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PREFACE

Knowledge of structural stability theory is of paramount importance to the prac-
ticing structural engineer. In many instances, buckling is the primary consideration
in the design of various structural configurations. Because of this, formal courses in
this important branch of mechanics are available to students in Aerospace Engin-
eering, Civil Engineering, Engineering Science and Mechanics, and Mechanical
Engineering at many institutions of higher learning. This book is intended to serve
as a text in such courses. The emphasis of the book is on the fundamental concepts
and on the methodology developed through the years to solve structural stability
problems.

The material contained in this text is ideally suited for a two-semester Master’s level
course, although with judicious deletion of topics, the text may be adopted for a one-
semester course.

The first chapter introduces the basic concepts of elastic stability and the approaches
used in solving stability problems. It also discusses the different buckling phenom-
ena that have been observed in nature. In Chapter 2, the basic concepts and
methodology are applied to some simple mechanical models with finite degrees of
freedom. This is done to help the student understand the fundamentals without
getting involved with lengthy and complicated mathematical operations, which is
usually the case when dealing with the continuum (infinitely many degrees of
freedom). In Chapter 3, a complete treatment of the elastic stability of columns is
presented, including effects of elastic restraints. New to this edition are treatments of
the elastica theory of beams and of the buckling of thin-walled beam-columns. This
new material facilitates the solutions of several problems in later chapters. Some
simple frame problems are discussed in Chapter 4. Moreover, a nonlinear analysis of
frames is presented, which clearly shows that in some cases, buckling occurs through
limit-point instability. This chapter is of special importance to the Civil Engineering
student. Since energy-based methods have been successfully used in structural
mechanics, Chapter 5 presents a comprehensive treatment of the energy criterion
for stability and contains many energy-related methods. The study of this chapter
requires some knowledge of work- and energy-related principles and theorems.

X1
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These topics are presented in the Appendix for the benefit of the student who never
had a formal course in this area. Columns on elastic foundations are discussed in
Chapter 6. Chapter 7 presents a comprehensive treatment of the buckling of thin
rings and high and low arches. In this chapter, a complete analysis is given for
a shallow, pinned sinusoidal arch on an elastic foundation subject to a sinusoidal
transverse loading. This is an interesting model for stability studies because,
depending upon the values of the different parameters involved, it exhibits all
types of buckling that have been observed in different structural systems: top-of-
the-knee buckling, stable bifurcation (Euler-type), and unstable bifurcation. The use
of elastica theory augments the more traditional treatment illustrating how a buck-
ling analysis can be carried out with very few restrictive assumptions. Chapter 8
treats the buckling of shafts, making use of both the elastica theory and energy
methods. This chapter is important for Mechanical and Aerospace Engineering
students, showing that torques which differ by infinitesimal amounts can have
buckling loads that radically differ, and that compressive forces and spin can affect
stability as well. Chapter 9 is devoted to lateral-torsional buckling of deep beams,
emphasizing the role of certain secondary effects such as the Vlasov phenomenon,
initial curvature, the offset of the load, the way torque is applied, etc. In Chapter 10
we examine various instabilities of rotating rods and beams. Chapter 11 is devoted
to the stability of nonconservative systems undergoing follower forces. An extended
version of the elastica theory is shown to facilitate analysis of such systems, which
must be analyzed according to kinetic theory. Chapter 12 classifies the various
“dynamic instability” phenomena by taking into consideration the nature of the
cause, the character of the response and the history of the problem. Moreover, the
various concepts and methodologies, as developed and used by different investiga-
tors, are fully described. Finally, the concepts and criteria for dynamic stability are
demonstrated through simple mechanical models. The emphasis here is on suddenly
applied loads of constant magnitude and infinite duration or extremely small dur-
ation (ideal pulse).

The authors are indebted to the late Profs. J. N. Goodier and N. J. Hoff and to
Prof. George Herrmann for introducing many topics and for valuable suggestions.
Special thanks are due to Professor M. E. Raville for providing tangible and
intangible support, for reading large sections of the manuscript for earlier editions,
and for making many corrections. Numerous discussions with Profs. W. W. King,
G. M. Rentzepis, C. V. Smith Jr., David A. Peters, M. Stallybrass, A. N. Kounadis and
Izhak Sheinman are gratefully acknowledged. Thanks are also due to several former
students of the first author: C. M. Blackmon, V. Ungbhakorn, J. Giri, A. S. Vlahinos,
D. Shaw and J. G. Simitses; and of the second author: A. R. Atilgan, R. R. Bless,
and V. V. Volovoi.

George J. Simitses
Dewey H. Hodges
Georgia Institute of Technology



FUNDAMENTALS OF
STRUCTURAL STABILITY



This page intentionally left blank



INTRODUCTION AND
FUNDAMENTALS

1.1 MOTIVATION

Many problems are associated with the design of modern structural systems.
Economic factors, availability and properties of materials, interaction between the
external loads (e.g. aerodynamic) and the response of the structure, dynamic and
temperature effects, performance, cost, and ease of maintenance of the system are all
problems which are closely associated with the synthesis of these large and compli-
cated structures. Synthesis is the branch of engineering which deals with the design of
a system for a given mission. Synthesis requires the most efficient manner of design-
ing a system (i.e., most economical, most reliable, lightest, best, and most easily
maintained system), and this leads to optimization. An important part of system
optimization is structural optimization, which is based on the assumption that
certain parameters affecting the system optimization are given (i.e., overall size and
shape, performance, nonstructural weight, etc.). It can only be achieved through
good theoretical analyses supported by well-planned and well-executed experimental
investigations.

Structural analysis is that branch of structural mechanics which associates the
behavior of a structure or structural elements with the action of external causes. Two
important questions are usually asked in analyzing a structure: (1) What is the
response of the structure when subjected to external causes (loads and temperature
changes)? In other words, if the external causes are known, can we find the deform-
ation patterns and the internal load distribution? (2) What is the character of the
response? Here we are interested in knowing if the equilibrium is stable or if the
motion is limited (in the case of dynamic causes). For example, if a load is period-
ically applied, will the structure oscillate within certain bounds or will it tend to move
without bounds?

If the dynamic effects are negligibly small, in which case the loads are said to be
applied quasistatically, then the study falls in the domain of structural stzatics. On the
other hand, if the dynamic effects are not negligible, we are dealing with structural
dynamics.




4 INTRODUCTION AND FUNDAMENTALS

The branch of structural statics that deals with the character of the response is
called stability or instability of structures. The interest here lies in the fact that
stability criteria are often associated directly with the load-carrying capability of
the structure. For example, in some cases instability is not directly associated with the
failure of the overall system, i.c., if the skin wrinkles, this does not mean that the
entire fuselage or wing will fail. In other cases though, if the portion of the fuselage
between two adjacent rings becomes unstable, the entire fuselage will fail catastroph-
ically. Thus, stability of structures or structural elements is an important phase of
structural analysis, and consequently it affects structural synthesis and optimization.

1.2 STABILITY OR INSTABILITY OF STRUCTURES

There are many ways a structure or a structural element can become unstable,
depending on the structural geometry and the load characteristics. The spatial geom-
etry, the material along with its distribution and properties, the character of the
connections (riveted joints, welded, etc.), and the supports comprise the structural
geometry. By load characteristics we mean spatial distribution of the load, load beha-
vior (whether or not the load is affected by the deformation of the structure, e.g., if
a ring is subjected to uniform radial pressure, does the load remain parallel to its initial
direction, does it remain normal to the deformed ring, or does it remain directed
towards the initial center of curvature?), and/or whether the force system is conservative.

1.2.1 CONSERVATIVE FORCE FIELD

A mechanical system is conservative if subjected to conservative forces. If the
mechanical system is rigid, there are only external forces; if the system is deformable,
the forces may be both external and internal. Regardless of the composition, a system
is conservative if all the forces are conservative. A force acting on a mass particle is
said to be conservative if the work done by the force in displacing the particle from
position 1 to position 2 is independent of the path. In such a case, the force may be
derived from a potential. A rigorous mathematical treatment is given below for the
interested student.

The work done by a force F acting on a mass particle in moving the particle from
position Py (at time #) to position P (at time ¢) is given by

W:j/ F - dr (1)
CcJ 1y

Thus the integral, I (a scalar), depends on the initial position, ry, the final position,
ry, and the path C. If a knowledge of the path C is not needed and the work is
a function of the initial and final positions only, then

W = W(l’o, rl,F) (2)

and the force field is called conservative. (Lanczos 1960; Langhaar 1962; Whittaker
1944).

Parenthesis. If S denotes some surface in the space and C some space curve, then by

Stokes’ theorem
%U-aw://curlU-nds (3)
c s

where nis aunit vector normal to the surface S'(see Fig. 1.1), and Usome vector quantity.
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If CfU -d€ = 0, then

// curlU -nds =0 (4)
s

for all surfaces S and spanning curves C. If this is so, then the curl of U (some vector
quantity) must be identically equal to zero, or

curlU=0 (5)

Next, if we apply this result to a conservative force field where U is replaced by F,
then according to the previous result

curlF =0

It is well known from vector analysis that the curl of the gradient of any scalar
function vanishes identically. Therefore, for a conservative field we may write

F=-VV (6)
where:
1. The negative sign is arbitrary,
2. Vis some scalar function, and
3. V is the vector operator
2 i+ 9, + 9 k
ax oyt oz

where i, j, k form an orthogonal unit vector triad along x, y, z, respectively. This
implies that the force can be derived from a potential.

Note that in this case the work done by the force in a conservative force field is
given by
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W:f F-dr:—j[ VV-dr:—f (V-dno)V
1X)) ro 1X))

and since
V—gi—i—ﬁ'—kﬁkanddr—(dx)i—i-(d)'+(dz)k
-~ Ox 8yl 0z N 7))
then
av AV oV
(V~dr)Vfadx+a—ydy+Edzde
or
14
W=—[ dv="Vy—V, =-81V) (7)
40

where 6 denotes a change in the potential of the conservative force F from position ry
to position ry.

