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Preface

Knowledge of structural stability theory is of paramount importance to the prac-

ticing structural engineer. In many instances, buckling is the primary consideration

in the design of various structural configurations. Because of this, formal courses in

this important branch of mechanics are available to students in Aerospace Engin-

eering, Civil Engineering, Engineering Science and Mechanics, and Mechanical

Engineering at many institutions of higher learning. This book is intended to serve

as a text in such courses. The emphasis of the book is on the fundamental concepts

and on the methodology developed through the years to solve structural stability

problems.

The material contained in this text is ideally suited for a two-semester Master’s level

course, although with judicious deletion of topics, the text may be adopted for a one-

semester course.

The first chapter introduces the basic concepts of elastic stability and the approaches

used in solving stability problems. It also discusses the different buckling phenom-

ena that have been observed in nature. In Chapter 2, the basic concepts and

methodology are applied to some simple mechanical models with finite degrees of

freedom. This is done to help the student understand the fundamentals without

getting involved with lengthy and complicated mathematical operations, which is

usually the case when dealing with the continuum (infinitely many degrees of

freedom). In Chapter 3, a complete treatment of the elastic stability of columns is

presented, including effects of elastic restraints. New to this edition are treatments of

the elastica theory of beams and of the buckling of thin-walled beam-columns. This

new material facilitates the solutions of several problems in later chapters. Some

simple frame problems are discussed in Chapter 4. Moreover, a nonlinear analysis of

frames is presented, which clearly shows that in some cases, buckling occurs through

limit-point instability. This chapter is of special importance to the Civil Engineering

student. Since energy-based methods have been successfully used in structural

mechanics, Chapter 5 presents a comprehensive treatment of the energy criterion

for stability and contains many energy-related methods. The study of this chapter

requires some knowledge of work- and energy-related principles and theorems.
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These topics are presented in the Appendix for the benefit of the student who never

had a formal course in this area. Columns on elastic foundations are discussed in

Chapter 6. Chapter 7 presents a comprehensive treatment of the buckling of thin

rings and high and low arches. In this chapter, a complete analysis is given for

a shallow, pinned sinusoidal arch on an elastic foundation subject to a sinusoidal

transverse loading. This is an interesting model for stability studies because,

depending upon the values of the different parameters involved, it exhibits all

types of buckling that have been observed in different structural systems: top-of-

the-knee buckling, stable bifurcation (Euler-type), and unstable bifurcation. The use

of elastica theory augments the more traditional treatment illustrating how a buck-

ling analysis can be carried out with very few restrictive assumptions. Chapter 8

treats the buckling of shafts, making use of both the elastica theory and energy

methods. This chapter is important for Mechanical and Aerospace Engineering

students, showing that torques which differ by infinitesimal amounts can have

buckling loads that radically differ, and that compressive forces and spin can affect

stability as well. Chapter 9 is devoted to lateral-torsional buckling of deep beams,

emphasizing the role of certain secondary effects such as the Vlasov phenomenon,

initial curvature, the offset of the load, the way torque is applied, etc. In Chapter 10

we examine various instabilities of rotating rods and beams. Chapter 11 is devoted

to the stability of nonconservative systems undergoing follower forces. An extended

version of the elastica theory is shown to facilitate analysis of such systems, which

must be analyzed according to kinetic theory. Chapter 12 classifies the various

‘‘dynamic instability’’ phenomena by taking into consideration the nature of the

cause, the character of the response and the history of the problem. Moreover, the

various concepts and methodologies, as developed and used by different investiga-

tors, are fully described. Finally, the concepts and criteria for dynamic stability are

demonstrated through simple mechanical models. The emphasis here is on suddenly

applied loads of constant magnitude and infinite duration or extremely small dur-

ation (ideal pulse).

The authors are indebted to the late Profs. J. N. Goodier and N. J. Hoff and to

Prof. George Herrmann for introducing many topics and for valuable suggestions.

