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PREFACE 

This book presents a simple, concise, and reasonably comprehensive 
introduction to the principles and theory of structural stability that are 
the basis for structural steel design and shows how they may be used in 
the solution of practical building frame design problems. It provides the 
necessary background for the transition for students of structural 
engineering from fundamental theories of structural stability of members 
and frames to practical design rules in AISC Specifications. It was written 
for upper level undergraduate or beginning graduate students in colleges 
and universities on the one hand, and those in engineering practice on 
the other. 

The scope of the book is indicated by its contents. The concepts and 
principles of structural stability presented in Cliapter 1 form the basis for 
the elastic and plastic theories of stability of members and frames which 
are discussed separately in Chapter 2 (Columns), Chapter 3 (Beam- 
Columns), Chapter 4 (Rigid Frames), and Chapter 5 (Beams). The 
energy and numerical methods of analyzing a structure for its stability 
limit load are described in Chapter 6. 

Each of these later chapters sets out initially to state the basic 
principles of structural stability, followed by the derivation of the 
necessary basic governing differential equations based on idealized 
conditions. These classical solutions and their physical significance are 
then examined. The chapter goes on to show how these solutions are 
affected by the inelasticity of the material and imperfection of the 
structural member and system associated with a real structure, using both 
hand techniques and modern computer capabilities. It finally outlines 
some of the popularly used techniques by u,liich this voluminous 
information may be utilized to provide design rules and calculation 

ix 
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techniques suitable for design office use. In this way, the reader not only 
will obtain an understanding of the fundamental principles and theory of 
structural stability from an idealized elastic, perfect system, but also to an 
inelastic imperfect system that leads to the necessary links between the 
code rules, design office practice, and the actual structural system in the 
real world. 

The continued rapid development in computer hardware and software 
in recent years has made it possible for engineers and designers to predict 
structural behavior quite accurately. The advancement in structural 
analysis techniques coupled with the increased understanding of structu- 
ral behavior has made it possible for engineers to adopt the Limit States 
Design philosophy. A limit state is defined as a condition at which a 
structural system or its component ceases to  perform its intended 
function under normal conditions (Serviceability Limit State) or  failure 
under severe conditions (Ultimate Limit State). The recently published 
Load and Resistance Factor Design (LRFD) Specification by the 
Amcrican Institute of Steel Construction (AISC) is based on  the limit 
states philosophy and thus represents a more rational approach to the 
design of steel structures. 

This book is not therefore just another book that presents 
Timoshcnko's basic elastic theory (S. P. Timoshenko and J. M. Gere, 
"Theory of Elastic Stability," McGraw-Hill, 1961), or  Bleich's inelastic 
buckling theory (F. Bleich, "Buckling Strength of Metal Structures," 
McGraw-Hill, 1952), or Chen's numerical analysis (W. F. Chen and T. 
Atsuta, "Theory of Beam-Columns," two-volume, McGraw-Hill, 1976, 
1977) in a new style. Instead it presents theory and principles of 
structural stability in its most up-to-date form. This volume includes not 
only the state-of-the-art methods in the analysis and design of columns as 
individual members and as members of a structure, but also an 
introduction to engineers as to how these new developments have been 
implemented as the stability design criteria for members and frames in 
AISCILRFD Specification. 

This book is based on a series of lcctures that Professor Chen gave at 
Purdue University and Lehigh University under the general heading of 
"Structural Stability." The  preparation of the 1985 T. R. Higgins 
Lectureship Award paper entitled "Columns with End Restraint and 
Bending in Load and Resistance Factor Design" for AISC Engineering 
Journal (3rd Quarter, Vol. 22, No. 3, 1985) inspired us to attempt to 
create a useful textbook for the undergraduate and beginning graduate 
students in structural engineering as well as practicing structural en- 
gineers who are less familiar with the stability design criteria of members 
and frames in the newly published LRFD Specification. 

Professor Chen wishes to  extend his thanks to AISC for the 1985 T. R .  
Higgins Lectureship Award, when the book began to take shage; to 
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Professor H. L. Michael of Purdue University for continuing support 
over many years, and to the graduate students, C. Cheng, L. Duan, and 
F. H. Wu, among others, for preparing the Answers to Some Selected 
Problems during their course work on Structural Stability in the spring 
semester of 1986 in the School of Civil Engineering at Purdue University. 

December, 1986 
West Lafayette, IN 

W.F. Chen 
E.M. Lui 





Notation 

= strain energy due to warping restraint torsion 
V = - W,., = potential energy 
, = - U = work done by the internal resisting forces 
W,,, = -V =work done by the external applied forces 
n = U + V =total potential energy 

GEOMETRY AND DIMENSIONS 

A = cross sectional area 
6 ,  = flange width 
c, = warping constant 

1 
= - I,h' for I section 

2 
d = depth 
h = distance between centroid of flanges 
I = ~ r '  = moment of inertia 
1, = moment of inertia of one flange 
I = uniform torsional (or St. Venant) constant 

" 1 
= bit: for a thin-walled open section 

,=I  

L = length 

r = 4 =radius of gyration 

S = elastic section modulus 
t = thickness 
u = displacement in the X-direction 
u = displacement in the Y-direction 

W 
L 

Z = plastic section modulus 
d, = curvature 

A, = @ = beam slenderness parameter 
., 

A, = P=" P., nr $= E co~umn s~enderness parameter 

Y = angle of twist 

MATERIAL PARAMETERS 

E = Young's modulus 
= 29,000 ksi for steel 
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EeB = effective modulus 
Ec = reduced modulus 
Et = tangent modulus 
F,, a, = yield stress 
G = shear modulus 

- -- - - 11,200 ksi for steel 
2 ( l +  v) 

v = Poisson's ratio 
= 0.3 for steel 

STABILITY RELATED FACTORS 

A, = amplification factor 
BI = P - 6 moment amplification factor for beam-columns in 

LRFD 

B2 = P - A moment amplification factor for beam-columns in 
LRFD 

c b  
Mcr - -- - - equivalent moment factor for beams 
MO,, 

= 1.75 + l . 0 5 ( 5 )  + 0 . 3 ( 5 ) ' s  2.3 in AlSC Specifications 
M- Mz 

for end moment case 

- 1L 
- for other loading conditions 

MI 3- M2 
M3 + 2  + 4 - + 3 -  

M",., MI,,, M m m  

(see Table 5.2b, p. 334) 

c,. = equivalent moment factor for beam-columns 

= 0.6 - 0 4 % )  2 0.4 in ASD for end moment case 
M, 

= 0.6- 0.4 - m LRFD for end moment case (2) 



LOAD AND MOMENT 

P = axial load 
n2El 

PC = -- 
L2 

- Euler buckling load 

PC. = elastic buckling load 

% ,  

= elastic buckling load considering column end conditions 
pr = failure load by the elastic-plastic analysis 
p~ = plastic collapse load o r  limit load by the simple plastic 

analysis 
E 

pr = PC ' = reduced modulus load E 
E 

f't = PC' = tangent modulus load E 

p. = ultimate strength considering geometric imperfections and 
material plasticity 

4 = AF, = yield load 
Ma = amplified (design) moment 
M,, = elastic buckling moment 

M,,, = 5 vm ~T+w?, where W' = L 
= elastic buckling moment under uniform moment 

Mcs = C,M, = equivalent moment 



X/V Nolalion 

M = moment at a section due to externally applied loads 
M i  = internal resisting moment of the section 
Mnl = transition moment (in Plastic Design) 
Mn = nominal flexural strength 
MD = ZF, = plastic moment 

for H-section about strong axis. 
= plastic moment capacity about the strong axis considering 

the influence of axial load 

for H-section about weak axis. 
= plastic moment capacity about the weak axis considering the 

influence of axial load 

Mu = ultimate moment capacity considering geometric imperfec- 
tions and material plasticity 

My = SF, = yield moment 

T," 
dy = GI-=St. Venant (or uniform) torsion 
dz 

T, 
d3y = -EC,-= warping restraint (or non-uniform) torsion 
dz3 

a = stress 

OII = stress tensor 
E = strain 
Eij = strain tensor 

ENERGY AND WORK 

strain enerav of a Linear elastic system 

strain enerav due to axial shortening 

strain energy due to bending 

strain energy due to St. Venant torsion 



Notalion 

r = 1 + V - =  effective length fact01 
P,r 

K - - E= effective length factor 

ri = load factors 
@ = resistance factor 
@ b = resistance factor for flexure = 0.90 
@ C  = resistance factor for compression = 0.85 

xvii 





Chapter 1 

GENERAL PRINCIPLES 

1.1 CONCEPTS OF STABILITY 

When a change in the geometry of a structure or structural component 
under compression will result in the loss of its ability to  resist loadings, 
this condition is called instabiliry. Because instability can lead to a 
catastrophic failure of a structure, it must be taken into account when 
one designs a structure. T o  help engineers to do  this, among other types 
of failure, a new generation of designing codes have been developed 
based on the concept of lirnit states. 

In limit states design, the structure or structural component is designed 
against all pertinent limit states that may affect the safety or performance 
of the structure. Basically, there are two types of limit states: The first 
type, Strength limit states, deals with the performance of structures at 
their maximum load-carrying capacities. Examples of strength limit states 
include structural failure due to either the formation of a plastic collapse 
mechanism or  to member or  frame instability. Seruiceabiliry limit states, 
on the other hand, are concerned with the performance of structures 
under normal service conditions. Hence, they pertain to the appearance, 
durability, and maintainability of a structure. Examples of serviceability 
limit states include deflections, drift, vibration, and corrosion. 

Stability, an important constituent of the strength limit states, is dealt 
with explicitly in the present American Institute for Steel Construction 
(AISC) limit state specification.' Although the importance of considering 
stability in design is recognized by most practicing engineers, the subject 
still remains perplexing to some. The reason for this perplexity is that the 
use of first-order str~tctural analysis, which is familiar to most engineers, 
is not permissible in a stability analysis. In a true stabrliry analysis, the 
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change in geometry of the structure must be taken into account; as a 
consequence, equilibrium equations must be written based on the 
geometry of a structure that becomes deformed under load. This is 
known as the second-order analysis. The second-order analysis is further 
complicated by the fact that the resulting equilibrium equations are 
differential equations instead of the usual algebraic equations. Conse- 
quently, a mastery of differential calculus is a must before any attempt to 
solve these equations. 

In what follows, we will explain the nature of structural stability and 
ways to analyze it accurately. 

The concept of stability is best illustrated by the well-known example 
of a ball on a curved surface (Fig. 1.1). For a ball initially in equilibrium, 
a slight disturbing force applied to the ball on a concave surface (Fig. 
l . l a )  will displace the ball by a small amount, but the ball will return to 
its initial equilibrium position once it is no longer being disturbed. In this 
case, the ball is said to be in a stable equilibriurn. If the disturbing force is 
applied to a ball on a convex surface (Fig. l . lb)  and then removed, the 
ball will displace continuously from, and never return to, its initial 
equilibrium position, even if the disturbance was infinitesimal. The ball in 
this case is said to be in an unstable equilibriurn. If the disturbing force is 

FIGURE 1.1 Stable, unstable, and neutral 
equilibrium 

la1 STABLE EQUILIBRIUM 

lbl UNSTABLE EQUILIBRIUM 

Icl NEUTRAL EQUILIBRIUM 



1.1 Concepls of SlabiliIy 

FIGURE 1.2 Effect of finite disturbance 

applied to the ball on a flat surface (Fig. l . l c ) ,  the ball will attain a new 
equilibrium position to which the disturbance has moved it and will stay 
there when the disturbance is removed. This ball is said to be in a neutral 
equilibrium. 

Note that the definitions of stable and unstable equilibrium in the 
preceding paragraph apply only to cases in which the disturbing force is 
very small. These will be our definitions of stabilify. However, keep in 
mind that it is possible for a hall, under certain conditions (Fig. 1.2), to 
go from one equilibrium position to another; for example, a ball that is 
"stable" under a small disturbance may go to an unstable equilibrium 
under a large disturbance (Fig. 1.2a), or vice versa (Fig. 1.2b). 

The concept of stability can also be explained by considering a system's 
stiffness. For an n-degrees-of-freedom system, the forces and displace- 
ments of the system are related by a stiffness matrix or  function. If this 
stiffness matrix or  function is positive definite, the system is said to be 
stable. The transition of the system from a state of stable to neutral 
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equilibrium or from a state of stable to unstable equilibrium is marked by 
the stabiliry liniit point. The tangent stiffness of the system vanishes at 
just this point. We shall use the principle of vanishing tangent stiffness to 
calculate the buckling load of a system in subsequent sections and 
chapters. 

Stability of an  elastic systcm can also be interpreted by means of the 
concept of minimum total potential energy. In nature, an elastic system 
always tends to go to a state in which the total potential energy is at a 
minimum. The system is in a stable equilibrium if any deviation from its 
initial equilibrium state will result in an increase in the total potential 
energy of the system. The system is in an unstable equilibrium if any 
deviation from its initial equilibrium state will result in a decrease in total 
potential energy. Finally, the system is in a neutral equilibrium if any 
deviation from its initial equilibrium state will produce neither an 
increase nor a decrease in its total potential energy. Because of this 
principle, the energy concept can be used to find the buckling load of an 
elastic system. The elastic buckling analysis by energy method will be 
discussed in Chapter 6. 

1.2 TYPES OF STABILITY 

Stability of structures under compressive forces can be grouped into two 
categories: (1) instability that associates with a bifurcation of equilibrium 
(Fig. 1.3a); and (2) instability that associates with a liniil or moxbnum 
load (Fig. 1.3b). 

1.2.1 Bifurcation Instability 

This type of instability is characterized by the fact that as the compressive 
load increases, the member or system that originally deflects in the 
direction of the applied loads suddenly deflects in a different direction. 
The point of transition from the usual deflection mode under loads to an 
alternative deflection mode is referred to as the point of bifurcation of 
equilibrium. The load at the point o f  bifurcation of equilibrium is callcd 
the critical load. The deflection path that exists before bifurcation is 
known as the primary or fundamental path and the deflection path that 
exists subsequent to bifurcation is known as the secondary or 
postbucklirtg path (Fig. 1.3a). Examples of this type of instability include 
the buckling of geometrically perfect columns loaded axially, buckling of 
thin plates subjected to in-plane compressive forces and buckling of rings 
subjected to  radial compressive forces. 

Depending on the nature of the postbuckling paths, two types of 
bifurcation can be identified: symmetric bifurcation and asymmetric 
bifurcation (Fig. 1.4). 



Load 

secondary 

path 

Deflection 

la1 BIFURCATION BUCKLING 

- 
Deflection 

\ , . . - 
B 

lbl  LIMIT POINT BUCKLING 

FIGURE 1.3 Bifurcation and limit point buckling 



General Pdnciples 

Load Load 

~ e f l e c t l o n  Deflection 

(a1 STABLE SYMMETRIC i b l  UNSTABLE SYMMETRIC 

BIFURCATION BIFURCATION 

Load 

lcl ASYMMETRIC BIFURCATION 

FIGURE 1.4 Postbuckling behavior 

Symmelric Bifurcalion 

For symmetric bifurcation, the postbuckling paths are symmetric about 
the load axis. If the postbuckling paths rise above the critical load, the 
system is said to exhibit a stable symmetric bifurcariott. For such a system, 
the load that is required to maintain equilibrium subsequent to buckling 
increases with increasing deformation, as shown in Fig. 1.4a. Examples of 
structures exhibiting stable postbuckling behavior include axially loaded 
elastic columns and in-plane loading of the thin elastic plates (Fig. 1.5). If 
the postbuckling paths drop below the critical load, the system is said to 
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la1 COLUMN BUCKLING l b l  PLATE BUCKLING 

EIGURE 1.5 Examples of stable symmetric buckling 

exhibit an unstable symmetric bifurcatiorr. For such a system, the load 
that is required to maintain equilibrium subsequent to buckling decreases 
with increasing deflection as shown in Fig. 1.4b. The guyed tower shown 
in Fig. 1.6 is an example of a structure that exhibits an unstable 
postbuckling behavior. As the tower buckles and deflects, some of the 
cables are stretched, resulting in a detrimental pulling force on the tower. 

Asymmetric Bifurcation 

Figure 1.k shows schematically the asymmetric bifurcation behavior of a 
system. For such a system, the load that is required to maintain 
equilibrium subsequent to buckling may increase or decrease with 
increasing deflection depending on the direction in which the structure 
deflects after buckling. The simple frame shown in Fig. 1.7 is an example 
of a structure that exhibits an asymmetric postbuckling behauior. If the 
frame buckles according to Mode 1, the shear force V induced in the 
beam will counteract the applied force P i n  the column. As a result, the 
load required to maintain equilibrium after buckling will increase with 
increasing deflection. On the other hand, if the frame buckles according 
to Mode 2, the shear force V induced in the beam will intensify the 
applied force P in the column. As a result, the load required to maintain 
equilibrium after buckling will decrease with increasing deflection. 
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, 
! ! I / ,  I  l i ! l l l l l i l ! ! l l l l i l l ,# l I~ !  

FIGURE 1.6 Example of un- 
stable symmetric buckling G U Y E D  TOWER 

1.2.2 Limit-Load Instability 

This type of instability is characterized by the fact that there is only a 
single mode of deflection from the start of loading to the limit or 
maximum load (Fig. 1.3b). Examples of this type of instability are 
buckling of shallow arches and spherical caps subjected to uniform 
external pressure (Fig. 1.8). For this type of buckling, once the limit load 
is reached (Point A on the curve of Fig. 1.3b), the system will "snap 
ihrouglz" from Point A to Point C, because the equilibriun~ path AB is 
an unstable one. This unstable equilibrium path will never be encoun- 
tered under a load controlled testing condition, but it does exist and can 
be obscrved under a displacement controlled testing condition. The 
phenomenon in which a visible and sudden jump from one equilibrium 
configuration to another nonadjacent equilibrium configuration upon 
reaching the limit load is referred to as snap-ihrough bucklirt~. 

Another type of buckling that is unique to shells under compressive 
forces (Fig. 1.9a) is referred to by Libove in reference 2 as fmite- 
disturbance bnckling. For this type of buckling the compressive force 
required to maintain equilibrium drops considerably as the structure 
buckles aAer reaching the critical load as shown in curvc (i) of Fig. 1.9b. 
In fact, in reality the theoretical critical load will never be reached 
because of imperfections. The slightest imperfections in such structures 
will reduce the critical load treme~~dously and so curve (ii) in the figure 
will be more representative of the actual buckling behavior of the real 
structure. 
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P 
I 

FIGURE 1.7 Example of asymmetric buckling 

Finite disturbance buckling has the features of both bifurcation 
buckling and snap-through buckling. It resembles the former in that the 
shell deflects in one mode before the critical load is reached, but then 
deflects in a distinctly different mode after the critical load is reached. It 
resembles the latter in that a slight disturbance may trigger a jump from 
the original equilibrium configuration that exists before the critical load 
to a nonadjacent equilibrium configuration at finite deflections as 
indicated by the dotted line in the figure. 



la1 SHALLOW ARCH 

Ib l  SPHERICAL CAP 

FIGURE 1.8 Examples of limit point buckling 

FIGURE 1.9 Shell buckling 
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1.3 METHODS O F  ANALYSES IN STABILITY 

The concept of stability as described in Section 1.1 can he used to 
determine the critical conditions of an elastic system that is susceptible to  
instability. 

Bifurcation Approach 

The first approach is called the bifurcation approach. In  this approach, 
the state at which two o r  more different but adjacent equilibrium 
configurations can exist is sought by an eigenvalue artalysis. The lowest 
load that corresponds to  this state is the critical load of the system. At the 
critical load, equilibrium can be maintained with alternative deflection 
modes that are infinitesimally close to one another. 

To  determine the critical load using the bifurcation approach, it is 
necessary to  identify all possible equilibrium configurations the system 
can assume at the bifurcation load. This can best be accomplished by 
speciFying a set of generalized displacements to describe all the possible 
displaced configurations of the system. If n parameters are required to  
describe the various modes of deflections, the system is said to have 11 

degrees of freedom. For an 11-degrees-of-freedom system, the deter- 
minant of the n x 11-system-stiffness matrix, which relates the generalized 
forces to the generalized displacements of the system, is a measure of the 
stiffness of the system. A t  the critical load, the tangent s t i b e s s  of the 
system vanishes. Thus, by setting the determinant of the system's- 
tangentstiffness matrix equal to  zero, the system's critical conditions can 
be identified. 

The bifurcation approach is also known as the eige~lualue approach, 
because the technique used is identical to that used in the linear algebra 
for finding eigenvalues of a matrix. The critical conditions are repre- 
sented by the eigenvalues of the system's stiffness matrix and the 
displaced configurations are represented by the eigenvectors. The lowest 
eigenvalue is the critical load of the system. The bifurcation or  eigenvalue 
approach is an idealized mathematical approach to  determine the critical 
conditions of a geometrically perfect system. If geometrical imperfections 
are present, deflection will commence at the beginning of loading. The 
problem then becomes a load-deflectiott rather than a bifurcation 
problem. For a load-deflection problem, the bifurcation approach cannot 
be applied. 

Energy Approach 

Another way to  determine the critical conditions of a system is the 
energy approach. For an elastic system subjected to  conseruatiue forces, 
the total potential energy of the system can be expressed as a function of 
a set of generalized displacements and the external applied forces. The 
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term "conservative forces" used here are those forces whose potential 
energy is dependent only on the final values of deflection, not the specific 
paths to reach these final values. If the system is in equilibrium, its total 
potential energy must be stationary. Thus, by setting the first derivative 
of the total potential energy £unction with respect to each generalized 
displacement equal to zero, we can identify the equilibrium conditions of 
the system. The critical load can then be calculated from the equilibrium 
equations. 

Please note that by setting the first derivative of the total potentialenergy 
function equal to zero, we can only identify the equilibrium conditions of 
the system. To  determine whether the equilibrium is stable or  unstable, 
we must investigate higher order derivatives of the total potential energy 
function. 

Dynamic Approach 

The critical load of an elastic system can also be obtained by the dynamic 
approach. Here, a system of equations of motion governing the small free 
vibration of the system is written as a function of the generalized 
displacements and the external applied force. The critical load is obtained 
as the level of external force when the motion ceases to be bounded. The 
equilibrium is stable if a slight disturbance causes only a slight deviation 
of the system from its original equilibrium position and if the magnitude 
of the deviation decreases when the magnitude of the disturbance 
decreases. The equilibrium is unstable if the magnitude of motion 
increases without bound when subjected to a slight disturbance. The use 
of the dynamic approach requires a prerequisite of structural dynamics. 
This is beyond the scope of this book. However, the use of the other two 
approaches to determine the critical Loads will be illustrated in the 
following sections. In the following examples, both the small and large 
deflection analyses will be used to demonstrate the significance and 
physical implications of each analysis. 

1.4 ILLUSTRATIVE EXAMPLES-SMALL DEFLECTION ANALYSIS 

In this section, the stability behavior of some simple structural models 
will be investigated in the context of a small deflection analysis by using 
both the bifurcation and energy approaches. 

1.4.1 Rigid Bar Supported by a Rotational Spring 

Consider the simple spring-bar system shown in Fig. 1.10a. The bar is 
assumed to be rigid, and the only possible mode of displacement for the 
system ia the rigid body rotation of the bar about the pinned end as 
shown in Fig. 1.10b. The pinned end is supported by a linear rotational 
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FIGURE 1.10 Rotational spring-supported rigid bar system (small deflection 
analysis) 

spring of stiffness k,. When the rigid bar is perfectly horizontal, the 
spring is in an unstrained state, and we shall denote any rotational 
displacement of the bar from this horizontal position by the angle 0. 

The system will become unstable and buckle when Preaches its critical 
value, PC,. We shall use the two methods already discussed to  determine 
this initial value. 

Bifurcation Approach 

Assuming the rotational displacement 0 is small, then the equilibrium 
condition of the bar at its displaced configuration can be written in the 
simple form as 

This equation is always satisfied for 8 = 0. The  horizontal position o r  
0 = 0 is therefore a trivial solution. For a nontrivial solution, we must 
have 

Equation (1.4.2) indicates that when the applied force P reaches the 
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value of k , / L ,  the system will buckle. At this critical load, equilibrium 
for the bar is possible in both the original horizontal and slightly deflected 
positions. 

Energy Approach 

In using the energy approach to determine PC,, one must write an 
expression for the total potential energy comprising the strain energy and 
the potential energy of the system. The strain energy stored in the system 
as the bar assumes its slightly deflected configuration is equal to the strain 
energy of the spring: 

The potential energy of the system is the potential energy of the external 
force and it is equal to the negative of the work done by the external 
force on the systcm: 

V = -PL( l  - cos 8 )  (1.4.4) 

The term L(1-  cos 8 )  represents the horizontal distance traveled by P as 
the bar rotates. 

The total potential energy is the sum of the strain energy and the 
potential energy of the system: 

~ = u + v = : ~ , ~ ~ - P L ( ~ - c o s o )  (1.4.5) 

For equilibrium, the total potential energy must assume a stationary 
value. Thus, we must have 

For small 8,  sin 8 = 8 ,  therefore, we have 

Equation (1.4.7) is the equilibrium equation of the bar-spring system. 
The same equilibrium equation [Eq. (1.4.1)] has been obtained by 
considering equilibrium of a free body of the bar. The nontrivial solution 
for Eq. (1.4.7) is thus the critical load of the system. 

This value of the critical load is the same as that determined earlier by 
the bifurcation approach. Note that in the energy approach we can 
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determine not only the critical load, PC,, but also the nature of the 
equilibrium of this system. That is, we can further determine whether the 
equilibrium of the system is stable or  unstable at various stages of 
loading. 

To determine whether the equilibrium is stable or  unstable for the 
system in its original ( 0  = 0)  position, we need to investigate the 
positiveness or  negativeness of higher derivatives of the total potential 
energy function. For this problem, if we take the second derivative of the 
total potential energy function given in Eq. (1.4.5),  we have 

Thus, for P <PC,, d2nld0' is positive. This indicates that the equilibrium 
is stable. For P >PC,, d 2 n / d R 2  is negative, and the equilibrium condition 
is therefore unstable. This behavior is illustrated in Fig. 1.11, in which the 
applied force P is plotted as a function of 0  for small values of 0 .  The 
solid line represents a stable equilibrium loading path and the dotted line 
represents an unstable equilibrium path. The bar is in a stable equi- 
librium in the horizontal ( 0  = 0)  position when P < PC,, but becomes 
unstable in that position when P > PC,. For P = P,,, d 2 n / d R 2  = 0  in a 

FlGURE 1.11 Stability behavior of spring-bar system (small deflection analysis) 

stable 

0  
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small 8 analysis and so no conclusion can be drawn. However, as will be 
demonstrated in the next section, the stability condition at the critical 
load (P = PC,) can be investigated using the energy approach with a large 
8 analysis. 

1.4.2 Rigid Bar Supported by a Translational Spring 

Figure 1.12a shows a rigid bar hinged at one end and supported by a 
linear translational spring of stiffness k, at the free end. The spring is 
assumed to be able to move freely in the horizontal direction but retains 
its vertical orientation as the bar deflects. The bar is subjected to a 
concentrated force P at the free end. Assuming the system is geometri- 
cally perfect, we shall determine the critical load of the system. 

Bifurcation Approach 

In Fig. 1.12b we see a slightly deflected position of the bar. Consideration 
of equilibrium of the bar gives 

This condition is always satisfied by the trivial solution 8 =O.  For a 

FIGURE l .U Translational spring-supported rigid bar system (small deflection 
analysis) 
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nontrivial solution, we must have 

P = P , , = k , L  

Energy Approach 

The strain energy of the system at its deflected state is equal to the strain 
energy stored in the structural spring. 

U = !ks(L8)2 (1.4.12) 

The potential energy of the system is equal to the negative of the work 
done by the applied force. 

V = -PL(1 -  cos 8 )  (1.4.13) 

The total potential energy is 

n = u + v = t k , ( ~ e ) ~  - PL(I  - cos 8 )  (1.4.14) 

For equilibrium, the first derivative of II with respect to 8 must vanish. 

For small 8 ,  Eq. (1.4.15) can be written as 

k,L28 - PL8 = O (1.4.16) 

This equilibrium equation is identical to that of Eq. (1.4.10). Therefore, 
the nontrivial solution is 

P = PC,= k,L (1.4.17) 

To investigate the nature of equilibrium of the system in its original 
( 8  = 0)  position, we need to perform higher order derivatives of the total 
potential energy function. By taking the second derivative of the total 
potential energy function given in Eq. (1.4.14), we have 

d 2 n  
-7 = k,L2 - PL cos 8 -- k . ~ ~  - PL (1.4.18) 
do  

Thus, for P<P,,,  d2nldtI2 is positive, SO the system is stable, but for 
P >  PC,, dZII/d02 is negative, so the system is unstable in its original 
( 8  = 0)  position. 

1.4.3 Two-Bar System 

Consider the two-bar system shown in Fig. 1.13a. The two bars are linked 
together by a frictionless pin at C and the entire system is supported at 
three locations. The supports at B and D are hinged. The support at C i s  
a spring with spring stiffness k,. The bars are subjected to 
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FIGURE 1.U Two-bar system 

a compressive force P at  the ends. As P increases, a condition will be 
reached at which the bars will assume a slightly deflected position. This 
deflected position can be defined uniquely by a single parameter 8 as 
shown in Fig. 1.13b. 

Bifurcation Approach 

Summing moments about B for the free body shown in Fig. 1.13b gives 

from which. we solve for 

2k,L@ - P O  
R,, = 

d 
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Summing moment about C for the free body in Fig. 1 . 1 3 ~  gives 

R D L -  PLB=O (1.4.20) 

Upon substitution of Eq. (1.4.19) into Eq. (1.4.20), we obtain 

:ksL8-$P8=O (1.4.21) 

The nontrivial solution for the equilibrium equation (1.4.21) gives the 
critical load of the system as 

p e p  cr = :k,L (1.4.22) 

Energy Approach 

The strain energy of the system is 

U = %k,(L8)' 

The potential energy of the system is 

V = -P[L(1  - cos 8 )  + L ( l -  cbs 8 )  

+ I ,L( l -  cos 8)] 

= - P [ $ L ( l -  cos 8) ]  (1.4.24) 

The total potential energy of the system is 

I I  = U + V =tk,(LO)'- P [ f L ( 1 -  cos 8)]  (1.4.25) 

For equilibrium, we must have 

-= dn ~,L 'o  - ~ P L  sin 8 = o 
d 8  

and for small 8 ,  we have 

k,L28 - 3PLO = k ,L8  - $PO = 0 (1.4.27) 

The critical load is obtained as the nontrivial solution of Eq. (1.4.27). 

P=P,,={k,L (1.4.28) 

The nature of equilibrium of the system in its original ( 8  = 0 )  position 
can be studied by observing higher derivatives of the total potential 
energy function. By taking the second derivative of the total potential 
energy function, we have 

d 2 n  
-= 
do2  

k,L2 - IPL  cos 8 = k,L2 - 3PL (1.4.29) 

For P I  PC,, dZnldO2 is positive, SO the system is stable. For P > P,, 
d2n ld02  is negative, so the system is unstable in its original undeflected 
position. 
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1.4.4 Three-Bar System 
F~gure 1.14a shows a three-bar system supported at the ends A and D by 
frictionless hinges and connected to  one another at  B and C by linear 
rotational springs of spring stiffness k,. The system is assumed eeometri- 
cally perfect in that the springs are unstrained when all the bars are in 
their horizontal orientation We shall now determine the critical load P, 
of the system. 

Bifurcation Approach 
In using the bifurcation approach, we are investigating the equilibrium 
conditions of the system in a slightly deflected configuration. A 
configuration of the system d~splaced by an arbitrary kinematic admis- 
sible displacement is shown in Fig 1 14b. A klnernahc admissible 
dkplacernent is a displacement that does not violate the constraints of the 
system. Notc that the two parameters ( 0 ,  and B2) are necessary to 
describe fully the displaced configurat~on of the bars. Thus, the system is 
said to have two degrees of freedom. 

It is cleat from equilibrium consideration that the support reactions at 

FIGURE 1.14 Three-bar system 
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A and D are zeros. By using the free body diagrams of the left and right 
bars, respectively (Fig. 1.14c), we can write the following equilibrium 
equations: 

In matrix form, we have 

For a nontrivial solution, we must have the determinant of the coefficient 
matrix equal to zero 

Equation (1.4.32) is the characteristic equation of the system. The two 
eigenvalues are 

The corresponding eigenvectors are 

and 

The two deflected configurations of the system that correspond to the 
eigenvectors Eqs. (1.4.34a, b) are sketched in Fig. 1.15. Since the lowest 
value of the eigenvalue is the critical load of the system, we therefore 
have 

and the symmetric mode (Fig. 1.15aj is the buckling mode of the system. 
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FIGURE 1.15 Buckling modes of the three-bar system 

Energy Approach 

For the system shown in Fig. 1.14, the strain energy is equal to the strain 
energy stored in the two springs. 

U = !k,(28, - 6,)'+ 4k,(2R2 - 0,)' (1.4.36) 

The potential energy is equal to the negative of the work done by the 
external forces. 

V = - P L [ ( l  - cos 0 , )  + (1 - cos 0,)  + 1 - cos ( 8 ,  - 8 , ) )  

= -PL[3 - cos 0 ,  - cos 0 ,  - cos ( 0 ,  - O x ) ]  (1.4.37) 

The total potential energy of the systcm is equal to the sum of the stram 
energy and the potential energy. 

n = u + v  
= tk,(2B1 - 02), + $k,(20, - el) ,  
- PL[3 - cOS 6 ,  - cOS 6 ,  - cOS ( 0 ,  - O x ) ]  (1.4.38) 

For equilibrium, the total potential energy of the system must be 
stationary. In mathematical terms, this requires 
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Upon simplification and using small angle approximation, we can write 
Eqs. (1.4.39a and b) in matrix form as 

For nontrivial solution, we must have 

5k , -  2PL - 4 k , +  PL 
det 1 

-4k,  + PL 5k, - 2PL' 

from which the two eigenvalues are 

The smallest eigenvalue is the critical load of the system, therefore 

To study the nature of equilibrium for the system in its undeflected 
( 8 ,  = 02= 0) position, we need to investigate higher order derivatives of 
the total potential energy function. By taking the second derivative of thc 
total potential energy function, we have 

a2n 
-= 5k, - PL[cos 8 ,  + cos ( 8 ,  - 8,)] 
as: 

a2n 
-= 5k,  - PL[cos 0, + cos ( 8 ,  - 02)] 
as; - 5k, - 2PL 

a2n 
-= - 
as, as,  4k, + PL cos (8, - 8,) 

= -4k, + PL 



24 General Principles 

The equilibrium is stable if all of the following conditions are satisfied: 

a2n>, 
as: 

In view of Eqs. (1.4.Ua-c), Equations (1.4.45a-c) become 

(k, - PL)(Yk, - 3PL) > 0 

For P C  k,lL, all the inequalities expressed in Eqs. (1.4.46a-c) will be 
satisfied. Therefore for P < k,lL, the equilibrium position 8, = 8, = 0 is 
stable, whereas for P >  k,lL it is unstable. 

1.5 ILLUSTRATIVE EXAMPL&LARGE DEFLECTION ANALYSIS 

In the foregoing analyses of the simple bar-spring models, the assumption 
of small deflection has been used because in these examples we are only 
interested in identifying the critical conditions and finding the critical 
loads of the system. Such an analysis is known as a liriear eigerrualue 
armlysis. Although, in addition to determining the critical loads, it is 
possible for us to investigate the nature of the equilibrium conditions of 
the systems in their ur~defiected configurations by studying the second 
derivatives of the total potential energy functions, a linear eigenvalue 
analysis can provide us with no information about the behavior of the 
systems after the critical loads have been reached. In other words, if the 
analysis is performed using the small displacement assumption, it is not 
possible to study the postbucklirig behnuior of the system. To study the 
postbuckling behavior of a system, we must use large displacement 
analysis. This is illustrated in the following examples. 

1.5.1 Rigid Bar Supported by a Rotational Spring 

Consider the simple one degree of freedom spring-bar system shown in 
Fig. 1.16. This simple model has been analyzed earlier using the small 
displacementassumption. The critical load was found to be PC, = k,L and 
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FIGURE 1.16 Rotational spring-supported rigid bar system (large deflection 
analysis) 

by studying the nature of the second derivative of the total potential 
energy function, we concluded that the equilibrium position that cor- 
responds to the initial (straight) configuration of the bar wns stable if 
P<P,,, but it became unstable if P>P,, (Fig. 1.11). However, no 
information about the nature of equilibrium can be obtained when 
P = PC, nor do we have any knowledge about the postbuckling behavior 
of the system. To obtain such information, it is necessary to perform a 
large displacement analysis as shown in the following. 

Energy Approach 
Although we could readily use the bifurcation approach to determine 
both the equilibrium paths of a system in a large displacement analysis 
and the critical loud obtained at the point of intersection of the 
fundamentnl and postbuckling path(s), we will use the energy approach 
instead because, in addition to obtaining the critical load, with this 
second approach we can also investigate the stability of the postbuckling 
equilibrium paths of the system by examining the characteristic of the 
higher order derivatives of the total potential energy Wnction. 
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The strain energy of the system is equal to the strain energy of the 
spring 

U = ik,02 (1.5.1) 

The potential energy of the system is the potential energy of the 
external force 

V = - P L ( l -  cos 8 )  (1.5.2) 

The total potential energy of the system is then 

n=U+V=ik,l12-PL(1-cosb')  (1.5.3) 

For equilibrium, we must have 

dn 
-= 
dB 

k,B - P L  sin O = 0 (1.5.4) 

This equilibrium equation is satisfied for all values of P if 6 =a. This 
trivial equilibrium path is the fundamental equilibrium path. It is plotted 
in Fig. 1.17. Note that this path is coincident with the load axis. The 

FIGURE 1.17 Equilibrium paths of the spring-bar system shown in Fig. 1.16 
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postbuckling path is given by 

p = 
L sin 0 

This path is also plotted in Fig. 1.17 for the range -x /2  s i3 s ,212. It 
intersects the fundamental path at PC, = k,lL. 

To study the stability of the equilibrium paths, we need to examine the 
higher order derivatives of the total potential energy function. By taking 
the second derivative of n, we have 

For the fundamental path, B = 0, therefore Eq. (1.5.6) becomes 

The quantity d 'n ldez  changes from positive to negative at P =  P,,= k,/ 
L ,  indicating that the initial horizontal position of the bar is stable if 
P < PC, but unstable if P > PC,. 

For the postbuckling path, P = k ,B /L  sin 8,  therefore Eq. (1.5.6) 
becomes 

: The quantity dZnldOZ is always positive since the quantity in parenthesis 
is always greater than zero, indicat~ng that the postbuckling path is 
always stable. ) 

At the critical point ( P  = PC,= k , /L ) ,  dznldi3' is zero according to Eq. 
(1.5.7), so no informatinn concerning the stability of the system can be 
obtained. To investigate the stability of this critical equilibrium state, we 
need to examine the first nonzero term in a Taylor series expansion for 
n. Using a Taylor series expansion for the total potential energy function 
about 0 =0, we obtain 

It can easily be shown that the first four terms in Eq. (1.5.9) are zeros, 
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thus the first nonzero term of the series is the fifth term 

At P = PC, = k,/L, we have 

which is positive, indicating that II is a local minimum and so the 
equilibrium state at the critical point is stable. 

From the above discussion it can be seen that as P increases gradually 
to PC,, the stable fundamental equilibrium path bifurcates into an 
unstable equilibrium path corresponding to the original horizontal 
position of the bar and a stable postbuckling equilibrium path cor- 
responding to the deflected configuration of the bar. The equilibrium 
state at the critical point is stable. The stable postbuckling equilibrium 
path is symmetric about the load axis, indicating that the bar can deflect 
either upward or downward with no particular preference. 

1.5.2 Rigid Bar Supported by a Translational Spring 

Consider now the one degree of freedom bar-spring system shown in Fig. 
1.18. This model has been analyzed earlier using the small displacement 
assumption. The critical load was found to be P,,=k,L. To study the 
postbuckling behavior, we must use the large deflection analysis. 

Energy Approach 
Here, as in the previous example, the energy approach is used. The strain 
energy of the system is 

U = !k,(L sin 8)' (1.5.12) 

The potential energy of the system is 

V = -PL(l  - cos 9) (1.5.13) 

The total potential energy of the system is 

II = U + V = fk,(L sin 9)' - PL(1- cos 9)  (1.5.14) 

For equilibrium, we must have 

dII 
-=k ,L2s in9cos9-PLs in9  
d 9  

= (k,L2 cos 9 - PL) sin 9 = 0 (1.5.15) 

This equilibrium equation is satisfied for all values of P when 9 = 0, 
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ksL sin B 

I I 

FIGURE 1.18 Translational spring-supported rigid bar system (large deflection 
analysis) 

which is the fundamental equilibrium path (Fig. 1.19). The postbuckling 
path is given by 

P = k ,L  cos 8 (1.5.16) 

The fundamental and postbuckling paths are plotted in Fig. 1.19 for the 
range - n / Z  s B s n / Z .  They intersect at P = PC, = k ,L .  

To study the stability of the equilibrium paths, we form 

For the fundamental path. 8 = 0, Eq. (1.5.17) thus becomes 

The quantity d211/dB2 changes from positive to negative at P = PC,= k,L.  
which indicates that the initial horizontal position of the bar is stable if 
P < PC, but unstable if P > PC,. 
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For the postbuckling path, P = k,L cos 8, Eq. (1.5.17) thus becomes 
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The quantity d2n/dO2 is always negative, indicating that the postbuckling 
path is unstable. 

At the cntsal  point ( P  =PC, = k,L), d2n lde2  is zero according to Eq. 
(1.5.18). As a result, we need to expand the total potential energy 
function in a Taylor series and examine the first nonzero term in the 
series. If we substitute the expression for II and its derivatives into the 
Taylor series, Eq. (1.5.9), it can be shown that the first nonzero term is 

2 4 0 4 4 
FIGURE 1.19 Equilibrium paths of the spring-bar system shown in Fig. 1.18 



At P = PC, = k,L, we have 

which is negative, indicating that II is a local maximum and so the 
equilibrium state at the critical point is unstable. 

From the above discussion, it can be seen that as P increases gradually 
to PC,, the stable fundamental equilibrium path bifurcates into an 
unstable equilibrium path corresponding to the original horizontal 
position of the bar and an unstable equilibrium path corresponding to the 
deflected configuration of the bar. The equilibrium state at the critical 
point is also unstable. 

1.6 ILLUSTRATIVE EXAMPLESIMPERFECI SYSTEMS 

Note that for all the examples presented in thc preceding sections i t  has 
been assumed that the systems are geometrically perfect. When the bars 
are in their horizontal positions, the springs are unstrained at the 
commencement of the loadings. The systems will therefore remain 
undeflected until the values of P reach their critical values, PC,. Suppose 
now that the systems are imperfect in the sense that the bars are slightly 
tilted when the springs are unstrained. The bar will deflect as soon as the 
load is applied. The problem then becomes a load-deflection problem. 
The following examples will illustrate the effect of this imperfection on 
the response of the systems. 

1.6.1 Rigid Bar Supported by a Rotational Spring 

Consider the one-degree-of-freedom-imperfect-bar-spring system shown 
in Fig. 1.20. The system is imperfect in that the bar is tilted slightly by an 
angle B,, and at this tilted position the spring is unstretched. We shall now 
study the behavior of the system using the energy approach. 

Energy Approach 

The strain energy of the system is equal to the strain energy stored in the 
spring 

U = $k,(B - B,)? (1.6.1) 

The potential energy of the system is equal to the potential energy of 
the external force 

V = -PL(cos 8, - cos 0 )  (1.6.2) 
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FIGURE 1.20 Rotational spring-supported imperfect rigid bar system 

The total potential energy of the system is 

For equilibrium, the total potential energy of the system must be 
stationary 

from which, we obtain 

P = k,(B - 8 0 )  

L sin B 

The equilibrium paths given in Eq. (1.6.5) for 6 ,  =0.1 and 0.3 are 
plotted in Fig. 1.21. The figure also shows the equilibrium paths for the 
corresponding perfect system that was discussed earlier (Fig. 1.17). For 
the imperfect system, deflection commences as soon as the load is 
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FIGURE 1.21 Equilibrium paths of the imperfect spring-bar system shown in 
Fig. 1.20 

applied. The smaller the imperfection, the closer the equilibrium paths of 
the imperfect system is to that of the perfect system. In fact, if the 
imperfection vanishes, the equilibrium paths of the imperfect system will 
collapse onto the equilibrium paths of the perfect system. 

To study the stability of the equilibrium paths of the imperfect system, 
we need to examine the second derivative of the total potential energy 
function 

d 2 n  -- 
dB2 

- k,  - PL cos 0 

Therefore, the equilibrium paths are stable if 

ks P <- 
L cos e 
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and they are unstable if 

ks P>-- 
L cos a 

I t  is qulte obvious that Eq.  (1.6.7) always controls for -nlZ < B < nI2. 
Therefore, the equilibrium paths described by Eq. (1.6.5) are always 
stable, indicating that as P increases the deflections increase, as shown by 
the curves with the initial angle B,= 0, 0.1 and 0.3, and no instability will 
occur. The maximum load that the system can carry is greater than the 
critical load, PC,. 

1.6.2 Rigid Bar Supported by a Translation Spring 
Consider now the imperfect system shown in Fig. 1.22. The system is 
imperfect, being tilted by an angle 8, when the spring is unstretched. 
We shall now use the energy approach to study the response of this 
imperfect system. 

