(sF —5)) + (5, —53) + (55 —s¥)=0004 - 0.02 +1.04In gg ()297In 20

-0.308 kJ/kg - K

(¢) From the first law, g = Ah + w = 182 — 200 = — 18 kJ /kg. The negative sign means that heat is
leaving the device.

10.11 Methane is compressed isothermally in a steady-flow compressor from 100 kPa and 20 °C to
20 MPa. Calculate the minimum power required if the mass flux is 0.02 kg /s.

The reduced temperatures and pressures are

T, 293 0.1 20

RZ:T’“:T(.:W:LS} PRl=m=0'02 PR2=m=4.31

Minimum power is required for an isothermal process if the process is reversible, so that the heat
transfer is given by ¢ = T As. The entropy change is
20

As = (sE=F + (5, —s¥) + (s¥—st) =0 - 176 +225In1 - 0518In 57 =

so that ¢ = TAs = (293X —3.18) = 932 kJ /kg. The first law, ¢ — w = Ah, requires that we find Ah.

—318ki/kg - K
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10.12

10.13

We find A% — h, = 14 kJ /kmol - K, so that
Ah = (BE—H T+ (hy — h%) + (B —HPT"= (—14)(191 1) = —167kJ/kg

Finally, the required power is
W = (q — Ah)r = [932 — (—167)](0.02) = 22 kW

Estimate the minimum power needed to compress carbon dioxide in a steady-flow insulated
compressor from 200 kPa and 20°C to 10 MPa. The inlet flow rate is 0.8 m*/min.

Minimum power is associated with a reversible process. Insulation results in negligible heat
transfer. Consequently, an isentropic process is assumed. First, the reduced pressures and temperature
are

P, 0.2 10 T, 293
PR1=-}TC=—.73—9——0027 PRZ:W'__I'” TRI————m—O963
For the isentropic process As = 0:
5% T, 10
0

As=0=M+(sz—s§)+(s§—s1)—0+ 33 +08421n293 0.1891n 55
Since 5, — 53 depends on T,, this equation has T, as the only unknown. A trial-and-error procedure
provides the solution. First, let 5, — 5% =0 and find T, = 705 K. Since 5% —§, > 0, we try the
following:

. 2 750 10
T,=750K, Tp, =247 0% +0.842In 557 — 0.1891n 55 = 0.0066
, 2 730 10
T,= 730K, Tpp=203: 02 -7 +0842In 553 — 0.189In 55 = ~0.016

Interpolating results in 7, = 744 K or 471°C. The work for this steady-flow process can now be found
to be

we= —Ah =h—I" 4 hE —hy, + BF ~ R =0+ (2. 0)( 042) + (0.842)(20 - 471)

= —366 k] /kg
To find W we must know m = (p,X0.8/60). The density is found using
N T 200 _ 3
1= ZRT, =~ 10.99)(0.189)(293) _ 6> ke/m
Finally
W= [(3 65)(0. 8)](~366) = —178kW

Calculate the maximum work that can be produced by steam at 30 MPa and 600 °C if it
expands through the high-pressure stage of a turbine to 6 MPa. Use the charts and compare
with tabulated values from the steam tables.

Maximum work occurs for an adiabatic reversible process, i.e., for As = 0. The reduced tempera-
ture and pressures are

T, 873
Toi= 7 = g7 = 1.35 Py, —ﬁq—=1.36 Pry = o

The isentropic process provides us with T, by a trial-and-error procedure:
T, 6
As=0=(st-s)+ (5, —-3)+ (s —-s}) = 18+sz s¥ +1.872In 7 - 0.4621n x5 30

If 5, — s =0, we find T, = 521 K or 248°C. Since s, — s¥ < 0, we try T, > 521 K‘
4 3 600

T,=600K, Tg,=0.93: 0= % 18t 1.8721n == 3 — 0.462In 35 30 = 0.097
» 4 3.5 560 6
T,=560K, Tg,=0287: 0= - 137t + 1.872In z=7 3 - 0.4621n 55 3 = ~-0.06
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10.14

10.15

10.16

10.17

10.18

10.19

10.20

10.21

10.22

10.23

10.24

10.25

10.26
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Interpolation gives T, = 575 K or 302 °C. The work produced is then
= —Ah = (h, — hT) + (h3 - hy) + (h] - h})

647.4 6474\ 30750 — 19500
"("8)( 18')+(4)( 18 )* 8

where we have used the ideal-gas Table F-6 to find A} — h%. A less accurate value would be found
using ¢, AT.