Special thanks are due to Professor M. E. Raville for providing tangible and

intangible support, for reading large sections of the manuscript for earlier editions,

and for making many corrections. Numerous discussions with Profs. W. W. King,

G. M. Rentzepis, C. V. Smith Jr., David A. Peters, M. Stallybrass, A. N. Kounadis and

Izhak Sheinman are gratefully acknowledged. Thanks are also due to several former

students of the first author: C. M. Blackmon, V. Ungbhakorn, J. Giri, A. S. Vlahinos,

D. Shaw and J. G. Simitses; and of the second author: A. R. Atilgan, R. R. Bless,

and V. V. Volovoi.

George J. Simitses

Dewey H. Hodges

Georgia Institute of Technology
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1

Introduction and

Fundamentals

1.1 motivation

Many problems are associated with the design of modern structural systems.

Economic factors, availability and properties of materials, interaction between the

external loads (e.g. aerodynamic) and the response of the structure, dynamic and

temperature effects, performance, cost, and ease of maintenance of the system are all

problems which are closely associated with the synthesis of these large and compli-

cated structures. Synthesis is the branch of engineering which deals with the design of

a system for a given mission. Synthesis requires the most efficient manner of design-

ing a system (i.e., most economical, most reliable, lightest, best, and most easily

maintained system), and this leads to optimization. An important part of system

optimization is structural optimization, which is based on the assumption that

certain parameters affecting the system optimization are given (i.e., overall size and

shape, performance, nonstructural weight, etc.). It can only be achieved through

good theoretical analyses supported by well-planned and well-executed experimental

investigations.

Structural analysis is that branch of structural mechanics which associates the

behavior of a structure or structural elements with the action of external causes. Two

important questions are usually asked in analyzing a structure: (1) What is the

response of the structure when subjected to external causes (loads and temperature

changes)? In other words, if the external causes are known, can we find the deform-

ation patterns and the internal load distribution? (2) What is the character of the

response? Here we are interested in knowing if the equilibrium is stable or if the

motion is limited (in the case of dynamic causes). For example, if a load is period-

ically applied, will the structure oscillate within certain bounds or will it tend to move

without bounds?

If the dynamic effects are negligibly small, in which case the loads are said to be

applied quasistatically, then the study falls in the domain of structural statics. On the

other hand, if the dynamic effects are not negligible, we are dealing with structural

dynamics.
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The branch of structural statics that deals with the character of the response is

called stability or instability of structures. The interest here lies in the fact that

stability criteria are often associated directly with the load-carrying capability of

the structure. For example, in some cases instability is not directly associated with the

failure of the overall system, i.e., if the skin wrinkles, this does not mean that the

entire fuselage or wing will fail. In other cases though, if the portion of the fuselage

between two adjacent rings becomes unstable, the entire fuselage will fail catastroph-

ically. Thus, stability of structures or structural elements is an important phase of

structural analysis, and consequently it affects structural synthesis and optimization.

1.2 stability or instability of structures

There are many ways a structure or a structural element can become unstable,

depending on the structural geometry and the load characteristics. The spatial geom-

etry, the material along with its distribution and properties, the character of the

connections (riveted joints, welded, etc.), and the supports comprise the structural

geometry. By load characteristics we mean spatial distribution of the load, load beha-

vior (whether or not the load is affected by the deformation of the structure, e.g., if

a ring is subjected to uniform radial pressure, does the load remain parallel to its initial

direction, does it remain normal to the deformed ring, or does it remain directed

towards the initial center of curvature?), and/or whether the force system is conservative.

1.2.1 CONSERVATIVE FORCE FIELD

A mechanical system is conservative if subjected to conservative forces. If the

mechanical system is rigid, there are only external forces; if the system is deformable,

the forces may be both external and internal. Regardless of the composition, a system

is conservative if all the forces are conservative. A force acting on a mass particle is

said to be conservative if the work done by the force in displacing the particle from

position 1 to position 2 is independent of the path. In such a case, the force may be

derived from a potential. A rigorous mathematical treatment is given below for the

interested student.

The work done by a force F acting on a mass particle in moving the particle from

position P0 (at time t0) to position P1 (at time t1) is given by

W ¼
C

Z
c

r1

r0

F � dr 1ð Þ

Thus the integral, W (a scalar), depends on the initial position, r0, the final position,

r1, and the path C. If a knowledge of the path C is not needed and the work is

a function of the initial and final positions only, then

W ¼W r0, r1, Fð Þ 2ð Þ

and the force field is called conservative. (Lanczos 1960; Langhaar 1962; Whittaker

1944).