FIGURE 1.22 Translational spring-supported imperfect rigid bar system 

L cos 8" I 
l b l  



Energy Approach 
The strain energy of the system is equal to the strain energy stored in the 
spring 

U = !k,L2(sin 0 -sin 0,)' (1.6.9) 

The potential energy of the system is equal to the potential energy of 
the external force 

V = -PL(cos 0, - cos 0)  (1.6.10) 

The total potential energy of the system is 

Il= U + V = :kSL2(sin 0 -sin 0")' 

- PL(cos 0, - cos 0)  (1.6.11) 

For equilibrium, we must have 

-- dn- k,L2(sin 0 - sin 0,) cos 0 - PL sin 0 = 0 (1.6.12) 
dB 

from which, we obtain 

sin 8 
~ = k , ~ ~ o ~ 0 ( 1 - ~ ~ )  

The equilibrium paths described by Eq. (1.6.13) for 9, = 0.1 and 0.3 
are plotted in Fig. 1.23. The equilibrium paths for the corresponding 
perfect system are also shown in the figure. Again, as in the preceding 
example, as the imperfection Oo approaches zero, the equilibrium paths 
of the imperfect system collapse onto the equilibrium paths of the perfect 
system. The maximum loads P,,,, (the peak points of the load-deflection 
curves) that the imperfect system can carry are less than the critical load 
PC, of the corresponding perfect system. These maximum loads can be 
evaluated by setting 

dP  
-= 

sin 8, 
dB k , ~ ( - s i n  0+-)=o an2 0 

from which we obtain the condition 

sin 0, = sin3 8 

Substitution of Eq. (1.6.15) into Eq. (1.6.13) gives 

The locus of the maximum loads as described by Eq. (1.6.16) is plotted in 
Fig. 1.23 as a dash-and-dotted line. Note that P,,, is always less than PC,, 
except at 9 = 0, when P,,,, becomes PC,. The larger the imperfection the 
smaller P,,, will be. 
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FIGURE 1.23 Equilibrium paths of the imperfect spring-bar system shown in 
Fig. 1.22 

To study the stability of the equilibrium paths described by Eq. 
(1.6.13), we need to examine the second derivative of the total potential 
energy function. 

-= d'n k,LZ(cosZ 8 - sinZ 8 +sin 8, sin 8 )  
dB' 

Upon substitution of Eq. (1.6.13) for P into the above equation and 
simplifying, we obtain 

d211 -- sin 8, - s1n3 8 
d e2 - ~ , L z (  sin . 8 . ) 

Thus, for the range -n/2 S B S xI2, the equilibrium paths given by Eq. 
(1.6.13) will be stable if 

sin 80 > sin3 8 (1.6.19) 
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and they will be unstable if 

sin 8, i sin3 0 (1.6.20) 

So, it can be seen that the rising equilibrium paths are stable and the 
falling equilibrium paths are unstable. As  the load P is increased from 
zero, the load-deflection behavior of the imperfect system will follow the 
stable rising equilibrium paths as shown in Fig. 1.23, until P,, is 
reached, after which the system will become unstable. 

From the foregoing examples of imperfect systems, we can conclude 
that for a system with stable postbuckling equilibrium paths, a small 
imperfection will not significantly affect the system's behavior. The 
maximum load the imperfect system can carry is larger than the critical 
load of the perfect system. On  the other hand, for a system with unstable 
postbuckling equilibrium paths, a small imperfection may have a notice- 
able effect on the system's behavior. The maximum load that the 
imperfect system can carry is then smaller than the critical load of the 
perfect system, and the magnitude of this maximum load decreases with 
increasing imperfection. 

1.7 DESIGN PHlLOSOPHlES 

T o  implement the mathematical theory of stability into engineering 
practice, it is necessary to  review the various design philosophies and 
safety concepts upon which current design practice is based. Details of 
this implementation on various specific subjects will be given in the 
chapters that follow. 

A t  present, design practice is based on one of these three design 
philosophies: Allowable Stress Design, Plastic Design, and Load and 
Resistance Factor Design. A brief discussion of these design philosophies 
will be given in the following sections. 

1.7.1 Allowable Stress Design 

The purpose of allowable stress design (ASD) is to  ensure that the 
stresses computed under the action of the working, i.e., service loads, of 
a structure do not exceed some predesignated a[lowable values. The 
allowable stresses are usually expressed as a function of the yield stress or  
ultimate stress of the material. The general format for an allowable stress 
design is thus 

R" "' 
-3 C Q.i F.S. i=l 
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where 

R. = nominal resistance of the structural member expressed in unit of 
stress 

Q. = nominal working, or  service stresses computed under working 
load conditions 

F.S. =factor of safety 
i = type of load (i.e., dead load, live load, wind load, etc.) 

rn =number of load type 

The left hand side of Eq.  (1.7.1) represents the allowable stress of the 
structural member or  component under various loading conditions (for 
example, tension, compression, bending, shear, etc.). The right hand side 
of the equation represents the combined stress produced by various load 
combinations (for example, dead load, live load, wind load, etc.). 
Formulas for the allowable stresses for varlous types of structural 
members under various types of loadings are specified in the AISC 
Specification.3 A satisfactory design is when the stresses in the member 
computed using a first-order analysis under working load conditions do  
not exceed their allowable values. One should realize that in allowable 
stress design, the factor of safety ib applied to the resistance term, and 
safety is evaluated in the service load range. 

1.7.2 Plastic Design 

The purpose of plastic design (PD) is to ensure that the maximum plastic 
strength of the structural member or component does not exceed that of 
the factored load combinations. I t  has the format 

where 

R. = nominal plastic strength of the member 
Q.= nominal load effect (e.g., axial force, shear force, bending 

moment, etc.) 
y = load lactor 
i = type of load 

m =number of load types 

In steel design, the load factor is designated by the AlSC Specifications 
as 1.7 if Q ,  consists of only dead and live gravity loads, or  as 1.3 if Q ,  
consists of dead and live gravity loads plus wind or earthquake loads. The 
use of a smaller load factor for the latter case is justified by the fact that 
the simultaneous occurrence of all these load effects is not very likely. 
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Note that in plastic design, safety is incorporated in the load term and is 
evaluated at the ultimate (plastic strength) limit state. 

1.7.3 Load and Resistance Factor Design 

The purpose of load and resistance factor design (LRFIJ) is to ensure 
that the nominal resistance of the structural member or  component 
exceeds that of the load effects. Two safety factors are used, one applied 
to the loads, and the other to the resistance of the materials. Thus, the 
load and resistance factor design has the format 

where 

R, = nominal resistance of the structural member 
Q,  = load effect (e.g., axial force, shear force, bending moment, 

etc.) 
@ = resistance factor ( 4 . 0 )  
y ,  = load factor (usually >1.0) corresponding to  Q.; 
i = type of load 

m = number of load types 

In the 1986 LRFD Specification,' the resistance factors were developed 
mainly through calibration," whereas the load factors were developed 
based on statistical In particular, the first-order probability 
theory is used. The load and resistance factors for various types of 
loadings and various load combinations are summarized in Tables 1.1 and 
1.2, respectively. A satisfactory design is the one in which the probability 
of the structural member exceeding a limit state (for example, yielding, 
fracture, buckling, etc.) is minimal. Based on the first-order second- 
moment probabilistic a n a l y ~ i s , ~  the safety of the structural member is 
measured by a re l iubi l i~ or  safely index" defined as 

where 

R =mean resistance 
Q =mean load effect 

VR = coefficient of variation of resistance 

VQ = coefficient of variation of load effect 

~- 

in which o equals the standard deviation. 
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Table 1.1 Load Factors a n d  Load Combina t ions"  

1.4 D 

1.2 D + 1.6 L  + 0.5 ( L ,  or S or R )  

1.2 D + 1.6 ( L .  or S or R) + (0.5 L  or 0.8 W )  

1.2 D + 1.3 W + 0.5 L +  0.5 ( L ,  or S or R )  

1.2 D + l . S E + ( 0 . 5 L  or 0 .2s )  

0.9 D - 1.3 W or 1.5E 

where 
D = dead load 
L  = live load 
L, = roof live load 
W =  wind load 
S =snow load 
E =  earthquake load 
R =nominal load due to initial rainwater o r  ice ex- 

clusive of the ponding contribution 
v 

'Thc load Oclor on L in thc Ulird, Iourth and 61th load combinations 
shown above shall cqunl 1.0 tor btr.gcs. urea- occupied ar places of public 
srrcrnbly and all arc- wherc the live load is greater fl~an 1W psi. 

T h e  physica l  i n t e r p r e t a t i o n  o f  t h e  r e l i ab i l i t y  i n d e x  IS s h o w n  i n  Fig.  
1.24. I t  i s  the mul t ip l i e r  o f  t h e  s t a n d a r d  d e v i a t i o n  \rP- V k +  Vb b e t w e e n  t h e  
m e a n  o f  t h e  in (RlQ) d i s t r i b u t i o n  a n d  t h e  o r d i n a t e .  N o t e  that b o t h  t h e  
r e s i s t a n c e  R a n d  t h e  l o a d  Q a r e  t r e a t e d  a s  r a n d o m  p a r a m e t e r s  i n  L W D ,  
and so i n  (RlQ) does n o t  h a v e  a s ing le  v a l u e  b u t  fo l lows  a d is t r ibut ion .  
The s h a d e d  a r e a  in the f igu re  represcnts t h e  p robab i l i t y  i n  w h i c h  
In  (RlQ) < 1, i .e . ,  t h e  p r o b a b i l i t y  t h a t  t h e  r e s i s t a n c e  wi l l  b e  s m a l l e r  t h a n  

Table 1.2 Resistance Factors 

M e m b e r  type a n d  limit s ta te  P 

Trnsion member, limit state: yielding 
Tension member, limit state: fracture 
Pin-connected member, limit state: tension 
Pin-connected member, limit stnte: shear 
Pin-connected member. limit statc: bearing 
Columns, all limit stater 
Beams, all limit states 
High-strength bolts, limit state: tension 
High-strength bolts, limir state: shear 

A307 bolts 
Others 
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FIGURE 1.24 Reliability index 

the load effect, indicating that a limit state has been exceeded. The larger 
the value of p, the smaller the area of the shaded area, and so it becomes 
more improbable that a limit state may be exceeded. Thus, the 
magnitude of P reflects the safety of the member. 

In the development of the present LRFD Specification,' the following 
target values for p were selected: 

1. p = 3.0 for members and p = 4.5 for connectors under dead plus live 
and/or snow loading; 

2. p = 2.5 for members under dead plus live load acting in conjunction 
with wind loading, and; 

3. p = 1.75 for members under dead plus live load acting in conjunction 
with earthquake loading. 

A higher value of p for connectors ensures that the connections designed 
are stronger than their adjoining members. A lower value of P for 
members under the action of a combination of dead, live, wind, or 
earthquake loading reflects the improbability that these loadings will act 
simultaneously. 

From the above discussion, it can be seen that in allowable stress 
design, the safety of the structural member is evaluated on the basis of 
service load conditions, whereas in plastic or load and resistance factor 
design, safety is evaluated on the basis of the ultimate or limit load 
conditions. In addition to strength, the designer must also pay attention 
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to stiffness of the structure. One important criterion related to stiffness is 
that the structure or structural component must not deflect excessively 
under service load conditions. Thus, regardless of the design method, one 
should always investigate such seruiceobility requirernerrts as deflection 
and vibration at service load conditions. 

1.8 SCOPE 

In this book, the discussion of stubility theory will be limited to 
conservative systems under static or quasistatic loads. A cotrseruaiive 
system is a system that is subjected only to conservative forces, that is, to 
forces whose potential energy is dependent only on the final values of 
deflection. In addition, most of the material presented in this book's later 1 
chapters will be based on what is called srnull displucernerrt theory. 
Hence, the critical load but not the postbuckling behavior of the member 
or structure will be studied. Only the stability behavior of structural 

I 
members and frames will be presented; the stability of plates and shells 
will not be discussed. 

For a discussion of the stability behavior of elastic systems under 
nonconservative and dynamic forces, interested readers should refer to 
books by B~lotin. ' .~ For a discussion of the buckling behavior of plates 
and shells, please refer to books by Timoshenko and GereLo and Brush 
and Almroth." 

PROBLEMS \ 

1.1 Find the critical load PC, of the bar-spring systems shown in Fig. Pl.la-c 
using the bifurcation approach. Assume that all the bars are rigid. 
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FIGURE P1.l 

1.2 Repeat Prob. 1.1, using the energy approach 

1.3 Investigate the stability behavior of the asymmetric spring-bar model shown 
in Fig. P1.3. 

--- - p 

FIGURE P1.3 

1.4 Investigate the stability behavior of the snap-through spring-bar model shown 
in Fig. P.1.4. 
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Chapter 2 

COLUMNS 

2.1 INTRODUCTION 

In the preceding chapter, we investigated the critical conditions of several 
simple bar-spring models. Since the bars were assumed to be rigid, they 
did not deform as the system reached its critical state. As a result, the 
equations of equilibrium were algebraic rather than differential in form. 
In this and subsequent chapters, we shall study the buckling behavior of 
deformable systems. For such systems, internal forces will develop as the 
system deforms under the action of the applied external forces. Since 
internal forces are usually expressed as a function of the derivatives of 
the generalized coordinates, it follows that the resulting equilibrium 
equations that relate the external and internal forces will be differential in 
form. Therefore, to proceed with the calculation, a knowledge of 
differential calculus is indispensable. 

We shall begin our discussion of a deformable system by studying the 
buckling behavior of columns. In partsular, we will use the bifurcation 
approach to stability analysis in this chapter. The energy approach for the 
stability analysis of elastic columns will be deferred until Chapter 6. 
Shown in Fig. 2. la  is a perfectly straight elastic column loaded concentri- 
cally by an axial force P. If P is small, the column will remain in a 
straight position and undergoes only axial deformation. The column at 
this state is said to be in stable equilibrium since any lateral displacement 
produced by a slight disturbing lateral force will doappear when the 
lateral force is removed. As P is increased, a condition is reached in 
which equilibrium in a straight position of the column ceases to be stable. 
Under this condition, a very small lateral force will produce a very large 
lateral deflection that does not disappear when the lateral force is 
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FIGURE 2.1 Euler load 

removed. The axial load that demarcates the stable and rrristuble 
eqrrilibriurn of the straight column is referred to as the critical loud (PC,) 
or Euier load (PC) (Fig. 2.lb). At the critical load, there also exists 
another equilibrium position in a slightly deflected configuration. This 
deflected position is favored when the straight column is disturbed by a 
small lateral force, and the column will not return to its straight position 
when the disturbing lateral force is removed. This slightly displaced 
configuration is a stable equilibrium position. The transition from the 
(unstable) straight configuration to the (stable) deflected configuration 
corresponds to a state of neutral equilibrium of the column. In the 
following section, we shall evaluate the critical load of this perfectly 
straight column by reference to this neutral equilibrium position. This 
technique for determining the critical load of a column is known as the 
method of rreutrul eqirilibrium. 

The critical load also marks the point of bifirrcatiorl of equilibrium of 
the perfectly straight elastic column. It is at this point when the 
theoretical load-deflection curve of the column bifurcates into stable and 
unstable equilibrium branches that correspond to the deflected and 
straight configurations of the column, respectively [Fig. 2.2, curve (i)]. 

The bifurcation point exists only for a perfectly straight column. In 
reality, columns are rarely perfectly straight. Geometrical imperfection 
and/or load eccentricity, which are unavoidably present in an actual 
column, will cause the column to deflect laterally at the onset of loading. 



2.1 lnlroduclion 

FIGURE 2.2 Load-deflection curves of (i) a perfectly straight column, (iia) a 
column wit11 small initial crookedness, (iib) a column with large initial crooked- 
ness, (iii) a column with eccentrically applied load 

Consequently, the load-deflection curve of an  imperfect column is a 
smooth curve. Curves (iia), (iib), and (iii) of Fig. 2.2 show schematically 
the load-deflection behavior of a column with small geometric imperfec- 
tion, large geometric imperfection, and load eccentricity, respectively. 
Initially crooked and eccentrically loaded columns will be discussed in 
subsequent sections of this chapter. 

It should be mentioned that the behavior of a long column is quite 
different from that of a short column. For a long or  slender colurnr~, 
buckling may occur when all fibers of the cross section are still elastic and 
so the Euler load (PC) will govern the limit state of a slender column. For 
a short or stocky column, yielding of fibers over the entire cross section 
usually occurs when the yield stress of the material is reached before 
buckling can occur, and so, for a stocky column, the yield load P, will 
govern the limit state of the colun~n. For a medium length column, some 
of the fibers of the cross section may yield under the action of the applied 
force while some fibers still remain elastic. For this case, the limit load is 
denoted by P,,, the ultimate strength of the column. For a perfectly 
straight column, P,, can be represented by the tallgent modulus load (P,) 
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or the reduced modulus load (P,). These loads can be obtained by making 
certain assumptions regarding the strain and stress distributions in the 
cross section of the column. The effect of this inelasticity can be  taken 
into account by modifying the elastic modulus according to the two 
inelastic column theories: the tangent modulus and the reduced modulus 
tl~eories for a perfectly straight column. These two inelastic column 
theories will be discussed in Section 2.7. 

If the column is not perfectly straight, or if bending exists at the onset 
of loading, the tangent or  reduced modulus theory is not applicable 
anymore. For such members, the ultimate load P. must be determined 
numerically. Two commonly used numerical procedures to determine P. 
will be discussed in Sections 6.7 and 6.8 of Chapter 6. 

2.2 CLASSICAL COLUMN THEORY 

A columrt is defined here as a member that sustains only axial load. If 
lateral loads are present in addition to  the axial load, the member is 
referred to as a beam-cobmtt and will be treated separately in Chapter 3. 
Although a column can be considered as a limiting case of a beam- 
column when the lateral loads in a beam-column vanish, in this chapter 
we will trrllt the column problem independently. 

2.2.1 Pinned-Ended Column 

In deriving the basic difIerential equation of a pinned-ended column, the 
following assumptions regarding the geometry, kinematics, and material 
of the column are used: 

1. The column is perfectly straight. 
2. The axial load is applied along the centroidal axis of the column. 
3. Plane sections before deformation remain plane after deformation. 
4. Deflection of the member is due only to bending (i.e., shear 

deformation is ignored). 
5. The material obeys Hooke's Law (i.e., the stress and strain are related 

linearly). 
6. The deflection of the member is small. As a result, the curvature can 

be approximated by the second derivative of the lateral displacement. 

With the above assumptions in mind, the governing differential equation 
of the column is derived as follows: 

In Fig. 2.3a a column, pinned at  both ends with the upper end free to 
move vertically, is loaded by an axial force P applied along its centroidal 
axis. To  calculate the critical load of this column, one uses the method of 
neutrnl eqlrilibriirm. At the critical load, the column can be in equfibrium 
in both a straight and a slightly bent configuration. The critical load can 



2.2 Classical Column Theory 

FIGURE 2.3 Pinned-ended colun~n 

be obtained from the governing differential equation written for the 
slightly bent configuration of the column using an eigenualue analysis. In  
an eigenvalue analysis, only the deflected shape and not the magnitude of 
deflection of the buckled column can be determined. The critical load is 
the eigenvalue and the deflected shape is the eigenvector of the problem. 

Figure 2.3b shows a free body diagram of a column segment of the 
column shown in Fig. 2.3a. Equilibrium of this free body requires that 

- M,,, + Py = 0 (2.2.1) 

where M.,, is the internal resisting moment and y is the lateral 
displacement of the cut section. 

The internal moment Mi,, induced by the bending curvature @ of the 
cross section is given by 

M,., = El@ (2.2.2) 

where E is Young's modulus of the material and I is the moment of 
inertia of the cross section. The value El here can be considered as the 
slope of the relation between moment M,,, and curvature @ = 1IR (Fig. 
2.4). This linear moment-curvature relation can be derived directly from 
the kinematic and material assumptions 3,  4, and 5 given above in the 
following manner: 

In  Fig. 2.5, an infinitesimal segment of a column of length dr is shown 



with its undeformed and deformed positions. From similar triangles, we 
can write the kinematic relation as 

where 
E ,  = axial strain 

R = radius of curvature 

From Hooke's Law, the axial stress a, is related to the axial strain E,  

by the linear relation. 

From statics, the internal moment M,., can be obtained by the 

FIGURE 2.5 Kincrnalics of a colurlln segmen1 

deformed 
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integration of the moment induced by the stress a, over the cross section. 

Substitution of the kinematic relation (2.2.4) and the stress-strain 
relation (2.2.5) into the equilibrium equation (2.2.6) gives 

By recognizing that j', y: dA is the moment of inertia I of the cross 
section and 1/R is the curvature @, Eq. (2.2.7) can easily be reduced to 
Eq. (2.2.2). 

If a small deflection is assumed, the curvature @ can he approximated 
by the second derivative of the lateral displacement 

in which a prime indicates the derivative of y with respect to x. The 
negative sign in Eq. (2.2.8) indicates that the curvature @ or the rate of 
change of the slope dyldx of the deflected shape as sketched in Fig. 2.3b 
decreases with increasing .r. 

Using this approximation for curvature, the internal moment of Eq. 
(2.2.2) can be related to lateral displacement y by 

Substitution of this expression for Mr., into Eq. (2.2.1) gives 

Ely " + Py = 0 (2.2.10) 

Introducing the notation 
P k2 = - 
El  

Equation (2.2.10) can be written in the simple form 

y " + k 2 y = 0  (2.2.12) 

Equation (2.2.12) is a second-order linear differential equation with 
constant coefficients. The general solution is 

y = A s i n k x + B c o s k x  (2.2.13) 

Note that there are three unknowns, k, A,  and B, in the above 
equation, but we have only two independent boundary conditions. 

Y (0) = 0 (2.2.14) 

Y(L)=O (2.2.15) 



Therefore, we can only determine two unknowns. Substituting the first 
boundary condition (2.2.14) into Eq. (2.2.13), we have 

B = 0 (2.2.16) 

Using the second boundary condition (2.2.15), we have 

A s i n k L = O  (2.2.17) 

Equation (2.2.17) is satisfied if 

A  = 0 (2.2.18) 

and/or 

sin kL = O (2.2.19) 

Equation (2.2.18) is a trivial solution that states that the straight 
configuration of the column is an equilibrium position. To  obtain a 
nontrivial solution that describes the equilibrium position of the column 
in a slightly bent configuration, we must satisfy Eq. (2.2.19) with 

kL = nn, 11 = 1,2,  . . . (2.2.20) 
or 

from which we can solve for P f r o m  Eq. (2.2.11) 

The value of P that corresponds to the smallest value of n (i.e., ri = 1 )  
is the critical load (PC,) of the column. This load is also referred to as the 
Euler load (P,), as Euler is the pioneer of this column-buckling problem.' 

I t  will he seen in later sections and chapters that the Euler load 
constitutes an important reference load in the buckling and stability 
analysis of members and frames. 

The deflected shape of the column a t  buckling can be found by 
substituting the constants B and k i n  Eqs. (2.2.16) and (2.2.21) with I I  = 1 
into the deflection function (2.2.13). This gives 

nx 
y = A  sin - (2.2.24) 

L 

Note that the constant A  is still indeterminate. Thus, only the deflected 
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shape and not the amplitude of the deflection can be determined. This is 
because we approximate the curvature Q to the lateral displacement y of 
the column by the linear relation Q =  -y" using the small displacement 
assumption. This approximation leads to the linear differential equation 
[Eq. (2.2.12)l. If the small displacement assumption is obliterated, the 
resulting differential equation will be nonlinear. The use of formal 
mathematics for the solution to  this nonlinear equation will result in not 
only the deflected shape but also the amplitude of the deflected column. 
The discussion of the large displacement behavior of an axially located 
column will be given in the later part of this section. 

2.2.2 Eccentrically Loaded Column 

Figure 2.6a shows the loading condition and the deflected shape of an 
eccentrically loaded column. The axial force P is loaded eccentrically at a 
distance e from the centroidal axis of the column. 

Equilibrium of the free body of a column segment shown in Fig. 2.6b 
requires that -M,,, + P(e + y )  = 0 (2.2.25) 

Substituting the internal moment from Eq.  (2.2.9) into the above 
equation gives 

FIGURE 2.6 Eccentrically loaded column 
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using k 2 =  PIEI ,  wc obtain 

Equation (2.2.27) is the governing differential equation of an eccentri- 
cally loaded column. The general solution to this equation is 

where 

y,=complementary solution to the corresponding homogeneous 
differential equalion (i.e., y"+ k2y = 0) 

y, = particular solution satisfying Eq. (2.2.27) 

The homogeneous solution is given by 

The particular solution yp can be obtained by either the mettrod of 
undetertnined coeficient or the metirod of variation of pornmeters. For 
this simple case, it can easily be shown that 

Thus, the general solution is 

The constants A and B can be determined by the two houndary 
conditions 

The first boundary condition leads to 

B = e  (2.2.34) 

and the second boundary condition together with B = e leads to 

1 - cos kL 
A = (  sln k~ )e 

Substituting these constants into the deflection equation (2.2.31), we 
obtain the deflected shape of the eccentrically loaded column as 

The corresponding moment is given by M = -Ely" or 

cos kL - 1 . 
M =  - ~ ~ k ~ e ( - ~ s ~ n k x  sln kL -coskx (2.2.37) 
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The maximum deflection and moment occur at midheight of the 
column. Therefore, by setting x = L / 2 ,  y,,,, and M,,,, are given respec- 
tively as 

Equations (2.2.38) and (2.2.39) can be simplified by using the 
trigonometric identities 

and the resulting deflection and moment at the midheight are 

k L  
y.,,. = (set - l ) e  (2.2.42) 

k L  
M.,,, = EIkZe sec - 

2 (2.2.43) 

The maximum deflection (2.2.42) is measured from the original 
undeformed centroidal axis of the column. The total maximum deflection 
measured from the line of application of P is therefore 

Defining 

as the un~plificarion fucror, Eq.  (2.2.44) can be written as 

a,., = A F e  (2.2.46) 

and similarly, we can write 

M,,, = AF(Elk2e)  (2.2.47) 

since k 2  = PIEI, we have 

M,,, = A ,(Pe) (2.2.48) 

Since e and Pe are, respectively. the end eccentricity and end 
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FIGURE 2.7 Amplification factors 

moment of the eccentrically loaded column, Eqs. (2.2.46) and (2.2.48) 
indicate that the maximum displacement and maximum moment in the 
column can be obtained by simply multiplying the end eccentricity and 
end moment by the amplification factor A, [Eq. (2.2.45)l. Note that this 
amplification factor depends on the axial force P. A plot of A, as a 
function of PIP, is shown in Fig. 2.7. 

The normalized midheight deflection 6,,lL plotted as a function of 
PIP, [Eq. (2.2.44)] for two end ecccntricity ratios e l L  = 0.001 and 0.005 
is shown in Fig. 2.8. For an eccentrically loaded column, deflection 
begins as soon as the load is applied. The larger the end eccentricity, the 
more the column will deflect at the same load level. Deflection is 
relatively small at the commencement of loading, but increases progres- 
sively and rapidly as the load increases. At or near the Euler load, 
deflection increases drastically and the load-deflection curves approach 
asymptotically to the Euler load, Pa. Thus, the maximum load that a 
perfectly elastic eccentrically loaded column can carry is the Euler load. 
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FIGURE 2.8 Load-deflection behavior of eccentrically loaded columns 

In reality, however, because of material yielding, the Euler load is 
seldom reached and the maximum-load-carrying capacity of an eccentri- 
cally loaded column will fall far below the Euler load. 

2.2.3 Secant Formula 

The maximum stress in an eccentrically loaded elastic column is the sum 
of the axial stress and the maximum bending stress 

P M c  --+5 
urnax - A 1  

where c is the distance from the neutral axis to extreme fiber of the cross 
section. 

Substitution of M,.,, from Eq. (2.2.48) into Eq .  (2.2.49) gives 

Since 
1 = A r 2  (2.2.51) 

where r  is the radius of gyration of the cross section, we can write Eq. 
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This secant formula enables us to calculate in a direct manner the 
maximum stress in an eccentrically loaded column. It will be used in what 
follows to develop a column strength equation for the design of axially 
loaded columns with imperfections. 

If the first yield of the material is used as the criterion for failure, i.e., 
if the limit state of the column is defined as the state at which the 
maximum fiber stress just reaches the yield stress ay, the corresponding 
critical load (PC,) can be calculated from Eq. (2.2.52) by setting a,,,, = a,. 

In actual design implementation, the secant formula is developed in 
conjunction with reference to experimental data. The eccerltricily factor 
eclr' is treated as an imperfection factor for an axially loaded column and 
is determined by calibration so that the formula will best fit the given 
experimental data. 

2.2.4 Linear vs. Nonlinear Theory 

In the preceding sections, the assumption of small displacement is used. 
As a result, the curvature Q is approximated by the second derivative of 
the lateral displacement with respect to x ,  i.e., 

Q = -y" (same as 2.2.8) 

If the small displacement assumption is obliterated, a more exact 
expression for the curvature must be used. 

in which the second-order tenn (y')2 in the denominator can not be 
neglected in the curvature-displacement relation. As a result, the 
governing differential equation (2.2.10) derived previously for a pinned- 
pinned column on the basis of small displacement assumption must be 
modified to include this term (Fig. 2.9a). For the column segment shown 
in Fig. 2.9b, the equilibrium equation is 

Upon substitution of the exact curvature expression (2.2.54) into thc 
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FIGURE 2.9 Large deflection a~lalysis of a pioned-eoded colum~~ 

equilibrium equation (2.2.55), we have 

Ely " 
, 2 3 a + P y  = O  

[I+ (Y ) I 
This is a nonlinear differential equation. To simplify the equation, we 

express the curvature Q in terms of the rate of change in slope along the 
deflected coordinates of the member (Fig. 2.9a) by 

and, hence, the governing differential equation (2.5.55) becomes 

dB 
El-+ Py = O  

ds 
(2.2.58) 

Taking derivatives wlth respect to s  and realizing that 

dy - - - sin 0 
ds 
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we have 

Equation (2.2.60) can be solved by using elliptical integrals. Details of 
these calculations are given in reference 2. In the following we shall 
discuss the result of these calculations. 

The expression for the midheight deflection of this column as a 
function of PIP. is given as (see reference 2) 

a' 

6 
2 sin - 

2 
-=- (2.2.61) 

where a' is the end slope of the column (Fig. 2.9a). 
Figure 2.10 shows a plot of Eq. (2.2.61). For PIP,< 1, the straight 

configuration is the stable equilibrium position of the column. When 
PIP, = 1,  bifurcation of equilibrium takes place. The original straight 
configuration of the column will become unstable, in Fig. 2.10, this 
unstable cquilibrium is represented by the line AB. A bent configuration 

FIGURE 2.10 Large displacement load-dellection bel~avior of a pinned-ended 
column 
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will be favored; in Fig. 2.10, this stable equilibrium position is repre- 
sented by curve AC. The deflection modes at various stages of loading on 
the curve are represented by the inset diagrams. Both the end slope n 
and the midheight deflection 6 increase rapidly as PIP, rises slightly 
above unity. The midheight displacement is the greatest when PIP. is 
about 1.7. After that, further increase on load will result in a decrease in 
midheight deflection due to the fact that the column has now turned 
inside out, and the applied force P will now act as a tensile rather than a 
compressive force to  close the loop. 

Some observations and conclusions can be made from the present large 
displacement analysis: 

1. Both the linear and nonlinear theories give the same prediction of the 
critical load (PC,) = P,. 

2. When PIP.> 1,  a slight increase in P will result in a large increase in 
displacement. 

3. The postbuckling behavior of the column is stable because the buckled 
column can carry additional axial load beyond the Euler load (PC). 

4. Unlike the linear theory in which only the deflected shape, not the 
amplitude of deflection, can be determined, the nonlinear theory gives 
both the shape and amplitude of the buckled column. 

5. The increase in load above the Euler load can only be achieved at a 
very large lateral deflection. At such a large deflection, inelastic 
behavior of material must be considered in the analysis. In the plastic 
or  nonlinear range, the second-order differential equation becomes 
highly nonlinear and is often intractable. Recourse must then be had 
to numerical methods to obtain solutions. This is beyond the scope of 
this book. (Interested readers are referred to  the two volume, 
comprehensive book, Theory of Beam-Columns, by Chen and Atsuta 
[1976, 19771.) 

The consideration of material nonlinearity and yielding in the behavior 
of columns under the small displacement assumption will be given in 
Sections 2.7 to 2.9 of this chapter. 

2.3 END-RESTRAINED COLUMNS 

So far, we have considered the behavior of columns whose ends are 
pinned. In this section, we investigate the behavior of columns with other 
end conditions, and then compare them to the pinned-ended case in 
order to introduce the concept of effective length. The effectiue length of 
an end-restrained column is defined as the length of an equiualerrt 
pinned-ended column that will give the same critical load as the 
end-restrained column. Physically, the effective length can be visualized 
as the distance between the two inflection points (real or  imaginary) of 
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the buckled shape of the end-restrained member. This will be illustrated 
in the following examples. 

2.3.1 Both Ends Fixed 

Figure 2.11a shows a column built in at both ends. The forces acting on 
the column os it buckles are also shown in the figure. From Fig. 2.11b, it 
can be seen that equilibrium requires that 

Since the internal resisting moment is 

The differential equation for equilibrium of this column can be written 

The general solution consists of a complemenlary solution satisfying the 
homogeneous equatlon and a particular solution satisfying the entire 
equation. The complementary solution is given by Eq. (2.2.13); and the 
particular solution can he obtained by inspection as -Vx/P + MA/P.  
Thus, the general solution is 

The boundary conditions are 

y (0) = 0, y '(0) = 0 (2.3.5) 

y(L)=O, y'(L)=O (2.3.6) 

Using the conditions at + = U, we have 

Substitution of Eq. (2.3.7) into Eq. (2.3.4) gives 

Using y (L) = 0, we have 

Using y '(L) = 0, we have 



FIGURE 2.11 Fixed-fixed column 

(c) SYMMETRIC (d) ANTISYMMETRIC 

liIGURE 2.11 (continued) Symmetric and antisymmetric buckling modes of a 
Fued-fixed column 



From Eqs. (2.3.9) and (2.3.10), for a nontrivial solution of V and M., 
we must have 

By using the trigonometrical identity sin kL = 2 sin (kL12) cos (kLl2) 
and cos kL = 1 - 2 sin2 (kL/2), we can write Eq. (2.3.11) as 

kL kL kL , kL 
sin- 2 (Tcos- - -sn- )=~ 2 2 

Equation (2.3.12) can be satisfied if either the fint term sin (kLl2) or 
the terms in the parenthesis vanish. 

If the first term vanishes, the solution is kL = 2r1n where, n = 1, 2, 
3, . . . , from which the critical load is obtained by setting n = 1, i.e., j 

If the terms in the parenthesis vanish, the lowest value that satisfies the 
. kL kL kL kL  k L .  

equatlon -cOs-- sin-=O or tan-=- n k L =  8.987 from which 
2 2 2 2 2 

The values of Eqs. (2.3.13) and (2.3.14) correspond to the critical loads 
of the symmetric (Fig. 2.11~) and antisymmetric (Fig. 2.11d) buckling 
modes of the column, respectively. Sincc the critical load of the 
symmetric buckling mode is less than that of the antisymmetric buckling 
mode. The column will buckle in the symmetric mode. Unless the 
midheight of the column is braced against lateral movement, Eq. (2.3.14) 
will have little significance to us. The deflected shape of the symmetric 
buckling mode can be obtained by substituting V = 0 (because of 
symmetry) and k = 2n lL  into Eq. (2.3.8): 

If we define KL as the effective length of this fixed-fixed column, the 
equivalent pinned-pinned column with length KL (Fig. 2.11~) that will 
carry the same critical load as the fixed-fixed column with length L can be 
obtained by solving the following equation 

which givcs 
KL=:L  (2.3.17) 
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In other words, the length of the equivalent pinned-pinned column is 
half that of the fixed-fixed column. Equivalently, the inflection points of 
the fixed-futed column are at a distance of L /2  apart (Fig. 2 .11~) .  The 
factor K is called the effecfiue length factor of the f i xed - f ed  column. To  
verify that the inflection points are indeed as shown in Fig. 2.11c, we first 
write the moment expression along the length of the column and set it 
equal to zero to calculate the distances x that give the locations of the 
inflection points. By differentiating Eq. (2.3.15) twice, we can write the 
moment expression as 

from which 

Using n = 1 and 3, give x = L/4  and 3L/4. Hence, inflection points are 
located a t  x = L/4  and 3L/4 and so the distance between them is 
3L14 - L / 4  = L/2, as shown in Fig. 2 .11~.  

In general, for a centrally loaded, and end-restrained column, the 
effective length factor K can be evaluated directly by the following 
equation 

(2.3.20) 

where 

PC, = critical load of the end-restrained column 
PC = Euler load of the pinned-pinned column having the same length as 

the end-restrained column 

Equation (2.3.20) can easily be derived from the definition of effective 
length factor similar to that of Eq. (2.3.16). 

2.3.2 One End Fixed and One End Free 

Figure 2.12a shows a column built in at one end and free at the other 
end. The corresponding free-body diagram of a short segment of the 
column is shown in Fig. 2.12b. The equilibrium equation for the free 
body is 



where A is the lateral deflection at the free end of the column. The 
internal moment is 

Mi., = Ely" (2.3.22) 

The internal moment is related to the second derivative of the deflection 
d2yldx2 positively because the curvature Q (or the rate of change of the 
slope dy'ldr.  of the deflected curve as sketched in Fig. 2.12b, that 
corresponds to the positive moment Mi,,,) increases with increasing x. 

y" + k2y = k 2 A  (2.3.23) 

where k 2 =  PIEI. 
The general solution is 

Using the boundary conditions 

Y (0) = 0 
y'(0) = u 

we obtain 
B = - A  
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which, upon substitution into Eq. (2.3.24), gives 

y =A(1  - cosk r )  (2.3.29) 

Using the condition 

Y(L) = A  

in Eq. (2.3.29) will give 

coskL=O 

from which 

The critical load is the load corresponding to  n = 1 or 

The deflected shape corresponding to  PC, is 

L 
The effective length factor is 

The deflected shape of the equivalent pinned-pinned column with length 
K L  = 2L is shown in Fig. 2.12(c). 

2.3.3 One End Hinged and One End Fixed 

Shown in Fig. 2.13a,b are the diagrams of a hinged-fixed column and the 
free body of a short segment of the same column cut at a distance x from 
the hinged support. Note that for moment equilibrium, a shear force of 
M F / L  must be present at both ends of the column to balance the fixed 
end moment M F ,  which is induced in the built-in end as the column 
buckles. 

The equilibrium equation for the column segment shown in Fig. 2.13b 
is 

and since 
M. I,,, = - E I ~ ' ~  (2.3.37) 
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FIGURE 2.13 Hinged-fixed column 

we can write the equilibrium equation (2.3.36) as 

MF y " + k 2 y - - x = 0  
EIL 

where k2 = PIEI. 
The general solution is 

The boundary conditions are 

Using the first two boundary conditions, we obtain 

A = -  M~ 
P sin kL 
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and the deflection function (2.3.39) becomes 

Using the third boundary condition in Eq. (2.3.45) gives 

tan k L  = kL (2.3.46) 

from which kL can be solved by trial and error o r  by graphical means. 
The lowest value of kL that satisfies Eq. (2.3.46) is 

kL = 4.4934 (2.3.47) 

which gives 

The deflected shape of the column at buckling is 

and the effective length factor is 

The effective length KL = 0.7L is shown in Fig. 2.13a. 
Note that the term M,/P in Eq. (2.3.49) represents the displacement 

at x = 0.2 L of the buckled member. This displacement is indeterminate 
as for the other cases of end-restrained columns shown in this section 
because of the use of the linear theory based on the small displacement 
assumption. 

2.3.4 One End Fixed and One End Guided 

A column with one end fixed and the other end guided is shown in Fig. 
2.14a. Note that the shear force is zero but the moment is not zero at the 
guided end. Because of antisymmetry, the moment at the fixed end has 
the same direction and magnitude as the moment at the guided end. As  a 
result, if we denote A the relative horizontal displacement of the two 
ends of the column, it follows that the end moment from equilibrium 
consideration will be PA/2. 

The  equilibrium equation for a segment of this column is (Fig. 2.14b) 
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(a) 

FIGURE 2.14 Fixed-guided column 

and upon substitution of the expression for the internal moment 

Mi,, = Ely" (2.3.52) 

we obtain the differential equilibrium equation as 

where k2 = PIEI. 
The general solution is 

Using the boundary conditions of 

y(O)=O, y ' (O)=O 

respectively in the general solution (2.2.54) gives 

A 
B = - - ,  and A=O 

2 
Thus 
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Using the boundary condition 

gives 

or 

y (L) = A 

coskL= -1 

kL = nx, n = l , 3 ,  . 
The critical load is given by letting n = 1, hence 

The deflected shape at P, is 

and the effective length factor is 

The effective length KL of the equivalent pinned-pinned column is also 
shown in Fig. 2.14a. 

2.3.5 One End Hinged and One End Guided 

If a column is hinged at one end and guided at the other, as shown in Fig. 
2.158, the equilibrium equation for a segment of this column (Fig. 2.15b) 
can be written as 

-Mi., + Py = 0 (2.3.63) 

Since the internal moment is 

Mi,, = - Ely " (2.3.64) 

the differential equation governing the behavior of this column is 

EIy1'+Py = 0  (2.3.65) 
or 

y" + k2y = 0 (2.3.66) 

The general solution is 

y = A s i n k x + B c o s k r  (2.3.67) 

The boundary conditions are 

~ ( 0 )  = 0  
yl(L) = 0 



(a) 

FIGURE 2.15 Hinged-guided column 

Using the first boundary condition, we have 

B = O  (2.3.71) 

Therefore, Eq. (2.3.67) becomes 

y=As inkx  (2.3.72) 

Using the second boundary condition, we obtain 

cos kL = 0 (2.3.73) 

from which 

nn 
k L = - ,  n = 1 , 3 , 5 ,  . .  . 

2 
(2.3.74) 

The lowest value of n gives the critical load of the column 

x2EI 
PC, = - 

4L2 
(2.3.75) 

The deflected shape at buckling is 

nx 
y =Asin-  

2L 
(2.3.76) 
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The effective length factor is 

2.3.6 AlSC Effective Length Factor and Column Curve 

From the above discussion, it can be seen that for an isolated column, 
regardless of its end conditions, the critical load can be expressed in the 
general form as 

where K is the effective length factor that is dependent on the boundary 
conditions of the column. The theoretical values of K for various 
boundary conditions have been derived in the preceding sections and are 
summarized in Table 2.1. On the same table, the K-values recommended 
by the AISC3 are also shown. The recommended K-values involving 
cases with fixed support are higher than their theoretical counterparts 
because full join fixity is seldom realized in actual columns. 

For design purpose, it is more convenient to express Eq. (2.3.78) in 
graphical form. Realizing that I = Ar2 and defining 

as the yield load and 

as the slenderrress parameter, Eq. (2.3.78) can be written as 

Equation (2.3.81) is plotted in Fig. 2.16. Note that the curve 
terminates at P =0.5Py, because Eq. (2.3.81) is only valid for perfectly 
elastic columns. For columns in the inelastic range (P  >0.5Py or 
A , < ~ ) ,  a different column curve by AISC based on the tangent 
modulus concept (to be discussed in Section 2.7) is used for practical 
design. The demarcation point ( P  = 0.5Py or A, = ~) for elastic and 
inelastic column behavior is based on experimental observations that the 
maximum compressive residual stress of a hot-rolled-column section is 
approximately 0 . 3 ~ ~ .  The use of the number 0.5 rather than 0.3 is for 
conservative purposes. 
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Table 2.1 Theoretical and Recommended K Values for Idealized Columns 

(a) (b) (4 (dl (el (0 ' 1 1  1 1  

Buckled shape of column 
is shown by dashed line 

I 
0.5 0.7 1.0 1.0 2.0 2.0 

Rcromrnendcd dcsign 
value when ideal condi- 
tions arc approximated 0.65 0.80 1.2 1.0 2.10 2.0 

Rotation hxcd and translation rued 

End condition cudc 
Rotation tree and translation fixcd 
Rotvtion fixed and translation free 

P I 
Rotation frcc and translation frcc 

2.3.7 Elastically Restrained Ends 

The discussion so far has been focused on axially loaded columns with 
rotational restraint at their ends that are either fully rigid (fixed-ended 
case) or nonexistent (pinned-ended case). In actual structures, columns 
usually do not exist alone but connected to other structural members that 
will provide accountable rotational restraint to the columns. Conse- 
quently, it is pertinent to investigate the behavior of columns with 
elastically restrained ends. 

Figure 2.17a shows an end-restrained column acted on by an axial force 
P. Here, it is convenient to represent the effect of end restraint by a 
spring with rotational stiffnesses RkA and Rk, at the A and B ends of the 
column, respectively. The rotational stiffness is defined as the moment 
the spring can sustain for a unit rotation. 

Referring to Fig. 2.17b, the equilibrium equation for the column 
segment is expressed as 



FIGURE 2.16 Column design curve for  elastic column 
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The internal resisting moment is 

Mi,, = - Ely" (2.3.83) 

Therefore, the differential equation of equilibrium can be written as 

The general solution of the differential equation is 

Using the displacement and slope boundary conditions for the specific 
problem and recognizing that 

M A = R ~ A ~ A  (2.3.86) 

M B = R ~ ~ B  (2.3.87) 

the critical load of the end-restrained column can be obtained as shown in 
the forthcoming example. 

As an illustrative example, the buckling load of the column in the 
simple frame shown in Fig. 2.18a will be determined. 

At buckling, the forces that act on the column are shown in the 
free-body diagram of Fig. 2.18~. Because of symmetry there is no shear 
force acting on the column. Since the applied force P is generally much 
greater than the shear forces VA and V, that are induced as the beams 
bend during column buckling, the differential equation of the column can 
be written as (Fig. 2.18d) 

where MA is the end moment induced at joint A as a result of buckling of 
the column. 

