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Appendix A

Nomenclature:

empirical constant [-]
cross-sectional area of tube [m?]
actual heat transfer area per unit length [m*/m)]
circumferential flow area [m’]
actual free flow cross-sectional area [m*/m]
effective surface area of finned tube per unit length [m*/m]
surface area of fins per unit length [m*/m]
external heat transfer area of low finned tube per unit length [m*/m)]
cross sectional area occupied by vapor [m’]
dimensionless cross sectional area occupied by vapor [-]
hexagonal area [m’]
cross-sectional area occupied by liquid-phase [m?]
dimensionless cross sectional area occupied
external heat transfer area of tube bundle [m?]
cross-sectional area of fin [m?]
Archimedes number [-]
Archimedes number [-]
root area between fins on tube per unit length [m*/m]
total surface area of finned tube per unit length [m*/m]
empirical constant [-]
empirical constants [-]
empirical constants [-]
thermal diffusivity of the liquid [m*/s]
empirical constant [-]
Chisholm parameter for bubbly flow transition [-]
baffle cut [%]
Bond number [-]
Chisholm parameter for spray flow transition [-]
empirical constant of Rose [-]
boiling number [-]
boiling range (or temperature glide) [K]
Chisholm parameter for stratified flow transition [-]
empirical constant of Rose [-]
empirical constant of Rose [-]
empirical constant of Rose [-]
empirical constant [-]
empirical exponent [-]
interfin spacing at the fin tips [m]
empirical constants [-]
empirical constants [-]
constant in DNB equation [-]
constant in Katto and Ohno correlation
empirical constant [-]
Shah factor [-]
distribution parameter [-]
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ds

dn

d;
dim
di,o
dmean
dref
dP
dTbub

constant [-]

constant [-]

empirical correction factor [-]

constant in bundle bypass expression [-]

constant in bundle bypass expression [-]

drag coefficient [-]

empirical friction factor constant for finned tube [-]
empirical heat transfer constant for finned tube [-]
empirical surface factor in Rohsenow correlation [-]
capillary number, also Caj, [m]

capillary number [-]

confinement number [-]

empirical exponent [-]

fraction of tube perimeter retaining condensate [-]
similarity factor [m™>"]

constant [-]

specific heat [J/kg K]; specific heat at constant pressure [J/kg K]
vapor specific heat [J/kg K]

vapor specific heat [J/kg K]

liquid specific heat [J/kg K]

liquid specific heat [J/kg K]

empirical parameters [-]

empirical constants [-]

droplet diameter [m]

exponent [-]

external tube diameter [m]

tube diameter [m]

fin tip diameter [m]

tube or cylinder diameter [m]

diameter of baffle [m]

centerline tube limit diameter of tube bundle [m]
diameter of liquid ring on tube [m]

diameter over fins [m]

root diameter of low finned tube [m]

outer tube limit diameter of tube bundle [m]
equivalent projected tube diameter of low finned tube [m]
root diameter of finned tube [m]

internal diameter of heat exchanger shell [m]
outside tube diameter [m]

empirical constant [-]

bubble departure diameter [m]

critical tube diameter [m]

internal tube diameter at base of microfins [m]
hydraulic diameter [m]

internal tube diameter [m]

melt down internal tube diameter [m]

reference internal tube diameter (= 0.01 m) [m]
internal tube diameter at mean height of microfins [m]
reference tube diameter [m]

droplet detachment diameter [m]

rise in bubble point temperature [K]
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di threshold diameter [m]

E convection enhancement factor [-]

E, stratified flow correction factor [-]

Eur microfin factor [-]

E.w new convection enhancement factor [-]

Eo E6tvos number [-]

Ers microfin convection factor [-]

e empirical constant [-]

e fin or rib or obstruction height [m]

e surface roughess [m]

e corrugation depth [m]

e fraction of liquid entrained as droplets [-]
Ceff effective fin height of Rose method [m]

er fin height [m]

F two-phase multiplier [-]

F; interfacial correction factor [-]

F(M) residual correction factor [-]

Fi(q) dimensionless exponent as function of q [-]
Fy(q) dimensionless exponent as function of q [-]

Fc area fraction occupied by tubes between baffle tips [-]
F. bundle boiling void fraction correction factor [-]
F. mixture correction factor [-]

Faag  drag force [N]