Thus a system is conservative if the work done by the forces in displacing the
system from deformation state 1 to deformation state 2 is independent of the path. If
this is the case, the force can be derived from a potential.

There are many instances where systems are subjected to loads which cannot be
derived from a potential. For instance, consider a column clamped at one end and
subjected to an axial load at the other, the direction of which is tangential to the free
end at all times (follower force). Such a system is nonconservative and can easily be
deduced if we consider two or more possible paths that the load can follow in order
to reach a final position. In each case the work done will be different. Systems subject
to time-dependent loads are also nonconservative. Nonconservative systems have
been given special consideration (Bolotin, 1963; Hermann, 1967), and the emphasis
in this text will be placed on conservative systems Ziegler (1968) has a detailed
description of forces and systems.

1.2.2 THE CONCEPT OF STABILITY

As the external causes are applied quasistatically, the elastic structure deforms and
static equilibrium is maintained. If now at any level of the external causes, “small”
external disturbances are applied, and the structure reacts by simply performing
oscillations about the deformed equilibrium state, the equilibrium is said to be stable.
The disturbances can be in the form of deformations or velocities, and by “small” we
mean as small as desired. As a result of this latter definition, it would be more
appropriate to say that the equilibrium is stable in the small. In addition, when the
disturbances are applied, the level of the external causes is kept constant. On the
other hand, if the elastic structure either tends to and does remain in the disturbed
position or tends to and/or diverges from the deformed equilibrium state, the equi-
librium is said to be unstable. Some authors prefer to distinguish these two conditions
and call the equilibrium reutral for the former case and unstable for the latter. When
either of these two cases occurs, the level of the external causes is called critical.

This can best be demonstrated by the system shown in Fig. 1.2. This system
consists of a ball of weight W resting at different points on a surface with zero
curvature normal to the plane of the figure. Points of zero slope on the surface denote
positions of static equilibrium (points A, B, and C). Furthermore, the character of



STABILITY OR INSTABILITY OF STRUCTURES 7

@)
A + ¢
g

FIGURE 1.2 Character of static equilibrium positions.

equilibrium at these points is substantially different. At A, if the system is disturbed
through infinitesimal disturbances (small displacements or small velocities), it will
simply oscillate about the static equilibrium position 4. Such equilibrium position is
called stable in the small. At point B, if the system is disturbed, it will tend to move
away from the static equilibrium position B. Such an equilibrium position is called
unstable in the small. Finally, at point C, if the system is disturbed, it will tend to
remain in the disturbed position. Such an equilibrium position is called neutrally
stable or indifferent in the small. The expression “in the small” is used because the
definition depends on the small size of the perturbations. If the disturbances are
allowed to be of finite magnitude, then it is possible for a system to be unstable in the
small but stable in the large (point B, Fig. 1.3a) or stable in the small but unstable in
the large (point A4, Fig. 1.3Db).

In most structures or structural elements, loss of stability is associated with the
tendency of the configuration to pass from one deformation pattern to another. For
instance, a long, slender column loaded axially, at the critical condition, passes from
the straight configurations (pure compression) to the combined compression and
bending state. Similarly, a perfect, complete, thin, spherical shell under external
hydrostatic pressure, at the critical condition, passes from a pure membrane state
(uniform radial displacement only; shell stretching) to a combined stretching and
bending state (nonuniform radial displacements). This characteristic has been recog-
nized for many years and it was first used to solve stability problems of elastic
structures. It allows the analyst to reduce the problem to an eigenvalue problem,
and many names have been given to this approach: the classical method, the bifur-
cation method, the equilibrium method, and the static method.

1.2.3 CRITICAL LOADS VERSUS BUCKLING LOAD

At this point nomenclature merits some attention. There is a definite difference in
principle between the buckling load observed in a loading process where the loads

0Q+-

(a) (b)

FIGURE 1.3 Character of static equilibrium positions in the large.
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keep changing (observed physical phenomenon) and the buckling load calculated
from some mathematical model, which always refers to a system with prescribed
loads. Since the latter is based on theory and is usually obtained as the characteristic
or eigenvalue of some eigen-boundary-value problem, it is properly called the critical
load.

In the process of buckling in the testing machine, in the static or dynamic testing
of a structural configuration, and in the failure of the structure in actual use, we are
confronted with the physical aspects of buckling. The load at which a structure
buckles should preferably be designated as the buckling load.

The compound term critical buckling load is unnecessary and should be avoided. It
may have originated from the observation that theory (for the ideal column, for
instance) predicts several critical loads (eigenvalues) corresponding to different de-
flection patterns (eigenfunctions). In an experiment, however, only one buckling
pattern is observed, namely, the one that corresponds to the lowest eigenvalue.
This lowest eigenvalue is no more critical than any of the higher ones, but it is the
one that corresponds to the observed buckling load. If it is desired to give it a special
designation, it should be called the lowest critical load, rather than the critical
buckling load.

1.2.4 BASIC APPROACHES OF STABILITY ANALYSIS

A number of approaches have been successfully used in determining critical
conditions for elastic structures which are subject to instability. The oldest approach,
while is applicable to many problems, is concerned with the answer to the following
question. If an external cause is applied quasistatically to an elastic structure, is there
a level of the external cause at which two or more different but infinitesimally close
equilibrium states can exist? By different equilibrium states we mean that the
response of the structure is such that equilibrium can be maintained with different
deformation patterns. An example of this is the long perfect column loaded axially in
compression. As the load increases quasistatically from zero, the column is com-
pressed but remains straight. At some value of the load though, a bent position of
infinitesimal amplitude also represents an equilibrium position. Since at this value of
the load there are two different equilibrium states infinitesimally close, a bifurcation
point exists (adjacent equilibrium positions). Mathematically, in this approach, the
problem is reduced to an eigen-boundary-value problem, and the critical conditions
are denoted by the eigenvalues. This approach is usually referred to as the classical
approach, equilibrium approach, or bifurcation approach. Many examples will be
discussed in the chapters to follow.

Another approach is to write the equations governing small free vibrations of the
elastic structures at some level of the external causes (treated as a constant) and try to
find out for what level of the external cause the motion ceases to be bounded in the
small. In writing the governing equations, one must allow all possible modes of
deformation. The form of equilibrium is said to be stable if a slight disturbance (in
the form of displacement or velocity) causes a small deviation of the system from the
considered equilibrium configuration, but by decreasing the magnitude of the dis-
turbance, the deviation can be made as small as required. On the other hand, a
critical condition is reached if a disturbance, however small, causes a finite deviation
of the system from the considered form of equilibrium. This approach is known as
the kinetic or dynamic approach, and it is a direct application of the stability concept
demonstrated in Fig. 1.2.
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Next, if a system is conservative, the forces can be derived from a potential, and
the total potential of the system can be expressed in terms of the generalized
coordinates and the external forces. The generalized coordinates are the parameters
needed to express the deflectional shapes which the elastic structure could possibly
assume. In this case, the equilibrium is stable in the small if the total potential is a
relative minimum. This approach is completely equivalent to the kinetic approach (a
proof is given in Whittaker, 1944) for conservative systems, and it is known as the
potential energy method or simply the energy method. This definition of stability
requires special attention, and it will be fully justified in the next section.

Finally, there is a fourth approach in dealing with stability problems of elastic
structures. This method is usually called the imperfection method. The question in
this case is: “What is the value of the load (level of external causes) for which the
deflections of an imperfect system increase beyond any limit?”’ It should be pointed
out that certain systems, when subjected to certain external causes, are imperfection
sensitive. This means that the critical conditions of the perfect system are different
from those of the imperfect one. Imperfection sensitivity has served to explain the
discrepancy between theory and experiment for such systems. It will also be demon-
strated that there are systems for which the perfect and imperfect systems have the
same critical conditions according to the approaches defined above. It is the opinion
of the authors that the imperfection approach should not be associated with the
stability of the perfect system, but simply characterize the response of the imperfect
system. In short, the stability of a system, whether perfect or imperfect, should be
investigated by the first three methods (whichever is applicable).

1.2.5 THE ENERGY METHOD

This method is based on the kinetic criterion of stability, and it is an association of
this criterion with characteristics of the total potential (relative minimum) surface at
a position of static equilibrium. Since it requires the existence of a total potential
surface, this method is applicable only to conservative systems.

Before the energy criterion is justified, let us describe in analytical form the kinetic
criterion of stability. This concept was first introduced by Lagrange (1788) for a
system with a finite number of degrees of freedom.

A more strict definition of stability of equilibrium was given by Lyapunov (see
Chetayev, 1961; Krasoskii, 1963; Langhaar, 1962; LaSalle and Lefschetz, 1961; Liapu-
nor, 1952) as a particular case of motion. Let us assume that the position of a system
depends on n generalized coordinates ¢; (i = 1, 2,..., n) and that a static equilibrium
state is characterized by ¢; = 0. Let the system be at this static equilibrium position, and
at time 7 = 0 we allow small bounded disturbances |¢°| < 8 and |§?| < §. The response
of the system at any instant ¢ > 0 is characterized by ¢;(¢) and §;(¢). If the response is also
bounded

lg:(1)] <& and |g;(1)] <e (8)

then we say that the static equilibrium position ¢; = 0 is stable. In other words, in the
case of stable static equilibrium (in the small) positions, we can always select such
small initial conditions that the generalized coordinates and velocities are bounded.