Note that Eq. (2.3.88) is a special form of Eq. (2.3.84), with the 
column shear force V  equal to zero. The general solution is 

Using the boundary condition 

Y (0) = 0 
we obtain 
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FIGURE 2.18 Buckling of an end-restmined column 

Using the symmetry condition, 

we have 

Hence 

and 
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By referring to the free-body diagram of the lower beam (Fig. 2.18b) 
and setting 0, = M,, = M,, = 0 in the following slope-deflection 
equations 

we can obtain 

from which we have 

If rigid connection is assumed, the beam end rotation will be exactly 
equal to the column-end rotation, i.e., 

Thus, by equating Eq. (2.3.98) to Eq. (2.3.95) evaluated at x =0 ,  we 
obtain 

Equation (2.3.101) is the transcendental equation whose solution will 
give the value of the buckling load. 

Using graphical method or by trial and error, it can be shown that the 
smallest value of kL satisfying Eq. (2.3.101) is 

Note that this critical load for the column restrained by the two beams 
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falls between PC, of a pinned-pinned column and that of a fixed-fixed 
column. The effective Length factor for this elastically end-restrained 
column in the simple frame is 

2.4 FOURTH-ORDER DIFFERENTIAL EQUATION 

In the previous section, the governing differential equation describing the 
behavior of the column has been developed by consideration of equi- 
librium for a column segment of finite size. The resulting equilibrium 
equation is second order. Depending on the end conditions, this 
second-order differential equation may or may not be homogeneous. By 
enforcing proper geometric (or kinematic) boundary conditions, the 
critical load can be obtained as the eigenvalue of the characteristic or 
transcendental equation of the differential equation. In this section, a 
fourth-order differential equation (2.4.6), which is applicable to all 
columns with any boundary condition, will be developed. 

Figure 2.19 shows the free-body diagram of an infinitesimal segment of 

FIGURE 2.19 Free-body diagram of 
an infinitesimal segment of a column 
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the column. By summing the moment about point b, we obtain 

or, upon simplification 

Summing force horizontally, we can write 

or ,  upon simplification 

Differentiating Eq. (2.4.1) with respect to x, we obtain 

which, when compared with Eq. (2.4.2), gives 

d2y Since M = - E l 2  Eq. (2.4.4) can be written as 

Equation (2.4.6) is the general fourth-order differential equation that is 
valid for all support conditions. The general solution to this equation is 

y = A s i n k x + B c o s k r + C x + D  (2.4.7) 

To determine the critical load, we need to specify four boundary 
conditions: two at each end of the column. In most cases, mixed-i.e., 
both geometric and force-boundary conditions are needed to be 
specified. 

T o  show how to obtain critical loads using the fourth-order differential 
equation, we will solve the cases of a pinned-pinned, a fixed-fmed, and a 
fixed-free column. 
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Pinned-Pinned Column 

For a pinned-pinned column (Fig. 2.20), the four boundary conditions 
are: 

y(O)=O, M(O)=O (2.4.8) 

y (L) = 0, M(L) = 0 (2.4.9) 

Since M = -EIyr', the moment conditions can be written as 

y "(0) = 0 (2.4.10) 

y"(L) = 0 (2.4.11) 

Using the conditions y (0) = yr'(0) = 0, we obtain 

B = D = O  (2.4.12) 

The deflection function (2.4.7) reduces to 

y = A s i n k r + C x  (2.4.13) 

Using the conditions y(L) = y"(L) = 0, Eq. (2.4.13) gives 

A s i n k L + C L = O  (2.4.14) 
and 

-AkZsin kL = 0 (2.4.15) 

FIGURE 2.20 Pinned-pinned column 
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In matrix form 

If A = C =0, the solution is trivial. Therefore, to obtain a nontrivial 
solution, the determinant of the coefficient matrix of Eq. (2.4.16) must 
vanish, i.e., 

sin kL  

or 
kZL sin kL = 0 (2.4.18) 

Since k Z #  0, we must have 
sinkL=O (2.4.19) 

o r k L = n n ,  n = l , 2 , 3  , . . . .  
The critical load can be obtained by setting n = 1 to give 

Fixed-Fixed Column 

The four houndary conditions for this case are (Fig. 2.21) 

y(0) = y'(0) = 0 (2.4.21) 

y(L) = y'(L) = 0 (2.4.22) 

Using the first two houndary conditions, we ohtain 

D=-B,  C=-Ak  (2.4.23) 

The deflection function (2.4.7) becomes 

y = A(sin kx - kx) + B(cos kx - 1) (2.4.24) 

Using the last two boundary conditions, we have 

For a nontrivial solution, we must have 

det 1 sin kL - kL 
(2.4.26) 

cos kL - 1 - sin kL  

or, after expanding 

k L s i n k L + 2 c o s k L - 2 = 0  (2.4.27) 
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FIGURE 2.21 Symmetric buckling 
mode of a fixed-fixed column 

Note that Eq. (2.4.27) is identical to Eq. (2.3.11) and thus the critical 
load for the symmetric buckling mode is P, = 4n'EIIL2 and that for the 
antisymmetric buckling mode it is PC, = 80.766EIIL2. 

Fixed-Free Column 

The boundary conditions for a fixed-free column are (Fig. 2.22). 
At the fixed end 

and, at the free end, the moment M = EIy" is equal to zero 

and the shear force V =  - d M l d x  = -EIy"' is equal to the transverse 
component of P acting at the free end of the column cross section Py' 
(Fig. 2.22). 

It follows that the shear force condition a t  the free end has the form 

y' t '+k2y'=0 (2.4.31) 

Using the boundary conditions at the fixed end, we have 

B + D = O ,  Ak+C=O (2.4.32) 



1 
FIGURE 2.22 Pixed-free column P 

The boundary conditions at the free end gives 

As inkL+BcoskL=O,  C=O (2.4.33) 

In matrix form, Eqs. (2.4.32) and (2.4.33) can be written as 

[ '  : "[[a]=[!] (2.4.34) 
sin kL cos kL 0 

For a nontrivial solution, we must have 

or, after expanding 
k cos kL = 0 (2.4.36) 

Since k + 0, we must havc cos kL = 0 or 

= O  (2.4.35) det 

n n  
kL=- 11=1,3,5 

2 
, . . .  (2.4.37) 

The smallest root (n = 1) gives the critical load of the column 

0 1 1  
k 0 0 

sin kL cos kL 0 
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Table 2.2 Boundary Conditions for Various 
End Conditions 

End conditions Boundary conditions 

Pinned y=O, y"=O 
Fixed y=O, y'=O 
Guided ~ ' - 0 ,  y"'=o 
Free 0, y"'+k2y' = 0 

For the three cases studied, the solutions of the fourth-order 
differential equation are seen to lead to the same critical loads as the 
second-order equation. Note that the second-order equations for these 
cases studied previously are different because of different boundary 
conditions, but the fourth-order equation is the same for all cases. In 
determining the critical load using the fourth-order equation, four 
boundary conditions must be specified. The boundary conditions for 
various support cases are summarized in Table 2.2. 

-. -, 

2.5 SPECIAL MEMBERS 

The discussion so far has been restricted to columns for which the axial 
force P and flexural rigidity El are constant along the length of the 
member. Furthermore, no intermediate support is present, so that 
restraint is provided only at the ends of the column under investigation. 
In this section, we shall extend the solution for evaluating critical loads of 
prismatic isolated columns with constant axial force to columns with a 
change in axial force, a change in flexural rigidity, or with intermediate 
support (Fig. 2.23). 

2.5.1 Two-Axial-Force Column 

As an illustration, consider the cantilever column shown in Fig. 2.24a. 
The column is subjected to two axial forces P: one applied at the free end 
and the other at midheight. As a result, the axial force along the entire 
length of the column is not a constant. The axial force is equal to 2P for 
the lower portion of the column from A to B (segment I),  but it is equal 
to P for the upper portion of the column from B to C (segment 2). To 
determine the critical load of this column, it is therefore necessary to 
write two differential equations, one for each segment of the column for 
which the axial force is a constant. For convenience, two sets of 
coordinates are established: x ,  - yl for column segment 1 and x,  - y2 for 
column segment 2. 



FIGURE 2.23 Special members 

FIGURE 2.24 Cantilever column subjected to two axial forces 

r ;  
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With reference to Fig. 2.24b, the differential equation for segment 1 is 

or  

where 

MA = P ( A B  + A,) 

in which A, and A,  are the lateral deflections with respect to the x ,  - y ,  
axes for points B and C, respectively. The general solution of Eq. (2.5.2) 
is 

MA y, = A  sin k , x  + B cos k,x + - 
Elk? 

With reference to Fig. 2 . 2 4 ~ .  the differential equation for segment 2 is 

where 

Mn = P ( A c  - A,) 

The general solution of Eq .  (2.5.7) is 

MB y2 = C sin kzx2 + D cos k2x2 + - 
EIkI 

(2.5.10) 

The four constants A, B,  C,  and D in Eqs. (2.5.5) and (2.5.10) can be 
evaluated using the following boundary and continuity conditions 

Y , ( O )  = o  L/ -- - (2.5.11) 

Y ; ( O ) = O  I/ (2.5.12) 

YI(:) = ~ 2 ( 0 )  + AB (2.5.13) 
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The first two boundary conditions give 

MA B =  -- 
Elk: 

A = O  (2.5.16) 

and the continuity conditions (2.5.13) and (2.5.14), give 

MB MB MA C O S k l L + - - -  D =  -- 
Elk: 2 Elk: Elk: 

(2.5.17) 

MA k , L  c=- sin - (2.5.18) 
E l k l k 2  2 

Substitution of these expressions into the deflection functions (2.5.5) 
and (2.5.10) gives 

MA yl = -7 ( 1  - cos k l x l )  (2.5.19) 
E l k ,  

and 
MA k l L  . 

sin - sln k2x2 y2=Elk,kZ 2 

cos kZx2 + - cos--- MB (2.5.20) 
E I ~ Z ,  

Finally, using the conditions 

and realizing that M A  = P ( A ,  + A,) and MB = P(Ac  - A,),  we obtain 

where 
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For a nontrivial solution, we must have 
- 
i 

det 1;:: ;::I = 0 

By trial and error, and by recognizing that k,  = ~ k Z ,  we find that the 
lowest value of k2 satisfying Eq. (2.5.25) is 

Using the definition of k ,  [Eq. (2.5.8)] ,  we obtain 

2.5.2 Continuous Member 

In the preceding example, the second-order differential equation has 
been used in the solution procedure. The fourth-order differential 
equation is equally applicable, of course. To illustrate this, consider the 
two span continuous column shown in Fig. 2.25a. The column is 
subjected to an axial force P. It  is desired to determine the critical load of 
this column. Here, as in the preceding example, the column is divided 

FIGURE 2.25 Continuous member 
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into two segments, 1 and 2, and a differential equation is written for each 
segment. For convenience, two sets of coordinate axes are again 
established: xl  - y, for segment 1 and x,  - y2 for segment 2. 

The fourth-order differential equation for segment 1 is 

where k 2  = PIEI and the general solution is 
/ 

i' 

y, = A sin !al + B ash, + ~ x , p ~  
.~~- 2 ~- -- ~ 

(2.5.29) 
~ r. 5 ;, -$ I; .r . . 

Similarly, the fourth-order dlffere$iq:l'equation for segment 2 is 

IV y2 +k2y;=0 (2.5.30) 

and the general solution is 

y,= Esinkr ,+  Fcoskx,+ Gx2f/f? (2.5.31) 

By using the boundary conditions 

Y I ( O ) = O ,  Y;(O)=O (2.5.32) 
.y,&L)zO- (2.5.33) 

Y2(0) = 0, Y X O )  = 0 (2.5.34) 

YZ(L)  = 0, (2.5.35) - -_i 

and the continuity conditions 

Y ; ( $ L )  *-yk(L) - . 
i : ( i ~ j =  Y X L )  

it can be shown that 

B = D = F = H = O  
and 

-- 
The minus sign in Cq. (2.5.36) indicates that a posltlve slope at the 
intemediate support with respect to the x ,  - yl axes corresponds to a 
negative slope with respect to the XZ-M axes (Fig. 2.25b) For a 
nontrivial solution, the determinant of the coefficient matrix of Eq. 
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(2.5.39) must vanish 

det 1 0 
k cosi,kL 1 k sinkL cos kL L I = O  1 

I -sin$kL 0 sin kL 0 I 
or, after simplification, we obtain the characteristic equation as 

5 sin tkL  sin kL - 3kL sin 4kL = 0 (2.5.41) 

By trial and error, the smallest value of k that satisfies the characteristic 
equation is 

using k2 = PIEI,  we have 

2.6 INITIALLY CROOKED COLUMNS 

In reality, all columns are imperfect. There are two types of imperfec- 
tions: geometrical imperfection and material imperfection. In this sec- 
tion, we investigate the behavior of geometrical imperfect column. The 
behavior of column with material imperfection will be discussed in the 
next section. 

2.6.1 Pinned-Ended Column 

Figure 2.26a shows a geometrical imperfect column. To begin with, let us 
assume that the initial out-of-straightness is in the form of a half sine 
curve described by 

Jcx 
yo = 6, sin - 

L 

where 6, is the amplitude of the crookedness at midheight of the column. 
If we consider equilibrium of a segment of column (Fig. 2.26b), the 

equilibrium equation is 



P P 

(a )  (b) 

FIGURE 2.26 Initially crooked column 

noting that y is the deflection of the column from its original crooked 
position. 

The internal resisting moment is 

This internal bending moment results from a change in curvature y" 
and not from the total curvature y " +  y;, since it  is tacitly assumed that 
the column is stress-free in itsinitially crooked position before the 
application of the load P. 

Substituting thc expression for the internal moment (2.6.3) into the 
equilibrium equation (2.6.2), the differential equation that describes the 
behavior of an initially crooked pinned-ended column takes the form 

Ely" + P(y +yo) = 0 

or  using Eq. (2.6.1), we have 

ZX 
y" + kZy = -k26, sin - 

L 

where k2= PIE1 and the complementary solution is 

y , = A s i n k r +  Bcoskx 
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The particular solution can be obtained by using the method of 
undetermined coefficient. Since the right-hand side of the equation 
consists of a sine and/or cosine term, the particular solution is of the 
£0 Im 

in which C and D are the undetermined coefficients. 
To determine C and D, we substitute Eq. (2.6.6) into the differential 

equation (2.6.4), and, after combining terms, we obtain 

This equation must be satisfied for all values of x. Thus, the terms in both 
square brackets must vanish. The vanishing of the first square brackets 
leads to 

in which PC is the Euler load. The vanishing of the second square brackets 
gives either I 

If we use Eq. (2.6.10), we obtain P,=x'EI/L2, which is the Euler load. 
This is not the solution we are interested in here. Therefore, we must 
have D = 0. As a result, the general solution is 

To determine the two constants A and B, we use the boundary conditions 

Y (0) = 0 (2.6.12) 

Y(L) = o  (2.6.13) 

Using the first boundary condition, we have 

B = 0 (2.6.14) 

and the second boundary condition leads to 

A sin kL = 0 (2.6.15) 
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from which either 

A = 0 

sin k L  = 0 

If we let sin kL = 0, we again limit the solution to P = PC. Therefore, we 
must have A = 0. With A = B = 0, Eq. (2.6.11) becomes 

Equation (2.6.18) expresses the deflection from the initial crooked 
position of the column. To obtain the total deflection (i.e., deflection 
from the x-axis), we need to add Eq. (2.6.1) to Eq. (2.6.18). 

Equation (2.6.19) states that the total deflection (induced as a result of 
the applied compressive force) can be obtained simply by multiplying the 
initial deflection by a factor 1/(1- PIP,). The term in parenthesis in Eq. 
(2.6.19) is called the amplification factor (AF) 

The moment in the column is 

M = P(.Y +YO) = PY,,,,~ 
or 

If we denote M, as the first-order moment, or the moment evaluated by 
considering equilibrium with respect to the initial geometry of the 
geometrical imperfect column, then we can write Eq. (2.6.21) as 

Equation (2.6.22) states that the moment evaluated based on the 
deformed geometry of the column (second-order moment) can be 
obtained from the moment evaluated based on the initial geometry of the 
column (first-order moment) simply by multiplying the latter by the 
amplification factor. The variation of this moment amplification (or 
magnification) factor as a function of PIP. is shown in Fig. 2.7. 

If the initial crookedness of the column is not a half sine wave but 
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some general shape, it is advantageous to express this general shape in a 
Fourier sine series 

nx 2nx 
yo=6,sin-+&sin-+ . .  . 

L L 
(2.6.23) 

If we proceed as before with each term of the series, and then sum the 
results together, we have 

2.6.2 Perry-Robertson Formula 

For an eccentrically loaded column, it has been shown that a formula (the 
Secant Formula) can be developed that relates the stress in the column to 
its slenderness ratio. For an initially crooked column, a similar approach 
can be taken to develop an equation called the Perry-Robertson 
f o r m ~ l a , ~ . ~  which also relates the stress in the column to its slenderness 
ratio. 

The maximum stress in an initially crooked column can be expressed as 
the sum of axial and bending stress. 

where 

A = cross-section area 
c = distancc from neutral axis to extreme fiber 
I = moment of inertia 

The maximum moment for an initially crookcd column occurs at 
midheight and is given by setting x = L/2 in Eq. (2.6.21) I 

Substitution of the M,, into the expression for a,, and using I =Ar2  
gives 

This is called the Perry-Robertson formula. Agaln, using the first 1 
yielding of the material as the criterion of failure for the column, the 
ultimate or critical load can be determined from Eq. (2.6.27) by setting 



Columns 

The Secant and Perry-Robertson formulas are, strictly speaking, valid 
only for very long or slender columns for which their slenderness ratios 
Llr are large, so that the stress in the column will remain in the elastic 
range at the buckling load. For shorter columns, material yielding is more 
important than geometrical imperfection. As a result, it is essential to  
consider the material imperfection in describing the behavior of shorter 
or stocky columns. The behavior of inelastic columns will be discussed in 
the next section. 

2.7 INELASTIC COLUMNS 

The discussion so far pertains to columns for which the material remains 
fully elastic and obeys Hooke's Law. This assumption is valid as long as 
the column is slender enough so that buckling occurs only at a stress level 
below the proportional limit of the stress-strain relationship of the 
material. For shorter columns, buckling will occur at a stress level above 
the proportional limit (Fig. 2.27). This type of buckling is referred to as 
the irrelastic bucklirrg. For columns that buckle inelastically, some of the 
fibers in the cross section have been yielded before buckling occurs. As a 
result, only the fibers that remain elastic are effective in resisting the 

FIGURE 2.27 Critical stress above proportional limit 

L___ 
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additional applied force. Since only a portion of the cross section is 
effective in resisting the axial force at buckling, the elastic modulus E 
must be replaced by an effective modulus E., to describe the behavior of 
an inelastic column. In this section, we will discuss the buckling behavior 
of a perfectly straight column buckled in the inelastic range; in particular, 
we will discuss the tangerlt modulus d~eory  and the reduced modulus 
theory proposed by Engesser7 and the inelastic column theory of 
Shanley.' 

2.7.1 Tangent Modulus Theory 

The tangent modulus theory was proposed by Engesser7 in 1889 to 
describe the buckling behavior of columns whose buckling stress is above 
the proportional limit of the material. The following assumptions are 
made in the tangent modulus theory: 

1. The column is perfectly straight. 
2. The ends of the column are pinned and the load is applied along the 

centroidal axis of the column. 
3. The bending deformation of the column is small. 
4. Plane sections before bending remain plane after bending. 
5. During bending, no strain reversal (i.e., unloading of fibers) occurs 

across the cross section of the column. 

For inelastic buckling, the stress in the fibers is above the proportional 
limit of the material (Fig. 2.27). In what follows we shall show that the 
fangent modulus E, governs the behavior of the fibers during buckling of 
the column. 

Figure 2.28a shows a pinned-pinned column buckling at the tangent 
modulus load P,. The distributions of strain and stress across the cross 
section are shown in Fig. 2.28b. In the figure, o, and E ,  are, respectively, 
the stress and strain at the tangent modulus load before buckling. When 
the column buckles at the tangent modulus load, it is assumed that there 
is an increase in the axial force AP together with the bending moment 
AM. This increase in axial force AP combined with the incresing bending 
moment AM is such that it will cause an overall increase in axial strain 
across the section, so that no strain reversal will take place anywhere in 
the cross section. As a result, the tangent modulus E, will govern the 
stress-strain behavior of all fibers of the cross section as shown in Fig. 
2 .28~.  

The differential equation governing the behavior of this column can 
now be derived as follows: 

For a column segment of length x from the support, the equation of 
equilibrium can be written as 

-Mi., + Py = 0 (2.7.1) 
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FIGURE 2.28 Tangent modulus theory 

where P is the applied centroidal axial force and y is the distance from 
the line of action of the axial force to the centroidal axis of the cross 
section as the column bends. 

The internal moment at the section due to bending has the general 
form 



2.7 Inelastic Columns 99 

where a is the longitudinal stress of a fiber in the cross section and z is 
the distance from that fiber to the centroidal axis of the cross section. 

From the stress diagram in Fig. 2.28b, it can easily be seen that a can 
be expressed as 

Substituting Eq. (2.7.3) into Eq. (2.7.2) gives 

or, expanding 

Since the first moment of area about the centroidal axis is zero, i.e., 

k d A - 0  

and realizing that 

JA-id~ = I  (2.7.7) 

is the moment of inertia I of the cross section, we can write Eq. (2.7.5) as 

By substituting AD,,,,= E,Ae,, in Eq. (2.7.8) and recognizing that 
A&,,.lh is the curvature @ of the cross section (Fig. 2.28b), Eq. (2.7.8) 
becomes 

Assuming a small deflection, the curvature @ can be approximated by 
the second derivatives of the deflection or @ =  -y". As a result, Eq. 
(2.7.9) can be written in the usual form 

Substituting the internal moment (2.7.10) into the equilibrium equation 
(2.7.1), we have 

Equation (2.7.11) is the governing differential equation for an inelastic 
column developed on the basis of the tangent modulus theory. 
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The only difference between Eq. (2.7.11) and Eq. (2.2.10), is that E in 
Eq. (2.2.10) is replaced by E, in Eq. (2.7.11). As a result, by following 
the same procedure as in Section 2.2, the critical load of this inelastic 
column based on the tangent modulus theory is 

The load expressed in Eq. (2.7.12) is called the tangent modulus load. 
We will show later that this load is the smallest load at which bifurcation 
of equilibrium of a perfectly straight column can take place in the 
inelastic range. The effecrive modulus in the tangent modulus theory is 
therefore the tangent modulus, E,. The tangent niodulus used in Eq. 
(2.7.12) depends only on the material property (i.e., stress-strain 
relationship of the material). 

2.7.2 Double Modulus Theory 

The double rnodul~s theory, also referred to as the reduced rnodrrlus 
theory, was proposed by Engcsser7 in 1895, based on the concept given 
by Considere.' 

The first four assumptions used for the development of tangent 
modulus theory are also used in the reduced modulus theory. However, 
the fifth assumption is different. In the reduced modulus theory, the axial 
force is assumed to remain constant during buckling; consequently, the 
bending deformation at buckling will cause strain reversal on the convex 
side of the column. The strain on the concave side of the column, on the 
other hand, continues to increase. As a result, the increments of stress 
and strain induced as a result of the bending of the column at the 
buckling load will be related by the elastic modulus on the convex side of 
the column, but the increments of stress and strain on the concave side of 
the column are related by the tangent modulus. Since two moduli, E and 
E,, are necessary to describe the moment-curvature relationship of the 
cross section, the name double rnodulus was used. Because the double 
modulus is less than that of the elastic modulus that appcarcd in the Euler 
buckling formula, the double-modulus load will be less than that of the 
Euler buckling load. This will be  dernonstratcd in what follows. Thus, the 
double-modulus load is also called the reduced rnodulus load. 

Figure 2.29a shows the buckled shape of a centrally loaded pinned- 
ended inelastic column at the reduced modulus load, P,. The correspond- 
ing strain and stress distributions are shown in Fig. 2.29b. The relation- 
ship between the increments of stress and strain as a result of bending 
deformation is shown in Fig. 2.29~.  The governing differential equation 
describing the behavior of this column can be derived as follows. 
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FlGURE 2.29 Double (reduced) modulus theory 

For a column segment of length x from the support, the equation of 
equilibrium can be written as 

where P is the applied centroidal axial force and y is the distance from 
the line of action of the axial force to  the centroidal axis of the cross 
section as the column bends. 

The internal moment<urvature (Mi., - @) relationship for the cross 
section will be derived i~i the following. Because the axial force remains 
constant as the column buckles at the reduced (or double) modulus load, 
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FIGURE 2.30 Forces due to bending according to AP .bP- 

the additional compressive force induced as a result of bending of the 
column must be equal to the additional tensile force such that the net 
increase in axial force A P  is zero (Fig. 2.30), i.e., 

This pair of forces A P  ,,,,..,,, and AP ,,,,,,, constitutes a couple and 
the internal resisting moment of the column is equal to  this couple 

where c is the distance between this pair of forces. 
Since the moment arm or the locations at which AP,.mp,.,,i,, and 

AP,,,,,. act depends on the geometry of the cross section, we must 
specify the geometry of the cross section before we can proceed to 
evaluate the internal resisting moment. 

Rectangular Cross Section 

Considering a rectangular cross section with dimensions b and h as shown 
in Fig. 2.31, we can write 

Equating these two forces, 

we obtain 
CI Au2max -=- (2.7.18) 
CL A0lmlT 
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FIGURE 2.31 Inelastic buckling of a column with rectangular cross section 

Since 
A u I m m  = E t A ~ l m r r  = EtclQ (2.7.19) 

Au,,,, = E A  E~~~ = Ec2Q (2.7.20) 

where Q is the curvature, we can write Eq. (2.7.18) as 

Realizing that 

c l + c 2 = h  (2.7.22) 
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we can solve for c ,  and c, from Eqs. (2.7.21) and (2.7.22) 

Using Eqs. (2.7.23) and (2.7.19), Eq. (2.7.16a) can be written as 

Similarly, using Eq. (2.7.24) and (2.7.20), Eq. (2.7.16b) can be written as 

Since the distance, c, between this pair of forces AP ,,,,,,, ., and AP ,,., ,. 
for a rectangular section is 

c = f h  (2.7.27) 

the internal resistance moment, Eq. (2.7.15). has the value 

or 

where 

is the reduced modulus for the recta~~gular cross sectior~, and 

is the moment of inertia of the rectangular cross section. 
Again, for a small deflection analysis, we can write Eq. (2.7.29) as 

Mi", = - E,Iy" (2.7.32) 

Substitution of the above equation into the equilibrium equation 
(2.7.13) 

Equation (2.7.33) is the governing differential equation for the inelastic 
column derived on the basis of the reduced modulus theory. 

Again, comparing Eq. (2.7.33) with Eq. (2.2.10), the only difference is 
that E in Eq. (2.2.11) is replaced by E, in Eq. (2.7.33). Therefore, by 
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following the same procedure as in Section 2.2, the critical load of the 
inelastic column is 

The load expressed in Eq. (2.7.34) is called the reduced modulus load. 
It is the largest load under which a real column can remain straight. This 
will be described further in the next section. 

In the reduced modulus theory, the effective modulus of the column is 
of course the reduced modulus, 4. Unlike the tangent modulus, the 
reduced modulus is a function of both material property and geometry of 
the cross section of a column. In other words, given the same material 
property, the reduced modulus will be different for different cross- 
sectional shapes. Thus, the expression for E, given in Eq. (2.7.30) is only 
valid for rectangular cross sections. 

Idealized I Section 

For idealized symmetric I-sections (i.e., I-sections of equal flange areas 
connected by a web of negligible thickness), it can be shown that the 
reduces modulus is (see Problem 2.12) 

The reduced modulus, E,, is always smaller than the elastic modulus, 
E, but larger than the tangent modulus, E,, i.e., 

hence 

2.7.3 Shanley's Inelastic Column Theory 

Shanley's inelastic column theorye uses a simplified column model to 
explain the postbuckling behavior of an inelastic column. Recall in the 
tangent modulus theory, a slight increase in axial force is assumed at the 
onset of buckling, so that no strain reuersal occurs in any cross section as 
the column bends at the tangent modulus load. On the other hand, in the 
reduced modulus theory, the axial force is assumed to remain constant at 
buckling, so that a complete strain reversal occurs at the convex side of 
the column as the column bends at the reduced modulus load. In 
Shanley's inelastic column theory, it is assumed that buckling is accom- 
panied simultaneously by an increase in the axial force. Thus, at any 
instant as the column buckles, the net increase in axial force is not zero as 
postulated in the reduced modulus theory, but equal to a finite value 
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F'IGURE 2.32 Shanley's inelastic column theory 

given by the diflerence of AP ,.,,,,, i,, and APt,.,ilC (Fig. 2.32). The 
magnitude of this increase in axial force AP is such that strain reversal 
may occur at the convex side of the column as shown in the stress 
diagram uf Fig. 2.32. 
BY using a simule column model (Fig. 2.33) in which the column is - 

represented by two rigid bars connected by a deformable cell consisting of 
two small longitudinal links, Shanley shows that the relationship between 
the applied load P and the midheight deflection d can be expressed as 

where 

P, = tangent modulus load of the column 
b =width of the column cross section 
r= EJE, in which E, is the tangent modulus 

In deriving Eq. (2.7.38), Shanley assumes that the column begins to 
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FIGURE 2.33 Shanley's inelastic 
column model 

bend as soon as P, is reached. Thus, Eq. (2.7.38) gives the postbuckling 
behavior of the column, i.e., the behavior of the column when P>P,. 

Figure 2.34 shows a plot of Eq. (2.7.38). It  can be seen that as P 
increases above P,, there is an increase in midheight deflection d. As d 
becomes large, P approaches P,, the reduced modulus load. It should be 
remembered that Eq. (2.7.38) was developed on the basis of the simple 
column model (Fig. 2.33). For a real column in which EL varies across the 
cross section and along the length of the column, the load-deflection 
behavior of the column will follow the dashed lines in Fig. 2.34. An 
important observation is that the maximum load of a really perfectly 
straight inelastic column lies somewhere between the tangent modulus 
load and the reduced modulus load. Hence, the tangent modulm load 
represents a lower bourtd and the reduced modulus load represents an 
upper bound to the strength of a concentrically loaded, perfectly straight 
inelastic column. Experiments on real columns show that their maximum 
strengths usually fall closer to the tangent modulus load than to the 
reduced modulus load. This is because unavoidable imperfections always 
exist in real columns along with accidental load eccentricities during the 
testings. Both of these effects tend to lower the strength of real columns. 
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havior of column according to 
Shanley's inelastic column theory d 

Because of this, and because of the ease with which the tangent modulus 
load can be obtained when compared to the reduced modulus load, the 
tangent modulus is usually adopted in practice to represent the ultimate 
strength of a centrally loaded real column. 

In deriving the inelastic buckling loads of the column (PC and P,) ,  the 
ends of the column are assumed to be pinned. If the end conditions of the 
column are not pinned, the concept of effective length should be applied 
with the term L on Eqs. (2.7.12) and (2.7.34) replaced by KL, the 
effective length of the column. 

2.8 DESIGN CURVES FOR ALUMINUM COLUMNS 

The tangent modulus concept discussed in thc preceding section can be 
used directly to construct column curves for the design of aluminum 
columns. A coltcrnn crlrue is a curve that gives the critical buckling load 
or critical buckling stress (a,,) of a column as a function of its slenderness 
ratio (KLlr) .  

If we divide both sides of the tangent modulus load equation by A, the 
cross-section area of the column, we obtain 

Denoting 
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and recognizing that I =Ar2, where r is the radius of gyration of the cross 
section, Eq. (2.8.1) can be written as 

To plot a=, versus KLIr using Eq. (2.8.3), we have to know E,, which, 
in turn, is a function of a,,. Thus, to obtain a proper value of E,, we must 
first know the stress-strain relationship of the material. The stress-strain 
relationship of aluminum alloys as obtained from experiments (coupon 
tests) can best be fitted by the Ramberg-Osgood equation.'" 

The Ramberg-Osgood equation has the form 

where 

E = elastic Young modulus 
aD., = 0.2% offset yield stress 

rr = hardening parameter 

Since E, is the slope of the a -  E curve, we can therefore determine E, 
from Eq. (2.8.4) by a direct differentiation 

Figure 2.35 shows the nondimensional stress-strain curve of the 
aluminum alloy 6061-T6 (described in reference 11) with E = 10,100 ksi 
(69,640 MPa), a0., = 40.15 ksi (277 MPa), and rr = 18.55. Using Eq. 
(2.8.5), the values of E, for any given stress a can be determined. A plot 
of E,/E versus a/aQ,, is shown in Fig. 2.36. Using this figure, the column 
curve for this aluminum alloy can be obtained as follows: 

1. Pick a value of a, called a=,. 
2. Obtain E, from Eq. (2.8.5) or from Fig. 2.36. 
3. Calculate the slenderness ratio from the equation 

which is simply a rearrangement of Eq. (2.8.3) 

Following the procedures outlined above, for any given a=,, a cor- 
responding value of KLIr can be obtained. The variation of a,, with 
KLIr is shown in Fig. 2.37. 
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FIGURE 2.35 Stress-strain curve of aluminum alloy 6061-T6 

This curve can be used directly for column design. To select a section 
to carry a specific load, the designer first picks a trial section, calculates 
the value KLIr, and reads the corresponding a,, from Fig. 2.37. If this 
ac, is greater than the actual stress o = P / A  acting on the column, the 
section is considered satisfactory. Usually in design, a safety margin is 
established by either lowering the value of critical stress a,, and/or 
by increasing the value of applied stress a so that a,, is guaranteed to 
exceed a. 

Note that the column curve in Fig. 2.37 is applicable only to columns of 
aluminum alloy 6061-T6. For other types of aluminum alloys, the 
stress-strain curve will be different and hence the column curve will be 
different. In fact, the column curve is extremely sensitive to the shape of 
the stress-strain curve. For instance, if we approximate the stress-strain 
curve of Fig. 2.35 (solid line) by two straight lines (dotted lines in figure), 
the corresponding column curve will be like the dotted lines in Fig. 2.37. 
As can be seen, there is a large discrepancy between the actual (solid 
line) and approximate (dotted lines) column eurves. The apparent 
discontinuity of the approximate column curves in Fig. 2.37 is due to the 
sudden change in the value of E, as the initial slope of the approximate 
stress-strain curve in Fig. 2.35 is replaced by a very much shallower 
slope. 
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FIGURE 2.36 Variation of tangent modulus with stress for aluminum alloy 
6461-T6 

2.9 STUB COLUMN STRESS-STRAIN CURVE 

The stub (or short) column stress-strain curve for a steel member is 
generally used to determine the critical load of the steel column directly 
from the tangent modulus equation (2.7.12). The value of E, in the 
formula is evaluated from the slope of the stub column stress-strain 
crtrue. This curve can be obtained by one of the following two methods 

1. Experimental 
2. Numerical 



Columns 

FlGURE 2.37 Column curve for aluminum alloy 6061-T6 

2.9.1 Experimental Stub-Column Stress-Strain Curve 

If a simple compression test is performed on a coupon cut from a steel 
member, the stress-strain relationship of the coupon will exhibit a linear 
elastic-perfectly plastic behavior as shown in Fig. 2.38 (dashed lines). 
However, if the samc test is performed on a short length of column (stub 
column test) and the average stress a, = P / A  is plotted against the axial 
strain E, the a - E relationship of the stub-column test will deviate from 
that of the coupon as shown in Fig. 2.38 (solid line)(In particular, after a 
certain average stress a,, has been reached, the stress-strain relationship 
of the stub column follows the curve ABC instead of AEC. This 
phenomenon is attributed to the presence of "lock-in" or residual SheSSeS 
in the steel column. Residual stresses are created in the column in the 
following way: Steel members are usually heated at some stage during thc- 
fabrication process. As they cool down, the part of the cross section for 
which the surface area to volume ratio is the largest will lose heat more 
rapidly than the part for which the ratio of surface area to volume is 
small. This uneven cooling creates a set of self-equilibrating StreSSeS in the 
cross section. These are what is called the residual stresses. 

For hot-rolled wide-flange shapes, which are used extensively in 
building construction, the toes of the flanges have a larger surface area to 
volume ratio than the regions where the web joins the flanges, hence the 
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FIGURE 2.38 Stress-strain relationship for steel 

toes of the flanges will cool faster. As the junctions of the web and 
flanges begin to cool and shrink, the toes of the flanges, which have been 
cooled and hardened already, will prevent the junctions from shrinking, 
with the result that the junctions of the web and flanges will be left in 
tension while the toes of the flanges will be left in compression. As for 
the web, if the height to thickness ratio is large, then the central portion 
will cool much faster than the portion where the web joins the flanges, 
and so a compressive residual stress will be induced at the central 
portion. On the other hand, if the height to thickness ratio is small, then 
cooling will be more uniform, so that the whole web will be in a state of 
tension. 

Figure 2.39 shows schematically the residual stress distributions on the 
flanges and web of a W8 x 31 hot-rolled section." As an axial force P is 
applied to the sections, the stress distribution over the cross section will 
change in several stages, as shown in Fig. 2.40. As the stress in any fiber 
equals or exceeds the yield stress, that particular fiber will yield, and any 
additional load will be carried by the fibers that are still elastic. From the 
figure, it is clear that yielding over the cross section is a gradual process. 
The fibers that have the highest value of compressive residual stresses will 
yield the soonest, followed by the fibers that have a lower value of 
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FIGURE 2.39 Residual stress distribution of a 
W8 X 31 section 

compressive residual stresses. Finally, the fibers that have tensile residual 
stresses will yield as the applied load further increases. Because of this 
gradual yielding process (plastification) over the cross section, the 
stress-strain curve of a stub column follows the rather smooth curve 
ABC in Fig. 2.38. 

The main difference between the aluminum and steel members is that 
for aluminum members the effect of residual stress is negligible and the 
nonlinear stress-strain behavior is due primarily to the material behavior. 
This nonlinearity shows up in a coupon test. For steel members, coupon 
tests show an elastic-perfectly plastic behavior, but the stub-column tests 
show a gradual yielding because of the presence of residual stresses. 

If a stub column stress-strain curve (obtained either experimentally or 
numerically) is available, then the critical load of the steel column can be 
determined directly from the tangent modulus formula Eq. (2.7.12) with 
a simple modification for the value of E, that is evaluated from the slope 
of the stub column stress-strain curue. 

2.9.2 Numerical Stub Column Stress-Strain Curve 

To generate the stub column stress-strain curve numerically, the cross 
section is first divided into a number of small elements as shown in Fig. 
2.41. Denote A: as the area of the j element and A", as the remaining 
area of the cross section that is still elastic, the stub column stress-strain 



2.9 Stub Column Slrerr-Strain Curve 

FLANGE WEB 

FIGURE 2.40 Change in stress distributions on the flanges and web as P 
increases 

curve can be traced numerically as follows: 

1. Specify a strain increment AE' (a negative quantity) at the i cycle. 
2. Calculate the stress increment Aoi from 

AU' = E (2.9.1) 

for every element that is still elastic. 
3. Calculate the current state of stress oi from 

oi = a,+ X Aoi (2.9.2) 

for every element that is still elastic. The stress a, is the value of 
residual stress for that particular element and is taken as positive if the 
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FIGURE 2.41 Discretization of cross section 

residual stress is tensile and negative if the residual stress is 
compressive. 

4. Check whether a particular element has been yielded. 
a. If Id( = oy, the element has yielded. Subtract the area A: of this j 

element from the area of the cross section that is still elastic, i.e., 

A:, = ~ ; y l -  m; (2.9.3) 

where 

A:, = area of the cross section that is still elastic at the i cycle 
A:;' = area of the cross section that is still elastic at the end of the 

previous cycle 

Proceed to the next element. 
b. If 10'1 <a,, the element is still elastic. Proceed to the next element. 
c. If ioil > cry, the state of stress of the element is larger than the yield 

stress. We need to scale down the strain increment A&' by a factor r 
given by 

in which a'-' is the state of stress of the element at the end of the 
previous cycle. Go back to Step 2 with A&' replaced by r A&'. 

5. Calculate the load increment AP' corresponding to the strain incre- 
ment A&' from 

AP' = AU'A;, = E A ~ ,  A&' (2.9.5) 

6. Calculate the average stress increment Ao:, at the end of the i cycle 
by 

AD:, = APIA (2.9.6) 
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7. Evaluate the current state of average stress of the cross section 

.. A" + A d v  (2.9.7) 

8. Finally, evaluate the current state of strain of the cross section from 

Ei  = Ei-l  + ~ & i  (2.9.8) 

Thus, for each value of strain calculated in Step 8, there is a correspond- 
ing value of average stress calculated in Step 7. By repeating the process, 
an average stress versus strain curve can be plotted. This numerically 
generated o - E curve can be used in conjunction with Eq. (2.7.12) to 
obtain P, for the column. E, is obtained as the slope of this stress-strain 
curve. 

E, can also be represented by the expression EA,,IA. This is 
demonstrated as follows: 

For a given load increment AP,  we can write 

AP = A  Ao,,, (2.9.9) 

where A is the area of the cross section and A q , .  is the average stress 
increment of the cross section. On  the other hand, AP is related to A& by 

AP = EA,, A& (2.9.10) 

where E is the elastic modulus and A,, is the area of the elastic cross 
section. 

Equating Eqs. (2.9.9) and (2.9.10), we have 

A do,,= EA., A &  (2.9.11) 
and 

Since E, is the slope of the average stress-strain curve, it follows that 

Note that the ratio A,,IA can easily be calculated in the numerical 
procedure described above at any stress level oi, by forming the ratio 
A';,IA at the end of Step 4. 

2.10 COLUMN CURVES OF IDEALIZED STEEL I-SECTION 

In Section 2.8, we discussed the column curves for aluminum columns. 
For aluminum columns, the nonlinear stress-strain behavior is due 
primarily to  material nonlinearity. This nonlinear stress-strain relation- 
ship can be approximated closely by the Ramberg-Osgood equation [Eq. 



118 Columns 

(2.8.4)]. Upon differentiation of this equation, an expression for E, can 
be obtained [Eq. (2.8.5)]. With the tangent modulus known, an 
aluminum-column curve can be constructed by the procedure outlined in 
that section. 

For steel columns, the stress-strain behavior of a coupon is elastic- 
perfectly plastic as shown in Fig. 2.38. As a result, the tangent modulus 
can not be obtained directly from this curve. Instead, it should be 
obtained from the slope of a stub-column stress-strain curve (Fig. 2.38). 

If a stub-column stress-strain curve (obtained either experimentally or 
numerically) is available, then the critical load of the steel column can be 
determined directly from the tangent modulus formula [Eq. (2.7.12)], 
with L?, determined from the slope of the stub-column stress-strain curve. 
However, if a stub-column stress-strain curve is not available, an 
analytical approach can be used to find PC, for a given value of KLIr in 
the inelastic range (for KLIr  in the elastic range, the critical load PC, is 
the Euler load, PC). In this approach, an idealized I-section is used. An 
idealized I-section is an I-section with negligible web thickness. In 
addition, an assumed residual stress distribution is also used. For 
illustration purposes, an idealized I-section with linear, varying residual 
stress is shown in Fig. 2.42. In the figure, a,. denotes the value of 
compressive residual stress at the toe of the flanges and a, the value of 
tensile residual stress at the flange-web junctions. To maintain self- 
equilibrium in the absence of an externally applied force, the tensile and 
compression forces resulting from the tensile and compressive residual 
stresses must be in self-balance. If the flanges of  the idealized I-section 
are identical and are of uniform thickness, we must have 

a,, = art = a, (2.10.1) 

Now, if an external force is applied concentrically to this column, 
portions of the cross section will yield, leaving only part of the cross 

.--- 
section elastic. The yielded portion cannot carry any adsti-r 

37 X 5 - i s e l a s t i c - p e r f e c t l y  plastic, stress-strain relationship. As a 
result, only the elastic core (the elastic portion of the cross section) will 
be effective in resisting the applied load. In other words, only the elastic 
part of the cross section will provide the flexural rigidity to the column as 
it buckles. Based on this argument, the critical load of the column can be 
written as 

where 

I, = moment of inertia of the elastic core of the 
column cross section 

PC = Euler buckling load 



2.10 Column Curves of Idealized Steel I-Sedion 

FIGURE 2.42 Assumed residunl-stress 
distribution of m idealized I-section 

The ratio I , / I  in Eq. (2.10.2)  depends on ( i )  the axis of bending of the 
column, (ii) the shape of the cross section, and ( i i i )  the distribution of 
residual stresses over the cross section. 

For an idealized I-section with a linear variation of residual stresses 
(Fig. 2.42) ,  the ratio I . / I  can be established as follows: 

Strong Axis Bending 

If the moment of inertia about the centroidal axes of the flanges are 
ignored, the ratio I c / I  about the strong ( x  - x )  axis can be written as 

The quantities b,, r,, and h are as shown in Fig. 2.43.  

Weak Axis Bending 

The ratio I J I  for the column bend about the weak ( y  - y )  axis is 

Using Eqs. (2 .10 .3)  and (2 .10 .4) .  we obtain from Eq. (2.10.2):  



FIGURE 2.43 Partially plas- 
tified cross section 

For strong axis bending 

For weak axis bending 

It is obvious from Eqs. (2.10.5) and (2.10.6) that the critical loads are 
different for the same column bent about different axes. Since neither PC, 
nor b,, is known, we need another equation to relate PC, and b,.. This 
equation can be obtained by writing the expression for the axial force 
acting on the column that corresponds to a partially plastified cross 
section (Fig. 2.43). 

P = 2[aybftt - ! ( a y  - on)bcd (2.10.7) 

In Eq. (2.10.7), a, is the stress at the middle of the flange. From 
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similar triangles, it can be shown then 

Substituting Eq. (2.10.9) into Eq. (2.10.7) gives 

where A = 2bftf  is the area of the cross section of the idealized I-section. 
Rearranging and realizing that o., = PIA is the average stress over the 
cross section, we have 

On substituting Eq. (2.10.12) into Eqs. (2.10.5) and (2.10.6), we have 
for strong axis bending 

or divide both sides by A o ,  

and, for weak axis bending, 

(KLIr)  is the slenderness parameter. 