Foat correction factor for flattened tubes [-]

Fn non-equilibrium mixture factor [-]

| nucleate boiling correction factor [-]

Fp pressure correction factor [-]

Fpr pressure correction factor of Gorenflo [-]

Frg Froude number of vapor phase [-]

Frp liquid Froude number [-]

Fry, Soliman liquid Froude number [-]

Fpe pressure correction factor [-]

Firoung  correction factor to Gronnerud correlation [-]

F fraction of fin flank area covered by condensate wedge [-]

Fs Shah factor [-]
Fbp ratio of bypass area to cross flow area [-]

Fy¢ surface fluid empirical factor [-]
F, fraction of interfin root area covered by condensate wedge [-]
Fy area fraction occupied by baffle window [-]

For radiative view factor from wall to liquid droplets [-]

Fuc radiative view factor from wall to vapor [-]

Fyp two-phase convective multiplier [-]
f empirical constant [-]

f Fanning friction factor [-]

f friction factor [-]

fBlasivs  Blasius friction factor [-]

fed cumulative deposition factor [-]

[ finned tube friction factor [-]

fa vapor-phase friction factor [-]

fi interfacial friction factor [-]
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fi
prlain
fr

fu

f lam
f oil
fo
fpm
fwo

f trans

f turb
G

hLG

hlatent

hry
hsensible
hsub
htotal

dh
AhL,inlet
J ar,

tube bank friction factor [-]

plain tube bank friction factor [-]

friction factor of phase k (where k is either G or L) [-]
Fanning friction factor of liquid [-]

friction factor for laminar flow [-]

mixture factor on pressure drop [-]

frequency of bubble pair or triplet [1/5]

fins per meter [m™']

two-phase friction factor [-]

friction factor for transition flow [-]

friction factor for turbulent flow [-]

total mass velocity [kg/m’s]

Rose low finned tube parameter for fin flanks [-]
Rose low finned tube parameter for interfin root area [-]
Rose low finned tube parameter for fin tips [-]
Galileo number of liquid [-]

Grashof number of vapor [-]

acceleration due to gravity [9.81 m/s’]
empirical exponent [-]

height of channel [m]

height of nozzle above top tube row [m]

liquid height inside channel [m]

height of flattened tube [m]

enthalpy [J/kg]

actual vapor enthalpy [J/kg]

equilibrium vapor enthalpy [J/kg]

enthalpy of saturated vapor [J/kg]

enthalpy of saturated liquid [J/kg]

enthalpy of saturated liquid [J/kg]
dimensionless liquid height inside channel [m]
latent heat of vaporization [J/kg]

latent heat of vaporization corrected from subcooling [J/kg]

latent heat absorbed by fluid [J/kg]
latent heat of vaporization [J/kg]
sensible heat absorbed by fluid [J/kg]

liquid enthalpy difference with respect to saturation [J/kg K]

total heat absorbed by fluid [J/kg]

change in enthalpy [J/kg]

inlet subcooling enthalpy change [J/kg]
Jakob number of liquid [-]

bundle bypass correction factor [-]

baffle cut correction factor [-]

laminar flow correction factor for low finned tubes [-]
superficial velocity (m/s)

Colburn j-factor [-]

ideal heat transfer factor [-]

baffle leakage correction factor [-]

laminar flow correction factor [-]

laminar flow correction factor at Re = 20 [-]
unequal baffle spacing correction factor [-]
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Lbb
Lbi
Lbc
Lbch
Lbo
Lcap

Lﬁlm

wall viscosity correction factor [-]

Taitel and Dukler parameter [-]
dimensionless parameter [-]

inlet subcooling factor at conditions i =1 to 3 [-]
boiling factor of Danilova [-]

Kapitza number [-]

kinetic energy of vapor phase [J]

kinetic energy of phase k [J]

kinetic energy of liquid phase [J]

thermal conductivity [W/m K]

thermal conductivity of vapor [W/m K]
liquid thermal conductivity [W/m K]

length [m]

length of tube [m]

diametral clearance between Dg and Doy [m]
inlet baffle spacing [m]

central baffle spacing [m]

height of baffle cut [m]

outlet baffle spacing [m]

capillary length [m]

developing length [m]

length of dry zone [m]

length of liquid film trapped by bubble [m]
equivalent vertical height of fin [m]

fin height [m]