The energy criterion is based on the Lagrange-Dirichlet theorem, which states: If
the total potential has a relative minimum at an equilibrium position (stationary
value), then the equilibrium position is stable. This theorem can easily be proven if we
simply employ the principle of conservation of energy for conservative systems,
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which states that the sum of the kinetic energy and the total potential is a constant
(T + U = ¢). Now if we define the equilibrium position by ¢; = 0 and let U(0) = 0,
then, if U(0) is a minimum, U(g;) must have a positive lower bound ¢ on the
boundary of any sufficiently close neighborhood of g; = 0. It is now always possible
to select ¢ and ¢? such that 7+ U = ¢ and ¢ < . In other words, since the sum of
the total potential and the nonnegative kinetic energy is a constant ¢, if ¢ < ¢ the
boundary of the neighborhood of ¢; = 0 can never be reached, and the equilibrium
position ¢g; = 0 is stable (bounded motion). Unfortunately, it is very difficult to prove
the converse of the Lagrange-Dirichlet theorem. A statement of this converse the-
orem is as follows: If the equilibrium is stable at an equilibrium position character-
ized by ¢g; = 0, then U(0) is a relative minimum. Proof of this theorem under certain
restrictive assumptions has been given by Chetayev (1930). Although there is no
general proof of this converse theorem, its validity has been accepted and the energy
criterion has been used as both a necessary and sufficient condition for stability.
This criterion for stability can be generalized for systems with infinitely many degrees
of freedom (cohesive, continuous, deformable configurations).

The energy criterion can be used to arrive at critical conditions by simply seeking
load conditions at which the response of the system ceases to be in stable equilibrium.
This implies that we are interested in knowing explicitly the conditions under which the
change in the total potential is positive definite. If the total potential is expressed as a
Taylor series about the static equilibrium point characterized by ¢; = 0, then

U( )=U(0,0 0)+2N:6—U ;
QIaQZ»---sQN - > L p 3(], 0%
. & ZN: o2 9)
+5 qiq
25 J=1 9qi0g; o™
Since ¢; = 0 characterizes a position of static equilibrium, then
ou
=0 10
ag; o (10)
and
1 N
Ulgr @2 --» qx) = U(0,0,...,0) =AU =3 ; ;c,,-qiq, (11)
where
o 327’]‘
v 6q, 6qj 0

The energy criterion requires that the homogeneous quadratic form given by Eq. (11)
be positive definite.

THEOREM The homogeneous quadratic form

| NN
U(Qu‘]z,-.-,QN):EZZCU‘C]:'CI; (12)
=1 =1

is positive definite if and only if the determinant D of its coefficients, c;, and its
principal minors, D;, are all positive.
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Proof: The proof will be given in a number of steps.
1. If Uis positive for any set of coordinates [¢;] # [0] (not all zero), then
1
U(q1,0,0,0,...,0) = zcan >0
which requires that ¢;; > 0. Note that if ¢;; is positive, then U(qg, 0, 0,

2. Assuming that ¢;; # 0, we can make the following transformation:

* C12 C13
Q1:q1+_—qz+,—1Q3+ Jr—q/v
C1

—‘]1+Z—%

With this transformation we note that
1 1 ?
2 _
sen(ar)” =5¢ (ql + Z —q,)
1 1 NN C1iC1j
= 561141 +q chlql 5 Z Z cl”'/ qiqj

i=2 =2 j=2

From Eq. (16)

1 I N K ey
5011q% 5cn q1 (mzclqu 5;2 JCMIJ

= j=2

Next we rewrite Eq. (12) in the following form:

1 N 1 N N
Ulqr, g2, - -, qn) :ECII‘I% +q ZCU% +§ Z Zcii%%'
i=2 =2 j=2

Substitution of Eq. (17) into Eq. (18) yields

If we let

11

(13)

(15)
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then Eq. (19) becomes

N N
U(qys 4255 qn) = —611611 ) Z Zaij%’%’ (21)
i=2 j=2
3. If U is positive for ¢; #0 and ¢; =0 (i=2,3,..., N), then ¢;; > 0. If U is
positive for ¢; =0, g2 #0, and ¢; =0(i =3,..., N), then ax» > 0. Note that the
converse is also true for the same condition, i.e., if ¢y is positive, U is positive, and if
any 18 positive, U is positive.
These conditions for positive U can be written solely in terms of ¢; by use of
Eq. (20), or
ci1 > 0and ¢ — C%z >0 (22)

Note that the second inequality is equivalent to the requirement D, > 0 if ¢ = ¢2y.
This requirement is by no means restrictive since Eq. (12) represents a homogeneous
quadratic form.

4. Next step 2 is repeated with ¢, # 0 and the following transformation:

This transformation leads to the following expression for U

o 1 N N
U(47s ¢35 @35+ -5 qn) = 2611(]1 + azzqz Z Zﬁg/%q]‘ (24)
i=3 j=3
where
A2
] 25
:Blj Qjj an ( )
As in step 3
U(q;,0,0,...,0) >0 if and only if ¢;; >0
U0, ¢3,0,0, ...,0) >0 if and only if @ >0
and

U(,0,4¢30,...,0)>0 if and only if B33 >0
This requirement implies that
o033 — a§3 >0 (26)

2 2 2
C C C12C13

(sz — L2) <C33 — ﬁ) - <Cz3 - ) >0 (27)
C11 C11 C11

This last requirement is equivalent to D3 > 0 provided ¢; = ¢;.

By Eq. (20)

5. The continuation of this procedure eventually leads to the representation of the
homogeneous quadratic form as a linear combination of squares:

o, 1, 1
U 256‘11412 +§0122¢I22 +§B33432 +-- (28)

From this form, it is clearly seen that U is positive definite if and only if
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1 >0, a»>0, B3>0 QED (29)

Use of this theorem in the energy criterion implies that a position of static
equilibrium is stable if and only if

D, D, Dy Dy
82UT i QZUT \ QZUT i 32UT
9% : dq10, | dd1d03 ! a0y
Uz 2U; | RU; | RU;
EOPST 93 | ddxd03 | d0; Ay
RU RU RU, | 2U
Dy = r r I —2L |>0 30
N1 905 90, d03 94, a3 d03 Iy (30)
RU; RU; RUy Uy
dqyddy  ddy daz Jqy 903 0%

and all its principal minors D; > 0, D, > 0, etc.

In all problems in mechanics, dealing with the stability of elastic systems under
external causes, the total potential of the system depends not only on the generalized
coordinates (variables defining the position of the system) but also on certain
parameters that characterize the external cause or causes.

The general theory of equilibrium positions of such systems with various values of
the parameters was established by Poincaré (1885; see also Chetayev, 1930). Among
the findings of Poincaré are the following (simplified in this text for the sake of
understanding):

1. The requirements

oUr
0qi

define a point of bifurcation (intersection of static equilibrium branches at the same
value of the external cause parameter). See for example Figs. 1.4 and 1.5 (points 4
and 4').

2. Changes in stability along the primary path (from stable to unstable equilibrium
positions) do occur at points of bifurcation. Consider, for example, branch OAB of
Fig. 1.4. If the part of this branch characterized by OA denotes stable static equilib-
rium positions, the part characterized by 4B must denote unstable static equilibrium
positions.

=0and Dy =0

These findings support the classical approach to stability problems which only
seeks bifurcation points. The external cause condition at such a point is called a
critical condition.
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FIGURE 1.4 Classical buckling.

1.2.6 TYPES OF BUCKLING

When the external causes are applied quasistatically and the level at which instabil-
ity occurs is reached, the elastic structure assumes an equilibrium configuration
which is distinctly different from the ones assumed during the quasistatic
application of the causes. When this occurs, we say that the elastic structure has
buckled. Since there are different ways by which the new equilibrium configuration
may be reached, buckling can be classified by the use of proper adjectives.

The type of buckling that was first studied and has been given the most attention is
the so-called classical or bifurcation buckling. This type of buckling is characterized
by the fact that, as the load passes through its critical stage, the structure passes
from its unbuckled equilibrium configuration to an infinitesimally close buckled
equilibrium configuration. As will be demonstrated in later chapters, buckling of
long straight columns loaded axially, buckling of thin plates loaded by inplane loads,
and buckling of rings are classical examples of this kind of buckling (see Fig. 1.4).

Another type of buckling is what Libove (Fliigge, 1962) calls finite-disturbance
buckling. For some structures, the loss of stiffness after buckling is so great that the
buckled equilibrium configuration can only be maintained by returning to an earlier
level of loading. Classical examples of this type are buckling of thin cylindrical shells
under axial compression and buckling of complete, spherical, thin shells under
uniform external pressure (see Fig. 1.5). In Fig. 1.5a, N, denotes the applied axial
load per unit length. In Fig. 1.5b, ¢ denotes the uniform external pressure, Vy the
initial volume of the sphere, and A} the change in the volume during loading. The
reason for the name is that in such structures a finite disturbance during the quasi-
static application of the load can force the structure to pass from an unbuckled equi-
librium configuration to a nonadjacent buckled equilibrium configuration before
the classical buckling load, P,,, is reached. A third type of buckling is known as
snapthrough buckling or oil-canning (Durchschlag). This phenomenon is character-
ized by a visible and sudden jump from one equilibrium configuration to another
equilibrium configuration for which displacements are larger than in the first (non-
adjacent equilibrium states). Classical examples of this type are snapping of a low
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FIGURE 1.5 Finite-disturbance buckling.

pinned arch under lateral loads (see Fig. 1.6) and snapping of clamped shallow
spherical caps under uniform lateral pressure.

The above discussion shows that there is some similarity between finite-
disturbance buckling and snapthrough buckling. It should also be mentioned that,
for many systems, nonlinear theory must be used to either evaluate critical conditions
and/or explain the buckling phenomena.

It will become evident in subsequent chapters that there are two different view-
points as far as types of buckling are concerned and two classifications within each
viewpoint. The first viewpoint is based on the existence of a bifurcation point. For the
examples shown in Figs. 1.4 and 1.5, there is a bifurcation point (4 or A4’). For the
example shown in Fig. 1.6, there is no bifurcation point at A4.