For hot-rolled, wide-flange sections 0,=0.30, .  Using this value for or 
and specifying a value of a,,(= a,,), a corresponding value for A, can be 
determined. By repeating this process, a column curve for o,/oy versus 
& can be plotted. Figure 2.44 shows such a plot. Note the difference in 
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FIGURE 2.44 Column curves (theoretical, CRC, and AISC) 

load-carrying capacity of the column for bending about different axes. In 
general, for hot-rolled, wide-flange sections, the load-carrying capacity of 
the column is larger for strong axis bending than that for weak axis 
bending. This is because the detrimental effect of compressive residual 
stress at the tips of the Ranges is more pronounced for weak axis bending 
than that of strong axis bending. 

Also shown in the figure are the column curves for I-sections with 
parabolic residual-stress distributions. Again, it is obvious from the figure 
that the distributions of residual stresses in a cross section have an 
influence on column strength. Extensive research at Lehighl>" has 
shown that the distributions of residual stresses for hot-rolled I-sections 
usually fall between that of the linear and parabolic types. As a result, 
they represent upper and lower bounds to the strength of hot-rolled 
H-columns. 

2.11 DESIGN CURVES FOR STEEL COLUMNS 

2.11.1 Column Design Curves 

Column Research Council Curve 

On the basis of both column curves developed previously for the 
idealized I-shaped columns with linear and parabolic residual stress 
distributions as well as test results of a number of small and medium-size 
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hot-rolled, wide-flange shapes of mild structural steel, the Column 
Research Council (CRC) recommended in the first and second editions of 
the GuideI6 a parabola of the form 

to represent the column strength in the inelastic range. The column 
strength in the elastic range, however, is represented by the Euler 
formula. The point of demarcation between inelastic and elastic behavlor 
is chosen to he a,, = 0.50,. The number 0.5 is chosen as a conservative 
measure of the maximum value of compressive residual stress present in 
hot-rolled, wide-flange shapes, which is about 0.30,. To obtain a smooth 
transition from the parabola to the Euler curve as well as to maintain a 
compromise between the strength of columns bent about the strong and : 
weak axes, the constant B in Eq. (2.11.1) 1s chosen to be 4 / 4 n 2 E .  The 
slenderness ratio that corresponds to 0,,=0.50, is designated as C, I 
where 

Thus, for columns w~th  slenderness ratios less than or equal to C,, the 
CRC curve assumes the shape of a parabola and for slenderness ratio 
exceeding C,, the CRC curve takes the shape of a hyperbola, i.e., 

For comparison purposes, Eq. (2.11.3) is rewritten in its load form in 
terms of the nondimensional quantities PIPv and A,, in which P, is the 
yield load gi? = AoY aid 1. is the slenderness parameter given by 
A, = ( K L I r )  u,ln E 

The CRC curve is plotted in Fig. 2.45 in its nondimensional form [Eq. 
(2.11.4)]. 

AlSC Allowable Stress Design Curve 

The CRC curve divided by a variable factor of safety of 

5 3 KLIr 1 KLIr ' 5 3 A, -+- - -- - --+- - -- 2 
3 8 ( C. ) 8 ( C. ) - 3  8 ) : ($)1 (2'11'5) 
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FIGURE 2.45 Column-design curves 

in the inelastic range and a constant factor of safety of 23/12 in the elastic 
range gives the AISC Allowable Stress Design (ASD) curve. The factors 
of safety are employed to account for geometrical imperfections and load 
eccentricities that are unavoidable in real columns. The AISC-ASD curve 
is also plotted in Fig. 2.45. The ASD column curve is used in conjunction 
with the ASD format given by 

R" " -a.C Q.i F.S. ;=, 
where 

R. = nominal resistance. (For column design, R.1F.S. is represented 
by the ASD column curve) 

Q.  =service loads. 

AlSC Plastic Design Curve 

The ASD curve multiplied by a factor of 1.7 forms the AISC Plastic 
Design (PD) curve (Fig. 2.45). In plastic design, only the inelastic regime 
of the curve is used because of the slenderness requirement. The design 
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format for plastic design of columns is thus 

r.a. ,=I 

where y is the load factor used in the present AISC-PD Specification. 
The values for y are y = 1.7 for live and dead loads only, and y = 1.3 for 
live and dead loads acting in conjunction with wind or earthquake loads. 

Structural Stability Research Council Curves 

Both the ASD curve and PD curve are originated horn the CRC curve, 
which was developed on the basis of the bifurcation concept that assumes 
the column to he perfectly straight. Although the effect of residual stress 
is explicitly accounted for, the effect of geometricnl imperfections is only 
accounted for implicitly by applying a variable factor of safety to the 
basic strength curve. 

Realizing that perfectly straight columns are rarely encountered in real 
life,  researcher^'^.'^ investigated theoretically and experimentnlly the 
strength and stability of initially crooked imperfect columns. It is evident 
from the results of these studies that the strengths of different types of 
steel columns, which are the result of different manufacturing and 
fabrication processes, different sizes and steel grades, and different axes 
of bending, may vary considerably, so that multiple-design curves may be 
desirable. 

On the basis of a computer model developed for a geometrically 
imperfect column with an initial out-of-straightness at midheight equal to 
0.001L, and with actual measured values of residual stresses, a set of 
three multiple-column strength curves from a total of 112 columns being 
investigated was developed.17 Each of these curves is representative of 
the strength of a related category of columns. In the categories covered 
by these column curves we find hot-rolled and cold-straightened mem- 
bers, wide-flange and box shapes, as well as round bars and members 
composed of welded plates. 

The Structural Stability Research Council (SSRC), in its third edition 
of the Guide,'' presents these three column curves along with the former 
one (CRC curve). 

The expressions for the three SSRC curves are the following: 

Cume 1 
(O< AcS0.l5) 

(0.15 s A C <  1.2) 

( 1 2  A 1 8 )  (2.11.8a) 

(1.8 < A, S 2.8) 

(Ac > 2.8) 
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Curve 2 

1 (yield level) ( 0 s  Acs0.15) 

1.035 - 0.2O2Ac - 0.2222: ( 0 . 1 5 ~ 2 ~ ~ 1 . 0 )  -=I -0.111 + 0.636A;' + 0.0872;' ( 1 . 0 ~ A ~ s 2 . 0 )  (2.11.8b) 
ps 0.009 + 0.877A;' (2.OSAcS3.6) 

A;' (Euler buckling) (A, 2 3.6) 

Curue 3 

1 (yield level) (0<AcS0.15) 

1.093 - 0.6222, (0.15s ACs0.8) 
I-[ - -0.128 +0.7072;'- 0.102A;' (0.8 ~ 1 ~ ~ 2 . 2 )  (2.11.8~) 
PY 0.008 + 0.792A;' (2.2 s Ac s 5.0) 

A;' (Euler buckling) (A, a 5.0) 

These equations were obtained by curve-fitting a parabola or hyperbola 
to the designated characteristic column curves that are the arithmetic 
mean curves of the three divided categories. These column curves are 
used in conjunction with the Columrz Selection Table shown in Table 2.3. 

The curves in each category as developed based on the stability 
a~lalysis. In the stability analysis, the complete load-deflection behavior 
of the column is traced from the start of loading to the ultimate state. 
Hence, a stability analysis is also known as a load-deflection analysis. The 
peak point of this load-deflection curve is the maximum load the column 
can carry. As mentioned previously, the stability analysis is quite 
different from that of the bifurcation analysis. In the bifurcation analysis, 
the load that corresponds to the state of bifurcation of equilibrium is 
calculated using an eigenvalue analysis. However, for columns that are 
initially crooked, lateral deflection begins as soon as theload is applied and so 
there is no distinct point of bifurcation. Stability analysis of columns will be 
discussed in Chapter 6. Usually, recourse must be had to numerical method 
for solutions. 

For comparisons, the three SSRC curves are also plotted with the 
CRC, ASD, and PD curves in Fig. 2.45. It can be seen that these curves 
belly down in the intermediate slenderness range (0.75 < A, < 1.25) 
because of the combined maximum detrimental effects of both residual 
stresses and initial crookedness on the column strength as predicted by 
the computer model. Tests of real columns have shown that the 
detrimental effects of residual stresses and initial crookedness are not 
always synergistic and so the SSRC curves with "belly down" in the 
intermediate slenderness range will be too conservative for most columns 
in building frames. 



Table 2.3 SSRC Multiple C o l u m n  Curves  Selection Table (Numbers  in pa ren lheses  may b e  subjected to  later change)  

Steel grade (ASTM) 

Fabrication delails 

Hybrid 

Bending A7 A 
A572 

A A ~ 5 1 4  n ~ 5 1 4  FL ~ 4 4 1  FL 
nxrs A36 242 50 65 441 514 A441 WEB A36 WEB A36 WEB 

Major 2 1 1 - - - Light Minor 2 2 11 1 

- - - 
Rolled wide-8aogc 

Major 1 - - - Heavy Minor ti] 1 - - - 

Ramc-cut Major 2 1 I 1 - 7 
1 2 

Light Universal 2 
mill Minor 3 2 

Welded built-up H Rams-cut Maior 2 12) 2 (2) 2 (1) (1) (I) (2) 
~ i k r  2 bj 2 (zj 2 i2j 

Universal 
(2) izj iz j 

Major 3 (2) (2) (2) 2 (I) 
mill Minor 3 (2) (2) (2) 2 (2) 

(2) (2) (2) 
(2) (2) (3) 

I Mnssivc solid - (2) (1) 11) (1) (1) (1) - - - 

Circular 

- 

Extruded 
Tubes rolled - (1) (1) (1) (1) (1) (1) - - 

Welded - (2) (1) (1) (1) (1) (1) - - 

Extruded rolled Major - 
Miuor {:I 1 I f /  {:I - 

Box 1 Flame-cut Major 2 1 - - - 
- - - 

universal E$: i - [I - 
- - 

mill Minor 2 - - 

Stress-relieved shapes (all types) Major 1 1 1 1 1 I I 1 1 A 
Minor 1 1 1 1 1 1 I 1 1 N 

V 
Cold-strdghtcned (gil~~ctl or rollcr.rtraightcncd) ;arc dcrigncd amording to the column curve immcdi~lcly above the curve lor thc corresponding unstraiphlcncd 

shape. This is no1 valid for rhdpcs slresdy assigned to curve 1. 
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AISC Load and Resistance Factor Design Cuwe 

As a result, the AISC Load and Resistance Factor Design (LRFD) 
SpecificationZo adopts the following curve 

exp [-0.4191:] 1, s 1.5 
LC > 1.5 

to represent column strength. Note that only one curve is recommended 
for the whole range of possible column strengths. In the development of 
this curve, the following assumptions were made: 

1. The column has small end restraints corresponding to an end-restraint 
parameter G = 10 (see Chapter 4) or an effective length factor 
K =0.96. 

2. The column has a11 initial crookedness sinusoidal in shape and has an 
amplitude of (1/1500)L at midheight. 

3. The axial force is applied at the centroid of the column end cross 
sections. 

This LRFD curve is plotted in Fig. 2.45 together with all other curves 
described above. Note that the LRFD column curve as represented by 
Eq. (2.11.9) is comparable to SSRC Curve 2, especially in the range 
0 s 1 < 1.0. The LRFD format is 

m 

W.>C riQ,i (2.11.10) 
i= 1 

where 
. -- R, = nominal resistance i . . 

Q. = nominal load effects 
.! . 

$I = resistance factor (see Table 1.2) cy, ._ -- .. .. 
y = load factor (see Table 1.1) 

Note that the LRFD format has the features of both the ASD and PD 
formats in that factors of safety are applied to both the load and 
resistance terms to account for the variabilities and uncertainties in 
predicting these values. Furthermore, these load and resistance factors 
(@, y) are evaluated based on first-order probabilistic approach. Since 
different types of loads have different degrees of uncertainties, different 
load factors are used for different types of loads (e.g., 1.6 for live load, 
1.2 for dead load, etc.); therefore, the LRFD format represents a more 
rational design approach. A 

The expressions for various column curves described above together 
with the three state-of-the-art design formats (ASD, PD, and LRFD) are 
summarized in Tables 2.4 and 2.5. 
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Table 2.4 Summary of Column Curves 

Column curves Column equations 

CRC curve 
P A2 

c'l-5 

AZ 
P 1.7(1-5) 

AlSC-PD curve - = s 1.0 .AcSV5 

2.11.2 Single Equation for Multiple-Column Curves 

Although multiple-column curves give a more realistic representation of 
column strengths, the use of these curves in design is rather cumbersome. 
For example, for the SSRC multiple-column curves, each curve is 
represented by nine or ten coefficients. It is therefore desirable to have a 
single equation that can be used to represent all these curves. In the 
present section, we will discuss two mathematical equations that can be 

Table 2.5 Summary of Design 
Formats 

ASD R. " -22 e.i F.S. jm, 

"7 

LRFD $R. 3 2 fie,, 
1-1 



Columns 

FIGURE 2.46 Physical model of imperfccl 
column 

I 
P 

used to represent these multiple-column curves. Both are developed 
based on the postulation that an initially crooked column with the initial 
crookedness at the midheight of the column equal to (Fig. 2.46) will 
fail under the combined action of axial force and (secondary) bending 
moment (arising from the P - 6 effect) according to the criterion 

in which 

P = aoolied axial force . . 
M = bending moment arising from thc P - 6 effect [Eqs. (2.6.20) and 

(2.6.22)] 

P,= ultimate axial capacity of the member in the absence of M 
Mu = ultimate moment capacity of the member in the absence of P 

Rondal-Maquoi Mathematical Form2' 

The Rondal-Maquoi mathematical expression can be developed by 
assuming that the ultimate strength of a column is reached when yielding 
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occurs at the most severely stressed fiber, i.e., when 

Using Eq.X2.11.12), we have 

Substituting My = Soy and P,IP, = A: into Eq. (2.11.15) and defining 
q = a i A I S  gives 

P 

Solving for PIP, yields 

P (1 + q + A:) - d ( 1 +  q + A:)' - 4Af -- - 
2~ f (2.11.17) 

PY 
Equation (2.11.17) is the Rondal-Maquoi equation. By setting 

q=cu(A-0.15) (2.11.18) 
where 

1 0.103 (SSRC Curve 1) 
LY = 0.293 (SSRC Curve 2) (2.11.19) 

0.622 (SSRC Curve 3) 

the three SSRC curves can all he closely approximated (Fig. 2.47). 

Lui-Chen Mathematical Formp 

The Lui-Chen equation can be developed by setting 

where 

P, = tangent modulus load of the column 
M,,, = flow moment (Fig. 2.48). 



0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

Ac 

FIGURE 2.47 SSRC multiple-column curves and Rondal-Maquoi equation 

FIGURE 2.48 Schematic representation of  average flaw moment M., 

O' *eTE L I K  MOMENT 

~ ~ , C C , A , - C  c, n>t, ..".,Ch,T 

CURVATURE Q 
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Thus, the criterion of failure for the column is 

Substituting Eq. (2.11.12) into Eq. (2.11.22) yields 

The flow moment can be expressed as the product of the plastic section 
modulus Z and an averageflow stress oo 

The flow stress is such that oylf S a,,< a,, in which f is the shape factor 
of the cross section. The shape factor is defined as the ratio of the plastic 
section modulus Z to the elastic section modulus 3. 

In view of Eq. (2.11.24), Eq. (2.11.23) can be written as 

P Pd, 
P, + 

= 1 

(1 -;)zoo 

where S =elastic section modulus. 
Defining 

and realizing that 
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1 a, K L  
where A c = -  n &(T), Eq. (2.11.26) can be written as 

in which 

i j  =- 
fays 

is the itnperfection parameter. 
Solving Eq. (2.11.32) for PIP, gives 

Equation (2.11.34) is the Lui-Chen equation for all column strength 
curves. 

The maximum load a column can carry is a function of i j ,  E, and I,. 
Any column curve can be generated using this equation provided that the 
parameters i j ,  E, and I, are known. 

Now, expressing the initial crookedness d i  of a column as a fraction of 
the column length L 

and realizing that 

I Ar' S=-=- 
C C 

where 

c =distance from neutral axis to extreme fiber of the cross section 
r = radius of gyration 

Equation (2.11.33) can be written as 
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or, in terms of A, (with K = 1 for pinned-ended column) 

Note that this imperfection parameter reflects the effects of yield stress 
(my), geometric imperfection (y), axis of bending (f), cross-sectional 
shape (c ,  r), and slenderness ratio (A,) on the load-carrying capacity of 
columns. 

The average flow stress a, depends on the degree of plastification of 
the cross section and is a function of the load level and column types. 
Since for a column the degree of plastification depends on the load level 
and the load level is a function of the slenderness ratio of the column, 
this flow stress can be thought of  as a function of the slenderness 
parameter A,. If A, is very large, PIP, is very small, the problem 
resembles a beam problem and the plastic limit momerzt M,, will govern 
the ultimate state, so a, will approach a,. On the other hand, if A, is very 
small, PIP, will approach unity, the problem resembles an axially loaded 
short-column problem and the yield moment My, will govern the ultimate 
state, so a, will approach oylf where f is the shape factor. 

On the basis of this argument, the following expression for the flow 
stress is proposed: 

The constant P can be determined from experiments or from calibra- 
tion against existing column curves. For small and medium-size hot- 
rolled, wide-flange shapes, the value of P for strong axis bending can be 
taken as -0.378 and for weak axis bending as -0.308. By substituting 
Eq. (2.11.39) into Eq. (2.11.38), we can write 

For a given column, the terms inside the brackets of Eq. (2.11.40) are 
known, so it can be written in the general form as 

where 

The modulus ratio E can be evaluated if the tangent modulus E, is 
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p =  -0.378 

0.80- 

P - 
5 

0.50- 

0.40- 

-- 
Suslnoto and Chon. 1982 

FIGURE 2.49 Comparison of Lui-Chen equation with computer model by 
Sugirnoto and Chen 

known either from an experimental or  a theoretical approach. Recall that 
the tangent modulus is the slope of the nonlinear stress-strain curve. This 
nonlinearity is due to material for aluminum columns but for steel 
columns, it is due to residual stresses existing in the steel cross sections. 
Thus, this modulus ratio will reflect material nonlinearity and imperfec- 

FIGURE 2.50 Comparison of Lui-Chen equation with computer model by 
Sugimoto and Chen 

0"=36 hml 

---- SupimoCo and Chen. 1982 

0.20 ---- Lul-Chsn Equntlon 



Table 2.6 Values of B and 6 for 
SSRC Multiple-Column Curves 

SSRC curve a 6 

1 0.0m -0.W1 
2 -0.036 0.159 
3 -0.092 0.453 

tions. For small and medium-size hot-rolled, wide-flange shapes, this 
modulus ratio can be conveniently taken as the ratio of the Euler curve to 
the CRC curve, i.e., 

Figure 2.49 shows two column curves, generated numerically by 
Sugimoto and ChenZ3 for a W12 x 65 section, bent about the section's 
strong axis with initial imperfection 6, at midheight equals to 0.001L and 
O.OO2L. Also shown in the figure are the two curves generated using the 
Lui-Chen equation. It can be seen that good agreement is generally 
observed between the numerically generated curves and the curves 
predicted using the mathematical equation. A similar comparison for the 
same column bent about its weak axis is shown in Fig. 2.50. Again, good 
agreement is generally observed. 

Equation (2.11.34) can also be used to approximate the SSRC 
multiple-column curves. By using the values of li and 6 shown in Table 
2.6, the SSRC column curves can be closely approximated (Fig. 2.51). 

2.12 SUMMARY 

For a perfectly straight column that buckles in the elastic range, the 
differential equation of equilibrium can be written as 

Ely" + Py = 5 V$ 5 Mo (2.12.1) 
where 

E = elastic modulus 
I= moment of inertia of the cross section 

P = axial force 
V, = end shear 
M, = end moment 
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FIGURE 2.51 Comparison of SSRC curves wit11 Lui-Chen equation 

The  general solution to  Eq. (2.12.1) is 

where k = and A and B are unknown coefficients. 
Since there are more unknowns in Eq. (2.12.2) than geometrical 

boundary conditions available in the problem, there is no unique solution 
for this equation. This class of problem is known as the eigenvalue 
problem. In an eigenvalue problem, nontrivial solutions for the depend- 
ent variable exist only for certain values called eigenvalues. The 
nontrivial solutions that correspond to these eigenvalues are called 
eigenvectors. Because there are more unknowns than boundary condi- 
tions, only the shape and not the amplitude of the eigenvector can be 
determined. For the case of a column, the eigenvectors are the buckling 
modes of the column and the eigenvalues are the values of k. The lowest 
value of k gives the critical load of the column. 

A t  the critical load, the column ceases to be stable in its initial straight 
position. A small lateral disturbance that occurs at the critical load will 
cause a lateral deflection that will not disappear as the disturbance is 
removed. 

Equation (2.12.1) is a second-order linear differential equation with 
constant coefficients. This equation depends on the end conditions of the 
column, since Vu and Mu are different for different end conditions. A 



2.12 Summary 139 

more convenient form that is independent of end conditions can be 
obtained by differentiating Eq. (2.12.1) twice to give 

Ely '" + Py" = 0 (2.12.3) 

whose general solution is 

Alternatively, Eq. (2.12.3) can be obtained by considering equilibrium 
of an infinitesimal segment of a column. Note that there are five 
unknowns (k, A ,  B,  C, and D )  in Eq. (2.12.4) and there are only four 
boundary conditions (geometrical and natural). Again, this is an eigen- 
value problem. The lowest eigenvalue to Eq. (2.12.4) will thus give the 
critical load of the column. 

For end-restrained columns, it is convenient to modify the unbraced 
length of the column to an equivalent length of a pinned-ended column 
so that the column curves prepared for pinned-ended columns can be 

I 
used directly for the restrained case. This can be achieved by multiplying 

i 
I 

the actual length of the end-restrained column by an effecfiue length i 

factor defined as 1 
K = v%% (2.12.5) 

The key phenomenon, that is associated with a column instability, is 
known as the P - 6 effect. This effect arises as the axial force P i s  acting 
through the displacement 6 of the member relative to its chord. The 
result of this effect is an increase in lateral deflection and moment in the 
column. This P - 6 effect can be studied conveniently by analyzing an 
eccentrically loaded or initially crooked column. From an elastic analysis, 
it can be shown that the moment in these columns can be obtained by 
simply multiplying the first-order moment by the anrplfication factor i 

sec (tm) (for eccentrically loaded columns) 

A F =  (2.12.6) 

Ll - ;,PC) 
(for initially crooked columns) 

For perfectly straight columns that buckle in the inelastic range, the 
critical load can be obtained by simply replacing the elastic modulus E by 
an effective modulus E,, where 

E, (according to the tangent modulus theory) I 

E, (according to the reduced modulus theory) i 

The use of this effective modulus can, approximately, take into account 
the material inelasticity. In the tangent modulus theory, no strain reversal 



is allowed, whereas in the reduced rnodulur theory, a complete strain 
reversal is allowed, and where a complete strain reversal is assumed to 
occur on the convex side of the column as it buckles. Although the 
reduced modulus theory is theoretically correct, the validity of the 
tangent modulus theory for predicting the buckling strength of real 
columns is demonstrated and explained by the St~anley's inelnstic column 
tl~eory. 

Since the tangent modulus load represents a lower bound to the 
buckling strength of real columns, and since it is easier to  evaluate than 
the reduced modulus load, the tangent modulus theory is used exten- 
sively to develop column strength curves for the purpose of design. For 
instance, the CRC column curve was developed on the basis of the 
tangent modulus concept. By introducing a safety factor to the CRC 
curve to account for imperfections of the columns and load eccentricities, i 
one can develop the AISC-ASD curve, which is contained in the present 
ASD Spe~ification.~ 

The tangent modulus concept is based on  the eigenvalue o r  bifurcation 
I I 

analysis. In  using the eigenvalue analysis one must assume that the 
column is geometrically perfect. Columns in reality are never perfect. As 
a result, an alternate and more elaborate approach that explicitly takes 
into account the effect of geometrical imperfections in the columns may 

' 

be desirable. This approach is known as the stability or  load-deflection 
analysis. In contrast to the eigenvalue analysis, in which only the load 

I I 
that corresponds to the point of bifurcation can be obtained, the 
load-deflection analysis permits us to trace the complete load deflection 
response of the column from the start of loading to failure. Because of 
the complexity in calculation inherent in the load-deflection analysis, 
recourse to numerical techniques is inevitable. The SSRC multiple- 
column curves have been developed on the basis of an extensive 
load-deflection analysis. The SSRC curve 2 represents the column 
strength of medium-sized hot-rolled, wide-flange shapes frequently used 
in building construction. This curve forms the basis of the new AISC- 
LRFD column curve, which is contained in the present LRFD 
Specification.w 

PROBLEMS 

2.1 Find the ratio of the critical loads that curresponds to the first two buckling 
modes of the hvo columns shown in Fig. P2.1. Sketch the deflected shapes 
of the columns. 



3 
3 

P 
EI-constant 

FIGURE P2.1 

2.2 Find the buckling load of thc rectangular section pinned at both ends (Fig. 
P2.2). 

I FIGURE P2.2 P 

2.3 Find the buckling load of the fixed-free stepped column shown below (Fig. 
P2.3). 

FIGURE P2.3 lhIo 
2.4 Find the buckling loads of the columns shown in Fig. P2.4a-c. 

'; ei L I L L r P 

FIGURE P2.4 i 
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FIGURE P2.4 El-canstant 

2.5 For the eccentrically loaded column shown in Fig. P2.5, find an approximate 
expression for the amplification factor A, in the form A, = ol(1- PIP.) 
where a = f(PIP.). Compare it with the exact expression A, = sec [(XI 
2 ) m l .  

* m 
FIGURE P2.5 

2.6 Discuss the assumptions used and the limitations of 
a. the Secant formula 
b. the Perry-Robertson formula 

2.7 Plot the tangent modulus column curve for an aluminum alloy column with 
11 = 8.0, %, = 22.78 ksi (157 MPa), E = 10,181 ksi (1.6 X 106MPa). 

2.8 Plot the reduced modulus column curve for the aluminum column in the 
above problem with the following cross section (Fig. P2.8). 
a. Find the ratio PJP, at A, = 0.4 and A, = 1.2 where A,= l l n m  (Ll 

r ). 
b. Approximate the stress-strain behavior of the aluminum alloy by two 

straight lines and re-evaluate the ratio KIP, at A,=0.4 and A,= 1.2. 
What conclusions can you draw upon comparison with the values 
obtained in part (a)? 

2.9 State the basic assumptions made in the development of the 
a. CRC eolumn curve 
b. SSRC multiple-column curves 

2.10 Describe the inter-relationship and design format of 
a. AISC-ASD column curve 
b. AISC-PD column curve 
c. AISC-LRFD column curve 
How is the concept of "safety factor" incorporated in these design formats? 



FIGURE PZ.8 

FIGURE P2.11 
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2.11 D e s i p  a W-section pinned at both ends and braced at midheight in the 
weak direction (Fig. P2.11) with an occupancy live load (L.) of 60 kips 
(267 kN), a roof live load (L.) of 40 kips (178 kN), and a dead load (D.) of 
60 kips (267 kN) based on 
a. the ASD format 
b. the PD format 
c. the LRFD format 

2.12 Denvc the reduced modulus of el;~st~city E, f o ~  an idealized [-section shown 
in Fir. PZ.12. In which i t  is assumed that one-half of the cross-section are;! is 

u 

concentrated'in each Aange and the area of the web is disregarded 

2.13 Find the buckling load of the column shown in Fig. P2.13. 

P :  1 -  m -- I. 

P 

FIGURE P2.13 I ~ I  

2.14 Find the critical load P for the structure shown in Fig. P2.14. 

I 4 h 
FIGURE P2.14 *---------------- I 

I 
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Chapter 3 

BEAM-COLUMNS 

3.1 INTRODUCTION 

A beam-column is a structural member that is subjected to both bending 
and compression. In reality, all members in a frame are beam-columns. 
However, if the axial force effect in a member is negligible compared to 
the bending effect, it is more convenient to analyze and design that 
member as a beam. On the other hand, if the bending effect in a member 
is secondary compared to the axial force effect, it is more convenient to 
treat such a member as a column and analyze and design it accordingly. 
Thus, beams and columns are regarded as special cases of beam-columns. 

Because for a beam-column both the bending and axial effects are 
significant, the analysis of this type of member involves the features of 
both the deflection problem as a beam and the stability problem as a 
column. As a beam problem, the bending moments induced in the 
member by the application of end moments, or by in-span transverse 
loadings, or  by a combination of both, will cause lateral deflections. 
These bending moments and lateral deflections are called primary 
bending moments and depectioru. As a column problem, the axial force at 
certain critical values will cause instability of the member. In the case of 
beam-columns, the axial force will act through the lateral deflection 
caused by the bending effect to produce additional lateral deflection and 
moment in the member. To distinguish between the deflections (and 
moments) induced by the bending and axial-force effects, it is customary 
to refer to the deflection (and moment) caused by the primary-bending 
effect as primary deflection (and moment), and to refer to the additional 



deflection (and moment) caused by the axial-force effect as secor~dary 
deAection (and moment). Note that the words primary and secondary are 
used solely for the purpose of convenience and not for the purpose of 
representing the relative importance of the two effects. In fact, the 
secondary deAection (and moment) of a beam-column caused by the 
axial-force effect is sometimes more significant than that caused by the 
primacy bending effect. 

Although the analysis of a beam-column is more complicated than that 
of a beam or a column, closed-form solutions of most beam-columns are 
available so long as they stay within the realm of purely elastic behavior 
in which the moment can be related to the curvature by a linear 
relationship. (See, for example, Theory of Elanic Stability by Timo- 
shenko and Gere.') If yielding or inelasticity occurs in the member, the 
moment-curvature relationship becomes nonlinear. In such cases the use 
of formal mathematics for the solution of the governing differential 
equations become intractable and recourse must be had to numerical 
methods to obtain solutions. In some cases, however, closed-form 
solutions are still possible if one makes drastically simplified assumptions 
regarding the stress-strain behavior of the material, cross-sectional 
geometry, and deAection shape of the member. For more general cases, 
however, only numerical solutions with recourse to computer routines are 
possible. (See, for example, the two-volume work by Chen and 
At~u ta? .~ )  

In this chapter, we will show in detail the elastic solutions of a simply 
supported beam-column under three types of loadingsthat  of (1) 
uniformly distributed, (2) concentrated, and (3) end moment s in  order 
to demonstrate the solution procedures and general behavior of a typical 
beam-column problem. Afterward, we will develop the general governing 
differential equation of a beam-column under general loading conditions. 
This, in turn, will be followed by the solution of an elastic-plastic 
beam-column under equal and opposite end moments. We will then 
conclude the chapter with a discussion of design equations, which will be 
based on the approaches used by the AISC for beam-columns. 

Since the behavior of a beam-column is different depending on whether 
there is a relative translation between the member ends, our discussions 
of beam-columns will address separately the norrsway versus the sway 
case. In addition, we will distinguish between cases in which the 
beam-column is treated as an individual member or as a member in a 
frarrre. To take into account the effects of other members on the 
beam-column under consideration in a frame, the concept of effective 
length factor will be used again. The AISC effective length alignment 
charts for nonsway and sway cases will be discussed on the basis of 
certain simple assumptions. 
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3.2 BEAM-COLUMN WITH UNIFORMLY DISTRIBUTED 
LATERAL LOAD 

3.2.1 The Closed-Form Solulion (Fig. 3.1) 

To begin our discussion of the elastic behavior of a beam-column, let us 
consider a simply supported beam-column subjected to an axial force P 
and uniformly distributed lateral load of intensity w as shown in Fig. 
3 . la .  A free-body diagram of a segment of the beam-column of length x 
from the left support is shown in Fig. 3.lb.  The external moment acting 
on the cut section, is 

If elastic behavior is assumed and if the material obeys Hooke's Law, 
the internal moment M;., is related to the bending curvature y" by the 
linear relationship 

where the negative sign indicates that the curvature or  the rate of change 
of slope y" = d y ' l d r  is decreasing with increasing x as shown in Fig. 3.lb. 

For equilibrium, the external moment must be balanced by the internal 
moment. Therefore, by equating Eqs. (3.2.1) and (3.2.2), we have, upon 
rearranging, 

w w L  
EIY"+ PY =-x2--x (3.2.3) 

2 2 

FIGURE 3.1 Beam-column with uniformly distributed lateral load 



where 

The general solution to Eq. (3 .2 .4)  consists of a complementary 
solution y, and a particular solution y,, i.e., 

Y =Yc+Yp  (3.2.6) 

The complementary solution that satisfies the homogeneous differential 
equation 

y" + k2y = 0 (3.2.7) 

has the general form 

The particular solution that satisfies Eq. (3 .2 .4)  can be obtained by 
either the method of undetermined coeficienu or by the method of 
uarintion of parameters. We shall use the method of undetermined 
coefficients for this example. 

In  the method of undetermined coefficients, since the right-hand side 
of Eq. (3.2.4) is a polynomial, we assume the particular solution to be a 
polynomial with the highest order equal to  that of the polynomial in the 
right-hand side of Eq. (3.2.4) 

in which C l ,  C,, and C3 are the undetermined coefficients. 
Taking derivatives of Eq. (3.2.9),  we obtain 

yb = 2C,x + C, (3.2.10) 

y;  = 2C1 (3.2.11) 

and so 

y;  + k'y, = 2C1 + k2(C1x2 + GX + C3) (3.2.12) 

Rearranging, we have 

y;  + kZyp = (Clk2)x'+ (C,k2)x + (2C1 + C3k2) (3.2.13) 

Upon comparison with Eq. (3.2.4),  we can write 
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from which 

Hence, the particular solution is 

w WL W 
x - 7 1 - 7  "=2ElkZ 2EIk Elk 

Substituting the complementary solution Eq. (3.2.8) and the particular 
solution Eq. (3.2.20) into Eq. (3.2.6) gives the general solution to Eq. 
(3.2.4) as 

from which 

The constants A and B can be obtained by considering the boundary 
conditions 

Using the first boundary' condition, we find 

and using the second boundary condition, we have 



Thus, Eq. (3.2.21) can be written as 

Introducing the notation 

Eq. (3.2.26) can be written as 

wL4 21~1. 
tanu sin-+cos--1 

L '" L I 
from which the moment distribution along the length of the member is 

3.2.2 The Calculation of y,, 

The maximum deflection of the member occurs at midspan and is 
expressed by 

L wLJ 1-cosu wL4 
y m n x = y ( 2 ) = 1 6 T i 7 [  cosu I-- 

12(2 sec u - u2- 2) 
' Y O [  5u4 1 

where y,=5wL4/384EI is the maximum lateral deflection that would 
exist if the uniform lateral load w were acting alone (i.e., if P were 
absent). The effect of the axial force on the maximum deflection is 
manifested in the term in the square bracket in Eq. (3.2.30). As seen 
from Fig. 3.2, if u = O  (i.e., P = 0 )  the term in the brackets reduces to 
unity, and as ir increases ( e .  P increases) the value of this term 
increases. Finally, at u = n12 (i.e., P = n2EI/LZ, the Euler buckling 
load) the value of the term approaches infinity. In other words, as P 
approaches the Euler load, the lateral deflection of the member increases 
without bound or, to put it in still another way, the bending stiffness of 
the member vanishes as P approaches the Euler load. Thus, for an elastic 
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FIGURE 3.2 Deflection amplification factor 

system, the critical load can be obtained by reference to the state at 
which the tangent stiffness of the system vanishes. This concept will be 
used in the next chapter to determine the critical loads of elastic 
frameworks. Let us now return to the beam-column problem. It can 
clearly be seen in Fig. 3.2 that the effect of axial force on the lateral 
deflection of the member depends on the magnitude of the axial force. 
The term in the brackets in Eq. (3.2.30) can be regarded as an 
amplification factor, which amplifies the deflection of the member when 
an axial force is acting in conjunction with the lateral force. The larger 
the value of the axial force, the greater will be the amplification. 

Another useful observation can be made from Eq. (3.2.30). For a 
constant u (i.e., if P remains unchanged), the lateral deflection y is 
directly proportional to the applied lateral load w. In other words, the 
deflections (and bending moments) are linear functions with respect to 
the lateral applied loads. Thus, the total lateral deflection resulting from 
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different load combinations can be obtained simply as the sum of the 
deflections resulting from each individual load application with the same 
axial load. This is known as the principle of superpositio~iorl. The principle 
of superposition has been used extensively for the special case of beam 
problems for which P = 0 .  Here, it shows that this principle holds also for 
beam-column problems for which P +Oprovided that ( I )  the axial force in 
the general case of the member remairls constant, and (2) the same axial 
force is applied to each of the componerir cares. We shall use this principle 
later in the chapter to evaluate the fixed-end moments of beam-columns 
(Section 3.5).  

Although the lateral deflection is directly proportional to the applied 
lateral load for a constant axial force, this deflection varies nonlinearly 
with the axial force. This is true even if the lateral load remains 
unchanged. Also, the proportionality between lateral deflection and 
lateral load will be destroyed if the axial force varies during the 
application of the lateral load. 

For the purpose of design application, it is more convenient to simplify 
the expression of Eq. (3.2.30). Expanding sec u in a power series, 

and substituting this series into Eq. (3.2.30), we obtain 

y,, = yo[l  + 0.4067uZ + 0. 1649u4 + . . .] (3.2.32) 

Since 

Equation (3.2.32) can be written as 

or, approximately 

in which the term in the square brackets is the design amplification factor 
for the lateral deflection. Table 3.1 shows a comparison of the theoretical 
amplification factor [the term in brackets in Eq. (3.2.30)] and the design 
amplification factor [the term in brackets in Eq. (3.2.35)]. As can be 
seen, for small values of PIP,, which is generally the case for the 
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Table 3.1 Theoretical and Design Deflection 
Amplification Factors for a Uniformly Loaded Bearn- 
Column 

kL P Theoretical Design 
Eq. (3.2.30) Eq. (3.2.35) 

axial-load conditions in most beam-columns in real structures. the two 
expressions give very comparable results. 

3.2.3 The Calculation of M,, 

In addition to knowing the maximum deflection, it is also important for 
an engineer or designer to know the maximum moment in the beam- 
column. For a uniformly loaded beam-column, the maximum moment 
occurs at midspan. Therefore, from the moment expression Eq. (3.2.29), 
the maximum moment is 

where Mu = wL2/8 is the maximum moment that would exist if the lateral 
load w were acting alone (i.e., if P were absent). The term in the square 
brackets thus represents the rnonren! anrplificarion factor, which magnifies 
the primary moment in the member due to the presence of an axial force. 

Note that another way the maximum moment can be obtained is by 
realizing that M,, consists of two components: the primary moment M, 
caused by the lateral load w and the secondary moment caused by the 
axial load P acting through the maximum lateral deflection y,,, i.e., 
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Using the expression for y,,, [Eq. (3.2.30)] in Eq. (3.2.37), it can 
easily be shown that Eq. (3.2.36) is obtainable. 

For the purpose of design application, we shall again simplify Eq. 
(3.2.36) by using the power series expansion for sec u [Eq. (3.2.31)] in 
Eq. (3.2.36). 

M,, = M,[1 + 0.4167u2 + 0. 1694u4 + 0.06870u6 + . . .] (3.2.38) 

Using the expression for u in Eq. (3.2.33), it can be shown that 

or, approximately 

1 + O.O28(P/P.) 
= 1 - (PIP.) I 

where the term in the square brackets is the design moment amplification 
factor. Table 3.2 shows a comparison of the theoretical moment 
amplification factor [the term in brackets in Eq.  (3.2.36)] with the design 
moment amplification factor [the term in brackets in Eq. (3.2.41)]. It can 
be seen that the two expressions give very comparable results. 

3.3 BEAM-COLUMN WITH A CONCENTRATED LATERAL LOAD 

3.3.1 The Closed-Form Solution (Fig. 3.3) 

Figure 3.3a shows a simply supported beam-column acted on by a 
concentrated lateral load Q at a distance a from the left end and an axial 
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Table 3.2 Theoretical and Design Moment 
Amplification Factors for a Uniformly Loaded Beam- 
Column 

kL n P = - = - & Theoretical Design 
2 2 P. E q . ( 3 . 2 . 3 6 )  Eq . (3 .2 .41 )  

0 1 .OUO 1 . m  
0.20 1.017 1.016 
0.40 1.071 1.069 
0.60 1.176 1.171 
0.80 1.360 1.350 
l .W 1.702 1.681 
1.20 2.444 2.402 
1.40 4.983 4.863 
r / 2  @ = 1 

force P. Referring to the free-body diagram in Fig. 3.3b, the differential 
equations for this beam-column can be written as 

I 
I 

for O s x s a  

L - x  
- E I ~ " = Q R ( ~ ) + P ~  for a s x s L  (3.3.lb) 

FIGURE 3.3 Beam-column with a concentrated lateral load 

a 

P -  P--x 

EI-CONSTANT 
Y 
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Rearranging and using the expression k2=  PIEI, we obtain 

y" + k2y = -Q(L-a)x for O s x s a  
LEI  

(3.3.2a) 

Y" + kZy = - Qa(L - X) for a S x s L  (3.3.2b) 
LEI 

The general solutions are 

y = A s i n k x + B c o s h -  Q(L-:)~ for 0 s x s a  (3.3.3a) 
LEIk 

y = C s i n k r + D c o s k r -  Q a V - x )  
LEIP 

for a s x  s L (3.3.3b) 

from which 

y '=Akcoskr -Bks inkr -  QcL-f )  h r  0 s x S a  (3.3.4,) 
LEIk- 

Qa y l=Ckcoskr -Dks inkr+-  
 LEI^^ for a s x  s L (3.3.4b) 

Using the boundary conditions that there are no lateral displacements 
at the supports 

y (0) in Eq. (3.3.3a) = 0 (3.3.5) 

y(L) in Eq. (3.3.3b) = 0 (3.3.6) 

and the continuity conditions that displacement y and slope y '  must be 
continuous at the point of load application Q 

y(a) in Eq. (3.3.3a) =y(a) in Eq. (3.3.3b) (3.3.7) 

yr(a) in Eq. (3.3.4a) =y'(a) in Eq. (3.3.4b) (3.3.8) 

the four constants A, B, C, and D can be determined as 

Q sin k(L - a) 
A =  

Elk3 sin kL 

-Q sin ka 
C = 

EIk3 tan kL 

Q sin ka 
D = 

Elk3 

Substituting these constants into the deflection functions Eqs. (3.3.3a) 
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and (3.3.3b) gives 

Q sink(L-a)  . 
'=Elk' sin kL 

sin kx 

- Q(L-a)x for 0 6 x s a  
 LEI^' 
Q sin ka Q sin ka 

= - Elk3 tan kL 
sin kx + - 

~ 1 k 3  
cos kx 

- Qa(L -x)  
 LEI^^ for a S x S L  

from which 

Q sin k(L - a)  y '=-  
Elk2 sin kL 

cos kx - Q(L-a)  for O S x s a  (3.3.14a)  LEI^^ 
-Q sin ka Q sin ka . 

= E I ~ Z  tan k~ 
coskx- 

EI~ '  
sin kx 

Qa +- 
LEI~' 

for a e x S L  

and 

Q sin k(L-  a)  . Y" = -- stnkx for O s x e a  
Elk  sin kL 

Q sin ka Q sin ka 
' "  = E l k  tan kL 

sin kx - 
Elk 

coskr for a s x  S L  (3.3.15b) 

3.3.2 The Calculation of M,, and y,, 

Consider now the special case in which the concentrated lateral load Q 
acts at midspan. By setting a = L/2 and x = L/2 in Eq. (3.3.13a or b) and 
Eq. (3.3.15a or b), we obtain the maximum deflection and maximum 
moment, respectively, as 

tan u 

in which u = kL/2, yo and Mo are, respectively, the maximum deflection 
and moment that would exist if the axial force P were absent. The terms 



in brackets in Eqs. (3.3.16) and (3.3.17) are thus the theoretical deflection 
and moment a~tiplification factors. 

To simplify the expressions for the maximum deflection equation 
(3.3.16) and the maximum moment equation (3.3.17), we use the power 
series expansion for tan u 

Upon substituting Eq. (3.3.18) into Eqs. (3.3.16) and (3.3.17) and 
simplifying, it can be shown that these equations can be written 
approximately as 

(3.3.19) 

1 - O.l8(PIP.)j [ I  - 0.2(PIPc)] (l.3,20) 
M-- - 1 - (PIP", 

=Mo 
1 - (PIPc) 

in which the terms in brackets in the above equations are the design 
deflection and moment amplification factors, respectively. 

Tables 3.3 and 3.4 show a numerical comparison of the theoretical and 
design deflection and moment amplification factors, respectively. Good 
correlation between the theoretical and design amplification factors are 
observed. 

At this point, the reader should recognize the similarity in form of the 
deflection amplification factors in Eqs. (3.2.35) and (3.3.19) and the 

Table 3.3 Theoretical and Design Deflection 
Amplification Factor for a Beam-Column with a 
Concentrated Lateral Load at Midspan 

kL , = - = Theoretical Design 
2 2 P. Eq(3.3.16) Eq.(3.3.19) 
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Table 3.4 Theoretical and Design Moment 
Amplification Factors for a Beam-Column with a 
Concentrated Lateral Load at Midspan 

Design 

similarity in form of the moment amplification factors in Eqs. (3.2.41) 
and (3.3.20) for the simply supported beam-column under uniformly 
distributed and midspan concentrated lateral loads. We shall take 
advantage of these similarities in developing design formulas for beam- 
columns. This will be discussed later. 