average fin thickness assuming rectangular profile [m]
length of bubble including any dry zone [m]
chordal length through vapor phase [m]
axial length of bubble [m]

heated length of channel [m]

length of liquid slug [m]

chordal length through liquid phase [m]
length of pair or triplet in elongated bubble flow [m]
width of pass partition lane [m]

width of bypass lane between tubes [m]
tube pitch normal to direction of flow [m]
tube pitch parallel to direction of flow [m]
diametral clearance between D and Dy, [m]
effective tube length [m]

tube-to-baffle hole diametral clearance [m]
tube pitch from tube center to tube center [m]
effective tube pitch from tube center to tube center [m]
mass flow rate [kg/s]

molecular weight [kg/kmol]

mass of liquid evaporated [kg]

additional term from integration [(kg/ms)*”]
Blasius exponent [-]

exponent [-]

exponent on velocity profile [-]

fin efficiency parameter [m™]

mass of droplet [kg]

Appendix



gwﬂlverine Tube, Inc. Engineering Data Book 11
£ World-Class Ouality Pariner

m

m

m
lh‘oubbly
rhe
Mdryour
my
1’.nhigh
1y
1;nlow
m,;,
My
e
1’.nstrat
l,i,]lotal
m,

1’nwalvy

mass velocity of fluid [kg/m”s]

mass velocity of fluid at maximum cross-section of bundle [kg/m”s]
total mass velocity of liquid and vapor [kg/m’s]

bubbly flow transition mass velocity [kg/m’s]

equivalent mass velocity [kg/m”s]
mass velocity at onset of dryout [kg/m’s]
mass velocity of vapor [kg/m’s]

mass velocity at transition from annular to stratified-wavy flow [kg/m”s]
mass velocity of liquid [kg/m’s]

mass velocity at transition from stratified-wavy to stratified flow [kg/m’s]
minimum value of mist flow transition mass velocity [kg/m’s]

mass velocity at transition from mist flow [kg/m2 s]

reference mass velocity [= 500 kg/m’s]

mass velocity at transition from stratified-wavy to stratified flow [kg/m”s]
total mass velocity of liquid plus vapor [kg/m’s]

window mass velocity of fluid [kg/m’s]
mass velocity at transition from annular to stratified-wavy flow [kg/m’s]

M, new €W Wavy flow transition mass velocity [kg/m’s]

N

N

N

Ny

N,

Ne

Nss
Ntcc
Ntcw
N

Niw
Nu
NUD
NuG
NuL
Numf
NUD
Nunb
Nur
NuF,lam
NuF,sub
NuF,turb
Nugirat
Nu(x)
Nu(z)
Nupg
Nug
Nuy
Nuy—

number of tubes passed in crossflow [-]

Shah parameter [-]

tube row number from top [-]

number of baffles [-]

total number of tube rows crossed by flow in entire heat exchanger [-]
number of fins per unit length of tube [fins/m]
number of sealing strip pairs [-]

number of tube rows crossed between baffle tips in one baffle compartment [-]
number of tube rows crossed in one baffle window [-]
number of tubes [-]

number of tubes in the window [-]

Nusselt number [-]

Nusselt number based on droplet diameter [-]

Nusselt number of vapor [-]

liquid Nusselt number [-]

microfin Nusselt number [-]

mean Nusselt number based on tube diameter [-]
nucleate boiling Nusselt number [-]

liquid film Nusselt number [-]

laminar liquid film Nusselt number [-]

subcooled liquid film Nusselt number [-]

turbulent liquid film Nusselt number [-]

local Nusselt number for stratified flow [-]

local Nusselt number [-]

local film Nusselt number [-]

Dittus-Boelter Nusselt number [-]

internally finned tube Nusselt number [-]

twisted tape Nusselt number [-]

twisted tape Nusselt number without twist [-]
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np
Neorners
nf
nf
g
Pg
Pg
P;
Piq
Py
PL
Prq
Pr
PrG

Perit
pr
PG
Pr
pro
Psat
Pwall
Ap
Apwr
Ap.
Ape
ADgat
Aptotal
Apy

empirical exponent [-]

exponent [-]

exponent on void fraction profile [-]

factor equal to 3 [-]

power law exponent [-]

exponent [-]

exponent [-]

exponent [-]

void fraction factor [-]

number of sharp corners facing flow of rib or fin [-]
exponent on heat flux [-]

nucleate boiling exponent [-]

number of starts or fins [-]

dry perimeter in contact with vapor [m]
dimensionless dry perimeter in contact with vapor [m]
perimeter of liquid-vapor interface [m]
dimensionless perimeter of liquid-vapor interface [m]
phase [-]

wetted perimeter [m]

dimensionless wetted perimeter [m]

