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Preface

This second edition continues the author’s attempt to present linear elasticity with sound,

concise theoretical development, numerous and contemporary applications, and enlightening

numerics to aid in understanding solutions. In addition to making corrections to typographical

errors, several new items have been included. Perhaps the most significant addition is a new

chapter on nonhomogeneous elasticity, a topic rarely found in existing elasticity texts. Over the

past couple of decades, this field has attracted considerable attention, with engineering interest

in the use of functionally graded materials. The new Chapter 14 contains basic theoretical

formulations and several application problems that have recently appeared in the literature.

A new appendix covering a review of mechanics of materials has also been added, which

should help make the text more self-contained by allowing students to review appropriate

undergraduate material as needed.

Almost 100 new exercises, spread out over most chapters, have been added to the second

edition. These problems should provide instructors with many new options for homework,

exams, or material for in-class discussions. Other additions include a new section on curvi-

linear anisotropic problems and an expanded discussion on interface boundary conditions for

composite bodies. The online solutions manual has been updated and corrected and includes

solutions to all exercises in this book.

This new edition is again an outgrowth of lecture notes that I have used in teaching a two-

course sequence in the theory of elasticity. Part I is designed primarily for the first course,

normally taken by beginning graduate students from a variety of engineering disciplines. The

purpose of the first course is to introduce students to theory and formulation and to present

solutions to some basic problems. In this fashion students see how and why the more

fundamental elasticity model of deformation should replace elementary strength of materials

analysis. The first course also provides the foundation for more advanced study in related areas

of solid mechanics. The more advanced material included in Part II has normally been used for

a second course taken by second- and third-year students. However, certain portions of the

second part could also be easily integrated into the first course.

What is the justification for my entry of another text in the elasticity field? For many years,

I have taught this material at several U.S. engineering schools, related industries, and a

government agency. During this time, basic theory has remained much the same; however,
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changes in problem-solving emphasis, elasticity applications, numerical/computational meth-

ods, and engineering education have created the need for new approaches to the subject. I have

found that current textbook titles commonly lack a concise and organized presentation of

theory, proper format for educational use, significant applications in contemporary areas, and a

numerical interface to help develop solutions and understand the results.

The elasticity presentation in this book reflects the words used in the title—theory,
applications, and numerics. Because theory provides the fundamental cornerstone of this

field, it is important to first provide a sound theoretical development of elasticity with sufficient

rigor to give students a good foundation for the development of solutions to a broad class of

problems. The theoretical development is carried out in an organized and concise manner in

order to not lose the attention of the less mathematically inclined students or the focus of

applications. With a primary goal of solving problems of engineering interest, the text offers

numerous applications in contemporary areas, including anisotropic composite and function-

ally graded materials, fracture mechanics, micromechanics modeling, thermoelastic problems,

and computational finite and boundary element methods. Numerous solved example problems

and exercises are included in all chapters.

What is perhaps the most unique aspect of this book is its integrated use of numerics. By
taking the approach that applications of theory need to be observed through calculation and

graphical display, numerics is accomplished through the use of MATLABo, one of the most

popular engineering software packages. This software is used throughout the text for applica-

tions such as stress and strain transformation, evaluation and plotting of stress and displace-

ment distributions, finite element calculations, and comparisons between strength of materials

and analytical and numerical elasticity solutions. With numerical and graphical evaluations,

application problems become more interesting and useful for student learning.

Contents Summary
Part I of the book emphasizes formulation details and elementary applications. Chapter 1

provides a mathematical background for the formulation of elasticity through a review of

scalar, vector, and tensor field theory. Cartesian tensor notation is introduced and is used

throughout this book’s formulation sections. Chapter 2 covers the analysis of strain and

displacement within the context of small deformation theory. The concept of strain compati-

bility is also presented in this chapter. Forces, stresses, and equilibrium are developed in

Chapter 3. Linear elastic material behavior leading to the generalized Hooke’s law is discussed

in Chapter 4, which also briefly discusses nonhomogeneous, anisotropic, and thermoelastic

constitutive forms. Later chapters more fully investigate these types of applications.

Chapter 5 collects the previously derived equations and formulates the basic boundary

value problems of elasticity theory. Displacement and stress formulations are made and

general solution strategies are identified. This is an important chapter for students to put the

theory together. Chapter 6 presents strain energy and related principles, including the recipro-

cal theorem, virtual work, and minimum potential and complementary energy. Two-dimen-

sional formulations of plane strain, plane stress, and antiplane strain are given in Chapter 7.

An extensive set of solutions for specific two-dimensional problems is then presented in Chapter

8, and many applications of MATLAB are used to demonstrate the results. Analytical solutions

are continued in Chapter 9 for the Saint-Venant extension, torsion, and flexure problems.

The material in Part I provides a logical and orderly basis for a sound one-semester

beginning course in elasticity. Selected portions of the text’s second part could also be

incorporated into such a course.
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Part II delves into more advanced topics normally covered in a second elasticity course. The

powerful method of complex variables for the plane problem is presented in Chapter 10, and

several applications to fracture mechanics are given. Chapter 11 extends the previous isotropic

theory into the behavior of anisotropic solids with emphasis on composite materials. This is an

important application, and again, examples related to fracture mechanics are provided. Curvi-

linear anisotropy has been added in this chapter to explore some basic solutions to problems

with this type of material structure.

An introduction to thermoelasticity is developed in Chapter 12, and several specific

application problems are discussed, including stress concentration and crack problems. Poten-

tial methods, including both displacement potentials and stress functions, are presented in

Chapter 13. These methods are used to develop several three-dimensional elasticity solutions.

A new Chapter 14, which covers nonhomogeneous elasticity, has been added. The material

in it is unique among standard elasticity texts. After briefly covering theoretical formulations,

several two-dimensional solutions are generated along with comparison field plots with the

corresponding homogeneous cases. Chapter 15 presents a distinctive collection of elasticity

applications to problems involving micromechanics modeling. Included in it are applications

for dislocation modeling, singular stress states, solids with distributed cracks, micropolar,

distributed voids, and doublet mechanics theories.

Chapter 16 provides a brief introduction to the powerful numerical methods of finite and

boundary element techniques. Although only two-dimensional theory is developed, the

numerical results in the example problems provide interesting comparisons with previously

generated analytical solutions from earlier chapters.

This second edition of Elasticity concludes with four appendices that contain a concise

summary listing of basic field equations; transformation relations between Cartesian,

cylindrical, and spherical coordinate systems; a MATLAB primer; and a new review of the

mechanics of materials.

The Subject
Elasticity is an elegant and fascinating subject that deals with determination of the stress,

strain, and displacement distribution in an elastic solid under the influence of external forces.

Following the usual assumptions of linear, small-deformation theory, the formulation estab-

lishes a mathematical model that allows solutions to problems that have applications in many

engineering and scientific fields.

. Civil engineering applications include important contributions to stress and deflection

analysis of structures, such as rods, beams, plates, and shells. Additional applications lie

in geomechanics involving the stresses in materials such as soil, rock, concrete, and

asphalt.
. Mechanical engineering uses elasticity in numerous problems in analysis and design of

machine elements. Such applications include general stress analysis, contact stresses,

thermal stress analysis, fracture mechanics, and fatigue.
. Materials engineering uses elasticity to determine the stress fields in crystalline solids,

around dislocations, and in materials with microstructure.
. Applications in aeronautical and aerospace engineering include stress, fracture, and

fatigue analysis in aerostructures.

The subject also provides the basis for more advanced work in inelastic material behavior,

including plasticity and viscoelasticity, and the study of computational stress analysis employ-

ing finite and boundary element methods.
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Elasticity theory establishes a mathematical model of the deformation problem, and this

requires mathematical knowledge to understand formulation and solution procedures. Govern-

ing partial differential field equations are developed using basic principles of continuum

mechanics commonly formulated in vector and tensor language. Techniques used to solve

these field equations can encompass Fourier methods, variational calculus, integral transforms,

complex variables, potential theory, finite differences, finite elements, and so forth. To prepare

students for this subject, the text provides reviews of many mathematical topics, and additional

references are given for further study. It is important for students to be adequately prepared for

the theoretical developments, or else they will not be able to understand necessary formulation

details. Of course, with emphasis on applications, we will concentrate on theory that is most

useful for problem solution.

The concept of the elastic force-deformation relation was first proposed by Robert Hooke in

1678. However, the major formulation of the mathematical theory of elasticity was not

developed until the 19th century. In 1821 Navier presented his investigations on the general

equations of equilibrium; he was quickly followed by Cauchy, who studied the basic elasticity

equations and developed the notation of stress at a point. A long list of prominent scientists and

mathematicians continued development of the theory, including the Bernoullis, Lord Kelvin,

Poisson, Lamé, Green, Saint-Venant, Betti, Airy, Kirchhoff, Rayleigh, Love, Timoshenko,

Kolosoff, Muskhelishvilli, and others.

During the two decades after World War II, elasticity research produced a large number of

analytical solutions to specific problems of engineering interest. The 1970s and 1980s included

considerable work on numerical methods using finite and boundary element theory. Also

during this period, elasticity applications were directed at anisotropic materials for applications

to composites. More recently, elasticity has been used in modeling of materials with internal

microstructures or heterogeneity and in inhomogeneous, graded materials.

The rebirth of modern continuum mechanics in the 1960s led to a review of the foundations

of elasticity and has established a rational place for the theory within the general framework.

Historical details can be found in the texts by Todhunter and Pearson, History of the Theory of
Elasticity; Love, A Treatise on the Mathematical Theory of Elasticity; and Timoshenko,

A History of Strength of Materials.

Exercises and Web Support
Of special note in regard to this text is the use of exercises and the publisher’s website,

www.textbooks.elsevier.com. Numerous exercises are provided at the end of each chapter for

homework assignments to engage students with the subject matter. The exercises also provide

an ideal tool for the instructor to present additional application examples during class lectures.

Many places in the text make reference to specific exercises that work out details to a particular

problem. Exercises marked with an asterisk (*) indicate problems that require numerical and

plotting methods using the suggested MATLAB software. Solutions to all exercises are

provided online at the publisher’s website, thereby providing instructors with considerable

help in using this material. In addition, downloadable MATLAB software is available to aid

both students and instructors in developing codes for their own particular use to allow easy

integration of the numerics.

Feedback
The author is ardently interested in continual improvement of engineering education and definitely

welcomes feedback from users of this book. Please feel free to send comments concerning
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suggested improvements or corrections via surface mail or email (sadd@egr.uri.edu). It is likely

that such feedback will be shared with the text’s user community via the publisher’s website.
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1 Mathematical Preliminaries

Similar to other field theories such as fluid mechanics, heat conduction, and electromagnetics,

the study and application of elasticity theory requires knowledge of several areas of applied

mathematics. The theory is formulated in terms of a variety of variables including scalar,

vector, and tensor fields, and this calls for the use of tensor notation along with tensor algebra

and calculus. Through the use of particular principles from continuum mechanics, the theory is

developed as a system of partial differential field equations that are to be solved in a region of

space coinciding with the body under study. Solution techniques used on these field equations

commonly employ Fourier methods, variational techniques, integral transforms, complex

variables, potential theory, finite differences, and finite and boundary elements. Therefore, to

develop proper formulation methods and solution techniques for elasticity problems, it is

necessary to have an appropriate mathematical background. The purpose of this initial chapter

is to provide a background primarily for the formulation part of our study. Additional review of

other mathematical topics related to problem solution technique is provided in later chapters

where they are to be applied.

1.1 Scalar, Vector, Matrix, and Tensor Definitions

Elasticity theory is formulated in terms of many different types of variables that are either

specified or sought at spatial points in the body under study. Some of these variables are scalar
quantities, representing a single magnitude at each point in space. Common examples include

the material density r and temperature T. Other variables of interest are vector quantities that
are expressible in terms of components in a two- or three-dimensional coordinate system.

Examples of vector variables are the displacement and rotation of material points in the elastic

continuum. Formulations within the theory also require the need for matrix variables, which
commonly require more than three components to quantify. Examples of such variables

include stress and strain. As shown in subsequent chapters, a three-dimensional formulation

requires nine components (only six are independent) to quantify the stress or strain at a point.

For this case, the variable is normally expressed in a matrix format with three rows and three

columns. To summarize this discussion, in a three-dimensional Cartesian coordinate system,

scalar, vector, and matrix variables can thus be written as follows:
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mass density scalar ¼ r

displacement vector ¼ u ¼ ue1 þ ve2 þ we3

stress matrix ¼ [s] ¼
sx txy txz
tyx sy tyz
tzx tzy sz

2
64

3
75

where e1, e2, e3 are the usual unit basis vectors in the coordinate directions. Thus, scalars,

vectors, and matrices are specified by one, three, and nine components, respectively.

The formulation of elasticity problems not only involves these types of variables, but also

incorporates additional quantities that require even more components to characterize. Because

of this, most field theories such as elasticity make use of a tensor formalism using index notation.

This enables efficient representation of all variables and governing equations using a

single standardized scheme. The tensor concept is defined more precisely in a later section,

but for now we can simply say that scalars, vectors, matrices, and other higher-order variables

can all be represented by tensors of various orders. We now proceed to a discussion on the

notational rules of order for the tensor formalism. Additional information on tensors and index

notation can be found in many texts such as Goodbody (1982) or Chandrasekharaiah and

Debnath (1994).

1.2 Index Notation

Index notation is a shorthand scheme whereby a whole set of numbers (elements or compon-

ents) is represented by a single symbol with subscripts. For example, the three numbers

a1, a2, a3 are denoted by the symbol ai, where index i will normally have the range 1, 2, 3.

In a similar fashion, aij represents the nine numbers a11, a12, a13, a21, a22, a23, a31, a32, a33.
Although these representations can be written in any manner, it is common to use a scheme

related to vector and matrix formats such that

ai ¼
a1
a2
a3

2
4

3
5, aij ¼ a11 a12 a13

a21 a22 a23
a31 a32 a33

2
4

3
5 (1:2:1)

In the matrix format, a1j represents the first row, while ai1 indicates the first column. Other

columns and rows are indicated in similar fashion, and thus the first index represents the row,

while the second index denotes the column.

In general a symbol aij...k with N distinct indices represents 3N distinct numbers. It

should be apparent that ai and aj represent the same three numbers, and likewise aij and
amn signify the same matrix. Addition, subtraction, multiplication, and equality of index

symbols are defined in the normal fashion. For example, addition and subtraction are

given by

ai � bi ¼
a1 � b1
a2 � b2
a3 � b3

2
4

3
5, aij � bij ¼

a11 � b11 a12 � b12 a13 � b13
a21 � b21 a22 � b22 a23 � b23
a31 � b31 a32 � b32 a33 � b33

2
4

3
5 (1:2:2)

and scalar multiplication is specified as
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lai ¼
la1
la2
la3

2
4

3
5, laij ¼ la11 la12 la13

la21 la22 la23
la31 la32 la33

2
4

3
5 (1:2:3)

The multiplication of two symbols with different indices is called outer multiplication, and a

simple example is given by

aibj ¼
a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

2
4

3
5 (1:2:4)

The previous operations obey usual commutative, associative, and distributive laws, for

example:

ai þ bi ¼ bi þ ai

aijbk ¼ bkaij

ai þ (bi þ ci) ¼ (ai þ bi)þ ci

ai(bjkcl) ¼ (aibjk)cl

aij(bk þ ck) ¼ aijbk þ aijck

(1:2:5)

Note that the simple relations ai ¼ bi and aij ¼ bij imply that a1 ¼ b1, a2 ¼ b2, . . . and
a11 ¼ b11, a12 ¼ b12, . . . However, relations of the form ai ¼ bj or aij ¼ bkl have ambiguous

meaning because the distinct indices on each term are not the same, and these types of

expressions are to be avoided in this notational scheme. In general, the distinct subscripts on

all individual terms in an equation should match.

It is convenient to adopt the convention that if a subscript appears twice in the same term,

then summation over that subscript from one to three is implied; for example:

aii ¼
X3
i¼1

aii ¼ a11 þ a22 þ a33

aijbj ¼
X3
j¼1

aijbj ¼ ai1b1 þ ai2b2 þ ai3b3

(1:2:6)

It should be apparent that aii ¼ ajj ¼ akk ¼ . . . , and therefore the repeated subscripts or

indices are sometimes called dummy subscripts. Unspecified indices that are not repeated are

called free or distinct subscripts. The summation convention may be suspended by underlining

one of the repeated indices or by writing no sum. The use of three or more repeated indices in

the same term (e.g., aiii or aiijbij) has ambiguous meaning and is to be avoided. On a given

symbol, the process of setting two free indices equal is called contraction. For example, aii is
obtained from aij by contraction on i and j. The operation of outer multiplication of two

indexed symbols followed by contraction with respect to one index from each symbol

generates an inner multiplication; for example, aijbjk is an inner product obtained from the

outer product aijbmk by contraction on indices j and m.
A symbol aij...m...n...k is said to be symmetric with respect to index pair mn if

aij...m...n...k ¼ aij...n...m...k (1:2:7)
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while it is antisymmetric or skewsymmetric if

aij...m...n...k ¼ �aij...n...m...k (1:2:8)

Note that if aij...m...n...k is symmetric in mn while bpq...m...n...r is antisymmetric in mn, then the

product is zero:

aij...m...n...kbpq...m...n...r ¼ 0 (1:2:9)

A useful identity may be written as

aij ¼ 1

2
(aij þ aji)þ 1

2
(aij � aji) ¼ a(ij) þ a[ij] (1:2:10)

The first term a(ij) ¼ 1=2(aij þ aji) is symmetric, while the second term a[ij] ¼ 1=2(aij � aji) is
antisymmetric, and thus an arbitrary symbol aij can be expressed as the sum of symmetric

and antisymmetric pieces. Note that if aij is symmetric, it has only six independent components.

On the other hand, if aij is antisymmetric, its diagonal terms aii (no sum on i) must be zero, and it

has only three independent components. Note that since a[ij] has only three independent compon-

ents, it can be related to a quantity with a single index, for example, ai (see Exercise 1-15).

EXAMPLE 1-1: Index Notation Examples

The matrix aij and vector bi are specified by

aij ¼
1 2 0

0 4 3

2 1 2

2
4

3
5, bi ¼

2

4

0

2
4
3
5

Determine the following quantities: aii, aijaij, aijajk, aijbj, aijbibj, bibi, bibj, a(ij), a[ij], and
indicate whether they are a scalar, vector, or matrix.

Following are the standard definitions given in Section 1.2,

aii ¼ a11 þ a22 þ a33 ¼ 7 (scalar)

aijaij ¼ a11a11 þ a12a12 þ a13a13 þ a21a21 þ a22a22 þ a23a23 þ a31a31 þ a32a32 þ a33a33

¼ 1þ 4þ 0þ 0þ 16þ 9þ 4þ 1þ 4 ¼ 39 (scalar)

aijajk ¼ ai1a1k þ ai2a2k þ ai3a3k ¼
1 10 6

6 19 18

6 10 7

2
4

3
5(matrix)

aijbj ¼ ai1b1 þ ai2b2 þ ai3b3 ¼
10

16

8

2
4

3
5(vector)

aijbibj ¼ a11b1b1 þ a12b1b2 þ a13b1b3 þ a21b2b1 þ � � � ¼ 84 (scalar)

6 FOUNDATIONS AND ELEMENTARY APPLICATIONS



EXAMPLE 1-1: Cont’d

bibi ¼ b1b1 þ b2b2 þ b3b3 ¼ 4þ 16þ 0 ¼ 20 (scalar)

bibj ¼
4 8 0

8 16 0

0 0 0

2
4

3
5(matrix)

a(ij) ¼ 1

2
aij þ aji
� � ¼ 1

2

1 2 0

0 4 3

2 1 2

2
4

3
5þ 1

2

1 0 2

2 4 1

0 3 2

2
4

3
5 ¼

1 1 1

1 4 2

1 2 2

2
4

3
5(matrix)

a[ij] ¼ 1

2
aij � aji
� � ¼ 1

2

1 2 0

0 4 3

2 1 2

2
4

3
5� 1

2

1 0 2

2 4 1

0 3 2

2
4

3
5 ¼

0 1 �1

�1 0 1

1 �1 0

2
4

3
5(matrix)

1.3 Kronecker Delta and Alternating Symbol

A useful special symbol commonly used in index notational schemes is the Kronecker delta
defined by

dij ¼ 1, if i ¼ j (no sum)
0, if i 6¼ j

�
¼

1 0 0

0 1 0

0 0 1

2
4

3
5 (1:3:1)

Within usual matrix theory, it is observed that this symbol is simply the unit matrix. Note that

the Kronecker delta is a symmetric symbol. Particular useful properties of the Kronecker delta

include the following:

dij ¼ dji
dii ¼ 3, dii ¼ 1

dijaj ¼ ai, dijai ¼ aj

dijajk ¼ aik, djkaik ¼ aij

dijaij ¼ aii, dijdij ¼ 3

(1:3:2)

Another useful special symbol is the alternating or permutation symbol defined by

eijk ¼
þ1, if ijk is an even permutation of 1, 2, 3

�1, if ijk is an odd permutation of 1, 2, 3

0, otherwise

(
(1:3:3)

Consequently, e123 ¼ e231 ¼ e312 ¼ 1, e321 ¼ e132 ¼ e213 ¼ �1, e112 ¼ e131 ¼ e222 ¼ . . . ¼ 0.

Therefore, of the 27 possible terms for the alternating symbol, 3 are equal to þ1, three are equal to

�1, andall othersare0.Thealternating symbol is antisymmetricwith respect to anypairof its indices.

This particular symbol is useful in evaluating determinants and vector cross products, and

the determinant of an array aij can be written in two equivalent forms:

det[aij] ¼ jaijj ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

������
������ ¼ eijka1ia2ja3k ¼ eijkai1aj2ak3 (1:3:4)

Mathematical Preliminaries 7



where the first index expression represents the row expansion, while the second form is the

column expansion. Using the property

eijkepqr ¼
dip diq dir
djp djq djr
dkp dkq dkr

������
������ (1:3:5)

another form of the determinant of a matrix can be written as

det[aij] ¼ 1

6
eijkepqraipajqakr (1:3:6)

1.4 Coordinate Transformations

It is convenient and in fact necessary to express elasticity variables and field equations in several

different coordinate systems (see Appendix A). This situation requires the development of

particular transformation rules for scalar, vector, matrix, and higher-order variables. This

concept is fundamentally connected with the basic definitions of tensor variables and their

related tensor transformation laws. We restrict our discussion to transformations only between

Cartesian coordinate systems, and thus consider the two systems shown in Figure 1-1. The two

Cartesian frames (x1, x2, x3) and (x
0
1, x

0
2, x

0
3) differ only by orientation, and the unit basis vectors

for each frame are {ei} ¼ {e1, e2, e3} and {e0i} ¼ {e01, e
0
2, e

0
3}.

Let Qij denote the cosine of the angle between the x0i-axis and the xj-axis:

Qij ¼ cos (x0i, xj) (1:4:1)

Using this definition, the basis vectors in the primed coordinate frame can be easily expressed

in terms of those in the unprimed frame by the relations

v

e3
e2

e1

e3

e2e1

x3

x2

x1

x3

x2�

�

x1
�

�

�
�

FIGURE 1-1 Change of Cartesian coordinate frames.
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e01 ¼ Q11e1 þ Q12e2 þ Q13e3

e02 ¼ Q21e1 þ Q22e2 þ Q23e3

e03 ¼ Q31e1 þ Q32e2 þ Q33e3

(1:4:2)

or in index notation

e0i ¼ Qijej (1:4:3)

Likewise, the opposite transformation can be written using the same format as

ei ¼ Qjie
0
j (1:4:4)

Now an arbitrary vector v can be written in either of the two coordinate systems as

v ¼ v1e1 þ v2e2 þ v3e3 ¼ viei

¼ v01e
0
1 þ v02e

0
2 þ v03e

0
3 ¼ v0ie

0
i

(1:4:5)

Substituting form (1.4.4) into (1:4:5)1 gives

v ¼ viQjie
0
j

but from (1:4:5)2, v ¼ v0je
0
j, and so we find that

v0i ¼ Qijvj (1:4:6)

In similar fashion, using (1.4.3) in (1:4:5)2 gives

vi ¼ Qjiv
0
j (1:4:7)

Relations (1.4.6) and (1.4.7) constitute the transformation laws for the Cartesian components

of a vector under a change of rectangular Cartesian coordinate frame. It should be understood

that under such transformations, the vector is unaltered (retaining original length and orienta-

tion), and only its components are changed. Consequently, if we know the components of a

vector in one frame, relation (1.4.6) and/or relation (1.4.7) can be used to calculate components

in any other frame.

The fact that transformations are being made only between orthogonal coordinate systems

places some particular restrictions on the transformation or direction cosine matrix Qij. These

can be determined by using (1.4.6) and (1.4.7) together to get

vi ¼ Qjiv
0
j ¼ QjiQjkvk (1:4:8)

From the properties of the Kronecker delta, this expression can be written as

dikvk ¼ QjiQjkvk or (QjiQjk � dik)vk ¼ 0

and since this relation is true for all vectors vk, the expression in parentheses must be zero,

giving the result

QjiQjk ¼ dik (1:4:9)
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In similar fashion, relations (1.4.6) and (1.4.7) can be used to eliminate vi (instead of v0i) to get

QijQkj ¼ dik (1:4:10)

Relations (1.4.9) and (1.4.10) comprise the orthogonality conditions that Qij must satisfy.

Taking the determinant of either relation gives another related result:

det[Qij] ¼ �1 (1:4:11)

Matrices that satisfy these relations are called orthogonal, and the transformations given by

(1.4.6) and (1.4.7) are therefore referred to as orthogonal transformations.

1.5 Cartesian Tensors

Scalars, vectors, matrices, and higher-order quantities can be represented by a general index

notational scheme. Using this approach, all quantities may then be referred to as tensors of

different orders. The previously presented transformation properties of a vector can be used to

establish the general transformation properties of these tensors. Restricting the transformations

to those only between Cartesian coordinate systems, the general set of transformation relations

for various orders can be written as

a0 ¼ a, zero order (scalar)

a0i ¼ Qipap, Wrst order (vector)

a0ij ¼ QipQjqapq, second order (matrix)

a0ijk ¼ QipQjqQkrapqr, third order

a0ijkl ¼ QipQjqQkrQlsapqrs, fourth order

..

.

a0ijk...m ¼ QipQjqQkr � � �Qmtapqr...t general order

(1:5:1)

Note that, according to these definitions, a scalar is a zero-order tensor, a vector is a tensor

of order one, and a matrix is a tensor of order two. Relations (1.5.1) then specify the transform-

ation rules for the components of Cartesian tensors of any order under the rotation Qij. This

transformation theory proves to be very valuable in determining the displacement, stress, and

strain in different coordinate directions. Some tensors are of a special form in which their

components remain the same under all transformations, and these are referred to as isotropic
tensors. It can be easily verified (see Exercise 1-8) that the Kronecker delta dij has such a

property and is therefore a second-order isotropic tensor. The alternating symbol eijk is found to
be the third-order isotropic form. The fourth-order case (Exercise 1-9) can be expressed in terms

of products of Kronecker deltas, and this has important applications in formulating isotropic

elastic constitutive relations in Section 4.2.

The distinction between the components and the tensor should be understood. Recall that a

vector v can be expressed as

v ¼ v1e1 þ v2e2 þ v3e3 ¼ viei

¼ v01e
0
1 þ v02e

0
2 þ v03e

0
3 ¼ v0ie

0
i

(1:5:2)
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In a similar fashion, a second-order tensor A can be written

A ¼ A11e1e1 þ A12e1e2 þ A13e1e3

þ A21e2e1 þ A22e2e2 þ A23e2e3

þ A31e3e1 þ A32e3e2 þ A33e3e3

¼ Aijeiej ¼ A0
ije

0
ie
0
j

(1:5:3)

and similar schemes can be used to represent tensors of higher order. The representation used

in equation (1.5.3) is commonly called dyadic notation, and some authors write the dyadic

products eiej using a tensor product notation ei�ej. Additional information on dyadic notation

can be found in Weatherburn (1948) and Chou and Pagano (1967).

Relations (1.5.2) and (1.5.3) indicate that any tensor can be expressed in terms of compon-

ents in any coordinate system, and it is only the components that change under coordinate

transformation. For example, the state of stress at a point in an elastic solid depends on the

problem geometry and applied loadings. As is shown later, these stress components are those

of a second-order tensor and therefore obey transformation law (1:5:1)3. Although the com-

ponents of the stress tensor change with the choice of coordinates, the stress tensor (represent-

ing the state of stress) does not.

An important property of a tensor is that if we know its components in one coordinate

system, we can find them in any other coordinate frame by using the appropriate transform-

ation law. Because the components of Cartesian tensors are representable by indexed symbols,

the operations of equality, addition, subtraction, multiplication, and so forth, are defined in a

manner consistent with the indicial notation procedures previously discussed. The terminology

tensor without the adjective Cartesian usually refers to a more general scheme in which the

coordinates are not necessarily rectangular Cartesian and the transformations between coordin-

ates are not always orthogonal. Such general tensor theory is not discussed or used in this text.

EXAMPLE 1-2: Transformation Examples

The components of a first- and second-order tensor in a particular coordinate frame are

given by

ai ¼
1

4

2

2
4
3
5, aij ¼ 1 0 3

0 2 2

3 2 4

2
4

3
5

Determine the components of each tensor in a new coordinate system found through a

rotation of 608 (p=6 radians) about the x3-axis. Choose a counterclockwise rotation

when viewing down the negative x3-axis (see Figure 1-2).
Theoriginal andprimedcoordinate systemsshowninFigure1-2establish theanglesbe-

tween the various axes. The solution starts by determining the rotationmatrix for this case:

Qij ¼
cos 608 cos 308 cos 908
cos 1508 cos 608 cos 908
cos 908 cos 908 cos 08

2
4

3
5 ¼

1=2
ffiffiffi
3

p
=2 0

� ffiffiffi
3

p
=2 1=2 0

0 0 1

2
4

3
5

Continued
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EXAMPLE 1-2: Transformation Examples—Cont’d

x3

x2

x1

60�

x3′

x2′

x1′

FIGURE 1-2 Coordinate transformation.

The transformation for the vector quantity follows from equation (1:5:1)2:

a0i ¼ Qijaj ¼
1=2

ffiffiffi
3

p
=2 0

� ffiffiffi
3

p
=2 1=2 0

0 0 1

2
4

3
5 1

4

2

2
4
3
5 ¼

1=2þ 2
ffiffiffi
3

p
2� ffiffiffi

3
p

=2
2

2
4

3
5

and the second-order tensor (matrix) transforms according to (1:5:1)3:

a0ij ¼ QipQjqapq ¼
1=2

ffiffiffi
3

p
=2 0

� ffiffiffi
3

p
=2 1=2 0

0 0 1

2
64

3
75

1 0 3

0 2 2

3 2 4

2
64

3
75 1=2

ffiffiffi
3

p
=2 0

� ffiffiffi
3

p
=2 1=2 0

0 0 1

2
64

3
75
T

¼
7=4

ffiffiffi
3

p
=4 3=2þ ffiffiffi

3
pffiffiffi

3
p

=4 5=4 1� 3
ffiffiffi
3

p
=2

3=2þ ffiffiffi
3

p
1� 3

ffiffiffi
3

p
=2 4

2
64

3
75

where [ ]T indicates transpose (defined in Section 1.7). Although simple transformations

can be worked out by hand, for more general cases it is more convenient to use a

computational scheme to evaluate the necessary matrix multiplications required in the

transformation laws (1.5.1). MATLAB software is ideally suited to carry out such

calculations, and an example program to evaluate the transformation of second-order

tensors is given in Example C-1 in Appendix C.

1.6 Principal Values and Directions for Symmetric
Second-Order Tensors

Considering the tensor transformation concept previously discussed, it should be apparent

that there might exist particular coordinate systems in which the components of a tensor

take on maximum or minimum values. This concept is easily visualized when we consider the
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components of a vector shown in Figure 1-1. If we choose a particular coordinate system that has

been rotated so that the x3-axis lies along the direction of the vector, then the vector will have

components v ¼ {0, 0, jvj}. For this case, two of the components have been reduced to zero,

while the remaining component becomes the largest possible (the total magnitude).

This situation is most useful for symmetric second-order tensors that eventually represent

the stress and/or strain at a point in an elastic solid. The direction determined by the unit vector

n is said to be a principal direction or eigenvector of the symmetric second-order tensor aij if
there exists a parameter l such that

aijnj ¼ lni (1:6:1)

where l is called the principal value or eigenvalue of the tensor. Relation (1.6.1) can be

rewritten as

(aij � ldij)nj ¼ 0

and this expression is simply a homogeneous system of three linear algebraic equations in the

unknowns n1, n2, n3. The system possesses a nontrivial solution if and only if the determinant

of its coefficient matrix vanishes; that is:

det[aij � ldij] ¼ 0

Expanding the determinant produces a cubic equation in terms of l:

det[aij � ldij] ¼ �l3 þ Ial
2 � IIalþ IIIa ¼ 0 (1:6:2)

where

Ia ¼ aii ¼ a11 þ a22 þ a33

IIa ¼ 1

2
(aiiajj � aijaij) ¼

a11 a12

a21 a22

����
����þ a22 a23

a32 a33

����
����þ a11 a13

a31 a33

����
����

IIIa ¼ det[aij]

(1:6:3)

The scalars Ia, IIa, and IIIa are called the fundamental invariants of the tensor aij, and relation

(1.6.2) is known as the characteristic equation. As indicated by their name, the three invariants

do not change value under coordinate transformation. The roots of the characteristic equation

determine the allowable values for l, and each of these may be back-substituted into relation

(1.6.1) to solve for the associated principal direction n.
Under the condition that the components aij are real, it can be shown that all three roots

l1, l2, l3 of the cubic equation (1.6.2) must be real. Furthermore, if these roots are distinct, the

principal directions associated with each principal value are orthogonal. Thus, we can con-

clude that every symmetric second-order tensor has at least three mutually perpendicular

principal directions and at most three distinct principal values that are the roots of the

characteristic equation. By denoting the principal directions n(1), n(2), n(3) corresponding to

the principal values l1, l2, l3, three possibilities arise:

1. All three principal values are distinct; thus, the three corresponding principal directions

are unique (except for sense).

2. Two principal values are equal (l1 6¼ l2 ¼ l3); the principal direction n(1) is unique
(except for sense), and every direction perpendicular to n(1) is a principal direction
associated with l2, l3.
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3. All three principal values are equal; every direction is principal, and the tensor is

isotropic, as per discussion in the previous section.

Therefore, according to what we have presented, it is always possible to identify a right-

handed Cartesian coordinate system such that each axis lies along the principal directions

of any given symmetric second-order tensor. Such axes are called the principal axes of

the tensor. For this case, the basis vectors are actually the unit principal directions

{n(1), n(2), n(3)}, and it can be shown that with respect to principal axes the tensor reduces to

the diagonal form

a0ij ¼
l1 0 0

0 l2 0

0 0 l3

2
4

3
5 (1:6:4)

Note that the fundamental invariants defined by relations (1.6.3) can be expressed in terms of

the principal values as

Ia ¼ l1 þ l2 þ l3
IIa ¼ l1l2 þ l2l3 þ l3l1
IIIa ¼ l1l2l3

(1:6:5)

The eigenvalues have important extremal properties. If we arbitrarily rank the principal values

such that l1 > l2 > l3, then l1 will be the largest of all possible diagonal elements, while l3
will be the smallest diagonal element possible. This theory is applied in elasticity as we seek

the largest stress or strain components in an elastic solid.

EXAMPLE 1-3: Principal Value Problem

Determine the invariants and principal values and directions of the following symmetric

second-order tensor:

aij ¼
2 0 0

0 3 4

0 4 �3

2
4

3
5

The invariants follow from relations (1.6.3)

Ia ¼ aii ¼ 2þ 3� 3 ¼ 2

IIa ¼
2 0

0 3

����
����þ 3 4

4 �3

����
����þ 2 0

0 �3

����
���� ¼ 6� 25� 6 ¼ �25

IIIa ¼
2 0 0

0 3 4

0 4 �3

�������
������� ¼ 2(� 9� 16) ¼ �50

14 FOUNDATIONS AND ELEMENTARY APPLICATIONS



EXAMPLE 1-3: Cont’d

The characteristic equation then becomes

det[aij � ldij] ¼ �l3 þ 2l2 þ 25l� 50 ¼ 0

) (l� 2)(l2 � 25) ¼ 0

;l1 ¼ 5, l2 ¼ 2, l3 ¼ �5

Thus, for this case all principal values are distinct.

For the l1 ¼ 5 root, equation (1.6.1) gives the system

�3n(1)1 ¼ 0

�2n(1)2 þ 4n(1)3 ¼ 0

4n(1)2 � 8n(1)3 ¼ 0

which gives a normalized solution n(1) ¼ � (2e2 þ e3)=
ffiffiffi
5

p
. In similar fashion, the other

two principal directions are found to be n(2) ¼ �e1, n
(3) ¼ � (e2 � 2e3)=

ffiffiffi
5

p
. It is easily

verified that these directions are mutually orthogonal. Figure 1-3 illustrates their direc-

tions with respect to the given coordinate system, and this establishes the right-handed

principal coordinate axes (x01, x
0
2, x

0
3). For this case, the transformation matrix Qij defined

by (1.4.1) becomes

Qij ¼
0 2=

ffiffiffi
5

p
1=

ffiffiffi
5

p
1 0 0

0 1=
ffiffiffi
5

p �2=
ffiffiffi
5

p

2
4

3
5

Notice the eigenvectors actually form the rows of the Q-matrix.

x3

x1

x2

x1
n(1)

n(3)

n(2)

′

x3′

x2′

FIGURE 1-3 Principal axes for Example 1-3.

Using this in the transformation law (1:5:1)3, the components of the given second-

order tensor become

a0ij ¼
5 0 0

0 2 0

0 0 �5

2
4

3
5

Continued
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EXAMPLE 1-3: Principal Value Problem—Cont’d

This result then validates the general theory given by relation (1.6.4) indicating that the

tensor should take on diagonal form with the principal values as the elements.

Only simple second-order tensors lead to a characteristic equation that is factorable,

thus allowing solution by hand calculation. Most other cases normally develop a general

cubic equation and a more complicated system to solve for the principal directions.

Again, particular routines within the MATLAB package offer convenient tools to solve

these more general problems. Example C-2 in Appendix C provides a simple code to

determine the principal values and directions for symmetric second-order tensors.

1.7 Vector, Matrix, and Tensor Algebra

Elasticity theory requires the use of many standard algebraic operations among vector, matrix,

and tensor variables. These operations include dot and cross products of vectors and numerous

matrix/tensor products. All of these operations can be expressed efficiently using compact

tensor index notation. First, consider some particular vector products. Given two vectors a and
b, with Cartesian components ai and bi, the scalar or dot product is defined by

a � b ¼ a1b1 þ a2b2 þ a3b3 ¼ aibi (1:7:1)

Because all indices in this expression are repeated, the quantity must be a scalar, that is, a

tensor of order zero. The magnitude of a vector can then be expressed as

jaj ¼ (a � a)1=2 ¼ (aiai)
1=2 (1:7:2)

The vector or cross product between two vectors a and b can be written as

a� b ¼
e1 e2 e3
a1 a2 a3
b1 b2 b3

������
������ ¼ eijkajbkei (1:7:3)

where ei are the unit basis vectors for the coordinate system. Note that the cross product gives a

vector resultant whose components are eijkajbk. Another common vector product is the scalar
triple product defined by

a � b� c ¼
a1 a2 a3
b1 b2 b3
c1 c2 c3

������
������ ¼ eijkaibjck (1:7:4)

Next consider some common matrix products. Using the usual direct notation for matrices and

vectors, common products between a matrix A¼ [A] with a vector a can be written as

Aa ¼ [A]{a} ¼ Aijaj ¼ ajAij

aTA ¼ {a}T[A] ¼ aiAij ¼ Aijai
(1:7:5)

where aT denotes the transpose, and for a vector quantity this simply changes the column

matrix (3� 1) into a row matrix (1� 3). Note that each of these products results in a vector
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resultant. These types of expressions generally involve various inner products within the index

notational scheme, and as noted, once the summation index is properly specified, the order of

listing the product terms does not change the result. We will encounter several different

combinations of products between two matrices A and B:

AB ¼ [A][B] ¼ AijBjk

ABT ¼ AijBkj

ATB ¼ AjiBjk

tr(AB) ¼ AijBji

tr(ABT) ¼ tr(ATB) ¼ AijBij

(1:7:6)

where AT indicates the transpose and trA is the trace of the matrix defined by

AT
ij ¼ Aji

trA ¼ Aii ¼ A11 þ A22 þ A33

(1:7:7)

Similar to vector products, once the summation index is properly specified, the results in

(1.7.6) do not depend on the order of listing the product terms. Note that this does not imply

that AB ¼ BA, which is certainly not true.

1.8 Calculus of Cartesian Tensors

Most variables within elasticity theory are field variables, that is, functions depending on

the spatial coordinates used to formulate the problem under study. For time-dependent

problems, these variables could also have temporal variation. Thus, our scalar, vector, matrix,

and general tensor variables are functions of the spatial coordinates (x1, x2, x3). Because many

elasticity equations involve differential and integral operations, it is necessary to have an

understanding of the calculus of Cartesian tensor fields. Further information on vector differen-

tial and integral calculus can be found in Hildebrand (1976) and Kreyszig (1999).

The field concept for tensor components can be expressed as

a ¼ a(x1, x2, x3) ¼ a(xi) ¼ a(x)

ai ¼ ai(x1, x2, x3) ¼ ai(xi) ¼ ai(x)

aij ¼ aij(x1, x2, x3) ¼ aij(xi) ¼ aij(x)

..

.

It is convenient to introduce the comma notation for partial differentiation:

a, i ¼ @

@xi
a; ai, j ¼ @

@xj
ai; aij, k ¼ @

@xk
aij; � � �

It can be shown that if the differentiation index is distinct, the order of the tensor is increased

by one. For example, the derivative operation on a vector ai, j produces a second-order tensor or
matrix given by
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ai, j ¼

@a1
@x1

@a1
@x2

@a1
@x3

@a2
@x1

@a2
@x2

@a2
@x3

@a3
@x1

@a3
@x2

@a3
@x3

2
666664

3
777775

Using Cartesian coordinates (x,y,z), consider the directional derivative of a scalar field func-

tion f with respect to a direction s:

df

ds
¼ @f

@x

dx

ds
þ @f

@y

dy

ds
þ @f

@z

dz

ds

Note that the unit vector in the direction of s can be written as

n ¼ dx

ds
e1 þ dy

ds
e2 þ dz

ds
e3

Therefore, the directional derivative can be expressed as the following scalar product:

df

ds
¼ n � rrrf (1:8:1)

where rrrf is called the gradient of the scalar function f and is defined by

rrrf ¼ grad f ¼ e1
@f

@x
þ e2

@f

@y
þ e3

@f

@z
(1:8:2)

and the symbolic vector operator rrr is called the del operator

rrr ¼ e1
@

@x
þ e2

@

@y
þ e3

@

@z
(1:8:3)

These and other useful operations can be expressed in Cartesian tensor notation. Given the

scalar field f and vector field u, the following common differential operations can be written in

index notation:

Gradient of a Scalar rrr� ¼ �, iei

Gradient of a Vector rrru ¼ ui, jeiej

Laplacian of a Scalarnabla2f ¼ rrr � rrrf ¼ f, ii
Divergence of a Vector rrr � u ¼ ui, i

Curl of a Vector rrr� u ¼ eijkuk, jei

Laplacian of a Vector r2u ¼ ui, kkei

(1:8:4)
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If f and c are scalar fields and u and v are vector fields, several useful identities exist:

rrr(fc) ¼ (rrrf)cþ f(rrrc)

r2(fc) ¼ (r2f)cþ f(r2c)þ 2rrrf � rrrc

rrr � (fu) ¼ rrrf � uþ f(rrr � u)
rrr� (fu) ¼ rrrf� uþ f(rrr� u)

rrr � (u� v) ¼ v � (rrr� u)� u � (rrr� v)

rrr�rrrf ¼ 0

rrr � rrrf ¼ r2f

rrr � rrr� u ¼ 0

rrr� (rrr� u) ¼ rrr(rrr � u)�r2u

u� (rrr� u) ¼ 1

2
rrr(u � u)� u � rrru

(1:8:5)

Each of these identities can be easily justified by using index notation from definition relations

(1.8.4).

EXAMPLE 1-4: Scalar and Vector Field Examples

Scalar and vector field functions are given by � ¼ x2� y2 and u ¼ 2xe1þ 3yze2þ xye3.
Calculate the following expressions, rrr�, rrr2�, rrr � u, rrru, rrr � u.

Using the basic relations (1.8.4)

rrr� ¼ 2xe1 � 2ye2

rrr2� ¼ 2� 2 ¼ 0

rrr � u ¼ 2þ 3zþ 0 ¼ 2þ 3z

rrru ¼ ui, j ¼
2 0 0

0 3z 3y

y x 0

2
64

3
75

rrr� u ¼
e1 e2 e3

@=@x @=@y @=@z

2x 3yz xy

�������
������� ¼ (x� 3y)e1 � ye2

Using numerical methods, some of these variables can be conveniently computed and

plotted in order to visualize the nature of the field distribution. For example, contours of

� ¼ constant can easily be plotted using MATLAB software, and vector distributions

of rrr� can be shown as plots of vectors properly scaled in magnitude and orientation.

Figure 1-4 shows these two types of plots, and it is observed that the vector field rrr� is

orthogonal to the �-contours, a result that is true in general for all scalar fields. Numeric-

ally generated plots such as these will prove to be useful in understanding displacement,

strain, and/or stress distributions found in the solution to a variety of problems in

elasticity.

Continued
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EXAMPLE 1-4: Scalar and Vector Field Examples—Cont’d

x

y

FIGURE 1-4 Contours of � ¼ constant and vector distributions of rrr�:

Next consider some results from vector/tensor integral calculus. We simply list some

theorems that have later use in the development of elasticity theory.

1.8.1 Divergence or Gauss Theorem
Let S be a piecewise continuous surface bounding the region of space V. If a vector field u is

continuous and has continuous first derivatives in V, then

ðð
S

u � n dS ¼
ððð

V

rrr � u dV (1:8:6)

where n is the outer unit normal vector to surface S. This result is also true for tensors of any

order; that is: ð ð
S

aij...knk dS ¼
ððð

V

aij...k, k dV (1:8:7)

1.8.2 Stokes Theorem
Let S be an open two-sided surface bounded by a piecewise continuous simple closed curve C.
If u is continuous and has continuous first derivatives on S, thenþ

C

u � dr ¼
ðð

S

(rrr� u) � n dS (1:8:8)

where the positive sense for the line integral is for the region S to lie to the left as one traverses
curve C and n is the unit normal vector to S. Again, this result is also valid for tensors of

arbitrary order, and so

þ
C

aij...kdxt ¼
ðð

S

erstaij...k, snr dS (1:8:9)
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It can be shown that both divergence and Stokes theorems can be generalized so that the dot

product in (1.8.6) and/or (1.8.8) can be replaced with a cross product.

1.8.3 Green’s Theorem in the Plane
Applying Stokes theorem to a planar domain S with the vector field selected as u ¼ f e1 þ ge2
gives the result

ðð
S

@g

@x
� @f

@y

� �
dxdy ¼

ð
C

(fdxþ gdy) (1:8:10)

Further, special choices with either f ¼ 0 or g ¼ 0 imply

ðð
S

@g

@x
dxdy ¼

ð
C

gnxds ,

ðð
S

@f

@y
dxdy ¼

ð
C

fnyds (1:8:11)

1.8.4 Zero-Value Theorem
Let fij...k be a continuous tensor field of any order defined in an arbitrary region V. If the integral
of fij...k over V vanishes, then fij...k must vanish in V; that is:

ððð
V

fij...kdV ¼ 0 ) fij...k ¼ 0 2 V (1:8:12)

1.9 Orthogonal Curvilinear Coordinates

Many applications in elasticity theory involve domains that have curved boundary surfaces,

commonly including circular, cylindrical, and spherical surfaces. To formulate and develop

solutions for such problems, it is necessary to use curvilinear coordinate systems. This requires

redevelopment of some previous results in orthogonal curvilinear coordinates. Before pursuing

these general steps, we review the two most common curvilinear systems, cylindrical and

spherical coordinates. The cylindrical coordinate system shown in Figure 1-5 uses (r, y, z)

e2

e3

e1

x3

x1

x2

r

q

z
êz

êr

êq

FIGURE 1-5 Cylindrical coordinate system.
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coordinates to describe spatial geometry. Relations between the Cartesian and cylindrical

systems are given by

x1 ¼ r cos y, x2 ¼ r sin y, x3 ¼ z

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
, y ¼ tan�1 x2

x1
, z ¼ x3

(1:9:1)

The spherical coordinate system is shown in Figure 1-6 and uses (R, f, y) coordinates to

describe geometry. The relations between Cartesian and spherical coordinates are

x1 ¼ R cos y sinf, x2 ¼ R sin y sinf, x3 ¼ R cosf

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

q
, f ¼ cos�1 x3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22 þ x23
p , y ¼ tan�1 x2

x1

(1:9:2)

The unit basis vectors for each of these curvilinear systems are illustrated in Figures 1-5 and 1-6.

These represent unit tangent vectors along each of the three orthogonal coordinate curves.

Although primary use of curvilinear systems employs cylindrical and spherical coordinates,

we briefly present a general discussion valid for arbitrary coordinate systems. Consider the

general case in which three orthogonal curvilinear coordinates are denoted by x1, x2, x3, while
the Cartesian coordinates are defined by x1, x2, x3 (see Figure 1-7). We assume there exist

invertible coordinate transformations between these systems specified by

xm ¼ xm(x1, x2, x3), xm ¼ xm(x1, x2, x3) (1:9:3)

In the curvilinear system, an arbitrary differential length in space can be expressed by

(ds)2 ¼ (h1dx
1)2 þ (h2dx

2)2 þ (h3dx
3)2 (1:9:4)

where h1, h2, h3 are called scale factors that are in general nonnegative functions of position.

Let ek be the fixed Cartesian basis vectors and êek the curvilinear basis (see Figure 1-7). By

e3

e2e1

x3

x1

x2

R

êR

êq

êf

q

f

FIGURE 1-6 Spherical coordinate system.
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using similar concepts from the transformations discussed in Section 1.4, the curvilinear basis

can be expressed in terms of the Cartesian basis as

êe1 ¼ dxk

ds1
ek ¼ 1

h1

@xk

@x1
ek

êe2 ¼ dxk

ds2
ek ¼ 1

h2

@xk

@x2
ek

êe3 ¼ dxk

ds3
ek ¼ 1

h3

@xk

@x3
ek

(1:9:5)

where we have used (1.9.4). By using the fact that êiei � êjej ¼ dij, relation (1.9.5) gives

(h1)
2 ¼ @xk

@x1
@xk

@x1

(h2)
2 ¼ @xk

@x2
@xk

@x2

(h3)
2 ¼ @xk

@x3
@xk

@x3

(1:9:6)

It follows from (1.9.5) that the quantity

Qk
r ¼

1

hr

@xk

@xr
, (no sum on r) (1:9:7)

represents the transformation tensor giving the curvilinear basis in terms of the Cartesian basis.

This concept is similar to the transformation tensor Qij defined by (1.4.1) that is used between

Cartesian systems.

The physical components of a vector or tensor are simply the components in a local set of

Cartesian axes tangent to the curvilinear coordinate curves at any point in space. Thus, by

using transformation relation (1.9.7), the physical components of a tensor a in a general

curvilinear system are given by

e2

e3

e1

x3

x2

x1

x3

x2

x1

ê3

ê2

ê1

FIGURE 1-7 Curvilinear coordinates.
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a<ij...k> ¼ Qp
i Q

q
j � � �Qs

kapq...s (1:9:8)

where apq...s are the components in a fixed Cartesian frame. Note that the tensor can be

expressed in either system as

a ¼ aij...keiej � � � ek
¼ a<ij...k>êeiêej � � � êek

(1:9:9)

Because many applications involve differentiation of tensors, we must consider the differenti-

ation of the curvilinear basis vectors. The Cartesian basis system ek is fixed in orientation and

therefore @ek=@x
j ¼ @ek=@xj ¼ 0. However, derivatives of the curvilinear basis do not in

general vanish, and differentiation of relations (1.9.5) gives the following results:

@êem
@xm

¼ � 1

hn

@hm
@xn

êen � 1

hr

@hm
@xr

êer; m 6¼ n 6¼ r

@êem
@xn

¼ 1

hm

@hn
@xm

êen; m 6¼ n, no sum on repeated indices

(1:9:10)

Using these results, the derivative of any tensor can be evaluated. Consider the first derivative

of a vector u:

@

@xn
u ¼ @

@xn
(u<m>êem) ¼ @u<m>

@xn
êem þ u<m>

@êem
@xn

(1:9:11)

The last term can be evaluated using (1.9.10), and thus the derivative of u can be expressed in

terms of curvilinear components. Similar patterns follow for derivatives of higher-order tensors.

All vector differential operators of gradient, divergence, curl, and so forth, can be expressed

in any general curvilinear system by using these techniques. For example, the vector differen-

tial operator previously defined in Cartesian coordinates in (1.8.3) is given by

r ¼ êe1
1

h1

@

@x1
þ êe2

1

h2

@

@x2
þ êe3

1

h3

@

@x3
¼
X
i

êei
1

hi

@

@xi
(1:9:12)

and this leads to the construction of the other common forms:

Gradient of a Scalar rrrf ¼ êe1
1

h1

@f

@x1
þ êe2

1

h2

@f

@x2
þ êe3

1

h3

@f

@x3
¼
X
i

êei
1

hi

@f

@xi
(1:9:13)

Divergence of a Vector rrr � u ¼ 1

h1h2h3

X
i

@

@xi
h1h2h3
hi

u<i>

� �
(1:9:14)

Laplacian of a Scalar r2f ¼ 1

h1h2h3

X
i

@

@xi
h1h2h3

(hi)
2

@f

@xi

� �
(1:9:15)

Curl of a Vector r� u ¼
X
i

X
j

X
k

eijk
hjhk

@

@x j (u<k>hk)êei (1:9:16)
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Gradient of a Vector ru ¼
X
i

X
j

êei
hi

@u<j>

@xi
êej þ u<j>

@êej

@xi

� �
(1:9:17)

Laplacian of a Vector r2u ¼
X
i

êei
hi

@

@xi

 !
�
X
j

X
k

êek
hk

@u<j>

@xk
êej þ u<j>

@êej

@xk

	 
 !
(1:9:18)

It should be noted that these forms are significantly different from those previously given in

relations (1.8.4) for Cartesian coordinates. Curvilinear systems add additional terms not found

in rectangular coordinates. Other operations on higher-order tensors can be developed in a

similar fashion (see Malvern 1969, app. II). Specific transformation relations and field equa-

tions in cylindrical and spherical coordinate systems are given in Appendices A and B. Further

discussion of these results is taken up in later chapters.

EXAMPLE 1-5: Polar Coordinates

Consider the two-dimensional case of a polar coordinate system as shown in Figure 1-8.

The differential length relation (1.9.4) for this case can be written as

(ds)2 ¼ (dr)2 þ (rdy)2

and thus h1 ¼ 1 and h2 ¼ r. By using relations (1.9.5) or simply by using the geometry

shown in Figure 1-8,

êer ¼ cos ye1 þ sin ye2
êey ¼ � sin ye1 þ cos ye2

(1:9:19)

and so

@êer
@y

¼ êey,
@êey
@y

¼ �êer ,
@êer
@r

¼ @êey
@r

¼ 0 (1:9:20)

Continued

e1

e2

x2

x1

r

êr

êq

q

FIGURE 1-8 Polar coordinate system.
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EXAMPLE 1-5: Polar Coordinates—Cont’d

The basic vector differential operations then follow to be

rrr ¼ êer
@

@r
þ êey

1

r

@

@y

rrrf ¼ êer
@f
@r

þ êey
1

r

@f
@y

rrr � u ¼ 1

r

@

@r
(rur)þ 1

r

@uy
@y

r2f ¼ 1

r

@

@r
r
@f
@r

� �
þ 1

r2
@2f

@y2

rrr� u ¼ 1

r

@

@r
(ruy)� 1

r

@ur
@y

� �
êez

rrru ¼ @ur
@r

êer êer þ @uy
@r

êer êey þ 1

r

@ur
@y

� uy

� �
êeyêer þ 1

r

@uy
@y

� ur

� �
êeyêey

r2u ¼ r2ur � 2

r2
@uy
@y

� ur
r2

� �
êer þ r2uy þ 2

r2
@ur
@y

� uy
r2

� �
êey

(1:9:21)

where u ¼ ur êer þ uyêey, êez ¼ êer � êey. Notice that the Laplacian of a vector does not

simply pass through and operate on each of the individual components as in the

Cartesian case. Additional terms are generated because of the curvature of the particular

coordinate system. Similar relations can be developed for cylindrical and spherical

coordinate systems (see Exercises 1-17 and 1-18).

The material reviewed in this chapter is used in many places for formulation develop-

ment of elasticity theory. Throughout the text, notation uses scalar, vector, and tensor formats

depending on the appropriateness to the topic under discussion. Most of the general formulation

procedures in Chapters 2 through 5 use tensor index notation, while later chapters commonly

use vector and scalar notation. Additional review of mathematical procedures for problem

solution is supplied in chapter locations where they are applied.
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Exercises

1-1. For the given matrix/vector pairs, compute the following quantities: aii, aijaij, aijajk, aijbj,
aijbibj, bibj, bibi. For each case, point out whether the result is a scalar, vector, or matrix.

Note that aijbj is actually the matrix product [a]{b}, while aijajk is the product [a][a].

(a) aij ¼
1 1 1

0 4 2

0 1 1

2
64

3
75, bi ¼

1

0

2

2
64
3
75 (b) aij ¼

1 2 0

0 2 1

0 4 2

2
64

3
75, bi ¼

2

1

1

2
64
3
75

(c) aij ¼
1 1 1

1 0 2

0 1 4

2
64

3
75, bi ¼

1

1

0

2
64
3
75

1-2. Use the decomposition result (1.2.10) to express aij from Exercise 1-1 in terms of the sum

of symmetric and antisymmetric matrices. Verify that a(ij) and a[ij] satisfy the conditions

given in the last paragraph of Section 1.2.

1-3. If aij is symmetric and bij is antisymmetric, prove in general that the product aijbij is zero.
Verify this result for the specific case by using the symmetric and antisymmetric terms

from Exercise 1-2.

1-4. Explicitly verify the following properties of the Kronecker delta:

dijaj ¼ ai

dijajk ¼ aik

1-5. Formally expand the expression (1.3.4) for the determinant and justify that either index

notation form yields a result that matches the traditional form for det[aij].

1-6. Determine the components of the vector bi and matrix aij given in Exercise 1-1 in a new

coordinate system found through a rotation of 458 (p=4 radians) about the x1-axis. The
rotation direction follows the positive sense presented in Example 1-2.

1-7. Consider the two-dimensional coordinate transformation shown in Figure 1-7. Through

the counterclockwise rotation y, a new polar coordinate system is created. Show that the

transformation matrix for this case is given by

Qij ¼ cos y sin y
� sin y cos y

	 


If bi ¼ b1
b2

	 

, aij ¼ a11

a12

a21
a22

	 

are the components of a first- and second-order tensor in the

x1, x2 system, calculate their components in the rotated polar coordinate system.

1-8. Show that the second-order tensor adij, where a is an arbitrary constant, retains its form

under any transformation Qij. This form is then an isotropic second-order tensor.

1-9. The most general form of a fourth-order isotropic tensor can be expressed by

adijdkl þ bdikdjl þ gdildjk
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where a, b, and g are arbitrary constants. Verify that this form remains the same under

the general transformation given by (1.5.1)5.

1-10. For the fourth-order isotropic tensor given in Exercise 1-9, show that if ß ¼ �, then the
tensor will have the following symmetry Cijkl ¼ Cklij.

1-11. Show that the fundamental invariants can be expressed in terms of the principal values

as given by relations (1.6.5).

1-12. Determine the invariants and principal values and directions of the following matrices.

Use the determined principal directions to establish a principal coordinate system, and

following the procedures in Example 1.3, formally transform (rotate) the given matrix

into the principal system to arrive at the appropriate diagonal form.

(a)

�1 1 0

1 �1 0

0 0 1

2
4

3
5 (b)

�2 1 0

1 �2 0

0 0 0

2
4

3
5 (c)

�1 1 0

1 �1 0

0 0 0

2
4

3
5

1-13*. A second-order symmetric tensor field is given by

aij ¼
2x1 x1 0

x1 �6x21 0

0 0 5x1

2
4

3
5

Using MATLAB (or similar software), investigate the nature of the variation of the

principal values and directions over the interval 1 � x1 � 2. Formally plot the variation

of the absolute value of each principal value over the range 1 � x1 � 2.

1-14. Calculate the quantities rrr � u, rrr � u, rrr2u, rrru, tr(rrru) for the following Cartesian

vector fields:

(a) u ¼ x1e1 þ x1x2e2 þ 2x1x2x3e3

(b) u ¼ x21e1 þ 2x1x2e2 þ x33e3

(c) u ¼ x22e1 þ 2x2x3e2 þ 4x21e3

1-15. The dual vector ai of an antisymmetric second-order tensor aij is defined by

ai ¼ �1=2eijkajk. Show that this expression can be inverted to get ajk ¼ �eijkai.

1-16. Using index notation, explicitly verify the vector identities:

(a) (1:8:5)1, 2, 3

(b) (1:8:5)4, 5, 6, 7

(c) (1:8:5)8, 9, 10

1-17. Extend the results found in Example 1-5, and determine the forms of rrrf , rrr� u, r2f ,
and rrr�u for a three-dimensional cylindrical coordinate system (see Figure 1-5).

1-18. For the spherical coordinate system (R, f, y) in Figure 1-6, show that

h1 ¼ 1, h2 ¼ R, h3 ¼ R sinf
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and the standard vector operations are given by

rrrf ¼ êeR
@f

@R
þ êef

1

R

@f

@f
þ êey

1

R sinf
@f

@y

rrr � u ¼ 1

R2

@

@R
(R2uR)þ 1

R sinf
@

@f
( sinfuf)þ 1

R sinf
@uy
@y

r2f ¼ 1

R2

@

@R
(R2 @f

@R
)þ 1

R2 sinf
@

@f
( sinf

@f

@f
)þ 1

R2 sin2 f
@2f

@y2

rrr� u ¼ êeR
1

R sinf
@

@f
( sinfuy)� @uf

@y

� �	 

þ êef

1

R sinf
@uR
@y

� 1

R

@

@R
(Ruy)

	 


þ êey
1

R

@

@R
(Ruf)� @uR

@f

� �	 
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2 Deformation: Displacements and Strains

We begin development of the basic field equations of elasticity theory by first investigating the

kinematics of material deformation. As a result of applied loadings, elastic solids will change

shape or deform, and these deformations can be quantified by knowing the displacements of

material points in the body. The continuum hypothesis establishes a displacement field at all

points within the elastic solid. Using appropriate geometry, particular measures of deformation

can be constructed leading to the development of the strain tensor. As expected, the strain

components are related to the displacement field. The purpose of this chapter is to introduce the

basic definitions of displacement and strain, establish relations between these two field

quantities, and finally investigate requirements to ensure single-valued, continuous displace-

ment fields. As appropriate for linear elasticity, these kinematical results are developed under

the conditions of small deformation theory. Developments in this chapter lead to two funda-

mental sets of field equations: the strain-displacement relations and the compatibility equa-

tions. Further field equation development, including internal force and stress distribution,

equilibrium, and elastic constitutive behavior, occurs in subsequent chapters.

2.1 General Deformations

Under the application of external loading, elastic solids deform. A simple two-dimensional

cantilever beam example is shown in Figure 2-1. The undeformed configuration is taken with

the rectangular beam in the vertical position, and the end loading displaces material points to

the deformed shape as shown. As is typical in most problems, the deformation varies from

point to point and is thus said to be nonhomogeneous. A superimposed square mesh is shown in

the two configurations, and this indicates how elements within the material deform locally. It is

apparent that elements within the mesh undergo extensional and shearing deformation. An

elastic solid is said to be deformed or strained when the relative displacements between points

in the body are changed. This is in contrast to rigid-body motion where the distance between

points remains the same.

In order to quantify deformation, consider the general example shown in Figure 2-2. In the

undeformed configuration, we identify two neighboring material points Po and P connected

with the relative position vector r as shown. Through a general deformation, these points are

mapped to locations P0
o and P0 in the deformed configuration. For finite or large deformation
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theory, the undeformed and deformed configurations can be significantly different, and a

distinction between these two configurations must be maintained leading to Lagrangian and

Eulerian descriptions; see, for example, Malvern (1969) or Chandrasekharaiah and Debnath

(1994). However, since we are developing linear elasticity, which uses only small deformation

theory, the distinction between undeformed and deformed configurations can be dropped.

Using Cartesian coordinates, define the displacement vectors of points Po and P to be uo

and u, respectively. Since P and Po are neighboring points, we can use a Taylor series

expansion around point Po to express the components of u as

u ¼ uo þ @u

@x
rx þ @u

@y
ry þ @u

@z
rz

v ¼ vo þ @v

@x
rx þ @v

@y
ry þ @v

@z
rz

w ¼ wo þ @w

@x
rx þ @w

@y
ry þ @w

@z
rz

(2:1:1)

where u,v,w are the Cartesian components of the displacement vector.

(Undeformed) (Deformed)

FIGURE 2-1 Two-dimensional deformation example.

P

Po

P

Po

r r

(Undeformed) (Deformed)

′

′

′

FIGURE 2-2 General deformation between two neighboring points.
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Note that the higher-order terms of the expansion have been dropped since the components

of r are small. The change in the relative position vector r can be written as

Dr ¼ r0 � r ¼ u� uo (2:1:2)

and using (2.1.1) gives

Drx ¼ @u

@x
rx þ @u

@y
ry þ @u

@z
rz

Dry ¼ @v

@x
rx þ @v

@y
ry þ @v

@z
rz

Drz ¼ @w

@x
rx þ @w

@y
ry þ @w

@z
rz

(2:1:3)

or in index notation

Dri ¼ ui, jrj (2:1:4)

The tensor ui, j is called the displacement gradient tensor, and may be written out as

ui, j ¼

@u

@x

@u

@y

@u

@z
@v

@x

@v

@y

@v

@z
@w

@x

@w

@y

@w

@z

2
6666664

3
7777775

(2:1:5)

From relation (1.2.10), this tensor can be decomposed into symmetric and antisymmetric

parts as

ui, j ¼ eij þ !ij (2:1:6)

where

eij ¼ 1

2
(ui, j þ uj, i)

!ij ¼ 1

2
(ui, j � uj, i)

(2:1:7)

The tensor eij is called the strain tensor, while !ij is referred to as the rotation tensor. Relations
(2.1.4) and (2.1.6) thus imply that for small deformation theory, the change in the relative

position vector between neighboring points can be expressed in terms of a sum of strain and

rotation components. Combining relations (2.1.2), (2.1.4), and (2.1.6), and choosing ri ¼ dxi,
we can also write the general result in the form

ui ¼ uoi þ eijdxj þ !ijdxj (2:1:8)

Because we are considering a general displacement field, these results include both strain

deformation and rigid-body motion. Recall from Exercise 1-15 that a dual vector !i can
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be associated with the rotation tensor such that !i ¼ �1=2eijk!jk. Using this definition, it

is found that

!1 ¼ !32 ¼ 1

2

@u3
@x2

� @u2
@x3

� �

!2 ¼ !13 ¼ 1

2

@u1
@x3

� @u3
@x1

� �

!3 ¼ !21 ¼ 1

2

@u2
@x1

� @u1
@x2

� � (2:1:9)

which can be expressed collectively in vector format as v ¼ (1=2)(,� u). As is shown in the
next section, these components represent rigid-body rotation of material elements about

the coordinate axes. These general results indicate that the strain deformation is related to the

strain tensor eij, which in turn is related to the displacement gradients. We next pursue a more

geometric approach and determine specific connections between the strain tensor components

and geometric deformation of material elements.

2.2 Geometric Construction of Small Deformation Theory

Although the previous section developed general relations for small deformation theory, we

now wish to establish a more geometrical interpretation of these results. Typically, elasticity

variables and equations are field quantities defined at each point in the material continuum.

However, particular field equations are often developed by first investigating the behavior of

infinitesimal elements (with coordinate boundaries), and then a limiting process is invoked that

allows the element to shrink to a point. Thus, consider the common deformational behavior of

a rectangular element as shown in Figure 2-3. The usual types of motion include rigid-body

rotation and extensional and shearing deformations as illustrated. Rigid-body motion does not

contribute to the strain field, and thus also does not affect the stresses. We therefore focus our

study primarily on the extensional and shearing deformation.

(Rigid-Body Rotation)(Undeformed Element)

(Horizontal Extension) (Vertical Extension) (Shearing Deformation)

FIGURE 2-3 Typical deformations of a rectangular element.
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Figure 2-4 illustrates the two-dimensional deformation of a rectangular element with

original dimensions dx by dy. After deformation, the element takes a rhombus form as

shown in the dotted outline. The displacements of various corner reference points are indicated

in the figure. Reference point A is taken at location (x,y), and the displacement components of

this point are thus u(x,y) and v(x,y). The corresponding displacements of point B are

u(xþ dx, y) and v(xþ dx, y), and the displacements of the other corner points are defined in

an analogous manner. According to small deformation theory, u(xþ dx, y) � u(x, y)þ
(@u=@x) dx, with similar expansions for all other terms.

The normal or extensional strain component in a direction n is defined as the change in

length per unit length of fibers oriented in the n-direction. Normal strain is positive if fibers

increase in length and negative if the fiber is shortened. In Figure 2-4, the normal strain in the

x-direction can thus be defined by

ex ¼ A0B0 � AB

AB

From the geometry in Figure 2-4,

A0B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxþ @u

@x
dx

� �2

þ @v

@x
dx

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

@u

@x
þ @u

@x

� �2

þ @v

@x

� �2

dx

s
� 1þ @u

@x

� �
dx

where, consistent with small deformation theory, we have dropped the higher-order terms.

Using these results and the fact that AB ¼ dx, the normal strain in the x-direction reduces to

ex ¼ @u

@x
(2:2:1)

In similar fashion, the normal strain in the y-direction becomes

ey ¼ @v

@y
(2:2:2)

u(x,y)

u(x+dx,y)

v(x,y)

v(x,y+dy)

dx

dy

A B

C D

A 

B

C

D
dy

dx∂v
∂x

x

b

 y

∂u
∂y  ′

 ′

 ′

 ′ a

FIGURE 2-4 Two-dimensional geometric strain deformation.
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A second type of strain is shearing deformation, which involves angles changes (see Figure 2-3).

Shear strain is defined as the change in angle between two originally orthogonal directions

in the continuum material. This definition is actually referred to as the engineering shear
strain. Theory of elasticity applications generally use a tensor formalism that requires a shear

strain definition corresponding to one-half the angle change between orthogonal axes; see

previous relation (2:1:7)1. Measured in radians, shear strain is positive if the right angle between

the positive directions of the two axes decreases. Thus, the sign of the shear strain depends on

the coordinate system. In Figure 2-4, the engineering shear strain with respect to the x- and
y-directions can be defined as

gxy ¼
p
2
� ffC0A0B0 ¼ aþ b

For small deformations, a � tan a and b � tan b, and the shear strain can then be expressed as

gxy ¼
@v

@x
dx

dxþ @u

@x
dx

þ
@u

@y
dy

dyþ @v

@y
dy

¼ @u

@y
þ @v

@x
(2:2:3)

where we have again neglected higher-order terms in the displacement gradients. Note that

each derivative term is positive if lines AB and AC rotate inward as shown in the figure. By

simple interchange of x and y and u and v, it is apparent that gxy ¼ gyx.
By considering similar behaviors in the y-z and x-z planes, these results can be easily

extended to the general three-dimensional case, giving the results:

ex ¼ @u

@x
, ey ¼ @v

@y
, ez ¼ @w

@z

gxy ¼
@u

@y
þ @v

@x
, gyz ¼

@v

@z
þ @w

@y
, gzx ¼

@w

@x
þ @u

@z

(2:2:4)

Thus, we define three normal and three shearing strain components leading to a total of six

independent components that completely describe small deformation theory. This set of

equations is normally referred to as the strain-displacement relations. However, these results

are written in terms of the engineering strain components, and tensorial elasticity theory

prefers to use the strain tensor eij defined by (2:1:7)1. This represents only a minor change

because the normal strains are identical and shearing strains differ by a factor of one-half; for

example, e11 ¼ ex ¼ ex and e12 ¼ exy ¼ 1=2gxy, and so forth.

Therefore, using the strain tensor eij, the strain-displacement relations can be expressed in

component form as

ex ¼ @u

@x
, ey ¼ @v

@y
, ez ¼ @w

@z

exy ¼ 1

2

@u

@y
þ @v

@x

� �
, eyz ¼ 1

2

@v

@z
þ @w

@y

� �
, ezx ¼ 1

2

@w

@x
þ @u

@z

� � (2:2:5)

36 FOUNDATIONS AND ELEMENTARY APPLICATIONS



Using the more compact tensor notation, these relations are written as

eij ¼ 1

2
(ui, j þ uj, i) (2:2:6)

while in direct vector/matrix notation the form reads:

e ¼ 1

2
,uþ (,u)T
� �

(2:2:7)

where e is the strain matrix and ,u is the displacement gradient matrix and (,u)T is its

transpose.

The strain is a symmetric second-order tensor (eij ¼ eji) and is commonly written in matrix

format:

e ¼ [e] ¼
ex exy exz
exy ey eyz
exz eyz ez

2
4

3
5 (2:2:8)

Before we conclude this geometric presentation, consider the rigid-body rotation of our two-

dimensional element in the x-y plane, as shown in Figure 2-5. If the element is rotated through

a small rigid-body angular displacement about the z-axis, using the bottom element edge, the

rotation angle is determined as @v=@x, while using the left edge, the angle is given by �@u=@y.
These two expressions are of course the same; that is, @v=@x ¼ �@u=@y and note that this

would imply exy ¼ 0. The rotation can then be expressed as !z ¼ [(@v=@x)� (@u=@y)]=2,
which matches with the expression given earlier in (2:1:9)3. The other components of rotation

follow in an analogous manner.

Relations for the constant rotation !z can be integrated to give the result:

u* ¼ uo � !zy

v* ¼ vo þ !zx
(2:2:9)

x

dx

dy

y− ∂u
∂y

∂v
∂x

FIGURE 2-5 Two-dimensional rigid-body rotation.
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where uo and vo are arbitrary constant translations in the x- and y-directions. This result

then specifies the general form of the displacement field for two-dimensional rigid-body

motion. We can easily verify that the displacement field given by (2.2.9) yields zero strain.

For the three-dimensional case, the most general form of rigid-body displacement can be

expressed as

u* ¼ uo � !zyþ !yz

v* ¼ vo � !xzþ !zx

w* ¼ wo � !yxþ !xy

(2:2:10)

As shown later, integrating the strain-displacement relations to determine the displacement

field produces arbitrary constants and functions of integration, which are equivalent to rigid-

body motion terms of the form given by (2.2.9) or (2.2.10). Thus, it is important to recognize

such terms because we normally want to drop them from the analysis since they do not

contribute to the strain or stress fields.

EXAMPLE 2-1: Strain and Rotation Examples

Determine the displacement gradient, strain, and rotation tensors for the following

displacement field: u¼ Ax2y, v ¼ Byz, w¼ Cxz3, where A, B, and C are arbitrary

constants. Also calculate the dual rotation vector v¼ (1/2)(,�u).

ui;j ¼
2Axy Ax2 0

0 Bz By

Cz3 0 3Cxz2

2
64

3
75

eij ¼ 1

2
ui; j þ uj;i
� � ¼ 2Axy Ax2=2 Cz3=2

Ax2=2 Bz By=2

Cz3=2 By=2 3Cxz2

2
64

3
75

!ij ¼ 1

2
ui;j � uj;i
� � ¼ 0 Ax2=2 �Cz3=2

�Ax2=2 0 By=2

Cz3=2 �By=2 0

2
64

3
75

v ¼ 1

2
,� uð Þ ¼ 1

2

e1 e2 e3

@=@x @=@y @=@z

Ax2y Byz Cxz3

							
							 ¼

1

2
�Bye1 � Cz3e2 � Ax2e3
� �

2.3 Strain Transformation

Because the strains are components of a second-order tensor, the transformation theory

discussed in Section 1.5 can be applied. Transformation relation (1:5:1)3 is applicable for

second-order tensors, and applying this to the strain gives

e0ij ¼ QipQjqepq (2:3:1)
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where the rotation matrix Qij ¼ cos (x0i, xj). Thus, given the strain in one coordinate system,

we can determine the new components in any other rotated system. For the general three-

dimensional case, define the rotation matrix as

Qij ¼
l1 m1 n1
l2 m2 n2
l3 m3 n3

2
4

3
5 (2:3:2)

Using this notational scheme, the specific transformation relations from equation (2.3.1) become

e0x ¼ exl
2
1 þ eym

2
1 þ ezn

2
1 þ 2(exyl1m1 þ eyzm1n1 þ ezxn1l1)

e0y ¼ exl
2
2 þ eym

2
2 þ ezn

2
2 þ 2(exyl2m2 þ eyzm2n2 þ ezxn2l2)

e0z ¼ exl
2
3 þ eym

2
3 þ ezn

2
3 þ 2(exyl3m3 þ eyzm3n3 þ ezxn3l3)

e0xy ¼ exl1l2 þ eym1m2 þ ezn1n2 þ exy(l1m2 þ m1l2)þ eyz(m1n2 þ n1m2)þ ezx(n1l2 þ l1n2)

e0yz ¼ exl2l3 þ eym2m3 þ ezn2n3 þ exy(l2m3 þ m2l3)þ eyz(m2n3 þ n2m3)þ ezx(n2l3 þ l2n3)

e0zx ¼ exl3l1 þ eym3m1 þ ezn3n1 þ exy(l3m1 þ m3l1)þ eyz(m3n1 þ n3m1)þ ezx(n3l1 þ l3n1)

(2:3:3)

For the two-dimensional case shown in Figure 2-6, the transformation matrix can be

expressed as

Qij ¼
cos y sin y 0

� sin y cos y 0

0 0 1

2
4

3
5 (2:3:4)

Under this transformation, the in-plane strain components transform according to

e0x ¼ ex cos
2 yþ ey sin

2 yþ 2exy sin y cos y

e0y ¼ ex sin
2 yþ ey cos

2 y� 2exy sin y cos y

e0xy ¼ �ex sin y cos yþ ey sin y cos yþ exy( cos
2 y� sin2 y)

(2:3:5)

x

y

x

y

q

q

′

′

FIGURE 2-6 Two-dimensional rotational transformation.
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which is commonly rewritten in terms of the double angle:

e0x ¼
ex þ ey

2
þ ex � ey

2
cos 2yþ exy sin 2y

e0y ¼
ex þ ey

2
� ex � ey

2
cos 2y� exy sin 2y

e0xy ¼
ey � ex

2
sin 2yþ exy cos 2y

(2:3:6)

Transformation relations (2.3.6) can be directly applied to establish transformations between

Cartesian and polar coordinate systems (see Exercise 2-6). Additional applications of these

results can be found when dealing with experimental strain gage measurement systems. For

example, standard experimental methods using a rosette strain gage allow the determination of

extensional strains in three different directions on the surface of a structure. Using this type

of data, relation (2:3:6)1 can be repeatedly used to establish three independent equations

that can be solved for the state of strain (ex, ey, exy) at the surface point under study (see

Exercise 2-7).

Both two- and three-dimensional transformation equations can be easily incorporated in

MATLAB to provide numerical solutions to problems of interest. Such examples are given in

Exercises 2-8 and 2-9.

2.4 Principal Strains

From the previous discussion in Section 1.6, it follows that because the strain is a symmetric

second-order tensor, we can identify and determine its principal axes and values. According to

this theory, for any given strain tensor we can establish the principal value problem and solve

the characteristic equation to explicitly determine the principal values and directions. The

general characteristic equation for the strain tensor can be written as

det[eij � edij] ¼ �e3 þ W1e2 � W2eþ W3 ¼ 0 (2:4:1)

where e is the principal strain and the fundamental invariants of the strain tensor can be

expressed in terms of the three principal strains e1, e2, e3 as

W1 ¼ e1 þ e2 þ e3

W2 ¼ e1e2 þ e2e3 þ e3e1

W3 ¼ e1e2e3

(2:4:2)

The first invariant W1 ¼ W is normally called the cubical dilatation, because it is related to the

change in volume of material elements (see Exercise 2-11).

The strain matrix in the principal coordinate system takes the special diagonal form

eij ¼
e1 0 0

0 e2 0

0 0 e3

2
4

3
5 (2:4:3)

Notice that for this principal coordinate system, the deformation does not produce any

shearing and thus is only extensional. Therefore, a rectangular element oriented along
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principal axes of strain will retain its orthogonal shape and undergo only extensional deform-

ation of its sides.

2.5 Spherical and Deviatoric Strains

In particular applications it is convenient to decompose the strain tensor into two parts called

spherical and deviatoric strain tensors. The spherical strain is defined by

~eeij ¼ 1

3
ekkdij ¼ 1

3
Wdij (2:5:1)

while the deviatoric strain is specified as

êeij ¼ eij � 1

3
ekkdij (2:5:2)

Note that the total strain is then simply the sum

eij ¼ ~eeij þ êeij (2:5:3)

The spherical strain represents only volumetric deformation and is an isotropic tensor,

being the same in all coordinate systems (as per the discussion in Section 1.5). The deviatoric

strain tensor then accounts for changes in shape of material elements. It can be shown

that the principal directions of the deviatoric strain are the same as those of the strain tensor.

2.6 Strain Compatibility

We now investigate in more detail the nature of the strain-displacement relations (2.2.5), and

this will lead to the development of some additional relations necessary to ensure continuous,

single-valued displacement field solutions. Relations (2.2.5), or the index notation form

(2.2.6), represent six equations for the six strain components in terms of three displacements.

If we specify continuous, single-valued displacements u,v,w, then through differentiation the

resulting strain field will be equally well behaved. However, the converse is not necessarily

true; that is, given the six strain components, integration of the strain-displacement relations

(2.2.5) does not necessarily produce continuous, single-valued displacements. This should not

be totally surprising since we are trying to solve six equations for only three unknown

displacement components. In order to ensure continuous, single-valued displacements, the

strains must satisfy additional relations called integrability or compatibility equations.
Before we proceed with the mathematics to develop these equations, it is instructive to

consider a geometric interpretation of this concept. A two-dimensional example is shown in

Figure 2-7 whereby an elastic solid is first divided into a series of elements in case (a). For

simple visualization, consider only four such elements. In the undeformed configuration shown

in case (b), these elements of course fit together perfectly. Next, let us arbitrarily specify the

strain of each of the four elements and attempt to reconstruct the solid. For case (c), the

elements have been carefully strained, taking into consideration neighboring elements so that

the system fits together thus yielding continuous, single-valued displacements. However, for

case (d), the elements have been individually deformed without any concern for neighboring

deformations. It is observed for this case that the system will not fit together without voids and
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gaps, and this situation produces a discontinuous displacement field. So, we again conclude

that the strain components must be somehow related to yield continuous, single-valued

displacements. We now pursue these particular relations.

The process to develop these equations is based on eliminating the displacements from the

strain-displacement relations. Working in index notation, we start by differentiating (2.2.6)

twice with respect to xk and xl:

eij, kl ¼ 1

2
(ui, jkl þ uj, ikl)

Through simple interchange of subscripts, we can generate the following additional relations:

ekl, ij ¼ 1

2
(uk, lij þ ul, kij)

ejl, ik ¼ 1

2
(uj, lik þ ul, jik)

eik, jl ¼ 1

2
(ui, kjl þ uk, ijl)

Working under the assumption of continuous displacements, we can interchange the order

of differentiation on u, and the displacements can be eliminated from the preceding set to get

eij, kl þ ekl, ij � eik, jl � ejl, ik ¼ 0 (2:6:1)

2

3

1

4

(b) Undeformed Configuration

2

3

1

4

(c) Deformed Configuration
     Continuous Displacements

2

3

1

4

(a) Discretized Elastic Solid

(d) Deformed Configuration
      Discontinuous Displacements

FIGURE 2-7 Physical interpretation of strain compatibility.
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These are called the Saint-Venant compatibility equations. Although the system would lead to

81 individual equations, most are either simple identities or repetitions, and only 6 are

meaningful. These six relations may be determined by letting k ¼ l, and in scalar notation,

they become

@2ex
@y2

þ @2ey
@x2

¼ 2
@2exy
@x@y

@2ey
@z2

þ @2ez
@y2

¼ 2
@2eyz
@y@z

@2ez
@x2

þ @2ex
@z2

¼ 2
@2ezx
@z@x

@2ex
@y@z

¼ @

@x
� @eyz

@x
þ @ezx

@y
þ @exy

@z

� �
@2ey
@z@x

¼ @

@y
� @ezx

@y
þ @exy

@z
þ @eyz

@x

� �
@2ez
@x@y

¼ @

@z
� @exy

@z
þ @eyz

@x
þ @ezx

@y

� �

(2:6:2)

It can be shown that these six equations are not all independent. Exercise 2-15 illustrates that

certain differential relations exist between these compatibility equations, and Exercise 2-16

shows that the six equations can be reduced to three independent fourth-order relations.

However, it is usually more convenient to use the six second-order equations given by (2.6.2).

In the development of the compatibility relations, we assumed that the displacements were

continuous, and thus the resulting equations (2.6.2) are actually only a necessary condition. In

order to show that they are also sufficient, consider two arbitrary points P and Po in an

elastic solid, as shown in Figure 2-8. Without loss in generality, the origin may be placed at

point Po.

The displacements of points P and Po are denoted by uPi and uoi , and the displacement of

point P can be expressed as

uPi ¼ uoi þ
ð
C

dui ¼ uoi þ
ð
C

@ui
@xj

dxj (2:6:3)

Po

P

C

uo

uP

FIGURE 2-8 Continuity of displacements.
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where C is any continuous curve connecting points Po and P. Using relation (2.1.6) for the

displacement gradient, (2.6.3) becomes

uPi ¼ uoi þ
ð
C

(eij þ !ij)dxj (2:6:4)

Integrating the last term by parts gives

ð
C

!ijdxj ¼ ! P
ijx

P
j �

ð
C

xj!ij, kdxk (2:6:5)

where ! P
ij is the rotation tensor at point P. Using relation (2:1:7)2,

!ij, k ¼ 1

2
(ui, jk � uj, ik) ¼ 1

2
(ui, jk � uj, ik)þ 1

2
(uk, ji � uk, ji)

¼ 1

2

@

@xj
(ui, k þ uk, i)� 1

2

@

@xi
(uj, k þ uk, j) ¼ eik, j � ejk, i

(2:6:6)

Substituting results (2.6.5) and (2.6.6) into (2.6.4) yields

u P
i ¼ uoi þ ! P

ijx
P
j þ

ð
C

Uikdxk (2:6:7)

where Uik ¼ eik � xj(eik, j � ejk, i).
Now if the displacements are to be continuous, single-valued functions, the line integral

appearing in (2.6.7) must be the same for any curve C; that is, the integral must be independent

of the path of integration. This implies that the integrand must be an exact differential, so that

the value of the integral depends only on the end points. Invoking Stokes theorem, we can

show that if the region is simply connected (definition of the term simply connected is

postponed for the moment), a necessary and sufficient condition for the integral to be path

independent is for Uik, l ¼ Uil, k. Using this result yields

eik, l � djl(eik, j � ejk, i)� xj(eik, jl � ejk, il) ¼ eil, k � djk(eil, j � ejl, i)� xj(eil, jk � ejl, ik)

which reduces to

xj(eik, jl � ejk, il � eil, jk þ ejl, ik) ¼ 0

Because this equation must be true for all values of xj, the terms in parentheses must vanish,

and after some index renaming this gives the identical result previously stated by the compati-

bility relations (2.6.1):

eij, kl þ ekl, ij � eik, jl � ejl, ik ¼ 0

Thus, relations (2.6.1) or (2.6.2) are the necessary and sufficient conditions for continuous,

single-valued displacements in simply connected regions.

Now let us get back to the term simply connected. This concept is related to the topology

or geometry of the region under study. There are several places in elasticity theory where
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the connectivity of the region fundamentally affects the formulation and solution method.

The term simply connected refers to regions of space for which all simple closed curves

drawn in the region can be continuously shrunk to a point without going outside the region.

Domains not having this property are called multiply connected. Several examples of

such regions are illustrated in Figure 2-9. A general simply connected two-dimensional region

is shown in case (a), and clearly this case allows any contour within the region to be shrunk to a

point without going out of the domain. However, if we create a hole in the region as shown in

case (b), a closed contour surrounding the hole cannot be shrunk to a point without going into

the hole and thus outside of the region. Thus, for two-dimensional regions, the presence of one

or more holes makes the region multiply connected. Note that by introducing a cut between the

outer and inner boundaries in case (b), a new region is created that is now simply connected.

Thus, multiply connected regions can be made simply connected by introducing one or more

cuts between appropriate boundaries. Case (c) illustrates a simply connected three-dimensional

example of a solid circular cylinder. If a spherical cavity is placed inside this cylinder as shown

in case (d), the region is still simply connected because any closed contour can still be shrunk

to a point by sliding around the interior cavity. However, if the cylinder has a through hole as

shown in case (e), then an interior contour encircling the axial through hole cannot be reduced

to a point without going into the hole and outside the body. Thus, case (e) is an example of the

multiply connected three-dimensional region.

It was found that the compatibility equations are necessary and sufficient conditions

for continuous, single-valued displacements only for simply connected regions. However,

for multiply connected domains, relations (2.6.1) or (2.6.2) provide only necessary but

not sufficient conditions. For this case, further relations can be developed and imposed on the

problem, and these are found through the introduction of cuts within the region to make it

(a)  Two-Dimensional
      Simply Connected

(b) Two-Dimensional
     Multiply Connected

(e) Three-Dimensional
      Multiply Connected

(d) Three-Dimensional
      Simply Connected

(c) Three-Dimensional
      Simply Connected

FIGURE 2-9 Examples of domain connectivity.
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simply connected as per our earlier discussion. For the two-dimensional case shown in Figure

2-9(b), this process will lead to a relation commonly called a Cesàro integral taken around any
closed irreducible curve enclosing the internal cavity. Thus for multiply connected domains,

strain compatibility is guaranteed if compatibility relations (2.6.2) are satisfied and all Cesàro

integrals vanish. Details on this topic are given by Fung (1965), Fung and Tong (2001), or

Asaro and Lubarda (2006).

Although the compatibility relations guarantee (under appropriate conditions) continuous

displacements, they do not ensure uniqueness of the displacement field. At the end of

Section 2.2 we mentioned that, through integration of the strain displacement relations,

the displacements can be determined only up to an arbitrary rigid-body motion. In some

elasticity problems (e.g., thermal stress, crack problems, and dislocation modeling), it is

necessary to use multivalued displacement fields to properly model the problem. Chapters

10, 12, and 15 contain a few examples of such problems, and a specific case is given in

Exercise 2-18.

2.7 Curvilinear Cylindrical and Spherical Coordinates

The solution to many problems in elasticity requires the use of curvilinear cylindrical and

spherical coordinates. It is therefore necessary to have the field equations expressed in terms of

such coordinate systems. We now pursue the development of the strain-displacement relations

in cylindrical and spherical coordinates. Starting with form (2.2.7)

e ¼ 1

2
,uþ (,u)T
� �

the desired curvilinear relations can be determined using the appropriate forms for the

displacement gradient term ,u.
The cylindrical coordinate system previously defined in Figure 1-5 establishes new com-

ponents for the displacement vector and strain tensor

u ¼ urer þ uyey þ uzez

e ¼
er ery erz

ery ey eyz

erz eyz ez

2
64

3
75 (2:7:1)

Notice that the symmetry of the strain tensor is preserved in this orthogonal curvilinear system.

Using results (1.9.17) and (1.9.10), the derivative operation in cylindrical coordinates can be

expressed by

,u ¼ @ur
@r

erer þ @uy
@r

erey þ @uz
@r

erez

þ 1

r

@ur
@y

� uy

� �
eyer þ 1

r
ur þ @uy

@y

� �
eyey þ 1

r

@uz
@y

eyez

þ @ur
@z

ezer þ @uy
@z

ezey þ @uz
@z

ezez

(2:7:2)

46 FOUNDATIONS AND ELEMENTARY APPLICATIONS



Placing this result into the strain-displacement form (2.2.7) gives the desired relations in

cylindrical coordinates. The individual scalar equations are given by

er ¼ @ur
@r

, ey ¼ 1

r
ur þ @uy

@y

� �
, ez ¼ @uz

@z

ery ¼ 1

2

1

r

@ur
@y

þ @uy
@r

� uy
r

� �

eyz ¼ 1

2

@uy
@z

þ 1

r

@uz
@y

� �

ezr ¼ 1

2

@ur
@z

þ @uz
@r

� �
(2:7:3)

For spherical coordinates defined by Figure 1-6, the displacement vector and strain tensor can

be written as

u ¼ uReR þ ufef þ uyey

e ¼
eR eRf eRy

eRf ef efy

eRy efy ey

2
64

3
75 (2:7:4)

Following identical procedures as used for the cylindrical equation development, the strain-

displacement relations for spherical coordinates become

eR ¼ @uR
@R

, ef ¼ 1

R
uR þ @uf

@f

� �

ey ¼ 1

R sinf
@uy
@y

þ sinfuR þ cosfuf

� �

eRf ¼ 1

2

1

R

@uR
@f

þ @uf
@R

� uf
R

� �

efy ¼ 1

2R

1

sinf
@uf
@y

þ @uy
@f

� cotfuy

� �

eyR ¼ 1

2

1

R sinf
@uR
@y

þ @uy
@R

� uy
R

� �

(2:7:5)

We can observe that these relations in curvilinear systems contain additional terms that do not

include derivatives of individual displacement components. For example, in spherical coordin-

ates a simple uniform radial displacement uR gives rise to transverse extensional strains

ef ¼ ey ¼ uR=R. This deformation can be simulated by blowing up a spherical balloon and

observing the separation of points on the balloon’s surface. Such terms were not found in the

Cartesian forms given by (2.2.5), and their appearance is thus related to the curvature of the

spatial coordinate system. A more physical interpretation can be found by redeveloping these

equations using the geometric procedures of Section 2.2 on an appropriate differential element.

A two-dimensional polar coordinate example of this technique is given in Exercise 2-19.

Clearly, the curvilinear forms (2.7.3) and (2.7.5) appear more complicated than the corres-

ponding Cartesian relations. However, for particular problems, the curvilinear relations, when
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combined with other field equations, allow analytical solutions to be developed that could not

be found using a Cartesian formulation. Many examples of this are demonstrated in later

chapters. Appendix A lists the complete set of elasticity field equations in cylindrical and

spherical coordinates.
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Exercises

2-1. Determine the strain and rotation tensors eij and !ij for the following displacement fields

(a) u ¼ Axy, v ¼ Bxz2, w ¼ C(x2 þ y2)

(b) u ¼ Ax2, v ¼ Bxy, w ¼ Cxyz

(c) u ¼ Ayz3, v ¼ Bxy2, w ¼ C(x2 þ z2)

where A, B, and C are arbitrary constants.

2-2. A two-dimensional displacement field is given by u ¼ k(x2 þ y2), v ¼ k(2x� y), w ¼ 0,

where k is a constant. Determine and plot the deformed shape of a differential rectangular

element originally located with its left bottom corner at the origin as shown. Finally,

calculate the rotation component !z.

x

 y

dx

dy

2-3. A two-dimensional problem of a rectangular bar stretched by uniform end loadings

results in the following constant strain field:

eij ¼
C1 0 0

0 �C2 0

0 0 0

2
4

3
5
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where C1 and C2 are constants. Assuming the field depends only on x and y, integrate
the strain-displacement relations to determine the displacement components and identify

any rigid-body motion terms.

2-4. A three-dimensional elasticity problem of a uniform bar stretched under its own weight

gives the following strain field:

eij ¼
Az 0 0

0 Az 0

0 0 Bz

2
4

3
5

where A and B are constants. Integrate the strain-displacement relations to determine

the displacement components and identify all rigid-body motion terms.

2-5. Explicitly verify that the general rigid-body motion displacement field given by (2.2.10)

yields zero strains. Next, assuming that all strains vanish, formally integrate relations

(2.2.5) to develop the general form (2.2.10).

2-6. For polar coordinates defined by Figure 1-8, show that the transformation relations can be

used to determine the normal and shear strain components er , ey, and ery in terms of the

corresponding Cartesian components:

er ¼ ex þ ey
2

þ ex � ey
2

cos 2yþ exy sin 2y

ey ¼ ex þ ey
2

� ex � ey
2

cos 2y� exy sin 2y

ery ¼ ey � ex
2

sin 2yþ exy cos 2y

2-7. A rosette strain gage is an electromechanical device that can measure relative surface

elongations in three directions. Bonding such a device to the surface of a structure allows

determination of elongational strains in particular directions. A schematic of one such

gage is shown in the following figure, and the output of the device will provide data on

the strains along the gage arms a, b, and c. During one application, it is found that

ea ¼ 0:001, eb ¼ 0:002, and ec ¼ 0:004. Using the two-dimensional strain

transformation relations, calculate the surface strain components ex, ey, and exy.

x

a
 y c

b

60�60�
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2-8*. A two-dimensional strain field is found to be given by ex ¼ 0:002, ey ¼ �0:004, and
exy ¼ 0:001. Incorporating the transformation relations (2.3.6) into a MATLAB code,

calculate and plot the new strain components in a rotated coordinate system as a

function of the rotation angle y. Determine the particular angles at which the new

components take on maximum values.

2-9*. A three-dimensional strain field is specified by

eij ¼
1 �2 0

�2 �4 0

0 0 5

2
4

3
5� 10�3

Determine information on the strains in the shaded plane in the following figure that

makes equal angles with the x- and z-axes as shown. Use MATLAB to calculate and

plot the normal and in-plane shear strain along line AB (in the plane) as a function of

angle y in the interval 0 � y � p=2.

A

45�

x

 y

z

B

q

2-10*. Using MATLAB, determine the principal values and directions of the following state

of strain:

eij ¼
2 �2 0

�2 �4 1

0 1 6

2
4

3
5� 10�3

2-11. A rectangular parallelepiped with original volume Vo is oriented such that its edges

are parallel to the principal directions of strain as shown in the following figure. For

small strains, show that the dilatation is given by

W ¼ ekk ¼ change in volume

original volume
¼ DV

Vo
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2-12. Determine the spherical and deviatoric strain tensors for the strain field given in

Exercise 2-10. Justify that the first invariant or dilatation of the deviatoric strain tensor

is zero. In light of the results from Exercise 2-11, what does the vanishing of the

dilatation imply?

2-13. Using scalar methods, differentiate the individual strain-displacement relations for

ex, ey, and exy, and independently develop the first compatibility equation of set (2.6.2).

2-14. Using relation (1.3.5), show that the compatibility relations (2.6.1) with l¼ k can be

expressed by �ij¼ "ikl "jmp elp,km¼ 0, which can also be written in vector notation as

,� e�,¼ 0.

2-15. In light of Exercise 2-14, the compatibility equations (2.6.2) can be expressed as

�ij¼ "ikl"jmpelp,km ¼ 0, where �ij is sometimes referred to as the incompatibility tensor
(Asaro and Lubarda, 2006). It is observed that �ij is symmetric, but its components

are not independent from one another. Since the divergence of a curl vanishes, show

that they are related through the differential Bianchi relations �ij,j¼ 0, which can be

expanded to

Z11;1 þ Z12;2 þ Z13;3 ¼ 0

Z21;1 þ Z22;2 þ Z23;3 ¼ 0

Z31;1 þ Z32;2 þ Z33;3 ¼ 0

Thus we see again that the six compatibility relations are not all independent.

2-16. Show that the six compatibility equations (2.6.2) may also be represented by the three

independent fourth-order equations

@ 4ex
@y2@z2

¼ @ 3

@x@y@z
� @eyz

@x
þ @ezx

@y
þ @exy

@z

� �
@ 4ey
@z2@x2

¼ @ 3

@x@y@z
� @ezx

@y
þ @exy

@z
þ @eyz

@x

� �
@ 4ez

@x2@y2
¼ @ 3

@x@y@z
� @exy

@z
þ @eyz

@x
þ @ezx

@y

� �

2-17. Show that the following strain field

ex ¼ Ay3, ey ¼ Ax3, exy ¼ Bxy(xþ y), ez ¼ exz ¼ eyz ¼ 0

gives continuous, single-valued displacements in a simply connected region only if the

constants are related by A ¼ 2B=3.

1

2

3
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2-18. In order to model dislocations in elastic solids, multivalued displacement fields are

necessary. As shown later in Chapter 15, for the particular case of a screw dislocation
the displacements are given by

u ¼ v ¼ 0, w ¼ b

2p
tan�1 y

x

where b is a constant called the Burgers vector. Show that the strains resulting from

these displacements are given by

ex ¼ ey ¼ ez ¼ exy ¼ 0, exz ¼ � b

4p
y

x2 þ y2
, eyz ¼ b

4p
x

x2 þ y2

Although we would expect for such a case that the compatibility relations would not

be satisfied, verify that these strains are in fact compatible. This is an example of a case

in which the compatibility relations are necessary but not sufficient to guarantee single-

valued displacements.

2-19. Consider the plane deformation of the differential element ABCD defined by polar

coordinates r, y as shown in the following figure. Using the geometric methods outlined

in Section 2.2, investigate the changes in line lengths and angles associated with the

deformation to a configuration A0B0C0D0, and develop the strain-displacement relations

er ¼ @ur
@r

, ey ¼ 1

r
ur þ @uy

@y

� �
, ery ¼ 1

2

1

r

@ur
@y

þ @uy
@r

� uy
r

� �

A

C

D

dr

rdq

dq

A

B

C

D

B

′

′

′

′
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2-20. Using the results from Exercise 2-19, determine the two-dimensional strains er, e�, er�
for the following displacement fields

(a) ur ¼ A

r
, uy ¼ B cos y

(b) ur ¼ Ar2, uy ¼ Br sin y

(c) ur ¼ A sin yþ B cos y, uy ¼ A cos y� B sin yþ Cr

where A, B, and C are arbitrary constants.
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3 Stress and Equilibrium

The previous chapter investigated the kinematics of deformation without regard to the force or

stress distribution within the elastic solid. We now wish to examine these issues and explore

the transmission of forces through deformable materials. Our study leads to the definition and

use of the traction vector and stress tensor. Each provides a quantitative method to describe

both boundary and internal force distributions within a continuum solid. Because it is com-

monly accepted that maximum stresses are a major contributing factor to material failure,

primary application of elasticity theory is used to determine the distribution of stress within a

given structure. Related to these force distribution issues is the concept of equilibrium. Within

a deformable solid, the force distribution at each point must be balanced. For the static case,

the summation of forces on an infinitesimal element is required to be zero, while for a dynamic

problem the resultant force must equal the mass times the element’s acceleration. In this

chapter, we establish the definitions and properties of the traction vector and stress tensor and

develop the equilibrium equations, which become another set of field equations necessary in

the overall formulation of elasticity theory. It should be noted that the developments in this

chapter do not require that the material be elastic, and thus in principle these results apply to a

broader class of material behavior.

3.1 Body and Surface Forces

When a structure is subjected to applied external loadings, internal forces are induced

inside the body. Following the philosophy of continuum mechanics, these internal forces are

distributed continuously within the solid. In order to study such forces, it is convenient to

categorize them into two major groups, commonly referred to as body forces and surface

forces.

Body forces are proportional to the body’s mass and are reacted with an agent outside of the

body. Examples of these include gravitational-weight forces, magnetic forces, and inertial

forces. Figure 3-1(a) shows an example body force of an object’s self-weight. By using

continuum mechanics principles, a body force density (force per unit volume) F(x) can be

defined such that the total resultant body force of an entire solid can be written as a volume

integral over the body

55



FR ¼
ððð

V

F(x)dV (3:1:1)

Surface forces always act on a surface and result from physical contact with another

body. Figure 3-1(b) illustrates surface forces existing in a beam section that has been

created by sectioning the body into two pieces. For this particular case, the surface S
is a virtual one in the sense that it was artificially created to investigate the nature

of the internal forces at this location in the body. Again, the resultant surface force

over the entire surface S can be expressed as the integral of a surface force density function
Tn(x)

FS ¼
ðð

S

Tn(x)dS (3:1:2)

The surface force density is normally referred to as the traction vector and is discussed in

more detail in the next section. In the development of classical elasticity, distributions

of body or surface couples are normally not included. Theories that consider such force

distributions have been constructed in an effort to extend classical elasticity for applications

in micromechanical modeling. Such approaches are normally called micropolar or couple-
stress theory (see Eringen 1968) and are briefly presented in Chapter 15.

(b) Sectioned Axially Loaded Beam

Surface Forces: Tn(x)

S

(a) Cantilever Beam Under Self-Weight Loading

Body Forces: F(x)

FIGURE 3-1 Examples of body and surface forces.
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3.2 Traction Vector and Stress Tensor

In order to quantify the nature of the internal distribution of forces within a continuum solid,

consider a general body subject to arbitrary (concentrated and distributed) external loadings, as

shown in Figure 3-2. To investigate the internal forces, a section is made through the body as

shown. On this section consider a small area DA with unit normal vector n. The resultant

surface force acting on DA is defined by DF. Consistent with our earlier discussion, no

resultant surface couple is included. The stress or traction vector is defined by

Tn(x, n) ¼ lim
DA!0

DF
DA

(3:2:1)

Notice that the traction vector depends on both the spatial location and the unit normal vector

to the surface under study. Thus, even though we may be investigating the same point, the

traction vector still varies as a function of the orientation of the surface normal. Because the

traction is defined as force per unit area, the total surface force is determined through

integration as per relation (3.1.2). Note, also, the simple action-reaction principle (Newton’s

third law)

Tn(x, n) ¼ �Tn(x, � n)

Consider now the special case in which DA coincides with each of the three coordinate planes

with the unit normal vectors pointing along the positive coordinate axes. This concept is shown

in Figure 3-3, where the three coordinate surfaces for DA partition off a cube of material. For

this case, the traction vector on each face can be written as

Tn(x,n ¼ e1) ¼ sxe1 þ txye2 þ txze3
Tn(x,n ¼ e2) ¼ tyxe1 þ sye2 þ tyze3
Tn(x,n ¼ e3) ¼ tzxe1 þ tzye2 þ sze3

(3:2:2)

where e1, e2, e3 are the unit vectors along each coordinate direction, and the nine quantities

{sx, sy, sz, txy, tyx, tyz, tzy, tzx, txz} are the components of the traction vector on each of

three coordinate planes as illustrated. These nine components are called the stress components,

DF

DA

n

(Sectioned Body)

P3

P

P2

P1
(Externally Loaded Body)

FIGURE 3-2 Sectioned solid under external loading.
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with sx, sy, sz referred to as normal stresses and txy, tyx, tyz, tzy, tzx, txz called the shear-
ing stresses. The components of stress sij are commonly written in matrix format

s ¼ [s] ¼
sx txy txz
tyx sy tyz
tzx tzy sz

2
4

3
5 (3:2:3)

and it can be formally shown that the stress is a second-order tensor that obeys the appropriate

transformation law (1:5:3)3.
The positive directions of each stress component are illustrated in Figure 3-3. Regardless of

the coordinate system, positive normal stress always acts in tension out of the face, and only

one subscript is necessary because it always acts normal to the surface. The shear stress,

however, requires two subscripts, the first representing the plane of action and the second

designating the direction of the stress. Similar to shear strain, the sign of the shear stress

depends on coordinate system orientation. For example, on a plane with a normal in the

positive x direction, positive txy acts in the positive y direction. Similar definitions follow for

the other shear stress components. In subsequent chapters, proper formulation of elasticity

problems requires knowledge of these basic definitions, directions, and sign conventions for

particular stress components.

Consider next the traction vector on an oblique plane with arbitrary orientation, as

shown in Figure 3-4. The unit normal to the surface can be expressed by

n ¼ nxe1 þ nye2 þ nze3 (3:2:4)

where nx, ny, nz are the direction cosines of the unit vector n relative to the given coordinate

system. We now consider the equilibrium of the pyramidal element interior to the oblique and

coordinate planes. Invoking the force balance between tractions on the oblique and coordinate

faces gives

sy

sx

tyx

txy

txz
tzx

tzy

tyz

x

z

y

sz

FIGURE 3-3 Components of the stress.
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Tn ¼ nxT
n(n ¼ e1)þ nyT

n(n ¼ e2)þ nzT
n(n ¼ e3)

and by using relations (3.2.2), this can be written as

Tn ¼ (sxnx þ tyxny þ tzxnz)e1
þ (txynx þ syny þ tzynz)e2
þ (txznx þ tyzny þ sznz)e3

(3:2:5)

or in index notation

Tn
i ¼ sjinj (3:2:6)

Relation (3.2.5) or (3.2.6) provides a simple and direct method to calculate the forces on

oblique planes and surfaces. This technique proves to be very useful to specify general

boundary conditions during the formulation and solution of elasticity problems. Based on

these previous definitions, the distinction between the traction vector and stress tensor should

be carefully understood. Although each quantity has the same units of force per unit area, they

are fundamentally different since the traction is a vector while the stress is a second-order

tensor (matrix). Components of traction can be defined on any surface, but particular stress

components only exist on coordinate surfaces, as shown in Figure 3-3 for the Cartesian case.

Clearly, equation (3.2.6) establishes the relation between the two variables, thereby indicating

that each traction component can be expressed as a linear combination of particular stress

components. Further discussion on this topic will be given in Section 5.2 when boundary

condition development is presented.

Following the principles of small deformation theory, the previous definitions for the

stress tensor and traction vector do not make a distinction between the deformed and un-

deformed configurations of the body. As mentioned in the previous chapter, such a distinction

only leads to small modifications that are considered higher-order effects and are normally

neglected. However, for large deformation theory, sizeable differences exist between

these configurations, and the undeformed configuration (commonly called the reference

x

z

y

n Tn

FIGURE 3-4 Traction on an oblique plane.
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configuration) is often used in problem formulation. This gives rise to the definition of an

additional stress called the Piola-Kirchhoff stress tensor that represents the force per unit

area in the reference configuration (see Chandrasekharaiah and Debnath 1994). In the

more general scheme, the stress sij is referred to as the Cauchy stress tensor. Throughout

the text only small deformation theory is considered, and thus the distinction between

these two definitions of stress disappears, thereby eliminating any need for this additional

terminology.

3.3 Stress Transformation

Analogous to our previous discussion with the strain tensor, the stress components must also

follow the standard transformation rules for second-order tensors established in Section 1.5.

Applying transformation relation (1.5.1)3 for the stress gives

s
0
ij ¼ QipQjqspq (3:3:1)

where the rotation matrix Qij ¼ cos (x
0
i, xj). Therefore, given the stress in one coordinate

system, we can determine the new components in any other rotated system. For the general

three-dimensional case, the rotation matrix may be chosen in the form

Qij ¼
l1 m1 n1
l2 m2 n2
l3 m3 n3

2
4

3
5 (3:3:2)

Using this notational scheme, the specific transformation relations for the stress then become

s
0
x ¼ sxl21 þ sym2

1 þ szn21 þ 2(txyl1m1 þ tyzm1n1 þ tzxn1l1)

s
0
y ¼ sxl22 þ sym2

2 þ szn22 þ 2(txyl2m2 þ tyzm2n2 þ tzxn2l2)

s
0
z ¼ sxl23 þ sym2

3 þ szn23 þ 2(txyl3m3 þ tyzm3n3 þ tzxn3l3)

t
0
xy ¼ sxl1l2 þ sym1m2 þ szn1n2 þ txy(l1m2 þ m1l2)þ tyz(m1n2 þ n1m2)þ tzx(n1l2 þ l1n2)

t
0
yz ¼ sxl2l3 þ sym2m3 þ szn2n3 þ txy(l2m3 þ m2l3)þ tyz(m2n3 þ n2m3)þ tzx(n2l3 þ l2n3)

t
0
zx ¼ sxl3l1 þ sym3m1 þ szn3n1 þ txy(l3m1 þ m3l1)þ tyz(m3n1 þ n3m1)þ tzx(n3l1 þ l3n1)

(3:3:3)

For the two-dimensional case originally shown in Figure 2-6, the transformation matrix was

given by relation (2.3.5). Under this transformation, the in-plane stress components transform

according to

s
0
x ¼ sx cos2 yþ sy sin2 yþ 2txy sin y cos y

s
0
y ¼ sx sin2 yþ sy cos2 y� 2txy sin y cos y

t
0
xy ¼ �sx sin y cos yþ sy sin y cos yþ txy( cos2 y� sin2 y)

(3:3:4)

which is commonly rewritten in terms of the double angle
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s
0
x ¼

sx þ sy
2

þ sx � sy
2

cos 2yþ txy sin 2y

s
0
y ¼

sx þ sy
2

� sx � sy
2

cos 2y� txy sin 2y

t
0
xy ¼

sy � sx
2

sin 2yþ txy cos 2y

(3:3:5)

Similar to our discussion on strain in the previous chapter, relations (3.3.5) can be directly

applied to establish stress transformations between Cartesian and polar coordinate systems

(see Exercise 3-3). Both two- and three-dimensional stress transformation equations can be

easily incorporated in MATLAB to provide numerical solutions to problems of interest (see

Exercise 3-2).

3.4 Principal Stresses

We can again use the previous developments from Section 1.6 to discuss the issues of principal

stresses and directions. It is shown later in the chapter that the stress is a symmetric tensor.

Using this fact, appropriate theory has been developed to identify and determine principal axes

and values for the stress. For any given stress tensor we can establish the principal value

problem and solve the characteristic equation to explicitly determine the principal values and

directions. The general characteristic equation for the stress tensor becomes

det[sij � sdij] ¼ �s3 þ I1s2 � I2sþ I3 ¼ 0 (3:4:1)

where s are the principal stresses and the fundamental invariants of the stress tensor can be

expressed in terms of the three principal stresses s1,s2,s3 as

I1 ¼ s1 þ s2 þ s3
I2 ¼ s1s2 þ s2s3 þ s3s1
I3 ¼ s1s2s3

(3:4:2)

In the principal coordinate system, the stress matrix takes the special diagonal form

sij ¼
s1 0 0

0 s2 0

0 0 s3

2
4

3
5 (3:4:3)

A comparison of the general and principal stress states is shown in Figure 3-5. Notice that for

the principal coordinate system, all shearing stresses vanish and thus the state includes only

normal stresses. These issues should be compared to the equivalent comments made for the

strain tensor at the end of Section 2.4.

We now wish to go back to investigate another issue related to stress and traction

transformation that makes use of principal stresses. Consider the general traction vector Tn

that acts on an arbitrary surface as shown in Figure 3-6. The issue of interest is to determine the

traction vector’s normal and shear components N and S. The normal component is simply the
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traction’s projection in the direction of the unit normal vector n, while the shear component is

found by Pythagorean theorem:

N ¼ Tn � n
S ¼ (jTnj2 � N2)1=2

(3:4:4)

Using the relationship for the traction vector (3.2.5) into (3:4:4)1 gives

N ¼ Tn � n ¼ Tn
i ni ¼ sjinjni

¼ s1n21 þ s2n22 þ s3n23
(3:4:5)

where, in order to simplify the expressions, we have used the principal axes for the stress

tensor. In a similar manner,

jTnj2 ¼ Tn � Tn ¼ Tn
i T

n
i ¼ sjinjskink

¼ s21n
2
1 þ s22n

2
2 þ s23n

2
3

(3:4:6)

sy

sx

txy

tyx

sz

tyz

tzx

tzy

txz
x

z

y

(General Coordinate System)

s3

s2

s1

1

3

2

(Principal Coordinate System)

FIGURE 3-5 Comparison of general and principal stress states.

Tn
nΔA

S

N

FIGURE 3-6 Traction vector decomposition.

62 FOUNDATIONS AND ELEMENTARY APPLICATIONS



Using these results back into relation (3.4.4) yields

N ¼ s1n21 þ s2n22 þ s3n23
S2 þ N2 ¼ s21n

2
1 þ s22n

2
2 þ s23n

2
3

(3:4:7)

In addition, we add the condition that the vector n has unit magnitude

1 ¼ n21 þ n22 þ n23 (3:4:8)

Relations (3.4.7) and (3.4.8) can be viewed as three linear algebraic equations for the

unknowns n21, n
2
2, n

2
3. Solving this system gives the following result:

n21 ¼
S2 þ (N � s2)(N � s3)
(s1 � s2)(s1 � s3)

n22 ¼
S2 þ (N � s3)(N � s1)
(s2 � s3)(s2 � s1)

n23 ¼
S2 þ (N � s1)(N � s2)
(s3 � s1)(s3 � s2)

(3:4:9)

Without loss in generality, we can rank the principal stresses as s1 > s2 > s3. Noting that the

expressions given by (3.4.9) must be greater than or equal to zero, we can conclude the following

S2 þ (N � s2)(N � s3) � 0

S2 þ (N � s3)(N � s1) � 0

S2 þ (N � s1)(N � s2) � 0

(3:4:10)

For the equality case, equations (3.4.10) represent three circles in an S-N coordinate system,

and Figure 3-7 illustrates the location of each circle. These results were originally generated by

Otto Mohr over a century ago, and the circles are commonly called Mohr’s circles of stress.
The three inequalities given in (3.4.10) imply that all admissible values of N and S lie in

the shaded regions bounded by the three circles. Note that, for the ranked principal stresses, the

largest shear component is easily determined as Smax ¼ 1=2js1 � s3j. Although these circles

can be effectively used for two-dimensional stress transformation, the general tensorial-based

equations (3.3.3) are normally used for general transformation computations.