3.4 BEAM-COLUMNS SUBJECTED TO END MOMENTS 

3.4.1 The Closed-Form Solution (Fig. 3.4) 

So far, we have considered only the cases in which the primary bending 
moments in the beam-columns are caused by in-span lateral loads. In this 
section, we shall consider the case in which the primary bending moment 
is caused by end moments in the beam-column. Shown in Fig. 3.4a is a 
beam-column acted on by end couples MA and MB at the left and right 
ends of the member, respectively, and acted on by an axial force P. 
Using the free-body diagram of a segment of beam-column of length x  
from the left end (Fig. 3.4b), the external moment acting on the cut 
section is 

Equating this to the internal moment of -Ely" and rearranging, we 
have 

Ely " + Py = 
MA + M B  

L 
x - M A  
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EI-CONSTANT 
Y 

Ib l  

FIGURE 3.4 Beam-column with end couples (double-curvature bending) 

or, using k2 = PIEI, we can write 

The general solution is 

The constants A and B can be evaluated by using the boundary 
conditions 

y(O)=O, y ( L ) = O  (3.4.5) 

From the first boundary condition, we obtain 

and from the second boundary condition, we obtain 

A = -  
Elk2 sin k L  

(MA cos k L  + MB) 
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Therefore, Eq. (3.4.4) can now be written as 

= -(MA cOs kL + M ~ )  . MA sinkx+-coskx 
Elk2 sin kL E I ~ ~  

+ M A + %  MA 
X -- 

L E I ~ ~  EIP 
(3.4.8) 

from which 

(MA cos kL +ME) MA . 
' '  = - Elk sin kL 

coskx--sinkx+ 
Elk 

(3.4.9) 
LEIk 

and 

y" = 
(MA cos kL + ME) . MA s~nkr--coskx 

E l  
(3.4.10) 

E I  sin kL 

and 

k(MA cos kL + ME) kMA . 
' " ' =  E I  sin kL 

coskx +-slnkx 
El 

(3.4.11) 

To determine the location of the maximum moment, we set the shear 
force (-Ely"'), or Eq. (3.4.11), equal to zero. In doing so, we obtain the 
location f 

-(MA cos kL + ME) 
tan k.t = 

MA sin kL 
(3.4.12) 

From Fig. 3.5, it can be seen that 

(MA cos kL + M,) 
sin k.i = (3.4.13) 

-MA sin kL 
cos k.i = (3.4.14) 
l'- 

FIGURE 3.5 Trigonometric relationship 
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(Note: For 0 s W s k~ = n m  s n, we have sin W 3 0 and cos W s 
0 )  

The maximum moment is obtained by using the above expressions for 
sin W and cos W in the expression M = -Ely" where y" is given in Eq. 
(3.4.10).  Thus 

- ( M A  cos k L  + M,)' 
M,u = - 

sin k L v M ;  + 2MAMB cos k L  + M i  

-- M', sin k L  
v M i  + 2MAMB cos k L  + M i  

- - - V M :  + 2MAM, cos k L  + M t  
sin k L  

+ 2(MAlMB) cos k L  + 1 
= -MB[ JL ] (3.4.15) 

sinZ k L  
i 

The minus sign that appears in Eq. (3.4.15) simply indicates that M,, ! 
causes tension on the top fiber of the cross section. 1 

If MB is the larger of the two end moments, then the terms in the ! 

brackets in Eq. (3.4.15) represent the moment amplification factor for 
the beam-column subjected to end moments MA, M,  and an axial force 
P. Note that this amplification factor depends not only on the magnitude 
of the axial force, but also on the magnitude of the ratio of the end 
moments. 

For members bent in double curvature, sometimes the maximum 
moment occurs at the end and is therefore equal to MB, as shown in Fig. 
3.6. If this is the case, the amplification factor in Eq. (3.4.15) becomes 
meaningless because this theoretical maximum moment occurs outside 
the length of the beam-column. To check whether Eq. (3.4.15) is 
applicable then for a given value of MA, MB, and P, one should also I I 
evaluate .t from Eq. (3.4.12). If the calculated value o f f  does not fall 
within the range O s f s L ,  Eq. (3.4.15) is not applicable and the 
maximum moment occurs at the end and is equal to the larger of the two 
end moments (see Problem 3.6).  

It should also be mentioned that in the development of Eq. (3 .4 .15)  
only member overall stability is considered. Failure due to lateral 
torsional buckling or buckling due to unwinding from double to single 
curvature is not considered. The phenomenon of lateral torsional 
buckling is the subject of discussion in Chapter 5 .  The phenomenon of 
buckling due to unwinding from double to single curvature is beyond the 
scope of this hook, but is discussed in detail by Ketter.4 Generally 
speaking, this type of buckling will occur if the ratio MAIM, lies in the 
range 0.5 to 1.0. As a result, Eq. (3.4.15) is not applicable if MAIMB is 
between 0.5 and 1.0. 
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P R I M A R Y  
MOMENT 
DIAGRAM I 

M m a x  ' M~ 

TOTAL 
MOMENT 
DIAGRAM 

S E C O N D A R Y  
MOMENT 
DIAGRAM 

HGURE 3.6 M,., equals M, at member end 

- - 
- 

Although Eq.  (3 .4 .15)  has been developed for a member bent in 
double curvature, the same expression can also be used for a member 
bent in single curvature (Fig. 3.7)  simply by replacing MB by -M,. Thus, 
for members bent in single curvature, the expression for maximum 
moment is 

- 2(MAIMB) cos kL + 1 
M"-= ~ ~ [ d  sin2 kL 

] (3.4.16) 

Here, just as in the case of members bent in double curvature, the 
maximum moment for a certain combination of MA, M E ,  and P, of a 
beam-column bent in single curvature may occur at the member end 
rather than within the members (Fig. 3.8) .  Thus, to check the validity of 
Eq. (3.4.16),  one should evaluate .f from the equation 

- (MA cos kL - M,) 
tan k i  = 

MA sin kL 

If the calculated value of .f falls outside the range O < . f s  L,  the 
maximum moment occurs a t  the member end. Note that Eq. (3.4.17) is 
the same as Eq.  (3 .4 .12) ,  except that ME has been replaced by -ME.  



FIGURE 3.7 Beam-column with end couples (single-curvature bendinp) 

FIGURE 3.8 M,,.. equals M, at member end 

ME 

P : 
---, 

- 

PRIMARY 
MOMENT 
DIAGRAM MA 

I M E  

SECONDARY 
MOMENT 



3.4 Beam-Columns Subjected to End Momenls 167 

Equations (3.4.15) and (3.4.16) can be written in a combined form as 

where MAIMB is positiue if the member is bent on double curvature and is 
negative if it is bent in single curvature. The absolute value for M, is used 
in the coefficient of Eq. (3.4.18) because we are interested only in the 
magnitude, not the direction of M,,. 

A special case for a beam column bent in single curvature is the case in 
which the end moments are equal and opposite, i.e., if MA = -MB = M, 
as shown in Fig. 3.9. For this case the maximum moment is given by 
substituting MAIMB = -1 in Eq. (3.4.18) 

and its location is always at midspan as depicted in the figure. 

FIGURE 3.9 Beam-column with equal and opposite end couples 
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3.4.2 Concept of Equivalent Moment 

Equation (3.4.18) is the expression for the maximum moment for the 
general case of a beam-column subjected to unequal end moments. The 
maximum moment may occur at a member's end, and be equal to the 
larger of the two end moments, or it may occur somewhere within the 
member whose magnitude is given by Eq. (3.4.18) and whose location is 
determined by Eq. (3.4.12) or Eq. (3.4.17). For the purpose of design, 
one needs to know whether the maximum moment occurs at the end or 
away from the ends, and also the location of the maximum moment if it 
should occur away from the ends. To eliminate these calculations, the 
concept of equiualerzt momerlt is introduced in design practice. 

The concept of equivalent moment is shown schematically in Fig. 3.10. 
The end moments MA and MB that act on the member are replaced by a 
pair of equal and opposite equivalent moment Me,. The magnitude of the 
equivalent moment is such that the maximum moment produced by it will 
be equal to that produced by the actual end moments MA and MB. 
Mathematically, one can obtain the equivalent moment by setting 
M = Me, in Eq. (3.4.19) and equate this to the M,, in Eq. (3.4.18). 

(MAIMB)* + 2(MAlMB) cos k L  + 1 
sinZ k L  I 

from which we solve for 

+ 2(MAIMB) cos k L  + 1 
2 ( 1 -  cos k L )  ] IMBI 

= c,,, IMBI (3.4.21) 

in which C, is the equiualent moment factor. 

FIGURE 3.10 Schematic representation of the concept of equivalent moment 
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FTGURJ3 3.11 Comparison of various expressions for C, I 
As can be seen from Eq. (3.4.21). the equivalent moment factor C, is 

a function of the moment ratio MAIMB and the axial force P. Simplified 
expressions for C, that eliminate its dependency on the axial force have 
been proposed by Massonnet5 and A u s t h 6  The Massonnet expression is 

C., = V0.3(MAlMB)2 - 0.4(MAIMB) + 0.3 (3.4.22) 

and the Austin expression is 

C, = 0.6 - 0.4(MAlMB) 0.4 (3.4.23) 

The various expressions for C, are plotted in Fig. 3.11. As can be seen, 
the simplified expressions give a rather good approximation to the 
theoretical one. Because of its simplicity, the Austin expression was 
adopted in the AISC/ASD,7 and LRFD8 Specifications for the design of 
steel structures. Note that in Fig. 3.11 the curves for the theoretical C,, 
each for a given value of p = PIP., terminates when the larger of the two 
end moments (i.e., ME) represents the maximum moment of the 
member. 

3.4.3 The Calculation of M,, 

For a beam-column subjected to end moments only, the following steps 
are thus taken to evaluate M,,, for design. 

1. Evaluate C,, from Eq. (3.4.23). 



170 Beam-Columns 

2. Calculate the equivalent moment by multiplying the C, factor by the 
larger of the two end moments (Eq. 3.4.21). 

3. Calculate the maximum moment from Eq. (3.4.19) with M = M.,. 

Equation (3.4.19) can be further simplified as follows. Using the 
trigonometric identities 

and 

kL kL 
sinZ kL = 4 sinZ- cos2- 

2 2 
(3.4.25) 

Eq. (3.4.19) can be written as 

and since Me, = C,,,MB, the maximum moment can now be computed by 
the simple formula 

In summary, to obtain the maximum moment for a nonsway beam- 
column subjected to end moments only, one need only multiply the 
larger of the two end moments by a factor A,  = C,/[l- [(PIP,)]. For Eq. 
(3.4.27) to have physical meaning, the moment magnification factor must 
be greater than or equal to unity, otherwise, the larger end moment MB 
will be taken as M,,. This fact is observed in the LRFD Specification,' 
but not in the ASD Specification.' 

3.5 SUPERPOSITION OF SOLUTIONS 

3.5.1 Simply Supported Beam-Column (Fig. 3.12) 

As mentioned previously, the principle of superpositioti holds for 
beam-columns so long as the axial force remains constant and the same 
axial force is applied to  each component of the solution. T o  demonstrate 
the use of this principle, we will analyze the beam-column shown in Fig. 
3.12a. This simply supported beam-column is subjected to  a uniformly 
distributed lateral load of w and a concentrated lateral load of Q at 
midspan. A constant axial force P is also applied to  the member. The 



3.5 Superposition of Solutions 

FIGURE 3.U Beam-column loaded by uniformly distributed and concentrated 
lateral loads 

deflected shape of this beam-column can be obtained by superposing the 
deflected shapes of Fig. 3.12b and c, i.e., 

y = Eq. (3.2.26) + Eq. (3.3.13a) / .=,,, 
W 

-1 

W -- 

I 
1 Q 

2EIk2 X ( L - x ) + " s i n S ( - ) s i n k - 1 . r  EIk3, 2 s ~ n  kL 2EIk- 

1 

1 
+wcoskr+-wk2x ' -  - 

2 ("f" + 4 k2). - "1 (3.5.1) 

To  obtain the maximum moment, we set the shear force (or -ElyV') 
equal to zero (where a prime denotes derivative with respect to x )  to  
obtain the location i and then backsubstitute the value 1 that we 
obtained this way into the expression M = -EIy". However, for this 
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example there is a simpler approach. Knowing that the maximum 
moment occurs at midspan for both the uniformly loaded case (Fig. 
3.12b) and the concentrated loaded case (Fig. 3 .12~) .  we can just add the 
maximum moment for these two cases together to obtain the maximum 
moment of the combined loading case (Fig. 3.12a). Thus 

M,,= Eq. (3.2.36)+ Eq. (3.3.17) 

u - l)] 
[ta; U] 8 

+- - 
u2 

(3.5.2) 

3.5.2 Fixed-Ended Beam-Columns 

Another application of the principle of superposition is to  determine the 
fixed-end moments of a beam-column. 

Uniform Load Case (Fig. 3.13) 

We will now consider a beam-column fixed at both ends and loaded by a 
uniformly distributed lateral load w and an axial force P (Fig. 3.13a). We 

FIGURE 3.13 Fixed-end moments of a uniformly loaded beam-column 
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will determine the fixed-end moments (MFA, M,) of this member using 
the principle of superposition. The beam-column in Fig. 3.13a can be 
decomposed into that of Fig. 3.13b and Fig. 3 .13~ .  To satisfy the 
continuity condition of zero slopes at the built-in ends, the algebraic sum 
of the rotation at the ends produced by the uniform load wJ (Fig. 3.13b) 
and that produced by the end moments (Fig. 3 .13~) must be zero. 
Because of symmetry, we need only consider half of the member. By 
taking the derivative of Eq. (3.2.28) and evaluating the resulting equation 
at x = 0, we obtain the A end rotation produced by the uniform load was 

and from Eq. (3.4.9), by setting MA = MFA, MB = M F ~  = -MFA and 
x = 0, we obtain the A end rotation produced by the end moments MFA 
and M, as 

MFAL 1 - cos kL 
Y'(O) = 7 [ kL sin kL  I 

Using the trigonometric identities of 

1 - cos kL  = 2 sin2 kL/2, 

we can write Eq. (3.5.4) with 

MmL tan ir 
Y L(O) = [+ 

Since the continuity condition at the fixed-end requires that 

the substitution of Eqs. (3.5.3) and (3.5.5) into Eq. (3.5.6) gives the 
fixed-end moment 

The minus sign in Eq. (3.5.7) indicates that the direction of MFA is 
opposite to that shown in Fig. 3.13. Note that the term wL2/12 is the 
fixed-end moment for a member subjected to uniformly distributed load 
only. Thus, the terms in the brackets represent the effect of axial force on 
the fixed-end moment of the member. 
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Concentrated Load Case (Fig. 3.14) 

The same procedure can be used to evaluate the fixed-end moment of a 
beam-column subjected to a concentrated lateral load Q acting at 
midspan of the member (Fig. 3.14a). 

Again, because of symmetry, we only need consider half of the 
member. From Eq. (3.3.14a), by setting a = L/2, we obtain the A end 
rotation due to the lateral load Q as 

k L  
sin - 

Q 2 Q  yb(O)=---- 
EIkZsin kL 2EIkZ 

where u = kL/2. 
I 

The end rotation at the A end due to the end moments M,, 

FIGURE 3.14 Fixed-end moments of a beam-column with a concentrated 
transverse load at midspan 

t- L I 
7 

EI-CONSTANT 
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and M, = -MFA is obtained from Eq. (3.5.5) 

MmL tan u 
Y L(0) = , [,I 

Since the slope at the fixed-end must be zero, we must satisfy the 
condition 

yb(O) + Y L(O) = 0 (3.5.9) 

Upon substituting Eqs. (3.5.8) and (3.5.5) into (3.5.9), we can 
determine the fixed-end moment as 

-QL 2(sec u - 1) 
.FA=- [ 8 u tan u 

] (3.5.10) 

The minus sign indicates that the direction of M,, is opposite to that 
shown in Fig. 3.14. The term QL/8 that appeared in Eq. (3.5.10) 
represents the fixed-end moment of the memher when P is absent. The 
terms in the brackets thus represent the effect of axial force on the 
fixed-end moment of the memher. 

3.6 BASIC DIFFERENTIAL EQUATIONS 

Up to this point, we have derived the differential equation of the 
beam-column by considering moment equilibrium of a segment of the 
memher cut at a distance x from the left support for a given beam-column 
problem. The resulting linear differential equation has been second- 
order. In this section, we will develop the basic differential equations of a 
beam-column subjected to general lateral loadings. 

As seen in Fig. 3.15a, an initially straight beam-column is subjected to 
an axial force P and a lateral load w(x) along its entire span. To examine 
the stability of the memher, we have to consider the equilibrium state in 
the deflected configuration. Figure 3.15b shows an infinitesimal element 
of the deflected memher of projected length dx. The longitudinal force P 
and transverse force V are shown with their directions parallel and 
normal to the undeflected axis of the memher, respectively. Summing 
forces horizontally, we have 

Summing forces vertically, we have 
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FIGURE 3.15 General differential equation of a beam-column 

Summing moments about point 0, we have 

dM d V  d~ 
-d.r - V d x  --(d.r)'-P-dr 
d x  dx d x  

d P  dy ( h ) '  - w ( x )  = 0 
dx d x  
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or, neglecting the higher order terms involving (dr)', we obtain 

Equation (3.6.1)  states that there is no change in longitudinal force in 
the segment. That is to say, the force P remains constant in the element. 
Equation (3 .6 .2)  states that the rate of change in transverse force across 
the segment is equal numerically to the magnitude of the applied 
transverse load w ( x ) ,  which is assumed to be constant along the 
infinitesimal length ak. Equation (3 .6 .3 )  states that the rate of change in 
moment across the segment is equal numerically to the transverse force V 
plus the longitudinal force P times the change in slope dylak of the 
infinitesimal element. 

For small deflection, we can write M = -EIdZy /d r2 .  Upon substitu- 
tion into Eq. (3.6.3)  and rearranging, we obtain 

or using k2 = PIE1 
d3y ,dy V - + k  -=-- 
ak3 ak EI 

If we differentiate Eq. (3 .6 .4)  with respect to x and substitute Eq. 
(3.6.2)  into the resulting equation, we have 

or with k 2 =  PIE1 

Equation (3 .6 .5 )  is the basic differential equation of a beam-column 
relating the lateral deflection y, the axial thrust P, and the transverse 
force V. The general solution to this equation is 

where f ( x )  is the particular solution of the differential equation. Equation 
(3 .6 .7)  is the basic differential equation of a beam-column relating the 
lateral deflection y, the axial thrust P, and the transverse loading rv(x) .  
The general solution to this equation is 

where f ( x )  is the particular solution of the differential equation. The 
following examples will be used to demonstrate the use of Eqs. (3.6.5)  
and (3 .6 .7 ) .  
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3.6.1 Fixed-Fixed Beam-Column with Concentrated Load 
at Midspan 

The beam-column under investigation is shown in Fig. 3.16. Because of 
symmetry, only half of the member is considered in the analysis. Since 
the transverse force acting on any cut section is constant and is equal to 
Q/2, we have, from Eq. (3.6.5), 

From Eq. (3.6.8), the general solution is 

The constants A, B, and C are determined from the boundary 
conditions 

y(0) =O, yf(0) -0, y , ( g )  = O  (3.6.12) 

FlGURE 3.16 M,., ot a beam-column with a concentrated transverse load at 
midspan 

MOMENT 8 
DIAGRAM 

SECONDARY 
MOMENT 
DIAGRAM 
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Using these boundary conditions, we find 

B = 
kL " kL (cosi-l) 

?.Elk3 sin - 
2 

C = " (1 - cosF) 
k L  

(3.6.15) 
2Elk3 sin - 

2 

With these constants, the deflection function (3.6.11) is fully determined 

! kL (1 - Cosy ) 
=2Elk' sin-+ ( c o s T - ~ )  %+ 

sin - 
kL 

2 
sin - 

2 - I  
(3.6.16) 

The deflection at midspan is 

QL3 12(2 - 2 cos u - u sin u) 
u3 sin u I (3.6.17) 

where rc = kL/2 
The term QL3/192EI, which appeared in Eq. (3.6.17), represents the 

midspan deflection when the axial force is not present. Thus, the terms in 
the brackets represent the effect of axial force on the primary deflection 
of the member. 

The maximum moment for this beam-column occurs at midspan and at 
the ends (see Fig. 3.16b) and is equal to 

M,, = -Ely"(O) = - 
8 u sin u 1 (3.6.18) 

Note the correspondence of Eq. (3.6.18) with Eq. (3.5.10). 
For the purpose of design, it is more convenient to approximate Eq. 

(3.6.18) in the format of Eqs. (3.2.41) and (3.3.20), i.e., 

in which 

Mu= maximum primary moment (maximum moment when the axial 
force is absent) 

PC, = critical load of the beam-column considering the end conditions 
when the lateral force is absent 

Y =constant 
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Table 3.5 Theoretical and Design Moment 
Amplification Factors for a Fixed-Ended 
Beam-Column Loaded by a Concentrated Lateral 
Load at Midspan 

kL = - = Theoretical Design 
2 2K Eq. (3.6.18) Eq. (3.6.19) 

For the present case, Mo = QL18, P,, = n2EII(KL)' in which K = 0.5. 
The value of Y can be determined by equating Eq. (3.6.18) to (3.6.19). 
and solving for  Y 

in which 

I t  can be shown that the value of Y does not vary too much for "arious 
values of PIPrk. As shown in Table 3.5, for Y = -0.2, Eq. (3.6.19) gives 
a good approximation to Eq. (3.6.18). 

3.6.2 Fixed-Fixed Beam-Column with Uniformly Distributed Loads 

The differential equation for this case is from Eq. (3.6.7) 

d'y . d2y w - + k - - = -  
dr4 drZ E l  

From Eq.  (3.6.9), the general solution is 

The constants A, B, C, and D are determined from the boundary 
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conditions 

y(O)=O, y 1 ( 0 ) = O ,  y ( L ) = O ,  y ' ( L ) = O  (3.6.23) 

or, alternatively, by making use of the condition of symmetry, the four 
boundary conditions are 

y(0)  = 0 ,  y ' (0)  = 0 ,  y' (f) - = O  , Y"'(i) = 0 (3.6.24) 

Using either set of these four conditions, we find 

WL 
B = (3.6.26) 

k L  
2EIk3 tan - 

2 

With these constants, Eq. (3.6.22) can be written as 

cos kx -,+%I 1 (3.6.29) 

tan - tan - 
2 2 

The deflection at midspan is 

wL4 12(2 - 2 cos u - u sin u )  
=GZ [ u3 sin u 

] (3.6.30) 

Again, the term wL4/384EI represents the lateral deflection when the 
axial force P is absent, and the terms in square brackets represent the 
effect of axial thrust on the lateral deflection. 

The maximum moment for this beam-column occurs at the fixed-end 
and is equal to 

The reader should note the correspondence of Eq. (3.6.31) with Eq. 
(3.5.7).  Again, for the purpose of design, it is more convenient to 
approximate Eq. (3.6.31) in the format of Eq. (3 .6 .19) .  With reference to 
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Table 3.6 Theoretical and Design Moment 
Amplification Factors for a Fixed-Ended 
Beam-Column Loaded by a Uniformly Distributed 
Lateral Load 

Design 

Eq. (3.6.19). M, is now wL2112, PC, = n2EII(KL)' where K = 0.5. The 
value of Y is 

1 3(tan u -u )  
Y =--{I 

(PIP,,) u2 tan u 1 [I - (Plp.~)] - l} (3.6.32) 

Again, the value of Y does not vary too much for various values of 
PIP,,. By choosing a Y-value equal to -0.4, we will observe a good 
correlation between the theoretical M,,, as expressed in Eq. (3.6.31) and 
the approximate M,, as expressed in Eq. (3.6.19) (Table 3.6). 

3.7 SLOPE-DEFLECTION EQUATIONS 

In this section, we will develop the slope-deflection equations for a 
beam-column. Consider the beam-column shown in Fig. 3.17; we now 
want to establish a relationship between the end moments (MA, Ma) and 
the end rotations (8,, 8,). 

From Eq. (3.4.8), the deflection function for this beam-column has the 

FIGURE 3.17 Beam-column subjected to end moments (without relative joint 
translation) 
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form 

y = -  (MA cos k~ + MB) , MA slnkr+- 
Elk2 sin kL  ' O S  kr 

Rearranging, we have 

y 

from which 

1 c o s k  1 --[---I.. Elk sinkL k L  

Using Eq. (3.7.3), the end rotations 0 ,  and 8 ,  can be obtained as 

1 cos k L  1 o A = ( )  = -- [---I 
Elk sln k L  k L  MA 

-- 

L sin k L  - k L  cos k L  ;-[ 
EI (kL)' sin k L  

L sinkL - k L  
+E [(kL)'sin kL1" 

L sin k L  - k L  cos kL  
+ E, [ (kL)'sin k L  
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Equations (3.7.4) and (3.7.5) can bewritten in matrix form as 

where 

L sin kL - kL cos kL 
I h ?  = [ ( * ~ ) 2  sin kL 1 

From Eq. (3.7.6), we can write 

where 

kL sin kL - (kL)2cos kL 
2-2coskL-kLsinkL 

] (3.7.11) 

E l [  (kL)'-kLsinkL 
C = c  -- I (3.7.12) 
" " -  L 2-2coskL-kLsinkL 

Equation (3.7.10) can be written in its expanded form as 

where 

are referred to as the stabilig functions. 
Equations (3.7.13) and (3.7.14) are the slope-deflection equations for a 



Table 3.7 Stability Functions (kL = J Z ~ )  

compression tension 
kL PIP. sii Sij Sii Sii 

1. 9500 
2. OOGO 
2. 05GO 
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Table 3.7 Stability Functions ( kL  = n m )  (continued) 

compression 
Sii Sii 

3.2032 2.2213 

tension 
Sii Sij 

4.6886 1. 8431 
4. 7163 1. 8374 
4.7444 1. 8317 
4. 7730 1. 8259 
4. 8020 1. 8201 
4. 8314 1. 8142 
4. 8612 1. 8083 
4. 8915 1.8024 
4. 9221 1. 7965 
4. 9531 1. 7905 
4.9845 1. 7845 
5. 0162 1.7785 
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Table 3.7 (continued) 

compression tension 
kL PIP. S,i sij sii Sij 

beam-column that is not subjected to transverse loadings and relative 
joint translation (or sidesway). Note that when P approaches zero, we 
see that kL = ( ~ I L  approaches zero, and by using the L'Hospital's 
rule, it can be shown that sii reduces to 4 and sij  reduces to 2 (see 
Problem 3.3). Values for sii and sii for various values of kL are shown in 
Table 3.7 and plotted in Fig. 3.18. 

3.8 MODIFIED SLOPE-DEFLECTION EQUATIONS 

Equations (3.7.13) and (3.7.14) are valid provided that the following 
conditions are observed. 
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FIGURE 3.18 Plot of stability functions 

12 

0 

1. The beam is prismatic. 
2. There is no relative joint displacement between the two ends of the 

member, i.e., the member does not sway. 
3. The member is continuous, i.e., there is no internal hinge or 

discontinuity in the member. 
4. There is no in-span transverse loadings on the member. 
5. The axial force in the member is compressive. 

- 
- COMPRESSIVE AXIAL FORCE - 
--.- TENSILE AXIAL FORCE 

- 

. 
- - _ - -  

. - - - -  

If these conditions are not satisfied, modifications to the slope-deflection 
equations are necessary. Some of these modifications to special cases of 
beam-columns are described below. 

3.8.1 Member with Sway 

0 2. z 
3 
LL 

> 0 
t : 
4 + 
U1 

- 4  

-0  

-12 

If there is a relative joint translation between the member ends, 
designated as A in Fig. 3.19, the slope-deflection equations are modified 

- - - - - - - - - -  - - - - - - - - - - -  - 5 . .  
11 

1 2 3 4 

- 

- 

- 

- 

- 

- 
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FIGURE 3.19 Beam-column subjected to end moments (with relative joint 
translation) 

3.8.2 Member with a Hinge at One End 

If a hinge is present at one end of the member-as in Fig. 3.20% in which 
the B end is hinged-the moment there is zero, i.e., 

from which I 

Upon substituting Eq. (3.8.4) into Eq. (3.7.13), we have 

Note that 0, has been condensed out of Eq. (3.7.13) in Eq. (3.8.5). 
Thus, by using Eq. (3.8.5). the degrees of freedom used for the analysis 
can be reduced if the member is hinged at one end. 

If the member is hinged at the A rather than the B end, as shown in 



lbl 

FIGURE 3.20 Beam-column subjected to end moments (with one end hinged) 

Fig. 3.20b, Eq. (3.8.5) is still valid, provided that the subscript A is 
changed to B. 

3.8.3 Member with Elastically Restrained Ends 

A member may not be connected rigidly to other members at  its ends, 
but may be connected instead to such members by a linear elastic spring, 
as in Fig. 3.21, with spring constants R,,, and RkB at the A and B ends, 
respectively. The additional end rotations introduced as the result of the 
linear spring are MJR,, and MB/RkB. If we denote the total end 

FIGURE 3.21 Beam-column subjected to end moments (with elastically 
restrained ends) 



3.8 Modified Slope.Deflection Equalions 191 

rotations at joints A and B by 8 ,  and OD, respectively, as in the 
preceding cases, then the member end rotations, with respect to its 
chord, will be ( 0 , -  M A R )  and ( 0 -  M D R )  As a result, the 
modified slope-deflection equations are modified to 

Solving Eqs. (3 .8 .6)  and (3.8.7)  simultaneously for MA and MD gives I 

where I 

In writing Eqs. (3.8.8)  to (3 .8 .10) ,  the equality sij =sii has been used. 
Note that as R,, and RkD approach infinity, Eqs. (3 .8 .8)  and (3.8.9)  
reduce to Eqs. (3 .7 .13)  and (3 .7 .14 ) ,  respectively. 

3.8.4 M e m b e r  with Transverse Loadings 

For members subjected to transverse loadings, the slope-deflection 
equations (3.7.13) and (3.7.14) must be modified by adding an extra term 
for the fixed-end moment of the member 

The fixed-end moments MF,  and M ,  can be obtained by a procedure 
outlined in Section 3.5.  Table 3.8 gives the expressions for the fixed-end 
moments of three commonly encountered cases of transverse loadings. 
The solutions for the first two cases have been derived in Section 3.5 .  The 
last case is left as an exercise for the reader (see Problem 3.10) .  
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Table 3.8 Expressions for Fixed-End Moments 

3.8.5 Member with Tensile Axial Force 

For members subjected to an axial force that is tensile rather than 
compressive, Eqs. (3.7.13) and (3.7.14) are still valid provided that the 
stability functions defined in Eqs. (3.7.15) and (3.7.16) are redefined as 

S.. = s . .  = 
(kL)' cosh k L  - kL sinh kL 

(3.8.13) " " 2 - 2 cosh k L  + k L  sinh kL 

y.. = S.. = k L  sinh kL - (kL)' 
(3.8.14) " " 2 - 2 cosh k L  + k L  sinh kL 

3.8.6 Member Bent in Single Curvature with On= -0 ,  

For the member shown in Fig. 3.22a, the slope-deflection equations 
reduce to 
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L d  

la1 SINGLE C U R V A T U R E  

Ibl DOUBLE C U R V A T U R E  

FIGURE 3.22 Benm-column subjected to end moments (single-curvature nnd 
double-curvature bending) 

3.8.7 Member Bent in Double Curvature with & = 0, 

For the member shown in Fig. 3.22b, the slope-deflection equations 
reduce to 

3.9 INELASTIC BEAM-COLUMNS 

Our discussion so far has been limited to the case in which the member 
remains fully elastic. In other words, no yielding of material has taken 
place in any part of the member. The assumption of a fully elastic 
behavior is justified to some extent for the member under service loading 
conditions. However, for failure behavior, we must include irrelasticity in 
the analysis. 

The inclusion of inelasticity in an analysis makes the problem much 
more complex because the governing differential equations become 
highly nonlinear. In  many instances, closed-form solutions are intractable 
and recourse must be had to numerical techniques to obtain  solution^.^^.' 
In the following, we shall show that if certain simplifying assumptions are 



made, approximate solutions to some specific cases of inelastic beam- 
columns can be obtained analytically.lO~ll 

In this section, the behavior and failure load of an eccentrically loaded 
beam-column of rectangular cross section will be investigated. The 
derivation follows closely to that given in reference 11. 

The three basic assumptions used in the following derivation are the 
following: 

1. The deflected shape of the member follows a half-sine wave (Fig. 
3.23a). 

2. The equilibrium condition is established only at midspan of the 
member. 

3. The stress-strain relationship is assumed to be elastic-perfectly plastic 
(Fig. 3.2%). 

In the process of analysis, we will need to use the nonlinear 
relationship between the internal moment (M) and the curvature 

FIGURE 3.23 Elastic-plastic analysis of an eccentrically loaded rectangular 
member 

l a )  ECCENTRICALLY LOADED R E C T A N G U L A R  MEMBER 

lbl ELASTIC-PERFECTLY PLASTIC STRESS-STRAIN 

RELATlDNSHlP 
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(@= -y") with the presence of an axial force (P). It is therefore 
necessary to develop this relationship before proceeding to the analysis. 

3.9.1 M-8-P Relationship 

Figure 3.24, a-c, shows a series of strain and stress diagrams that 
correspond to three stages of loading sequences: the elastic (no yielding), 
the primary plastic (yielding in compression zone only), and the 
secondary plastic (yielding in both compression and tension zones), 

FIGURE 3.24 Strain and stress diagrams 
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respectively. For convenience, they are designated in the following as 
Case 1, Case 2, and Case 3, respectively. The M-a-P relationship for 
each case will be developed separately as follows: 

Case 1: Elastic (Fig. 3.24a) 

KINEMATICS 
From the kinematic assumption that plane sections remain plane after 
bending, we write 

h h 
~ = s ~ + O y  for - - G Y G -  

2 2 
(3.9.1) 

where so is the axial strain at the centroid of the cross section. 

STRESS-STRAIN RELATION 
Since the entire cross section is elastic, the stress is related to the strain 
by 

h h 
u = E s  for ---= 6- z N Y  2 

(3.9.2) 

EQUILIBRIUM 
The axial force P and the internal moment M are related to the stress u 
by 

hR 

= I E(sO + @y)b dy 
-hP. 

In Eqs. (3.9.3) and (3.9.4), b is the width and h is the height of the 
cross section (Fig. 3.23a). 

By performing the necessary integrations, we obtain 

P =  EAs, (3.9.5) 

and 

M = E I a  (3.9.6) 

Equation (3.9.5) indicates that the axial force P  is equal to the axial 
stiffness EA times the axial strain so at the centroid of the cross section. 
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Equation (3.9.6) is the familiar elastic beam moment-curvature relation- 
ship of M = -EIy". 

Introducing the notations 

P y = A a y  = b h a y  (3.9.7) 

Equations (3.9.5) and (3.9.6) can be written in a nondimensional form 
as 

P = E E o I ~ ~  (3.9.13) 

and 

nr = r$ (3.9.14) 

The range of applicability of Eq.  (3.9.14) is for + s ( l  -p). 

Case 2: Primary Plastic (Fig. 3.246) 

KINEMATICS 

h h 
E = E O + @ y  for - - S y s -  

2 2 

Since at y = f?, E = E ~ ,  we have 

E y  = E" + at5 
from which we obtain 

. 
E 0 = E y - @ h  

and substituting this into Eq .  (3.9.1) leads to 



h 
o = E e  for - - S y S h  

2 

h 
o=oy  for h s y s -  

2 

Beam-Columns 

By performing the necessary integrations and eliminating f i  from the 
resulting expressions (3.9.20) and (3.9.21), we obtain 

where rn, @, and p are as defined in Eqs. (3.9.11). (3.9.12), and (3.9.10), 
respectively. 

The range of applicability of Eq. (3.9.22) is for (1 - p )  4 @ 6 1 / ( 1 -  p).  

Case 3: Secondary Plastic (Fig. 3 .24~)  

KINEMATICS 
The strain at any point y from the centroidal axis is expressed by Eq. 
(3.9.17) as 

h h 
e = e y - ( h - y ) @  for - - s y s -  

2 2 
(3.9.17) 

In addition, to facilitate the integration, we need to establish a 
relationship between the elastic-plastic boundaries g and h. This can be 
achieved by using similar triangles in the strain diagram: 
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h 
o =  -ay for -- 

2 < y s - g  

o = E &  for - g < y s h  

h 
o=oy for A s y < -  

2 

P =  o d a  J A 

By performing the necessary integrations, with g given in Eq. (3.9.23), 
and eliminating h from the resulting expressions (3.9.27) and (3.9.28), we 
obtain 

The range of applicability of Eq. (3.9.29) is for @ 3 1/(1 -p). 
To sum up, the nondimensional moment-curvature-thrust (m - @ - p )  

relationships for a rectangular section can be written as the following: 

Case 1: 

m = @ ,  for @ s ( l - p )  (3.9.30a) 

Case 2: 
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FlGURE 3.25 Moment-curvature-thrust relationships 

Case 3: 

1 
rn=!(l-p2)-- 

2qJ2 ' 
for @ z= l / ( l  - p )  (3.9.30~) 

Note that if the member is fully elastic (Case I),  the axial force has no 
effect on the moment-curvature relationship. However, as soon as 
yielding commences (Case 2 and Case 3), the moment-curvature re- 
lationships will be affected by the axial force. This explains why the 
analysis of an irtelastic beam-column is much more complex than an 
elastic beam-column: because the moment-curvature relationships be- 
come nonlinear as yielding starts to occur in the member. Figure 3.25 
shows some plots of the moment-curvature (nr - @) relationship for 
various values of p .  

It should be remembered that the moment-curvature-thrust relation- 
ships developed above are valid only for rectangular cross sections with 
idealized elastic-plastic, stress-strain behavior. For general cross sections 
with general stress-strain behavior, it is often necessary to evaluate the 
integrals for the axial force P and internal bending moment M 
numerically. Numerical and approximate moment-curvature-thrust ex- 
pressions for various cross-sectional shapes have been developed and are 
discussed in detail in reference 2. 

3.9.2 Approximate Solution 

With the moment-curvature-thrust relationships developed, we now 
proceed with the investigation of the inelastic behavior of an eccentrically 
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loaded beam-column (Fig. 3.23a) by using the analysis method presented 
in reference 11. By assuming that the deflected shape of the member 
resembles a half-sine wave, we write 

from which we obtain 

and 

y " = - 6  - sin- ( I 2  "; 
The curvature at midspan is 

where 6  is the deflection at midspan. 
The equilibrium condition at midspan (Fig. 3.26) is 

Mu + P 6  = M,,, (3.9.35) 

where 

Mu = Pe (3.9.36) 

e  = load eccentricity (3.9.37) 

M,,, = moment at midspan (3.9.38) 

Denoting 

FIGURE 3.26 Free-body diagram of the eccentrically loaded member cut at 
midspan 



Equation (3.9.35) can be written as 

Since, from Eq. (3.9.34) 

We can write Eq. (3.9.41) as 

If we substitute the moment-curvature-thrust (nr - @ - p )  relationships 
[Eq. (3.9.30)] with m = m,, @ = @, (normalized moment and curvature 
at midspan) into Eq. (3.9.43), and rearrange, we have the following: 

Case 1: @,S 1 -p 

Case 2: (1 -p)  =z @,=z 1/(1 -p )  

Case 3: @,a 1/(1 - p )  

Figure 3.27 shows a plot of the mo- @, curve for a simply-supported, 
eccentrically loaded member with the following dimensions and 
properties: 

e = 1.15 in, oy = 34 ksi, E = 30,OO ksi 

Notice that at approximately ma = 0.47 yielding starts at the compres- 
sion side of the cross section. As a result, a noticeable decrease in 
stiffness of the member is observed. The degradation of stiffness 
continues until at approximately the peak moment m0=0.53, the 
member is no longer able to resist an increase in load. Therefore, the 
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FIGURE 3.27 Plot of m, versus @,, 
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For this case, the maximum load occurs in the primary plastic range 
[ e ,  1 p )  S ,,, 5 ( 1  p ) ] .  However, this is not always the case. 
Depending on the slenderness ratio and the magnitude of eccentricity, 
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the failure load may occur in the secondary plastic range [i.e.. @,> 11 
(1 -p)]. In this example, the maximum end moment (m,),;,, has been 
obtained graphically as the point of the m, versus @, curve. The 
same maximum moment can be obtained more conveniently by realizing 
that the peak point of the curve corresponds to the condition 

Thus, by setting the derivative of Eq. (3.9.44b,c) with respect to @, 
equal to zero, the value of @, that corresponds to (m,),, for each 
relevant case can he calculated. Backsubstituting the value of @,,, so 
obtained into the corresponding equation will give the value of (m,),,.. 
In doing so, a relation between (m,),, and p can he established as the 
following: 

P <-s 1 If Case 2 controls, i.e., if (1 - P ) 3  - 
P. 

P If Case 3 controls, i.e., if 0 s - s  (1 -P)' 
PC 

Thus, by using Eq. (3.9.46a) or Eq. (3.9.46b), depending on the range 
of applicability of the equations, ultimate strength interaction curves for 
m, and p (i.e., curves giving the value of (M,),, for a given value of P) 
can he developed. Figure 3.28 shows three such ultimate strength 
interaction curves for slenderness ratios Llr = 20, 60, and 120. 

Although a rectangular section with idealized stress-strain relationship 
has been used here to obtain the interaction diagrams shown in the 
figure, the same procedure can be extended to obtain ultimate strength 
interaction diagrams for I-shaped sections with or  without residual stress. 
However, the determination of ultimate loads for these sections involves 
considerably more effort and, in many cases, resort to numerical solution 
techniques is inevitable. Various numerical techniques to obtain ultimate 
strength interaction diagrams are summarized and presented in detail in 
references 2 and 3. Two such numerical techniques (Newmark's method, 
step-by-step numerical integration) will he presented in Chapter 6. 

From the above example, one can see that although several simplifying 
assumptions concerning the member and material behavior have been 
used. the determination of the maximum load that a member can resist is 
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FIGURE 3.28 Ultimate interaction curves 

still cumbersome. From a practical standpoint, it is more convenient if 
the maximum load can be determined approximately in a direct manner 
by simpler formulas. T o  this end, design interaction formulas provide just 
such a quick and easy way for estimating the maximum load-carrying 
capacity of a beam-column. Design interaction equations are the equa- 
tions that relate the ratio of axial stress (force) in the member to the 
ultimate axial capacity of the member and the ratio of bending stress 
(moment) in the member to the ultimate bending stress (moment) of the 
member. These design interaction equations provide a convenient and 
direct means for designers to estimate the adequacy of members 
subjected to combined stresses (forces). Various forms of design interac- 
tion equations used for design purposes will be discussed in the following 
section. 

3.10 DESIGN INTERACTION EQUATIONS 

The interaction curves shown in Fig. 3.28 for rectangular cross sections 
based on Eq. (3.9.46a) or  Eq. (3.9.46b) can be approximated by a simple 
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linear interaction equation of the form 

where 

P = axial force in the member 
P, = ultimate axial capacity of the member in the absence of 

primary bending moment 
M,, = maximum moment in the member 

Mu = ultimate moment capacity of the member in the absence of 
axial force 

Depending on the design philosophy, the ultimate axial capacity of the 
member P, can be represented by the CRC curve and SSRC curves or 
the LRFD curve (Chapter 2). The quantity M,,,,, however, is the 
amplified moment in the member and can be represented by 

where A, is the moment amplificalion factor discussed earlier in the 
chapter. 

For an eccentrically loaded member, which is equivalent to a member 
subjected to equal end moments and an axial force, the expression for A, 
is (from Eq. 3.4.27) 

A, = c,,, 
(3.10.3) 

- (&I 
where C,,, is given by Eq. (3.4.23). 

Upon substituting Eq. (3.10.3) into Eq. (3.10.2) and then into Eq. 
(3.10.1), we obtain 

Equation (3.10.4) is plotted as dotted lines in Fig. 3.29 by using 
P, = LRFD curve (Eq. 2.11.9), Mu = Mp the plastic moment capacity of 
the cross section, and C,= 1 [Eq. (3.4.23) with M,IM,= -11. The 
theoretical ultimate strength interaction curves are given by Eq. 
(3.9.46a,b) and are plotted in Fig. 3.28. However, to obtain a direct 
comparison, these curves are replotted as solid lines in Fig. 3.29 using an 
abscissa of MdM,  rather than MoIMy. For rectangular cross sections, the 
plastic moment M, and the yield moment My are related by Mp= 1.5 My 
(Eq. 3.9.30~ with p = 0 and @ =a). As can be seen, except for low 
slenderness ratios the interaction equation (3.10.4) gives a good ap- 
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FIGURE 3.29 Comparison of theoretical and dcsign ultimate strength interaction 
curves 

proximation to the theoretical solution. For low slenderness ratios, Eq. 
(3.10.4) becomes too conservative. This is because the P - 6 effect (i.e., 
the additional moment induced in the member as a result of the axial 
force acting through the lateral deflection) is not significant. Conse- 
quently, the presence of the term 1/[1- (PIP,,)] which reflects the P - 6 
effect will render Eq. (3.10.1) too conservative. In fact, if the slenderness 
ratio of the member approaches zero, no instability will occur and a 
nonlinear interaction equation of the form 

will give a much better approximation to the theoretical ultimate strength 
interaction curve. The constants a and b define the shape of the 
interaction curve. For rectangular sections, a = 2, b = 1, and Eq. (3.10.5) 
represents the exact ultimate strength interaction curve (Fig. 3.30). For 
I-section bent about the strong axis, a = 1, b = 1.18, and Eq. (3.10.5) is 
an approximate ultimate strength interaction equation (Fig. 3.31). For 



Beam-Columns 

FIGURE 3.30 Ultimate strength interaction curve for rectangular cross sections 
with Llr = 0 

I-section bent about the weak axis, a = 2, b = 1.19, and Eq. (3.10.5) 
represents an approximate interaction equation (Fig. 3.32). 