Prandtl number [-]

Prandtl number of vapor [-]

liquid Prandtl number [-]

axial pitch [m]

exponent

pressure [N/m?]

pitch of corrugation [m]

critical pressure [N/m?*]

axial fin pitch [m]

vapor pressure [N/m’]

reduced pressure (pr = Psar/Perit) [-]

reference reduced pressure of Gorenflo [-]
saturation pressure [N/m’]

saturation pressure at wall temperature [N/m’]
pressure drop [Pa]

ideal bundle pressure drop for one baffle compartment [N/m?’]
central baffle compartment pressure drop [N/m’]
end zone pressure drop [N/m?]

wall to bulk saturation pressure difference [N/m’]
bundle pressure drop [N/m?]

window zone pressure drop [N/m’]

(dp/dz)g frictional pressure gradient of the vapor [Pa/m]
(dp/dz), frictional pressure gradient of the liquid [Pa/m]
(dp/dz)gic frictional pressure gradient [Pa/m]

Q
Q

2,
Q,
Q.

heat transfer rate [W]
volumetric flow rate [m’/s]

vapor volumetric flow rate [m’/s]
volumetric flow rate of phase k [m*/s]

liquid volumetric flow rate [m*/s]
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q

q

Jo
)
erit
erit,i

dpNB

heat flux [W/m?]

exponent [-]

reference heat flux [W/m’]

heat flux through base area [W/m?]

critical heat flux [W/m?]

reference critical heat flux at conditions i =1 to 5 [W/m?]

heat flux at departure from nucleate boiling (critical heat flux) [W/m?]

qoNB.whe heat flux at DNB of tube [W/m?]

qc
qL
qmax
Jo
qonB

Q2

FPRAPRARAARIA

=3 =]
=]

S

PrRRR

n
RaL

Re
Recrit
RCD
RCB
Re,
Reeq
RCG
Regu
ReGo
ReGs
Reg
ReL
RCL
RCLS
ReLt

heat flux resulting from wall-to-droplet evaporation [W/m?]
heat flux resulting from droplet evaporation [W/m’]
highest heat flux theoretically achievable in evaporation process [W/m?]
reference heat flux [W/m?’]

heat flux at onset of nucleate boiling [W/m?]

radiation heat flux [W/m?’]

density ratio in Katto and Ohno correlation [-]

fouling factor on fin [m K/W]

Chisholm parameter [-]

radius of tube [m]

ideal gas constant [8.3143 J/K mol]

exponent [-]

mixture resistance [m’K/W]

bypass pressure drop correction factor [-]

leakage pressure drop correction factor [-]

root mean surface roughness [pum]

reference root mean surface roughness of Gorenflo [um]
standard surface roughness (= 1.0 um) [pm]

baffle end zones pressure drop correction factor [-]
viscosity pressure drop correction factor [-]

Rayleigh number [-]

Reynolds number [-]

critical film Reynolds number [-]

droplet Reynolds number [-]

Reynolds number of liquid film on tube bundle [-]
equivalent liquid Reynolds number [-]

equivalent liquid Reynolds number [-]

local vapor Reynolds number [-]

homogeneous Reynolds number [-]

local vapor only Reynolds number [-]

superficial vapor Reynolds number, also Resg [-]
Reynolds number with total flow as vapor [-]

liquid Reynolds number for all flow as liquid [-]

liquid film Reynolds number for liquid fraction of flow [-]
superficial liquid Reynolds number, also Reg [-]
Reynolds number with total flow as liquid [-]

(Rep)sim Reynolds number with total flow as liquid [-]

Regrp
Reroot
Rer
Rer
Rexr

Reynolds number [-]

film Reynolds number of the condensate flowing in the root area [-]
film Reynolds number [-]

liquid Reynolds number of film [-]

modified liquid Reynolds number of film [-]
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Rer yans transition liquid film Reynolds number [-]
Re,,  nucleate boiling Reynolds number [-]
Res swirl Reynolds number [-]
Resg  vapor superficial Reynolds number [-]
Res.  liquid superficial Reynolds number [-]
Re,  two-phase Reynolds number [-]
Ri Richardson number [-]

constant [-]

external radius of tube [m]

radius from centreline [m]

radius of bubble [m]