= 481 kJ /kg

To compare with values obtained directly from the steam tables we use

5, =5, =6.2339kl/kg - K
P, = 6 MPa

The work is w = —Ah = hy — h, = 3444 — 2982 = 462 kJ /kg.

} - h, = 2982 kl /kg

Supplementary Problems

Using (10.1), estimate the increase in pressure needed to decrease the volume of 2 kg of air 0.04 m? if
the temperature changes from 30°C to 33°C. The initial volume is 0.8 m>. Ans. 13.7 kPa

Using (10.1), estimate the temperature change if the pressure changes from 14.7 to 15 psia while the
volume changes from 2.2 to 2.24 ft>. There is 4 Ibm of air. Ans. 0.851°F

Show that the slope of a constant-pressure line on a T-v diagram of an ideal gas increases with
temperature. Ans. Slope = T/v

Find an expression for the slope of a constant-pressure line on a T-r diagram, if (P + a/t?Xv — b) =
RT. Ans. (P —a/v? + 2ab/v3)/R

Write two relationships that result from the differential forms of the first law and the relationship
u = u(s, v). Verify the two relationships for steam at 300 °C and 2 MPa.

Ans. T =(3u/3s), P= —(3u/ov),

Derive Maxwell relation (10.24) from (10.22) using (10.15).

Verify (10.25) using the Freon 12 tables at 100 kPa and 0°C.

Verify (10.23) using the steam tables at 20 kPa and 400°C.

Verify the Clapeyron equation using steam at 40 psia.

Use the Clapeyron equation to predict the enthalpy of vaporization h, of steam at 50 °C, (a) assuming
that steam is an ideal gas; (b) taking ¢, from the steam table. (c) What is ,, in the steam table?

Ans. (a) 2407 kJ/kg  (b) 2397 kI/kg  (c) 2383 kI /kg

Using the Clausius-Clapeyron equation, predict T,, for P, = 0.2 psia using the values in Table C-2E.
Compare this value with that found from interpolation in Table C-1E. Ans. 71°F, 53°F

(a) Derive the relationship ¢, = T(ds/3T), and verify the expression for dh given by (10.43). (b) For
an ideal gas what is the value of the quantity in brackets in (10.43)? Ans. (b) zero

Assume an ideal gas with constant ¢, and ¢, and derive simplified relationships for s, — s,. Refer to
(10.47). Ans. ¢, InT,/T; + RInevy/vy, ¢,InT,/T; — RIn P,/P,
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10.27

10.28

10.29

10.30

1031

1032

10.33

10.34

10.35

10.36

10.37

10.38

10.39

10.40

10.41

10.42

Show that (@) ¢, = T(3P/3T)(3v/3T)p and (b) ¢, = —T(P/3T) (3¢ /3T),.

(a) Use Problem 10.27(a) to estimate the value of ¢, for steam at 2 MPa and 400 °C and compare with
an estimate using ¢, = (8h /3T ), at the same state. (b) Do the same for steam at 4000 psia and 1000 °F.
Ans. (a)2.25kl/kg - Kvs. 221 kI/kg- K (b) 0.871 Btu/Ibm- °R vs. 0.860 Btu/Ibm-°R

(a) Use Problem 10.27(b) to estimate the value of ¢, for steam at 2 MPa and 400 °C and compare with
an estimate using ¢, = (du /aT), at the same state. (b) Do the same for steam at 4000 psia and 1000 °F.
Ans. (a) 187 kI/kg-Kvs. 1.66 kI/kg - K (b) 0.543 Btu/Ibm-°R vs. 0.500 Btu/Ibm- °R

Using P = RT/v — a/v? and assuming an isothermal process, find expressions for (a) Ah, (b) Au, and
(c) As. Ans. (a) Pyv, — Py + a(l/ey, — 1/vy) By a(l/vy = 1/¢5) (¢)RInuv, /vy

Using P = RT/(v — b) and assuming an isothermal process, find expressions for (a) Ak, (b) Au, and
(¢c) As. Ans. (@) Py, — Py, (B)0  (¢) Rlnl(e, — BY /(e — b))

Air undergoes a change from 20°C and 0.8 m?/kg to 200 °C and 0.03 m?/kg. Calculate the enthalpy
change assuming (a) the van der Waals equation of state and constant specific heats, (b) the ideal-gas
tables, and (c) an ideal gas with constant specific heats.