It should be mentioned here that the use of Mu= M, in Eq. (3.10.4) 
implies that lateral torsional instability will not occur in the member. 
Lateral torsional instability is a phenomenon in which the member bends 
out of its plane of loading in addition to in-plane deflection as a result of 
insufficient lateral stiffness or bracing. The subject of lateral instability of 
beams will be discussed in Chapter 5. If lateral torsional instability occurs 
in the member, the ultimate moment capacity M, of the member will be 
less than M, as the member will fail by lateral torsional buckling before 
the plastic moment capacity of the member can be attained. 

Furthermore, it should be noted that Eq. (3.10.4) can also be used for 
members whose primary bending moment results from transverse loading 
rather than from end moments. Nevertheless, in these cases where the 
primary moment results from transverse loading, the C, value is defined 
as 

C, = 1 + YPlP,,  (3.10.6) 
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FIGURE 3.31 Ultimate strength interaction C U N e  for I-sections bent about the 
strong axis with L l r  = 0 

This definition of C, can be induced by comparing Eq. (3.6.19) with 
Eqs. (3.10.2) and (3.10.3). The values of and C, for various transverse 
loading cases are shown in Table 3.9. Note that the Y values for Cases 1, 
3, 4, and 6 have already been developed in detail in previous sections [see 
Eq. (3.2.41), Eq. (3.6.32), Eq. (3.3.20), and Eq. (3.6.20), respectively]. 
The determination of the Y values for Cases 2 and 5 is left as an exercise 
for the reader (see Problem 3.4). Note that for the two simply supported 
cases (Cases 1 and 4). the values of Y were determined by expanding the 
theoretical beam-column solutions for M,,, whereas for the other cases 
the values of Y were determined by comparing Eq. (3.6.19) with the 
corresponding theoretical solutions for M,,,. 

Equation (3.10.4) can also be extended to the case in which bending 
occurs in both axes. In such case, the interaction equation takes the form 
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FIGURE 3.32 Ultimate strength interaction curve for I-sections bent about the 
weak axis with Llr = O  

in which the subscripts x and y refer to the action about the x and y axes 
of the member, respectively. 

Equation (3.10.7) gives the general form of the biaxial bending 
interaction equation used in practical design when stability governs the 
limit state.'' For member with low slenderness ratios or  at support 
locations, yielding rather than instability may govern the limit state. In 
this case, an extension of Eq.  (3.10.5) will be more appropriate. For 
example, for I-section, a conservative form by using a = 1 for both axes 
of bending can be written (see reference 12) as 

where M,, and Mpy are plastic moment capacities of the I-section with 
respect to strong- and weak-axis bending, respectively. 

In  the following sections, interaction equations for various design 
formats will be summarized and discussed. 
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3.10.1 AISCIASD Format 

The AISCIASD format is a stress-based design format. As a result, 
allowable stresses and service loads rather than ultimate strengths and 
maximum loads are used as the basis for design. Equations (3.10.7) and 
(3.10.8) can be converted to unit of stresses and a factor of safety applies 
to them to bring them into the service load range. 

If stability controls, the interaction equation is 

where 

h = PIA, = axial stress at service load 
f,,fby = flexural stresses at service load due to primary bending 

moment about the x and y axes, respectively 
F.= allowable compressive stress if the member is under axial 

compression only [= AISCIASD column curve equation 
(2.11.4) divided by the area of the cross section] 

GX, &, = allowable flexural stresses about the x and y axes, respec- 
tively, if the member is loaded in bending only (see Chapter 
5) 

C, = define as follows: 
1. For members braced against joint translation and without 

transverse loading between supports, C, is referred to as 
the equiualerlt rnonlent factor and is defined in Eq. 
(3.4.23) as C, = 0.6 - 0.4 MAIMB 2 0.4, where MAIMB is 
the ratio of the smaller to larger end moments. It is 
negative if the member is bent in single curvature and is 
positive if the member is bent in reverse curvature. 

2. For members braced against joint translation with trans- 
verse loading between supports, C, is referred to as the 
rnonzent reduction factor. It is defined in Eq. (3.10.6) as 
C, = 1 + YPIP,, and it is an integral part of the moment 
magnifier [see Eqs. (3.2.41), (3.3.20). and (3.6.19)]. 
Table 3.9 gives the C,, values for various transverse 
loading cases. However, the AISC Specification suggests 
the use of C,= 0.85 for members with restrained ends 
and C,= 1.0 for members with unrestrained ends. 

3. For members not braced against joint translation, C, is 
considered to be 0.85. The number 0.85 is derived based 
on the model structure shown in Fig. 3.33a. For members 
in which sidesway is possible, a different type of secon- 
dary moment known as the P -  A moment will be 
induced in the member. This P - A moment occurs as a 
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result of the axial force P acting through the sway A of 
the memher. If we consider the free-body diagram of Fig. 
3.33h, it roughly resembles a simply supported member 
loaded by a transverse load at midspan, so from Eq. 
(3.3.20), the value of C, is 1 - 0.18PIPC,. However, due 
to the errors involved in the approximation, the AISC 
Specification recommends the use of 0.85. 

F:.,F:,=Critical elastic buckling stress about the x and y axis, 
respectively, divided by a factor of safety of 23/12 and 
evaluated using the effective length of the member. (The 
effective lengths of isolated members with idealized end 
conditions have been shown in Table 2.1. The effective 
lengths of members as parts of a frame will be discussed in 
the next chapter.) 

Table 3.9 Values for 1C, and C, 

If the yielding of material controls, the interaction equation is 

f, +-+L fbr f b  

0.604. Fb. &, 

=m 

1.0 

1-0.4 PIPek 

1-0.4 PIPeX 

1-0.2 p l q X  

1-0.3 PIPoN 

1-0.2 PIPgk 

iJ 

0 

-0.4 

1 -- -0.4 

4 

5 I 
LIZ --,&j-- 

i 
6 

- 

-0.2 

-0.3 

-0.2 
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FIGURE 3.33 AISCIASD model for sway frames 

Note that the moment magnification factor C,,,I(l - f,IFik) is absent in 
Eq. (3.10.10) because this equation pertains to cases in which yielding 
rather than instability controls the design. This happens at support 
locations in braced frames and for members with low slenderness ratios in 
unbraced frames. The number 0.60 (=1/1.67) in the denominator of the 
first term that reflects the axial force effect is a safety factor applied to the 
CRC curve in order to obtain the AISCIASD curve at KLIr = 0. 

In actual design, both the stability [Eq. (3.10.9)] and yield [Eq. 
(3.10.10)l interaction equations should be checked. However, if the axial 
force in the member is small, say if i , l F , ~ 0 . 1 5 ,  the AISC Specification 
allows the use of the following interaction equation, instead of Eqs. 
(3.10.9) and (3.10.10): 

Thus, in the design, the value fJF, is first evaluated. If f.lF, is less than 
or equal to 0.15, Eq. (3.10.11) is used to check the adequacy of the 
section. If fn/F, is greater than 0.15, then both Eqs. (3.10.9) and (3.10.10) 
are used to check the adequacy of the section. 
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3.10.2 AISCIPD Format 

The AISCIPD format provides two interaction equations for the design of 
beam-columns. 

If yielding controls, 

where 

P, = A,F, = yield load of the section where A, is the area of the cross 
section 

M, = ZF, = Full plastic moment capacity of the section where Z is 
plastic-section modulus 

P and M are the factored axial force and moment (service loads time load 
factor). The load factor is 1.7 if only gravity loads are acting and is 1.3 if 
wind or earthquake loads is acting in conjunction with gravity loads. Note 
the correspondence of Eq. (3.10.12) with Eq. (3.10.5). 

If stability controls, 

P CmMo 
s 1.0 P. + MP(1 - PIP,,) 

where 

P.= ultimate axial compressive strength of the axially loaded column 
taken as 1.7 times AISCIASD column curve using the effective 
length of the column 

M,. = maximum resisting moment in the absence of axial force, taken 
as M,, if the member is braced against lateral torsional buckling 
and taken as 

if the member fails by lateral torsional buckling. 

In Eq. (3.10.14) the units are inches and ksi 

pCk = JT'EII(KL)~ 

C,,, = same as in AISCIASD format 

Again, in actual design, both the strength interaction equation [Eq. 
(3.10.12)] and the stability interaction equation [Eq. (3.10.13)] are used 
to check the adequacy of the section. 
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3.10.3 AISCILRFD Format 

The AISCILRFD format based on the exact inelastic solutions of 82 
beam-columns,'~ecommends the following interaction equations for 
sway and nonsway beam-columns. 

For PI@,Pu3 0.2 

For PI@.P, < 0.2 

where 

P,=ultimate axial compression capacity of the axially loaded 
column [=AISC/LRFD Column Curve Eq. (2.11.9) using 
the effective length of the column] 

Mu,, Mu, = ultimate moment resisting capacity of the laterally unsup- 
ported beam about the x and y axes, respectively (see 
Chapter 5) 

4, =column resistance factor (= 0.85) 
4, =beam resistance factor (=0.90) 
P = design axial force 

Mu, Mny = design moment for the member about the x and y axes, 
respectively, calculated as follows 

in which 
M.,= moment in member assuming there is no lateral translation 

in the frame calculated by using first-order elastic analysis 
(see Fig. 3.34a) 

M,, = moment in member as a result of lateral translation of the 
frame only calculated by using first-order elastic analysis 
(see Fig. 3.34b) 

B, = P - 6 moment amplification factor (designated as A, in the 
previous sections) 
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ORIGINAL F R A M E  l a lFRAME FOR I b l F R A M E  FOR 

M nt M I ,  

FIGURE 3.34 AISCILRFD approach for calculating M., and M,, 

B, = P - A moment amplification factor, evaluated by 

or alternatively 

The terms in Eqs. (3.10.18) to (3.10.20) are defined as follows: 

C, = 0.6 - 0.4 M,/M2, same as defined previously in ASD, except that 
the limit condition C,a 0.4 has been removed in LRFD. This 
limit was found to be overly conservative for M,/M2 = 0.5 to 1.0 
when compared with the elastic C, factor used in ASD with the 
exact elastic-plastic computer  solution^.'^ 

P,, = n 2 E 1 / ( K ~ ) '  
C P = axial loads on all columns in a story 

A,=first-order translational deflection of the story under con- 
sideration 

C H = sum of all story horizontal forces producing A,, 
L = story height 

The P - A moment amplification factor B2 expressed in Eq. (3.10.19) 
was developed based on the story stiffness concept.'*" By assuming that 
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(i) each story can behave independently of other stories, and (ii) the 
additional moments in the columns caused by the P - A effect is 
equivalent to that caused by a lateral force of C P A I L ,  the sway stiffness 
of the story can he defined as 

horizontal force s, = 
lateral displacement 

Solving Eq. (3.10.21) for A gives 

If rigid connections and elastic behavior are assumed, the moment 
induced in the member as a result of sway will be proportional to the 
lateral deflection. Therefore, we can write the amplified sway moment 
Malt as 

The alternate expression for B, expressed in Eq. (3.10.20) was 
developed based on the multiple-column buckling concept." By assuming 
that when instability is to occur in a story, all columns in that story will 
become unstable simultaneously. As a result, a direct extension of Eq. 
(3.3.19) is justified by replacing the term PIP,, by C PIC PC, where the 
summation is carried through all columns in a story. Thus 

Using the same argument, that if rigid joints and elastic behavior are 
assumed, the sway moments are directly proportional to the lateral 
deflections of the story, we can now write the amplified sway moment as 

Malt=( l:k)~lL (3.10.25) 
I-- 

It should be mentioned that Eq. (3.10.17) is a rather conservative 
estimate of the maximum moment in the member. This is because the 
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amplified moment resulting from the P -  6 effect (i.e., the term B,M,,,) 
and the amplified moment resulting from the P - A effect (i.e., the term 
B2M,,) do not necessarily coincide at the same location. For elastic 
behavior, the P - A effect usually magnifies the end moments. Neverthe- 
less, because of the assumptions involved in developing the P - 6 and 
P - A amplification factors, as well as the difficulties involved in locating 
the exact location of each of the magnified moments in the member, Eq. 
(3.10.17) gives a justifiable estimation of the design moment for the 
member. 

Note that, unlike the ASD and P D  interaction equations in which both 
the yielding and stability interactions equations are needed in the design 
process, only one interaction equation is needed if the LRFD approach is 
used. The applicable equation is determined by the term PIq5,P.. If 
P/@,Pua0.2,  Eq. (3.10.15) is applicable, and if PI@,Pu<0.2, Eq. 
(3.10.16) is applicable. Another feature of the LRFD approach that is 
different from the ASD and P D  approaches is that the P - 6 and P - A 
moment magnification effect is treated independently, as is evident from 
Eq. (3.10.17). Recall that in the ASD or  PD approach, if the member is 
subjected to sway, the factor C, is taken as 0.85, therefore the moment 
magnification factor is 0.85/(1- PIP.,) and this moment magnification 
factor is applied to the total first-order moment of the member regardless 
of whether it is caused by gravity load (M,,) or  lateral loads (M,,). 

In  addition to Eqs. (3.10.15) and (3.10.16), the LRFD Specification 
also recommends a set of nonlinear interaction equations in its Appendix 
that are valid for nonsway members with end moments M,, and M,,. 
These equations are given as follows: 

If yielding occurs, 

If stability controls 

where 

5=1.6--  for 
2Iln (p lpy) l  

1.0 for b,/d>0.3 
'I = 

\I for b,ld <0.3 

In = natural logarithm 
b,= Range width, in inches 
d =  member depth, in inches 



3.11 An Illustrative Example 219 

M;, = 1.2MV.[1 - (PIP,)] =S Mpx (3.10.30) 

MLY = I .2MPY[I  - (PIP,)'] =S Mpy (3.10.31) 

M:,, = Mu,[] - (PI&PU)I[1 - (PIPcx)I (3.10.32) 

MAy = Mu,[] - (PI@cPu)I [ l  - (PIPcy)] (3.10.33) 

The nonlinear interaction equations expressed in Eqs. (3.10.26) and 
(3.10.27) were developed by Tebedge and Chent9 based on curve-fitting 
to theoretical elastic-plastic beam-column solutions." 

3.11 AN ILLUSTRATIVE EXAMPLE 

Our discussion of the behavior of beam-columns in this chapter focuses 
primarily on isolated members. In reality, most structural members exist 
as parts of a framework and their behavior is therefore influenced by the 
behavior of other members of the frame. To illustrate some aspects of 
this interaction between the beams and columns in a frame, it is 
instructive to consider the following example. 

Shown in Fig. 3.35 is a simple braced frame consisting of a beam and a 
column. The beam is loaded by a uniformly distributed load of w. After 
the full value of w is reached, the column is then loaded by a 
monotonically increasing concentric load of P until failure occurs. The 
behavior of the beam and the column will now be studied as P increases 
from zero to its ultimate value. 

1 appllsd alcsr W hsr rsachsd FIGURE 3.35 Two-member frame 
1 1,s lull "duo I 
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FIGURE 3.36 Free-body diagrams 

In performing the analysis, the following assumptions are used: 

1. The axial force in the beam is negligible. 
2. The axial force in the column is represented by P. 

These assumptions are illustrated in Fig. 3.36 in which the free-body 
diagrams of the beam and column are shown. Assumption 1 implies that 
the axial force MBAIL induced in the beam by the column is negligible 
and assumption 2 implies that the additional axial force V, induced in the 
column from the beam shear is negligible. 

Column Analysis 

As can be seen by referring to  Fig. 3.36d, the differential equation of 
equilibrium for the column can be written as 
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Upon rearranging and using the notation k 2 =  PIEI, Eq. (3.11.1) 
becomes 

MBA 
y: + k2y, = - E X =  (3.11.2) 

The general solution of Eq. (3.11.2) is 

The constants A  and B can he evaluated by using the boundary 
conditions 

~ ~ ( 0 )  = 0 (3.11.4) 

Y ~ L )  = 0 (3.11.5) 

It can easily be shown that by using Eqs. (3.11.4) and (3.11.5) 

B=O (3.11.6) 

A =  MBA 
P sin X-L 

Upon substituting the constants expressed in Eqs. (3.11.6) and (3.11.7) 
into Eq. (3.11.3). we obtain the equation for the deflected shape of the 
column as 

By successive differentiation, the equations for the slope, moment, and 
shear can be obtained as 

,,, - M B A ~  vc = - E l k  - 7 cos kr, 
sln k L  

The location of the in-span maximum moment in the column is 
obtained by setting the shear Vc equals zero. 

M B ; ~  v, = - cos kx. = 0 
sin kL 

Since the term MBAklsin k L  is not zero, therefore, we must have 

cos kx, = 0 (3.11.13) 
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The lowest value of !a, satisfying the above equation is 

Substituting Eq. (3.11.14) into the moment equation (3.11.10) gives 
the value of the in-span maximum moment as 

In Eq. (3.11.15), ME, is the column end moment at B whose value can 
be expressed as a function of the applied load w and P by consideration 
of joint equilibrium and compatibility at B as demonstrated in the 
following. 

Beam Analysis 

By neglecting the axial force in the beam, the slope-deflection equation 
for the beam can be written as 

where 8, and Be are the beam end rotations at B and C, respectively, 
and wL2/12 is the fixed-end moment of a uniformly loaded beam. 

Since the moment at C i s  zero, we have 

from which 

Substituting Eq. (3.11.18) into Eq. (3.11.16) gives 

and, upon rearranging, 

The location of the in-span maximum moment in the beam is obtained 
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by setting the shear in the beam equal to zero: 

which gives 

The value of the in-span maximum moment in the beam is then 
obtained by evaluating the moment at the distance x ,  given by Eq. 
(3.11.22) 

joint Compatibility and joint Equilibrium 

The compatibility of joint B requires that 

-Y: IL=L = OB (3.11.24) 

The minus sign in Eq. (3.11.24) takes account of the fact that the column 
slope is negative a t  x,= L,  whereas On is defined as positive when it 
rotates clockwise from the chord. Using Eqs. (3.11.9) and (3.11.20), Eq. 
(3.11.24) can be written as 

For joint equilibrium (Fig. 3.36b), we must have 

Solving Eqs. (3.11.25) and (3.11.26) simultaneously for Mu, and MBc 
gives 

MBA = -Muc = - 
k2L2 

3 - 3kL cot kL + k2L2 
] (3.11.27) 

The above expression for the joint moment can be used in Eqs. 
(3.11.15) and (3.11.23) for the maximum in-span moment in the column 
and beam, respectively. 
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In  summary, the maximum in-span moment in the column is given by 

MB A 
(MJmnx = - sin kL 

and the maximum in-span moment in the beam is given by 

where M,, and MBc are given by Eq. (3.11.27). 
If the applied column force P is zero, it can easily be  shown by using 

the L'Hospital rule in Eq. (3.11.27) or  by a direct first-order analysis that 
the column and beam-end moments are given by 

The maximum in-span moment in the beam is given by 

The maximum-column moment occurs at the end and is therefore equal 
to wL2/16. 

FIGURE 3.37 Behavior of the twa-member frame 
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Figure 3.37 shows a plot of the maximum-beam moment (M,~,x),,n,, 
the maximum-column moment (M,,),,,,,., and the beam-end moment 
MBC ( =  -M .,, the column-end moment) nondimensionalized by the 
quantity wL2/8 as a function of the applied column force P 
nondimensionalized by the Euler load. The maximum beam moment is 
obtained as the larger value of the beam-end moment MB, and the 
maximum in-span beam moment (M,),,. Similarly, the maximum- 
column moment is obtained as the larger value of the column-end 
moment MBA and the maximum in-span column moment (M,),,. The 
sign convention used in the figure is that a positive-beam moment will 
cause tension on the bottom fiber of the beam and a positive-column 
moment will cause tension on the right-side fiber of the column. 

Also shown in the figure are the maximum moments in the column as 
predicted by the AISC approach [Eq. (3.4.27)], that is (M, = 0) 

The lower dashed line is obtained by using an effective length factor 
K = 1 in calculating P, for the column while the upper dashed line is 
obtained by using K =0.839 (from alignment chart discussed in Chapter 
4) in calculating PC. 

A number of observations regarding the behavior of the two-member 
frame can be made from the figure. 

1. As the applied column force P increases, the magnitude of the 
maximum-column moment and the maximum-beam moment both 
increase. Nevertheless, the locations of these maximum moments vary 
as a function of P. The change is apparent when one refers to Eqs. 
(3.11.14) and (3.11.22). The location of the maximum in-span column 
moment is given by 
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The location of the maximum in-span beam moment is given by 

L ME,=-+- ,[ 
nZPIP, 

Xb = 7 -x 2 8 3 - 3 n m  cot ( n m )  + (nZPIPc) 1 
In writing the above equation, the expression for M,, given in Eq. 
(3.11.27) with kL= n*E is used. It should be noted that the 
above expressions for x, and xb are valid only if the calculated value 
falls within the range 0 to L. If the calculated values fall outside this 
specific range, the location of the maximum moment is at the end 
rather than within the span of the member. Figure 3.38 shows a plot 
of the variation of x, and xb nondimensionalized by the length of the 
member L as a function of PIP.. For the column, the location of the 
maximum moment shifts from the upper end to the middle of the 

FIGURE 3.38 Variation of the location of the maximum beam and column 
moments with PIP. 

P I P ,  
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FIGURE 3.39 Moment redistribution in the frame 

member as P increases from 0 to PC. For the beam, the location of the 
maximum moment shifts from x, = 0.562L at P = 0 to x, = 0.5L at 
P = PC. 

2. The change in values in (M,,.) ,.,,, (M,,.).,, .,., and M,, implies that 
the moment in the structure is being redistributed as the applied 
column force P increases.' This change in moment distribution is 
revealed in Fig. 3.39 in which the bending moment diagrams for the 
frame at various values of PIP. are shown. Note that there is a 
reversal in moment at the joint as PIP, exceeds unity. In  other words, 
when PIP.< 1, the beam is inducing moment to the column (Fig. 
3.40a). however, as PIP.> 1, the beam is restrnining the column 
against buckling (Fig. 3.40b). A t  PIP.= 1, the beam end moment is 
zero, indicating that the beam is neither inducing moment to the 
column nor restraining it from buckling. It is also worth noting that as 
PIP, exceeds unity, (Mm,.),,,,l(wL2/8) will exceed unity, which 
implies that if the designer is to rely on the beam to restrain the 
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FIGURE 3.40 Beam-column la I P EP. 

interaction 

column (that is, to design the column with a K-factor less than unity), 
the beam must be designed to carry a maximum in-span moment that 
exceeds wL2/8 (that is, the maximum moment of a simply supported 
beam). This is in sharp contrast to the common notion that column- 
end moments do not change in a braced frame because the Pd 
moments are zero at the ends. This example clearly shows that this is 
not true. Consequently, second-order effects will change beam mo- 
ments as in unbraced frames. When PIP. = 1.1, the beam moment is 
1.12 x (wL2/8), which will require a larger beam cross section. 

3. The AlSC formula for the maximum strength of a column [Eq. 
(3.4.27)] gives an excellent correlation to the exact result if an 
effective length K = 0.839 is used to compute the critical load in the 
magnification term (the upper dashed line in Fig. 3.37). If an effective 
length K = 1 is used, then the formula will underestimate the column 
moment (the lower dashed line in Fig. 3.37). 

From observations 2 and 3, it can be concluded that for braced frames 
it is advisable to use an effective length factor K = 1 in the first term of 
the interaction equation [Eq. (3.10.4)] but not in the second term where 
we should use an effective length factor K < 1. 

3.12 SUMMARY 

The general governing equation of an elastic prismatic beam-column is a 
fourth-order linear differential equation relating the derivatives of the 
lateral displcement y, the axial force P, and the transverse load w(x) in 
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the form 
tv (x) y1V + k*y" = - 
El 

(3.12.1) 

where k'= P/EI. The general solution to Eq. (3.12.1) is 

y = A s i n k r + B c o s k r + C x + D + f ( x )  (3.12.2) 

If there are regions of constant transverse shear force V in the member, 
if may be more convenient to write the differential equation as 

v Yf,, + kZy, = -- (3.12.3) 
El 

whose general solution is 

Alternatively, one can draw a free-body diagram of a segment of 
beam-column and equate the external moment to  the internal moment to 
obtain a second-order differential equation for a specific beam-column 
with lateral loads and end moments producing the primary bending 
moment M(x) at some general location distance x from the left support 

whose general solution is 

In Eqs. (3.12.2). (3.12.4), and (3.12.6). f (x)  is the particular solution 
to the differential equations Eqs. ( 3 1 2 1 )  (3.12.3), and (3.12.5), 
respectively. The arbitrary constants (A, B, C, and D )  can be obtained 
by enforcing boundary conditions of the member. 

For design purposes, it is often necessary to determine the maximum 
deflection and maximum moment. The maximum deflection can be 
obtained by setting y '  = 0 to solve for x and then backsubstitute this into 
the displacement function. The maximum moment can be obtained by 
setting y'"= 0, solving for x, and then backsubstituting into the moment 
expression. An exception to this is when the maximum moment occurs at 
the end(s) of a fixed-ended beam-column. In  this case, the fixed-end 
moment(s) is (are) the maximum moment. 

For simplicity and uniformity in a nonsway beam-column, it is often 
possible to approximate the value of the maximum moment by an 
expression in the simple form 
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where 

M,= maximum moment that would exist if the axial force in the 
member were absent (also referred to as the first-order moment) 

A,=P - 6 moment amplification factor to reflect the effect of axial 
force on magnifying the primary moment in the member 

C, = defined as follows: 
1. For members subjected to transverse loadings 

2. For members subjected to end moments only without trans- 
verse loadings 

C, = 0.6 - 0.4(MAIM,) 3 0.4 (3.12.9) 

The limiting condition C m a 0 . 4  has been removed in the 
LFWD Specification. 

Pck = n2EIl(KL)' 
K = effective length factor 

For members subjected to sidesway in an unbraced frame, in addition 
to the P - 6 effect for an individual member (i.e., the effect of the axial 
force acting through the lateral displacement of the member relative to its 
chord), there is a P - A  effect resulting from the frame sidesway action 
(i.e., the effect of the axial force acting through the sway of the member). 
Treatment of the P-  A  effect for a member in a frame is not as 
straightforward as the P - 6 effect for an individual member only. The 
AISCIASD and IPD Specifications account for both the P - 6 and P - A  
effects indiscriminately by using C, =0.85 in Eq. (3.12.7) in design. 
However, the AISCILRFD Specification accounts for these effects 
separately by first decomposing the first-order moment M, into a nonsway 
and sway component, designated as M., and M,,, respectively. The 
nonsway component M., is multiplied by P - 6 moment amplification 
factor B,(=A,) to account for the P - 6 effect, and the sway component 
M,, is multiplied by a P - A  moment amplification factor B, to account 
for the P - A  effect. The maximum moment is then obtained as an 
algebraic sum of the two amplified moments 

M,., = BIM., + &MI, (3.12.10) 

This approach usually leads to conservative results, since the maximum 
secondary P - 6 moment and the maximum secondary P - A  moment do 
not necessarily coincide at the same location. Nevertheless, this is a more 
rational approach than the AISCIASD and IPD approaches, in which the 
total first-order moment is magnified by the factor 0.85/(1 - PIP.,), 
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because, in many cases, a larger percentage of the nonsway moment is 
not affected by the P - A effect. 

The design of the beam-columns is facilitated by the use of interaction 
equations. These are equations that relate a combination of axial force 
and moments that will initiate the failure of a beam-column. They 
generally give good approximations to the more exact interaction curves 
developed on the basis of an inelastic analysis. Since inelastic beam- 
column analysis is rather complicated, interaction equations provide an 
attractive alternative for designers. The design of beam-columns in 
various interaction formats as provided by the current AISC Specifica- 
tions is discussed in Sec. 3.10. 

PROBLEMS 

3.1 Use the design amplification factor for the lateral deflection y,,. in Eq. 
(3.2.35) to derive the design moment amplification factor for the moment 
M,.. in Eq. (3.2.41). 

3.2 Use the four conditions (3.3.5) to (3.3.8) to determine the four constants 
A, B,  C, and D as given in Eqs. (3.3.9) to (3.3.12). 

3.3 Using L'Hospital's rule, show that the stability functions in Eqs. (3.7.15) 
and (3.7.16) reduce to s,, = 4 and s,, = 2 when P = 0. 

3.4 Derive the expressions for the maximum deflection and maximum moments 
for the beam-columns shown in Figs. P3.4a,b. Using 
a. General Differential Equation 
b. Principle of Superposition 
Determine the value of Y, if the expression 
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is used to approximate the fixed-end moment where PC, = nZEI/(KL)' and 
M, =fixed-end moment that would exist in the member if P were absent 
(first-order moment). 

3.5 Using the deflection function given in Eq. (3.3.13a, b) for the beam-column 
shown in Fig. P3.5a, formulate the expression for the deflection y for the 
beam-columns shown in Fig. P3.5b-d by the principle of superposition. 
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FIGURE P3.5 
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3.6 For the beam-column subjected to end-moments MA and M, as shown in 
Fig. P3.6, find the elastic maximum moment for PIP. = 0.4 if 
a. MAIMo = 0.4 
b. MAIMD = 0 
c. MAIM, = -0.4 
Where is the location of M,,? 

FIGURE P3.6 -+ 
3.7 Find the fixed-end forces M,, and M, for the beam-column shown in Fig. 

P3.7. 

FIGURE ~ 3 . 7  " 'FB 

3.8 Find the design moments for the columns of the frame shown in Fig. P3.8 
using the AISC's (a) ASD approach, (b) PD approach, and (c) LRFD 
approach. 

FIGURE P3.8 14.6 rnl 

3.9 Plot the factors 

1 
in ASD 

1 - K/FLd 



versus PIP., where P is the axial force in the column and PC is the critical 
load of the column for column DE of the frame shown in Fig. P3.8. What 
observation do you draw? 

3.10 Find the fixed-ended moments M,, and MPO for the unsymmetrically loaded 
beam-column shown as Case 3 in Table 3.8. 

3.U Determine the exact C, factor for the beam-column shown in Fig. 3.33(b). 

3.U Using the slope deflection Eqs. (3.8.1) and (3.8.2), determine the critical 
load of the frame shown in Fig. 3.33(a). 

3.13 Find the design moments for the structure shown in Fig. P.3.13 using the 
LRFD method. 

FIGURE P3.U 
p2 1 L I Z  , 

3.14 For the design of a beam-column in a steel frame, list the important 
differences between LRFD and ASD Specifications. 
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Chapter 4 

4.1 INTRODUCTION 

In the preceding chapters, we have dealt only with irolated members with 
idealized end conditions (hinged, fixed, or guided). In reality, most 
structural members are connected to other members to  form a Frame- 
work. As  a result, the behavior of these members will be affected by their 
adjacent members in the structure. For example, if a column in a 
framework buckles, its ends will rotate. This will cause rotations of 
adjacent members that are connected to the column, which in turn will 
cause deformations to other adjacent members. Thus, to determine the 
critical load of the column in a frame, it is necessary to investigate the 
stability of the frame as a whole. 

If the frame is geometrically perfect and if the loadings are such that no 
primary bending moments are present in the members before buckling, 
then a frame's critical load can be obtained by an eigenvalue analysis 
done in a manner similar to that used for an individual member. Such a 
frame is shown in Fig. 4.la, where the columns are perfectly straight and 
the loads are applied concentrically with the centroidal axes of the 
columns. The load-deflection behavior of the frame is shown in Fig. 4.2 
as curve 1,  and its critical load is designated as PC, in the figure. Note 
that there is no bending deformations and so no bending moments in the 
members until PC, is reached. Once the critical load PC, is reached, a slight 
disturbance will induce large lateral deflections of the members. 

If the columns are geometrically imperfect (Fig. 4.lb),  or  if the 
primary bending moments are present before buckling because of 
eccentricities of the applied loads (Fig. 4.lc), lateral deflections will occur 
as soon as the loads are applied. The elustic load-deflection behavior, as 
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l a )  PERFECT SYSTEM 

fbl  IMPERFECT SYSTEM-INITIALLY CROOKED COLUMNS 

FIGURE 4.1 Simple braced portal frames 

represented by curve 2 in Fig. 4.2, will be nonlinear because of the 
presence of secondary effects (P-6 and P-A effects), and the curve will 
approach its maximum or critical value PC, asymptotically. 

The elastic critical load PC, can be reached only if the stresses in all 
members fall below the proportional or elastic limit of the stress-strain 
diagram of the material. Under this condition, failure of the frame is due 
solely to elmtic instability. On the other extreme, if instability is excluded 
as a failure mode and material yielding or plasticity is the only factor 
accounted for in the failure analysis, failure of the frame will occur as a 
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FIGURE 4.2 Load-deflection behavior of frames 

result of the formation of a collapse rnechar~irrn when sufficient plastic 
hinges have developed in the structure. In this case, the rigid plastic 
collapse load P, (Fig. 4.2, curve 3) rather than the elastic critical load PC, 
will govern the limit state of the frame. 

In many instances, the stability and plastic mechanism behavior of the 
frame will interact with each other and the true failure load PI of the 
frame (Fig. 4.2, curve 4) is neither controlled by the elastic critical load, 
PC,, nor the plastic mechanism load, P,. To determine this failure load, PI, 
a complete elastic-plastic analysis of the structure is often necessary. The 
rigorous analytical determination of the failure load Pr is generally very 
complex, and the amount of work involved does not justify its deter- 
mination by the rigorous means for design applications. Fortunately, an 
approximate value of Pr can be obtained easily and directly, once the 
extreme values of PC, and P, are known. This approximate method will be 
presented in the later part of this chapter. The approximate determina- 
tion of the failure load Pr is usually enough for design purposes. 

In the first part of this chapter, we will present three methods for the 
determination of the elastic critical load PC,: (1) the differential equation 
method, (2) the slope-deflection equation method, and (3) the matrix 
stitmess method. All these methods employ the concept of neutral 
equilibrium in which the critical load of the frame is obtained as the 



4.2 Elastic Crilical Loads by DiRerenlial Equalion Method 239 

eigenvalue of the system of equations generated by enforcing equilibrium 
and compatibility conditions of all members and joints in the structural 
system. 

Toward the end of this chapter, we will give a simple method making 
use of the virtual work principle for the determination of the rigid plastic 
collapse load P,. This will be followed by the presentation of a simple 
interaction equation making use of PC, and P, to estimate the true failure 
load P, of the frame. 

To  conclude the chapter, we will discuss tlre effective length factor K as 
recommended by the AISC Specification for the design of members in a 
framed structure (references 7 and 8 in Chapter 3). 

4.2 ELASTIC CRITICAL LOADS BY DIFFERENTIAL 
EQUATION METHOD 

This section deals with the determination of the elastic critical load PC, of 
frames. Since the critical load for a given frame is different depending on 
whether the frame is braced (sway prevented case) or  unbraced (sway 
permitted case), we will discuss these two cases separately. 

4.2.1 Sway-Prevented Case 

Figure 4.3a shows a pin-ended portal frame braced against sidesway and 
loaded by two points loads P, one on each column. We will now evaluate 
the critical load of this frame. The subscripts b and c designate beam and 
column, respectively. 

Because of symmetry, we need only to consider half of the structure. 
Referring to Fig. 4.3b, we see that the differential equation for the 
column is 

where k: = PIEI,. 
The general solution is 

Using the boundary conditions of 

~ ~ ( 0 )  = 0,  y,(L.)= 0 (4.2.4) 



FIGURII. 4.3 Nonsway buckling of a pinned-based portal frame 

results in 

A = -  M~ 
P sin k,L, 

Rigid Frames 

Therefore, the deflection function for the  column, Eq. (4.2.3), can be 
written as 

M x sin k,x, &='"('- 
P L, sin k,L, 
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from which 

and 

MB 1 kc cos k,x, 
y : = - ( - -  P LC sln . k,L ) (4.2.8) 

MB 1 
Y : ( L J = -  (-- 

P LC tan k,L, 
(4.2.9) 

For the beam, the effect of axial force on the behavior of the member 
is usually negligible (Fig. 4.3b). Therefore, the differential equation has 
the simple form 

The general solution is 

Using the boundary conditions of 

results in 

D = 0 (4.2.15) 

Therefore, the deflection function for the beam, Eq. (4.2.12), can be 
written as 

from which 

The joint compatibility requires 

Y:(L,) = Y 8 9  (4.2.19) 

Upon substituting Eqs. (4.2.9) and (4.2.18) into the joint compatibility 
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equation (4.2.19), we have 

or, rearranging and denoting k', = PIEI,, 

1 +-- I= ) M ~ = o  
L, tan k,L, 

At bifurcation, MB increases without bound. For Eq. (4.2.21) to be 
valid, the term in the parenthesis must be zero, i.e., 

Equation (4.2.23) is the cl~oracteristic equatiorz of the frame buckled in 
the rlortsway mode. The eigenvalue determined from this equation is the 
critical load of the frame. 

For simplicity, if we take L, = LC = L and k, = k, = k, we can write the 
characteristic equation as 

(kL)' tan kL + 2 tan kL - 2kL = 0 (4.2.24) 

By trial and error or by graphical means, the solution of Eq. (4.2.24) is 
found to be 

kL = 3.59 (4.2.25) 
Since 

we have 

o r  

Before we proceed to the sway-permitted case, we shall examine the 
two extreme cases of PC, as expressed in Eq. (4.2.28). On one extreme, if 
the bending stiffness of the beam approaches zero (Fig. 4.4a). the two 
columns will behave like a hinged-hinged member and the critical load is 
a2EIIL2(=Y.87EIIL2). On the other extreme, if the stiffness of the 
beam approaches infinity (Fig. 4.4b), the columns will behave like a 
hinged-fixed member and the critical load is 20.1EI/L2. Thus, in the 
present case the lower bound for PC, is Y.87EI/L2 and the upper bound is 
20.1EIIL2. The actual value for PC, for the frame with a finite beam 
stiffness should fall between these two extreme values as Eq. (4.2.28) 
does. 
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2 2 
PC, = 9 . 8 7 0 / ' ~  PCr=9.87EL/~ 

I I 

FIGURE 4.4 Extreme values of PC. 

4.2.2 Sway-Permitted Case 

If the frame shown in Fig. 4.3a is not braced against sidesway, it may 
buckle in a sway mode at a lower buckling load level, as shown in Fig. 
4.5a. Because of antisymmetry, only half of the structure needs to be 
considered (Fig. 4.5b). Note that the horizontal reaction H at the column 
base is zero, since there is no external horizontal force acting on the 
frame. Assuming that the applied load P is much greater than the beam 
shear force 2MB/Lb, it follows that the axial force in the column can be 
approximately taken as P. As  a result, the differential equation for the 
column can be written as 

E1.y: + Py. = 0 (4.2.29) 
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FIGURE 4.5 Sway buckling of a pinned-based portal home 

Introducing the notation k: = PIEI,, we can write Eq. (4.2.29) as 

~ : + k 3 ~ = 0  (4.2.30) 

The general solution is 

y, = A  sin k&, + B cos k&, (4.2.31) 

Using the boundary conditions 

- yC(O)=O, y ( L C ) = A  (4.2.32) 

the two constants can be evaluated as 
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Therefore, the column's lateral deflection can be expressed in terms of 
the sway deflection A  of the frame as 

A  
Y ,  = 7 sin k,x, 

sln k,L, 

From equilibrium consideration of the column, we have 

MB= P A  (4.2.36) 

from which we obtain the sway deflection 

Upon substituting Eq.  (4.2.37) into Eq.  (4.2.35), we obtain the 
deflection function of the column as 

Yc  = 
MB sin k,s ,  

P  sin k,L, 
from which 

" = P sin k , ~ ,  
cos k,x, 

and 
k c M ~  

y'(L') = P  tan k,L, 

The differential equation for the beam is 

The general solution is 

Using the boundary conditions 

~ b ( 0 )  = 0 .  Yb(+)  = 0 (4.2.44) 

the two constants can be evaluated as 
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Substituting Eqs. (4.2.45) and (4.2.46) into Eq. (4.2.43) gives the 
deflection function of the beam as 

from which 

and 

Joint compatibility at B requires that 

YU,) = Y a) (4.2.50) 

or, using Eq. (4.2.40) and Eq. (4.2.49), we obtain 

kc& - 

P tan k,L,  6EI, 

At the bifurcation load, M, increases without bound. T o  ensure the 
validity of Eq. (4.2.52).  we must have 

Lb kc - 0 
P tan k,L, 6EIb 

or  
6k,L, - kiLbLc  tan kcLC = O (4.2.54) 

where k', = PIEIb. 
Equation (4.2.54) is the characteristic equation of the frame buckled in 

the sway mode. For the special case for which L , = L , = L  and 
k ,  = k ,  = k ,  Eq. (4.2.54) reduces to  

from which kL can be evaluated as 

k L  = ( m r ) ~  = 1.35 (4.2.56) 

and so 

Again, we shall examine the two extreme cases of PC, as expressed in Eq. 
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FIGURE 4.6 Extreme values of P, 

(4.2.57). If the bending stiffness of the beam approaches zero (Fig. 4.6a), 
the two columns do  not possess any sway stiffness and the critical load is 
zero. If the bending stifmess of the beam approaches infinity, the two 
columns act like a hinged-guided member and the critical load is 
2.47EIIL2. The critical load as expressed in Eq. (4.2.57) does fall 
between these two extreme cases of 0 and 2.47EIILZ. 

Note that PC, for the sway-permitted case is much less than that of the 
sway-prevented case; the frame will undoubtedly buckle on the sway 
mode if no physical constraint is provided to  prevent the frame from 
sidesway buckling. 

The differential equation method described above can be extended to a 
more complex frame. A differential equation is written for each and 
every member of the frame. The arbitrary constants of the general 
solution to each differential equation solution are then evaluated using 
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the boundary conditions and joint compatibility conditions of each 
member and each joint from which the charactersitic equation of the 
frame can be obtained. The eigenvalue of this characteristic equation will 
give the critical load of the frame. 

Although the differential equation method can, in theory, be used to 
determine PC, for all types of frames, the actual implementation of the 
method for the solution of a given frame is rather complex, especially 
when it is applied to frames of more than one story and one bay. 
Fortunately, there is a simpler method available, which makes use of the 
slope-deflection equations1 developed in the previous chapter. This will 
be discussed in the following section. 

4.3 ELASTIC CRITICAL LOADS BY SLOPE-DEFLECTION 
EQUATION METHOD 

In the slope-deflection equation method, the slope-deflection equations 
developed in Sections 3.7 and 3.8 are written for each and every member 
of the frame. These equations are then related to one another by 
enforcing moment equilibrium at the joints (for braced frames) or by 
enforcing moment equilibrium at the joints and story shear equilibrium 
for every story of the frame (for unbraced frames). The characteristic 
equation is obtained by setting the determinant of the coefficient matrix 
of the resulting set of equilibrium equations equal to zero. The critical 
load is then obtained as the eigenvalue of the characteristic equation. To 
demonstrate the use of this approach, we will reanalyze the braced and 
unbraced frames shown in Figs. 4.3a and 4.5a using the slope-deflection 
equation approach. Note that because of symmetry and antisymmetry, 
only half of the structure needs to be considered in the analysis. 

4.3.1 Sway-Prevented Case 

For this case, there is no relative lateral translation between the ends of 
the column; therefore, by using Eq. (3.8.5), the slope-deflection equation 
for the column (Fig. 4.7a) can be written as 

in which the subscript c denotes the column, and in which expressions for 
sii and sii are given in Eqs. (3.7.15) and (3.7.16), respectively. 

Since the beam is bent in a single curvature, we use the slope- 
deflection equation (3.8.15) for the beam 

in which the subscript b denotes the beam. 
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FIGURE 4.7 Slope-deflection equation approach for P, of nonsway buckling of 
simple portal frame 

Neglecting the effect of axial force on the bending stiffness of the 
beam, we can set sit, = 4 and si jb  = 2, so that Eq. (4.3.2) becomes 

From joint equilibrium (Fig. 4.7b), we must have 

MBA +MBC=O (4.3.4) 

Using Eqs. (4.3.1) and (4.3.3), the joint equilibrium condition ex- 
pressed in Eq. (4.3.4) can be written as 

Since at bifurcation, 8, + 0, we must have 

Equation (4.3.7) is the characteristic equation of the frame. For the 
special case for which I, = I, = 1 and Lb = LC = L, Eq. (4.3.7) becomes 
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By trial and error and using Table 3.7, the value of kL that satisfies 
Eq. (4.3.9) is found to he 

k ~ =  ( m r ) ~ =  3.59 (4.3.10) 

from which the critical load 

is obtained. This load is the same as before using the differential equation 
approach. 

4.3.2 Sway-Permitted Case 

Referring to Fig. 4.8a, we see that the slope-deflection equations (3.8.1) 
and (3.8.2) for the swayed column are 

Solving Eq. (4.3.12) for BA and substituting BA into Eq. (4;2.13), we 
obtain 

Since the beam is bent in double curvature, we use the slope-deflection 
equation (3.8.17) for the beam 

Because there is no axial force in the beam, we set siib = 4 and siib = 2, 
or 

From joint equilibrium (Fig. 4.8h), we know 

MBA + MBC = 0 (4.3.17) 
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I C I  

FIGURE 4.8 Slope-deflection equation approach for P, of sway buckling of 
simple portal frame 

Using Eqs. (4.3.14) and (4.3.16), the joint equilibrium condition 
(4.3.17) becomes 

6EIb s.. -- 0 - s.. -- - +- ".[(,,. 9. (,,. '")3 B B = O  (4.3.18) 
LC Siic Siic Lh 

2 
' i j c  ( ,,. s i c )  :c ( s i i c - - + 6 -  8,- s.. -- (4.3.19) 
siic ICL, Siic 
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From story shear equilibrium (Fig. 4.8c), we have 

Realizing that 

and 
MA, = MDc = 0 (hinged) (4.3.21) 

McD = M,, (antisymmetry) (4.3.22) 

we can write the story-shear equilibrium equation (4.3.20) as 

Using Eq. (4.3.14) for MB, in Eq. (4.3.24), we can write 

or 

(4.3.26) 
Siic Siic 

Equations (4.3.19) and (4.3.26) are the two equilibrium equations of 
the frame, they can be written in matrix form 

where 

Note that the coefficient matrix in Eq.  (4.3.27) can be made symmetric 
by multiplying Eq. (4.3.26) by minus one. If we do this, and also let 
1, = I ,  = I and L, = LC = L, Eq. (4.3.27) becomes 

At bifurcation, both 8 ,  and A increase without bound. For Eq. 
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(4.3.28) to be valid, we must set 

det I S + '  -S 1 = O  (4.3.29) 
-S S -  (kL)' 

Equation (4.3.29) is the characteristic equation of the frame. By trial 
and error and by using Table 3.7, the value kL can be found to be 

kL = ( ~ I ) L  = 1.35 (4.3.30) 

from wbich the critical load can be solved 

Note the correspondence of Eq. (4.3.31) obtained using the slope- 
deflection method with Eq. (4.2.57) obtained previously using the 
differential equation method. 