I internal tube radius [m]

Tim leakage area parameter [-]

To critical nucleation radius [m]

Ts leakage area parameter [-]

Tss sealing strip parameter [-]

S boiling suppression factor

S velocity ratio [-]

S vertical pitch between centerline of tubes [m]
S exponent [-]

S, stratified flow correction factor [-]

Sp bypass area [m]

Sm cross-sectional flow area at centerline [m]

Ssb shell-to-baffle leakage area [m]
St tube-to-baffle leakage area [m]

Sw net flow area in window [m]
Swe gross flow area in window without tubes [m]
St area in window occupied by tubes [m]

Stam  Stanton number for laminar flow [-]
Stuw,  Stanton number for turbulent flow [-]

Sw swirl number [-]

s fin pitch [m]

s specific gravity [-]

T temperature [K or °C]

AT wall-to-fluid temperature difference [K]

AT wall superheat [K]

ATy,  boiling range or temperature glide of mixture [K]
ATgj¢e temperature glide of a zeotropic mixture [K]

Toub bubble point temperature [K]

Touws bubble point temperature of mixture [K]

Teax  mean bulk temperature of fluid [K]

Tesit critical temperature of mixture [K]

Teew  dew point temperature of condensable mixture [K]
Tp droplet temperature [K]

Tpng  wall temperature at point DNB [K]

T Rose low finned tube parameter for fin flanks [-]
ATy temperature difference across film (= Tg-Ty) [K]
Tg vapor temperature [K]

Tca  actual bulk vapor temperature [K]
Tee  bulk temperature of gas-vapor mixture [K]
Tai interfacial temperature of gas-vapor mixture [K]
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tdryﬂlm
thiim
tg

tL
troot
tlip

U

U
<U>
Ug
<Ug>
UaL
<Ugr>
Usu
Ugu
UL
ULy
u

Up

Ug

UG

UG
<ug>
UGs
UH

Ui

Uk

uL
ULG
Urs

U

ideal wall superheat for boiling of a mixture [K]

wall temperature at point IB [K]

local subcooled temperature of liquid [K]

wall temperature at point MFB [K]

manufacturers reference temperature [°C]

Rose low finned tube parameter for interfin root area [-]
saturation temperature [K]

saturation temperature of pure refrigerant [K]

wall superheat (= Tyan-Tsa) [K]

Rose low finned tube parameter for fin tips [-]

wall temperature [K]

wall temperature [°C]

wall temperature [K]

time [s]

fin thickness [m]

mean thickness of fin [m]

twisted tape thickness [m]

bubble growth time [s]

time period that local wall is dry [s]

time period to dryout the entire liquid film at location z [s]
residence time of liquid film at location z [s]

time period of vapor in bubble and dry zone passing by location z [s]
time period of liquid passing by location z [s]

thickness at root of fin [m]

thickness at tip of fin [m]

flow velocity [m/s]

overall heat transfer coefficient [W/m” K]
cross-sectional averaged drift velocity [m/s]

superficial velocity of vapor [m/s]

cross-sectional averaged vapor drift velocity [m/s]

drift flux [m/s]

cross-sectional average vapor drift flux velocity relative to U [m/s]
vapor phase drift velocity [m/s]

weighted mean drift velocity [m/s]

superficial velocity of liquid [m/s]

liquid phase drift velocity [m/s]

velocity in x-direction [m/s]

droplet velocity [m/s]

droplet deposition velocity [m/s]

vapor velocity [m/s]

weighted mean velocity of vapor [m/s]

cross-sectional average of vapor velocity [m/s]
modified Baker parameter based on superficial vapor velocity [m/s]
homogeneous velocity [m/s]

suction velocity at interface [m/s]

velocity of phase k [m/s]

liquid velocity [m/s]

superficial velocity of vapor with respect to liquid [m/s]
modified Baker parameter based on superficial liquid velocity [m/s]
velocity in y-direction [m/s]

free stream velocity in z-direction [m/s]
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Xerit
Xdi
Xde
XC
Kexit
Xf
X|B/CB
XIA
XCB/A
Xmax
Xmin
Xs