The second viewpoint is based on the expected response of the system under
deadweight loading. For the examples in Fig. 1.4, the branches AC and A'C’
correspond to stable static equilibrium positions, and under deadweight loading
there exists the possibility for the system to pass from one deformation configuration
(the straight for the column) to another deformation configuration (the bent or
buckled) with no appreciable dynamic effects (time-independent response). For the
example shown in Fig. 1.5, since the branch AB is unstable when the system reaches
point 4 (under deadweight loading), it will tend to snap through toward a far stable
equilibrium position with a time-dependent response. This is very much the same
situation for the system of Fig. 1.6. When point A is reached, the system will snap
through toward a far stable equilibrium position.

In a later chapter, a model is considered which exhibits all types of buckling, top-of-
the-knee (Fig. 1.6), stable bifurcation (Fig. 1.4), and unstable bifurcation (Fig. 1.5).
This model is a low half-sine arch simply supported at both ends under quasistatic
application of a half-sine transverse loading resting on an elastic foundation.

In investigating stability problems, one should always consider the effect of load
behavior. In the case of a circular ring loaded uniformly by a radial pressure,
different critical conditions are obtained depending on the behavior of the applied
load. If the load behaves as hydrostatic pressure does (remains normal to the
deflected shape), the critical condition is different from the case for which the load
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FIGURE 1.6 Snapthrough buckling.

remains directed toward the center of the ring at all times (point sink). On the other
hand, the effect of load behavior for certain structures is negligible.

For some systems there are certain constraints on the loading mechanism. This
case can also come under the classifications of load behavior problems. For instance,
suppose that the axial load on a long, straight, elastic bar is applied through a rigid
bar. At buckling, the loading member (rigid bar) may tilt, and then the load behavior
is such that it aggravates the situation. Such problems are known as tilt-buckling
problems, and they will be discussed in later chapters also.

So far, the different types of buckling of conservative systems under quasistatic
application of the external causes have been discussed. We will also discuss buckling
of a limited number of nonconservative systems (such as the “follower-force” prob-
lem) under quasistatic application of the load. Finally, buckling can occur under
dynamic application of the external causes. In general, if the load depends explicitly
on time, the system is nonconservative. A large class of such problems, where the
load varies sinusoidally with time, have been discussed by Bolotin (1964). This type
of dynamic loading is called by Bolotin parametric, and the associated phenomenon
of loss of stability, parametric excitation. Bolotin has shown that all systems which
are subject to loss of stability under quasistatically applied loads are also subject to
loss of stability under parametric loads.

If the dynamic load does not depend explicitly on time, the system can be
conservative (see Ziegler, 1968). Typical examples of such loads are (1) loads sud-
denly applied with constant magnitude and infinite duration and (2) ideal impulsive
loads. When such loads are applied to elastic structures we may ask: “Is buckling
possible under such loads, and if so, what are the critical conditions?”” We may note
that such loads are obvious idealizations of two extreme cases of blast loading: blasts
of low decay rates and large decay times and blasts of large decay rates and short
decay times, respectively (see Chapter 12).

1.3 CONTINUOUS DEFORMABLE ELASTIC BODIES

A continuous body is called deformable if the relative distance between any two
material points changes when the system is experiencing changes in the externally
applied causes. The changes in the deformations and their gradients are related
to the changes in the load intensities and their rates through the constitutive
relations.
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If the loading path, characterized by the constitutive relations, is the same as the
unloading path, the continuous deformable body is called elastic. If, in addition,
these paths are characterized by linear relations in the absence of dynamic effects
(generalized Hooke’s law equations), the continuous deformable body is called
linearly elastic. Furthermore, if the properties (modulus of elasticity, Poisson’s
ratio, etc.) of such a body do not depend on the position of the material point, the
body is termed homogeneous. If these properties at a material point are independent
of direction, the body is called isotropic. If this is not so, the body is called aniso-
tropic. A particular case of anisotropic elastic bodies is orthotropic elastic bodies. An
elastic body is called orthotropic if some or all of the properties of the elastic body
differ in mutually orthogonal directions.

The branch of mechanics that deals with the behavior of elastic bodies is called
theory of elasticity. Since only a relatively small number of problems can be solved
by means of the exact field equations of the theory of elasticity, the structural
engineer is forced to make a number of simplifying assumptions in dealing with
structural problems. These simplifying assumptions depend heavily on the relative
dimensions of the structural element in three-dimensional space. Depending on
these assumptions, all of the structural elements fall in one of the following four
categories:

1. All three dimensions are of the same magnitude (spheres, short or moderate length
cylinders, etc.).

2. One of the dimensions is much larger than the other two, which are of the same
order of magnitude (columns, thin beams, shafts, rings, etc.).

3. One of the dimensions is much smaller than the other two, which are of the same
order of magnitude (thin plates, thin shells).

4. All three dimensions are of different order of magnitude (thin-walled, open-
section beams).

Structural elements of the first category are not subject to instability. All other
elements are. Typical stability problems associated with elements of the second
category will be discussed in subsequent chapters.

1.4 BRIEF HISTORICAL SKETCH

Structural elements that are subject to instability have been used for many cen-
turies. Although their use is ancient, the first theoretical analysis of one such struc-
tural element (long column) was performed only a little over two hundred years ago.
This first theoretical analysis is due to Leonhard Euler. Other men of the 18th and
19th centuries who are associated with theoretical and experimental investigations
of stability problems are Bresse, G.H. Bryan, Considére, Fr. Engesser, W. Fairbairn,
A.G. Greenhill, F. Jasinski, Lagrange, and M. Lévy. An excellent historical review is
given by Hoff (1954) and Timoshenko (1953).

Bryan’s work (1888, 1891) merits special attention because of his mathematical
rigor and the novelty of the problems treated.

Among the existing texts on the subject, in addition to those cited so far, we
should mention the books of Biezeno and Grammel (1956), Bleich (1952), Hoff
(1956), Leipholz (1970), and Timoshenko and Gere (1961).
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Significant contributions to the understanding of the concept of stability are
those of Koiter (1945 and 1963), Pearson (1956), Thompson (1963), and Trefftz
(1933).
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2

MECHANICAL STABILITY
MODELS

Before undertaking the study of stability of elastic structures, the different
methods available for understanding and obtaining critical conditions will be dem-
onstrated through the use of simple mechanical models. The discussion will be
limited to conservative systems. It is also intended to demonstrate the effect of
geometric imperfections and load eccentricity on the response of the system. For a
number of models, both the small-deflection (linear) and large-deflection (nonlinear)
theories will be used for the sake of comparison. Finally, a comprehensive discussion
of the different types of behaviors will be given to enhance understanding of
buckling, critical conditions, and advantages or disadvantages of the approaches
used.

2.1 MODEL A; A ONE-DEGREE-OF-FREEDOM MODEL

Consider a rigid bar of length /, hinged at one end, free at the other, and supported
through a frictionless ring connected to a spring that can move only horizontally (see
Fig. 2.1). The free end is loaded with a force P in the direction of the bar. It is
assumed that the direction of the force remains unchanged. We may now ask: “Will
the rigid bar remain in the upright position under the quasistatically applied load P?”

In trying to answer this question, we must consider all possible deflectional modes
and study the stability of the system equilibrium. One possible deflectional mode allows
rotation 6 about the hinged end. In writing equilibrium conditions for some 6 positions,
we could be interested in small 6 as well as large 6 values.

2.1.1 SMALL-0 ANALYSIS

In the casual small-6 analysis, we make the usual assumption that 6 is so small that

~ sin § ~ tan §. With this restriction, we can only investigate the stability of the
equilibrium configuration corresponding to 6 = 0. This type of investigation is
sufficient to answer the posed question. The three approaches will be used separately.

19
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FIGURE 2.1 Geometry of Model 4.

1. The Classical or Equilibrium Method. The equilibrium equation corresponding
to a deflected position is written under the assumption of small 6’s (see Fig. 2.2). The
expression for the moment about O is given by

£(1 —cosb)

FIGURE 2.2 Small 6 deflected position (Model A).
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M = —Pl0 + (ka)a
Since the bar is hinged at O, then

M =0 or (PL—ka*)g=0 (1)
Thus a nontrivial solution exists if
Pl = kd?
and the bifurcation point is located by
ka? ka?
P= 7 or P(gr = 7

Fig. 2.3 shows a plot of the load parameter p = P¢/ka* versus #. Note that the
bifurcation point is located at p = 1, and the 6 # 0 equilibrium positions are limited
by the assumption of small 6.

2. Kinetic or Dynamic Approach. 1In this approach, we are interested in the character
of the motion for small disturbances about the 6§ = 0 position and at a constant
P value. The equation of motion is given by

I60+M=0

or (2)
1§ — (Pl —ka*)6 =0

where dots above 6 denote differentiation with respect to time, and 7 is the moment of

inertia of the rigid bar about the hinged end O. It is easily seen from the differential
equation that if

X x : Equilibrium positions

l.OX

XXt ——X——X—

x‘¥ Bifurcation point

X

-——
% Small 6 range

x

> 0

FIGURE 2.3 Load-deflection curve (Model 4; small 6 analysis).
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Pl—ka* <0

the motion is oscillatory and the equilibrium is stable. If
Pl—ka* >0

the motion is diverging and the equilibrium is unstable. If
Pl—ka* =0

the motion can still be considered diverging (constant or linear with respect to time)
and the equilibrium is unstable (neutrally stable).
Note that the frequency fis given by

1
1 (ka* — PP\?
%( I ) (3

and at the critical condition f = 0, or

~—

ka?
Pcr =
12

3. Energy Approach. Since the system is conservative, the externally applied force P
can be derived from a potential. Thus (see Fig. 2.2)

U, =P(z0 —z)
and letting zo = 0, then U, = —Pz and
dUu
p=-—2 4
7 (4)
On the other hand, the energy, U;, stored in the system is given by
1
U = 5k(ae)2 (5)
Thus the total potential Uy is given by
Ur=U+ Up
1 6
= —Pz+ 5k(a0)2 ©)
But since z = ¢(1 — cos ), then
1
Ur = —P{(1 — cos0) + Ekazez (7)
For static equilibrium, the total potential must have a stationary value. Thus
dUr
ZT_
de

or
—Plsin6 + ka*0 = 0
and since sin 6 ~ 60, then

(=Pl+ka*)p =0 (8)
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This is the same equilibrium equation we derived previously. Furthermore, if the
second variation is positive definite, the static equilibrium is stable. If the second
variation is negative definite, the static equilibrium is unstable; if it is zero, no
conclusion can be drawn.
It is seen in this case that
d*Ur
de?