EXAMPLE 3-1: Stress Transformation

For the following state of stress, determine the principal stresses and directions and find

the traction vector on a plane with unit normal n ¼ (0, 1, 1)=
ffiffiffi
2

p
.

sij ¼
3 1 1

1 0 2

1 2 0

2
4

3
5

Continued
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EXAMPLE 3-1: Stress Transformation—Cont’d

The principal stress problem is first solved by calculating the three invariants, giving

the result I1 ¼ 3, I2 ¼ �6, I3 ¼ �8. This yields the following characteristic equa-

tion:

�s3 þ 3s2 þ 6s� 8 ¼ 0

The roots of this equation are found to be s ¼ 4, 1, � 2. Back-substituting the first root

into the fundamental system (see 1.6.1) gives

� n(1)1 þ n(1)2 þ n(1)3 ¼ 0

n(1)1 � 4n(1)2 þ 2n(1)3 ¼ 0

n(1)1 þ 2n(1)2 � 4n(1)3 ¼ 0

Solving this system, the normalized principal direction is found to be n(1) ¼ (2, 1, 1)=ffiffiffi
6

p
. In similar fashion the other two principal directions are n(2) ¼ (�1, 1, 1)=ffiffiffi
3

p
, n(3) ¼ (0, � 1, 1)=

ffiffiffi
2

p
.

The traction vector on the specified plane is calculated by using the relation

Tn
i ¼

3 1 1

1 0 2

1 2 0

2
4

3
5 0

1=
ffiffiffi
2

p
1=

ffiffiffi
2

p

2
4

3
5 ¼

2=
ffiffiffi
2

p
2=

ffiffiffi
2

p
2=

ffiffiffi
2

p

2
4

3
5

N

S

s1s2
s3

S2 + (N − s2)(N − s3) = 0

S2 + (N − s3)(N − s1) = 0

S2 + (N − s1)(N − s2) = 0

FIGURE 3-7 Mohr’s circles of stress.
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3.5 Spherical, Deviatoric, Octahedral,
and von Mises Stresses

As mentioned in our previous discussion on strain, it is often convenient to decompose the

stress into two parts called the spherical and deviatoric stress tensors. Analogous to relations

(2.5.1) and (2.5.2), the spherical stress is defined by

~ssij ¼ 1

3
skk dij (3:5:1)

while the deviatoric stress becomes

ŝsij ¼ sij � 1

3
skk dij (3:5:2)

Note that the total stress is then simply the sum

sij ¼ ~ssij þ ŝsij (3:5:3)

The spherical stress is an isotropic tensor, being the same in all coordinate systems (as per the

discussion in Section 1.5). It can be shown that the principal directions of the deviatoric stress

are the same as those of the stress tensor itself (see Exercise 3-14).

We next briefly explore a couple of particular stress components or combinations that have

been defined in the literature and are commonly used in formulating failure theories related to

inelastic deformation. It has been found that ductile materials normally exhibit inelastic

yielding failures that can be characterized by these particular stresses.

Consider first the normal and shear stresses (tractions) that act on a special plane whose

normal makes equal angles with the three principal axes. This plane is commonly referred to as

the octahedral plane. Determination of these normal and shear stresses is straightforward if we

use the principal axes of stress. Since the unit normal vector to the octahedral plane makes

equal angles with the principal axes, its components are given by ni ¼ �(1, 1, 1)=
ffiffiffi
3

p
. Refer-

ring to Figure 3-6 and using the results of the previous section, relations (3.4.7) give the desired

normal and shear stresses as

N ¼ soct ¼ 1

3
(s1 þ s2 þ s3) ¼ 1

3
skk ¼ 1

3
I1

S ¼ toct ¼ 1

3
[(s1 � s2)2 þ (s2 � s3)2 þ (s3 � s1)2]1=2

¼ 1

3
2I21 � 6I2
� �1=2

(3:5:4)

It can be shown that the octahedral shear stress toct is directly related to the distortional
strain energy (defined by equation (6.1.17) ), which is often used in failure theories for ductile

materials.

Another specially defined stress also related to the distortional strain energy failure criteria

is known as the effective or von Mises stress and is given by the expression

se ¼ svonMises ¼ 1ffiffiffi
2

p [(s1 � s2)2 þ (s2 � s3)2 þ (s3 � s1)2]1=2 (3:5:5)

Stress and Equilibrium 65



Note that although the von Mises stress is not really a particular stress or traction compon-

ent in the usual sense, it is obviously directly related to the octahedral shear stress by the

relation se ¼ (3=
ffiffiffi
2

p
)toct. If at some point in the structure, the von Mises stress equals the yield

stress, then the material is considered to be at the failure condition. Based on this fact, many

finite element computer codes commonly plot von Mises stress distributions based on the

numerically generated stress field. It should be noted that the von Mises and octahedral shear

stresses involve only the differences in the principal stresses and not the individual values.

Thus, increasing each principal stress by the same amount will not change the value of se or
toct. This result also implies that these values are independent of hydrostatic stress. We will not

pursue failure criteria further, and the interested reader is referred to Ugural and Fenster (2003)

for details on this topic.

3.6 Equilibrium Equations

The stress field in an elastic solid is continuously distributed within the body and uniquely

determined from the applied loadings. Because we are dealing primarily with bodies in

equilibrium, the applied loadings satisfy the equations of static equilibrium; that is, the

summation of forces and moments is zero. If the entire body is in equilibrium, then all parts

must also be in equilibrium. Thus, we can partition any solid into an appropriate subdomain

and apply the equilibrium principle to that region. Following this approach, equilibrium

equations can be developed that express the vanishing of the resultant force and moment at

a continuum point in the material. These equations can be developed by using either an

arbitrary finite subdomain or a special differential region with boundaries coinciding with

coordinate surfaces. We shall formally use the first method in the text, and the second scheme

is included in Exercises 3-19 and 3-21.

F

Tn

V

S

FIGURE 3-8 Body and surface forces acting on an arbitrary portion of a continuum.

Consider a closed subdomain with volume V and surface S within a body in equilibrium.

The region has a general distribution of surface tractions Tn and body forces F as shown in

Figure 3-8. For static equilibrium, conservation of linear momentum implies that the forces

acting on this region are balanced and thus the resultant force must vanish. This concept can be

easily written in index notation as follows:
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ðð
S

Tn
i dSþ

ððð
V

FidV ¼ 0 (3:6:1)

Using relation (3.2.6) for the traction vector, we can express the equilibrium statement in terms

of stress:

ðð
S

sjinjdSþ
ððð

V

FidV ¼ 0 (3:6:2)

Applying the divergence theorem (1.8.7) to the surface integral allows the conversion to a

volume integral, and relation (3.6.2) can then be expressed as

ððð
V

(sji, j þ Fi)dV ¼ 0 (3:6:3)

Because the region V is arbitrary (any part of the medium can be chosen) and the integrand

in (3.6.3) is continuous, then by the zero-value theorem (1.8.12), the integrandmust vanish:

sji, j þ Fi ¼ 0 (3:6:4)

This result represents three scalar relations called the equilibrium equations. Written in scalar

notation, they are

@sx
@x

þ @tyx
@y

þ @tzx
@z

þ Fx ¼ 0

@txy
@x

þ @sy
@y

þ @tzy
@z

þ Fy ¼ 0

@txz
@x

þ @tyz
@y

þ @sz
@z

þ Fz ¼ 0

(3:6:5)

Thus, all elasticity stress fields must satisfy these relations in order to be in static equilib-

rium.

Next consider the angular momentum principle that states that the moment of all

forces acting on any portion of the body must vanish. Note that the point about which the

moment is calculated can be chosen arbitrarily. Applying this principle to the region shown in

Figure 3-8 results in a statement of the vanishing of the moments resulting from surface and

body forces:

ðð
S

eijkxjTn
k dSþ

ððð
V

eijkxjFkdV ¼ 0 (3:6:6)

Again using relation (3.2.6) for the traction, (3.6.6) can be written as

ðð
S

eijkxjslknldSþ
ððð

V

eijkxjFkdV ¼ 0
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and application of the divergence theorem gives

ððð
V

[(eijkxjslk), l þ eijkxjFk]dV ¼ 0

This integral can be expanded and simplified as

ððð
V

[eijkxj, lslk þ eijkxjslk, l þ eijkxjFk]dV ¼ððð
V

[eijkdjlslk þ eijkxjslk, l þ eijkxjFk]dV ¼ððð
V

[eijksjk � eijkxjFk þ eijkxjFk]dV ¼
ððð

V

eijksjkdV

where we have used the equilibrium equations (3.6.4) to simplify the final result. Thus, (3.6.6)

now gives

ððð
V

eijksjkdV ¼ 0

As per our earlier arguments, because the region V is arbitrary, the integrand must vanish,

giving eijksjk ¼ 0. However, because the alternating symbol is antisymmetric in indices jk, the
other product term sjk must be symmetric, thus implying

txy ¼ tyx
sij ¼ sji ) tyz ¼ tzy

tzx ¼ txz

(3:6:7)

We thus find that, similar to the strain, the stress tensor is also symmetric and therefore has

only six independent components in three dimensions. Under these conditions, the equilibrium

equations can then be written as

sij, j þ Fi ¼ 0 (3:6:8)

3.7 Relations in Curvilinear Cylindrical
and Spherical Coordinates

As mentioned in the previous chapter, in order to solve many elasticity problems, formulation

must be done in curvilinear coordinates typically using cylindrical or spherical systems. Thus,

by following similar methods as used with the strain-displacement relations, we now wish to

develop expressions for the equilibrium equations in curvilinear cylindrical and spherical

coordinates. By using a direct vector/matrix notation, the equilibrium equations can be

expressed as

, � s þ F ¼ 0 (3:7:1)
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where s ¼ sijeiej is the stress matrix or dyadic, ei are the unit basis vectors in the

curvilinear system, and F is the body force vector. The desired curvilinear expressions can

be obtained from (3.7.1) by using the appropriate form for , � s from our previous work in

Section 1.9.

Cylindrical coordinates were originally presented in Figure 1-5. For such a system, the

stress components are defined on the differential element shown in Figure 3-9, and thus the

stress matrix is given by

s ¼
sr try trz
try sy tyz
trz tyz sz

2
4

3
5 (3:7:2)

Now the stress can be expressed in terms of the traction components as

s ¼ erTr þ eyTy þ ezTz (3:7:3)

where

Tr ¼ srer þ tryey þ trzez
Ty ¼ tryer þ syey þ tyzez
Tz ¼ trzer þ tyzey þ szez

(3:7:4)

Using relations (1.9.10) and (1.9.14), the divergence operation in the equilibrium equations can

be written as

r � s ¼ @Tr

@r
þ 1

r
Tr þ 1

r

@Ty

@y
þ @Tz

@z

¼ @sr
@r

er þ @try
@r

ey þ @trz
@r

ez þ 1

r
(srer þ tryey þ trzez)

þ 1

r

@try
@y

er þ tryey þ @sy
@y

ey � syer þ @tyz
@y

ez

� �

þ @trz
@z

er þ @tyz
@z

ey þ @sz
@z

ez

(3:7:5)

x3

x1

x2
r

z
sz

sr

trq
tqz

trz

dr

dq

sq

q

FIGURE 3-9 Stress components in cylindrical coordinates.
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Combining this result into (3.7.1) gives the vector equilibrium equation in cylindrical

coordinates. The three scalar equations expressing equilibrium in each coordinate direction

then become

@sr
@r

þ 1

r

@try
@y

þ @trz
@z

þ 1

r
(sr � sy)þ Fr ¼ 0

@try
@r

þ 1

r

@sy
@y

þ @tyz
@z

þ 2

r
try þ Fy ¼ 0

@trz
@r

þ 1

r

@tyz
@y

þ @sz
@z

þ 1

r
trz þ Fz ¼ 0

(3:7:6)

We now wish to repeat these developments for the spherical coordinate system, as previously

shown in Figure 1-6. The stress components in spherical coordinates are defined on the

differential element illustrated in Figure 3-10, and the stress matrix for this case is

s ¼
sR tRf tRy
tRf sf tfy
tRy tfy sy

2
4

3
5 (3:7:7)

Following similar procedures as used for the cylindrical equation development, the three scalar

equilibrium equations for spherical coordinates become

@sR
@R

þ 1

R

@tRf
@f

þ 1

R sinf
@tRy
@y

þ 1

R
(2sR � sf � sy þ tRf cotf)þ FR ¼ 0

@trf
@R

þ 1

R

@sf
@f

þ 1

R sinf
@tfy
@y

þ 1

R
[(sf � sy) cotfþ 3tRf]þ Ff ¼ 0

@try
@R

þ 1

R

@tfy
@f

þ 1

R sinf
@sy
@y

þ 1

R
(2tfy cotfþ 3tRy)þ Fy ¼ 0

(3:7:8)

x3

x1

x2

R
tfq

tRq

tRf

sf

sR

sq

f

q

FIGURE 3-10 Stress components in spherical coordinates.
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It is interesting to note that the equilibrium equations in curvilinear coordinates contain

additional terms not involving derivatives of the stress components. The appearance of these

terms can be explained mathematically because of the curvature of the space. However, a more

physical interpretation can be found by redeveloping these equations through a simple

force balance analysis on the appropriate differential element. This analysis is proposed for

the less demanding two-dimensional polar coordinate case in Exercise 3-21. In general,

relations (3.7.6) and (3.7.8) look much more complicated when compared to the Cartesian

form (3.6.5). However, under particular conditions, the curvilinear forms lead to an analytical

solution that could not be reached by using Cartesian coordinates. For easy reference,

Appendix A lists the complete set of elasticity field equations in cylindrical and spherical

coordinates.
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Exercises

3-1. The state of stress in a rectangular plate under uniform biaxial loading, as shown in the

following figure, is found to be

sij ¼
X 0 0

0 Y 0

0 0 0

2
4

3
5

Determine the traction vector and the normal and shearing stresses on the oblique plane S.

3-2*. Using suitable units, the stress at a particular point in a solid is found to be

(a) sij ¼
2 1 �4

1 4 0

�4 0 1

2
4

3
5 (b) sij ¼

4 1 0

1 �6 2

0 2 1

2
4

3
5

 y

q

S

x
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Determine the traction vector on a surface with unit normal (cos �, sin �, 0), where � is a
general angle in the range 0 � � � �. Plot the variation of the magnitude of the traction

vector jTnj as a function of �.

3-3. Show that the general two-dimensional stress transformation relations can be used to

generate relations for the normal and shear stresses in a polar coordinate system in terms

of Cartesian components

sr ¼ sx þ sy
2

þ sx � sy
2

cos 2yþ txy sin 2y

sy ¼ sx þ sy
2

� sx � sy
2

cos 2y� txy sin 2y

try ¼ sy � sx
2

sin 2yþ txy cos 2y

3-4. A two-dimensional state of plane stress in the x,y plane is defined by sz ¼ tyz ¼ tzx ¼ 0.

Using general principal value theory, show that for this case the in-plane principal

stresses and maximum shear stress are given by

s1, 2 ¼ sx þ sy
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx � sy

2

� �2
þt2xy

r

tmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx � sy

2

� �2
þt2xy

r

3-5. Explicitly verify relations (3.5.4) for the octahedral stress components. Also show that

they can be expressed in terms of the general stress components by

soct ¼ 1

3
(sx þ sy þ sz)

toct ¼ 1

3
[(sx � sy)2 þ (sy � sz)2 þ (sz � sx)2 þ 6t2xy þ 6t2yz þ 6t2zx]

1=2

3-6. For the plane stress case in Exercise 3-4, demonstrate the invariant nature of the

principal stresses and maximum shear stresses by showing that

s1, 2 ¼ 1

2
I1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
I21 � I2

r
and tmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
I21 � I2

r

Thus, conclude that

s1, 2 ¼ sx þ sy
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx � sy

2

� �2
þ t2xy

r
¼ sr þ sy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sr � sy

2

� �2
þt2ry

r

tmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx � sy

2

� �2
þ t2xy

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sr � sy

2

� �2
þt2ry

r

3-7. Exercise 8-2 provides the plane stress (see Exercise 3-4) solution for a cantilever beam

of unit thickness, with depth 2c, and carrying an end load of P is given by
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sx ¼ 3P

2c3
xy, sy ¼ 0, txy ¼ 3P

4c
1� y2

c2

	 


Show that the principal stresses are given by

s1, 2 ¼ 3P

4c3
xy�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(c2 � y2)þ x2y2

ph i

and the principal directions are

n(1, 2) ¼ 1

c2
xy�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(c2 � y2)2 þ x2y2

q� �
e1 þ (c2 � y2)e2

	 

:

Note that the principal directions do not depend on the loading P.

3-8*. Plot contours of the maximum principal stress s1 in Exercise 3-7 in the region 0 � x � L
� c � y � c, with L¼ 1, c¼ 0.1, and P¼ 1.

3-9. We wish to generalize the findings in Exercise 3-7, and thus consider a stress field of

the general form sij¼ Pfij (xk), where P is a loading parameter and the tensor function

fij specifies only the field distribution. Show that the principal stresses will be a linear

form in P; that is, s1,2,3¼ Pg1,2,3 (xk). Next demonstrate that the principal directions

will not depend on P.

3-10*. The plane stress solution for a semi-infinite elastic solid under a concentrated point

loading is developed in Chapter 8. With respect to the axes shown in the following

figure, the Cartesian stress components are found to be

sx ¼ � 2Px2y

p(x2 þ y2)2

sy ¼ � 2Py3

p(x2 þ y2)2

txy ¼ � 2Pxy2

p(x2 þ y2)2

Using results from Exercise 3-4, calculate the maximum shear stress at any point in the

body and plot contours of tmax. You can compare your results with the corresponding

photoelastic contours shown in Figure 8-28.

x

 y

P
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3-11. Show that shear stress S acting on a plane defined by the unit normal vector n (see

Figure 3-6) can be written as

S ¼ n21n
2
2(s1 � s2)2 þ n22n

2
3(s2 � s3)2 þ n23n

2
1(s3 � s1)2

� �1=2
3-12. It was discussed in Section 3.4 that for the case of ranked principal stresses (s1 > s2 > s3),

the maximum shear stress was given by Smax ¼ (s1 � s3)/2, which was the radius of

the largest Mohr’s circle shown in Figure 3-7. For this case, show that the normal stress

acting on the plane of maximum shear is given by N ¼ (s1 þ s3)/2. Finally, using
relations (3.4.9) show that the components of the unit normal vector to this plane are

ni ¼ �ð1, 0, 1Þ= ffiffiffi
2

p
. This result implies that the maximum shear stress acts on a plane

that bisects the angle between the directions of the largest and the smallest principal

stress.

3-13. Explicitly show that the stress state given in Example 3-1 will reduce to the proper

diagonal form under transformation to principal axes.

3-14. Show that the principal directions of the deviatoric stress tensor coincide with the

principal directions of the stress tensor. Also show that the principal values of the

deviatoric stress sd can be expressed in terms of the principal values s of the total stress

by the relation sd ¼ s� 1
3
skk.

3-15. Determine the spherical and deviatoric stress tensors for the stress states given in

Exercise 3-2.

3-16. For the stress state given in Example 3-1, determine the von Mises and octahedral

stresses defined in Section 3.5.

3-17. For the case of pure shear, the stress matrix is given by

sij ¼
0 t 0

t 0 0

0 0 0

2
4

3
5

where t is a given constant. Determine the principal stresses and directions, and

compute the normal and shear stress on the octahedral plane.

3-18*. For the stress state in Exercise 3-7, plot contours of the von Mises stress in the region

0 � x � L, � c � y � c, with L ¼ 1, c ¼ 0.1, and P ¼ 1.

3-19. Consider the equilibrium of a two-dimensional differential element in Cartesian

coordinates, as shown in the following figure. Explicitly sum the forces and moments

and develop the two-dimensional equilibrium equations

@sx
@x

þ @tyx
@y

þ Fx ¼ 0

@txy
@x

þ @sy
@y

þ Fy ¼ 0

txy ¼ tyx
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3-20. Consider the two-dimensional case described in Exercise 3-19 with no body forces.

Show that equilibrium equations are identically satisfied if the stresses are expressed in

the form

sx ¼ @2f
@y2

, sy ¼ @2f
@x2

, txy ¼ � @2f
@x@y

where �(x,y) is an arbitrary stress function. This stress representation will be used in

Chapter 7 to establish a very useful solution scheme for two-dimensional problems.

3-21. Following similar procedures as in Exercise 3-19, sum the forces and moments on the

two-dimensional differential element in polar coordinates (see the figures), and

explicitly develop the following two-dimensional equilibrium equations

Fr

Fq

dr

rdq

dq

dq
∂sq

∂q
sq +

sq 

sr

dq∂τqr
∂qtqr +

dr∂sr
∂r

sr +

dr
∂trq
∂r

trq +

trq

tqr

sx

sy

dx
∂x

sx +
∂sx

tyx

txy

dy
∂sy

∂y
sy +

dxtxy + ∂x

∂txy

dy
∂y

∂tyxtyx +

Fx

Fy
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@sr
@r

þ 1

r

@tyr
@y

þ (sr � sy)
r

þ Fr ¼ 0

@try
@r

þ 1

r

@sy
@y

þ 2try
r

þ Fy ¼ 0

try ¼ tyr

3-22. For a beam of circular cross-section, analysis from elementary strength of materials
theory yields the following stresses:

sx ¼ �My

I
, txy ¼ V(R2 � y2)

3I
, sy ¼ sz ¼ txz ¼ tyz ¼ 0

where R is the section radius, I ¼ pR4=4, M is the bending moment, V is the shear force,

and dM=dx ¼ V. Assuming zero body forces, show that these stresses do not satisfy the

equilibrium equations. This result is one of many that indicate the approximate nature of

strength of materials theory.

3-23. A one-dimensional problem of a prismatic bar (see the following figure) loaded

under its own weight can be modeled by the stress field sx ¼ sx(x), sy ¼ sz ¼
txy ¼ tyz ¼ tzx ¼ 0, with body forces Fx ¼ rg, Fy ¼ Fz ¼ 0, where r is the mass

density and g is the local acceleration of gravity. Using the equilibrium equations,

show that the nonzero stress will be given by sx ¼ rg(l� x), where l is the length
of the bar.

x

l

3-24. A hydrostatic stress field is specified by

sij ¼ �pdij ¼
�p 0 0

0 �p 0

0 0 �p

2
4

3
5

where p ¼ p(x1, x2, x3) and may be called the pressure. Show that the equilibrium

equations imply that the pressure must satisfy the relation rp ¼ F.

3-25. Verify the curvilinear cylindrical coordinate relations (3.7.5) and (3.7.6).
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4 Material Behavior—Linear Elastic Solids

The previous two chapters establish elasticity field equations related to the kinematics of

small deformation theory and the equilibrium of the associated internal stress field. Based

on these physical concepts, six strain-displacement relations (2.2.5), six compatibility equa-

tions (2.6.2), and three equilibrium equations (3.6.5) were developed for the general three-

dimensional case. Because moment equilibrium simply results in symmetry of the stress

tensor, it is not normally included as a separate field equation set. Also, recall that the

compatibility equations actually represent only three independent relations, and these equa-

tions are needed only to ensure that a given strain field will produce single-valued continuous

displacements. Because the displacements are included in the general problem formulation, the

solution normally gives continuous displacements, and the compatibility equations are not

formally needed for the general system. Thus, excluding the compatibility relations, it is found

that we have now developed nine field equations. The unknowns in these equations include

three displacement components, six components of strain, and six stress components, yielding

a total of fifteen unknowns. Thus, the nine equations are not sufficient to solve for the fifteen

unknowns, and additional field equations are needed. This result should not be surprising since

up to this point in our development we have not considered the material response.

We now wish to complete our general formulation by specializing to a particular material

model that provides reasonable characterization of materials under small deformations. The

model we will use is that of a linear elastic material, a name that categorizes the entire theory.

This chapter presents the basics of the elastic model specializing the formulation for isotropic

materials. Related theory for anisotropic media is developed in Chapter 11, and nonhomoge-

neous materials are examined in Chapter 14. Thermoelastic relations are also briefly presented

for later use in Chapter 12.

4.1 Material Characterization

Relations that characterize the physical properties of materials are called constitutive equa-
tions. Because of the endless variety of materials and loadings, the study and development of

constitutive equations is perhaps one of the most interesting and challenging fields in mechan-

ics. Although continuum mechanics theory has established some principles for systematic

development of constitutive equations (Malvern 1969), many constitutive laws have been
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developed through empirical relations based on experimental evidence. Our interest here is

limited to a special class of solid materials with loadings resulting from mechanical or thermal

effects. The mechanical behavior of solids is normally defined by constitutive stress-strain

relations. Commonly, these relations express the stress as a function of the strain, strain rate,

strain history, temperature, and material properties. We choose a rather simple material model

called the elastic solid that does not include rate or history effects. The model may be

described as a deformable continuum that recovers its original configuration when the loadings

causing the deformation are removed. Furthermore, we restrict the constitutive stress-strain

law to be linear, thus leading to a linear elastic solid. Although these assumptions greatly

simplify the model, linear elasticity predictions have shown good agreement with experimental

data and have provided useful methods to conduct stress analysis. Many structural materials

including metals, plastics, ceramics, wood, rock, concrete, and so forth exhibit linear elastic

behavior under small deformations.

As mentioned, experimental testing is commonly employed in order to characterize the

mechanical behavior of real materials. One such technique is the simple tension test in which a

specially prepared cylindrical or flat stock sample is loaded axially in a testing machine. Strain

is determined by the change in length between prescribed reference marks on the sample and is

usually measured by a clip gage. Load data collected from a load cell is divided by the cross-

sectional area in the test section to calculate the stress. Axial stress-strain data is recorded and

plotted using standard experimental techniques. Typical qualitative data for three types of

structural metals (mild steel, aluminum, cast iron) are shown in Figure 4-1. It is observed that

each material exhibits an initial stress-strain response for small deformation that is approxi-

mately linear. This is followed by a change to nonlinear behavior that can lead to large

deformation, finally ending with sample failure.

For each material the initial linear response ends at a point normally referred to as the

proportional limit. Another observation in this initial region is that if the loading is removed,

the sample returns to its original shape and the strain disappears. This characteristic is the

primary descriptor of elastic behavior. However, at some point on the stress-strain curve

unloading does not bring the sample back to zero strain and some permanent plastic deformation

results. The point at which this nonelastic behavior begins is called the elastic limit. Although
some materials exhibit different elastic and proportional limits, many times these values are

taken to be approximately the same. Another demarcation on the stress-strain curve is referred to

as the yield point, defined by the location where large plastic deformation begins.

Steel

Cast Iron

Aluminum

*
*

*

s

e

FIGURE 4-1 Typical uniaxial stress-strain curves for three structural metals.
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Because mild steel and aluminum are ductile materials, their stress-strain response indicates

extensive plastic deformation, and during this period the sample dimensions will be changing.

In particular the sample’s cross-sectional area undergoes significant reduction, and the stress

calculation using division by the original area will now be in error. This accounts for the

reduction in the stress at large strain. If we were to calculate the load divided by the true

area, the true stress would continue to increase until failure. On the other hand, cast iron

is known to be a brittle material, and thus its stress-strain response does not show large

plastic deformation. For this material, very little nonelastic or nonlinear behavior is

observed. It is therefore concluded from this and many other studies that a large variety of

real materials exhibit linear elastic behavior under small deformations. This would lead to a

linear constitutive model for the one-dimensional axial loading case given by the relation

s ¼ Ee, where E is the slope of the uniaxial stress-strain curve. We now use this simple

concept to develop the general three-dimensional forms of the linear elastic constitutive

model.

4.2 Linear Elastic Materials—Hooke’s Law

Based on observations from the previous section, to construct a general three-dimensional

constitutive law for linear elastic materials, we assume that each stress component is linearly

related to each strain component

sx ¼ C11ex þ C12ey þ C13ez þ 2C14exy þ 2C15eyz þ 2C16ezx

sy ¼ C21ex þ C22ey þ C23ez þ 2C24exy þ 2C25eyz þ 2C26ezx

sz ¼ C31ex þ C32ey þ C33ez þ 2C34exy þ 2C35eyz þ 2C36ezx

txy ¼ C41ex þ C42ey þ C43ez þ 2C44exy þ 2C45eyz þ 2C46ezx

tyz ¼ C51ex þ C52ey þ C53ez þ 2C54exy þ 2C55eyz þ 2C56ezx

tzx ¼ C61ex þ C62ey þ C63ez þ 2C64exy þ 2C65eyz þ 2C66ezx

(4:2:1)

where the coefficients Cij are material parameters and the factors of 2 arise because of

the symmetry of the strain. Note that this relation could also be expressed by writing the

strains as a linear function of the stress components. These relations can be cast into a matrix

format as

sx
sy
sz
txy
tyz
tzx

2
6666664

3
7777775
¼

C11 C12 � � � C16

C21 � � � � �
� � � � � �
� � � � � �
� � � � � �

C61 � � � � C66

2
6666664

3
7777775

ex
ey
ez
2exy
2eyz
2ezx

2
6666664

3
7777775

(4:2:2)

Relations (4.2.1) can also be expressed in standard tensor notation by writing

sij ¼ Cijklekl (4:2:3)

where Cijkl is a fourth-order elasticity tensor whose components include all the material

parameters necessary to characterize the material. Based on the symmetry of the stress and

strain tensors, the elasticity tensor must have the following properties (see Exercise 4-2):
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Cijkl ¼ Cjikl

Cijkl ¼ Cijlk

(4:2:4)

In general, the fourth-order tensor Cijkl has 81 components. However, relations (4.2.4)

reduce the number of independent components to 36, and this provides the required match

with form (4.2.1) or (4.2.2). Later in Chapter 6 we introduce the concept of strain energy, and

this leads to the relation Cijkl¼ Cklij or equivalently Cij¼ Cji, which provides further reduction

to 21 independent elastic components. The components of Cijkl or equivalently Cij are called

elastic moduli and have units of stress (force/area). In order to continue further, we must

address the issues of material homogeneity and isotropy.

If the material is homogeneous, the elastic behavior does not vary spatially, and thus all

elastic moduli are constant. For this case, the elasticity formulation is straightforward, leading to

the development of many analytical solutions to problems of engineering interest. A homoge-

neous assumption is an appropriate model for most structural applications, and thus we primarily

choose this particular case for subsequent formulation and problem solution. However, there are

a couple of important nonhomogeneous applications that warrant further discussion.

Studies in geomechanics have found that the material behavior of soil and rock commonly

depends on distance below the earth’s surface. In order to simulate particular geomechanics

problems, researchers have used nonhomogeneous elastic models applied to semi-infinite

domains. Typical applications have involved modeling the response of a semi-infinite soil

mass under surface or subsurface loadings with variation in elastic moduli with depth (see the

review by Poulos and Davis 1974). Another more recent application involves the behavior of

functionally graded materials (FGM) (see Erdogan 1995 and Parameswaran and Shukla 1999,

2002). FGMs are a new class of engineered materials developed with spatially varying

properties to suit particular applications. The graded composition of such materials is com-

monly established and controlled using powder metallurgy, chemical vapor deposition, or

centrifugal casting. Typical analytical studies of these materials have assumed linear, exponen-

tial, and power-law variation in elastic moduli of the form

Cij(x) ¼ Co
ij(1þ ax)

Cij(x) ¼ Co
ije

ax

Cij(x) ¼ Co
ijx

a

(4:2:5)

where Co
ij and a are prescribed constants and x is the spatial coordinate. Further details on the

formulation and solution of nonhomogeneous elasticity problems are given in Chapter 14.

Similar to homogeneity, another fundamental material property is isotropy. This property
has to do with differences in material moduli with respect to orientation. For example, many

materials including crystalline minerals, wood, and fiber-reinforced composites have different

elastic moduli in different directions. Materials such as these are said to be anisotropic. Note
that for most real anisotropic materials there exist particular directions where the properties are

the same. These directions indicate material symmetries. However, for many engineering

materials (most structural metals and many plastics), the orientation of crystalline and grain

microstructure is distributed randomly so that macroscopic elastic properties are found to be

essentially the same in all directions. Such materials with complete symmetry are called

isotropic. As expected, an anisotropic model complicates the formulation and solution of

problems. We therefore postpone development of such solutions until Chapter 11 and continue

our current development under the assumption of isotropic material behavior.
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The tensorial form (4.2.3) provides a convenient way to establish the desired isotropic

stress-strain relations. If we assume isotropic behavior, the elasticity tensor must be the same

under all rotations of the coordinate system. Using the basic transformation properties from

relation (1:5:1)5, the fourth-order elasticity tensor must satisfy

Cijkl ¼ QimQjnQkpQlqCmnpq

It can be shown (Chandrasekharaiah and Debnath 1994) that the most general form that

satisfies this isotropy condition is given by

Cijkl ¼ adijdkl þ bdikdjl þ gdildjk (4:2:6)

where a,b, and g are arbitrary constants. Verification of the isotropy property of form

(4.2.6) was given as Exercise 1-9. Using the general form (4.2.6) in the stress-strain relation

(4.2.3) gives

sij ¼ lekkdij þ 2meij (4:2:7)

where we have relabeled particular constants using l and m. The elastic constant l is called

Lamé’s constant, and m is referred to as the shear modulus or modulus of rigidity. Some texts

use the notation G for the shear modulus. Equation (4.2.7) can be written out in individual

scalar equations as

sx ¼ l(ex þ ey þ ez)þ 2mex
sy ¼ l(ex þ ey þ ez)þ 2mey
sz ¼ l(ex þ ey þ ez)þ 2mez
txy ¼ 2mexy
tyz ¼ 2meyz
tzx ¼ 2mezx

(4:2:8)

Relations (4.2.7) or (4.2.8) are called the generalized Hooke’s law for linear isotropic
elastic solids. They are named after Robert Hooke who in 1678 first proposed that the

deformation of an elastic structure is proportional to the applied force. Notice the significant

simplicity of the isotropic form when compared to the general stress-strain law originally given

by (4.2.1). It should be noted that only two independent elastic constants are needed to

describe the behavior of isotropic materials. As shown in Chapter 11, additional numbers of

elastic moduli are needed in the corresponding relations for anisotropic materials.

Stress-strain relations (4.2.7) or (4.2.8) may be inverted to express the strain in terms of the

stress. In order to do this it is convenient to use the index notation form (4.2.7) and set the two

free indices the same (contraction process) to get

skk ¼ (3lþ 2m)ekk (4:2:9)

This relation can be solved for ekk and substituted back into (4.2.7) to get

eij ¼ 1

2m
sij � l

3lþ 2m
skkdij

� �
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which is more commonly written as

eij ¼ 1þ �

E
sij � �

E
skkdij (4:2:10)

where E ¼ m(3lþ 2m)=(lþ m) and is called the modulus of elasticity or Young’s modulus, and
� ¼ l=[2(lþ m)] is referred to as Poisson’s ratio. The index notation relation (4.2.10) may be

written out in component (scalar) form, giving the six equations

ex ¼ 1

E
sx � � (sy þ sz)
� �

ey ¼ 1

E
sy � �(sz þ sx)
� �

ez ¼ 1

E
sz � �(sx þ sy)
� �

exy ¼ 1þ �

E
txy ¼ 1

2m
txy

eyz ¼ 1þ �

E
tyz ¼ 1

2m
tyz

ezx ¼ 1þ �

E
tzx ¼ 1

2m
tzx

(4:2:11)

Constitutive form (4.2.10) or (4.2.11) again illustrates that only two elastic constants are

needed to formulate Hooke’s law for isotropic materials. By using any of the isotropic forms

of Hooke’s law, it can be shown that the principal axes of stress coincide with the principal

axes of strain (see Exercise 4-7). This result also holds for some but not all anisotropic

materials.

4.3 Physical Meaning of Elastic Moduli

For the isotropic case, the previously defined elastic moduli have simple physical meaning.

These can be determined through investigation of particular states of stress commonly realized

in laboratory materials testing as shown in Figure 4-2.

4.3.1 Simple Tension
Consider the simple tension test as discussed previously with a sample subjected to tension

in the x direction (see Figure 4-2). The state of stress is closely represented by the one-

dimensional field

sij ¼
s 0 0

0 0 0

0 0 0

2
4

3
5

Using this in relation (4.2.10) gives a corresponding strain field
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eij ¼

s
E

0 0

0 � �

E
s 0

0 0 � �

E
s

2
6664

3
7775

Therefore, E ¼ s=ex and is simply the slope of the stress-strain curve, while � ¼
�ey=ex ¼ �ez=ex is the ratio of the transverse strain to the axial strain. Standard measurement

systems can easily collect axial stress and transverse and axial strain data, and thus through this

one type of test both elastic constants can be determined for materials of interest.

4.3.2 Pure Shear
If a thin-walled cylinder is subjected to torsional loading (as shown in Figure 4-2), the state of

stress on the surface of the cylindrical sample is given by

sij ¼
0 t 0

t 0 0

0 0 0

2
4

3
5

Again, by using Hooke’s law, the corresponding strain field becomes

eij ¼
0 t=2m 0

t=2m 0 0

0 0 0

2
4

3
5

and thus the shear modulus is given by m ¼ t=2exy ¼ t=gxy, and this modulus is simply the

slope of the shear stress-shear strain curve.

s

s

(Simple Tension)

t
t

t

t

(Pure Shear)

p

p

p

(Hydrostatic Compression)

FIGURE 4-2 Special characterization states of stress.
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4.3.3 Hydrostatic Compression (or Tension)
The final example is associated with the uniform compression (or tension) loading of a cubical

specimen, as previously shown in Figure 4-2. This type of test would be realizable if the

sample was placed in a high-pressure compression chamber. The state of stress for this case is

given by

sij ¼
�p 0 0

0 �p 0

0 0 �p

2
4

3
5 ¼ �pdij

This is an isotropic state of stress and the strains follow from Hooke’s law

eij ¼
� 1� 2�

E
p 0 0

0 � 1� 2�

E
p 0

0 0 � 1� 2�

E
p

2
66664

3
77775

The dilatation that represents the change in material volume (see Exercise 2-11) is thus given

by W ¼ ekk ¼ �3(1� 2�)p=E, which can be written as

p ¼ �kW (4:3:1)

where k ¼ E=[3(1� 2�)] is called the bulk modulus of elasticity. This additional elastic

constant represents the ratio of pressure to the dilatation, which could be referred to as the

volumetric stiffness of the material. Notice that as Poisson’s ratio approaches 0.5, the bulk

modulus becomes unbounded and the material does not undergo any volumetric deformation

and hence is incompressible.

Our discussion of elastic moduli for isotropic materials has led to the definition of five

constants l, m, E, �, and k. However, keep in mind that only two of these are needed to

characterize the material. Although we have developed a few relationships between various

moduli, many other such relations can also be found. In fact, it can be shown that all five elastic

constants are interrelated, and if any two are given, the remaining three can be determined by

using simple formulae. Results of these relations are conveniently summarized in Table 4-1.

This table should be marked for future reference, because it will prove to be useful for

calculations throughout the text.

Typical nominal values of elastic constants for particular engineering materials are given in

Table 4-2. These moduli represent average values, and some variation will occur for specific

materials. Further information and restrictions on elastic moduli require strain energy con-

cepts, which are developed in Chapter 6.

Before concluding this section, we wish to discuss the forms of Hooke’s law in curvilinear

coordinates. Previous chapters have mentioned that cylindrical and spherical coordinates (see

Figures 1-5 and 1-6) are used in many applications for problem solution. Figures 3-9 and 3-10

defined the stress components in each curvilinear system. In regard to these figures, it follows

that the orthogonal curvilinear coordinate directions can be obtained from a base Cartesian

system through a simple rotation of the coordinate frame. For isotropic materials, the elasticity

tensor Cijkl is the same in all coordinate frames, and thus the structure of Hooke’s law remains
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TABLE 4-1 Relations Among Elastic Constants

E � k m l

E, � E �
E

3(1� 2�)

E

2(1þ �)

E�

(1þ �)(1� 2�)

E, k E
3k � E

6k
k

3kE

9k � E

3k(3k � E)

9k � E

E,m E
E� 2m
2m

mE
3(3m� E)

m
m(E� 2m)
3m� E

E, l E
2l

Eþ lþ R

Eþ 3lþ R

6

E� 3lþ R

4
l

�, k 3k(1� 2�) � k
3k(1� 2�)

2(1þ �)

3k�

1þ �

�,m 2m(1þ �) �
2m(1þ �)

3(1� 2�)
m

2m�
1� 2�

�, l
l(1þ �)(1� 2�)

�
�

l(1þ �)

3�

l(1� 2�)

2�
l

k,m
9km

3k þ m
3k � 2m
6k þ 2m

k m k � 2

3
m

k, l
9k(k � l)
3k � l

l
3k � l

k
3

2
(k � l) l

m, l
m(3lþ 2m)

lþ m
l

2(lþ m)
3lþ 2m

3
m l

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ 9l2 þ 2El

p

TABLE 4-2 Typical Values of Elastic Moduli for Common Engineering Materials

E(GPa) � m(GPa) l(GPa) k(GPa) a(10�6=8C)

Aluminum 68.9 0.34 25.7 54.6 71.8 25.5

Concrete 27.6 0.20 11.5 7.7 15.3 11

Copper 89.6 0.34 33.4 71 93.3 18

Glass 68.9 0.25 27.6 27.6 45.9 8.8

Nylon 28.3 0.40 10.1 4.04 47.2 102

Rubber 0.0019 0.499 0:654� 10�3 0.326 0.326 200

Steel 207 0.29 80.2 111 164 13.5
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the same in any orthogonal curvilinear system. Therefore, form (4.2.8) can be expressed in

cylindrical and spherical coordinates as

sr ¼ l(er þ ey þ ez)þ 2mer sR ¼ l(eR þ ef þ ey)þ 2meR
sy ¼ l(er þ ey þ ez)þ 2mey sf ¼ l(eR þ ef þ ey)þ 2mef
sz ¼ l(er þ ey þ ez)þ 2mez sy ¼ l(eR þ ef þ ey)þ 2mey
try ¼ 2mery tRf ¼ 2meRf
tyz ¼ 2meyz tfy ¼ 2mefy
tzr ¼ 2mezr tyR ¼ 2meyR

(4:3:2)

The complete set of elasticity field equations in each of these coordinate systems is given in

Appendix A.

4.4 Thermoelastic Constitutive Relations

It is well known that a temperature change in an unrestrained elastic solid produces deform-

ation. Thus, a general strain field results from both mechanical and thermal effects. Within the

context of linear small deformation theory, the total strain can be decomposed into the sum of

mechanical and thermal components as

eij ¼ e(M)
ij þ e(T)ij (4:4:1)

If To is taken as the reference temperature and T as an arbitrary temperature, the thermal strains

in an unrestrained solid can be written in the linear constitutive form

e(T)ij ¼ aij(T � To) (4:4:2)

where aij is the coefficient of thermal expansion tensor. Notice that it is the temperature

difference that creates thermal strain. If the material is taken as isotropic, then aij must be an

isotropic second-order tensor, and (4.4.2) simplifies to

e(T)ij ¼ a(T � To)dij (4:4:3)

where a is a material constant called the coefficient of thermal expansion. Table 4-2 provides

typical values of this constant for some common materials. Notice that for isotropic materials,

no shear strains are created by temperature change. By using (4.4.1), this result can be

combined with the mechanical relation (4.2.10) to give

eij ¼ 1þ �

E
sij � �

E
skkdij þ a(T � To)dij (4:4:4)

The corresponding results for the stress in terms of strain can be written as

sij ¼ Cijklekl � bij(T � To) (4:4:5)

where bij is a second-order tensor containing thermoelastic moduli. This result is sometimes

referred to as the Duhamel-Neumann thermoelastic constitutive law. The isotropic case can be

found by simply inverting relation (4.4.4) to get

sij ¼ lekkdij þ 2meij � (3lþ 2m)a(T � To)dij (4:4:6)
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Thermoelastic solutions are developed in Chapter 12, and the current study will now continue

under the assumption of isothermal conditions.

Having developed the necessary six constitutive relations, the elasticity field equation

system is now complete with fifteen equations (strain-displacement, equilibrium, Hooke’s

law) for fifteen unknowns (displacements, strains, stresses). Obviously, further simplification

is necessary in order to solve specific problems of engineering interest, and these processes are

the subject of the next chapter.
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Exercises

4-1. Show that the components of the Cij matrix in equation (4.2.2) are related to the

components of Cijkl by the relation

Cij ¼

C1111 C1122 C1133 C1112 C1123 C1131

C2211 C2222 C2233 C2212 C2223 C2231

C3311 C3322 C3333 C3312 C3323 C3331

C1211 C1222 C1233 C1212 C1223 C1231

C2311 C2322 C2333 C2312 C2323 C2331

C3111 C3122 C3133 C3112 C3123 C3131

2
6666664

3
7777775

4-2. Explicitly justify the symmetry relations (4.2.4). Note that the first relation follows

directly from the symmetry of the stress, while the second condition requires a simple

expansion into the form sij ¼ 1
2
(Cijkl þ Cijlk)elk to arrive at the required conclusion.

4-3. Substituting the general isotropic fourth-order form (4.2.6) into (4.2.3), explicitly develop

the stress-strain relation (4.2.7).

4-4. For isotropic materials, show that the fourth-order elasticity tensor can be expressed in the

following forms:

Cijkl ¼ l�ij �kl þ �(�il �jk þ �ik �jl)

Cijkl ¼ �(�il �jk þ �ik �jl)þ (k � 2

3
�)�ij �kl

Cijkl ¼ E�

(1þ �)(1� 2�)
�ij �kl þ E

2(1þ �)
(�il �jk þ �ik �jl)
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4-5. Following the steps outlined in the text, invert the form of Hooke’s law given by (4.2.7) and

develop form (4.2.10). Explicitly show that E ¼ m(3lþ 2m)=(lþ m)

and � ¼ l=[2(lþ m)].

4-6. Using the results of Exercise 4-5, show that m ¼ E=[2(1þ �)] l ¼ E�=[(1þ �)(1� 2�)].

4-7. For isotropic materials show that the principal axes of strain coincide with the principal

axes of stress. Further, show that the principal stresses can be expressed in terms of the

principal strains as si ¼ 2mei þ lekk.

4-8. A rosette strain gage (see Exercise 2-7) is mounted on the surface of a stress-free elastic

solid at point O as shown in the following figure. The three gage readings give surface

extensional strains ea ¼ 300� 10�6, eb ¼ 400� 10�6, ec ¼ 100� 10�6. Assuming

that the material is steel with nominal properties given by Table 4-2, determine all stress

components at O for the given coordinate system.

x
 y

z

30o

30o

a
b

c
O

4-9. The displacements in an elastic material are given by

u ¼ �M(1� �2)

EI
xy, v ¼ M(1þ �)�

2EI
y2 þM(1� �2)

2EI
(x2 � l

4

2

), w ¼ 0

where M, E, I, and l are constant parameters. Determine the corresponding strain and

stress fields and show that this problem represents the pure bending of a rectangular

beam in the x,y plane.

4-10. If the elastic constants E, k, and m are required to be positive, show that Poisson’s ratio

must satisfy the inequality �1 < � < 1
2
. For most real materials it has been found that

0 < � < 1
2
. Show that this more restrictive inequality in this problem implies that l > 0.

4-11. Under the condition that E is positive and bounded, determine the elastic moduli l, �,
and k for the special cases of Poisson’s ratio: � ¼ 0, 1

4
, 1
2
. Discuss the special

circumstances for the case with � ¼ 1
2
.

4-12. Consider the three deformation cases of simple tension, pure shear, and hydrostatic

compression as discussed in Section 4.3. Using the nominal values from Table 4-2,

calculate the resulting strains in each of these cases for

(a) Aluminum:with loadings (�¼150 MPa, t¼75 MPa, p ¼ 500 MPa)

(b) Steel:with loadings (�¼300 MPa, t¼150 MPa, p ¼ 500 MPa)

(c) Rubber:with loadings (�¼15 MPa, t¼7 MPa, p¼500 MPa)
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Note that for aluminum and steel, these tensile and shear loadings are close to the yield

values of the material.

4-13. Show that Hooke’s law for an isotropic material may be expressed in terms of spherical

and deviatoric tensors by the two relations

~ssij ¼ 3k~eeij, ŝsij ¼ 2mêeij

4-14. A sample is subjected to a test under plane stress conditions (specified by

sz ¼ tzx ¼ tzy ¼ 0) using a special loading frame that maintains an in-plane loading

constraint sx ¼ 2sy. Determine the slope of the stress-strain response sx vs. ex for this
sample.

4-15. A rectangular steel plate (thickness 4mm) is subjected to a uniform biaxial stress field as

shown in the following figure. Assuming all fields are uniform, determine changes in the

dimensions of the plate under this loading.

x

 y

300 mm

200 mm 20 MPa

30 MPa

4-16. Redo Exercise 4-15 for the case where the vertical loading is 50 MPa in tension and the

horizontal loading is 50 MPa in compression.

4-17. Consider the one-dimensional thermoelastic problem of a uniform bar constrained in the

axial x direction but allowed to expand freely in the y and z directions, as shown in the

following figure. Taking the reference temperature to be zero, show that the only nonzero

stress and strain components are given by

sx ¼ �EaT

ey ¼ ez ¼ a(1þ �)T

x

 y
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4-18. Verify that Hooke’s law for isotropic thermoelastic materials can be expressed in the

form

�x ¼ E

(1þ �)(1� 2�)
[(1� �)ex þ �(ey þ ez)]� E

1� 2�
a(T � To)

�y ¼ E

(1þ �)(1� 2�)
[(1� �)ey þ �(ez þ ex)]� E

1� 2�
a(T � To)

�z ¼ E

(1þ �)(1� 2�)
[(1� �)ez þ �(ex þ ey)]� E

1� 2�
a(T � To)

txy ¼ E

1þ �
exy, tyz ¼ E

1þ �
eyz, tzx ¼ E

1þ �
ezx
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5 Formulation and Solution Strategies

The previous chapters have now developed the basic field equations of elasticity theory. These

results comprise a system of differential and algebraic relations among the stresses, strains, and

displacements that express particular physics at all points within the body under investigation.

In this chapter we now wish to complete the general formulation by first developing boundary
conditions appropriate for use with the field equations. These conditions specify the physics

that occur on the boundary of the body, and generally provide the loading inputs that physically
create the interior stress, strain, and displacement fields. Although the field equations are the

same for all problems, boundary conditions are different for each problem. Therefore, proper

development of boundary conditions is essential for problem solution, and thus it is important

to acquire a good understanding of such development procedures. Combining field equations

with boundary conditions then establishes the fundamental boundary value problems of the

theory. This eventually leads us into two different formulations: one in terms of displacements

and the other in terms of stresses. Because boundary value problems are difficult to solve,

many different strategies have been developed to aid in problem solution. We review in a

general way several of these strategies, and later chapters incorporate many of them into the

solution of specific problems.

5.1 Review of Field Equations

Before beginning our discussion on boundary conditions we list here the basic field equations

for linear isotropic elasticity. Appendix A includes a more comprehensive listing of all field

equations in Cartesian, cylindrical, and spherical coordinate systems. Because of its ease of use

and compact properties, our formulation uses index notation.

Strain-displacement relations:

eij ¼ 1

2
(ui, j þ uj, i) (5:1:1)

Compatibility relations:

eij, kl þ ekl, ij � eik, jl � ejl, ik ¼ 0 (5:1:2)
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Equilibrium equations:

sij, j þ Fi ¼ 0 (5:1:3)

Elastic constitutive law (Hooke’s law):

sij ¼ lekkdij þ 2meij

eij ¼ 1þ �

E
sij � �

E
skkdij

(5:1:4)

As mentioned in Section 2.6, the compatibility relations ensure that the displacements are

continuous and single-valued and are necessary only when the strains are arbitrarily specified.

If, however, the displacements are included in the problem formulation, the solution normally

generates single-valued displacements and strain compatibility is automatically satisfied. Thus,

in discussing the general system of equations of elasticity, the compatibility relations (5.1.2)

are normally set aside, to be used only with the stress formulation that we discuss shortly.

Therefore, the general system of elasticity field equations refers to the fifteen relations (5.1.1),

(5.1.3), and (5.1.4). It is convenient to define this entire system using a generalized operator

notation as

J{ui, eij, sij; l, m, Fi} ¼ 0 (5:1:5)

This system involves fifteen unknowns including three displacements ui, six strains eij, and six

stresses sij. The terms after the semicolon indicate that the system is also dependent on two

elastic material constants (for isotropic materials) and on the body force density, and these are to

be given a priori with the problem formulation. It is reassuring that the number of equations

matches the number of unknowns to be determined. However, this general system of equations

is of such complexity that solutions by using analytical methods are essentially impossible and

further simplification is required to solve problems of interest. Before proceeding with devel-

opment of such simplifications, it is useful first to discuss typical boundary conditions connected

with the elasticity model, and this leads us to the classification of the fundamental problems.

5.2 Boundary Conditions and Fundamental
Problem Classifications

Similar to other field problems in engineering science (e.g., fluid mechanics, heat conduction,

diffusion, electromagnetics), the solution of system (5.1.5) requires appropriate boundary

conditions on the body under study. The common types of boundary conditions for elasticity

applications normally include specification of how the body is being supported or loaded. This
concept is mathematically formulated by specifying either the displacements or tractions at

boundary points. Figure 5-1 illustrates this general idea for three typical cases including

tractions, displacements, and a mixed case for which tractions are specified on boundary St
and displacements are given on the remaining portion Su such that the total boundary is given

by S ¼ St þ Su.
Another type of mixed boundary condition can also occur. Although it is generally not

possible to specify completely both the displacements and tractions at the same boundary

point, it is possible to prescribe part of the displacement and part of the traction. Typically, this
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type of mixed condition involves the specification of a traction and displacement in

two different orthogonal directions. A common example of this situation is shown in

Figure 5-2 for a case involving a surface of problem symmetry where the condition is one of

a rigid-smooth boundary with zero normal displacement and zero tangential traction. Notice

that in this example the body under study was subdivided along the symmetry line, thus

creating a new boundary surface and resulting in a smaller region to analyze. Minimizing the

size of the domain under study is commonly useful in computational modeling. However,

determining expected symmetry properties in the solution can often be useful to simplify

analytical analyses as well.

Because boundary conditions play a very essential role in properly formulating and solving

elasticity problems, it is important to acquire a clear understanding of their specification and use.

Improper specification results in either no solution or a solution to a different problem than what

was originally sought. Boundary conditions are normally specified using the coordinate system

describing the problem, and thus particular components of the displacements and tractions are

set equal to prescribed values. For displacement-type conditions, such a specification is straight-

forward, and a common example includes fixed boundaries where the displacements are to be

zero. For traction boundary conditions, the specification can be a bit more complex.

Figure 5-3 illustrates particular cases in which the boundaries coincide with Cartesian

or polar coordinate surfaces. By using results from Section 3.2, the traction specification

can be reduced to a stress specification. For the Cartesian example in which y ¼ constant,

Displacement Conditions Mixed ConditionsTraction Conditions

R

S

R

Su
St

T(n)

R

S

u

FIGURE 5-1 Typical boundary conditions.

Symmetry Line

Ty
(n) = 0

u = 0

x

y

Rigid-Smooth
Boundary Condition

FIGURE 5-2 Line of symmetry boundary condition.
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the normal traction becomes simply the stress component sy, while the tangential traction

reduces to txy. For this case, sx exists only inside the region; thus, this component of

stress cannot be specified on the boundary surface y ¼ constant. A similar situation exists

on the vertical boundary x ¼ constant, where the normal traction is now sx, the tangential

traction is txy, and the stress component sy exists inside the domain. Similar arguments can be

made for polar coordinate boundary surfaces as shown. Drawing the appropriate element along

the boundary as illustrated allows a clear visualization of the particular stress components

that act on the surface in question. Such a sketch also allows determination of the

positive directions of these boundary stresses, and this is useful to properly match with

boundary loadings that might be prescribed. It is recommended that sketches similar to

Figure 5-3 be used to aid in the proper development of boundary conditions during problem

formulation in later chapters.

Consider the pair of two-dimensional example problems with mixed conditions as shown in

Figure 5-4. For the rectangular plate problem, all four boundaries are coordinate surfaces, and

?

r
?

x

y

(Cartesian Coordinate Boundaries) (Polar Coordinate Boundaries)

sq

sq

sr

sx

sy

sx

sy
txy

txy

sr

trq

trq q

FIGURE 5-3 Boundary stress components on coordinate surfaces.

y Fixed Condition
u = v = 0

Traction Condition
T(n) (n)

x = sx

= sy = 0

= S,Ty = txy = 0

(n)Tx
(n)Ty= txy = 0,

b

a

S

x

Traction-Free Condition

(Coordinate Surface Boundaries)

(n)Tx

u = v = 0

(n) = −sy = S

= 0

= 0

= −txy = 0,Ty

Traction Condition

(n)Tx

(n)Ty

S

x l

y

Fixed Condition
Traction-Free Condition

(Noncoordinate Surface Boundary)

FIGURE 5-4 Example boundary conditions.
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this simplifies specification of particular boundary conditions. The fixed conditions on the left

edge simply require that x and y displacement components vanish on x ¼ 0, and this specifica-

tion does not change even if this were not a coordinate surface. However, as per our previous

discussion, the traction conditions on the other three boundaries simplify because they are

coordinate surfaces. These simplifications are shown in the figure for each of the traction-

specified surfaces. The second problem of a tapered cantilever beam has an inclined face that is

not a coordinate surface.

For this problem, the fixed end and top surface follow similar procedures as in the first

example and are specified in the figure. However, on the inclined face, the traction is to be zero

and this does not reduce to a simple specification of the vanishing of individual stress

components. On this face each traction component is set to zero, giving the result

T(n)
x ¼ sxnx þ txyny ¼ 0

T(n)
y ¼ txynx þ syny ¼ 0

where nx and ny are the components of the unit normal vector to the inclined face. This is the more

general type of specification, and it should be clearly noted that none of the individual stress

components in the x,y system will vanish along this surface. It should also be pointed out for this

problem that the unit normal vector components are constants for all points on the inclined face.

However, for curved boundaries the normal vector changes with surface position. Note that using

strain-displacement relations in Hooke’s law allows the stresses and therefore tractions to be

expressed in terms of displacement gradients. Thus traction boundary conditions can actually be

expressed in terms of displacements if so desired (see Exercise 5-3).

Another type of boundary condition formulation occurs for composite bodies composed of

two or more pieces of different material with different elastic moduli. Examples of such

situations are common and include many types of composite materials and structures, as

shown in Figure 5-5. For such problems, the elasticity solution must be developed independ-

ently for each material body, thus requiring specification of external boundary conditions and

internal interface conditions that exist between each material phase (see Figure 5-6). These

interface conditions specify how the various composite pieces are joined together. Common

simple examples include the perfectly bonded interface, where both the displacements and

tractions are continuous at the interface. Another common case is the slip interface that

Embedded Fiber or Rod Layered Composite Plate Composite Cylinder or Disk 

FIGURE 5-5 Typical composite bodies.
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prescribes continuity of normal components of displacement and traction, vanishing of the

tangential traction, and allows for a discontinuity in the tangential displacement. Other more

complicated interface conditions have been proposed in the literature in an effort to model

more sophisticated contact behavior between real material systems. Exercise 5-4 further

explores interface formulations for some specific problems.

Although these examplesprovide somebackgroundon typical boundary conditions,manyother

types will be encountered throughout the text. Several exercises at the end of this chapter provide

additional examples that will prove to be useful for students new to the elasticity formulation.

We are now in the position to formulate and classify the three fundamental boundary-value
problems in the theory of elasticity that are related to solving the general system of field

equations (5.1.5). Our presentation is limited to the static case.

Problem 1: Traction problem
Determine the distribution of displacements, strains, and stresses in the interior of an elastic
body in equilibrium when body forces are given and the distribution of tractions is prescribed
over the surface of the body:

T(n)
i (x(s)i ) ¼ fi(x

(s)
i ) (5:2:1)

where x(s)i denotes boundary points and fi(x
(s)
i ) are the prescribed traction values.

Problem 2: Displacement problem
Determine the distribution of displacements, strains, and stresses in the interior of an elastic
body in equilibrium when body forces are given and the distribution of displacements is
prescribed over the surface of the body:

ui(x
(s)
i ) ¼ gi(x

(s)
i ) (5:2:2)

where x(s)i denotes boundary points and gi(x
(s)
i ) are the prescribed displacement values.

Interface Conditions: 
Perfectly Bonded,  
Slip Interface, etc.

n

s

Material (2): sij   , ui
(2) (2)

Material (1): sij   , ui
(1) (1)

FIGURE 5-6 Composite elastic continuum.
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Problem 3: Mixed problem
Determine the distribution of displacements, strains, and stresses in the interior of an elastic
body in equilibrium when body forces are given and the distribution of tractions is prescribed
as per (5.2.1) over the surface St and the distribution of displacements is prescribed as per
(5.2.2) over the surface Su of the body (see Figure 5-1).

As mentioned previously, the solution to any of these types of problems is formidable, and

further reduction and simplification of (5.1.5) is required for the development of analytical

solution methods. Based on the description of Problem 1 with only traction boundary condi-

tions, it would appear to be desirable to express the fundamental system solely in terms of

stress, that is, J(t){sij; l, m, Fi} thereby reducing the number of unknowns in the system.

Likewise for Problem 2, a displacement-only formulation of the form J(u){ui; l, m, Fi} would

appear to simplify the problem. We now pursue such specialized formulations and explicitly

determine these reduced field equation systems.

5.3 Stress Formulation

For the first fundamental problem in elasticity, the boundary conditions are to be given only

in terms of the tractions or stress components. In order to develop solution methods for this

case, it is very helpful to reformulate the general system (5.1.5) by eliminating the displace-

ments and strains and thereby cast a new system solely in terms of the stresses. We now

develop this reformulated system. By eliminating the displacements, we must now include

the compatibility equations in the fundamental system of field equations. We therefore start

by using Hooke’s law (5.1.4)2 and eliminate the strains in the compatibility relations (5.1.2)

to get

sij, kk þ skk, ij � sik, jk � sjk, ik ¼
�

1þ �
(smm, kkdij þ smm, ijdkk � smm, jkdik � smm, ikdjk)

(5:3:1)

where we have used the arguments of Section 2.6, that the six meaningful compatibility

relations are found by setting k ¼ l in (5.1.2). Although equations (5.3.1) represent the

compatibility in terms of stress, a more useful result is found by incorporating the equilibrium

equations into the system. Recall that from (5.1.3), sij, j ¼ �Fi, and also note that dkk ¼ 3.

Substituting these results into (5.3.1) gives

sij, kk þ 1

1þ �
skk, ij ¼ �

1þ �
smm, kkdij � Fi, j � Fj, i (5:3:2)

For the case i ¼ j, relation (5.3.2) reduces to sii, kk ¼ � 1þ �

1� �
Fi, i. Substituting this result

back into (5.3.2) gives the desired relation

sij, kk þ 1

1þ �
skk, ij ¼ � �

1� �
dijFk, k � Fi, j � Fj, i (5:3:3)

This result is the compatibility relations in terms of the stress and is commonly called the

Beltrami-Michell compatibility equations. For the case with no body forces, these relations can
be expressed as the following six scalar equations:
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(1þ �)r2sx þ @2

@x2
(sx þ sy þ sz) ¼ 0

(1þ �)r2sy þ @2

@y2
(sx þ sy þ sz) ¼ 0

(1þ �)r2sz þ @2

@z2
(sx þ sy þ sz) ¼ 0

(1þ �)r2txy þ @2

@x@y
(sx þ sy þ sz) ¼ 0

(1þ �)r2tyz þ @2

@y@z
(sx þ sy þ sz) ¼ 0

(1þ �)r2tzx þ @2

@z@x
(sx þ sy þ sz) ¼ 0

(5:3:4)

Recall that the six developed relations (5.3.3) or (5.3.4) actually represent three independent

results as per our discussion in Section 2.6. Thus, combining these results with the three

equilibrium equations (5.1.3) provides the necessary six relations to solve for the six unknown

stress components for the general three-dimensional case.

This system constitutes the stress formulation for elasticity theory and is appropriate for use

with traction boundary condition problems. Once the stresses have been determined, the strains

may be found from Hooke’s law (5.1.4)2, and the displacements can be then be computed

through integration of (5.1.1). As per our previous discussion in Section 2.2, such an integra-

tion process determines the displacements only up to an arbitrary rigid-body motion, and the

displacements obtained are single-valued only if the region under study is simply connected.

The system of equations for the stress formulation is still rather complex, and analytical

solutions are commonly determined for this case by making use of stress functions. This
concept establishes a representation for the stresses that automatically satisfies the equilibrium

equations. For the two-dimensional case, this concept represents the in-plane stresses in terms

of a single function. The representation satisfies equilibrium, and the remaining compatibility

equations yield a single partial differential equation (biharmonic equation) in terms of the

stress function. Having reduced the system to a single equation we can employ many analytical

methods to find solutions of interest. Further discussion on these techniques is presented in

subsequent chapters.

5.4 Displacement Formulation

We now wish to develop the reduced set of field equations solely in terms of the displacements.

This system is referred to as the displacement formulation and is most useful when combined

with displacement-only boundary conditions found in the Problem 2 statement. This develop-

ment is somewhat more straightforward than our previous discussion for the stress formulation.

For this case, we wish to eliminate the strains and stresses from the fundamental system

(5.1.5). This is easily accomplished by using the strain-displacement relations in Hooke’s law

to give

sij ¼ luk, kdij þ m(ui, j þ uj, i) (5:4:1)

which can be expressed as six scalar equations
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sx ¼ l
@u

@x
þ @v

@y
þ @w

@z

� �
þ 2m

@u

@x

sy ¼ l
@u

@x
þ @v

@y
þ @w

@z

� �
þ 2m

@v

@y

sz ¼ l
@u

@x
þ @v

@y
þ @w

@z

� �
þ 2m

@w

@z

txy ¼ m
@u

@y
þ @v

@x

� �
, tyz ¼ m

@v

@z
þ @w

@y

� �
, tzx ¼ m

@w

@x
þ @u

@z

� �
(5:4:2)

Using these relations in the equilibrium equations gives the result

mui, kk þ (lþ m)uk, ki þ Fi ¼ 0 (5:4:3)

which is the equilibrium equations in terms of the displacements and is referred to as Navier’s
or Lamé ’s equations. This system can be expressed in vector form as

mr2uþ (lþ m)r(r � u)þ F ¼ 0 (5:4:4)

or written out in terms of three scalar equations

m,2uþ (lþ m)
@

@x

@u

@x
þ @v

@y
þ @w

@z

� �
þ Fx ¼ 0

m,2vþ (lþ m)
@

@y

@u

@x
þ @v

@y
þ @w

@z

� �
þ Fy ¼ 0

m,2wþ (lþ m)
@

@z

@u

@x
þ @v

@y
þ @w

@z

� �
þ Fz ¼ 0

(5:4:5)

where the Laplacian is given by,2 ¼ (@2=@x2)þ (@2=@y2)þ (@2=@z2). It should be noted that
for the case with no body forces, Navier’s equations are expressible in terms of a single elastic

constant (Poisson’s ratio)—see Exercise 5-9.

Navier’s equations are the desired formulation for the displacement problem, and the

system represents three equations for the three unknown displacement components. Similar

to the stress formulation, this system is still difficult to solve, and additional mathematical

techniques have been developed to further simplify these equations for problem solution.

Common methods normally employ the use of displacement potential functions. It is shown
in Chapter 13 that several such schemes can be developed that allow the displacement vector to

be expressed in terms of particular potentials. These schemes generally simplify the problem

by yielding uncoupled governing equations in terms of the displacement potentials. This then

allows several analytical methods to be employed to solve problems of interest. Several of

these techniques are discussed in later sections of the text.

To help acquire a general understanding of these results, a summary flow chart of the

developed stress and displacement formulations is shown in Figure 5-7. Note that for the

stress formulation, the resulting system J(t){sij; l, m, Fi} is actually dependent on only

the single material constant Poisson’s ratio, and thus it could be expressed as J(t){sij; �, Fi}.
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5.5 Principle of Superposition

A very useful tool for the solution to many problems in engineering science is the principle of

superposition. This technique applies to any problem that is governed by linear equations.
Under the assumption of small deformations and linear elastic constitutive behavior, all

elasticity field equations (see Figure 5-7) are linear. Furthermore, the usual boundary condi-

tions specified by relations (5.2.1) and (5.2.2) are also linear. Thus, under these conditions all

governing equations are linear, and the superposition concept can be applied. It can be easily

proved (see Chou and Pagano 1967) that the general statement of the principle can be

expressed as follows:

Principle of Superposition: For a given problem domain, if the state {s(1)ij , e
(1)
ij , u

(1)
i } is a

solution to the fundamental elasticity equations with prescribed body forces F(1)
i and

surface tractions T(1)
i , and the state {s(2)ij , e

(2)
ij , u

(2)
i }is a solution to the fundamental

equations with prescribed body forces F(2)
i and surface tractions T(2)

i , then the

state {s(1)ij þ s(2)ij , e
(1)
ij þ e(2)ij , u(1)i þ u(2)i }will be a solution to the problem with body

forces F(1)
i þ F(2)

i and surface tractions T(1)
i þ T(2)

i .

To see a more direct application of this principle, consider a simple two-dimensional case

with no body forces as shown in Figure 5-8. It can be observed that the solution to the

more complicated biaxial loading case (1) þ (2) is thus found by adding the two simpler

problems. This is a common application of the superposition principle, and we make repeated

use of it throughout the text. Thus, once the solutions to some simple problems are generated,

we can combine these results to generate a solution to a more complicated case with similar

geometry.

FIGURE 5-7 Schematic of elasticity field equations.
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5.6 Saint-Venant’s Principle

Consider the set of three identical rectangular strips under compressive loadings as shown in

Figure 5-9. As indicated, the only difference between each problem is the loading. Because the

total resultant load applied to each problem is identical (statically equivalent loadings), it is

expected that the resulting stress, strain, and displacement fields near the bottom of each strip

would be approximately the same.

This behavior can be generalized by considering an elastic solid with an arbitrary loading

T(n) over a boundary portion S*, as shown in Figure 5-10. Based on experience from other field

problems in engineering science, it seems logical that the particular boundary loading would

produce detailed and characteristic effects only in the vicinity of S*. In other words, we expect
that at points far away from S* the stresses generally depend more on the resultant FR of the

tractions rather than on the exact distribution. Thus, the characteristic signature of the

generated stress, strain, and displacement fields from a given boundary loading tend to

disappear as we move away from the boundary loading points. These concepts form the

principle of Saint-Venant, which can be stated as follows:

Saint-Venant’s Principle: The stress, strain, and displacement fields caused by two
different statically equivalent force distributions on parts of the body far away from
the loading points are approximately the same.

= +

{s (1) 
ij , e(1) 

ij , u (1)  

i }

{s      , e , u }

(1) + (2) (1) (2)

{s    + s  , e     , + e     , u       + u        }ij ij ij i i
(1) (1) (1)

ij
(2) (2)

ij i
(2)(2)

ij
(2)(2)

FIGURE 5-8 Two-dimensional superposition example.
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FIGURE 5-9 Statically equivalent loadings.
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This statement of the principle includes qualitative terms such as far away and approxi-
mately the same, and thus does not provide quantitative estimates of the differences between

the two elastic fields in question. Quantitative results have been developed by von Mises

(1945), Sternberg (1954), and Toupin (1965), while Horgan (1989) has presented a recent

review of related work. Some of this work is summarized in Boresi and Chong (2000).

If we restrict our solution to points away from the boundary loading, Saint-Venant’s principle

allows us to change the given boundary conditions to a simpler statically equivalent statement

and not affect the resulting solution. Such a simplification of boundary conditions greatly

increases our chances of finding an analytical solution to the problem. This concept therefore

proves to be very useful, and we formally outline this solution scheme in the next section.

5.7 General Solution Strategies

Having completed our formulation and related solution principles, we now wish to examine

some general solution strategies commonly used to solve elasticity problems. At this stage we

categorize particular methods and outline only typical techniques that are commonly used. As

we move further along in the text, many of these methods are developed in detail and are

applied in specific problem solution. We first distinguish three general methods of solution

called direct, inverse, and semi-inverse. Then we briefly discuss analytical, approximate, and

numerical solution procedures.

5.7.1 Direct Method
This method seeks to determine the solution by direct integration of the field equations (5.1.5)

or equivalently the stress and/or displacement formulations given in Figure 5-7. Boundary

conditions are to be satisfied exactly. This method normally encounters significant mathemat-

ical difficulties, thus limiting its application to problems with simple geometry.

EXAMPLE 5-1: Direct Integration Example: Stretching
of Prismatic Bar Under Its Own Weight

As an example of a simple direct integration problem, consider the case of a uniform

prismatic bar stretched by its own weight, as shown in Figure 5-11. The body forces for

S*

T(n)FR

FIGURE 5-10 Saint-Venant principle.
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EXAMPLE 5-1: Cont’d
z

A

l

y

FIGURE 5-11 Prismatic bar under self-weight.

this problem are Fx ¼ Fy ¼ 0,Fz ¼ �rg, where r is the material mass density and g is

the acceleration of gravity.

Assuming that on each cross-section we have uniform tension produced by the

weight of the lower portion of the bar, the stress field would take the form

sx ¼ sy ¼ txy ¼ tyz ¼ tzx ¼ 0 (5:7:1)

The equilibrium equations reduce to the simple result

@sz
@z

¼ �Fz ¼ rg (5:7:2)

This equation can be integrated directly, and applying the boundary condition sz ¼ 0 at

z ¼ 0 gives the result sz(z) ¼ rgz. Next, by using Hooke’s law, the strains are easily

calculated as

ez ¼ rgz
E

, ex ¼ ey ¼ � �rgz
E

exy ¼ eyz ¼ exz ¼ 0
(5:7:3)

The displacements follow from integrating the strain-displacement relations (5.1.1), and

for the case with boundary conditions of zero displacement and rotation at point A

(x ¼ y ¼ 0, z ¼ l), the final result is

u ¼ � �rgxz
E

, v ¼ � �rgyz
E

w ¼ rg
2E

z2 þ �(x2 þ y2)� l2
� � (5:7:4)

5.7.2 Inverse Method
For this technique, particular displacements or stresses are selected that satisfy the basic field

equations. A search is then conducted to identify a specific problem that would be solved by

this solution field. This amounts to determining appropriate problem geometry, boundary

conditions, and body forces that would enable the solution to satisfy all conditions on the

problem. Using this scheme it is sometimes difficult to construct solutions to a specific

problem of practical interest.
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EXAMPLE 5-2: Inverse Example: Pure Beam Bending

Consider the case of an elasticity problem under zero body forces with the following

stress field:

sx ¼ Ay, sy ¼ sz ¼ txy ¼ tyz ¼ tzx ¼ 0 (5:7:5)

where A is a constant. It is easily shown that this simple linear stress field satisfies the

equations of equilibrium and compatibility, and thus the field is a solution to an

elasticity problem.

The question is, what problem would be solved by such a field? A common scheme

to answer this question is to consider some trial domains and investigate the nature of

the boundary conditions that would occur using the given stress field. Therefore,

consider the two-dimensional rectangular domain shown in Figure 5-12. Using the

field (5.7.5), the tractions (stresses) on each boundary face give rise to zero loadings

on the top and bottom and a linear distribution of normal stresses on the right and left

sides as shown. Clearly, this type of boundary loading is related to a pure bending
problem, whereby the loadings on the right and left sides produce no net force and only

a pure bending moment.

x

 y

FIGURE 5-12 Pure bending problem.

5.7.3 Semi-Inverse Method
In this scheme part of the displacement and/or stress field is specified, and the other remaining

portion is determined by the fundamental field equations (normally using direct integration) and

the boundary conditions. It is often the case that constructing appropriate displacement and/or

stress solution fields can be guided by approximate strength of materials theory. The usefulness

of this approach is greatly enhanced by employing Saint-Venant’s principle, whereby a compli-

cated boundary condition can be replaced by a simpler statically equivalent distribution.

EXAMPLE 5-3: Semi-Inverse Example: Torsion
of Prismatic Bars

A simple semi-inverse example may be borrowed from the torsion problem that is

discussed in detail in Chapter 9. Skipping for now the developmental details, we

propose the following displacement field:

u ¼ �ayz, v ¼ axz, w ¼ w(x, y) (5:7:6)
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EXAMPLE 5-3: Cont’d

where a is a constant. The assumed field specifies the x and y components of displace-

ment, while the z component is left to be determined as a function of the indicated

spatial variables. By using the strain-displacement relations and Hooke’s law, the stress

field corresponding to (5.7.6) is given by

sx ¼ sy ¼ sz ¼ txy ¼ 0

txz ¼ m
@w

@x
� ay

� �

tyz ¼ m
@w

@y
þ ax

� � (5:7:7)

Using these stresses in the equations of equilibrium gives the following result:

@2w

@x2
þ @2w

@y2
¼ 0 (5:7:8)

which is actually the form of Navier’s equations for this case. This result represents a

single equation (Laplace’s equation) to determine the unknown part of the assumed

solution form. It should be apparent that by assuming part of the solution field, the

remaining equations to be solved are greatly simplified. A specific domain in the x, y
plane along with appropriate boundary conditions is needed to complete the solution to

a particular problem. Once this has been accomplished, the assumed solution form

(5.7.6) has been shown to satisfy all the field equations of elasticity.

There are numerous mathematical techniques used to solve the elasticity field equations.

Many techniques involve the development of exact analytical solutions, while others involve the
construction of approximate solution schemes. A third procedure involves the establishment of

numerical solution methods. We now briefly provide an overview of each of these techniques.

5.7.4 Analytical Solution Procedures
A variety of analytical solution methods are used to solve the elasticity field equations. The

following sections outline some of the more common methods.

Power Series Method
For many two-dimensional elasticity problems, the stress formulation leads to the use of a

stress function f(x, y). It is shown that the entire set of field equations reduces to a single

partial differential equation (biharmonic equation) in terms of this stress function. A general

mathematical scheme to solve this equation is to look for solutions in terms of a power series in

the independent variables, that is, f(x, y) ¼PCmnx
myn (see Neou 1957). Use of the boundary

conditions determines the coefficients and number of terms to be used in the series. This

method is employed to develop two-dimensional solutions in Section 8.1.

Fourier Method
A general scheme to solve a large variety of elasticity problems employs the Fourier method.

This procedure is normally applied to the governing partial differential equations by using
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separation of variables, superposition, and Fourier series or Fourier integral theory. Although
this is an ad hoc method, it has been shown to provide solutions to a large class of problems

(see, for example, Pickett 1944 and Little 1973). We make use of this scheme for two-

dimensional problem solution in Chapter 8, for a torsion problem in Chapter 9, and for several

three-dimensional solutions in Chapter 13.

Integral Transform Method
A very useful mathematical technique to solve partial differential equations is the use of

integral transforms. By applying a particular linear integral transformation to the governing

equations, certain differential forms can be simplified or eliminated, thus allowing simple

solution for the unknown transformed variables. Through appropriate inverse transformation,

the original unknowns are retrieved, giving the required solution. Typical transforms that have

been successfully applied to elasticity problems include Laplace, Fourier, and Hankel trans-
forms. We do not make specific use of this technique in the text, but example applications can

be found in Sneddon (1978) and Sneddon and Lowengrub (1969).

Complex Variable Method
Several classes of problems in elasticity can be formulated in terms of functions of a complex

variable. These include two-dimensional plane problems, the torsion problem, and some

particular thermoelastic cases. The complex variable formulation is very powerful and useful

because many solutions can be found that would be intractable by other techniques. Most of

the original development of this method was done by a series of Russian elasticians and is

summarized in the classic work of Muskhelishvili (1963). Chapter 10 formally develops this

technique and employs the method to construct several solutions for plane isotropic elasticity

problems. We also use the method in Chapter 11 to determine solutions of plane anisotropic

problems and in Chapter 12 for some thermoelastic applications.

5.7.5 Approximate Solution Procedures
With the recognized difficulty in finding exact analytical solutions, considerable work has been

done to develop approximate solutions to elasticity problems. Much of this work has been in

the area of variational methods, which are related to energy theorems (see Chapter 6). The

principal idea of this approach is the connection of the elasticity field equations with a

variational problem of finding an extremum of a particular integral functional. One specific

technique is outlined in the following section.

Ritz Method
This scheme employs a set of approximating functions to solve elasticity problems by deter-

mining stationary values of a particular energy integral. The set of approximating functions is

chosen to satisfy the boundary conditions on the problem, but only approximately make the

energy integral take on an extremum. By including more terms in the approximating solution

set, accuracy of the scheme is improved. Specific examples of this and related methods can be

found in Reismann and Pawlik (1980), Reddy (1984), and Mura and Koya (1992). Because of

the difficulty in finding proper approximating functions for problems of complex geometry,

variational techniques have made only limited contributions to the solution of general problems.

However, they have made very important applications in the finite element method.

5.7.6 Numerical Solution Procedures
Over the past several decades numerical methods have played a primary role in developing

solutions to elasticity problems of complex geometry. Various schemes have been theoretically
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developed, andnumerous private and commercial codes have beenwritten for implementation on

avarietyof computer platforms.Several of themore importantmethods are brieflydiscussedhere.

Finite Difference Method
The finite difference method (FDM) replaces derivatives in the governing field equations by

difference quotients, which involve values of the solution at discrete mesh points in the domain

under study. Repeated applications of this representation set up algebraic systems of equations

in terms of unknown mesh point values. The method is a classical one, having been established

almost a century ago, and Timoshenko and Goodier (1970) provide some details on its

applications in elasticity. The major difficulty with this scheme lies in the inaccuracies in

dealing with regions of complex shape, although this problem can be eliminated through the

use of coordinate transformation techniques.

Finite Element Method
The fundamental concept of the finite element method (FEM) lies in dividing the body under

study into a finite number of pieces (subdomains) called elements. Particular assumptions are

then made on the variation of the unknown dependent variable(s) across each element using so-

called interpolation or shape functions. This approximated variation is quantified in terms of

solution values at special locations within the element called nodes. Through this discretization
process, the method sets up an algebraic system of equations for unknown nodal values that

approximates the continuous solution. Because element size and shape are variable, the finite

element method can handle problem domains of complicated shape, and thus it has become a

very useful and practical tool (see Reddy 2006). We briefly present an introduction to finite

element methods in Chapter 16.

Boundary Element Method
The boundary element method (BEM) is based upon an integral statement of the governing

equations of elasticity. The integral statement may be cast into a form that contains unknowns

only over the boundary of the body domain. This boundary integral equation may then be

solved by using concepts from the finite element method; that is, the boundary may be

discretized into a number of elements and the interpolation approximation concept can then

be applied. This method again produces an algebraic system of equations to solve for the

unknown boundary nodal values, and the system is generally much smaller than that generated

by internal discretization such as the finite element method. By avoiding interior discretization,

the boundary element method has significant advantages over finite element schemes for

infinite or very large domains and for cases in which only boundary information is sought

(see Brebbia and Dominguez 1992). A brief discussion of this technique is given in Chapter 16.

Elasticity is a mature field and thus analytical solutions have been developed for a large

number of problems. Kachanov, Shafiro, and Tsukrov (2003) have published an interesting

compilation handbook of elasticity solutions collected from textbooks and journal articles.
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Exercises

5-1. Express all boundary conditions for each of the problems illustrated in the figures that

follow.

(a) (b)

p
40°
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(d)
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a
b

r

(f)

r1

r2

p1

p2

(e)

q

5-2. The tapered cantilever beam shown in the following figure is to have zero tractions on the

bottom inclined surface. As discussed in the text (see Figure 5-4), this may be specified by

requiring T(n)
x ¼ T(n)

y ¼ 0. This condition can also be expressed in term of components

normal and tangential to the boundary surface as T(n)
n ¼ T(n)

s ¼ 0, thus implying that

the normal and shearing stress on this surface should vanish. Show that these two

specifications are equivalent.

x

 y

n

s

a

5-3. The following two-dimensional problems all have mixed boundary conditions involving

both traction and displacement specifications. Using various field equations, formulate all

boundary conditions for each problem solely in terms of displacements.

(b)

x

y

a
S

a

(a)

S

a

a

x

y

5-4. For problems involving composite bodies composed of two or more materials, the

elasticity solution requires both boundary conditions and interface conditions between
each material system. The solution process is then developed independently for each
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material by satisfying how the various material parts are held together. The composite

bodies shown are composed of two different materials, (1) and (2), that are perfectly
bonded thereby requiring displacement and stress continuity across the interface.

Establish the required boundary and interface conditions for each problem.

r1

r2

(1)

p

(2) 

(b)

S

(a)

a

h1

x

y

h2

(1)

(2)

5-5. Solve Exercise 5-4 using slip interface conditions, where the normal components of

displacement and traction are continuous, the tangential traction vanishes, and the

tangential displacement can be discontinuous.

5-6. As mentioned in Section 5.6, Saint-Venant’s Principle will allow particular boundary

conditions to be replaced by their statically equivalent resultant. For problems (b), (c),

and (d) in Exercise 5-1, the support boundaries that had fixed displacement conditions can

be modified to specify the statically equivalent reaction force and moment loadings. For

each case, determine these reaction loadings and then relate them to particular integrals of

the tractions over the appropriate boundary.

5-7. Go through the details and explicitly develop the Beltrami-Michell compatibility

equations (5.3.3).

5-8. For the displacement formulation, use relations (5.4.1) in the equilibrium equations

and develop the Navier equations (5.4.3).

5-9. For the general displacement formulation with no body forces, show that Navier’s

equations (5.4.3) reduce to the form

ui, kk þ 1

1� 2�
uk, ki ¼ 0

and thus the field equation formulation will now only depend on the single elastic

constant, Poisson’s ratio. For the case with only displacement boundary conditions,

this fact would imply that the solution would also only depend on Poisson’s ratio.

5-10. Carry out the integration details to develop the displacements (5.7.4) in Example 5-1.

5-11. Using the inverse method, investigate which problem can be solved by the two-

dimensional stress distribution �x¼ Axy, txy¼ B þ Cy2, �y¼ 0, where A, B, and C are

constants. First show that the proposed stress field (with zero body force) satisfies the

stress formulation field equations under the condition that C¼�A/2. Note that for this
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two-dimensional plane stress case, the Beltrami-Michell compatibility equations reduce

to the form given by (7.2.7). Next choose a rectangular domain 0 � x � l and –h � y � h,
with l � h, and investigate the interior and boundary stresses. Finally use strength of

materials theory to show that these stresses could represent the solution to a cantilever

beam under end loading. Explicitly determine the required constants A, B, and C to solve

the beam problem.

5-12. Show that the following stress components satisfy the equations of equilibrium with zero

body forces, but are not the solution to a problem in elasticity:

sx ¼ c[y2 þ �(x2 � y2)]

sy ¼ c[x2 þ �(y2 � x2)]

sz ¼ c�(x2 þ y2)

txy ¼ �2c�xy

tyz ¼ tzx ¼ 0, c ¼ constant 6¼ 0

5-13*. Consider the problem of a concentrated force acting normal to the free surface of a semi-

infinite solid as shown in case (a) of the following figure. The two-dimensional stress

field for this problem is given by equations (8.4.36) as

sx ¼ � 2Px2y

p(x2 þ y2)2

sy ¼ � 2Py3

p(x2 þ y2)2

txy ¼ � 2Pxy2

p(x2 þ y2)2

Using this solution with the method of superposition, solve the problem with two

concentrated forces as shown in case (b). Because problems (a) and (b) have the same

resultant boundary loading, explicitly show that at distances far away from the loading

points the stress fields for each case give approximately the same values. Explicitly

plot and compare sy and txy for each problem on the surface y ¼ 10a and y ¼ 100a
(see Figure 8-20).

x

y

P

(a)

x

y

P/ 2 P/ 2

a

(b)
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6 Strain Energy and Related Principles

Before proceeding to the solution of specific elasticity problems, we wish to explore the

associated concepts of work and energy. Boundary tractions and body forces will do work

on an elastic solid, and this work will be stored inside the material in the form of strain

energy. For the elastic case, removal of these loadings results in complete recovery of the

stored energy within the body. Development of strain energy concepts can yield new and

useful information not found by other methods. This study also leads to some new energy

methods or principles that provide additional techniques to solve elasticity problems. In

some sense these methods may be thought of as replacements of particular field equations

that have been previously derived. For problems in structural mechanics involving rods,

beams, plates, and shells, energy methods have proved to be very useful in developing the

governing equations and associated boundary conditions. These schemes have also provided a

method to generate approximate solutions to elasticity problems. More recently, particular

energy and variational techniques have been used extensively in the development of finite and

boundary element analysis. Our presentation here will only be a brief study on this extensive

subject, and the interested reader is recommended to review Langhaar (1962), Washizu (1968),

Reddy (1984), Mura and Koya (1992), or Fung and Tong (2001) for additional details and

applications.

6.1 Strain Energy

As mentioned, the work done by surface and body forces on an elastic solid are stored inside

the body in the form of strain energy. For an idealized elastic body, this stored energy is

completely recoverable when the solid is returned to its original unstrained configuration. In

order to quantify this behavior, we now wish to determine the strain energy in terms of the

resulting stress and strain fields within the elastic solid. Consider first the simple uniform

uniaxial deformation case with no body forces, as shown in Figure 6-1. The cubical element of

dimensions dx, dy, dz is under the action of a uniform normal stress s in the x direction as

shown.

During this deformation process, we assume that the stress increases slowly from zero to sx,
such that inertia effects can be neglected. The strain energy stored is equal to the net work done

on the element, and this is given by the following equation.
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dU ¼
ðsx
0

sd uþ @u

@x
dx

� �
dydz�

ðsx
0

sdudydz ¼
ðsx
0

sd
@u

@x

� �
dxdydz (6:1:1)

Using the strain displacement relations and Hooke’s law,

@u

@x
¼ ex ¼ sx

E

and thus (6.1.1) can be reduced to

dU ¼
ðsx
0

s
ds
E

dxdydz ¼ s2x
2E

dxdydz (6:1:2)

The strain energy per unit volume, or strain energy density, is specified by

U ¼ dU

dxdydz
(6:1:3)

and thus for this case we find

U ¼ s2x
2E

¼ Ee2x
2

¼ 1

2
sxex (6:1:4)

This result can be interpreted from the stress-strain curve shown in Figure 6-2. Because the

material is linear elastic, the strain energy for the uniaxial case is simply the shaded area under

the stress-strain curve.

dx
u

dz

dx

s
s

u +

dy

x

 y

z

∂x
∂u

FIGURE 6-1 Deformation under uniform uniaxial stress.
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We next investigate the strain energy caused by the action of uniform shear stress. Choosing

the same cubical element as previously analyzed, consider the case under uniform txy and tyx
loading, as shown in Figure 6-3. Following similar analyses, the strain energy is found to be

dU ¼ 1

2
txydydz

@v

@x
dx

� �
þ 1

2
tyxdxdz

@u

@y
dy

� �
¼ 1

2
txy

@u

@y
þ @v

@x

� �
dxdydz (6:1:5)

and thus the strain energy density can be expressed by

U ¼ 1

2
txygxy ¼

t2xy
2m

¼ mg2xy
2

(6:1:6)

Results from the previous two cases (6.1.4) and (6.1.6) indicate that the strain energy is not

a linear function of the stresses or strains, and thus the principle of superposition cannot be

directly applied to develop the strain energy for a multidimensional state of stress. However,

from conservation of energy, the work done does not depend on the order of loading applica-

tion, but only on the final magnitudes of the stresses and strains. This concept then allows

normal and shear loadings to be applied one at a time and produces an additive total strain

energy for a general three-dimensional state of stress and strain, as follows:

e
ex

U

s

sx

FIGURE 6-2 Strain energy for uniaxial deformation.

dx

dy

x

y

τyx

τxy

∂u
∂y

dx∂v
∂x

dy

FIGURE 6-3 Shear deformation.
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U ¼ 1

2
(sxex þ syey þ szez þ txygxy þ tyzgyz þ tzxgzx) ¼

1

2
sijeij (6:1:7)

Although the preceding results were developed for the case of uniform stress with no

body forces, it can be shown (see Exercise 6-1) that identical results are found if body

forces are included and the stresses are allowed to vary continuously. The total strain

energy stored in an elastic solid occupying a region V is then given by the integral over the

domain

UT ¼
ððð

V

Udxdydz (6:1:8)

Using Hooke’s law, the stresses can be eliminated from relation (6.1.7) and the strain

energy can be expressed solely in terms of strain. For the isotropic case, this result

becomes

U(e) ¼ 1

2
lejjekk þ meijeij

¼ 1

2
l(ex þ ey þ ez)

2 þ m e2x þ e2y þ e2z þ
1

2
g2xy þ

1

2
g2yz þ

1

2
g2zx

� � (6:1:9)

Likewise, the strains can be eliminated and the strain energy can be written in terms of stress

U(s) ¼ 1þ �

2E
sijsij � �

2E
sjjskk

¼ 1þ �

2E
(s2x þ s2y þ s2z þ 2t2xy þ 2t2yz þ 2t2zx)�

�

2E
(sx þ sy þ sz)2

(6:1:10)

After reviewing the various developed forms in terms of the stresses or strains, it is observed

that the strain energy is a positive definite quadratic form with the property

U � 0 (6:1:11)

for all values of sij and eij, with equality only for the case with sij ¼ 0 or eij ¼ 0. Actually,

relation (6.1.11) is valid for all elastic materials, including both isotropic and anisotropic

solids.

For the uniaxial deformation case, by using relation (6.1.4) note that the derivative of the

strain energy in terms of strain yields

@U(e)

@ex
¼ @

@ex

Ee2x
2

� �
¼ Eex ¼ sx

and likewise

@U(s)

@sx
¼ @

@sx

s2x
2E

� �
¼ sx

E
¼ ex

These specific uniaxial results can be generalized (see Exercise 6-4) for the three-dimensional

case, giving the relations
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sij ¼ @U(e)

@eij
, eij ¼ @U(s)

@sij
(6:1:12)

These results are again true for all elastic materials (isotropic and anisotropic); see Langhaar

(1962) or Boresi and Chong (2000) for a general derivation. Thus, the strain energy function can

be interpreted as playing a fundamental constitutive role in establishing general stress-strain

relations for elastic materials. Such an approach in which the stresses are derivable from a strain

energy function, that is, relation (6.1.12), is referred to as hyperelasticity. Note that this approach
does not necessarily require that the relations between stress and strain be linear, and thus this

scheme is commonly used in the development of constitutive relations for nonlinear elastic

solids. Only linear relations given by Hooke’s law (4.2.1) are incorporated in the text.

Using equations (6.1.12), the following symmetry relations can be developed (Exercise 6-5)

@sij
@ekl

¼ @skl
@eij

@eij
@skl

¼ @ekl
@sij

(6:1:13)

Going back to the general constitutive form sij ¼ Cijklekl, relations (6.1.13) can be used to

develop the additional symmetry relations

Cijkl ¼ Cklij (6:1:14)

Using constitutive form (4.2.2), result (6.1.14) implies that Cij ¼ Cji, and thus there are only 21

independent elastic constants for general anisotropic elastic materials.

The strain energy in an elastic solid may be decomposed into two parts, one associated

with volumetric changeUv and the other caused by distortional (change in shape) deformationUd.

U ¼ Uv þ Ud (6:1:15)

The development of this decomposition is accomplished by using the definitions of spherical

and deviatoric strain and stress tensors presented previously in Sections 2.5 and 3.5. For

isotropic materials, the spherical stress produces only volumetric deformation, while the

deviatoric stress causes only distortional changes. The volumetric strain energy is found by

considering the spherical or hydrostatic components of stress and strain

Uv ¼ 1

2
~ssij~eeij ¼ 1

6
sjjekk ¼ 1� 2�

6E
sjjskk ¼ 1� 2�

6E
(sx þ sy þ sz)2 (6:1:16)

The distortional strain energy results from the deviatoric components or can be easily deter-

mined using relations (6.1.10), (6.1.15), and (6.1.16) to get

Ud ¼ 1

12m
[(sx � sy)2 þ (sy � sz)2 þ (sz � sx)2 þ 6(t2xy þ t2yz þ t2zx)] (6:1:17)

Particular failure theories of solids incorporate the strain energy of distortion by proposing that

material failure or yielding will initiate when Ud reaches a critical value. It can be shown that

the distortional strain energy is related to the octahedral shear stress previously discussed in

Section 3.5 (see Exercise 6-8).
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6.2 Uniqueness of the Elasticity Boundary-Value Problem

Although it would seem that the question of uniqueness of the elasticity boundary-value

problem should have been covered in Chapter 5, the proof normally makes use of strain

energy concepts and is therefore presented here. Consider the general mixed boundary-value

problem in which tractions are specified over the boundary St and displacements are prescribed

over the remaining part Su. Assume that there exist two different solutions {s(1)ij , e
(1)
ij , u

(1)
i } and

{s(2)ij , e
(2)
ij , u

(2)
i } to the same problem with identical body forces and boundary conditions. Next

define the difference solution

sij ¼ s(1)ij � s(2)ij

eij ¼ e(1)ij � e(2)ij

ui ¼ u(1)i � u(2)i

(6:2:1)

Because the solutions s(1)ij and s(2)ij have the same body force, the difference solution must

satisfy the equilibrium equation

sij, j ¼ 0 (6:2:2)

Likewise, the boundary conditions satisfied by the difference solution are given by

Tn
i ¼ sijnj ¼ 0 on St

ui ¼ 0 on Su
(6:2:3)

Starting with the definition of strain energy, we may write

2

ð
V

UdV ¼
ð
V

sijeijdV ¼
ð
V

sij(ui, j � !ij)dV

¼
ð
V

sijui, jdV ¼
ð
V

(sijui), jdV �
ð
V

sij, juidV

¼
ð
S

sijnjuidS�
ð
V

sij, juidV

(6:2:4)

where we have used the fact that sij!ij ¼ 0 (symmetric times antisymmetric ¼ 0) and have

utilized the divergence theorem to convert the volume integral into a surface integral. Incorp-

orating relations (6.2.2) and (6.2.3) and noting that the total surface S ¼ St þ Su, (6.2.4) gives
the result

2

ð
V

UdV ¼ 0 (6:2:5)

Relation (6.2.5) implies that U must vanish in the region V, and since the strain energy is a

positive definite quadratic form, the associated strains and stresses also vanish; that is,

eij ¼ sij ¼ 0. If the strain field vanishes, then the corresponding displacements ui can be at

most rigid-body motion. However, if ui ¼ 0 on Su, then the displacement field must vanish

everywhere. Thus, we have shown that s(1)ij ¼ s(2)ij , e
(1)
ij ¼ e(2)ij , u

(1)
i ¼ u(2)i and therefore the
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problem solution is unique. Note that if tractions are prescribed over the entire boundary, then

u(1)i and u(2)i may differ by rigid-body motion.

6.3 Bounds on the Elastic Constants

Strain energy concepts allow us to generate particular bounds on elastic constants. For

the isotropic case, consider the following three stress states previously investigated in

Section 4.3 (see Figure 4-2).

6.3.1 Uniaxial Tension
Uniform uniaxial deformation in the x direction is given by the stress state

sij ¼
s 0 0

0 0 0

0 0 0

2
4

3
5 (6:3:1)

For this case, the strain energy reduces to

U ¼ 1þ �

2E
s2 � �

2E
s2 ¼ s2

2E
(6:3:2)

Because the strain energy is positive definite, relation (6.3.2) implies that the modulus of

elasticity must be positive

E > 0 (6:3:3)

6.3.2 Simple Shear
Consider next the case of uniform simple shear defined by the stress tensor

sij ¼
0 t 0

t 0 0

0 0 0

2
4

3
5 (6:3:4)

The strain energy becomes

U ¼ 1þ �

2E
(2t2) ¼ t2

E
(1þ �) (6:3:5)

Again, invoking the positive definite property of the strain energy and using the previous result

of E > 0 gives

1þ � > 0 ) � > �1 (6:3:6)

6.3.3 Hydrostatic Compression
The final example is chosen as uniform hydrostatic compression specified by
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sij ¼
�p 0 0

0 �p 0

0 0 �p

2
4

3
5 (6:3:7)

Note that hydrostatic tension could also be used for this example. Evaluating the strain energy

yields

U ¼ 1þ �

2E
3p2 � �

2E
(� 3p)2 ¼ 3p2

2E
(1� 2�) (6:3:8)

Using the positive definite property with E > 0 gives the result

1� 2� > 0 ) � <
1

2
(6:3:9)

Combining relations (6.3.6) and (6.3.9) places the following bounds on Poisson’s ratio:

�1 < � <
1

2
(6:3:10)

Using relations between the elastic constants given in Table 4-1, the previous results also

imply that

k > 0, m > 0 (6:3:11)

Experimental evidence indicates that most real materials have positive values of Poisson’s

ratio, and thus 0 < � < 1=2. This further implies that l > 0. Bounds on elastic moduli for the

anisotropic case are more involved and are discussed in Chapter 11.

6.4 Related Integral Theorems

Within the context of linear elasticity, several integral relations based on work and energy can

be developed. We now wish to investigate three particular results referred to as Clapeyron’s
theorem, Betti’s reciprocal theorem, and Somigliana’s identity.

6.4.1 Clapeyron’s Theorem
The strain energy of an elastic solid in static equilibrium is equal to one-half the work done by

the external body forces Fi and surface tractions Tn
i

2

ð
V

UdV ¼
ð
S

Tn
i uidSþ

ð
V

FiuidV (6:4:1)

The proof of this theorem follows directly from results in relation (6.2.4).

6.4.2 Betti/Rayleigh Reciprocal Theorem
If an elastic body is subject to two body and surface force systems, then the work done by the

first system of forces {T(1), F(1)} acting through the displacements u(2) of the second system is

equal to the work done by the second system of forces {T(2), F(2)} acting through the

displacements u(1) of the first system; that is:
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ð
S

T(1)
i u(2)i dSþ

ð
V

F(1)
i u(2)i dV ¼

ð
S

T(2)
i u(1)i dSþ

ð
V

F(2)
i u(1)i dV (6:4:2)

The proof of this theorem starts by using the result from (6.2.4)

ð
V

s(1)ij e
(2)
ij dV ¼

ð
S

T(1)
i u(2)i dSþ

ð
V

F(1)
i u(2)i dV

Interchanging states (1) and (2) gives

ð
V

s(2)ij e
(1)
ij dV ¼

ð
S

T(2)
i u(1)i dSþ

ð
V

F(2)
i u(1)i dV

Now s(1)ij e
(2)
ij ¼ Cijkle

(1)
kl e

(2)
ij ¼ Cklije

(1)
kl e

(2)
ij ¼ Cklije

(2)
ij e

(1)
kl ¼ s(2)kl e

(1)
kl ; therefore,

s(1)ij e
(2)
ij ¼ s(2)ij e

(1)
ij (6:4:3)

Combining these results then proves the theorem. The reciprocal theorem can yield useful

applications by special selection of the two systems. One such application follows.

6.4.3 Integral Formulation of Elasticity—Somigliana’s Identity
Using the reciprocal theorem (6.4.2), select the first system to be the desired solution to

a particular problem {T,F, u}. The second system is chosen as the fundamental solution
to the elasticity equations, and this corresponds to the solution of the displacement field at

point x produced by a unit concentrated body force e located at point j. The fundamental

solution is actually related to Kelvin’s problem (concentrated force in an infinite domain) and

is solved in Examples 13-1, 15-3, and 15-4. Using this concept, the displacement may be

expressed as

u(2)i (x) ¼ Gij(x; j)ej(j) (6:4:4)

where Gij represents the displacement Green’s function to the elasticity equations. This

function has been previously developed, and forms for both two- and three-dimensional

domains have been given (Banerjee and Butterfield 1981). The three-dimensional isotropic

case, for example, is given by

Gij(x, j) ¼ 1

16pm(1� �)r
[(3� 4�)dij þ r, ir, j] (6:4:5)

where ri ¼ xi � �i and r ¼ jrj. The stresses and tractions associated with this fundamental

solution follow from the basic field equations and can be written in the form

s(2)ij ¼ Tijk(x, j)ek(j)

T(2)
i ¼ Tijk(x, j)njek(j)

Tijk(x, j) ¼ lGlk, ldij þ m(Gik, j þ Gjk, i)

(6:4:6)

Using these results in the reciprocal theorem (6.4.2) gives after some manipulation
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cuj(j) ¼
ð
S

[Ti(x)Gij(x, j)� uiTikj(x, j)nk]dSþ
ð
V

FiGij(x, j)dV (6:4:7)

where the coefficient c is given by

c ¼
1, j in V
1

2
, j on S

0, j outside V

8><
>:

Relation (6.4.7) is known as Somigliana’s identity and represents an integral statement

of the elasticity problem. This result is used in the development of boundary integral
equation (BIE) methods in elasticity and leads to the computational technique of

boundary element methods (BEM). A brief presentation of this numerical method is given in

Chapter 16.

6.5 Principle of Virtual Work

Based on work and energy principles, several additional solution methods can be developed.

These represent alternatives to the analytical methods based on differential equations

outlined in Section 5.7. The principle of virtual work provides the foundation for many of

these methods, and thus we begin our study by establishing this principle. The virtual
displacement of a material point is a fictitious displacement such that the forces acting

on the point remain unchanged. The work done by these forces during the virtual displace-

ment is called the virtual work. For an object in static equilibrium, the virtual work is

zero because the resultant force vanishes on every portion of an equilibrated body. The

converse is also true that if the virtual work is zero, then the material point must be in

equilibrium.

Let us introduce the following notational scheme. The virtual displacements of an elastic

solid are denoted by dui ¼ {du, dv, dw}, and the corresponding virtual strains are then

expressible as deij ¼ 1=2(dui, j þ duj, i). Consider the standard elasticity boundary-value prob-

lem of a solid in equilibrium under the action of surface tractions over the boundary St with
displacement conditions over the remaining boundary Su (see Figure 5-1). Now imagine that

the body undergoes a virtual displacement dui from its equilibrium configuration. The virtual

displacement is arbitrary except that it must not violate the kinematic displacement boundary
condition, and thus dui ¼ 0 on Su.

The virtual work done by the surface and body forces can be written as

dW ¼
ð
St

Tn
i duidSþ

ð
V

FiduidV (6:5:1)

Now, because the virtual displacement vanishes on Su, the integration domain of the first

integral can be changed to S. Following standard procedures, this surface integral can be

changed to a volume integral and combined with the body force term. These steps are

summarized as
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dW ¼
ð
S

Tn
i duidSþ

ð
V

FiduidV

¼
ð
S

�ijnjduidSþ
ð
V

FiduidV

¼
ð
V

(�ijdui), jdV þ
ð
V

FiduidV

¼
ð
V

(�ij, jdui þ �ijdui, j)dV þ
ð
V

FiduidV

¼
ð
V

(� Fidui þ �ijdeij)dV þ
ð
V

FiduidV

¼
ð
V

�ijdeijdV

(6:5:2)

Now the last line in relation (6.5.2) is actually the virtual strain energy within the solid:

ð
V

�ijdeijdV ¼
ð
V

(�xdex þ �ydey þ �zdez þ txydgxy þ tyzdgyz þ tzxdgzx) dV (6:5:3)

Notice that the virtual strain energy does not contain the factor of 1=2 found in the general

expression (6.1.7). This fact occurs because the stresses are constant during the virtual

displacement.

Under the assumption of the existence of a strain energy function expressed in terms of the

strains

�ij ¼ @U(e)

@eij
(6:5:4)

and thus relation (6.5.3) can be written as

ð
V

�ijdeijdV ¼
ð
V

@U

@eij
deijdV ¼ d

ð
V

UdV (6:5:5)

Because the external forces are unchanged during the virtual displacements and the region V is

fixed, the operator d can be placed before the integrals in (6.5.1). Combining this with relation

(6.5.5) allows (6.5.2) to be written as

d
ð
V

UdV �
ð
St

Tn
i uidS�

ð
V

FiuidV

� �
¼ d(UT �W) ¼ 0 (6:5:6)

This is one of the statements of the principle of virtual work for an elastic solid. The

quantity (UT �W) actually represents the total potential energy of the elastic solid, and thus

relation (6.5.6) states that the change in potential energy during a virtual displacement from

equilibrium is zero. It should be noted that this principle is valid for all elastic materials

including both linear and nonlinear stress-strain behavior. The principle of virtual work

provides a convenient method for deriving equilibrium equations and associated boundary

conditions for various special theories of elastic bodies, including rods, beams, plates, and

shells. Several such examples are given by Reismann and Pawlik (1980). In fact, even the

continuum equations previously developed can be reestablished using this method.
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To illustrate the process of using the principle of virtual work to re derive the basic

equilibrium equations and related boundary conditions for the general elasticity problem, we

can start with relations (6.5.1) and (6.5.2) to writeð
V

�ij�eijdV �
ð
S

Tn
i �uidS�

ð
V

Fi�uidV ¼ 0 (6:5:7)

The integrand of the first term can be reduced as

�ij�eij ¼ 1

2
�ij (�ui, j þ �uj, i) ¼ �ij�ui, j ¼ (�ij�ui), j � �ij, j�ui

and thus (6.5.7) can be expressed asð
V

(�ij�ui), j � �ij, j�ui
� �

dV �
ð
S

Tn
i �uidS�

ð
V

Fi�uidV ¼ 0ð
V

�ij, j þ Fi

� �
�ui dV þ

ð
S

Tn
i � �ijnj

� �
�ui dS ¼ 0

(6:5:8)

where we have used the divergence theorem to convert the volume integral
Ð
V (�ij�ui), jdV to a

surface integral over S. For arbitrary dui, relation (6.5.8) is satisfied if

�ij, j þ Fi ¼ 0 2 V

and either

�ui ¼ 0 2 Su or Tn
i ¼ �ijnj 2 St

(6:5:9)

Conditions on Su are commonly referred to as essential boundary conditions while those on St
are called natural boundary conditions. Thus we have demonstrated that the principle of

virtual work can be used to generate equilibrium equations and associated boundary conditions

for the general elasticity problem.

6.6 Principles of Minimum Potential
and Complementary Energy

We now wish to use the results of the previous section to develop principles of minimum

potential and complementary energy. Denoting the potential energy byP ¼ UT �W, the virtual

work statement indicated that the variation in potential energy from an equilibrium configuration

was zero. Another way this is commonly stated is that potential energy is stationary in an

equilibrium configuration. Such a condition implies that the potential energy will take on a local
extremum (maximum or minimum) value for this configuration. It can be shown (proof given by

Sokolnikoff 1956 orReismann and Pawlik 1980) that the potential energy has a localminimum in

the equilibrium configuration, and this leads to the following principle.

Principle of Minimum Potential Energy: Of all displacements satisfying the given
boundary conditions of an elastic solid, those that satisfy the equilibrium equations
make the potential energy a local minimum.

An additional minimum principle can be developed by reversing the nature of the variation.

Thus, consider the variation of the stresses while holding the displacements constant. Let �ij be

the actual stresses that satisfy the equilibrium equations and boundary conditions. Now consider
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a system of stress variations or virtual stresses d�ij that also satisfies the stress boundary

conditions (with dTn
i ¼ d�ijnj on St) and equilibrium equations with body force dFi. In contrast

to the previous development, we now investigate the complementary virtual work

dWc ¼
ð
S

uidTn
i dSþ

ð
V

uidFidV (6:6:1)

Employing the usual reduction steps as given in relations (6.5.2), the complementary virtual

work statement is found to reduce toð
S

uidTn
i dSþ

ð
V

uidFidV ¼
ð
V

eijd�ijdV (6:6:2)

and the integral on the right-hand side is referred to as the complementary virtual strain energy.
Introducing the complementary strain energy density function Uc, which is taken as a

function of the stresses,

eij ¼ @Uc(s)

@�ij
(6:6:3)

Using this result, the right-hand side of (6.6.2) can be expressed as

ð
V

eijd�ijdV ¼
ð
V

@Uc

@�ij
d�ijdV ¼ d

ð
V

UcdV (6:6:4)

Because the displacements do not vary and the region V is fixed, the operator d can be placed

before the integrals in (6.6.1). Combining this with relation (6.6.4) allows (6.6.2) to be written as

d
ð
V

UcdV �
ð
St

uiT
n
i dS�

ð
V

uiFidV

� �
¼ d Uc

T �Wc
� � ¼ 0 (6:6:5)

and thus the variation in total complementary energy Pc ¼ Uc �Wc is also zero in an

equilibrium configuration. As before, it can be shown that this extremum in the complementary

energy corresponds to a local minimum, thus leading to the following principle.

Principle of Minimum Complementary Energy: Of all elastic stress states satisfying the
given boundary conditions, those that satisfy the equilibrium equations make the com-
plementary energy a local minimum.

Each of the previously developed minimum principles used general constitutive relations,

either (6.5.4) or (6.6.3), and thus both principles are valid for all elastic materials regardless of

whether the stress-strain law is linear or nonlinear. Fundamentally, the strain energy is expressed

in terms of strain, while the complementary energy is functionally written in terms of stress. As

shown in Figure 6-2, the strain energy for uniaxial deformation is equal to the area under the
stress-strain curve, and thus dU ¼ �de. On the other hand, the complementary energy may be

expressed by dUc ¼ ed�, and thus Uc will be the area above the uniaxial stress–strain curve as

shown in Figure 6-4. For the uniaxial case with linear elastic behavior

Uc ¼ �xex � U ¼ �2
x

E
� �2

x

2E
¼ �2

x

2E
¼ 1

2
�xex ¼ U (6:6:6)
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This result is true for all deformations, and thus for linear elastic materials, the complementary
energy is equal to the strain energy. Note also for this case

@Uc

@�x
¼ @

@�x

�2
x

2E

� �
¼ �x

E
¼ ex (6:6:7)

which verifies the general relation (6.6.3). For the nonlinear elastic case, as shown in Figure 6-4,

it is apparent that the strain energy and complementary energy will not be the same; that is,

Uc 6¼ U. However, using the fact that Uc ¼ �xex � U, it follows that

@Uc

@�x
¼ ex þ �x

@ex
@�x

� @U

@ex

@ex
@�x

¼ ex þ �x
@ex
@�x

� �x
@ex
@�x

¼ ex

(6:6:8)

which again verifies the general relation (6.6.3) for the nonlinear case.

Additional related principles can be developed including Castigiliano’s theorems and a mixed

formulation called Reissner’s principle (see Reismann and Pawlik 1980 or Fung and Tong 2001).

EXAMPLE 6-1: Euler-Bernoulli Beam Theory

In order to demonstrate the utility of energy principles, consider an application dealing

with the bending of an elastic beam, as shown in Figure 6-5. The external distributed

loading q will induce internal bending momentsM and shear forces V at each section of

the beam. According to classical Euler-Bernoulli theory, the bending stress �x and

moment-curvature and moment-shear relations are given by

�x ¼ �My

I
, M ¼ EI

d2w

dx2
, V ¼ dM

dx
(6:6:9)

where I ¼ Ð ÐA y2dA is the area moment of inertia of the cross-section about the neutral

axis, and w is the beam deflection (positive in y direction).

ex

e

(Nonlinear Elastic, U π Uc)

ex

e

(Linear Elastic, U = Uc)

dUc=eds

dU=sde

Uc

U

Uc

U

s s

sx sx

FIGURE 6-4 Strain and complementary energy for linear and nonlinear elastic materials.
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EXAMPLE 6-1: Cont’d

x

y
q

Mo(0)

Vo(0) Vo(l )

Mo(l )

l

FIGURE 6-5 Euler-Bernoulli beam geometry.

Considering only the strain energy caused by the bending stresses

U ¼ �2x
2E

¼ M2y2

2EI2
¼ E

2

d2w

dx2

� �2

y2

and thus the total strain energy in a beam of length l is

UT ¼
ðl
0

ðð
A

E

2

d2w

dx2

� �2

y2dA

" #
dx ¼

ðl
0

EI

2

d2w

dx2

� �2

dx (6:6:10)

Now the work done by the external forces (tractions) includes contributions from the

distributed loading q and the loadings at the ends x ¼ 0 and l

W ¼
ðl
0

qwdx� Vow�Mo
dw

dx

� 	l
0

(6:6:11)

Therefore, the total potential energy for this beam case is given by

P ¼ UT �W ¼
ðl
0

EI

2

d2w

dx2

� �2

�qw

" #
dxþ Vow�Mo

dw

dx

� 	l
0

(6:6:12)

The first variation of this quantity must vanish

dP ¼ d
ðl
0

EI

2

d2w

dx2

� �2

�qw

" #
dxþ d Vow�Mo

dw

dx

� 	l
0

¼
ðl
0

d
EI

2

d2w

dx2

� �2

�qw

" #
dxþ Vodw�Mo

ddw
dx

� 	l
0

¼ EI

2

ðl
0

2
d2w

dx2
d2dw
dx2

dx�
ðl
0

qdwdxþ Vodw�Mo
ddw
dx

� 	l
0

¼ 0

(6:6:13)

Now the first integral term can be integrated by parts twice to get

ðl
0

EI
d4w

dx4
� q

� �
dwdxþ ddw

dx
(M �Mo)� dw(V � Vo)

� 	l
0

¼ 0 (6:6:14)

Continued
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EXAMPLE 6-1: Euler-Bernoulli Beam Theory—Cont’d

The integral and boundary terms must all vanish, thus implying

ðl
0

EI
d4w

dx4
� q

� �
dwdx ¼ 0

V ¼ Vo or dw ¼ 0, x ¼ 0, l

M ¼ Mo or d
dw

dx

� �
¼ 0, x ¼ 0, l

(6:6:15)

For this integral to vanish for all variations dw, the fundamental lemma in the calculus
of variations implies that the integrand must be zero, giving

EI
d4w

dx4
� q ¼ 0 (6:6:16)

This result is simply the differential equilibrium equation for the beam, and thus the sta-

tionary value for the potential energy leads directly to the governing equilibrium equation

in terms of displacement and the associated boundary conditions. Of course, this entire

formulation is based on the simplifying assumptions found in Euler-Bernoulli beam theory,

and resulting solutions would not match with the more exact theory of elasticity results.