Ko<

Y shan

NN< <<«

G

N N

volume of vapor phase [m”’]

volume of liquid phase [m’]

velocity in y-direction [m/s]

specific volume [m*/kg]

specific volume of vapor [m’/kg]

homogeneous specific volume [m*/kg]

velocity of interface in z-direction [m/s]
specific volume of liquid [m*/kg]

ratio in Katto and Ohno correlation [-]

Weber number [-]

droplet Weber number [-]

vapor Weber number [-]

Weber number of liquid [-]

Weber number of pair [-]

superficial vapor Weber number [-]

superficial liquid Weber number [-]

local oil mass fraction [kg/kg]

inlet oil mass fraction [kg/kg]

mass fraction of mixture in liquid phase [kg/kg]
Martinelli parameter with phases laminar or turbulent [-]
Martinelli parameter with both phases turbulent [-]
exponent in Rohsenow correlation [-]

vapor quality [-]

actual local vapor quality [-]

vapor quality at transition to bubbly flow [-]
vapor quality at location of critical heat flux [-]
vapor quality at onset of dryout [-]

vapor quality at end of dryout zone [-]

local equilibrium vapor quality [-]

exit vapor quality at the critical heat flux [-]
vapor quality at transition to spray flow [-]
vapor quality at transition from intermittent to annular flow [-]

vapor quality at transition from isolated bubble to coalesce dominated bubble flow [-]
vapor quality at transition from coalesce dominated bubble flow to annular flow [-]
vapor quality at the intersection of annular flow and mist flow transition curves [-]

vapor quality at minimum of mist flow transition equation [-]
vapor quality at transition to stratified flow [-]

Greoneveld multiplying factor [-]

ratio of vapor to liquid frictional pressure gradient [-]

mass fraction of mixture in vapor phase [kg/kg]

twist ratio [-]

frictional pressure gradient ratio [-]

parameter of Shah [-]

exponent in Rohsenow correlation [-]

length [m]

twist ratio for 180° turn [-]

parameter [-]

heated length of tube to diameter ratio [-]

ratio of sensible cooling duty for vapor to total condensing duty [-]
distance along y-axis [m]

distance from entrance [m]
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z length from top [m]

z length around perimeter of tube from top [m]

z dimensionless length from top [m]

Za length from inlet where liquid is actually completely evaporated [m]

Zdi length from inlet where dryout occurs [m]

Ze length from inlet where liquid is completely evaporated under equilibrium conditions [m]

Greek symbols:

o heat transfer coefficient [W/m’K]
o mean film heat transfer coefficient on tube array [W/m’K]
o local perimeter averaged heat transfer coefficient inside a tube [W/m*K]

a(N)  heat transfer coefficient on Nth tube [W/m*K]
a(N=1) heat transfer coefficient on top tube [W/m*K]
a(x) local perimeter averaged heat transfer coefficient inside a tube at vapor quality x [W/m” K]

oy heat transfer coefficient on bottom of finned tube retaining condensate [W/m? K]
Opungle  local bundle boiling heat transfer coefficient [W/mzK]

Ol convective condensation heat transfer coefficient [W/m*K]

Oleh convective boiling heat transfer coefficient [W/m2 K]

Olet corrugated tube turbulent heat transfer coefficient [W/m? K]

op convective heat transfer coefficient from vapor-to-droplet [W/m°K]

Olaryout  heat transfer coefficient in dryout zone [W/mK]
Oleff effective condensing coefficient for condensable mixture [W/m2 K]

oL mean film heat transfer coefficient [W/m”K]
ol local film condensing coefficient around non-stratified top perimeter of tube [W/m® K]
oL helix angle of microfins [degrees]

afz) local film heat transfer coefficient [W/m® K]

as(z) dimensionless local film heat transfer coefficient [W/m* K]

adP) local film heat transfer coefficient at angle p from top of tube [W/m* K]
agx) local condensing coefficient at vapor quality x [W/m*K]

ofm  time averaged heat transfer coefficient of evaporating film [W/m2 K]

Olfin heat transfer coefficient on fin [W/m’ K]

Olgt finned tube turbulent heat transfer coefficient [W/m2 K]

Olrz Forester-Zuber nucleate boiling heat transfer coefficient [W/m” K]

oG turbulent heat transfer coefficient of vapor [W/m* K]