Therefore, for P < ka? /¢ the static equilibrium positions (6 = 0) are stable, while for
P > kd? /¢ they are unstable. Thus, as before,

_#
o

= ka* — P! 9)

P

2.1.2 LARGE-® ANALYSIS

In this particular approach, the only limitation on 6 is dictated from geometrical
considerations. Note from Fig. 2.4 that —cos™!a/f < 6 < cos™! a/l. For 6 values
outside this range, the ring will fly off the rigid bar. As before, the three approaches
shall be treated separately.

1. The Classical or Bifurcation Method. Since the ring is frictionless, the force R,
normal to the rigid bar, is related to the spring force through the following expression
(see Fig. 2.4):

k(atan@) = Rcos 6

Then the moment about pin O is given by
ka*sin 6

M = —P/sin@
S+ cos? 6

(10)

¢ sin 6

FIGURE 2.4 Geometry for large 6 analysis (Model 4).
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For static equilibrium we require that M = 0. Thus, the equilibrium positions are
characterized by the equation

2
(CZ:SLW—M) sinf = 0 (11)
which implies that either
0=0 (12a)
or
P
k—al; = sec’ d (12b)

It is clearly seen that a nontrivial solution (6 # 0) can exist for P¢/ka* > 1 and a
bifurcation point exists at P¢/ka* = 1 (see Fig. 2.5).
The answer to the original question is yes, and P, = ka?//.

2. Kinetic or Dynamic Approach. In this approach, as before, we are interested in
the character of the motion for small disturbances about the static equilibrium
positions, keeping P constant. The equation of motion is given by

I6+M =0
But
ka?sin 0

M= —Plsing + ———
SIn g+ cos3 6

(13)

% : Stable equilibrium points
O : Unstable equilibrium points

Bifurcation point
M 4
N /x/x :
I \x /x I
| 1.0
|
|
!
|
|
|
|

O prmmme XXX ==X

FIGURE 2.5 Load-deflection curve (Model 4; large 6 analysis).
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If we denote the equilibrium positions by 6y and the disturbed positions by
0 = (6p + ¢), the Taylor-series expansion for the moment is given by

M o (d2M>
M(6 — M(6 =) +E (2 14
( 0 + (p) ( O) + (P(de )000 21 d02 0:00+ ( )

At the static equilibrium positions, M (6y) = 0. Through differentiation, we may write

M ka? sin Oy
- - (- __p : 2 1
(dB )ao (cos3 B E) cos By + sin 6y (Ska codd 00) (15)

The equilibrium positions (see Fig. 2.4) are denoted by Eqgs. (12). Thus, the
equation of motion under the assumption of small disturbances for the equilibrium
positions corresponding to 6y # 0 is given by

-2
. sin” 6
I<p+3kazcos400go:0 (16a)

and since

SiIl2 0()
cos* 6,

3ka® >0
these equilibrium positions are stable. Note that 6y # 0.
The equation of motion for the positions corresponding to 6y = 0 is given by

16+ (ka* — PO =0 (16b)

If P¢ < ka®, the equilibrium is stable, while if P¢ > ka?, the equilibrium is un-
stable.

The equation of motion for the particular position corresponding to 6y = 0 and
Pl = ka? is given below. We obtain this equation by taking more terms in the series
expansion for M, Eq. (14).

I+ %ka2g03 =0 (16c¢)

A study of this differential equation (see the following Section, Parenthesis) indicates
that the motion is stable. Although the equilibrium position 6y = 0, P¢ = ka’® is
stable, the answer to the original question is that the bar will not remain in the
upright position, and the critical value of the load is given by

ka?
Per -
/

Parenthesis. If the equation of motion of a nonlinear system is given by
X4k =0 (17)

where the dots above x denote differentiation with respect to time, k> is a positive
number, and 7 is a positive integer, then the system is conservative and the position
x = 0 is stable (see Krasovskii, 1963; LaSalle, 1961; Malkin, 1958; and Stoker, 1950).
What this implies physically is that, depending on the initial conditions, the total
energy of the system is constant (sum of kinetic and potential energies is constant,
thus the system is conservative), and the system performs nonlinear oscillations
about the null position x = 0 within a bounded region enclosing the position x = 0.
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The following computations will further clarify the above statements. Since

L_dx _dx dx _ dx
YT U T dx dr Vdx

then Eq. (17) may now be written as

dx

_ _k2x2n+1

or
xdx = —k*xX*"*Vdx

If the initial conditions are denoted by x¢ and xy, then integration of this last
equation yields
[xz _ xz] _ Kk [x2<n+l) _ 2+

W24 1) L

1

2
This equation expresses the law of conservation of energy. The left side denotes
the change in kinetic energy, and the right side denotes the change in potential energy.
With reference to Eq. (16), x and x denote the size of the response to initial disturbances
X0 and/or xo. If we let the disturbance be x¢ only (xo = 0), then

.2 K {xéwl) _ 2
(n+1)
which implies that the response is bounded.

3. Energy Approach. The total potential of the system is given by

1
Ur=-P/((1 —cos0)+§ka2tan20 (18)
The static equilibrium positions are characterized by the equation
dUr
KT
de

or

ka? .
<—P€ + e 0) sinf =0

Furthermore, the second variation is given by
d*Ur [ ka® ,sin® 0
cos* 0

(19)

cos? 0

FrEa — Pﬁ) cos 6 + 3ka

It is easily concluded that the static equilibrium positions characterized by 6 # 0
are stable. Similarly, the positions § = 0 for P¢ > ka® are unstable. It can also be
concluded, by considering higher variations, that the position denoted by 8, = 0 and
Pl = ka? is stable (see Chapter 1). The answer to the original question, though, still
remains the same and
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2.2 MODEL B; A ONE-DEGREE-OF-FREEDOM MODEL

Consider two rigid links pinned together and supported by hinges on rollers at the
free ends (Fig. 2.6a). The system is supported at the middle hinge by a vertical linear
spring and is acted upon by two collinear horizontal forces of equal intensity. The
two links are initially horizontal. Can the system buckle? What is the critical load? To
answer these questions, we may use small-deflection theory. The classical method and
the energy method shall be used in this case.

1. The Classical or Bifurcation Method. Using casual small-deflection theory, we
put the system into a deflected position (Fig. 2.6b) and write the equilibrium
equations.

Since the system is symmetric, the vertical reactions at the hinges are k6/2.
Furthermore, the moment about the middle hinge must vanish. This requirement

leads to the equilibrium equation
k¢t

Thus, the equilibrium positions are defined by either § = 0 (trivial solution) or
P =kt/2. In plotting 2P/k{¢ versus 8, we notice that a bifurcation point exists at
2P/kt =1 (Fig. 2.6¢) and

Py =— (21)

2. Energy Method. The total potential is the sum of the energy stored in the spring
and the potential of the external forces. Thus

Urzk—‘sz—zp(f—\/zz—sz)

2
For static equilibrium dUr/dé = 0 and
26
(e - o)
which, under the assumption of 6% < ¢2, is identical to Eq. (20).

For the static equilibrium positions to be stable, the second variation must be
positive definite, or

ks —2P- =0 (22)

| —

2 2
dUT:k— 2P n 2P5 3zk—g (23)
3

ds* (gz _ 52)% (62 _ 82) /

Thus the equilibrium positions denoted by 6 = 0 and P < k¢/2 are stable, and the
critical load is given by Eq. (21).

2.3 MODEL C; A TWO-DEGREE-OF-FREEDOM MODEL
Consider the system shown in Fig. 2.7a, composed of three rigid bars of equal

length hinged together as shown. The linear springs are of equal intensity. This is a
two-degree-of-freedom system and it is acted upon by a horizontal force, P, applied
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FIGURE 2.6 Model B.
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FIGURE 2.7 Model C.

quasistatically. We must determine whether or not the system will buckle and the
critical value of the applied load. The load is assumed to remain horizontal.

1. The Classical or Bifurcation Method. 1In solving this problem, we will first use the
classical method under the assumption of small deflections.
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Denoting by 6 and ¢ the rotations about the support pins (see Fig. 2.7b) and by R;
and R, the vertical reactions at the pins, we may write the following equilibrium
equations for the deflected system:

3(R,= 2k00 + kl*¢
30R,= k0?0 + 2k ¢
R\(= Pl
Ryl= Plyp

(24)

Elimination of R; and R; yields the following system of linear homogeneous alge-

braic equations:
2kl Kkl
(P——3 )0——3 =0

kto 2kt
Z(P-Z")e=0
()

(25)

The critical condition is derived if we require the existence of a nontrivial solution.
This leads to the characteristic equation

from which

P=1{3 (26)

Thus, there are two solutions (eigenvalues) corresponding to two modes of deform-
ation (Fig. 2.7¢):

P:%ﬁ and ¢ = —6
P=kland o =6

This shows that the smallest load corresponds to the antisymmetric mode.