Ans. (a)182kJ/kg  (b) 182 kI/kg  (c) 180 kJ /kg

Nitrogen undergoes a change from 100°F and 5 ft3/Ibm to 600°F and 0.8 ft®/Ibm. Calculate the
enthalpy change assuming (a) the van der Waals equation of state and constant specific heats, (b) the
ideal-gas tables, and (c) and ideal gas with constant specific heats.
Ans. (a) 123 Btu/lbm (b) 126 Btu/lbm (c) 124 Btu/lbm

Find an expression for ¢, — ¢, if P=RT/v —a/v®.  Ans. TR*v/(Pc’ - a)

Calculate 8 and B for water at 5 MPa and 60 °C. Then estimate the difference ¢, — c,.
Ans. 522 x 107* K™, 2.31 x 10° kPa, 0.212 kJ /kg - K

Calculate B and B for water at 500 psia and 100 °F. Then estimate the differcnce ¢, — c,.
Ans. 1.987 x 107*°R™}, 48.3 x 10° psf, 0.0221 Btu/Ibm-°R

Find an expression for the Joule-Thomson coefficient for a gas if P = RT/v — a/v?. What is the
inversion temperature (the temperature where u; = 0)? Ans. 2av/[c (ReT - 2a)), (Pv? — a)/Re

Estimate the Joule-Thomson coefficient for steam at 6 MPa and 600 °C using both expressions in
(10.63). Approximate the value of ¢, using (3h/3T),. Ans. 3.45°C/MPa, 3.46°C/MPa

Estimate the temperature change of steam that is throttled from 8§ MPa and 600 °C to 4 MPa.
Ans. —14°C

Estimate the temperature change of Freon 12 that is throttied from 170 psia and 200 °F to 80 psia.
Ans. —14°F

Calculate the change in the enthalpy of air if its state is changed from 200 K and 900 kPa to 700 K and
6 MPa using (a) the enthalpy departure chart and (b) the ideal-gas tables.
Ans. (a)518kI/kg  (b) 513 kI/kg

Calculate the change in entropy of nitrogen if its state is changed from 300 °R and 300 psia to 1000 °R
and 600 psia using (a) the entropy departure chart and (b) the ideal-gas tables.
Ans. (a) 0.265 Btu/lbm-°R (b) 0.251 Btu/Ibm- °R
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10.43

10.44

10.45

10.46

10.47
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Estimate the power needed to compress 2 kg /s of methane in a reversible adiabatic process from 400
kPa and 20°C to 4 MPa in a steady-flow device (@) assuming ideal-gas behavior and (b) accounting for
real-gas behavior. Ans. (a) 923 kW (b) 923 kW

An adiabatic reversible turbine changes the state of 10 kg /min of carbon dioxide from 10 MPa and 700
K to 400 kPa. Estimate the power produced (a) assuming ideal-gas behavior, and (b) accounting for
real-gas behavior. Ans. (a) 612 kW (b) 59.7 kW

Air is contained in a rigid tank and the temperature is changed from 20°C to 800°C. If the initial
pressure is 1600 kPa, calculate the final pressure and the heat transfer (a) using the enthalpy departure
chart and (b) assuming ideal-gas behavior. Ans. (a) 614 kKJ /kg (b) 612 kJ /kg

Air undergoes an isothermal compression in a piston-cylinder arrangement from 100 °F and 14.7 psia to
1000 psia. Estimate the work required and the heat transfer (a) assuming ideal-gas behavior and (b)
accounting for real-gas effects.

Ans. (a) —162 Btu/lbm, —162 Btu/Ibm; (b) — 164 Btu/lbm, - 168 Btu/lbm

Nitrogen expands in a turbine from 200°C and 20 MPa to 20°C and 2 MPa. Estimate the power
produced if the mass flux is 3 kg/s. Ans. 544 kW
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Chapter 11

Mixtures and Solutions

11.1 BASIC DEFINITIONS

Thus far in our thermodynamic analyses we have considered only single-component systems. In
this chapter we develop methods for determining thermodynamic properties of a mixture for applying

the first law to systems involving mixtures.
We begin by defining two terms which describe and define a mixture. The mole fraction y is

defined as

N'.
vi= (11.1)

where N, is the number of moles of the ith component and N is the total number of moles. The mass
fraction mf is defined as

mf, = (11.2)

where m, is the mass of the ith component and m is the total mass of the mixture. Clearly, the total
number of moles and the total mass of a mixture are given, respectively, by