6.7 Rayleigh-Ritz Method

The previous beam example indicates a correspondence between the governing differential equa-

tion(s) and a variational problem of minimizing the potential energy of the system. Such a corres-

pondence exists for many other types of problems in structural mechanics and elasticity.

For problems of complicated shape or loading geometry, the solution to the governing differential

equationcannotbefoundbyanalyticalmethods.Forsuchcases,approximatesolutionschemeshave

been developed based on the variational form of the problem. Several such approximate schemes

have been constructed, and one of the more important techniques is the Rayleigh-Ritz method.
This particular technique is based on the idea of constructing a series of trial approximating

functions that satisfy the boundary conditions but not the differential equation(s). For the

elasticity displacement formulation (Section 5.4), this concept would express the displace-

ments in the form

u ¼ uo þ a1u1 þ a2u2 þ a3u3 þ . . . ¼ uo þ
XN
j¼1

ajuj

v ¼ vo þ b1v1 þ b2v2 þ b3v3 þ . . . ¼ vo þ
XN
j¼1

bjvj

w ¼ wo þ c1w1 þ c2w2 þ c3w3 þ . . . ¼ wo þ
XN
j¼1

cjwj

(6:7:1)

where the functions uo, vo, wo are chosen to satisfy any nonhomogeneous displacement bound-

ary conditions and uj, vj, wj satisfy the corresponding homogeneous boundary conditions. Note
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that these forms are not required to satisfy the traction boundary conditions. Normally, these trial

functions are chosen from some combination of elementary functions such as polynomial,

trigonometric, or hyperbolic forms. The unknown constant coefficients aj, bj, cj are to be

determined so as to minimize the potential energy of the problem, thus approximately satisfying

the variational formulation of the problem under study. Using this type of approximation, the

total potential energy will thus be a function of these unknown coefficients

P ¼ P(aj, bj, cj) (6:7:2)

and the minimizing condition can be expressed as a series of expressions

@P
@aj

¼ 0,
@P
@bj

¼ 0,
@P
@cj

¼ 0 (6:7:3)

This set forms a system of 3N algebraic equations that can be solved to obtain the parameters

aj, bj, cj. Under suitable conditions on the choice of trial functions (completeness property),

the approximation will improve as the number of included terms is increased.

Commonly, this technique is applied to a reduced elasticity problem involving only one or two

components of displacement typically found in rods, beams, plates, and shells. Once

the approximate displacement solution is obtained, the strains and stresses can be calculated

from the appropriate field equations. However, since the strains and stresses are derivable

through differentiation, the accuracy in these variables will in general not be as good

as that obtained for the displacements (see Exercises 6-13 and 6-14). In order to demonstrate

the Ritz technique, consider again the Euler-Bernoulli beam problem from Example 6-1.

EXAMPLE 6-2: Rayleigh-Ritz Solution of a Simply
Supported Euler-Bernoulli Beam

Consider a simply supported Euler-Bernoulli beam of length l carrying a uniform

loading qo. This one-dimensional problem has displacement boundary conditions

w ¼ 0 at x ¼ 0, l (6:7:4)

and tractions or moment conditions

EI
d2w

dx2
¼ 0 at x ¼ 0, l (6:7:5)

The Ritz approximation for this problem is of the form

w ¼ wo þ
XN
j¼1

cjwj (6:7:6)

With no nonhomogeneous boundary conditions, wo ¼ 0. For this example, we choose a

polynomial form for the trail solution. An appropriate choice that satisfies the homoge-

neous conditions (6.7.4) is wj ¼ xj(l� x). Note this form does not satisfy the traction

Continued
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EXAMPLE 6-2: Rayleigh-Ritz Solution of a Simply
Supported Euler-Bernoulli Beam—Cont’d

conditions (6.7.5). Using the previously developed relation for the potential energy

(6.6.12), we get

P ¼
ðl
0

EI

2

d2w

dx2

� �2

�qow

" #
dx

¼
ðl
0

EI

2

XN
j¼1

cj[ j( j� 1)lx j�2 � j( jþ 1) x j�1]

 !2

�qo
XN
j¼1

cjx
j(l� x)

2
4

3
5dx

(6:7:7)

Retaining only a two-term approximation (N ¼ 2), the coefficients are found to be

c1 ¼ qol
2

24EI
, c2 ¼ 0

and this gives the following approximate solution:

w ¼ qol
2

24EI
x(l� x) (6:7:8)

Note that the approximate solution predicts a parabolic displacement distribution, while

the exact solution to this problem is given by the cubic relation

w ¼ qox

24EI
(l3 þ x3 � 2lx2) (6:7:9)

Actually, for this special case, the exact solution can be obtained from a Ritz scheme by

including polynomials of degree three.

Other similar approximate techniques have been developed based on variational principles

of complementary energy or the Reissner mixed formulation. A more generalized approxi-

mating scheme called the weighted residual method includes Ritz and several other tech-

niques within the general approach. Although these approximate variational methods offer

the potential to solve complex problems of engineering interest, they suffer a very important

drawback involved with the selection of the approximating functions. Apart from the general

properties the functions are required to satisfy, there exists no systematic procedure of

constructing them. The selection process becomes more difficult when the domain is geo-

metrically complex and/or the boundary conditions are complicated. Thus, these schemes

have had limited success in solving such complicated problems. However, because these

methods can easily provide approximate solutions over domains of simple shape with

predetermined boundary conditions, they are ideally suited for finite element techniques,

whereby a geometrically complex domain is divided into subdomains of simple geometry.

Over each subdomain or element the governing differential equation may be formulated

using variational methods, and the approximation functions can then be systematically

generated for each typical element (Reddy 2006). More details on these techniques are

given in Chapter 16.
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Exercises

6-1. The uniaxial deformation case as shown in Figure 6-1 was used to determine the strain

energy under uniform stress with zero body force. Determine this strain energy for

the case in which the stress varies continuously as a function of x and also include the

effect of a body force Fx. Neglecting higher-order terms, show that the result is the same

as previously given by (6.1.4).

6-2. Since the strain energy has physical meaning that is independent of the choice of

coordinate axes, it must be invariant to all coordinate transformations. Because U is a

quadratic form in the strains or stresses, it cannot depend on the third invariants IIIe or I3,
and so it must depend only on the first two invariants of the strain or stress tensors. Show

that the strain energy can be written in the following forms

U ¼ 1

2
lþ �

� �
I2e � 2�IIe

¼ 1

2E
I21 � 2(1þ �)I2
� �

6-3. Starting with the general expression (6.1.7), explicitly develop forms (6.1.9) and (6.1.10)

for the strain energy density.

6-4. Differentiate the general three-dimensional strain energy form (6.1.9) to show that

�ij ¼ @U(e)

@eij

6-5. Using equations (6.1.12), develop the symmetry relations (6.1.13), and use these to prove

the symmetry in the elasticity tensor Cijkl ¼ Cklij.

6-6. Verify the decomposition of the strain energy into volumetric and deviatoric parts as

given by equations (6.1.16) and (6.1.17).

6-7. Starting with relations (6.1.16) and (6.1.17), show that the volumetric and distortional

strain energies can be expressed in terms of the invariants of the stress matrix as
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Uv ¼ 1� 2�

6E
I21

Ud ¼ � 1

4�
I21 þ 2I2
� �

Results from Exercise 6-6 may be helpful.

6-8. Show that the distortional strain energy given by (6.1.17) is related to the octahedral

shear stress (3.5.4)2 by the relation

Ud ¼ 3

2

1þ �

E
t2oct ¼

3

4�
t2oct

Results from Exercise 3-5 may be helpful.

6-9. A two-dimensional state of plane stress in the x,y-plane is defined by the stress matrix

�ij ¼
�x txy 0

txy �y 0

0 0 0

2
4

3
5

Determine the strain energy density for this case in terms of these nonzero stress

components.

6-10. The stress field for a beam of length 2l and depth 2c under end bending momentsM (see

Figure 8-2) is given by

�x ¼ � 3M

2c3
y ,�y ¼ �z ¼ txy ¼ tyz ¼ tzx ¼ 0

Determine the strain energy density and show that the total strain energy in the beam is

given by

UT ¼ 3M2l

2Ec3
¼ M2l

EI

where I is the section moment of inertia. Assume unit thickness in the z-direction.

6-11. The stress field for the torsion of a rod of circular cross-section is given by

�x ¼ �y ¼ �z ¼ txy ¼ 0, txz ¼ �may, tyz ¼ max

where a is a constant and the z-axis coincides with the axis of the rod. Evaluate the strain
energy density for this case, and determine the total strain energy in a rod with section

radius R and length L.

6-12. Using the reciprocal theorem, choose the first state as u(1)i ¼ Axi, F(1)
i ¼ 0, T(1)

i ¼ 3kAni,
and take thesecondstateasui, Fi, Ti to showthat thechange involumeof thebody isgivenby

DV ¼
ð
V

eiidV ¼ 1

3k

ð
V

FixidV þ
ð
S

TixidS


 �

where A is an arbitrary constant and k is the bulk modulus.
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6-13. Rework Example 6-2 using the trigonometric Ritz approximation wj ¼ sin jpx
l . Develop

a two-term approximate solution, and compare it with the displacement solution

developed in the text. Also compare each of these approximations with the exact

solution (6.7.9) at midspan x ¼ l=2.

6-14. Using the bending formulae (6.6.9), compare the maximum bending stresses from the

cases presented in Example 6-2 and Exercise 6-13. Numerically compare these results

with the exact solution; see (6.7.9) at midspan x ¼ l=2.
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7 Two-Dimensional Formulation

Because of the complexity of the elasticity field equations, analytical closed-form solutions to

fully three-dimensional problems are very difficult to accomplish. Thus, most solutions are

developed for reduced problems that typically include axisymmetry or two-dimensionality to

simplify particular aspects of the formulation and solution. We now wish to examine in detail

the formulation of two-dimensional problems in elasticity. Our initial formulation will result in

a boundary-value problem cast within a two-dimensional domain in the x,y-plane using

Cartesian coordinates. This work will then be reformulated in polar coordinates to allow for

the development of important solutions in that coordinate system. Because all real elastic

structures are three-dimensional, the theories set forth here will be approximate models. The

nature and accuracy of the approximation depends on problem and loading geometry.

Although four different formulations are developed, the two basic theories of plane strain
and plane stress represent the fundamental plane problem in elasticity. These two theories

apply to significantly different types of two-dimensional bodies; however, their formulations

yield very similar field equations. It will be shown that these two theories can be reduced to

one governing equation in terms of a single unknown stress function. This reduction then

allows many solutions to be generated to problems of engineering interest, and such solutions

are presented in the following chapter.

7.1 Plane Strain

Consider an infinitely long cylindrical (prismatic) body shown in Figure 7-1. If the body forces

and tractions on the lateral boundaries are independent of the z-coordinate and have no z
component, then the deformation field within the body can be taken in the reduced form

u ¼ u(x, y), v ¼ v(x, y), w ¼ 0 (7:1:1)

This deformation is referred to as a state of plane strain in the x,y-plane. It should be

obvious that for such a case all cross-sections R will have identical displacements, and thus

the three-dimensional problem is reduced to a two-dimensional formulation in region R in the

x,y-plane.
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Using the strain-displacement relations (2.2.5), the strains corresponding to this plane

problem become

ex ¼ @u

@x
, ey ¼ @v

@y
, exy ¼ 1

2

@u

@y
þ @v

@x

� �
ez ¼ exz ¼ eyz ¼ 0

(7:1:2)

From the isotropic form of Hooke’s law (4.2.8), the allowable stresses reduce to

sx ¼ l(ex þ ey)þ 2mex
sy ¼ l(ex þ ey)þ 2mey
sz ¼ l(ex þ ey) ¼ �(sx þ sy)

txy ¼ 2mexy, txz ¼ tyz ¼ 0

(7:1:3)

Note that the second expression for sz has used the first two relations of (7.1.3) to write sz in
terms of the in-plane stress components. Thus, once sx and sy are determined, sz is easily

found from Hooke’s law. For this case, although ez ¼ 0, the corresponding normal stress sz
will not in general vanish. It should be recognized that all strain and stress components will be

functions of only the in-plane coordinates x and y.
For plane strain, the equilibrium equations (3.6.5) reduce to

@sx
@x

þ @txy
@y

þ Fx

@txy
@x

þ @sy
@y

þ Fy

(7:1:4)

where the third equation will vanish identically. Using relations (7.1.2) and (7.1.3), the

equilibrium relations can be expressed in terms of displacement, yielding Navier equations

FIGURE 7-1 Long cylindrical body representing plane strain conditions.
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mr2uþ (lþ m)
@

@x

@u

@x
þ @v

@y

� �
þ Fx ¼ 0

mr2� þ (lþ m)
@

@y

@u

@x
þ @v

@y

� �
þ Fy ¼ 0

(7:1:5)

where r2 is the two-dimensional Laplacian operator r2 ¼ (@2=@x2)þ (@2=@y2).
With regard to strain compatibility for plane strain, the Saint-Venant relations (2.6.2)

reduce to

@2ex
@y2

þ @2ey
@x2

¼ 2
@2exy
@x@y

(7:1:6)

Expressing this relation in terms of stress gives the corresponding Beltrami-Michell equation

r2(sx þ sy) ¼ � 1

1� �

@Fx

@x
þ @Fy

@y

� �
(7:1:7)

Thus, the plane strain problem is formulated in the two-dimensional region R with boundary S
as shown in Figure 7-2. The displacement formulation is given by relations (7.1.5) with

boundary conditions

u ¼ ub(x, y), v ¼ vb(x, y) on S (7:1:8)

while the stress or traction formulation includes field relations (7.1.4) and (7.1.7) with

boundary conditions

Tn
x ¼ T(b)

x (x, y) ¼ s(b)x nx þ t(b)xy ny

Tn
y ¼ T(b)

y (x, y) ¼ t(b)xy nx þ s(b)y ny on S
(7:1:9)

Note that from our initial assumptions for plane strain, Tn
z ¼ 0. The solution to the plane strain

problem then involves the determination of the in-plane displacements, strains, and stresses

{u, v, ex, ey, exy, sx, sy, txy} in R. The out-of-plane stress sz can be determined from the

in-plane stresses by using relation (7.1.3)3. This then completes our formulation of plane strain.

R

So
Si

S = Si + So

x

y

FIGURE 7-2 Typical domain for the plane elasticity problem.
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Before moving on to another case, let us consider the situation in which the cylindrical body

in Figure 7-1 is now of finite length. First consider the situation in which the body has fixed and
frictionless ends at say (z ¼ �l). This case leads to end conditions

w(x, y,�l ) ¼ 0, txz(x, y,�l ) ¼ tyz(x, y,�l ) ¼ 0

But these conditions are identically satisfied by the original plane strain formulation, and thus

the original formulation also satisfies this finite length problem. Note that the restraining forces

at the ends can be determined by integrating sz over the cross-section R. Although this specific
problem has limited practical applications, the solution can be applied in an approximate sense

for a long cylinder with any end conditions using Saint-Venant’s principle.

If we wish to find the solution to a long but finite cylindrical body with no end tractions, a

corrective solution must be added to the usual plane strain solution to remove the unwanted

end loadings. Such a corrective solution must have zero tractions on the lateral sides of the

body and prescribed end tractions equal but opposite to that obtained from the plane strain

solution. Finding such a corrective solution to satisfy exact pointwise traction conditions on the

ends is normally quite difficult, and commonly the Saint-Venant principle is invoked and the

exact conditions are replaced by a simpler statically equivalent distribution. Exercise 7-4

considers a specific problem of this type.

7.2 Plane Stress

The second type of two-dimensional theory applies to domains bounded by two parallel

planes separated by a distance that is small in comparison to other dimensions in the problem.

Again, choosing the x,y-plane to describe the problem, the domain is bounded by two planes

z ¼�h, as shown in Figure 7-3. The theory further assumes that these planes are stress free,

and thus sz ¼ txz ¼ tyz ¼ 0 on each face. Because the region is thin in the z direction, there can
be little variation in these stress components through the thickness, and thus they will be

approximately zero throughout the entire domain. Finally, because the region is thin in the z
direction it can be argued that the other nonzero stress components will have little variation

with z. These arguments can then be summarized by the stress state

sx ¼ sx(x, y), sy ¼ sy(x, y), txy ¼ txy(x, y), sz ¼ txz ¼ tyz ¼ 0 (7:2:1)

x

y

z
R

2h

FIGURE 7-3 Thin elastic plate representing plane stress conditions.
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and this form constitutes a state of plane stress in an elastic solid. In order to maintain a stress

field independent of z, there can be no body forces or surface tractions in the z direction.

Furthermore, the nonzero body forces and tractions must be independent of z or distributed
symmetrically about the midplane through the thickness, thus allowing average values to be

used. Therefore, plane stress problems may be thought of as in-plane deformation of thin

elastic plates.

Using the simplified plane stress state, the corresponding strain field follows from

Hooke’s law

ex ¼ 1

E
(sx � �sy)

ey ¼ 1

E
(sy � �sx)

ez ¼ � �

E
(sx þ sy) ¼ � �

1� �
(ex þ ey)

exy ¼ 1þ �

E
txy, exz ¼ eyz ¼ 0

(7:2:2)

Similar to the previous plane strain theory, the second expression for ez has used the first two

relations of (7.2.2) to write the out-of-plane strain in terms of in-plane components. Note that

although ez ¼ 0 for plane strain, it will not in general vanish for plane stress. It should be

apparent from (7.2.2) that all strains will be independent of z. Relations (7.2.2) can be inverted
to express the stresses in terms of the strains (see Exercise 7-6).

The strain-displacement equations for plane stress reduce to

ex ¼ @u

@x
, ey ¼ @v

@y
, ez ¼ @w

@z

exy ¼ 1

2

@u

@y
þ @v

@x

� �

eyz ¼ 1

2

@v

@z
þ @w

@y

� �
¼ 0

exz ¼ 1

2

@u

@z
þ @w

@x

� �
¼ 0

(7:2:3)

The relations involving the three out-of-plane strains ez, exz, and eyz produce some unwanted

results. For example, the last two relations of (7.2.3) imply that the in-plane displacements u
and v are functions of z, thus making the theory three-dimensional. Likewise, the relation for ez
when viewed with equation (7:2:2)3 implies that w is a linear function of z. Exercise 7-8

investigates these issues in more detail, and further discussion is given in Timoshenko and

Goodier (1970), Article 98. Normally, these results are not used in the theory and this leads to

an approximation in the formulation.

Under plane stress conditions, the equilibrium equations reduce to the identical form as in

plane strain theory

@sx
@x

þ @txy
@y

þ Fx ¼ 0

@txy
@x

þ @sy
@y

þ Fy ¼ 0

(7:2:4)
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where Fx and Fy are functions of x and y and Fz ¼ 0. Expressing these equilibrium equations in

terms of the displacements yield the Navier equations for plane stress

mr2uþ E

2(1� �)

@

@x

@u

@x
þ @v

@y

� �
þ Fx ¼ 0

mr2vþ E

2(1� �)

@

@y

@u

@x
þ @v

@y

� �
þ Fy ¼ 0

(7:2:5)

Notice that the corresponding system for plane strain (7.1.5) is similar but not identical to this

plane stress result.

To develop the plane stress reduction in the compatibility relations (2.6.2), the three

relations involving the out-of-plane strain component ez are commonly neglected. This again

brings out the approximate nature of the plane stress formulation. The neglected compatibility

relations are further examined in Exercise 7-9. Under these conditions, the only remaining

compatibility relation for plane stress is identical to that found in plane strain

@2ex
@y2

þ @2ey
@x2

¼ 2
@2exy
@x@y

(7:2:6)

Expressing this relation in terms of stress gives the corresponding Beltrami-Michell

equation:

r2(sx þ sy) ¼ �(1þ �)
@Fx

@x
þ @Fy

@y

� �
(7:2:7)

Notice that this result is again similar but not identical to the corresponding plane strain

relation.

Similar to plane strain, the plane stress problem is formulated in the two-dimensional region

Rwith boundary S (see Figure 7-2). The displacement formulation is specified by the governing

Navier relations (7.2.5) with boundary conditions of the form given by equations (7.1.8).

The stress or traction formulation includes the governing equations (7.2.4) and (7.2.7)

with boundary conditions of the form (7.1.9). The solution to the plane stress problem

then involves the determination of the in-plane displacements, strains, and stresses {u, v, ex,
ey, exy, sx, sy, txy} in R. The out-of-plane strain ez can be determined from the in-plane strains

by using relation (7:2:2)3. This then completes our formulation of plane stress.

In following the formulation developments of plane strain and plane stress, it should be

apparent that although unfortunately the two theories do not have identical governing equa-

tions, many relations are quite similar. Note that each theory has identical equilibrium

equations (7.1.4) and (7.2.4) and boundary condition specifications. Furthermore, each theory

has similar Navier equations (7.1.5) and (7.2.5) and compatibility relations (7.1.7) and (7.2.7).

Focusing attention on these similar relations, it is observed that the basic difference between

these equations is simply some coefficients involving the elastic material constants. This leads

to the idea that perhaps a simple change in elastic moduli would bring one set of relations into

an exact match with the corresponding result from the other plane theory. This in fact is the

case, and it is easily shown that through transformation of the elastic moduli E and �, as
specified in Table 7-1, all plane stress problems can be transformed into the corresponding

plane strain model and vice versa. Thus, solving one type of plane problem automatically gives

the other solution through a simple transformation of elastic moduli in the final answer.
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It should be noted that for the particular value of Poisson’s ratio � ¼ 0, plane strain and plane

stress solutions will be identical.

7.3 Generalized Plane Stress

Recall that the approximate nature of the plane stress formulation produced some inconsist-

encies in particular out-of-plane behavior, and this resulted in some three-dimensional

behavior in which the in-plane displacements were functions of z. In order to avoid this

situation, elasticians have developed an alternate approach commonly referred to as general-
ized plane stress. This theory is based on averaging the field quantities through the thickness of
the domain shown in Figure 7-3. The averaging operator is defined by

j(x, y) ¼ 1

2h

ðh
�h

j(x, y, z)dz (7:3:1)

and it is noted that this operation removes the z dependency from the function. We again

assume that h is much smaller than other dimensions associated with the problem.

The tractions on surfaces z ¼ �h are again taken to be zero, while the loadings on the

edge of the plate have no z component and are either independent of z or are symmetrically

distributed through the thickness. Likewise, any body forces cannot have a z component

and they must also be either independent of z or symmetrically distributed through the

thickness. Under these assumptions, the out-of-plane displacement will be an odd function of

z, implying w(x, y, z) ¼ �w(x, y,� z), and points on the middle plane will have no z displace-
ment; that is, w(x, y, 0) ¼ 0. These conditions imply that the average value of w will be zero:

w ¼ 1

2h

ðh
�h

w(x, y, z)dz ¼ 0 (7:3:2)

The assumed tractions on z ¼ �h can be expressed as

sz(x, y,�h) ¼ txz(x, y,�h) ¼ tyz(x, y,�h) ¼ 0 (7:3:3)

The equilibrium equation in the z direction becomes

@txz
@x

þ @tyz
@y

þ @sz
@z

¼ 0

TABLE 7-1 Elastic Moduli Transformation Relations for
Conversion Between Plane Stress and Plane Strain Problems

E �

Plane stress to plane strain E

1� �2
�

1� �

Plane strain to plane stress
E(1þ 2�)

(1þ �)2
�

1þ �
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Evaluating this relation at z ¼ �h and using (7.3.3) drops the first two derivatives and gives

@sz(x, y,�h)

@z
¼ 0

Thus, both sz and its normal derivative vanish at z ¼ �h. A simple Taylor series expansion of

sz through the thickness would then imply that this stress is of order h2, and this further

justifies the assumption that sz vanishes throughout the interior of the thin plate.

If we now take the average value of all remaining field equations, the resulting system is

given by

u ¼ u(x, y), v ¼ v(x, y), w ¼ 0

sz ¼ txz ¼ tyz ¼ 0

sx ¼ l*(�eex þ �eey)þ 2m�eex
sy ¼ l*(�eex þ �eey)þ 2m�eey
txy ¼ 2m�eexy

�eez ¼ � l
lþ 2m

(�eex þ �eey)

(7:3:4)

where l* ¼ 2lm
lþ 2m

. The equilibrium equations become

@sx
@x

þ @txy
@y

þ Fx ¼ 0

@txy
@x

þ @sy
@y

þ Fy ¼ 0

(7:3:5)

and written in terms of displacements

mr2uþ (l*þ m)
@

@x

@u

@x
þ @v

@y

� �
þ Fx ¼ 0

mr2vþ (l*þ m)
@

@y

@u

@x
þ @v

@y

� �
þ Fy ¼ 0

(7:3:6)

Note the coefficient l*þ m ¼ E=2(1� �). Finally, in terms of the averaged variables, all

compatibility relations reduce to the single statement

r2(sx þ sy) ¼ � 2(l*þ m)
l*þ 2m

@Fx

@x
þ @Fy

@y

� �
(7:3:7)

and again the coefficient reduces as 2(l*þ m)=(l*þ 2m) ¼ 1þ �. It is then evident that

generalized plane stress relations (7.3.4) through (7.3.7) in terms of the averaged values are

the same as the original plane stress results in terms of the actual values.

The only advantage of pursuing the generalized plane stress formulation then lies in the

fact that all equations are satisfied exactly by these average variables, thereby eliminating

the inconsistencies found in the previous plane stress formulation. However, this gain in

rigor does not generally contribute much to applications, and thus we normally use only the

plane strain and plane stress formulations from Sections 7.1 and 7.2.
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7.4 Antiplane Strain

One additional plane theory of elasticity involves a formulation based on the existence of only

out-of-plane deformation. This theory is sometimes used in geomechanics applications

to model deformations of portions of the earth’s interior. The formulation begins with the

assumed displacement field

u ¼ v ¼ 0, w ¼ w(x, y) (7:4:1)

For such a system of displacements, the strain field becomes

ex ¼ ey ¼ ez ¼ exy ¼ 0

exz ¼ 1

2

@w

@x
, eyz ¼ 1

2

@w

@y

(7:4:2)

and from Hooke’s law the stresses reduce to

�x ¼ �y ¼ �z ¼ txy ¼ 0

txz ¼ 2�exz ¼ �
@w

@x
, tyz ¼ 2meyz ¼ m

@w

@y

(7:4:3)

The equilibrium equations imply that

Fx ¼ Fy ¼ 0

@txz
@x

þ @tyz
@y

þ Fz ¼ 0
(7:4:4)

and written out in terms of the single displacement component, the equilibrium statement

becomes

mr2wþ Fz ¼ 0 (7:4:5)

where again r2 is the two-dimensional Laplacian operator. It is observed that for zero body

forces, the single displacement component satisfies Laplace’s equation. Because many solution

schemes can be applied to this equation, the displacement formulation provides a convenient

method to solve this type of problem.

Similar to the other plane problems, antiplane strain is formulated in the two-dimensional

region R with boundary S (see Figure 7-2). The boundary conditions associated with the

problem would take either the displacement form

w ¼ wb(x, y) on S (7:4:6)

or traction form

Tn
z ¼ T(b)

z (x, y) ¼ t(b)xz nx þ t(b)yz ny

¼ m
@w

@x
nx þ @w

@y
ny

� �(b)

on S
(7:4:7)
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The solution to the antiplane strain problem then involves the determination of the out-of-plane

displacement, strains, and stresses {w, exz, eyz, txz, tyz} in R.

7.5 Airy Stress Function

Numerous solutions to plane strain and plane stress problems can be determined through the use

of a particular stress function technique. The method employs the Airy stress function and will

reduce the general formulation to a single governing equation in terms of a single unknown. The

resulting governing equation is then solvable by several methods of applied mathematics, and

thus many analytical solutions to problems of interest can be generated. The stress function

formulation is based on the general idea of developing a representation for the stress field that

satisfies equilibrium and yields a single governing equation from the compatibility statement.

The method is started by reviewing the equilibrium equations for the plane problem, either

relations (7.1.4) or (7.2.4). For now, we retain the body forces but assume that they are

derivable from a potential function V such that

Fx ¼ � @V

@x
, Fy ¼ � @V

@y
(7:5:1)

This assumption is not very restrictive becausemany body forces found in applications (e.g., gravity

loading) fall into this category. Under form (7.5.1), the plane equilibrium equations can bewritten as

@(sx � V)

@x
þ @txy

@y
¼ 0

@txy
@x

þ @(sy � V)

@y
¼ 0

(7:5:2)

It is observed that these equations will be identically satisfied by choosing a representation

sx ¼ @2f
@y2

þ V

sy ¼ @2f
@x2

þ V

txy ¼ � @2f
@x@y

(7:5:3)

where f ¼ f(x, y) is an arbitrary form called the Airy stress function.

With equilibrium now satisfied, we focus attention on the remaining field equations in the

stress formulation, that is, the compatibility relations in terms of stress. These equations were

given by (7.1.7) for plane strain and (7.2.7) for plane stress, and it is noted that they differ only

by the coefficient in front of the body force terms. Substituting the stress function form (7.5.3)

into these compatibility relations gives the following pair

@4f
@x4

þ 2
@4f

@x2@y2
þ @4f

@y4
¼ � 1� 2�

1� �

@2V

@x2
þ @2V

@y2

� �
. . . plane strain

@4f
@x4

þ 2
@4f

@x2@y2
þ @4f

@y4
¼ �(1� �)

@2V

@x2
þ @2V

@y2

� �
. . . plane stress

(7:5:4)
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which can also be written as

r4f ¼ � 1� 2�

1� �
r2V . . . plane strain

r4f ¼ �(1� �)r2V . . . plane stress

(7:5:5)

The form r4 ¼ r2r2 is called the biharmonic operator. If the body force vanishes or the

potential function satisfies Laplace’s equation r2V ¼ 0, then both the plane strain and plane

stress forms reduce to

@ 4f
@x4

þ 2
@ 4f

@x2@y2
þ @ 4f

@y4
¼ r4f ¼ 0 (7:5:6)

This relation is called the biharmonic equation, and its solutions are known as biharmonic
functions. Thus, the plane problem of elasticity has been reduced to a single equation in terms

of the Airy stress function f. This function is to be determined in the two-dimensional region R
bounded by the boundary S as shown in Figure 7-2. Appropriate boundary conditions over S
are necessary to complete a solution. Using relations (7.5.3), traction boundary conditions

would involve the specification of second derivatives of the stress function. However, this

general traction condition can be reformulated to relate the resultant boundary loadings to first-

order derivatives; see Section 11.5 or Sokolnikoff (1956) for details. Applications to specific

boundary-value problems are demonstrated in the next chapter. Displacement boundary

conditions require more development and are postponed until Chapter 10. Further general

details on stress functions are given in Chapter 13.

It is interesting to observe that for the case of zero body forces, the governing Airy stress

function equation (7.5.6) is the same for both plane strain and plane stress and is independent of

elastic constants. Therefore, if the region is simply connected (see Figure 2-9) and the boundary

conditions specify only tractions, the stress fields for plane strain and plane stress will be

identical and independent of elastic constants. Note, however, that the resulting strains and

displacements calculated from these common stresses would not be the same for each plane

theory. This occurs because plane strain and plane stress have different forms for Hooke’s law

and strain-displacement relations. Of course, because the two plane elasticity problems repre-

sent significantly different models, we would not expect that all parts of the solution field would

be identical. Problems with multiply connected regions or displacement boundary conditions

bring additional displacement relations into the formulation, and thus we can no longer make the

argument that the stress fields will be the same and remain independent of elastic moduli.

7.6 Polar Coordinate Formulation

Because we will make use of polar coordinates in the solution of many plane problems in

elasticity, the previous governing equations will now be developed in this curvilinear system.

Polar coordinates were originally presented in Figure 1-8, and Example 1-5 developed the basic

vector differential operations. For such a coordinate system, the solution to plane strain and plane

stress problems involves the determination of the in-plane displacements, strains, and stresses

{ur , uy, er, ey, ery,sr ,sy, try} in R subject to prescribed boundary conditions on S (see Figure 7-2).
The polar coordinate form of the strain-displacement relations can be extracted from

developments of Section 2.7 or results of Exercise 2-19. Dropping the z dependency in the

cylindrical coordinate forms (2.7.3) directly gives the following desired results:
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er ¼ @ur
@r

ey ¼ 1

r
ur þ @uy

@y

� �

ery ¼ 1

2

1

r

@ur
@y

þ @uy
@r

� uy
r

� � (7:6:1)

These relations can also be developed using displacement and strain transformation laws

(see Exercise 7-16). As per the discussion in Section 4.3, the basic form of Hooke’s law will

not change when moving to an orthogonal curvilinear system, and the cylindrical form given

by relation (4.3.2) can be applied to the plane problem in polar coordinates. Thus, the original

plane strain and plane stress forms for Hooke’s law do not change other than a simple

transformation of the subscripts from x and y to r and y; that is:

Plane Strain Plane Stress

sr ¼ l(er þ ey)þ 2mer er ¼ 1

E
(sr � �sy)

sy ¼ l(er þ ey)þ 2mey ey ¼ 1

E
(sy � �sr)

sz ¼ l(er þ ey) ¼ �(sr þ sy) ez ¼ � �

E
(sr þ sy) ¼ � �

1� �
(er þ ey)

try ¼ 2mery, tyz ¼ trz ¼ 0 ery ¼ 1þ �

E
try, eyz ¼ erz ¼ 0

(7:6:2)

Likewise, the results of Section 3.7 or Exercise 3-21 provide the appropriate forms for the

equilibrium equations

@sr
@r

þ 1

r

@try
@y

þ (sr � sy)
r

þ Fr ¼ 0

@try
@r

þ 1

r

@sy
@y

þ 2try
r

þ Fy ¼ 0

(7:6:3)

Expressing the preceding relations in terms of displacements gives the following set of Navier

equations:

Plane Strain

� r2ur � 2

r2
@u�
@�

� ur
r2

� �
þ (lþ �)

@

@r

@ur
@r

þ ur
r
þ 1

r

@u�
@�

� �
þ Fr ¼ 0

� r2uy þ 2

r2
@ur
@�

� u�
r2

� �
þ (lþ �)

1

r

@

@�

@ur
@r

þ ur
r
þ 1

r

@u�
@�

� �
þ F� ¼ 0

Plane Stress

� r2ur � 2

r2
@u�
@�

� ur
r2

� �
þ E

2(1� �)

@

@r

@ur
@r

þ ur
r
þ 1

r

@u�
@�

� �
þ Fr ¼ 0

� r2u� þ 2

r2
@ur
@�

� u�
r2

� �
�

þ E

2(1� �)

1

r

@

@�

@ur
@r

þ ur
r
þ 1

r

@u�
@�

� �
þ F� ¼ 0

(7:6:4)
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where we have used results from Example 1-5, and the two-dimensional Laplacian is given by

r2 ¼ @2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@y2
(7:6:5)

Again using results from Example 1-5 and the fact that sx þ sy ¼ sr þ sy, the compatibility

equations (7.1.7) and (7.2.7) can be expressed as

r2(sr þ sy) ¼ � 1

1� �

@Fr

@r
þ Fr

r
þ 1

r

@Fy

@y

� �
. . . plane strain

r2(sr þ sy) ¼ �(1þ �)
@Fr

@r
þ Fr

r
þ 1

r

@Fy

@y

� �
. . . plane stress

(7:6:6)

Relations (7.5.3) between the stress components and Airy function can be easily trans-

formed to polar form using results from Exercise 3-3 and the chain rule to convert spatial

derivatives. For the case of zero body forces, this yields

sr ¼ 1

r

@f
@r

þ 1

r2
@2f

@y2

sy ¼ @2f
@r2

try ¼ � @

@r

1

r

@f
@y

� � (7:6:7)

It can be verified that this form will satisfy the equilibrium equations (7.6.3) identically, and in

the absence of body forces the compatibility relations (7.6.6) reduce to the biharmonic

equation in polar coordinates

r4f ¼ @2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@y2

� �
@2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@y2

� �
f ¼ 0 (7:6:8)

Again, the plane problem is then formulated in terms of an Airy function f(r, y) with a

single governing biharmonic equation. Referring to Figure 7-2, this function is to be deter-

mined in the two-dimensional region R bounded by the boundary S. Appropriate boundary

conditions over S are necessary to complete a solution. Several example solutions in polar

coordinates are given in the next chapter.
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Exercises

7-1. Invert the plane strain form of Hooke’s law (7.1.3) and express the strains in terms of the

stresses as

ex ¼ 1þ �

E
[(1� �)sx � �sy]

ey ¼ 1þ �

E
[(1� �)sy � �sx]

exy ¼ 1þ �

E
txy

7-2. For the plane strain case, develop Navier equations (7.1.5) and the Beltrami-Michell

compatibility relation (7.1.7).

7-3. Verify the following relations for the case of plane strain with constant body forces:

@

@y
r2u ¼ @

@x
r2�

@

@x
r2u ¼ � @

@y
r2�

r4u ¼ r4� ¼ 0

7-4. At the end of Section 7.1, it was pointed out that the plane strain solution to a cylindrical

body of finite length with zero end tractions could be found by adding a corrective

solution to remove the unwanted end loadings being generated from the axial stress

relation sz ¼ �(sx þ sy). Using the Saint-Venant’s principle, show that such a correc-

tive solution may be generated using a simple strength of materials approximation

incorporating axial and bending stresses of the form s(c)z ¼ Axþ Byþ C where A, B, and
C are constants. Using principal centroidal x,y-axes, show how these constants could be

determined.

7-5. In the absence of body forces, show that the following stresses

sx ¼ kxy, sy ¼ kx, sz ¼ �kx(1þ y)

txy ¼ � 1

2
ky2, txz ¼ tyz ¼ 0, k ¼ constant

satisfy the plane strain stress formulation relations.

7-6. Invert the plane stress form of Hooke’s law (7.2.2) and express the stresses in terms of the

strain components

sx ¼ E

1� �2
(ex þ vey)

sy ¼ E

1� �2
(ey þ vex)

txy ¼ E

1þ �
exy
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7-7. Using the results from Exercise 7-6, eliminate the stresses from the plane stress

equilibrium equations and develop Navier equations (7.2.5). Also, formally establish

the Beltrami-Michell equation (7.2.7).

7-8. For plane stress, investigate the unwanted three-dimensional results coming from

integration of the strain-displacement relations involving the out-of-plane strains

ez, exz, and eyz.

7-9. For the plane stress problem, show that the neglected nonzero compatibility relations

involving the out-of-plane component ez are

@2ez
@x2

¼ 0,
@2ez
@y2

¼ 0,
@2ez
@x@y

¼ 0

Next integrate these relations to show that the most general form for this component

is given by

ez ¼ axþ byþ c

where a, b, and c are arbitrary constants. In light of relation (7.2.2)3, will this result for

ez be satisfied in general? Explain your reasoning.

7-10. Using the transformation results shown in Table 7-1, determine the required

corresponding changes in Lamé’s constant l and the shear modulus �.

7-11. Verify the validity of the transformation relations given in Table 7-1 by

(a) Transforming the plane strain equations (7.1.5) and (7.1.7) into the corresponding

plane stress results.

(b) Transforming the plane stress equations (7.2.5) and (7.2.7) into the corresponding

plane strain results.

7-12. Verify the validity of the transformation relations given in Table 7-1 by

(a) Transforming the plane strain Hooke’s law (7.1.3) into the corresponding plane

stress results given in Exercise 7-6.

(b) Transforming the plane stress Hooke’s law (7.2.2) into the corresponding plane

stress results given in Exercise 7-1.

7-13*. For the pure bending problem shown in Example 8-2, the plane stress displacement

field was determined and given by relations (8.1.22)2 as

u ¼ �Mxy

EI
, v ¼ M

2EI
[�y2 þ x2 � l2], � l � x � l

Using the appropriate transformation relations from Table 7-1, determine the corre-

sponding displacements for the plane strain case. Next develop a comparison plot

for each case of the y-displacement along the x-axis (y ¼ 0) with Poisson’s ratio

� ¼ 0.4. Use dimensionless variables and plot v(x, 0)/(Ml2/EI) versus x/l. Which

displacement is larger and what happens as Poisson’s ratio goes to zero?
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7-14*. Consider the problem of a stress-free hole in an infinite domain under equal and

uniform far-field loading T as shown in Figure 8-11. The plane strain radial

displacement solution for this problem is found to be

ur ¼ T(1þ �)

E
(1� 2�)r þ r21

r

� �

where r1 is the hole radius. Using the appropriate transformation relations from Table

7-1, determine the corresponding displacement for the plane stress case. Next develop a

comparison plot for each case of the radial displacement versus radial distance r with
Poisson’s ratio � ¼ 0.4. Use dimensionless variables and plot ur /(Tr1/E) versus r/r1
over the range 0 � r/r1 � 10. Which displacement is larger and what happens as

Poisson’s ratio goes to zero? Finally plot the dimensionless radial displacement on

the hole boundary r ¼ r1 versus Poisson’s ratio over the range 0 � � � 0.5

7-15. Explicitly develop the governing equations (7.5.4) in terms of the Airy function for

plane strain and plane stress.

7-16. Derive the polar coordinate strain-displacement relations (7.6.1) by using the

transformation equations

u ¼ ur cos y� uy sin y

v ¼ ur sin yþ uy cos y

er ¼ ex cos
2 yþ ey sin

2 yþ 2exy sin y cos y

ey ¼ ex sin
2 yþ ey cos

2 y� 2exy sin y cos y

ery ¼ �ex sin y cos yþ ey sin y cos yþ exy( cos
2 y� sin2 y)

7-17. Using the polar strain-displacement relations (7.6.1), derive the strain-compatibility

relation

@

@r
2r

@ery
@y

� r2
@ey
@r

� �
þ r

@er
@r

� @2er

@y2
¼ 0

7-18. For the plane strain case, starting with the equilibrium equations (7.6.3), develop Navier

equations (7.6.4)1,2. Also verify the compatibility relation (7.6.6)1.

7-19. For the plane stress case, starting with the equilibrium equations (7.6.3), develop Navier

equations (7.6.4)3,4. Also verify the compatibility relation (7.6.6)2.

7-20. Using the chain rule and stress transform theory, develop the stress-Airy function

relations (7.6.7). Verify that this form satisfies equilibrium identically.

7-21. For rigid-body motion, the strains will vanish. Under these conditions, integrate the

strain-displacement relations (7.6.1) to show that the most general form of a rigid-body

motion displacement field in polar coordinates is given by

ur* ¼ a sin yþ b cos y

uy* ¼ a cos y� b sin yþ cr

where a, b, c are constants. Also show that this result is consistent with the Cartesian

form given by relation (2.2.9).
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8 Two-Dimensional Problem Solution

The previous chapter developed the general formulation for the plane problem in elasticity.

This formulation results in two types of in-plane problems—plane strain and plane stress. It

was further shown that solution to each of these problem types could be conveniently handled

using the Airy stress function approach. This scheme reduces the field equations to a single

partial differential equation, and for the case of zero body forces, this result was the biharmo-

nic equation. Thus, the plane elasticity problem was reduced to finding the solution to the

biharmonic equation in a particular domain of interest. Such a solution must also satisfy the

given boundary conditions associated with the particular problem under study. Several general

solution techniques were briefly discussed in Section 5.7. These include the use of power series

or polynomials and Fourier methods. We now pursue the solution to several two-dimensional

problems using these methods. Our formulation and solution are conducted using both Carte-

sian and polar coordinate systems. In many cases we use MATLAB software to plot the stress

and displacement field distributions in order to better understand the nature of the solution.

Plane problems can also be solved using complex variable theory, and this powerful method is

discussed in Chapter 10.

8.1 Cartesian Coordinate Solutions Using Polynomials

We begin the solution to plane elasticity problems with no body forces by considering

problems formulated in Cartesian coordinates. When taking boundary conditions into account,

this formulation is most useful for problems with rectangular domains. The method is based on

the inverse solution concept where we assume a form of the solution to the biharmonic

equation

@4f
@x4

þ 2
@4f

@x2@y2
þ @4f

@y4
¼ 0 (8:1:1)

and then try to determine which problem may be solved by this solution. The assumed solution

form for the Airy stress function is taken to be a general polynomial of the in-plane coordin-

ates, and this form can be conveniently expressed in the power series
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f(x, y) ¼
X1
m¼0

X1
n¼0

Amn x
myn (8:1:2)

where Amn are constant coefficients to be determined. This representation was given by Neou

(1957), who proposed a systematic scheme to solve such plane problems.

Using the stress-stress function relations (7.5.3) with zero body forces

sx ¼ @2f
@y2

, sy ¼ @2f
@x2

, txy ¼ � @2f
@x@y

(8:1:3)

Note that in the Airy function form the three lowest-order terms with mþ n � 1 do not

contribute to the stresses and therefore are dropped. It is observed that second-order terms

produce a constant stress field, third-order terms give a linear distribution of stress, and so on

for higher-order polynomials.

Terms with mþ n � 3 automatically satisfy the biharmonic equation (8.1.1) for any choice

of constants Amn. However, for higher-order terms with mþ n > 3, the constants Amn must be

related in order to have the polynomial satisfy the biharmonic equation. For example, the

fourth-order polynomial terms A40x
4 þ A22x

2y2 þ A04y
4 will not satisfy the biharmonic equa-

tion unless 3A40 þ A22 þ 3A04 ¼ 0. This condition specifies one constant in terms of the other

two, thus leaving two constants to be determined by the boundary conditions.

Considering the general case, substituting the series form (8.1.2) into the governing

biharmonic equation (8.1.1) yields

X1
m¼4

X1
n¼0

m(m� 1)(m� 2)(m� 3)Amn x
m�4yn

þ 2
X1
m¼2

X1
n¼2

m(m� 1)n(n� 1)Amn x
m�2yn�2

þ
X1
m¼0

X1
n¼4

n(n� 1)(n� 2)(n� 3)Amn x
myn�4 ¼ 0

(8:1:4)

Collecting like powers of x and y, the preceding equation may be written as

X1
m¼2

X1
n¼2

[(mþ 2)(mþ 1)m(m� 1)Amþ2, n�2 þ 2m(m� 1)n(n� 1)Amn

þ (nþ 2)(nþ 1)n(n� 1)Am�2, nþ2]x
m�2yn�2 ¼ 0

(8:1:5)

Because this relation must be satisfied for all values of x and y, the coefficient in brackets must

vanish, giving the result

(mþ 2)(mþ 1)m(m� 1)Amþ2, n�2 þ 2m(m� 1)n(n� 1)Amn

þ (nþ 2)(nþ 1)n(n� 1)Am�2, nþ2 ¼ 0
(8:1:6)

For each m,n pair, (8.1.6) is the general relation that must be satisfied to ensure that the

polynomial grouping is biharmonic. Note that the fourth-order case (m ¼ n ¼ 2) was previously

discussed.

Because this method produces polynomial stress distributions, we would not expect the

scheme to satisfy general boundary conditions. However, this limitation can be circumvented
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by modifying boundary conditions on the problem using the Saint-Venant principle. This is

accomplished by replacing a complicated nonpolynomial boundary condition with a statically

equivalent polynomial condition. The solution to the modified problem would then be accurate

at points sufficiently far away from the boundary where adjustments were made. Normally, this

method has applications to problems of rectangular shape in which one dimension is much

larger than the other. This would include a variety of beam problems, and we shall now

consider three such examples. Solutions to each of these problems are made under plane stress

conditions. The corresponding plane strain solutions can easily be determined by using the

simple change in elastic constants given in Table 7-1. Of course, for the case with zero body

forces and traction boundary conditions, the stress fields will be identical in either theory.

EXAMPLE 8-1: Uniaxial Tension of a Beam

As a simple example, consider the two-dimensional plane stress case of a long rectangu-

lar beam under uniform tension T at each end, as shown in Figure 8-1. This problem

could be considered the Saint-Venant approximation to the more general case with

nonuniformly distributed tensile forces at the ends x ¼ �l. For such an interpretation,

the actual boundary conditions are replaced by the statically equivalent uniform distri-

bution, and the solution to be developed will be valid at points away from these ends.

The boundary conditions on this problem may be written as

sx(� l, y) ¼ T, sy(x,�c) ¼ 0

txy(� l, y) ¼ txy(x,�c) ¼ 0
(8:1:7)

These conditions should be carefully verified by making reference to Figure 5-3.

Because the boundary conditions specify constant stresses on each of the beam’s

boundaries, we are motivated to try a second-order stress function of the form

f ¼ A02y
2 (8:1:8)

and this gives the following constant stress field:

sx ¼ 2A02, sy ¼ txy ¼ 0 (8:1:9)

The first boundary condition (8.1.7) implies that A02 ¼ T=2 and all other boundary

conditions are identically satisfied. Therefore, the stress field solution to this problem is

given by

Continued
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FIGURE 8-1 Uniaxial tension problem.
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EXAMPLE 8-1: Uniaxial Tension of a Beam–Cont’d

sx ¼ T, sy ¼ txy ¼ 0 (8:1:10)

Next we wish to determine the displacement field associated with this stress distribution.

This is accomplished by a standard procedural technique. First, the strain field is calculated

using Hooke’s law. Then the strain-displacement relations are used to determine various

displacement gradients, and these expressions are integrated to find the individual displace-

ments. Using this scheme, the in-plane displacement gradients are found to be

@u

@x
¼ ex ¼ 1

E
(sx � �sy) ¼ T

E
@v

@y
¼ ey ¼ 1

E
(sy � �sx) ¼ ��

T

E

(8:1:11)

These results are easily integrated to get

u ¼ T

E
xþ f (y)

v ¼ ��
T

E
yþ g(x)

(8:1:12)

where f(y) and g(x) are arbitrary functions of the indicated variable coming from the

integration process. To complete the problem solution, these functions must be deter-

mined, and this is accomplished using the remaining Hooke’s law and the strain-

displacement relation for the shear stress and strain

@u

@y
þ @v

@x
¼ 2exy ¼ tx y

m
¼ 0 ) f 0(y)þ g0(x) ¼ 0 (8:1:13)

This result can be separated into two independent relations g0(x) ¼ �f 0(y) ¼ constant

and integrated to get

f (y) ¼ �!oyþ uo

g(x) ¼ !oxþ vo
(8:1:14)

where !o, uo, vo are arbitrary constants of integration. The expressions given by

relation (8.1.14) represent rigid-body motion terms where !o is the rotation about the

z-axis and uo and vo are the translations in the x and y directions. Such terms will always

result from the integration of the strain-displacement relations, and it is noted that they

do not contribute to the strain or stress fields. Thus, the displacements are determined
from the strain field only up to an arbitrary rigid-body motion. Additional displacement

boundary conditions, referred to here as fixity conditions, are needed to explicitly

determine these rigid-body motion terms. For two-dimensional problems, fixity condi-

tions would require three independent statements commonly involving specification of

the x- and y-displacements and rotation at a particular point. The choice of such

conditions is normally made based on the expected deformation of the physical prob-

lem. For example, if we agree that the center of the beam does not move and the x-axis
does not rotate, all rigid-body terms will vanish and f ¼ g ¼ 0.
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EXAMPLE 8-2: Pure Bending of a Beam

As a second plane stress example, consider the case of a straight beam subjected to end

moments as shown in Figure 8-2. The exact pointwise loading on the ends is not

considered, and only the statically equivalent effect is modeled. Hence, the boundary

conditions on this problem are written as

sy(x,�c) ¼ 0, txy(x,�c) ¼ txy(�l, y) ¼ 0ðc
�c

sx(�l, y)dy ¼ 0,

ðc
�c

sx(�l, y) ydy ¼ �M
(8:1:15)

Thus, the boundary conditions on the ends of the beam have been relaxed, and only the

statically equivalent condition will be satisfied. This fact leads to a solution that is not

necessarily valid near the ends of the beam.

The choice of stress function is based on the fact that a third-order function will

give rise to a linear stress field, and a particular linear boundary loading on the ends

x ¼ �l will reduce to a pure moment. Based on these two concepts, we choose

f ¼ A03y
3 (8:1:16)

and the resulting stress field takes the form

sx ¼ 6A03y, sy ¼ txy ¼ 0 (8:1:17)

This field automatically satisfies the boundary conditions on y ¼ �c and gives zero net

forces at the ends of the beam. The remaining moment conditions at x ¼ �l are satisfied
if A03 ¼ �M=4c3, and thus the stress field is determined as

sx ¼ � 3M

2c3
y, sy ¼ txy ¼ 0 (8:1:18)

The displacements are again calculated in the same fashion as in the previous example.

Assuming plane stress, Hooke’s law will give the strain field, which is then substituted

into the strain-displacement relations and integrated, yielding the result

@u

@x
¼ � 3M

2Ec3
y ) u ¼ � 3M

2Ec3
xyþ f (y)

@v

@y
¼ �

3M

2Ec3
y ) v ¼ 3M�

4Ec3
y2 þ g(x)

(8:1:19)

Continued
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FIGURE 8-2 Beam under end moments.
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EXAMPLE 8-2: Pure Bending of a Beam–Cont’d

where f and g are arbitrary functions of integration. Using the shear stress-strain

relations

@u

@y
þ @v

@x
¼ 0 ) � 3M

2Ec3
xþ f 0(y)þ g0(x) ¼ 0 (8:1:20)

This result can again be separated into two independent relations in x and y, and upon

integration the arbitrary functions f and g are determined as

f (y) ¼ �!oyþ uo

g(x) ¼ 3M

4Ec3
x2 þ !oxþ vo

(8:1:21)

Again, rigid-body motion terms are brought out during the integration process. For this

problem, the beam would normally be simply supported, and thus the fixity displacement

boundary conditions could be specified as v(�l, 0) ¼ 0 and u(�l, 0) ¼ 0. This specifica-

tion leads to determination of the rigid-body terms as uo ¼ !o ¼ 0, vo ¼ �3Ml2=4Ec3.
We now wish to compare this elasticity solution with that developed by elementary

strength of materials (often called mechanics of materials). Appendix D, Section D.3,

conveniently provides a brief review of this undergraduate theory. Introducing the

cross-sectional area moment of inertia I ¼ 2c3=3 (assuming unit thickness), our stress

and displacement field can be written as

sx ¼�M

I
y, sy ¼ txy ¼ 0

u ¼�Mxy

EI
, v ¼ M

2EI
[�y2 þ x2 � l2]

(8:1:22)

Note that for this simple moment-loading case, we have verified the classic assumption

from elementary beam theory that plane sections remain plane. Note, however, that this
will not be the case for more complicated loadings. The elementary strength of mater-

ials solution is obtained using Euler-Bernoulli beam theory and gives the bending stress

and deflection of the beam centerline as

sx ¼ �M

I
y, sy ¼ txy ¼ 0

v ¼ v(x, 0) ¼ M

2EI
[x2 � l2]

(8:1:23)

Comparing these two solutions, it is observed that they are identical, with the exception

of the x displacements. In general, however, the two theories will not match for other

beam problems with more complicated loadings, and we investigate such a problem in

the next example.
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EXAMPLE 8-3: Bending of a Beam by Uniform
Transverse Loading

Our final example in this section is that of a beam carrying a uniformly distributed

transverse loading w along its top surface, as shown in Figure 8-3. Again, plane stress

conditions are chosen, and we relax the boundary conditions on the ends and consider

only statically equivalent effects. Exact pointwise boundary conditions will be specified

on the top and bottom surfaces, while at the ends the resultant horizontal force

and moment are set to zero and the resultant vertical force will be specified to

satisfy overall equilibrium. Thus, the boundary conditions on this problem can be

written as

txy(x,� c) ¼ 0

sy(x, c) ¼ 0

sy(x,�c) ¼ �wðc
�c

sx(�l, y)dy ¼ 0ðc
�c

sx(�l, y)ydy ¼ 0ðc
�c

txy(�l, y)dy ¼ �wl

(8:1:24)

Again, it is suggested that these conditions be verified, especially the last statement.

Using the polynomial solution format, we choose a trial Airy stress function includ-

ing second-, third-, and fifth-order terms:

f ¼ A20x
2 þ A21x

2yþ A03y
3 þ A23x

2y3 � A23

5
y5 (8:1:25)

It is noted that the fifth-order term has been generated to satisfy the biharmonic

equation. The resulting stress field from this stress function is given by

sx ¼ 6A03yþ 6A23(x
2y� 2

3
y3)

sy ¼ 2A20 þ 2A21yþ 2A23y
3

txy ¼ �2A21x� 6A23xy
2

(8:1:26)

Continued

x

y

w

2c

2l

wl wl

FIGURE 8-3 Beam carrying uniformly transverse loading.
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EXAMPLE 8-3: Bending of a Beam by Uniform
Transverse Loading–Cont’d

Applying the first three boundary conditions in the set (8.1.24) gives three equations

among the unknown coefficients A20, A21, and A23. Solving this system determines these

constants, giving the result

A20 ¼ �w

4
, A21 ¼ 3w

8c
, A23 ¼ � w

8c3
(8:1:27)

Using these results, it is found that the stress field will now also satisfy the fourth and sixth

conditions in (8.1.24). The remaining condition of vanishing end moments gives the

following

A03 ¼ �A23(l
2 � 2

5
c2) ¼ w

8c

l2

c2
� 2

5

� �
(8:1:28)

This completes determination of the four constants in the trial Airy stress function, and

the resulting stress field is now given by

sx ¼ 3w

4c

l2

c2
� 2

5

� �
y� 3w

4c3
x2y� 2

3
y3

� �

sy ¼ �w

2
þ 3w

4c
y� w

4c3
y3

txy ¼ � 3w

4c
xþ 3w

4c3
xy2

(8:1:29)

We again wish to compare this elasticity solution with that developed by elementary

strength of materials, and thus the elasticity stress field is rewritten in terms of the cross-

sectional area moment of inertia I ¼ 2c3=3, as

sx ¼ w

2I
(l2 � x2)yþ w

I

y3

3
� c2y

5

� �

sy ¼ � w

2I

y3

3
� c2yþ 2

3
c3

� �

txy ¼ � w

2I
x(c2 � y2)

(8:1:30)

The corresponding results from strength of materials for this case (see Appendix D,

Section D.3) are given by

sx ¼ My

I
¼ w

2I
(l2 � x2)y

sy ¼ 0

txy ¼ VQ

It
¼ � w

2I
x(c2 � y2)

(8:1:31)

where the bendingmomentM ¼ w(l2 � x2)=2, the shear forceV ¼ �wx, the first moment

of a sectioned cross-sectional area isQ ¼ (c2 � y2)=2, and the thickness t is taken as unity.
Comparing the two theories, we see that the shear stresses are identical, while the two

normal stresses are not. The two normal stress distributions are plotted in Figures 8-4

and 8-5. The normalized bending stress sx for the case x ¼ 0 is shown in Figure 8-4.
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EXAMPLE 8-3: Cont’d

Note that the elementary theory predicts linear variation, while the elasticity solution

indicates nonlinear behavior. The maximum difference between the two theories exists

at the outer fibers (top and bottom) of the beam, and the actual difference in the stress

values is simply w/5, a result independent of the beam dimensions. For most common

beam problems where l >> c, the bending stresses will be much greater than w, and thus
the differences between elasticity theory and strength of materials will be relatively

small. For example, the set of curves in Figure 8-4 for l=c ¼ 4 gives a maximum

difference of about only 1 percent. Figure 8-5 illustrates the behavior of the stress sy;
the maximum difference between the two theories is given by w and this occurs at
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EXAMPLE 8-3: Bending of a Beam by Uniform
Transverse Loading–Cont’d

the top of the beam. Again, this difference will be negligibly small for most beam

problems where l >> c. These results are generally true for beam problems with other

transverse loadings. That is, for the case with l >> c, approximate bending stresses

determined from strength of materials will generally closely match those developed

from theory of elasticity.

Next let us determine the displacement field for this problem. As in the

previous examples, the displacements are developed through integration of the strain-

displacement relations. Integrating the first two normal strain-displacement relations

gives the result

u ¼ w

2EI
[(l2x� x3

3
)yþ x(

2y3

3
� 2c2y

5
)þ �x(

y3

3
� c2yþ 2c3

3
)]þ f (y)

v ¼� w

2El
[(
y4

12
� c2y2

2
þ 2c3y

3
)þ �(l2 � x2)

y2

2
þ �(

y4

6
� c2y2

5
)]þ g(x)

(8:1:32)

where f(y) and g(x) are arbitrary functions of integration. Using these results in the shear
strain-displacement equation gives the relation

w

2EI
[l2x� x3

3
þ x(2y2 � 2c2

5
)þ �x(y2 � c2)]þ f 0(y)

þ w

2EI
�xy2 þ g0(x) ¼ � w

2mI
x(c2 � y2)

(8:1:33)

This result can again be rewritten in a separable form and integrated to determine the

arbitrary functions

f (y) ¼ woyþ uo

g(x) ¼ w

24EI
x4 � w

4EI
[l2 � (

8

5
þ �)c2]x2 � woxþ vo

(8:1:34)

Choosing the fixity conditions u(0, y) ¼ v(�l, 0) ¼ 0, the rigid-body motion terms are

found to be

uo ¼ wo ¼ 0, vo ¼ 5wl4

24EI
[1þ 12

5
(
4

5
þ �

2
)
c2

l2
] (8:1:35)

Using these results, the final form of the displacements is given by

u ¼ w

2EI
[(l2x� x3

3
)yþ x(

2y3

3
� 2c2y

5
)þ �x(

y3

3
� c2yþ 2c3

3
)]

v ¼� w

2EI

y4

12
� c2y2

2
þ 2c3y

3
þ �[(l2 � x2)

y2

2
þ y4

6
� c2y2

5
]

�

� x4

12
þ [

l2

2
þ (

4

5
þ �

2
)c2]x2

�
þ 5wl4

24EI
[1þ 12

5
(
4

5
þ �

2
)
c2

l2
]

(8:1:36)
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EXAMPLE 8-3: Cont’d

The maximum deflection of the beam axis is given by

v(0, 0) ¼ vmax ¼ 5wl4

24EI
1þ 12

5

4

5
þ �

2

� �
c2

l2

� �
(8:1:37)

while the corresponding value calculated from strength of materials is

vmax ¼ 5wl4

24EI
(8:1:38)

The difference between the two theories given by relations (8.1.37) and (8.1.38) is

specified by
wl4

2EI

4

5
þ �

2

� �
c2

l2
, and this term is caused by the presence of the shear force.

For beams where l >> c, this difference is very small. Thus, we again find that for long

beams, strength of materials predictions match closely to theory of elasticity results.

Note from equation (8.1.36), the x component of displacement indicates that plane

sections undergo nonlinear deformation and do not remain plane. It can also be shown

that the Euler-Bernoulli relationM ¼ EI
d2v(x, 0)

dx2
used in strength of materials theory is

not satisfied by this elasticity solution. Timoshenko and Goodier (1970) provide add-

itional discussion on such differences.

Additional rectangular beam problems of this type with different support and loading

conditions can be solved using various polynomial combinations. Several of these are given

in the exercises.

8.2 Cartesian Coordinate Solutions Using Fourier Methods

A more general solution scheme for the biharmonic equation may be found by using Fourier
methods. Such techniques generally use separation of variables along with Fourier series or
Fourier integrals. Use of this method began over a century ago, and the work of Pickett (1944),

Timoshenko and Goodier (1970), and Little (1973) provide details on the technique.

In Cartesian coordinates, the method may be initiated by looking for an Airy stress function

of the separable form

f(x, y) ¼ X(x)Y(y) (8:2:1)

Although the functions X and Y could be left somewhat general, the solution is obtained more

directly if exponential forms are chosen as X ¼ eax, Y ¼ eby. Substituting these results into the
biharmonic equation (8.1.1) gives

(a4 þ 2a2b2 þ b4)eaxeby ¼ 0

and this result implies that the term in parentheses must be zero, giving the auxiliary or

characteristic equation

(a2 þ b2)2 ¼ 0 (8:2:2)

The solution to this equation gives double roots of the form

a ¼ �ib (8:2:3)
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The general solution to the problem then includes the superposition of the zero root cases

plus the general roots. For the zero root condition with b ¼ 0, there is a fourfold multiplicity of

the roots, yielding a general solution of the form

fb¼0 ¼ C0 þ C1xþ C2x
2 þ C3x

3 (8:2:4)

while for the case with a ¼ 0, the solution is given by

fa¼0 ¼ C4yþ C5y
2 þ C6y

3 þ C7xyþ C8x
2yþ C9xy

2 (8:2:5)

Expressions (8.2.4) and (8.2.5) represent polynomial solution terms satisfying the biharmonic

equation. For the general case given by equation (8.2.3), the solution becomes

f ¼ eibx[Aeby þ Be�by þ Cyeby þ Dye�by]

þ e�ibx[A0eby þ B0e�by þ C0yeby þ D0ye�by]
(8:2:6)

The parameters Ci, A, B, C, D, A
0, B0, C0, and D0 represent arbitrary constants to be

determined from boundary conditions. The complete solution is found by the super-

position of solutions (8.2.4), (8.2.5), and (8.2.6). Realizing that the final solution must be real,

the exponentials are replaced by equivalent trigonometric and hyperbolic forms, thus giving

f ¼ sinbx[(Aþ Cby) sinhbyþ (Bþ Dby) coshby]

þ cos bx[(A0 þ C0by) sinhbyþ (B0 þ D0by) coshby]
þ sin ay[(Eþ Gax) sinh axþ (Fþ Hax) cosh ax]

þ cos ay[(E0 þ G0ax) sinh axþ (F0 þ H0ax) cosh ax]
þ fa¼0 þ fb¼0

(8:2:7)

Using this solution form along with superposition and Fourier series concepts, many problems

with complex boundary loadings can be solved. Two particular problems are now presented.

EXAMPLE 8-4: Beam Subject to Transverse Sinusoidal
Loading

Consider the simply supported beam carrying a sinusoidal loading along its top edge as

shown in Figure 8-6.

x

y qo sin px/l

qol/pqol/p

l

2c

FIGURE 8-6 Beam carrying sinusoidal transverse loading.
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EXAMPLE 8-4: Cont’d

The boundary conditions for this problem can be written as

sx(0, y) ¼ sx(l, y) ¼ 0

txy(x, �c) ¼ 0

sy(x,�c) ¼ 0

sy(x, c) ¼ �qo sin (px=l)ðc
�c

txy(0, y)dy ¼ �qol=pðc
�c

txy(l, y)dy ¼ qol=p

(8:2:8)

Note that these conditions do not specify the pointwise distribution of shear stress on the

ends of the beam, but rather stipulate the resultant condition based on overall problem

equilibrium. Thus, we again are generating a solution valid away from the ends that would

be most useful for the case where l >> c. Because the vertical normal stress has a

sinusoidal variation in x along y ¼ c, an appropriate trial solution from the general case is

f ¼ sinbx[(Aþ Cby) sinhbyþ (Bþ Dby) coshby] (8:2:9)

The stresses from this trial form are

sx ¼ b2 sinbx[A sinhbyþ C(by sinhbyþ 2 coshby)

þ B coshbyþ D(by coshbyþ 2 sinhby)]

sy ¼� b2 sinbx[(Aþ Cby) sinhbyþ (Bþ Dby) cosh by]

txy ¼� b2 cos bx[A coshbyþ C(by coshbyþ sinhby)

þ B sinhbyþ D(by sinhbyþ coshby)]

(8:2:10)

Condition (8:2:8)2 implies that

[A cosh byþ C(by coshbyþ sinhby)

þ B sinhbyþ D(by sinhbyþ cosh by)]y¼�c ¼ 0
(8:2:11)

This condition can be equivalently stated by requiring that the even and odd
functions of y independently vanish at the boundary, thus giving the result

A coshbcþ D(bc sinhbcþ cosh bc) ¼ 0

B sinhbcþ C(bc coshbcþ sinhbc) ¼ 0
(8:2:12)

Solving for the constants A and B gives

A ¼ �D(bc tanhbcþ 1)

B ¼ �C(bc cothbcþ 1)
(8:2:13)

and thus the vertical normal stress becomes

Continued
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EXAMPLE 8-4: Beam Subject to Transverse Sinusoidal
Loading–Cont’d

sy ¼� b2 sinbx{D[by coshby� (bc tanhbcþ 1) sinhby]

þ C[by sinhby� (bc coth bcþ 1) coshby]}
(8:2:14)

Applying boundary condition (8:2:8)3 to this result gives the relation between C and D

C ¼ � tanh bc
bc� sinhbc cosh bc
bcþ sinhbc cosh bc

� �
D (8:2:15)

while condition (8:2:8)4 gives

qo sin
px
l
¼ 2b2 sinbx

bc� sinhbc coshbc
cosh bc

� �
D (8:2:16)

In order for relation (8.2.16) to be true for all x, b ¼ p=l, and so the constant D is thus

determined as

D ¼
qo cosh

pc
l

2
p2

l2
pc
l
� sinh

pc
l
cosh

pc
l

h i (8:2:17)

This result can be substituted into (8.2.15) to give the remaining constant C

C ¼
�qo sinh

pc
l

2
p2

l2
pc
l
þ sinh

pc
l
cosh

pc
l

h i (8:2:18)

Using these results, the remaining boundary conditions (8:2:8)1 and (8:2:8)5, 6 will now
be satisfied. Thus, we have completed the determination of the stress field for this problem.

Following our usual solution steps, we now wish to determine the displacements, and

these are again developed through integration of the plane stress strain-displacement

relations. Skipping the details, the final results are given by

u ¼� b
E
cos bx{A(1þ �) sinhbyþ B(1þ �) coshby

þ C[(1þ �)by sinh byþ 2 coshby]

þ D[(1þ �)by coshbyþ 2 sinhby]}� !oyþ uo

v ¼� b
E
sinbx{A(1þ �) coshbyþ B(1þ �) sinhby

þ C[(1þ �)by coshby� (1þ �) sinhby]

þ D[(1þ �)by sinhby� (1� �) cosh by]}þ !oyþ vo

(8:2:19)

To model a simply supported beam, we choose displacement fixity conditions as

u(0, 0) ¼ v(0, 0) ¼ v(l, 0) ¼ 0 (8:2:20)
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These conditions determine the rigid-body terms, giving the result

!o ¼ vo ¼ 0, uo ¼ b
E
[B(1þ �)þ 2C] (8:2:21)

To compare with strength of materials theory, the vertical centerline displacement is

determined. Using (8:2:19)2 and (8:2:13)1, the deflection of the beam axis reduces to

v(x, 0) ¼ Db
E

sin bx[2þ (1þ �)bc tanhbc] (8:2:22)

For the case l >> c, D � �3qol
5=4c3p5, and so the previous relation becomes

v(x, 0) ¼ � 3qol
4

2c3p4E
sin

px
l

1þ 1þ �

2

pc
l
tanh

pc
l

� �
(8:2:23)

The corresponding deflection from strength of materials theory is given by

v(x, 0) ¼ � 3qol
4

2c3p4E
sin

px
l

(8:2:24)

Considering again the case l >> c, the second term in brackets in relation (8.2.23) can

be neglected, and thus the elasticity result matches with that found from strength of

materials.

8.2.1 Applications Involving Fourier Series
More sophisticated applications of the Fourier solution method commonly incorporate Fourier

series theory. This is normally done by using superposition of solution forms to enable more

general boundary conditions to be satisfied. For example, in the previous problem the solution

was obtained for a single sinusoidal loading. However, this solution form could be used to

generate a series of solutions with sinusoidal loadings having different periods; that is,

b ¼ bn ¼ np=l, (n ¼ 1, 2, 3, � � � ). Invoking the principle of superposition, we can form a

linear combination of these sinusoidal solutions, thus leading to a Fourier series representation

to a general transverse boundary loading on the beam.

In order to use such a technique, we shall briefly review some basic concepts of Fourier

series theory. Further details may be found in Kreyszig (1999) or Churchill (1963). A function

f(x) periodic with period 2l can be represented on the interval (�l, l) by the Fourier trigono-
metric series

f (x) ¼ 1

2
ao þ

X1
n¼1

an cos
npx
l

þ bn sin
npx
l

� �
(8:2:25)

where

an ¼ 1

l

ðl
�l

f (x) cos
npx
l

dx, n ¼ 0, 1, 2, � � �

bn ¼ 1

l

ðl
�l

f (x) sin
npx
l

dx, n ¼ 1, 2, 3, � � �
(8:2:26)
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This representation simplifies for some special cases that often arise in applications. For

example, if f(x) is an even function, f (x) ¼ f (�x), then representation (8.2.25) reduces to the

Fourier cosine series

f (x) ¼ 1

2
ao þ

X1
n¼1

an cos
npx
l

an ¼ 2

l

ðl
0

f (x) cos
npx
l

dx, n ¼ 0, 1, 2, � � �
(8:2:27)

on the interval (0, l). If f(x) is an odd function, f (x) ¼ �f (�x), then representation (8.2.25)

reduces to the Fourier sine series

f (x) ¼
X1
n¼1

bn sin
npx
l

bn ¼ 2

l

ðl
0

f (x) sin
npx
l

dx, n ¼ 1, 2, 3, � � �
(8:2:28)

on interval (0, l). We now develop the solution to a specific elasticity problem using these

tools.

EXAMPLE 8-5: Rectangular Domain with Arbitrary
Boundary Loading

Consider again a rectangular domain with arbitrary compressive boundary loading on

the top and bottom of the body, as shown in Figure 8-7. Although a more general

boundary loading could be considered on all four sides, the present case will sufficiently

demonstrate the use of Fourier series theory for problem solution. For this problem,

dimensions a and b are to be of the same order, and thus we cannot use the Saint-Venant

principle to develop an approximate solution valid away from a particular boundary.

Thus, the solution is developed using the exact pointwise boundary conditions:

x

y

a a

p(x)

p(x)

b

b

FIGURE 8-7 General boundary loading on a rectangular elastic plate.
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sx(�a, y) ¼ 0

txy(�a, y) ¼ 0

txy(x,�b) ¼ 0

sy(x,�b) ¼ �p(x)

(8:2:29)

To ease the solution details, we shall assume that the boundary loading p(x) is an
even function; that is, p(x) ¼ p(�x). Normal stresses are expected to be symmetric

about the x and y axes, and this leads to a proposed stress function of the form

f ¼
X1
n¼1

cos bnx[Bn coshbnyþ Cnbny sinh bny]

þ
X1
m¼1

cos amy[Fm cosh amxþ Gmamx sinh amx]þ C0x
2

(8:2:30)

The stresses derived from this Airy stress function become

sx ¼
X1
n¼1

b2n cos bnx[Bn coshbnyþ Cn(bny sinhbnyþ 2 coshbny)]

�
X1
m¼1

a2m cos amy[Fm cosh amxþ Gmamx sinh amx]

sy ¼�
X1
n¼1

b2n cos bnx[Bn coshbnyþ Cnbny sinhbny]þ 2C0

þ
X1
m¼1

a2m cos amy[Fm cosh amxþ Gm(amx sinh amxþ 2 cosh amx)]

txy ¼
X1
n¼1

b2n sinbnx[Bn sinh bnyþ Cn(bny coshbnyþ sinhbny)]

þ
X1
m¼1

a2m sin amy[Fm sinh amxþ Gm(amx cosh amxþ sinh amx)]

(8:2:31)

To satisfy the homogeneous boundary conditions (8:2:29)1,2,3,

am ¼ mp=b and bn ¼ np=a

Condition (8:2:29)2 implies that

Fm ¼ �Gm(1þ ama coth ama) (8:2:32)

while (8:3:29)3 gives

Bn ¼ �Cn(1þ bnb cothbnb) (8:2:33)

Continued
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EXAMPLE 8-5: Rectangular Domain with Arbitrary
Boundary Loading–Cont’d

Boundary condition (8:2:29)1 gives

X1
n¼1

b2n cos bna[Bn coshbnyþ Cn(bny sinh bnyþ 2 coshbny)]

¼
X1
m¼1

a2m cos amy[Fm cosh amaþ Gmama sinh ama]

which can be written as

X1
m¼1

Am cos amy¼
X1
n¼1

b2n(�1)nþ1[Bn coshbnyþCn(bny sinhbnyþ2 coshbny)] (8:2:34)

where

Am ¼ a2m
sinh ama

(amaþ sinh ama cosh ama)Gm (8:2:35)

The expression given by (8.2.34) can be recognized as the Fourier cosine series for

the terms on the right-hand side of the equation. Thus, using Fourier series theory from

relations (8.2.27), the coefficients may be expressed as

Am ¼ 2

b

X1
n¼1

b2n(�1)nþ1

ðb
0

[Bn coshbnxþ Cn(bnx sinhbnx

þ2 coshbnx)] cos amxdx

(8:2:36)

Carrying out the integrals and using (8.2.35) gives

Gm ¼ �4 sinh ama
b(amaþ sinh ama cosh ama)

X1
n¼1

Cn
b3n(�1)mþn sinhbnb

(a2m þ b2n)
2

(8:2:37)

The final boundary condition (8.2.29)4 involves the specification of the nonzero loading

p(x) and implies

�
X1
n¼1

b2n cos bnx[Bn coshbnbþ Cnbnb sinh bnb]þ 2C0

þ
X1
m¼1

a2m cos amb[Fm cosh amxþ Gm(amx sinh amxþ 2 cosh amx)] ¼ �p(x)

and this can be written in more compact form as

X1
n¼0

A�
n cos bnx ¼ �p(x)

þ
X1
m¼1

a2m(�1)mþ1[Fm cosh amxþ Gm(amx sinh amxþ 2 cosh amx)]

(8:2:38)

168 FOUNDATIONS AND ELEMENTARY APPLICATIONS



EXAMPLE 8-5: Cont’d

where

A�
n ¼

b2n
sinh bnb

(bnbþ sinhbnb coshbnb)Cn

A�
0 ¼ 2C0

(8:2:39)

As before, (8.2.38) is a Fourier cosine series form, and so the series coefficients A�
n

can be easily determined from the theory given in relations (8.2.27). This then deter-

mines the coefficients Cn to be

Cn ¼ �4 sinhbnb
a(bnbþ sinhbnb coshbnb)

X1
m¼1

Gm
a3m(�1)mþn sinh ama

(a2m þ b2n)
2

� 2 sinhbnb

ab2n(bnbþ sinhbnb coshbnb)

ða
0

p(x) cos bnxdx, n ¼ 1, 2, 3, � � �

C0 ¼� 1

2a

ða
0

p(x)dx

(8:2:40)

The rather formidable systems of equations given by (8.2.37) and (8.2.40)1 can be

written in compact form as

Gm þ
X1
n¼1

RmnCn ¼ 0

Cn þ
X1
m¼1

SnmGm ¼ Tn

(8:2:41)

with appropriate definitions of Rmn, Snm, and Tn. The system (8.2.41) then represents a

doubly infinite set of equations in the doubly infinite set of unknowns Cn and Gm. An

approximate solution may be found by truncating the system to a finite number of

equations, which can be solved for the remaining unknowns. Improved accuracy in the

solution is achieved by including more equations in the truncated system. Thus, all

unknown coefficients in the solution (8.2.30) are now determined, and the problem

solution is completed. Little (1973) provides additional details on this solution.

8.3 General Solutions in Polar Coordinates

As discussed in Section 7.6, the geometry of many two-dimensional problems requires the use

of polar coordinates to develop a solution. We now wish to explore the general solutions to

such problems using the field equations developed in polar coordinates.

8.3.1 General Michell Solution
Employing the Airy stress function approach, the governing biharmonic equation was given by

r4f ¼ @2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@y2

� �2

f ¼ 0 (8:3:1)
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We shall first look for a general solution to this equation by assuming a separable form

f(r, y) ¼ f (r)eby, where b is a parameter to be determined. Substituting this form into the

biharmonic equation and canceling the common eby term yields

f 0000 þ 2

r
f 000 � 1� 2b2

r2
f 00 þ 1� 2b2

r3
f 0 þ b2(4þ b2)

r4
f ¼ 0 (8:3:2)

To solve this equation, we make the change of variable r ¼ ex, and this will transform (8.3.2)

into the differential equation with constant coefficients

f 0000 � 4 f 000 þ (4þ 2b2) f 00 � 4b2f 0 þ b2(4þ b2) f ¼ 0 (8:3:3)

where primes now denote d/dx. The solution to this equation is found by using the usual

scheme of substituting in f ¼ eax, and this generates the following characteristic equation:

(a2 þ b2)(a2 � 4aþ 4þ b2) ¼ 0 (8:3:4)

The roots to this equation may be written as

a ¼ �ib, a ¼ 2�ib

or

b ¼ �ia, b ¼ �i(a� 2)

(8:3:5)

We shall consider only periodic solutions in y, and these are obtained by choosing b ¼ in,
where n is an integer. Note this choice also implies that a is an integer. For particular values

of n, repeated roots occur, and these require special consideration in the development of the

solution. Details of the complete solution have been given by Little (1973), although

the original development is credited to Michell (1899). The final form (commonly called the

Michell solution) can be written as

f ¼ a0 þ a1 log r þ a2r
2 þ a3r

2 log r

þ (a4 þ a5 log r þ a6r
2 þ a7r

2 log r)y

þ (a11r þ a12r log r þ a13
r

þ a14r
3 þ a15ryþ a16ry log r) cos y

þ (b11r þ b12r log r þ b13
r

þ b14r
3 þ b15ryþ b16ry log r) sin y

þ
X1
n¼2

(an1r
n þ an2r

2þn þ an3r
�n þ an4r

2�n) cos ny

þ
X1
n¼2

(bn1r
n þ bn2r

2þn þ bn3r
�n þ bn4r

2�n) sin ny

(8:3:6)

where an, anm, and bnm are constants to be determined. Note that this general solution is

restricted to the periodic case, which has the most practical applications because it allows the

Fourier method to be applied to handle general boundary conditions.
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8.3.2 Axisymmetric Solution
For the axisymmetric case, field quantities are independent of the angular coordinate, and the

Airy function solution follows from (8.3.6) by dropping all y-terms, giving

f ¼ a0 þ a1 log r þ a2r
2 þ a3r

2 log r (8:3:7)

Using relations (7.6.7), the resulting stresses for this case are

sr ¼ 2a3 log r þ a1
r2

þ a3 þ 2a2

sy ¼ 2a3 log r � a1
r2

þ 3a3 þ 2a2

try ¼ 0

(8:3:8)

The displacements corresponding to these stresses can be determined by the usual methods of

integrating the strain-displacement relations. For the case of plane stress, the result is

ur ¼ 1

E
� (1þ �)

r
a1 þ 2(1� �)a3r log r � (1þ �)a3r þ 2a2(1� �)r

� �
þ A sin yþ B cos y

uy ¼ 4ry
E

a3 þ A cos y� B sin yþ Cr

(8:3:9)

where A, B, and C are arbitrary constants associated with the rigid-body motion terms

(see Exercise 7-21).

Plane strain results follow by simple change of elastic constants as per Table 7-1. If the

body includes the origin, then a3 and a1 must be set to zero for the stresses to remain finite, and

thus the stress field would be constant. Also note that the a3 term in the tangential displacement

relation leads to multivalued behavior if the domain geometry is such that the origin can be

encircled by any contour lying entirely in the body. Exercise 8-21 is concerned with a

particular problem that requires such multivalued behavior in the tangential displacement.

It should be pointed out that not all axisymmetric stress fields come from the Airy stress

function given by (8.3.7). Reviewing the general form (8.3.6) indicates that the a4� term

generates the stress field �r ¼ �� ¼ 0, tr� ¼ a4/r
2, which is also axisymmetric. This solution

could be used to solve problems with shear fields that produce tangential displacements that

are independent of �. Exercise 8-14 demonstrates such an example.

It has been previously pointed out that for multiply connected regions, the compatibility

equations are not sufficient to guarantee single-valued displacements. With this in mind, we

can investigate the displacement solution directly from the Navier equations. With zero body

forces, Navier equations (5.4.4) or (7.6.4) for the axisymmetric case u ¼ ur(r)er reduce to

d2ur
dr2

þ 1

r

dur
dr

� 1

r2
ur ¼ 0 (8:3:10)

The solution to this equation is given by

ur ¼ C1r þ C2

1

r
(8:3:11)

where C1 and C2 are constants. Notice this solution form is not the same as that given by

(8.3.9), because we have a priori assumed that uy ¼ 0. Furthermore, the stresses corresponding

to displacement solution (8.3.11) do not contain the logarithmic terms given in relations

(8.3.8). Thus, these terms are not consistent with single-valued displacements.
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8.4 Example Polar Coordinate Solutions

With the general solution forms determined, we now explore the solution to several specific

problemsofengineering interest, includingcaseswithbothaxisymmetric andgeneralgeometries.

EXAMPLE 8-6: Thick-Walled Cylinder Under Uniform
Boundary Pressure

The first example to be investigated involves a hollow thick-walled cylinder under the

action of uniform internal and external pressure loadings, as shown in Figure 8-8.We shall

assume that the cylinder is long and this problem may be modeled under plane strain

conditions.

Using the stress solution (8.3.8)without the log terms, the nonzero stresses are given by

sr ¼ A

r2
þ B

sy ¼ � A

r2
þ B

(8:4:1)

Applying the boundary conditions sr(r1) ¼ �p1, sr(r2) ¼ �p2 creates two equations

for the two unknown constants A and B. Solving for these constants gives the result

A ¼ r21 r
2
2(p2 � p1)

r22 � r21

B ¼ r21p1 � r22p2
r22 � r21

(8:4:2)

Substituting these values back into relation (8.4.1) gives the final result for the stress field

sr ¼ r21r
2
2(p2 � p1)

r22 � r21

1

r2
þ r21p1 � r22p2

r22 � r21

sy ¼ � r21r
2
2(p2 � p1)

r22 � r21

1

r2
þ r21p1 � r22p2

r22 � r21

(8:4:3)

r1

r2

p1

p2

FIGURE 8-8 Thick-walled cylinder problem.
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From plane strain theory, the out-of-plane longitudinal stress is given by

sz ¼ �(sr þ sy) ¼ 2�
r21p1 � r22p2
r22 � r21

(8:4:4)

Using the strain-displacement relations (7.6.1) and Hooke’s law (7.6.2), the radial

displacement is easily determined as

ur ¼ 1þ �

E
r[(1� 2�)B� A

r2
]

¼ 1þ �

E
� r21r

2
2(p2 � p1)

r22 � r21

1

r
þ (1� 2�)

r21p1 � r22p2
r22 � r21

r

� � (8:4:5)

Reviewing this solution, it is noted that for the traction boundary-value problem with no

body forces, the stress field does not depend on the elastic constants. However, the

resulting displacements do depend on both E and �.
For the case of only internal pressure (p2 ¼ 0 and p1 ¼ p) with r1=r2 ¼ 0:5, the

nondimensional stress distribution through the wall thickness is shown in Figure 8-9.

The radial stress decays from �p to zero, while the hoop stress is always positive with a
maximum value at the inner radius (sy)max ¼ (r21 þ r22)=(r

2
2 � r21)p ¼ (5=3)p.

For the case of a thin-walled tube, it can be shown that the hoop stress reduces to thewell-

known relation found from strength of materials theory (see Appendix D, Section D.5)

sy � pro
t

(8:4:6)

where t ¼ r2 � r1 is the thickness and r0 ¼ (r1 þ r2)=2 is the mean radius.

The general solution to this example can be used to generate the solution to other

problems through appropriate limiting processes. Two such cases are now presented.

r1/r2 = 0.5
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FIGURE 8-9 Stress distribution in the thick-walled cylinder example.
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8.4.1 Pressurized Hole in an Infinite Medium
Consider the problem of a hole under uniform pressure in an infinite medium, as shown in

Figure 8-10. The solution to this problem can be easily determined from the general case of

Example 8-6 by choosing p2 ¼ 0 and r2 ! 1. Taking these limits in relations (8.4.3) and

(8.4.4) gives

sr ¼ �p1
r21
r2
, sy ¼ p1

r21
r2
, sz ¼ 0 (8:4:7)

and the displacement field follows from (8.4.5)

ur ¼ 1þ �

E

p1r
2
1

r
(8:4:8)

Although both the stress and displacement fields decrease to zero as r ! 1, there is a

difference in their rate of decay. The stress field decays at a higher rate, of order O(1=r2), while
the displacement field behaves as O(1=r). Because stresses are proportional to displacement

gradients, this behavior is to be expected.

8.4.2 Stress-Free Hole in an Infinite Medium Under Equal
Biaxial Loading at Infinity

Another example that can be generated from the general thick-walled tube problem is that of a

stress-free hole in a unbounded medium with equal and uniform tensile loadings in the

horizontal and vertical directions, as shown in Figure 8-11. This particular case can be found

from the general solution by letting r2 ! 1 and taking p2 ¼ �T and p1 ¼ 0. Note that the far-

field stress in this problem is a hydrostatic state with sx ¼ sy ¼ T and this is identical to the

condition sr ¼ sy ¼ T. Thus, our limiting case matches with the far conditions shown in

Figure 8-11.

Under these conditions, the general stress results (8.4.3) give

sr ¼ T 1� r21
r2

� �
, sy ¼ T 1þ r21

r2

� �
(8:4:9)

The maximum stress occurs �� at the boundary of the hole r ¼ r1 and is given by

r1

 p

FIGURE 8-10 Pressurized hole in an infinite medium.
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smax ¼ (sy)max ¼ sy(r1) ¼ 2T (8:4:10)

and thus the stress concentration factor smax=T for a stress-free circular hole in an infinite

medium under uniform all-around tension is 2. This result is of course true for plane strain or

plane stress. Because of their importance, we shall next study several other stress concentration

problems involving a stress-free hole under different far-field loading.

EXAMPLE 8-7: Infinite Medium with a Stress-Free Hole
Under Uniform Far-Field Tension Loading

Consider now an infinite medium with a circular stress-free hole subjected to a uniform

far-field tension in a single direction, as shown in Figure 8-12. Note that this problem

will not be axisymmetric; thus it requires particular y-dependent terms from the general

Michell solution.

The boundary conditions on this problem are

sr(a, y) ¼ try(a, y) ¼ 0

sr(1, y) ¼ T

2
(1þ cos 2y)

sy(1, y) ¼ T

2
(1� cos 2y)

try(1, y) ¼ �T

2
sin 2y

(8:4:11)

where the far-field conditions have been determined using the transformation laws

established in Exercise 3-3 (or see Appendix B).

Continued

T

T

r1

FIGURE 8-11 Stress-free hole under uniform biaxial far-field loading.
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EXAMPLE 8-7: Infinite Medium with a Stress-Free Hole
Under Uniform Far-Field Tension Loading–Cont’d

We start the solution to this example by considering the state of stress in the medium

if there were no hole. This stress field is simply sx ¼ T, sy ¼ txy ¼ 0 and can be

derived from the Airy stress function

f ¼ 1

2
Ty2 ¼ T

2
r2 sin2 y ¼ T

4
r2(1� cos 2y)

The presence of the hole acts to disturb this uniform field. We expect that this

disturbance will be local in nature; thus, the disturbed field will decay to zero as we

move far away from the hole. Based on this, we choose a trial solution that includes the

axisymmetric and cos 2y terms from the general Michell solution (8.3.6)

f ¼ a0 þ a1 log r þ a2r
2 þ a3r

2 log r

þ (a21r
2 þ a22r

4 þ a23r
�2 þ a24) cos 2y

(8:4:12)

The stresses corresponding to this Airy function are

sr ¼ a3(1þ 2 log r)þ 2a2 þ a1
r2

� (2a21 þ 6a23
r4

þ 4a24
r2

) cos 2y

sy ¼ a3(3þ 2 log r)þ 2a2 � a1
r2

þ (2a21 þ 12a22r
4 þ 6a23

r4
) cos 2y

try ¼ (2a21 þ 6a22r
2 � 6a23

r4
� 2a24

r2
) sin 2y

(8:4:13)

For finite stresses at infinity, we must take a3 ¼ a22 ¼ 0. Applying the five boundary

conditions in (8.4.11) gives

TaT

x

y

FIGURE 8-12 Stress-free hole in an infinite medium under uniform far-field tension loading.
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EXAMPLE 8-7: Cont’d

2a2 þ a1
a2

¼ 0

2a21 þ 6a23
a4

þ 4a24
a2

¼ 0

2a21 � 6a23
a4

� 2a24
a2

¼ 0

2a21 ¼ �T

2

2a2 ¼ T

2

(8:4:14)

This system is easily solved for the constants, giving

a1 ¼ � a2T

2
, a2 ¼ T

4
, a21 ¼ �T

4
, a23 ¼ � a4T

4
, a24 ¼ a2T

2

Substituting these values back into (8.4.13) gives the stress field

sr ¼ T

2
1� a2

r2

� �
þ T

2
1þ 3a4

r4
� 4a2

r2

� �
cos 2y

sy ¼ T

2
1þ a2

r2

� �
� T

2
1þ 3a4

r4

� �
cos 2y

try ¼ � T

2
1� 3a4

r4
þ 2a2

r2

� �
sin 2y

(8:4:15)

The strain and displacement field can then be determined using the standard procedures

used previously.

The hoop stress variation around the boundary of the hole is given by

sy(a, y) ¼ T(1� 2 cos 2y) (8:4:16)

and this is shown in the polar plot in Figure 8-13. This distribution indicates that the

stress actually vanishes at y ¼ 30	 and leads to a maximum value at y ¼ 90	

smax ¼ sy(a, � p=2) ¼ 3T (8:4:17)
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FIGURE 8-13 Variation of hoop stress around hole boundary is 8-7.
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EXAMPLE 8-7: Infinite Medium with a Stress-Free Hole
Under Uniform Far-Field Tension Loading–Cont’d

Therefore, the stress concentration factor for this problem is 3, a result that is higher

than that found in the previous example shown in Figure 8-11 for uniform tension in two

orthogonal directions. This illustrates an interesting, nonintuitive point that additional

vertical loading to the problem of Figure 8-12 actually reduces the stress concentration.
The effects of the hole in perturbing the uniform stress field can be shown by plotting

the variation of the stress with radial distance. Considering the case of the hoop stress at

an angle p=2, Figure 8-14 shows the distribution of sy(r, p=2)=T versus nondimensional

radial distance r/a. It is seen that the stress concentration around the hole is highly

localized and decays very rapidly, essentially disappearing when r > 5a.

8.4.3 Biaxial and Shear Loading Cases
Another interesting stress concentration problem is shown in Figure 8-15. For this case, the far-

field stress is biaxial, with tension in the horizontal and compression in the vertical. This

sq a
r p

/T)2,(
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FIGURE 8-14 Variation in hoop stress with radial distance from the hole.
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FIGURE 8-15 Stress-free hole under biaxial and shear loading.
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far-field loading is equivalent to a pure shear loading on planes rotated 458 as shown in case

(b). Thus, the solution to this case would apply to either the biaxial or shear-loading problems

as shown.

The biaxial problem solution can be easily found from the original solution (8.4.15). This is

done by adding to the original state another stress field with loading replaced by �T and

having coordinate axes rotated 908. Details of this process are left as an exercise, and the final

result is given by

sr ¼ T 1þ 3a4

r4
� 4a2

r2

� �
cos 2y

sy ¼ �T 1þ 3a4

r4

� �
cos 2y

try ¼ �T 1� 3a4

r4
þ 2a2

r2

� �
sin 2y

(8:4:18)

The maximum stress is found to be the hoop stress on the boundary of the hole given by

sy(a, 0) ¼ sy(a, p) ¼ �4T, sy(a, p=2) ¼ sy(a, 3p=2) ¼ 4T

and thus the stress concentration factor for this case is 4. It is interesting to compare this case

with our previous examples shown in Figures 8-11 and 8-12. The equal biaxial tension in

Figure 8-11 gives a stress concentration factor of 2, while the single far-field loading in Figure 8-12

produces a factor of 3. It therefore appears that the equal but opposite biaxial loadings in

Figure 8-15(a) enhance the local stress field, thus giving the highest concentration effect.

Other loading cases of stress concentration around a stress-free hole in an infinite medium

can be developed by these techniques. The problem of determining such stress distributions for

the case where the hole is in a medium of finite size poses a much more difficult boundary-

value problem that would generally require Fourier methods using a series solution; see Little

(1973). However, as shown in the stress plot in Figure 8-14, the localized concentration effects

decay rapidly. Thus, these infinite domain solutions could be used as a good approximation to

finite size problems with boundaries located greater than about five hole radii away from the

origin. Numerical techniques employing finite and boundary element methods are applied to

these stress concentration problems in Chapter 16; see Examples 16-2 and 16-5.

EXAMPLE 8-8: Wedge and Semi-Infinite Domain Problems

In this example, we shall develop the solution to several problems involving the wedge

domain shown in Figure 8-16. The two boundaries are defined by the lines y ¼ a and

y ¼ b. By making special choices for angles a and b and the boundary loadings on each

face, many different problems can be generated.

Using the general Michell solution (8.3.6), we choose an Airy stress function to

include terms that are bounded at the origin and give uniform stresses on the boundaries,

f ¼ r2(a2 þ a6yþ a21 cos 2yþ b21 sin 2y) (8:4:19)

The stresses corresponding to this solution are given by

Continued
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EXAMPLE 8-8: Wedge and Semi-Infinite Domain
Problems–Cont’d

sr ¼ 2a2 þ 2a6y� 2a21 cos 2y� 2b21 sin 2y

sy ¼ 2a2 þ 2a6yþ 2a21 cos 2yþ 2b21 sin 2y

try ¼ �a6 � 2b21 cos 2yþ 2a21 sin 2y

(8:4:20)

Note that this general stress field is independent of the radial coordinate.

x

a
q

b

y

r

FIGURE 8-16 Wedge domain geometry.

8.4.4 Quarter Plane Example
Consider the specific case of a quarter plane (a ¼ 0 and b ¼ p=2) as shown in Figure 8-17. The
problem has a uniform shear loading along one boundary (y-axis) and no loading on the other

boundary.

The boundary conditions on this problem are

sy(r, 0) ¼ try(r, 0) ¼ 0

sy(r,p=2) ¼ 0, try(r,p=2) ¼ S
(8:4:21)

x

y

S

r
q

FIGURE 8-17 Quarter plane example.
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Using the general stress solution (8.4.20), these boundary conditions give the following four

equations:

2a2 þ 2a21 ¼ 0

�a6 � 2b21 ¼ 0

2a2 � 2a21 þ a6p ¼ 0

�a6 þ 2b21 ¼ S

(8:4:22)

These are easily solved for the unknown constants, giving

a2 ¼ Sp
8
, a6 ¼ � S

2
, a21 ¼ � Sp

8
, b21 ¼ S

4
(8:4:23)

Back-substituting these results determines the stress field solution

sr ¼ S

2
(
p
2
� 2yþ p

2
cos 2y� sin 2y)

sy ¼ S

2
(
p
2
� 2y� p

2
cos 2yþ sin 2y)

try ¼ S

2
(1� cos 2y� p

2
sin 2y)

(8:4:24)

It has been pointed out that this problem has an apparent inconsistency in the shear

stress component at the origin—that is, txy 6¼ tyx at x ¼ y ¼ 0. To further investigate this,

let us reformulate the problem in Cartesian coordinates. The stress function can be expressed as

f ¼ S
p(x2 þ y2)

8
� (x2 þ y2)

2
tan�1 y

x
� p

8
(x2 � y2)þ xy

2

� �
(8:4:25)

The shear stress is then given by

txy ¼ � @2f
@x@y

¼ �Sy2

x2 þ y2
(8:4:26)

Excluding the origin, this expression tends to zero for y ! 0 and to�S for x ! 0, and thus has

the proper limiting behavior for r 6¼ 0. However, it has been shown by Barber (1992) that the

stress gradients in the tangential direction are of order O(r�1).

8.4.5 Half-Space Examples
Let us next consider the solution to several half-space examples with a domain specified by

a ¼ 0 and b ¼ p. We shall investigate examples with uniform loadings over portions of the

boundary surface and also cases with concentrated forces.

8.4.6 Half-Space Under Uniform Normal Stress Over x � 0
The problem of a half space with uniform normal stress over the negative x-axis is shown in

Figure 8-18. For the particular angles of a and b that create the half-space domain, the general

Airy stress function solution form (8.4.19) can be reduced to
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f ¼ a6r
2yþ b21r

2 sin 2y (8:4:27)

The hoop and shear stresses corresponding to this function are

sy ¼ 2a6yþ 2b21 sin 2y

try ¼ �a6 � 2b21 cos 2y
(8:4:28)

Applying boundary conditions sy(r, 0) ¼ try(r, 0) ¼ try(r,p) ¼ 0, sy(r, p) ¼ �T, determines

constants a6 ¼ �T=2p, b21 ¼ T=4p. Thus, the stress field solution is now determined as

sr ¼ � T

2p
( sin 2yþ 2y)

sy ¼ T

2p
( sin 2y� 2y)

try ¼ T

2p
(1� cos 2y)

(8:4:29)

It is again noted that this field depends only on the angular coordinate. Because of the

discontinuity of the boundary loading, there is a lack of continuity of the stress at the origin.

This can be seen by considering the behavior of the Cartesian shear stress component. Using

the transformation relations in Appendix B, the Cartesian shear stress for this problem is

found to be

txy ¼ � T

2p
(1� cos 2y) (8:4:30)

Along the positive x-axes (y ¼ 0) txy ¼ 0, while on the y-axes (y ¼ p=2) txy ¼ �T=p. Thus, as
we approach the origin along these two different paths, the values will not coincide.

8.4.7 Half Space Under Concentrated Surface Force
System (Flamant Problem)

As another half-space example, consider the case of a concentrated force system acting at the

origin, as shown in Figure 8-19. This example is commonly called the Flamant problem.

x

 y

T

r

q

FIGURE 8-18 Half space under uniform loading over half of the free surface.
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Specifying boundary conditions for such problems with only concentrated loadings requires

some modification of our previous methods. For this example, the tractions on any semicircular

arc C enclosing the origin must balance the applied concentrated loadings. Because the area of

such an arc is proportional to the radius r, the stresses must be of order 1/r to allow such an

equilibrium statement to hold on any radius. The appropriate terms in the general Michell

solution (8.3.6) that will give stresses of order 1/r are specified by

f ¼ (a12r log r þ a15ry) cos yþ (b12r log r þ b15ry) sin y (8:4:31)

The stresses resulting from this stress function are

sr ¼ 1

r
[(a12 þ 2b15) cos yþ (b12 � 2a15) sin y]

sy ¼ 1

r
[a12 cos yþ b12 sin y]

try ¼ 1

r
[a12 sin y� b12 cos y]

(8:4:32)

With zero normal and shear stresses on y ¼ 0 and p, a12 ¼ b12 ¼ 0, and thus sy ¼ try ¼ 0

everywhere. Therefore, this state of stress is sometimes called a radial distribution. Note
that this result is also true for the more general case of a wedge domain with arbitrary angles of

a and b (see Exercise 8-25). To determine the remaining constants a15 and b15, we apply the

equilibrium statement that the summation of the tractions over the semicircular arc C of radius

a must balance the applied loadings,

X ¼ �
ðp
0

sr(a, y)a cos ydy ¼ �pb15

Y ¼ �
ðp
0

sr(a, y)a sin ydy ¼ pa15

(8:4:33)

x

 y

Y

X

r

q

C

FIGURE 8-19 Flamant problem.
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Thus, the constants are determined as a15 ¼ Y=p and b15 ¼ �X=p, and the stress field is now

given by

sr ¼ � 2

pr
[X cos yþ Y sin y]

sy ¼ try ¼ 0

(8:4:34)

As expected, the stress field is singular at the origin directly under the point loading. However,

what is not expected is the result that sy and try vanish even for the case of tangential loading.

To investigate this problem further, we will restrict the case to only normal loading and set

X ¼ 0. For this loading, the stresses are

sr ¼ � 2Y

pr
sin y

sy ¼ try ¼ 0

(8:4:35)

The Cartesian components corresponding to this stress field are determined using the trans-

formation relations given in Appendix B. The results are found to be

sx ¼ sr cos2 y ¼ � 2Yx2y

p(x2 þ y2)2

sy ¼ sr sin2 y ¼ � 2Yy3

p(x2 þ y2)2

txy ¼ sr sin y cos y ¼ � 2Yxy2

p(x2 þ y2)2

(8:4:36)

The distribution of the normal and shearing stresses on a horizontal line located a distance a
below the free surface of the half space is shown in Figure 8-20. The maximum normal stress

directly under the load is given by sy
�� �� ¼ 2Y=pa. It is observed that the effects of the

concentrated loading are highly localized, and the stresses are vanishingly small for distances

where x > 5a. Stress contours of sr are shown in Figure 8-21. From solution (8.4.35), lines of

constant radial stress are circles tangent to the half-space surface at the loading point.

We now wish to determine the displacements for the normal concentrated force problem.

Assuming plane stress conditions, Hooke’s law and the strain-displacement relations give

er ¼ @ur
@r

¼ 1

E
(sr � �sy) ¼ � 2Y

pEr
sin y

ey ¼ ur
r
þ 1

r

@uy
@y

¼ 1

E
(sy � �sr) ¼ 2�Y

pEr
sin y

2ery ¼ 1

r

@ur
@y

þ @uy
@r

� uy
r
¼ 1

m
try ¼ 0

(8:4:37)

Integrating (8:4:37)1 yields the radial displacement

ur ¼ � 2Y

pE
sin y log r þ f (y) (8:4:38)

where f is an arbitrary function of the angular coordinate.
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Substituting (8.4.38) into (8:4:37)2 allows separation of the derivative of the tangential

displacement component

@uy
@y

¼ 2�Y

pE
sin yþ 2Y

pE
sin y log r � f (y)

Integrating this equation gives

uy ¼ � 2�Y

pE
cos y� 2Y

pE
cos y log r �

ð
f (y)dyþ g(r) (8:4:39)
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FIGURE 8-20 Normal and shear stress distributions below the free surface for the
Flamant problem.
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FIGURE 8-21 Radial stress contours for the Flamant problem.
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where g(r) is an arbitrary function of the indicated variable. Determination of the arbitrary

functions f and g is accomplished by substituting equations (8.4.38) and (8.4.39) into (8:4:37)3.
Similar to our previous Cartesian examples, the resulting equation can be separated into the

two relations

g(r)� rg0(r) ¼ K

� (1� �)
2Y

pE
cos yþ f 0(y)þ

ð
f (y)dy ¼ K

(8:4:40)

where K is an arbitrary constant. The solutions to this system are

g(r) ¼ Cr þ K

f (y) ¼ (1� �)Y

pE
y cos yþ A sin yþ B cos y

(8:4:41)

where A, B, and C are constants of integration.

Collecting these results, the displacements thus can be written as

ur ¼ (1� �)Y

pE
y cos y� 2Y

pE
log r sin yþ A sin yþ B cos y

uy ¼ � (1� �)Y

pE
y sin y� 2Y

pE
log r cos y� (1þ �)Y

pE
cos y

þ A cos y� B sin yþ Cr þ K

(8:4:42)

The terms involving the constants A, B, and C represent rigid-body motion (see Exercise 7-21).

These terms can be set to any arbitrary value without affecting the stress distribution. Rather

than setting them all to zero, they will be selected to satisfy the expected symmetry condition

that the horizontal displacements along the y-axis should be zero. This condition can be

expressed by uy(r, p=2) ¼ 0, and this relation requires

C ¼ K ¼ 0, B ¼ � (1� �)Y

2E

The vertical rigid-body motion may be taken as zero, thus implying that A ¼ 0. Values for all

constants are now determined, and the final result for the displacement field is

ur ¼ Y

pE
[(1� �)(y� p

2
) cos y� 2 log r sin y]

uy ¼ Y

pE
[�(1� �)(y� p

2
) sin y� 2 log r cos y� (1þ �) cos y]

(8:4:43)

It should be pointed out that these results contain unbounded logarithmic terms that would

lead to unrealistic predictions at infinity. This unpleasant situation is a result of the two-

dimensional model. The corresponding three-dimensional problem (Boussinesq’s problem) is

solved in Chapter 13, and the resulting displacement field does not have logarithmic terms and

is bounded at infinity; see equations (13.4.16).

The radial displacement along the free surface is given by

ur(r, 0) ¼ ur(r,p) ¼ � Y

2E
(1� �) (8:4:44)
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Since (1� �) > 0, we see an unexpected result that the horizontal displacement of all points on

the half-space surface move an equal amount toward the loading point. The tangential

displacement component on the surface is given by

uy(r, 0) ¼ �uy(r,p) ¼ � Y

pE
[(1þ �)þ 2 log r] (8:4:45)

which as expected is singular at the origin under the point loading. Again, the corresponding

three-dimensional solution in Chapter 13 predicts quite different surface displacements. For

example, the three-dimensional result corresponding to equation (8.4.45) gives a vertical

displacement of order O(1=r). A MATLAB vector distribution plot of the general displacement

field resulting from solution (8.4.43) is shown in Figure 8-22. The total displacement vectors

are illustrated using suitable units for the near-field case (0 < r < 0:5) with a Poisson’s ratio of
0.3, and Y=E ¼ 1. The field pattern would significantly change for r > 1.

Some authors (for example, Timoshenko and Goodier 1970) have tried to remove the

unpleasant logarithmic effects by invoking a somewhat arbitrary condition ur(ro, p=2) ¼ 0,

where ro is some arbitrary distance from the loading point. This condition may be used to

determine the vertical rigid-body term, thus determining the constant A ¼ (2Y=pE) log ro.
Under this condition, the displacement solution can then be written as

ur ¼ Y

pE
[(1� �)(y� p

2
) cos y� 2 log (

ro
r
) sin y]

uy ¼ Y

pE
[�(1� �)(y� p

2
) sin yþ 2 log (

ro
r
) cos y� (1þ �) cos y]

(8:4:46)

8.4.8 Half Space Under a Surface Concentrated Moment
Other half-space problems with concentrated loadings can be generated from the previous

single-force solution. For example, the concentrated moment problem can be found from

the superposition of two equal but opposite forces separated by a distance d as shown in

Y

FIGURE 8-22 Displacement field for the Flamant problem.
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Figure 8-23. The limit is taken with d ! 0 but with the product Pd ! M. Details are left as an

exercise, and the final resulting stress field is given by

sr ¼� 4M

pr2
sin y cos y

sy ¼ 0

try ¼� 2M

pr2
sin2 y

(8:4:47)

8.4.9 Half Space Under Uniform Normal Loading Over �a 
 x 
 a
As a final half-space example, consider the case of a uniform normal loading acting over a

finite portion (�a < x < a) of the free surface, as shown in Figure 8-24. This problem can be

solved by using the superposition of the single normal force solution previously developed.

Using the Cartesian stress solution (8.4.36) for the single-force problem

sx ¼ sr cos2 y ¼ � 2Y

pr
sin y cos2 y

sy ¼ sr sin2 y ¼ � 2Y

pr
sin3 y

txy ¼ sr sin y cos y ¼ � 2Y

pr
sin2 y cos y

(8:4:48)
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FIGURE 8-23 Half space with a concentrated surface moment loading.
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FIGURE 8-24 Half space under uniform loading over �a > x > a.
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For the distributed loading case, a differential load acting on the free surface length dx may be

expressed by dY ¼ pdx. Using the geometry in Figure 8-25, dx ¼ rdy= sin y, and thus the

differential loading is given by dY ¼ prdy= sin y.
Using the differential loading in relations (8.4.48) gives the differential stress field

dsx ¼ � 2p

p
cos2 ydy

dsy ¼ � 2p

p
sin2 ydy

dtxy ¼ � 2p

p
sin y cos ydy

(8:4:49)

Integrating this result over the entire load distribution gives the total stress field

sx ¼ � 2p

p

ðy2
y1
cos2 ydy ¼ � p

2p
[2(y2 � y1)þ ( sin 2y2 � sin 2y1)]

sy ¼ � 2p

p

ðy2
y1
sin2 ydy ¼ � p

2p
[2(y2 � y1)� ( sin 2y2 � sin 2y1)]

txy ¼ � 2p

p

ðy2
y1
sin y cos ydy ¼ p

2p
[ cos 2y2 � cos 2y1]

(8:4:50)

with y1 and y2 defined in Figure 8-24. The distribution of the normal and shearing stresses on a

horizontal line located a distance a below the free surface is shown in Figure 8-26. This distribution

is similar to that in Figure 8-20 for the single concentrated force, thus again justifying the Saint-

Venant principle. The solution of the corresponding problem of a uniformly distributed shear

loading is given in Exercise 8-28. The more general surface loading case, with arbitrary normal

and shear loading over the free surface (�a � s � a), is included in Exercise 8.29.
Distributed loadings on an elastic half space are commonly used to simulate contact mechanics

problems, which are concerned with the load transfer and local stress distribution in elastic bodies

in contact. Problems of this type were first investigated by Hertz (1882), and numerous studies

have been conducted over the last century (see text by Johnson 1985). Because interest in these

problems is normally restricted to near-field behavior, boundary dimensions and curvatures can

often be neglected and a distributed loading on a half space can provide an estimate of the local

stress distribution. Of course, the simple uniform normal load distribution in Figure 8-24 would

only provide an approximation to the actual nonuniform loading generated by bodies in contact.

The high local stresses commonly generated in such problems have been found to cause

material failure under repeated loading conditions found in rotating wheels, gears, and

bearings. Because failure of ductile materials can be related to the maximum shear stress,

dx

r

dq

q

q

FIGURE 8-25 Surface geometry for the distributed loading example.
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consider the behavior of tmax under the loading in Figure 8-24. Along the y-axis below the

loading, txy ¼ 0, thus the x- and y-axes are principal at these points and the maximum shear

stress is given by tmax ¼ 1=2jsx � syj. A plot of this stress versus depth below the surface is

shown in Figure 8-27. It is interesting to observe that tmax takes on a maximum value of p=p
below the free surface at y ¼ a, and thus initial material failure is expected to start at this

subsurface location. The corresponding stress distribution for the concentrated loading problem

of Figure 8-21 is also shown. In contrast, it is seen that the concentrated loading produces

monotonically decreasing behavior from the singular value directly under the load.
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FIGURE 8-26 Normal and shear stress distributions for the distributed loading example.
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FIGURE 8-27 Comparison of maximum shear stress variation in an elastic half space under
point and distributed surface loadings.
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To compare these theoretical results with actual material behavior, photoelastic contact

examples (taken from Johnson 1985) are shown in Figure 8-28. The figure illustrates and compares

near-field photoelastic fringe patterns in a rectangular plate with four different contact loadings.

The photoelastic model (plate) is made of a transparent material that exhibits isochromatic fringe
patterns when viewed under polarized light. These fringes represent lines of constant maximum
shear stress and can be used to determine the nature of the local stress field. Under point loading,

themaximum stress appears to be located directly under the load, while for the uniform distributed

loading case the maximum contour occurs at a small distance below the contact surface. These

results provide qualitative agreement with the theoretical predictions shown in Figure 8-27, and

Exercise 8-27 involves the development and plotting of the maximum shear stress contours.

Figure 8-28 also shows surface loading from a flat punch and circular cylinder. The flat punch

loading generates high local stresses at the edges of the punch, and this is caused by the

singularity of the loading at these two points. Although the stress fields of the cylinder and

uniform loading cases look similar, the detailed stresses are not the same. The cylinder case

creates a nonuniform contact loading profile that decreases to zero at the ends of the contact area.

Further details on these interesting contact mechanics issues can be found in Johnson (1985).

Other distributed loading problems can be solved in a similar superposition fashion, and the

solutions to several cases have been given by Timoshenko and Goodier (1970) and Poulos and

Davis (1974).

(Flat Punch Loading) (Cylinder Contact Loading)

(Point Loading) (Uniform Loading)

FIGURE 8-28 Isochromatic photoelastic fringe patterns for several contact loadings on
a half plane. (Taken from Contact Mechanics by KL Johnson, reprinted with the permission

of Cambridge University Press.)
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8.4.10 Notch and Crack Problems
Consider the original wedge problem shown in Figure 8-16 for the case where angle a is small

and b is 2p� a. This case generates a thin notch in an infinite medium as shown in Figure 8-29.

We pursue the case where a � 0, and thus the notch becomes a crack. The boundary surfaces of

the notch are taken to be stress free and thus the problem involves only far-field loadings.

Starting with the Michell solution (8.3.6), the Airy stress function is chosen from the

generalized form

f ¼ rl[A sin lyþ B cos lyþ C sin (l� 2)yþ D cos (l� 2)y] (8:4:51)

where we are now allowing l to be a noninteger. The boundary stresses corresponding to this

stress function are

sy ¼ l(l� 1)rl�2[A sin lyþ B cos lyþ C sin (l� 2)yþ D cos (l� 2)y]

try ¼ �(l� 1)rl�2[Al cos ly� Bl sin lyþ C(l� 2) cos (l� 2)y

�D(l� 2) sin (l� 2)y]

(8:4:52)

The stress-free boundary conditions at y ¼ a � 0 give

Bþ D ¼ 0

lAþ (l� 2)C ¼ 0
(8:4:53)

while the identical conditions at y ¼ b ¼ 2p� a � 2p produce

[ sin 2p(l� 2)� l� 2

l
sin 2pl]C

þ [ cos 2p(l� 2)� cos 2pl]D ¼ 0

[(l� 2) cos 2p(l� 2)� (l� 2) cos 2pl]C

� [(l� 2)sin2p(l� 2)� l sin 2pl]D ¼ 0

(8:4:54)

 y

b = 2p − a

r

x

q
aJ

FIGURE 8-29 Crack problem geometry.
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where we have used relations (8.4.53) to reduce the form of (8.4.54). These relations represent

a system of four homogeneous equations for the four unknowns A, B, C, and D. Thus, the
determinant of the coefficient matrix must vanish, and this gives the result

sin 2p(l� 1) ¼ 0

This relation implies that 2p(l� 1) ¼ np, with n ¼ 0, 1, 2, . . . thus giving

l ¼ n

2
þ 1, n ¼ 0, 1, 2, � � � (8:4:55)

Near the tip of the notch r ! 0 and the stresses will be of order O(rl�2), while the

displacements are O(rl�1). At this location the displacements are expected to be finite,

thus implying l > 1, while the stresses are expected to be singular, requiring l < 2.

Therefore, we find that the allowable range for l is given by 1 < l < 2. In light of

relation (8.4.55), we need only consider the case with n ¼ 1, giving l ¼ 3=2. Thus, for the crack
problem the local stresses around the crack tip will be O(1=

ffiffi
r

p
) and the displacementsO(

ffiffi
r

p
).