2. The Energy Method. In Fig. 2.7b, the total potential for the system, which

consists of the energy stored in the springs and the potential of the external forces,
is given by

Ur =U;+ U, = %kﬁez

| 27)

+ Ekfzgoz — Pl[(1 —cosB) + (1 —cosg) + 1 —cos(¢ — 6)]

By assuming that the angles ¢ and 6 can be made as small as desired, we may rewrite
Eq. (27) as

1 1
Ur = 5kezoz + Ekﬁzqoz — PU(0* + ¢* — ¢b) (28)

For static equilibrium, the total potential must be stationary; therefore
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oUr 0Ur

00  d¢ (29)
which leads to the following equilibrium equations:
(kt* —2P0)6 + Plo =0 } (30)
P9 + (k(* —2P0)o =0

The nontrivial solution is the same as the one obtained by the classical approach.

kt
P= 3 P=Fkt (31)
Study of the stability of the equilibrium positions characterized by 6 = ¢ = 0 for
the entire range of values of P requires knowledge of the second variations

2
aanzT = k0> —2P¢ (32)
G — K 2P (33)
PUr
2990 = ¢ (34)

The equilibrium positions are stable if and only if (see Chapter 1) both of the
following inequalities are satisfied.

2
U
78802 >0
2 (35)
0*Ur . 0*Ur S 0*Ur
00>  O¢? 000¢
In terms of the applied load and the structural geometry, these inequalities are
k¢ > 2P
4 36
(kﬁ—P)(%—P)>O (36)

From these expressions, we see that equilibrium positions for which P < k¢/3 are
stable, while all equilibrium positions for which P > k¢/3 are unstable. Therefore

kt
Pcr:
3

2.4 MODEL D; A SNAPTHROUGH MODEL

In the analysis of this model, we will demonstrate the type of buckling known as
snapthrough or oil-canning.

Consider two rigid bars of length ¢ pinned together, with one end of the system
pinned to an immovable support, and the other pinned to a linear horizontal spring
(see Fig. 2.8a). The rigid bars make an angle o with the horizontal when the spring is
unstretched and the system is loaded laterally through a force P applied quasistatically
at the connection of the two rigid bars. As the load is increased quasistatically from
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zero, the spring will be compressed and the two bars will make an angle 6 with the
horizontal (# < «). The question then arises whether it is possible for the system to
snap through toward the other side at some value of the applied load. In seeking the
answer to this question, we will first use the equilibrium approach and then analyze the
system by considering the character of the equilibrium positions. The latter will be
accomplished through the energy approach.

1. The Equilibrium Approach. Let the horizontal reaction of the spring be F. This
force is equal to k times the compression in the spring (Fig. 2.8b), or

F = 2kf(cosf — cosa) (37)

Furthermore, from symmetry the vertical reactions at the ends are P/2. Since no
moment can be transferred through the middle joint, the equilibrium states are
characterized by the following equation

[~ |
‘lk
- 2€cosx >

- 2£cosh >

(a) Geometry

P

F=2ké(cosb — cosa)

L8
p

ol ™

(b) Deflected equilibrium position

FIGURE 2.8 Model D.
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P!
> cosf = Flsin6 (38)
Use of Eq. (37) yields

] =sin6f — cosatanb (39)

Note that —7/2 < 6 < @ < 7/2.

The equilibrium states, Eq. (39), are plotted in Fig. 2.9b. Note that loading starts
at point A4 and it is increased quasistatically. When point B is reached, we see that
with no appreciable change in the load the system will tend to snap through toward
the CD portion of the curve. The load corresponding to position B is a critical one,
and its magnitude may be obtained from the fact that

dpP

5=0 (40)

Note that the right side of Eq. (39) is a continuous function of # with continuous first
derivatives.
If we denote by 05 the angles corresponding to positions B and B, then

6p = +cos! (cosa)% (41)

and

= |sinfp — cos a tanfp| (42)
cr

4kt

2. Energy Approach. The total potential, Uy, for the system, which is equal to
the potential of the external force and the energy stored in the spring, is given by

Ur = 2kt*(cos 6 — cos a)*—Pl(sin a — sin 6) (43)

Static equilibrium positions are characterized by the vanishing of the first vari-
ation of the total potential, or

dUr

0 = 4kl*(cos § — cosa)(—sin @) + PLcosd = 0

This leads to the equilibrium equation

T sinf — cosa tan 6 (39)
The character of the equilibrium positions is governed by the second variation, or
prE 4t (cos 0 — cos ar)(—cos @) + 4k¢-sin” 6 — Plsin 0 (44)

Making use of the equilibrium condition, Eq. (39), we may write

d*Ur , [COSa 5
T 4kl (—cos i cos 0) (45)
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Thus in the region

—cos ™! (cos a)%< 6 < +cos! (cos a)%

the second derivative is negative, and the equilibrium positions are unstable. Outside
this region, the second derivative is positive, and the equilibrium positions are stable.
Thus, P., is given by Eq. (42). Note that points between B and B’ represent “hills” on
the total potential curve, while points outside this region represent “valleys” (see
Fig. 2.9a).

A critical condition is reached when the load is such that the near equilibrium
point coincides with the unstable point.

Note from Fig. 2.9 that the stationary (dUr/d6 = 0) points on the total potential
curve corresponding to different values of the applied load make up the load-
deflection curve (equilibrium states).

2.5 MODELS OF IMPERFECT GEOMETRIES

In many cases it is possible to predict critical conditions for a system of perfect
geometry by studying the behavior of the system under the same load conditions but
with slight geometric imperfections.

Consider, for instance, model B with a small imperfection 6 (Fig. 2.10a) when the
spring is unstretched. The problem is to find the behavior of the imperfect system
under the quasistatic application of the horizontal forces. Once this behavior has
been established, the question arises whether or not we can predict the critical
condition for the system of perfect geometry.

From the conditions of symmetry, the vertical reactions at the end pins are equal
to % k8. The equilibrium condition is obtained if we require the moment about the
middle hinge to vanish.

ko

P(8 +80) = —1/£2 — (5 + 80)°
y (46)
kot
)
This equation can be written in the form
k¢ k¢
(P - 7) (8 +80) = — 750 (47)

If we divide both sides by (k¢/2)8y, the equilibrium equation becomes

(%-1) (1+8§0) =1 (48)

This represents a hyperbola in the coordinate system of (2P/k¢ — 1) and (1 +6/8¢)
(see Fig. 2.10b). When a translation of axes is used, it appears that the load-deflection
curve, in the coordinate system of 2P/k¢ and 8/8,, approaches the line 2P/kl = 1
asymptotically. Furthermore, when 2P/k¢ is plotted versus 6, the single curve of
Fig. 2.10b becomes a family of curves dependent on the value of the imperfection
89. (see Fig. 2.10c). We see from this last illustration that as o — 0, the behavior of
the system is such that é remains zero until 2P/k¢ becomes equal to unity. Thus, for
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FIGURE 2.9 Critical conditions for Model D.
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80 =0, P, = k¢/2. This conclusion is the same as that reached when the system of
perfect geometry was analyzed.

As a second example, consider the imperfect model shown in Fig. 2.11. Note
that as the load eccentricity approaches zero, we have the corresponding perfect
geometry model given in Problem 1 at the end of this chapter. For this particular
problem, we want to find the effect of the eccentricity, e, on the critical load, P,.
Once this effect is established, we can predict P, for the perfect configuration by
letting the eccentricity approach zero. We will use the energy approach to solve the
problem.

The total potential is given by

1 . .
Ur zikazstO—P£<1 —cosfH—%smO) (49)
For equilibrium
oU . .
a—HTzozka2 schosH—Pé(smO—F%cos@) (50)
From this equation we obtain the load-deflection curve for a given load eccentricity e:
Pl sin 0

P~k " tang + (e/?) (51)
Note that if e is replaced by —e and 6 by —6, we have the same load-deflection
relation.

If we restrict the range of 6 values to 0 < 6 < 7/2, we may study the second
variation.

2 Q*Ur

W.W:cosw—p<cose—fsin0> (52)

14

kb

(a) Geometry

FIGURE 2.10 Model B with initial imperfection.
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FIGURE 2.10 Contd

If we eliminate p, through Eq. (51), and use some well-known trigonometric iden-
tities, we finally obtain

2 &Ur cos? @ 3. €
= - —tan3@ + -
ka> 96>  tan6 + (¢/C) ( o+ e)
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P =B, b ka?

¢
— 3
é,>(10

FIGURE 2.1 1 Effect of imperfection on the critical load.

Clearly, if tan® 6 < e//, the equilibrium positions are stable, and if tan? 6 > ¢//, the

equilibrium positions are unstable. When tan®* 60 = ¢/¢, p = p,,, substitution of this
expression for 6 into Eq. (51) yields

Per = [1 + (%ﬂ - (53)

A plot of p,, versus e// is shown in Fig. 2-11.

Slus

A (qualitative) plot of p versus 6 for this model is given in Fig. 2.12b (imperfect
geometry), and this model exhibits snapthrough buckling.

Finally, if we let the eccentricity approach zero, P, = 1 and

ka?
Po="7
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2.6 DISCUSSION OF THE METHODS

After having considered these few mechanical models, certain observations must
be discussed in order to enhance the understanding of the question of critical loads as
well as the question of stability of elastic systems in general. In particular, attention is
given to the relationship between the classical approach and the energy approach,
which is completely equivalent to the dynamic approach for conservative systems (a
proof of this is found in Whittaker 1944), and to the need for using large-deflection
theories in certain problems.

We first noticed that, whenever the model exhibited a bifurcation point (Models 4
and B), regardless of the approach used, the same result is obtained. On the other
hand, when there is no bifurcation point (Model D), the classical approach could
only lead us to a load-deflection curve, and the criticality of the load at point B (see
Fig. 2.9b) was explained as follows: If one wishes to increase the load any further, the
system will visibly snap through toward a far equilibrium position. This argument, of
course, implies deadweight-type of loading (prescription of the load rather than
deflection), and it seems rather arbitrary. When the energy approach is used, it is
very clear that the equilibrium positions between B and B’ (Fig. 2.9b) are unstable,
and therefore the load at B is critical because the slightest possible disturbance at this
equilibrium position will make the system snap toward a far equilibrium position. In
the absence of damping and assuming that the spring remains elastic, if the load at B
is maintained, the system will simply oscillate (nonlinearly) between 6z and some
angle past —a (see Fig. 2.9a).