N=N+N,+N;+ -~ m=m +m,+my+ - (11.3)

Dividing the above equations by N and m, respectively, we see that
2y, =1 Imf,=1 (11.4)

The (mean) molecular weight of a mixture is given by
m 2 NM,
M=ﬁ=—N‘—=Ey,-M, (711.5)
The mixture’s gas constant is then
R

R = M (11.6)

where R denotes, as in Chapter 2, the universal molar gas constant.
Analyzing a mixture on the basis of mass (or weight) is gravimetric analysis. Analyzing a mixture
on the basis of moles (or volume) is volumetric analysis. The type of analysis must be stated.

EXAMPLE 11.1 Molar analysis of air indicates that it is composed primarily of nitrogen (78%) and
oxygen (22%). Determine (a) the mole fractions, (b) the gravimetric analysis, (c) its molecular weight, and (d) its
gas constant. Compare with values from Appendix B.

(@) The mole fractions are given as y, = 0.78 and y, = 0.22, where the subscript 1 refers to nitrogen and 2 to

oxygen.
(&) If there are 100 mol of the mixture, the mass of each component is

=NM, = (78)(28) = 2184k
n, M, = (78)(28) g . m = 2888 kg
m, = N,M, = (22)(32) = 704 kg
Gravimetric analysis yields
Z M 28 M 704
mf, = o = 888 0.756 mf, = = 9888 0.244

or, by mass, the mixture is 75.6% N, and 24.4% O,.
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(¢) The molecular weight of the mixture is M = m/N = 2888 /100 = 28.9 kg /kmol. This compares with 28.97
kg /kmol from the appendix, an error of —0.24%.

(d) The gas constant for air is calculated to be R = I_“\’/M = 8.314/28.9 = 0.288 kJ /kg - K. This compares with
0.287 kJ /kg - K from the appendix, an error of 0.35%.

By including argon as a component of air, the above calculations could be improved. However, it’s obvious
that the above analysis is quite acceptable.

11.2 IDEAL-GAS LAW FOR MIXTURES

Two models are used to obtain the P-v-T relation for a mixture of ideal gases. The Amagat model
treats each component as though it exists separately at the same pressure and temperature of the
mixture; the total volume is the sum of the volumes of the components. In this chapter we use the
Dalton model, in which each component occupies the same volume and has the same temperature as the
mixture; the total pressure is the sum of the component pressures, termed the partial pressures. For
the Dalton model

P=P +P,+ P, + - (11.7)

For any component of a mixture of ideal gases the ideal-gas law is

N,RT
P = 7 (11.8)
For the mixture as a whole we have
NRT
P= ¥ (11.9)
so that
P, NRT/V N,
it S il SRR S 11.10
P~ NRT)v N7 (11.10)

EXAMPLE 11.2 A rigid tank contains 2 kg of N, and 4 kg of CO, at a temperature of 25°C and 2 MPa. Find
the partial pressures of the two gases and the gas constant of the mixture.
To find the partial pressures we need the mole fractions. The moles of N, and CO, are, respectively,

m, 2
N, = F = % = (0.0714 mol
. ) ~. N = 0.1623 mol
=22 =
N, = M, " @ 0.0909 mol
The mole fractions are
N, 0.0714 _ N 00909
o= " oaem - 0440 2= < 016 - 0560
The partial pressures are
P, =y, P=(044)(2) = 0.88 MPa P, =y,P = (0.56)(2) = 1.12 MPa

The molecular weight is M = My, + M, y, = (28X0.44) + (44X0.56) = 36.96 kg /kmol. The gas constant of the
mixture is then

R 8314
R = 37 = 3¢9 = 0225 kI/ke - K
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11.3 PROPERTIES OF A MIXTURE OF IDEAL GASES

The extensive properties of a mixture, such as H, U, and S, can be found by simply adding the
contributions of each component. For example, the total enthalpy of a mixture is

H=3H =H +H,+H,+ - (11.11)
In terms of the specific enthalpy 4,
H=mh=3mh, and H=Nh=3INHh, (11.12)

where the overbar denotes a mole basis. Dividing the above two equations by m and N, respectively,
we see that

h=3mfh, and h=23yh, (11.13)
Since the specific heat ¢, is related to the change in the enthalpy, we may write
Ah =c, AT Ah;=c, AT (11.14)
so that
Ah =c, AT = Zmf(c, ,AT) (11.15)
Dividing both sides by AT, there results
¢, = mfic, (11.16)
The molar specific heat is
¢, = 2y,C, (11.17)
Likewise, using internal energy we would find
c. = Imfc,., C.=2y,C,, (11.18)

EXAMPLE 11.3 Gravimetric analysis of a mixture of three gases indicates 20% N,, 40% CO,, and 40% O,.
Find the heat transfer needed to increase the temperature of 20 Ibm of the mixture from 80 °F to 300 °F in a rigid
tank.