OlGt forced convection heat transfer coefficient with total flow as vapor [W/m®* K]
Ogray  gravity-dominated film heat transfer coefficient [W/m*K]

oy ideal heat transfer coefficient [W/m” K]

oy ideal boiling heat transfer coefficient [W/m”K]

oy ideal tube bank heat transfer coefficient [W/m” K]

Olig ideal heat transfer coefficient [W/m® K]

e heat transfer coefficient in inverted annular flow regime [W/m’K]

oL liquid only heat transfer coefficient [W/m*K]

Ot forced convection heat transfer coefficient with total flow as liquid [W/rn2 K]
Omean  Mean heat transfer coefficient [W/m2 K]

Olnf microfin convective boiling heat transfer coefficient [W/m2 K]

Omie  Mist flow heat transfer coefficient [W/m’K]
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Olnb nucleate boiling heat transfer coefficient [W/m? K]

Onom  Nominal heat transfer coefficient [W/m2 K]

Ol nucleate boiling heat transfer coefficient [W/m* K]

oy ideal nucleate pool boiling heat transfer coefficient of mixture [W/m°K]
oo  Standard nucleate boiling heat transfer coefficient [W/m2 K]

Qo reference nucleate pool boiling heat transfer coefficient [W/m*K]

Olpt plain tube turbulent heat transfer coefficient [W/m® K]

or falling film heat transfer coefficient [W/m” K]

Orgy developing region falling film heat transfer coefficient [W/m” K]

Orm laminar falling film heat transfer coefficient [W/rn2 K]

Ormb turbulent falling film heat transfer coefficient [W/m2 K]

Oretoii  flow boiling heat transfer coefficient of refrigerant-oil mixture [W/m2 K]

Olsh shear-dominated film heat transfer coefficient [W/m”K]

Ogue  heat transfer coefficient of a liquid or vapor slug [W/m® K]

Olss shell-side single-phase heat transfer coefficient [W/m” K]

Ose  mean film heat transfer coefficient around bottom of tube in stratified flow [W/m* K]
Olp two-phase flow boiling heat transfer coefficient [W/m* K]

Oyt twisted tape turbulent heat transfer coefficient [W/m? K]

Ot twisted tape two-phase flow boiling heat transfer coefficient [W/m® K]

Oyapor  Vapor phase heat transfer coefficient [W/m2 K]

owee  wetted wall heat transfer coefficient [W/m® K]

B angle of surface with respect to the horizontal [rad]
B angle around perimeter of tube with respect to top [rad]
B coefficient of thermal expansion [K™']

B condensate retention angle from bottom of tube [rad]
B contact angle [deg]

B helix angle of corrugation or fin [°]

B value used for calculation of Q2 [-]

B volumetric quality [-]

<B>  cross-sectional averaged volumetric quality [-]

BL liquid mass transfer coefficient [= 0.0003 m/s]

Bet constant for corrugated tube [-]

B constant for finned tubes [-]

B mass transfer coefficient in liquid [0.0003 m/s]

Briv profile contact angle [°]

r condensate flow rate per unit width of wall [kg/ms]

Ievap  liquid flow that has been evaporated when reaching the bottom of the array [kg/m s]
Ieea  liquid flow rate of liquid applied to the top of the array [kg/m s]

I liquid flow rate per unit length on plate or one side of tube [kg/m s]

I['(B) condensate flow rate per unit width at angle B from top [kg/ms]

I'(N) condensate flow rate (on one side) per unit length off bottom of tube N [kg/ms]
Chottom(N) condensate flow rate (from one side) per unit length off bottom of tube N [kg/ms]
I'op(N) condensate flow rate (from one side) per unit length onto top of tube N [kg/ms]
I['(z)  condensate flow rate per unit width at distance z from top [kg/ms]

Y constant for finned tubes [-]
Y gradient of the superficial bubble velocity [1/s]
AS interfacial roughness [m]
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) liquid film thickness [m]

) thickness of twisted tape [m]

) non-dimensional liquid film thickness [m]
Oend liquid film thickness at end of bubble [m]

Ora liquid film thickness at x5 [m]

Omin minimum liquid film thickness at dryout [m]

S, liquid film thickness at its formation at nose of bubble [m]
Ad interfacial wave height [m]

€ void fraction of vapor [-]