Using these results, the stress field can then be written as

sr ¼ � 3

4

1ffiffi
r

p A( sin
3

2
yþ 5 sin

y
2
)þ B( cos

3

2
yþ 5

3
cos

y
2
)

� �

sy ¼ 3

4

1ffiffi
r

p A( sin
3

2
y� 3 sin

y
2
)þ B( cos

3

2
y� cos

y
2
)

� �

try ¼ � 3

4

1ffiffi
r

p A( cos
3

2
y� cos

y
2
)� B( sin

3

2
y� 1

3
sin

y
2
)

� � (8:4:56)

Such relations play an important role in fracture mechanics by providing information on the nature

of the singular state of stress near crack tips. In fracture mechanics it is normally more convenient

to express the stress field in terms of the angle Wmeasured from the direction of crack propagation,

as shown in Figure 8-29. Making the change in angular coordinate, the stress field now becomes

sr ¼ � 3

2

Affiffi
r

p cos
W
2
(3� cos W)� B

2
ffiffi
r

p sin
W
2
(1� 3 cos W)

sy ¼ � 3

2

Affiffi
r

p cos
W
2
(1þ cos W)� 3B

2
ffiffi
r

p sin
W
2
(1þ cos W)

try ¼ 3

2

Affiffi
r

p sin
W
2
(1þ cos W)þ B

2
ffiffi
r

p cos
W
2
(1� 3 cosW)

(8:4:57)

The remaining constants A and B are determined from the far-field boundary conditions.

However, an important observation is that the form of this crack-tip stress field is not dependent

on such boundary conditions. With respect to the angle W, it is noted that terms with the A
coefficient include symmetric normal stresses, while the remaining terms containing B have

antisymmetric behavior. The symmetric terms are normally referred to as opening or mode I
behavior, while antisymmetric terms correspond to shear or mode II. Constants A and B can be

related to the stress intensity factors commonly used in fracture mechanics studies. Further

information on stress analysis around cracks can be found in the classic monograph by Tada,

Paris, and Irwin (2000). Other cases of notch problems with different geometry and boundary

conditions have been presented by Little (1973). Additional stress analysis around cracks is

investigated in Chapters 10, 11, and 12 using the powerful method of complex variable theory.
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EXAMPLE 8-9: Curved Beam Problems

We shall now investigate the solution to some curved beam problems defined by an

annular region cut by two radial lines. Similar to the previous beam examples, we use

resultant force boundary conditions at the ends and exact pointwise specifications along

the lateral curved boundaries. Comparisons with strength of materials predictions are

made for specific cases.

8.4.11 Pure Bending Example
The first example is the simple case of a curved beam loaded by end moments as shown in

Figure 8-30. The solution to such a problem is independent of the angular coordinate. As usual,

we satisfy the pointwise boundary conditions on the sides of the beam but address only the

resultant effects at each cross-sectional end. Thus, the boundary conditions on this problem are

formulated as

sr(a) ¼ sr(b) ¼ 0

try(a) ¼ try(b) ¼ 0ðb
a

sydr ¼ 0ðb
a

syrdr ¼ �M

(8:4:58)

Using the general axisymmetric stress solution (8.3.8) in boundary relations (8.4.58) gives

2A log aþ C

a2
þ Aþ 2B ¼ 0

2A log bþ C

b2
þ Aþ 2B ¼ 0

b(2A log bþ C

b2
þ Aþ 2B)� a(2A log aþ C

a2
þ Aþ 2B) ¼ 0

� C log (
b

a
)þ A(b2 log b� a2 log a)þ B(b2 � a2) ¼ �M

(8:4:59)

Because the third equation is a linear combination of the first two, only three of these four

relations are independent. Solving these equations for the three constants gives

a

b

r

MM

FIGURE 8-30 Curved beam with end moments.
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A ¼ � 2M

N
(b2 � a2)

B ¼ M

N
[b2 � a2 þ 2(b2 log b� a2 log a)]

C ¼ � 4M

N
a2b2 log (

b

a
)

where

N ¼ (b2 � a2)2 � 4a2b2[ log (
b

a
)]2

(8:4:60)

The stresses thus become

sr ¼ � 4M

N
[
a2b2

r2
log (

b

a
)þ b2 log (

r

b
)þ a2 log (

a

r
)]

sy ¼ � 4M

N
[� a2b2

r2
log (

b

a
)þ b2 log (

r

b
)þ a2 log (

a

r
)þ b2 � a2]

try ¼ 0

(8:4:61)

The bending stress distribution sy through the beam thickness is shown in Figure 8-31 for

the case of b=a ¼ 4. Also shown in the figure is the corresponding result from strength of

materials theory (see Appendix D, Section D.4, and Exercise 8-33). Both theories predict

nonlinear stress distributions with maximum values on the inner fibers. For this problem,

differences between elasticity and strength of materials predictions are very small.

8.4.12 Curved Cantilever Under End Loading
Consider the curved cantilever beam carrying an end loading as shown in Figure 8-32. For this

problem, the stress field depends on the angular coordinate. The boundary conditions require

zero stress on r ¼ a and b and a resultant shear load on the end y ¼ 0. These conditions are

thus formulated as follows:
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FIGURE 8-31 Bending stress results of a curved beam with end moments.
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sr(a, y) ¼ sr(b, y) ¼ 0

try(a, y) ¼ try(b, y) ¼ 0ðb
a

try(r, 0)dr ¼ Pðb
a

sy(r, 0)dr ¼
ðb
a

sy(r, 0)rdr ¼ 0ðb
a

sy(r, p=2)dr ¼ �Pðb
a

sy(r, p=2)rdr ¼ P(aþ b)=2ðb
a

try(r,p=2)dr ¼ 0

(8:4:62)

Based on the required angular dependence of the stress field, the Airy stress function for this

problem is selected from the general Michell solution (8.3.6), including only terms with sin y
dependence,

f ¼ (Ar3 þ B

r
þ Cr þ Dr log r) sin y (8:4:63)

This form gives the following stresses:

sr ¼ (2Ar � 2B

r3
þ D

r
) sin y

sy ¼ (6Ar þ 2B

r3
þ D

r
) sin y

try ¼ �(2Ar � 2B

r3
þ D

r
) cos y

(8:4:64)

Using these results in the boundary condition relations (8.4.62) generates three equations for

the unknown constants. Solving these equations gives the results

A ¼ P

2N
, B ¼ �Pa2b2

2N
, D ¼ � P

N
(a2 þ b2)

where

N ¼ a2 � b2 þ (a2 þ b2) log (
b

a
)

P

a
b

r
q

FIGURE 8-32 Curved cantilever beam with end loading.
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Substituting these forms into (8.5.64) gives the stress field solution

sr ¼ P

N
(r þ a2b2

r3
� a2 þ b2

r
) sin y

sy ¼ P

N
(3r � a2b2

r3
� a2 þ b2

r
) sin y

try ¼ � P

N
(r þ a2b2

r3
� a2 þ b2

r
) cos y

(8:4:65)

These elasticity results can again be comparedwith the corresponding predictions fromstrength

ofmaterials. Figure 8-33 illustrates the comparison of the hoop stress component through the beam

thickness at y ¼ p=2 (fixed end) for the case of b=a ¼ 4. As in the previous example, results from

the two theories are similar, but for this case differences are more sizable. Other problems of end-

loaded cantilever beams can be solved using similar methods (see Exercise 8-34).

EXAMPLE 8-10: Disk Under Diametrical Compression

Let us now investigate the solution to the plane problem shown in Figure 8-34 of a circular

disk or cylinder loaded by equal but opposite concentrated forces along a given diameter.

This particular problem is of special interest since this geometry is used in standard

testing (ASTM D-4123 1987) of bituminous and other brittlematerials such as concrete,

asphalt, rock, and ceramics. Normally referred to as the Brazilian or indirect tension test,
the sample and loading geometry create a tension zone along the loaded diameter, thus

allowing determination of the tensile strength of the specimen material. Standard direct

tension testing on such brittlematerials has led to difficulty in establishing a failure region

in the sample’s central interior away from the gripping locations (see the simple tension

sample geometry in Figure 4-2).

Continued
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FIGURE 8-33 Stress results of a curved cantilever beam with end loading.
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EXAMPLE 8-10: Disk Under Diametrical Compression–Cont’d

This problem can be solved by more than one method, but perhaps the most

interesting technique employs a clever superposition scheme, as shown in Figure 8-34.

The method uses superposition of three particular stress fields including two Flamant

solutions along with a uniform radial tension loading. As will be shown, the Flamant

solutions provide the required singular behaviors at the top and bottom of an imaginary

disk within each half space, while the radial loading removes the resulting boundary

tractions on the disk that were created by the two point loadings.

To combine the two Flamant solutions, it is more convenient to redefine the angular

coordinate as shown in Figure 8-35. Using the previous results from equation (8.4.36), the

stress fields for each Flamant solution can be written as

s(1)x ¼ � 2P

pr1
cos y1 sin2 y1, s(2)x ¼ � 2P

pr2
cos y2 sin2 y2

s(1)y ¼ � 2P

pr1
cos3 y1, s(2)y ¼ � 2P

pr2
cos3 y2

t(1)xy ¼ � 2P

pr1
cos2 y1 sin y1, t(2)xy ¼ � 2P

pr2
cos2 y2 sin y2

(8:4:66)

Radial Tension Solution (3)

P

P

D =

Flamant Solution (1)

+ +

Flamant Solution (2)

FIGURE 8-34 Disk under diametrical compression—superposition solution.
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EXAMPLE 8-10: Cont’d

From the general solution (8.4.35), each Flamant solution produces only a constant

radial stress of sr ¼ �2P=pD on the circular boundary of the disk (see Figure 8-21).

The resultant boundary traction from the two combined Flamant loadings is found to be

normal to the disk surface with a magnitude given by

Tn ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s(1)r cos y1)2 þ (s(2)r sin y1)2

q

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(� 2P

pD
cos y1)2 þ (� 2P

pD
sin y1)2

r
¼ � 2P

pD

(8:4:67)

Thus, the final superposition of a uniformly loaded disk with the opposite tractions of

(8.4.67) removes the boundary forces and yields the solution to the desired problem. The

uniformly loaded disk problem creates a simple hydrostatic state of stress given by

s(3)x ¼ s(3)y ¼ 2P

pD
, t(3)xy ¼ 0 (8:4:68)

Applying the superposition of states (1), (2), and (3), relations (8.4.66) and (8.4.68)

are added, giving the final stress field solution

sx ¼ � 2P

p
(R� y)x2

r41
þ (Rþ y)x2

r42
� 1

D

� �

sy ¼ � 2P

p
(R� y)3

r41
þ (Rþ y)3

r42
� 1

D

� �

txy ¼ 2P

p
(R� y)2x

r41
� (Rþ y)2x

r42

� �
(8:4:69)

where r1,2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ (R� y)2

p
. On the x-axis (y ¼ 0) these results simplify to give

Continued
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FIGURE 8-35 Disk under diametrical compression.
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EXAMPLE 8-10: Disk Under Diametrical Compression–Cont’d

sx(x, 0) ¼ 2P

pD
D2 � 4x2

D2 þ 4x2

� �2

sy(x, 0) ¼ � 2P

pD
4D4

(D2 þ 4x2)2
� 1

� �
txy(x, 0) ¼ 0

(8:4:70)

while on the y-axis (x ¼ 0) the stresses are

sx(0, y) ¼ 2P

pD

sy(0, y) ¼ � 2P

p
2

D� 2y
þ 2

Dþ 2y
� 1

D

� �
txy(0, y) ¼ 0

(8:4:71)

Thus, along the loaded diameter (x ¼ 0), the body will have a uniform tensile stress of
sx ¼ 2P=pD, and this result is the primary basis of using the geometry for indirect tension

testing. Knowing the sample size and failure (fracture) loading, the simple stress relation

allows the determination of the failing tensile stress ormaterial strength. Plots of the stress

distribution along the x-axis (y ¼ 0) are left as an exercise. Additional applications of this

problem can be found in models of granular materials in which particles are simulated by

circular disks loaded by several contact forces (see Exercise 8-36).

The maximum shearing stresses in the disk can be calculated by the relation

tmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx � sy

2

� �2
þ t2xy

r
(8:4:72)

Using the stress results (8.4.69) in this relation, the tmax distribution may be determined,

and these results are illustrated in Figure 8-36. The theoretical maximum shear

(Theoretical Contours) (Photoelastic Contours)
(Courtesy of Dynamic Photomechanics
Laboratory, University of Rhode Island)

FIGURE 8-36 Maximum shear stress contours and corresponding photoelastic
isochromatic for a disk under diametrical compression.
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EXAMPLE 8-10: Cont’d

stress contours are plotted using MATLAB. The corresponding photoelastic results are

also shown in the figure. In general, the theoretical contours match quite well with the

experimental results except for the regions near the loading points at the top and bottom

of the disk. This lack of correspondence is caused by the fact that the photoelastic

isochromatics were generated with a loading distributed over a small but finite contact

area, and thus the maximum shear stress occurs slightly below the contact surface, as

per earlier discussions of Figure 8-28. A numerical analysis of this problem using the

finite element method is developed in Chapter 16; see Example 16-3 and Figure 16-6.

EXAMPLE 8-11: Rotating Disk Problem

As a final example in this section, consider the problem of a thin uniform circular disk

subject to constant rotation ! as shown in Figure 8-37. The rotational motion generates

centrifugal acceleration on each particle of the disk, and this then becomes the source of

external loading for the problem. No other additional external loadings are considered.

It is convenient to handle the centrifugal force loading by relating it to a body force

density through the disk. For the case of constant angular velocity, the body force is

only in the radial direction given by

Fr ¼ r!2r (8:4:73)

where r is the material mass density. This problem is axisymmetric, and thus the

equilibrium equations reduce to

dsr
dr

þ sr � sy
r

þ r!2r ¼ 0 (8:4:74)

The solution can be efficiently handled by using a special stress function that automatic-

ally satisfies the equilibrium equation. The particular stress-stress function relation with

this property is given by

sr ¼ j=r

sy ¼ dj
dr

þ r!2r2
(8:4:75)

where j ¼ j(r) is the stress function.

Continued
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w

FIGURE 8-37 Rotating circular disk.
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EXAMPLE 8-11: Rotating Disk Problem–Cont’d

As usual, the governing equation for the stress function is determined from the

compatibility statement. For this axisymmetric case, the displacement field is of the

form ur ¼ ur(r) and uy ¼ 0. Therefore, the strain field is given by

er ¼ dur
dr

, ey ¼ ur
r
, ery ¼ 0

Eliminating ur from these equations develops the simple compatibility statement

d

dr
(rey)� er ¼ 0 (8:4:76)

Recall that the more general polar coordinate case was given as Exercise 7-17. Using

Hooke’s law for plane stress, the strains are given by

er ¼ 1

E
(sr � �sy) ¼ 1

E

j
r
� �

dj
dr

� �r!2r2
� �

ey ¼ 1

E
(sy � �sr) ¼ 1

E

dj
dr

þ r!2r2 � �
j
r

� � (8:4:77)

Using this result in the compatibility relation (8.4.76) generates the desired governing

equation

d2j
dr2

þ 1

r

dj
dr

� j
r2

þ (3þ �)r!2r ¼ 0

which can be written as

d

dr

1

r

d

dr
(rj)

� �
¼ �(3þ �)r!2r (8:4:78)

This equation is easily integrated, giving the result

j ¼ � (3þ �)

8
r!2r3 þ 1

2
C1r þ C2

1

r
(8:4:79)

where C1 and C2 are constants. The stresses corresponding to this solution are

sr ¼ � (3þ �)

8
r!2r2 þ C1

2
þ C2

r2

sy ¼ � 1þ 3�

8
r!2r2 þ C1

2
� C2

r2

(8:4:80)

For a solid disk, the stresses must be bounded at the origin and so C2 ¼ 0. The

condition that the disk is stress free at r ¼ a gives the remaining constant C1 ¼
(3þ �)r!2a2=4. The final form of the stress field is then
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EXAMPLE 8-11: Cont’d

sr ¼ 3þ �

8
r!2(a2 � r2)

sy ¼ r!2

8
[(3þ �)a2 � (1þ 3�)r2]

(8:4:81)

The stress distributionwithin the disk is shown in Figure 8-38 for the case � ¼ 0:3. Notice
that even though the body force is largest at the disk’s outer boundary, the maximum

stress occurs at the center of the disk where Fr ¼ 0. The maximum stress is given by

smax ¼ sr(0) ¼ sy(0) ¼ 3þ �

8
r!2a2

For an annular disk with a < r < b, the maximum stress occurs on the inner boundary,

and for the case of a very small inner hole with a << b, the maximum stress is

approximately twice that of the solid disk (see Exercise 8-37).

The solution to this problem could also be obtained by formulation in terms of the

radial displacement, thus generating the Navier equation, which can be easily integrated.

The corresponding plane strain solution for a rotating cylinder is found from these results

through the usual simple change in elastic constants; that is, by letting � ! �=(1� �).

sq/rw2a2

sr/rw2a2

n = 0.3
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FIGURE 8-38 Stresses in a rotating disk.
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Exercises

8-1. Explicitly show that the fourth-order polynomial Airy stress function

A40x
4 þ A22x

2y2 þ A04y
4

will not satisfy the biharmonic equation unless 3A40 þ A22 þ 3A04 ¼ 0.

8-2. Show that the Airy function

f ¼ 3P

4c
xy� xy3

3c2

� �
þ N

4c
y2

solves the following cantilever beam problem, as shown in the following figure. As

usual for such problems, boundary conditions at the ends (x ¼ 0 and L) should be

formulated only in terms of the resultant force system, while at y ¼ �c the exact
pointwise specification should be used. For the case with N ¼ 0, compare the elasticity

stress field with the corresponding results from strength of materials theory. Answer:

sx ¼ � 3Pxy

2c3
þ N

2c
, sy ¼ 0 , txy ¼ � 3P

4c
1� y2

c2

� �

x

y

N

P

L

2c
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8-3. Determine the displacement field for the beam problem in Exercise 8-2. To determine the

rigid-body motion terms, choose fixity conditions

u(L, 0) ¼ v(L, 0) ¼ @v(L, 0)

@x
¼ 0

Note that with our approximate St.-Venant solution, we cannot ensure pointwise

conditions all along the built-in end. Finally, for the special case with N ¼ 0, compare

the elasticity displacement field with the corresponding results from mechanics of

materials theory (see Appendix D). Answer:

N ¼ 0: velasticity (x, 0) ¼ P

4Ec3
(x3 � 3L2xþ 2L3) ¼ vMOM(x)

8-4. The solution to the illustrated two-dimensional cantilever beam problem is proposed

using the Airy stress function f ¼ C1x
2 þ C2x

2y þ C3y
3 þ C4y

5 þ C5x
2y3, where Ci are

constants. First determine requirements on the constants so that f satisfies the governing

equation. Next find the values of the remaining constants by applying exact pointwise

boundary conditions on the top and bottom of the beam and integrated resultant boundary

conditions on the ends x ¼ 0 and x ¼ L.

x

y

c

c

L

q

8-5. Verify that the Airy stress function

f ¼ s

4
xyþ ly2

c
þ ly3

c2
� xy2

c
� xy3

c2

� �

solves the problem of a cantilever beam loaded by uniform shear along its bottom edge as

shown. Use pointwise boundary conditions on y ¼ �c and only resultant effects at ends

x ¼ 0 and l. Note however, you should be able to show that �x vanishes at x ¼ l.

s

c

l

y

x
c

8-6. The following stress function

f ¼ C1xyþ C2

x3

6
þ C3

x3y

6
þ C4

xy3

6
þ C5

x3y3

9
þ C6

xy5

20
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is proposed to solve the problem of a cantilever beam carrying at uniformly varying

loading as shown in the following figure. Explicitly verify that this stress function will

satisfy all conditions on the problem and determine each of the constants Ci and resulting

stress field. Use resultant force boundary conditions at the beam-ends. Answers:

C1 ¼ � pc

40L
, C2 ¼ � p

2L
, C3 ¼ � 3p

4Lc
, C4 ¼ 3p

10Lc
, C5 ¼ 3p

8Lc3

C6 ¼ � p

2Lc3
, sx ¼ pxy

20Lc3
(5x2 � 10y2 þ 6c2)

x

y

c

c

L

(p/L)x

8-7. The cantilever beam shown in the figure is subjected to a distributed shear stress

tox=l on the upper face. The following Airy stress function is proposed for this problem

f ¼ c1y
2 þ c2y

3 þ c3y
4 þ c4y

5 þ c5x
2 þ c6x

2yþ c7x
2y2 þ c8x

2y3

Determine the constants ci and find the stress distribution in the beam. Use resultant

force boundary conditions at the ends. (Answer: c1 ¼ toc=12l, c2 ¼ to=20l, c3 ¼
�to=24cl, . . .)

x

y

c

c

l

tox/l

8-8*. A triangular plate of narrow rectangular cross-section and uniform thickness is loaded

uniformly along its top edge as shown in the following figure. Verify that the Airy stress

function

f ¼ p cot a
2(1� a cot a)

�x2 tan aþ xyþ (x2 þ y2)(a� tan�1 y

x
)

h i

solves thisplaneproblem.For theparticular caseofa ¼ 30	, explicitly calculate thenormal

and shear stress distribution over a typical cross-sectionAB andmake comparison plots

(MATLABrecommended)ofyourresultswiththosefromelementarystrengthofmaterials.
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x

y

L

 p

A

B

a

�x ¼ 2K a� tan�1 y

x
� xy

x2 þ y2

� �
, sy ¼ 2K a� tan a� tan�1 y

x
þ xy

x2 þ y2

� �

txy ¼ �2K
y2

x2 þ y2
, K ¼ p cot a

2(1� a cot a)

8-9*. Redo Exercise 8-8* using polar coordinates.

8-10*. For the pure beam bending problem solved in Example 8-2, calculate and plot the in-

plane displacement field given by relation (8.1.22)2. Use the vector distribution plotting

scheme illustrated in Appendix C, Example C-5. Your solution should look like the

following figure.

8-11*. For the beam problem in Example 8-3, the boundary conditions required that the

resultant normal force vanish at each end (x ¼ �l). Show, however, that the normal

stress on each end is not zero, and plot its distribution over �c < y < c.

8-12*. Explicitly determine the bending stress sx for the problem in Example 8-4. For the case

l=c ¼ 3, plot this stress distribution through the beam thickness at x ¼ l=2, and
compare with strength of materials theory. For long beams (l >> c), show that the

elasticity results approach the strength of materials predictions.

8-13. Develop the general displacement solution (8.3.9) for the axisymmetric case.

8-14. Consider the axisymmetric problem of an annular disk with a fixed inner radius and

loaded with uniform shear stress t over the outer radius. Using the Airy stress function
term a4�, show that the stress and displacement solution for this problem is given by

sr ¼ sy ¼ 0, try ¼ t
r22
r2

ur ¼ 0, uy ¼ 1þ �

E
tr22

r

r21
� 1

r

� �
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r2

r1

t

8-15. Under the conditions of polar axisymmetry, verify that the Navier equations (5.4.4)

reduce to relation (8.3.10). Refer to Example 1-5 to evaluate vector terms in (5.4.4)

properly. Next show that the general solution to this Cauchy-Euler differential equation

is given by (8.3.11). Finally, use this solution to determine the stresses and show that

they will not contain the logarithmic terms given in the general solution (8.3.8).

8-16. For the axisymmetric problem of Example 8-6, explicitly develop the displacement

solution given by relation (8.4.5).

8-17. Through a shrink-fit process, a rigid solid cylinder of radius r1 þ d is to be inserted into

the hollow cylinder of inner radius r1 and outer radius r2 (as shown in the following

figure). This process creates a displacement boundary condition ur(r1) ¼ d. The outer
surface of the hollow cylinder is to remain stress free. Assuming plane strain conditions,

determine the resulting stress field within the cylinder (r1 < r < r2).

r2

r1

ur =d

8-18. A long composite cylinder is subjected to the external pressure loading as shown in the

following figure. Assuming idealized perfect bonding between the two materials,

the normal stress and displacement will be continuous across the interface r ¼ r1
(see Section 5.2). Under these conditions, determine the stress and displacement fields

in each material.
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r2

r1

Material (1)

p

Material (2)

8-19*. Numerically generate and plot the fields of stress (�r, ��) and displacement (ur) within
the composite cylinder of Exercise 8-18 for the specific case with material (1) ¼ steel

and material (2) ¼ aluminium. Use Table 4-2 for elastic moduli values. Explore and

discuss the continuity issues for these field quantities at the interface r ¼ r1.

8-20. For the case of a thin-walled tube under internal pressure, verify that the general

solution for the hoop stress (8:4:3)2 will reduce to the strength of materials relation (see

Appendix D, Section D.5)

sy � pro
t

where t is the wall thickness and ro is the mean radius.

8-21. Consider the cut-and-weld problem in which a small wedge of angle � is removed from

an annular ring as shown in the figure. The ring is then to be joined back together

(welded) at the cut section. This operation produces an axisymmetric stress field, but

the problem will contain a cyclic tangential displacement condition u� (r,2�)� u� (r,0)
¼ ar. First using the general plane stress solution (8.3.9)2, drop the rigid-body motion

terms and show that the constant a3 is given by

a3 ¼ aE
8p

Next use the general solution form (8.3.8) with zero boundary tractions on the inner and

outer radii of the ring and determine the constants a1 and a2 and complete the stress field

solution.

a
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8-22. Using superposition of the stress field (8.4.15) given in Example 8-7, show that the

problem of equal biaxial tension loading on a stress-free hole as shown in the figure

is given by equations (8.4.9).

TT

T

T

8-23*. Using superposition of the stress field (8.4.15), develop solution (8.4.18) for the equal

but opposite biaxial loading on a stress-free hole shown in Figure 8-15(a). Also justify

that this solution will solve the shear loading case shown in Figure 8-15(b). Construct a

polar plot (similar to Figure 8-13) of sy(a, y)=T for this case.

8-24. Show that the stress function

f ¼ tor2

p
sin2 y log r þ y sin y cos y� sin2 y

 �

gives the solution to the problem of an elastic half space loaded by a uniformly

distributed shear over the free surface (x � 0), as shown in the figure. Identify

locations where the stresses are singular.

x

y

r

q

tο
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8-25. Show that the Flamant solution given by equations (8.4.31) and (8.4.32) can also be

used to solve the more general wedge problem as shown.

x

 y

r

X

Y

b

q
a

8-26. Determine the stress field solution (8.4.47) for the problem of a half space under a

concentrated surface moment as shown in Figure 8-23. It is recommended to use the

superposition and limiting process as illustrated in the figure. This solution can be

formally developed using either Cartesian or polar coordinate stress components.

However, a simple and elegant solution can be found by noting that the superposition

and limiting process yields the stress function solution fM ¼ �d@f=@x, where f is the

solution to the Flamant problem shown in Figure 8-21.

8-27*. For the problem of a half space under uniform normal loading as shown in Figure 8-24,

show that the maximum shear stress can be expressed by

tmax ¼ p

p
sin (y1 � y2)

Plot the distribution of lines of constant maximum shear stress, and compare the results

with the photoelastic fringes shown in Figure 8-28. These results along with several

other loading cases have been given by Poulos and Davis (1974).

8-28. Following a similar solution procedure as used in Section 8.4.9, show that the solution

for a half space carrying a uniformly distributed shear loading t is given by

sx ¼ t

2p
[4 log(sin y1=sin y2)� cos 2y2 þ cos 2y1)]

sy ¼ t

2p
[cos 2y2 � cos 2y1)]

txy ¼ � t

2p
[2(y2 � y1)þ sin 2y2 � sin 2y1]
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x

y 

aa θ1θ2

t 

r1r2

8-29. Generalize the integral superpositionmethods used in the examples shown in Section 8.4.9

andExercise8-28. Inparticular, showthat thestress solution forahalfspacecarryinggeneral

normal and shear distributions p(x) and t(x) over the free surface� a� x� a is given by

sx ¼ � 2y

p

ða
�a

p(s)(x� s)2

[(x� s)2 þ y2]2
ds� 2

p

ða
�a

t(s)(x� s)3

[(x� s)2 þ y2]2
ds

sy ¼ � 2y3

p

ða
�a

p(s)

[(x� s)2 þ y2]2
ds� 2y2

p

ða
�a

t(s)(x� s)

[(x� s)2 þ y2]2
ds

txy ¼ � 2y2

p

ða
�a

p(s)(x� s)2

[(x� s)2 þ y2]2
s� 2y

p

ða
�a

t(s)(x� s)2

[(x� s)2 þ y2]2
ds

8-30. Using the formulation and boundary condition results of the thin notch crack problem

shown in Figure 8-29, explicitly develop the stress components given by relations

(8.4.56) and (8.4.57).

8-31*. Photoelastic studies of the stress distribution around the tip of a crack have produced the

isochromatic fringe pattern (openingmode I case) as shown in the figure.Using the solution

given in (8.4.57), show that maximum shear stresses for each mode case are given by

(tmax)I ¼
3A

2
ffiffi
r

p sin#, (tmax)II ¼
B

2
ffiffi
r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ 3 cos2 #)

p
Next, plot contours of constant maximum shear stress for modes I and II. In

plotting each case, normalize tmax by the coefficient A or B. For the mode I case,

theoretical contours should compare with the following photoelastic picture.

(Courtesy of Dynamic Photomechanics
Laboratory, University of Rhode Island)
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8-32. Consider the crack problem shown for the antiplane strain case with u ¼ v ¼ 0,

w ¼ w(x,y). From Section 7.4, the governing equation for the unknown displacement

component with zero body force was given by Laplace’s equation, which in polar

coordinates reads

r2w ¼ @2w

@r2
þ 1

r

@w

@r
þ 1

r2
@2w

@u2
¼ 0

Use a separation of variables scheme with w ¼ rl f (�), where l is a parameter to be

determined and f(�) is expected to be an odd function. Show that using this solution form

in the governing equation gives the result w ¼ Arl sin ly, where A is a constant. Next

determine the polar coordinate stress components, and following similar methods as in

Section 8.4.10, show that the boundary condition of zero stress on the crack surfaces

gives l¼ n/2, where n¼ 1, 3, 5, . . . Finally, using the arguments of finite displacements

but singular stresses at the crack tip, show that 0 < l < 1 and thus conclude that the

displacement and stress near r � 0 must be of the form

w ¼ A
ffiffi
r

p
sin

y
2
, tzy ¼ mA

2
ffiffi
r

p cos
y
2
, tzr ¼ mA

2
ffiffi
r

p sin
y
2

Note that the order of stress singularity, O r�1=2
� 

, is identical to our previous study.

y 

r

x
q

•

8-33*. Using strength of materials theory (see Appendix D), the bending stress sy for
curved beams is given by sy ¼ �M(r � B)=[rA(R� B)], where A ¼ b� a, B ¼
(b� a)=log (b=a), R ¼ (aþ b)=2. For the problem shown in Figure 8-30, compare

and plot the strength of materials and elasticity predictions for the cases of b/a ¼ 2

and 4. Follow the nondimensional plotting scheme used in Figure 8-31.

8-34. Show that the curved beam problem with end loadings can be solved by superimposing

the solution from the Airy function f ¼ [Ar3 þ (B=r)þ Cr þ Dr log r] cos y with

the pure bending solution (8.4.61).
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T

a
b

r

M

q

8-35*. For the disk under diametrical compression (Figure 8-35), plot the distribution of the

two normal stresses sx and sy along the horizontal diameter (y ¼ 0,� R < x < R).

8-36*. The behavior of granular materials has often been studied using photoelastic models

of circular particles as shown in the following figure. This provides the full-field

distribution of local contact load transfer through the model assembly. Particles in such

models are commonly loaded through multiple contacts with neighboring grains, and

the particular example particle shown has four contact loads. Assuming the loadings are

in-line and along two perpendicular diameters, use superposition of the solution given

in Example 8-10 to determine the stress field within the model particle. Make a

comparison plot of the distribution of normal stress along a loaded diameter with

the corresponding results from Example 8-10.

P

P

P

P

(Courtesy of Dynamic Photomechanics Laboratory, University of Rhode Island)

8-37. Solve the rotating disk problem of Example 8-11 for the case of an annular disk

with inner radius a and outer radius b being stress free. Explicitly show that for

the case b >> a, the maximum stress is approximately twice that of the solid disk.
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9 Extension, Torsion, and Flexure
of Elastic Cylinders

This chapter investigates particular solutions to the problem of cylindrical bars subjected to

forces acting on the end planes. The general problem is illustrated in Figure 9-1 where an

elastic cylindrical bar with arbitrary cross-section R and lateral surface S carries general

resultant end loadings of force P and moment M. The lateral surface is taken to be free of

external loading. The cylindrical body is a prismatic bar, and the constant cross-section may be

solid or contain one or more holes. Considering the components of the general loading leads to

a definition of four problem types including extension, torsion, bending, and flexure. These
problems are inherently three-dimensional, and thus analytical solutions cannot be generally

determined. In an attempt to obtain an approximate solution in central portions of the bar,

Saint-Venant presumed that the character of the elastic field in this location would depend only

in a secondary way on the exact distribution of tractions on the ends of the cylinder and that the

principal effects are caused by the force resultants on the ends (Saint-Venant’s principle). As

such, he relaxed the original problem by no longer requiring the solution to satisfy pointwise

traction conditions on the ends, but rather seeking one which had the same resultant loading.

This approach is similar to our previous two-dimensional studies of beam problems in Chapter 8.

Under these conditions, the solution is not unique but provides reasonable results away from the

ends of the cylinder.

9.1 General Formulation

Formulation and solution of the extension, torsion, bending, and flexure problems are

normally made using the semi-inverse method, as previously discussed in Section 5.7. Recall this
method assumes a portion of the solution field and determines the remaining unknowns by

requiring that all fundamental field equations be satisfied. For a prismatic barwith zero body forces

and under only end loadings as shown in Figure 9-1, it is reasonable to assume that

sx ¼ sy ¼ txy ¼ 0 (9:1:1)
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Note that this enforces zero tractions on the lateral surface S. Under these conditions, the

equilibrium equations (3.6.5) and stress compatibility equations (5.3.4) give

@txz
@z

¼ @tyz
@z

¼ 0

@2sz
@x2

¼ @2sz
@y2

¼ @2sz
@z2

¼ @2sz
@x@y

¼ 0

(9:1:2)

Thus, txz and tyz must be independent of z, and sz must be a bilinear form in x, y, z
such that sz ¼ C1xþ C2yþ C3zþ C4xzþ C5yzþ C6, where Ci are arbitrary constants

(see Exercise 9-1). For the extension, bending, and torsion problems, it can be further argued

that sz must be independent of z. We now investigate the formulation and solution of

extension, torsion, and flexure problems.

9.2 Extension Formulation

Consider first the case of an axial resultant end loading P ¼ Pze3 and M ¼ 0. It is further

assumed that the extensional loading Pz is applied at the centroid of the cross-section R so as

not to produce any bending effects. Invoking the Saint-Venant principle, the exact end tractions

can be replaced by a statically equivalent system, and this is taken as a uniform loading over

the end section. Under these conditions, it is reasonable to assume that the stress sz is uniform
over any cross-section throughout the solid, and this yields the simple results

sz ¼ Pz

A
, txz ¼ tyz ¼ 0 (9:2:1)

x

y

zP

M

l

S

R

FIGURE 9-1 Prismatic bar subjected to end loadings.
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Using stress results (9.1.1) and (9.2.1) in Hooke’s law and combining them with the strain-

displacement relations gives

@u

@x
¼ � �Pz

AE
,
@v

@y
¼ � �Pz

AE
,
@w

@z
¼ Pz

AE

@u

@y
þ @v

@x
¼ 0,

@v

@z
þ @w

@y
¼ 0,

@w

@x
þ @u

@z
¼ 0

Integrating these results and dropping the rigid-body motion terms such that the displacements

vanish at the origin yields

u ¼ � �Pz

AE
x, v ¼ � �Pz

AE
y, w ¼ Pz

AE
z (9:2:2)

These results then satisfy all elasticity field equations and complete the problem solution.

An additional extension example of a prismatic bar under uniform axial body force has been

previously presented in Example 5-1. This problem was defined in Figure 5-11 and corresponds

to the deformation of a bar under its own weight. The problem includes no applied end tractions,

and the deformation is driven by a uniformly distributed axial body force Fz ¼ �rg. Relations
for the stresses, strains, and displacements are given in the example.

9.3 Torsion Formulation

For the general problem shown in Figure 9-1, we next investigate the case of a torsional end

loading P ¼ 0 and M ¼ Te3. Formulation of this problem began at the end of the eighteenth

century, and a very comprehensive review of analytical, approximate, and experimental

solutions has been given by Higgins (1942, 1943, 1945). Studies on the torsional deformation

of cylinders of circular cross-section have found the following:

. Each section rotates as a rigid body about the center axis.

. For small deformation theory, the amount of rotation is a linear function of the axial

coordinate.
. Because of symmetry, circular cross-sections remain plane after deformation.

Guided by these observations, it is logical to assume the following for general cross-sections:

. The projection of each section on the x,y-plane rotates as a rigid body about the central

axis.
. The amount of projected section rotation is a linear function of the axial coordinate.
. Plane cross-sections do not remain plane after deformation, thus leading to a warping

displacement.

In order to quantify these deformation assumptions, consider the typical cross-section shown in

Figure 9-2. For convenience, the origin of the coordinate system is located at point O called the

center of twist, which is defined by the location where u ¼ v ¼ 0. The location of this point

depends on the shape of the section; however, the general problem formulation does not depend

on the choice of coordinate origin (see Exercise 9-3). Under torque T, the displacement of a

generic pointP in the x,y-plane will move to locationP0 as shown. LineOP then rotates through a
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small angle b, and thus the arc length PP0 ¼ rb, and this distance may be represented by a

straight line normal to OP. The in-plane or projected displacements can thus be determined as

u ¼ �rb sin y ¼ �by

v ¼ rb cos y ¼ bx
(9:3:1)

Using the assumption that the section rotation is a linear function of the axial coordinate, we

can assume that the cylinder is fixed at z ¼ 0 and take

b ¼ az (9:3:2)

where the parameter a is the angle of twist per unit length. The out-of-plane, warping

displacement is assumed to be a function of only the in-plane coordinates and is left as an

unknown to be determined. Collecting these results together, the displacements for the torsion

problem can thus be written as

u ¼ �ayz

v ¼ axz

w ¼ w(x, y)

(9:3:3)

This then establishes a semi-inverse scheme whereby requiring these displacements to satisfy

all governing field equations generates a much simplified problem that can be solved for many

particular cross-sectional shapes. We now proceed with the details of both a stress (stress

function) and displacement formulation.

9.3.1 Stress-Stress Function Formulation
The stress formulation leads to the use of a stress function similar to the results of the plane

problem discussed in Section 7.5. Using the displacement form (9.3.3), the strain-displacement

relations give the following strain field:

x

y

O

P'
P

r

R

S

b
q

FIGURE 9-2 In-plane displacements for the torsion problem.

218 FOUNDATIONS AND ELEMENTARY APPLICATIONS



ex ¼ ey ¼ ez ¼ exy ¼ 0

exz ¼ 1

2

@w

@x
� ay

� �

eyz ¼ 1

2

@w

@y
þ ax

� � (9:3:4)

The corresponding stresses follow from Hooke’s law:

sx ¼ sy ¼ sz ¼ txy ¼ 0

txz ¼ m
@w

@x
� ay

� �

tyz ¼ m
@w

@y
þ ax

� � (9:3:5)

Note the strain and stress fields are functions only of x and y.
For this case, with zero body forces, the equilibrium equations reduce to

@txz
@x

þ @tyz
@y

¼ 0 (9:3:6)

Rather than using the general Beltrami-Michell compatibility equations, it is more direct to

develop a special compatibility relation for this particular problem. This is easily done by

simply differentiating (9:3:5)2 with respect to y and (9:3:5)3 with respect to x and subtracting

the results to get

@txz
@y

� @tyz
@x

¼ �2ma (9:3:7)

This represents an independent relation among the stresses developed under the continuity

conditions of w(x,y).
Relations (9.3.6) and (9.3.7) constitute the governing equations for the stress formulation.

The coupled system pair can be reduced by introducing a stress function approach. For this

case, the stresses are represented in terms of the Prandtl stress function f ¼ f(x, y) by

txz ¼ @f
@y

, tyz ¼ � @f
@x

(9:3:8)

Note that here we are using the same notation for the stress function as used for the Airy

function in the previous chapter that dealt with plane elasticity. Since the problem types are

completely different, there should be little confusion. The equilibrium equations are then

identically satisfied and the compatibility relation gives

r2f ¼ @2f
@x2

þ @2f
@y2

¼ �2ma (9:3:9)

This single relation is then the governing equation for the problem and (9.3.9) is a Poisson
equation that is amenable to several analytical solution techniques.

To complete the stress formulation we now must address the boundary conditions on the

problem. As previously mentioned, the lateral surface of the cylinder S (see Figure 9-1) is to be
free of tractions, and thus
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Tn
x ¼ sxnx þ tyxny þ tzxnz ¼ 0

Tn
y ¼ txynx þ syny þ tzynz ¼ 0

Tn
z ¼ txznx þ tyzny þ sznz ¼ 0

(9:3:10)

The first two relations are identically satisfied because sx ¼ sy ¼ txy ¼ nz ¼ 0 on S. To
investigate the third relation, consider the surface element shown in Figure 9-3. The compon-

ents of the unit normal vector can be expressed as

nx ¼ dy

ds
¼ dx

dn
, ny ¼ � dx

ds
¼ dy

dn
(9:3:11)

Using this result along with (9.3.8) in (9:3:10)3 gives

@f
@x

dx

ds
þ @f

@y

dy

ds
¼ 0

which can be written as

df
ds

¼ 0, on S (9:3:12)

This result indicates that the stress function f must be a constant on the cross-section

boundary. Because the value of this constant is not specified (at least for simply connected

sections), we may choose any convenient value and this is normally taken to be zero.

Next consider the boundary conditions on the ends of the cylinder. On this boundary,

components of the unit normal become nx ¼ ny ¼ 0, nz ¼ �1, and thus the tractions

simplify to

Tn
x ¼ �txz

Tn
y ¼ �tyz

Tn
z ¼ 0

(9:3:13)

x

y

dx

ny

n

nx
dy ds

S

FIGURE 9-3 Differential surface element.
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Recall that we are only interested in satisfying the resultant end-loading conditions, and thus

the resultant force should vanish while the moment should reduce to a pure torque T about the

z-axis. These conditions are specified by

Px ¼
ð ð

R

Tn
x dxdy ¼ 0

Py ¼
ð ð

R

Tn
y dxdy ¼ 0

Pz ¼
ð ð

R

Tn
z dxdy ¼ 0

Mx ¼
ð ð

R

yTn
z dxdy ¼ 0

My ¼
ð ð

R

xTn
z dxdy ¼ 0

Mz ¼
ð ð

R

(xTn
y � yTn

x )dxdy ¼ T

(9:3:14)

With Tn
z ¼ 0, conditions (9:3:14)3, 4, 5 are automatically satisfied. Considering the first condi-

tion in set (9.3.14), the x component of the resultant force on the ends may be written asð ð
R

Tn
x dxdy ¼ �

ð ð
R

txzdxdy ¼ �
ð ð

R

@f
@y

dxdy (9:3:15)

Using Green’s theorem (1.8.11),

ðð
R

@f
@y

dxdy ¼
þ
S

fnyds, and because f vanishes on

boundary S, the integral is zero and the resultant force Px vanishes. Similar arguments can

be used to show that the resultant force Py will vanish. The final end condition (9:3:14)6
involving the resultant torque can be expressed as

T ¼
ð ð

R

(xTn
y � yTn

x )dxdy ¼ �
ð ð

R

(x
@f
@x

þ y
@f
@y

)dxdy (9:3:16)

Again using results from Green’s theorem

ð ð
R

x
@f
@x

dxdy ¼
ð ð

R

@

@x
(xf)dxdy�

ð ð
R

fdxdy

¼
þ
S

xfnxds�
ð ð

R

fdxdyð ð
R

y
@f
@y

dxdy ¼
ð ð

R

@

@y
(yf)dxdy�

ð ð
R

fdxdy

¼
þ
S

yfnyds�
ð ð

R

fdxdy

(9:3:17)

Because f is zero on S, the boundary integrals in (9.3.17) will vanish and relation (9.3.16)

simplifies to

T ¼ 2

ð ð
R

fdxdy (9:3:18)
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We have now shown that the assumed displacement form (9.3.3) produces a stress field that

when represented by the Prandtl stress function relation (9.3.8) yields a governing Poisson

equation (9.3.9) with the condition that the stress function vanishes on the boundary of the

cross-section. All resultant boundary conditions on the ends of the cylinder are satisfied by the

representation, and the overall torque is related to the stress function through relation (9.3.18).

This then concludes the stress formulation of the torsion problem for simply connected

sections.

9.3.2 Displacement Formulation
The displacement formulation starts by expressing the equilibrium equation in terms of the

warping displacement w. Using (9.3.5) in (9.3.6) gives

@2w

@x2
þ @2w

@y2
¼ 0 (9:3:19)

and thus the displacement component satisfies Laplace’s equation in the cross-section R. The
associated boundary condition on the lateral side S is given by (9:3:10)3, and expressing this in
terms of the warping displacement gives

@w

@x
� ya

� �
nx þ @w

@y
þ xa

� �
ny ¼ 0 (9:3:20)

Using relations (9.3.11), this result can be rewritten as

@w

@x

dx

dn
þ @w

@y

dy

dn
¼ a x

dx

ds
þ y

dy

ds

� �
dw

dn
¼ a

2

d

ds
(x2 þ y2)

(9:3:21)

It can again be shown that the boundary conditions on the ends specified by equations

(9:3:14)1�5 will all be satisfied, and the resultant torque condition (9:3:14)6 will give

T ¼ m
ð ð

R

a(x2 þ y2)þ x
@w

@y
� y

@w

@x

� �
dxdy (9:3:22)

This result is commonly written as

T ¼ aJ (9:3:23)

where J is called the torsional rigidity and is given by

J ¼ m
ð ð

R

x2 þ y2 þ x

a
@w

@y
� y

a
@w

@x

� �
dxdy (9:3:24)

This completes the displacement formulation for the torsion problem.

Comparing the two formulations, it is observed that the stress function approach results in a

governing equation of the Poisson type (9.3.9) with a very simple boundary condition requiring

only that the stress function be constant or vanish. On the other hand, the displacement
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formulation gives a somewhat simpler Laplace governing equation (9.3.19), but the boundary

specification is expressed in terms of the normal derivative. An addition approach involving

formulation in terms of a conjugate function (see Exercise 9-4) creates yet another scheme that

yields a Laplace governing equation with a somewhat simpler boundary condition involving

specification of the unknown itself. The boundary-value problems created by these approaches

generally fall into the area of applied mathematics called potential theory (Kellogg 1969). As

such, many mathematical techniques have been developed to solve such problems, including

potential theory, complex variables, Fourier methods, and some specialized simple schemes

based on the boundary equation. In this presentation we only consider two solution schemes,

one using the boundary equation and the other using Fourier methods. Before moving on to

these solutions, we wish to establish briefly the necessary modifications to the formulations for

cylinders with hollow sections. We shall also explore an analogous (membrane) problem that

provides some useful information and interpretation for development of approximate solutions

to the torsion problem.

9.3.3 Multiply Connected Cross-Sections
We now wish to develop some additional relations necessary to solve the torsion of hollow

cylinders with multiply connected cross-sections (see definitions in Section 2.6). Figure 9-4

illustrates a typical section of this type with a single hole, and we shall establish theory capable

of handling any number of holes. It is assumed that the original boundary conditions of

zero tractions on all lateral surfaces applies to the external boundary So and all internal

boundaries S1, . . . Therefore, as before, condition (9:3:10)3 would imply that the stress function

is a constant and the displacement is specified as per (9.3.20) or (9.3.21) on each boundary

Si, i ¼ 0, 1, . . .

f ¼ fi on Si

dw

dn
¼ a(ynx � xny) on Si

(9:3:25)

x

y

C

So

R

S1

FIGURE 9-4 Multiply connected cross-section.
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where fi are constants. These conditions imply that the stress function and warping displace-

ment can be determined up to an arbitrary constant on each boundary Si. With regard to the

stress function, the value of fi may be arbitrarily chosen only on one boundary, and commonly

this value is taken as zero on the outer boundary So similar to the simply connected case.

For multiply connected sections, the constant values of the stress function on each of the

interior boundaries are determined by requiring that the displacement w be single-valued.

Considering the doubly connected example shown in Figure 9-4, the displacement will be

single-valued if þ
S1

dw(x, y) ¼ 0 (9:3:26)

This integral can be written as

þ
S1

dw(x, y) ¼
þ
S1

@w

@x
dxþ @w

@y
dy

� �

¼ 1

m

þ
S1

(txzdxþ tyzdy)� a
þ
S1

(xdy� ydx)

(9:3:27)

Now txzdxþ tyzdy ¼ tds, where t is the resultant shear stress. Using Green’s theorem (1.8.10),

þ
S1

(xdy� ydx) ¼
ð ð

A1

@x

@x
þ @y

@y

� �
dxdy ¼ 2

ð ð
A1

dxdy ¼ 2A1 (9:3:28)

where A1 is the area enclosed by S1. Combining these results, the single-valued condition

(9.3.26) implies that þ
S1

tds ¼ 2maA1 (9:3:29)

The value of f1 on the inner boundary S1 must therefore be chosen so that (9.3.29) is satisfied.

If the cross-section has more than one hole, relation (9.3.29) must be satisfied for each; that is,

þ
Sk

tds ¼ 2maAk (9:3:30)

where k ¼ 1, 2, 3, . . . is the index corresponding to each of the interior holes.

It can be shown that boundary conditions on the ends of the cylinder given by (9:3:14)1�5

will all be satisfied, and the resultant torque condition (9:3:14)6 will give

T ¼ 2

ð ð
R

fdxdyþ 2f1A1 (9:3:31)

For the case with N holes, this relation becomes

T ¼ 2

ð ð
R

fdxdyþ
XN
k¼1

2fkAk (9:3:32)

Justifying these developments for multiply connected sections requires contour integration in a

cut domain following the segments So, C, S1, as shown in Figure 9-4.
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9.3.4 Membrane Analogy
It was originally discovered by Prandlt in 1903 that the equations of the stress function

formulation (9.3.9), (9.3.12), and (9.3.18) are identical with those governing the static deflec-

tion of an elastic membrane under uniform pressure. This fact then creates an analogy between
the two problems and enables particular features from the membrane problem to be used to aid

in solution of the torsion problem. Use of this analogy is generally limited to providing insight

into qualitative features and to aid in developing approximate solutions.

Consider a thin elastic membrane stretched over a frame with shape S that encloses region R
in the x,y-plane, as shown in Figure 9-5(a). The membrane is stretched with uniform tension N
and is subjected to a uniform pressure p, which produces a transverse membrane deflection

z(x,y). For small deformation theory, it is assumed that the pressure loading will not alter the

membrane tension. The governing membrane displacement equation is developed by applying

equilibrium to a differential element shown in Figure 9-5(b). A side view of this element along

the y-axis shown in Figure 9-5(c) illustrates the tension forces on each edge and the pressure

loading. Summing forces in the z direction and including the tension forces in both x and y
directions gives

Ndy
@z

@x
þ @2z

@x2
dx

� �
� Ndy

@z

@x

� �
þ Ndx

@z

@y
þ @2z

@y2
dy

� �
� Ndx

@z

@y

� �
þ pdxdy ¼ 0

and this result simplifies to

@2z

@x2
þ @2z

@y2
¼ � p

N
(9:3:33)

x

z Ndy

Ndy
∂x
∂z dx

∂x2∂x
∂z ∂2z

+
pdxdy

(c) Equilibrium of Membrane Element

x

 y

S

z

R

 p

Deflected Membrane

(a) Static Deflection of Stretched Membrane

Ndy

Ndy

Ndx
Ndx

(b) Membrane Element

dxdy

FIGURE 9-5 Membrane problem.
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Because the membrane is stretched over the boundary S in the x,y-plane, the boundary

condition for deflection is expressed by

z ¼ 0 on S (9:3:34)

The volume enclosed by the deflected membrane and the x,y-plane is given by

V ¼
ð ð

R

zdxdy (9:3:35)

The analogy can now be recognized because relations (9.3.33) through (9.3.35) match the

corresponding results from the torsion formulation providing f ¼ z, p=N ¼ 2ma, T ¼ 2V.
In order to extract some useful information from this analogy, consider first the relationship

between the shear stress and stress function

txz ¼ @f
@y

¼ @z

@y

tyz ¼ � @f
@x

¼ � @z

@x

(9:3:36)

A contour line on the membrane is defined as z ¼ constant (see Figure 9-6). Using the analogy,

such a contour is also a line of constant f, and along the contour

@z

@s
¼ @f

@s
¼ @f

@x

dx

ds
þ @f

@y

dy

ds
¼ 0

¼ tyzny þ txznx ¼ tzn

(9:3:37)

where tzn is the component of shear stress normal to the contour line. Thus, the component tzn
is zero along a contour line and the resultant shear stress must be tangent to the contour. This

resultant shear stress is given by

t ¼ tzt ¼ �txzny þ tyznx ¼ �txz
dy

dn
þ tyz

dx

dn

¼ � @f
@y

dy

dn
þ @f

@x

dx

dn

� �
¼ � df

dn
¼ � dz

dn

(9:3:38)

nt

Contour Lines

FIGURE 9-6 Contour lines for the torsion-membrane analogy.
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Reviewing the previous findings related to the membrane analogy, the following concepts

can be concluded. The shear stress at any point in the cross-section is given by the negative of

the slope of the membrane in the direction normal to the contour line through the point. The

maximum shear stress appears always to occur on the boundary where the largest slope of the

membrane occurs. Actually, this result can be explicitly proven (see Exercise 9-5). The torque

T is given as twice the volume under the membrane. Using these membrane visualizations, a

useful qualitative picture of the stress function distribution can be determined and approximate

solutions can be constructed (see Exercise 9-7). However, it should be realized that trying to

make slope measurements of an actual pressurized membrane would not provide an accurate

method to determine the stresses in a bar under torsion.

We now explore the solution to several torsion problems using boundary equation schemes,

Fourier methods, and membrane analogy techniques. These methods provide solutions to

sections of simple geometry. More complicated sections can be solved using complex variable

theory; see Sokolnikoff (1956) for a brief presentation of these techniques.

9.4 Torsion Solutions Derived from Boundary Equation

For simply connected sections, the stress function formulation requires that the function

satisfy Poisson equation (9.3.9) and vanish on boundary S. If the boundary is expressed by

the relation f (x, y) ¼ 0, this suggests a possible simple solution scheme of expressing the stress

function in terms of the boundary equation f ¼ Kf (x, y) where K is an arbitrary constant.

Clearly, this form satisfies the boundary condition on S, and for some simple geometric

shapes it will also satisfy the governing equation (9.3.9) with an appropriate choice of K.
Unfortunately, this is not a general solution method but rather an ad hoc scheme that works

only for special cross-sections of simple geometry. Nevertheless, it provides several solutions

to problems of interest, and we now investigate some particular solutions using this scheme.

EXAMPLE 9-1: Elliptical Section

The first example of this solution method is that of an elliptical cross-section as shown

in Figure 9-7. The boundary equation has the usual form

x2

a2
þ y2

b2
¼ 1 (9:4:1)

where a and b are the semi major and minor axes as shown.

Using the boundary equation scheme, we look for a stress function of the form

f ¼ K
x2

a2
þ y2

b2
� 1

� �
(9:4:2)

Continued
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EXAMPLE 9-1: Elliptical Section–Cont’d

This stress function satisfies the boundary condition by vanishing on S, and this form

will also satisfy the governing equation (9.3.9) if the constant is chosen as

K ¼ � a2b2ma
a2 þ b2

(9:4:3)

Because both the governing equation and the boundary conditions are satisfied, we have

found the solution to the torsion of the elliptical section.

The load carrying torque follows from relation (9.3.18)

T ¼ � 2a2b2ma
a2 þ b2

1

a2

ð ð
R

x2dxdyþ 1

b2

ð ð
R

y2dxdy�
ð ð

R

dxdy

� �
(9:4:4)

The integrals in this expression have the following simple meaning and evaluation:

A ¼ Area of Section ¼
ð ð

R

dxdy ¼ pab

Ix ¼ Moment of Inertia About x-Axis ¼
ð ð

R

y2dxdy ¼ p
4
ab3

Iy ¼ Moment of Inertia About y-Axis ¼
ð ð

R

x2dxdy ¼ p
4
ba3

(9:4:5)

Substituting these results back into (9.4.4) yields

T ¼ pa3b3ma
a2 þ b2

(9:4:6)

which can be cast in the form to determine the angle of twist in terms of the applied

loading

a ¼ T(a2 þ b2)

pa3b3m
(9:4:7)

x

y

a

b

FIGURE 9-7 Elliptical cross-section.
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EXAMPLE 9-1: Cont’d

The shear stresses resulting from this solution are given by

txz ¼ � 2a2ma
a2 þ b2

y ¼ � 2Ty

pab3

tyz ¼ 2b2ma
a2 þ b2

x ¼ 2Tx

pba3

(9:4:8)

Intuition from strength of materials theory would suggest that the maximum stress

should occur at the boundary point most removed from the section’s center; that is, at

x ¼ �a and y ¼ 0 (assuming a > b). However, the membrane analogy would

argue for a boundary point closest to the center of the section where the membrane

slope would be the greatest. Evaluating equations (9.4.8), we find that the resultant

shear stress becomes

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2xz þ t2yz

q
¼ 2T

pab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a4
þ y2

b4

r
(9:4:9)

For the case a > b, the maximum value of t occurs at x ¼ 0 and y ¼ �b and is given by

tmax ¼ 2T

pab2
(9:4:10)

This result then corresponds to arguments from the membrane analogy and thus differs

from strength of materials suggestions. Contour lines of the stress function are shown in

Figure 9-8, and it is observed that the maximum slope of the stress function (membrane)

occurs at x ¼ 0 and y ¼ �b (on the top and bottom of the section).

Continued

(Displacement Contours) 

(Stress Function Contours) 

z

(Warping Displacement Surface) 

FIGURE 9-8 Stress function and warping displacement contours and warping displacement
surface for the elliptical section.
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EXAMPLE 9-1: Elliptical Section–Cont’d

Using the stress relations (9.4.8) in (9.3.5) yields a system that can be integrated to

determine the displacement field

w ¼ T(b2 � a2)

pa3b3m
xy (9:4:11)

Contour lines of this displacement field are represented by hyperbolas in the x,y-plane and
are shown in Figure 9-8 for the case of a positive counterclockwise torque applied to the

section.Solid linescorrespond topositivevaluesofw, indicating thatpointsmoveoutof the

section in the positive z direction, while dotted lines indicate negative values of displace-
ment. A three-dimensional plot of the warping displacement surface is also shown in

Figure 9-8, illustrating the positive and negative behavior of the w displacement. Along

each of the coordinate axes the displacement is zero, and for the special case with a ¼ b
(circular section), the warping displacement vanishes everywhere. If the ends of the

elliptical cylinder are restrained, normal stresses sz are generated as a result of the torsion.

EXAMPLE 9-2: Equilateral Triangular Section

Consider next the torsion of a cylinder with equilateral triangular section, as shown in

Figure 9-9. Following our boundary equation solution scheme, we look for a stress

function of the form

f ¼ K(x�
ffiffiffi
3

p
yþ 2a)(xþ

ffiffiffi
3

p
yþ 2a)(x� a) (9:4:12)

where we have simply used a product form of each boundary line equation. In this

fashion, the stress function vanishes on each side of the triangular section. It is found

that this function satisfies the governing equation (9.3.9) if the constant is taken as

K ¼ �ma
6a

(9:4:13)

x

 y

2a a

FIGURE 9-9 Equilateral triangular cross-section.
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EXAMPLE 9-2: Cont’d

All conditions on the problem are now satisfied, and we have thus determined the

solution for the equilateral triangular case. The torque may be calculated through a

lengthy integration using relation (9.3.18), giving the result

T ¼ 27

5
ffiffiffi
3

p maa4 ¼ 3

5
maIp (9:4:14)

where Ip ¼ 3
ffiffiffi
3

p
a4 is the polar moment of inertia of the cross-section about the centroid.

The stresses follow from relations (9.3.8)

txz ¼ ma
a
(x� a)y

tyz ¼ ma
2a

(x2 þ 2ax� y2)
(9:4:15)

Note that the component txz vanishes along the edge x ¼ a as required by the problem

boundary conditions, and this can also be argued by the membrane analogy. This

component also vanishes along the y-axis. The maximum stress always occurs on the

boundary, and the section symmetry implies that each boundary side has an identical

resultant stress distribution. Therefore, we can choose one particular side to investigate

and determine the maximum resultant shear stress. For convenience, we choose side

x ¼ a, and because txz ¼ 0 on this edge, the resultant stress is given by

t ¼ tyz(a, y) ¼ ma
2a

(3a2 � y2) (9:4:16)

The maximum value of this expression gives

tmax ¼ tyz(a, 0) ¼ 3

2
maa ¼ 5

ffiffiffi
3

p
T

18a3
(9:4:17)

Contours of the stress function are shown in Figure 9-10, and by using the membrane

analogy it is evident that themaximumstress occurs at themidpoint of each boundary side.

Continued

FIGURE 9-10 Stress function and warping displacement contours for the equilateral
triangular section.
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EXAMPLE 9-2: Equilateral Triangular Section–Cont’d

The warping displacement again follows from integrating relations (9.3.5)

w ¼ a
6a

y(3x2 � y2) (9:4:18)

Contour lines of this displacement field are shown in Figure 9-10 for the case of a

positive counterclockwise torque applied to the section. Again, solid lines correspond to

positive values, while dotted lines indicate negative displacements.

EXAMPLE 9-3: Higher-Order Boundary Polynomials

As a final example of the boundary equation scheme, consider the more general case of a

section with a polynomial boundary equation. The trial stress function is taken of the form

f ¼ K(a2 � x2 þ cy2)(a2 þ cx2 � y2) (9:4:19)

where K, a, and c are constants to be determined. The terms in parentheses can be

rewritten as

x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ cy2

p
, y ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ cx2

p
and these represent pairs of curves shown inFigure9-11 that canbe interpretedasbounding

a closed region R as shown. This region is taken as the cylinder section for the torsion

problem. As before, this stress function vanishes on the boundary, and it satisfies the

governing equation (9.3.9) if c ¼ 3� ffiffiffi
8

p
andK ¼ �ma=[4a2(1�

ffiffiffi
2

p
)]. The stresses and

displacements can be calculated using the previous procedures (see Exercise 9-15).

Timoshenko and Goodier (1970) discuss additional examples of this type of problem.

x

 y

a2 + cx2y =

a2 + cy2x =

a2 + cy2x =

a2 + cx2y =

R

a

a

−

−

FIGURE 9-11 Polynomial boundary example.
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9.5 Torsion Solutions Using Fourier Methods

Previously introduced in Section 8.2 for plane problems, Fourier methods also provide a useful

technique to solve the torsion problem. Using separation of variables and Fourier series theory,

solutions can be developed to particular problems formulated either in terms of the stress or

displacement function. We now pursue one such case in Cartesian coordinates involving the

torsion of a rectangular section.

EXAMPLE 9-4: Rectangular Section

We now wish to develop the solution to the torsion of a cylinder with rectangular

section shown in Figure 9-12. Trying the previous scheme of products of the boundary

lines does not create a stress function that can satisfy the governing equation (see

Exercise 9-16). Thus, we must resort to a more fundamental solution technique, and

the Fourier method is ideally suited for this problem. We develop the solution using

the stress function formulation, but a similar solution can also be determined using the

displacement formulation.

The solution to governing equation (9.3.9) can be written as the sum of a general

solution to the homogeneous Laplace equation plus a particular solution to the nonho-

mogeneous form; that is,f ¼ fh þ fp. A convenient particular solution can be chosen as

fp(x, y) ¼ ma(a2 � x2) (9:5:1)

Note that this choice of a parabolic form can be motivated using the membrane analogy

for the case of a thin rectangle with a << b (see Exercise 9-7). We discuss more on this

limiting case at the end of the problem solution. Using this form, the homogeneous

solution must then satisfy the following conditions:

Continued

x

 y

a

b

FIGURE 9-12 Rectangular section example.
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EXAMPLE 9-4: Rectangular Section–Cont’d

r2fh ¼ 0

fh(�a, y) ¼ 0

fh(x, �b) ¼ �ma(a2 � x2)

(9:5:2)

and this ensures that the combined stress function f satisfies the general formulation

conditions. Standard separation of variables methods are used to generate the homoge-

neous solution by looking for solutions of the form

fh(x, y) ¼ X(x)Y(y) (9:5:3)

Substituting this form into (9:5:2)1 allows the variables to be separated into the

following pair of differential relations:

X00(x)þ l2X(x) ¼ 0

Y00( y)� l2Y(y) ¼ 0
(9:5:4)

where l is the separation constant. The solution to (9.5.4) is given by

X(x) ¼ A sin lxþ B cos lx

Y( y) ¼ C sinh lyþ D cosh ly
(9:5:5)

where A, B, C, D are constants. Because of the given problem symmetry, we

can immediately argue that the solution should be an even function of x and y, and thus

the odd function termsmust be dropped by takingA ¼ C ¼ 0. In order to satisfy condition

(9:5:2)2, the separation constantmust be given by l ¼ np= 2a, n ¼ 1, 3, 5, . . . Combining

these results, the homogeneous solution can then be expressed by

fh(x, y) ¼
X1
n¼1

Bn cos
npx
2a

cosh
npy
2a

(9:5:6)

where we use the superposition of all solution forms and the coefficient Bn has absorbed

the product term BD.
The final boundary condition (9:5:2)3 yields the result

�ma(a2 � x2) ¼
X1
n¼1

B�
n cos

npx
2a

(9:5:7)

where B�
n ¼ Bn cosh (npb=2a). Equation (9.5.7) is recognized as the Fourier cosine series

for the expression on the left-hand side. Using relations (8.2.27), Fourier series theory

provides a simple scheme to determine the series coefficients, giving the result

B�
n ¼ � 2ma

a

ða
0

(a2 � x2) cos
npx
2a

dx (9:5:8)

Evaluating this integral, the original coefficient can then be expressed as
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Bn ¼ � 32maa2(�1)(n�1)=2

n3p3 cosh
npb
2a

(9:5:9)

The stress function has now been determined, and combining the previous results gives

f ¼ ma(a2 � x2)� 32maa2

p3
X1

n¼1, 3, 5���

(�1)(n�1)=2

n3 cosh
npb
2a

cos
npx
2a

cosh
npy
2a

(9:5:10)

The stresses follow from relation (9.3.8)

txz ¼ @f
@y

¼ � 16maa
p2

X1
n¼1, 3, 5���

(�1)(n�1)=2

n2 cosh
npb
2a

cos
npx
2a

sinh
npy
2a

tyz ¼ � @f
@x

¼ 2max� 16maa
p2

X1
n¼1, 3, 5���

(�1)(n�1)=2

n2 cosh
npb
2a

sin
npx
2a

cosh
npy
2a

(9:5:11)

and using (9.3.18), the torque is given by

T ¼ 16maa3b
3

� 1024maa4

p5
X1

n¼1, 3, 5���

1

n5
tanh

npb
2a

(9:5:12)

Using our experience from the previous examples or from the membrane analogy, the

maximum stress will occur on the boundary at the midpoint of the longest side. Under

the assumption that a < b, these points are located at x ¼ �a and y ¼ 0, and thus

tmax ¼ tyz(a, 0) ¼ 2maa� 16maa
p2

X1
n¼1, 3, 5���

1

n2 cosh
npb
2a

(9:5:13)

Figure 9-13 illustrates the stress function contours for this case, and it is observed that the

maximum stresses occur at the midpoint of each of the longest boundary sides. For

the square section case (a ¼ b), the maximum stresses would occur at the midpoint of

each side.

Again thedisplacementfield follows fromintegrating relations (9.3.5), giving the result

w ¼ axy� 32aa2

p3
X1

n¼1, 3, 5���

(�1)(n�1)=2

n3 cosh
npb
2a

sin
npx
2a

sinh
npy
2a

(9:5:14)

Contour lines of this displacement field are shown in Figure 9-13 for three sections with

different aspect ratios. Again, solid lines correspond to positive displacements, while

dotted lines indicate negative values. The square section case with a=b ¼ 1 produces a

displacement pattern with eight zones of symmetry. As the aspect ratio a/b is reduced,

four of the displacement patterns disappear and the resulting displacement contours for

a=b ¼ 0:5 look similar to that from the elliptical section case shown in Figure 9-8.

Continued
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EXAMPLE 9-4: Rectangular Section–Cont’d

(Stress Function Contours) (Displacement Contours, a/b = 1.0)

(Displacement Contours, a/b = 0.5)(Displacement Contours, a/b = 0.9)

FIGURE 9-13 Stress function and displacement contours for the rectangular section.

We now investigate these results for the special case of a very thin rectanglewith a << b.
Under theconditionsofb=a >> 1, cosh (npb=2a) ! 1and tanh (npb=2a) ! 1,andwe

therefore find that the stress function,maximumshear stress, and torque relations reduce to

f ¼ ma(a2 � x2)

tmax ¼ 2maa

T ¼ 16

3
maa3b

(9:5:15)

For this limiting case, it is observed that the stress function reduces to a parabolic

distribution, and this would be predictable from the membrane analogy (see Exercise 9-7).

These results can be applied to the torsion of sections composed of a number of thin

rectangles such as the example shown in Figure 9-14 with three rectangles. Note that

these shapes can approximate many common structural beams with angle, channel, and
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I sections. Neglecting the local regions where the rectangles are joined and the free short

edges, it can be assumed that the membrane has the parabolic distribution given by

(9:5:15)1 over each rectangle. Stress function contours (from a numerical solution)

shown in Figure 9-14 justify these assumptions. Thus, the load-carrying torque for

such a composite section is given by

T ¼ 16

3
ma
XN
i¼1

a3i bi (9:5:16)

where ai and bi(bi >> ai) are the dimensions of the various N rectangles. Neglecting the

high localized stresses at the reentrant corners, the maximum shear stress can be

estimated by using relation (9:5:15)2 for the narrowest rectangle.

9.6 Torsion of Cylinders with Hollow Sections

Section 9.3 develops the basic formulation for the torsion of hollow cylinders with multiply

connected cross-sections. It was found that the stress function must be constant on all section

boundaries. Although f could be arbitrarily chosen as zero on the outer boundary, on each

interior surface it is required to be a different constant determined by relation (9.3.30), a

requirement that ensures single-valued displacements. Under such a formulation, analytical

solutions of these problems are difficult to develop and only a few closed-form solutions exist.

Complex variable theory using conformal mapping has provided some of these solutions, and

Sokolnikoff (1956) provides references to a few specific cases. Rather than trying to pursue

these details, we shall only present a couple of simple solutions in order to demonstrate some

basic features of such problems.

x

 y

1

2

3

(Stress Function Contours)(Composite Section)

FIGURE 9-14 Composite section of three thin rectangles.
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EXAMPLE 9-5: Hollow Elliptical Section

Consider the torsion of a bar with a hollow elliptical section as shown in Figure 9-15.

The inner boundary is simply a scaled ellipse similar to that of the outer boundary.

Using the solid section solution from Example 9-1, it can be shown that the contour

lines or lines of constant shear stress coincide with such a scaled concentric ellipse (see

Exercise 9-9). The shear stress will then be tangent to the inner boundary contour and no

stress will then act on the lateral surface of a cylinder with inner ellipse section.

Therefore, the solution to the hollow section can be found by simply removing the

inner core from the solid solution developed in Example 9-1, and this results in the same

stress distribution in the remaining material.

Thus, the stress function solution for the hollow case is given by

f ¼ � a2b2ma
a2 þ b2

x2

a2
þ y2

b2
� 1

� �
(9:6:1)

and this form satisfies the governing equation, boundary conditions, and the multiply

connected condition (9.3.30). The constant value of the stress function on the inner

boundary is found to be

fi ¼ � a2b2ma
a2 þ b2

k2 � 1
� �

(9:6:2)

In order to determine the load-carrying capacity, the torque relation for the solid section

(9.4.6) must be reduced by subtracting the load carried by the removed inner cylinder.

This gives the result

T ¼ pa3b3ma
a2 þ b2

� p(ka)3(kb)3ma
(ka)2 þ (kb)2

¼ pma
a2 þ b2

a3b3(1� k4)

(9:6:3)

x

 y = 1+(ka)2 (kb)2 = 1+
y2 y2x2 x2

a2 b2

FIGURE 9-15 Hollow elliptical section.
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and this relation can also be determined from equation (9.3.31). As mentioned, the stress

distribution in the hollow cylinder will be the same as that found in the corresponding

material of the solid section; see relations (9.4.8). For the case a > b, the maximum

stress still occurs at x ¼ 0 and y ¼ �b and is given by

tmax ¼ 2T

pab2
1

1� k4
(9:6:4)

This solution scheme could be applied to other cross-sections whose inner boundary

coincides with a contour line of the corresponding solid section problem.

EXAMPLE 9-6: Hollow Thin-Walled Sections

The torsion of hollow thin-walled cylinders can be effectively handled using an approxi-

mate solution based on the membrane analogy. Consider the general thin-walled tube

shown in Figure 9-16. We assume that thickness t is small, although not necessarily

constant. A general section aa is taken through the tube wall at AB, and the expected

membrane shape is shown. From our previous theory, the membrane (stress function)

will be zero at the outer boundary (point B) and equal to a nonzero constant, say fo, on

the inner boundary (point A). Because the thickness is small there will be little variation

in the membrane slope, and thus shape BC can be approximated by a straight line.

Because the membrane slope equals the resultant shear stress, we can write

t ¼ fo

t
(9:6:5)

The load-carrying relation (9.3.31) gives

T ¼ 2

ð ð
R

fdxdyþ 2foAi (9:6:6)

where Ai is the area enclosed by the inner boundary. Using our assumption that the

membrane slope is constant over the section and neglecting variation in the

wall thickness (see Figure 9-16), the integral over the cross-section R can be approxi-

mated by Afo=2, where A is the section area. This allows the torque relation to be

expressed by

T ¼ 2 A
fo

2

� �
þ 2foAi ¼ 2foAc (9:6:7)

where Ac is the area enclosed by the section’s centerline. Combining relations (9.6.5)

and (9.6.7) gives

t ¼ T

2Act
(9:6:8)

Continued

Extension, Torsion, and Flexure of Elastic Cylinders 239



EXAMPLE 9-6: Hollow Thin-Walled Sections–Cont’d

The angle of twist is determined using relation (9.3.29) with constant wall thickness

þ
Sc

tds ¼ 2maAc )

a ¼ TSc
4A2

cmt

(9:6:9)

where Sc is the length of the centerline of the tube section. These results provide

reasonable estimates of the stress, torque capacity, and angle of twist for thin-walled

tubes under torsion. However, if the tube has sharp corners such as those found in

square or rectangular sections, considerable stress concentration normally exists at these

reentrant locations. Timoshenko and Goodier (1970) provide additional details on

calculating these stress concentration effects.

aa

A B

Tube Centerline

t

(Section aa)

A B

fo

MembraneC

FIGURE 9-16 Thin-walled section.
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9.7 Torsion of Circular Shafts of Variable Diameter

The previous discussion on the torsion problem was limited to bars of constant section. We

now wish to investigate the case of variable section, and in order to limit problem complexity

we consider only circular cross-sections, as shown in Figure 9-17. Cylindrical coordinates are

the logical choice to formulate this type of problem, and the governing field equations have

been previously given by (2.7.3), (3.7.6), (4.3.2) or see Appendix A. Guided by studies on

uniform circular cylinders, we assume that ur ¼ uz ¼ 0, and uy ¼ uy(r, z). For this semi-

inverse scheme, it will be shown that the solution based on these assumptions satisfies all

governing elasticity field equations, and therefore represents the true solution.

Under these assumptions, strain and stress fields are then determined as

er ¼ ey ¼ ez ¼ erz ¼ 0

ery ¼ 1

2

@uy
@r

� uy
r

� �
, eyz ¼ 1

2

@uy
@z

(9:7:1)

sr ¼ sy ¼ sz ¼ trz ¼ 0

try ¼ m
@uy
@r

� uy
r

� �
, tyz ¼ m

@uy
@z

(9:7:2)

Using these stress results in the equilibrium equations with no body forces gives one non-

vanishing relation

@

@r
r3

@

@r

uy
r

� �	 

þ @

@z
r3

@

@z

uy
r

� �	 

¼ 0 (9:7:3)

This particular form suggests attempting a stress function approach, and introducing the

function C, such that

@C
@z

¼ �r3
@

@r

uy
r

� �
¼ � r2

m
try

@C
@r

¼ r3
@

@z

uy
r

� �
¼ r2

m
tyz

(9:7:4)

x

y

z
r

q

FIGURE 9-17 Shaft of a variable circular section.
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satisfies the equilibrium equation identically. Differentiating relations (9.7.4) to eliminate uy
generates the compatibility relation

@2C
@r2

� 3

r

@C
@r

þ @2C
@z2

¼ 0 (9:7:5)

The lateral sides of the bar are again taken to be traction free, and thus the boundary conditions

are expressed as

trynr þ tyznz ¼ 0 (9:7:6)

As before nr ¼ dz

ds
and nz ¼ �dr

ds
, and incorporating (9.7.4), boundary condition (9.7.6) becomes

m
r2

@C
@r

dr

ds
þ @C

@z

dz

ds

� �
¼ 0 ) dC

ds
¼ 0 (9:7:7)

and so, as before, the stress function must be a constant on the boundary of the section.

The load-carrying torque is given by

T ¼
ð2p
0

ðR(z)
0

tyzr2drdy ¼ 2pm
ðR(z)
0

@C
@r

dr

¼ 2pm[C(R(z), z)�C(0, z)]

(9:7:8)

where R(z) is the variable radius of the section.

EXAMPLE 9-7: Conical Shaft

As an example of a variable section problem, consider the torsion of a conical shaft with

cone angle j, as shown in Figure 9-18. We again have selected a problem whose

boundary shape will help generate the solution. On the lateral sides of the conical

boundary, z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p ¼ cosj, which is a constant. Thus, any function of this ratio will
satisfy the boundary condition (9.7.7). It can be shown that a linear combination of this

ratio with its cube can be constructed to satisfy the governing equation (9.7.5), and the

solution for the stress function is then given by

z

2j

r

FIGURE 9-18 Conical shaft geometry.
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C ¼ C
zffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2
p � 1

3

z3

(r2 þ z2)3=2

� �
(9:7:9)

where the constant C has been determined to satisfy the load-carrying relation (9.7.8)

C ¼ � T

2pm( 2
3
� cosjþ 1

3
cos3 j)

(9:7:10)

The stresses follow from relations (9.7.4)

try ¼ � Cmr2

(r2 þ z2)5=2

tyz ¼ � Cmrz

(r2 þ z2)5=2

(9:7:11)

and the displacement uy can be determined by integrating equations (9.7.2) to get

uy ¼ � Cr

3(r2 þ z2)3=2
þ !r (9:7:12)

where !r is the rigid-body rotation term about the z-axis and ! can be determined

by specifying the shaft rotation at a specific z location. Additional examples of

such problems are discussed in Timoshenko and Goodier (1970) and Sokolnikoff (1956).

Before leaving the torsion problem, it should be mentioned that this problem can also be easily

formulated and solved using the numerical finite element method. Chapter 16 discusses this

important numerical scheme and provides a series of such solutions in Example 16-4 and

Figure 16-7. These examples illustrate the power and usefulness of this numerical method to

solve problemswith complicated geometry that could not be easily solved using analytical means.

9.8 Flexure Formulation

We now investigate a final case of deformation of elastic cylinders under end loadings

by considering the flexure of elastic beams subject to transverse end forces, as shown in

Figure 9-19. The problem geometry is formulated as a cantilever beam of arbitrary section with

a fixed end at z ¼ 0 and transverse end loadings Px and Py at z ¼ l. Following our usual

procedure, the problem is to be solved in the Saint-Venant sense, in that only the resultant end

loadings Px and Py are used to formulate the boundary conditions at z ¼ l.
From our general formulation in Section 9.1, sx ¼ sy ¼ txy ¼ 0. The other three nonzero

stresses will be determined to satisfy the equilibrium and compatibility relations and all

associated boundary conditions. From our earlier work, the equilibrium and compatibility

relations resulted in equations (9.1.2) from which it was argued that txz and tyz were independ-
ent of z, and sz was a bilinear form in x, y, z (see Exercise 9-1). Motivated from strength of

materials theory, we choose the arbitrary form for sz as follows
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sz ¼ (Bxþ Cy)(l� z) (9:8:1)

where B and C are constants.

Using this result in the remaining equilibrium equation in the z direction gives

@txz
@x

þ @tyz
@y

� (Bxþ Cy) ¼ 0

which can be written in the form

@

@x
[txz � 1

2
Bx2]þ @

@y
[tyz � 1

2
Cy2] ¼ 0 (9:8:2)

This equilibrium statement motivates the introduction of another stress function F(x, y),
such that

txz ¼ @F

@y
þ 1

2
Bx2

tyz ¼ � @F

@x
þ 1

2
Cy2

(9:8:3)

This form then satisfies equilibrium identically, and using it in the remaining compatibility

relations gives the results

@

@y
(r2F)þ �B

1þ �
¼ 0

� @

@x
(r2F)þ �C

1þ �
¼ 0

(9:8:4)

x

y

z

l

S

R Px

Py

(xo,yo)

FIGURE 9-19 Flexure problem geometry.
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This system can be integrated to get

r2F ¼ �

1þ �
(Cx� By)þ k (9:8:5)

where k is a constant of integration. In order to determine this constant, consider the rotation

about the z-axis. From the general relation (2.1.9), !z ¼ [(@v=@x)� (@u=@y)]=2, differentiat-
ing with respect to z and using Hooke’s law and our previous results gives

@!z

@z
¼ 1

2

@2v

@x@z
� @2u

@y@z

� �

¼ 1

2m
@tyz
@x

� @txz
@y

� �

¼ � 1

2m
r2F ¼ � 1

2m
�

1þ �
(Cx� By)þ k

	 
 (9:8:6)

From the torsion formulation, the angle of twist per unit length was specified by the

parameter a, and selecting the section origin (x ¼ y ¼ 0) at the center of twist, relation

(9.8.6) then implies that k ¼ �2ma. Thus, the governing equation (9.8.5) can be written as

r2F ¼ �

1þ �
(Cx� By)� 2ma (9:8:7)

The zero loading boundary condition on the lateral surface S is expressed by

txznx þ tyzny ¼ 0

and using the stress function definition, this can be written as

@F

@x

dx

ds
þ @F

@y

dy

ds
þ 1

2
Bx2

dy

ds
� Cy2

dx

ds

� �
¼ 0 or

dF

ds
¼ � 1

2
Bx2

dy

ds
� Cy2

dx

ds

� �
(9:8:8)

It is convenient to separate the stress function F into a torsional part f and a flexural part c,
such that

F(x, y) ¼ f(x, y)þ c(x, y) (9:8:9)

where the torsional part is formulated by

r2f ¼ �2ma in R

df
ds

¼ 0 on S
(9:8:10)

while the flexural portion satisfies

r2c ¼ �

1þ �
(Cx� By) in R

dc
ds

¼ � 1

2
(Bx2

dy

ds
� Cy2

dx

ds
) on S

(9:8:11)
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Because we have already investigated the torsional part of this problem in the preceding

sections, we now pursue only the flexural portion. The general solution to (9:8:11)1 may be

expressed as the sum of a particular solution plus a harmonic function

c(x, y) ¼ f (x, y)þ 1

6

�

1þ �
(Cx3 � By3) (9:8:12)

where f is a harmonic function satisfying r2f ¼ 0. The boundary conditions on end z ¼ l can
be stated as

ð ð
R

txzdxdy ¼ Pxð ð
R

tyzdxdy ¼ Pyð ð
R

[xtyz � ytxz]dxdy ¼ xoPy � yoPx

(9:8:13)

Using the first relation of this set gives

ð ð
R

[
@

@y
(fþ c)þ 1

2
Bx2]dxdy ¼ Px (9:8:14)

but from the torsion formulation

ð ð
R

@f
@y

dxdy ¼ 0, and so (9.8.14) can be written as

ð ð
R

[
@

@x
(x
@c
@y

)� @

@y
(x
@c
@x

)]dxdyþ
ð ð

R

1

2
Bx2dxdy ¼ Px (9:8:15)

Using Green’s theorem and the boundary relation (9:8:11)2, the first integral can be

expressed as

ð ð
R

[
@

@x
(x
@c
@y

)� @

@y
(x
@c
@x

)]dxdy ¼ �
ð ð

R

[
3

2
Bx2 þ Cxy]dxdy

and thus equation (9.8.15) reduces to

BIy þ CIxy ¼ �Px (9:8:16)

In a similar manner, boundary condition (9:8:13)2 gives

BIxy þ CIx ¼ �Py (9:8:17)

The expressions Ix, Iy, and Ixy are the area moments of inertia of section R

Ix ¼
ð ð

R

y2dxdy, Iy ¼
ð ð

R

x2dxdy, Ixy ¼
ð ð

R

xydxdy (9:8:18)

Relations (9.8.16) and (9.8.17) can be solved for the constants B and C
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B ¼ �PxIx � PyIxy
IxIy � I2xy

C ¼ �PyIy � PxIxy
IxIy � I2xy

(9:8:19)

The final boundary condition (9:8:13)3 can be expressed as

�
ð ð

R

[x
@f
@x

þ y
@f
@y

]dxdy�
ð ð

R

[x
@c
@x

þ y
@c
@y

]dxdy

þ
ð ð

R

1

2
(Cxy2 � Bx2y)dxdy ¼ xoPy � yoPx

(9:8:20)

From the torsion formulation, �
ð ð

R

x
@f
@x

þ y
@f
@y

	 

dxdy ¼ 2

ð ð
R

fdxdy ¼ T ¼ aJ, so (9.8.20)

becomes

aJ þ
ð ð

R

1

2
(Cxy2 � Bx2y)� (x

@c
@x

þ y
@c
@y

)

� �
dxdy ¼ xoPy � yoPx (9:8:21)

Once the flexural stress function c is known, (9.8.21) will provide a relation to determine the

angle of twist a.
Relation (9.8.21) can also be used to determine the location (xo, yo) for no induced

torsional rotation, a point commonly called the shear center or center of flexure. Choosing
a ¼ 0, this equation can be independently used for the two cases of (Px ¼ 0, Py 6¼ 0) and

(Px 6¼ 0, Py ¼ 0) to generate two equations for locations xo and yo. If the x-axis is an axis of

symmetry, then yo ¼ 0; and likewise, if the y-axis is one of symmetry, then xo ¼ 0. For a

section with two perpendicular axes of symmetry, the location (xo, yo) lies at the intersection of
these two axes, which is at the centroid of the section. However, in general the shear center

does not coincide with the section’s centroid and need not even lie within the section.

9.9 Flexure Problems Without Twist

Because we have previously studied examples of the torsion problem, we shall now develop

flexure solutions to problems that do not include twist. The two examples to be investigated

include simple symmetric cross-sections with single end loadings along an axis of symmetry.

EXAMPLE 9-8: Circular Section

Consider the flexure of an elastic beam of circular section, as shown in Figure 9-20. The

end loading (Px ¼ 0, Py ¼ P) passes through the center of the section, which coincides

with the centroid and center of twist. Thus, for this problem there will be no torsion

(a ¼ 0), and so f ¼ 0 and F ¼ c. It is convenient to use polar coordinates for this

problem, and the governing equation (9:8:11)1 can then be written as

r2c ¼ � �

1þ �

P

Ix
r cos y (9:9:1)

Continued
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EXAMPLE 9-8: Circular Section–Cont’d

while the boundary condition (9:8:11)2 becomes

1

a

@c
@y

¼ 1

2

P

Ix
a2 sin3 y on r ¼ a (9:9:2)

The solution to (9.9.1) can then be taken as

c ¼ P

Ix
[ f � 1

6

�

1þ �
r3 cos3 y] (9:9:3)

Using trigonometric identities, relations (9.9.3) and (9.9.2) can be rewritten

c ¼ P

Ix
[ f � 1

24

�

1þ �
r3( cos 3yþ 3 cos y)]

@c
@y

¼ 1

8

P

Ix
a3(� sin 3yþ 3 sin y) on r ¼ a

(9:9:4)

Based on the previous relations, we look for solutions for the harmonic function in the

form f ¼P
n
Anr

n cos ny and consider the two terms

f ¼ A1r cos yþ A3r
3 cos 3y (9:9:5)

Combining (9.9.4) and (9.9.5) yields

c ¼ P

Ix
[A1r � �r3

8(1þ �)
] cos yþ [A3 � �

24(1þ �)
]r3 cos 3y

	 

(9:9:6)

Boundary condition (9:9:4)2 yields two relations to determine the constants A1 and A3

A1 ¼ � 3þ 2�

8(1þ �)
a2

A3 ¼ 1þ 2�

24(1þ �)

(9:9:7)

x

 y

z
a

P

l

FIGURE 9-20 Flexure of a beam of circular section.
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EXAMPLE 9-8: Cont’d

and back-substituting this result into (9.9.6) gives the final form of the stress function

c ¼ P

Ix
� 3þ 2�

8(1þ �)
a2x� 1þ 2�

8(1þ �)
xy2 þ 1� 2�

24(1þ �)
x3

	 

(9:9:8)

The stresses corresponding to this solution become

txz ¼ � P

4Ix

1þ 2�

1þ �
xy

tyz ¼ P

Ix

3þ 2�

8(1þ �)
a2 � y2 � 1� 2�

3þ 2�
x2

	 


�z ¼ � P

Ix
y(l� z)

(9:9:9)

Note for this section Ix ¼ pa4=4. The maximum stress occurs at the origin and is given by

tmax ¼ tyz(0, 0) ¼ P

pa2
3þ 2�

2(1þ �)
(9:9:10)

This can be compared to the value developed from strength of materials theory

tmax ¼ 4P=3pa2. Differences in the maximum shear stress between the two theories

are small, and for the special case � ¼ 1=2, the elasticity solution is the same as the

elementary result. Comparison of the shear stress distribution with strength of materials

theory for � ¼ 0:1 has been given by Sadd (1979), and again differences were found to

be small. Displacements for this problem can be determined through the usual integra-

tion process (see Exercise 9-24).

EXAMPLE 9-9: Rectangular Section

Our second flexure example involves a beam of rectangular section with end loading

(Px ¼ 0, Py ¼ P) passing through the shear center, as shown in Figure 9-21. The

section dimensions are the same as those given in Figure 9-12. As in the previous

example, there is no torsion (a ¼ 0), and so for this case f ¼ 0 and F ¼ c. Formulation

equations (9.8.11) then give

r2c ¼ � �

1þ �

P

Ix
x in R

dc
ds

¼ � 1

2

P

Ix
y2

dx

ds
on S

(9:9:11)

For the rectangular section,

dc
ds

¼
�dc
dy

¼ 0, x ¼ �a

�dc
dx

¼ � 1

2

P

Ix
b2, y ¼ �b

8>><
>>: (9:9:12)

Continued
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EXAMPLE 9-9: Rectangular Section–Cont’d

Based on these boundary relations we are motivated to select a solution of the form

c ¼ P

Ix
[ f � 1

6

�

1þ �
(x3 � a2x)� b2x

2
] (9:9:13)

with the harmonic function f satisfying

f (x, y) ¼
0, x ¼ �a

�

6(1þ �)
(x3 � a2x), y ¼ �b

(
(9:9:14)

Because we expect tyz to be an even function in x and y, and txz to be odd in y, we
look for a harmonic solution for f in the form

f (x, y) ¼
X1
n¼1

An sin
npx
a

cosh
npy
a

(9:9:15)

This form satisfies (9:9:14)1 identically, while (9:9:14)2 implies that

X1
n¼1

bn sin
npx
a

¼ �

6(1þ �)
(x3 � a2x) (9:9:16)

where bn ¼ An cosh (npb=a). Relation (9.9.16) is recognized as a Fourier sine series,

and thus the coefficients follow from standard theory (8.2.28) and are given by

bn ¼ 2�3(� 1)n=(1þ �)n3p3. Putting these results back together gives the final form

of the stress function

c ¼ P

Ix
� 1

6

�

1þ �
(x3�a2x)� b2x

2
þ 2�a3

(1þ �)p3
X1
n¼1

(� 1)n

n3

sin
npx
a

cosh
npy
a

cosh
npb
a

2
64

3
75 (9:9:17)

x

y

z

2a

P
l

2b

FIGURE 9-21 Flexure of a beam of rectangular section.
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EXAMPLE 9-9: Cont’d

The stresses then follow to be

txz ¼ 2�a2P

(1þ �)p2Ix

X1
n¼1

(�1)n

n2

sin
npx
a

sinh
npy
a

cosh
npb
a

tyz ¼ P

2Ix
(b2�y2)þ �P

6(1þ �)Ix
3x2� a2� 12a2

p2
X1
n¼1

(�1)n

n2

cos
npx
a

cosh
npy
a

cosh
npb
a

2
64

3
75

sz ¼ P

Ix
y(l� z)

(9:9:18)

The corresponding results from strength of materials gives tyz ¼ P(b2 � y2)=2Ix, and
thus the second term of (9.9.18)2 represents the correction to the elementary theory.

Note that if � ¼ 0, this correction term vanishes, and the two theories predict identical

stresses. For the case of a thin rectangular section with b >> a, cosh (npb=a) ! 1,

and it can be shown that the elasticity solution reduces to the strength of materials

prediction. A similar result is also found for the case of a thin section with a >> b.
Comparison of the shear stress distribution tyz with strength of materials theory for

� ¼ 1=2 has been presented by Sadd (1979), and differences between the two theories

were found to be sizable. As in the previous example, the maximum stress occurs at

x ¼ y ¼ 0

tmax ¼ tyz(0, 0) ¼ P

2Ix
b2 � �Pa2

6(1þ �)Ix
1þ 12

p2
X1
n¼1

(� 1)n

n2
sech

npb
a

" #
(9:9:19)

Again, the strength of materials result is given by the first term in relation (9.9.19).

This concludes our brief presentation of flexure examples. Solutions to additional

flexure problems are given by Sokolnikoff (1956) and Timoshenko and Goodier

(1970).
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Exercises

9-1. Under the assumption that sx ¼ sy ¼ txy ¼ 0, show that equilibrium and compatibility

equations with zero body forces reduce to relations (9.1.2). Next integrate relations

@2sz
@x2

¼ @2sz
@y2

¼ @2sz
@z2

¼ @2sz
@x@y

¼ 0

to justify that sz ¼ C1xþ C2yþ C3zþ C4xzþ C5yzþ C6, whereCi are arbitrary constants.

9-2. During early development of the torsion formulation, Navier attempted to extend

Coulomb’s theory for bars of circular section and to assume that there is no warping

displacement for general cross-sections. Show that although such an assumed

displacement field will satisfy all elasticity field equations, it will not satisfy the

boundary conditions and thus is not an acceptable solution.

9-3. Referring to Figure 9-2, if we choose a different reference origin that is located at point

(a,b) with respect to the given axes, the displacement field would now be given by

u ¼ �az(y� b), v ¼ az(x� a), w ¼ w(x, y)

where x and y now represent the new coordinates. Show that this new representation leads

to an identical torsion formulation as originally developed.

9-4. In terms of a conjugate function c(x, y) defined by

@c
@x

¼ � 1

a
@w

@y
,
@c
@y

¼ 1

a
@w

@x

show that the torsion problem may be formulated as

r2c ¼ 0 in R

c ¼ 1

2
(x2 þ y2)þ constant on S

9-5. A function f (x,y) is defined as subharmonic in a region R if r2f � 0 at all points in R.
It can be proved that the maximum value of a subharmonic function occurs only on the

boundary S of region R. For the torsion problem, show that the square of the resultant

shear stress t2 ¼ t2xz þ t2yz is a subharmonic function, and thus the maximum shear stress

will always occur on the section boundary.

9-6. Formulate the torsion of a cylinder of circular section with radius a, in terms of the usual

Prandtl stress function. Note for this case, there will be no warping displacement and

f¼ f(r). Show that the stress function is given by

f ¼ �ma
2
(r2 � a2)

and the only nonzero stress simplifies to tyz ¼ m a r. Check these results with the

solution given for the elliptical section for the case with b ¼ a.
9-7. Employing the membrane analogy, develop an approximate solution to the torsion problem

of a thin rectangular section as shown. Neglecting end effects at y ¼ �b, the membrane
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deflection will then depend only on x, and the governing equation can be integrated to give
z ¼ f ¼ ma(a2 � x2), thus verifying that the membrane shape is parabolic. Formally

compute the maximummembrane slope and volume enclosed to justify relations (9.5.15).

x

  y

a

b

Parabolic Membrane

aa
x

z

9-8. Using the stress results for the torsion of the elliptical section, formally integrate the

strain-displacement relations and develop the displacement solution (9.4.11).

9-9. For the torsion of an elliptical section, show that the resultant shear stress at any point

within the cross-section is tangent to an ellipse that passes through the point and has the

same ratio of major to minor axes as that of the boundary ellipse.

9-10. Develop relation (9.4.14) for the load-carrying torque of an equilateral triangular section.

9-11. For the torsion of a bar of elliptical section, express the torque equation (9.4.6) in terms

of the polar moment of inertia of the section, and compare this result with the

corresponding relation for the equilateral triangular section.

9-12*. For the triangular section shown in Figure 9-9, calculate the resultant shear stress along

the line y ¼ 0, and plot the result over the range �2a � x � a. Determine and label all

maximum and minimum values.

9-13*. For the triangular section of Example 9-2, plot contours of constant resultant shear stress

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2xz þ t2yz

q
Point out how these contours would imply that the maximum shear stress occurs at the

mid-points of each boundary side.

9-14. Consider the torsion of a bar of general triangular section as shown in the following

figure. Using the boundary equation technique of Section 9.4, attempt a stress function

solution of the form

f ¼ K(x� a)(y� m1x)(yþ m2x)
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where m1, m2, and a are geometric constants defined in the figure and K is a constant to

be determined. Show that this form will be a solution to the torsion problem only for the

case of an equilateral triangular section.

x = a

 y = m1x

 y = −m2x

x

 y

9-15. For the torsion problem in Example 9-3, explicitly justify that the required values for

the constants appearing in the stress function are given by c ¼ 3� ffiffiffi
8

p
and

K ¼ �ma=[4a2(1� ffiffiffi
2

p
)]. Also calculate the resulting shear stresses and determine the

location and value of the maximum stress.

9-16. Attempt to solve the torsion of a rectangular section shown in Figure 9-12 by using the

boundaryequationmethod.Show that tryinga stress functioncreated from the four products

of the boundary lines x ¼ �a and y ¼ �bwill not satisfy the governing equation (9.3.9).

9-17*. Using the torque relation (9.5.12) for the rectangular section, compute the nondimensional

load-carrying parameter T=mab4, and plot this as a function of the dimensionless ratio b/a
over the range 1 � b=a � 10. For the case where b/a approaches 10, show that the load-

carrying behavior can be given by the approximate relation (9.5.15).

9-18. Using the relation (9.5.16), develop an approximate solution for the load-carrying

torque of the channel section shown.

a

t

b

t

t

b
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9-19. A circular shaft with a keyway can be approximated by the section shown in the

following figure. The keyway is represented by the boundary equation r ¼ b, while the
shaft has the boundary relation r ¼ 2a cos y. Using the technique of Section 9.4, a trial

stress function is suggested of the form

f ¼ K(b2 � r2)(1� 2a cos y
r

)

where K is a constant to be determined. Show that this form will solve the problem and

determine the constant K. Compute the two shear stress components txz and tyz.

r = b

r = 2acos q

r

x

 y

.

q

9-20*. For the keyway section of Exercise 9-19, show that resultant stresses on the shaft and

keyway boundaries are given by

tshaft ¼ maa(
b2

4a2 cos2 y
� 1), tkeyway ¼ ma(2a cos y� b)

Determine the maximum values of these stresses, and show that for b << a, the
magnitude of the maximum keyway stress is approximately twice that of the shaft

stress. Finally, make a plot of the stress concentration factor

(tmax)keyway

(tmax)solid shaft

versus the ratio b=a over the range 0 � b=a � 1. Note that (tmax)solid shaft is the maximum

shear stress for a solid shaft of circular section and can be determined from Example 9-1

or strength of materials theory. Show that the stress concentration plot gives

(tmax)keyway

(tmax)solid shaft

! 2; as b=a ! 0

thus indicating that a small notch will result in a doubling of the stress in circular

section under torsion.
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9-21. Example 9-6 provides the torsion solution of a closed thin-walled section shown in

Figure 9-16. Investigate the solution of the identical section for the case where a small

cut has been introduced as shown in the following figure. This cut creates an open tube

and produces significant changes to the stress function (use membrane analogy), stress

field, and load-carrying capacity. The open tube solution can be approximately

determined using results (9.5.15) from the thin rectangular solution. For the open tube,

develop an equivalent relation as given by (9.6.8) for the closed tube. For identical

applied torque, compare the stresses for each case, and justify that the closed tube has

much lower stress and is thus much stronger.

9-22. For the solution of the conical shaft given in Example 9-7, compare the maximum

shearing stress tyz with the corresponding result from strength of materials theory.

Specifically, consider the case with a cone angle j ¼ 20	 with z ¼ l, and compare

dimensionless values of tyzl3=T.

9-23*. Make a comparison study of the torsion of a conical shaft given in Example 9-7 with

corresponding results from mechanics of materials. First develop the tyz shear stress
relations for each theory, and then make a comparison plot of the maximum section

shear stress (normalized by the torque, T) for the case with cone angle j ¼ 308 over the
range 4 � z � 10.

9-24. Determine the displacement field for the flexure problem of a beam of circular section

given in Example 9-8. Starting with the stress solution (9.9.9), integrate the strain-

displacement relations and use boundary conditions that require the displacements and

rotations to vanish at z ¼ 0. Compare the elasticity results with strength of materials

theory. Also investigate whether the elasticity displacements indicate that plane

sections remain plane.

9-25*. Make a comparison of theory of elasticity and strength of materials shear stresses for

the flexure of a beam of rectangular section from Example 9-9. For each theory,

calculate and plot the dimensionless shear stress tyz(0, y)b2=P versus y=b for an aspect

ratio b=a ¼ 1.

9-26. Solve the flexure problem without twist of an elastic beam of elliptical section as shown

in Figure 9-7 with Py ¼ P. Show that the stress results reduce to (9.9.9) for the circular

case with a ¼ b.
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10 Complex Variable Methods

Complex variable theory provides a very powerful tool for the solution of many problems in

elasticity. Such applications include solutions of the torsion problem and most importantly the

plane problem discussed in Chapters 7 and 8. The technique is also useful for cases involving

anisotropic and thermoelastic materials, and these are discussed in subsequent chapters.

Employing complex variable methods enables many problems to be solved that would be

intractable by other schemes. The method is based on the reduction of the elasticity boundary-

value problem to a formulation in the complex domain. This formulation then allows many

powerful mathematical techniques available from complex variable theory to be applied to the

elasticity problem. Such applications were originally formulated by Kolosov (1909), and

additional Russian researchers further expanded the use of this technique. Comprehensive

texts on this solution method include Muskhelishvili (1953, 1963), Milne-Thomson (1960),

Green and Zerna (1968), and England (1971). Additional briefer sources of information can

also be found in Sokolnikoff (1956) and Little (1973). The purpose of this chapter is to

introduce the basics of the method and to investigate its application to particular problems

of engineering interest. We shall first briefly review complex variable theory to provide a

general background needed to develop the elasticity solutions. Further and more detailed

information on complex variables may be found in the mathematical texts by Churchill

(1960) or Kreyszig (1999).

10.1 Review of Complex Variable Theory

A complex variable z is defined by two real variables x and y in the form

z ¼ xþ iy (10:1:1)

where i ¼ ffiffiffiffiffiffiffi�1
p

is called the imaginary unit, x is known as the real part of z, that is, x ¼ Re(z),
while y is called the imaginary part, y ¼ Im(z). This definition can also be expressed in polar
form by

z ¼ r( cos yþ i sin y) ¼ reiy (10:1:2)
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is known as the modulus of z and y ¼ tan�1 y=xð Þ is the argument. These

definitions may be visualized in a plot of the complex plane, as shown in Figure 10-1 where the
variable z may be thought of as a point in the plane, and definitions of r and y have obvious

graphical meaning. Because a complex variable includes two quantities (real and imaginary

parts), it can be used in a similar fashion as a two-dimensional vector with x and y components.

This type of representation is used in several places in our plane elasticity applications. The

complex conjugate �zz of the variable z is defined by

�zz ¼ x� iy ¼ re�iy (10:1:3)

It should be apparent that this quantity is simply a result of changing the sign of the imaginary

part of z, and in the complex plane (see Figure 10-1) is a reflection of z about the real axis. Note
that r ¼ ffiffiffiffi

z�zz
p

.

Using the definitions (10.1.1) and (10.1.3), the following differential operators can be

developed

@

@x
¼ @

@z
þ @

@�zz
,

@

@y
¼ i

@

@z
� @

@�zz

� �
@

@z
¼ 1

2

@

@x
� i

@

@y

� �
,

@

@�zz
¼ 1

2

@

@x
þ i

@

@y

� � (10:1:4)

Addition, subtraction, multiplication, and division of complex numbers z1 and z2 are defined by

z1 þ z2 ¼ (x1 þ x2)þ i(y1 þ y2)

z1 � z2 ¼ (x1 � x2)þ i(y1 � y2)

z1z2 ¼ (x1x2 � y1y2)þ i(y1x2 þ x1y2)

z1
z2

¼ x1 þ iy1
x2 þ iy2

¼ x1x2 þ y1y2
x22 þ y22

þ i
y1x2 � x1y2
x22 þ y22

(10:1:5)

z

r

 y

x

z

q

FIGURE 10-1 Complex plane.
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A function of a complex variable z may be written as

f (z) ¼ f (xþ iy) ¼ u(x, y)þ iv(x, y) (10:1:6)

where u(x,y) and v(x,y) are the real and imaginary parts of the complex function f(z). An
example of this definition is given by

f (z) ¼ azþ bz2 ¼ a(xþ iy)þ b(xþ iy)2 ¼ (axþ bx2 � by2)þ i(ayþ 2bxy)

thus u(x, y) ¼ axþ bx2 � by2 and v(x, y) ¼ ayþ 2bxy, where we have assumed that a and b
are real constants.

The complex conjugate of the complex function is defined by

f (z) ¼ �ff (�zz) ¼ u(x, y)� iv(x, y) (10:1:7)

and thus for the previous example of f (z) ¼ azþ bz2

f (z) ¼ (azþ bz2) ¼ a�zzþ b�zz2

¼ a(x� iy)þ b(x� iy)2

¼ (axþ bx2 � by2)� i(ayþ 2bxy)

Differentiation of functions of a complex variable follows the usual definitions. Let f(z) be a
single-valued continuous function of z in a domain D. The function f is differentiable at point
zo in D if

f 0(zo) ¼ lim
Dz!0

f (zo þ Dz)� f (zo)

Dz

� �
(10:1:8)

exists and is independent of how Dz ! 0. If the function is differentiable at all points in a

domain D, then it is said to be holomorphic, analytic, or regular in D. Points where the

function is not analytic are called singular points.
Using the representation (10.1.6) with differential relations (10.1.4), the derivative of f can

be expressed by

f 0(z) ¼ @

@z
(uþ iv) ¼ 1

2

@u

@x
þ @v

@y

� �
þ i

1

2

@v

@x
� @u

@y

� �
(10:1:9)

Because the derivative limit must be the same regardless of the path associated with Dz ! 0,

relation (10.1.9) must be valid for the individual cases of Dx ¼ 0 and Dy ¼ 0, and thus

f 0(z) ¼ 1

2

@u

@x

� �
þ i

1

2

@v

@x

� �
¼ 1

2

@v

@y

� �
þ i

1

2
� @u

@y

� �
(10:1:10)

Equating real and imaginary parts in relations (10.1.10) gives

@u

@x
¼ @v

@y
,
@u

@y
¼ � @v

@x
(10:1:11)
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which are called the Cauchy-Riemann equations. In polar coordinate form, these relations may

be written as

@u

@r
¼ 1

r

@v

@y
,
1

r

@u

@y
¼ � @v

@r
(10:1:12)

Note that by simple differentiation of these relations, it can be shown that

r2u ¼ 0, r2v ¼ 0 (10:1:13)

and thus the real and imaginary parts of any analytic function of a complex variable are

solutions to Laplace’s equation and are thus harmonic functions. It can also be observed that

relations (10.1.11) allow the differential of u to be expressed in terms of the variable v, that is,

du ¼ @u

@x
dxþ @u

@y
dy ¼ @v

@y
dx� @v

@x
dy (10:1:14)

and so if we know v, we could calculate u by integrating relation (10.1.14). In this discussion,

the roles of u and v could be interchanged, and therefore if we know one of these functions, the

other can be determined. This behavior establishes u and v as conjugate functions.
Next consider some concepts and results related to integration in the complex plane shown

in Figure 10-2. The line integral over a curve C from z1 to z2 is given by

ð
C

f (z)dz ¼
ð
C

(uþ iv)(dxþ idy) ¼
ð
C

(udx� vdy)þ i(udyþ vdx)ð Þ (10:1:15)

Using the Cauchy-Riemann relations, we can show that if the function f is analytic in a region

D that encloses the curve C, then the line integral is independent of the path taken between the

end points z1 and z2. This fact leads to two useful theorems in complex variable theory.

Cauchy Integral Theorem: If a function f(z) is analytic at all points interior to and on a
closed curve C, then

z2

z1

y

x

C

FIGURE 10-2 Contour in the complex plane.
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þ
C

f (z)dz ¼ 0 (10:1:16)

Cauchy Integral Formula: If f(z) is analytic everywhere within and on a closed curve C,
and if zo is any point interior to C, then

f (zo) ¼ 1

2pi

þ
C

f (z)

z� zo
dz (10:1:17)

The integration over C is to be taken in the positive sense with the enclosed region to the left as

the curve is traversed. Notice that the Cauchy integral formula provides a method to express

the value of an analytic function at interior points of a domain in terms of values on the

boundary.

It is often convenient to express functions of a complex variable in a power series. If f(z) is
analytic at all points within a circle C with center at z ¼ a, then at each point inside C the

function admits the Taylor series expansion

f (z) ¼ f (a)þ f 0(a)(z� a)þ � � � þ f (n)(a)

n!
(z� a)n þ � � � (10:1:18)

about point z ¼ a. For the special case where a ¼ 0, the representation is referred to as the

Maclaurin series. These results are useful for expansions in interior regions. A generalization

of series representations for an annular region also exists. If f(z) is analytic on two concentric

circles C1 and C2 and throughout the region between these circles (C1 > C2), then the function

may be expressed by the Laurent series

f (z) ¼
X1
n¼0

An(z� a)n þ
X1
n¼1

Bn

(z� a)n
(10:1:19)

where

An ¼ 1

2pi

þ
C1

f (z)

(z� zo)
nþ1

dz, n ¼ 0, 1, 2, � � �

Bn ¼ 1

2pi

þ
C2

f (z)

(z� zo)
�nþ1

dz, n ¼ 1, 2, � � �
(10:1:20)

Recall that points where a complex function is not analytic are called singular points or

singularities. We now wish to discuss briefly one particular type of singularity called a pole.
If f(z) is singular at z ¼ a, but the product (z� a)nf (z) is analytic for some integer value of n,
then f(z)is said to have a pole of order n at z ¼ a. For this case, the analytic product form can be

expanded in a Taylor series about z ¼ a,

(z� a)nf (z) ¼
X1
k¼0

Ak(z� a)k

Ak ¼ 1

k!

dk

dzk
{(z� a)nf (z)}

����
z¼a

Rewriting this series for f(z)
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f (z) ¼
X1
k¼0

Ak
(z� a)k

(z� a)n

Integrating this expression around a closed contour C that encloses the point a and using the

Cauchy integral formula reduces the right-hand side to a single term

þ
C

f (z)dz ¼ 2piAn�1

The quantity An�1 is called the residue of f(z) at the pole z ¼ a, and this result would allow

the calculation of the integral by knowing the residue of the pole inside the contour C. Thus, if
f(z) is analytic except for a pole of order n at z ¼ a in a region enclosed by an arbitrary contour
C, then the integral of f(z) around C is given by

þ
C

f (z)dz ¼ 2pi
1

(n� 1)!

dn�1

dzn�1
(z� a)nf (z)f g

� ����
z¼a

�
(10:1:21)

If more than one pole exists in the domain enclosed by C, then the integral is evaluated using

relation (10.1.21) by including the summation of the residues of all poles in the domain. This

procedure is called the calculus of residues and is useful to evaluate complex integrals. Using

this scheme along with the Cauchy integral formula, the following useful integral relation may

be developed

1

2pi

þ
C

1

zn(z� z)
dz ¼ 0, n > 0

1, n = 0

�
(10:1:22)

where C is the contour around the unit circle and z is inside the circle.
Another type of nonanalytic, singular behavior involves multivalued complex functions.

Examples of such behavior are found in the functions z1=2 and log z. Consider in more detail

the logarithmic function

log z ¼ log (reiy) ¼ log r þ iy

It is observed that this function is multivalued in y. This multivaluedness can be eliminated by

restricting the range of y to�p < y � p, and this results in the principal value of log z. For this
case, the function is single-valued at all points except for the origin and the negative real axis.

The origin is then referred to as a branch point, and the negative real axis is a branch cut. By
restricting the function to the domain r > 0 and �p < y � p, the singular behavior is avoided,
and the function is analytic in the restricted range. Because of the common occurrence of

functions involving
ffiffiffiffiffiffiffi
( � )n

p
and log, branch points and branch cuts are present in many

applications in elasticity.

Consider next the issue of the connectivity of the plane domain. Recall that a simply
connected region is one where any closed curve can be continuously shrunk to a point without

going outside the region, and for two dimensions this simply means a region with no holes in it.

Figure 10-3 illustrates a multiply connected region D with several internal boundaries Lk. It can
be shown that analytic functions in such multiply connected regions need not be single-valued.

Note, however, that such regions can be made simply connected by making appropriate cuts

joining each of the internal boundaries with the outer boundary.
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The final topic in our complex variable review involves the powerful method of conformal
transformation or mapping. This transformation concept provides a convenient means to find

elasticity solutions to interior and exterior problems of complex shape. The concept starts with

a general relationship between two complex variables z and z,

z ¼ w(z), z ¼ f (z) (10:1:23)

The transformation w is assumed to be analytic in the domain of interest, and this establishes a

one-to-one mapping of points in the z-plane to points in the z-plane as shown in Figure 10-4.

Thus, the region R is mapped onto the region D by the relation z ¼ f (z). The term conformal is
associated with the property that angles between line elements are preserved under the

transformation.

Many plane elasticity problems rely on solutions related to the unit circle, and thus the

conformal mapping of a region R in the z-plane into a unit circle in the z-plane is commonly

used. This case is shown in Figure 10-5. The particular transformation that accomplishes this

mapping is given by the following:

x

y

L1

L2
L3

D

FIGURE 10-3 Multiply connected domain.

z-plane

z = w (z)

z = f (z)

z-plane

D

y

x

R

x

h

FIGURE 10-4 Conformal mapping.
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z ¼
X1
k¼0

ckz
k (10:1:24)

where the constants ck would be determined by the specific shape of the domain R. Another
useful transformation is that which maps the exterior of region R into the unit circle, and this is

of the form

z ¼ C

z
þ
X1
k¼0

ckz
k (10:1:25)

where as before the constants C and ck would be determined by the shape of R. Other special
mappings are presented as this theory is applied to specific elasticity problems in later sections.

A large number of conformal mappings have been developed for various applications in many

branches of engineering science; see, for example, Kober (1952).

10.2 Complex Formulation of the Plane Elasticity Problem

The general plane problem of elasticity formulated in Chapter 7 establishes the two theories of

plane strain and plane stress. Although each case is related to a completely different two-

dimensional model, the basic formulations are quite similar, and by simple changes in elastic

constants, solutions to each case were shown to be interchangeable (see Table 7-1).

The basic equations for plane strain include expressions for the stresses

sx ¼ l(
@u

@x
þ @v

@y
)þ 2m

@u

@x

sy ¼ l(
@u

@x
þ @v

@y
)þ 2m

@v

@y

txy ¼ m(
@u

@y
þ @v

@x
)

(10:2:1)

while the Navier equations reduced to

z-plane z-plane

z = w(z)

z = f(z)

y

x

R

h

x

D

1

FIGURE 10-5 Conformal mapping of a region onto the unit circle.
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mr2uþ (lþ m)=(= � u) ¼ 0 (10:2:2)

where the Laplacian is given by r2 ¼ ( )xx þ ( )yy, with subscripts representing partial differ-

entiation. For both plane strain and plane stress with zero body forces, the stresses were

expressed in a self-equilibrated form using the Airy stress function f

sx ¼ @2f
@y2

, sy ¼ @2f
@x2

, txy ¼ � @2f
@x@y

(10:2:3)

and from the compatibility relations, f satisfied the biharmonic equation

r4f ¼ fxxxx þ 2fxxyy þ fyyyy ¼ 0 (10:2:4)

Thus, the stress formulation to the plane problem reduced to solving the biharmonic equation.