The slope-deflection equation method, as in the differential equation 
method, can in theory, he extended to evaluate PC, for all types of 
frames. The resulting coefficient matrix obtained by enforcing joint (and 
story-shear) equilibrium will be an n x n matrix in wbich n is the number 
of independent degrees of freedom of the frame. However, if n is large, it 
is cumbersome to obtain a solution. In the next section, the slope- 
deflection equation method will he generalized; the resulting formulation 
we will see is called the matrix stiffness m e t h ~ d . ~ . ~  This procedure to 
obtain solutions for large frames can be greatly enhanced by the use of 
computers. 

4.4 ELASTIC CRITICAL LOADS BY MATRIX STIFFNESS METHOD 

In the matrix stiffness method, the element stiffness matrix that relates 
the element end forces to end displacements is first formulated for each 
and every member of the frame. These element stiffness matrices are 
then assembled into the strueture stiffness matrix that relates the 
structure nodal force to the structure nodal displacements. At bifurea- 
tion, the stiffness of the structure vanishes. Therefore, by setting the 
determinant of the structure stiffness matrix to zero, the critical load of 
the frame can be obtained. 

4.4.1 Element Stiffness Formulation 

We shall begin our discussion of the matrix stiffness method by 
developing the element stiffness matrix from the slope-deflection equa- 
tion. Figure 4.9a shows the sign convention for the positive directions of 



Rigid Framer 

(bl 

FIGURE 4.9 Element end forces and displacements notations 

element end forces and end displacements of a frame member. The end 
forces and end displacements used in the slope-deflection equation are 
shown in Fig. 4.9b. By comparing the two figures, we can easily express 
the following equilibrium and kinematic relationships. 

Equilibrium 

r, = P (4.4.1) 

r2= -v = - MA + MB 
L 

(4.4.2) 

Kinematic 
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Equations (4.4.1) to (4.4.6) can be written in matrix form as 

Similarly, Eqs. (4.7) to (4.4.9) can be written in matrix form as 

Equation (4.4.10) and Eq. (4.4.11) can be related by recognizing that 

EA 
P=-e  (4.4.12) 

L 

Equation (4.4.12) relates the axial force P to the axial displacement e 
of the member, Eqs. (4.4.13) and (4.4.14) are the slope-deflection 
equations of the member, and s, , ,s i i  are the stability functions. In  writing 
Eq. (4.4.12), it is tacitly assumed that the effect of member shortening 
due to the bending curvature is negligible. This assumption is satisfactory 
for most practical purposes. 

Putting Eqs. (4.4.12) to  (4.4.14) in matrix form, we have 
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Substituting Eq. (4.4.15) into Eq. (4.4.10), and then substituting Eq. 
(4.4.11) into the resulting equation, we can relate the element end forces 
(r, to r,) with the element end displacements (d ,  to d6) as 

Symbolically, Eq. (4.4.16) can be written as 

- - 
A - 0 0 - - 
I 

A 0 
I 

0 

ze,, + sii) ( ~ i i  + ~ i , )  - -z(s,,+ s,,) -(xi! + sii) 

L L2 L L' 

0 
& 

Sii Pii  L 

A 
sym. - 0 0 

I 

+ sii) (sii + 5,d 

L2 L 

- s,i - 

where the subscript ns is used here to  indicate that there is no sidesway 
in the member. If the member is permitted to  sway as shown in Fig. 4.10, 
an additional shear force equal to PAIL will be induced in the member 
due to the swaying of the member by an amount A  given by 

"S 

We can relate this additional shear force due to member sway to the 
member end displacement as 

(4.4.16) 

-0 0 0 0  0 o -  
P  -- 
L  

0 0  0 0 
(4.4.19) 

sym. 

- 0 - 5  

or symbolically 
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where the subscript s is used to indicate the quantities due to sidesway of 
the member. 

By combining Eq. (4.4.17) and Eq. (4.4.20), we obtain the gcneral 
beam-column element force-displacement relationship as 

where 

k = k., + k, (4.4.22b) 

sym. 
A - 
I 

0 0 

Substituting the expressions for the stability functions (sii,sii) in Eq. 
(4.4.23) and simplifying, we obtain 

The expressions for @,, @Z, @,, and @, are given in Table 4.1. Note 
that as P approaches zero, the functions @,, @?, G3, and @, become 
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FIGURE 4.10 Additional shear due to swaying of the member 

indefinite. However, by using the L'Hospital's rule, it can be shown that 
these functions will approach unity and Eq. (4.4.24) reduces to  the 
first-order (linear) element stiffness matrix for a frame member. 

Also shown in Table 4.1 are the @i functions expressed in the form of a 
power series by using the following series expansion for the trigonometric 
functions: 

For compression 

For tension 

I t  has been shown4 that these power series expressions are convenient 
and efficient to use in a computer-aided analysis because no numerical 
difficulties will arise even if the axial force P is small. In addition, the 
expressions in the series are the same regardless of whether P i s  tensile or  
compressive. For most cases, the series will converge to a high degree of 
accuracy if n = 10 is used. 

If the axial force in the member is small, Eq. (4.4.24) can be simplified 
by using a Taylor series expansion for the @!'s. If we retain only the first 
two terms in the Taylor series, it can be shown that the resulting stiffness 



Table 4.1 Expressions for @,, @,, @,, and @, 

Compressive Zcra Tcnsile 

+ I  
(kL)I sin k L  

1 
(kL)' sinh k L  

WC 12+, 

. . 

(kL)(sin k L  - k L  cos k L )  
#3 1 

( k L ) ( k L  cosh k L  - sinh k L )  

w. 4m. , . 
(kL) (kL  -sin k L )  

+.4 1 
(kL)(sinh k L  - k L )  

2+= 
where 

w, 

Alternatively, the @,functions can be expressed in the form of power series, as 
in reference 4: 

where 

Use the minus sign if the axial force is compressive. 
Use the plus sign if the axial foree is tensile. 
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matrix that is valid for small axial force is given by 

in which the negative sign preceding the second matrix,corresponds to a 
compressive axial force and the positive sign corresponds to a tensile 
axial force. 

Symbolically, Eq. (4.4.27) can be written as 

where k, is the first-order (linear) elastic stiffness matrix and k, is the 
geometric stiffness matrix (sometimes referred to as the initial stress 
stiffness matrix), which accounts for the effect of the axial force P on the 
bending stiffness of the member. 

The following example will be used to demonstrate the procedure of 
using the stiffness matrix method to obtain the critical load of frames. 

4.4.2 Sway Buckling of a Pinned-Base Portal Frame 

The matrix stiffness method is applied here to determine the critical load 
PC, for the frame shown in Fig. 4.5a. Because of symmetry, we consider 
only one half of the structure in the analysis. This is shown in Fig. 4.11a 
together with the structural nodal forces and displacements. T o  reduce 
the number of degrees of freedom of the structure, we assume that all 
members are inextensible (i.e.. the change in length due to axial force is 
neglected). As a result, only four degrees of freedom, are labeled: three 
rotational degrees of freedom, D,, D2, and D,, and one translational 
degree of freedom, D,. The corresponding structural nodal forces, 
R,, . . . , R,, are also shown in Fig. 4.11a. The directions of these 
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FIGURE 4.11 Structure and 

\.i member forces and displace- 
'6  ,ds ('dl ments notations 

rotations, translations, and forces are shown in their positive sense in the 
figure. 

Because of the assumption of inextensional behavior, the axial 
force-axial displacement relationship expressed in Eq. (4.4.12) is not 
valid anymore. As a consequence, the 6 X 6 element stiffness matrix i 

i 
relating the element end forces to the element end displacements will be 
reduced to a 4 x 4 matrix as 1 

i 

El k=- 
L 

- 
12 - 
L2 

sym. 

- 

- 
6 - 
5 

sym. 

- 

- 
6 -- 
L 

2 

6 - 
L 

4 
- 

P 
F- 

L 
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This stiffness matrix relates the four end forces (r,, r,, r,, and r,) to the 
four end displacements (d2, d,, d,, and d,) of an inextensible member. 
Note that the element stiffness matrix for an inextensible member [Eq. 
(4.4.29)] is obtained simply by deleting the first and fourth rows and the 
first and fourth columns from the element stiffness matrix for an 
extensible member [Eq. (4.4.27)]. 

Figure 4.11b shows the four degrees of freedom (d,, d,, d5, and d,) 
and the corresponding end forces (r,, r,, r,, and r,) associated with each 
member of the structure. Again, the directions are shown in their positive 
sense in the figure. 

By using Eq. (4.4.29), the element stiffness matrix for the column 
(element 1) can be written as 

El 
k'=L 

and the element stiffness matrix for beam with P=O and L/2  for L 
(element 2) can be written as 

- 
12 
L' 

sym. 

- 

P . - 
L 

The structure stiffness matrix can be obtained by assembling these 
element stiffness matrices. The process of assemblage is described in 
detail in most matrix structural analysis  textbook^.^' So we will discuss it 
only very briefly here. 

For each element, the element end displacements are first related to 
the structure nodal displacements by consideration of joint compatibility. 
It can easily be seen from Fig. 4.11 that for element 1, this kinematic 

- 
6 - 
5 

sym. 

- 
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relationship is 

For element 2, the kinematic relationship is 

Symbolically, Eqs. (4.4.32) and (4.4.33) can be written respectively as 

On the other hand, the portion of the structure nodal forces resisted by 
element 1 is 

and the portion of the structural nodal force resisted by element 2 is 

By comparing Eq .  (4.4.36) with Eq. (4.4.32) and Eq. (4.4.37) with Eq. 
(4.4.33), it can be seen that the matrix relating the structure nodal forces 
R ' s  to the element end forces r's is the transposition of the matrix relating 
the element end displacements d's to the structure nodal displacements 
D's. This observation is not a coincidence, but represents a theory in 
structural analysis known as the conrragradier~r law.' 
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In  view of the above observation, Eqs. (4.4.36) and (4.4.37) can be 
written symbolically as 

R, = TTr, (4.4.38) 

R, = TTr, (4.4.39) 

From consideration of joint equilibrium, we can write 

Substituting the member equilibrium relationships Eqs. (4.4.38) and 
(4.4.39) into Eq.  (4.4.40) gives 

R = TTr, + Tzr, (4.4.41) 

Since, from Eq.  (4.4.21) the element force-displacement relationship 
for elements 1 and 2 can be written, respectively, as 

rl = k,dl (4.4.42) 
and 

r, = k,d2 (4.4.43) 

we can write Eq .  (4.4.41) as 

R = T:k,dl + T:k2d2 (4.4.44) 

Now, using the member kinematic relationships, Eqs. (4.4.34) and 
(4.4.39,  we can write Eq. (4.4.44) as 

R = T:~,T,D + T:~=T,D 

= (T:~,T, + T:~,T,)D (4.4.45) 
or 

R = KD (4.4.46) 
where 

K = T:~,T, + T:~=T, (4.4.47) 

is the structure stiffness matrix. 
The process shown above is referred to as assemblage and it involves 

the process of transforming and putting together element stiffness 
matrices to  form the structure stiffness matrix. In general, if these are r r  
elements in the structure, the structure stiffness matrix can be obtained as 

Now, referring back to  the example problem, upon substituting the 
matrices TI, T,, k,, kz into the structure stiffness matrix Eq. (4.4.47) and 
carrying out the matrix products, we see that the structure stiffness matrix 
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can be written as 

2L2 - L 2  - -  
15 30 

2LZ 
El 

15 K = -  
L 

(4.4.49) 
8 0 0 0 

sym. sym. 

Denoting 

Eq. (4.4.49) can be written as 

1 2 -  4 1  4 

8 

sym. 

At bifurcation, the determinant of the stiffness matrix must vanish. 
Thus, by setting 

det (KI = 0 (4.4.52) 

we obtain a polynomial in A. The smallest root satisfying this equation is 
A = 0.061, and from Eq. (4.4.50) 

The slight discrepancy of Eq. (4.4.53) compared to the value obtained 
previously by the differential equation method or the slope-deflection 
equation method is due to the round-off error, and this error was 
introduced earlier as a result of the approximation from Eq. (4.4.24) to 
Eq. (4 .4 .27) .  

At first glance, it seems that there is much more work involved in the 
stiffness matrix approach than that of the differential equation or the 
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slope-deflection equation approaches. However, it should be noted that 
the steps shown above can easily be programmed in a digital computer, 
and so PC, can be obtained quite conveniently for any type of frame. 

4.5 SECOND-ORDER ELASTIC ANALYSIS 

In the preceding sections, we determined the load that corresponds to a 
state of bifurcation of equilibrium of a perfect frame by an eigenvalue 
analysis. In an eigenvalue analysis, the system is assumed to be perfect. 
There will be no lateral deflections in the members until the load reaches 
the critical load PC,. At the critical load P,, the original configuration of 
the frame ceases to be stable and with a slight disturbance, the lateral 
deflections of the members begin to increase without bound as indicated 
by curve 1 in Fig. 4.2. However, if the system is not perfect, lateral 
deflections will occur as soon as the load is applied, as shown by curve 2 
in Fig. 4.2. For an elastic frame, curve 2 will approach curve 1 
asymptoticauy. To trace this curve, a complete load-deflection analysis of 
the frame is necessary. A second-order elastic analysis will generate just 
such load-deflection response of the frame. 

In a second-order analysis, such secondary effects as the P - 6 and 
P- A effects, which we discussed previously in Chapter 3, can be 
incorporated directly into the analysis procedure. As a result, the use of 
P - 6 and P - A moment magnification factors (denoted as B, and B, in 
Chapter 3) are not necessary. 

Because for a second-order analysis the equilibrium equations are 
formulated with respect to the deformed geometry of the structure, which 
is not known in advance and is constantly changing with the applied 
loads, it is necessary to employ an iterative technique to obtain solutions. 
In a numerical implementation, one of the most popular solution 
techniques is the incremental load approach. In this approach, the 
applied load is divided into increments and applied incrementally to the 
structure. The deformed configurations of the structure at the end of each 
cycle of calculation is used as the basis for the formulation of equilibrium 
equations for the next cycle. At a particular cycle of calculation, the 
structure is assumed to behave linearly. In effect, the nonlinear response 
of the structure as a result of geometric changes is approximated by a 
series of linear analyses, the geometry of the structure used in the 
analysis for a specific cycle is the deformed geometry of the structure 
corresponding to the previous cycle of calculation. Because of the 
linearization process, equilibrium may be violated and the external force 
may not always balance the internal force. This unbalanced force must be 
reapplied to the structure and the process repeated until equilibrium is 
satisfied. 

For a second-order elastic frame analysis, the iteration process is 
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summarized in the following steps (in the following discussion, a subscript 
refers to the load step and a superscript refers to the cycle of calculation 
within each load step): 

1. First, discretize the frame into a number of beam-column elements. 
2. Next, formulate the element stiffness matrix k for each and every 

element. The element stiffness matrix is given in Eq. (4.4.24). or in 
its approximate form, Eq. (4.4.27). (P  can be set equal to zero in 
these equations for the first cycle of calculations.) 

3. Assemble all these element stiffness matrices to form the structure 
stiffness matrix K. 

4. Solve for the incremental displacement vector using 

A R ~  = ~f AD: (4.5.1) 

from which 

AD: = (K:)-I A R ~  (4.5.2) 
where 

ARi = prescribed incremental load vector of the i load step 
K: = structure secant stiffness matrix at the beginning of i load 

step 
AD; = incremental structure nodal displacement vector at i load 

step. 

5. Update the structure nodal displacement vector from 

D! = D~ + AD! (4.5.3) 

where 

D: =structure nodal displacement vector at the end of the fust 
cycle of calculation at the i load step 

Di = structure nodal displacement vector at the beginning of the 
i load step 

AD: = incremental structure nodal displacement vector evaluated 
at Step 4. 

6. Extract the element end displacement vector di from Df for each and 
every element in the structure. 

7. For each element, evaluate the element axial displacement e and 
element end rotations B,, BB from Eqs. (4.4.7) to (4.4.9). 

8. For each element, evaluate element axial force P and element end 
moments MA, MB from Eqs. (4.14.12) to (4.4.14). 

9. For each element, evaluate element end forces from Eq. (4.4.10). 
10. Form the structure internal force vector R: at the end of the first 

cycle of calculation by assembling the element end forces evaluated 
in Step 9 for all the elements. 
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11. Calculate the external force vector from 

12. Evaluate the unbalanced force AQ; at the end of the cycle from 

13. Using the current value of axial force P, update the element stiffness 
matrix k for each and every element. Assemble k for all the elements 
to form an updated secant structure stiffness matrix K:. Evaluate the 
incremental displacement vector AD2 from 

AD: = (K:)-' AQI (4.5.6) 

where AQ: is the unbalanced force vector calculated in the previous 
cycle of calculation. 

14. Update the structure nodal displacement vector from 

15. Extract the element end displacement vector d, from D: calculated in 
Eq. (4.5.7) for each and every element. Update e, 8,, and 8, and, 
hence, P, MA, and MB as done in Steps 7 and 8 for all elements in 
the frame. 

16. Update the element end forces for all the elements and form the new 
structure internal force vector R:. 

17. Evaluate the new unbalanced force AQ: from 

18. Repeat Steps 13 through 17 as many times as possible until 
convergence. Convergence is said to have been attained if the 
unbalanced force AQ!, where the superscript j refers to the j cycle of 
calculation, falls within a prescribed tolerance. 

19. After convergence the structure nodal displacement at the end of the 
i load step is obtained by 

" 
oi+, = D: = oi + C AD: (4.5.9) 

k = l  

20. Prescribe another load increment and repeat Step 2 to 19. 

A schematic representation of the above procedure is shown in Fig. 
4.12a.b for a one degree of freedom structure. In performing the above 
procedure, the complete load-deflection response of the frame can be 
traced, and the stability limit point is obtained as the peak point of this 
load-deflection curve. 

As  the stability limit point is approached in the analysis, convergence 
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FIGURE 4.U Iteration technique for second-order elastic frame snalysis 

of the solution may be slow. To  facilitate convergence, a smaller load 
increment should be used. 

The numerical procedure described above can be programmed in a 
computer. By using the computer to perform a second-order analysis, the 
design moments for the members can be obtained directly. Comparative 
studies using second-order elastic analysis and first-order elastic analysis 
in conjunction with B,, B, moment amplification factors described on 
Chapter -3 have been made.4s8 I t  was demonstrated that for rigidly 
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connected rectangular frameworks of usual proportion, the two ap- 
proaches would give satisfactory results. 

4.6 PLASTIC COLLAPSE LOADS 

In the preceding discussions, the frame is assumed to behave elastically 
throughout the entire stage of loading up to failure. The failure of the 
frame is a result of instability when the stiffness of the frame vanishes. 
Consequently, the elastic critical load PC, is the maximum load for an 
elastic frame. On the other extreme, if we exclude the instability effect 
but consider only the plastic yielding of the material, failure of the frame 
will be controlled by the formation of a plastic collapse mechanism. 
The plastic collapse mechanism load P, is the maximum load-carrying 
capacity of the frame..A plastic collapse mechanism will form when there 
are sufficient number of plastic hinges developed in the structure to 
render it statically unstable. Before we proceed to the discussion of the 
method of determining the collapse load P,, it would be pertinent here to 
briefly explain the basic concept of plastic hinge and plastic collapse 
mechanism in a simple plastic theory. 

4.6.1 Plastic Hinge 

If a simple tension test is performed on a structural steel specimen, its 
stress-strain diagram will be as seen in Fig. 4.13: there a definitive knee 

FIGURE 4.U Uniaxial stress-strain behavior of structural steel 
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at A marks the yield poitrt of the material. The stress level that 
corresponds to point A is the yield stress of the material. If the stress is 
below the yield stress oy, the material behaves elastically as shown by line 
OA. After the yield stress has been reached, the strain can increase 
greatly without any further increase in stress as indicated by line AB. 
When the strain has reached E,, = l?l~,,  further increase in strain will 
bring about a further increase in stress as a result of strain-hardening, as 
indicated by line BC. For simplicity, the effect of strain-hardening is 
usually not considered in a simple plast~c design analysis. Neglecting this 
effect will obviously lead to a conservative design. When material can 
sustain a large deformation without fracture, this is known as duch'liQ. It 
is this unique property of structural steel that makes plastic design 
possible. 

When a member is subjected to pure bending, and if the usual 
assumption of plane sections before bending remain plane after bending 
is made, a series of stress and strain distributions across the section 
corresponding to an increasing bending moment can he sketched, as we 
do in Fig. 4.14a-d. The corresponding moment-curvature relationship is 
shown in Fig. 4.15. The points a, b, c, and d on the figure correspond to 
the various stages shown in Fig. 4.14. Before the stress in any fiber in the 
cross section reaches the yield stress uy (Fig. 4.14a), the section behaves 
elastically (line O A  in Fig. 4.15). When the extreme fibers of the cross 
section just reach oy (Fig. 4.14b), the corresponding moment is referred 
to as the yield moment My and is denoted by point A in Fig. 4.15. Further 
increase in moment above the yield moment will increase the curvature 
of the cross section at a faster rate. As the load continues to increase, 
yielding of fibers will spread and penetrate toward those fibers located 
closer to the neutral axis of the cross section (Fig. 4.14~). This process of 
successive yielding of fibers towards the neutral axis of the cross section is 
referred to as plastificah'on. Note that because of the stress-strain 
behavior of steel, the stresses of the yielded fibers remain at oy. When 
plastification of the fibers across the cross section is completed (Fig. 
4.14d), the cross section cannot carry any additional moment. The 
moment that corresponds to the full plastification is referred to as the 
plastic moment Mp denoted by point B in Fig. 4.15. It is clear from Fig. 
4.15 that the yield moment My is not the maximum moment capacity of 
the cross section. Rather, the maximum moment capacity is the plastic 
moment M,. The exact shape of the M-Q curve from My to M, (curve AB 
in Fig. 4.15), as well as their relative magnitudes, are different for 
different cross-sectional shapes. For example, for a rectangular cross 
section, MplMy=1.5, and for hot-rolled, wide-flange sections, it is 
MplMy = 1.12 if bent about the strong axis, and MpIMy = 1.5 if bent 
about the weak axis. 

Figure 4.15 shows also that the cross section can sustain a constant Mp 
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through a large rotation capacity, as indicated by the horizontal line BC, 
precisely because of the large ductility of steel. In other words, the cross 
section behaves like a real hinge, but carrying a constant moment 
capacity M,. Hence the word plastic hinge is used to indicate such a 
property for a steel cross section. 

4.6.2 Plastic Collapse Load P, by Hinge-by-Hinge Method 

Consider a propped cantilever of length & subjected to a concentrated 
load P acting at midspan (Fig. 4.16a). The structure is statically 
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indeterminate to the first degree. Thus, if a plastic hinge is developed in 
the beam at the maximum moment location, the beam will become 
statically determinate. If, in addition, a second plastic hinge is developed 
at a subsequent critical location, the beam will become statically unstable 
and a collapse mechanism will dcvelop for the beam. In the following, we 
shall denote the stage of loading from beginning to the formation of the 
first plastic hinge as load stage 1 (Fig. 4.16b), and the additiotlal loading 
beyond load stage 1 as load stage 2 (Fig. 4.16e). We use the subscripts 1 
and 2 to distinguish these two load stages. 

Load Stage 1 

Before the formation of the first plastic hinge, the beam behaves 
elastically; the elastic moment diagram under the applied load P, is 
shown in Fig. 4 .16~.  Since the moment at the fixed end is larger than the 
moment at midspan, the first plastic hinge will form at the h c d  cnd 
(point A). The load that corresponds to  the formation of the first plastic 
hinge can be found by equating 3P,L/16 to M,. 

from which, we obtain the first plastic hinge load 
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The moment at midspan (point B), when the first hinge is just formed, 
is 

Figure 4.16d shows the moment diagram at the end of load stage 1 

Load Stage 2 

After the formation of the first plastic hinge at A,  the propped cantilever 
becomes a simply supported beam with a constant moment Mp at A to 
carry the load P:. When the additional load P, is applied, the beam 
behaves as a simply supported member (Fig. 4.16e); Figure 4.16f shows 
the corresponding moment diagram due to P,. The load P, is now added 
to the first plastic hinge load P: and the resulting maximum moment at 
midspan under the combined load P: + P, is 5Mp/6 + P2L/4. The second 
plastic hinge will form at midspan, when this moment reaches the plastic 
moment capacity Mp, that is, when 

from which we obtain the second plastic hinge load 

At the formation of second plastic hinge, the structure becomes 
statically unstable and a plastic collapse mechanism, such as shown in 
Fig. 4.16h. emerges. 

The collapse load P,,, that brings the beam to its collapse state, is the 
sum of P: and P; 

and the moment diagram at the collapse state is shown in Fig. 4.16i 
obtained by superposing the moment diagrams of Fig. 4.16d and g. 

The procedure described above is called the hinge-by-hinge analysis. It  
is essentially a sequence of elastic analyses with additional plastic hinges 
introduced during the course of loading. The method can be programmed 
in a computer and thus extended to cases in which the structure and 
loadings are more complicated.' In the hinge-by-hinge analysis, the 
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sequence of formation of plastic hinges is traced. In general, if the 
structure is statically indeterminate to the nth degree, then the formation 
of ( i ~  + 1) plastic hinges will be necessary for the structure to reach its 
collapse state. 

4.6.3 Plastic Collapse Load by Mechanism Method 

To determine the plastic collapse P, in a more direct manner, a simpler 
method, known as the mechanism method, will be presented here. This 
method is based on the upper bound theorem of plastic analysis. The 
theorem states that a load computed on the basis of an assumed failure or 
collapse mechanism will always be greater than or at most equal to the 
true collapse load. Thus, in using this theorem, all possible collapse 
mechanisms of the structure are identified and the load corresponding to 
each of these mechanisms is evaluated. The mechanism that gives the 
lowest value of P, will be the collapse mechanism. Strictly speaking, to 
ascertain the mechanism so chosen will give the lowest value of P,, a 
moment check is often necessary to ensure that the moment everywhere 
in the structure is less than or at most equal to M,. For an assumed 
mechanism that is not the true collapse mechanism, this moment check 
cannot generally be made. The application of the mechanism method to 
obtain P, is greatly facilitated by the use of the virtual work equations. 

P, for a Propped Cantilever 

To demonstrate the use of the virtual work equations in the mechanism 
method to obtain P, in a direct manner, consider the same propped 
cantilever shown in Fig. 4.16a as reproduced in Fig. 4.17a. The collapse 

FIGURE 4.17 Collapse mechanism of a 
propped cantilever 

A 
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load Pp can be determined directly from the assumed collapse mechanism 
as shown in Fig. 4.17b. The calculations can be made in the following 
manner: Assuming the plastic hinge at A undergoes a virtual rotation of 
68,  it is readily seen from the geometry of the collapse mechanism that 
the plastic hinge at B will undergo a virtual rotation of 26.9, and the 
vertical drop of point B from its original position is L6.912. Note that 
small displacement assumption is used in evaluating this vertical drop. 

The external virtual work done during this virtual displacement is equal 
to the applied load P times the distance it travels, i.e., 

and the virtual strain energy stored in the structure during this virtual 
displacement is equal to the sum of the plastic moment times the hinge 
rotation at points A and B, i.e., 

Note, when writing Eq. (4.6.8) it is tacitly assumed that ail 
deformations are concentrated in the plastic hinges. As a result, no 
virtual strain energy is stored anywhere else but in locations of plastic 
hinges during the virtual displacements. 

Equating Eq. (4.6.7) to Eq. (4.6.8), we have 

from which we obtain the collapse load 

which is the same as Eq. (4.6.6), which was obtained previously by the 
hinge-by-hinge analysis. 

The mechanism method can be extended to obtain Pp for a framed 
structure. This is described in the following example. 

P, for a Pinned-Based Portal Frame 

Figure 4.18a shows a pinned-based portal frame loaded by a vertical force 
of 1.5P at midspan of the beam and a horizontal force of P at point R.  
We will now calculate the collapse load of the frame using the mechanism 
method. 

Unlike the previous example of the propped cantilever in which only 
one collapse mechanism was identified, three possible collapse mechan- 
isms for the portal frame can be identified. They are shown in Fig. 
4.18b-d. The mechanism shown in Fig. 4.18b is called the beam 
mechanism; .- ..- in Fig. 4.18c, it is called t h e 3  -- mechanism; and in Fig. 
4.18d, we have the cornbined mechanism, which contains the features of 

~ - 
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both the beam and sway mechanisms. The corresponding virtual dis- 
placements are also indicated in the figures. To calculate P,, we write the 
virtual work equations for all these mechanisms. 

6Wc.t = a&Q, (4.6.11) 

Beam Mechanism 

( 1 . 5 P ) ( L 6 0 / 2 )  = M,(60)  + Mp(260)  + M,,(60) (4.6.12) 

from which we obtain 
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Sway Mechanism 

P ( L 6 9 l 2 )  = M p ( 6 0 )  + M p ( 6 0 )  (4.6.14) 

from which we obtain 

Combi~red Mechanism 

( 1 . 5 P ) ( L 6 9 / 2 )  + P(L6012)  = M p ( 2 6 9 )  + Mp(269)  (4.6.16) 

from which we obtain 
16 Mp p3=- -  
5 L  

(4.6.17) 

Since the lowest value is P3, from the upper bound theorem, we 
therefore choose P3 as the collapse load. However, to ensure that P3 is 
the true collapse load, we need to perform a moment check on the 
structure. By drawing free-body diagrams of the frame (Fig. 4.19a), it is 

FIGURE 4.19 Moment check 
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readily seen that the condition M s Mp is satisfied everywhere in the 
frame (Fig. 4.19b). Therefore, we can conclude from the lower bound 
theorem of plastic analy~is '~ that P, = P, = 16Mp/5L is the collapse 
load and the combined mechanism is the collapse mechanism of the 
frame. 

For multistory multibay frames, a number of possible collapse mechan- 
isms will exist. It may be d~fficult for the analyst to envision all these 
possible mechanisms. However, various mechanisms can be constructed 
systematically from the two basic mechanisms, namely the beam and the 
sway mechanisms, by a process known as cornbirration of mecl~otlism. 
This method is described in detail in reference 10 and will not be 
presented here. Alternatively, one can obtain Pp for such frames by the 
hinge-by-hinge method with the aid of a computer." 

Generally speaking, the plastic collapse load Pp will give a reasonable 
estimate of the failure load P, of the frame only if the effect of instability 
is small and can be ignored, as in, for example, single-story frames that 
consist of stocky members. For multistory frames in which stability is 
important, the rigid-plastic collapse load will not be representative of the 
failure load P,. In reality, failure of frames is a result of both instability 
and plasticity effects. Thus, neither the critical load PC,, evaluated by 
considering elastic instability effect only, nor the rigid-plastic collapse 
load P,, evaluated by considering plasticity effect only, will represent the 
failure load PI of the frame. To obtain a precise value of P,, a rigorous 
analysis, such as a complete elasto-plastic analysis of the structure, may 
be necessary. This type of analysis is rather complex and costly and 
inevitably required the use of a computer. However, for design purposes 
it is more desirable if PI can be obtained by a simpler means. In the 
following section, a simple method to estimate P, is discussed. 

4.7 MERCHANT-RANKINE INTERACTION EQUATION 

We have pointed out in the previous sections that neither P,, nor P, will 
represent P, of most frameworks. They represent only two extreme cases 
in which only the instability effect or only the plasticity effect is 
considered in the analysis. In reality, the effects of instability and 
plasticity interact with each other. The exact interaction is rather 
complex, and so approximate interaction equations involving relatively 
simple calculations are desirable. One such interaction equation has been 
proposed by Horne and Merchant." It has the simple form 
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FIGURE 4.20 Merchant-Rankine equation 

where 

PC, = elastic critical load of the frame 
Pp = plastic collapse load of the frame 
PF= failure load of the frame 

Equation (4.7.1) is called the Merchant-Ronkine equation. This 
equation is plotted in Fig. 4.20. As  can be seen, PC, and Pp represent end 
points of a straight line interaction equation for the failure load P,. I t  has 
been demonstrated" that the failure load P, obtained from Eq. (4.7.1) is 
usually conservative and reasonably accurate for design purposes. 

4.8 EFFECTIVE LENGTH FACTORS OF FRAMED MEMBERS 

In the design of rigid frames, it is common practice to isolate each 
member from the frame and design it as an individual beam-column, 
using the beam-column interaction equations discussed in the previous 
chapter. But, as mentioned previously, the behavior of a framed member 
is affected by all its adjacent members in the frame. As a result, the 
influence of other members on the particular member in question must be 
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taken into account in a design. One convenient way to  include this 
interaction effect is to  use the concept of effectiue lerlgth factor K .  We 
discussed the concept of effective length factor for isolated column with 
idealized end conditions thoroughly in Chapter 2. Here we will discuss 
the effective length factor for a framed member. The determination of 
the effective length factor K for a framed member is more involved than 
that for an isolated member, because the stiffness of all adjacent 
members, as well as the rigidities of the connections, must be included in 
estimating the rotational restraint a t  the ends of the member in question. 
In theory, the effective length factor K for a framed column should be 
determined from a stability analysis of the entire structure. However, for 
design purposes this procedure is impractical and the use of a simpler 
procedure is much more desirable. One such procedure was proposed by 
Julian and Lawrence.12 Their procedure was recommended by the AISC, 
and we will therefore discuss it in what follows. Since the behavior of a 
framed column will be different, depending on whether the frame is 
braced (sidesway prevented) or  unbraced (sidesway permitted), we will 
discuss each case separately. 

4.2.1 Braced Frame 

The model used for the determination of K for a framed column braced 
against sidesway is shown in Fig. 4.21a. The column in question is 
denoted by c2 in the figure. The assumptions used for the model are: 

1. All members are prismatic and behave elastically. 
2. The axial forces in the beams are negligible. 
3. All columns in a story buckle simultaneously. 
4. A t  a joint, the restraining moment provided by the beams is 

distributed among the columns in proportion to their stiffnesses. 
5. A t  buckling, the rotations at the near and far ends of the girders are 

equal and opposite (i.e., the girders are bent in single curvature). 

Using the slope-deflection equations (3.7.13) and (3.7.14) for the 
columns and (3.8.15) and (3.8.16) for the beams, we have 

For Column 1 
E l  

s.-0 +si jS,]  cM~)cl = (L) [ u A (4.8.1) 
C l  

For Column 2 
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For Beam 4 

Note that because of Assumption 2 ,  we can use sii = 4 and sii = 2 for 
the beams. 

For joint equilibrium at A, we must have 

from which we obtain 

( M A ) c ~  = -(MA),, - (MA),, - ( M A ) ~ I  (4.8.10) 

Substituting Eqs. (4.8.5), (4.8.6). and (4.8.1) for (MA),,, (MA),,, and 
(MA),,, respectively, into Eq. (4.8.10), we have 

From Eq. (4.8.2), we can write 

Finally, by substituting Eq. (4.8.12) into Eq. (4.8.11), and rearranging, 
we obtain 

where we have used the notation 

Following the same procedure by considering equilibrium at joint B ,  
the moment at the B end of column 2 can be written as 
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where we use the same notation 

Eliminating (MA)., from Eqs. (4.8.2) and (4.8.13), and (M,),, from 
Eqs. (4.8.3) and (4.8.16), we can obtain the following equations 

Denoting 

CA = 
F (?I = - sum of column stianesses meeting at j o i d  - (4.8.21) 

sum of beam stiffnesses meeting at joint A 

and 
.F. (El. 

CB = E sum of column stiffness meeting at joint B _ - 
sum of beam stiffness meeting at joint B 

(4.8.22) z ($1. 
The equilibrium equations (4.8.19) and (4.8.20) can be written in matrix 
form as 

2 

(4.8.23) 
Si i  s i i + -  

At bifurcation, we must have the determinant of the coefficient matrix 
vanished. 

det 

L 
s., + - 
" c* Sij 

2 
sij s i ; + -  

CB 

= 0 (4.8.24) 



286 Rigid Frames 

Using the expressions for sii and sij [(Eqs. (3.7.15) and (3.7.16)] in Eq. 
(4.8.24) and realizing that 

k ~ = ( ~ r ) ~ = n ~ = n l ~  (4.8.25) 

Equation (4.8.24) can be simplified to give 

Equation (4.8.26) can be expressed in a nomograph form as shown in 
Fig. 4.21b (see reference 12). To obtain the effective length factor K of 
column AB, one needs only to evaluate the relative stiffness factors G, 
and GB expressed in Eqs. (4.8.21) and (4.8.22), respectively, at its hvo 
ends. A straight line joining the two G values will cut the middle line 
which gives the value of K. For example, if GA = 0.2, G, = 0.6, the K 
value for the column is 0.65 (see dotted line). Note that the range of K is 
from 0.5 to 1 for a braced frame. 

4.8.2 Unbraced Frame 

The model for the determination of K for a framed column subjected to 
sidesway is shown in Fig. 4.22a. The column in question is denoted by c2 
in the figure. The assumptions used for this model are the same as that 
used for the model of the braced frame, except that for this model 
assumption 5 is modified to the following: at buckling, the rotations at 
the near and far ends of the girders are equal in magnitude and direction 
(i.e., the girders are bent in double curvature). 

Again, making use of the slope-deflection equations (3.8.1) and (3.8.2) 
for the columns and (3.8.17) and (3.8.18) for the beams, we can write 

For Column I 

For Column 2 

For Column 3 
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FIGURE 4.22 Subassemblage model and alignment chart for unbraced hame 

For Beam 1 

For Beam 2 

For Beam 3 

For Beam 4 

For joint equilibrium at A, we must have 

( M A ) ~ I  + ( M A ) ~ z  + ( M A ) ~ I  + ( M A ) ~ z  = 0 
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from which 

( M A L  = - (MA)LQ - (MA)= ,  (4.8.36) 

Substituting Eqs. (4 .8 .31) ,  (4.8.32), and (4.8.27) for (MA),,,  (MA)bz,  
and (MA), ,  into Eq. (4.8.36),  we have 

From Eq. (4.8.28),  we can write 

If LC, = L,, Eq. (4.8.38) can be substituted into Eq. (4.8.37).  The 
result is 

where we have used the notation 

Following the same procedure, we see that by considering equilibrium 
at joint B, the moment at the B end of column 2 can be written as 

where we use the same notations 
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Eliminating (M& from Eqs. (4.8.28) and (4.8.39), and (MD)=? from 
Eqs. (4.8.29) and (4.8.42), we can obtain the following equations 

Equations (4.8.45) and (4.8.46) are obtained by considering joint 
equilibrium at A and B, respectively. A third equation can be obtained 
by considering member equilibrium of column 2. 

Since there is no external horizontal force acting, V = 0 and Eq. 
(4.8.47) becomes 

(MA)~z + (MB)=z + P A = 0 (4.8.48) 

Substituting Eqs. (4.8.39) and (4.8.42) into Eq. (4.8.48) and realizing 
A 

we can write Eq. (4.8.48) as 

The equilibrium equations (4.8.45). (4.8.46), and (4.8.49) can be put 
into matrix form as 

where G, and G,, are defined in Eqs. (4.8.21) and (4.8.22), respectively. 
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At bifurcation, we must have 

Using the expressions for sii and s i j  [Eqs. (3.7.15) and (3.7.16)] in Eq. 
(4.8.51) and realizing that k L  = n lK ,  Eq. (4.8.51) can be simplified to 

det 

G,G,(n/K)'-36 - ( n l K )  (4.8.52) 
6(GA + G,) tan ( n l K )  = 

Equation (4.8.52) is expressed in a nomograph form as shown in Fig. 
4.22b (see reference 12). Note that K is always greater than or  equal to 
unity. 

Equations (4.8.26) and (4.8.52) express length factor K of a framed 
column as a function of the end restraint factors GA and G,. In the 
present development, all members are assumed to behave elastically. 
However, in many cases the magnitude of axial load in the column is such 
that inelasticity may set in when buckling occurs. To  account for 
inelasticity in the column, Yura (see reference 13) suggested that the end 
restraint parameters be modified to 

6 
sii+- si j  -(sjj + sij) 

GA 
6 

sii sii +- -(sf, + s i j )  
G, 

6 6 -- -- 
GA GB 

( k L ) X  

(4.8.53) 

where 

= 0 (4.8.51) 

E, = tangent modulus of the material 
G.l,,,ic = end restraint parameter assuming all members are elastic 

Gin,,,,,i,= end restraint parameter accounting for inelasticity in the 
column 

The K-factor evaluated using Gin,,,,,,, will be smaller than that 
evaluated using G,,,,,,,. The reason for this is that the apparent end 
restraint from the beams will be greater for an inelastic than an elastic 
column because of a reduction in bending stiffness of an inelastic column. 

An alternative approach to determine the effective length factor K for 
framed columns based on the stiffness distribution approach was pro- 
posed by Wood.14 
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4.9 ILLUSTRATIVE EXAMPLES 

Example 4.1. Two-Member Frame 
For the structure shown in Fig. 4.23, determine the effective length factor 
K for column AB using 

(a) the slope-deaection equation 
(b) the nomograph 

t- L 

FIGURE 4.23 Two-member frame 

SOLUTION 

(a) Slope-Deflection Equation 
Referring to Fig. 4.24 and using the slope-deflection equations, we see 
that we have 

Column AB 

EIo MDA = - EIo 
L (sij,eA +si,eB) = - (s:,@,) L 

(4.9.2) 

Beam BC 

2E1, 2E10 
MBC = (siibeB + sijbeC) =- L (498 + 2ec) (4.9.3) 
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FIGURE 4.24 Beam and column moments 

The equation McB = 0 leads to 

ec= - :e ,  (4.9.5) 

therefore, the end moment ME, reduces to 

2.51, 
MBC = - ( 3 e ~ )  L (4.9.6) 

Joint Equilibrium 

M B A + M B C = O  (4.9.7) 
Therefore 

EIo 2E10 - (sii.BB) +- ( 3 0 B )  = 0 
L L (4.9.8) 

s.. = -6 
I,= (4.9.10) 

Using Table 3.7,  we obtain 

kL = ( ~ O L  = 5.5405 (4.9.11) 
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from which 

30.7EI p = p  =- 
er LZ and K = p = F = 0 . 5 7  PC, 30.7 (4.9.12) 

(h) Nomograph 

G, = 0 (fixed-end) 

The Go value calculated above is valid only if 8,= -8, (see Fig. 4.21). 
In  our case 8,# -8,, and so G, must he adjusted. The adjustment can 
be made by realizing that for 8, = -@,, 

and for our case 

Thus, the apparent stiffness of the beam with its far end hinged is 
6 /4=  1.5 times greater. Consequently, to adjust G, we need only to  
divide it by the factor 1.5 

Using the nomograph shown in Fig. 4.21 with G,  = 0 and (GB).djuaed= 
0.333, we obtain 

K = 0.57 (4.9.18) 

Example 4.2. Simple Portal Frame 
T e f e i m i n e  the design moments for the simple frame shown in Fig. 4.25 

using the LRFD method. 

SOLUTION: In the LRFD method, a first-order analysis is performed on 
the structure. The secondary effects are taken care of by the use of the 
member stability ( P  - 6) and frame stability ( P  - A) moment magnifica- 
tion factors. These factors are designated as B, [Eq. (3.10.18)] and B, 
[Eqs. (3.10.19) or  (3.10.20)], respectively. 

First-Order Analysis 
Figure 4.26a shows the decomposition of the frame into a nonsway and 
sway component. The corresponding nonsway and sway moments are 
shown in Fig. 4.26b and c, respectively. 



P ~ 

FIGURE 4.25 Simple frame under vertical and lateral loads 

FIGURE 4.26 Nonsway and sway moments 
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Column AB 
The design moment for column AB is determined from Eq. (3.10.17). 
The magnitudes for M,,, and M,, can easily be determined from Fig. 4.26b 
as 0 and PL, respectively. To determine the B, and B, factors, we need 
to evaluate the effective length K for the column. From the nomograph in 
Fig. 4.22, K was found to be 2. However, since the right column is 
pinned at both ends, it cannot resist. any sidesway motion. As a 
consequence, all the resistance to frame instability effect comes from the 
left column. For this situation, the column that does not provide any 
sidesway resistance is said to lean on the column, which provides the 
sidesway resistance. Since not all of the columns are effective in resisting 
sidesway, the effective length of the column providing the sidesway 
resistance must be modified. Le Messu~ier '~  suggested a formula for this 
modification 

where 

Ki= modified effective length of the column providing the side- 
sway resistance 

= axial force in the column providing the sidesway resistance 
C P = axial loads on all columns in a story 

C PC, = Euler loads of all columns in a story providing sidesway 
resistance for the frame evaluating using the effective length 
obtained from the nomograph. 

For our case, the modified effective length for column AB is 

Thus, from Eq. (3.10.18) 



Rigid Frames 

and, from Eq. (3.10.20) 

The design moment is, from Eq. (3.10.17) 

M;, = 4M.t + B2M1, 

Column CD 
This column is pinned at both ends, and so both M,,, and M,, are zero. As 
a consequence, the design moment is zero and, therefore, this column is 
designed as a centrally loaded member. 