The heat transfer needed is given by the first law as (the work is zero for a rigid tank) @ = AU = m Au =
mc,. AT. We must find c,.. It is given by (11.184) as

Cy = mf]Cl;.] + mflcu.ﬁ + mf3cl=.3
= (0.2)(0.177) + (0.4)(0.158) + (0.4)(0.157) = 0.161 Btu/Ibm-°R
The heat transfer is then Q = mc, AT = (20X0.161X300 — 80) = 708 Btu.
EXAMPLE 11.4 A mixture is composed of 2 mol CO, and 4 mol N,. It is compressed adiabatically in a cylinder

from 100 kPa and 20°C to 2 MPa. Assuming constant specific heats, calculate (a) the final temperature, (b) the
work required, and (c¢) the change in entropy.

(a) The temperaturc is found using the isentropic relationship T, = T(P, /P)*~ /&,
Let’s find k for the mixture. The mass is m = NyM, + N, M, = (2X44) + (4X28) = 200 kg. The specific
heats are

88 112
c.=mfic, |+ mfyc, s = (50—0)(0.653) + (ﬁ)(o.m) = 0.705k) /kg - K

88 112
e =mfic, , +mfyc, = (%)(0.842) + (ﬁ)(l.OQ) = 0.954kJ/kg- K

The ratio of specific heats is k = ¢, /c, = 0.954/0.705 = 1.353. Consequently, the final temperature is

P, (k—1)/k 2000 \0.353/1.353
_ 2 - - = 640K or367°C
nenlz) - on() g
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(b) The work is found using the first law with Q = 0:
W= -AU= -mAu = -mc, AT = (—200)(0.705)(367 — 20) = —48.9MJ
(c) The entropy change is

T, Py
As—c,,lnTl——RlnF1

649 8.314 In 2000 _ —0.00184 k} /kg - K

= 095410 363 = (Zy(@) + (H(®) " 100

Obviously, the entropy change should be zero for this isentropic process. The above small value is a measure of
the error in our calculations.

11.4 GAS-VAPOR MIXTURES

Air is a mixture of nitrogen, oxygen, and argon plus traces of some other gases. When water vapor
1s not included, we refer to it as dry air. If water vapor is included, as in atmospheric air, we must be
careful to properly account for it. At the relatively low atmospheric temperature we can treat dry air
as an ideal gas with constant specific heats. It is also possible to treat the water vapor in the air as an
ideal gas, even though the water vapor may be at the saturation state. Consequently, we can consider
atmospheric air to be a mixture of two ideal gases. By (11.7), the total pressure is the sum of the
partial pressure P, of the dry air and the partial pressure P, of the water vapor (called the vapor
pressure):

P=Pﬂ+Pl, (1119)
Since we assume that the water vapor is an ideal gas, its enthalpy is dependent on temperature only.

Hence we use the enthalpy of the water vapor to be the enthalpy of saturated water vapor at the
temperature of the air, expressed as

h(T) = h,(T) (11.20)

In Fig. 11-1 this means that h, = h, where h, = h, from the steam tables at T = T,. This is
acceptable for situations in which the pressure is relatively low (near atmospheric pressure) and the
temperature is below about 60 °C (140 °F).

T

Fig. 11-1
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The amount of water vapor in the air is related to the relative humidity and the humidity ratio.
The relative humidity ¢ is defined as the ratio of the mass of the water vapor m, to the maximum
amount of water vapor m, the air can hold at the same temperature:

m,
¢ = m, (11.21)
Using the ideal-gas law we find
PV/R.T P,
¢ = —PgV/RL,T =7 (11.22)

14

where the constant-pressure lines for P, and P, are shown in Fig. 11-1.
The humidity ratio o (also referred to as specific humidity) is the ratio of the mass of water vapor
to the mass of dry air:

w=—* (11.23)

Using the ideal-gas law for air and water vapor, this becomes
_PV/RT PR,
©“=PV/RT PR,

P./0.4615 P,
= P — 062y (11.24)
Combining (71.24) and (11.22), we relate the above two quantities as
P P
w = 062220 ¢ = 1.608 252 (11.25)
P, P,

Note that at state 3 in Fig. 11-1 the relative humidity is 1.0 (100%). Also note that for a given mass of
water vapor in the air, » remains constant but ¢ varies depending on the temperature.