We now wish to represent the Airy stress function in terms of functions of a complex

variable and transform the plane problem into one involving complex variable theory. Using

relations (10.1.1) and (10.1.3), the variables x and y can be expressed in terms of z and �zz, and
thus functions of x and y can be expressed as functions of z and �zz. Applying this concept to the

Airy stress function, we can write f ¼ f(z, �zz). Repeated use of the differential operators

defined in equations (10.1.4) allows the following representation of the harmonic and bihar-

monic operators:

r2() ¼ 4
@2()

@z@�zz
, r4() ¼ 16

@4()

@z2@�zz2
(10:2:5)

Therefore, the governing biharmonic elasticity equation (10.2.4) can be expressed as

@4f
@z2@�zz2

¼ 0 (10:2:6)

Integrating this result yields

f(z, �zz) ¼ 1

2
zg(z)þ �zzg(z)þ w(z)þ w(z)
	 


¼ Re �zzg(z)þ w(z)ð Þ
(10:2:7)

where g and w are arbitrary functions of the indicated variables, and we have invoked the fact

that f must be real. This result demonstrates that the Airy stress function can be formulated in

terms of two functions of a complex variable.
Following along another path, we consider the governing Navier equations (10.2.2) and

introduce the complex displacement U ¼ uþ iv to get

(lþ m)
@

@�zz

@U

@z
þ @U

@z

� �
þ 2m

@2U

@�zz@z
¼ 0 (10:2:8)

Integrating this expression yields a solution form for the complex displacement

2mU ¼ kg(z)� zg0(z)� c(z) (10:2:9)
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where again g(z) and c(z) ¼ w0(z) are arbitrary functions of a complex variable and the

parameter k depends only on Poisson’s ratio �

k ¼
3� 4�, plane strain
3� �

1þ �
, plane stress

8<
: (10:2:10)

Result (10.2.9) is the complex variable formulation for the displacement field and is written in

terms of two arbitrary functions of a complex variable.

Using relations (10.2.3) and (10.2.7) yields the fundamental stress combinations

sx þ sy ¼ 2 g0(z)þ g0(z)
	 


sy � sx þ 2itxy ¼ 2 �zzg00(z)þ c0(z)ð Þ (10:2:11)

By adding and subtracting and equating real and imaginary parts, relations (10.2.11) can be

easily solved for the individual stresses (see Exercise 10-5). Using standard transformation

laws (see Exercise 3-3), the stresses and displacements in polar coordinates can be written as

sr þ sy ¼ sx þ sy

sy � sr þ 2itry ¼ (sy � sx þ 2itxy)e2iy

ur þ iuy ¼ (uþ iv)e�iy

(10:2:12)

From the original definition of the traction vector, we can express these components as

Tn
x ¼ sxnx þ txyny ¼ fyynx � fxyny ¼ fyy

dy

ds
þ fxy

dx

ds
¼ d

ds

@f
@y

� �

Tn
y ¼ txynx þ syny ¼ �fxynx þ fxxny ¼ � fxy

dy

ds
þ fxx

dx

ds

� �
¼ � d

ds

@f
@x

� � (10:2:13)

and thus

Tn
x þ iTn

y ¼ d

ds

@f
@y

� i
@f
@x

� �
¼ �i

d

ds

@f
@x

þ i
@f
@y

� �

¼ �i
d

ds
g(z)þ zg0(z)þ c(z)
	 
 (10:2:14)

Therefore, we have demonstrated that all of the basic variables in plane elasticity are express-

ible in terms of two arbitrary functions of a complex variable. These two functions g(z) and
c(z) are commonly referred to as the Kolosov-Muskhelishvili potentials. The solution to

particular problems is then reduced to finding the appropriate potentials that satisfy the

boundary conditions. This solution technique is greatly aided by mathematical methods of

complex variable theory.
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EXAMPLE 10-1: Constant Stress State Example

Consider the complex potentials g(z) ¼ Az, c(z) ¼ Bz, where A and B are complex

constants. We wish to determine the stresses and displacements and explicitly show that

this example corresponds to a uniform stress field. Using the stress combinations (10.2.11),

sx þ sy ¼ 2 g0(z)þ g0(z)
	 
 ¼ 2(Aþ �AA) ¼ 4ReA ¼ 4AR

sy � sx þ 2itxy ¼ 2 �zzg00(z)þ c0(z)Þ ¼ 2B ¼ 2(BR þ iBI)ð

Equating real and imaginary parts in the second relation gives

sy � sx ¼ 2BR

txy ¼ BI

and this allows the individual stresses to be calculated as

sx ¼ 2AR � BR, sy ¼ 2AR þ BR, txy ¼ BI

If these stresses are to be a uniform state sx ¼ sox , sy ¼ soy , txy ¼ toxy, then the con-

stants must take the form

AR ¼ sox þ soy
4

, BR ¼ soy � sox
2

, BI ¼ toxy

Note that the imaginary part of A is not determined by the stress state.

The polar coordinate stresses can easily be calculated by using relation (10.2.12)

sr þ sy ¼ 4AR

sy � sr þ 2itry ¼ 2(BR þ iBI)e
2iy ¼ 2(BR þ iBI)( cos 2yþ i sin 2y)

Again separating and equating real and imaginary parts gives the individual stresses

sr ¼ 2AR � BR cos 2yþ BI sin 2y

sy ¼ 2AR þ BR cos 2y� BI sin 2y

try ¼ BR sin 2yþ BI cos 2y

Finally, the displacements follow from equation (10.2.9)

2m(uþ iv) ¼ kAz� z �AA� �BB�zz ¼ k(AR þ iAI)(xþ iy)

� (xþ iy)(AR � iAI)� (BR � iBI)(x� iy)

Equating real and imaginary parts, the individual components can be determined as

u ¼ 1

2m
[(AR(k� 1)� BR)xþ (BI � AI(kþ 1) )y]

v ¼ 1

2m
[(AI(kþ 1)þ BI)xþ (AR(k� 1)þ BR)y]
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10.3 Resultant Boundary Conditions

The final formulation step in the complex variable approach is to develop expressions to

handle general resultant boundary conditions, and this involves methods to determine the

resultant force and moment acting on arbitrary boundary segments. Consider the boundary

segment AB for an interior simply connected domain problem shown in Figure 10-6. The

resultant force components produced by tractions acting on this segment may be expressed in

complex form as

Fx þ iFy ¼
ðB
A

(Tn
x þ iTn

y )ds

¼ �i

ðB
A

d[g(z)þ zg0(z)þ c(z)]

¼ �i[g(z)þ zg0(z)þ c(z)]BA

(10:3:1)

Again, the direction of the boundary integration is always taken to keep the region to the left.

Similarly, the resultant moment M with respect to the coordinate origin is given by

M ¼
ðB
A

(xTn
y � yTn

x )ds

¼ �
ðB
A

xd
@f
@x

� �
þ yd

@f
@y

� �� �

¼ � x
@f
@x

þ y
@f
@y

� �B
A

þ fjBA
¼ Re[w(z)� zc(z)� z�zzg0(z)]BA

(10:3:2)

where w0(z) ¼ c(z).

y

x

A

n
xT

n
yT

B

FIGURE 10-6 Resultant boundary loading.
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10.4 General Structure of the Complex Potentials

It has now been shown that the solution to plane elasticity problems involves determination of

two complex potential functions g(z) and c(z). These potentials have some general properties

and structures that we now wish to investigate. First, by examining relations for the stresses

and displacements, a particular indeterminacy or arbitrariness of the potentials can be found.

From the first stress relation in set (10.2.11), it is observed that an arbitrary imaginary constant

iC may be added to the potential g0(z) without affecting the stresses. From the second stress

relation (10:2:11)2, an arbitrary complex constant can be added to the potential c(z) without
changing the stresses. These two observations indicate that without changing the state of stress,

a new set of complex potentials g�(z) and c�(z) could be written as

g�(z) ¼ g(z)þ iCzþ A

c�(z) ¼ c(z)þ B
(10:4:1)

Using these new forms in relation (10.2.9) yields a displacement field that differs from the

original form by the terms

2m(U� � U) ¼ (kþ 1)iCzþ kA� �BB (10:4:2)

These difference terms correspond to rigid-body motions (see relations (2.2.9) ), and thus as

expected the stresses determine the displacements only up to rigid-body motions.

Particular general forms of these potentials exist for regions of different topology. Most

problems of interest involve finite simply connected, finite multiply connected, and infinite
multiply connected domains as shown in Figure 10-7. We now present specific forms for each

of these cases.

10.4.1 Finite Simply Connected Domains
Consider the finite simply connected region shown in Figure 10-7(a). For this case, the

potential functions g(z) and c(z) are analytic and single-valued in the domain and this allows

the following power series representation

(a) Finite Simply Connected (b) Finite Multiply Connected (c) Infinite Multiply Connected

RC1

C2
C3R R

Co

C1

C2

C3

FIGURE 10-7 Typical domains of interest.
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g(z) ¼
X1
n¼0

anz
n

c(z) ¼
X1
n¼0

bnz
n

(10:4:3)

where an and bn are constants to be determined by the boundary conditions of the problem

under study.

10.4.2 Finite Multiply Connected Domains
For the general region shown in Figure 10-7(b), it is assumed that the domain has k internal

boundaries as shown. For this topology, the potential functions need not be single-valued, as

can be demonstrated by considering the behaviors of the stresses and displacements around

each of the n contours Ck in region R. For the present case, we shall limit the problem and

assume that the displacements and stresses are continuous and single-valued everywhere.

Multivalued displacements lead to the theory of dislocations, and this is discussed at a later

stage in Chapter 15. The resultant force on a typical internal boundary Ck may be determined

by using relation (10.3.1)

Fk ¼ Xk þ iYk ¼
þ
Ck

(Tn
x þ iTn

y )ds ¼ i[g(z)þ zg0(z)þ c(z)]Ck
(10:4:4)

where [f (z, �zz)]Ck
is referred to as the cyclic function of f and represents the change of the

function f around closed contour Ck. Note that in relation (10.4.4), the internal boundary circuit

Ck is traversed with the region on the left, thus leading to a clockwise circuit and a change of

sign from relation (10.3.1). Of course, the cyclic function of a single-valued expression is zero,

and further details on properties of cyclic functions may be found in Milne-Thomson (1960).

Because the resultant force on a given internal boundary will not necessarily be zero, the cyclic

function on the right-hand side of relation (10.4.4) should properly produce this result.

Therefore, the potential functions g(z) and c(z) must have appropriate multivalued behavior.

It can be shown that the logarithmic function previously discussed in Section 10.1 can provide

the necessary multivaluedness, because

[ log (z� zk)]Ck
¼ 2pi (10:4:5)

where zk is a pointwithin the contourCk and the cyclic evaluation is taken in the counterclockwise

sense for the usual right-handed coordinate systemwith ymeasured counterclockwise. Including

such logarithmic terms for each of the two complex potentials and employing (10.4.4) for all

contours within the region R in Figure 10-7(b) develops the following general forms:

g(z) ¼ �
Xn
k¼1

Fk

2p(1þ k)
log (z� zk)þ g�(z)

c(z) ¼
Xn
k¼1

k �FFk

2p(1þ k)
log (z� zk)þ c�(z)

(10:4:6)

where Fk is the resultant force on each contour Ck, g�(z) and c�(z) are arbitrary analytic

functions in R, and k is the material constant defined by (10.2.10).
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10.4.3 Infinite Domains
For the region shown in Figure 10-7(c), the general form of the potentials is determined in an

analogous manner as done in the previous case. The logarithmic terms in (10.4.6) may be

expanded in the region exterior to a circle enclosing all m contours Ck to get

log (z� zk) ¼ log zþ log 1� zk
z

� �
¼ log z� zk

z
þ 1

2

zk
z

� �2
þ � � �

� �
¼ log zþ (arbitrary analytic function)

Combining this result with the requirement that the stresses remain bounded at infinity gives

the general form for this case

g(z) ¼ �
Pm
k¼1

Fk

2p(1þ k)
log zþ s1x þ s1y

4
zþ g��(z)

c(z) ¼
k
Pm
k¼1

�FFk

2p(1þ k)
log zþ s1y � s1x þ 2it1xy

2
zþ c��(z)

(10:4:7)

where s1x , s1y , and t1xy are the stresses at infinity and g��(z) and c��(z) are arbitrary analytic

functions outside the region enclosing all m contours. Using power series theory, these analytic

functions can be expressed as

g��(z) ¼
X1
n¼1

anz
�n

c��(z) ¼
X1
n¼1

bnz
�n

(10:4:8)

An examination of the displacements at infinity would indicate unbounded behavior unless all

stresses at infinity vanish and SFk ¼ S �FFk ¼ 0. This fact occurs because even a bounded strain

over an infinite length will produce infinite displacements. Note that the case of a simply

connected, infinite domain is obtained by dropping the summation terms in (10.4.7).

10.5 Circular Domain Examples

We now develop some solutions of particular plane elastic problems involving regions of a

circular domain. The process starts by developing a general solution to a circular region with

arbitrary edge loading as shown in Figure 10-8. The region 0 � r � R is to have arbitrary

boundary loadings at r ¼ R specified by sr ¼ f1(y) try ¼ �f2(y), which can be written in

complex form as

f ¼ f1(y)þ if2(y) ¼ sr � itryjr¼R (10:5:1)

The fundamental stress combinations and displacements in polar coordinates were given in

relations (10.2.12). The tractions given by (10.2.14) may be expressed in polar form as

Tr
x þ iTr

y ¼ �i
d

ds
g(z)þ zg0(z)þ c(z)
	 
jr¼R (10:5:2)

Complex Variable Methods 273



Integrating this result around the boundary r ¼ R (ds ¼ Rdy) gives

i

ð
(Tr

x þ iTr
y)Rdy ¼ g(z)þ zg0(z)þ c(z)

	 
jr¼R ¼ g (10:5:3)

where the boundary function g depends only on y. Using general form (10.4.3) for the complex

potentials, the stress resultant becomes

sr � itry ¼ g0(z)þ g0(z)� e2iy[�zzg
00
(z)þ c0(z)]

¼
X1
n¼1

annz
n�1 þ �aann�zz

n�1 � e2iy[�zzann(n� 1)zn�2 þ bnnz
n�1]

	 


¼ a1 þ �aa1 þ
X1
k¼1

(� [akþ1(k
2 � 1)rk þ bk�1(k � 1)rk�2]eiky

þ �aakþ1(k þ 1)rke�ikyÞ

(10:5:4)

This relation can be recognized as the complex Fourier series expansion for sr � itry. On
the boundary r ¼ R, the complex boundary-loading function f can also be expanded in a

similar Fourier series as

f (y) ¼
X1
k¼�1

Cke
iky

Ck ¼ 1

2p

ð2p
0

f (y)e�ikydy

(10:5:5)

Matching (10.5.4) with (10.5.5) on the boundary and equating like powers of exponentials of y
yields the system

 y

x

f1(q )

−f2(q )

R

FIGURE 10-8 Circular disk problem.
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a1 þ �aa1 ¼ Co ¼ 2Re(a1)

�aakþ1(k þ 1)Rk ¼ C�k, (k > 0)

akþ1(k
2 � 1)Rk þ bk�1(k � 1)Rk�2 ¼ Ck, (k > 0)

(10:5:6)

Equating real and imaginary parts in relations (10.5.6) generates a system of equations to

determine the constants ak and bk. This solution is essentially the same as the Michell solution

previously discussed in Section 8.3. Note that the annulus (ri � r � ro) and the exterior

(r � R) domain problems may be solved in a similar fashion.

This solution scheme then only duplicates previous methods based on Fourier analysis.

A more powerful use of complex variable techniques involves the application of Cauchy

integral formulae. In order to discuss this method, consider again the circular region with unit

boundary radius. Relation (10.5.3) becomes

g(z)þ zg0(z)þ c(z)
	 
jz¼z ¼ g (10:5:7)

where z ¼ zjr¼1 ¼ eiy and �zz ¼ e�iy ¼ 1=z. Multiplying (10.5.7) by 1=2pi (z� z) and integrat-

ing around the boundary contour C (r ¼ 1) yields

1

2pi

þ
C

g(z)
z� z

dzþ 1

2pi

þ
C

z
g0(z)
z� z

dz

þ 1

2pi

þ
C

c(z)
z� z

dz ¼ 1

2pi

þ
C

g(z)
z� z

dz

(10:5:8)

Using the Cauchy integral formula, the first term in (10.5.8) is simply g(z). Using the general

series form (10.4.3) for the potentials and employing the integral formula (10.1.22), the

remaining two terms on the left-hand side of (10.5.8) can be evaluated, and the final result

reduces to

g(z)þ �aa1zþ 2�aa2 þ c(0) ¼ 1

2pi

þ
C

g(z)
z� z

dz (10:5:9)

We also find that an ¼ 0 for n > 2, and so g(z) ¼ ao þ a1zþ a2z
2. These results can be used to

solve for the remaining terms in order to determine the final form for the potential g(z). Using a
similar scheme but starting with the complex conjugate of (10.5.7), the potential c(z) may be

found. Dropping the constant terms that do not contribute to the stresses, the final results are

summarized as

g(z) ¼ 1

2pi

þ
C

g(z)
z� z

dz� �aa1z, a1 þ �aa1 ¼ 1

2pi

þ
C

g(z)

z2
dz

c(z) ¼ 1

2pi

þ
C

g(z)
z� z

dz� g0(z)
z

þ a1
z

(10:5:10)

Note that the preceding solution is valid only for the unit disk. For the case of a disk of radius

a, the last two terms for c(z) should be multiplied by a2.
We now consider a couple of specific examples using this general solution.
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EXAMPLE 10-2: Disk Under Uniform Compression

Consider the case of uniform compression loading of the circular disk, as shown in

Figure 10-9.

sr = −

1

p

FIGURE 10-9 Disk under uniform compression.

The boundary tractions for this case become

Tr
x þ iTr

y ¼ (sr þ itry)eiy ¼ �peiy

and thus the boundary-loading function defined by (10.5.3) reduces to

g ¼ i

ð�
0

(Tr
x þ iTr

y)dy ¼ �i

ð�
0

peiydy ¼ �peiy ¼ �pz

Substituting into relation (10:5:10)1 gives

g(z) ¼ � 1

2pi

þ
C

pz
z� z

dz� �aa1z ¼ �pz� �aa1z

a1 þ �aa1 ¼ � 1

2pi

þ
C

p

z
dz ¼ �p

(10:5:11)

Finally, substituting these results into relation (10:5:10)2 gives the result for the second
potential function

c(z) ¼ � 1

2pi

þ
C

p

z(z� z)
dzþ pþ �aa1

z
þ a1

z
¼ 0 (10:5:12)
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EXAMPLE 10-2: Cont’d

With the potentials now explicitly determined, the stress combinations can be

calculated from (10.2.11) and (10.2.12), giving

sr þ sy ¼ 2(� p� �aa1 � p� a1) ¼ �2p

sy � sr þ 2itry ¼ 0

Separating the real and imaginary parts gives individual stresses

sr ¼ sy ¼ �p, try ¼ 0 (10:5:13)

Of course, this hydrostatic state of stress is the expected result that is easily verified as a

special case of Example 8-6.

EXAMPLE 10-3: Circular Plate with Concentrated
Edge Loading

Consider next the circular plate of radius a under symmetric concentrated edge loadings

F, as shown in Figure 10-10.

F

a

F
r

q
a

FIGURE 10-10 Circular plate with edge loading.

For this case, the boundary condition on jzj ¼ a (z ¼ aeiy) may be expressed as

sr þ itry ¼ Fe�ia

a
d(y� a)þ Feia

a
d(y� p� a) (10:5:14)

The expressiond() is theDirac delta function,which is a special defined function that is zero
everywhere except at the origin, where it is singular and has the integral propertyÐ d
�d f (x)d(x� x)dx ¼ f (x) for any parameter d and continuous function f. Using this

representation, the resultant boundary-loading function can be expressed as

g ¼ i

ð�
0

(Tr
x þ iTr

y)ady ¼
0, 0 � y < a
if , a � y < p� a
0, p� a � y � 2p

(
(10:5:15)

Continued
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EXAMPLE 10-3: Circular Plate with Concentrated
Edge Loading–Cont’d

Thus, using the general solution (10.5.10) then gives

a1 þ �aa1 ¼ F

2p

ðaei(p�a)

aeia

dz

z2
¼ � F

2p
1

z

�����
aei(p�a)

aeia

¼ F

pa
cos a

and the expressions for the potential functions then become

g(z) ¼ F

2p

ðaei (p�a)

aeia

dz
z� z

� �aa1z ¼ F

2p
log (z� z)jaei(p�a)

aeia

��aa1z ¼ F

2p
log

zþ ae�ia

z� aeia

� �
� �aa1z

c(z) ¼ � F

2p
log

zþ ae�ia

z� aeia

� �
þ Fa3 cos a
pz(zþ ae�ia)(z� aeia)

þ a1 þ �aa1
z

a2 (10:5:16)

The stress resultant then becomes

sr þ sy ¼ 2 g0(z)þ g0(z)
	 


¼ � 2Fa cos a
p

1

(zþ ae�ia)(z� aeia)
þ 1

(�zzþ aeia)(�zz� ae�ia)
þ 1

a2

� �
(10:5:17)

Note that for the case with a ¼ 0 (diametrical compression), we get

sr þ sy ¼ sx þ sy ¼ � 2Fa

p
1

(z2 � a2)
þ 1

(�zz2 � a2)
þ 1

a2

� �
(10:5:18)

which was the problem previously solved in Example 8-10, giving the stresses specified

in relations (8.4.69). Solutions to many other problems of circular domain can be found

in Muskhelishvili (1963), Milne-Thomson (1960), and England (1971).

10.6 Plane and Half-Plane Problems

Complex variable methods prove to be very useful for the solution of a large variety of full-

space and half-space problems. Full-space examples commonly include problems with various

types of internal concentrated force systems and internal cavities carrying different loading

conditions. Typical half-space examples include concentrated force and moment systems

applied to the free surface and indentation contact mechanics problems where the boundary

conditions may be in terms of the stresses or displacements, or of mixed type over a portion of

the free surface. This general class of problems involves infinite domains and requires the

general solution form given by (10.4.7).
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EXAMPLE 10-4: Concentrated Force-Moment System
in an Infinite Plane

We now investigate the elasticity solution to the full plane with a concentrated force and

moment acting at the origin, as shown in Figure 10-11.

Using the general potential solutions (10.4.7) with no stresses at infinity, we choose

the particular form

g(z) ¼ � X þ iY

2p(1þ k)
log z

c(z) ¼ k(X � iY)

2p(1þ k)
log zþ iM

2pz

(10:6:1)

The stress combinations become

sx þ sy ¼ 2 g0(z)þ g0(z)
	 
 ¼ � 1

p(1þ k)
X þ iY

z
þ X � iY

�zz

� �

sy � sx þ 2itxy ¼ 2 �zzg00(z)þ c0(z)ð Þ ¼ X þ iY

p(1þ k)
�zz

z2
þ k(X � iY)

p(1þ k)
1

z
� iM

pz2

(10:6:2)

while the resulting displacements are

2mU ¼ kg(z)� zg0(z)� c(z)

¼ � k(X þ iY)

2p(1þ k)
( log zþ log �zz)þ X � iY

2p(1þ k)
z

�zz
þ iM

2p�zz

(10:6:3)

Using relations (10.3.1) and (10.3.2), the resultant force and moment on any internal

circle C enclosing the origin is given by

Continued

y

x

M

X

Y

FIGURE 10-11 Concentrated force system in an infinite medium.
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EXAMPLE 10-4: Concentrated Force-Moment System
in an Infinite Plane–Cont’dþ

C

(Tn
x þ iTn

y )ds ¼ i[g(z)þ zg0(z)þ c(z)]C ¼ X þ iY

þ
C

(xTn
y � yTn

x )ds ¼ �Re [w(z)� zc(z)� z�zzg0(z)]C ¼ M

(10:6:4)

Note that appropriate sign changes have been made as a result of integrating around an

internal cavity in the clockwise sense. Thus, the proper resultant match is attained with

the applied loading for any circle, and in the limit, as the circle radius goes to zero, the

concentrated force system in the problem is realized.

For the special case of X ¼ P and Y ¼ M ¼ 0, the stresses reduce to

sx ¼ � Px

2p(1þ k)r2
[4

x2

r2
þ k� 1]

sy ¼ Px

2p(1þ k)r2
[4

x2

r2
þ k� 5]

txy ¼ Py

2p(1þ k)r2
[4

y2

r2
� 3� k], r2 ¼ x2 þ y2

(10:6:5)

EXAMPLE 10-5: Concentrated Force System on the Surface
of a Half Plane

Consider now the half plane carrying a general concentrated force system on the free

surface, as shown in Figure 10-12. Recall this Flamant problem was previously solved

using Fourier methods in Example 8-8 (Section 8.4.7).

Following the solution pattern from Example 10-4, the complex potentials can be

written as

g(z) ¼ �X þ iY

2p
log z

c(z) ¼ (X � iY)

2p
log z

(10:6:6)

The stress combinations then become

sr þ sy ¼ 2[g0(z)þ g0(z)] ¼ � 1

p
X þ iY

z
þ X � iY

�zz

� �

sy � sr þ 2itry ¼ 2e2iy[�zzg00(z)þ c0(z)] ¼ 2e2iy
X þ iY

2p
�zz

z2
þ X � iY

2p
1

z

� �

which can be reduced to

sr þ sy ¼ � 2

pr
(X cos yþ Y sin y)

sy � sr þ 2itry ¼ 2

pr
(X cos yþ Y sin y)

(10:6:7)
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EXAMPLE 10-5: Cont’d

Solving for the individual stresses gives

sr ¼� 2

pr
(X cos yþ Y sin y)

sy ¼ try ¼ 0

(10:6:8)

This result matches with our previous solution to this problem in Example 8-8; see

relations (8.4.34). Again, it is somewhat surprising that both sy and try vanish even

with the tangential surface loading X.
The boundary condition related to the concentrated force involves integrating the

tractions around the contour C (a semicircle of arbitrary radius centered at the origin) as

shown in Figure 10-12. Thus, using (10.4.4)þ
C

(Tn
x þ iTn

y )ds ¼ i[g(z)þ zg0(z)þ c(z)]C ¼ X þ iY

which verifies the appropriate boundary condition. By using themoment relation (10.3.2),

it can also be shown that the resultant tractions on the contour C give zero moment.

For the special case X ¼ 0 and Y ¼ P, the individual stresses can be extracted from

result (10.6.8) to give

sr ¼ � 2P

pr
sin y, sy ¼ try ¼ 0 (10:6:9)

Again, this case was previously presented in Example 8-8 by relation (8.4.35).

By employing analytic continuation theory and Cauchy integral representations, other more

complicated surface boundary conditions can be handled. Such cases typically arise from contact

mechanics problems involving the indentation of an elastic half space by another body. Such a

problem is illustrated in Figure 10-13, and the boundary conditions under the indenter could

C

x

y

X

Y

FIGURE 10-12 Concentrated force system on a half space.

Complex Variable Methods 281



involve stresses and/or displacements depending on the contact conditions specified. These

problems are discussed in Muskhelishvili (1963), Milne-Thomson (1960), and England (1971).

EXAMPLE 10-6: Stressed Infinite Plane with a Circular Hole

The final example in this section is a full plane containing a stress-free circular hole,

and the problem is loaded with a general system of uniform stresses at infinity, as

shown in Figure 10-14. A special case of this problem was originally investigated in

Example 8-7.

The general solution form (10.4.7) is again used; however, for this problem the terms

with stresses at infinity are retained while the logarithmic terms are dropped because the

hole is stress free. The complex potentials may then be written as

g(z) ¼ s1x þ s1y
4

zþ
X1
n¼1

anz
�n

c(z) ¼ s1y � s1x þ 2it1xy
2

zþ
X1
n¼1

bnz
�n

(10:6:10)

Using relation (10.5.4), the stress-free condition on the interior of the hole may be

written as

sr � itryð Þr¼a ¼ g0(z)þ g0(z)� e2iy[�zzg00(z)þ c0(z)]
	 


r¼a
¼ 0 (10:6:11)

Substituting the general form (10.6.10) in this condition gives

s1x þ s1y
2

� s1y � s1x þ 2it1xy
2

e2iy

¼
X1
n¼1

1

anþ1
[nan(e

(nþ1)iy þ e�(nþ1)iy þ (nþ 1)e�(nþ1)iy)� nbne
�(n�1)iy]

� �

Indenter

FIGURE 10-13 Typical indentation problem.
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EXAMPLE 10-6: Cont’d

Equating like powers of einy gives relations for the coefficients an and bn

a1 ¼ � s1y � s1x þ 2it1xy
2

a2, an ¼ 0 (n � 2)

b1 ¼ �s1x þ s1y
2

a2, b2 ¼ 0, b3 ¼ a2a1, bn ¼ 0 (n � 4)

(10:6:12)

The potential functions are now determined and the stresses and displacements can

easily be found using the standard relations in Section 10.2. Exercise 10-18 further

explores a specific loading case. Recall that our previous work using Fourier methods in

Example 8-7 investigated several special cases of this problem with uniaxial

s1x ¼ S, s1y ¼ t1xy ¼ 0 and biaxial s1x ¼ s1y ¼ S, t1xy ¼ 0 loadings.

10.7 Applications Using the Method
of Conformal Mapping

The method of conformal mapping discussed in Section 10.1 provides a very powerful tool to

solve plane problems with complex geometry. The general concept is to establish a mapping

function, which will transform a complex region in the z-plane (actual domain) into a simple

region in the z-plane. If the elasticity solution is known for the geometry in the z-plane, then
through appropriate transformation formulae the solution for the actual problem can be easily

determined. Because we have established the general solution for the interior unit disk problem

in Section 10.5, mapping functions that transform regions onto the unit disk (see Figure 10-5)

will be most useful. Specific mapping examples are discussed later.

x

y

a
x

y

xy

xy

s∞

s∞

tt∞

t∞

FIGURE 10-14 Stress-free hole under general far-field loading.
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To establish the appropriate transformation relations, we start with the general mapping

function

z ¼ wðzÞ (10:7:1)

where w is an analytic single-valued function. Using this result, the derivatives are

related by

dz ¼ dw

dz
dz (10:7:2)

Now the complex potentials are to be transformed into functions of z through the relations

g(z) ¼ g(w(z) ) ¼ g1(z), c(z) ¼ c(w(z) ) ¼ c1(z) (10:7:3)

and thus

dg
dz

¼ dg1
dz

dz
dz

¼ g
0
1(z)
w0(z)

(10:7:4)

These relations allow the stress combinations to be expressed in the z-plane as

sr þ sj ¼ sx þ sy ¼ 2
g
0
1(z)
w0(z)

þ g01(z)

w0(z)

 !

sj � sr þ 2itrj ¼ 2z2

r2w0(z)
w(z)

g
00
1(z)
w0
(z)

� g
0
1(z)w

00
(z)

[w0(z)]2

� �
þ c

0
1(z)

� � (10:7:5)

where in the transformed plane z ¼ reij and e2ij ¼ z2w0(z)
r2w0(z)

. The boundary tractions become

i

ð
(Tn

x þ iTn
y )ds ¼ g1(z)þ

w(z)

w0(z)
g01(z)þ c1(z) (10:7:6)

The complex displacement transforms to

2m(ur þ iuj) ¼ kg1(z)�
w(z)

w0(z)
g01(z)þ c1(z) (10:7:7)

To proceed further we must establish the form of the complex potentials, and this requires

information on the problem geometry in order to determine an appropriate mapping function.

Although many types of problems can be handled by this scheme, we specialize to the

particular case of an infinite domain bounded internally by an arbitrary closed curve C, as
shown in Figure 10-15. This case has important applications to problems of stress concen-

tration around holes and cracks in extended planes. We choose the particular transformation

that maps the region exterior to boundary C onto the interior of the unit disk. Some authors use

a scheme that maps the region onto the exterior of the unit disk in the z-plane. Either mapping

scheme can be used for problem solution by incorporating the appropriate interior or exterior

solution for the unit disk problem. Mappings for the special cases of circular and elliptical
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holes are shown in Figure 10-16, and additional examples can be found in Milne-Thomson

(1960) and Little (1973).

For the exterior problem, the potential functions are given by relations (10.4.7) and (10.4.8),

and when applied to the case under study give

g(z) ¼ � F

2p(1þ k)
log [w(z)]þ s1x þ s1y

4
w(z)þ g�(z)

c(z) ¼ k �FF
2p(1þ k)

log [w(z)]þ s1y � s1x þ 2it1xy
2

w(z)þ c�(z)
(10:7:8)

z-plane

z-plane

1
C

FIGURE 10-15 General mapping for an infinite plane with an interior hole.

z-plane

1

w (z ) = Rz −1

+ mzw(z )=R
1

z-plane: Circular Case

R

z-plane: Elliptical Case

R(1+m)

R(1−m)

z

FIGURE 10-16 Mappings for an infinite plane with circular and elliptical holes.
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where F is the resultant force on the internal boundary C, and the functions g�(z) and c�(z) are
analytic in the interior of the unit circle. For the geometry under investigation, the mapping

function will always have the general form w(z) ¼ Cz�1þ (analytic function), and thus the

logarithmic term in (10.7.8) can be written as logw ¼ � log zþ (analytic function). This

allows the potentials to be expressed as

g1(z) ¼
F

2p(1þ k)
log zþ s1x þ s1y

4

C

z
þ g�(z)

c1(z) ¼ � k �FF
2p(1þ k)

log zþ s1y � s1x þ 2it1xy
2

C

z
þ c�(z)

(10:7:9)

We now investigate a specific case of an elliptical hole in a stressed plane.

EXAMPLE 10-7: Stressed Infinite Plane with
an Elliptical Hole

Consider the problem of a stress-free elliptical hole in an infinite plane subjected to

uniform stress s1x ¼ S, s1y ¼ t1xy ¼ 0 as shown in Figure 10-17. The mapping function

is given in Figure 10-16 as

w(z) ¼ R
1

z
þ mz

� �
(10:7:10)

where the major and minor axes are related to the parameters R and m by

R ¼ aþ b

2
, m ¼ a� b

aþ b
) a ¼ R(1þ m), b ¼ R(1� m)

x

 y
x = S

b
a

s∞

FIGURE 10-17 Infinite plane with an elliptical hole.
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EXAMPLE 10-7: Cont’d

For this case, relations (10.7.9) give the potentials

g1(z) ¼
S

4

R

z
þ g�(z)

c1(z) ¼ � S

2

R

z
þ c�(z)

(10:7:11)

where g�(z) and c�(z) are analytic in the unit circle. These functions may be determined

by using either Fourier or Cauchy integral methods as outlined in Section 10.5. Details

on this procedure may be found in Little (1973), Muskhelishvilli (1963), or Milne-

Thomson (1960). The result is

g�(z) ¼ SR

4
(2� m)z

c�(z) ¼ SR

2

z

(mz2 � 1)
(m2 � 1� z2 � m)

(10:7:12)

The stress combination in the z-plane is then given by

sr þ sj ¼ S Re
(2z2 � mz2 � 1)(m�zz2 � 1)

m2z2�zz2 � m(z2 þ �zz2)þ 1

� �
(10:7:13)

On the boundary z ¼ eij, sr ¼ 0 and the circumferential stress is given by

sj(j) ¼ S
2mþ 1� 2 cos 2j� m2

m2 � 2m cos 2jþ 1

� �
(10:7:14)

The maximum value of this stress is found at j ¼ � p=2 with a value

sj
	 


max
¼ �S

m� 3

mþ 1

� �
¼ S 1þ 2

b

a

� �
(10:7:15)

Note the case m ¼ 0 corresponds to the circular hole (a ¼ b ¼ R) and gives a stress

concentration factor of 3 as found previously in Example 8-7. The case m ¼ 1 gives

b ¼ 0, and thus the hole reduces to a line crack of length 2a parallel to the applied

loading. This gives (sj)max ¼ S with no stress concentration effect. The most interesting

case occurs when m ¼ �1 because this gives a ¼ 0 and reduces the elliptical hole to a

line crack of length 2b perpendicular to the direction of applied stress. As expected for

this case, the maximum value of sj at the tip of a crack becomes unbounded. Because
of the importance of this topic, we further investigate the nature of the stress distribution

around cracks in the next section. A plot of the stress concentration factor (sj)max=S
versus the aspect ratio b/a is shown in Figure 10-18. It is interesting to observe that this

relationship is actually linear. For aspect ratios less than 1, the concentration is smaller

than that of the circular case, while very high concentrations exist for b=a > 1. Further

details on such stress concentration problems for holes of different shape can be found

Continued
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EXAMPLE 10-7: Stressed Infinite Plane with
an Elliptical Hole–Cont’d

in Savin (1961).Numerical techniques employing the finite elementmethod are applied to

this stress concentration problem in Chapter 16; see Example 16-2 and Figure 16-5.
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FIGURE 10-18 Stress concentration factor for the elliptical hole problem.

10.8 Applications to Fracture Mechanics

As shown in the previous example and in Section 8.4.10, the elastic stress field around crack tips

can become unbounded. For brittle solids, this behavior can lead to rapid crack propagation

resulting in catastrophic failure of the structure. Therefore, the nature of such elevated stress

distributions around cracks is important in engineering applications, and the general studyof such

problems forms the basis of linear elastic fracturemechanics. Complexvariablemethodsprovide

a convenient and powerfulmeans to determine stress anddisplacement fields for a large variety of

crack problems. We therefore wish to investigate some of the basic procedures for such applica-

tions.

Several decades ago Westergaard (1937) presented a specialized complex variable method

to determine the stresses around cracks. The method used a single complex potential now

respectfully called the Westergaard stress function. Although this scheme is not a complete

representation for all plane elasticity problems, it was widely used to solve many practical

problems of engineering interest. More recently Sih (1966) and Sanford (1979) have reex-

amined the Westergaard method and established appropriate modifications to extend the

validity of this specialized technique. More detailed information on the general method can

be found in Sneddon and Lowengrub (1969) and Sih (1973), and an extensive collection of

solutions to crack problems have been given by Tada, Paris, and Irwin (2000).

Crack problems in elasticity introduce singularities and discontinuities with two important

and distinguishing characteristics. The first is involved with the unbounded nature of the

stresses at the crack tip, especially in the type of singularity of the field. The second feature

is that the displacements along the crack surface are commonly multivalued. For open cracks,

the crack surface will be stress free. However, some problems may have loadings that can

288 ADVANCED APPLICATIONS



produce crack closure leading to complicated interface conditions. In order to demonstrate the

basic complex variable application for such problems, we now consider a simple example of a

crack in an infinite plane under uniform tension loading.

EXAMPLE 10-8: Infinite Plane with a Central Crack

Consider the problem of an infinite plane containing a stress-free crack of length 2a lying
along the x-axis as shown in Figure 10-19. The plane is subjected to uniform tension S in
the y direction, and thus the problem has symmetries about the coordinate axes.

The solution to this problem follows the general procedures of the previous section

using the mapping function

z ¼ a

2
(z�1 þ z) (10:8:1)

Note this relation is somewhat different than our previous work in that it maps the

exterior problem in the z-plane onto the exterior of the unit circle in the z-plane.
Inverting this relation gives

z ¼ 1

a
zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p� �
(10:8:2)

where the positive sign for the radical term has been chosen because we are interested in

the exterior mapping. Using this result, we can eliminate z from expressions in our

previous work and express the potentials in terms of z

g(z) ¼ S

4
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
� z

� �
c(z) ¼ S

2
z� a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p

� � (10:8:3)

Continued
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FIGURE 10-19 Central crack in an infinite plane.
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EXAMPLE 10-8: Infinite Plane with a Central Crack–Cont’d

For this case the stress combinations become

sx þ sy ¼ S Re
zffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p þ �zzffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zz2 � a2
p � 1

� �

sy � sx þ 2itxy ¼ S
�zzffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p � �zzz2

(z2 � a2)3=2
þ za2

(z2 � a2)3=2
þ 1

� �

¼ Sa2
z� �zz

(z2 � a2)3=2
þ 1

a2

� � (10:8:4)

Fracture mechanics applications are normally interested in the solution near the

crack tip. In order to extract this information, consider the geometry of the

crack neighborhood as shown in Figure 10-20. For this case we define a polar coordin-

ate system centered on the crack tip at z ¼ a and wish to develop the crack-tip

solution for small values of r. In terms of the given geometry, we note that

z ¼ rbe
ib, z� a ¼ reiy, zþ a ¼ rae

ia, and r sin y ¼ ra sin a ¼ rb sin b.

r

aa

r
ra

x

 y

a b q
b

FIGURE 10-20 Crack geometry.

Using these new geometric variables, the stress combinations and displacements can

be written as

sx þ sy ¼ S
2rbffiffiffiffiffiffi
rra

p cos [b� yþ a
2

]� 1

� �

sy � sx þ 2itxy ¼ 2Sa2irb sin b

(rra)
3=2

cos [
3(yþ a)

2
]� i sin [

3(yþ a)
2

]

� �
þ S

(10:8:5)

Evaluating these relations for small r gives

sx þ sy ¼ 2Saffiffiffiffiffiffiffi
2ar

p cos
y
2

sy � sx þ 2itxy ¼ 2Saffiffiffiffiffiffiffi
2ar

p sin
y
2
cos

y
2

sin
3y
2
þ i cos

3y
2

� � (10:8:6)
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EXAMPLE 10-8: Cont’d

and solving for the individual stresses produces the following:

sx ¼ KIffiffiffiffiffiffiffiffi
2pr

p cos
y
2

1� sin
y
2
sin

3y
2

� �

sy ¼ KIffiffiffiffiffiffiffiffi
2pr

p cos
y
2

1þ sin
y
2
sin

3y
2

� �

txy ¼ KIffiffiffiffiffiffiffiffi
2pr

p sin
y
2
cos

y
2
cos

3y
2

(10:8:7)

where the parameter KI ¼ S
ffiffiffiffiffiffi
pa

p
and is referred to as the stress intensity factor. Using

relation (10.2.9), the corresponding crack-tip displacements can be expressed by

u ¼ KI

m

ffiffiffiffiffiffi
r

2p

r
cos

y
2

k� 1

2
þ sin2

y
2

� �

v ¼ KI

m

ffiffiffiffiffiffi
r

2p

r
sin

y
2

kþ 1

2
� cos2

y
2

� � (10:8:8)

As observed in Section 8.4.10, these results indicate that the crack-tip stresses have an

r�1=2 singularity, while the displacements behave as r1=2. The stress intensity factor KI is a

measure of the intensity of the stressfield near the crack tip under the openingmode (mode I)
deformation. Two additional shearing modes also exist for such crack problems, and the

crack-tip stress and displacement fields for these cases have the same r dependence but

different angular distributions (seeExercise 8-32). For the central crack problemconsidered

in this example, the stress intensity factor was proportional to
ffiffiffi
a

p
; however, for other crack

geometries, this factor will be related to problem geometry in a more complex fashion.

Comparing the vertical displacements on the top and bottom crack surfaces indicates

that v(r,p) ¼ �v(r,� p). This result illustrates the expected multivalued discontinuous

behavior on each side of the crack surface under opening mode deformation.

10.9 Westergaard Method for Crack Analysis

As mentioned, Westergaard (1937) developed a specialized complex variable technique to

handle a restricted class of plane problems. The method uses a single complex potential, and

thus the scheme is not a complete representation for all plane elasticity problems. Neverthe-

less, the technique has been extensively applied to many practical problems in fracture

mechanics dealing with the determination of stress fields around cracks. Sih (1966) and

Sanford (1979) have reexamined the Westergaard method and established appropriate modifi-

cations to extend the validity of the specialized technique.

In order to develop the procedure, consider again the central crack problem shown in

Figure 10-19. Because this is a symmetric problem, the shear stresses must vanish on y ¼ 0,

and thus from relation (10.2.11)

Im[�zzg00(z)þ c0(z)] ¼ 0 on y ¼ 0 (10:9:1)
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This result can be satisfied by taking

zg00(z)þ c0(z) ¼ A (10:9:2)

where we have used z ¼ �zz on y ¼ 0, and A is a real constant determined by the boundary

conditions. Equation (10.9.2) can be integrated to give the result

c(z) ¼ g(z)� zg0(z)þ Az (10:9:3)

where the constant of integration has been dropped. This provides a relation to express one

potential function in terms of the other, and thus we can eliminate one function for this class of

problem.

Using the stress combination definitions (10.2.11), we eliminate the c potential and find

sx ¼ 2 Re[g0(z)]� 2yIm[g00(z)]� A

sy ¼ 2 Re[g0(z)]þ 2yIm[g00(z)]þ A

txy ¼ �2y Re[g00(z)]
(10:9:4)

Defining the Westergaard stress function Z(z) ¼ 2g0(z), the stresses can now be written as

sx ¼ ReZ(z)� yImZ0(z)� A

sy ¼ ReZ(z)þ yImZ0(z)þ A

txy ¼ �y ReZ0(z)
(10:9:5)

Note that this scheme is sometimes referred to as the modified Westergaard stress function
formulation.

This method can be applied to the central crack problem of Example 10-8. For this case, the

Westergaard function is given by

Z(z) ¼ Szffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p � S

2
(10:9:6)

with A ¼ S=2. The stresses follow from equation (10.9.5) and would give identical values as

previously developed.

The Westergaard method can also be developed for skewsymmetric crack problems in

which the normal stress sy vanishes along y ¼ 0. Exercise 10-25 explores this formulation.
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Exercises

10-1. Derive the relations (10.1.4) and (10.2.5)

@

@x
¼ @

@z
þ @

@�zz
,

@

@y
¼ i

@

@z
� @

@�zz

� �
@

@z
¼ 1

2

@

@x
� i

@

@y

� �
,

@

@�zz
¼ 1

2

@

@x
þ i

@

@y

� �

r2() ¼ 4
@2()

@z@�zz
, r4() ¼ 16

@4()

@z2@�zz2

10-2. Formally integrate relation (10.2.6) and establish the result

f(z, �zz) ¼ 1

2
zg(z)þ �zzg(z)þ c(z)þ c(z)
	 


¼ Re �zzg(z)þ c(z)Þð

10-3. Starting with the Navier equations (10.2.2) for plane strain, introduce the complex

displacement U ¼ uþ iv, and show that

(lþ m)
@

@�zz

@U

@z
þ @U

@z

� �
þ 2m

@2U

@�zz@z
¼ 0

Integrate this result with respect to �zz to get

(lþ m)
@U

@z
þ @U

@z

� �
þ 2m

@U

@z
¼ f 0(z)

where f 0(z) is an arbitrary analytic function of z. Next, combining both the preceding

equation and its conjugate, solve for @U=@z, and simplify to get form (10.2.9).
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10-4. Establish the relations

@

@�zz
[2m(uþ iv)] ¼ �[zg00(z)þ c0(z)] ¼ m(ex � ey þ 2iexy)

where ex, ey, and exy, are the strain components.

10-5. Explicitly derive the fundamental stress combinations

sx þ sy ¼ 2[g0(z)þ g0(z)]
sy � sx þ 2itxy ¼ 2[�zzg00(z)þ c0(z)]

Next solve these relations for the individual stresses

sx ¼ 2 Re[g0(z)� 1

2
�zzg00(z)� 1

2
c0(z)]

sy ¼ 2 Re[g0(z)þ 1

2
�zzg00(z)þ 1

2
c0(z)]

txy ¼ Im[�zzg00(z)þ c0(z)]

10-6. Develop the polar coordinate transformation relations for the stress combinations and

complex displacements given in equations (10.2.12).

10-7. Determine the Cartesian stresses and displacements in a rectangular domain

(�a � x � a;� b � y � b) from the potentials g(z) ¼ Aiz2, c(z) ¼ �Aiz2 where A
is an arbitrary constant. Discuss the boundary values of these stresses, and show that

this particular case could be used to solve a pure bending problem.

10-8. Determine the polar coordinate stresses corresponding to the complex potentials

g(z) ¼ Az and c(z) ¼ Bz�1 where A and B are arbitrary constants. Show that these

potentials could solve the plane problem of a cylinder with both internal and external

pressure loadings.

10-9. Show that the potentials g(z) ¼ 0, c (z) ¼ A/z will solve the problem of a circular hole

of radius a with uniform pressure loading p in an infinite elastic plane. Determine the

constant A and the stress and displacement fields for r � a.

10-10. Consider the problem geometry described in Exercise 10-9. Show that the suggested

potentials (with different A) can also be used to solve the problem of a rigid inclusion

of radius aþ d, which is forced into the hole of radius a. Determine the new constant A
and the stress and displacement fields for r � a.

10-11. From Section 10.4, the complex potentials

g(z) ¼ � X þ iY

2p(1þ k)
log z, c(z) ¼ k(X � iY)

2p(1þ k)
log z

would be the appropriate forms for a problem in which the body contains a hole

surrounding the origin (i.e., multiply connected). Show for this case that the complex

displacement U is unbounded as jzj ! 0 and jzj ! 1. Also explicitly verify that the

resultant force across any contour surrounding the origin is X þ iY. Finally, determine

the stress distribution on the circle r ¼ a.
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10-12. Show that the resultant moment caused by tractions on a boundary contour AB is given

by relation (10.3.2)

M ¼ Re[w(z)� zc(z)� z�zzg0(z)]BA, where w0(z) ¼ c(z)

10-13. An infinite elastic medium jzj � a is bonded over its internal boundary jzj ¼ a to a

rigid inclusion of radius a. The inclusion is acted upon by a force X þ iY and a moment
M about its center. Show that the problem is solved by the potentials

g(z) ¼ � X þ iY

2p(1þ k)
log z

c(z) ¼ X � iY

2p(1þ k)
k log zþ X þ iY

2p(1þ k)
a2

z2
þ iM

2pz

Finally, show that the rigid-body motion of the inclusion is given by

uo ¼ �kX log a

2pm(1þ k)
, v0 ¼ �kY log a

2pm(1þ k)
, yo ¼ M

4pma2

10-14. An infinite isotropic sheet contains a perfectly bonded, rigid inclusion of radius a and

is under uniform tension T in the x-direction as shown. Show that this problem is

solved by the following potentials

g(z) ¼ T

4
z� 2a2

kz

� �
, c(z) ¼ �T

2
z� k� 1

2z
a2 þ a4

kz3

� �

Note that because of the problem symmetry, the inclusion will not move. In solving

this problem, you should verify boundary conditions on r ¼ a and at r ! 1,

and the appropriateness of the potential forms as per Section 10.4.

x

y

TT

Inclusion

10-15. Consider the unit disk problem with displacement boundary conditions
ur þ iuy ¼ h(z) on C: z ¼ eiy. Using Cauchy integral methods described in

Section 10.5, determine the form of the potentials g(z) and c(z).

10-16. For Example 10-3 with a ¼ 0, verify that the stresses from equation (10.5.18) reduce

to those previously given in (8.4.69).

10-17. Consider the concentrated force system problem shown in Figure 10-11. Verify for the

special case of X ¼ P and Y ¼ M ¼ 0 that the stress field reduces to relations (10.6.5).

Also determine the corresponding stresses in polar coordinates.
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10-18. For the stress concentration problem shown in Figure 10-14, solve the problem with

the following far-field loadings s1x ¼ s1y ¼ S, t1xy ¼ 0, and compute the stress

concentration factor. Verify your solution with that given in (8.4.9) and (8.4.10).

10-19. Verify the mappings shown in Figure 10-16 by explicitly investigating points on the

boundaries and the point at infinity in the z-plane.

10-20*. Consider relation (10.7.14) for the circumferential stress sj on the boundary of the

elliptical hole shown in Figure 10-17. Explicitly verify that the maximum stress

occurs at j ¼ p=2. Next plot the distribution of sj vs: j for the cases of

m ¼ 0, � 0:5, � 1.

10-21*. Consider the problem of an infinite plate containing a stress-free elliptical hole with

s1x ¼ s1y ¼ 0, t1xy ¼ S. For this problem, the derivative of the complex potential has

been developed by Milne-Thomson (1960)

dg(z)
dz

¼ iS

m� z2

Show that the stress on the boundary of the hole is given by

sj ¼ � 4S sin 2j
m2 � 2m cos 2jþ 1

Determine and plot sj vs: j for the cases m ¼ 0, 0:5, and 1. Identify maximum

stress values and locations.

10-22. Verify the crack-tip stress distributions given by (10.8.6) and (10.8.7).

10-23. Verify that the crack-tip displacements are given by (10.8.8).

10-24. Show that the Westergaard stress function

Z(z) ¼ Szffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z2 � a2)

p � S

2

with A ¼ S=2 solves the central crack problem shown in Figure 10-19.

10-25. Following similar procedures as in Section 10.9, establish a Westergaard stress

function method for skewsymmetric crack problems. For this case, assume that

loadings are applied skewsymmetrically with respect to the crack, thereby

establishing that the normal stress sy vanishes along y ¼ 0. Show that this leads to

the following relations

sx ¼ 2ReZ(z)� yImZ0(z)
sy ¼ yImZ0(z)
txy ¼ �ImZ(z)� yReZ0(z)� B

where Z(z) ¼ 2g0(z) and B is a real constant.
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11 Anisotropic Elasticity

It has long been recognized that deformation behavior of many materials depends upon

orientation; that is, the stress-strain response of a sample taken from the material in one

direction will be different if the sample were taken in a different direction. The term

anisotropic is generally used to describe such behaviors. Early investigators of these phe-

nomena were motivated by the response of naturally occurring anisotropic materials such as

wood and crystalline solids. Today, extensive use of engineered composites (see Jones 1998

or Swanson 1997) has brought forward many new types of fiber-and particle-reinforced

materials with anisotropic response. Thus, knowledge of stress distributions in anisotropic

materials is very important for proper use of these new high-performance materials in

structural applications. Our previous development of the linear elastic stress-strain relations

in Section 4.2 began with the general case of inhomogeneous and anisotropic behavior.

However, this generality was quickly eliminated, and only the homogeneous isotropic

case was subsequently developed in detail. We now wish to go back and further investigate

the anisotropic homogeneous case and develop applications for particular elasticity problems

including torsion and plane problems. Much of the original work in this field was done by

Lekhnitskii (1968, 1981), while Love (1934) and Hearmon (1961) also made early contribu-

tions. More recently, texts by Ting (1996a) and Rand and Rovenski (2005) provide modern

and comprehensive accounts on this subject.

11.1 Basic Concepts

The directional-dependent behaviors found in anisotropic solids normally result from par-

ticular microstructural features within the material. Our previous isotropic model neglected

these effects, thus resulting in a material that behaved the same in all directions. Micro

features commonly arise in natural and synthetic materials in such a way as to produce a

stress-strain response with particular symmetries. This concept is based on the Neumann
principle (Love 1934) that symmetry in material microgeometry corresponds to identical
symmetry in the constitutive response. We can qualitatively gain an understanding of this

concept from some simple two-dimensional cases shown in Figure 11-1. The figure illustrates

idealized internal microstructures of two crystalline solids and one fiber composite. The two
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crystalline materials correspond to special atomic packing arrangements that lead to identical

behaviors in the indicated directions of the arrows. The fiber-reinforced composite has a 908
fiber layout, which again produces identical behaviors in the layout directions. Many other

deformation symmetries exist for more complicated microstructures, and some follow a

curvilinear reference system such as that found in wood. These symmetries generally lead

to a reduction in the complexity of the stress-strain constitutive relation, and examples of this

are shown in the next section. On a related topic, for multiphase or porous materials, many

researchers (e.g., Cowin, 1985) have been trying to establish relationships between the

elasticity tensor Cijkl and a fabric tensor that characterizes the arrangement of microstructural

material components.

From Section 4.2, the general form of Hooke’s law was given by

sij ¼ Cijklekl (11:1:1)

The fourth-order elasticity tensor Cijkl contains all of the elastic stiffness moduli, and we have

previously established the following symmetry properties:

Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij (11:1:2)

The first two symmetries in relation (11.1.2) come from the symmetry of the stress and strain

tensors, while the final relation comes from arguments based on the existence of the strain

energy function (see Section 6.1). Relations (11.1.2) reduce the original 81 independent elastic

constants within Cijkl to a set of 21 elastic moduli for the general case. We shall assume that the

material is homogeneous and thus the moduli are independent of spatial position. On occasion

we may wish to invert (11.1.1) and write strain in terms of stress

eij ¼ Sijklskl (11:1:3)

where Sijkl is the elastic compliance tensor, which has identical symmetry properties as those in

relations (11.1.2).

Because of the various preexisting symmetries, stress-strain relations (11.1.1) and (11.1.3)

contain many superfluous terms and equations. To avoid these, a convenient contracted

notation has been developed, sometimes referred to as Voigt matrix notation.

Simple Cubic Crystal Fiber Reinforced CompositeHexagonal Crystal

(Arrows indicate material symmetry directions)

FIGURE 11-1 Material microstructures.
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sx
sy
sz
tyz
tzx
txy

2
6666664

3
7777775
¼

C11 C12 � � � C16

C21 � � � � �
� � � � � �
� � � � � �
� � � � � �

C61 � � � � C66

2
6666664

3
7777775

ex
ey
ez
2eyz
2ezx
2exy

2
6666664

3
7777775

(11:1:4)

or in compact notation

si ¼ Cijej (11:1:5)

where si and ei are defined by comparing relations (11.1.4) and (11.1.5). Note that the

symmetry imposed by strain energy implies that the 6� 6 C matrix is symmetric; that is,

Cij ¼ Cji, and thus only 21 independent elastic constants exist. The two elasticity stiffness

tensors are related by the expression

Cij ¼

C1111 C1122 C1133 C1123 C1131 C1112

� C2222 C2233 C2223 C2231 C2212

� � C3333 C3323 C3331 C3312

� � � C2323 C2331 C2312

� � � � C3131 C3112

� � � � � C1212

2
6666664

3
7777775

(11:1:6)

A similar scheme can be established for relation (11.1.3), and a compliance matrix Sij can be

defined by

ei ¼ Sijsj (11:1:7)

11.2 Material Symmetry

From the previous section, we determined that for the general anisotropic case (sometimes

referred to as triclinic material), 21 independent elastic constants are needed to characterize

the material response. However, as per our discussion related to Figure 11-1, most real

materials have some types of symmetry, which further reduces the required number of

independent elastic moduli. Orientations for which an anisotropic material has the same

stress-strain response can be determined by coordinate transformation (rotation) theory previ-

ously developed in Sections 1.4 and 1.5. Such particular transformations are sometimes called

the material symmetry group. Further details on this topic have been presented by Zheng and

Spencer (1993) and Cowin and Mehrabadi (1995). In order to determine various material

symmetries, it is more convenient to work in the noncontracted form. Thus, applying this

theory, Hooke’s law (11.1.1) can be expressed in a new coordinate system as

s0ij ¼ C0
ijkle

0
kl (11:2:1)

Now because the stress and strain must transform as second-order tensors,

s0ij ¼ QikQjlskl, sij ¼ QkiQljs0kl
e0ij ¼ QikQjlekl, eij ¼ QkiQlje

0
kl

(11:2:2)
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Combining equations (11.2.1) and (11.2.2) and using the orthogonality conditions (1.4.9) and

(1.4.10) yields the transformation law for the elasticity tensor

C0
ijkl ¼ QimQjnQkpQlqCmnpq (11:2:3)

If under a specific transformation Q the material response is to be the same, relation (11.2.3)

reduces to

Cijkl ¼ QimQjnQkpQlqCmnpq (11:2:4)

This material symmetry relation will provide a system of equations that allows reduction in the

number of independent elastic moduli. We now consider some specific cases of practical

interest.

11.2.1 Plane of Symmetry (Monoclinic Material)
We first investigate the case of a material with a plane of symmetry. Such a medium is

commonly referred to as a monoclinic material. We consider the case of symmetry with

respect to the x,y-plane as shown in Figure 11-2.

For this particular symmetry, the required transformation is simply a mirror reflection about

the x,y-plane and is given by

Qij ¼
1 0 0

0 1 0

0 0 �1

2
4

3
5 (11:2:5)

Note that this transformation is not a simple rotation that preserves the right-handedness of the

coordinate system; that is, it is not a proper orthogonal transformation. Nevertheless, it can be

used for our symmetry investigations. Using this specific transformation in relation (11.2.4)

gives Cijkl ¼ �Cijkl if the index 3 appears an odd number of times, and thus these particular

moduli would have to vanish. In terms of the contracted notation, this gives

x

y

z

Plane of Symmetry

FIGURE 11-2 Plane of symmetry for a monoclinic material.
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Ci4 ¼ Ci5 ¼ C46 ¼ C56 ¼ 0, (i ¼ 1, 2, 3) (11:2:6)

Thus, the elasticity matrix takes the form

Cij ¼

C11 C12 C13 0 0 C16

� C22 C23 0 0 C26

� � C33 0 0 C36

� � � C44 C45 0

� � � � C55 0

� � � � � C66

2
6666664

3
7777775

(11:2:7)

It is therefore observed that 13 independent elastic moduli are needed to characterize mono-

clinic materials.

11.2.2 Three Perpendicular Planes of Symmetry (Orthotropic Material)
A material with three mutually perpendicular planes of symmetry is called orthotropic.
Common examples of such materials include wood and fiber-reinforced composites.

To investigate the material symmetries for this case, it is convenient to let the symmetry

planes correspond to coordinate planes as shown in Figure 11-3.

The symmetry relations can be determined by using 1808 rotations about each of the coordin-
ate axes. Another convenient scheme is to start with the reduced form from the previous

monoclinic case, and reapply the same transformation with respect to, say, the y,z-plane. This
results in the additional elastic moduli being reduced to zero:

C16 ¼ C26 ¼ C36 ¼ C45 ¼ 0 (11:2:8)

Thus, the elasticity matrix for the orthotropic case reduces to having only nine independent
stiffnesses given by

Planes of Symmetry
x

y

z

FIGURE 11-3 Three planes of symmetry for an orthotropic material.
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Cij ¼

C11 C12 C13 0 0 0

� C22 C23 0 0 0

� � C33 0 0 0

� � � C44 0 0

� � � � C55 0

� � � � � C66

2
6666664

3
7777775

(11:2:9)

It should be noted that only two transformations were needed to develop the final reduced

constitutive form (11.2.9). The material also must satisfy a third required transformation

that the properties would be the same under a reflection of the x,z-plane. However, attempting

this transformation would only give relations that are identically satisfied. Thus, for

some materials the reduced constitutive form may be developed by using only a portion of

the total material symmetries (see Ting 1996a for more on this topic). On another issue for

orthotropic materials, vanishing shear strains imply vanishing shear stresses, and thus the

principal axes of stress coincide with the principal axes of strain. This result is of course not

true for general anisotropic materials; see, for example, the monoclinic constitutive form

(11.2.7).

For orthotropic materials, the compliance matrix has similar form but is commonly written

using notation related to isotropic theory:

Sij ¼

1

E1

� �21
E2

� �31
E3

0 0 0

� �12
E1

1

E2

� �32
E3

0 0 0

� �13
E1

� �23
E2

1

E3

0 0 0

� � � 1

m23
0 0

� � � � 1

m31
0

� � � � � 1

m12

2
666666666666666664

3
777777777777777775

(11:2:10)

where Ei are Young’s moduli in the three directions of material symmetry, �ij are the Poisson’s
ratios defined by �ej=ei for a stress in the i direction, and mij are the shear moduli in the

i, j-planes. Symmetry of this matrix requires that �ij=Ei ¼ �ji=Ej.

11.2.3 Axis of Symmetry (Transversely Isotropic Material)
Another common form of material symmetry is with respect to rotations about an axis. This

concept can be specified by stating that a material possess an axis of symmetry of order n when
the elastic moduli remain unchanged for rotations of 2p=n radians about the axis. This situation
is shown schematically in Figure 11-4. The hexagonal packing crystalline case shown in

Figure 11-1 has such a symmetry about the axis perpendicular to the page for n ¼ 6

(608 increments). It can be shown (Lekhnitskii 1981) that the only possible symmetries for

this case are for orders 2, 3, 4, 6, and infinity. The order 2 case is equivalent to a plane of

symmetry previously discussed, and order 6 is equivalent to the infinite case.

The transformation for arbitrary rotations y about the z-axis is given by
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Qij ¼
cos y sin y 0

� sin y cos y 0

0 0 1

2
4

3
5 (11:2:11)

Using this transformation and invoking symmetry for arbitrary rotations corresponds to the

case of n ! 1, and such materials are called transversely isotropic. The elasticity stiffness

matrix for this case reduces to

Cij ¼

C11 C12 C13 0 0 0

� C11 C13 0 0 0

� � C33 0 0 0

� � � C44 0 0

� � � � C44 0

� � � � � (C11 � C12)=2

2
6666664

3
7777775

(11:2:12)

Thus, for transversely isotropic materials, only five independent elastic constants exist.

11.2.4 Complete Symmetry (Isotropic Material)
For the case of complete symmetry, the material is referred to as isotropic, and the fourth-order
elasticity tensor has been previously given by

Cijkl ¼ ldijdkl þ m(dikdjl þ dildjk) (11:2:13)

This form can be determined by invoking symmetry with respect to two orthogonal axes,

which implies symmetry about the remaining axis. In contracted matrix form, this result would

be expressed

Axis of Symmetry

x

y

z

FIGURE 11-4 Axis of symmetry for a transversely isotropic material.
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Cij ¼

lþ 2m l l 0 0 0

� lþ 2m l 0 0 0

� � lþ 2m 0 0 0

� � � m 0 0

� � � � m 0

� � � � � m

2
6666664

3
7777775

(11:2:14)

Thus, as shown previously, only two independent elastic constants exist for isotropic

materials. For each case presented, a similar compliance elasticity matrix could be developed.

Our brief presentation does not include all cases ofmaterial symmetry. Based on symmetry planes,

Ting (2003) has proven that there are only eight symmetries for linear anisotropic elastic materials

for the general case. Of course, a large variety of curvilinear material symmetries also exist in

various biological and synthetic materials and these will be discussed further in Section 11.7.

EXAMPLE 11-1: Hydrostatic Compression
of a Monoclinic Cube

In order to demonstrate the difference in behavior between isotropic and anisotropic

materials, consider a simple example of a cube of monoclinic material under hydrostatic

compression. For this case, the state of stress is given by sij ¼ �pdij, and the mono-

clinic Hooke’s law in compliance form would read as follows:

ex
ey
ez
2eyz
2ezx
2exy

2
6666664

3
7777775
¼

S11 S12 S13 0 0 S16
� S22 S23 0 0 S26
� � S33 0 0 S36
� � � S44 S45 0

� � � � S55 0

� � � � � S66

2
6666664

3
7777775

�p
�p
�p
0

0

0

2
6666664

3
7777775

(11:2:15)

Expanding this matrix relation gives the following deformation field components:

ex ¼ �(S11 þ S12 þ S13)p

ey ¼ �(S12 þ S22 þ S23)p

ez ¼ �(S13 þ S23 þ S33)p

eyz ¼ 0

ezx ¼ 0

exy ¼ � 1

2
(S16 þ S26 þ S36)p

(11:2:16)

The corresponding strains for the isotropic case would be given by ex ¼ ey ¼ ez ¼
�[(1�2�)=E]p, eyz ¼ ezx ¼ exy ¼ 0. Thus, the response of the monoclinic material is

considerably different from isotropic behavior and yields a nonzero shear strain even

under uniform hydrostatic stress. Additional examples using simple shear and/or bend-

ing deformations can also be used to demonstrate the complexity of anisotropic stress-

strain behavior (see Sendeckyj 1975). It should be apparent that laboratory testing

methods attempting to characterize anisotropic materials would have to be more

involved than those used for isotropic solids.
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11.3 Restrictions on Elastic Moduli

Several general restrictions exist on particular combinations of elastic moduli for anisotropic

material classes previously discussed. These restrictions follow from arguments based on

rotational invariance and the positive definiteness of the strain energy function.

Consider first the idea of rotational invariance. This concept has already been discussed in

Section 1.6, where it was shown that for all 3� 3 symmetric matrices or tensors there exist

three invariants given by relations (1.6.3). This general concept may be applied to symmetric

square matrices of any order including the general elasticity matrix Cij. One scheme to

generate such invariant relationships is to employ the rotational transformation (11.2.11)

about the z-axis. Using this transformation, we can show that

C0
44 ¼ C44 cos

2 y� 2C45 sin y cos yþ C55 sin
2 y

C0
55 ¼ C44 sin

2 yþ 2C45 sin y cos yþ C55 cos
2 y

Adding these individual equations together gives the simple result

C0
44 þ C0

55 ¼ C44 þ C55

and thus this sum must be an invariant with respect to such rotations. Other invariants can also
be found using this type of rotational transformation scheme, and the results include the

following invariant forms:

C11 þ C22 þ 2C12

C66 � C12

C44 þ C55

C13 þ C23

C2
34 þ C2

35

C11 þ C22 þ C33 þ 2(C12 þ C23 þ C13)

(11:3:1)

Next consider modulus restrictions based on strain energy concepts. In terms of the

contracted notation, the strain energy function can be written as

U ¼ 1

2
sijeij ¼ 1

2
Cijeiej ¼ 1

2
Sijsisj (11:3:2)

Now the strain energy is always positive definite, U � 0 with equality only if the stresses or

strains vanish. This result implies that both the Cij and Sij must be positive definite symmetric
matrices. From matrix theory (see, for example, Ting 1996a,b), it can be shown that for such a

case all eigenvalues and principal minors of Cij and Sij must be positive and nonzero. Recall

that a principal minor pi of a square matrix is the determinant of the submatrix created by

deleting the ith row and column. For the general case, this concept will yield six rather lengthy

relations; however, one simple result from this is that all diagonal elements of each matrix are

positive.
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For an orthotropic material, these results would yield

C11C22 > C2
12, C22C33 > C2

23, C33C11 > C2
13

C11C22C33 þ 2C12C23C31 > C11C
2
23 þ C22C

2
13 þ C33C

2
12

(11:3:3)

while for a transversely isotropic material we get

C2
11 > C2

12, C33(C11 þ C12) > 2C2
13, C11C33 > C2

13 (11:3:4)

and the isotropic case reduces to

lþ 2

3
m > 0, m > 0 (11:3:5)

Note that for the isotropic case, relations (6.3.11) from Section 6.3 give the same results as

(11.3.5). Typical values of elastic moduli for some planar orthotropic composite materials are

given in Table 11-1. These values represent average properties, and in some cases considerable

variation may occur depending on the type and percentage of fibers and/or resin used in the

composite mix.

11.4 Torsion of a Solid Possessing a Plane
of Material Symmetry

As our first example, consider the torsion of a prismatic bar of arbitrary cross-section, as shown

in Figure 11-5. The isotropic problem was investigated in Chapter 9, and we now wish to

formulate and develop solutions to the problem where the bar material is anisotropic with a

plane of material symmetry normal to the bar axis (z-axis). For this case, the x,y-plane is the

symmetry plane (similar to Figure 11-2), and the elasticity matrix takes the reduced form for a

monoclinic material as given by equation (11.2.7).

Following the usual procedure for torsion problems, boundary conditions are formulated on

the lateral surface S and on the end sections R. Conditions on the lateral surfaces of the bar are

to be stress free, and these traction conditions are expressed as

sxnx þ txyny ¼ 0

txynx þ syny ¼ 0

txznx þ tyzny ¼ 0

(11:4:1)

TABLE 11-1 Typical Elastic Moduli for Some Planar Orthotropic
Composite Materials

Material E1(GPa) E2(GPa) �12 m12(GPa)

S-Glass/Epoxy 50 17 0.27 7

Boron/Epoxy 205 20 0.23 6.5

Carbon/Epoxy 205 10 0.26 6

Kevlar49/Epoxy 76 5.5 0.34 2.2

Note: Direction 1 corresponds to fiber layout axis.
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where nx and ny are the components of the unit normal vector to surface S. The loadings on

the end sections (or any bar cross-section R) reduce to a single resultant moment T about the

z-axis, and this is formulated as

ð
R

szdA ¼
ð
R

txzdA ¼
ð
R

tyzdA ¼ 0

ð
R

xszdA ¼
ð
R

yszdA ¼ 0

ð
R

(xtyz � ytxz)dA ¼ T

(11:4:2)

11.4.1 Stress Formulation
Following our previous approach in Chapter 9, we seek the torsion solution using the Saint-
Venant semi-inverse method. Based on the boundary conditions (11.4.1), we assume as before

that sx ¼ sy ¼ txy ¼ 0. Using the equilibrium equations, we find that txz and tyz are independ-
ent of z, and the remaining z equation reduces to

@txz
@x

þ @tyz
@y

¼ 0 (11:4:3)

Next we employ the strain compatibility equations and substitute in for the strains using the

appropriate form of Hooke’s law ei ¼ Sijsj coming from (11.2.7). For the anisotropic problem,

this yields a new form of compatibility in terms of stress given by

x

y

z

S

R

T

Plane of Symmetry

FIGURE 11-5 Torsion of an anisotropic bar.
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@2sz
@x2

¼ @2sz
@y2

¼ @2sz
@z2

¼ @2sz
@x@y

¼ 0

@

@x
� @

@x
(S44tyz þ S45txz)þ @

@y
(S54tyz þ S55txz)þ S63sz

� �
¼ 2S13

@2sz
@y@z

@

@y
� @

@y
(S54tyz þ S55txz)þ @

@x
(S44tyz þ S45txz)þ S63sz

� �
¼ 2S23

@2sz
@x@z

(11:4:4)

As found in Chapter 9, the first line of (11.4.4) can be integrated, giving the result

sz ¼ C1xþ C2yþ C3zþ C4xzþ C5yzþ C6 (11:4:5)

However, using this result in boundary conditions (11.4.2) gives Ci ¼ 0, and thus sz must

vanish. This result simplifies the remaining compatibility relations in (11.4.4), and these may

be integrated to give the single equation

� @

@x
(S44tyz þ S45txz)þ @

@y
(S54tyz þ S55txz) ¼ C (11:4:6)

where C is an arbitrary constant of integration. Using Hooke’s law and strain-displacement and

rotation relations, it can be shown that the constant is given by the simple result

C ¼ �2a (11:4:7)

where a is the angle of twist per unit length of the bar.

The stress formulation to this problem is then given by equations (11.4.3) and (11.4.6), and

the solution to this system is conveniently found by employing a stress function approach

similar to the Prandtl stress function formulation given in Section 9.3 for the isotropic case.

Following the usual approach, we seek a solution form that identically satisfies equilibrium,

txz ¼ a
@c
@y

, tyz ¼ �a
@c
@x

(11:4:8)

where c is the stress function for our anisotropic problem. With equilibrium satisfied identi-

cally, the compatibility relation (11.4.6) yields the governing equation for the stress function

S44
@2c
@x2

� 2S45
@2c
@x@y

þ S55
@2c
@y2

¼ �2 (11:4:9)

The remaining boundary condition on the lateral surface (11:4:1)3 becomes

@c
@y

nx � @c
@x

ny ¼ 0 (11:4:10)

From our previous investigation in Section 9.3, the components of the normal vector can be

expressed in terms of derivatives of the boundary arc length measure (see Equation (9.3.11)),

and this allows (11.4.10) to be written as
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@c
@x

dx

ds
þ @c

@y

dy

ds
¼ @c

@s
¼ 0 (11:4:11)

Thus, it follows as before that the stress function c(x, y) is a constant on the boundary. For
solid cross-sections, this constant can be set to zero without loss of generality. However, for

hollow bars with sections containing internal cavities (see Figure 9-4), the constant can still be

selected as zero on the outer boundary, but it will take on different constant values on each of

the internal boundaries. More details on this are given later in the discussion.

Following similar steps as in Section 9.3, the resultant moment boundary condition on the

ends can be expressed as

T ¼
ð
R

(xtyz � ytxz)dA ¼ �a
ð
R

x
@c
@x

þ y
@c
@y

� �
dA

¼ 2a
ð
R

cdA� a
ð
A

@(xc)
@x

þ @(yc)
@y

� �
dA

¼ 2a
ð
R

cdAþ 2a
XN
k¼1

ckAk

(11:4:12)

where ck is the constant value of the stress function on internal contour Ck enclosing area Ak. If

the section is simply connected (no holes), then the summation term in relation (11.4.12) is

dropped. One can show that all other boundary conditions are now satisfied using the assumed

stress field, and thus the problem formulation in terms of the stress function is now complete.

11.4.2 Displacement Formulation
Next consider the displacement formulation of the anisotropic torsion problem. Again, following

similar arguments as given in Section 9.3, we assume a displacement field with one unknown

component of the form

u ¼ �ayz, v ¼ axz, w ¼ w(x, y) (11:4:13)

where a is the angle of twist per unit length and w is the warping displacement.
This displacement field gives the following strain components:

ex ¼ ey ¼ ez ¼ exy ¼ 0

exz ¼ 1

2

@w

@x
� ay

� �
, eyz ¼ 1

2

@w

@y
þ ax

� �
(11:4:14)

and using Hooke’s law, the stresses become

sx ¼ sy ¼ sz ¼ txy ¼ 0

txz ¼ C55

@w

@x
� ay

� �
þ C45

@w

@y
þ ax

� �

tyz ¼ C45

@w

@x
� ay

� �
þ C44

@w

@y
þ ax

� � (11:4:15)
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Substituting these stresses into the equilibrium equations yields the following governing

equation for the warping displacement

C55

@2w

@x2
þ 2C45

@2w

@x@y
þ C44

@2w

@y2
¼ 0 (11:4:16)

For this formulation, the boundary conditions on the lateral surface give the result

C55

@w

@x
� ay

� �
þ C45

@w

@y
þ ax

� �� �
nx

þ C45

@w

@x
� ay

� �
þ C44

@w

@y
þ ax

� �� �
ny ¼ 0

(11:4:17)

and the moment condition on the ends is given by

T ¼ a
ð
R

C44x
2 þ C55y

2 � 2C45xyþ C44x
@w

@y

�

� C55y
@w

@x
þ C45 x

@w

@x
� y

@w

@y

� ��
dA

(11:4:18)

Note that all other boundary conditions in set (11.4.1) and (11.4.2) are satisfied.

Comparison of the stress and displacement formulations for the anisotropic torsion problem

results in similar conclusions found for the isotropic case in Chapter 9. The stress function is

governed by a slightly more complicated nonhomogeneous differential equation but with a

simpler boundary condition. This fact commonly favors using the stress function approach for

problem solution.

11.4.3 General Solution to the Governing Equation
The governing equation for both the stress and displacement formulations of the torsion

problem can be written as

auxx þ 2buxy þ cuyy ¼ d (11:4:19)

where the constants a, b, and c are related to appropriate elastic moduli, and d is either zero

or �2, depending on the formulation. Of course, for the nonhomogeneous case, the general

solution is the sum of the particular plus homogeneous solutions.

To investigate the general solution to (11.4.19) for the homogeneous case, consider

solutions of the form u(x, y) ¼ f (xþ ly), where l is a parameter. Using this form in

(11.4.19) gives

(aþ 2blþ cl2)f 00 ¼ 0

Since f 00 cannot be zero, the term in parentheses must vanish, giving the characteristic
equation

cl2 þ 2blþ a ¼ 0 (11:4:20)
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Solving the quadratic characteristic equation gives roots

l1, 2 ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ac

p

c
(11:4:21)

Using these roots, the original differential equation (11.4.19) can be written in operator form as

D1D2 u(x, y) ¼ 0

where Dk ¼ @

@y
� lk

@

@x
(11:4:22)

It is apparent that the characteristic equation (11.4.20) has complex conjugate roots
whenever b2 < ac. As per our discussion in Section 11.3, elastic moduli for materials possess-

ing a strain energy function must satisfy relations C44C55 > C2
45 and S44S55 > S245, and this

implies that all roots to (11.4.20) will be complex conjugate pairs of the form l1 ¼ l and

l2 ¼ l. The general solution to (11.4.22) then becomes

u(x, y) ¼ f1(xþ ly)þ f2(xþ ly) (11:4:23)

where f1 and f2 are arbitrary functions to be determined.

Because u(x,y) must be real, f1 and f2 must be complex conjugates of each other, and so

(11.4.23) can be written in the simplified form

u(x, y) ¼ 2Re[ f1(xþ ly)] (11:4:24)

Because l is a complex number, we can introduce the complex variable z* ¼ xþ ly, and the

previous solution form can be written as

u(x, y) ¼ 2Re[ f (z*)] (11:4:25)

This formulation then allows the method of complex variables to be applied to the solution of the

torsion problem. As discussed in the previous chapter, this method is very powerful and can

solve many problems, which are intractable by other schemes. We will not, however, pursue the

formal use of this method for our limited discussion of the anisotropic torsion problem.

These results then provide the general solution for the homogeneous case. To complete our

discussion we need the particular solution to (11.4.19). Using the structure of the equation, a

simple particular solution is given by

up(x, y) ¼ d(x2 þ y2)

2(aþ c)
(11:4:26)

EXAMPLE 11-2: Torsion of an Elliptical Orthotropic Bar

Consider the torsion of a bar with elliptical cross-section as shown in Figure 9-7. Recall

that this problem was previously solved for the isotropic case in Example 9-1. Here, we

wish to solve the problem for the case of an orthotropic material. For convenience, the

coordinate system is taken to coincidewith thematerial symmetry axes, and this will yield

the reduced stiffness matrix given in relation (11.2.9). Note that for this case

Continued
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EXAMPLE 11-2: Torsion of an Elliptical Orthotropic Bar–Cont’d

C45 ¼ S45 ¼ 0. Because of the simple section geometry and the expected correspondence

with the isotropic case, the solution method will not employ the general scheme previously

discussed. Rather, we will use the boundary equation method presented in Section 9.4.

Consider first the solution using the stress function formulation. Using the scheme

for the isotropic case, we choose a stress function form that will vanish on the boundary

of the elliptical cross-section

c ¼ K
x2

a2
þ y2

b2
� 1

� �

where the constant K is to be determined. Substituting this form into the governing

equation (11.4.9) determines the value of K and gives the final solution

c ¼ a2b2 � b2x2 � a2y2

S55a2 þ S44b2
(11:4:27)

The stresses then follow from relations (11.4.8)

txz ¼ � 2aa2y
S55a2 þ S44b2

txz ¼ 2ab2x
S55a2 þ S44b2

(11:4:28)

which reduce to equations (9.4.8) for the isotropic case with S44 ¼ S55 ¼ 1=m. The load-
carrying torque may be determined from result (11.4.12)

T ¼ apa3b3

S55a2 þ S44b2
(11:4:29)

The warping displacement again follows from integrating relations (11:4:15)2,3, giving
the result

w(x, y) ¼ b2C55 � a2C44

a2C44 þ b2C55

xy (11:4:30)

which again reduces appropriately to the isotropic case given by (9.4.11). With the

warping displacement determined, the twisting moment can also be calculated from

relation (11.4.18).

11.5 Plane Deformation Problems

We now wish to investigate the solution of two-dimensional problems of an anisotropic elastic

solid. The material is chosen to have a plane of material symmetry that coincides with the plane

of reference for the deformation field. Plane problems were first discussed in Chapter 7, and this

leads to the formulation of two theories: plane strain and plane stress. The assumed displace-

ment field for plane strain was given in Section 7.1, and the corresponding assumptions on

the stress field for plane stress were specified in Section 7.2. These general assumptions still
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apply for this case with a plane of material symmetry, and each theory produces similar

governing equations for anisotropic materials. Ultimately, a complex variable formulation

similar to that of Chapter 10 will be established. Further details on this formulation can be

found in Milne-Thomson (1960), Lekhnitskii (1981), and Sendeckyj (1975). We begin with the

case of plane stress in the x,y-plane. For this case, the elasticity stiffness matrix is given by

relation (11.2.7) and a similar form would exist for the compliance matrix. Under the usual

plane stress (or generalized plane stress) assumptions sz ¼ txz ¼ tyz ¼ 0, and Hooke’s law

would then read

ex ¼ S11sx þ S12sy þ S16txy
ey ¼ S12sx þ S22sy þ S26txy

2exy ¼ S16sx þ S26sy þ S66txy

(11:5:1)

For plane strain, the usual assumptions give ez ¼ exz ¼ eyz ¼ 0, and Hooke’s law in terms of

the stiffness matrix would read

ex ¼ B11sx þ B12sy þ B16txy
ey ¼ B12sx þ B22sy þ B26txy

2exy ¼ B16sx þ B26sy þ B66txy

(11:5:2)

where the constants Bij may be expressed in terms of the compliances Sij by the relations

B11 ¼ S11S33 � S213
S33

, B12 ¼ S12S33 � S13S23
S33

B22 ¼ S22S33 � S223
S33

, B16 ¼ S16S33 � S13S36
S33

B66 ¼ S66S33 � S236
S33

, B26 ¼ S26S33 � S23S36
S33

(11:5:3)

Comparing stress-strain relations (11.5.1) and (11.5.2), it is observed that they are of the same

form, and a simple interchange of the elastic moduli Sij with the corresponding Bij will

transform the plane stress relations into those of plane strain. This is a similar result as

found earlier for the isotropic case. Because of this transformation property, we proceed

only with the plane stress case, realizing that any of the subsequent developments can be

easily converted to plane strain results.

The Airy stress function f(x, y) can again be introduced, and for the case with zero body

forces, we have the usual relations

sx ¼ @2f
@y2

, sy ¼ @2f
@x2

, txy ¼ � @2f
@x@y

(11:5:4)

This stress field automatically satisfies the equilibrium equations, and using this form in

(11.5.1) yields the corresponding strain field in terms of the stress function. As before, the

only remaining nonzero compatibility relation is

@2ex
@y2

þ @2ey
@x2

¼ 2
@2exy
@x@y

(11:5:5)
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and substituting the strain field into this relation gives the governing equation for the

stress function

S22
@4�

@x4
� 2S26

@4�

@x3@y
þ (2S12 þ S66)

@4�

@x2@y2
� 2S16

@4�

@x@y3
þ S11

@4�

@y4
¼ 0 (11:5:6)

The case with nonzero body forces has been given by Sendeckyj (1975).

The general solution to equation (11.5.6) can be found using methods of characteristics as

discussed previously in the torsion problem formulation; see result (11.4.23). The process

starts by looking for solutions of the form f ¼ f(xþ my), where m is a parameter. Using this in

(11.5.6) gives the characteristic equation

S11m4 � 2S16m3 þ (2S12 þ S66)m2 � 2S26mþ S22 ¼ 0 (11:5:7)

The four roots of this equation are related to the elastic compliances by the relations

m1m2m3m4 ¼ S22=S11

m1m2m3 þ m2m3m4 þ m3m4m1 þ m4m1m2 ¼ 2S26=S11

m1m2 þ m2m3 þ m3m4 þ m4m1 þ m1m3 þ m2m4 ¼ (2S12 þ S66)=S11

m1 þ m2 þ m3 þ m4 ¼ 2S16=S11

(11:5:8)

Using this formulation, the governing equation (11.5.6) can be written in operator form

D1D2D3D4f ¼ 0

where Dk ¼ @

@y
� mk

@

@x

(11:5:9)

It can be shown (Lekhnitskii 1981) that the roots of the characteristic equation (11.5.7) must

be complex. Because complex roots always occur in conjugate pairs, this leads to two

particular cases:

Case 1: m1 ¼ a1 þ ib1, m2 ¼ a2 þ ib2, m3 ¼ �mm1, m4 ¼ �mm2
Case 2: m1 ¼ m2 ¼ aþ ib, m3 ¼ m4 ¼ �mm1

(11:5:10)

With the equality condition, the second case rarely occurs, and it can be shown that it will

reduce to an isotropic formulation. We therefore do not consider this case further. Note for the

orthotropic case, S16 ¼ S26 ¼ 0, and the roots of the characteristic equation become purely
complex, that is, ai ¼ 0 (see Exercise 11-14).

For the unequal complex conjugate root case, (11.5.9) can be separated into four equations

and integrated in a similar fashion as done to get result (11.4.23). This then leads to the general

solution

f(x, y) ¼ F1(xþ m1y)þ F2(xþ m2y)þ F3(xþ m3y)þ F4(xþ m4y)

¼ F1(xþ m1y)þ F2(xþ m2y)þ F3(xþ �mm1y)þ F4(xþ �mm2y)

¼ 2Re[F1(xþ m1y)þ F2(xþ m2y)]

¼ 2Re[F1(z1)þ F2(z2)], z1 ¼ xþ m1y, z2 ¼ xþ m2y

(11:5:11)
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where we have used similar arguments as in the development of the torsion solution (11.4.24)

and (11.4.25). Thus, we have now established that the general solution to the anisotropic plane

problem is given in terms of two arbitrary functions of the complex variables z1 and z2.
We now wish to express the remaining elasticity equations in terms of these two complex

potential functions. It is generally more convenient to introduce two new complex potentials

that are simply the derivatives of the original pair; that is,

F1(z1) ¼ dF1

dz1
, F2(z2) ¼ dF2

dz2
(11:5:12)

In terms of these potentials, the in-plane stresses can be written as

sx ¼ 2Re[m21F
0
1(z1)þ m22F

0
2(z2)]

sy ¼ 2Re[F0
1(z1)þ F0

2(z2)]

txy ¼ �2Re[m1F
0
1(z1)þ m2F

0
2(z2)]

(11:5:13)

where primes indicate derivatives with respect to argument. Using Hooke’s law, the strains

may be determined, and the displacements follow from integration of the strain-displacement

relations, giving the result

u(x, y) ¼ 2Re[p1F1(z1)þ p2F2(z2)]

v(x, y) ¼ 2Re[q1F1(z1)þ q2F2(z2)]
(11:5:14)

where we have dropped the rigid-body motion terms and

pi ¼ S11m2i � S16mi þ S12

qi ¼ S12mi � S26 þ (S22=mi)
(11:5:15)

In polar coordinates, the stresses and displacements take the form

sr ¼ 2Re[( sin y� m1 cos y)
2F0

1(z1)þ ( sin y� m2 cos y)
2F0

2(z2)]

sy ¼ 2Re[( cos yþ m1 sin y)
2F0

1(z1)þ ( cos yþ m2 sin y)
2F0

2(z2)]

try ¼ 2Re[( sin y� m1 cos y)( cos yþ m1 sin y)F
0
1(z1)

þ ( sin y� m2 cos y)( cos yþ m2 sin y)F
0
2(z2)]

(11:5:16)

ur ¼ 2Re[(p1 cos yþ q1 sin y)F1(z1)þ (p2 cos yþ q2 sin y)F2(z2)]

uy ¼ 2Re[(q1 cos y� p1 sin y)F1(z1)þ (q2 cos y� p2 sin y)F2(z2)]
(11:5:17)

Next we wish to establish the usual boundary conditions in terms of the complex potentials.

Results developed in the previous chapter, equation (10.2.13), are also valid here, and thus the

traction vector can be written as

Tn
x ¼ sxnx þ txyny ¼ d

ds

@f
@y

� �

Tn
y ¼ txynx þ syny ¼ � d

ds

@f
@x

� � (11:5:18)
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Integrating this result over the boundary gives the boundary forces

ð
S

Tn
x dsþ C1 ¼ @f

@y
¼ 2Re[m1F1(z1)þ m2F2(z2)] ¼ px(s)

ð
S

Tn
y dsþ C2 ¼ � @f

@x
¼ �2Re[F1(z1)þ F2(z2)] ¼ py(s)

(11:5:19)

where px(s) and py(s) are the prescribed boundary tractions and C1 and C2 are arbitrary constants

of integration that do not affect the stresses, and thus can be chosen as any convenient value.

The displacement boundary conditions follow directly from equations (11.5.14):

u(s) ¼ 2Re[p1F1(z1)þ p2F2(z2)]

v(s) ¼ 2Re[q1F1(z1)þ q2F2(z2)]
(11:5:20)

where u(s) and v(s) are the prescribed boundary displacements.

Therefore, we have now formulated the plane anisotropic problem in terms of two arbitrary

functions of the complex variables z1 and z2. In regard to the general structure of these complex

potentials, many of the conclusions from the isotropic case covered previously in Section 10.4

would still hold for the anisotropic formulation. We now investigate the use of this formulation

for the solution to several problems of engineering interest.

EXAMPLE 11-3: Uniform Tension of an Anisotropic Sheet

Consider first the simple problem shown in Figure 11-6 of an anisotropic plane under

uniform tension T acting at an angle a measured from the horizontal. For this problem,

we already know the solution, namely a uniform stress field given by

sx ¼ T cos2 a

sy ¼ T sin2 a

txy ¼ T sin a cos a

(11:5:21)

Complex potential functions corresponding to such a constant stress field would take the

form F1(z1) ¼ A1z1,F2(z2) ¼ A2z2, where A1 and A2 are constants that may be com-

plex. Using this form in relations (11.5.13) gives

sx ¼ 2Re[m21A1 þ m22A2]

sy ¼ 2Re[A1 þ A2]

txy ¼ �2Re[m1A1 þ m2A2]

(11:5:22)

Equating (11.5.21) with (11.5.22) gives

T cos2 a ¼ 2Re[m21A1 þ m22A2]

T sin2 a ¼ 2Re[A1 þ A2]

T sin a cos a ¼ �2Re[m1A1 þ m2A2]

(11:5:23)
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EXAMPLE 11-3: Cont’d

T

T

FIGURE 11-6 Uniform tension of an anisotropic plane.

Because the complex constants A1 and A2 each have real and imaginary parts, the previous

three relations cannot completely determine these four values. Another condition is needed,

and it is commonly chosen as A1 ¼ �AA1. Using this constraint, (11.5.23) can now be solved

to yield

A1 ¼ T( cos aþ m2 sin a)( cos aþ �mm2 sin a)
(m1 � �mm2)(m1 � m2)þ (�mm1 � �mm2)(m1 � m2)

A2 ¼ T( cos aþ �mm1 sin a)( cos aþ �mm2 sin a)� (m1 � �mm1)(m1 � �mm2)A1

(m2 � �mm1)(m2 � �mm2)
(11:5:24)

EXAMPLE 11-4: Concentrated Force System in an Infinite Plane

Consider next the problem of an infinite anisotropic plane containing a concentrated

force system at the origin, as shown in Figure 11-7. The problem is similar to Example

10-4, which investigated the isotropic case.

FIGURE 11-7 Concentrated force system in an infinite plane.

Continued
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EXAMPLE 11-4: Concentrated Force System in an Infinite
Plane–Cont’d

Guided by our previous isotropic analysis, we choose the logarithmic form for the

complex potentials

F1(z1) ¼ A1 log z1

F2(z2) ¼ A2 log z2
(11:5:25)

The stresses from these potentials are

sx ¼ 2Re m21
A1

z1
þ m22

A2

z2

� �

sy ¼ 2Re
A1

z1
þ A2

z2

� �

txy ¼ �2Re m1
A1

z1
þ m2

A2

z2

� � (11:5:26)

Consider the boundary loading on a circle C enclosing the origin. Using the general

result (11.5.19), the resultant loadings are given by

�X ¼
þ
C

Tn
x ds ¼ 2Re[m1F1(z1)þ m2F2(z2)]C

�Y ¼
þ
C

Tn
y ds ¼ �2Re[F1(z1)þ F2(z2)]C

(11:5:27)

where we have dropped the arbitrary constants. Substituting in the complex potentials,

and using the cyclic properties of logarithmic functions (see (10.4.5)), the preceding

relations become

�X ¼ 4pRe[m1A1iþ m2A2i]

�Y ¼ �4pRe[A1iþ A2i]
(11:5:28)

This system is not sufficient to determine completely the complex constants A1 and

A2, and additional relations can be found by invoking the condition of single-valued

displacements. If the displacements are to be single-valued, then the cyclic function

(defined in Section 10.4) of relations (11.5.14) must be zero

Re[p1F1(z1)þ p2F2(z2)]C ¼ 0

Re[q1F1(z1)þ q2F2(z2)]C ¼ 0
(11:5:29)

and for this case gives the result

Re[p1A1iþ p2A2i] ¼ 0

Re[q1A1iþ q2A2i] ¼ 0
(11:5:30)

Relations (11.5.28) and (11.5.30) now provide sufficient relations to complete the problem.
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EXAMPLE 11-5: Concentrated Force System on the Surface
of a Half Plane

We now develop the solution to the problem of an anisotropic half plane carrying a

general force system at a point on the free surface. The problem shown in Figure 11-8 was

originally solved for the isotropic case in the previous chapter in Example 10-5.

FIGURE 11-8 Concentrated force system on a half plane.

Again guided by our previous isotropic solution, the potential functions are chosen as

F1(z1) ¼ A1 log z1

F2(z2) ¼ A2 log z2
(11:5:31)

The stresses from these potentials are then given by

sx ¼ 2Re m21
A1

z1
þ m22

A2

z2

� �

sy ¼ 2Re
A1

z1
þ A2

z2

� �

txy ¼ �2Re m1
A1

z1
þ m2

A2

z2

� � (11:5:32)

Following the procedures from Example 10-5, we consider the boundary loading on a

semicircle C lying in the half-space domain and enclosing the origin. Using the general

result (11.5.19), the resultant loadings are given by

�X ¼
þ
C

Tn
x ds ¼ 2Re[m1F1(z1)þ m2F2(z2)]C

�Y ¼
þ
C

Tn
y ds ¼ �2Re[F1(z1)þ F2(z2)]C

(11:5:33)

Substituting in the complex potentials, and again using the cyclic properties of the

logarithmic function, we find

�X ¼ 2pRe[m1A1iþ m2A2i]

�Y ¼ �2pRe[A1iþ A2i]
(11:5:34)

Continued
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EXAMPLE 11-5: Concentrated Force System on the Surface
of a Half Plane–Cont’d

As before this system is not sufficient to determine completely the complex constants

A1 and A2. Additional relations can be found by invoking the stress-free boundary

condition on surface y ¼ 0, giving the result

sy(x, 0) ¼ 2Re
A1

z1
þ A2

z2

� �����
y¼0

txy(x, 0) ¼ �2Re m1
A1

z1
þ m2

A2

z2

�� ����
y¼0

(11:5:35)

Solving relations (11.5.34) and (11.5.35), the constants are found to be

A1 ¼ (X þ m2Y)
2ip(m2 � m1)

A2 ¼ (X þ m1Y)
2ip(m1 � m2)

(11:5:36)

With the constants determined, the stresses can easily be calculated using (11.5.32).

Using polar coordinates, we can show the surprising result that sy ¼ try ¼ 0, and thus

the stress state will be only radial. This result matches our findings for the correspond-

ing isotropic case given by relations (8.4.34) and/or (10.6.8). Exercise 11-16 computes

and compares sr stress components for orthotropic and isotropic cases, and significant

differences between the two cases are found.

EXAMPLE 11-6: Infinite Plate with an Elliptical Hole

Let us now investigate the solution to a class of problems involving an elliptical hole in an

infinite anisotropic plate, as shown in Figure 11-9. Although we develop solutions only to

a couple of cases in this example, Savin (1961) provides many additional solutions to

problems of this type. We first construct the general solution for arbitrary loading on the

hole surface for the case where the loading produces no net force or moment. Finally, a

specific case of a pressure loading is investigated in detail.

Using the usual conformal mapping concept, consider the mapping function that

transforms the exterior of the ellipse to the exterior of a unit circle

z ¼ w(z) ¼ aþ b

2
zþ a� b

2z
(11:5:37)

The complex variables z1 and z2 can be expressed in terms of the z and z as

z1 ¼ xþ m1y ¼
1

2
(1� im1)(xþ iy)þ 1

2
(1þ im1)(x� iy) ¼ g1zþ d1z

z2 ¼ xþ m2y ¼
1

2
(1� im2)(xþ iy)þ 1

2
(1þ im2)(x� iy) ¼ g2zþ d2z

(11:5:38)

Continued
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EXAMPLE 11-6: Cont’d

FIGURE 11-9 Elliptical hole in an infinite anisotropic plane.

where gi ¼ (1� imi)=2, di ¼ (iþ mi)=2. Relations (11.5.38) lead to the concept of

induced mappings whereby the transformation (11.5.37) induces mappings in the

variables z1 and z2

z1 ¼ g1w(z)þ d1w(z) ¼ w1(z1)

z2 ¼ g2w(z)þ d2w(z) ¼ w2(z2)
(11:5:39)

Using the specified transformation (11.5.37) in (11.5.38), the mapped variables z1, z2
can be determined as

z1 ¼
z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2 � m21b2

p
a� im1b

z2 ¼
z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � a2 � m22b2

p
a� im2b

(11:5:40)

Note that on the boundary of the hole, z1 ¼ z2 ¼ eiy.
Using the general results (11.5.19), we assume these boundary loadings can be

expanded in a complex Fourier series on the elliptic boundary

px(s) ¼
X1
m¼1

(Ame
imy þ Ame

�imy)

py(s) ¼
X1
m¼1

(Bme
imy þ Bme

�imy)

(11:5:41)

where Am and Bm are complex constants to be determined by the specific boundary

loading. Following our experience from the previous chapter for the isotropic case, we

expect our solution to be given by potential functions of the series form

F1(z1) ¼
X1
m¼1

amz
�m
1

F2(z2) ¼
X1
m¼1

bmz
�m
2

(11:5:42)
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EXAMPLE 11-6: Infinite Plate with an Elliptical Hole–Cont’d

where am and bm are complex constants and z1 and z2 are given by relations (11.5.40).

Substituting these potential forms into the boundary loading relations (11.5.19) and

combining with (11.5.41) allows the determination of the constants am and bm in terms

of boundary loading. This then provides the final general solution form

F1(z1) ¼
X1
m¼1

Bm þ m2Am

m1 � m2
z�m
1

F2(z2) ¼ �
X1
m¼1

Bm þ m1Am

m1 � m2
z�m
2

(11:5:43)

11.5.1 Uniform Pressure Loading Case
Consider now the specific case of a pressure p acting uniformly on the entire elliptical cavity.

For this case, the boundary tractions are given by

Tn
x ¼ �pnx, T

n
y ¼ �pny

where nx and ny are the usual normal vector components. The boundary loading functions are

then determined from relations (11.5.19), giving the result

px(s) ¼ �
ðs
0

pdyþ C1 ¼ �pb sin yþ C1

py(s) ¼
ðs
0

pdxþ C2 ¼ pa cos y� paþ C2

(11:5:44)

The arbitrary constants can now be chosen for convenience as C1 ¼ 0 and C2 ¼ pa. Using
these results in boundary relation (11.5.41) determines the Fourier coefficients as

A1 ¼ ipb=2, B1 ¼ pa=2

Am ¼ Bm ¼ 0, m ¼ 2, 3, 4, � � � (11:5:45)

This then determines the complex potentials, and the stresses and displacements can be

calculated from previous relations (11.5.13) and (11.5.14).

The maximum stresses are most important for applications, and these occur as tangential

stresses on the boundary of the elliptical hole. It can be shown that this tangential stress on the

elliptical cavity is given by

sy ¼ p

a2 sin2 yþ b2 cos2 y
Re

ie�iy

(a sin y� m1b cos y)(a sin y� m2b cos y)

�
� [(m1m2a� im1b� im2b)a

3 sin3 yþ i(m1m2 � 2)a2b2 sin2 y cos y

þ (2m1m2 � 1)a2b2 sin y cos2 yþ (m1aþ m2a� ib)b3 cos3 y]
	 (11:5:46)

For the circular case (a ¼ b), this result becomes

sy ¼pRe
ie�iy

( sin y� m1 cos y)( sin y� m2 cos y)

�
� [(m1m2 � im1 � im2) sin

3 yþ i(m1m2 � 2) sin2 y cos y

þ (2m1m2 � 1) sin y cos2 yþ (m1 þ m2 � i) cos3 y]
	 (11:5:47)

322 ADVANCED APPLICATIONS



We can extract the isotropic limit by choosing the case m1 ¼ m2 ¼ i, and result (11.5.47)

becomes simply sy ¼ p, which is the correct value for a pressurized circular hole in an

isotropic sheet (see Section 8.4.1). It should be noted that this scheme of developing the

isotropic limit must be done on the final relations for the stresses and displacements. For

example, if the expression m1 ¼ m2 ¼ i had been substituted into, say, relation (11.5.43) for the
potential functions, a meaningless result would occur. Exercise 11-17 explores sy numerical

results for the orthotropic case and demonstrates that at particular field points, anisotropy will

increase this hoop stress component compared to the isotropic value.

EXAMPLE 11-7: Stressed Infinite Plate with an Elliptical Hole

Consider next an infinite anisotropic plate with a stress-free elliptical hole. The plate is

loaded in the x direction as shown in Figure 11-10. Recall that the isotropic case was

previously solved in Example 10-7.

FIGURE 11-10 Infinite anisotropic plate with an elliptical hole.

The potentials for this problem can be determined by our previously developed

conformal mapping procedures. The details for this and other cases are given in Savin

(1961), and the final result may be written as

F1(z1) ¼ A1z1 � iSb

2(m1 � m2)
a� im1b

z1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � (a2 þ m21b2)

p
F2(z2) ¼ A2z2 þ iSb

2(m1 � m2)
a� im2b

z2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � (a2 þ m22b2)

p (11:5:48)

The first term in each expression corresponds to the uniform tension case discussed in

Example 11-3. For tension in the x direction, the constants become

A1 ¼ S

2[(a2 � a1)2 þ (b22 � b21)]

A2 ¼ �S

2[(a2 � a1)2 þ (b22 � b21)]
þ i

(a1 � a2)S

2b2[(a2 � a1)2 þ (b22 � b21)]

(11:5:49)

Continued
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EXAMPLE 11-7: Stressed Infinite Plate with an Elliptical
Hole–Cont’d

with parameters ai and bi defined by equation (11.5.10)1.

The stresses for this case follow from (11.5.13)

sx ¼ Sþ Re � iSbm21
(m1 � m2)(aþ im1b)

[
z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 � (a2 þ m21b2)
p � 1]

"

þ iSbm22
(m1 � m2)(aþ im2b)

[
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � (a2 þ m22b2)
p � 1]

#

sy ¼ Re � iSb

(m1 � m2)(aþ im1b)
[

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � (a2 þ m21b2)

p � 1]

"

þ iSb

(m1 � m2)(aþ im2b)
[

z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � (a2 þ m22b2)

p � 1]

#

txy ¼ �Re � iSbm1
(m1 � m2)(aþ im1b)

[
z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 � (a2 þ m21b2)
p � 1]

"

þ iSbm2
(m1 � m2)(aþ im2b)

[
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � (a2 þ m22b2)
p � 1]

#

(11:5:50)

Consider now the special case of an orthotropic material with mi ¼ ibi. For this case, the
stress sx along the y-axis (x ¼ 0) is given by

sx(0, y) ¼ Sþ Sb

(b1 � b2)
� b21
(a� b1b)

[
b1yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b21(y2 � b2)
q � 1]

2
64

þ b22
(a� b2b)

[
b2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b22(y2 � b2)
q � 1]

3
75

(11:5:51)

Investigating the value of this stress at the edge of the ellipse (y ¼ b), we get

sx(0, b) ¼ S 1þ (b1 þ b2)
b

a

� �
(11:5:52)

The isotropic limit of this result is found by setting b1 ¼ b2 ¼ 1, which gives

sx(0, b) ¼ S 1þ 2
b

a

� �
(11:5:53)

and this matches with the isotropic case given previously in equation (10.7.15). For

many materials, b1 þ b2 > 2 (see Exercise 11-14), and thus the stress concentration for

the anisotropic case commonly is greater than the corresponding isotropic material.

Exercise 11-18 explores sx numerical results and demonstrates that this stress compon-

ent for the orthotropic case will be larger than the corresponding isotropic value.
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11.6 Applications to Fracture Mechanics

The elastic stress and displacement distribution around cracks in anisotropic media has

important applications in the fracture behavior of composite materials. Similar to our previous

study in Sections 10.8 and 10.9, we now wish to develop solutions to some basic plane

problems of anisotropic materials containing cracks. As discussed before, a crack can be

regarded as the limiting case of an elliptical cavity as one axis is reduced to zero. Thus,

in some cases the solution to the crack problem can be determined from a correspond-

ing elliptical cavity problem. There exists, however, more direct methods for solving

crack problems in anisotropic materials. Original work on this topic was developed by

Sih, Paris, and Irwin (1965), and further information may be found in Sih and Liebowitz

(1968).

The first problem we wish to investigate is that of a pressurized crack in an infinite medium.

The solution to this problem can be conveniently determined from our solution of the

pressurized elliptical cavity problem in Example 11-6. The crack case follows by simply

letting the semiminor axis b ! 0. From (11.5.45) we find A1 ¼ 0, and relations (11.5.43) then

give the potential functions

F1(z1) ¼ pa2m2
2(m1 � m2)

z1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2

q� ��1

¼ �pm2
2(m1 � m2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2

q
� z1

� �

F2(z2) ¼ � pa2m1
2(m1 � m2)

z2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � a2

q� ��1

¼ pm1
2(m1 � m2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � a2

q
� z2

� � (11:6:1)

The stresses follow from relations (11.5.13)

sx ¼ �pRe
m21m2

m1 � m2
[

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2

p � 1]� m1m
2
2

m1 � m2
[

z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � a2

p � 1]

" #

sy ¼ �pRe
m2

m1 � m2
[

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2

p � 1]� m1
m1 � m2

[
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � a2
p � 1]

" #

txy ¼ pRe
m1m2

m1 � m2
[

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2

p � z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � a2

p ]

" #
(11:6:2)

Evaluating these stresses on the x-axis (z1 ¼ z2 ¼ x) gives

sx ¼ �pRe m1m2[
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p � 1]

� �

sy ¼ pRe
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p � 1

� �
txy ¼ 0

(11:6:3)

For the case jx1j > a, the stresses can be written as
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sx ¼ �p[
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p � 1]Re{m1m2}

sy ¼ p[
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p � 1]

txy ¼ 0

(11:6:4)

The stresses depend on the material properties only through the term Re{m1m2}. Note that for
the isotropic case m1 ¼ m2 ¼ i, and thus

sx ¼ sy ¼ p
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p � 1

� �
, txy ¼ 0 (11:6:5)

Notice that both the anisotropic and isotropic stresses are singular at x ¼ �a, which corres-

ponds to each crack tip. In the neighborhood of the crack tip x ¼ a, we can use the usual

approximations xþ a � a, x� a � r (see Figure 10-20), and for this case equations (11.6.4)

and (11.6.5) indicate that the crack-tip stress field has the 1=
ffiffi
r

p
singularity for both the

anisotropic and isotropic cases.

Next let us investigate the restricted problem of determining the stress and displacement

solution in the vicinity of a crack tip in an infinite medium, as shown in Figure 11-11. We

assume that the problem has uniform far-field loading in the y direction normal to the crack.

Considering only the solution in the neighborhood of the crack tip (i.e., small jzj), it can be

shown that the potential functions can be reduced to the following form:

F0
1(z1) ¼ A1z

�1=2
1 , F0

2(z2) ¼ A2z
�1=2
2 (11:6:6)

where A1 and A2 are arbitrary constants. Using this result in equations (11.5.13) and (11.5.14)

gives the following stress and displacement fields:

FIGURE 11-11 Crack in an infinite anisotropic plane.
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sx ¼ K1ffiffiffiffiffi
2r

p Re
m1m2

m1 � m2

m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m2 sin y

p � m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m1 sin y

p
 !" #

sy ¼ K1ffiffiffiffiffi
2r

p Re
1

m1 � m2

m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m2 sin y

p � m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m1 sin y

p
 !" #

txy ¼ K1ffiffiffiffiffi
2r

p Re
m1m2

m1 � m2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m1 sin y

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m2 sin y

p
 !" #

u ¼ K1

ffiffiffiffiffi
2r

p
Re

1

m1 � m2
m1p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m2 sin y

p
� m2p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m1 sin y

p
 �� �

v ¼ K1

ffiffiffiffiffi
2r

p
Re

1

m1 � m2
m1q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m2 sin y

p
� m2q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m1 sin y

p
 �� �

(11:6:7)

where for convenience we have chosen

A1 ¼ m2
2
ffiffiffi
2

p
(m2 � m1)

K1

A2 ¼ m1
2
ffiffiffi
2

p
(m1 � m2)

K1

(11:6:8)

Similar to the isotropic case, the parameter K1 is referred to as the stress intensity factor. It

is important to note from stress relations in (11.6.7) that the crack-tip stress singularity is of

order 1=
ffiffi
r

p
, which is identical to the isotropic case. This result holds for all plane problems

with a plane of material symmetry (sometimes referred to as rectilinear anisotropy). However,
it has been shown that the nature of this singularity does change for materials with more

complex anisotropy. It can also be observed from (11.6.7) that unlike the isotropic case,

variation of the local stress and displacement field depends upon material properties through

the roots mi. Finally, similar to the isotropic case, the stress and displacement field near the

crack tip depends on remote boundary conditions only through the stress intensity factor.

Next let us consider a more specific fracture mechanics problem of a crack of length 2a lying
along the x-axis in an infinite mediumwith far-field stress s1y ¼ S, as illustrated in Figure 11-12.

FIGURE 11-12 Central crack in an infinite anisotropic plane.
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For this problem, the complex potentials are given by Sih et al. (1965) as

F1(z1) ¼ A1z1 þ Sa2m2
2(m1 � m2)

z1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2

q� ��1

F2(z2) ¼ A2z2 � Sa2m1
2(m1 � m2)

z2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � a2

q� ��1
(11:6:9)

where A1 and A2 are again constants. Substituting this form into relations (11.5.13) gives the

following stress field in the vicinity of the crack tip:

sx ¼ S
ffiffiffi
a

pffiffiffiffiffi
2r

p Re
m1m2

m1 � m2

m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m2 sin y

p � m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m1 sin y

p
 !" #

sy ¼ S
ffiffiffi
a

pffiffiffiffiffi
2r

p Re
1

m1 � m2

m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m2 sin y

p � m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m1 sin y

p
 !" #

txy ¼ S
ffiffiffi
a

pffiffiffiffiffi
2r

p Re
m1m2

m1 � m2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m1 sin y

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� m2 sin y

p
 !" #

(11:6:10)

Note the similarity of this result with the relations developed in (11.6.7). For this case, the

stress intensity factor is then given by K1 ¼ S
ffiffiffi
a

p
.

The previous two examples include only opening mode deformation of the crack tip. Other

loading cases can produce a shearing deformation mode, and these cases introduce a new stress

field with a different stress intensity factor, commonly denoted by K2. Sih et al. (1965) provide

additional information on these examples. The analytically simpler crack problem for aniso-

tropic antiplane strain deformation is given in Exercise 11-21 and the results are comparable to

the isotropic problem developed in Exercise 8-32.

11.7 Curvilinear Anisotropic Problems

As mentioned earlier, many materials have an anisotropic microstructure that would require a

curvilinear anisotropic model. Biological examples of such cases would include wood coming

from trees that grow in approximately cylindrical fashion and various tissue and bone material.

There are also many cases of synthetic composite materials with such curvilinear microstruc-

ture. As done previously for rectilinear anisotropy in Section 11.2, we would expect that

curvilinear anisotropy would also occur with some symmetries in material structure. This

would lead to a convenient modeling scheme for incorporating Hooke’s law within an

orthogonal curvilinear coordinate system using, for example, cylindrical or spherical coordin-

ates. Lekhnitskii (1981), Galmudi and Dvorkin (1995), Horgan and Baxter (1996), and others

have developed solutions to these types of problems.

Our discussion here will only briefly explore these problems, and we shall follow the work

of Galmudi and Dvorkin (1995) and Horgan and Baxter (1996), limiting the presentation to the

two-dimensional case using a polar coordinate system model. Therefore, consider the curvi-

linear microstucture shown in Figure 11-13. We assume that the material has a uniform fibrous

or cellular microstucture such that properties have orthogonal symmetry with respect to the

r and y directions as shown. Under this assumption, the material would be classified as being
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polar-orthotropic and, following the basic form of relation (11.2.10), we could write Hooke’s

law for the plane stress case as

sr ¼ Er

1� �yr �ry
(er � �yrey), sy ¼ Ey

1� �yr �ry
(ey � �ryer) (11:7:1)

We also assume axisymmetry so that stresses will only depend on the radial coordinate and

try ¼ 0. Note that from the discussion in Section 11.2.2,

�yr
Ey

¼ �ry
Er

(11:7:2)

Using the strain-displacement relations, the stresses can be expressed as

sr ¼ Er

1� �yr �ry

du

dr
� �yr

u

r

� �
, sy ¼ Ey

1� �yr �ry

u

r
� �ry

du

dr

� �
(11:7:3)

In polar coordinates with no body forces, the equilibrium equation is

dsr
dr

þ sr � sy
r

¼ 0 (11:7:4)

Using relations (11.7.3) and (11.7.2), this equation can be written as

d2u

dr2
þ 1

r

du

dr
� n2

u

r2
¼ 0 (11:7:5)

where n2¼ Ey/Er ¼ �yr/�ry. The parameter n provides a measure of the amount of material

anisotropy, and with n > 1 ) Ey > Er, the material may be classified as circumferentially
orthotropic; while with n < 1 ) Er > Ey, the material is classified as radially orthotropic
(Horgan and Baxter 1996). The isotropic case is found by setting n¼ 1. Equation (11.7.5) is a

Cauchy-Euler differential equation and is similar to the isotropic result given previously in

(8.3.10). The equation can be easily solved giving the result for the radial displacement

u ¼ Arn þ Br�n (11:7:6)

FIGURE 11-13 Material with an idealized orthogonal curvilinear microstructure leading to polar
orthotropy.
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where A and B are arbitrary constants. This solution allows the stresses to be expressed by the

general form

sr ¼ C1r
n�1 þ C2r

�n�1, sy ¼ C1nr
n�1 � C2nr

�n�1 (11:7:7)

where C1 ¼ A
Er

1� �yr �ry
nþ �yr

� �
and C2 ¼ B � Er

1� �yr �ry
nþ �yr

� �
are new appropri-

ately defined arbitrary constants.

Consider now the specific problem of the thick-walled cylindrical domain problem with

internal and external pressure loadings, as shown previously in Figure 8-8. For this case we

redefine the annular domain with a � r � b and consider pressure loading equal to p only on

the outer boundary r ¼ b. Under these boundary conditions, the arbitrary constants C1 and C2

can be easily determined and the stresses become

sr ¼ � pbnþ1

b2n � a2n
rn�1 � a2nr�n�1
� 

sy ¼ � pbnþ1n

b2n � a2n
rn�1 þ a2nr�n�1
�  (11:7:8)

It can be shown that both of these normal stresses will be compressive in the region a � r � b,
and that for n > 1, jsyj>jsrj.

Dimensionless distribution plots of radial and hoop stresses are shown in Figure 11-14 for

cases of n ¼ 0.5, 1.0, and 1.5 with b/a ¼ 5. It is seen that for n > 1, the magnitude of the radial

stress will be less than the isotropic value; Galmudi and Dvorkin (1995) refer to this as

stress shielding. The opposite behavior occurs for the case n < 1, where the radial stress magnitude

is greater than the isotropic value, thereby leading to stress amplification. Both of these effects can
be viewed as being related to the decay of boundary conditions, and therefore could have

importance to the applicability of Saint-Venant’s principle for anisotropic problems. Notice also

that the hoop-stress magnitude at the inner boundary (r ¼ a) decreases with increasing values of
the anisotropic parameter n. In general, the stresses are significantly affected by the curvilinear

anisotropy.