The second observation deals with the question of using large-deflection theories
for predicting instability of perfect geometries (Model A4). It is clear that, when
dealing with systems characterized by model D, large-deflection theory cannot be
avoided. Therefore this question is directed to systems that exhibit bifurcational
buckling (adjacent equilibrium position). From the examples considered, we may
suspect that small-deflection theory suffices to predict critical loads. Since the analy-
sis (models 4, B and C) is based on the assumption that there are no imperfections in
the geometry of the system, large-deflection theories are needed because they clearly
indicate through the load-deflection curves (equilibrium positions) whether geomet-
rical imperfections are likely to have a significant effect on the buckling of the real
structure. Consider, for example, model A4 (Fig. 2.5). Small geometric imperfections
have little effect on this system. This can be verified by the introduction of a small
imperfection 6y and the use of a large-0 analysis on the imperfect system. The result is
qualitatively shown in Fig. 2.12a. However, it can be demonstrated that small
geometric imperfections can cause a dramatic reduction in the buckling load when
the load-deflection curve is characterized by either Fig. 2.12b or Fig. 2.12c. Note that
in all three cases (Fig. 2.12) the small-deflection theory can only predict the bifurca-
tion load.

The stability of structures immediately after buckling (bifurcation) was first in-
vestigated systematically by Koiter (1967), and alternative formulations of the
general theory have subsequently been given by Sewell (1966) and by Thompson
(1963 and 1964). Pope (1968) and Thompson (1964) show that the derivative dp/d6
at the bifurcation can be calculated exactly, for complicated elastic systems, by a
finite-deformation analysis of the Rayleigh-Ritz type. Some remarks on Koiter’s
theory are presented in Chapter 5.
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FIGURE 2.12 Possible load-deflection curves for bifurcation buckling.
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PROBLEMS

1. Analyze the system shown using large-deflection theory. Give the load-deflection
curve and the critical load.

(a) Use the classical approach.
(b) Use the kinetic approach.
(c) Use the energy approach.

2. A uniform disc can rotate freely about O, except that it is restrained by a
rotational spring giving a restoring couple af for angular displacement 6. A
weight W is attached at radius a and vertically above O.

(a) Show that a stable tilted position, 6y, of equilibrium is possible when W > «/a.

[~y

k

W\NF

FIGURE P2.1

Q

(b) Show that when W > a/a, the frequency of small oscillations about the
position of stable equilibrium is

L la — Wacos 6
2 1

where I is the moment of inertia (including Wa?/g).
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FIGURE P2.2

(c) Show that when W = a/a, the differential equation for small oscillations is

a’o 1

I—5+ 60‘03 =0

. In the mechanism shown, a light stiff rod is pinned at O. There is no friction. P

remains vertical if the bar tilts.

(a) By using any method, find the P-6 relation for equilibrium positions, and plot
the curve.

(b) Discuss the stability or instability of all the equilibrium positions in the entire
practical range of 6 values.

. In the coplanar system shown, the initially vertical rod is rigid. The block to which

the spring is attached slides in the inclined guide and is controlled so that the

spring is always horizontal. All parts have negligible mass except the weight .

(a) Show that tilted equilibrium positions are characterized by

ka? 0

W= 7 (1 tanBtanz) cos 6

(b) Sketch the curve for the two cases tan 8 small (e.g., 1/20 ) and tan 3 large (e.g.,
10). What conclusions can you draw as to the stability of the tilted position?
Give reasons.

(c) Show that the vertical position is stable with respect to sufficiently small
disturbances so long as W/ < ka?, and find a formula for the frequency of
small oscillations.
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(d) Show that when W ¢ = ka?, the beginning of the motion from 6 = 0 follow-
ing a slight disturbance will be governed by the equation

wee . 1
— 6§ —=ka*tanB - 0> =0
g 2

5. Analyze model C by assuming that the lengths of the rigid bars are unequal. Let
these lengths be ¢, ¢,, and /5 starting from the left. Let the spring constants be k&
for both.

(a) Use the classical approach.
(b) Use the energy approach.

6. Consider the rigid bar shown with an initial rotation 6, and initial stretch ¢ of the
spring. Use small-deflection theory, and through a complete analysis of the
behavior of the imperfect system, predict critical conditions for the perfect
system (6yp = ¢ = 0). c¢ is the initial stretch of the spring.

7. Repeat Problem 6 assuming that the initial stretch, ¢, is zero.

P

N\

FIGURE P2.6 AND 7

8. Two rigid bars are connected by rotational springs to each other and to the
support at C. Find P, assuming that the load remains vertical.

9. Find the critical condition for model D through the kinetic approach.
Hint: Consider the left leg as a free body and study its motion about the
immovable support.

10. Consider the model shown loaded by a vertical force, P, applied quasistatically.

Establish critical conditions for the system (for C = 0).
(a) Use the equilibrium approach.
(b) Use the energy approach.
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)~

N

FIGURE P2.8

P

Undeflected
position

FIGURE P2.10, 11, AND 12

11. Repeat Problem 10 assuming C is constant.

12. Repeat Problem 10 assuming C = 4 + Bsin 6 + Dsin® § (nonlinear spring). Note
that the numerical work involved is complicated and a computer program is
needed as well as knowledge of the values of the different parameters.
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3

ELASTIC BUCKLING OF
COLUMNS

In this chapter, the problem of elastic buckling of bars will be studied using the
approach discussed in Chapter 1 and demonstrated in Chapter 2. To accomplish this,
we will derive the equations governing equilibrium for structural elements of class 2
in Chapter 1 (Section 1.3) along with the proper boundary conditions. This deriv-
ation is based on the Euler-Bernoulli assumptions, listed below, and principle of the
stationary value of the total potential (Appendix).

In analyzing slender rods and beams, we make the following basic engineering
assumptions:

The material of the element is homogeneous and isotropic.

Plane sections remain plane after bending.

The stress-strain curve is identical in tension and compression.

No local type of instability will occur.

The effect of transverse shear is negligible.

No appreciable initial curvature exists.

The loads and the bending moments act in a plane passing through a principal
axis of inertia of the cross section.

Hooke’s law holds.

The deflections are small as compared to the cross-sectional dimensions.

Nk

o

In addition, the loads are assumed to be coplanar, applied quasistatically, and are
either axial or transverse. The transverse loads include distributed loads, ¢(x),
concentrated loads, P;, and concentrated couples, C;. Finally, the ends of the struc-
tures are supported in such a way that primary degrees of freedom (translation and
rotation as a rigid body) are constrained. Before proceeding with the derivation of
the equilibrium equations and boundary conditions, it is desirable to define and
discuss the properties of some special functions.

47
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3.1 SPECIAL FUNCTIONS
The following special functions and their properties will be used in the develop-
ment of the theory of slender rods and beams. See Fig. 3.1 for their graphical

representation.

1. Macauley’s Bracket

0 for x < x;
[xx,-]{ or Y= (1)
x—x; for x> x;
[x—x,] I(x—x))
A A
1 i A
!
1 I
i
— L Y > X
Xl. XI.
(a) Macauley’s bracket (b) Unit step function
8(x —x;)
A
|
! 1
‘ 2e
oy .
Xi
L \le
(¢) Dirac-6-function
n(x —x;)
K
€2 r

(d) The doublet function

FIGURE 3.1 Special functions.
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2. Unit Step Function

_JO for x<x;
I(x—x,-)—{l for x = x; (2)
Note that
[x—x)]=(x—x)I(x—x;)

and similarly
[x — xi)*= (x — x,)*I(x — x;)
3. Dirac 8-Function (Carslaw, 1947). The Dirac é-function in all applications is

considered as a result of a limiting process which involves a function §(x, &) subject
to the following conditions:

8(x,e) =0for —co=x=o00 and 0<e< o0

/ 8(x,e)dx=1 for 0<e<oo

oo

An example of such a function is the following:

0 fx<xi—e

1 .
S(x—x;) = 3¢ fxi—es<x=<xj+e (3)
0 ifX>Xj+8

Note that

.[xfuwu—xmuzfug

4. The Doublet Function. Let this function be denoted by n(x — x;). This is a special
function such that

dd(x — x;
% ~n(x—x1)
Another property of this function (see Shames 1964 for detailed discussion) is that
+o00 df

Sl = vy = =5 (x)

A particular function that has the foregoing properties is defined as

0 X < X;
é Xi<x<xj+e
n(x —x;) = 0 x=x+e 4)
76% Xi+e<x<Xxi+2e

0 x> x; +2e

3.2 BEAM THEORY

The equilibrium equations and proper boundary conditions for an initially
straight beam under transverse and axial loads (beam-column) are derived using
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the principle of the stationary value of the total potential. (See Part IT of Hoff 1956
and Appendix A.)

Consider the beam of length L, shown in Fig. 3.2, under the action of a distributed
local g(x), n concentrated forces, P;, m concentrated couples, C;, and boundary
forces and couples as shown. If # and w denote the displacement components of
the reference surface (actually, here we deal with a two-dimensional problem, and the
reference plane is the locus of the centroids), the extensional strain of any material
point, z units from the reference surface, is given by

Exx = agx 4 zk oy (5)

where &” is the extensional strain on the reference plane (average strain) and k., is
the change in curvature of the reference plane.
The first-order nonlinear strain-displacement relation is given by
0 L
& =u,+ Wi (6)
where the comma denotes differentiation with respect to coordinate x, u, and w are
displacement components of the reference plane.