The temperature of the air as measured by a conventional thermometer is referred to as the
dry-bulb temperature T (T, in Fig. 11-1). The temperature at which condensation begins if air is cooled
at constant pressure is the dew-point temperature T, , (T; in Fig. 11-1). If the temperature falls below
the dew-point temperature, condensation occurs and the amount of water vapor in the air decreases.
This may occur on a cool evening; it also may occur on the cool coils of an air conditioner.

EXAMPLE 11.5 The air at 25°C and 100 kPa in a 150-m® room has a relative humidity of 60%. Calculate (a)
the humidity ratio, (b) the dew point, (¢) the mass of water vapor in the air, and (d) the mole fraction of the
water vapor.

(a) By(11.22), P. = P,¢ = (3.169X0.6) = 1.90 kPa, where P, is the saturation pressure at 25°C found in Table
C-1. The partial pressure of the air is then P, =P — P, = 100 — 1.9 = 98.1 kPa, where we have used the
total pressure of the air in the room to be at 100 kPa. The humidity ratio is then

1.9

P,
0 = 0625 = (0.622)(m

) = (.01205 kg H,O /kg dry air

(b) The dew point is the temperature 75 of Fig. 11-1 associated with the partial pressure P,. It is found by
interpolation in Table C-1 or Table C-2, whichever appears to be easier: T; , = 16.6°C.

(c¢) From the definition of the humidity ratio the mass of water vapor is found to be

_ _J Y (98.1)(150) | _
m. = wm, = op T = (0.01205)[ (0287)(298) | ~ 2.07 kg
(d) To find the mole fraction of the water vapor, we first find the total moles:
_om. 207 _m,  (98.1)(150)/(0.287)(298)
]Vl. = 'AT = T = (0.1152 mol Na = F = 7897 = 594 mol

a
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The mole fraction of the water vapor is

01152
Ye = 594+ 0.1152

This demonstrates that air with 60% humidity is about 2% water vapor by volume. We usually ignore this
when analyzing air, as in Example 11.1, and consider air to be dry air. Ignoring the water vapor does not lead to
significant error in most engineering applications. It must be included, however, when considering problems
involving, for example, combustion and air-conditioning.

= 0.0194

EXAMPLE 11.6 The air in Example 11.5 is cooled below the dew point to 10°C. (a) Estimate the amount of
water vapor that will condense. (b) Reheat the air back to 25°C and calculate the relative humidity.

(a) At 10°C the air is saturated, with ¢ = 100%. In Fig. 11-1 we are at a state on the saturation line that lics
below state 3. At 10°C we find from Table C-1 that P, = 1.228 kPa, so that

P,=P - P, =100~ 1.228 = 98.77 kPa

The humidity ratio is then w = (0.622X P, /P,) = (0.622X1.228 /98.77) = 0.00773 kg H,O/kg dry air. The
difference in the humidity ratio just calculated and the humidity ratio of Example 11.5 is Aw = 0.01205 -
0.00773 = 0.00432 kg H,O /kg dry air. The mass of water vapor removed (condensed) is found to be

(98.1)(150)

szg—g) = ().743 kg H20

{

Am, = Awm, = (0.00432)[

where we have used the initial mass of dry air.

(b) As we reheat the air back to 25°C, the w remains constant at 0.00773. Using (/1.25), the relative humidity is
then reduced to

~ wP, (0.00773)(98.77)
¢ = 1.608 52 = 1.608———feo——

4

= 0.387 or 38.7%

where P, is used as the saturation pressure at 25°C from Table C-1.

11.5 ADIABATIC SATURATION AND WET-BULB TEMPERATURES

It is quite difficult to measure the relative humidity and the humidity ratio directly, at least with
any degree of accuracy. This section presents two indirect methods for determining these quantities
accurately.

Consider a relatively long insulated channel, shown in Fig. 11-2; air with an unknown relative
humidity enters, moisture is added to the air by the pool of water, and saturated ai