Going back to the isotropic case (n ¼ 1), relations (11.7.8) reduce to

sr ¼ � pb2

b2 � a2
1� a2

r2

� �

sy ¼ � pb2

b2 � a2
1þ a2

r2

� � (11:7:9)

For this case, taking the limit as b ! 1 and letting p ¼ �T, the result is

sr ¼ T 1� a2

r2

� �
, sy ¼ T 1þ a2

r2

� �
(11:7:10)

which matches with our previous result (8.4.9) and corresponds to a stress-free hole in an

infinite medium under equal far-field biaxial tensile loading T. Note the isotropic problem then

generates a stress concentration factor of 2.
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As was first pointed out by Galmudi and Dvorkin (1995), attempting to do the same

limiting analysis for the anisotropic case (n 6¼ 1) will not produce a converged solution. This

surprising result is related to the fact that for n < 1, the stresses will become unbounded as

b ! 1. A similar result for isotropic inhomogeneous materials will be shown in Chapter 14.

Although we cannot analytically evaluate the limiting case b ! 1, we can still explore

this situation by evaluating relations (11.7.8) for the case with large but finite b/a ratios.

Figure 11-15 illustrates the dimensionless hoop stress for the case with b/a ¼ 50 for several

values of n � 1. Values shown at r ¼ a actually illustrate the stress concentration factors for

a small stress-free hole in a large sheet under equal far-field biaxial loading. It can be seen

that the stress concentration significantly increases as the anisotropy parameter n is reduced

from the isotropic value of unity. Note for this case Ey < Er, and n decreasing from 1.0, would

correspond to a material where the hoop modulus becomes increasingly smaller than the

radial modulus. A similar plot of the hoop stress, for cases with n > 1, would show a further

decrease in the local stress concentration but would now predict an increasing stress field with

radial distance from the hole (see Figure 11-14 with n ¼ 1.5).

Additional features of this and other similar problems with polar and spherical curvilinear

anisotropy are discussed by Galmudi and Dvorkin (1995) and Horgan and Baxter (1996).

FIGURE 11-14 Stress distributions in a polar orthotropic annular domain (a � r � b) with external
pressure with b/a ¼ 5.
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Exercises

11-1. From strain energy arguments in Section 6.1, it was found that
@sij
@ekl

¼ @skl
@eij

. Show

that these results imply that Cij ¼ Cji, therefore justifying that only 21

independent elastic moduli are needed to characterize the most general anisotropic

material.

11-2. Using material symmetry through 1808 rotations about each of the three coordinate

axes, explicitly show the reduction of the elastic stiffness matrix to nine

independent components for orthotropic materials. Also demonstrate that after two

rotations, the third transformation is actually already satisfied.

11-3 A transversely isotropic material with an x3-axis of symmetry was specified by the

elasticity matrix given in equation (11.2.12). Under an arbitrary y-rotation about the

x3-axis given by relation (11.2.11), all components of this elasticity matrix should remain

the same. Explicitly show this property for the 55 and 22 components of the C matrix.

Use the translation relation (11.1.6) and the given structure of the C matrix such as

C16 ¼ C1112 ¼ 0, C44 ¼ C55� � �
11-4. Verify the inequality restrictions on the elastic moduli for orthotropic, transversely

isotropic, and isotropic materials given by relations (11.3.3), (11.3.4), and (11.3.5).

11-5. For the orthotropic case, show that by using arguments of a positive definite strain

energy function, �2ij < (Ei=Ej). Next, using typical values for E1 and E2 from Table 11-1,

justify that this theory could allow the unexpected result that �12 > 1.

11-6. For the torsion of cylinders discussed in Section 11.4, show that with

sx ¼ sy ¼ sz ¼ txy ¼ 0, the compatibility equations yield

� @

@x
(S44tyz þ S45txz)þ @

@y
(S54tyz þ S55txz) ¼ C

where C is a constant.

11-7. In terms of the stress function c, the torsion problem was governed by equation

(11.4.9)

S44cxx � 2S45cxy þ S55cyy ¼ �2
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Show that the homogeneous counterpart of this equation may be written as

@

@y
� m1

@

@x

� �
@

@y
� m2

@

@x

� �
c ¼ 0

where m1, 2 are the roots of the characteristic equation

S55m2 � 2S45mþ S44 ¼ 0

11-8. Explicitly justify relationships (11.5.3) between the compliances of the plane stress

and plane strain theories.

11-9. Investigate case 2 (m1 ¼ m2) in equation (11.5.10), and determine the general form

of the Airy stress function. Show that this case is actually an isotropic formulation.

11-10. Determine the roots of the characteristic equation (11.5.7) for S-Glass/Epoxy material

with properties given in Table 11-1. Justify that they are purely imaginary.

11-11. Recall that for the plane anisotropic problem, the Airy stress function was found to be

f ¼ F1(z1)þ F1(z1)þ F2(z2)þ F2(z2)

where z1 ¼ xþ m1y and z2 ¼ xþ m2y. Explicitly show that the in-plane stresses are

given by

sx ¼ 2Re[m21F
00
1(z1)þ m22F

00
2(z2)]

sy ¼ 2Re[F
00
1(z1)þ F

00
2(z2)]

txy ¼ �2Re[m1F
00
1(z1)þ m2F

00
2(z2)]

11-12. For the plane stress case, in terms of the two complex potentials F1 and F2, compute

the two in-plane displacements u and v and thus justify relations (11.5.14).

11-13. Determine the polar coordinate stresses and displacements in terms of the complex

potentials F1 and F2, as given by equations (11.5.16) and (11.5.17).

11-14*. For the plane problem with an orthotropic material, show that the characteristic

equation (11.5.7) reduces to the quadratic equation in m2

S11m4 þ (2S12 þ S66)m2 þ S22 ¼ 0

Explicitly solve this equation for the roots mi, and show that they are purely complex

and thus can be written as m1, 2 ¼ ib1, 2, where

b21, 2 ¼ � 1

2S11
�(2S12 þ S66)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2S12 þ S66)

2 � 4S11S22

q� 	

Justify the isotropic case where b1, 2 ¼ 1. Finally, determine b1, 2 for each of the four

composite materials given in Table 11-1.

11-15. Consider an anisotropic monoclinic material symmetric about the x-y-plane
(see Figure 11-2) and subject to an antiplane deformation specified by u ¼ v ¼ 0,

334 ADVANCED APPLICATIONS



w ¼ w(x, y). Show that in the absence of body forces, the out-of-plane displacement

must satisfy the Navier equation

C55

@2w

@x2
þ 2C45

@2w

@x@y
þ C44

@2w

@y2
¼ 0

Next looking for solutions that are of the form w¼ F(x þ �y), show that this problem

is solved by

w ¼ 2Re{F(z*)}

txz ¼ 2Re{(mC45 þ C55)F
0(z*)}

tyz ¼ 2Re{(mC44 þ C45)F
0(z*)}

where z* ¼ x þ �y and m are the roots of the equation C44�
2 þ 2C45� þ C55 ¼ 0.

Note that for this case, positive definite strain energy implies that C44C55 > C45
2;

therefore the roots will occur in complex conjugate pairs.

11-16*. For Example 11-5, consider the case of only a normal boundary load (X ¼ 0), and

assume that the material is orthotropic with mi ¼ ibi (see Exercise 11-14). Show that

the resulting stress field is given by

sr ¼ � Yb1b2(b1 þ b2) sin y

pr( cos2 yþ b21 sin
2 y)( cos2 yþ b22 sin

2 y)
, sy ¼ try ¼ 0

Next compare the stress component sr with the corresponding isotropic value by

plotting the stress contours sr=Y ¼ constant for each case. Use orthotropic material

values for the Carbon/Epoxy composite given in Table 11-1, and compare with the

corresponding isotropic case.

11-17*. Consider the case of the pressurized circular hole in an anisotropic sheet. Using

orthotropic material properties given in Table 11-1 for Carbon/Epoxy, compute and

plot the boundary hoop stress sy as a function of y. Compare with the isotropic case.

11-18*. Investigate the case of a circular hole of radius a in Example 11-7. Use orthotropic

material properties given in Table 11-1 for Carbon/Epoxy with the 1-axis along the

direction of loading. Compute and plot the stress sx(0, y) for y > a. Also compare

with the corresponding isotropic case.

11-19. Consider the elliptical hole problem in Example 11-7. By letting a ! 0, determine the

stress field for the case where the hole reduces to a line crack of length 2b. Demonstrate

the nature of the singularity for this case.

11-20. The potentials

F1(z1) ¼ A1z1 þ Sa2m2
2(m1 � m2)

z1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2

q� ��1

F2(z2) ¼ A2z2 � Sa2m1
2(m1 � m2)

z2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � a2

q� ��1
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were proposed to solve the plane extension of an anisotropic panel containing a crack of

length 2a (see Figure 11-12). Recall that the constants A1 and A2 correspond to the

uniform tension case, and for stress S in the y direction

A1 ¼ (a22 þ b22)S

2[(a2 � a1)2 þ (b22 � b21)]

A2 ¼ (a21 � b21 � 2a1a2)S

2[(a2 � a1)2 þ (b22 � b21)]
þ i

[a2(a21 � b21)� a1(a22 � b22)]S

2b2[(a2 � a1)2 þ (b22 � b21)]

a. Determine the general stress field, and verify the far-field behavior.

b. Show that the stress field is singular at each crack tip.

c. Using the limiting procedures as related to Figure 10-20, verify that the crack-tip

stress field is given by (11.6.10).

11-21. Consider the case of a crack problem in an anisotropic monoclinic material under anti-

plane deformation as described in Exercise 11-15. Following relation (11.6.6), choose the

complex potential form as F(z*) ¼ A
ffiffiffiffi
z*

p
, where A ¼ � ffiffiffi

2
p

K3m=(C55 þ mC45) and K3 is a

real constant. Using this form, show that the nonzero displacement and stresses in the

vicinity of the crack tip (see Figure 11-11) are given by

w ¼ K3

ffiffiffiffiffi
2r

p
Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos yþ m sin y

p
C45 þ mC44

� 	

txz ¼ � K3ffiffiffiffiffi
2r

p Re
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos yþ msin y
p
� 	

tyz ¼ K3ffiffiffiffiffi
2r

p Re
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos yþ msin y
p
� 	

Note that the parameter K3 will be related to the stress intensity factor for this case.

Verify that shear stress tyz vanishes on each side of the crack face, y ¼ +p. These
results can be compared to the corresponding solution for the isotropic case given in

Exercise 8-32.

11-22. Explicitly develop the governing Navier equation (11.7.5) for the polar orthotropic

problem. Verify that its solution is given by (11.7.6) and show how this leads to the

stress solution (11.7.7). Finally, confirm that the problem with only external pressure

loading is given by (11.7.8).
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12 Thermoelasticity

Many important stress analysis problems involve structures that are subjected to both mechan-

ical and thermal loadings. Thermal effects within an elastic solid produce heat transfer by

conduction, and this flow of thermal energy establishes a temperature field within the material.

Most solids exhibit a volumetric change with temperature variation, and thus the presence of a

temperature distribution generally induces stresses created from boundary or internal con-

straints. If the temperature variation is sufficiently high, these stresses can reach levels that

may lead to structural failure, especially for brittle materials. Thus, for many problems

involving high temperature variation, the knowledge of thermal stress analysis can be very

important.

The purpose of this chapter is to provide an introduction to thermoelasticity; that is, elasticity

with thermal effects. We develop the basic governing equations for isotropic materials and

investigate several solutions to problems of engineering interest. We have already briefly

discussed the form of Hooke’s law for this case in Section 4.4. More detailed information may

be found in several texts devoted entirely to the subject such as Boley and Weiner (1960),

Nowacki (1962), Parkus (1976), Kovalenko (1969), Nowinski (1978), and Burgreen (1971).

We start our study with some developments of heat conduction in solids and the energy equation.

12.1 Heat Conduction and the Energy Equation

As mentioned, the flow of heat in solids is associated with temperature differences within the

material. This process is governed by the Fourier law of heat conduction, which is the

constitutive relation between the heat flux vector q and the temperature gradient =T. This
theory formulates a linear relationship that is given by

qi ¼ �kijT, j (12:1:1)

where kij is the thermal conductivity tensor. It can be shown that this tensor is symmetric, that

is, kij ¼ kji. For the isotropic case kij ¼ kdij, and thus

qi ¼ �kT, i (12:1:2)
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where k is a material constant called the thermal conductivity. Note the flow of heat moves

against the temperature gradient, that is, flows from hot to cold regions.

In order to properly establish thermoelasticity theory, particular thermal variables such

as temperature and heat flux must be included, and this requires incorporation of the

energy equation. Previous to this point, our purely mechanical theory did not require this

field relation. The energy equation represents the principle of conservation of energy, and this

concept is to be applied for the special case of an elastic solid continuum. Details of the

equation derivation will not be presented here, and the interested reader is referred to Boley

and Weiner (1960) or Fung (1965) for a more complete discussion on the thermodynamic

development of this equation. We consider an elastic solid that is stress free at a uniform

temperature To when all external forces are zero. This stress-free state is referred to as the

reference state, and To is called the reference temperature. For this case, the energy equation

can be written as

r _"" ¼ sijvi, j � qi, i þ rh (12:1:3)

where r is the mass density, e is the internal energy, vi is the velocity field, and h is any

prescribed energy source term. From thermodynamic theory, the internal energy rate may be

simplified to

_"" ¼ c _TT (12:1:4)

where c is the specific heat capacity at constant volume.
Recall that the stress follows from the Duhamel-Neumann constitutive relation given

previously in (4.4.5) as

sij ¼ Cijklekl þ bij(T � To) (12:1:5)

and for the isotropic case this reduces to

sij ¼ lekkdij þ 2meij � (3lþ 2m)a(T � To)dij

eij ¼ 1þ �

E
sij � �

E
skkdij þ a(T � To)dij

(12:1:6)

where a is the coefficient of thermal expansion.
Using results (12.1.4) and (12.1.6) in the energy equation and linearizing yields

kT, ii ¼ rc _TT þ (3lþ 2m)aTo _eeii � rh (12:1:7)

Note that the expression (3lþ 2m) aTo _eeii involves both thermal and mechanical variables, and

consequently this is referred to as the coupling term in the energy equation. It has been shown

(see, for example, Boley and Weiner 1960) that for most materials under static or quasi-static

loading conditions, this coupling term is small and can be neglected. For this case, we establish

the so-called uncoupled conduction equation

kT, ii ¼ rc _TT � rh (12:1:8)
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For our applications, we consider only uncoupled theory and normally with no sources (h ¼ 0).

Another simplification is to consider only steady state conditions, and for this case the

conduction equation reduces to the Laplace equation

T, ii ¼ r2T ¼ @2T

@x2
þ @2T

@y2
þ @2T

@z2
¼ 0 (12:1:9)

It should be noted that for the uncoupled, no-source case the energy equation reduces to a

single parabolic partial differential equation (12.1.8), while for the steady state case the

reduction leads to an elliptic equation (12.1.9) for the temperature distribution. For either

case, with appropriate thermal boundary conditions, the temperature field can be determined

independent of the stress-field calculations. Once the temperature is obtained, elastic stress

analysis procedures can then be employed to complete the problem solution.

12.2 General Uncoupled Formulation

Let us now formulate the general uncoupled thermoelastic problem. Many of our previous

equations are still valid and remain unchanged, including the strain-displacement relations

eij ¼ 1

2
(ui, j þ uj, i) (12:2:1)

the strain-compatibility equations

eij, kl þ ekl, ij � eik, jl � ejl, ik ¼ 0 (12:2:2)

and the equilibrium equations

sij, j þ Fi ¼ 0 (12:2:3)

These are to be used with the new form of Hooke’s law

sij ¼ lekkdij þ 2meij � (3lþ 2m)a(T � To)dij (12:2:4)

and the energy equation

rc _TT ¼ kT, ii (12:2:5)

The 16 equations (12.2.1) and (12.2.3) through (12.2.5) constitute the fundamental set of field

equations for uncoupled thermoelasticity for the 16 unknowns ui, eij, sij, and T. As before, it
proves to be very helpful for problem solution to further reduce this set to a displacement and/
or stress formulation as previously done for the isothermal case. Recall that the compatibility

equations are used for the stress formulation. These further reductions are not carried out at this

point, but will be developed in the next section for the two-dimensional formulation. Boundary

conditions for the mechanical problem are identical as before, while thermal boundary condi-

tions normally take the form of specifying the temperatures or heat fluxes on boundary

surfaces.

Thermoelasticity 339



12.3 Two-Dimensional Formulation

The basic two-dimensional thermoelasticity formulation follows in similar fashion as done

previously for the isothermal case in Chapter 7, leading to the usual plane strain and plane
stress problems. Each of these formulations is now briefly developed. Some parts of

the ensuing presentation are identical to the isothermal formulation, while other results create

new terms or equations. It is important to pay special attention to these new contributions and

to be able to recognize them in the field equations and boundary conditions.

12.3.1 Plane Strain
The basic assumption for plane strain in the x,y-plane was given by the displacement field

u ¼ u(x, y), v ¼ v(x, y), w ¼ 0 (12:3:1)

Recall that this field is a reasonable approximation for cylindrical bodieswith a large zdimension,

as shown previously in Figure 7-1. This leads to the following strain and stress fields:

ex ¼ @u

@x
, ey ¼ @v

@y
, exy ¼ 1

2

@u

@y
þ @v

@x

� �
ez ¼ exz ¼ eyz ¼ 0

(12:3:2)

sx ¼ l
@u

@x
þ @v

@y

� �
þ 2m

@u

@x
� a(3lþ 2m)(T � To)

sy ¼ l
@u

@x
þ @v

@y

� �
þ 2m

@v

@y
� a(3lþ 2m)(T � To)

txy ¼ m
@u

@y
þ @v

@x

� �
sz ¼ v(sx þ sy)� Ea(T � To)

txz ¼ tyz ¼ 0

(12:3:3)

In the absence of body forces, the equilibrium equations become

@sx
@x

þ @txy
@y

¼ 0

@txy
@x

þ @sy
@y

¼ 0

(12:3:4)

and in terms of displacements these equations reduce to

mr2uþ (lþ m)
@

@x

@u

@x
þ @v

@y

� �
� (3lþ 2m)a

@T

@x
¼ 0

mr2vþ (lþ m)
@

@y

@u

@x
þ @v

@y

� �
� (3lþ 2m)a

@T

@y
¼ 0

(12:3:5)

wherer2 ¼ @2

@x2
þ @2

@y2
. Comparing this resultwith the equivalent isothermal equations (7.1.5), it

is noted that thermoelasticity theory creates additional thermal terms in Navier’s relations

(12.3.5).

340 ADVANCED APPLICATIONS



The only nonzero compatibility equation for plane strain is given by

@2ex
@y2

þ @2ey
@x2

¼ 2
@2exy
@x@y

(12:3:6)

Using Hooke’s law in this result gives

r2(sx þ sy)þ Ea
1� �

r2T ¼ 0 (12:3:7)

Again note the additional thermal term in this relation when compared to the isothermal result

given by (7.1.7). The additional terms in both (12.3.5) and (12.3.7) can be thought of as

thermal body forces that contribute to the generation of the stress, strain, and displacement

fields. Relations (12.3.5) would be used for the displacement formulation, while (12.3.4) and

(12.3.7) would be incorporated in the stress formulation.

The boundary conditions for the plane strain problem are normally specified for either the

stresses

Tn
x ¼ sxnx þ txyny ¼ (Tn

x )s

Tn
y ¼ txynx þ syny ¼ (Tn

y )s
(12:3:8)

or the displacements

u ¼ us(x, y)

v ¼ vs(x, y)
(12:3:9)

where (Tn
x )s, (T

n
y )s, us, and vs are the specified boundary tractions and displacements on the

lateral surfaces. Note that these specified values must be independent of z and the temperature

field must also depend only on the in-plane coordinates; that is, T ¼ T(x, y). It should be

recognized that using Hooke’s law (12.3.3) in the traction boundary conditions (12.3.8) will

develop relations that include the temperature field.

12.3.2 Plane Stress
The fundamental starting point for plane stress (and/or generalized plane stress) in the x,y-
plane is an assumed stress field of the form

sx ¼ sx(x, y), sy ¼ sy(x, y), txy ¼ txy(x, y)

sz ¼ txz ¼ tyz ¼ 0
(12:3:10)

As per our previous discussion in Section 7.2 this field is an appropriate approximation for

bodies thin in the z direction (see Figure 7-3). The thermoelastic strains corresponding to this

stress field come from Hooke’s law:
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ex ¼ 1

E
(sx � �sy)þ a(T � To)

ey ¼ 1

E
(sy � �sx)þ a(T � To)

exy ¼ 1þ �

E
txy

ez ¼ � �

E
(sx þ sy)þ a(T � To)

exz ¼ eyz ¼ 0

(12:3:11)

The equilibrium and strain compatibility equations for this case are identical to the plane

strain model; that is, equations (12.3.4) and (12.3.6). However, because of the differences in

the form of Hooke’s law, plane stress theory gives slightly different forms for the displacement

equilibrium equations and stress compatibility relations. However, as we discovered previ-

ously for the isothermal case, differences between plane stress and plane strain occur only in

particular coefficients involving the elastic constants, and by simple interchange of elastic

moduli one theory can be transformed into the other (see Table 7-1). This result also holds for

the thermoelastic case, and the specific transformation rules are given in Table 12-1.

Using these transformation results, the displacement equilibrium equations for plane stress

follow from (12.3.5)

mr2uþ E

2(1� �)

@

@x

@u

@x
þ @v

@y

� �
� E

1� �
a
@T

@x
¼ 0

mr2� þ E

2(1� �)

@

@y

@u

@x
þ @v

@y

� �
� E

1� �
a
@T

@y
¼ 0

(12:3:12)

and the plane stress compatibility relation becomes

r2(sx þ sy)þ Ear2T ¼ 0 (12:3:13)

The boundary conditions for plane stress are similar in form to those of plane strain specified

by relations (12.3.8) and (12.3.9), and these would apply on the lateral edges of the domain.

Reviewing plane strain theory, it is observed that the temperature effect is equivalent to

adding an additional body force �(3lþ 2m)a
@T

@x
to Navier’s equations of equilibrium and

adding a traction term (3lþ 2m)a(T � To)ni to the applied boundary tractions. A similar

statement could be made about the plane stress theory, and in fact this concept can be

generalized to three-dimensional theory.

TABLE 12-1 Elastic Moduli Transformation Relations for Conversion Between
Plane Stress and Plane Strain Thermoelastic Problems

E � a

Plane stress to plane strain E

1� �2
�

1� �
(1þ �)a

Plane strain to plane stress E(1þ 2�)

(1þ �)2
�

1þ �

1þ �

1þ 2�
a
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12.4 Displacement Potential Solution

We now present a general scheme for the solution to the thermoelastic displacement problem.

Although this scheme can be employed for the three-dimensional case (see Timoshenko and

Goodier 1970), only the plane problem will be considered here. We introduce a displacement
potential C, such that the displacement vector is given by

u ¼ =C (12:4:1)

Further details on potential methods are discussed in Chapter 13. Using this representation in

Navier’s equations for plane stress (12.3.12) with no body forces gives the result

@

@x

@2C
@x2

þ @2C
@y2

� �
¼ (1þ �)a

@T

@x

@

@y

@2C
@x2

þ @2C
@y2

� �
¼ (1þ �)a

@T

@y

(12:4:2)

These equations can be integrated to give

@2C
@x2

þ @2C
@y2

¼ (1þ �)aT (12:4:3)

where the constant of integration has been dropped and T denotes the temperature change from

the stress-free reference value. Note for the plane strain case, the coefficient on the temperature

term would become a(1þ �)=(1� �).
The general solution to (12.4.3) can be written as the sum of a particular integral plus the

solution to the homogeneous equation

C ¼ C(p) þC(h) (12:4:4)

with

r2C(h) ¼ 0 (12:4:5)

The particular integral of the Poisson equation (12.4.3) is given by standard methods of

potential theory (see, for example, Kellogg 1953)

C(p) ¼ 1

2p
(1þ �)a

ð ð
R

T(x, Z) log r dxdZ (12:4:6)

where r ¼ [(x� x)2 þ (y� Z)2]1=2 and R is the two-dimensional domain of interest.

The displacement field corresponding to these two solutions may be expressed as

ui ¼ u(p)i þ u(h)i (12:4:7)

It is noted that the homogeneous solution field satisfies the Navier equation
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mu(h)i, kk þ
E

2(1� �)
u(h)k, ki ¼ 0 (12:4:8)

which corresponds to an isothermal problem. The boundary conditions for the solution u(h)i are

determined from the original conditions by subtracting the contributions of the particular

integral solution u(p)i . Thus, with the particular integral known, the general problem is then

reduced to solving an isothermal case.

12.5 Stress Function Formulation

Let us now continue the plane problem formulation and pursue the usual stress function

method of solution. As before, we can introduce the Airy stress function defined by

sx ¼ @2f
@y2

, sy ¼ @2f
@x2

, txy ¼ � @2f
@x@y

(12:5:1)

Recall that this representation satisfies the equilibrium equations identically. Using this form in

the compatibility equation (12.3.13) for the plane stress case gives

r4fþ Ear2T ¼ 0

or

@4f
@x4

þ 2
@4f

@x2@y2
þ @4f

@y4
þ Ea

@2T

@x2
þ @2T

@y2

� �
¼ 0

(12:5:2)

The corresponding equation for plane strain follows by using the transformation relations in

Table 12-1.

The general solution to (12.5.2) can be written in the form f ¼ f(p) þ f(h), where f(h)

satisfies the homogeneous equation

r4f(h) ¼ 0 (12:5:3)

and for plane stress f(p) is a particular solution of the equation

r2f(p) þ EaT ¼ 0 (12:5:4)

A similar result can be obtained for the plane strain case. Note that for the steady state problem,

the temperature field is harmonic, and thus (12.5.2) reduces to the homogeneous equation.

The general traction boundary conditions are expressible as

Tn
x ¼ sxnx þ txyny ¼ @2f

@y2
dy

ds
þ @2f
@x@y

dx

ds
¼ d

ds

@f
@y

� �

Tn
y ¼ txynx þ sxny ¼ � @2f

@x@y

dy

ds
� @2f

@x2
dx

ds
¼ � d

ds

@f
@x

� � (12:5:5)

which are identical to the isothermal relations (10.2.13). Integrating these results over a

particular portion of the boundary C gives
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ð
C

Tn
x dsþ C1 ¼ @f

@yð
C

Tn
y dsþ C2 ¼ � @f

@x

(12:5:6)

where C1 and C2 are arbitrary constants of integration.

Combining this result with the total differential definition df ¼ @f
@x

dxþ @f
@y

dy and inte-

grating over C from 0 to s gives

f(s) ¼ �x

ðs
0

Tn
y dsþ y

ðs
0

Tn
x dsþ

ðs
0

(xTn
y � yTn

x )ds (12:5:7)

where we have dropped constants of integration because they will not contribute to the stress

field. Likewise, using the directional derivative definition df=dn ¼ =f � n gives the result

df
dn

¼ � dx

ds

ðs
0

Tn
x ds�

dy

ds

ðs
0

Tn
y ds ¼ �t � F (12:5:8)

where t is the unit tangent vector to the boundary curve and F is the resultant boundary force.

For many applications, the boundary conditions are simply expressed in terms of specific stress

components, and for the Cartesian case we can use the defining relations (12.5.1) to develop

appropriate conditions necessary to solve the problem.

Note that for the case of zero surface tractions Tn
x ¼ Tn

y ¼ 0, these boundary conditions

imply that

f ¼ df
dn

¼ 0, on the boundary (12:5:9)

For this case under steady state conditions, the solution to the homogeneous formof (12.5.2) is the

trivial solution f � 0. Thus, we can conclude the rather surprising result: For simply connected
regions, a steady temperature distribution with zero boundary tractions will not affect the in-
plane stress field. Note, however, for multiply connected bodies, we must add additional

equations ensuring the single-valuedness of the displacement field. When including these

additional relations, a steady temperature field normally gives rise to in-plane stresses.Additional

information on analysis of multiply connected regions can be found in Kovalenko (1969).

EXAMPLE 12-1: Thermal Stresses in an Elastic Strip

Consider the thermoelastic problem in a rectangular domain as shown in Figure 12-1.We

assume that the vertical dimension of the domain is much larger than the horizontal width

(2a), and thus the regionmay be described as an infinite strip ofmaterial. For this problem,

assume that the temperature is independent of x andgivenbyT ¼ To sinby,whereTo andb
are constants. Note that by using Fourier methods and superposition we could generate a

more general temperature field.

Considering the plane stress case, the governing stress function equation becomes

r4f ¼ EaTob
2 sinby (12:5:10)

Continued
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EXAMPLE 12-1: Thermal Stresses in an Elastic Strip–Cont’d

The particular solution to this equation is easily found to be

f(p) ¼ EaTo
b2

sinby (12:5:11)

For the homogeneous solution we try the separation of variables approach and choose

f(h) ¼ f (x) sin by. Using this form in the homogeneous biharmonic equation gives an

auxiliary equation for the function f (x)

f 0000 � 2b2f 00 þ b4f ¼ 0

The general solution to this differential equation is

f ¼ C1 sinhbxþ C2 cosh bxþ C3x sinh bxþ C4x cosh bx (12:5:12)

Now since the temperature field was symmetric in x, we expect the stresses to also

exhibit the same symmetry. Thus, the stress function must also be symmetric in x and so
C1 ¼ C4 ¼ 0. Combining the particular and homogeneous solutions, the resulting

stresses become

sx ¼ �b2 C2 cosh bxþ C3x sinh bx½ � sin by� EaTo sinby

sy ¼ b2 C2 cosh bxþ C3(x sinh bxþ 2

b
cosh bx)

� �
sin by

txy ¼ �b2 C2 sinh bxþ C3(x cosh bxþ 1

b
sinh bx)

� �
cos by

(12:5:13)

These stress results can then be further specified by employing boundary conditions on

the lateral sides of the strip at x ¼ �a. For example, we could specify stress-free

conditions sx(�a, y) ¼ txy(�a, y) ¼ 0, and this would determine the constants C2

and C3 (see Exercise 12-6).

x

y

aa

FIGURE 12-1 Thermoelastic rectangular strip.
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12.6 Polar Coordinate Formulation

We now wish to list the basic plane thermoelastic equations in polar coordinates. Recall that

the isothermal results were previously given in Section 7.6. Following the same notational

scheme as before, the strain-displacement relations are given by

er ¼ @ur
@r

, ey ¼ ur
r
þ 1

r

@uy
@y

ery ¼ 1

2

1

r

@ur
@y

þ @uy
@r

� uy
r

� � (12:6:1)

For the case of plane stress, Hooke’s law becomes

sr ¼ E

1� �2
[er þ �ey � (1þ �)a(T � To)]

sy ¼ E

1� �2
[ey þ �er � (1þ �)a(T � To)]

try ¼ E

1þ �
ery

(12:6:2)

In the absence of body forces, the equilibrium equations reduce to

@sr
@r

þ 1

r

@try
@y

þ sr � sy
r

¼ 0

@try
@r

þ 1

r

@sy
@y

þ 2try
r

¼ 0

(12:6:3)

The Airy stress function definition now becomes

sr ¼ 1

r

@f
@r

þ 1

r2
@2f

@y2

sy ¼ @2f
@r2

try ¼ � @

@r

1

r

@f
@y

� � (12:6:4)

which again satisfies (12.6.3) identically. The governing stress function equation given previ-

ously by (12:5:2)1 still holds with the Laplacian and biharmonic operators specified by

r2 ¼ @2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@y2

r4 ¼ r2r2 ¼ @2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@y2

� �
@2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@y2

� � (12:6:5)
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12.7 Radially Symmetric Problems

We now investigate some particular thermoelastic solutions to plane stress problems with

radially symmetric fields. For this case we assume that all field quantities depend only on the

radial coordinate; that is, sr ¼ sr(r), sy ¼ sy(r), try ¼ try(r), T ¼ T(r). Similarly, the stress

function also has this reduced dependency, and thus the stresses are specified by

sr ¼ 1

r

df
dr

sy ¼ d2f
dr2

¼ d

dr
(rsr)

try ¼ 0

(12:7:1)

The governing equation in terms of the stress function simplifies to

1

r

d

dr
r
d

dr

1

r

d

dr
r
df
dr

� �� �� �
þ Ea

1

r

d

dr
r
dT

dr

� �
¼ 0 (12:7:2)

This relation can be recast in terms of the radial stress by using (12:7:1)1, giving the result

1

r

d

dr
r
d

dr

1

r

d

dr
r2sr
� 	� �� �

¼ �Ea
1

r

d

dr
r
dT

dr

� �
(12:7:3)

which can be directly integrated to give

sr ¼ C3

r2
þ C2 þ C1

4
(2 log r � 1)� Ea

r2

ð
Trdr (12:7:4)

The constants of integration Ci are normally determined from the boundary conditions, and the

temperature appearing in the integral is again the temperature difference from the reference

state. Note that C1 and C3 must be set to zero for domains that include the origin. Combining

this result with (12:7:1)2 gives the hoop stress, and thus the two nonzero stress components are

determined.

Considering the displacement formulation for the radially symmetric case, ur ¼ u(r) and
uy ¼ 0. Going back to the equilibrium equations (12.6.3), it is observed that the second

equation vanishes identically. Using Hooke’s law and strain-displacement relations in the

first equilibrium equation gives

d

dr

1

r

d

dr
(ru)

� �
¼ (1þ �)a

dT

dr
(12:7:5)

This equation can be directly integrated, giving the displacement solution

u ¼ A1r þ A2

r
þ (1þ �)a

r

ð
Trdr (12:7:6)

where Ai are constants of integration determined from the boundary conditions, and as before T
is the temperature difference from the reference state. The general displacement solution
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(12.7.6) can then be used to determine the strains from relations (12.6.1) and stresses from

Hooke’s law (12.6.2). As found in Section 8.3 for the isothermal case, the stresses developed

from the displacement solution do not contain the logarithmic term found in relation (12.7.4).

Thus, the logarithmic term is inconsistent with single-valued displacements, and further

discussion on this point is given in Section 8.3. We commonly drop this term for most problem

solutions, but an exception to this is given in Exercise 12-11.

EXAMPLE 12-2: Circular Plate Problems

Let us investigate the thermal stress problem in an annular circular plate shown in

Figure 12-2. The solid plate solution is determined as a special case as ri ! 0. The

problem is to be radially symmetric, and we choose stress-free inner and outer boundaries.

After dropping the log term, the general stress solution (12.7.4) gives

sr ¼ C3

r2
þ C2 � Ea

r2

ð
Trdr (12:7:7)

Using the boundary conditions sr(ri) ¼ sr(ro) ¼ 0 determines the two constants C2 and

C3. Incorporating these results, the stresses become

sr ¼ Ea
r2

r2 � r2i
r2o � r2i

ðro
ri

T(x)xdx�
ðr
ri

T(x)xdx
� �

sy ¼ Ea
r2

r2 þ r2i
r2o � r2i

ðr0
ri

T(x)xdxþ
ðr
ri

T(x)xdx� Tr2
� � (12:7:8)

and the corresponding displacement solution is given by

u ¼ a
r

(1þ �)

ðr
ri

T(x)xdxþ (1� �)r2 þ (1þ �)r2i
r2o � r2i

ðro
ri

T(x)xdx
� �

(12:7:9)

Continued

ro

ri

FIGURE 12-2 Annular plate geometry.
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EXAMPLE 12-2: Circular Plate Problems–Cont’d

In order to explicitly determine the stress and displacement fields, the temperature

distribution must be determined. As mentioned, this is calculated from the energy or

conduction equation. Assuming steady state conditions, the conduction equation was

given by (12.1.9), and for the radially symmetric case this reduces to

1

r

d

dr
r
dT

dr

� �
¼ 0 (12:7:10)

This equation is easily integrated directly, giving the solution

T ¼ A1 log r þ A2 (12:7:11)

Choosing thermal boundary conditions T(ri) ¼ Ti, T(ro) ¼ 0, the constants A1 and A2

can be determined, and the temperature solution is obtained as

T ¼ Ti

log
ri
ro

� � log
r

ro

� �
¼ Ti

log
ro
ri

� � log
ro
r


 �
(12:7:12)

For the case Ti > 0, this distribution is shown schematically in Figure 12-3.

Substituting this temperature distribution into the stress solution (12.7.8) gives

sr ¼ EaTi
2 log (ro=ri)

� log
ro
r


 �
� r2i
r2o � r2i

1� r2o
r2

� �
log

ro
ri

� �� �

sy ¼ EaTi
2 log (ro=ri)

1� log
ro
r


 �
� r2i
r2o � r2i

1þ r2o
r2

� �
log

ro
ri

� �� � (12:7:13)

Note for this solution when Ti > 0, sr < 0, and the hoop stress s� takes on maximum

values at the inner and outer boundaries of the plate. For the specific case ro=ri ¼ 3, the

stress distribution through the plate is illustrated in Figure 12-4. For steel material

(E ¼ 200GPa, a ¼ 13� 10�6=�C) with Ti ¼ 100�C, the maximum hoop stress on the

inner boundary is about �174MPa.

T

r
rori

Ti

FIGURE 12-3 Temperature distribution in an annular plate.
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EXAMPLE 12-2: Cont’d

For the case of a thin ring plate where ro 	 ri, we can write ro=ri 	 1þ e, where e is a
small parameter. The logarithmic term can be simplified using

log
ro
ri

� �
	 log (1þ e) 	 e� e2

2
þ e3

3
� � � �

and this yields the following approximation:

sy(ri) 	 �EaTi
2

(1þ e
3
) 	 �EaTi

2

sy(ro) 	 EaTi
2

(1� e
3
) 	 EaTi

2

(12:7:14)

Finally, by allowing the inner radius ri to reduce to zero,weobtain the solution for a solid
circular plate. For this case, the constantC3 in solution (12.7.7) must be set to zero for finite

stresses at the origin. The resulting stress field for zero boundary loading becomes

sr ¼ Ea
1

ro2

ðro
0

Trdr � 1

r2

ðr
0

Trdr

� �

sy ¼ Ea
1

ro2

ðro
0

Trdr þ 1

r2

ðr
0

Trdr � T

� � (12:7:15)

Continued
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FIGURE 12-4 Stress distribution in an annular plate (ro=ri ¼ 3).
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EXAMPLE 12-2: Circular Plate Problems–Cont’d

Casual inspection of the integral term
1

r2

ðr
0

Trdr indicates the possibility of unbounded

behavior at the origin. This term can be investigated using l’Hospital’s rule, and it can

be shown that

lim
r!0

1

r2

ðr
0

Trdr

� �
¼ 1

2
T(0)

Because we expect the temperature at the origin to be finite, this limit then implies that the

stresses will also be finite at r ¼ 0. Using a temperature boundary condition T(ro) ¼ To,
the general solution (12.7.11) predicts a uniform temperature T ¼ To throughout the

entire plate. For this case, relations (12.7.15) give sr ¼ sy ¼ 0, and thus the plate is

stress free. This particular result verifies the general discussion in Section 12.5 that a

steady temperature distribution in a simply connected regionwith zero boundary tractions

gives rise to zero stress. The previous results for plane stress can be easily converted to

plane strain by using the appropriate conversion of elastic constants.

The general thermoelastic plane problem (without axial symmetry) can be developed using

methods of Fourier analysis; see, for example, Boley and Weiner (1960). The results lead to a

similar solution pattern as developed in Section 8.3. Instead of pursuing this development, we

look at the use of complex variable methods for the general plane problem.

12.8 Complex Variable Methods for Plane Problems

We now wish to develop a complex variable technique for the solution to plane problems in

thermoelasticity. As demonstrated in Chapter 10, the complex variable method is a very

powerful tool for solution of two-dimensional problems. Thismethodmay be extended to handle

problems involving thermal stress; see Bogdanoff (1954) and Timoshenko and Goodier (1970).

For the steady state case, the scheme starts by defining a complex temperature

T*(z) ¼ T þ iTI (12:8:1)

where the actual temperature T is the real part of T* and TI is the conjugate of T. As before,
these temperatures actually represent the change with respect to the stress-free reference state.

Further define the integrated temperature function

t*(z) ¼
ð
T*(z)dz ¼ tR þ itI (12:8:2)

Using the Cauchy-Riemann equations,

@tR
@x

¼ @tI
@y

,
@tR
@y

¼ � @tI
@x

(12:8:3)

Note that these results imply that the temperature can be expressed as

T ¼ @tR
@x

¼ @tI
@y

(12:8:4)
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Next decompose the two-dimensional displacement field as

u ¼ u0 þ btR
� ¼ iv0 þ btI

(12:8:5)

where b is a constant to be determined. Substituting these displacements into Hooke’s law

(12.3.3) for plain strain yields the following stress field:

sx ¼ l
@u0

@x
þ @v0

@y

� �
þ 2m

@u0

@x
þ [2b(lþ m)� a(3lþ 2m)]T

sy ¼ l
@u0

@x
þ @v0

@y

� �
þ 2m

@v0

@y
þ [2b(lþ m)� a(3lþ 2m)]T

txy ¼ m
@u0

@y
þ @v0

@x

� � (12:8:6)

By choosing

b ¼ (1þ �)a, plane strain

a, plane stress

�
(12:8:7)

the temperature terms in (12.8.6) are eliminated and thus the problem reduces to the isothermal
case in terms of the displacements u0, v0. This reduction indicates that the general thermo-

elastic plane problem can be formulated in terms of complex variable theory by the relations

sx þ sy ¼ 2 g0(z)þ g0(z)
� 	

sy � sx þ 2itxy ¼ 2 �zzg00(z)þ c0(z)ð Þ
2m(uþ iv) ¼ kg(z)� zg0(z)� c(z)þ 2mbt*(z)

Tn
x þ iTn

y ¼ �i
d

ds
g(z)þ zg0(z)þ c(z)
� 	

(12:8:8)

where we have used many of the relations originally developed in Section 10.2. The material

parameter k was given by (10.2.10) and b is specified in (12.8.7). Thus, the problem is solved

by superposition of an isothermal state with appropriate boundary conditions and a displace-

ment field given by uþ i� ¼ bt*(z). For the nonsteady case, the temperature is no longer

harmonic, and we would have to represent the complex temperature in the more general

scheme T* ¼ T*(z, �zz).

EXAMPLE 12-3: Annular Plate Problem

Consider again the annular plate problem shown in Figure 12-2. Assume a complex

temperature potential of the form

T*(z) ¼ �C
1

z
(12:8:9)

Continued
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EXAMPLE 12-3: Annular Plate Problem–Cont’d

where C is a real constant. The actual temperature field follows as

T ¼ �C Re
1

z

� �
¼ �C

r
cos y (12:8:10)

and it is easily verified that this temperature is a harmonic function, thus indicating a

steady state field. Note that the boundary temperatures on the inner and outer surfaces

for this case become

T(ri) ¼ �C cos y
ri

, T(ro) ¼ �C cos y
ro

and this would have to match with the assumed temperature boundary conditions. Of

course, we could use Fourier superposition methods to handle a more general boundary

distribution. Using relation (12.8.5), it is found that this temperature field produces a

logarithmic term in the displacement distribution, and this leads to a discontinuity when

evaluating the cyclic behavior. This displacement discontinuity must be removed by

adding an additional field with the opposite cyclic behavior. Based on our previous

experience from Chapter 10, we therefore choose an additional field with the following

potentials

g(z) ¼ A log zþ go(z)

c(z) ¼ B log zþ co(z)
(12:8:11)

where go(z) and co(z) are single-valued and analytic in the domain (ri 
 r 
 ro). For
single-valued displacements in the region, we can use equations (12:8:8)3 to evaluate

and set the cyclic displacement to zero, thus giving

kAþ B ¼ 2mbC (12:8:12)

where we have taken A and B to be real.

Again, choosing stress-free boundaries at ri and ro and using results from (10.2.11)

and (10.2.12), we can write

(sr � itry)r¼ri, ro ¼ g0(z)þ g0(z)� e2iy[�zzg00(z)þ c0(z)]
� 	

r¼ri, ro
¼ 0 (12:8:13)

and this is satisfied by potentials with the following properties:

A ¼ B

go(z) ¼ �A
z2

r2i þ r2o

co(z) ¼ �A
r2i r

2
o

z2(r2i þ r2o)

(12:8:14)

Thus, the final form of the potentials becomes
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EXAMPLE 12-3: Cont’d

g(z) ¼ 2mbC
1þ k

log z� z2

r2i þ r2o

� �

c(z) ¼ 2mbC
1þ k

log z� r2i r
2
o

z2(r2i þ r2o)

� � (12:8:15)

The stresses follow from (12.8.8), and the radial stress at y ¼ 0 is given by

srjy¼0 ¼ sx(x, 0) ¼ 4mbC
(1þ k)(r2i þ r2o)

1� r2i
x2

� �
1� r2o

x2

� �
x (12:8:16)

EXAMPLE 12-4: Circular Hole in an Infinite Plane
Under Uniform Heat Flow

We now investigate the localized thermal stresses around a traction-free circular cavity

in a plane of infinite extent. The thermal loading is taken to be a uniform heat flow q in

the vertical direction, and the circular hole is to be insulated from heat transfer. The

plane stress problem shown in Figure 12-5 was originally solved by Florence and

Goodier (1959). Such problems have applications to stress concentration and thermal

fracture in structures carrying high thermal gradients.

If the plane had no hole, the temperature distribution for uniform heat flow in the

negative y direction would be T ¼ qy=k. The presence of the insulated hole locally

disturbs this linear distribution. This arises from the thermal boundary condition on

r ¼ a given by the Fourier conduction law (12.1.2)

qn(a, y) ¼ �k
@T

@r
(a, y) ¼ 0 (12:8:17)

where we have introduced the usual polar coordinates. The form of the complex tempera-

ture follows from theory discussed in Chapter 10. A far-field behavior term is added to a

Continued

x

y

q

a

FIGURE 12-5 Flow of heat around a circular hole in an infinite plane.
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EXAMPLE 12-4: Circular Hole in an Infinite Plane
Under Uniform Heat Flow–Cont’d

series form, which is analytic in the region exterior to the circular hole to form the

expression

T*(z) ¼ � iqz

k
þ
X1
n¼1

anz
�n (12:8:18)

Applying boundary condition (12.8.17) determines the coefficients an and gives the

final form

T*(z) ¼ � iq

k
z� a2

z

� �
(12:8:19)

which yields the actual temperature field

T(r, y) ¼ q

k
r þ a2

r

� �
sin y (12:8:20)

This solution can also be determined using separation of variables and Fourier methods

on the heat conduction equation (12.1.9) in polar coordinates; see Exercise 12-16.

Using (12:8:8)3, the displacements resulting from this temperature distribution are

(uþ iv) ¼ b
ð
T*(z)dz ¼ � iqa

k

z2

2
� a2 log z

� �
(12:8:21)

Evaluating the cyclic function of this complex displacement around a contour C
enclosing the hole, we find

[(uþ iv)]C ¼ � iqa
k

z2

2
� a2 log z

� �
C

¼ � 2qapa2

k
(12:8:22)

Thus, this temperature field creates a displacement discontinuity, and this must be

annulled by superimposing an isothermal dislocation solution that satisfies zero trac-

tions on r ¼ a, with stresses that vanish at infinity. It can be shown that these conditions
are satisfied by potentials of the following form:

g(z) ¼ A log z

c(z) ¼ �A
a2

z2
þ log zþ 1

� �
(12:8:23)

with A ¼ � 2imqa2a
(1þ k)k

Using our previous polar coordinate stress combinations (10.2.12), we find

sr þ sy ¼ �Eaqa2

kr
sin y

sy � sr þ 2itry ¼ �Eaqa4

kr3
sin yþ i

Eaqa
k

a

r
� a3

r3

� �
cos y

(12:8:24)
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and the individual stresses then become

sr ¼ � 1

2

Eaqa
k

a

r
� a3

r3

� �
sin y

sy ¼ � 1

2

Eaqa
k

a

r
þ a3

r3

� �
sin y

try ¼ 1

2

Eaqa
k

a

r
� a3

r3

� �
cos y

(12:8:25)

The largest stress is given by the hoop stress on the boundary of the hole

smax ¼ sy(a, y) ¼ �Eaqa
k

sin y (12:8:26)

Notice that this expression takes on maximum values of �Eaqa=k at y ¼ �p=2 and

predicts a maximum compressive stress on the hot side of the hole y ¼ p=2 and

maximum tensile stress on the cold side y ¼ �p=2. For the case of a steel plate with

properties E ¼ 200GPa and a ¼ 13� 10�6=�C), and with qa=k ¼ 100�C, the max-

imum stress is 260MPa.

EXAMPLE 12-5: Elliptical Hole in an Infinite Plane
Under Uniform Heat Flow

Similar to the previous example, we now investigate the localized thermal stresses

around a traction-free elliptical hole (with semiaxes a and b) in a plane of infinite extent
as shown in Figure 12-6. The thermal loading is again taken to be a uniform heat flow q
in the vertical direction, and the hole is to be insulated from heat transfer. The plane

Continued

x

y

q

ab

FIGURE 12-6 Flow of heat around an elliptical hole in an infinite plane.
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EXAMPLE 12-5: Elliptical Hole in an Infinite Plane
Under Uniform Heat Flow–Cont’d

stress solution to this problem again comes from the work of Florence and Goodier

(1960) who solved the more general case of an ovaloid hole with heat flow at an

arbitrary angle. This problem is solved by complex variable methods employing

conformal transformation (see Section 10.7).

As discussed in Chapter 10, conformal mapping provides a very useful tool for this

type of problem, and the appropriate mapping function

z ¼ w(z) ¼ R zþ m

z

� �
(12:8:27)

transforms the region exterior to the unit circle in the z-plane onto the region exterior to
the ellipse in the z-plane. The ellipse major and minor axes are related to the mapping

parameters by 2Rm ¼ a� b and 2R ¼ aþ b. As before, in the transformed plane,

z ¼ reiy.
From our previous example, the temperature distribution for heat flow around an

insulated circular hole of unit radius in the z-plane may be written as

T ¼ q

k
R rþ 1

r

� �
sin y (12:8:28)

The complex temperature corresponding to this result is

T*(z) ¼ � q

k
iR z� 1

z

� �
(12:8:29)

Again, this temperature field creates a dislocation in the displacement. Following

similar steps as in equations (12.8.21) and (12.8.22), the cyclic function of the complex

temperature displacement is given by

[(uþ iv)]C ¼ a
ð
T*(z)dz

� �
C

¼ � 2qapR2

k
(1þ m) (12:8:30)

where C is the counterclockwise contour around the unit circle enclosing the origin.

Employing conformal transformation, relations (10.7.5) through (10.7.7) can be used

to determine the stresses, displacements, and tractions in the z-plane. As in the previous
example, we now wish to superimpose an isothermal state having equal but opposite

dislocation behavior as (12.8.30), with zero tractions on the hole boundary and vanishing

stresses at infinity. The appropriate potentials that satisfy these conditions are given by

g(z) ¼ A log z

c(z) ¼ �AA log z� A
1þ mz2

z2 � m

with A ¼� EaqR2i

4k
(1þ m)

(12:8:31)

Using relations (10.7.5), the stresses in the z-plane become
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sr ¼ � Eaqa
2kh(y)

r(r2 þ m)[r4 � r2(1þ m2)þ m2] sin y

sy ¼ � Eaqa
2kh(y)

r(r2 þ m){[r4 þ r2(1þ m)2 þ m2] sin y� 2r2m sin 3y}

try ¼ Eaqa
2kh(y)

r(r2 � m)[r4 � r2(1þ m2)þ m2] cos y

(12:8:32)

where h(y) ¼ [r4 � 2r2m cos 2yþ m2]2. It can be shown that the circular hole case is

found by setting m ¼ 0, and the stresses will reduce to those given in the previous

example in equations (12.8.25). Another interesting special case is given by m ¼ 1,

which corresponds to the elliptical hole reducing to a line crack of length 2a along the

x-axis. For this case the heat flow is perpendicular to the crack, and the stresses become

sr ¼ � Eaqa
2kh(y)

r(r2 þ 1)[r4 � 2r2 þ 1] sin y

sy ¼ � Eaqa
2kh(y)

r(r2 þ 1){[r4 þ 4r2 þ 1] sin y� 2r2 sin 3y}

try ¼ Eaqa
2kh(y)

r(r2 � 1)[r4 � 2r2 þ 1] cos y

(12:8:33)

with h(y) ¼ [r4 � 2r2 cos 2yþ 1]2. On the surface of the crack (r ¼ 1), the hoop stress

becomes

sy(1, y) ¼ �Eaqa
2k

3 sin y� sin 3y
(1� cos 2y)2

¼ � Eaqa
2k sin y

(12:8:34)

and as expected this stress becomes unbounded at the ends of the crack at y ¼ 0, p.
Another interesting result for this case occurs with the shear stress behavior along the

positive x-axis (y ¼ 0)

tpy(r, 0) ¼ Eaqa
2k

r
r2 � 1

(12:8:35)

We again observe that this stress component becomes infinite at the crack tip when

r ¼ 1. As mentioned, Florence and Goodier (1960) solved the more general problem of

an ovaloid hole for which the elliptical cavity is a special case. Deresiewicz (1961)

solved the general thermal stress problem of a plate with an insulated hole of arbitrary

shape and worked out solution details for a triangular hole under uniform heat flow. For

the anisotropic case, Sadd and Miskioglu (1978) and Miskioglu (1978) have investi-

gated the problem of an insulated elliptical hole in an anisotropic plane under unidirec-

tional heat flow. Sih (1962) has investigated the singular nature of the thermal stresses at

crack tips. He showed that the usual 1=
ffiffi
r

p
singularity also exists for this case and that

the stress intensity factors (see Equation (10.8.7)) are proportional to the temperature

gradient.
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Exercises

12-1. Using the assumption for isotropic materials that a temperature change produces

isotropic thermal strains of the form a(T � To)dij, develop relations (12.1.6).

12-2. For the general three-dimensional thermoelastic problem with no body forces,

explicitly develop the Beltrami-Michell compatibility equations

sij, kk þ 1

(1þ �)
skk, ij þ Ea

1þ �
(T, ij þ 1þ �

1� �
dijT, kk) ¼ 0

12-3. If an isotropic solid is heated nonuniformly to a temperature distribution T(x, y, z) and
the material has unrestricted thermal expansion, the resulting strains will be eij ¼ aTdij.
Show that this case can only occur if the temperature is a linear function of the

coordinates; that is,

T ¼ axþ byþ czþ d

12-4. Express the traction boundary condition (12.3.8) in terms of displacement and

temperature for the plane stress problem.

12-5. Develop the compatibility equations for plane strain (12.3.7) and plane stress (12.3.13).

12-6*. Explicitly develop the stress field equations (12.5.13) in Example 12-1 and determine

the constants C2 and C3 for the case of stress-free edge conditions. Plot the value of sy
through the thickness (versus coordinate x) for both high-temperature ( sin by ¼ 1) and

low-temperature ( sin by ¼ �1) cases.
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12-7. For the radially symmetric case, verify that the governing stress function equation can

be expressed as (12.7.2). Integrate this equation and verify the general solution

(12.7.4).

12-8. Verify the equilibrium equation in terms of displacement (12.7.5) for the radially

symmetric case and then develop its general solution (12.7.6).

12-9. Consider the axisymmetric plane strain problem of a solid circular bar of radius a with

a constant internal heat generation specified by ho. The steady state conduction

equation thus becomes

@2T

@r2
þ 1

r

@T

@r
þ ho ¼ 0

Using boundary condition T(a) ¼ To, determine the temperature distribution, and then

calculate the resulting thermal stresses for the case with zero boundary stress. Such

solutions are useful to determine the thermal stresses in rods made of radioactive

materials.

12-10. Using the general displacement solution, solve the thermoelastic problem of a solid

circular elastic plate with a restrained boundary edge at r ¼ a. For the case of a

uniform temperature distribution, show that the displacement and stress fields are zero.

12-11. Consider the thermal stress problem in a circular ring as shown in the figure. Assuming

the temperature and stress fields depend only on the radial coordinate r, the general
solution is given by (12.7.4). If the surfaces r ¼ a and r ¼ b are to be stress free, show
that the solution can be written as

sr ¼ A1

r2
þ A2

a2
(2 log

r

a
þ 1)þ 2A3

a2
� Ea

r2

ðr
a

Trdr

for appropriate constants Ai. Note for this type of problem the logarithmic term is

retained as long as the ring is only a segment and not a full ring. For this case the

displacements at each end section need not be continuous.

a

b

r

12-12. Consider the thermoelastic problem in spherical coordinates (R,f, y); see Figure 1-6.
For the case of spherical symmetry where all field quantities depend only on the radial

coordinate R, develop the general solution
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uR ¼ 1þ �

1� �
a
1

R2

ðR
Tx2dxþ C1Rþ C2

R2

sR ¼ � 2aE
1� �

1

R3

ðR
Tx2dxþ EC1

1� 2�
� 2EC2

1þ �

1

R3

sf ¼ sy ¼ aE
1� �

1

R3

ðR
Tx2dxþ EC1

1� 2�
þ EC2

1þ �

1

R3
� aET
1� �

Note that any convenient lower limit may be placed on the integral terms to aid in

problem solution.

12-13. Use the general solution of Exercise 12-12 to solve the thermal stress problem of a

hollow thick-walled spherical shell (a 
 R 
 b) with stress-free boundary conditions.

Assume that the problem is steady state with temperature conditions T(a) ¼ Ti,
T(b) ¼ 0, and show that the solution becomes

T ¼ Tia

b� a

b

R
� 1

� �

sR ¼ aETi
1� �

ab

b3 � a3
aþ b� 1

R
(b2 þ abþ a2)þ a2b2

R3

� �

sf ¼ sy ¼ aETi
1� �

ab

b3 � a3
aþ b� 1

2R
(b2 þ abþ a2)� a2b2

2R3

� �

For the case of a thin spherical shell, let b ¼ a(1þ "), where " is a small parameter.

Show that using this formulation, the hoop stresses at the inner and outer surfaces

become

sf ¼ sy ¼ aETi
2(1� �)

�1� 2

3
"

� �

and if we neglect the " term, these values match those of the cylindrical shell given by

relations (12.7.14).

12-14. Explicitly develop relations (12.8.6) and verify that by using the value of b given in

(12.8.7) the temperature terms will drop out of these relations.

12-15. For Example 12-3, verify that the potentials go(z), co(z) given by relations (12.8.14)

satisfy the stress-free boundary conditions on the problem.

12-16. Using separation of variables and Fourier methods, solve the conduction equation and

verify that the temperature distribution (12.8.20) in Example 12-4 does indeed satisfy

insulated conditions on the circular hole and properly matches conditions at infinity.

12-17. For Example 12-4, explicitly develop the stresses (12.8.25) from the complex

potentials given by equation (12.8.23).

12-18*. Plot the isotherms (contours of constant temperature) for Examples 12-4 and 12-5.

12-19. For the elliptical hole problem in Example 12-5, show that by letting m ¼ 0, the stress

results will reduce to those of the circular hole problem given in Example 12-4.
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12-20*. In Example 12-5, show that the dimensionless hoop stress around the boundary of the

hole is given by

�ssy ¼ sy
Eaqa=k

¼ � (1þ m)[(1þ mþ m2) sin y� m sin 3y]
(1� 2m cos 2yþ m2)2

For the cases m ¼ 0,� 1⁄2 ,�1, plot and compare the behavior of �ssy versus y
(0 
 y 
 2p).

12-21. Show that for the plane anisotropic problem, the heat-conduction equation for

uncoupled steady state conditions is given by

kxx
@2T

@x2
þ 2kxy

@2T

@x@y
þ kyy

@2T

@y2
¼ 0

Looking for solutions that are of the form T¼ F (x þ ly), show that this leads to the

quadratic characteristic equation

kyyl
2 þ 2kxylþ kxx ¼ 0

Using the fact that kxxkyy > kxy
2, demonstrate that the two roots to this equation will be

complex conjugate pairs; therefore, since the temperature must be real, the final form

of the solution will be

T ¼ 2Re{F(z*)}

where z*¼ x þ ly. This problem is mathematically similar to Exercise 11-15.
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13 Displacement Potentials
and Stress Functions

We nowwish to investigate the method of potentials to generate solutions to elasticity problems.

Several different potential techniques have been developed in order to solve problems within

both displacement and stress formulations. Methods related to the displacement formulation

include the scalar and vector potentials from theHelmholtz decomposition,Galerkin vector, and
Papkovich-Neuber functions. These schemes provide general solution forms for Navier’s equa-

tions. Potentials used in the stress formulation are those related to theMaxwell andMorera stress
functions, and these lead toAiry and other common stress functions that we have already used for

the solution of particular elasticity problems. As previously observed, these stress functions

normally satisfy the equilibrium equations identically and when combined with the compatibil-

ity relations they yield a simpler and more tractable system of equations.

For either displacement or stress formulations, these solution schemes bring up the ques-

tion—are all solutions of elasticity expressible by the particular potential representation? This
issue is normally referred to as the completeness of the representations, and over the past

several decades these theoretical questions have generally been answered in the affirmative.

For many cases these approaches are useful to solve particular three-dimensional elasticity

problems, and we will investigate several such solutions. Some potential methods are also

particularly useful in formulating and solving dynamic elasticity problems involving wave

propagation (see Fung 1965 or Graff 1991).

13.1 Helmholtz Displacement Vector Representation

A useful relation called the Helmholtz theorem states that any sufficiently continuous vector

field can be represented as the sum of the gradient of a scalar potential plus the curl of a vector

potential. Using this representation for the displacement field, we can write

u ¼ =fþ =� w (13:1:1)

where f is the scalar potential and w is the vector potential. The gradient term in the decom-

position has a zero curl and is referred to as the lamellar or irrotational part, while the curl
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term in (13.1.1) has no divergence and is called solenoidal. Note that this representation

specifies three displacement components in terms of four potential components, and further-

more the divergence of w is arbitrary. In order to address these problems, it is common to

choose w with zero divergence; that is,

= � w ¼ 0 (13:1:2)

It can be easily shown that the volume dilatation W and the rotation vectorv are related to these

potentials by

W ¼ ekk ¼ f, kk, !i ¼ � 1

2
ji, kk (13:1:3)

General solutions of these relations can be determined (see Fung 1965), and thus the scalar and

vector potentials can be expressed in terms of the displacement field.

Using representation (13.1.1) in the general three-dimensional Navier equations (5.4.4),

we find

(lþ 2m)=(r2f)þ m=� (r2w)þ F ¼ 0 (13:1:4)

Notice that if the divergence and curl are taken of the previous equation with zero body forces,

the following relations are generated

r2r2f ¼ r4f ¼ 0, r2r2w ¼ r4w ¼ 0 (13:1:5)

and thus we find that both potential functions are biharmonic functions. Further reduction of

(13.1.4) will now be made for specific applications.

13.2 Lamé’s Strain Potential

It is noted that for the case of zero body forces, special solutions of (13.1.4) occur with

r2f ¼ constant and r2w ¼ constant. We consider the special case with

r2f ¼ constant, w ¼ 0 (13:2:1)

Because our goal is to determine simply a particular solution, we can choose the constant to be

zero, and thus the potential f will be a harmonic function. For this case, the displacement

representation is commonly written as

2mui ¼ f, i (13:2:2)

and the function f is called Lamé’s strain potential. Using this form, the strains and stresses

are given by the simple relations

eij ¼ 1

2m
f, ij

sij ¼ f, ij

(13:2:3)
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In Cartesian coordinates, these expressions would give

u ¼ 1

2m
@f
@x

, v ¼ 1

2m
@f
@y

, w ¼ 1

2m
@f
@z

ex ¼ 1

2m
@2f
@x2

, ey ¼ 1

2m
@2f
@y2

, � � �

sx ¼ @2f
@x2

, sy ¼ @2f
@y2

, txy ¼ @2f
@x@y

, � � �

(13:2:4)

Thus, for this case any harmonic function can be used for Lamé’s potential. Typical forms of

harmonic functions are easily determined, and some examples include

x2 � y2, xy, rn cos ny, log r,
1

R
, log (Rþ z)

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, y ¼ tan�1 y

x
, R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p (13:2:5)

13.3 Galerkin Vector Representation

In the previous sections, the displacement vector was represented in terms of first derivatives

of the potential functions f and w. Galerkin (1930) showed that it is also useful to represent the
displacement in terms of second derivatives of a single vector function. The proposed repre-

sentation is given by

2mu ¼ 2(1� �)r2V � =(= � V) (13:3:1)

where the potential function V is called the Galerkin vector. Substituting this form into

Navier’s equation gives the result

r4V ¼ � F

1� �
(13:3:2)

Note that for the case of zero body forces, the Galerkin vector is biharmonic. Thus, we have

reduced Navier’s equation to a simpler fourth-order vector equation.

By comparing the representations given by (13.1.1) with that of (13.3.1), the Helmholtz

potentials can be related to the Galerkin vector by

f ¼ 1� 2�

2m
(= � V), w ¼ � 1� �

m
(=� V) ð13:3:3Þ

Notice that if V is taken to be harmonic, then the curl of w will vanish and the scalar potential

f will also be harmonic. This case then reduces to Lamé’s strain potential presented in the

previous section. With zero body forces, the stresses corresponding to the Galerkin representa-

tion are given by
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sx ¼ 2(1� �)
@

@x
r2Vx þ �r2 � @2

@x2

� �
= � V

sy ¼ 2(1� �)
@

@y
r2Vy þ �r2 � @2

@y2

� �
= � V

sz ¼ 2(1� �)
@

@z
r2Vz þ �r2 � @2

@z2

� �
= � V

txy ¼ (1� �)
@

@y
r2Vx þ @

@x
r2Vy

� �
� @2

@x@y
= � V

tyz ¼ (1� �)
@

@z
r2Vy þ @

@y
r2Vz

� �
� @2

@y@z
= � V

tzx ¼ (1� �)
@

@x
r2Vz þ @

@z
r2Vx

� �
� @2

@z@x
= � V

(13:3:4)

As previously mentioned, for no body forces the Galerkin vector must be biharmonic. In

Cartesian coordinates, the general biharmonic vector equation would decouple, and thus each

component of the Galerkin vector would satisfy the scalar biharmonic equation. However, in

curvilinear coordinate systems (such as cylindrical or spherical), the unit vectors are functions

of the coordinates, and this will not in general allow such a simple decoupling. Equation

(1.9.18) provides the general form for the Laplacian of a vector, and the expression for polar

coordinates is given in Example 1-5 by relation (1:9:21)7. Therefore, in curvilinear coordinates
the individual components of the Galerkin vector do not necessarily satisfy the biharmonic

equation. For cylindrical coordinates, only the z component of the Galerkin vector satisfies the

biharmonic equation, while the other components satisfy a more complicated fourth-order

partial differential equation; see Exercise 13-8 for details.

Before moving on to specific applications, we investigate a few useful relationships dealing

with harmonic and biharmonic functions. Consider the following identity:

r2(xf ) ¼ xr2f þ 2
@f

@x

Taking the Laplacian of this expression gives

r4(xf ) ¼ r2 xr2f
� �þ 2

@

@x
(r2f )

and thus if f is harmonic, the product xf is biharmonic. Obviously, for this result the coordinate x
could be replaced by y or z. Likewise we can also show by standard differentiation that the

product R2f will be biharmonic if f is harmonic, where R2 ¼ x2 þ y2 þ z2. Using these results,

we can write the following generalized representation for a biharmonic function g as

g ¼ fo þ x f1 þ y f2 þ z f3 þ 1

2
R2f4 (13:3:5)

where fi are arbitrary harmonic functions. It should be pointed out that not all of the last four

terms of (13.3.5) are independent.

Consider now the special Galerkin vector representation where only the z component of V is

nonvanishing; that is, V ¼ Vzez. For this case, the displacements are given by
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2mu ¼ 2(1� �)r2Vzez � =
@Vz

@z

� �
(13:3:6)

With zero body forces, Vz will be biharmonic, and this case is commonly referred to as Love’s
strain potential. A special case of this form was introduced by Love (1944) in studying solids

of revolution under axisymmetric loading.

For this case the displacements and stresses in Cartesian coordinates become

2mu ¼ � @2Vz

@x@z
, 2mv ¼ � @2Vz

@y@z
, 2mw ¼ 2(1� �)r2Vz � @2Vz

@z2

sx ¼ @

@z
�r2 � @2

@x2

� �
Vz, txy ¼ � @3Vz

@x@y@z

sy ¼ @

@z
�r2 � @2

@y2

� �
Vz, tyz ¼ @

@y
(1� �)r2 � @2

@z2

� �
Vz

sz ¼ @

@z
(2� �)r2 � @2

@z2

� �
Vz, tzx ¼ @

@x
(1� �)r2 � @2

@z2

� �
Vz

(13:3:7)

The corresponding relations in cylindrical coordinates are given by

2mur ¼ � @2Vz

@r@z
, 2muy ¼ � 1

r

@2Vz

@y@z
, 2muz ¼ 2(1� �)r2Vz � @2Vz

@z2

sr ¼ @

@z
�r2 � @2

@r2

� �
Vz, try ¼ � @3

@r@y@z
Vz

r

� �

sy ¼ @

@z
�r2 � 1

r

@

@r
� 1

r2
@2

@y2

� �
Vz, tyz ¼ 1

r

@

@y
(1� �)r2 � @2

@z2

� �
Vz

sz ¼ @

@z
(2� �)r2 � @2

@z2

� �
Vz, tzr ¼ @

@r
(1� �)r2 � @2

@z2

� �
Vz

(13:3:8)

We now consider some example applications for axisymmetric problems where the field

variables are independent of y.

EXAMPLE 13-1: Kelvin’s Problem: Concentrated Force
Acting in the Interior of an Infinite Solid

Consider the problem (commonly referred to as Kelvin’s problem) of a single concen-

trated force acting at a point in the interior of an unbounded elastic solid. For conveni-

ence we choose a coordinate system such that the force is applied at the origin and acts

in the z direction (see Figure 13-1). The general boundary conditions on this problem

would require that the stress field vanish at infinity, be singular at the origin, and give

the resultant force system Pez on any surface enclosing the origin.

The symmetry of the problem suggests that we can choose the Love/Galerkin

potential as an axisymmetric form Vz(r, z). In the absence of body forces, this function

is biharmonic, and using the last term in representation (13.3.5) with f4 ¼ 1=R gives the

trial potential

Continued
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EXAMPLE 13-1: Kelvin’s Problem: Concentrated Force
Acting in the Interior of an Infinite Solid–Cont’d

Vz ¼ AR ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
(13:3:9)

where A is an arbitrary constant to be determined. We shall now show that this potential

produces the correct stress field for the concentrated force problem under study.

x
y

z

P

x
y

z

P

Resultant Boundary
Condition Evaluation

FIGURE 13-1 Kelvin’s problem: concentrated force in an infinite medium.

The displacement and stress fields corresponding to the proposed potential follow

from relations (13.3.8)

mur ¼ Arz

R3
, 2muy ¼ 0, 2muz ¼ A

2(1� 2�)

R
þ 1

R
þ z2

R3

� �

sr ¼ A
(1� 2�)z

R3
� 3r2z

R5

� �
, try ¼ 0

sy ¼ A
(1� 2�)z

R3
, tyz ¼ 0

sz ¼ �A
(1� 2�)z

R3
þ 3z3

R5

� �
, tzr ¼ �A

(1� 2�)r

R3
þ 3rz2

R5

� �
(13:3:10)

Clearly, these stresses (and displacements) are singular at the origin and vanish at

infinity. To analyze the resultant force condition, consider an arbitrary cylindrical

surface enclosing the origin as shown in Figure 13-1. For convenience, we choose the

cylinder to be bounded at z ¼ �a and will let the radius tend to infinity. Invoking

vertical equilibrium, we can write

ð1
0

2prsz(r, a)dr �
ð1
0

2prsz(r,�a)dr þ
ða
�a

2prtrz(r, z)dzþ P ¼ 0 (13:3:11)

The first two terms in (13.3.11) can be combined, and in the limit as r ! 1 the third

integral is found to vanish, thus giving
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EXAMPLE 13-1: Cont’d

P ¼ �2

ð1
a

2pRsz(r, a)dR

¼ 4pA (1� 2�)a

ð1
a

RdR

R3
þ 3a3

ð1
a

RdR

R5

� �
¼ 8p(1� �)A

(13:3:12)

The constant is now determined and the problem is solved. Of course, the stress field is

linearly related to the applied loading, and typically for such three-dimensional prob-

lems the field also depends on Poisson’s ratio.

EXAMPLE 13-2: Boussinesq’s Problem: Concentrated Force
Acting Normal to the Free Surface of a Semi-Infinite Solid

Several other related concentrated force problems can be solved by displacement

potential methods. For example, consider Boussinesq’s problem of a concentrated

force acting normal to the free surface of a semi-infinite solid, as shown in Figure 13-2.

Recall that the corresponding two-dimensional problem was solved in Section 8.4.7

(Flamant’s problem) and later using complex variables in Example 10-5.

This problem can be solved by combining a Galerkin vector and Lamé’s strain

potential of the forms

Vx ¼ Vy ¼ 0, Vz ¼ AR

f ¼ B log (Rþ z)
(13:3:13)

Using similar methods as in the previous example, it is found that the arbitrary constants

become

A ¼ P

2p
, B ¼ � (1� 2�)P

2p
(13:3:14)

The displacements and stresses are easily calculated using (13.2.4) and (13.3.7); see

Exercise 13-9.

FIGURE 13-2 Boussinesq’s problem: normal force on the surface of a half space.
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EXAMPLE 13-3: Cerruti’s Problem: Concentrated Force Acting
Parallel to the Free Surface of a Semi-Infinite Solid

Another related example is Cerruti’s problem of a concentrated force acting parallel to

the free surface of an elastic half space (see Figure 13-3). For convenience, the force is

chosen to be directed along the x-axis as shown. Although this problem is not axisym-

metric, it can be solved by combining a particular Galerkin vector and Lamé’s strain

potential of the following forms:

Vx ¼ AR, Vy ¼ 0, Vz ¼ Bx log (Rþ z)

f ¼ Cx

Rþ z

(13:3:15)

Again, using methods from the previous examples, the constants are found to be

A ¼ P

4p(1� �)
, B ¼ (1� 2�)P

4p(1� �)
, C ¼ (1� 2�)P

2p
(13:3:16)

The displacements and stresses follow from relations (13.2.4) and (13.3.7); see

Exercise 13-10.

13.4 Papkovich-Neuber Representation

Using scalar and vector potential functions, another general solution to Navier’s equations was

developed by Papkovich (1932) and later independently by Neuber (1934). The completeness

of this representation was shown by Eubanks and Sternberg (1956), and thus all elasticity

solutions are representable by this scheme. We outline the development of this solution by first

writing Navier’s equation in the form

r2uþ 1

1� 2�
= (= � u) ¼ �F

m
(13:4:1)

FIGURE 13-3 Cerruti’s problem: tangential force on the surface of a half space.
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Using the Helmholtz representation (13.1.1) and relation (13.1.3), this previous equation can

be written as

r2[uþ 1

(1� 2�)
=f] ¼ �F

m
(13:4:2)

Define the vector term in the brackets as

h ¼ uþ 1

(1� 2�)
=f (13:4:3)

We note that

r2h ¼ �F=m, = � h ¼ 2(1� �)

1� 2�
r2f (13:4:4)

Using the identity r2(R � h) ¼ R � r2hþ 2(= � h), it can be shown that

= � h ¼ 1

2
r2(R � h)þ R � F

m

� �
(13:4:5)

Combining results (13.4.5) with (13.4.4) gives

r2 2(1� �)

1� 2�
f� 1

2
R � h

� �
¼ R � F

2m
(13:4:6)

Defining the term in brackets by scalar h, we get

r2h ¼ R � F
2m

(13:4:7)

Using the definition of h, we can eliminate f from relation (13.4.3) and obtain an expression

for the displacement vector.

Redefining new scalar and vector potentials in terms of h and h, we can write

2mu ¼ A� = Bþ A � R
4(1� �)

� �
(13:4:8)

where

r2A ¼ �2F, r2B ¼ R � F
2(1� �)

(13:4:9)

This general displacement representation is the Papkovich-Neuber solution of Navier’s equa-

tions. For the case with zero body forces, the two potential functions A and B are harmonic.

The four individual functions Ax, Ay, Az, and B, however, are not all independent, and it can

be shown that for arbitrary three-dimensional convex regions, only three of these functions are
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independent. Note that a convex region is one in which any two points in the domain may be

connected by a line that remains totally within the region.

Comparing the Galerkin vector representation (13.3.1) with the Papkovich solution

(13.4.8), it is expected that a relationship between the two solution types should exist, and it

can be easily shown that

A ¼ 2(1� �)r2V, B ¼ = � V � A � R
4(1� �)

(13:4:10)

As with the Galerkin vector solution, it is convenient to consider the special case of axisym-

metry where

Ar ¼ Ay ¼ 0, Az ¼ Az(r, z), B ¼ B(r, z)

with r2B ¼ 0 and r2Az ¼ 0
(13:4:11)

For this axisymmetric case, B and Az are commonly called the Boussinesq potentials, and as

before with zero body forces they are harmonic functions.

EXAMPLE 13-4: Boussinesq’s Problem Revisited

We consider again the problem shown previously in Figure 13-2 of a concentrated

force acting normal to the stress-free surface of a semi-infinite solid. Because the

problem is axisymmetric, we use the Boussinesq potentials defined by (13.4.11).

These potentials must be harmonic functions of r and z, and using (13.2.5), we try the

forms

Az ¼ C1

R
, B ¼ C2 log (Rþ z) (13:4:12)

where C1 and C2 are constants to be determined.

The boundary conditions on the free surface require that sz ¼ trz ¼ 0 everywhere

except at the origin, and that the summation of the total vertical force be equal to P.
Calculation of these stresses follows using the displacements from (13.4.8) in Hooke’s

law, and the result is

sz ¼ � 3C1z
3

4(1� �)R5

trz ¼ r

R3
C2 � (1� 2�)

4(1� �)
C1 � 3C1z

2

4(1� �)R2

� � (13:4:13)

Note that the expression for sz vanishes on z ¼ 0, but is indeterminate at the origin, and

thus this relation will not directly provide a means to determine the constant C1. Rather

than trying to evaluate this singularity at the origin, we pursue the integrated condition

on any typical plane z ¼ constant
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EXAMPLE 13-4: Cont’d

P ¼ �
ð1
0

sz(r, z) 2prdr (13:4:14)

Invoking these boundary conditions determines the two constants

C1 ¼ 2(1� �)

p
P, C2 ¼ (1� 2�)

2p
P (13:4:15)

The results for the displacements and stresses are given by

ur ¼ P

4pmR
rz

R2
� (1� 2�)r

Rþ z

� �

uz ¼ P

4pmR
2(1� �)þ z2

R2

� �
uy ¼ 0

(13:4:16)

sr ¼ P

2pR2
� 3r2z

R3
þ (1� 2�)R

Rþ z

� �

sy ¼ (1� 2�)P

2pR2

z

R
� R

Rþ z

� �

sz ¼ � 3Pz3

2pR5
, trz ¼ � 3Prz2

2pR5

(13:4:17)

Many additional problems can be solved using the Papkovich method, and some of these

are given in the exercises. This technique also is used in Chapter 15 to generate solutions for

many singular stress states employed in micromechanics modeling.

An interesting connection can be made for the two-dimensional case between the Papko-

vich-Neuber scheme and the complex variable method discussed in Chapter 10. For the case of

plane deformation in the x, y-plane, we choose

Ax ¼ Ax(x, y), Ay ¼ Ay(x, y), Az ¼ 0, B ¼ B(x, y) (13:4:18)

Using the general representation (13.4.8), it can be shown (see Exercise 13-16) that for the

plane strain case

2m(uþ iv) ¼ (3� 4�)g(z)� zg0(z)� c(z) (13:4:19)

with appropriate selection of g(z) and c(z) in terms of Ax, Ay, and B. It is noted that this form

is identical to (10.2.9) found using the complex variable formulation.

Displacement Potentials and Stress Functions 375



A convenient summary flow chart of the various displacement functions discussed in this

chapter is shown in Figure 13-4. The governing equations in terms of the particular potential

functions are for the zero body force case. Chou and Pagano (1967) provide additional tables

for displacement potentials and stress functions.

13.5 Spherical Coordinate Formulations

The previous solution examples employing displacement potentials simply used preselected

forms of harmonic and biharmonic potentials. We now investigate a more general scheme to

determine appropriate potentials for axisymmetric problems described in spherical coordin-
ates. Referring to Figures 1-5 and 1-6, cylindrical coordinates (r, y, z) are related to spherical

coordinates (R,f, y) through relations

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
, sinf ¼ r

R
, cosf ¼ z

R
(13:5:1)

Restricting attention to axisymmetric problems, all quantities are independent of y, and thus
we choose the axisymmetric Galerkin vector representation. Recall that this leads to Love’s

strain potential Vz, and the displacements and stresses were given by relations (13.3.6) to

(13.3.8). Because this potential function was biharmonic, consider first solutions to Laplace’s

equation. In spherical coordinates the Laplacian operator becomes

r2 ¼ @2

@R2
þ 2

R

@

@R
þ 1

R2
cot f

@

@f
þ 1

R2

@2

@f2
(13:5:2)

We first look for separable solutions of the form RnFn(f), and substituting this into Laplace’s

equation gives

Displacement Formulation: Navier’s Equation

Helmholtz Representation: f, jj

Lamé’s Strain Potential: f

Galerkin Vector: V

Love’s Strain Function: Vz
V = Vzez

∂z
∂Vz

Papkovich-Neuber: A, B

4(1 −   )2mu = A −∇
 A . R

B   +   

Boussinesq’s Potentials: Az,B
Axisymmetric Problem

A=Az (r,z)ez, B = B (r,z)

m∇2u + (l + m)∇(∇ . u) + F = 0 

u = 2(1 −   )∇2 V −∇(∇.V  )

u = 2(1 −   )∇2 Vzez
 −∇

u = ∇f + ∇ � j
(f + 2m)∇∇2f + m∇ � ∇2j + F = 0

⇒∇4f = 0, ∇4j = 0
⇒∇4V = 0

⇒∇2A = 0, ∇2B = 0

⇒∇2Az = 0, ∇2Bz = 0
∇4Vz = 0

∇2f = 0, j  = 0
u = Δ f

FIGURE 13-4 Displacement potential solutions.
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1

sinf
d

df
sinf

dFn

df

� �
þ n(nþ 1)Fn ¼ 0 (13:5:3)

Next, making the change of variable x ¼ cosf, relation (13.5.3) becomes

(1� x2)
d2Fn

dx2
� 2x

dFn

dx
þ n(nþ 1)Fn ¼ 0 (13:5:4)

and this is thewell-known Legendre differential equation. The two fundamental solutions are the

Legendre functions Pn(x) and Qn(x) of the first and second kinds. However, only Pn(x) is

continuous for jxj � 1, (0 � f � p), and so we drop the solution Qn(x). Considering only the

case of integer values of parameter n, the solution reduces to the Legendre polynomials given by

Pn(x) ¼ 1

2nn!

dn(x2 � 1)

dxn
(13:5:5)

where P0 ¼ 1, P1 ¼ x, P2 ¼ 1
2
(3x2 � 1), � � �. Putting these results together gives the follow-

ing harmonic solution set:

{RnFn} ¼ 1, z, z2 � 1

3
(r2 þ z2), z3 � 3

5
z(r2 þ z2), � � �

	 

(13:5:6)

These terms are commonly referred to as spherical harmonics.
Our goal, however, is to determine the elasticity solution that requires biharmonic functions

for theLove/Galerkin potential. In order to construct a set of biharmonic functions,we employ the

last term in relation (13.3.5) and thus argue that ifRnFn are harmonic,Rnþ2Fnwill be biharmonic.

Thus, a representation for the Love strain potential may be written as the linear combination

Vz ¼ B0(r
2 þ z2)þ B1z(r

2 þ z2)þ B2(2z
2 � r2)(r2 þ z2)

þ A0 þ A1zþ A2[z
2 � 1

3
(r2 þ z2)]þ � � �

(13:5:7)

It can be shown that this solution form is useful for general problems with finite domains.
However, for the case involving infinite regions, this form will result in unbounded displace-

ments and stresses at infinity. Therefore, (13.5.7) must be modified for use in regions that

extend to infinity. This modification is easily developed by noting that the coefficient n(nþ 1)

in governing equation (13.5.3) will be the same if we were to replace n by (�n� 1). This

then implies that solution forms R�n�1F�n�1 ¼ R�n�1Fn will also be harmonic functions.

Following our previous construction scheme, another set of biharmonic functions for the

potential function can be expressed as

Vz ¼ B0(r
2 þ z2)1=2 þ B1z(r

2 þ z2)�1=2 þ � � �
þ A0(r

2 þ z2)�1=2 þ A1z(r
2 þ z2)�3=2 þ � � �

(13:5:8)

and this form will be useful for infinite domain problems. For example, the solution to the

Kelvin problem in Example 13-1 can be found by choosing only the first term in relation

(13.5.8). This scheme can also be employed to construct a set of harmonic functions for the

Papkovich potentials; see Little (1973).
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EXAMPLE 13-5: Spherical Cavity in an Infinite Medium
Subjected to Uniform Far-Field Tension

Consider the problem of a stress-free spherical cavity in an infinite elastic solid that is

subjected to a uniform tensile stress at infinity. The problem is shown in Figure 13-5,

and for convenience we have oriented the z-axes along the direction of the uniform far-

field stress S.
We first investigate the nature of the stress distribution on the spherical cavity caused

solely by the far-field stress. For the axisymmetric problem, the spherical stresses are

related to the cylindrical components (see Appendix B) by the equations

sR ¼ sr sin2 fþ sz cos2 fþ 2trz sinf cosf

sf ¼ sz sin2 fþ sr cos2 f� 2trz sinf cosf

tRf ¼ (sr � sz) sinf cosf� trz( sin2 f� cos2 f)

(13:5:9)

Therefore, the far-field stress s1z ¼ S produces normal and shearing stresses on the

spherical cavity of the form

sR ¼ S cos2 f, tRf ¼ �S sinf cosf (13:5:10)

Using particular forms from our general solution (13.5.8), we wish to superimpose

additional stress fields that will eliminate these stresses and vanish at infinity.

It is found that the superposition of the following three fields satisfies the problem

requirements:

1. Force doublet in z direction: This state corresponds to a pair of equal and opposite

forces in the z direction acting at the origin. The solution is formally determined from

the combination of two equal but opposite Kelvin solutions from Example 13-1. The

two forces are separated by a distance d, and the limit is taken as d ! 0. This

summation and limiting process yields a state that is actually the derivative (@=@z) of

x

y

z

a

S

S

FIGURE 13-5 Spherical cavity in an infinite medium under tension.
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EXAMPLE 13-5: Cont’d

the original Kelvin field with a new coefficient of �Ad (see Exercise 13-18). This

field’s coefficient is denoted as K1.

2. Center of dilatation: This field is the result of three mutually orthogonal double-

force pairs from the previous state (1) (see Exercise 13-19). The coefficient of this

state is denoted by K2.

3. Particular biharmonic term: A state corresponding to the A1 term from equation

(13.5.8).

Combining these three terms with the uniform far-field stress and using the condition of

zero stress on the spherical cavity provide sufficient equations to determine the three

unknown constants. Details of this process can be found in Timoshenko and Goodier

(1970), and the results determine the coefficients of the three superimposed fields

K1 ¼ � 5Sa3

2(7� 5�)

K2 ¼ S(1� 5�)a3

(7� 5�)

A1 ¼ Sa5

2(7� 5�)

(13:5:11)

Using these constants, the stress and displacement fields can be determined.

The normal stress on the x,y-plane (z ¼ 0) is given by

sz(r, 0) ¼ S 1þ 4� 5�

2(7� 5�)

a3

r3
þ 9

2(7� 5�)

a5

r5

� �
(13:5:12)

At r ¼ a, this result produces the maximum stress

sz(a, 0) ¼ (sz)max ¼
27� 15�

2(7� 5�)
S (13:5:13)

Typically, for many metals, � ¼ 0:3, and this would give a stress concentration factor of

(sz)max

S
¼ 45

22
¼ 2:04 (13:5:14)

It should be noted that in three dimensions the stress concentration factor is generally a

function of Poisson’s ratio. A plot of this general behavior given by equation (13.5.13)

is shown in Figure 13-6. It can be observed that the value of Poisson’s ratio produces

only small variation on the stress concentration. It is also interesting to note that if the

plot were continued for negative values of Poisson’s ratio, further decrease in the stress

concentration would be found. Exercise 13-25 explores this behavior in more detail.

Note that the corresponding two-dimensional case was previously developed in

Example 8-7 and produced a stress concentration factor of 3. Plots of the corresponding

two- and three-dimensional stress distributions are shown in Figure 13-7. For each case

the normal stress component in the direction of loading is plotted versus radial distance

away from the hole. It is seen that the three-dimensional stresses are always less than

Continued
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EXAMPLE 13-5: Spherical Cavity in an Infinite Medium
Subjected to Uniform Far-Field Tension–Cont’d

two-dimensional predictions. This is to be expected because the three-dimensional field

has an additional dimension to decrease the concentration caused by the cavity. Both

stress concentrations rapidly decay away from the hole and essentially vanish at r > 5a.
Additional information on this problem is given by Timoshenko and Goodier (1970).
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FIGURE 13-6 Stress concentration factor behavior for the spherical cavity problem.
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13.6 Stress Functions

In the absence of body forces, the stress formulation of elasticity theory includes the equilib-
rium and Beltrami-Michell equations:

sij, j ¼ 0 (13:6:1)

sij, kk þ 1

1þ �
skk, ij ¼ 0 (13:6:2)

In order to develop a general solution to this system, stress functions are commonly used. Of

course, we have already seen the use of several special stress functions earlier in the text,

including Airy’s form for the plane problem and Prandtl’s function for the torsion example.

Here, we investigate the general three-dimensional case and later specialize these results to

some of the particular cases just mentioned. The concept of developing a stress function

involves the search for a representation of the form

sij ¼ Fij{F} (13:6:3)

where Fij is some differential operator and F is a tensor-valued variable. Normally, the search

looks for forms that automatically satisfy the equilibrium equations (13.6.1), and these are

called self-equilibrated forms.
It is apparent that the equilibrium equations will be satisfied if sij is expressed as the curl of

some vector function, because the divergence of a curl vanishes identically. It can be shown that

under certain conditions one such equilibrated form that provides a complete solution to the

elasticity problem is given by

sij ¼ "imp"jklFmk, pl (13:6:4)

where F is a symmetric second-order tensor. Relation (13.6.4) is sometimes referred to as the

Beltrami representation, andF is called the Beltrami stress function. It has been shown that all
elasticity solutions admit this representation; see, for example, Carlson (1966). It is easily

demonstrated that (13.6.4) is an equilibrated form, since

sij, j ¼ ("imp"jklFmk, pl), j ¼ "imp"jklFmk, plj ¼ 0

because of the product of symmetric and antisymmetric forms in indices jl.
Property (1.3.5) allows expansion of the alternating symbol product, and thus relation

(13.6.4) can be expressed as

sij ¼ dijFkk, ll � dijFkl, kl � Fij, kk þ Fli, lj þ Flj, li � Fkk, ij (13:6:5)

or

s11 ¼ F33, 22 þ F22, 33 � 2F23, 23

s22 ¼ F11, 33 þ F33, 11 � 2F31, 31

s33 ¼ F22, 11 þ F11, 22 � 2F12, 12

s12 ¼ �F12, 33 � F33, 12 þ F23, 13 þ F31, 23

s23 ¼ �F23, 11 � F11, 23 þ F31, 21 þ F12, 31

s31 ¼ �F31, 22 � F22, 31 þ F12, 32 þ F23, 12

(13:6:6)
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The first invariant of the stress tensor then becomes

snn ¼ "nmp"nklFmk, pl

¼ (dmkdpl � dmldpk)Fmk, pl

¼ Fkk, ll � Flk, lk

(13:6:7)

and thus the compatibility equations (13.6.2) can be expressed in terms of the general stress

function as

("imp"jklFmk, pl), nn þ
1

1þ �
(Fkk, ll � Flk, lk), ij ¼ 0 (13:6:8)

Not all of the six components of Fij are independent. Two alternate ways of generating

complete solutions to the stress formulation problem are developed through the use of reduced
forms that include the Maxwell and Morera stress function formulations.

13.6.1 Maxwell Stress Function Representation
The Maxwell stress function representation considers the reduced form whereby all off-

diagonal elements of Fij are set to zero; that is,

Fij ¼
F11 0 0

0 F22 0

0 0 F33

2
4

3
5 (13:6:9)

which yields a representation

s11 ¼ F33, 22 þ F22, 33

s22 ¼ F11, 33 þ F33, 11

s33 ¼ F22, 11 þ F11, 22

s12 ¼ �F33, 12

s23 ¼ �F11, 23

s31 ¼ �F22, 31

(13:6:10)

Notice that the Airy stress function that is used for two-dimensional problems is a special case

of this scheme with F11 ¼ F22 ¼ 0 and F33 ¼ f(x1, x2).

13.6.2 Morera Stress Function Representation
The Morera stress function method uses the general form with diagonal terms set to zero;

that is,

Fij ¼
0 F12 F13

F12 0 F23

F13 F23 0

2
4

3
5 (13:6:11)

This approach yields the representation
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s11 ¼ �2F23, 23

s22 ¼ �2F31, 31

s33 ¼ �2F12, 12

s12 ¼ �F12, 33 þ F23, 13 þ F13, 23

s23 ¼ �F23, 11 þ F13, 21 þ F12, 31

s31 ¼ �F31, 22 þ F12, 32 þ F23, 12

(13:6:12)

It can be observed that for the torsion problem, the Prandtl stress function (here denoted by j)
is a special case of this representation with F12 ¼ F13 ¼ 0 and F23, 1 ¼ j(x1, x2).
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Exercises

13-1. Using the Helmholtz representation, determine the displacement field that corresponds

to the potentials f ¼ x2 þ 4y2, w ¼ R2e3. Next show that this displacement field

satisfies Navier’s equation with no body forces.

13-2. Explicitly show that the dilatation and rotation are related to the Helmholtz potentials

through relations (13.1.3).

13-3. For the case of zero body forces, show that by using the vector identity (1:8:5)9 Navier’s
equation can be written as

(lþ 2m)r2uþ (lþ m)=� =� u ¼ 0

Using repeated differential operations on this result, show that the displacement vector is

biharmonic. Furthermore, because the stress and strain are linear combinations of first

derivatives of the displacement, they too will be biharmonic.

13-4. For the case of Lamé’s potential, show that strains and stresses are given by (13.2.3).
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13-5. Justify that the Galerkin vector satisfies the governing equation (13.3.2).

13-6. Show that the Helmholtz potentials are related to the Galerkin vector by relations

(13.3.3).

13-7. Justify relations (13.3.4) for the stress components in terms of the Galerkin vector.

13-8. For the case of zero body forces, the Galerkin vector is biharmonic. However, it was

pointed out that in curvilinear coordinate systems, the individual Galerkin vector

components might not necessarily be biharmonic. Consider the cylindrical coordinate

case where V ¼ Vrer þ Vyey þ Vzez. Using the results of Section 1.9, first show that

the Laplacian operator on each term will give rise to the following relations:

r2(Vrer) ¼ r2Vr � Vr

r2

� �
er þ 2

r2
@Vr

@y
ey

r2(Vyey) ¼ r2Vy � Vy

r2

� �
ey � 2

r2
@Vy

@y
er

r2(Vzez) ¼ r2Vzez

Using these results, show that the biharmonic components are given by

r2r2(Vrer) ¼ r2 � 1

r2

� �2

Vr � 4

r4
@2Vr

@y2

" #
er þ 4

r2
r2 � 1

r2

� �
@Vr

@y

� �
ey

r2r2(Vyey) ¼ � 4

r2
r2 � 1

r2

� �
@Vy

@y

� �
er þ r2 � 1

r2

� �2

Vy � 4

r4
@2Vy

@y2

" #
ey

r2r2(Vzez) ¼ r2r2Vzez

and thus only the component Vz will satisfy the scalar biharmonic equation.

13-9. Explicitly show that Boussinesq’s problem as illustrated in Figure 13-2 is solved by the

superposition of a Galerkin vector and Lamé’s potential given by relation (13.3.13).

Verify that the Cartesian displacements and stresses are given by

u ¼ Px

4pmR
z

R2
� 1� 2�

Rþ z

� �
, v ¼ Py

4pmR
z

R2
� 1� 2�

Rþ z

� �
, w ¼ P

4pmR
2(1� �)þ z2

R2

� �

sx ¼ � P

2pR2

3x2z

R3
� (1� 2�)

z

R
� R

Rþ z
þ x2(2Rþ z)

R(Rþ z)2

� �� �

sy ¼ � P

2pR2

3y2z

R3
� (1� 2�)

z

R
� R

Rþ z
þ y2(2Rþ z)

R(Rþ z)2

� �� �

sz ¼ � 3Pz3

2pR5
, txy ¼ � P

2pR2

3xyz

R3
� (1� 2�)(2Rþ z)xy

R(Rþ z)2

� �

tyz ¼ � 3Pyz2

2pR5
, txz ¼ � 3Pxz2

2pR5

13-10. Show that Cerruti’s problem of Figure 13-3 is solved by the Galerkin vector and

Lamé’s potential specified in relations (13.3.15). Develop the expressions for the

Cartesian displacements and stresses
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u ¼ P

4pmR
1þ x2

R2
þ (1� 2�)

R

Rþ z
� x2

(Rþ z)2

� �� �

v ¼ Pxy

4pmR
1

R2
� 1� 2�

(Rþ z)2

� �
, w ¼ Px

4pmR
z

R2
þ 1� 2�

Rþ z

� �

sx ¼ Px

2pR3
� 3x2

R2
þ (1� 2�)

(Rþ z)2
R2 � y2 � 2Ry2

Rþ z

� �� �

sy ¼ Px

2pR3
� 3y2

R2
þ (1� 2�)

(Rþ z)2
3R2 � x2 � 2Rx2

Rþ z

� �� �

sz ¼ � 3Pxz2

2pR5
, tyz ¼ � 3Pxyz

2pR5
, txz ¼ � 3Px2z

2pR5

txy ¼ � Py

2pR3
� 3x2

R2
� (1� 2�)

(Rþ z)2
R2 � x2 þ 2Rx2

Rþ z

� �� �

13-11. Explicitly justify that the Papkovich functions A and B satisfy relations (13.4.9).

13-12. For the axisymmetric case, the Papkovich functions reduced to the Boussinesq

potentials B and Az defined by relations (13.5.11). Show that the general forms for the

displacements and stresses in cylindrical coordinates are given by

ur ¼ � 1

2m
@

@r
Bþ Azz

4(1� �)

� �
, uu ¼ 0 , uz ¼ 1

2m
Az � @

@z
Bþ Azz

4(1� �)

� �� �

sr ¼ � �

1� 2�
r2 Azz

4(1� �)

� �
þ �

1� 2�

@Az

@z
� @2

@r2
Bþ Azz

4(1� �)

� �

sy ¼ � �

1� 2�
r2 Azz

4(1� �)

� �
þ �

1� 2�

@Az

@z
� 1

r

@

@r
Bþ Azz

4(1� �)

� �

sz ¼ � �

1� 2�
r2 Azz

4(1� �)

� �
þ �

1� 2�

@Az

@z
þ @Az

@z
� @2

@z2
Bþ Azz

4(1� �)

� �

trz ¼ 2merz ¼ 1

2

@Az

@r
� @2

@r@z
Bþ Azz

4(1� �)

� �

13-13. Using the results of Exercise 13-12, verify that the displacement and stress fields for

the Boussinesq problem of Example 13-4 are given by (13.4.16) and (13.4.17). Note

the interesting behavior of the radial displacement, that ur > 0 only for points where

z=R > (1� 2�)R=(Rþ z). Show that points satisfying this inequality lie inside a cone

f � fo, with fo determined by the relation cos2 fo þ cosfo � (1� 2�) ¼ 0.

13-14*. The displacement field for the Boussinesq problem was given by (13.4.16). For this

case, construct a displacement vector distribution plot, similar to the two-dimensional

case shown in Figure 8-22. For convenience, choose the coefficient P=4pm ¼ 1 and

take v ¼ 0:3. Compare the two-and three-dimensional results.

13-15. Consider an elastic half space with sz ¼ 0 on the surface z ¼ 0. For the axisymmetric

problem, show that the Boussinesq potentials must satisfy the relation Az ¼ 2 @B=@z
within the half space.
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13-16. Consider the Papkovich representation for the two-dimensional plane strain case

where A ¼ A1(x, y)e1 þ A2(x, y)e2 and B ¼ B(x, y). Show that this representation will

lead to the complex variable formulation

2m(uþ iv) ¼ kg(z)� zg0(z)� c(z)

with appropriate definitions of g(z) and c(z).

13-17. Show that Kelvin’s problem of Figure 13-1 may be solved using the axisymmetric

Papkovich functions (Boussinesq potentials)

B ¼ 0, Az ¼ P

2pR

Verify that the displacements match those given in equations (13.3.10).

13-18. A force doublet is commonly defined as two equal but opposite forces acting in an

infinite medium as shown in the following figure. Develop the stress field for this

problem by superimposing the solution from Example 13-1 onto that of another single

force of �P acting at the point z ¼ �d. In particular, consider the case as d ! 0 such

that the product Pd ! D where D is a constant. This summation and limiting process

yield a solution that is simply the derivative of the original Kelvin state. For example,

the superposition of the radial stress component gives

lim
d!0

sr(r, z)� sr(r, zþ d)½ � ¼ �d
@sr
@z

¼ � D

8p(1� �)

@

@z
(1� 2�)z(r2 þ z2)�3=2 � 3r2z(r2 þ z2)�5=2
h i

The other stress components follow in an analogous manner. Using relations (13.5.9),

show that the stress components in spherical coordinates can be expressed as

sR ¼ � (1þ �)D

4p(1� �)R3
� sin2 fþ 2(2� �)

1þ �
cos2 f

� �

tRf ¼ � (1þ �)D

4p(1� �)R3
sinf cosf

x
y

z

P

P

d
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13-19. Using the results of Exercise 13-18, continue the superposition process by combining

three force doublets in each of the coordinate directions. This results in a center of
dilatation at the origin as shown in the figure. Using spherical coordinate components,

show that the stress field for this problem is given by

sR ¼ � (1� 2�)D

2p(1� �)R3
¼ C

R3
, tRf ¼ 0

where C is another arbitrary constant, and thus the stresses will be symmetrical with

respect to the origin.

x

y

z

P

P

P

13-20. Using the basic field equations for spherical coordinates given in Appendix A,

formulate the elasticity problem for the spherically symmetric case, where uR ¼ u(R),
uf ¼ uy ¼ 0. In particular show that the governing equilibrium equation with zero

body forces becomes

d2u

dR2
þ 2

R

du

dR
� 2

R
u ¼ 0

Next solve this equation and show that the general solution can be expressed as

u ¼ C1Rþ C2

R2
, sR ¼ K1 � 2K2

R3
, sf ¼ sy ¼ K1 þ K2

R3

where C1, C2, K1, and K2 are arbitrary constants.

13-21. Using the results of Exercise 13-20, solve the problem of a stress-free spherical cavity

in an infinite elastic medium under uniform far-field stress sx
1 ¼ sy

1 ¼ sz
1 ¼ S.

Explicitly show that the stress concentration factor for this case is K ¼ 1.5, and

compare this value with the corresponding two-dimensional case. Explain why we

would expect such a difference between these two concentration factors.

13-22. Using the results of Exercise 13-20, solve the problem of a thick-walled spherical shell

with inner radius R1 loaded with uniform pressure p1, and with outer radius R2 loaded
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with uniform pressure p2. For the special case with p1 ¼ p and p2 ¼ 0, show that the

stresses are given by

sR ¼ pR3
1

R3
2 � R3

1

1� R3
2

R3

� �

sf ¼ sy ¼ pR3
1

R3
2 � R3

1

1þ R3
2

2R3

� �

13-23*. Using the general solution forms of Exercise 13-20, solve the problem of a rigid spherical

inclusion of radius a perfectly bonded to the interior of an infinite body subjected to
uniform stress at infinity of sR

1 ¼ S. Explicitly show that the stress field is given by

sR ¼ S 1þ 2
1� 2�

1þ �

a

R

� �3� �
, sf ¼ sy ¼ S 1� 1� 2�

1þ �

a

R

� �3� �

Determine the nature of the stress field for the incompressible case with � ¼ 1/2.

Finally, explore the stresses on the boundary of the inclusion (R ¼ a), and plot them

as a function of Poisson’s ratio.

13-24. Consider the three-dimensional stress concentration problem given in Example 13-5.

Recall that the maximum stresses occur on the boundary of the spherical cavity (r ¼ a).
With respect to the problem geometry shown in Figure 13-5, the maximum stress

component was found to be

sz(a, z ¼ 0) ¼ 27� 15�

2(7� 5�)
S

Other stress components can also be determined from the solution method outlined in

the problem, and two particular components on the cavity boundary are

sf(a, f ¼ 0) ¼ � 3þ 15�

2(7� 5�)
S, sy(a,f ¼ p=2) ¼ 15� � 3

2(7� 5�)
S

Using these results, along with the superposition principle, show that maximum

stresses for the following cases are given by:

(a) Uniform uniaxial tension loadings of S along x and z directions

smax ¼ 21� 30�

2(7� 5�)
S

(b) Tension loading S along z and compression along x directions

smax ¼ 15

7� 5�
S

(c) Tension loadings of S along each Cartesian direction

smax ¼ 3

2
S
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Note that part (b) corresponds to far-field pure shear and part (c) coincides with the

results found in Exercise 13-21.

13-25*. Generate plots of the stress concentration factor vs. Poisson’s ratio (similar to Figure

13-6) for each case in Exercise 13.23. Compare the results.

13-26*. There has been some interesting research dealing with materials that have negative

values of Poisson’s ratio; recall from fundamental theory �1 � � � 1/2. Beginning

studies of this concept were done by Lakes (1987) and commonly these types of

materials have specialized internal microstructures (e.g., foams and cellular solids)

that produce such anomalous behavior. Several interesting consequences occur with

� < 0, and one such behavior results in decreasing the stress concentration around

holes in three-dimensional solids. This can be directly explored by expanding the plot

shown in Figure 13-6 to include the full range of Poisson’s ratio. Redevelop Figure 13-6

for the range �1 � � � 1/2 and determine the maximum decrease in the stress

concentration factor.

13-27. Using the Morera stress function formulation, define

F13 ¼ � 1

2
zf, 1, F23 ¼ � 1

2
zf, 2, F12, 12 ¼ � �

2
r2f

where f is independent of z. Show that this represents plane strain conditions with f
equal to the usual Airy stress function.
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14 Nonhomogeneous Elasticity

It has been observed that many materials have a spatially varying microstructure that leads to

spatial variation in elastic properties and thus requires a nonhomogeneous model. For example,

in geomechanics studies rock and soil material will commonly have depth-dependent proper-

ties resulting from the overburden of material lying above a given point. Gradations in

microstructure are also commonly found in biological cellular materials such as wood and

bone, where biological adaptation has distributed the strongest microstructure in regions that

experience the highest stress.

Recently, there has been considerable interest in the development of graded materials that
have spatial property variations deliberately created to improve mechanical performance

(Suresh, 2001). Such graded properties can be traced back to surface heat treatments for

swords, knives, and gear teeth. Various composite materials have been constructed using

graded transitions in composition to reduce stress concentrations at interfaces. In the 1990s,

interest in graded materials focused on controlling thermal stresses in structures exposed to

high-temperature applications and to surface contact damage. This work has led to a new class

of engineered materials called functionally graded materials (FGMs) that are developed with

spatially varying properties to suit particular applications. The graded composition of such

materials is commonly established and controlled using advanced manufacturing techniques,

including powder metallurgy, chemical vapor deposition, centrifugal casting, and other

schemes.

Our previous developments have been connected to the formulation and solution of

isotropic and anisotropic elasticity problems. We now wish to go back and investigate the

inhomogeneous isotropic case and explore solutions for a few problems that exist in the

literature. We will focus attention on formulation issues that allow the development of

tractable boundary value problems and will examine the effect of inhomogeneity on the

resulting stress and displacement solution fields. By exploring closed-form solutions to a series

of example problems, we will see that in some cases inhomogeneity produces little effect,

while in others significant and fundamentally different stress and displacement distributions

will occur.
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14.1 Basic Concepts

For the inhomogeneous model, elastic moduli Cijkl or Cij will now be functions of the spatial

coordinates xm describing the problem; thus, Hooke’s law would read

sij ¼ Cijkl(xm)ekl (14:1:1)

Other than this modification, the structural form of Hooke’s law is the same as used

previously. Similar to the anisotropic case presented in Chapter 11, the other basic field

equations of strain displacement, strain compatibility, and equilibrium will also remain the

same. However, it should be recognized that by combining the new form (14.1.1) with these

other field equations (e.g., in developing stress or displacement formulations), entirely new and

more complicated field equations will be generated. This will create a more complex problem

formulation and analytical solutions will of course be more difficult to obtain.

For example, considering the general case with no body forces, the displacement formula-

tion would now yield equilibrium equations in terms of displacement as

sij, j ¼ 0 ) @

@xj
[Cijkl(uk, l þ ul, k)] ¼ 0 ) @

@xj
[Cijkluk, l] ¼ 0 (14:1:2)

where we have used the symmetry Cijkl¼ Cijlk. Expanding relation (14.1.2) gives

Cijkluk, lj þ Cijkl, juk, l ¼ 0 (14:1:3)

The first term in relation (14.1.3) corresponds to the homogeneous case and for isotropic

materials would simply lead to the homogeneous form of Navier’s equations (5.4.3) developed

in Chapter 5. The second term in (14.1.3) accounts for spatial variation in elastic moduli and

includes first-order derivatives of both the elastic moduli and displacements.

Depending on the nature of the material’s anisotropy and inhomogeneity, equation (14.1.3)

could become very complex and thereby limit solution by analytical methods. Only limited

studies have included both anisotropy and inhomogeneity (e.g., Lekhnitskii (1981), Horgan

and Miller (1994), Fraldi and Cowin (2004), Stampouloglou and Theotokoglou (2005) ), and

thus most nonhomogeneous analyses have been made under the simplification of material

isotropy. For example, using the isotropic assumption, relation (14.1.3) for a two-dimensional

plane strain model would reduce to

mr2u þ (l þ m)
@

@x

@u

@x
þ @v

@y

� �
þ @l

@x

@u

@x
þ @v

@y

� �
þ 2

@m
@x

@u

@x
þ @m

@y

@u

@y
þ @v

@x

� �
¼ 0

mr2v þ (l þ m)
@

@y

@u

@x
þ @v

@y

� �
þ @l

@y

@u

@x
þ @v

@y

� �
þ 2

@m
@y

@v

@y
þ @m

@x

@u

@y
þ @v

@x

� �
¼ 0

(14:1:4)

which clearly simplifies to the homogeneous form (7.1.5) if the elastic moduli l and � are

constants.

Next, consider the stress formulation for the inhomogeneous but isotropic plane problem

with no body forces. Introducing the usual Airy stress function f defined by (8.1.3), the

equilibrium equations are again identically satisfied. As before, we look to generate compati-

bility relations in terms of stress and then incorporate the Airy stress function to develop a
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single governing field equation. Because the elastic moduli are now functions of spatial

coordinates, results for the nonhomogeneous case will differ significantly from our develop-

ments in Section 7.5 that lead to a simple biharmonic equation. For the two-dimensional plane

strain case, using Hooke’s law in the only nonzero compatibility relation (7.1.6) gives the new

form for nonhomogeneous materials in terms of the Airy stress function:

@2

@x2
1� �2

E

@2f
@x2

� �(1þ �)

E

@2f
@y2

� �

þ @2

@y2
1� �2

E

@2f
@y2

� �(1þ �)

E

@2f
@x2

� �
þ 2

@2

@x@y

1þ �

E

@2f
@x@y

� �
¼ 0

(14:1:5)

The corresponding relation for the case of plane stress is given by

@2

@x2
1

E

@2f
@x2

� �

E

@2f
@y2

� �
þ @2

@y2
1

E

@2f
@y2

� �

E

@2f
@x2

� �
þ 2

@2

@x@y

1þ �

E

@2f
@x@y

� �
¼ 0 (14:1:6)

Note that results (14.1.5) and (14.1.6) reduce to the biharmonic equation for the case of

constant elastic moduli. It should be evident that a biharmonic function will not, in general,

satisfy either of these governing equations for nonhomogeneous materials.

In order to formulate tractable problems, the variation in elastic properties is normally taken

to be of simple continuous form. For example, in an unbounded domain, the elastic moduli

might be chosen to vary in a single direction, as shown schematically in Figure 14-1, with

shading drawn to indicate gradation.

Particular functional forms used to prescribe such nonhomogeneity have commonly used

linear, exponential, and power-law variation in elastic moduli of the form

Cij(x) ¼ Co
ij(1þ ax)

Cij(x) ¼ Co
ije

ax

Cij(x) ¼ Co
ijx

a

(14:1:7)

where Co
ij and a are prescribed constants. Because experience has indicated that variation in

Poisson’s ratio normally does not play a significant role in determining magnitudes of stresses

and displacements, � is commonly taken to be constant in many inhomogeneous formulations.

Exercises 14-2 and 14-3 explore formulation results for some particular elastic moduli variation.

Early work on developing elasticity solutions for inhomogeneous problems began to appear in

the literature a half a century ago; see, for example,Du (1961), Ter-Mkrtich’ian (1961), Rostovtsev

(1964), and Plevako (1971, 1972). Numerous works followed on refining formulations and

Cij = Cij(x)

x

FIGURE 14-1 Continuously graded material in a single direction.
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developing solutions to problems of engineering interest; see, for example, the beam studies by

Sankar (2001). Much of this work was fueled by interest in developing models of functionally

graded materials. We now wish to explore specific solutions to some of these problems and

compare the resultswithpreviously generated homogeneous solutions tofindparticular differences

resulting from the inhomogeneity. We first start with a simple example.

EXAMPLE 14-1: Uniaxial Tension of a Graded Sheet

Consider a two-dimensional, plane stress problem of a rectangular inhomogeneous sheet

under uniformuniaxial tensionT as shown in Figure 14-2.Wewill assume that themodulus

of elasticity is uniaxially graded such thatE¼ E(x), while Poisson’s ratiowill be taken to be
constant. Recall that this problem was solved for the homogeneous case in Example 8-1.

x

y

TT

l

E = E(x)

FIGURE 14-2 Uniaxial tension of an inhomogeneous sheet.

Based on the boundary conditions, we might guess the same stress field solution as

found in the homogeneous case, that is, sx¼ T, sy¼ txy¼ 0, and this field would result

from the Airy stress function f¼ Ty2/2. Note that this stress function is biharmonic but,

as previously mentioned, it will not identically satisfy the governing equation (14.1.6).

Using this stress function along with the prescribed uniaxial gradation E¼ E(x), the
governing relation (14.1.6) would imply that (see Exercise 14-1)

d2

dx2
1

E

� �
¼ 0 ) 1

E
¼ Axþ B or E ¼ 1

Axþ B
(14:1:8)

where A and B are arbitrary constants. Thus we find a restriction on the allowable form of

the material grading in order to preserve the simplified uniform stress field found in the

homogeneous case. It will be more convenient to rewrite relation (14.1.8) in the form

E ¼ Eo

1þ Kx
(14:1:9)

where Eo is the modulus at x¼ 0 and K is another arbitrary constant related to the level

of gradation. Note that K¼ 0 corresponds to the homogeneous case with E¼ Eo.

Next we wish to determine the displacement field associated with this stress distri-

bution. This is accomplished by the standard procedure using Hooke’s law and the

strain displacement relations
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EXAMPLE 14-1: Cont’d

@u

@x
¼ ex ¼ 1

E
(sx � �sy) ¼ T

E
@v

@y
¼ ey ¼ 1

E
(sy � �sx) ¼ ��

T

E

(14:1:10)

These results are then integrated to get

u ¼
ð
T

E
dx ¼ T

Eo

ð
(1þ Kx)dx ¼ T

Eo
xþ K

x2

2

� �

v ¼ ��

ð
T

E
dy ¼ ��

T

E
y ¼ ��

T

Eo
(1þ Kx)y (14:1:11)

where we have adjusted the rigid body motion terms to have u(0,y)¼ v(x,0)¼ 0 with no

rotation.

The gradation in Young’s modulus is shown in Figure 14-3 for three different

gradation cases with K¼�0.5, 0, 5. These particular parameters give increasing,

constant and decreasing gradation with axial distance x.

The axial displacement behavior for these three gradation cases is shown in

Figure 14-4. As expected, a sheet with material having increasing stiffness (positive

gradation,K¼�0.5) would yield smaller displacements than a corresponding homoge-

neous sample. The opposite behavior is observed for a sheet with decreasing stiffness

(K¼ 5).

K = 5 

K = 0 (Homogeneous Case)  

K = − 0.5
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FIGURE 14-3 Modulus of elasticity gradation.

Continued
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EXAMPLE 14-1: Uniaxial Tension of a Graded Sheet—Cont’d

K = 5

K = 0 (Homogeneous Case)
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K = −0.5 

FIGURE 14-4 Axial displacement behavior for several gradation cases.

Comparison results from this simple example are somewhat limited since the

solution scheme started with the assumption that the inhomogeneous stress field coin-

cided with the corresponding homogeneous solution. Thus, differences between the

material models only developed in the strain and displacement fields. As we shall see in

the coming problems, using a more general problem formulation and solution will

produce completely different inhomogeneous stress, strain, and displacement fields.