Example 4.3. Two-Bay Frame 
Check the adequacy of column C D  of the frame shown in Fig. 4.27 using 
the LRFD approach. The frame is braced against out-of-plane bending at 
story height of every column and at midheight of the exterior columns. 
Assume the loadings to be 

D = 0.9 kipslft 

L = 1.6 kipslft 

W = 0.8 kipslft 

and column C D  can develop its full plastic moment capacity. 

SOLUTION: For the given loadings, it can be seen from Table 1.1 that the 
pertinent load combinations are 
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FIGURE 4.27 Two-bay frame 

For gravity loadings, it is obvious that load combination (2) is the most 
severe load case and for combined gravity and lateral loadings, it can be 
seen that load combination (4) is the most severe load case. As a result, 
we need only to check the frame for load combinations (2) and (4). 

Loud Cornbittation (2): 1.2D + 1.6L 
Figure 4.28 shows the result of a first-order analysis of the frame. The 
first-order moment in column CD is zero, therefore, the second and third 
terms of the interaction equations [Eqs. (3.10.15) and (3.10.16)] vanish. 
We need only to check the first term. 

Strong uxis bending 
Under the section properties given in Fig. 4.27, we have 

G, = m (pinned-end) 
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FIGURE 4.28 First-order analysis for load combination 1.2D + 1.6L 

Although the theoretical G value for pinned-end is infinity, for design 
purposes it is customary to use G = 10 to account for the fact that an 
ideal pinned-ended condition does not exist. Therefore 

( G ~ ) ~ d ~ ~ n ~ d  = 10 

Also, since the far end of the beams are hinged, G, needs to be 
modified. Since the frame does not sway under the present load 

GD -- combination, we have (GD)udjm,cd - 
1.5 

Using the nomograph in Fig. 4.21 with the adjusted values for the G's, 
the effective length of column CD was found to be 

and the slenderness parameter can be calculated from 

Weak ark ber~dirlg 
For weak axis bending, K y  = 1 and so 

Acy = - 
nr, n(2.46) 

= 1.09 (4.9.26) 
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Upon comparing A,, and A,,, it can be concluded that weak axis bending 
controls. Using Eq. (2.11.9), P. was found to be 

P, = exp [-0.419A~,]PY 

= exp [-0.419(1.09)'](20.0)(36) = 438 kips (4.9.27) 

Check interaction equofiorl 

Use the Expression (3.10.15) 

which is < l ;  therefore all right. 

Load Combblotion (4):  1.2D + 1.3W +0.5L 
Figure 4.29 shows the results of a first-order analysis of the nonsway and 
sway components of the frame. Notice that the wind load is assumed to 
distribute to the windward and leeward sides of the frame in a 7 : 3  ratio. 
This is because in addition to exerting a positive pressure on a windward 
wall, the wind can simultaneously create a suction on the leeward wall. 
Moreover, an uplift force on the roof could be created. However this 
uplift force is not considered in this example because it has a beneficial 
effect on the frame. In other words, the loadings to be considered here 
represent the most unfavorable condition for the frame. 

Determine P. 

Strong axis bending 
Gc = m (pinned-end) (4.9.30) 

Go = 0.221 (4.9.31) 

T o  account for the fact that the pinned-end is not ideal, use 

T o  account for the far end of the beam being hinged and for the fact that 
the frame sways under the present load combination, the apparent beam 
stiffness is only one-half of the beam stiffness used in calculating G, (see 
Prob. 4.6).  Therefore 

and, from the nomograph shown in Fig. 4.22b, we have 

K.= 1.73 (4.9.34) 



f 28.2 * 
I b l  

+ 

( 0  I 

FIGURE 4.29 First-order analysis for load combination 1.2D + 1.3W + 0.5L 
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Since the exterior pinned-ended columns lean on column CD, K,  must be 
adjusted. Using the method proposed in reference 15 as cited in the 
commentary of LRFD, the modified effective length is given by 

and so 

Weak ark bending 

K y = l  

Since A,, > A,, therefore P. should be determined based on weak axis 
buckling 

P, = exp [-0.419A:,]Py = 438 kips 

Determine M, 

B, factor 

which is < 1 ,  therefore we use B, = 1 (Pck = n2EI.I(K.L)'=6742 kips) 
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B2 factor 
1 

B2 = 
C P 

1 -- 
C pel; 

M, = B,Mn, + B2M,, 
= (1)(0) + 1.25(208) 

= 260 ft - kip = 3120 in -kip (4.9.41) 

Determine Mu, 

M,  = M,, = Z,F, = (115)(36) = 4140 in - kip (4.9.42) 

Check interaction equation 

Therefore, use Eq .  (3.10.15) 

Since the frame is braced against out-of-plane bending, it follows that 
May = 0. The first two terms have the value 

= 0.997 

which is <I ;  therefore, it is all right. 

4.10 SUMMARY 

In this chapter, we focussed on the study of the behavior of frameworks. 
In particular, two reference loads for frames were discussed. They are the 
elastic critical load PC, and the plastic collapse load P,. The  elastic critical 
load can be obtained by using one of the following methods: (1) the 
differential equation method, (2) the slope-deflection equation method, 
and (3) the matrix stiffness method. In obtaincng PC,, only the effect of 
instability is considered. However, if only the effect of plasticity or  
yielding of the material is considered, one can obtain the plastic collapse 
load P, by using either the hinge-by-hinge method or  the mechanism 
method. 
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In reality, the collapse loads P, of most frameworks are neither PC, nor 
P,, because collapse in most cases is a result of an interaction of the 
effects of instability and plasticity. The exact interaction relation is rather 
complex. However, for design purposes, the Merchant-Rankine interac- 
tion equation provides a simple but reasonably accurate method to 
estimate P,. 

For the design of members in a frame, the K-factor approach provides 
a convenient means to account for the end restraint effects of other 
members on the behavior of the member in question. The two nomo- 
graphs or alignment charts for braced and unbraced frames have been 
developed to aid designers to obtain K-factors for columns that are 
component parts of a frame. 

PROBLEMS 

4.1 Find PC, for the frame in Fig. P4.1 using 
o. differential equation approach 
b. slope-deflection approach 
c. matrix stiffness approach 

P 

FIGURE P4.1 
r 

4.2 Find PC, for the frames in Fig. P4.2a-b for both sway-prevented and 
sway-permitted cases. What conclusion can be drawn hom the results? 

f l -conslant  a - c o n s i a n t  
for all lor  all 
members members 

la1 

FIGURE P4.2 
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4.3 For the Frame in Fig. P4.3, 
a. sketch the buckled shape of the frame 
b. establish upper and lower bounds for the critical load 
c. find the critical load for o = 1 

FIGURE P4.3 

4.4 Find Po for the frame in Fig. P4.4 using the mechanism method. 

FIGURE P4.4 

4.5 For the structure in Fig. P4.5, find the effective length factor K for the 
column BD using 
a. slope-deflection equation 
b. nomograph 
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4.6 Discuss how the G factors for the nomograph can be adjusted to acwunt for 
the cases where the far ends of the beams are all 
a. pinned 
b. fxed 

El-constant lor all 
members 

FIGURE P4.5 
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Chapter 5 

BEAMS 

5.1 INTRODUCTION 

Beams are structural members that resist the applied loads primarily by 
bending and shearing actions. When a slender beam is under the action 
of bending loads acting in the plane of the weak axis of the cross section 
(or in the plane of the web of a wide-flange section), in-plane bending 
about the strong axis will occur at the commencement of the loadings. 
However, if sufficient lateral bracing is not provided to the compression 
flange, out-of-plane bending and twisting of the cross section will occur 
when the applied loads reach a certain limit. For a geometrically 
perfect elastic beam, the limit of the applied loads at which lateral 
instability commences is called the elastic lateral torsiotzal buckling load. 
The value of the lateral torsional buckling load is influenced by a number 
of factors. Among the important ones are the cross-sectional shape, the 
unbraced length and the support conditions of the beam, the type and 
position of the applied loads along the member axis, and the location of 
the applied loads with respect to the centroidal axis of the cross section. 

It it well-known that beams of thin-walled operz cross sections 
composed of slender component plates, such as I-sections, channel 
sections, and Z-sections, are particularly susceptible to lateral torsional 
buckling. This is because the torsional rigidities of such cross sections are 
very low and so their resistance to torsional instability is very limited. 
The  effects of unbraced length and end conditions on the lateral torsional 
buckling load of the beam are rather evident. The longer the unbraced 
length and the less restraint the support can deliver to the beam, the 
lower the critical lateral buckling load will be. Although it is quite 
obvious that different types of loads applied at different locations of the 



FIGURE 5.1 Effect of location of loading 

beam will give different values for the various critical lateral buckling 
loads, the reason behind the importance of the position of the applied 
loads with respect to the centroidal axis of the cross section requires some 
explanation. For instance, consider a concentrated force acting on the top 
flange of an I-beam (Fig. 5.la). As lateral torsional buckling occurs, the 
cross section will rotate and deflect laterally from its original position. I t  
can be seen from the figure that the applied force has a destabilizing 
effect, since it enhances the rotation of the cross section from its original 
undeflected position. However, if the same load is applied at the bottom 
flange (Fig. 5.lb), it has a stabilizing effect, since it reduces the rotation 
of the cross section. Consequently, the critical load corresponding to Fig. 
5.la will be lower than that corresponding to Fig. 5 . lb .  

The analysis of lateral torsional buckling behavior of beams is 
considerably more complex than that of in-plane buckling behavior of 
columns discussed in Chapter 2 because the lateral buckling problem is 
intrinsically three-dimensional. The problem is further complicated 
because the lateral (out-of-plane) deflection and twisting are coupled, so 
this coupling effect must be considered in the analysis. 
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FIGURE 5.2 Simply supported I-beam subjected to twisting moment 

5.2 UNIFORM TORSION OF THIN-WALLED OPEN SECTIONS 

When an equal and opposite torque T is applied to the ends of a simply 
supported beam with a thin-walled open section, such as an I-section 
(Fig. 5.2), the twisting moment along the length of the members is 
constant and the beam is said to be under a uniform torsion. Under the 
action of the torque, warping of the cross section will occur. This is 
illustrated in Fig. 5.3. I t  shows how plane sections of the cross section no 
longer remain plane as a result of the uneven axial deformation that takes 
place over the entire cross section. If the applied torque is constant and 
all cross sections are free to warp, then the warping deformation in the 
beam is the same for all cross sections and takes place freely without 
inducing any axial strain on the longitudinal fibers. 

For the simply supported beam shown in Fig. 5.2, in which warping of 
all the cross sections is unrestrained, the applied torque (twisting 
moment) is resisted solely by shear stresses developed in the cross 
section. These stresses act parallel to the edge of the component plates of 
the cross section, as shown in Fig. 5.4. The distribution of these shear 
stresses is the same for all thin-walled, open cross sections. It is usually 
assumed that the shear stress at any point acts parallel to the tangent to 
the midline of the cross section. The magnitude of these shear stresses 
will be proportional to the distance from the midline of the component 
plate. These shear stresses are called St. Venant shear stresses and the 

FIGURE 5.3 Warping of I-section under uniform twisting moment 
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FIGURE 5.4 St. Venant shear - -- - - - -  
stress distribution in an I-section 

torsion that is associated with these shear stresses is referred to as St. 
Venarlt torsion T,,. 

From mechanics of materials, the angle of twist y over a length L 
caused by the St. Venant torsion is given by 

where 

y l L  = angle of twist per unit length 
T,, =St.  Venant torsion 
G = shear modulus 
J =  torsional constant of the cross section 

For a thin-walled, open section of constant thickness t, the torsional 
constant can be expressed' by 

J = 4bt3 (5.2.2) 

where b is the length of the midline of the cross section and r is the 
thickness of the cross section. If the cross section is made up of 11 slender 
component plates, each with midline length b ,  and thickness t i ,  the 
torsional constant can be assumed to be 

J = z :b,t; (5.2.3) 
, = I  

Table 5.1 gives the expression of J for a doubly symmetric I-section. It 
should be mentioned that the above expressions for 3 are valid only if b l f  
is larger than 10. If bl t  is smaller than 10, a correction factor must be 
used in calculating J (see Problem 5.3). 
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Table 5.1 Torsional Constant and Warping Constant for a Doubly Symmetric 
I-Section 

r v  l-- 7 

For the purpose of analysis, it is more convenient to express Eq. 
(5.2.1) in the form of the rate of twist as 

in which z is the coordinate axis along the length of the beam. Note that 
the rate of twist will be constant for a prismatic member subjected to a 
uniform torque. 

Upon rearranging, Eq. (5.2.4) can be written as 

The St. Venant torsion expressed in Eq. (5.2.5) is also referred to as 
ur~iform or,pure torsion. 

5.3 NON-UNIFORM TORSION OF THIN-WALLED, OPEN 
CROSS SECTIONS 

Consider a cantilever beam subjected to a torque applied at the free end 
(Fig. 5.5). At the free end the cross section is free to warp, so the applied 
torque is resisted solely by St. Venant torsion. At the fixed end, however, 
warping is prevented. As a result, in addition to St. Venant torsion, there 
exists another type of torsion known as warping restraint torsion in the 
cross section. If the cross section is prevented from warping, axial strain 
and so axial stresses must be induced in the cross section in addition to 
the shear stresses. These induced axial stresses are in self-balance 
because no external axial force is applied to the beam. For an I-section, 
the axial stresses developed at the fixed end of the beam are illustrated in 
Fig. 5.5. The resultant of these axial stresses in the two flanges constitutes 
a pair of equal moments called the bi-mornertt M, acting oppositely in 
each of these two planes of the flanges (Fig. 5.5). 
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FIGURE 5.5 Cantilever beam subjected lo a twisting moment 

The development of these bending moments, or bi-moment, in the 
flanges in the cross section becomes evident if one refers to Fig. 5.6. 
Since warping is prevented at the fixed end, the two flanges of the beam 
must bend in opposite directions as the cross section rotates under the 
action of the applied torque. The bending of the flanges will thus induce 

FIGURIi. 5.6 Bending of flanges due to warping restraint at tlie fixed end 
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FIGURE 5.7 Moment and shear developed at the fixed-end eross section of an 
I-section 

bending moments Ml at the fixed end (Fig. 5.7). The bending moment Mr 
in either the top or the bottom flange can be expressed in terms of lateral 
displacement ur by the usual beam moment-curvature relationship as 

where E is the modulus of elasticity, I, the moment of inertia of one 
flange about the y axis of the cross section, and u ,  the lateral 
displacement of the flange, as shown in Fig. 5.8. 

Associated with the bending moment Mr in one flange is the shear force 
V, given by the usual beam theory 

The shear forces Vr are present in both flanges of the I-section. They 
are equal in magnitude but act in opposite directions, as shown in Fig. 
5.7. This pair of shear forces constitute a couple acting on the cross 
section. The resulting torsion, which is referred to as the warping restraint 
rorsiorr or non-uniform rorsion, is given by 

where h is the distance between the lines of action of the shear forces 



FIGURE 5.8 Rotational and translational relationship 

In view of Eq. (5.3.2), Eq. (5.3.3) can be written as 

From Fig. 5.8, it can be seen that the rotation y of the cross section is 
related to the lateral deflection u, by 

from which 

Upon substituting Eq. (5.3.6) into Eq. (5.3.4), we can obtain the 
warping restraint torsion as 



5.3 Non-Uniiarm Torsion of Thin-Walled, Open Cross Sections 315 

where 

is called the warping corzstant of the I-section (Table 5.1). It should be 
noted that the warping constant is different for different cross sections. A 
general expression for the warping constant is found in reference 2; it is 

in which w, = J', r ds, r equals the distance from the shear center of the 
cross section to  the tangent at any point around the cross section, the 
equation 

equals the average value of tv, over the entire cross section, t is the 
thickness of the thin-walled element, and s is the length of the midline of 
the entire cross section. From Eq. (5.3.9), it can be seen that the warping 
constant C, will be zero for those thin-walled, open cross sections for 
which all component plates intersect at a common point, such as the 
angle, the tee, and the cruciform sections (see Fig. 5.9a). This is because 

FIGURE 5.9 Cross sections with C, = 0 
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the shear centers 0 for these sections are located at the point of 
intersection of the component plates. So w, and EJ~ will be zero. 
Physically, this means that all these sections do not warp when subjected 
to twisting moments. Another type of cross sections for which no warping 
will occur is the axisymmetric sections, such as the solid or circular 
tubes (see Fig. 5.9b). Here, those sections that are originally plane will 
remain plane after the twisting moment is applied. For sections other 
than those shown in Fig. 5.9, warping will generally occur when a twisting 
moment is applied. Warping for narrow rectangular sections and box 
sections composed of narrow rectangular elements are usually negligible, 
and so Cw may be taken as zero for these sections. If warping is 
restrained, the applied twisting moment will be resisted by both St. 
Venant torsion and warping restraint torsion. 

T = T , , + T ,  (5.3.10) 

In view of Eq. (5.2.5) and Eq .  (5.3.7), we have 

Equation (5.3.11) represents the internal twisting moment that will 
develop in the cross section when the member is twisted. The first term 
represents the resistance of the cross section to twist and the second term 
represents the resistance of the cross section to warp. Thus, for the 
I-section shown in Fig. 5.5, the applied twisting moment is resisted solely 
by St. Venant torsion at the free end (z = L) where the cross section is 
free to warp. However, further away from the free end, warping is 
partially restrained, so both St. Venant and warping restralnt torsion will 
be present. The proportion of the applied twisting moment transmitted 
by these two forms of torsional resistance varies. As we move toward the 
fxed end, a greater and greater share of the applied torque will be 
resisted by the warping restraint torsion. A t  the fxed end (z = 0), warping 
is totally restrained and the applied torque will be transmitted completely 
by the warping restraint torsion. 

From the above discussion, it can be seen that St. Venant torsion is 
always present when a member is subjected to  twisting and rotates. On  
the other hand, warping restraint torsion will develop if a cross section is 
prevented from warping when it is being twisted. Warping restraint 
torsion will also develop in the cross sections if the twisting moment is 
not uniform along the length of the member. This is because under a 
non-uniform torsion, different cross sections will warp by a different 
amount. The differential axial deformation between two adjacent cross 
sections will induce axial stresses, giving rise to a warping restraint 
torsion. 
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5.4 LATERAL BUCKLING OF BEAMS 

When a beam is bent about its axis of greatest flexural rigidity, 
out-of-plane bending and twisting will occur when the applied load 
reaches its critical value, unless the beam is provided with a sufficient 
lateral support. For a geometrically perfect beam, this critical load 
corresponds to the point of bifurcation of equilibrium when in-plane 
bending deformation of the member ceases to be stable and out-of-plane 
bending and twisting deformations become the stable configuration of the 
member. Here, as in the case of a column, to find the critical load of the 
beam one must first establish the equilibrium conditions of the beam in a 
slightly deformed configuration. The critical or lateral buckling load is 
then obtained as the lowest eigenvalue satisfying the characteristic 
equation of the differential equations. The following examples will 
illustrate the procedure for determining this critical load. The assump- 
tions used in the following examples are the following: 

1. The beam is geometrically perfect. 
2. The applied loads act solely in the plane of the weak axis (or in the 

plane of the web in the case of an I-beam). 
3. The deflection of the member is small. 
4. The geometry of the cross section does not change during buckling. 

Example 5.1. Simply Supported Rectangular Beam Under Pure Bending 
Figure 5.10 shows a simply supported beam of narrow rectangular cross 
section subjected to a pair of equal and opposite end moments acting in 
the y-z plane. The simple support condition used in the context of 
lateral instability of beams means that the ends of the beam are free to 
rotate about the two principal axes, the x and y axes, but rotation of the 
end cross section about the z axis is prevented. Under the action of the 
applied moment, the beam will bend in the y-z plane. This type of 
bending is known as the iri-plarie bending. As the moments are increased, 
a stability condition will be reached at which the in-plane deformation of 
the beam ceases to  be stable and a slightly deflected form that 
corresponds to the out-of-plane bending and twisting of the beam 
becomes possible. The beam is stable and favored with this new 
configuration. The lowest load at which this condition occurs is the 
critical load for the beam. 

soLunoN: T o  determine this critical load, it is necessary to establish the 
equilibrium equations governing this slightly deformed stable configura- 
tion of the beam. Referring to Fig. 5.10, in which the slightly deformed 
configuration of the beam is shown, we note that for any cross section 
three different displacement components are needed to define the 
deflected position of the cross section. They are the in-plane displace- 
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FIGURE 5.10 Lateral buckling of a narrow rectangular strip under uniform 
moment 

ment u, the out-of-plane displacement 14, and the rotation of the cross 
section y. To facilitate the analysis, we establish two sets of coordinate 
axes. The x-y-z axes are h e d  coordinate axes that are fixed to the 
original or undeformed position of the member; the x'-y'-z' axes are 
local coordinate axes that are h e d  with the cross section that moves with 
the deflected position of the member. The x '  and y'  axes coincide with 
the principal axes of the cross section. The z' axis is always tangent to the 
center lines of the deflected position of the member. The procedure to 
establish the governing differential equations is very similar to that 
presented in Chapter 2 for columns. First, we establish the expressions 
for the moments induced by the external loads at an arbitrary section z. 
These externally induced moments at section z are called external 
moments. The differential equations are then obtained by equating these 
external moments to the corresponding internal resisting moments of the 
cross section. The only difference between the solution process presented 
in this chapter and that discussed in Chapter 2 is that, in the earlier 
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chapter, only in-plane bending of the member is considered, whereas 
here both in-plane and out-of-plane bending, as well as twisting, will be  
considered. Thus, the lateral torsional buckling problem will be more 
complex than the in-plane buckling problem, as the former is a 
three-dimensional problem, whereas the latter is a two-dimensional 
problem. 

For the beam shown in Fig. 5.10, the components of external moments 
acting on a cross section with a distance r from the origin with respect to 
the x-y-z coordinates are; ( M )  = M ,  ( M y )  = ( M )  = 0 Figure 
5.11a-c shows the moments and moment components in the three 
mutually perpendicular planes. In this chapter, for convenience, we use a 

FIGURE 5.U Components of moments 
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right-handed screw rlcle to represent the moment vector. For  example, 
imagine now a right-hand screw whose axis is colinear with the x axis. If 
this screw were turned in the direction of MD at  the positive face z = L, as  
shown in Fig. 5.10, it would tend to advance in the direction of the 
positive x axis. Because of this, the applied moment MD is positive and 
represented by the positive moment (M,),., in Fig. 5.11 in the positive x 
direction. This sign convention for moment is called the right-handed 
screw rule. Using this sign convention for moment, the moments acting 
on the cross section in the slightly deflected position with respect to the 
x'-y ' -z '  coordinate system can now be obtained directly from Fig. 5.11. 

The corresponding internal resisting moments are 

d'u 
= -El -- ' d z 2  

In  writing Eq. (5.4.4) and ( 5 . 4 3 ,  it is tacitly assumed that the angle of 
rotation y is sufficiently small so that the curvatures and moment of 
inertia in the y ' - z '  and x'-z'  planes may be represented by their 
corresponding values in the y-z  and x-z  planes, respectively. The  minus 
sign in Eq.  (5.4.4) indicates that a negative curvature in t h e y  ' - 2 '  plane 
will give a position moment using the right-handed screw rule. Equation 
(5.4.6) follows from E q .  (5.3.11) with C,=O. For  a narrow rectangular 
section, warping of the cross section is negligible and so warping restraint 
torsion can be neglected. Equating the corresponding external and 
internal moments, we have 

d 2u 
E I x y + M D = O  

d z -  
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An inspection of these equations shows that the first equation contains 
only the variable u and is independent of the other two equations. In 
fact, this equation describes the in-plane bending behavior of the member 
that occurs before lateral instability. It is not important for the 
out-of-plane lateral torsional buckling behavior in a small displacement 
buckling analysis. The buckling behavior of the beam is described by the 
last two equations, which are coupled, as they both contain u and y as 
variables. If we differentiate Eq. (5 .4 .9)  once with respect to z and 
substitute the result into Eq .  ( 5 . 4 . 8 ) .  the two equations can be combined 
to give 

Upon rearranging, and denoting k 2  = M;/EI,GJ, we have the differential 
equation 

which has the same form as Eq. (2 .2 .12)  and hence the general solution is 

y = A  sin k r  + B cos k z  (5.4.12) 

Since rotations of the end cross sections are prevented, the boundary 
conditions 

y (0 )  = O  and y ( L )  = O  (5.4.13) 

apply. Using the first boundary condition in Eq. (5 .4 .12) ,  we have B = 0, 
and using the second boundary condition, we have 

A sin k L  = 0 

If A = 0 ,  Eq.  (5.4.12) becomes a trivial solution. Thus, for a nontrivial 
solution, we must have 

sin k L =  0 or  k L  =rrn (5.4.14) 

Since k Z  = MSIEI, G I ,  we can obtain 

The critical moment is the lowest value of M, that will cause a lateral 
torsional buckling. It can be obtained by setting n = 1 in Eq. (5 .4 .15) ,  so 

I t  is important to note that the critical moment is a function of both the 



lateral bending stiffness EI, and the torsional stiffness GJ. Thus, the 
coupling effect of out-of-plane deformation and twisting is manifested in 
the result. 

Equation (5.4.16), although derived for a narrow rectangular section, 
is also valid for box sections composed of narrow rectangular shapes. 
Like narrow rectangular cross sections, warping for box sections are 
negligible and so warping constant C, can be set to zero. However, for 
box sections, M,, will be much higher due to a significant increase in 
values of I, and J. 

Example 5.2. Simply Supported I-Section Under Pure Bending 
A simply supported I-beam subjected to a pair of equal and opposite end 
moments applied about the x axis is shown in Fig. 5.12. 

somnorr: Here, as in the preceding example, two sets of coordinate 
axes, x-y-z and x' -y ' -z ' ,  are used to facilitate the analysis. Since no 
change has been made in the external loadings or  support conditions, 
Eqs. (5.4.1) to (5.4.3) are still applicable here. As to the internal resisting 
moments, the two equations describing the in-plane [Eq. (5.4.4)] and 
out-of-plane [Eq. (5.4.5)] bending behavior of the member are also 
applicable here. In fact, the only equation that needs to be modified is 
Eq. (5.4.6). For an I-section, in addition to St. Venant torsion, there is a 
warping restraint torsion; hence, the total torsional resistant offered by 
the I-section is 

dy  d3y (M,.),., = GJ - - EC,  - 
dz dz" 

FIGURE 5.U Lateral buckling of an I-section under uniform moment 
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By equating the corresponding external and internal moments, the 
governing differential equations for the I-section under pure bending are 
obtained 

Again, the first equation is of no interest to us, as it describes the 
in-plane behavior of the beam before the lateral buckling. The 
differential equation describing the behavior of the beam at lateral 
torsion buckling is obtained by combining Eqs. (5.4.19) and (5 .4 .20)  

Denoting 

GJ a =- Ma 
2E& 

and b =- 
EI, EC, 

Equation (5.4.21) can be written as 

Equation (5.4.23) is a fourth-order linear differential equation with 
constant coefficients, the general solution is 

y = A  sin mz + B cos mz + Ce"' + De-"' (5.4.24) 

in which m and n are positive, real quantities defined by 

m = d-a + m, n =.\la + (5.4.25) 

The arbitrary constants A ,  B, C ,  and D can be determined from the 
conditions at the ends of the beam. Since rotation of the cross section at 
the supports is prevented, we must have 

The other two boundary conditions can be obtained as follows: Since 
warping is unrestrained at the ends of the beam, no moments will be 
developed in the flanges. By setting M, in Eq. (5 .3 .1)  equal zero and by 
differentiating Eq. (5.3.5) twice, it can easily be shown that the following 
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conditions must be satisfied. 

From the first conditions of Eqs. (5.4.26) and (5.4.27), we obtain 

B=O, C = - D  (5.4.28) 

and from the second conditions of Eqs. (5.4.26) and (5.4.27), we obtain 
the simultaneous equations 

As inmL-2Ds inhnL=O 
(5.4.29) 

Am2 sin mL + 2Dn2sinh nL = 0 

For a nontrivial solution, the determinant of the above equations must 
vanish 

(sin mL)(sinh nL)(2m2 + 2n2) = 0 (5.4.30) 

Since m and n are both positive nonzero quantities, and sinhnL is zero 
only at nL =0,  it follows that for a nontrivial solution we must have 

sinmL=O (5.4.31) 

The smallest value of m satisfying Eq. (5.4.31) is 

Using Eq. (5.4.25), we have 

and in view of Eq. (5.4.22), we have 

where 

It should be noted that the critical moment depends not only on the 
quantities El, and GJ, but also on EC,. In fact, the second square root in 
Eq. (5.4.34) represents the contribution of warping to the torsional 
resistance of the beam. For a rectangular or box section, C, is negligible, 
so the second square root becomes one and Eq. (5.4.34) reduces to Eq. 
(5.4.16). For an I-section, M,, will increase if the distance between the 
two flanges increases. This observation will become evident if one refers 
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to Eq. (5 .3 .8) .  the warping constant C, is proportional to the square of 
the depth h of the section. Thus, i f I f  retnab~s unchanged, an increase in h 
will increase C, and, so, M,,. 

In developing Eq. (5.4.34),  it has been assumed that the in-plane 
deflection has no effect on the lateral torsional buckling behavior of the 
beam. This assumption is justified when the flexural rigidity El, is much 
larger than the flexural rigidity El,  so that the in-plane deflection will be 
negligible compared with that of the out-of-plane deflection. If both 
rigidities are of the same order of magnitude, the effect of bending in the 
vertical y-z plane may be important and should be considered in 
calculating M,,. An approximate solution that includes the effect of 
in-plane deflection is given by Kirby and Nethercot3 as 

where 
Ir = 1 - (1,II~) (5.4.37) 

Note that if I, =I , ,  I, becomes zero. Then, From Eq. (5.4.36) it can be 
seen that M,, becomes infinity. If I y > I x ,  I, becomes negative and M, 
becomes imaginary. So, for the cases when I, equals or  exceeds I., no 
solution exists. Thus, one can conclude that the lateral torsional buckling 
of beams is possible only if the cross section possesses different bending 
stiffnesses in the two principal planes and the applied loads act in the 
plane of the weak axis. As a result, lateral torsional buckling will never 
occur in circular cross sections or square box sections in which all the 
component plates have the same thicknesses. 

5.5 BEAMS WITH OTHER LOADING CONDITIONS 

In the preceding section, the critical moment for a beam under equal and 
opposite end moments has been derived. The moment is constant for the 
entire length of the beam, and so the resulting differential equation 
describing the equilibrium conditions of the beam at its slightly deformed 
state is linear with constant coefficients. Beams in practical situations will, 
of course, be subjected to a wide variety of loadings, thus producing 
non-uniform moment along the length of the beam. If the moment in the 
beam is not constant throughout, the resulting governing differential 
equation will have variable coefficients. For such cases, closed-form 
solutions are not available and recourse must be had to numerical and 
approximate procedures to obtain the critical loads. Some classical 
numerical solutions for the critical loads of members with non-uniform 
moment have been presented in the book by T ioshenko  and Gere,' as 
well as in the papers by Ma~sonne t ,~  H ~ r n e , ~  and S a l ~ a d o r i , ~  among 
others. 
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In this section, we will present a simple but effective method to take 
into account the effect of non-uniform moment on the critical lateral 
buckling loads of beams. Here, as in the beam-column case, the approach 
is based on the equiualent rnonlent concept and the accuracy of the 
approach has been found to be quite sufficient for most practical cases. 

5.5.1 Unequal End Moments 

If a beam is subjected to end moments that are unequal in magnitude 
(Fig. 5.13), the moment in the beam will be a function of r. 
Consequently, the resulting governing differential equation will have 
variable coefficients. Therefore, a numerical procedure, involving the use 
of series or special functions, is necessary to  obtain solutions. The 
procedure is, evidently, quite cumbersome. Fortunately, for the purpose 
of design, it has been demonstrated by Salvadori6 that the effect of 
moment gradient on the critical moment can easily be accounted for by 
the use of an equiualent rnornent factor Cb. The critical moment for the 
beam in Fig. 5.13 can be obtained from 

FIGURE 5.13 Beam subjected to unequal bending moments 
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where 
M.,, = Eq. (5.4.34) 

in which (MAIMB) is the ratio of the numerically smaller to larger end 
moments. Its value is positive when the beam bends in double curvature 
and is negative when the beam bends in single curvature. 

A comparison of the theoretical value of M,, with that evaluated from 
Eqs. (5.5.1) for various values of MAIMB is shown in Fig. 5.14. One can 
see that Eq. (5.5.1) gives a conservative and quite accurate repre- 
sentation of the actual critical moment. I t  should be noted that the 
concept of equivalent uniform moment used here for beams is very 
similar to  that used earlier in Chapter 3 for beam-columns. The physical 
meaning of C, here is that it represents the amount of increase in the 
critical uniform moment M.,,, which causes lateral instability, as would 
the given unequal end moments also cause such instability. Since the 
moment ratio MAIMB is always between -1 and 1, it follows from Eq. 
(5.5.2) that C, is always greater than unity. This means that the critical 
moment M,, for unequal end moments will always be larger than the 
critical moments M.,, for equal and opposite end moments. Thus, the 
equal and opposite end moments loading case represents the most severe 
loading condition for the beam. 

FlGURE 5.14 Comparison of theoretical results with Eq. (5.5.1) 



328 Beams 

5.5.2 Central Concentrated Load 

If a simply supported beam is loaded at midspan by a concentrated force, 
the moment diagram is bilinear, as shown in Fig. 5.15. Here, as in the 
case of unequal end moments, the differential equation will contain a 
variable coefficient. 

As  an illustration, consider a simply supported I-beam subjected to a 
concentrated force P applied at the shear center of the middle cross 
section (Fig. 5.16). To  derive the governing differential equation, we 
need to relate the externally induced moments acting on the beam at its 
slightly deformed (buckled) configuration to its internal resistance. The 
procedure is facilitated by using the two coordinate systems: a fixed 
coordinate (s-y-z) system and a local coordinate (x'-y'-z') system as 
shown in Fig. 5.16. As the beam buckles laterally, vertical reactions P / 2  
and torsional reactions Pu,,/2, where u ,  is the lateral out-of-plane 
displacement of the shear center of the middle cross section, will develop 
at the supports. By considering a cross section at a distance z from the 
origin, the various components of external moments acting on that cross 
section with respect to the x-y-z coordinate are, using the right-handed 
screw rule for the moment vector, 

Referring to Fig. 5.17, we see that the components of external 
moments acting on the cross section of the deformed beam with respect 

FIGURE 5.15 Simply supported 
beam loaded at midspan 
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FTGURE 5.16 Lateral buckling of a simply supp~rted I-oeam loaded at midspan 

to the x'-y'-z '  coordinate are 

The minus sign for the terms duldz and duldz in the figure accounts for 
the fact that the slopes duldz and duldz are negative with a positive z 
(see Fig. 5.16). 

The internal resisting moments are 

d2u 
(MX.)!", = -Elx - 

dz2 
(5.5.9)  
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FIGURE 5.17 Components of moments 

The minus sign in Eq. (5.5.9) indicates that the positive moment (M..),,, 
produces a negative curvature d'uldz2, based on the right-handed screw 
rule for moment. 

By equating the corresponding external and internal moments and 
neglecting the higher order terms, we obtain the following equilibrium 
eauations 

E l x - + -  - - z  = o  
dz' d2u p ( L  2 2 ) 
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Note that the second term in Eq. (5.5.6) and (5.5.7) is neglected in 
writing Eq. (5.5.12) and (5.5.13), because the quantities ( d u l d r ) ,  
( d u l d r ) ,  and ( u ,  - n )  are all small. The reader should recognize that Eq. 
(5.5.12), which describes the in-plane bending behavior of the beam, is 
uncoupled with the other two equations. Therefore, it is not important in 
the present buckling analysis. The lateral torsional buckling behavior of 
the beam is described by Eq. (5.5.13) and Eq. (5.5.14). By eliminating u 
from Eqs. (5.5.13) and (5.5.14) and noting that du,ldz =0, we can write 
a simple differential equation as 

This differential equation has a variable coefficient in its third term. The 
solution for this differential equation can be obtained' by the method of 
infinite series. The results are plotted as solid lines in Fig. 5.18. The 
curves correspond to the cases when the load acts on the upper flange, at 
the shear center, and on the lower flange of the cross section, 
respectively. 

The case where the load acts on the upper flange is the most 
detrimental, because of the increase in the torque arm as the beam 
buckles laterally. On the other hand, the least detrimental case is when 
the load acts on the lower flange; this is because of the decrease in the 
torque arm as the beam buckles laterally. These observations can be 
explained with reference to Fig. 5.1. If the load acts on the upper flange, 
Eq. (5.5.5) will become 

P 
( M )  = - - ( + - - u 

2 2 

whereas, if the load acts on the lower flange, Eq. (5.5.5) will become 

where u ,  and y, are the out-of-plane lateral displacement and twist of 
the cross section at the beam's midspan, respectively. 

The term y m h / 2  (or - ymh/2)  represents the amount of increase (or 
decrease) in the torque arm of the applied load causing an increase (or 
decrease) in the external moment (MJ,,,. Evidently, if (MJ,,, is larger, 
PC, will be smaller and vice versa. For the purpose of design, it is 
convenient to approximate the theoretical values of PC, by Eq. (5.5.1). 
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FIGURE 5.18 Comparison of theoretical and approximate solutions 

with 

i AB for load at bottom flange 
C, = A for load at shear center (5.5.19) 

AIB for load at top flange 

The values A and B are given by Nethercot and Rockey7 as 

B = 1 + 0.649W - 0.180W2 (5.5.21) 

in which W = ( z I L ) ~ ~ .  
The approximate solutions for PC, using Eqs. (5.5.18) to (5.5.21) are 
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plotted as dotted lines on the same figure. It can be seen that the 
approximate solutions give an excellent representation of the theoretical 
exact solutions. 

5.5.3 Other Loading Conditions 

The effect of the distribution of load along the unbraced length of a 
simply supported beam on its elastic lateral torsional buckling strength 
has been investigated numerically by a number of researchers. The 
results are discussed in various  book^,'.^,^ and papers.'&15 For simplicity, 
approximate solutions in the form of Eq. (5.5.1) are often used to obtain 
the critical loads. The approximate solutions for some commonly 
encountered loading cases with the loads applied at the shear center of 
the cross section are summarized in Table 5.2a. By using the expressions 
for M,, in the third column and the value of Cb in the fourth column, 
together with M.,, given in Eq. (5.4.34), the corresponding approximate 
values for the critical loads can easily be computed from Eq. (5.5.1). 

For loadings whose moment diagrams do not resemble any of those 
given in Table 5.2a, an empirical formula given by Kirby and Nethercot' 
for C, can be used: 

where MI, Mz, and M3 are the moments at the quarter point, midpoint, 
and three-quarter point of the beam, respectively, and M,,, is the 
maximum moment of the beam, as shown in Table 5.2b (Problem 5.4). 

If the location of the load is not at the shear center, the values of the 
critical loads will be different. For the two load cases shown in Table 5.3, 
Nethercot and Rockey7 and Nethercot16 have proposed expressions for 
C, to be used in Eq. (5.5.1) to  give approximate values for the critical 
loads. Figure 5.19 shows a comparison of the theoretical critical load 
obtained by Timoshenko and GereZ for the case of uniformly distributed 
load with the approximate solutions proposed by Nethercot and Rockey7 
(Table 5.3). Good agreement between the two solutions is observed. 

5.6 BEAMS WITH OTHER SUPPORT CONDITIONS 

The discussion heretofore pertains only to beams that are torsionally 
simply supported. That is, the ends of the beams are free to rotate and 
warp about the weak axis, but are restrained against rotation about the 
centroidal axis. A change in support conditions will undoubtedly have a 
pronounced effect on the resistance of the beam to lateral torsional 
buckling. In  this section we shall examine the effects of support 



Table 5.2 Values of C, for Different Loading Cases (All Loads are Applied at 
Shear Center of the Cross Section) 
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FIGURE 5.19 Comparison of theoretical and approximate solutions 

conditions on the critical loads and lateral buckling behavior of beams, 
and, in particular, the use of the effective length concept to account for 
the support conditions. 

5.6.1 Cantilever Beams 

The critical lateral buckling loads for cantilevers are different from that of 
simply supported beams because of the obvious difference in boundary 
conditions at the supports. The elastic buckling load for a cantilever 
under a uniform moment caused by an end moment M, applied at the 
free end can be obtained directly from the solution of the simply 
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supported beam by imagining the beam to he consisted of two cantilevers 
of equal length joined together at the fixed ends. Thus, the critical 
moment for the cantilever beam can be obtained from Eq. (5.4.34) by 
replacing L by 2L 

For other loading conditions, recourse must be made to numerical 
procedures to obtain s~ lu t ions ."~ '~  Figures 5.20 and 5.21 show the results 
for two load cases: cantilever beam with a concentrated load at the free 
end and cantilever beam with a uniform distributed load. For both of 
these load cases, the figures present the critical loads corresponding to 

FIGURE 5.20 Critical loads of a cantilever subjected to a concentrated force at 
the free end 



FIGURE 5.21 Critical loads of a cantilever subjected to uniform distributed load 

loading on bottom flange, at the shear center, and on the top flange. 
These plots are applicable to cantilever beams for which the root or the 
fixed end is completely fixed against lateral displacement and warping 
while the tip or the free end is completely free. For other support 
conditions, Nethercotl%as shown that the equation 

gives a conservative estimate of M,, for most applications. In Eq. (5.6.1), K 
is the effective ler~grh factor of the beam. The values of Kfor various restraint 
conditions at the root and at the tip of the cantilever are given in Table 5.4. 
The table is applicable to both end load and uniformly distributed load cases. 
Equation (5.6.2) is also applicable to othersupport conditions so long as K is 
properly defined. as shown in the following sections. 
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Table 5.4 Effective Length Factors for Cantilevers 
with Various End Conditions (Adapted from Ref. 16) 

5.6.2 Fixed-Ended Beams 

Restraint Condil ions - 

If the ends of the beams are fixed against lateral displacement and 
warping but free to rotate about the strong axis (Fig. 5.22). the boundary 
conditions at the ends for lateral bending are 

El lec t ive  Lenglh 

and for twisting and warping 

A1 roo!  Ai  tip 
loading cases 

1.4L 0.BL 

0.7L 

0.6L 0.6L 

2.5L 1.0L 

0.9L 

0.8L 
- 

7.5L 3.0L 

2.7L 

2.4L 

If the beam is under a uniform moment, the differential equation [Eq. 
(5.4.23)] and the general solution [Eq. (5.4.24)] for the simply supported 
beam under a uniform moment, which were presented in Section 5.4, are 
still applicable. By using the boundary conditions in Eq. (5.6.4), it can he 



Warping and Lateral Bending ~n the 
1 X - L  Plane Prevented a t  Bath Ends 

Lateral Bending in the y-r  I Plane Perrnlttad at Bath Ends 
Y 

FIGURE 5.22 Fixed-end beams 

shown that the characteristic equation is (c) sin mL sinh nL + cos mL cosh nL - 

where m, n are defined in Eq .  (5.4.25).  
Unlike the characteristic equation for the simply supported beam, for 

which a solution is readily obtained [Eq. (5 .4 .31 ) ] ,  the solution for Eq.  
(5.6.5)  can only be obtained by trial and error. However, an easier way 
to obtain the critical moment for this case is to realize that the inflection 
points occur at a distance L/4 from the ends. Thus, the critical value for 
the moment can be obtained by simply replacing L in Eq. (5.4.34) by 
L / 2 ,  giving 

Comparing Eq. (5 .6 .6)  with Eq .  (5 .6 .2)  gives K =  112 for this 
fixed-ended beam case under a uniform moment. Figure 5.23 shows a 
plot of Eq. (5 .6 .6) .  Also shown in the figure is the critical moment for the 
corresponding simply supported beam. I t  can be seen that the critical 
moment for a fixed-ended beam is considerably higher than that of a 
simply supported beam. 

For.other types of loadings that produce non-uniform distribution of 
moments along the length of the beam, the differential equations will 
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Lateral T o r s i o n a l  
Simply S u p p o r l e d  

FIGURE 5.23 Comparison of critical moments for a lateral torsional s~rnply 
supported and lateral torsional fixed beam 

have variable coefficients and recourse to numerical procedures is 
inevitable. If the fixed-ended beam is subjected to a concentrated load at 
midspan or if it is subjected to a uniformly distributed load along the 
entire unhraced length, Nethercot and Rockey7 have presented the 
following equation for the critical moments 

M, = Cb,M.,, (5.6.7) 
where 

for the concentrated load case 

(5.6.8) 

for the uniformly distributed load case 
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Table 5.5 Expressions of A and B for a Fixed-End Beam [W = ( x I L ) ~ ] ]  

and 

AB for bottom flange loading 
A for shear center loading (5.6.9) 
AIB for upper flange loading 

The expressions for A and B are given in Table 5.5 and M,,, is given by 
Eq. (5.4.34). It should be mentioned that Cbr used in Eq. (5.6.7) is 
different from C, used earlier in Eq. (5.5.1). The term C, only accounts 
for the effect of moment gradient on the critical lateral buckling loads, 
whereas the term Cb, accounts for both the effect of moment gradient and 
end conditions of the beam. 

The effective length KL for the beams shown in Table 5.5 can be 
obtained by equating Eqs. (5.6.7) with (5.6.2) and solve for the effective 
length factor K 

Note that the effective length factor depends on a number of parameters. 
These include the unbraced length L, the material properties E and G, 
the cross-section geometry C, and J ,  the types of loadings, and the 
location of the load with respect to the shear center of the cross section. 
Since Eq. (5.6.10) is rather cumbersome to use for practical purpose, i t  is 
common to use a K-factor of unity in design. 

If the restraint conditions are different with respect to lateral bending 
and twisting, the effective length factor of the beam that corresponds to 
lateral bending Kb and the effective length factor that corresponds to 
twisting Kt will be different. In such cases, for beams under a uniform 










































































































































































































































































