The curvature for the reference plane is approximated by

kxx = —W,xx (7)
zZ,w,q(x)
A
L i £,
A 1\ A
y
A
R § A
M it e
o _]_ ]7
F*é ;.» —_— X, U
- M
I JPY FroR— L—c], --------- abc A M,
*ﬁ L o RL
R
o (a) Loads and sign convention
z z

7777
7

NN
D

--—»yA

2722

y and z: Principal centroidal axes
NA: Neutral axis
(b) Section A-A

FIGURE 3.2 Beam geometry and sign convention.
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In addition, the mathematical expression of Hooke’s law is
o = Eey (8)

If U; and U, denote the strain energy and potential of external forces, respectively,
and Ury, the total potential of the system, then

Ui+ U,=Ur
Use of the principle of the stationary value of the total potential leads to
0,Ur =6,U;+6,U,=0 9)

where & denotes variations with respect to strains and displacements.
Since the variation of the strain energy (see Part II of Hoff, 1956) is given by

6, U; = / T 08 dV
(10)
/ / 3 o+ zhx (Ssgx + Z(Skxx)dA dx

and since &%, k,y, and their variations are only functions of x (note that x is a
centroidal axis), then
/ zdA =0
A

and
L
5.U; = / (P8&’, + Elk Sk )dx
0
where
P = Es / dA = EAa
and

I= / 22dA
A

Next, replacing the change in curvature and the variations in strain and change in
curvature by the displacement components and their variations, we obtain

L
5. U = / [P(Su,x + w0w,y) + EDW 8w iy | dx (11)
0

Note that

S, <% wi{) = % [(w’x + Sw,x)sz’zx} = % {ZW,XSW’X + (Sw,x)z}

and neglecting higher-order terms (assuming small changes),

1
S, (2 fo) =W OW

Integration by parts of Eq. (11) yields



52 ELASTIC BUCKLING OF COLUMNS
L L L L
6. U; :Pﬁu‘o + Pw,xﬁw‘o + Elw 6w 0 (Elw,xx),xﬁw‘

L (12)
+/ [—P,xéu — (Pw,x) Ow + (Elexx) WSW] dx
0 27 Eiud
Similarly, the variation in the potential of the external forces is given by
L n m
8.U, = —/ qéw dx — Z P:dw(x;) — Z Cidw«(x;)
0 i=1 j=1 (13)

— Pu(L) + Pu(0) + Modw (0) — M 8w (L) + Rodw(0) — R 8w(L)

If we introduce the special functions 6(x — x;) and n(x — x;), the expression for
the variation of the potential of the external forces becomes

L n m
SsUp:—/ C]+2Pi5(x—xj)—ZCm(x—xj)]Sw dx
0 =1 j=1

(14)
— (Ps ‘L — (sw,)| - (RSW)‘L
(Pu)| = (Mow,)| .
Substitution of Egs. (12) and (14) into Eq. (9) finally yields
L n
8, Ur = / —P Su+ {(Elw,xx) W (Pw) —g—> Pd(x—x)
0 9 X ER 3
+Y Cm(x—x;) }8W dx+ (P — ?)Su‘:
=1
L L
[P = (EDv) ~RJow| -+ [Ev o~ M]ow,| =0 (15)

Theidentical satisfaction of Eq. (15) (since Suand w are arbitrary displacement func-
tions) leads to the governing differential equations and the proper boundary conditions.
The differential equations are

P.=0
(EIW,xx),XX—PW,xx =q+ i Pio(x —x;) — i Cjn(x — xj) (16)
=1 j=1
The proper boundary conditions are given by
Either Or

P="P ou=0=>u=1u

?w,x — (Elvv,xx)’x: R ow=0=w=0

Elw =M wy=0=w,=0

It is clearly shown above that, at the boundaries (x = 0, L), we may prescribe
either the forces and moments or the displacements and rotations, but not both.

Examples:
A free edge with no moment or shear force applied is characterized by

Pw— (Elw) =0, Elw,, =0, and P=P or u=u (17a)
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A simply supported edge is characterized by
w=0, Elw,,=0, and P=P or u=1u (17b)
Finally, a clamped edge is characterized by
w=0, wy=0, and P=P or u=1u (17¢)

Note that the first of Eqgs. (16) implies that P = constant, and from the boundary
condition, this constant is equal to P. In the case where the end shortening is
prescribed (u), there is a P = constant corresponding to each value of .

3.3 BUCKLING OF COLUMNS

When a bar is initially straight and of perfect geometry and it is subjected to the
action of a compressive force without eccentricity, then it is called an ideal column.
When the load is applied quasistatically, the column is simply compressed but
remains straight. We then need to know if the column will remain straight no matter
what the level of the applied force is. To determine this, we seek nontrivial solutions
(w # 0) for the equations governing the bending (see Eqs. 16 with ¢ = 0, P, = 0, and
C; = 0) of this column under an axial compressive load (—P) and subject to the
particular set of boundary conditions. Note that in deriving the governing differential
equations, it was assumed that the applied compressive load remained parallel to its
original direction and there was no eccentricity in either the geometry or the applied
load. Thus, the problem has been reduced to an eigen-boundary-value problem.

3.3.1 SOLUTION

In this case the solution of the problem will be discussed for a number of boundary
conditions. It will be shown that the manner in which the column is supported at the
two ends affects the critical load considerably. This approach to the problem is
known as the classical, equilibrium, or bifurcation approach. In addition, the other
approaches (dynamic and energy) will be demonstrated.

1. Simply Supported Ideal Column. The mathematical formulation of this problem is
given below.

D.E.  (Elw.) A+PWw =0 (18a)

B.C.’s W(O) — W(L) -0
W;-\'»\'(O) = W,xx(L) == O (181’))

Assuming that the bending stiffness (E7) of the column is constant and introducing
the parameter k> = P/EI allows us to write the governing differential equation in the
following form

W xxxx T kZW,xx =0 (180)

The general solution of this equation is given by

w = A;sinkx + A coskx + Azx + Ag (19)
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This solution must satisfy the prescribed boundary conditions. This requirement
leads to four linear homogencous algebraic equations in the four constants A4;.
A nontrivial solution then exists if all four constants are not identically equal to zero.
This can happen only if the determinant of the coefficients of the A;’s vanishes or

0 1 0 1
sinkL coskL L 1

0 —k? 0o o/ =° (20)
—k%sinkL —k*coskL 0 0

The expansion of this determinant leads to
sinkL =0
The solution of this equation is

kL=nm n=1,2,...

or
?:M#H
12
and the smallest of these corresponds to n = 1. Thus
2
T EI
Po ="

This is known as the Euler equation because the problem was first solved by
Leonhard Euler (see Timoshenko, 1953).

Note that if 4 denotes the cross-sectional area of the column and p is the radius of
gyration of the cross-sectional area, the critical stress is given by

mEl - w2 p’E B mE

o = - - 21
COTAR TR (1 2
and the corresponding strain is
_ (7P’
gﬂ_(L) (21b)

The displacement function corresponding to n = 1 is w = A; sin7x/L.

2. Clamped Ideal Column. For this particular problem, the mathematical formula-
tion is given below
D.E. Wexxx + kzw,xx =0
B.C’s w(0) =w(L)=0 (22)
w.(0) =w. (L)=0

The solution is given by Eq. (19) and it must satisfy the prescribed boundary
conditions. The characteristic equation for this case is given by

0 1 0 1

sinkL coskL L 1
k 0 1 0| 0 (23)

kcoskL —ksinkL 1 0
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Expansion of this determinant yields the following equation
2(coskL — 1) + kLsinkL =0 (24)

Since
coskL — 1 = —2sin’ ]%L

and

kL kL
kL = 2sin— cos—
sin sin 5 C0s

then Eq. (24) becomes
. kL (kL kL inkL _0
sin—-{ - 08— —sin—- | =
Then either

kL
KL
sin—

or

kL KL _ . KL
ZCOSZ_S )

The first of these solutions leads to

_  4n*mPEI
PR 0.
L2

from which
(25a)

and

47 E

(L/p)’ (25b)
P

)

The second of the solutions leads to P, > 4m2EIl /Lz. The displacement function

corresponding to n =1 is
27X
w= A (cosT — 1)

3. Ideal Column with One End Clamped and the Other Free. For this case the
boundary conditions are (assuming that the fixed end is at x = 0)

T =

w(0) = w_(0)
Woex (L)
k2w (L) +w_xx(L)

0
0 (26)
0
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The solution is still given by Eq. (19) and the characteristic equation is

0 1 0 1
k 0 1 0
_K2sinkL —K2coskL 0 0] ° 27)
0 0 K 0
which expanded results in the following equation
K’ coskL =0
or (28)
coskL =0
This equation leads to the following result
— (2m—1\*7*EI
P= — =1,2,...
) 2
and
m EI
P(fr - F
mE
O-CI‘ = 72 (29)
4(L/p)
1 ymp\2
e =3(7)

The displacement function for this case is given by

mX
w= A2<cosi — l)

3.3.2 REDUCTION OF THE ORDER OF THE DIFFERENTIAL EQUATION

If the moment and shear are prescribed at x = 0, then it is possible to reduce the
order of the governing differential equation from four to two.

Starting with Eq. (18a) under the assumption of constant flexural stiffness, two
consecutive integrations yield the following equations

EIw ycx + Pw = By
and
Elw . + Pw=Bx+ B,

If, in addition, the normal displacement w is measured from the left end, then
w(0) = 0.
Then the constants By and B, can be evaluated from the known moment and shear
and (see Fig. 3.2; R; opposite to positive w).
B = —Ry
B, = +M,

Thus the governing differential equation reduces to
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EIW,xx + Pw = —Rox + Ho (30)

Note that, for the case of simply supported ideal columns, Ry = My = 0 and the
equation becomes

EIw .+ Pw=0 (31)

3.3.3 EFFECTIVE SLENDERNESS RATIO

We have seen from the previous section