14.2 Plane Problem of a Hollow Cylindrical Domain
under Uniform Pressure

We start our study by re-examining Example 8-6, a plane axisymmetric problem of a hollow

cylindrical domain under uniform internal and external pressure loadings, as shown in

Figure 14-5. Following the work of Horgan and Chan (1999a), we choose plane stress

conditions and initially allow the modulus of elasticity and Poisson’s ratio to be functions of

the radial coordinate; that is, E(r) and v(r). In polar coordinates, the two nonzero normal

stresses can then be expressed in terms of the radial displacement u(r) by

sr ¼ E(r)

1� �2(r)

du

dr
þ �(r)

u

r

� �

sy ¼ E(r)

1� �2(r)

u

r
þ �(r)

du

dr

� � (14:2:1)
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Note that the corresponding plane strain relations can be determined by simple transformation

of elastic moduli as given in Table 7-1.

Because it has been shown that variation in Poisson’s ratio is of much less significance than

in Young’s modulus, we will now assume that v(r) is a constant. Substituting (14.2.1) into the

equations of equilibrium then generates the form of Navier’s equation for this case:

d2u

dr2
þ 1

r

du

dr
� u

r2
þ 1

E(r)

dE(r)

dr

du

dr
þ �

u

r

� �
¼ 0 (14:2:2)

This result should be compared to the previously developed relation (8.3.10) for the homoge-

neous case.

In order to develop a solvable equation, choose the specific power-law variation for

Young’s modulus:

E(r) ¼ Eo
r

a

� �n
(14:2:3)

where Eo and n are constants and a is the inner boundary radius. Note that Eo has the same

units as E and as n ! 0; we recover the homogeneous case. In order to gain insight into the

relative magnitude of such a gradation, relation (14.2.3) is plotted in Figure 14-6 for different

values of power-law exponent. Note that the case n¼ 1 corresponds to linear variation in

Young’s modulus. It is observed that values of n greater than 1 produce quite substantial

changes in elastic modulus. These particular parameters of the power-law exponent will be

used in subsequent comparisons of the stress fields.

This particular gradation model reduces the Navier equation (14.2.2) to

d2u

dr2
þ (nþ 1)

r

du

dr
þ (n� � 1)

u

r2
¼ 0 (14:2:4)

The solution to equation (14.2.4) is given by

u ¼ Ar�(nþk)=2 þ Br(�nþk)=2 (14:2:5)

a

b

pi

po

FIGURE 14-5 Hollow cylindrical domain under uniform pressure.
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where A and B are arbitrary constants and k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 4� 4n�

p
> 0. Substituting result (14.2.5)

into relation (14.2.1) allows determination of the stresses.

Evaluation of the pressure boundary conditions sr (a)¼ pi and sr (b)¼ po allows determin-

ation of the arbitrary constants A and B and produces the following stress field:

sr ¼ � a�n=2b�n=2r(�2�kþn)=2

bk � ak
�akþn=2b(2þk)=2po þ an=2b(2þk)=2por

k þ a(2þk)=2bn=2pi(b
k � rk

h i

sy ¼ a�n=2b�n=2r(�2�kþn)=2

bk � ak
(a(2þk)=2bn=2pi � an=2b(2þk)=2po)r

k(2þ k� � n�)

k � nþ 2�

�

þ ak=2bk=2(� ab(kþn)=2pi þ a(kþn)=2bpo)(� 2þ k� þ n�)

k þ n� 2�

�
(14:2:6)

As with the homogeneous example, we choose the special case with only internal pressure

(po ¼ 0), which gives the stresses

sr ¼ pia
(2þk�n)=2

bk � ak
r(�2þkþn)=2 � bkr(�2�kþn)=2
h i

sy ¼ pia
(2þk�n)=2

bk � ak
2þ k� � n�

k � nþ 2�
r(�2þkþn)=2 þ 2� k� � n�

k þ n� 2�
bkr(�2�kþn)=2

� � (14:2:7)

n = 0 (Homogeneous Case) 

n = 2

n = 1

n = 1/2

b / a = 5
  = 0.25

FIGURE 14-6 Gradation in Young’s modulus for different values of the power-law exponent.
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The homogeneous solution is found by letting n ! 0, which implies that k ! 2, giving the

result

sr ¼ pia
2

b2 � a2
1� b2

r2

� �

sy ¼ pia
2

b2 � a2
1þ b2

r2

� � (14:2:8)

which matches with the solution shown in Figure 8-9 for b/a¼ 2.

A plot of the nondimensional stress distributions through the thickness for various gradation

cases is shown in Figures 14-7 and 14-8 for the case of b/a¼ 5 and � ¼ 0.25. Figure 14-7

shows the variation in radial stress for different amounts of inhomogeneity reflected by choices

of the power-law exponent n. Comparing the homogeneous case (n¼ 0) with increasing

gradients of radial inhomogeneity illustrates that the radial stress is not significantly affected

by this type of material grading. However, the corresponding results for the tangential stress

shown in Figure 14-8 show much more marked differences. While the homogeneous hoop

stress is always a monotonically decreasing function of the radial coordinate and has its

maximum on the inner boundary (r¼ a), the inhomogeneous solid behaves quite differently.

The graded material shows behaviors whereby the tangential stress can take a minimum value

within the domain (a < r < b) and have a maximum value on the outer boundary (r¼ b). More

details on these behaviors are given by Horgan and Chan (1999a).

Another interesting special case is that of external pressure loading (pi¼ 0) only. This

solution can be easily developed from the general solution (14.2.6) and is given in the

following relations (14.2.9).

n = 0 (Homogeneous Case)

n = 2 

n = 1

n = 1/2

b / a = 5

  = 0.25

FIGURE 14-7 Nondimensional radial stress distribution through a domain wall.
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sr ¼ � pob
(2þk�n)=2

bk � ak
r(�2þkþn)=2 � akr(�2�kþn)=2
h i

sy ¼ � pob
(2þk�n)=2

bk � ak
2þ k� � n�

k � nþ 2�
r(�2þkþn)=2 þ 2� k� � n�

k þ n� 2�
akr(�2�kþn)=2

� � (14:2:9)

The homogeneous solution is again found by letting n ! 0, giving the result

sr ¼ � pob
2

b2 � a2
1� a2

r2

� �

sy ¼ � pob
2

b2 � a2
1þ a2

r2

� � (14:2:10)

As in Section 8.4.2, the problem of a stress-free hole in an infinite medium under uniform far-

field stress (see Figure 8-11) can be obtained from (14.2.10) by letting po !�T and b/a!1,

which gives the result identical to the previous relation (8.4.9)

sr ¼ T 1� a2

r2

� �
, sy ¼ T 1þ a2

r2

� �
(14:2:11)

and thus produces the classic stress concentration factor of K¼ 2. The next logical step in

our investigation would be to pursue the corresponding concentration effect for the inhomo-

geneous case using the same limiting process. However, attempting this on relations

(14.2.9) surprisingly fails to produce satisfactory results because finite stresses for b/a ! 1
require that (2 þ k � n) / 2 ¼ k) k ¼ 2 � n, which is precluded by the original definition

n = 0 (Homogeneous Case) 

n = 1/2 

n = 1 

n = 2 

b / a = 5
  = 0.25

FIGURE 14-8 Nondimensional tangential stress distribution through a domain wall.
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k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 4� 4n�

p
unless n¼ 0. Horgan and Chan (1999a) point out that this unexpected result

is similar to findings in analogous problems involving certain curvilinear anisotropic materials

(e.g., Galmudi and Dvorkin (1995) and Horgan and Baxter (1996); see also Section 11.7).

Even with this analytical dilemma, we can still pursue the original stress concentration

problem of interest (Figure 8-11) by simply evaluating the general result (14.2.9) for the case

with large b/a and po ! �T. Figure 14-9 illustrates this case for the tangential stress behavior

with b/a¼ 20, � ¼ 0.25, and n¼�0.2, 0, 0.2, 0.4, and 0.6. Since the domain includes large

variation in the radial coordinate, we restricted the power-law exponent to cases where n < 1.

It is observed that as n increases, the maximum hoop stress no longer occurs on the inner

boundary r¼ a, thus reducing the local stress concentration effect. For negative values of the

power-law exponent, the local stress on the hole boundary will be higher than the homoge-

neous case, thus creating an increase in the local stress concentration. Figure 14-10 shows the

behavior of the equivalent stress concentration factor, K¼ sy(a)/T, as a function of the power-

law exponent over the range �0.4 � n � 0.4. The stress concentration exhibits a decreasing

behavior with the gradation parameter. Similar stress-decreasing effects have also been found

in studies of anisotropic circular tube problems (Galmudi and Dvorkin, 1995; and Horgan and

Baxter, 1996).

Clearly, the results in this section indicate that inhomogeneity can significantly alter the

elastic stress distribution in such cylindrical domain problems. Stress concentration effects are

also changed from corresponding homogeneous values. For this analysis, material inhomo-

geneity was modeled using a simple radial power-law relation for Young’s modulus, and thus

solution results were limited to correlations with the power-law exponent for cases with

increasing or decreasing modulus.

n = 0 (Homogeneous Case) 

n = 0.2 

n = 0.4 

n = 0.6 

n = − 0.2 

b / a = 20
  = 0.25

FIGURE 14-9 Nondimensional tangential stress distribution for the external loading case
with a large b/a.
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14.3 Rotating Disk Problem

The next problem we wish to investigate is that of a solid circular disk (or cylinder) of radius a,
rotating with constant angular velocity !, as shown in Figure 14-11. The disk is assumed to

have zero tractions on its outer boundary, r¼ a. Recall that the solution to the homogeneous

problem was developed in Example 8-11.

We follow the inhomogeneous formulation and solution scheme originally presented by

Horgan and Chan (1999b). As before, we note that this is an axisymmetric plane problem in

which all elastic fields are functions only of the radial coordinate. The rotation produces a

centrifugal loading that can be handled easily by including a radial body force, Fr¼ r!2r,
where � is mass density. The only nonzero equilibrium equation then reduces to

dsr
dr

þ sr � sy
r

þ r!2r ¼ 0 (14:3:1)
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FIGURE 14-10 Equivalent stress concentration factor for a small stress-free hole in a large
domain under uniform biaxial tension.
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FIGURE 14-11 Rotating disk problem.
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As in our previous example, we choose plane stress conditions and allow the modulus of

elasticity and Poisson’s ratio to be functions of the radial coordinate: E(r) and �(r). Using
Hooke’s law in polar coordinates, the two nonzero normal stresses can then be expressed in

terms of the radial displacement u(r) by

sr ¼ E(r)

1� �2(r)

du

dr
þ �(r)

u

r

� �

sy ¼ E(r)

1� �2(r)

u

r
þ �(r)

du

dr

� � (14:3:2)

As before, the corresponding plane strain relations can be determined by simple transformation

of elastic moduli, as given in Table 7-1.

Again, following similar logic to that in the previous example, variation in Poisson’s ratio is

of much less significance than Young’s modulus, and thus we assume that �(r)¼ � ¼ constant.

Substituting (14.3.2) into equations (14.3.1) then generates Navier’s equation for this case:

d2u

dr2
þ 1

r

du

dr
� u

r2
þ 1

E(r)

dE(r)

dr

du

dr
þ �

u

r

� �
¼ �r(1� �2)!2r

E(r)
(14:3:3)

As in our previous pressurized tube example, a power-law distribution for Young’s modu-

lus will help reduce the complexity of Navier’s equation. On this basis, we again choose a

modulus variation of the form (identical to (14.2.3) )

E(r) ¼ Eo
r

a

� �n
(14:3:4)

where Eo and n are constants and a is the outer boundary radius. As before, Eo has the same

units as E and as n! 0; we recover the homogeneous case. Various moduli distributions from

this form are shown in Figure 14-12 for different values of the power-law exponent, n¼�0.5,

0, 0.5, 1, 2. Notice that for cases with n > 0, the gradation increases from 0 at the disk center to

Eo at the outer boundary. For the case with n < 0, the modulus is unbounded at the disk’s

center, and thus we expect a similar singularity in the stress field for this case.

Using this gradation model, relation (14.3.3) reduces to

d2u

dr2
þ (nþ 1)

r

du

dr
þ (n� � 1)

u

r2
¼ � r(1� �2)!2r1�nan

Eo
(14:3:5)

The general solution to equation (14.3.5) follows from standard theory as the sum of

homogeneous plus particular solutions. Note that the solution to the homogeneous equation

was given by (14.2.5). Combining these results gives

u(r) ¼ Ar�(nþk)=2 þ Br(�nþk)=2 � r(1� �2)!2an

Eo(n� � 3nþ 8)
r3�n (14:3:6)

where A and B are arbitrary constants and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n2 þ 4� 4n�

p
) > 0. Solution (14.3.6)

requires the following:
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n� � 3nþ 8 6¼ 0 or (nþ k)=2 6¼ 3 (14:3:7)

For the case where (14.3.7) does not hold (i.e., (14.3.7) with equality signs), the particular

solution must be fundamentally modified, giving the result

u(r) ¼ A�r�3 þ B�r3�n � r(1� �2)!2an

Eo
log (r=a) (14:3:8)

Relation (14.3.7) with equality signs yields n¼ 8/(3 � �), which implies the interesting fact

that for 0 � � � 1/2, the gradation power-law exponent must be in the range

8

3
� n � 16

5
(14:3:9)

We now proceed to determine the displacement and stress fields for particular gradation

cases invoking bounded solutions at the origin (r¼ 0) and zero tractions (sr¼ 0) at r¼ a.
Consider first the case with n > 0 so that the modulus gradation increases monotonically

with radial coordinate. Because now n þ k > 0, the boundedness condition at the origin

requires that A¼ 0, and the third term in solution (14.3.6) implies that n � 3, thus restricting

the power-law exponent to the range 0 < n� 3. To satisfy the traction-free boundary condition,

our solution (14.3.6) must retain the B-term, which means that k � n > 0, and this will happen

only if 1 � n� > 0. Additionally, we must honor the usual range restriction on Poisson’s ratio,

FIGURE 14-12 Gradation in Young’s modulus for the rotating disk problem.
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0 � � � 1/2. Collectively these conditions place coupled restrictions on the gradation

parameter n and Poisson’s ratio �, but these can be satisfied. Therefore, we now move forward

with the solution assuming this is the case.

With A¼ 0 in solution (14.3.6), the radial stress follows from relation (14.3.2)1

sr ¼ Ba�nEo

1� �2
� þ 1

2
(k � n)

� �
r(nþk�2)=2 � (3� nþ �)r!2r2

(n� � 3nþ 8)
(14:3:10)

Applying the zero-traction boundary condition easily determines the constant B, giving the

final stress results

sr ¼ (3� nþ �)r!2

(n� � 3nþ 8)
a3�(nþk)=2r(nþk�2)=2 � r2
h i

sy ¼ r!2

(n� � 3nþ 8)

(3� nþ �)[1þ (�=2)(k � n)]

[� þ (k � n)=2]
a3�(nþk)=2r(nþk�2)=2

�
� [(3� n)� þ 1]r2�

for the case n� � 3nþ 8 6¼ 0

(14:3:11)

Recall that these results were developed under condition (14.3.7). For the case where this

condition is not satisfied, solution form (14.3.8) must be used instead. Similar analysis yields

the stress solutions

sr ¼ r!2 (n� 4)(n� 2)

n
r2 log (r=a)

� �

sy ¼ r!2

n
8r2 � 3(n� 4)(n� 2)r2 log (r=a)
	 


for the case
8

3
� n � 16

5

(14:3:12)

The homogeneous case corresponds to n! 0, which means k! 2, and (14.3.11) would reduce

to our previous solution (8.4.81).

Returning now to consider the case where n < 0 (decreasing radial gradation), we find that

the boundedness condition implies that the solution constant A must again be set to 0.

However, no restriction is needed on the power of r in the third term of solution (14.3.6).

Consideration of the special solution (14.3.8) is no longer needed because n� � 3n þ 8 6¼ 0

will always be satisfied. Thus, the solution given by (14.3.11) is also valid for n < 0.

To show details on the stress distribution, we will choose the case � ¼ 0 so that no

restriction is placed on the condition that k � n > 0, and additionally plane stress results

coincide with plane strain values. We also take the case 8� 3n 6¼ 0 and thus relations (14.3.11)

are used to determine the stresses. Results for the radial stress distribution are shown in Figure

14-13 for gradation parameter values n¼�0.5, 0, 0.5, 1, 2. The results indicate very signifi-

cant differences in behavior from the homogeneous case n¼ 0, which has its maximum value

at the disk center (r¼ 0) and decays to 0 at the outer stress-free boundary. For inhomogeneous

cases with positive gradations (e.g., n¼ 0.5, 1, 2 ), the radial stress actually vanishes at r¼ 0
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and at r¼ a, and thus takes on a maximum value at an interior point within the interval 0 < r < a.
It can be shown that this maximum occurs at

r ¼ rm ¼ a
2

M � 1

� �1=(M�3)

, where M ¼ 1

2
nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 4

p� �
(14:3:13)

Note that for the homogeneous case, as n! 0,M! 1 and rm ! 0, and as n! 8/3,M! 3 and

rm ! a. Also note that for positive gradations (n > 0) at fixed r, the radial stress decreases

monotonically with the gradation parameter n.
For negative values of gradation parameter, the radial stress distribution drastically changes

its behavior and is actually unbounded at the origin. The case for n¼�0.5 is shown in

Figure 14-13, and it is observed that the stress drops rapidly from its singular value at r¼ 0

to 0 at the outer boundary r¼ a. As pointed out by Horgan and Chan (1999b), similar singular

behaviors have been found in the analogous problem for homogeneous radially orthotropic

materials (Horgan and Baxter, 1996; see Section 11.7) that are due to an anisotropic focusing
effect at the origin. For the present inhomogeneous case, the singularity corresponds to the

unbounded Young’s modulus as r ! 0 with n < 0 (see Figure 14-12).

It is interesting that the location of maximum stress can actually be controlled by appropri-

ate modulus gradation (see, for example, relation (14.3.13) ). We also find this situation in the

torsion problem to be discussed later in the chapter. Also, as discussed by Horgan and Chan

(1999b), a design criterion for a disk of uniform stress proposes that

sr ¼ sy, r 2 (0, a) (14:3:14)

FIGURE 14-13 Radial stress distribution in a rotating disk (� ¼ 0).
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which can be accomplished by a gradation of the form

E(r)

1þ �(r)
¼ Kr!2(a2 � r2) (14:3:15)

where K is an arbitrary constant.

As shown by Horgan and Chan (1999b), the hoop stress sy for the disk problem has similar

behaviors; a detailed plot of this component has been left as an exercise.

14.4 Point Force on the Free Surface of a Half-Space

By far the most studied inhomogeneous elasticity problem is the half-space domain under point

or distributed loadings applied to the free surface. Over the past several decades this problem

has received considerable attention; examples include Holl (1940), Lekhnitskii (1961),

Gibson (1967), Gibson and Sills (1969), Kassir (1972), Awojobi and Gibson (1973), Carrier

and Christian (1973), Calladine and Greenwood (1978), Booker et al. (1985), Oner (1990),

Giannakopoulos and Suresh (1997), and Vrettos (1998). Wang et al. (2003) provide an

excellent literature review of previous work. Early applications of these studies were in

the field of geomechanics, where the depth variation in the elastic response of soils was

investigated.

More current applications involved creating functionally graded materials (FGMs) with

depth-dependent properties to provide high surface hardness/stiffness while allowing for

softer/tougher core material. Solutions to this type of problem have typically been either for

the two-dimensional plane strain/plane stress case or for the three-dimensional axisymmetric

geometry. Inhomogeneity has normally included elastic moduli variation with depth coordin-

ates into the elastic half-space using forms similar to relations (14.1.7). Many problems with

varying degrees of complexity in either the loading or moduli variation have been solved. We

will explore one of the more basic and simple solutions that provide fundamental insight into

the effect of inhomogeneity on the stress and displacement fields.

Following the work of Booker et al. (1985), we first explore the two-dimensional plane

strain solution of an inhomogeneous half-space with depth-dependent elastic modulus carrying

the surface point loadings as shown in Figure 14-14. Of course, this problem is the counterpart

of the Flamant solution given for the homogeneous case in Section 8.4.7. Similar to the

x

 z 

Z

X

r

θ

C

FIGURE 14-14 Inhomogeneous half-space with graded modulus E(z).
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previous example, the particular variation in Young’s modulus is prescribed by the power-law

relation

E ¼ Eoz
a (14:4:1)

where Eo and a are positive constants. Again note that Eo has the same units as E and as a ! 0;

we recover the homogeneous case. The general graded behavior of form (14.4.1) is identical to

that shown in Figure 14-6. As before, stress and displacement fields commonly show little

variation with Poisson’s ratio, and thus � is kept constant in this problem.

The problem is formulated and solved using polar coordinates r and y, as shown in

Figure 14-14. Reviewing the solution forms from our previous homogeneous case in

Section 8.4.7, we follow a semi-inverse solution scheme by proposing a somewhat similar

form for the nonhomogeneous stress and displacement fields:

sr ¼ Sr(y)
r

,sy ¼ Sy(y)
r

, try ¼ Sry(y)
r

ur ¼ Ur(y)
ra

, uy ¼ Uy(y)
ra

(14:4:2)

where Sr, Sy, Sry, Ur, and Uy are functions to be determined and a is the power-law exponent

from relation (14.4.1). Using these forms, the equilibrium equations (7.6.3) with no body force

produce

dSry
dy

� Sy ¼ 0

dSy
dy

þ Sry ¼ 0

(14:4:3)

These relations can be easily solved, giving the results

Sry ¼ A cos yþ B sin y

Sy ¼ �A sin yþ B cos y
(14:4:4)

where A and B are arbitrary constants. On the free surface, the stress-free boundary conditions

sy(r, 0)¼ try(r, 0)¼ 0 and sy(r, p)¼ try(r, p)¼ 0 greatly simplify the solution forms. These

conditions imply that A and B vanish and thus Sr and Sy are also 0, indicating that sr is the only
nonzero stress. This type of stress field is commonly referred to as a radial stress distribution.
Similar findings were also found in the homogeneous solution.

Combining Hooke’s law (plane strain case) with the strain displacement relations gives

@ur
@r

¼ 1þ �

E
[(1� �)sr � �sy]

1

r
ur þ @uy

@y

� �
¼ 1þ �

E
[(1� �)sy � �sr]

1

r

@ur
@y

þ @uy
@r

� uy
r
¼ 2(1þ �)

E
try

(14:4:5)
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Substituting our assumed forms (14.4.2) into (14.4.5) and using the fact that Sr¼ Sy¼ 0 yields

� aUr ¼ 1� �2

Eo cosa y
Sr

dUy

dy
þ Ur ¼ � (1þ �)�

Eo cosa y
Sr

dUr

dy
� (1þ a)Uy ¼ 0

(14:4:6)

Relations (14.4.6) represent three linear differential equations for the unknowns Sr, Ur, and

Uy. The system can be reduced to a single equation in terms of a single unknown and then

solved. This result may then be back-substituted to determine the remaining unknowns. The

final solution results are found to be

Sr ¼ � cosa y C1 cos byþ 1þ a
b

C2 sinby
� �

Ur ¼ 1� �2

Eoa
C1 cos byþ 1þ a

b
C2 sin by

� �

Uy ¼ 1� �2

Eoa
� b
1þ a

C1 sinbyþ C2 cos by
� � (14:4:7)

where C1 and C2 are arbitrary constants and b is a parameter given by

b2 ¼ (1þ a) 1� a�
1� �

h i
(14:4:8)

As with the homogeneous case, the constants C1 and C2 are determined by applying force

equilibrium over the semicircular arc C of radius a, as shown in Figure 14-14. Similar to

relations (8.4.33), we may write the force balance as

Z ¼ �
ðp=2
�p=2

sr(a, y)a cos ydy ¼ �
ðp=2
�p=2

Sr(y) cos ydy ¼ C1=Fab

X ¼ �
ðp=2
�p=2

sr(a, y)a sin ydy ¼ �
ðp=2
�p=2

Sr(y) sin ydy ¼ C2=Fab

(14:4:9)

and thus C1¼ ZFab and C2¼ XFab, where

Fab ¼ 2(1þa)(2þ a)
p

G((3þ aþ b)=2)G((3þ a� b)=2)
G(3þ a)

(14:4:10)

and �(�) is the gamma function defined by �(z)¼
ð1
0

e�t tz�1 dt.

The solution is now complete, and the homogeneous case can be extracted by letting a! 0,

which yields b¼ 1, Fab¼ 2/p, and the solution reduces to our previous result (8.4.34).

Let us now evaluate the special inhomogeneous case with only normal loading (X¼ 0) and

explore the nature of the resulting stress and displacement fields. The solution for this case is

given by
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sr ¼ � cosa y
r

ZFab cos by

ur ¼ (1� �2)

Eoara
ZFab cos by

uy ¼ � (1� �2)b
Eoara(1þ a)

ZFab sinby

(14:4:11)

Results (14.4.11) are shown in Figures 14-15 through 14-18, with � ¼ 0.25 for three

different values of the power-law exponent including the homogeneous case (a¼ 0). Such

results illustrate the effect of inhomogeneity on the resulting elastic fields. Clearly, the degree

of nonhomogeneity has a significant influence on these stress and displacement distributions.

Figures 14-15 and 14-16 illustrate that, at a fixed depth into the half-space, both radial stress

and displacement directly under the surface loading (y¼ 0) will increase with higher values of a.
On the other hand, Figure 14-17 indicates that the magnitude of the tangential displacement

will get smaller as the inhomogeneity variation is increased. Radial stress contours are shown

in Figure 14-18 for both the homogeneous (a¼ 0) and nonhomogeneous (a¼ 1) cases. For the

inhomogeneous material, the stress contours become elongated and thus are no longer circular,

as demonstrated for the homogeneous case.

The corresponding three-dimensional problem shown in Figure 14-19 has also been de-

veloped by Booker et al. (1985). The formulation was constructed using spherical coordinates

in much the same manner as the previous two-dimensional problem. Following an axisymmetric,

FIGURE 14-15 Radial stress distribution in a nonhomogeneous half-space.
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semi-inverse solution scheme, we assume that uy¼ 0, tfy¼ tRy¼ 0 and the nonzero stresses and

displacements are given by

sR ¼ SR(f)
R2

, sf ¼ Sf(f)
R2

, sy ¼ Sy(f)
R2

, tRf ¼ SRf(f)
R2

UR ¼ UR(f)
R1þa , Uf ¼ Uf(f)

R1þa

(14:4:12)

where SR, Sf, Sy, SRf, UR, and Uf are functions to be determined and a is the power-law

exponent from relation (14.4.1). Using these forms, the equilibrium equations in spherical

coordinates (A.6), with no body force, reduce to

dSRf
df

þ SRf cotf� Sf � Sy ¼ 0

dSf
df

þ (Sf � Sy) cotfþ SRf ¼ 0

(14:4:13)

Furthermore, by considering the equilibrium of a conical volume bounded by R1 � R � R2,

f ¼ fo, it can be shown that SRf and Sf are related and can be expressed by

SRf ¼ S(f) sinf

Sf ¼ S(f) cosf
(14:4:14)

Combining Hooke’s law with the strain displacement relations again gives a system of

relations similar to the previous result (14.4.6) for the two-dimensional case. Unfortunately,
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FIGURE 14-16 Radial displacement distribution in a nonhomogeneous half-space.
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the relations for the three-dimensional problem cannot be integrated analytically, and thus final

results were generated by Booker et al. (1985) using numerical methods. The radial stress

results are shown in Figure 14-20, with � ¼ 0.25, for several cases of power-law exponent,

and again the homogeneous case (a¼ 0) corresponds to the Boussinesq solution given in

Examples 13-2 and 13-4. Note the similarity of the three-dimensional results with those of the

two-dimensional model shown in Figure 14-15.

Oner (1990) has also provided a solution to the point-force problem shown in Figure 14-19

but for the power-law gradation in terms of the shear modulus

a = 0.5

a = 0 (Homogeneous Case)

a = 1

Angle, q (Degrees)

FIGURE 14-17 Tangential displacement distribution in a nonhomogeneous half-space.
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FIGURE 14-18 Radial stress contour comparisons for the Flamant problem.

412 ADVANCED APPLICATIONS



m ¼ moz
n (14:4:15)

For this type of inhomogeneity, the resulting Cartesian stress and displacement fields are found

to be

sx ¼ (nþ 3)P

2pz2
cos(nþ3) f sin2 f cos2 y

sy ¼ (nþ 3)P

2pz2
cos(nþ3) f sin2 f sin2 y

sz ¼ (nþ 3)P

2pz2
cos(nþ5) f

txy ¼ (nþ 3)P

2pz2
cos(nþ3) f sin2 f sin y cos y

tyz ¼ (nþ 3)P

2pz2
cos(nþ4) f sinf sin y

tzx ¼ (nþ 3)P

2pz2
cos(nþ4) f sinf cos y

(14:4:16)
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FIGURE 14-19 Point load on a three-dimensional inhomogeneous half-space.
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FIGURE 14-20 Radial Stress distribution for the nonhomogeneous point load problem,
with � ¼ 0.25 (from Booker et al., 1985; reprinted with permission of John Wiley & Sons).
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u ¼ P

4pmo

xz

(x2 þ y2 þ z2)(nþ3)=2

v ¼ P

4pmo

yz

(x2 þ y2 þ z2)(nþ3)=2

w ¼ P

4pmo

x2 þ y2 þ z2(nþ 2)

(1þ n)(x2 þ y2 þ z2)(nþ3)=2

(14:4:17)

These results are developed under the power-law exponent restriction n¼ (1/�) � 2. Note that

the homogeneous case corresponds to n¼ 0, which implies that � ¼ 1/2 (incompressible case).

Under these conditions, the inhomogeneous results (14.4.16) and (14.4.17) reduce to the

homogeneous solution developed in Exercise 13-9.

The distribution of the normal stress sz is shown in Figure 14-21 for several cases of the

power-law exponent, n¼ 0, 1/3, 2/3, 1. These results indicate behavior similar to that shown in

Figure 14-20 for a comparable inhomogeneous problem. Directly under the loading (f¼ 0),

the normal stress sz increases with increasing inhomogeneity gradient, a result consistent with

the findings shown in Figures 14-15 and 14-20. Oner also presents stress and displacement

results for the horizontal point loading (Cerruti problem) shown in Figure 13-3.

n = 0 (Homogeneous Case) 
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FIGURE 14-21 Nondimensional normal stress distribution sz for the inhomogeneous
point load problem. (See Oner 1990.)
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14.5 Antiplane Strain Problems

Because of its relatively simple formulation, antiplane strain problems have been investigated for

nonhomogeneous material. Examples of such work include Clements et al. (1978), Dhaliwal

and Singh (1978), Delale (1985), Ang and Clements (1987), Erdogan and Ozturk (1992),

Horgan and Miller (1994), Clements et al. (1997), and Spencer and Selvadurai (1998). Much of

this work has been applied to crack problems related to mode III fracture behaviors. For the

homogeneous case, this crack problem was given as Exercise 8-32. The homogeneous formu-

lation of antiplane strain was given in Section 7.4, and we now develop the corresponding

inhomogeneous formulation for a particular class of material gradation.

Antiplane strain is based on the existence of only out-of-plane deformation, and thus with

respect to a Cartesian coordinate system the assumed displacement field can be written as

u ¼ v ¼ 0, w ¼ w(x, y) (14:5:1)

This yields the following strains:

ex ¼ ey ¼ ez ¼ exy ¼ 0

exz ¼ 1

2

@w

@x
, eyz ¼ 1

2

@w

@y

(14:5:2)

Using Hooke’s law, the stresses become

sx ¼ sy ¼ sz ¼ txy ¼ 0

txz ¼ m
@w

@x
, tyz ¼ m

@w

@y

(14:5:3)

Thus, in the absence of body forces, the equilibrium equations reduce to the single equation

@

@x
m
@w

@x

� �
þ @

@y
m
@w

@y

� �
¼ 0 (14:5:4)

where the shear modulus is assumed to be a function of the in-plane coordinates m¼ m(x,y).
Following the solution procedure outlined by Dhaliwal and Singh (1978), the transformation

w(x, y) ¼ W(x, y)=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m(x, y)

p
(14:5:5)

can be used to reduce relation (14.5.4) to

mr2W þ 1

2

1

2m
(m2x þ m2y)� mxx � myy

� �
W ¼ 0 (14:5:6)

where mx ¼
@m
@x

, my ¼
@m
@y

, mxx ¼
@2m
@x2

, myy ¼
@2m
@y2

.

We now assume separable product forms for W and m such that

W(x, y) ¼ X(x)Y(y), m(x, y) ¼ mop(x)q(y) (14:5:7)
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where �o is a constant. Substituting (14.5.7) into (14.5.6) yields a separable relation that can be
written as two equations:

Xxx þ n2 þ 1

4

px
p

� �2

� 1

2

pxx
p

� �" #
X ¼ 0

Yxx þ �n2 þ 1

4

qx
q

� �2

� 1

2

qyy
q

� �" #
Y ¼ 0

(14:5:8)

where n2 is the separation constant and subscripts indicate partial differentiation as before.

In order to proceed further with an analytical solution, particular choices of the material

gradation functions p and q must be made. In particular, we choose the case where

1

2p

d2p

dx2
� 1

4

1

p

dp

dx

� �2

¼ ao

1

2q

d2q

dy2
� 1

4

1

q

dq

dy

� �2

¼ bo

(14:5:9)

where ao and bo are constants; relations (14.5.8) then reduce to

Xxx þ k2X ¼ 0

Yxx � (ao þ bo þ k2)Y ¼ 0
(14:5:10)

where k2¼ n2 � ao. Combining the previous results, the general bounded solution to governing

equation (14.5.4) for, say, the domain y � 0, can be written in a Fourier integral form

w(x, y) ¼ 1ffiffiffi
m

p
ð1
0

A(x) cos (xx)þ B(x) sin (xx)½ �e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ao þ bo þ x2)

p
ydx (14:5:11)

under the conditions that k2¼ n2 � ao � 0 and ao þ bo þ k2 � 0, and where A(�) and B(�) are
arbitrary functions of �.

Again following the work of Dhaliwal and Singh (1978), an application of this solution

method can be applied to an unbounded medium containing a crack located at �1 � x � 1,

y¼ 0 (see Figure 14-22). The crack surfaces are to be loaded under self-equilibrated uniform,

out-of-plane shear stress S. For this problem the boundary conditions can thus be written as

w(x, 0) ¼ 0, jxj > 1

tyz(x, 0) ¼ S, jxj < 1

tyz(x, y) ! 0 as r ! 1
(14:5:12)

For the particular material inhomogeneity, we choose p(x)¼ eajxj and q(y)¼ ebjyj, and thus

m(x, y) ¼ mo exp ajxj þ bjyjð Þ (14:5:13)
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where a and b are constants. For this choice, p(x) and q(y) satisfy conditions (14.5.9) with ao ¼
a2/4 and bo¼ b2/4; our bounded solution scheme then gives

w ¼ 1ffiffiffi
m

p
ð1
0

A(x)e�s(x)jyj cos (xx)dx

tyz ¼ � ffiffiffi
m

p ð1
0

[b=2þ s(x)]A(x)e�s(x)jyj cos (xx)dx
(14:5:14)

where s(x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ (a2 þ b2)=4

q
.

The two boundary conditions (14.5.12)1,2 imply thatð1
0

A(x) cos (xx)dx ¼ 0, x > 1ð1
0

[b=2þ s(x)]A(x) cos (xx)dx ¼ � Sffiffiffiffiffi
mo

p e�ax=2, 0 < x < 1

(14:5:15)

For some function F(t), we can write an integral representation for A(�) in the form

A(x) ¼
ð1
0

F(t)Jo(xt)dt (14:5:16)

where Jo is the zero-order Bessel function of the first kind. By using the result

ð1
0

Jo(xt) cos (xx)dx ¼ 0, x > t

(t2 � x2)�1=2, 0 � x < t

(
(14:5:17)

it can be shown that relation (14.5.15)1 will be identically satisfied. The remaining boundary

condition (14.5.15)2 can be rewritten asð1
0

[xþ G(x)]A(x) cos (xx)dx ¼ � Sffiffiffiffiffi
mo

p e�ax=2, 0 < x < 1 (14:5:18)

where G(x) ¼ s(x)� xþ b=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ (a2 þ b2

p
)=4� xþ b=2.

Using results (14.5.16) and (14.5.17), relation (14.5.18) can be expressed as the following

integral equation:

x

y τyz = S

11

FIGURE 14-22 Antiplane strain crack problem.

Nonhomogeneous Elasticity 417



F(t)þ
ð1
0

F(x)K(x, t)dx ¼ g(t), 0 < t < 1 (14:5:19)

with

g(t) ¼ � 2tS

p
ffiffiffiffiffi
mo

p
ðt
0

e�ax=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2

p dx ¼ tSffiffiffiffiffi
mo

p [Lo(at=2)� Io(at=2)]

K(x, t) ¼ t

ð1
0

G(x)Jo(xt)Jo(xt)dx

(14:5:20)

and Io(�) is the modified Bessel function of the first kind of zero order and Lo(�) is the modified

Struve function of zero order (see Abramowitz and Stegun, 1964).

Combining the previous results, the shear stress on the x-axis can be expressed as

tyz(x, 0) ¼
ffiffiffiffiffi
mo

p
x

e�ax=2 F(1)ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p �
ð1
0

tF0(t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � t2

p dt

� �

� ffiffiffiffiffi
mo

p
e�ax=2

ð1
0

F(t)dt

ð1
0

G(x)Jo(xt) cos (xx)dx, x > 1

(14:5:21)

As mentioned in Chapters 8 and 10, the stress intensity factor plays an important role in

fracture mechanics theory. For this out-of-plane deformation case, the stress intensity factor is

related to mode III fracture toughness, and its value can be computed by the expression

KIII ¼ lim
x!1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(x� 1)

p
tyz(x, 0)

� �
¼ ffiffiffiffiffi

mo
p

ea=2F(1) (14:5:22)

To obtain explicit results for the displacement, stress, and stress intensity factor, equation

(14.5.19) must be solved to determine the functional behavior of F(t) for various values of a
and b. Relation (14.5.19) is a Fredholm integral equation of the second kind and generally

requires numerical integration methods to determine the solution. Dhaliwal and Singh (1978)

conducted such numerical evaluation, and their results for the stress intensity factor are shown

in Figure 14-23. These results generally indicate that the stress intensity factor increases with a
but decreases with increasing values of b. Note that for the homogeneous case (a¼ b¼ 0),

KIII ¼ S
ffiffiffiffiffi
mo

p
.

14.6 Torsion Problem

We now wish to re-examine the torsion of elastic cylinders for the case where the material is

nonhomogeneous. The basic formulation and particular solutions were given in Chapter 9 for the

homogeneous case and in Chapter 11 for the anisotropic case. Although a vast amount of work

has been devoted to these problems, only a few studies have investigated the corresponding

inhomogeneous case. Early work on the torsion of nonhomogeneous cylinders includes

Lekhnitskii (1981); later studies were done by Rooney and Ferrari (1995) and Horgan and

Chan (1999c). As expected, most closed-form analytical solutions for the inhomogeneous case

are limited to cylinders of revolution, normally with circular cross-sections.

Following the work of Horgan and Chan (1999c), we consider the torsion of a right circular

cylinder of radius a as shown in Figure 14-24. The cylindrical body is assumed to be isotropic,
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but with graded shear modulus that is a function only of the radial coordinate m¼ m(r). The
usual boundary conditions require zero tractions on the lateral boundary S and a resultant pure

torque loading T over each end section R.
The beginning formulation steps remain the same as previously presented, and thus the

displacements, strains, and stresses are the same as given in Chapter 9:

Inhomogeneity Factor, b

S mo

KIII

a = 0 

a = 0.05 

a = 0.1 

1.05

1.00

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.925
0.0 0.1 0.2 0.3 0.4 0.5

FIGURE 14-23 Stress intensity factor as a function of inhomogeneity ( from Dhaliwal and Singh,
1978; reprinted with permission from Springer).
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FIGURE 14-24 Torsion of a nonhomogeneous circular cylinder.

Nonhomogeneous Elasticity 419



u ¼ �ayz

v ¼ axz

w ¼ w(x, y)

(14:6:1)

ex ¼ ey ¼ ez ¼ exy ¼ 0

exz ¼ 1

2

@w

@x
� ay

� �

eyz ¼ 1

2

@w

@y
þ ax

� � (14:6:2)

sx ¼ sy ¼ sz ¼ txy ¼ 0

txz ¼ m
@w

@x
� ay

� �

tyz ¼ m
@w

@y
þ ax

� � (14:6:3)

It again becomes useful to introduce the Prandtl stress function, f¼ f(x,y)

txz ¼ @f
@y

, tyz ¼ � @f
@x

(14:6:4)

so that the equilibrium equations are satisfied identically. We can again generate the compati-

bility relation among the two nonzero stress components by differentiating and combining

relations (14.6.3)2,3 to eliminate the displacement terms. Substituting (14.6.4) into that result

gives the governing relation in terms of the stress function

@

@x

1

m
@f
@x

� �
þ @

@y

1

m
@f
@y

� �
¼ �2a (14:6:5)

where the shear modulus � must now be left inside the derivative operations because the

material is inhomogeneous. Recall that, for the homogeneous case, relation (14.6.5) reduced to

the Poisson equation r2f¼�2�a.
Incorporation of the boundary condition that tractions vanish on the lateral surface S leads

to identical steps as given previously by equations (9.3.10) through (9.3.12), thus leading to the

fact that the stress function must be a constant on all cross-section boundaries; that is,

df
ds

¼ 0 ) f ¼ constant, on S (14:6:6)

For simply connected sections, the constant may again be chosen as 0. Invoking the resultant

force conditions on the cylinder end planes (domain R), as given by relations (9.3.14), again

yields
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T ¼
ðð

R

(xTn
y � yTn

x )dxdy ¼ 2

ðð
R

fdxdy (14:6:7)

and the torsional rigidity J can again be defined by J¼ T/a.
Because we wish to use a simple radial shear modulus variation, �¼ �(r), it is more

convenient to use a polar coordinate formulation. For the circular cylinder under study, the

problem reduces to an axisymmetric formulation independent of the angular coordinate and the

warping displacement vanishes. Under these conditions the displacements, strains, and stresses

reduce to

ur ¼ uz ¼ 0, uy ¼ arz

er ¼ ey ¼ ez ¼ erz ¼ ery ¼ 0, eyz ¼ ar
2

sr ¼ sy ¼ sz ¼ trz ¼ try ¼ 0, tyz ¼ amr

(14:6:8)

Relations (14.6.4) and (14.6.5) for the stress function formulation then reduce to a system in

terms of only the radial coordinate r

tyz ¼ � df
dr

1

r

d

dr

r

m
df
dr

� �
¼ �2a

(14:6:9)

with boundary condition f(a)¼ 0.

The governing differential equation (14.6.9) can be easily integrated to give the general

solution

f(r) ¼ �a
ð
rm(r)dr þ C1

ð
m(r)
r

dr þ C2 (14:6:10)

where C1 and C2 are arbitrary constants. We require that the solution for f remain bounded as

r ! 0, thus implying that each integral term in (14.6.10) be finite at the origin. Restricting

ourselves to the plausible case where the shear modulus is expected to be nonzero but bounded

at the origin, lim
r!0

Ð
rm(r)dr ! 0, while the second integral, lim

r!0

Ð m(r)
r

dr, is singular. Based on

these arguments, C1 must be set to 0. Finally, the boundary condition f(a)¼ 0 determines the

final constant C2 and produces the general solution

f(r) ¼ a
ða
r

xm(x)dx (14:6:11)

With this result, the shear stress and torsional rigidity then become

tyz ¼ arm(r)

J ¼ 2p
ða
0

r3m(r)dr
(14:6:12)
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To explore the effects of inhomogeneity, let us consider some specific gradations in shear

modulus. Following some of the examples discussed by Horgan and Chan (1999c), we

consider two cases of the following form:

m(r) ¼ mo 1þ n

a
r

� �m
m(r) ¼ moe

�n
ar

(14:6:13)

where n � 0 and �o > 0 and m are material constants. Note that, for either example, as n ! 0

we recover the homogeneous case �(r)¼ �o. Also, as r ! 0, � ! �o, and so these material

examples all have finite shear modulus at r¼ 0.

Plots of these shear modulus gradations are shown in Figure 14-25 for various cases of

material parameter m with n¼ 1. For the model given by (14.6.13)1, three cases are shown.

The m¼ 1 case corresponds to a linearly increasing shear modulus from the central axis of the

shaft, while m¼�1 or �3 gives a nonlinear decreasing gradation in material stiffness. The

figure also shows the modulus variation for the exponential graded model given by (14.6.13)2
for the case n¼ 1. All gradation forms (14.6.13) allow simple solutions to be generated for the

stress function, shear stress, and torsional rigidity.

Solutions for the gradation model given by (14.6.13)1 are found to be

f(r)¼
moa
2

(a2 � r2)þ moan
3

(a2 � r3

a
), m¼ 1

�moa
a

n
r� a

n

� �2
log 1þ n

a
r

��� ���� �
þ moa

a2

n
� a

n

� �2
log j1þ nj

� �
, m¼�1

8>><
>>: (14:6:14)

FIGURE 14-25 Shear modulus behavior for torsion problems (n¼ 1).
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tyz ¼ moar 1þ n

a
r

� �m
(14:6:15)

Note that the solution for the stress function requires integration through relation (14.6.11), and

thus closed-form solutions can only be determined for integer and other special values of the

parameter m. From relation (14.6.15), it can be shown that if m � �1, the maximum shear

stress always occurs at the boundary r¼ a. Recall that this result was found to be true in

general for all homogeneous cylinders of any cross-section geometry (see Exercise 9-5).

However, for the inhomogeneous case when m < �1, the situation changes and the location

of maximum shear stress can occur in the cylinder’s interior.

Horgan and Chan (1999c) have shown that for the case with n > 0, the choice ofm <�1� 1/n
produces a maximum shear stress tyz at r¼�a/n(1 þ m). These results imply that modulus

gradation can be adjusted to allow control of the location of (tyz)max. Dimensionless shear

stress distributions for model (14.6.13)1 are shown in Figure 14-26 for various cases of

material parameters m and n. As expected, higher stresses occur for a gradation with increasing
shear modulus. For the homogeneous case, the shear stress distribution will be linear, as

predicted from both elasticity theory and mechanics of materials. For the nonhomogeneous

cases with n¼ 1 and m¼ +1, it is noted that the maximum shear stress occurs on the

boundary of the shaft. However, for the case shown with n¼ 1 and m¼�3, the maximum

stress occurs interior at r¼ a/2 according to our previous discussion.

FIGURE 14-26 Shear stress distribution for the torsion problem with modulus given by
model (14.6.13)1.
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Considering next the solutions for the gradation model (14.6.13)2, relations (14.6.11) and

(14.6.12) give

f(r) ¼ moae
� n

a r
ar

n
þ a

n

� �2� �
� moaa

2 1

n
þ 1

n2

� �
e�n

tyz ¼ moare
�n
a r

(14:6:16)

It can easily be shown that if n � 1, the maximum shear stress will exist on the outer boundary,

while if n > 1, the maximum moves to an interior point within the shaft. Nondimensional shear

stress distributions for this exponential gradation are shown in Figure 14-27 for several values

of the parameter n. As observed in the previous model, for the case with decreasing radial

gradation (n > 0), the shear stress will always be less than the corresponding homogeneous

distribution. With n < 0, we have an increasing radial gradation that results in stresses larger

than the homogeneous values.

The discussion of the location of maximum shear stress can be generalized for the radial

gradation case by going back to the general shear stress solution (14.6.12)1. Using this relation,

it can be shown that the necessary and sufficient condition on �(r) for an extremum of tyz at an
interior point (r < a) is given by

m0(r) < �m(r)
a

, r 2 (0, a) (14:6:17)
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FIGURE 14-27 Shear stress distribution for the torsion problem with modulus given by
model (14.6.13)2.
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where the prime indicates differentiation. Furthermore the location ro of this extremum is

specified by

ro ¼ � m(ro)
m0(ro)

(14:6:18)

Further analysis to determine the torsional rigidities can also be carried out (see, for example,

Exercise 14-20). Horgan and Chan (1999c) have explored torsional rigidities in detail and have

developed several general results including upper and lower bounding theorems.

It should be noted that the general field equation for the torsion problem (14.6.5) is quite

similar to the corresponding field equation for the antiplane strain problem (14.5.4) discussed

previously. Thus, a transformation scheme similar to (14.5.5) may also help reduce the torsion

field equation into a more tractable relation. Following this concept, we use the transformation

f(x, y) ¼ F(x, y)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m(x, y)

p
(14:6:19)

into (14.6.5) and find the following reduction

r2Fþ F(m)F ¼ �2a
ffiffiffi
m

p
(14:6:20)

where

F(m) ¼ 1

2m
r2m� 3

2m
j=mj2

� �
¼ � ffiffiffi

m
p r2(m�1=2) (14:6:21)

Assuming that � > 0 in the domain, boundary condition (14.6.6) implies that

F ¼ 0, on S (14:6:22)

This formulation leads to significant simplification for the case where F(�)¼ 0, which

corresponds to the situation where ��1/2 is harmonic. For such a case, the governing equation

reduces to the Poisson equation

r2F ¼ �2a
ffiffiffi
m

p
(14:6:23)

and standard solution techniques for solving such equations can then be applied.

Another noteworthy area of significant research dealing with graded materials includes

studies of static and dynamic fracture mechanics; see, for example, Parameswaran and Shukla

(1999, 2002). These and other studies have investigated material gradation effects on crack tip

stresses around stationary and moving cracks.

This concludes our exploration into nonhomogeneous elasticity solutions. The examples

given illustrate some of the interesting effects caused by spatial variation of elastic moduli. As

should be evident, problem formulation and solution are more challenging. Solutions to such

problems commonly indicate significant differences in the elastic stress and displacement

fields when compared with corresponding homogeneous solutions. In some cases, material

gradation will reduce maximum stresses and change the spatial location where such max-

imums occur. This provides the possibility of tailoring material variation to achieve desired

stresses in a structure and thus of functionally grading the material. The difficult part of this

concept is how to develop manufacturing techniques that will produce the desired continuous

modulus variation in realistic materials used in engineering applications.
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Exercises

14-1. Show that, for the case of plane stress, the governing compatibility relation in terms of

the Airy stress function is given by (14.1.6)

@2

@x2
1

E

@2f
@x2

� �

E

@2f
@y2

� �
þ @2

@y2
1

E

@2f
@y2

� �

E

@2f
@x2

� �
þ 2

@2

@x@y

1þ �

E

@2f
@x@y

� �
¼ 0

Next determine the reduced form of this equation for the special case E¼ E(x) and

� ¼ constant.

14-2. Consider a special case of equation (14.1.4). Parameswaran and Shukla (1999) presented

a two-dimensional study where the shear modulus and Lamé’s constant varied as

�(x)¼ �o(1 þ ax) and l(x)¼ k�(x), where �o, a, and k are constants. For such a material,

show that in the absence of body forces the two-dimensional Navier’s equations become

mo(1þ ax) k
@W
@x

þ 2
@2u

@x2
þ @2u

@y2
þ @2v

@x@y

� �
þ moa kWþ 2

@u

@x

� �
¼ 0

mo(1þ ax) k
@W
@y

þ 2
@2v

@y2
þ @2v

@x2
þ @2u

@x@y

� �
þ moa

@u

@y
þ @v

@x

� �
¼ 0

where W ¼ @u

@x
þ @v

@y
.
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14-3. Parameswaran and Shukla (2002) recently presented a fracture mechanics study of non-

homogeneous material behavior related to functionally graded materials. They

investigated a two-dimensional plane stress problem where Poisson’s ratio remained

constant but Young’s modulus varied as E(x)¼ Eoe
ax, where Eo and a are constants. For

this case, with zero body forces, show that the governing Airy stress function equation is

given by

r4f� 2a
@

@x
(r2f)þ a2r2f� a2(1þ �)

@2f
@y2

¼ 0

This result may be compared with the more general case given by relation (14.1.6). Note

that, when a¼ 0, this result reduces to the homogeneous form r4f¼ 0. The nonho-

mogeneous result is a challenging equation, and its solution was developed for the

limited case near the tip of a crack using asymptotic analysis.

14-4. For the hollow cylinder problem shown in Figure 14-5, use the given boundary

conditions to explicitly determine the arbitrary constants A and B and the stress relations

(14.2.6).

14-5. For the problem in Figure 14-5 with only internal pressure, show that the general stress

field (14.2.6) reduces to relations (14.2.7).

14-6. For the hollow cylinder problem illustrated in Figure 14-5, show that the usual

restrictions on Poisson’s ratio, 0 � � � 1/2, imply that

� 2þ k þ n � 0, � 2� k þ n � 0

2þ k� � n�

k � nþ 2�
� 1,

2� k� � n�

k þ n� 2�
� 1

Using these results, develop arguments to justify that the stresses in solution (14.2.9)

must satisfy sr < 0 and sy > 0 in the cylinder’s domain. Thus stresses in the nonhomo-

geneous problem have behavior similar to those of the ungraded case.

14-7*. Following procedures similar to those for the homogeneous problem (see Section 8.4.1),

develop the following stress field for a pressurized hole in an infinite nonhomogeneous

medium with moduli variation given by (14.2.3).

sr ¼ �pi
a

r

� �(2þk�n)=2

sy ¼ pi
2� k� � n�

k þ n� 2�

a

r

� �(2þk�n)=2

Plot the dimensionless stress fields for this case using the same parameters � and n used

in Figures 14-7 and 14-8.

14-8. For the inhomogeneous rotating disk problem with � ¼ 0, explore the solution for the

special case of n¼ 3 and show that the stresses reduce to

sr ¼ 0, sy ¼ r!2r2
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Also determine the displacement solution and show the surprising result that u(0) > 0.

This strange behavior has been referred to as a cavitation at the disk’s center.

14-9*. Using MATLAB or similar software, make a plot similar to Figure 14-13 showing the

behavior of the hoop stress sy for the case with � ¼ 0 and n¼�0.5, 0, 0.5, 1, 2. Discuss

your results.

14-10. Using the design criterion (14.3.14), incorporate the fundamental equations for the

inhomogeneous rotating disk problem to explicitly develop the required gradation

given by relation (14.3.15).

14-11. Rather than using polar coordinates to formulate the inhomogeneous half-space

problem of Section 14.4, some researchers have used Cartesian coordinates instead.

Using the x, z-coordinates as shown in Figure 14-14, consider the plane strain case with
inhomogeneity only in the shear modulus such that �¼ �(z) and � ¼ constant. First

show that combining the strain displacement relations with Hooke’s law gives

sx ¼ 2m(z)
@u

@x
þ ��W

� �

sz ¼ 2m(z)
@w

@z
þ ��W

� �

txz ¼ m(z)
@u

@z
þ @w

@x

� �

where W ¼ ekk ¼ @u

@x
þ @w

@z
is the dilatation and �� ¼ �

1� 2�
. Next show that the equi-

librium equations yield

r2uþ (1þ 2��)
@W
@x

þ h(z)
@u

@z
þ @w

@x

� �
¼ 0

r2wþ (1þ 2��)
@W
@z

þ 2h(z)
@w

@z
þ ��W

� �
¼ 0

where h(z) ¼ 1

m
dm
dz
. Explore the simplification of these equations for the special inhomo-

geneous case in which �¼ �o e
az, where �o and a are constants.

14-12. Consider the axisymmetric half-space problem shown in Figure 14-19 for the case

where only Poisson’s ratio is allowed to vary with depth coordinate � ¼ �(z). Using
cylindrical coordinates (r, y, z) to formulate the problem, first show that the stress field

can be expressed by

sr ¼ 2m
@ur
@r

þ ��(z)W
� �

sz ¼ 2m
@uz
@z

þ ��(z)W
� �

sy ¼ 2m
ur
r
þ ��(z)W

� �
trz ¼ m

@ur
@z

þ @uz
@r

� �

Nonhomogeneous Elasticity 429



where W ¼ @ur
@r

þ ur
r
þ @uz

@z
is the dilatation and ��(z) ¼ �(z)

1� 2�(z)
. Next show that the

equilibrium equations reduce to

r2 � 1

r

� �
ur þ @

@r
(1þ 2��)Wð Þ ¼ 0

r2uz þ @

@z
(1þ 2��)Wð Þ ¼ 0

14-13. For the antiplane strain problem, verify that transformation (14.5.5) will reduce the

governing equilibrium equation to relation (14.5.6). Next show that the separation of

variables scheme defined by (14.5.7) will lead to the two equations (14.5.8).

14-14. Explicitly show that the inhomogeneity functions p(x)¼ e�ajxj and q(y)¼ e�bjyj, that
were used for the antiplane crack problem, do in fact satisfy relations (14.5.9) with

ao¼ a2/4 and bo¼ b2/4.

14-15. For the torsion problem discussed in Section 14.6, explicitly justify the reductions in

polar coordinates summarized by relations (14.6.8) and (14.6.9).

14-16. Verify that the general solution to equations (14.6.9) are given by (14.6.11) and

(14.6.12) for the torsion problem.

14-17. For the torsion problem, verify the solutions (14.6.14) and (14.6.15) for the gradation

model (14.6.13)1.

14-18. For the torsion problem, verify the solutions (14.6.16) for the gradation model

(14.6.13)2.

14-19. Investigate the issue of finding the location of (tyz)max for the torsion problem. First

verify the results given by (14.6.17) and (14.6.18). Next apply these general relations to

the specific gradation models given by (14.6.13)1,2, and develop explicit results for

locations of the extrema.

14-20. Show that the torsional rigidity for the exponential gradation case (14.6.13)2 is given by

J ¼ 2pa4mo
6

n4
� e�n 1

n
þ 3

n2
þ 6

n3
þ 6

n4

� �� �

Next use a Taylor series expansion for small n to show that

J � pa4mo
2

1� 4n

5
þ O(n2)

� �
.

Compare this result with the homogeneous case.
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15 Micromechanics Applications

In recent years, considerable interest has developed inmicromechanical modeling of solids. This

interest has been fueled by the realization that many materials have heterogeneous microstruc-

tures that play a dominant role in determining macro deformational behavior. Materials where

this occurs include multiphase fiber and particulate composites, soil, rock, concrete, and various

granular materials. These materials have microstructures that occur at a variety of length scales

from meters to nanometers, and general interest lies with the case where the length scale is

smaller than other characteristic lengths in the problem. The response of such heterogeneous

solids shows strong dependence on the micromechanical behaviors between different material

phases. Classical theories of continuummechanics have limited ability to predict such behaviors,

and this has lead to the development of many new micromechanical theories of solids.

Work in this area, initiated almost a century ago by Volterra (1907), began with studies of

elastic stress and displacement fields around dislocations and other imperfections. More

recently, using continuum mechanics principles, theories have been developed in which the

material response depends on particular microscale length parameters connected with the

existence of inner degrees of freedom and nonlocal continuum behavior. By nonlocal behavior

we mean that the stress at a point depends not only on the strain at that point but also on the

strains of neighboring points. Mindlin (1964) developed a general linear elasticity theory with
microstructure that allowed the stress to depend on both the strain and an additional kinematic
microdeformation tensor. Related research has led to the development of micropolar and

couple-stress theories; see Eringen (1968). These approaches allow material deformation to

include additional independent microrotational degrees of freedom. Elastic continuum theories

using higher-order gradients have also been developed to model micromechanical behavior of

solids; see, for example, Mindlin (1965), Chang and Gao (1995), Aifantis (1999), and Li et al.

(2004). A general review of modeling heterogeneous elastic solids has been provided by

Nemat-Nasser and Hori (1993). Along similar lines, Cowin and Nunziato (1983) developed

a theory of elastic materials with voids including an independent volume fraction in the

constitutive relations.

Another interesting theory called doublet mechanics (Ferrari, Granik, Imam, and Nadeau

1997) represents heterogeneous solids in a discrete fashion as arrays of points or particles that

interact through prescribed micromechanical laws. Other related work has investigated elastic

materials with distributed cracks; see, for example, Budianski and O’Connell (1976) and
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Kachanov (1994). Originally developed by Biot (reference collection, 1992), poroelasticity
allows for the coupling action between a porous elastic solid and the contained pore fluid. The

coupled diffusion-deformation mechanisms provide useful applications in many geomechanics

problems. Some work has approached the heterogeneous problem using statistical and prob-

abilistic methods to develop models with random variation in micromechanical properties; see,

for example, Ostoja-Starzewski and Wang (1989, 1990). The monograph by Mura (1987)

provides considerable elastic modeling of dislocations, inclusions, cracks, and other inhomo-

geneities using the eigenstrain technique.

We now present an introduction to some of these particular modeling schemes, including

dislocations, singular stress states, elastic materials with distributed cracks, micropolar/couple-

stress theory, elastic materials with voids, and doublet mechanics. Our brief coverage focuses

on only the linear elastic response of a given theory, generally including one or two example

applications. Of course, many other theories have been developed, and the choice of topics to

be presented is based on their appropriateness for the educational goals of the text. This review

provides a good foundation for further study and pursuit of additional theories that may be

more appropriate for a given material.

15.1 Dislocation Modeling

Deformations of an elastic solid may depend not only on the action of the external loadings, but

also on internal microstructural defects that may be present in the material. In crystalline

materials, such internal defects are commonly associated with imperfections in the atomic lattice

and are referred to as dislocations. The particular type of defect depends on the basic atomic

lattice structure of the crystal, and an example imperfection is shown in Figure 15-1 for the case

of a simple cubic packing geometry. This imperfection is associated with the insertion of an extra

plane of atoms (indicated by the dotted line) and is referred to as an edge dislocation. Other
examples exist, and we now investigate the elastic stress and displacement fields of two

particular dislocation types. As previously mentioned, studies on dislocation modeling began

almost a century ago by Volterra (1907) and detailed summaries of this work have been given by

Weertman and Weertman (1964), Lardner (1974), and Landau and Lifshitz (1986).

The two most common types of imperfections are the edge and screw dislocations, and
these are shown for a simple cubic crystal in Figure 15-2. As mentioned, the edge dislocation

FIGURE 15-1 Edge dislocation.
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occurs when an extra plane(s) of atoms is inserted into the regular crystal as shown, while the

screw dislocation is associated with a shearing deformational shift along a regular plane. The

effect of such dislocations is to produce a local stress and displacement field in the vicinity of

the imperfection. For such cases, the local stress field will exhibit singular but single-valued

behavior, while the displacements will be finite and multivalued. This displacement discon-

tinuity can be measured by evaluating the cyclic property around a closed contour C that

encloses the dislocation line D shown in Figure 15-2. The value of this discontinuity is called

the Burgers vector b and is given by the following integral relation:

bi ¼
þ
C

dui ¼
þ
C

@ui
@xj

dxj (15:1:1)

Note that for the cases shown in Figure 15-2, the magnitude of the Burgers vector will be one

atomic spacing.

In order to determine the elastic stress and displacement fields around edge and screw

dislocations, we consider idealized elastic models. The edge dislocation model is shown in

Figure 15-3. For this case the medium has been cut in the x,z-plane for x � 0, and the

dislocation line coincides with the z-axis. Two cases can be considered that include displace-

(Screw Dislocation)

D

(Edge Dislocation)

D

FIGURE 15-2 Schematics of edge and screw dislocations.
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Dislocation Line

(Edge Dislocation in x Direction
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Dislocation Line

(Edge Dislocation in y Direction)

FIGURE 15-3 Edge dislocation models.
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ment discontinuities in either the x or y directions. The action of these discontinuities produces
a local stress and strain field that we wish to determine. For the edge dislocation, a plane strain

displacement field in the x,y-plane can be chosen. The Burgers vector for the general case with
both in-plane discontinuities would read b ¼ (bx, by, 0). This type of problem can be solved by

complex variable methods using the cyclic displacement condition [uþ iv]C ¼ bx þ iby, where
the contour C lies in the x,y-plane and encloses the origin. We expect in this problem singular

stresses at the origin.

EXAMPLE 15-1: Edge Dislocation in the x Direction

We first consider in detail an edge dislocation where bx ¼ b, by ¼ 0. The appropriate

displacement field must give rise to the required multivaluedness, and this can be

accomplished through a field of the form

u ¼ b

2p
tan�1 y

x
þ 1

2(1� �)

xy

x2 þ y2

� �

v ¼ � b

2p
1� 2�

4(1� �)
log (x2 þ y2)� 1

2(1� �)

y2

x2 þ y2

� � (15:1:2)

The stresses associated with these displacements are found to be

sx ¼ �bB
y(3x2 þ y2)

(x2 þ y2)2

sy ¼ bB
y(x2 � y2)

(x2 þ y2)2

txy ¼ bB
x(x2 � y2)

(x2 þ y2)2

sz ¼ �(sx þ sy)

txz ¼ tyz ¼ 0

(15:1:3)

where B ¼ m=2p(1� �). In cylindrical coordinates, the stresses are

sr ¼ sy ¼ � bB

r
sin y

try ¼ bB

r
cos y

(15:1:4)

It should be noted that this solution actually follows from a portion of the general

Michell solution (8.3.6), f ¼ b12 r log r sin y.
A similar set of field functions can be determined for the edge dislocation case of a y

discontinuity with bx ¼ 0, by ¼ b.
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EXAMPLE 15-2: Screw Dislocation in the z Direction

Next consider the screw dislocation case as shown in Figure 15-4. For this problem the

material is again cut in the x,z-plane for x � 0, and the dislocation line coincides with

the z-axis. The displacement discontinuity is now taken in the z direction as shown, and

thus the Burgers vector becomes bx ¼ by ¼ 0, bz ¼ b.
This case can be easily solved with the following displacement field:

u ¼ v ¼ 0

w ¼ b

2p
tan�1 y

x

(15:1:5)

Clearly, this field satisfies the required cyclic displacement discontinuity. Fields of the

form (15.1.5) are commonly called antiplane elasticity (see the discussion in Section

7.4). The resulting stresses for this case are

txz ¼ �mb
2p

y

x2 þ y2

tyz ¼ mb
2p

x

x2 þ y2

sx ¼ sy ¼ sz ¼ txy ¼ 0

(15:1:6)

In cylindrical coordinates, these stresses can be expressed in simpler form as

tyz ¼ mb
2pr

sr ¼ sy ¼ sz ¼ try ¼ trz ¼ 0

(15:1:7)

Dislocation Line

xy

z

b

FIGURE 15-4 Screw dislocation model.
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Notice that the edge and screw dislocation stress fields are singular at the origin. This is

expected because of the nature of the displacement discontinuities associated with each

problem. Other aspects of dislocation modeling include determination of the associated strain

energy (see exercises), effect of external force fields, dislocation interaction, and movement.

These and other modeling issues can be found in Weertman and Weertman (1964), Lardner

(1974), and Landau and Lifshitz (1986).

15.2 Singular Stress States

As discussed in the previous section, elasticity theory can be used to model defects in

solids. Obviously, such studies may involve modeling of imperfections that are not simple

edge or screw dislocations. For example, other defects may include voids and inclusions

of arbitrary shape and distribution. In some cases these defects can produce localized, self-

equilibrated residual stress fields from, say, trapped gases, thermal mismatch associated

with an inclusion, and so forth. For many such problems, elasticity models can be developed

by using solutions from a particular solution class sometimes referred to as singular stress
states. These stress states include a variety of concentrated force and moment systems

yielding stress, strain, and displacement fields that have singular behaviors at particular

points in the domain. Such cases commonly include concentrated forces as developed in the

solution of the Kelvin problem (see Example 13-1). Combinations and superposition of

this fundamental solution are normally made to generate more complex and applicable

solutions. We now develop some basic singular stress states and investigate their fundamental

features.

Define a regular elastic state in a domain D as the set

S(x) ¼ {u, e,s} (15:2:1)

where the displacement vector u and stress and strain tensors s and e satisfy the elasticity field
equations in D.

We use the Papkovich-Neuber solution scheme from Section 13.4 with redefined scalar and

vector potentials functions to allow the displacement solution to be expressed as

2mu ¼ =(fþ R � c)� 4(1� �)c (15:2:2)

where f is the scalar potential and c is the vector potential satisfying the equations

r2f ¼ � R � F
2(1� �)

, r2c ¼ F

2(1� �)
(15:2:3)

with body force F. Using elements of potential theory (Kellogg 1953), a particular solution to

equations (15.2.3) in a bounded domain D can be written as
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f(x) ¼ 1

8p(1� �)

ð
D

j � F(j)
R̂R(x, j)

dV(j)

c(x) ¼ � 1

8p(1� �)

ð
D

F(j)

R̂R(x, j)
dV(j)

(15:2:4)

where R̂R ¼ jx� jj:
Useful relations for the dilatation, strains, and stresses are given by

ekk ¼ � 1� 2�

m
ck, k

eij ¼ 1

2m
[f, ij � (1� 2�)(ci, j þ cj, i)þ xkck, ij]

sij ¼ f, ij � 2�dijck, k � (1� 2�)(ci, j þ cj, i)þ xkck, ij

(15:2:5)

Let us now investigate a series of example singular states of interest. Zero body forces will be

chosen for these examples.

EXAMPLE 15-3: Concentrated Force in an Infinite Medium
(Kelvin Problem)

Consider first the simplest singular state problem of a concentrated force acting in an

infinite medium as shown in Figure 15-5. Recall this was referred to as the Kelvin
problem and was solved previously in Example 13-1. The solution to this problem is

given by the Papkovich potentials

f ¼ 0, c ¼ � 1

8p(1� �)

P

R
(15:2:6)

where R ¼ jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.

x

y

z

P

FIGURE 15-5 Concentrated force singular state problem.
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EXAMPLE 15-4: Kelvin State with Unit Loads
in Coordinate Directions

Consider next the combined Kelvin problem with unit loads aa(a ¼ 1, 2, 3) acting along

each of three coordinate directions as shown in Figure 15-6. This singular state is

denoted by Sa(x) and is given by the potentials

fa ¼ 0, ca
i ¼ �C

dia
R

, where C ¼ 1

8p(1� �)
(15:2:7)

The displacements and stresses corresponding to this case become

uai ¼
C

2mR
xaxi
R2

þ (3� 4�)dai
h i

saij ¼ � C

R3

3xaxixj
R2

þ (1� 2�)(daixj þ dajxi � dijxa)
� � (15:2:8)

As a special case of this state, consider aa ¼ [0, 0, 1], which would be state Sz(x) with
potentials

fz ¼ cz
x ¼ cz

y ¼ 0, cz
z ¼ �C

R
(15:2:9)

and in spherical coordinates (R,f, y) (see Figure 1-6) yields the following displace-

ments and stresses:

uR ¼ 2C(1� �)

m
cosf
R

, uf ¼ �C(3� 4�)

2m
sinf
R

, uy ¼ 0

sR ¼ �2C(2� �)
cosf
R2

, sy ¼ sf ¼ C(1� 2�)
cosf
R2

tRf ¼ C(1� 2�)
sinf
R2

, tRy ¼ tfy ¼ 0

(15:2:10)
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FIGURE 15-6 Unit concentrated loadings.
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EXAMPLE 15-4: Cont’d

For the case with the force in the x direction, that is, the state Sx(x), we get the following
fields:

uR ¼ 2C(1� 2�)

mR
sinf cos y

uf ¼ C(3� 4�)

2mR
cosf cos y

uy ¼ �C(3� 4�)

2mR
sin y

sR ¼ � 2C(2� �)

R2
sinf cos y

sy ¼ sf ¼ C(1� 2�)

R2
sinf cos y

tRf ¼ C(2� � 1)

R2
cosf cos y

tRy ¼ C(1� 2�)

R2
sin y, tyf ¼ 0

(15:2:11)

Notice that for the Kelvin state the displacements are of order O(1/R), while the stresses
are O(1=R2), and that ð

S

Tnds ¼ P,

ð
S

R� Tnds ¼ 0

for any closed surface S enclosing the origin.

Using the basic Kelvin problem, many related singular states can be generated. For

example, define S0(x) ¼ S, a ¼ {u, a, s, a, e, a}, where a ¼ 1, 2, 3. Now, if the state S
is generated by the Papkovich potentials f(x) and c(x), then S0 is generated by

f0(x) ¼ f, a þ ca

c0(x) ¼ ci, a ei
(15:2:12)

Further, define the Kelvin state Sa(x;j) as that corresponding to a unit load applied in

the xa direction at point j, as shown in Figure 15-7. Note that Sa(x;j) ¼ Sa(x� j). Also
define the set of nine states Sab(x) by the relation

Sab(x) ¼ Sa
, b(x) (15:2:13)

or equivalently,

ŜSab(x) ¼ Sa(x1, x2, x3)� Sa(x1 � db1h, x2 � db2h, x3 � db3h)
h

¼ Sa(x1, x2, x3)� Sa(x1, x2, x3;db1h, db2h, db3h)
h

(15:2:14)

Continued
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EXAMPLE 15-4: Kelvin State with Unit Loads
in Coordinate Directions–Cont’d

and thus

Sab ¼ lim
h!0

ŜSab
(15:2:15)

x

y

z

P

x

ξ

FIGURE 15-7 Generalized Kelvin state.

EXAMPLE 15-5: Force Doublet

Consider the case of two concentrated forces acting along a common line of action but

in opposite directions, as shown in Figure 15-8. The magnitude of each force is specified

as 1/h, where h is the spacing distance between the two forces. We then wish to take the

limit as h ! 0, and this type of system is called a force doublet. Recall that this problem
was first defined in Chapter 13; see Exercise 13-18.

Fromour previous constructions, the elastic state for this case is givenbySaa(x)with no
sumovera. This formmatches the suggested solution schemepresented inExercise 13-18.

h

xa  Direction

1/h

1/h

FIGURE 15-8 Force doublet state.
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EXAMPLE 15-6: Force Doublet with a Moment (About g-Axis)

Consider again the case of a double-force system with equal and opposite forces but

acting along different lines of action, as shown in Figure 15-9. For this situation the two

forces produce a moment about an axis perpendicular to the plane of the forces. Again,

the magnitudes of the forces are taken to be 1/h, where h is the spacing between the lines
of action, and the limit is to be taken as h ! 0.

The elastic state for this case is specified by Sab(x), where a 6¼ b, and the resulting

moment acts along the g-axis defined by the unit vector eg ¼ ea � eb. It can be observed
from Figure 15-9 that Sab ¼ �Sba. From the previous equations (15.2.7), (15.2.12), and

(15.2.13), the Papkovich potentials for state Sab(x) are given by

fab ¼ �C
dab
R

, cab
i ¼ Cdai

xb
R3

, C ¼ 1

8p(1� �)
(15:2:16)

and this yields the following displacements and stresses:

uabi ¼ � C

2mR3

3xaxbxi
R2

þ (3� 4�)daixb � dabxi � dbixa

� �
(15:2:17)

sabij ¼ C

R3

15xaxbxixj
R4

þ 3(1� 2�)

R2
(daixbxj þ dajxbxi � dijxaxb)

�

� 3

R2
(dbixaxj þ dbjxaxi þ dabxixj)

�(1� 2�)(daidbj þ dajdbi þ dijdab)
� (15:2:18)

Note the properties of state Sab ¼ {uab, sab, eab}: uab ¼ O(R�2), sab ¼ O(R�3), andð
S
TabdS ¼ 0,

ð
S

R� TabdS ¼ egabeg

for any closed surface S enclosing the origin.

h

xa Direction

1/h

1/hxb Direction

FIGURE 15-9 Double-force system with a moment.
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EXAMPLE 15-7: Center of Compression/Dilatation

A center of compression (or dilatation) is constructed by the superposition of three

mutually perpendicular force doublets, as shown in Figure 15-10. The problem was intro-

duced previously in Exercise (13.19). The elastic state for this force system is given by

So(x) ¼ 1

2(1� 2�)C
Saa(x) (15:2:19)

with summation over a ¼ 1, 2, 3. This state is then associated with the following

potentials:

fo ¼ �3

2(1� 2�)

1

R
, co

i ¼
xi

2(1� 2�)

1

R3
(15:2:20)

and these yield the displacements and stresses

uoi ¼ � xi
2mR3

soij ¼
1

R3

3xixj
R2

� dij

� � (15:2:21)

Note that this elastic state has zero dilatation and rotation. In spherical coordinates the

displacements and stresses are given by

uoR ¼ � 1

2mR2
, uoy ¼ uof ¼ 0

soR ¼ 2

R3
, soy ¼ sof ¼ � 1

R3
, toRy ¼ toRf ¼ toyf ¼ 0

(15:2:22)

A center of dilatation follows directly from the center of compression with a simple sign

reversal and thus can be specified by �So(x).

x

y

z

FIGURE 15-10 Center of compression.
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EXAMPLE 15-8: Center of Rotation

Using the cross-product representation, a center of rotation about the a-axis can be

expressed by the state

aS(x) ¼ 1

2
eabgSbg(x) (15:2:23)

where summation over b and g is implied. Thus, centers of rotation about the coordinate

axes can be written as

1S(x) ¼ 1

2
(S23 � S32)

2S(x) ¼ 1

2
(S31 � S13)

3S(x) ¼ 1

2
(S12 � S21)

(15:2:24)

Using the solution (15.2.16), the potentials for this state become

af ¼ 0, aci ¼
C

2R3
eaijxj (15:2:25)

with the constant C defined in relation (15.2.16). The corresponding displacements and

stresses follow as

aui ¼ � 1

8pmR3
eaijxj

asij ¼ � 3

8pR5
(eaikxkxj þ eajkxkxi)

(15:2:26)

This state has the following properties:
Ð
S
aTdS ¼ 0,

Ð
S R� aTdS ¼ daiei, where the

integration is taken over any closed surface enclosing the origin.

In order to develop additional singular states that might be used to model distributed singular-

ities, consider the following property.

Definition: Let S(x;l) ¼ {u(x;l), s(x;l), e(x;l)} be a regular elastic state for each param-

eter l 2 [a, b] with zero body forces. Then the state S� defined by

S�(x) ¼
ðb
a

S(x;l)dl (15:2:27)

is also a regular elastic state. This statement is just another form of the superposition principle,

and it allows the construction of integrated combinations of singular elastic states as shown in

the next example.
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EXAMPLE 15-9: Half Line of Dilatation

A line of dilatation may be created through the superposition relation (15.2.27) by

combining centers of dilatation. Consider the case shown in Figure 15-11 that illustrates

a line of dilatation over the negative x3-axis. Let So(x;l) be a center of compression

located at (0, 0, �l) for all l 2 [0,1). From our previous definitions, it follows that

zSo(x) ¼ �
ð1
0

So(x;l)dl

where So(x;l) ¼ So(x1, x2, x3 þ l)
(15:2:28)

will represent the state for a half line of dilatation along the negative x3-axis, that is,
x3 2 [0,1).

Using the displacement solution for the center of compression (15.2.21) in (15.2.28)

yields the following displacement field for the problem:

zuo1 ¼
x1
2m

ð1
0

dl

R̂R3

zuo2 ¼
x2
2m

ð1
0

dl

R̂R3

zuo3 ¼
1

2m

ð1
0

(x3 þ l)dl

R̂R3

(15:2:29)

which can be expressed in vector form as

zuo ¼ � 1

2m

ð1
0

=
1

R̂R

� �
dl ¼ 1

2m

ð1
0

dl

R̂R
¼ = log (Rþ x3) (15:2:30)

The potentials for this state can be written as

zfo ¼ log (Rþ x3),
zco

i ¼ 0 (15:2:31)

Notice the singularity at R ¼ �x3, and of course this behavior is expected along the

negative x3-axis because of the presence of the distributed centers of dilatation.

x1

x2

x3

Line of Dilatation

(0,0,−l)

R

x

R̂

FIGURE 15-11 Line of dilatation along the negative x3-axis.
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EXAMPLE 15-9: Cont’d

In spherical coordinates the displacement and stress fields become

zuoR ¼ 1

2mR
, zuof ¼ � sinf

2mR(1þ cosf)
, zuoy ¼ 0

zsoR ¼ � 1

R2
, zsof ¼ cosf

R2(1þ cosf)
, zsoy ¼

1

R2(1þ cosf)

ztoRf ¼ sinf
R2(1þ cosf)

, ztoRy ¼ ztoyf ¼ 0

(15:2:32)

15.3 Elasticity Theory with Distributed Cracks

Many brittle solids such as rock, glass, ceramics, and concretes contain microcracks. It is

generally accepted that the tensile and compressive strength of these materials is determined

by the coalescence of these flaws into macrocracks, thus leading to overall fracture. The need

to appropriately model such behaviors has led to many studies dealing with the elastic response

of materials with distributed cracks. Some studies have simply developed moduli for elastic

solids containing distributed cracks; see, for example, Budiansky and O’Connell (1976),

Hoenig (1979), and Hori and Nemat-Nasser (1983). Other work (Kachanov 1994) has investi-

gated the strength of cracked solids by determining local crack interaction and propagation

behaviors. Reviews by Kachanov (1994) and Chau, Wong, and Wang (1995) provide good

summaries of work in this field.

Wenowwish to present somebrief results of studies that have determined the elastic constants

of microcracked solids as shown in Figure 15-12. It is assumed that a locally isotropic elastic

material contains a distribution of planar elliptical cracks as shown. Some studies have assumed a

random crack distribution, thus implying an overall isotropic response; other investigators have

considered preferred crack orientations, giving rise to anisotropic behaviors. Initial research

assumed that the crack density is dilute so that crack interaction effects can be neglected. Later
studies include crack interaction using the well-established self-consistent approach. In general,
the effective moduli are found to depend on a crack density parameter, defined by the following:

(Cracked Elastic Solid)

(Elliptical Shaped Crack)

FIGURE 15-12 Elastic solid containing a distribution of cracks.
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e ¼ 2N

p
A2

P

� �
(15:3:1)

where N is the number of cracks per unit volume, A is the crack face area, P is the crack

perimeter, and the angle brackets indicate the average value. Space limitations prevent going

into details of the various analyses, and thus only effective moduli results are given. Three

particular examples are presented, and all cases assume no crack closure.

EXAMPLE 15-10: Isotropic Dilute Crack Distribution

Consider first the special case of a random dilute distribution of circular cracks of radius

a. Note for the circular crack case the crack density parameter defined by (15.3.1)

reduces to e ¼ Nha3i. Results for the effective Young’s modulus �EE, shear modulus �mm, and
Poisson’s ratio ��� are given by

�EE

E
¼ 45(2� �)

45(2� �)þ 16(1� �2)(10� 3�)e
�mm
m
¼ 45(2� �)

45(2� �)þ 32(1� �)(5� �)e

e ¼ 45(� � ���)(2� �)

16(1� �2)(10��� � 3���� � �)

(15:3:2)

where E, m, and � are the moduli for the uncracked material.

EXAMPLE 15-11: Planar Transverse Isotropic Dilute
Crack Distribution

Next consider the case of a dilute distribution of cracks arranged randomly but with all

crack normals oriented along a common direction, as shown in Figure 15-13. For this

case results for the effective moduli are as follows:

(Transverse Cracked Solid)

FIGURE 15-13 Cracked elastic solid with a common crack orientation.

446 ADVANCED APPLICATIONS



EXAMPLE 15-11: Cont’d

�EE

E
¼ 3

3þ 16(1� �2)e
�mm
m
¼ 3(2� �)

3(2� �)þ 16(1� �)e

(15:3:3)

where �EE and �mm are the effective moduli in the direction normal to the cracks. A plot of

this behavior for � ¼ 0:25 is shown in Figure 15-14. It is observed that both effective

moduli decrease with crack density, and the decrease is more pronounced for Young’s

modulus.

EXAMPLE 15-12: Isotropic Crack Distribution Using
a Self-Consistent Model

Using the self-consistent method, effective moduli for the random distribution case can

be developed. The results for this case are given by

�EE

E
¼ 1� 16(1� ���2)(10� 3���)e

45(2� ���)
�mm
m
¼ 1� 32(1� ���)(5� ���)e

45(2� ���)

e ¼ 45(� � ���)(2� ���)

16(1� ���2)(10� � 3���� � ���)

(15:3:4)

Continued
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FIGURE 15-14 Effective elastic moduli for a transversely cracked solid (� ¼ 0:25).
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EXAMPLE 15-12: Isotropic Crack Distribution Using
a Self-Consistent Model–Cont’d

It is interesting to note that as e ! 9=16, all effective moduli decrease to zero. This can

be interpreted as a critical crack density where the material will lose its coherence.

Although it would be expected that such a critical crack density would exist, the

accuracy of this particular value is subject to the assumptions of the modeling and is

unlikely to match universally with all materials.

In the search for appropriate models of brittle microcracking solids, there has been a desire to

find a correlation between failure mechanisms (fracture) and effective elastic moduli. However,

it has been pointed out (Kachanov 1990, 1994) that such a correlation appears to be unlikely

because failure-related properties such as stress intensity factors are correlated to local behavior,
while the effective elastic moduli are determined by volume average procedures. External

loadings on cracked solids can close some cracks and possibly produce frictional sliding, thereby

affecting the overall moduli. This interesting process creates induced anisotropic behavior as a
result of the applied loading. In addition to these studies of cracked solids, there also exists a large

volume of work on determining effective elastic moduli for heterogeneous materials containing

particulate and/or fiber phases—that is, distributed inclusions. A review of these studies has been

given by Hashin (1983). Unfortunately, space does not permit a detailed review of this work.

15.4 Micropolar/Couple-Stress Elasticity

As previously mentioned, the response of many heterogeneous materials has indicated depend-

ency on microscale length parameters and on additional microstructural degrees of freedom.

Solids exhibiting such behavior include a large variety of cemented particulate materials such

as particulate composites, ceramics, and various concretes. This concept can be qualitatively

illustrated by considering a simple lattice model of such materials as shown in Figure 15-15.

Using such a scheme, the macro load transfer within the heterogeneous particulate solid is

modeled using the microforces and moments between adjacent particles (see Chang and Ma

1991; Sadd, Qui, Boardman, and Shukla 1992; Sadd, Dai, Parameswaran, and Shukla 2004b).

Depending on the microstructural packing geometry (sometimes referred to as fabric),

Network of
Elastic Elements

(Heterogeneous Elastic Material)

=
?

Inner Degrees
of Freedom

(Equivalent Lattice Model)

FIGURE 15-15 Heterogeneous materials with microstructure.
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this method establishes a lattice network that can be thought of as an interconnect series of

elastic bar or beam elements interconnected at particle centers. Thus, the network represents in

some way the material microstructure and brings into the model microstructural dimensions

such as the grid size. Furthermore, the elastic network establishes internal bending moments

and forces, which depend on internal degrees of freedom (e.g., rotations) at each connecting

point in the microstructure as shown. These internal rotations would be, in a sense, independ-

ent of the overall macro deformations.

This concept then suggests that an elastic continuum theory including an independent

rotation field with concentrated pointwise moments might be suitable for modeling heteroge-

neous materials. Such approaches have been formulated under the names Cosserat continuum;
oriented media; asymmetric elasticity; micropolar, micromorphic, or couple-stress theories.
The Cosserat continuum, developed in 1909, was historically one of the first models of this

category. However, over the next 50 years very little activity occurred in this field. Renewed

interest began during the 1960s, and numerous articles on theoretical refinements and particu-

lar analytical and computational applications were produced. The texts and articles by Eringen

(1968, 1999) and Kunin (1983) provide detailed background on much of this work, while

Nowacki (1986) presents a comprehensive account on dynamic and thermoelastic applications

of such theories.

Micropolar theory incorporates an additional internal degree of freedom called the micro-
rotation and allows for the existence of body and surface couples. For this approach, the new
kinematic strain-deformation relation is expressed as

eij ¼ uj, i � eijlfl (15:4:1)

where eij is the usual strain tensor, ui is the displacement vector, and fi is the microrotation
vector. Note that this new kinematic variable fi is independent of the displacement ui, and thus
is not in general the same as the usual macrorotation vector; that is,

!i ¼ 1

2
eijkuk, j 6¼ fi (15:4:2)

Later in our discussion we relax this restriction and develop a more specialized theory that

normally allows simpler analytical problem solution.

The body and surface couples (moments) included in the new theory introduce additional

terms in the equilibrium equations. Skipping the derivation details, the linear and angular

equilibrium equations thus become

sji, j þ Fi ¼ 0

mji, j þ eijksjk þ Ci ¼ 0
(15:4:3)

where sij is the usual stress tensor, Fi is the body force, mij is the surface moment tensor

normally referred to as the couple-stress tensor, and Ci is the body couple per unit volume.

Notice that as a consequence of including couple stresses and body couples, the stress tensor
sij no longer is symmetric. For linear elastic isotropic materials, the constitutive relations for a

micropolar material are given by

sij ¼ lekkdij þ (mþ k)eij þ meji
mij ¼ afk, kdij þ bfi, j þ gfj, i

(15:4:4)
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where l,m, k, a,b, g are the micropolar elastic moduli. Note that classical elasticity relations

correspond to the case where k ¼ a ¼ b ¼ g ¼ 0. The requirement of a positive definite strain

energy function puts the following restrictions on these moduli

0 � 3lþ 2mþ k, 0 � 2mþ k, 0 � k

0 � 3aþ bþ g, � g � b � g, 0 � g
(15:4:5)

Relations (15.4.1) and (15.4.4) can be substituted into the equilibrium equations (15.4.3)

to establish two sets of governing field equations in terms of the displacements and micro-

rotations. Appropriate boundary conditions to accompany these field equations are more

problematic. For example, it is not completely clear how to specify the microrotation fi

and/or couple-stress mij on domain boundaries. Some developments on this subject have

determined particular field combinations whose boundary specification guarantees a unique

solution to the problem.

15.4.1 Two-Dimensional Couple-Stress Theory
Rather than continuing on with the general three-dimensional equations, we now move directly

into two-dimensional problems under plane strain conditions. In addition to the usual assump-

tion u ¼ u(x, y), v ¼ v(x, y), w ¼ 0, we include the restrictions on the microrotation,

fx ¼ fy ¼ 0, fz ¼ fz(x, y). Furthermore, relation (15.4.2) is relaxed and the microrotation
is allowed to coincide with the macrorotation,

fi ¼ !i ¼ 1

2
"ijkuk, j (15:4:6)

This particular theory is then a special case of micropolar elasticity and is commonly referred

to as couple-stress theory. Eringen (1968) refers to this theory as indeterminate because the

antisymmetric part of the stress tensor is not determined solely by the constitutive relations.

Stresses on a typical in-plane element are shown in Figure 15-16. Notice the similarity of

this force system to the microstructural system illustrated previously in Figure 15-15. For the

sy

sx

txy

tyx

mxz

myz

FIGURE 15-16 Couple stresses on a planar element.
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two-dimensional case with no body forces or body couples, the equilibrium equations (15.4.3)

reduce to

@sx
@x

þ @tyx
@y

¼ 0

@txy
@x

þ @sy
@y

¼ 0

@mxz

@x
þ @myz

@y
þ txy � tyx ¼ 0

(15:4:7)

The in-plane strains can be expressed as

ex ¼ @u

@x
, ey ¼ @v

@y

exy ¼ @v

@x
� fz, eyx ¼

@u

@y
þ fz

(15:4:8)

while using (15.4.6) gives

fz ¼
1

2

@v

@x
� @u

@y

� �
(15:4:9)

Notice that substituting (15.4.9) into (15:4:8)2 gives the result exy ¼ eyx.
The constitutive equations (15.4.4) yield the following forms for the stress components:

sx ¼ l(ex þ ey)þ (2mþ k)ex
sy ¼ l(ex þ ey)þ (2mþ k)ey
txy ¼ (2mþ k)exy ¼ tyx

mxz ¼ g
@fz

@x
, myz ¼ g

@fz

@y

(15:4:10)

In regard to the last pair of equations of this set, some authors (Mindlin 1963; Boresi

and Chong 2000) define the gradients of the rotation fz as the curvatures. Thus, they establish

a linear constitutive law between the couple stresses and curvatures. This approach is com-

pletely equivalent to the current method. It is to be noted from (15.4.10) that under the

assumptions of couple-stress theory we find the unpleasant situation that the antisymmetric

part of the stress tensor disappears from the constitutive relations. In order to remedy this,

we can solve for the antisymmetric stress term from the moment equilibrium equation

(15:4:7)3 to get

t[xy] ¼ 1

2
(txy � tyx) ¼ � 1

2

@mxz

@x
þ @myz

@y

� �

¼ � g
2
r2fz

(15:4:11)

By cross-differentiation we can eliminate the displacements from (15.4.8) and (15.4.9) and

develop the particular compatibility equations for the following case
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@2ex
@y2

þ @2ey
@x2

¼ 2
@2exy
@x@y

@2fz

@x@y
¼ @2fz

@y@x

@fz

@x
¼ @exy

@x
� @ex

@y

@fz

@y
¼ @ey

@x
� @exy

@y

(15:4:12)

Using the constitutive forms (15.4.10), these relationsmay be expressed in terms of the stresses as

@2sx
@y2

þ @2sy
@x2

� �r2(sx þ sy) ¼ @2

@x@y
(txy þ tyx)

@mxz

@y
¼ @myz

@x

mxz ¼ l2
@

@x
(txy þ tyx)� 2l2

@

@y
[sx � �(sx þ sy)]

myz ¼ 2l2
@

@x
[sy � �(sx þ sy)]� l2

@

@y
(txy þ tyx)

(15:4:13)

where � ¼ l=(2lþ 2mþ k) and l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=(4mþ 2k)

p
is a material constant with units of length.

Notice that this result then introduces a length scale into the problem. If l ¼ 0, the couple-

stress effects are eliminated and the problem reduces to classical elasticity. It should also be

pointed out that only three of the four equations in set (15.4.13) are independent because the

second relation can be established from the other equations.

Proceeding along similar lines as classical elasticity, we introduce a stress function ap-

proach (Carlson 1966) to solve (15.4.13). A self-equilibrated form satisfying (15.4.7) identi-

cally can be written as

sx ¼ @2F
@y2

� @2C
@x@y

, sy ¼ @2F
@x2

þ @2C
@x@y

txy ¼ � @2F
@x@y

� @2C
@y2

, tyx ¼ � @2F
@x@y

þ @2C
@x2

mxz ¼ @C
@x

, myz ¼ @C
@y

(15:4:14)

where F ¼ F(x, y) and C ¼ C(x, y) are the stress functions for this case. If C is taken to be

zero, the representation reduces to the usual Airy form with no couple stresses. Using form

(15.4.14) in the compatibility equations (15.4.13) produces

r4F ¼ 0

@

@x
(C� l2r2C) ¼ �2(1� �)l2

@

@y
(r2F)

@

@y
(C� l2r2C) ¼ 2(1� �)l2

@

@x
(r2F)

(15:4:15)
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Differentiating the second equation with respect to x and the third with respect to y and adding

eliminates F and gives the following result:

r2C� l2r4C ¼ 0 (15:4:16)

Thus, the two stress functions satisfy governing equations (15:4:15)1 and (15.4.16). Now we

consider a specific application of this theory for the following stress concentration problem.

EXAMPLE 15-13: Stress Concentration Around a Circular
Hole: Micropolar Elasticity

We now wish to investigate the effects of couple-stress theory on the two-dimensional

stress distribution around a circular hole in an infinite medium under uniform tension at

infinity. Recall that this problem was previously solved for the nonpolar case in

Example 8-7 and the problem geometry is shown in Figure 8-12. The hole is to have

radius a, and the far-field stress is directed along the x direction as shown. The solution

for this case is first developed for the micropolar model and then the additional

simplification for couple-stress theory is incorporated. This solution was first presented

by Kaloni and Ariman (1967) and later by Eringen (1968).

As expected for this problem the plane strain formulation and solution are best done

in polar coordinates (r, y). For this system, the equilibrium equations become

@sr
@r

þ 1

r

@tyr
@y

þ sr � sy
r

¼ 0

@try
@r

þ 1

r

@sy
@y

þ try � tyr
r

¼ 0

@mrz

@r
þ 1

r

@myz

@y
þ mrz

r
þ try � tyr ¼ 0

(15:4:17)

while the strain-deformation relations are

er ¼ @ur
@r

, ey ¼ 1

r

@uy
@y

þ ur

� �

ery ¼ @uy
@r

� fz, eyr ¼
1

r

@ur
@y

� uy

� �
þ fz

(15:4:18)

The constitutive equations in polar coordinates read as

sr ¼ l(er þ ey)þ (2mþ k)er
sy ¼ l(er þ ey)þ (2mþ k)ey
try ¼ (mþ k)ery þ meyr, tyr ¼ (mþ k)eyr þ mery

mrz ¼ g
@fz

@r
, myz ¼ g

1

r

@fz

@y

(15:4:19)

Continued
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and the strain-compatibility relations take the form

@eyr
@r

� 1

r

@er
@y

þ eyr � ery
r

� @fz

@r
¼ 0

@ey
@r

� 1

r

@ery
@y

þ ey � er
r

� 1

r

@fz

@y
¼ 0

@myz

@r
� 1

r

@mrz

@y
þ myz

r
¼ 0

(15:4:20)

For the polar coordinate case, the stress-stress function relations become

sr ¼ 1

r

@F
@r

þ 1

r2
@2F

@y2
� 1

r

@2C
@r@y

þ 1

r2
@C
@y

sy ¼ 1

r2
@2F
@r2

þ 1

r

@2C
@r@y

� 1

r2
@C
@y

try ¼ � 1

r

@2F
@r@y

þ 1

r2
@F
@y

� 1

r

@C
@r

� 1

r2
@2C

@y2

tyr ¼ � 1

r

@2F
@r@y

þ 1

r2
@F
@y

þ @2C
@r2

mrz ¼ @C
@r

, myz ¼ 1

r

@C
@y

(15:4:21)

Using constitutive relations (15.4.19), the compatibility equations (15.4.20) can be

expressed in terms of stresses, and combining this result with (15.4.21) will yield the

governing equations for the stress functions in polar coordinates

@

@r
(C� l21r2C) ¼ �2(1� �)l22

1

r

@

@y
(r2F)

1

r

@

@y
(C� l21r2C) ¼ 2(1� �)l22

@

@r
(r2F)

(15:4:22)

where

l21 ¼
g(mþ k)
k(2mþ k)

, l22 ¼
g

2(2mþ k)

r2 ¼ @2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@y2

(15:4:23)

Note that for the micropolar case, two length parameters l1 and l2 appear in the theory.

The appropriate solutions to equations (15.4.22) for the problem under study are

given by

F ¼ T

4
r2(1� cos 2y)þ A1 log r þ A2

r2
þ A3

� �
cos 2y

C ¼ A4

r2
þ A5K2(r=l1)

� �
sin 2y

(15:4:24)
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where Kn is the modified Bessel function of the second kind or order n and Ai

are constants to be determined with A4 ¼ 8(1� �)l21A3. Using this stress function

solution, the components of the stress and couple stress then follow from (15.4.21)

to be

sr ¼ T

2
(1þ cos 2y)þ A1

r2
� 6A2

r4
þ 4A3

r2
� 6A4

r4

� �
cos 2y

þ 2A5

l1r

3l1
r
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r2

�� �
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2
(1� cos 2y)� A1

r2
þ 6A2
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� �
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� 2A5
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3l1
r
Ko(r=l1)þ 1þ 6l21

r2
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� �
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r2
� 6A4

r4

� �
sin 2y (15:4:25)

þ A5
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6l1
r
Ko(r=l1)þ 1þ 12l21
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� �
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� �
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� �
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mrz ¼� 2A4

r3
þ A5
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2l1
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Ko(r=l1)þ 1þ 4l21
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� �
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sin 2y

myz ¼ 2A4

r3
þ 2A5

r
Ko(r=l1)þ 2l1

r
K1(r=l1)

� �	 

cos 2y

For boundary conditions we use the usual forms for the nonpolar variables, while the

couple stress mrz is taken to vanish on the hole boundary and at infinity

sr(a, y) ¼ try(a, y) ¼ mrz(a, y) ¼ 0

sr(1, y) ¼ T

2
(1þ cos 2y)

try(1, y) ¼ �T

2
sin 2y

mrz(1, y) ¼ 0

(15:4:26)

Using these conditions, sufficient relations can be developed to determine the arbitrary

constants Ai, giving the results
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A1 ¼ �T

2
a2, A2 ¼ � Ta4(1� F)

4(1þ F)

A3 ¼ Ta2

2(1þ F)
, A4 ¼ 4T(1� �)a2l22

1þ F

A5 ¼ � Tal1F

(1þ F)K1(a=l1)

(15:4:27)

where

F ¼ 8(1� �)
l22
l21

4þ a2

l21
þ 2a

l1

Ko(a=l1)

K1(a=l1)

� ��1

(15:4:28)

This then completes the solution to the problem.

Let us now investigate the maximum stress and discuss the nature of the concen-

tration behavior in the vicinity of the hole. As in the previous nonpolar case, the

circumferential stress sy on the hole boundary will be the maximum stress. From the

previous solution

sy(a, y) ¼ T 1� 2 cos 2y
1þ F

� �
(15:4:29)

As expected, the maximum value of this quantity occurs at y ¼ �p=2, and thus the

stress concentration factor for the micropolar stress problem is given by

K ¼ (sy)max

T
¼ 3þ F

1þ F
(15:4:30)

Notice that for micropolar theory, the stress concentration depends on the material

parameters and on the size of the hole.
This problem has also been solved by Mindlin (1963) for couple-stress theory, and

this result may be found from the current solution by letting l1 ¼ l2 ¼ l. Figure 15-17

illustrates the behavior of the stress concentration factor as a function of a=l1 for several
cases of length ratio l2=l1 with � ¼ 0. It is observed that the micropolar/couple-stress

concentration factors are less than that predicted by classical theory (K ¼ 3), and

differences between the theories depend on the ratio of the hole size to the microstruc-

tural length parameter l1 (or l). If the length parameter is small in comparison to the hole

size, very small differences in the stress concentration predictions occur. For the case

l1 ¼ l2 ¼ l ¼ 0, it can be shown that F ! 0, thus giving K ¼ 3, which matches with the

classical result. Mindlin (1963) also investigated other far-field loading conditions for

this problem. He showed that for the case of equal biaxial loading, the couple-stress

effects disappear completely, while for pure shear loading couple-stress effects produce

a significant reduction in the stress concentration when compared to classical theory.

Originally, it was hoped that this solution could be used to explain the observed

reduction in stress concentration factors for small holes in regions of high stress gradients.

Unfortunately, it has been pointed out by several authors, Schijve (1966), Ellis and Smith

(1967), and Kaloni and Ariman (1967), that for typical metals the reduction in the stress

concentration for small holes cannot be accurately accounted for using couple-stress theory.
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Additional similar solutions for stress concentrations around circular inclusions have been

developed by Weitsman (1965) and Hartranft and Sih (1965). More recent studies have had

success in applying micropolar/couple-stress theory to fiber-reinforced composites (Sun and

Yang 1975) and granular materials (Chang and Ma 1991). With respect to computational

methods, micropolar finite element techniques have been developed by Kennedy and Kim

(1987) and Kennedy (1999).

15.5 Elasticity Theory with Voids

A micromechanics model has been proposed for materials with distributed voids. The linear

theory was originally developed by Cowin and Nunziato (1983) and a series of application

papers followed, including Cowin and Puri (1983), Cowin (1984a,b), and Cowin (1985). The

theory is intended for elastic materials containing a uniform distribution of small voids, as shown

in Figure 15-18. When the void volume vanishes, the material behavior reduces to classical

elasticity theory. The primary new feature of this theory is the introduction of a volume fraction

(related to void volume), which is taken as an independent kinematic variable. The other

variables of displacement and strain are retained in their usual form. The inclusion of the new

variable requires additional microforces to provide proper equilibrium of the micropore volume.

The theory begins by expressing the material mass density as the following product:

r ¼ g� (15:5:1)

where r is the bulk (overall) mass density, g is the mass density of the matrix material, and � is

the matrix volume fraction or volume distribution function. This function describes the way the
medium is distributed in space and is taken to be an independent variable, thus introducing an
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FIGURE 15-17 Stress concentration behavior for the micropolar theory (� ¼ 0).
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additional kinematic degree of freedom in the theory. The linear theory with voids deals with

small changes from a stress- and strain-free reference configuration. In this configuration

relation (15.5.1) can be written as rR ¼ gR�R. The independent kinematical variables of this

theory are the usual displacements ui and the change in volume fraction from the reference

configuration expressed by

f ¼ �� �R (15:5:2)

The strain-displacement relations are those of classical elasticity

eij ¼ 1

2
(ui, j þ uj, i) (15:5:3)

and likewise for the equilibrium equations (with no body forces)

sij, j ¼ 0 (15:5:4)

The general development of this theory includes external body forces and dynamic inertial

terms. However, our brief presentation does not include these complexities.

In order to develop the microequilibrium of the void volume, new micromechanics theory

involving the balance of equilibrated force is introduced. Details of this development are

beyond the scope of our presentation, and we give only the final results

hi, i þ g ¼ 0 (15:5:5)

where hi is the equilibrated stress vector and g is the intrinsic equilibrated body force. Simple

physical meanings of these variables have proved difficult to provide. However, Cowin

and Nunziato (1983) have indicated that these variables can be related to particular self-

equilibrated singular-force systems as previously discussed in Section 15.2. In particular, hi
and g can be associated with double-force systems as presented in Example 15-5, and the

expression hi, i can be related to centers of dilatation; see Example 15-7.

The constitutive equations for linear isotropic elastic materials with voids provide relations

for the stress tensor, equilibrated stress vector, and intrinsic body force of the form

Void

Matrix Material

FIGURE 15-18 Elastic continuum with distributed voids.
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sij ¼ lekkdij þ 2meij þ bfdij
hi ¼ af, i

g ¼ �! _ff� xf� bekk

(15:5:6)

where the material constants l,m, a, b, x,! all depend on the reference fraction �R and satisfy

the inequalities

m 	 0, a 	 0, x 	 0, ! 	 0, 3lþ 2m 	 0, M ¼ 3lþ 2m

b2
	 3 (15:5:7)

Note that even though we have dropped dynamic inertial terms, constitutive relation (15:5:6)3
includes a time-dependent response in the volume fraction. This fact indicates that the theory

will predict a viscoelastic type of behavior (Cowin 1985) even for problems with time-

independent boundary conditions and homogeneous deformations.

For this theory, the boundary conditions on stress and displacement are the same as those of

classical elasticity. The boundary conditions on the self-equilibrated stress vector are taken to

have a vanishing normal component; that is, hini ¼ 0, where ni is the surface unit normal

vector. Using this with the constitutive statement (15:5:6)2 develops the boundary specification
on the volume fraction

f, ini ¼ 0 (15:5:8)

This completes our brief general presentation of the theory, and we will now discuss the

solution to the stress concentration problem around a circular hole discussed previously in

Example 15-13.

EXAMPLE 15-14: Stress Concentration Around a Circular
Hole: Elasticity with Voids

Consider again the stress concentration problem of a stress-free circular hole of radius a
in an infinite plane under uniform tension, as shown in Figure 8-12. We now outline the

solution given by Cowin (1984b) and compare the results with the micropolar, couple-

stress, and classical solutions. The problem is formulated under the usual plane stress

conditions,

sx ¼ sx(x, y), sy ¼ sy(x, y), txy ¼ txy(x, y), sz ¼ txz ¼ tyz ¼ 0

For this two-dimensional case the constitutive relations reduce to

sij ¼ 2m
lþ 2m

(lekk þ bf)dij þ 2meij

g ¼ �! _ff� x� b2

lþ 2m

� �
f� 2mb

lþ 2m
ekk

(15:5:9)

where all indices are taken over the limited range 1,2. Using a stress formulation, the

single nonzero compatibility relation becomes

Continued
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skk,mm � mb
lþ m

f,mm ¼ 0 (15:5:10)

Introducing the usual Airy stress function, denoted here by c, allows this relation to be

written as

r4c� mb
lþ m

r2f ¼ 0 (15:5:11)

For this case, relation (15.5.5) for balance of equilibrated forces reduces to

ar2f� a
h2

f� ! _ff ¼ b
3lþ 2m

r2c� mb
lþ m

f
� �

(15:5:12)

The parameter h is defined by

a
h2

¼ x� b2

lþ m
(15:5:13)

and has units of length, and thus can then be taken as a microstructural length measure
for this particular theory.

Relations (15.5.11) and (15.5.12) now form the governing equations for the plane

stress problem. The presence of the time-dependent derivative term in (15.5.12) requires

some additional analysis. Using Laplace transform theory, Cowin (1984b) shows that

under steady boundary conditions, the solutions f and c can be determined from the

limiting case where t ! 1, which is related to taking ! ¼ 0. Thus, taking the Laplace

transform of (15.5.11) and (15.5.12) gives the following

r4�cc� mb
lþ m

r2�ff ¼ 0

ar2�ff� a
�hh2

�ff ¼ b
3lþ 2m

r2�cc� mb
lþ m

�ff
� � (15:5:14)

where �ff ¼ �ff(s), �cc ¼ �cc(s) are the standard Laplace transforms of f,c, and s is the

Laplace transform variable. The basic definition of this transform is given by

�ff (s) ¼
ð1
0

f (t)e�stdt

and the parameter �hh is defined by
a
�hh2

¼ a
h2

þ !s. Boundary conditions on the problem

follow from our previous discussions to be

sr ¼ try ¼ @�ff
@r

¼ 0 on r ¼ a

For the circular hole problem, the solution to system (15.5.14) is developed in polar

coordinates. Guided by the results from classical elasticity, we look for solutions of the

form f (r)þ g(r) cos 2y, where f and g are arbitrary functions of the radial coordinate.

Employing this scheme, the properly bounded solution satisfying the boundary condi-

tion
@�ff
@r

¼ 0 at r ¼ a is found to be
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�ff ¼ �x�pp
Mb!sþ bx(M � 3)

þ A3(lþ m)
m�hh2b

[ �FF(r)� 1] cos 2y

�cc ¼ mb
lþ m

�hh2�ffþ �ppr2

4
þ A1 log r þ A2

r2
þ A3 � �ppr2

4

� �
cos 2y

� � (15:5:15)

where �FF is given by

�FF(r) ¼ 1þ 4mx�hh2

(lþ m)M!sþ 4mxN
1

r2
þ 2�hhK2(r=�hh)

a3K0
2(a=

�hh)

� �
(15:5:16)

and �pp is the Laplace transform of the uniaxial stress at infinity, K2 is the modified Bessel

function of the second kind of order 2,

N ¼ lþ m
4m

(M � 3) 	 0

and the constants A1, A2, A3 are determined from the stress-free boundary conditions as

A1 ¼ � 1

2
�ppa2, A2 ¼ � 1

4
�ppa4, A3 ¼ 1

2
�ppa2 �FF(a)

Note in relation (15.5.16) the bar on F indicates the dependency on the Laplace

transform parameter s, and the bar is to be removed for the case where s ! 0 and
�hh(s) is replaced by h.

This completes the solution for the Laplace-transformed volume fraction and Airy

stress function. The transformed stress components can now be obtained from the Airy

function using the usual relations

�ssr ¼ 1

r

@�cc
@r

þ 1

r2
@2�cc

@y2
, �ssy ¼ @2�cc

@r2
, �ttry ¼ 1

r2
@�cc
@y

� 1

r

@2�cc
@r@y

(15:5:17)

Wenowconsiderthecasewhere thefar-field tensionT isaconstant intime,andthus �pp ¼ T=s.
Rather than formally inverting (inverse Laplace transformation) the resulting stress com-

ponentsgenerated fromrelations (15.5.17),Cowindevelops results for thecasesof t ¼ 0and

t ! 1. It turns out that for the initial condition at t ¼ 0, the stressesmatch those found from

classical elasticity (see Example 8-7). However, for the final-value case (t ! 1), which

implies (s ! 0), the stresses are different than predictions from classical theory.

Focusing our attention on only the hoop stress, the elasticity with voids solution for

the final-value case is determined as

sy ¼ T

2
1þ a2

r2

� �
þ cos 2y a2

F00(r)
F(a)

� 1þ 3
a4

r4

� �� �	 

(15:5:18)

The maximum value of this stress is again found at r ¼ a and y ¼ �p=2 and is given by

(sy)max ¼ sy(a,�p=2) ¼ T 3� a2

2

F00(a)
F(a)

� �

¼ T 3þ 2N þ [1þ (4þ L2)N]
K1(L)

LKo(L)

� ��1
" # (15:5:19)
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FIGURE 15-19 Stress concentration behavior for elastic material with voids.

where L ¼ a=h. It is observed from this relation that the stress concentration factor

K ¼ (sy)max=T will always be greater than or equal to 3. Thus, the elasticity theory with

voids predicts an elevation of the stress concentration when compared to the classical

result. The behavior of the stress concentration factor as a function of the dimensionless

hole size L is shown in Figure 15-19. It can be seen that the stress concentration factor

reduces to the classical result as L approaches zero or infinity. For a particular value of

the material parameter N, the stress concentration takes on a maximum value at a finite

intermediate value of L.
It is interesting to compare these results with our previous studies of the same stress

concentration problem using some of the other micromechanical theories discussed in

this chapter. Recall in Example 15-13 we solved the identical problem for micropolar

and couple-stress theories, and results were given in Figure 15-17. Figures 15-17 and

15-19 both illustrate the stress concentration behavior as a function of a nondimensional

ratio of hole radius divided by a microstructural length parameter. Although the current

model with voids indicates an elevation of stress concentration, the micropolar and

couple-stress results show a decrease in this factor. Micropolar/couple-stress theory also

predicts that the largest difference from the classical result occurs at a dimensionless

hole size ratio of zero. However, for elasticity with voids this difference occurs at a

finite hole size ratio approximately between 2 and 3. It is apparent that micropolar

theory (allowing independent microrotational deformation) gives fundamentally differ-

ent results than the current void theory, which allows for an independent microvolu-

metric deformation.
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15.6 Doublet Mechanics

As a final example, we wish to investigate a micromechanical theory that has demonstrated

applications for particulatematerials inpredictingobservedbehaviors that cannot be shownusing

classical continuum mechanics. The theory known as doublet mechanics (DM) was originally

developedbyGranik (1978). It hasbeenapplied togranularmaterialsbyGranikandFerrari (1993)

and Ferrari et al. (1997) and to asphalt concrete materials by Sadd and Dai (2004a). Doublet

mechanics is a micromechanical theory based on a discrete material model whereby solids are

represented as arrays of points or nodes at finite distances. A pair of such nodes is referred to as a

doublet, and the nodal spacing distances introduce length scales into the theory. Current applica-
tions of this scheme have normally used regular arrays of nodal spacing, thus generating a regular

latticemicrostructurewith similarities to themicropolarmodel shown inFigure 15-15. Eachnode

in the array is allowed to have a translation and rotation, and increments of these variables are

expanded in aTaylor series about thenodal point.Theorder atwhich the series is truncateddefines

the degree of approximation employed. The lowest-order case that uses only a single term in

the series will not contain any length scales, while using additional terms results in a multi-

length-scale theory. The allowable kinematics develop microstrains of elongation, shear, and

torsion (about thedoubletaxis).Throughappropriateconstitutiveassumptions, thesemicrostrains

can be related to corresponding elongational, shear, and torsional microstresses.

Although not necessary, a granular interpretation of doublet mechanics is commonly

employed, in which the material is viewed as an assembly of circular or spherical particles.

A pair of such particles represents a doublet, as shown in Figure 15-20. Corresponding to the

doublet (A, B) there exists a doublet or branch vector za connecting the adjacent particle centers
and defining the doublet axis a. The magnitude of this vector Za ¼ jzaj is simply the sum of the

two radii for particles in contact. However, in general the particles need not be in contact, and the

length scale Za could be used to represent a more general microstructural feature. As mentioned,

the kinematics allow relative elongational, shearing, and torsionalmotions between the particles,

and this is used to develop elongational microstress pa, shear microstress ta, and torsional
microstressma as shown in Figure 15-20. It should be pointed out that thesemicrostresses are not

second-order tensors in the usual continuummechanics sense. Rather, they are vector quantities

that represent the elastic microforces and microcouples of interaction between doublet particles.

Their directions are dependent on the doublet axes that are determined by the material micro-

structure. Also, these microstresses are not continuously distributed but rather exist only at

particular points in the medium being simulated by DM theory.

A

B

Doublet Axis a

A

B
 pa

ta ma

(Doublet Geometry) (Doublet Microstresses)

zα

FIGURE 15-20 Doublet mechanics geometry.
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If u(x, t) is the displacement field coinciding with a particle displacement, then the incre-

ment function can be written as

Dua ¼ u(xþ za, t)� u(x, t) (15:6:1)

where a ¼ 1, . . . , n, and n is referred to as the valence of the lattice. Considering only the case
where the doublet interactions are symmetric, it can be shown that the shear and torsional

microdeformations and stresses vanish, and thus only extensional strains and stresses exist. For

this case the extensional microstrain ea (representing the elongational deformation of the

doublet vector) is defined by

ea ¼ qa � Dua
Za

(15:6:2)

where qa ¼ za=Za is the unit vector in the a direction. The increment function (15.6.1) can be

expanded in a Taylor series as

Dua ¼
XM
m¼1

(Za)
m

m!
(qa � =)mu(x, t) (15:6:3)

Using this result in relation (15.6.2) develops the series expansion for the extensional

microstrain

ea ¼ qai
XM
m¼1

(Za)
m�1

m!
qak1 . . . qakm

@mui
@xk1 . . . @xkm

(15:6:4)

where qak are the direction cosines of the doublet directions with respect to the coordinate

system. As mentioned, the number of terms used in the series expansion of the local deformation

field determines the order of approximation in DM theory. For the first-order case (m ¼ 1), the

scaling parameter Za drops from the formulation, and the elongational microstrain is reduced to

ea ¼ qaiqajeij (15:6:5)

where eij ¼1⁄2 (ui, j þ uj, i) is the usual continuum strain tensor.