<g>  cross-sectional averaged void fraction of vapor [-]

€ void fraction of vapor at centreline of channel [-]

€cus cross-sectional void fraction of vapor [-]

€chordal  chordal void fraction of vapor across channel [-]

€n homogeneous void fraction [-]

€IA void fraction evaluated at x5 [-]

€ocat  local void fraction of vapor at a point or small volume [-]
& void fraction of Rouhani drift flux model [-]

&q Rose low finned tube enhancement ratio at same q [-]
EAT Rose low finned tube enhancement ratio at same AT [-]
Evol volumetric void fraction of vapor [-]

Ew void fraction of vapor at wall [-]

() angle from top of tube [rad]

(ol angle at end of developing region [rad]

Or angle at end of stagnation flow region [rad]

i angle at end of impingement region [rad]

oL liquid two-phase friction multiplier [-]

M similarity variable [-]

Mfin fin efficiency [-]
Nsurface  SUrface efficiency [-]

K ratio of droplet heat flux to total heat flux [-]

A correction factor [-]

A flow parameter [-]

A Baker gas-phase parameter [-]

A wavelength between bubble departures from interface [m]
A friction factor multiplier [-]

Aerit critical wavelength [m]

Ad dangerous wavelength [m]

At Taylor wavelength [m]

u) dynamic viscosity [Ns/m?]

ek  dynamic viscosity at bulk temperature [Ns/m?]

UG vapor dynamic viscosity [Ns/m’]

Uy vapor dynamic viscosity [Ns/m’]

% liquid dynamic viscosity [Ns/m’]

Lol dynamic viscosity of pure oil [Ns/m’]

ref dynamic viscosity of pure refrigerant [Ns/m’]

Mo  dynamic viscosity of local refrigerant-oil mixture [Ns/mz]
Wip two-phase viscosity of vapor-liquid flow [Ns/m?]

Uwar  dynamic viscosity at wall [Ns/m?]
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Uwaer  dynamic viscosity of water [Ns/m’]

% kinematic viscosity [m?/s]
% liquid kinematic viscosity [m?/s]
Epn friction factor [-]

&(m-p) function in Rose low finned tube method [-]
0 similarity variable [-]
Ocrit critical angle of deflection for tube array [radians]

0.4 centerline angle around top perimeter of tube [degrees]

Oder maximum angle of deflection of condensate flowing from tube to tube [radians]
Ggry dry angle around top perimeter of tube [radians]

0 4y  dimensionless dry angle [-]

O4s baffle cut angle on shell diameter [degrees]

Omax dry angle at X, [radians]
Osat  stratified angle around upper perimeter of the tube to stratified liquid level [radians]

*

0 swae  dimensionless stratified angle [-]

AB bubble point temperature rise at interface relative to bulk [K]
ABy,  boiling range or temperature glide of a mixture [K]

p density [kg/m’]

p liquid density of refrigerant-oil mixture [kg/m’]

Pair density of air [kg/m’]

PG vapor density [kg/m’]

PG fictitious vapor density [kg/m’]

Pu homogeneous density of fluid [kg/m’]

Px density of phase k [kg/m’]

oL liquid density [kg/m’]

Pman  liquid density of oil according to manufacturer [kg/m’]
Poil liquid density of oil [kg/m’]

Pref liquid density of refrigerant [kg/m’]

P two-phase density of liquid-vapor flow [kg/m’]
pv vapor density [kg/m’]

Pwater  density of water [kg/m3 ]

OsB Stephan-Bolzmann constant [W/m’K"]

c surface tension [N/m]

Owaer  Surface tension of water [N/m?]

[0) bulk-to-wall property correction ratio [-]

[0) one-half of apex angle of a trapezoidal fin [rad]
® flow parameter [-]

T time period of pair/triplet generation [s]

T interfacial shear stress [N/m’]

o dimensionless interfacial shear stress [N/m’]
T dimensionless interfacial shear stress [N/m’]

\j correlating parameter of Groeneveld and Delorme [-]
\j similarity variable [-]

Q geometrical function [-]

Q intertube spacing factor [-]
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Subscripts :

1,2... subscripts of empirical constants
D droplet

G vapor

H homogeneous

k phase

L liquid

a actual

b bottom of tube

c centerline

e equilibrium

f evaluated at film temperature
fin fin

top top of tube

w wall
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