For this case, it has been shown that the DM solution can be calculated directly from the

corresponding continuum elasticity solution through the relation

sij ¼
Xn
a¼1

qaiqajpa (15:6:6)

This result can be expressed in matrix form

{s} ¼ [Q]{p} ) {p} ¼ [Q]�1{s} (15:6:7)

where for the two-dimensional case, {s} ¼ {sxsytxy}T is the continuum elastic stress vector in

Cartesian coordinates, {p} is the microstress vector, and [Q] is a transformation matrix. For

plane problems, this transformation matrix can be written as
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[Q] ¼
(q11)

2 (q21)
2 (q31)

2

(q12)
2 (q22)

2 (q32)
2

q11q12 q21q22 q31q32

2
4

3
5 (15:6:8)

This result allows a straightforward development of first-order DM solutions for many

problems of engineering interest; see Ferrari et al. (1997).

EXAMPLE 15-15: Doublet Mechanics Solution
of the Flamant Problem

We now wish to investigate a specific application of the doublet mechanics model for a

two-dimensional problem with regular particle packing microstructure. The case of

interest is the Flamant problem of a concentrated force acting on the free surface of a

semi-infinite solid, as shown in Figure 15-21. The classical elasticity solution to this

problem was originally developed in Section 8.4.7, and the Cartesian stress distribution

was given by

sx ¼ � 2Px2y

p(x2 þ y2)2

sy ¼ � 2Py3

p(x2 þ y2)2

txy ¼ � 2Pxy2

p(x2 þ y2)2

(15:6:9)

This continuum mechanics solution specifies that the normal stresses are everywhere
compressive in the half space, and a plot of the distribution of normal and shear stresses

on a surface y ¼ constant was shown in Figure 8-20.

Continued

g = 60∞ P1 P2

 P3

(Microstresses)

 y

 x

(Flamant Problem)

 P

g g

FIGURE 15-21 Flamant problem for the doublet mechanics model.
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EXAMPLE 15-15: Doublet Mechanics Solution
of the Flamant Problem–Cont’d

The doublet mechanics model of this problem is established by choosing a regular

two-dimensional hexagonal packing, as shown in Figure 15-21. This geometrical

microstructure establishes three doublet axes at angles g ¼ 60
 as shown. Using only

first-order approximation, DM shear and torsional microstresses vanish, leaving only

elongational microstress components (p1, p2, p3) as shown. Positive elongational com-

ponents correspond to tensile forces between particles.

For this fabric geometry the transformation matrix (15.6.8) becomes

[Q] ¼
cos2 g cos2 g 1

sin2 g sin2 g 0

� cos g sin g cos g sin g 0

2
4

3
5 (15:6:10)

Using this transformation in relation (15.6.7) produces the following microstresses:

p1 ¼ � 4Py2(
ffiffiffi
3

p
xþ y)

3p(x2 þ y2)2

p2 ¼ 4Py2(
ffiffiffi
3

p
x� y)

3p(x2 þ y2)2

p3 ¼ � 2Py(3x2 � y2)

3p(x2 þ y2)2

(15:6:11)

Although these DM microstresses actually exist only at discrete points and in specific

directions as shown in Figure 15-21, we use these results to make continuous contour

plots over the half-space domain under study. In this fashion we can compare DM

predictions with the corresponding classical elasticity results. Reviewing the stress

fields given by (15.6.9) and (15.6.11), we can directly compare only the horizontal

elasticity component sx with the doublet mechanics microstress p3. The other

stress components act in different directions and thus do not allow a simple direct

comparison.

Figure 15-22 illustrates contour plots of the elasticity sx and DM p3 stress compon-

ents. As mentioned previously, the classical elasticity results predict a totally compres-

sive stress field as shown. Note, however, the difference in predictions from doublet

mechanics theory. There exists a symmetric region of tensile microstress below the

loading point in the region y 	 ffiffiffi
3

p jxj. It has been pointed out in the literature that there

exists experimental evidence of such tensile behavior in granular and particulate

composite materials under similar surface loading, and Ferrari et al. (1997) refer to

this issue as Flamant’s paradox. It would appear that micromechanical effects are the

mechanisms for the observed tensile behaviors, and DM theory offers a possible

approach to predict this phenomenon. Additional anomalous elastic behaviors have

been reported for other plane elasticity problems; see Ferrari et al. (1997) and Sadd and

Dai (2004b).

466 ADVANCED APPLICATIONS



EXAMPLE 15-15: Cont’d

Many other micromechanical theories of solids have been developed and reported in

the literature. Our brief study has been able to discuss only a few of the more commonmodeling

approaches within the context of linear elastic behavior. This has been and will continue to be a

very challenging and interesting area in solid mechanics research.

x

 y

(Classical Elasticity sx Contours)

x

y

(Doublet Mechanics p3 Microstress Contours)

||3 xy =

+

--

--

FIGURE 15-22 Comparison of horizontal stress fields from classical elasticity and
doublet mechanics.
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Exercises

15-1. Show that the general plane strain edge dislocation problem shown in Figure 15-3 can be

solved using methods of Chapter 10 with the two complex potentials

g(z) ¼ imb
4p(1� �)

log z, c(z) ¼ � im�bb
4p(1� �)

log z

where b ¼ bx þ iby. In particular, verify the cyclic property [uþ iv]C ¼ �b, where C is

any circuit in the x,y-plane around the dislocation line. Also determine the general stress

and displacement field.

15-2. Justify that the edge dislocation solution (15.1.2) provides the required multivalued

behavior for the displacement field. Explicitly develop the resulting stress fields given

by (15.1.3) and (15.1.4).
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15-3. Show that the screw dislocation displacement field (15.1.5) gives the stresses (15.1.6)

and (15.1.7).

15-4. For the edge dislocation model, consider a cylinder of finite radius with axis along the

dislocation line (z-axis). Show that although the stress solution gives rise to tractions

on this cylindrical surface, the resultant forces in the x and y directions will vanish.

15-5. The stress field (15.1.7) for the screw dislocation produces no tangential or normal

forces on a cylinder of finite radius with axis along the dislocation line (z-axis).
However, show that if the cylinder is of finite length, the stress tzy on the ends will not
necessarily be zero and will give rise to a resultant couple.

15-6. Show that the strain energy (per unit length) associated with the screw dislocation

model of Example 15-2 is given by

Wscrew ¼ mb2

4p
log

Ro

Rc

where Ro is the outer radius of the crystal and Rc is the core radius of the dislocation.

This quantity is sometimes referred to as the self-energy. The radial dimensions are

somewhat arbitrary, although Rc is sometimes taken as five times the magnitude of the

Burgers vector.

15-7. Using similar notation as Exercise 15-6, show that the strain energy associated with

the edge dislocation model of Example 15-1 can be expressed by

Wedge ¼ mb2

4p(1� �)
log

Ro

Rc

Note that this energy is larger than the value developed for the screw dislocation in

Exercise 15-6. Evaluate the difference between these energies for the special case of

v ¼ 1⁄3 .

15-8. For the Kelvin state as considered in Example 15-4, explicitly justify the displacement

and stress results given in relations (15.2.8) and (15.2.10).

15-9. Verify that the displacements and stresses for the center of compression are given by

(15.2.21) and (15.2.22).

15-10. A fiber discontinuity is to be modeled using a line of centers of dilatation along the

x1-axis from 0 to a. Show that the displacement field for this problem is given by

u1 ¼ 1

2m
1

R̂R
� 1

R

� �

u2 ¼ 1

2m
1

R

x1x2
x22 þ x23

� 1

R̂R

(x1 � a)x2
x22 þ x23

� �

u3 ¼ 1

2m
1

R

x1x3
x22 þ x23

� 1

R̂R

(x1 � a)x3
x22 þ x23

� �

where R̂R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1 � a)2 þ x22 þ x23

q
and R is identical to that illustrated in Figure 15-11.
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15-11*. For the isotropic self-consistent crack distribution case in Example 15-12, show that

for the case � ¼ 0:5, relation (15:3:4)3 reduces to

e ¼ 9

16

1� 2���

1� ���2

� �

Verify the total loss of moduli at e ¼9⁄16 . Using these results, develop plots of the

effective moduli ratios ���=�, �EE=E, �mm=m versus the crack density. Compare these

results with the corresponding values from the dilute case given in Example 15-10.

15-12. Develop the compatibility relations for couple-stress theory given by (15.4.12). Next,

using the constitutive relations, eliminate the strains and rotations, and express these

relations in terms of the stresses, thus verifying equations (15.4.13).

15-13. Explicitly justify that the stress-stress function relations (15.4.14) are a self-

equilibrated form.

15-14. For the couple-stress theory, show that the two stress functions satisfy

r4F ¼ 0, r2C� l2r4C ¼ 0

15-15. Using the general stress relations (15.4.25) for the stress concentration problem of

Example 15-13, show that the circumferential stress on the boundary of the hole is

given by

sy(a, y) ¼ T 1� 2 cos 2y
1þ F

� �

Verify that this expression gives a maximum at y ¼ �p=2, and explicitly show that

this value will reduce to the classical case of 3T by choosing l1 ¼ l2 ¼ l ¼ 0.

15-16. Starting with the general relations (15.5.6), verify that the two-dimensional plane

stress constitutive equations for elastic materials with voids are given by (15.5.9).

15-17. For elastic materials with voids, using the single strain-compatibility equation,

develop the stress and stress function compatibility forms (15.5.10) and (15.5.11).

15-18*. Compare the hoop stress sy(r, p=2) predictions from elasticity with voids given by

relation (15.5.18) with the corresponding results from classical theory. Choosing

N ¼1⁄2 and L ¼ 2, for the elastic material with voids, make a comparative plot of

sy(r, p=2)=T versus r/a for these two theories.

15-19*. For the doublet mechanics Flamant solution in Example 15-15, develop contour plots

(similar to Figure 15-22) for the microstresses p1 and p2. Are there zones where these
microstresses are tensile?
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16 Numerical Finite and Boundary
Element Methods

Reviewing the previous chapters would indicate that analytical solutions to elasticity problems

are normally accomplished for regions and loadings with relatively simple geometry. For

example, many solutions can be developed for two-dimensional problems, while only a limited

number exist for three dimensions. Solutions are commonly available for problems with simple

shapes such as those having boundaries coinciding with Cartesian, cylindrical, and spherical

coordinate surfaces. Unfortunately, problems with more general boundary shape and loading

are commonly intractable or require very extensive mathematical analysis and numerical

evaluation. Because most real-world problems involve structures with complicated shape

and loading, a gap exists between what is needed in applications and what can be solved by

analytical closed-form methods.

Over the years, this need to determine deformation and stresses in complex problems has

lead to the development of many approximate and numerical solution methods (see brief

discussion in Section 5.7). Approximate methods based on energy techniques were outlined in

Section 6.7, but it was pointed out that these schemes have limited success in developing

solutions for problems of complex shape. Methods of numerical stress analysis normally recast

the mathematical elasticity boundary value problem into a direct numerical routine. One such

early scheme is the finite difference method (FDM) in which derivatives of the governing field

equations are replaced by algebraic difference equations. This method generates a system of

algebraic equations at various computational grid points in the body, and the solution to the

system determines the unknown variable at each grid point. Although simple in concept, FDM

has not been able to provide a useful and accurate scheme to handle general problems with

geometric and loading complexity. Over the past few decades, two methods have emerged that

provide necessary accuracy, general applicability, and ease of use. This has led to their

acceptance by the stress analysis community and has resulted in the development of many

private and commercial computer codes implementing each numerical scheme.

The first of these techniques is known as the finite element method (FEM) and involves

dividing the body under study into a number of pieces or subdomains called elements. The
solution is then approximated over each element and is quantified in terms of values at special

locations within the element called the nodes. The discretization process establishes an
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algebraic system of equations for the unknown nodal values, which approximate the continu-

ous solution. Because element size, shape, and approximating scheme can be varied to suit the

problem, the method can accurately simulate solutions to problems of complex geometry and

loading. FEM has thus become a primary tool for practical stress analysis and is also used

extensively in many other fields of engineering and science.

The second numerical scheme, called the boundary element method (BEM), is based on an

integral statement of elasticity (see relation (6.4.7)). This statement may be cast into a form

with unknowns only over the boundary of the domain under study. The boundary integral

equation is then solved using finite element concepts where the boundary is divided into

elements and the solution is approximated over each element using appropriate interpolation

functions. This method again produces an algebraic system of equations to solve for unknown

nodal values that approximate the solution. Similar to FEM techniques, BEM also allows

variation in element size, shape, and approximating scheme to suit the application, and thus the

method can accurately solve a large variety of problems.

Generally, an entire course is required to present sufficient finite and boundary element

theory to prepare properly for the techniques numerical/computational application. Thus, the

brief presentation in this chapter provides only an overview of each method, focusing on

narrow applications for two-dimensional elasticity problems. The primary goal is to establish a

basic level of understanding that will allow a quick look at applications and enable connections

to be made between numerical solutions (simulations) and those developed analytically in the

previous chapters. This brief introduction provides the groundwork for future and more

detailed study in these important areas of computational solid mechanics.

16.1 Basics of the Finite Element Method

Finite element procedures evolved out of matrix methods used by the structural mechanics

community during the 1950s and 1960s. Over the years, extensive research has clearly

established and tested numerous FEM formulations, and the method has spread to applications

in many fields of engineering and science. FEM techniques have been created for discrete and

continuous problems including static and dynamic behavior with both linear and nonlinear

response. The method can be applied to one-, two-, or three-dimensional problems using a

large variety of standard element types. We, however, limit our discussion to only two-

dimensional, linear isotropic elastostatic problems. Numerous texts have been generated that

are devoted exclusively to this subject; for example, Reddy (2006), Bathe (1982), Zienkiewicz

and Taylor (2005), Fung and Tong (2001), and Cook, Malkus, Plesha, and Witt (2001).

As mentioned, the method discretizes the domain under study by dividing the region into

subdomains called elements. In order to simplify formulation and application procedures,

elements are normally chosen to be simple geometric shapes, and for two-dimensional

problems these would be polygons including triangles and quadrilaterals. A two-dimensional

example of a rectangular plate with a circular hole divided into triangular elements is shown in

Figure 16-1. Two different meshes (discretizations) of the same problem are illustrated, and

even at this early stage in our discussion, it is apparent that improvement of the representation

is found using the finer mesh with a larger number of smaller elements. Within each element,

an approximate solution is developed, and this is quantified at particular locations called the

nodes. Using a linear approximation, these nodes are located at the vertices of the triangular

element as shown in the figure. Other higher-order approximations (quadratic, cubic, etc.) can

also be used, resulting in additional nodes located in other positions. We present only a finite

element formulation using linear, two-dimensional triangular elements.
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Typical basic steps in a linear, static finite element analysis include the following:

1. Discretize the body into a finite number of element subdomains

2. Develop approximate solution over each element in terms of nodal values

3. Based on system connectivity, assemble elements and apply all continuity and boundary

conditions to develop an algebraic system of equations among nodal values

4. Solve assembled system for nodal values; post process solution to determine additional

variables of interest if necessary

The basic formulation of the method lies in developing the element equation that approxi-

mately represents the elastic behavior of the element. This development is done for the generic

case, thus creating a model applicable to all elements in the mesh. As pointed out in Chapter 6,

energy methods offer schemes to develop approximate solutions to elasticity problems, and

although these schemes were not practical for domains of complex shape, they can be easily

applied over an element domain of simple geometry (i.e., triangle). Therefore, methods of

virtual work leading to a Ritz approximation prove to be very useful in developing element

equations for FEM elasticity applications. Another related scheme to develop the desired

element equation uses a more mathematical approach known as the method of weighted
residuals. This second technique starts with the governing differential equations, and through

appropriate mathematical manipulations, a so-called weak form of the system is developed.

Using a Ritz/Galerkin scheme, an approximate solution to the weak form is constructed, and

this result is identical to the method based on energy and virtual work. Before developing the

(Discretization with 228 Elements)

(Discretization with 912 Elements)

(Triangular Element)

(Node)

FIGURE 16-1 Finite element discretization using triangular elements.
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element equations, we first discuss the necessary procedures to create approximate solutions

over an element in the system.

16.2 Approximating Functions for Two-Dimensional
Linear Triangular Elements

Limiting our discussion to the two-dimensional case with triangular elements, we wish to

investigate procedures necessary to develop a linear approximation of a scalar variable u(x,y)
over an element. Figure 16-2 illustrates a typical triangular element denoted by Oe in the x,y-
plane. Looking for a linear approximation, the variable is represented as

u(x, y) ¼ c1 þ c2xþ c3y (16:2:1)

where ci are constants. It should be kept in mind that in general the solution variable is expected

to have nonlinear behavior over the entire domain and our linear (planar) approximation is only

proposed over the element.We therefore are using a piecewise linear approximation to represent

the general nonlinear solution over the entire body. This approach generally gives sufficient

accuracy if a large number of elements are used to represent the solution field. Other higher-order

approximations including quadratic, cubic, and specialized nonlinear forms can also be used to

improve the accuracy of the representation.

1
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x

 y

We

(Element Geometry)

Ge = G12 + G23 + G31

(x1,y1)

(x2,y2)
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(Lagrange Interpolation Functions)
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FIGURE 16-2 Linear triangular element geometry and interpolation.
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It is normally desired to express the representation (16.2.1) in terms of the nodal values of

the solution variable. This can be accomplished by first evaluating the variable at each of the

three nodes

u(x1, y1) ¼ u1 ¼ c1 þ c2x1 þ c3y1

u(x2, y2) ¼ u2 ¼ c1 þ c2x2 þ c3y2

u(x3, y3) ¼ u3 ¼ c1 þ c2x3 þ c3y3

(16:2:2)

Solving this system of algebraic equations, the constants ci can be expressed in terms of the

nodal values ui, and the general results are given by

c1 ¼ 1

2Ae
(a1u1 þ a2u2 þ a3u3)

c2 ¼ 1

2Ae
(b1u1 þ b2u2 þ b3u3)

c3 ¼ 1

2Ae
(g1u1 þ g2u2 þ g3u3)

(16:2:3)

where Ae is the area of the element, and ai ¼ xjyk � xkyj, bi ¼ yj � yk, gi ¼ xk � xj, where
i 6¼ j 6¼ k and i,j,k permute in natural order. Substituting for ci in (16.2.1) gives

u(x, y) ¼ 1

2Ae
[(a1u1 þ a2u2 þ a3u3)

þ (b1u1 þ b2u2 þ b3u3)x

þ (g1u1 þ g2u2 þ g3u3)y]

¼
X3
i¼1

uici(x, y)

(16:2:4)

where ci are the interpolation functions for the triangular element given by

ci(x, y) ¼
1

2Ae
(ai þ bixþ giy) (16:2:5)

It is noted that the form of the interpolation functions depends on the initial approximation

assumption and on the shape of the element. Each of the three interpolation functions

represents a planar surface as shown Figure 16-2, and it is observed that they will satisfy the

following conditions:

ci(xj, yj) ¼ dij,
X3
i¼1

ci ¼ 1 (16:2:6)

Functions satisfying such conditions are referred to as Lagrange interpolation functions.
This method of using interpolation functions to represent the approximate solution over an

element quantifies the approximation in terms of nodal values. In this fashion, the continuous

solution over the entire problem domain is represented by discrete values at particular nodal

locations. This discrete representation can be used to determine the solution at other points in

Numerical Finite and Boundary Element Methods 477



the region using various other interpolation schemes. With these representation concepts

established, we now pursue a brief development of the plane elasticity element equations

using the virtual work formulation.

16.3 Virtual Work Formulation for Plane Elasticity

The principle of virtual work developed in Section 6.5 can be stated over a finite element

volume Ve with boundary Se as

ð
Ve

sijdeijdV ¼
ð
Se

Tn
i duidSþ

ð
Ve

FiduidV (16:3:1)

For plane elasticity with an element of uniform thickness he, Ve ¼ heOe and Se ¼ heGe, and

the previous relation can be reduced to the two-dimensional form

he

ð
Oe

(sxdex þ sydey þ 2txydexy)dxdy

� he

ð
Ge

(Tn
xduþ Tn

ydv)ds� he

ð
Oe

(Fxduþ Fydv)dxdy ¼ 0

(16:3:2)

Using matrix notation, this relation can be written as

he

ð
Oe

dex
dey
2dexy

8><
>:

9>=
>;

T sx
sy
txy

8><
>:

9>=
>;

0
B@

1
CAdxdy

� he

ð
Ge

du

dv

� �T Tn
x

Tn
y

( ) !
ds� he

ð
Oe

du

dv

� �T Fx

Fy

� � !
dxdy ¼ 0

(16:3:3)

We now proceed to develop an element formulation in terms of the displacements and choose a

linear approximation for each component

u(x, y) ¼
X3
i¼1

uici(x, y)

v(x, y) ¼
X3
i¼1

vici(x, y)

(16:3:4)

where ci(x, y) are the Lagrange interpolation functions given by (16.2.5). Using this scheme

there will be two unknowns or degrees of freedom at each node, resulting in a total of six

degrees of freedom for the entire linear triangular element. Because the strains are related to

displacement gradients, this interpolation choice results in a constant strain element (CST), and

of course the stresses will also be element-wise constant. Relation (16.3.4) can be expressed in

matrix form:
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u
�

� �
¼ c1 0 c2 0 c3 0

0 c1 0 c2 0 c3

� �
u1
�1
u2
�2
u3
�3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ [c]{D} (16:3:5)

The strains can then be written as

{e} ¼
ex

ey

2exy

8><
>:

9>=
>; ¼

@=@x 0

0 @=@y

@=@y @=@x

2
64

3
75 u

�

� �

¼
@=@x 0

0 @=@y

@=@y @=@x

2
64

3
75[c]{D} ¼ [B]{D}

(16:3:6)

where

[B] ¼

@c1

@x
0

@c2

@x
0

@c3

@x
0

0
@c1

@y
0

@c2

@y
0

@c3

@y

@c1

@y

@c1

@x

@c2

@y

@c2

@x

@c3

@y

@c3

@x

2
6666664

3
7777775

¼ 1

2Ae

b1 0 b2 0 b3 0

0 g1 0 g2 0 g3
g1 b1 g2 b2 g3 b3

2
64

3
75

(16:3:7)

Hooke’s law then takes the form

{s} ¼ [C]{e} ¼ [C][B]{D} (16:3:8)

where [C] is the elasticity matrix that can be generalized to the orthotropic case (see Section

11.2) by

[C] ¼
C11 C12 0

C12 C22 0

0 0 C66

2
4

3
5 (16:3:9)

For isotropic materials,

C11 ¼ C22 ¼
E

1� �2
� � � plane stress

E(1� �)

(1þ �)(1� 2�)
� � � plane strain

8>><
>>:

C12 ¼
E�

1� �2
� � � plane stress

E�
(1þ �)(1� 2�) � � � plane strain

8><
>:

C66 ¼ m ¼ E

2(1þ �)
� � � plane stress and plane strain

(16:3:10)
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Using results (16.3.5), (16.3.6), and (16.3.8) in the virtual work statement (16.3.3) gives

he

ð
Oe

{dD}T([B]T[C][B]){D}dxdy

� he

ð
Oe

{dD}T[c]T
Fx

Fy

� �
dxdy� he

ð
Ge

{dD}T[c]T
Tn
x

Tn
y

( )
ds ¼ 0

(16:3:11)

which can be written in compact form

{dD}T [K]{D}� {F}� {Q}ð Þ ¼ 0 (16:3:12)

Because this relation is to hold for arbitrary variations {dD}T , the expression in parentheses

must vanish, giving the finite element equation

[K]{D} ¼ {F}þ {Q} (16:3:13)

The equation matrices are defined as follows:

[K] ¼ he

ð
Oe

[B]T[C][B]dxdy � � � stiffness matrix

{F} ¼ he

ð
Oe

[c]T
Fx

Fy

� �
dxdy � � � body force vector

{Q} ¼ he

ð
Ge

[c]T
Tn
x

Tn
y

( )
ds � � � loading vector

(16:3:14)

Using the specific interpolation functions for the constant strain triangular element, the [B]
matrix had constant components given by (16.3.7). If we assume that the elasticity matrix also

does not vary over the element, then the stiffness matrix is given by

[K] ¼ heAe[B]
T[C][B] (16:3:15)

and multiplying out the matrices gives the specific form

[K] ¼ he
4Ae

b21C11 þ g21C66 b1g1C12 þ b1g1C66 b1b2C11 þ g1g2C66 b1g2C12 þ b2g1C66 b1b3C11 þ g1g3C66 b1g3C12 þ b3g1C66

� g21C22 þ b21C66 b2g1C12 þ b1g2C66 g1g2C22 þ b1b2C66 b3g1C12 þ b1g3C66 g1g3C22 þ b1b3C66

� � b22C11 þ g22C66 b2g2C12 þ b2g2C66 b2b3C11 þ g2g3C66 b2g3C12 þ b3g2C66

� � � g22C22 þ b22C66 b3g2C12 þ b2g3C66 g2g3C22 þ b2b3C66

� � � � b23C11 þ g23C66 b3g3C12 þ b3g3C66

� � � � � g23C22 þ b23C66

2
6666664

3
7777775

(16:3:16)

Note that the stiffness matrix is always symmetric, and thus only the top-right (or bottom-left)

portion need be explicitly written out. If we also choose body forces that are element-wise

constant, the body force vector {F} can be integrated to give

{F} ¼ heAe

3
{Fx Fy Fx Fy Fx Fy}

T (16:3:17)
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The {Q} matrix involves integration of the tractions around the element boundary, and its

evaluation depends on whether an element side falls on the boundary of the domain or is

located in the region’s interior. The evaluation also requires a modeling decision on the

assumed traction variation on the element sides. Most problems can be adequately modeled

using constant, linear, or quadratic variation in the element boundary tractions. For the typical

triangular element shown in Figure 16-2, the {Q} matrix may be written as

{Q} ¼ he

ð
G
[c]T

Tn
x

Tn
y

( )
ds

¼ he

ð
G12

[c]T
Tn
x

Tn
y

( )
dsþ he

ð
G23

[c]T
Tn
x

Tn
y

( )
dsþ he

ð
G31

[c]T
Tn
x

Tn
y

( )
ds

(16:3:18)

Wishing to keep our study brief in theory, we take the simplest case of element-wise

constant boundary tractions, which allows explicit calculation of the boundary integrals. For

this case, the integral over element side G12 is given by

he

ð
G12

[c]T
Tn
x

Tn
y

� �
ds ¼ he

ð
G12

c1T
n
x

c1T
n
y

c2T
n
x

c2T
n
y

c3T
n
x

c3T
n
y

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ds ¼ heL12

2

Tn
x

Tn
y

Tn
x

Tn
y

0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

12

(16:3:19)

where L12 is the length of side G12. Note that we have used the fact that along side G12, c1 and

c2 vary linearly and c3 ¼ 0. Following similar analysis, the boundary integrals along sides G23

and G31 are found to be

he

ð
G23

[c]T
Tn
x

Tn
y

� �
ds ¼ heL23

2

0

0

Tn
x

Tn
y

Tn
x

Tn
y

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

23

, he

ð
G31

[c]T
Tn
x

Tn
y

� �
ds ¼ heL31

2

Tn
x

Tn
y

0

0

Tn
x

Tn
y

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

31

(16:3:20)

It should be noted that for element sides that lie in the region’s interior, values of the

boundary tractions will not be known before the solution is found; therefore the previous

relations cannot be used to evaluate the contributions of the {Q} matrix explicitly. However,

for this situation, the stresses and tractions are in internal equilibrium, and thus the integrated

result from one element will cancel that from the opposite adjacent element when the finite

element system is assembled. For element sides that coincide with the region’s boundary, any

applied boundary tractions are then incorporated into the results given by relations (16.3.19)

and (16.3.20). Our simplifications of choosing element-wise constant values for the elastic

moduli, body forces, and tractions were made only for convenience of the current abbreviated

presentation. Normally, FEM modeling allows considerably more generality in these choices,

and integrals in the basic element equation (16.3.14) are then evaluated numerically for such

applications.
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16.4 FEM Problem Application

Applications using the linear triangular element discretize the domain into a connected set of

such elements; see, for example, Figure 16-1. The mesh geometry establishes which elements

are interconnected and identifies those on the boundary of the domain. Using computer

implementation, each element in the mesh is mapped or transformed onto a master element

in a local coordinate system where all calculations are done. The overall problem is then

modeled by assembling the entire set of elements through a process of invoking equilibrium at

each node in the mesh. This procedure creates a global assembled matrix system equation of

similar form as (16.3.13). Boundary conditions are then incorporated into this global system to

reduce the problem to a solvable set of algebraic equations for the unknown nodal displace-

ments. We do not pursue the theoretical and operational details in these procedures, but rather

focus attention on a particular example to illustrate some of the key steps in the process.

EXAMPLE 16-1: Elastic Plate Under Uniform Tension

Consider the plane stress problem of an isotropic elastic plate under uniform tension

with zero body forces as shown in Figure 16-3. For convenience, the plate is taken with

unit dimensions and thickness and is discretized into two triangular elements as shown.

This simple problem is chosen in order to demonstrate some of the basic FEM solution

procedures previously presented. More complex examples are discussed in the next

section to illustrate the general power and utility of the numerical technique.

T

3

21

y

x

4

3
3

2

2

1
1

1

2

FIGURE 16-3 FEM analysis of an elastic plate under uniform tension.

The element mesh is labeled as shown with local node numbers within each element

and global node numbers (1–4) for the entire problem. We start by developing the

equation for each element and then assemble the two elements to model the entire plate.

For element 1, the geometric parameters are b1 ¼�1, b2 ¼ 1, b3 ¼ 0, g1 ¼ 0, g2 ¼�1,

g3 ¼ 1, and A1 ¼ 1=2. For the isotropic plane stress case, the element equation follows

from our previous work:

482 ADVANCED APPLICATIONS



EXAMPLE 16-1: Cont’d

E

2(1� �2)

1 0 �1 � 0 ��

� 1� �

2

1� �

2
� 1� �

2
� 1� �

2
0

� � 3� �

2
� 1þ �

2
� 1� �

2
�

� � � 3� �

2

1� �

2
�1

� � � � 1� �

2
0

� � � � � 1

2
666666666664

3
777777777775

u(1)1

v(1)1

u(1)2

v(1)2

u(1)3

v(1)3

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

T(1)
1x

T(1)
1y

T(1)
2x

T(1)
2y

T(1)
3x

T(1)
3y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(16:4:1)

In similar fashion for element 2, b1 ¼ 0, b2 ¼ 1, b3 ¼ �1, g1 ¼ �1, g2 ¼ 0, g3 ¼
1, A1 ¼ 1=2, and the element equation becomes

E

2(1� �2)

1� �

2
0 0 �1� �

2
�1� �

2

1� �

2� 1 �� 0 � �1

� � 1 0 �1 �

� � � 1� �

2

1� �

2
�1� �

2

� � � � 3� �

2
�1� �

2

� � � � � 3� �

2

2
666666666664

3
777777777775

u(2)1

v(2)1

u(2)2

v(2)2

u(2)3

v(2)3

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

T(2)
1x

T(2)
1y

T(2)
2x

T(2)
2y

T(2)
3x

T(2)
3y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(16:4:2)

These individual element equations are to be assembled to model the plate, and this is

carried out using the global node numbering format by enforcing x and y equilibrium at

each node. The final result is given by the assembled global system

K(1)
11 þK(2)

11 K(1)
12 þK(2)

12 K(1)
13 K(1)

14 K(1)
15 þK(2)

13 K(1)
16 þK(2)

14 K(1)
15 K(1)

16

� K(1)
22 þK(2)

22 K(1)
23 K(1)

24 K(1)
25 þK(2)

23 K(1)
26 þK(2)

24 K(1)
25 K(1)

26

� � K(1)
33 K(1)

34 K(1)
35 K(1)

36 0 0

� � � K(1)
44 K(1)

45 K(1)
46 0 0

� � � � K(1)
55 þK(2)

33 K(1)
56 þK(2)

34 K(2)
35 K(2)

36

� � � � � K(1)
66 þK(2)

44 K(2)
45 K(2)

46

� � � � � � K(2)
55 K(2)

56

� � � � � � � K(2)
66

2
6666666666666664

3
7777777777777775

U1

V1

U2

V2

U3

V3

U4

V4

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

T(1)
1x þ T(2)

1x

T(1)
1y þ T(2)

1y

T(1)
2x

T(1)
2y

T(1)
3x þ T(2)

2x

T(1)
3y þ T(2)

2y

T(2)
3x

T(2)
3y

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(16:4:3)

Continued
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EXAMPLE 16-1: Elastic Plate Under Uniform Tension–Cont’d

whereUi and Vi are the global x and y nodal displacements, andK(1)
ij andK(2)

ij are the local

stiffness components for elements 1 and 2 as given in relations (16.4.1) and (16.4.2).

The next step is to use the problem boundary conditions to reduce this global system.

Because the plate is fixed along its left edge, U1 ¼ V1 ¼ U4 ¼ V4 ¼ 0. Using the

scheme presented in equations (16.3.18) through (16.3.20), the tractions on the

right edge are modeled by choosing T(1)
2x ¼ T=2, T(1)

2y ¼ 0, T(1)
3x þ T(2)

2x ¼ T=2, T(1)
3y þ

T(2)
2y ¼ 0. These conditions reduce the global system to

K(1)
33 K(1)

34 K(1)
35 K(1)

36

� K(1)
44 K(1)

45 K(1)
46

� � K(1)
55 þ K(2)

33 K(1)
56 þ K(2)

34

� � � K(1)
66 þ K(2)

44

2
6664

3
7775

U2

V2

U3

V3

8>><
>>:

9>>=
>>; ¼

T=2
0

T=2
0

8>><
>>:

9>>=
>>; (16:4:4)

This result can then be solved for the nodal unknowns, and for the case of material with

properties E ¼ 207GPa and � ¼ 0:25, the solution is found to be

U2

V2

U3

V3

8>><
>>:

9>>=
>>; ¼

0:492
0:081
0:441

�0:030

8>><
>>:

9>>=
>>;T � 10�11m (16:4:5)

Note that the FEM displacements are not symmetric as expected from analytical

theory. This is caused by the fact that our simple two-element discretization eliminated

the symmetry in the original problem. If another symmetric mesh were used, the

displacements at nodes 2 and 3 would then be symmetric. As a postprocessing step, the

forces at nodes 1 and 4 could now be computed by back-substituting solution (16.4.5) into

the general equation (16.4.3). Many of the basic steps in an FEM solution are demon-

strated in this hand-calculation example. However, the importance of the numerical

method lies in its computer implementation, and examples of this are now discussed.

16.5 FEM Code Applications

Thepowerandutilityof thefinite elementmethod lies in theuseof computer codes that implement

the numerical method for problems of general shape and loading. A very large number of both

private and commercial FEM computer codes have been developed over the past few decades.

Many of these codes (e.g., ABAQUS, ANSYS, ALGOR, NASTRAN, ADINA) offer very

extensive element libraries and can handle linear and nonlinear problems under either static or

dynamic conditions. However, the use of such general codes requires considerable study and

practice and would not suit the needs of this chapter. Therefore, rather than attempting to use a

general code, we follow our numerical theme of employing MATLAB software, which offers a

simple FEM package appropriate for our limited needs. The MATLAB code is called the PDE
Toolbox and is one of the many toolboxes distributed with the basic software.

This software package provides an FEM code that can solve two-dimensional elasticity

problems using linear triangular elements. Additional problems governed by other partial

differential equations can also be handled, and this allows the software to also be used for

484 ADVANCED APPLICATIONS



the torsion problem. The PDE Toolbox is very easy to use, and its simple graphical user

interface and automeshing features allow the user to create problem geometry quickly and

appropriately mesh the domain. Some additional user details on this MATLAB package are

provided in Appendix C (Example C-9). We now present some example FEM solutions to

problems developed by analytical methods in earlier chapters.

EXAMPLE 16-2: Circular and Elliptical Holes in a Plate
Under Uniform Tension

We wish to investigate the numerical finite element solution to the two-dimensional

problem of an elastic plate under uniform tension that contains a circular or elliptical hole.

These problems were previously solved for the case of an unbounded plane domain; the

circular hole (see Figure 8-12) was developed in Example 8-7, while the elliptical hole

(Figure 10-17) was solved in Example 10-7. It is noted that for a standard FEM solution

we must have a finite size domain to discretize into a mesh. Because of the problem

symmetry, only one-quarter of the domain need be analyzed; however, due to the simple

problem geometry we do not use this fact and the entire domain is discretized.

The circular hole example is shown in Figure 16-4. The code allows many different

meshes to be generated, and the particular case shown is a fine mesh with 3648 elements

and 1912 nodes. Using this software, various types of FEM results can be plotted, and the

particular graphic shows contours of the horizontal normal stress sx. The concentration

(Finite Element Mesh: 3648 Elements, 1912 Nodes)

(Contours of Horizontal Stress sx)

FIGURE 16-4 FEM solution of a plate under uniform tension containing a circular hole.

Continued
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EXAMPLE 16-2: Circular and Elliptical Holes in a Plate
Under Uniform Tension–Cont’d

effect around the hole is clearly evident, and FEM results give a stress concentration

factor K � 2:9 (based on nominal stress applied at the boundaries). Recall that our

theoretical result for an infinite plane gave K ¼ 3, and results for the finite-width plate

can be found from Peterson (1974) giving K � 3:2 for this geometry (width/diameter

� 4:23). Thus, the FEM result is slightly less than that predicted from theory and

Peterson, indicating that the numerical model has some difficulty in properly capturing

the high stress gradient in the vicinity of the hole. Using a finer mesh or higher-order

elements would result in a value closer to the theoretical/experimental prediction.

A similar problem with an elliptical hole of aspect ratio b=a ¼ 2 is shown in Figure

16-5. The mesh for this case has 3488 elements with 1832 nodes. Again, FEM results

are illustrated with contours of horizontal stress sx. The concentration effect is reflected
by the high stress values at the top and bottom of the ellipse, and the stress concentration

factor was found to be K � 3:3. Using Figure 10-18 from our previous analytical

solution in Example 10-7, an aspect ratio of 2 would result in K ¼ 5. Thus, we again

experience a lower concentration prediction from the finite element model, and the

difference between FEM and theory is larger than in the previous example with the

circular hole. The lower FEM concentration value is again attributable to the numerical

model’s inability to simulate the high stress gradient near the top and bottom of the

ellipse boundary. Again, a finer mesh and/or higher-order elements would result in

better FEM predictions.

(Finite Element Mesh: 3488 Elements, 1832 Nodes)

(Contours of Horizontal Stress sx)

FIGURE 16-5 FEM solution of a plate under uniform tension containing an elliptical hole.
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EXAMPLE 16-3: Circular Disk Under Diametrical Compression

Consider next the problem of a circular disk under diametrical compression, as origin-

ally discussed in Example 8-10. The problem was solved for the case of concentrated

loadings as shown in Figure 8-35, and contours of the maximum shear stress were

compared with photoelastic data in Figure 8-36. Recall that the photoelastic contours

result from an actual experiment in which the loading is distributed over a small portion

of the top and bottom of the disk. This distributed loading case was solved using the

MATLAB PDE Toolbox, and the results are shown in Figure 16-6. The figure illustrates

two FEM models with different meshes along with contours of maximum shear stress.

With the loading distributed over a small portion of the disk boundary, the maximum

stresses occur slightly interior to the loading surfaces. As expected, the finer mesh

produces better results that more closely compare with analytical and photoelastic

predictions shown in Figure 8-36.

(FEM Mesh: 1112 Elements, 539 Nodes) (Contours of Max Shear Stress)

(FEM Mesh: 4448 Elements, 2297 Nodes) (Contours of Max Shear Stress)

FIGURE 16-6 FEM solution of a disk under diametrical compression.
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EXAMPLE 16-4: Torsion Problem Examples

Recall that in Chapter 9 we formulated the torsion problem in terms of the Prandtl stress

function f, which satisfies the Poisson equation r2f ¼ �2ma in the cross-section. For

simply connected sections, f ¼ 0 on the boundary, while for multiply connected

(4224 Elements, 2193 Nodes)

(4928 Elements, 2561 Nodes)

(4624 Elements, 2430 Nodes)

(Stress Function Contours)

(Stress Function Contours)

(Stress Function Contours)

 A

FIGURE 16-7 FEM solutions to three torsion problems.
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EXAMPLE 16-4: Cont’d

sections the function could be set to zero on the outer boundary but must be a different

constant on each inner boundary. This two-dimensional problem is easily solved using

finite elements and in particular using the PDE Toolbox. Figure 16-7 illustrates three

sections that have been solved using the MATLAB software with linear triangular

elements. The first problem is that of a circular section with a circular keyway, and this

problem was originally presented in Exercises 9-19 and 9-20. FEM results show stress

function contours over the section, and the slope of these contours gives the shear stress in

the perpendicular direction. It is readily apparent that the maximum shear stress occurs at

the root of the keyway acting tangent to the boundary at point A. The second example

shown is a square section with a square keyway. The stress function contour lines indicate

high-stress regions at the two reentrant corners of the keyway. The final example is a

multiply connected section with a square outer boundary and a triangular inner hole.

Contours for this case show three high-stress regions at each vertex of the triangular

cutout. Countless other torsion examples can be quickly analyzed using this simple FEM

code, and quantitative stress results can also be generated (see Exercise 16-10).

16.6 Boundary Element Formulation

A second numerical method has recently emerged that provides good computational abilities

and has some particular advantages when compared to FEM. The technique known as the

boundary element method (BEM) has been widely used by computational mechanics investi-

gators, leading to the development of many private and commercial codes. Similar to the finite

element method, BEM can analyze many different problems in engineering science including

those in thermal sciences and fluid mechanics. Although the method is not limited to elastic

stress analysis, this brief presentation discusses only this particular case. Many texts have been

written that provide additional details on this subject; see, for example, Banerjee and Butter-

field (1981) and Brebbia and Dominguez (1992).

The formulation of BEM is based on an integral statement of elasticity, and this can be cast

into a relation involving unknowns only over the boundary of the domain under study. This

originally led to the boundary integral equation method (BIE), and early work in the field was

reported by Rizzo (1967) and Cruse (1969). Subsequent research realized that finite element

methods could be used to solve the boundary integral equation by dividing the boundary into

elements over which the solution is approximated using appropriate interpolation functions.

This process generates an algebraic system of equations to solve for the unknown nodal values

that approximate the boundary solution. A procedure to calculate the solution at interior

domain points can also be determined from the original boundary integral equation. This

scheme also allows variation in element size, shape, and approximating scheme to suit the

application, thus providing similar advantages as FEM.

By discretizing only the boundary of the domain, BEM has particular advantages over

FEM. The first issue is that the resulting boundary element equation system is generally much

smaller than that generated by finite elements. It has been pointed out in the literature that

boundary discretization is somewhat easier to interface with computer-aided design (CAD)

codes that create the original problem geometry. A two-dimensional comparison of equivalent

FEM and BEM meshes for a rectangular plate with a central circular hole is shown in

Figure 16-8. It is apparent that a significant reduction in the number of elements (by a factor

of 5) is realized in the BEM mesh. It should be pointed out, however, that the BEM scheme
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does not automatically compute the solution at interior points, and thus additional computa-

tional effort is required to find such information.

Some studies have indicated that BEM more accurately determines stress concentration

effects. Problems of infinite extent (e.g., full-space or half-space domains) create some

difficulty in developing appropriate FEM meshes, whereas particular BEM schemes can

automatically handle the infinite nature of the problem and only require limited boundary

meshing. There exist several additional advantages and disadvantages related to each method;

however, we do not pursue further comparison and debate. For linear elasticity, both methods

offer considerable utility to solve very complex problems numerically. We now proceed with a

brief development of the boundary element method for two-dimensional elasticity problems.

The integral statement of elasticity was developed in Section 6.4 as Somigliana’s identity.

Using the reciprocal theorem, one elastic state was selected as the fundamental solution, while

the other state was chosen as the desired solution field. For a region V with boundary S, this led
to the following result:

cuj(j) ¼
ð
S

[Ti(x)Gij(x, j)� uiTikj(x, j)nk]dSþ
ð
V

FiGij(x, j)dV (16:6:1)

where the coefficient c is given by

(FEM Discretization: 228 Elements)

(BEM Discretization: 44 Elements)

FIGURE 16-8 Comparison of typical FEM and BEM meshes.
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c ¼
1, j in V
1
2
, j on S

0, j outside V

8<
: (16:6:2)

Gij(x, j) is the displacement Green’s function that comes from the fundamental solution to

the elasticity equations and corresponds to the solution of the displacement field at point x
produced by a unit concentrated body force e located at point j

uGi (x) ¼ Gij(x;j)ej(j) (16:6:3)

The stresses associated with this state are specified by

sGij ¼ Tijk(x, j)ek ¼ [lGlk, ldij þ m(Gik, j þ Gjk, i)]ek (16:6:4)

and the tractions follow to be

TG
i ¼ sGij nj ¼ Tijknjek ¼ pikek (16:6:5)

with pik ¼ Tijknj. Relation (16.6.1) gives the displacement of a given observational point j in

terms of boundary and volume integrals. If point j is chosen to lie on boundary S, then the

expression will contain unknowns (displacements and tractions) only on the boundary. For this

case (j on S), relation (16.6.2) indicates c ¼ 1=2, but this is true only if the boundary has a

continuous tangent (i.e., is smooth). Slight modifications are necessary for the case of non-

smooth boundaries; see Brebbia and Dominguez (1992).

Restricting our attention to only the two-dimensional plane strain case, the Green’s function

becomes (Brebbia and Dominguez 1992)

Gij ¼ 1

8pm(1� �)
(3� 4�) ln

1

r

� �
dij þ r, ir, j

� �
(16:6:6)

where r ¼ jx� jj is the distance between points x and j. Relation (16.6.5) can be used to

determine the traction pij associated with this specific Green’s function, giving the result

pij ¼ Tikjnk ¼ � 1

4p(1� �)r
(1� 2�)

@r

@n
dij þ r, inj � r; j ni

� �
þ 2

@r

@n
r, ir, j

� �
(16:6:7)

It is convenient to use matrix notation in the subsequent formulation and thus define

G ¼ G11 G12

G21 G22

� �
, p ¼ p11 p12

p21 p22

� �

u ¼ u1

u2

� �
, T ¼ T1

T2

� �
, F ¼ F1

F2

� � (16:6:8)

The boundary integral equation (16.6.1) can then be expressed in two-dimensional form as

ciui ¼
ð
G
[GT � pu]dSþ

ð
R

GFdV (16:6:9)
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It is noted that by allowing point j to be on the boundary, this relation will contain unknown

displacements or tractions only over G. We now wish to apply numerical finite element

concepts to solve (16.6.9) by discretizing the boundary G and region R into subdomains over

which the solution will be approximated. Only the simplest case is presented here in which the

approximating scheme assumes piecewise constant values for the unknowns.

Referring to Figure 16-9, a typical boundary G is discretized into N elements. The unknown

boundary displacements and tractions are assumed to be constant over each element and equal

to the value at each midnode. Subdivision of the interior into cells would also be required in

order to compute integration of the body force term over R. However, such interior integrals

can be reformulated in terms of boundary integrals, thereby maintaining efficiency of the basic

boundary techniques. This reformulation is not discussed here, and we now formally drop body

force contributions from further consideration. Using this discretization scheme, relation

(16.6.9) can be written as

ciui þ
XN
j¼1

ð
Gj

p ds

 !
uj ¼

XN
j¼1

ð
Gj

G ds

 !
Tj (16:6:10)

where index i corresponds to a particular node where the Green’s function concentrated force

is applied, and index j is related to each of the boundary elements including the case j ¼ i.
Notice that for the choice of constant approximation over the element, there is no formal

interpolation function required, and nodal values are simply brought outside of the element

integrations.

Reviewing the previous expressions (16.6.6) and (16.6.7), the integral terms
Ð
Gj
G ds andÐ

Gj
p ds relate node i to node j and are sometimes referred to as influence functions. Each of

these terms generates 2� 2 matrices that can be defined by

ÂAij ¼
ð
Gj

p ds

Bij ¼
ð
Gj

G ds

(16:6:11)

For the constant element case, some of the integrations in (16.6.11) can be carried out analytically,

while other cases use numerical integration commonly employing Gauss quadrature. It should be

Node j Element Gj

R

Node i

G

FIGURE 16-9 Boundary discretization using elements with constant approximation.
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noted that the i ¼ j case generates a singularity in the integration, and specialmethods are normally

used to handle this problem.

Relation (16.6.10) can thus be written as

ciui þ
XN
j¼1

ÂAijuj ¼
XN
j¼1

BijTj (16:6:12)

and this result specifies the value of u at node i in terms of values of u and T at all other nodes

on the boundary. If the boundary is smooth, ci ¼ 1⁄2 at all nodes. By defining

Aij ¼ ÂAij, i 6¼ j
ÂAij þ ci, i ¼ j

�
(16:6:13)

equation (16.6.12) can be written in compact form as

XN
j¼1

Aijuj ¼
XN
j¼1

BijTj (16:6:14)

or in matrix form

[A]{u} ¼ [B]{T} (16:6:15)

Boundary conditions from elasticity theory normally specify either the displacements or

tractions or a mixed combination of the two variables over boundary G. Using these specified

values in (16.6.14) or (16.6.15) reduces the number of unknowns and allows the system to be

rearranged. Placing all unknowns on the left-hand side of the system equation and moving all

known variables to the right generates a final system that can always be expressed in the form

[C]{X} ¼ {D} (16:6:16)

where all unknown boundary displacements and tractions are located in the column matrix

{X} and all known boundary data have been multiplied by the appropriate influence function

and moved into {D}. Relation (16.6.16) represents a system of linear algebraic equations that

can be solved for the desired unknown boundary information. This BEM system is generally

much smaller than that from a corresponding FEM model. However, unlike the FEM system,

the [C] matrix from (16.6.16) is not in general symmetric, thereby requiring more computa-

tional effort to solve for nodal unknowns. Using modern computing systems, usually this

added computational effort is not a significant factor in the solution of linear elasticity

problems.

Once this solution is complete, all boundary data is known and the solution at any desired

interior point can be calculated reusing the basic governing boundary integral equation. For

example, at an interior point relation (16.6.9) with no body forces will take the form

ui ¼
ð
G
GTdS�

ð
G
pudS (16:6:17)

Following our previous constant element approximation, this expression can be discretized as
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ui ¼
XN
j¼1

ð
Gj

G ds

 !
Tj �

XN
j¼1

ð
Gj

p ds

 !
uj

¼
XN
j¼1

BijTj �
XN
j¼1

ÂAijuj

(16:6:18)

and the interior displacement can then be determined using standard computational evaluation

of the influence functions ÂAij and Bij. Internal values of strain and stress can also be computed

using (16.6.17) in the strain-displacement relations and Hooke’s law, thereby generating

expressions similar to relation (16.6.18); see Brebbia and Dominguez (1992).

EXAMPLE 16-5: BEM Solution of a Circular Hole in a Plate
Under Uniform Tension

Consider again the problemofExample 16-2 of a plate under uniform tension that contains

a stress-free circular hole. The finite element solution was shown in Figure 16-4 for a very

fine FEM mesh with 3648 triangular elements. A simple BEM FORTRAN code using

constant and quadratic elements is provided in the text byBrebbia andDominguez (1992),

and this was used to develop the numerical solution. This simple BEM code does not have

drawing or automeshing capabilities, and thus problem data was input by hand. The

boundary element solution was generated using two different models that incorporated

problemsymmetry toanalyzehalf of thedomainas showninFigure16-10.Onemodelused

32 constant elements, while the second case used 14 three-noded quadratic elements.

(32 Constant Element Mesh) (14 Quadratic Element Mesh)

A B

FIGURE 16-10 BEM solution of a plate under uniform tension containing a circular hole.
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EXAMPLE 16-5: Cont’d

The constant element model is limited to having nodes located at the midpoint of

each element (see Figure 16-9), and thus does not allow direct determination of the

highest stress at the edge of the hole. For this case using the stress value at node A in

Figure 16-10, the stress concentration factor is found to be K � 2:75. The quadratic

element case uses three nodes per element, including nodes located at the element

boundaries. For this case node B in Figure 16-10 is used to determine the highest stress,

and this gives a stress concentration factor of K � 3:02. The particular model has a

width to diameter ratio of 10, and for such geometry, results from Peterson (1974)

would predict a stress concentration of about 3. As expected, the BEM results using

constant elements were not as good as the predictions using quadratic interpolation.

Comparing this BEM analysis with the finite element results in Example 16-2 indicates

that the quadratic boundary element results appear to give a more accurate estimate of

the actual stress concentration using much fewer elements. However, this conclusion is

based on the particular element models for each analysis, and using other element types

and meshes could produce somewhat different results and comparisons.

Many additional FEM and BEM examples can be developed and compared to illustrate

other interesting features of these computational stress analysis methods. Unfortunately, such

an excursion would require developments outside the current scope of the text, and thus we do

not pursue such material. The interested reader is encouraged to consult the chapter references

for additional study.
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Exercises

16-1. Starting with the general linear form (16.2.1), verify the interpolation relations (16.2.4)

and (16.2.5).

16-2. For the constant strain triangular element, show that the stiffness matrix is given by

(16.3.16).
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16-3. For the case of element-wise constant body forces, verify that the body force vector is

given by relation (16.3.17) for the linear triangular element.

16-4. Verify boundary relation (16.3.19) for the linear triangular element with constant

boundary tractions Tn
x and Tn

y .

16-5. For Example 16-1, show that the element stiffness equations for the isotropic case are

given by relations (16.4.1) and (16.4.2).

16-6. Verify the nodal displacement solution given by (16.4.5) in Example 16-1.

16-7*. Using the MATLAB PDE Toolbox (or equivalent), develop an FEM solution for the

stress concentration problem under biaxial loading given in Exercise 8-22. Compare

the stress concentration factor from the numerical results with the corresponding

analytical predictions.

16-8*. Using the MATLAB PDE Toolbox (or equivalent), develop an FEM solution for the

stress concentration problem under shear loading given in Exercise 8-23. Compare

the stress concentration factor from the numerical results with the corresponding

analytical predictions.

16-9*. Using the MATLAB PDE Toolbox (or equivalent), develop an FEM solution for the

curve beam problem shown in Figure 8-32. At the fixed section, compare numerical

stress results (sx) with analytical predictions (sy) given by equations (8.4.65).

16-10*. Using the MATLAB PDE Toolbox (or equivalent), develop an FEM solution for

the torsion of a cylinder of circular section with circular keyway as shown in Exercise

9-19. Verify the result of Exercise 9-20, that the maximum shear stress on the keyway

is approximately twice that found on a solid shaft. In order to investigate the shear

stress, use the Toolbox plot selection window to plot contours of the variable

abs(grad(u)).

16-11. Verify the traction relation (16.6.7) for the plane strain case.

496 ADVANCED APPLICATIONS



Appendix A Basic Field Equations in Cartesian,
Cylindrical, and Spherical
Coordinates

For convenience, the basic three-dimensional field equations of elasticity are listed here for

Cartesian, cylindrical, and spherical coordinate systems. This will eliminate searching for these

results in various chapters of the text. Cylindrical and spherical coordinates are related to the

basic Cartesian system, as shown in Figure A-1.
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FIGURE A-1 Cylindrical and spherical coordinate systems.



Strain-Displacement Relations

Cartesian Coordinates

ex ¼ @u

@x
, ey ¼ @v

@y
, ez ¼ @w

@z

exy ¼ 1

2

@u

@y
þ @v

@x

� �

eyz ¼ 1

2

@v

@z
þ @w

@y

� �

ezx ¼ 1

2

@w

@x
þ @u

@z

� �
(A:1)

Cylindrical Coordinates

er ¼ @ur
@r

, ey ¼ 1

r
ur þ @uy

@y

� �
, ez ¼ @uz

@z

ery ¼ 1

2

1

r

@ur
@y

þ @uy
@r

� uy
r

� �

eyz ¼ 1

2

@uy
@z

þ 1

r

@uz
@y

� �

ezr ¼ 1

2

@ur
@z

þ @uz
@r

� �
(A:2)

Spherical Coordinates

eR ¼ @uR
@R

, ef ¼ 1

R
uR þ @uf

@f

� �

ey ¼ 1

R sinf
@uy
@y

þ sinfuR þ cosfuf

� �

eRf ¼ 1

2

1

R

@uR
@f

þ @uf
@R

� uf
R

� �

efy ¼ 1

2R

1

sinf
@uf
@y

þ @uy
@f

� cotfuy

� �

eyR ¼ 1

2

1

R sinf
@uR
@y

þ @uy
@R

� uy
R

� �

(A:3)
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Equilibrium Equations

Cartesian Coordinates

@sx
@x

þ @tyx
@y

þ @tzx
@z

þ Fx ¼ 0

@txy
@x

þ @sy
@y

þ @tzy
@z

þ Fy ¼ 0

@txz
@x

þ @tyz
@y

þ @sz
@z

þ Fz ¼ 0

(A:4)

Cylindrical Coordinates

@sr
@r

þ 1

r

@try
@y

þ @trz
@z

þ 1

r
(sr � sy)þ Fr ¼ 0

@try
@r

þ 1

r

@sy
@y

þ @tyz
@z

þ 2

r
try þ Fy ¼ 0

@trz
@r

þ 1

r

@tyz
@y

þ @sz
@z

þ 1

r
trz þ Fz ¼ 0

(A:5)

Spherical Coordinates

@sR
@R

þ 1

R

@tRf
@f

þ 1

R sinf
@tRy
@y

þ 1

R
(2sR � sf � sy þ tRf cotf)þ FR ¼ 0

@tRf
@R

þ 1

R

@sf
@f

þ 1

R sinf
@tfy
@y

þ 1

R
[(sf � sy) cotfþ 3tRf]þ Ff ¼ 0

@tRy
@R

þ 1

R

@tfy
@f

þ 1

R sinf
@sy
@y

þ 1

R
(2tfy cotfþ 3tRy)þ Fy ¼ 0

(A:6)

Hooke’s Law

Cartesian Coordinates

sx ¼ l(ex þ ey þ ez)þ 2mex
sy ¼ l(ex þ ey þ ez)þ 2mey
sz ¼ l(ex þ ey þ ez)þ 2mez
txy ¼ 2mexy
tyz ¼ 2meyz
tzx ¼ 2mezx

ex ¼ 1

E
sx � �(sy þ sz)
� �

ey ¼ 1

E
sy � �(sz þ sx)
� �

ez ¼ 1

E
sz � �(sx þ sy)
� �

exy ¼ 1þ �

E
txy

eyz ¼ 1þ �

E
tyz

ezx ¼ 1þ �

E
tzx

(A:7)
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Cylindrical Coordinates

sr ¼ l(er þ ey þ ez)þ 2mer
sy ¼ l(er þ ey þ ez)þ 2mey
sz ¼ l(er þ ey þ ez)þ 2mez
try ¼ 2mery
tyz ¼ 2meyz
tzr ¼ 2mezr

er ¼ 1

E
sr � �(sy þ sz)½ �

ey ¼ 1

E
sy � �(sz þ sr)½ �

ez ¼ 1

E
sz � �(sr þ sy)½ �

ery ¼ 1þ �

E
try

eyz ¼ 1þ �

E
tyz

ezr ¼ 1þ �

E
tzr

(A:8)

Spherical Coordinates

sR ¼ l(eR þ ef þ ey)þ 2meR
sf ¼ l(eR þ ef þ ey)þ 2mef
sy ¼ l(eR þ ef þ ey)þ 2mey
tRf ¼ 2meRf
tfy ¼ 2mefy
tyR ¼ 2meyR

eR ¼ 1

E
sR � �(sf þ sy)
� �

ef ¼ 1

E
sf � �(sy þ sR)
� �

ey ¼ 1

E
sy � �(sR þ sf)
� �

eRf ¼ 1þ �

E
tRf

efy ¼ 1þ �

E
tfy

eyR ¼ 1þ �

E
tyR

(A:9)

Equilibrium Equations in Terms of Displacements
(Navier’s Equations)

Cartesian Coordinates

mr2uþ (lþ m)
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@x

@u

@x
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@y
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� �
þ Fx ¼ 0
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þ Fy ¼ 0

mr2wþ (lþ m)
@

@z

@u

@x
þ @v

@y
þ @w

@z

� �
þ Fz ¼ 0

(A:10)
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Cylindrical Coordinates
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(A:11)

Spherical Coordinates
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Appendix B Transformation of Field
Variables Between Cartesian,
Cylindrical, and Spherical
Components

This appendix contains some three-dimensional transformation relations between displace-

ment and stress components in Cartesian, cylindrical, and spherical coordinates. The coordin-

ate systems are shown in Figure A-1 in Appendix A, and the related stress components are

illustrated in Figure B-1. These results follow from the general transformation laws (1.5.1) and

(3.3.3). Note that the stress results can also be applied for strain transformation.

x

y

r

z

dr

sz

sq sr

trq
trz

tqz

dq

(Cylindrical System) (Spherical System)

sR

sq

sf

z

x

 y

R

tRq

τRf

q

f

q

tfq

FIGURE B-1 Stress components in cylindrical and spherical coordinates.
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Cylindrical Components from Cartesian

The transformation matrix for this case is given by

[Q] ¼
cos y sin y 0

� sin y cos y 0

0 0 1

2
4

3
5 (B:1)

Displacement Transformation

ur ¼ u cos yþ v sin y

uy ¼ �u sin yþ v cos y

uz ¼ w

(B:2)

Stress Transformation

sr ¼ sx cos2 yþ sy sin2 yþ 2txy sin y cos y

sy ¼ sx sin2 yþ sy cos2 y� 2txy sin y cos y

sz ¼ sz

try ¼ �sx sin y cos yþ sy sin y cos yþ txy( cos2 y� sin2 y)

tyz ¼ tyz cos y� tzx sin y

tzr ¼ tyz sin yþ tzx cos y

(B:3)

Spherical Components from Cylindrical

The transformation matrix from cylindrical to spherical coordinates is given by

[Q] ¼
sinf 0 cosf
cosf 0 � sinf
0 1 0

2
4

3
5 (B:4)

Displacement Transformation

uR ¼ ur sinfþ uz cosf

uf ¼ ur cosf� uz sinf

uy ¼ uy

(B:5)

Stress Transformation

sR ¼ sr sin2 fþ sz cos2 fþ 2trz sinf cosf

sf ¼ sr cos2 fþ sz sin2 f� 2trz sinf cosf

sy ¼ sy

tRf ¼ (sr � sz) sinf cosf� trz( sin2 f� cos2 f)

tfy ¼ try cosf� tyz sinf

tyR ¼ try sinfþ tyz cosf

(B:6)
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Spherical Components from Cartesian

The transformation matrix from Cartesian to spherical coordinates can be obtained by com-

bining the previous transformations given by (B.1) and (B.4). Tracing back through tensor

transformation theory, this is accomplished by the simple matrix multiplication

[Q] ¼
sinf 0 cosf

cosf 0 � sinf

0 1 0

2
64

3
75

cos y sin y 0

� sin y cos y 0

0 0 1

2
64

3
75

¼
sinf cos y sinf sin y cosf

cosf cos y cosf sin y � sinf

� sin y cos y 0

2
64

3
75

(B:7)

Displacement Transformation

uR ¼ u sinf cos yþ v sinf sin yþ w cosf

uf ¼ u cosf cos yþ v cosf sin y� w sinf

uy ¼ �u sin yþ v cos y

(B:8)

Stress Transformation

sR ¼ sx sin2 f cos2 yþ sy sin2 f sin2 yþ sz cos2 f

þ 2txy sin2 f sin y cos yþ 2tyz sinf cosf sin yþ 2tzx sinf cosf cos y

sf ¼ sx cos2 f cos2 yþ sy cos2 f sin2 yþ sz sin2 f

þ 2txy cos2 f sin y cos y� 2tyz sinf cosf sin y� 2tzx sinf cosf cos y

sy ¼ sx sin2 yþ sy cos2 y� 2txy sin y cos y

tRf ¼ sx sinf cosf cos2 yþ sy sinf cosf sin2 y� sz sinf cosf

þ 2txy sinf cosf sin y cos y� tyz( sin2 f� cos2 f) sin y

� tzx( sin2 f� cos2 f) cos y

tfy ¼ �sx cosf sin y cos yþ sy cosf sin y cos yþ txy cosf( cos2 y� sin2 y)

� tyz sinf cos yþ tzx sinf sin y

tyR ¼ �sx sinf sin y cos yþ sy sinf sin y cos yþ txy sinf( cos2 y� sin2 y)

þ tyz cosf cos y� tzx cosf sin y

(B:9)

Inverse transformations of these results can be computed by formally inverting the system

equations or redeveloping the results using tensor transformation theory.
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Appendix C MATLAB Primer

Many locations in the text use numerical methods to calculate and plot solutions to a variety of

elasticity problems. Although other options are available, the author has found MATLAB

software ideally suited to conduct this numerical work. This particular software has all of the

necessary computational and plotting tools to enable very efficient and simple applications for

elasticity. MATLAB is a professional engineering and scientific software package developed

and marketed by MathWorks, Inc. In recent years, MATLAB has achieved widespread and

enthusiastic acceptance throughout the engineering community. Many engineering schools

now require and/or use MATLAB as one of their primary computing tools, and it is expected

that it will continue to replace older structured programming methods. Its popularity is because

of a long history of well-developed and tested products, its ease of use by students, and its

compatibility across many different computer platforms (e.g., PC, Mac, and UNIX). The

purpose of this appendix is to present a few MATLAB basics to help students apply particular

software applications for the needs of the text. The software package itself contains an

excellent Help package that provides extensive information on various commands and proced-

ures. Also, many books are available on the software package; see, for example, Palm (2008).

It is assumed that the reader has some prior background and experience with at least one other

programming language, and thus has a basic understanding of programming techniques.

C.1 Getting Started

MATLAB is both a computer programming language and a software environment for using the

language. Under the Microsoft Windows operating system, the MATLAB window appears as

shown in Figure C-1. It is from this window that the Help menu can be accessed, and this provides

extensive information onmost topics. In this commandwindow, the user can type instructions after

the prompt ‘‘�.’’ However, it is much more efficient to create and save application programs

within the editor/debugger window. This window is activated by clicking the File menu in the

Commandwindowand selecting eitherNew to start a new creation orOpen to open an existingfile.

MATLAB files are called m-files and have the extension ‘‘�:m’’. Within the editor/debugger

window, a new application code can be created or an existing one modified. In either case, the

resulting file can then be saved for later use, and the current file can be run from this window.

An example program appearing in the editor/debugger window is shown in Figure C-2.
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FIGURE C-1 MATLAB command window.

FIGURE C-2 MATLAB editor/debugger window.
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C.2 Examples

Rather than attempting a step-by-step explanation of various MATLAB commands, we instead

pursue a learn-by-example approach. In this fashion most of the needed procedures are

demonstrated through the presentation and discussion of several example codes that are used

in the text. Key features to be learned from these examples include the following:

. Input of problem data

. Generation of spatial variables

. Calculation procedures

. Plotting and display techniques

Readers with previous programming experience should be able to review these examples

quickly and use them (with selected support from the Help menu) to develop their own codes.

EXAMPLE C-1: Transformation of Second-Order
Tensors

Our first example is a simple MATLAB code to conduct the transformation of second-order

tensors. The transformation rule is given by relation (1:5:1)3, and this has been incorporated into

the code as shown. Code lines preceded with a percent (%) symbol are not executed and are used

for comments to explain the coding. A semicolon ending a code line suppresses screen printing

that particular calculation. The rotation tensor [Q] and tensor to be transformed [A] are input from

within the program, and thus the code must be modified if either of these matrices is changed. The

disp command displays each of the matrices to the screen after the code is run.

Continued

EXAMPLE C-1: Transformation of Second-Order
Tensors–Cont’d

Screen output created from this code is given by

>> Original Matrix

1 1 1

0 4 2

0 1 1

Rotation Matrix

0 0 �1

0 1 0

1 0 0

Transformed Matrix

1 �1 0

�2 4 0

�1 1 1
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EXAMPLE C-2: Calculation of Invariants, Eigenvalues,
and Eigenvectors of a Matrix

MATLAB provides very simple and efficient methods to determine the invariants, principal

values, and directions of second-order tensors (matrices). The basic tool for the eigenvalue

problem is the command eig( ), which will generate both the eigenvalues and eigenvectors. The

following simple code illustrates the basics for the matrix originally given in Example 1-3.

% MATLAB CODE: Example C-2
% Elasticity: Theory, Applications and Numerics - Elsevier
% M.H. Sadd, University of Rhode Island
% Program to Numerically Calculate Invariants, Principal Values
% and Directions of a Matrix
% Program Uses Matrix from Example 1-3
clc;clear all;
% Input Matrix
A¼ [2,0,0;0,3,4;0,4,-3]
% Calculate Invariants
invariants¼ [trace(A),(trace(A)^2-trace(A�A))/2,det(A)]
[V,L]¼ eig(A);
% Principal Values are the Diagonal Elements of the L Matrix
principal_values¼ [L(1,1),L(2,2),L(3,3)]
% Principal Directions are the Columns of the V Matrix
principal_directions¼ [V(:,1),V(:,2),V(:,3)]
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EXAMPLE C-2: Cont’d

Screen output created from this code is given by

A ¼

2 0 0

0 3 4

0 4 �3

invariants ¼

2 �25 �50

principal_values ¼

�5 2 5

principal_directions ¼

0 1:0000 0

0:4472 0 �0:8944
�0:8944 0 �0:4472

EXAMPLE C-3: XY Plotting of Stresses in Figure 8-9

The MATLAB code shown was developed to calculate and plot the radial and circumferential

stresses in a thick-walled cylinder under internal pressure loading from Example 8-6. The

theoretical expressions for the stresses are given by equations (8.4.3), and the plot is shown in

Figure 8-9. The nondimensional radial coordinate r=r2 is conveniently generated from 0.5 to 1,

and the length(r) expression gives the number of terms in the r array, which is used as the limiter

on the looping index. This simple code illustrates the for-end looping and calculation procedure

and the basic XY plot call used to draw the two stress curves. Note the plot formatting used to

label the axes. Additional format control is available through the Help menu, and the plot can also

be edited within the generated plot window.

% MATLAB CODE C-3; Elasticity: Theory, Applications & Numerics
% Martin H. Sadd, University of Rhode Island
% Calculate and Plot Stresses in Thick-Walled Cylinder Problem Example 8-6
% Internal Pressure Loading Case with r1/r2=0.5; Generate Figure 8-9
clear;
% Generate Nondimensional Radial Coordinate Space: r/r2
r=[0.5:0.01:1];
% Calculation Loop for Stresses
for i=1:length(r)
   sr(i)=0.3333*(1-(1/r(i))^2);
   st(i)=0.3333*(1+(1/r(i)) ^2);
end
% Plotting Call
plot(r,sr,r,st),xlabel(‘Dimensionles Distance, ‘),ylabel(‘Dimensionless Stress’)



EXAMPLE C-4: Polar Contour Plotting of Hoop Stress
Around a Circular Hole in Figure 8-13

This example illustrates a code used to plot the hoop stresses on the boundary of a circular hole in an

infinite plane under uniform far-field tension (see problem geometry in Figure 8-12). The hoop stress

was given by equation (8.4.15)2, and the plot on the boundary of the hole is shown in Figure 8-13.

Similar to the previous example, this code calculates the necessary stress values and then displays

them in a polar plot. The angular coordinate is generated from 0 to 2�. For this code, the use of the
for-loop is dropped since MATLAB can automatically handle calculations with matrix/vector

arguments. The plotting call used in this example is the polar command that generates Figure 8-13.

Additional formatting can be applied to the polar plot call to control line type, thickness, and so on, and

these can also be edited in the plot window.

% MATLAB CODE: Example C-4
% Elasticity: Theory, Applications and Numerics - Elsevier
% M.H. Sadd, University of Rhode Island
% Calculate and Plot Normalized Hoop Stress on Circular Hole
% In Infinite Plane Under Uniform Tension at Infinity: Example 8.7
% Nondimensional Plot Generates Figure 8-13
clear;
% Input (r/a)- Variable and Generate Angular Coordinate Space
r¼ 1;
t¼ [0:0.01:2�pi];
% Calculation Loop
st¼ 0.5�(1þ(1/r)^2)-0.5�(1þ3�(1/r)^4)�cos(2�t);
% Plotting Call
polar(t,st)
title(‘Nondimensional Hoop stress Around Hole’)

EXAMPLE C-5: Displacement Vector Distribution Plotting
in Figure 8-22

Consider next the example of plotting the displacement vectors for the Flamant problem of

Section 8.4.7 shown in Figure 8-19. For the normal loading case, the displacement field is given

by relations (8.4.43), and these are plotted in Figure 8-22 for the near-field case (0 < r < 0:5) with

a Poisson’s ratio of 0.3 and Y=E ¼ 1. Radial coordinates are generated by the logspace command

as explained in the comment line, and this range can easily be changed to investigate other regions

of the half plane. Within the calculation loops, the Cartesian coordinates and displacement

components are changed to reflect the system used in Chapter 8. The plotting is done using the

quiver command, which draws two-dimensional vectors with components ux and uy at locations x
and y. Additional details on this type of plotting can be found in the Help menu.

% MATLAB CODE C-5: Elasticity: Theory, Applications & Numerics
% Martin H. Sadd, University of Rhode Island
% Displacement Vector Distribution Plot for Flamant Problem - Figure 8-19
% Normal Loading Case (X=0); Generates Figure 8-22
% Input Parameters
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EXAMPLE C-5: Cont’d

Y=1; E=1; nu=0.3;
% Input Radial Coordinates: logspace(M,N,*) Generates Region 10^M < r< 10^N
r=logspace(-3,-0.5,60);
% Input Theta Coordinates
t=[0:pi/20:pi];
% calculation Loops
for i=1:length(r)
     for j=1:length(t)
         x(i,j)=r(i)*cos(t(j));
         y(i,j)=r(i)*sin(t(j));
         % Coordinate Change
         x(i,j)=-x(i,j);
         y(i,j)=-y(i,j);
         % Calculate Polar Displacement Components
         ur(i,j)=Y/(pi*E)*((1-nu)*(t(j)-pi/2)*cos(t(j))-2*log(r(i))*sin(t(j)));
         ut(i,j)=Y/(pi*E)*(-(1-nu)*(t(j)-pi/2)*sin(t(j))-2*log(r(i))*cos(t(j))-(1+nu)*cos(t(j)));
         % Calculate Cartesian Displacement Components
         ux(i,j)=cos(t(j))*ur(i,j)-sin(t(j))*ut(i,j);
         uy(i,j)=sin(t(j))*ur(i,j)+cos(t(j))*ut(i,j);
         % Corrdinate Change
         ux(i,j)=-ux(i,j); uy(i,j)=-uy(i,j);
      end
  end
  clf;
  hold on;
  axis equal;
  % Plotting Call for Vector Distribution
  quiver(x,y,ux,uy)

EXAMPLE C-6: Plotting of Warping Displacement Contours
in Figure 9-8

The following MATLAB code has been developed to calculate and plot the warping displacements

for the torsion of a cylinder with elliptical section shown in Figure 9-7. This code uses many of the

same commands from the previous examples to input parameters, generate the variable grid space,

and conduct the calculations to determine the warping displacement array. The plotting call uses the

contour command, which generates contours of constantwwithin the grid space that was created to

lie inside the elliptical boundary. The code generates the displacement contours shown in Figure 9-8.

Again, additional formatting details on this plotting command can be found in the Help menu.

% MATLAB CODE C-6:  Elasticity: Theory, Applications & Numerics
% Martin H. Sadd, University  of Rhode Island
% Generates 2-D Warping Displacement Contours for
% Elliptical Section Under Torsion - Figure 9-8
close all
clear all

Continued



EXAMPLE C-6: Plotting of Warping Displacement Contours
in Figure 9-8–Cont’d

% Input Geometry and Angle of Twist
a=1.0; b=0.5; alpha=1.0;
% Input Grid Space
r=[0.01:0.05:1]; t=[0:pi/10:2*pi];
% Generate Contour Data
K=alpha*(b^2-a^2)/(a^2+b^2);
for i=1:length(r)
     for j=1:length(t)
        x(i,j)=a*r(i)*cos(t(j));
        j(i,j)=b*r(i)*sin(t(j));
       w(i,j)=K*x(i,j)*y(i,j);
    end
end
% Plotting Call with 20 Contours
contour(x,y,w,20);
axis equal

EXAMPLE C-7: Plotting a Three-DimensionalWarping
Displacement Surface in Figure 9-8

This example illustrates how MATLAB can make a three-dimensional surface plot of the warping

displacement for the torsion of an elliptical section. Figure 9-8 shows the surface plot created from

this code. After generating appropriate x- and y-location arrays, the warping displacement values are

calculated and stored in the array w. Using the surf command, the warping surface is then generated

in a three-dimensional system. Numerous viewing parameters can be edited to suit the desired view.

% MATLAB CODE: Example C-7
% Elasticity: Theory, Applications & Numerics
% Professor Martin H. Sadd, University of Rhode Island
% Three Dimensional Plot of Warping Displacement Surface
% for Elliptical Section Under Torsion
clc;clear all; close all
t¼ [0:5:360];
r¼ [0:0.05:1];
a¼ 1;b¼ 0.5;
for i¼ 1:length(r)

for j¼ 1:length(t)
th¼ t(j)�pi/180;
xc¼ a�r(i)�cos(th);
yc¼ b�r(i)�sin(th);
w(i,j)¼ -xc�yc;
y(i,j)¼ yc;
x(i,j)¼ xc;

end
end
surfc(x,y,w);
colormap gray
h¼ findobj(gcf,‘type’,‘patch’);
set(h,‘LineWidth’, 1.0, ‘EdgeColor’,‘k’);
axis([-1 1 -1 1])
axis square
view(20,10)
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EXAMPLE C-8: Determination of Roots for Orthotropic
Materials

InChapter 11anisotropic solutions toplane elasticity problems required the roots of thecharacteristic

equation (11.5.7). As indicated in Exercise 11-12, for orthotropic materials this characteristic equa-

tion reduces to a quadratic with roots b1, 2. TheMATLAB code shown calculates these two roots and

writes the results to the screen command window. This code illustrates some of the basic formatting

issues related to inputting names and data and printing calculated information to the screen.

% MATLAB CODE C-8: Elasticity: Theory, Applications & Numerics
% Martin H. Sadd, University of Rhode Island
% Calculate Beta Parameters of Orthotropic E-Glass Material
clear;
% Input Number of Materials,Names and Stiffness Moduli
N=1;
name(1,:)='E-Glass/Epoxy';
e1(1)=38.6; e2(1)=8.3; nu12(1)=0.26; mu12(1)=4.2;
% Calculate Compliances
for i=1:N
s11(i)=1/e1(i); s22(i)=1/e2(i); s12(i)=-nu12(i)/e1(i); s66(i)=1/mu12(i); 
% Calculate Beta Values From Solution to Quadratic Characteristic Equation
b1(i)=sqrt(-(1/(2*s11(i)))*(-(2*s12(i)+s66(i))+sqrt((2*s12(i)+s66(i))^2-4*s11(i)*s22(i))));
b2(i)=sqrt(-(1/(2*s11(i)))*(-(2*s12(i)+s66(i))-sqrt((2*s12(i)+s66(i))^2-4*s11(i)*s22(i))));
% Print Results to Screen
fprintf(1,'\n ')
disp(name(i,:))
fprintf(i,'    beta(1)=%5.3f',b1(i))
fprintf(1,'   beta(2)=%5.3',b2(i))
end

Screen output from this particular case is given by

>>
  E-Glass/Epoxy
      beta(1)=0.758   beta(2)=2.845
                                               >>

EXAMPLE C-9: PDE Toolbox: Finite Element Application
of a Circular Hole in a Plate Under Uniform Tension
from Example 16-2

In Chapter 16 the PDE Toolbox was presented as MATLAB application software that could conduct

two-dimensional finite element analysis. We now present some of the basic steps in generating the

solution to the problem of a circular hole in a plate under uniform tension as originally discussed in

Example 16-2. Once properly installed, the PDEToolbox is activated by typing the command pdetool
in theMATLAB commandwindow. This brings up the graphical user interface (GUI) window shown

in Figure C-3.Within this window, the first step is to select the type of problem by choosing one of the

items from the pull-down menu, as shown in Figure C-4. The figure illustrates the selection of

‘‘Structural Mech., Plane Stress.’’ Other useful choices include ‘‘Structural Mech., Plane Strain’’

for plane strain analysis and ‘‘Generic Scalar,’’ which can be used to find numerical solutions to the

torsion problem; see Example 16-4 and Figure 16-7. After selecting the problem type, click the PDE

button to open a window to input the desired values of elastic moduli and body forces.

Continued



EXAMPLE C-9: PDE Toolbox: Finite Element Application
of a Circular Hole in a Plate Under Uniform Tension
from Example 16-2–Cont’d

FIGURE C-3 Graphical user interface for the PDE Toolbox.

FIGURE C-4 Selection of a problem type in the PDE Toolbox.
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EXAMPLE C-9: Cont’d

Once the problem type and input parameters have been chosen, problem geometry can be

created using the simple drawing package within the GUI window. This feature is activated by

selecting Draw Mode from the Draw menu. The problem of a rectangular plate with a central

circular hole is created by drawing a rectangle and circle, and then subtracting the circular area

from the rectangle as shown in the drawing mode window in Figure C-5.

After completing the problem geometry, the next step is to input the appropriate boundary

conditions. This step is done in the boundary mode window that is selected from the Boundary

menu. Figure C-6 shows this window for the current example, and the software has automatically

divided the rectangular and circular boundaries into four segments. Unfortunately, this simple

code does not provide selection options in defining the boundary segments, and this places limits

on boundary condition specification. In any event, once in the boundary mode window, one or

more boundary segments can be selected by pointing and clicking. Boundary condition specifica-

tion can then be made on the selected segments by clicking Specify Boundary Conditions on the

Boundary menu. This brings forward the Boundary Condition window shown in Figure C-7.

Through appropriate selection of the various parameters defined in the window, displacement

(Dirichlet), traction (Neumann), and mixed conditions can be specified. For displacement specifi-

cation, u ¼ r1 and v ¼ r2, while traction conditions correspond to Tx ¼ g1 and Ty ¼ g2. In this

fashion, conditions on each boundary segment can be specified.

The next step in the finite element analysis (FEA) process is to mesh the domain, and this is

easily done using the automeshing features of the Toolbox. After completing the boundary condi-

tions, an initial coarse mesh can be generated by simply clicking the toolbar button denoted with a

triangle . Normally, this coarse mesh will not be appropriate for final use, and a finer mesh can be

generated by clicking the toolbar button with the finer triangles. Continued use of this button will

generate meshes with increasing numbers of elements. Normally, only one or two mesh refinements

FIGURE C-5 Draw Mode window for a rectangle with a circular hole.

Continued
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EXAMPLE C-9: PDE Toolbox: Finite Element Application
of a Circular Hole in a Plate Under Uniform Tension from
Example 16-2–Cont’d

are necessary to create a useful mesh. These and other meshing procedures can also be found in

the Mesh tab in the main menu. Figure 16-4 illustrates a reasonably fine mesh for this problem.

FIGURE C-6 Boundary Mode window for a rectangle with a circular hole.

FIGURE C-7 Boundary specification window.
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EXAMPLE C-9: Cont’d

FIGURE C-8 Plot selection window.

Having finished the creation of problem geometry, boundary conditions, and finite element

meshing, the solution is now ready to be completed and the results displayed. However, before

running the solver, select the desired graphical solution output. The choice of results to be

displayed is found in the Parameters tab under the Plot menu. Selecting this tab activates the

Plot Selection window, as shown in Figure C-8. Numerous choices are available on the variables

to be plotted and the type of plot to be made. Selecting the variable x stress and choosing a contour
plot type produces contours of sx, as shown in Figure 16-4. Many other graphical displays can be

sequentially generated and saved for later use. Different stages of the finite element solution can

be revisited after completion of the final solution. However, going back and modifying an earlier

stage normally requires that all subsequent solution steps be redone; for example, going back to

the drawing stage requires the boundary conditions and meshing data to be input again. Because

the software is so easy to use, redoing certain steps is normally not a difficult task.

This brief discussion presents only some of the basics of the PDE Toolbox. Further and more

detailed information can be found under the Help menu, and an entire user manual (PDF format) is

available for reference and/or printout.

Reference

Palm WJ: A Concise Introduction to MATLAB, McGraw-Hill, New York, 2008.
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Appendix D Review of Mechanics of Materials

Beginning undergraduate studies of the mechanics of deformable solids is normally taught in

a course called mechanics of materials or strength of materials. Based on very restrictive

assumptions, this study develops stress, strain, and displacement field solutions for a very limited

class of elastic solids with simple geometry. Strength of materials theory commonly makes use

of assumptions on the geometry of the deformation (e.g., plane sections remain plane) and thus

assumes the distribution of displacements and strains. Further simplification is also sometimes

made on the stress field. Because of the level of approximation, strength of materials is often

referred to as the elementary theory when compared to the more exact elasticity model.

Nevertheless, decades of application have shown that mechanics of materials provides reason-

able estimates for many practical stress analysis problems. Furthermore, strength of materials

solutions have provided guidance for the development of particular elasticity solutions.

We now pursue a brief review of the basic strength of materials solutions of extension, torsion,

and bending/shear of elastic rods and beams as shown in Figure D-1. Rod and beam structures are

normally defined as prismatic solids with a length dimension much larger than the other two

dimensions located within the cross-section. General loadings to such structures commonly

x

z

y 

P

M

V
Cross-Section Properties: A, J, I

T

FIGURE D-1 Extension, torsion, and bending/shear deformation of beam-type structures.
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include an axial force P, a shear force V, a torque T, and a bending moment M. Mechanics of

materials theory develops an approximate solution for each of these four loading types.

Commonly these solutions will be restricted to cases with particular cross-sectional shapes

that are related to section properties of A ¼ area, J ¼ polar moment of inertia, and I ¼
rectangular moment of inertia. Because these solutions are useful to compare with related

elasticity models, we now briefly review their development. In addition to these problems, we

review curved beams and cylindrical pressure vessels.

D.1 Extensional Deformation of Rods and Beams

We begin with the simplest case concerning the extensional deformation of an elastic rod or

beam under purely axial loading P, as shown in Figure D-2. For this case the cross-section can

be of general shape, but the resultant loading must pass through the section’s centroid so as not

to produce bending effects. The fundamental deformation assumption is that all points in the

cross-section displace uniformly in the axial direction (x-direction), thus making the problem

one-dimensional.

Under this assumption, the only nonzero stress component considered is the normal component

s ¼ sx and it is assumed to be uniformly distributed over the section, as shown in Figure D-2.

A simple force balance will give P ¼ sA, where A is the cross-sectional area. This result then

generates the simple stress relation:

s ¼ P

A
(D:1)

Because the problem is one-dimensional, Hooke’s law reduces to s ¼ Ee and the single strain

component is given by e ¼ du

dx
. Combining these results with relation (D.1) produces the simple

displacement or deformation relation:

u ¼
ð

P

AE
dx

¼ PL

AE
(constant loading)

(D:2)

x

y

z

P

L

s P/A

FIGURE D-2 Extensional deformation problem.
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D.2 Torsion of Circular Rods

The next loading case concerns the torsional loading and deformation of rods as shown in

Figure D-3. For this case, the cross-section must be circular or hollow circular, thereby

simplifying the section deformation. The deformation assumption for this problem is that

points within the cross-section displace only tangentially and in proportion to the distance from

the section’s center. Thus, cross-sections perpendicular to the rod’s axis remain plane during

the deformation and no section warping will occur.

Under such deformation, the section shear strain g ¼ gry will vary linearly from the center.

Typical of the elementary theory, only one nonzero stress component will be considered; this is the

shear stress, t ¼ try, lying in the cross-sectional plane. Because the strain component varies

linearly, the section shear stress also behaves in the samemanner as shown inFigureD-3.Applying

equilibrium between the applied loading T and the assumed shear stress distribution gives

T ¼
ð
A

tmax

c
r

� �
rdA ¼ tmax

c

ð
A

r2dA ¼ tmax

c
J

where J ¼ ÐA r2dA is known as the polar moment of inertia of the cross-section and for a solid

circular section of radius c, J ¼ pc4

2
. Rearranging the previous expression gives the standard

stress relationship for the torsion problem:

tmax ¼ Tc

J
(D:3)

and, of course, relation (D.3) can be used to calculate the shear stress at any radial distance.

To determine the angle of twist j, consider a rod element of length dx as shown in Figure

D-3. Under small torsional deformation, the outer fiber arc AB can be expressed in two ways,

thus giving the relation gmaxdx ¼ djc. This result then implies

dj
dx

¼ gmax

c
¼ T

Jm

where m is the shear modulus. Integrating this result gives the familiar relation

j ¼
ð
T

Jm
dx

¼ TL

Jm
(constant loading)

(D:4)

x

y
z

T

L

t

tmax

r
c

dx

c

gmax

dj
A

B
•
•

FIGURE D-3 Torsional deformation problem.
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D.3 Bending Deformation of Beams under
Moments and Shear Forces

The application of transverse external loadings will introduce internal bending momentsM and

shear forces V in beam type structures as shown in Figure D-4. Each of these internal forces

will generate stresses within the structure, and mechanics of materials theory has developed

approximate relations to calculate them. Beam deflection relations have also been formulated

to determine the resulting deformation of the beam’s centroidal axis (x-axis).

Before heading into these stress and deflection analysis relations, we first explore the

standard methods of determining bending moment and shear force distributions in beams.

These distributions will be needed for stress and deflection calculations. Typically this proced-

ure involves a static equilibrium analysis of the beam, taking into account the particular support

conditions and the nature of the applied loadings. Although other, more complicated conditions

can be modeled, most beam problems involve three types of idealized supports: pinned, roller,

and fixed as shown in Figure D-5. Such support conditions involve particular constraints on the

deformation and these can be translated into particular support reaction forces.

We will now explore the typical procedures to determine the internal bending moment and

shear force distribution for a particular beam problem, with the understanding that other

problems with different loadings and support conditions can be handled in the same funda-

mental manner. Consider the problem of a simply supported beam (pinned and roller supports)

carrying a single concentrated loading of P, as shown in Figure D-6.

We wish to determine the moment and shear distribution as a function of coordinate x. This
is easily done by constructing one or more sections through the beam in locations where the

distributions are continuous, and is given by a single unique relation. For the problem under

study, there exist two such regions: 0 � x � a and a � x � L. After making the appropriate

sections, a free-body diagram of each portion of the beam can then be constructed, as shown in

Figure D-7. Note that the vertical reaction R from the left support has been calculated from

x

z

y 

M

V

FIGURE D-4 Bending and shear loadings on beam structures.

Review of Mechanics of Materials 521



overall equilibrium analysis of the entire beam, and the shear force V and bending moment M
have been included at the cut location x. Normal positive sign conventions for the shear and

moment are drawn in the figure.

Applying equilibrium analysis (balance of vertical forces and moments) yields the

following results for the shear force and bending moment in each portion of the beam.

V(x) ¼ Pb=L, 0 � x � a

�Pa=L, a � x � L

�

M(x) ¼ Pbx=L, 0 � x � a

Pa(L� x)=L, a � x � L

� (D:5)

These results are plotted in Figure D-8, and the maximum values can then be easily deter-

mined; for example,Mmax ¼ Mjx¼a ¼ Pba=L. Note that a general relation between the moment

and shear, V ¼ dM

dx
, can be developed by an equilibrium analysis of a differential beam

element. Solutions to other problems follow using the same basic procedures.

Pinned Support:
No Horizontal or
Vertical Movement  

Resulting Reactions:
Horizontal and Vertical
Forces 

Roller Support:
No Vertical Movement

Resulting Reactions:
Vertical Force and
Zero Moment

Fixed Support:
No Horizontal or
Vertical Movement
and No Rotation

Resulting Reactions:
Horizontal and Vertical
Forces and Moment

FIGURE D-5 Common supports for beam problems.

b

P

L = a + b

xa

FIGURE D-6 Simply supported beam example.

a

P

x

V

M

R = Pb/L

x

V

M

R = Pb/L

(0 < x < a) (a < x < L)

FIGURE D-7 Free-body diagrams of sectioned beam segments.
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Referring to FigureD-9, the fundamentalmechanics ofmaterials assumption for beam theory is

that plane sections perpendicular to the beam axis before deformation remain plane after deform-

ation. Recall that the beam axis is the line that goes through the centroid of each cross-sectional

area. This assumption leads to the result that the extensional strains due to bending vary linearly

from the beam axis. Neglecting all other normal strain and stress components, the bending stress,

s ¼ sx, also varies linearly, and thus s ¼ Ky, where K is some constant. Applying equilibrium

between the applied loadingM and the assumed bending stress distribution gives

M ¼ �
ð
A

Ky2dA ¼ �K

ð
A

y2dA ¼ �KI

where I ¼ ÐA y2dA is the moment of inertia of section area A about the neutral axis (z-axis in
Figure D-4) that goes through the centroid of the cross-section. This result establishes the value

for the constant K, and thus the stress relation is now given by the familiar relation

a
x

L

V

Pb/L

−Pa/L

x
L

M

Pbx/L Pa(L−x)/L 

a

FIGURE D-8 Shear and bending moment diagrams of the beam problem in Figure D-6.

Undeformed Beam Deformed Beam

Beam Axes

x

y

•

r

Δq

FIGURE D-9 Assumed deformation within beams.



s ¼ �My

I
(D:6)

This simple linear relation predicts maximum stresses at either the top or the bottom of the

section depending on the location of the centroid; this is illustrated in Figure D-10 for the case

of a centrally located centroid. Note that the positive moment produces compression at the top

of the section and tension at the bottom.

The fundamental hypothesis that plane sections remain plane during deformation provides

the basis to determine the theory for beam deflection analysis. As shown in Figure D-9, the

beam axis is bent into a locally circular shape with a radius of curvature r. Denoting Dy as the

included angle between nearby sections, the longitudinal strain can be expressed as

e ¼ (r� y)Dy� rDy
rDy

¼ � y

r

where y represents the coordinate measure as shown. Using Hooke’s law and relation (D.6), the

strain can also be written as

e ¼ s
E
¼ �My

EI

Combining these two results gives the Euler-Bernoulli curvature-flexure relation:

1

r
¼ M

EI
(D:7)

where 1/r is the curvature. From geometry, the curvature of any two-dimensional space curve

v(x) is given by

1

r
¼

d2v

dx2

1þ dv

dx

� �2
" #3=2 � d2v

dx2

where we have assumed small deformations and small slopes. Now interpreting v(x) as the

vertical deflection of the beam axis (positive upward), we can write the equation of the elastic

curve as

x

y

I
My

s = −

FIGURE D-10 Bending stress distribution in the beam section.
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d2v

dx2
¼ M

EI
(D:8)

Note that, for the case where deflection is positive downward, the right-hand side of relation

(D.8) picks up a minus sign. Once the moment distribution M(x) has been determined, relation

(D.3.8) can then be integrated to determine the transverse beam deflection—that is, the elastic

deflection curve v(x). This solution scheme requires the use of particular boundary conditions

to evaluate the arbitrary constants of integration that are generated during the integrations.

Consider the simple cantilever beam example shown in Figure D-11. The beam is fixed at

x ¼ L and carries a single concentrated force at the free end, x ¼ 0. Taking a single section at

any location x, the shear andmoment distributions are easily found to beV ¼ �P andM ¼ �Px.
Using equation (D.8) and integrating twice yields

EI
d2v

dx2
¼ �Px

EI
dv

dx
¼ �Px2

2
þ C1

EIv ¼ �Px3

6
þ C1xþ C2

Boundary conditions at x ¼ L require zero deflection and zero slope, and thus lead to relations

EI
dv(L)

dx
¼ �PL2

2
þ C1 ¼ 0

EIv(L) ¼ �PL3

6
þ C1Lþ C2 ¼ 0

which can be solved to determine the constants C1 ¼ PL2=2 and C2 ¼ �PL3=3. Combining

these results gives the final form for the beam deflection relation:

v ¼ P

6EI
(� x3 þ 3L2x� 2L3)

From this relation the maximum deflection is found at the free end,

vmax ¼ v(0) ¼ �PL3

3EI

The results of another example beam deflection problem are shown in Figure D-12.

The final step in our review of beam problems concerns the effect of the shear force V.
Although not explicitly stated, the previous discussion of beam deflection was concerned only
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v(x)
Elastic Curve 

P

L

x

FIGURE D-11 Cantilever beam example.



with the bending moment loading. It has been shown that shear effects on beam deflections are

only important for very short beams whose length to section dimension ratio is less than 10.

Generally, then, mechanics of materials theory neglects shear force effects when calculating

beam deflections. However, in regard to beam stresses, the internal shear force must give rise

to a resulting shear stress distribution over the cross-section. For this case, no simple assump-

tion exists for the deformation or strain distribution, and thus we must make some modification

from our previous stress analysis developments.

Figure D-13 illustrates a typical beam element for the general case where the moment will

be changing with location x. Thus, the resulting bending stress distribution on the left-hand

side of the element will not be identical to the stress on the right-hand side. This fact will create

an imbalance of forces and will generate a shear stress t on a horizontal plane, as shown in the

sectioned element in Figure D-13. Note that the identical shear stress will also exist on the

vertical plane at the same location y0. Assuming that this shear stress is uniformly distributed

over the differential beam element length dx, we apply a simple equilibrium force balance in

the x-direction to get

ð
A 0

M þ dM

I

� �
ydA�

ð
A 0

M

I

� �
ydA� t(tdx) ¼ 0 ) t ¼ dM

dx

1

It

� �ð
A0
ydA

where t is the thickness of the section at y ¼ y0, and A0 is the partial section area above

the level y¼ y0 Now, as previously mentioned,
dM

dx
¼ V, and if we let Q ¼ ÐA 0 ydA, our force

balance reduces to

x

L

w

vmax = v(L/2) = −wx
v = −

384EI

5wL4
(L3 − 2Lx2 + x3),

24EI

FIGURE D-12 Uniformly loaded beam deflection problem.

x

y
s = −My/I

M M + dM

dx

s + ds = −(M + dM)y /I

x
ty �

Sectioned ElementBeam Element

FIGURE D-13 Loadings on a beam element.
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t ¼ VQ

It
(D:9)

This is the mechanics of materials formula for the shear stress distribution in beam-bending

problems. It should be observed that Q is the first area moment of section A0 about the neutral
axis, and it varies as a function of the vertical coordinate measure y0, vanishing when y0

corresponds to the top or bottom of the section. This parameter can also be expressed by

Q ¼
ð
A 0
ydA ¼ �yy

0
A 0,

where �yy
0
is the vertical distance to the centroid of the partial area A0.

To explore shear stress variation across an example beam section, consider the rectangular

section shown in Figure D-14. Recall that for a cross-section of rectangular shape of height h

and width b, the moment of inertia is given by the relation I ¼ 1

12
bh3. Taking y ¼ y0, the

relation for Q can be written as

Q ¼ �yy
0
A 0 ¼ yþ 1

2

h

2
� y

� �	 

h

2
� y

� �
b ¼ 1

2

h2

4
� y2

� �
b (D:10)

Using these results in the shear stress formula (D.9) gives

t ¼ VQ

It
¼ 6V

bh3
h2

4
� y2

� �
(D:11)

which predicts a parabolic shear stress distribution over the section (see Figure D-14) that

vanishes at the top and bottom and takes on maximum tmax ¼ 3V

2A
at the neutral axis (y ¼ 0).

This concludes our brief review of the standard four stress and deflection analyses for

extension, torsion, and bending and shear of beams.

z

Neutral Axis

yA�

y�

b

h

y

− y2t =
4

6V h2

bh3

x

FIGURE D-14 Rectangular section shear stress distribution analysis.

Review of Mechanics of Materials 527



D.4 Curved Beams

We now discuss the mechanics of materials analysis of curved beams. This topic is often

omitted in the first undergraduate course and is sometimes covered in later courses on

advanced mechanics of materials, machine design, or structures. The analysis is concerned

with the bending deformation of a prismatic beam (constant cross-section) that is in a circular

shape, as shown in Figure D-15. These structures commonly occur in various machine parts

such as hooks and links. Clearly this structure is not modeled well using straight beam theory,

and thus strength of materials must be used to develop a suitable curved beam analysis.

It has been shown that for curved beams the normal strain no longer varies linearly from the

neutral axis. We again consider only cross-sections that have an axis of symmetry perpendicu-

lar to the moment axis, as shown in Figure D-16. Consistent with mechanics of materials

theory, we assume again that cross-sections remain plane after the deformation. Using the

isolated beam segment illustrated in Figure D-16, this assumption allows simple calculation of

the strain distribution.

Considering a beam fiber located a distance r from the center of curvature, the original fiber

length is rdy and the change in length is given by (R� r)dc, where each section rotates an

amount dc=2 because of the applied moment. Using classical definition, the fiber strain is

given by

a

b

r

MM

FIGURE D-15 Curved beam geometry.

r

dq

Neutral Axis

R

Deformed Sections 2
dy

Elongated Fiber 

A

FIGURE D-16 Curved beam section and strain analysis.
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ey ¼ e ¼ (R� r)dc
rdy

¼ k
(R� r)

r
(D:12)

where k ¼ dc=dy is a constant parameter for a given element. It is observed that, unlike

straight beams, the strain varies in a nonlinear hyperbolic fashion. Under the usual assumption

that one component of stress and strain exists, Hooke’s law gives the bending stress

sy ¼ s ¼ Ee ¼ Ek
(R� r)

r
(D:13)

With the results just given, the location of the neutral axis and the stress–moment relation can

be determined. Similar to straight beam theory, the location of the neutral axis is found by

requiring that the resultant force normal to the cross-sectional area A must vanish, and thusð
A

sdA ¼
ð
A

Ek
(R� r)

r
dA ¼ 0 ) R ¼ AÐ

A

dA

r

(D:14)

The location dimension R is then a function only of section properties and does not correspond

to the section centroid as found in straight beam theory.

This location can be easily calculated for particular geometric shapes. For example, using

the inner and outer radial dimensions shown in Figure D-15, the location for a rectangular

section is R¼ (b � a)/log(b/a). Note that this result indicates that, even for a rectangular

section with two axes of symmetry, the neutral axis is not located at the centroid (geometric

center).

The stress–moment relation is found by the usual equilibrium statement that balances the

applied section moment to the resulting stress field:

M ¼
ð
A

(R� r)�dA ¼
ð
A

Ek
(R� r)2

r
dA

¼ Ek R2

ð
A

dA

r
� 2R

ð
A

dAþ
ð
A

rdA

0
@

1
A

¼ EkA(�rr � R)

(D:15)

where �rr is the location of the section centroid measured from the center of curvature.

Combining this result with relation (D.13) gives the desired relation

s ¼ M(R� r)

Ar(�rr � R)
(D:16)

A specific comparative example is shown in Figure D-17 for a curved beam of rectangular

section of unit thickness with properties a ¼ 3, b ¼ 5, and M ¼ 1 (using suitable consistent

units). The results compare bending stresses predicted from both straight and curved beam

theory. The nonlinear distribution from curved beam theory is clearly evident; however, results

from straight beam theory compare reasonably well. For beams with a relatively large radius of

curvature, the two theories are in good agreement, while for cases with small values of �rr /(b� a),
the differences become significant.
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D.5 Thin-Walled Cylindrical Pressure Vessels

We conclude our review of mechanics of materials with a discussion of the analysis of thin-

walled cylindrical pressure vessels. The elementary theory is concerned only with the uniform

stresses developed in the side walls away from any concentration effects at the ends. The only

loadings on the vessel are due to application of a uniform internal pressure p. It is further

assumed that the vessel thickness t is much smaller than the mean radius r of the side wall.
As shown in Figure D-18, under these conditions an axial stress sa and a hoop stress st are

generated at all points on the lateral sides of the cylinder. Because the vessel is assumed to

have thin walls, variation of the stress through the wall thickness can be neglected. The

resulting state of stress is then assumed to be biaxial, under the condition that the pressure

loading on the inside surface is normally much smaller than the axial and hoop stresses.

To determine these two side-wall stresses in terms of vessel geometry and pressure loading,

a simple equilibrium analysis is done. The cylindrical vessel is first sectioned to isolate a

semicircular strip of width dx, as shown in Figure D-19. Then an equilibrium analysis in the

horizontal direction is conducted on the segment to give

2st(tdx)� p(2rdx) ¼ 0 )
st ¼ pr

t

(D:17)

Note that, because the vessel is thin, our analysis makes no distinction between inner, outer,

and mean vessel radius.

Curved Beam Theory

Straight Beam Theory
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FIGURE D-17 Comparison of curved and straight beam theory for rectangular section.
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To determine the axial stress, we conduct an axial force balance of a sectioned half-vessel

(similar to Figure D-18 with a left end cap) to get

sa(2prt)� p(pr2) ¼ 0 )
sa ¼ pr

2t

(D:18)

Relations (D.17) and (D.18) provide the mechanics of materials predictions for the stresses in

the pressure vessel structure. Note that the hoop stress is twice the magnitude of the axial

stress. These forms indicate that for r/t >> 1 the two side-wall stresses are much larger than p.

st

sa

Internal Pressure, p

Axial Stress, sa

x

FIGURE D-18 Thin-walled cylindrical vessel under internal pressure.

r

p

st

st

FIGURE D-19 Cylindrical vessel section.
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Angle of twist, 218
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Anisotropic elasticity, 80, 297

Antiplane strain, 143, 213, 415
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B
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plane stress, 140
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Body couple, 449

Body forces, 55

Body force vector, finite element theory, 480
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Boussinesq potentials, 374

Boussinesq problem, 371, 374
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Bulk modulus, 84
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C
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Cauchy stress, 60
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Cellular materials, 389
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Cerruti’s problem, 372

Cesáro integral, 46
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problem), 12–16
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Clapeyron’s theorem, 120

Coefficient of thermal expansion, 86, 338

Comma notation, 17

Compatibility equations. See Beltrami-

Michell compatibility

equations; Saint-Venant

compatibility equations

Complementary energy, 124–126

Completeness, 365, 372

Complex conjugate, 260

Complex derivative, 261

Complex displacements, 267

Complex Fourier series, 274, 321

Complex potential functions, 271

Complex stresses, 268

Complex temperature, 352

Complex variable, 259

Complex variable methods

anisotropic plane problem, 315

anisotropic torsion problem, 310–311

plane problem, 266–292

thermoelastic plane problem, 352–359

torsion problem, 259

Compliance tensor, 298

Composites, 297, 301, 306

Concentrated force problem

plane problem, 182, 278, 279, 317–320
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410–414, 437–440

Conformal mapping/transformations, 265,

283, 320
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Conjugate functions, 262

Conservation of angular momentum, 67

Conservation of energy, 338

Conservation of linear momentum, 66

Constitutive relations, 77

Contact problems, 189

Continuum mechanics, 3

Contraction of tensors, 5
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Coordinate transformation, 8
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Couple stress tensor, 449
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Couple stress theory, 56, 448–457

Coupling term (thermoelastic energy

equation), 338

Crack density parameter, 445

Crack problems, 192–193, 287–292,

325–328, 359, 416–418

Cross product, 16

Curl operation, 18, 24

Curved beams, 194–197

Curvilinear anisotropy, 328

Cyclic functions, 272, 318, 319, 356

Cylindrical coordinates, 21, 497

D

Deformation, 31

Degrees of freedom, 478

Del operator, 18

Determinant, 7

Dilatation, 40, 50

Dirac delta function, 277

Direct solution method, 102

Dislocations

edge, 432–434

screw, 52, 432, 435

Displacement formulation, 98–100

Displacement gradient tensor, 33

Displacement potentials, 365

Displacement vector, 32

Divergence operation, 18–20, 24

Divergence theorem, 20

Dot product, 16

Doublet mechanics, 431, 463

Dual vector, 28

Duhamel-Neumann thermoelastic

law, 86, 338

Dyadic notation, 11

E

Eigenvalue problem, 12–16

Elasticity with distributed cracks,

431, 445, 471

Elasticity with voids, 432, 457, 471

Elastic material, 77–79

Elastic limit, 78

Elastic moduli, 80, 82

Element assembly, 482

Elliptical hole problem, 286–288,

320–324, 357–359

Energy equation, 338

Energy methods

minimum complementary energy, 125

minimum potential energy, 124

Engineering strains, 36

Equilibrated body force, 458

Equilibrated force, 458

Equilibrated stress vector, 458

Equilibrium equations, 66

Cartesian, 67, 499

cylindrical, 70, 499

polar, 75

spherical, 70, 499

Essential boundary conditions, 124

Euler-Bernoulli beam theory,

126–128

Eulerian description, 32

Even functions, 166

Extension of cylinders, 216

F

Fabric tensor, 298

Failure criteria (distortional strain

energy), 117

Finite difference method, 107, 473

Finite element method, 107, 473, 474

Fixity conditions, 154, 156, 160, 164

Flamant solution, 182, 280, 407, 465

Flamants paradox, 466

Flexure of cylinders

circular section, 247

general formulation, 243

rectangular section, 249

Force doublet, 378, 386, 440, 441

Fourier integral form, 416

Fourier law of heat conduction, 337

Fourier methods, 105, 161, 233

Fourier series, 165

Fourier integral, 416

Fracture mechanics, 193, 212, 288,

325, 359, 416

Functionally graded materials,

80, 391, 407

Fundamental solution, 121

G

Galerkin vector, 365, 367, 384

Gamma function, 409

Generalized plane stress, 141–142

Global reference system, 482

Graded materials, 391, 393, 394,

399, 407, 425

Gradient operation, 18, 24

Granular materials, 200, 214, 431

Green’s theorem in the plane, 21

Greens function, 121, 491

H

Half-space problems, 181, 280, 319, 371,

372, 407

Harmonic functions, 246, 262, 366, 367

Heat conduction, 337

Heat flux vector, 337

Helmholtz representation theorem, 365

Hollow cylindrical domain, plane problem,

172

Holomorphic functions, 261

Homogeneous materials, 80

Hooke’s law, 79, 81, 298–304, 392–393,

403, 479

Hydrostatic compression (tension), 84

Hyperelastic materials, 117

I

Incompatibility tensor, 51

Incompressibility, 84

Index notation, 4

Indirect tension test, 197

Induced mappings, 321

Infinite space problems, 279, 369,

437–445

Infinitesimal (small) deformations, 32, 34

Inhomogeneous elastic half-space, 407, 413

Inner product, 5

Integral equation, 418

Integral transform methods, 106, 460

Interface conditions,

perfectly bonded interface, 95

slip interface, 95–96

Internal energy, 338

Interpolation functions, 477

Invariants

general tensor, 13

stain, 40

stress, 61

Inverse solution method, 103

Irrotational vector field, 365

Isochromatic fringe patterns, 191,

200, 212, 214

Isotropic materials, 80

Isotropic tensors, 10, 27, 81, 86, 87

K

Kelvin problem, 121, 369,

437–440

Kolosov-Muskhelishvili potentials, 268

Kronecker delta, 7

L

Lagrange interpolation functions, 476

Lagrangian description, 32

Lamé’s constant, 81

Lamé’s strain potential, 366–367

Lamellar vector field, 365

Laplace equation, 105, 143, 222,

233, 262

Laplace transform, 460

Laplacian operation, 18, 24–26

Laurent series, 263

Legendre differential equation, 377

Legendre functions and polynomials, 377

Length scales, 431, 452, 463

Line integrals, 20, 262–263

Line of dilatation, 444

Loading vector, finite element theory, 480

Local coordinates, 482

Love strain potential, 369

M

Maclaurin series, 263

Material symmetry, 299–304, 306

Material symmetry group, 299

MATLAB, 505

Matrix notation, 16

Matrix products, 16

Maximum shear stress, 63, 72,

191, 200, 211

Maxwell stress function, 365, 382
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Mechanics of materials, 518

Membrane analogy, 225

Mesh (FEM), 474

Michell solution, 169

Micromechanics, 431

Micropolar stress theory, 56, 448, 454

Modulus of elasticity, 82, 84

Mohr’s circle, 63

Monoclinic materials, 301

Morera stress function, 365, 382

Multiply connected regions,

45, 223, 237

Multivaluedness, 46, 264, 272, 433

N

Navier equations

antiplane strain case, 143

general equations, 99, 392, 500–501

plane strain case, 136–137

plane stress case, 140

Natural boundary conditions, 124

Negative Poisson’s ratio, 389

Neumann principle, 297

Nodal displacements, 477, 482

Nodal forces, 480

Nodal points, 473

Nonhomogeneous elasticity

airy stress function, 392–393

antiplane strain problems, 415–418

Hooke’s law, 392

plane hollow cylindrical domain

problem, 396–402

point force on half-space, 407–414

rotating disk problem, 402–407

torsion problem, 418–425

uniaxial tension, 394–396

Nonhomogeneous materials, 80, 391

O

Octahedral plane, 65

Octahedral stress, 65

Odd functions, 166

Orthogonality conditions, 10

Orthotropic materials, 301, 306

P

Papkovich-Neuber solution, 365, 372–376

Permutation symbol, 7

Photoelastic results

contact loadings, 191

crack problem, 212

disk under compression, 200

granular media, 214

Physical components, 23

Piola-Kirchhoff stress, 60

Plane axisymmetric problem, 171, 207

Plane strain

isothermal, 135

thermal 340

Plane stress

isothermal, 138

thermal 341

Point force problem, 182, 280,

407, 465

Poisson equation, 219

Poisson’s ratio, 82, 83

Polar coordinates, 25

Polar coordinate formulation

isothermal, 145

thermoelastic, 347

Polar orthotropic materials, 329

Polynomial solutions, 151

Poroelasticity, 432

Positive definite strain energy form, 116

Potential functions, 365

Potential theory, 223, 343, 436

Power series method for Airy

function, 105, 151

Prandtl stress function, 219, 420

Principal value problem

principal directions, 13

principal values, 12

Proportional limit, 78

Pure shear, 83

Q

Quadratic form of strain energy, 116

R

Radial stress distribution, 408

Radially orthotropic, 329

Rayleigh-Ritz method, 106, 128

Reciprocal theorem, 120–121

Reference temperature, 338

Reissner’s principle, 126, 130

Residues, 264

Restrictions on elastic moduli, 119, 305

Rigid body motion, 31, 34, 37–38

Rosette strain gage, 49

Rotating disk problem

homogeneous, 210–203

nonhomogeneous, 402–407

Rotation tensor, 33

Rotation vector, 34

S

Saint-Venant compatibility equations, 41

Saint-Venant’s principle, 101, 138, 215

Saint-Venant theory, deformation

of cylinders

bending flexure, 215, 243

extension, 215, 216

torsion, 215, 217

Scalar notation, 3

Scale factors, 22

Self-equilibrated forms, 381

Semi-inverse solution method, 104, 215

Shear center, 247

Shear modulus, 81, 83

Shear stress, 58

Simple tension, 82

Simply connected regions, 44, 264

Single-valued displacements, 41

Singular stress states, 436

Singularities

branch points and cuts, 264

general definition, 261

poles, 263

Solenoidal vector field, 366

Somiglianas identity, 121, 490

Specific heat capacity, 338

Spherical coordinate solutions, 361, 376,

387–389

Spherical coordinates, 22, 497

Spherical harmonics, 377

Spherically symmetric problems, 387

Stationary potential energy, 124

Steady-state thermal conditions, 339

Stiffness matrix, 480

Stokes theorem, 20

Strain compatibility, 41–46

Strain displacement relations

Cartesian, 36, 498

cylindrical, 47, 498

polar, 146

spherical, 47, 498

Strain energy, 113

Strain energy forms

distortional, 117

general, 116

volumetric, 117

Strain gage, 49

Strain tensor, 33

deviatoric strain, 41

extensional strain, 35

normal strain, 35

principal strain, 40

shear strains, 36

spherical strain, 41

Strain transformation, 38

Strength of materials theory, 518

Stress concentration factors

anisotropic case, 320–324

BEM solution, 495

elasticity with voids case, 459–462

FEM solutions, 485, 486

micropolar case, 454–457

plane elastic cases, 175, 177–178,

179, 286–288

three-dimensional cases, 378–380,

387–388

Stress functions, 144, 219, 381

Stress intensity factor, 193, 291,

327, 328, 418

Stress-strain curve, 78

Stress tensor (Cuachy), 57–58

deviatoric stress, 65

normal stress, 58

octahedral stress, 65

principal stress, 61

shear stress, 58

spherical stress, 65

von Mises stress, 65

Stress tensor (Piola-Kirchhoff ), 60

Stress transformation, 60

Stress vector, 57
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Summation convention, 5

Superposition principle, 100

Surface forces, 56

Symmetric tensors, 5

T

Taylor’s series, 263

Temperature, 86

Tensor definition, 10

Tensor product, 11

Tensor transformation, 8

Thermal conductivity, 338

Thermal conductivity tensor, 337

Thermal expansion coefficient, 86, 338

Thermal fracture, 359

Thermoelastic displacement potential

solution, 343

Thermoelastic plane strain formulation,

340–341

Thermoelastic plane stress formulation,

341–342

Torsion of cylinders

anisotropic formulation, 306–312

displacement formulation, 222

elliptical section, 227

equilateral triangular section, 230

general formulation, 217

multiply connected sections, 223, 238

rectangular section, 233

stress formulation, 218

thin rectangular sections, 236

thin-walled sections, 239

variable diameter, 241

Torsion problem, 417

Torsional rigidity

homogeneous case, 222

inhomogeneous case, 421

Traction boundary conditions, 92

Traction vector, 57

Transformation matrix, 8

Transformation of field variables, 502

Transversely isotropic materials, 302

Triangular element, 476

Triclinic material, 299

U

Uncoupled conduction equation, 338

Uncoupled thermoelastic formulation, 339

Uniaxial (simple) tension, 82, 119

Uniaxial tension, graded sheet, 394–396

Uniqueness theorem, 118

Unit matrix, 7

V

Variational methods, 128–130

Vector notation, 3

Vector products, 16

Velocity field, 338

Virtual displacements, 122

Virtual work principle, 122

Virtual work formulation for finite element

method, 478

Voigt matrix notation, 298

Volume fraction, 457

Volumetric deformation, 84

von Mises stress, 65

W

Warping displacement, 217, 218

Weak form, 475

Wedge problems, 179

Weighted residual method, 130

Westergaard stress function, 288, 291

Y

Yield point, 78

Young’s modulus, 82, 83, 85

Z

Zero-value theorem, 21
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