Parenthesis. If S denotes some surface in the space and C some space curve, then by

Stokes’ theorem

C

I
U � dł ¼

ZZ
s

curl U � nds 3ð Þ

wheren is aunitvectornormal to the surfaceS (seeFig.1.1),andU somevectorquantity.
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If
C

H
U � dł ¼ 0, then ZZ

S

curl U � nds ¼ 0 4ð Þ

for all surfaces S and spanning curves C. If this is so, then the curl of U (some vector

quantity) must be identically equal to zero, or

curl U � 0 5ð Þ

Next, if we apply this result to a conservative force field where U is replaced by F,

then according to the previous result

curl F � 0

It is well known from vector analysis that the curl of the gradient of any scalar

function vanishes identically. Therefore, for a conservative field we may write

F ¼ �=V 6ð Þ

where:

1. The negative sign is arbitrary,

2. V is some scalar function, and

3. = is the vector operator

@

@x
iþ @

@y
jþ @

@z
k

where i, j, k form an orthogonal unit vector triad along x, y, z, respectively. This

implies that the force can be derived from a potential.

Note that in this case the work done by the force in a conservative force field is

given by

figure 1.1 ‘‘S’’
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W ¼
Z
c

r1

r0

F � d r ¼ �
Z
c

r1

r0

=V � d r ¼ �
Z
c

r1

r0

= � d rð ÞV

and since

= ¼ @

@x
iþ @

@y
jþ @

@z
k and d r ¼ dxð Þ iþ dyð Þ jþ dzð Þ k

then

= � d rð ÞV ¼ @V
@x

dxþ @V
@y

dyþ @V
@z

dz ¼ dV

or

W ¼ �
Z V1

V0

dV ¼ V0 � V1 ¼ �d Vð Þ 7ð Þ

where d denotes a change in the potential of the conservative force F from position r0

to position r1.

Thus a system is conservative if the work done by the forces in displacing the

system from deformation state 1 to deformation state 2 is independent of the path. If

this is the case, the force can be derived from a potential.

There are many instances where systems are subjected to loads which cannot be

derived from a potential. For instance, consider a column clamped at one end and

subjected to an axial load at the other, the direction of which is tangential to the free

end at all times (follower force). Such a system is nonconservative and can easily be

deduced if we consider two or more possible paths that the load can follow in order

to reach a final position. In each case the work done will be different. Systems subject

to time-dependent loads are also nonconservative. Nonconservative systems have

been given special consideration (Bolotin, 1963; Hermann, 1967), and the emphasis

in this text will be placed on conservative systems Ziegler (1968) has a detailed

description of forces and systems.

1.2.2 THE CONCEPT OF STABILITY

As the external causes are applied quasistatically, the elastic structure deforms and

static equilibrium is maintained. If now at any level of the external causes, ‘‘small’’

external disturbances are applied, and the structure reacts by simply performing

oscillations about the deformed equilibrium state, the equilibrium is said to be stable.

The disturbances can be in the form of deformations or velocities, and by ‘‘small’’ we

mean as small as desired. As a result of this latter definition, it would be more

appropriate to say that the equilibrium is stable in the small. In addition, when the

disturbances are applied, the level of the external causes is kept constant. On the

other hand, if the elastic structure either tends to and does remain in the disturbed

position or tends to and/or diverges from the deformed equilibrium state, the equi-

librium is said to be unstable. Some authors prefer to distinguish these two conditions

and call the equilibrium neutral for the former case and unstable for the latter. When

either of these two cases occurs, the level of the external causes is called critical.

This can best be demonstrated by the system shown in Fig. 1.2. This system

consists of a ball of weight W resting at different points on a surface with zero

curvature normal to the plane of the figure. Points of zero slope on the surface denote

positions of static equilibrium (points A, B, and C). Furthermore, the character of
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equilibrium at these points is substantially different. At A, if the system is disturbed

through infinitesimal disturbances (small displacements or small velocities), it will

simply oscillate about the static equilibrium position A. Such equilibrium position is

called stable in the small. At point B, if the system is disturbed, it will tend to move

away from the static equilibrium position B. Such an equilibrium position is called

unstable in the small. Finally, at point C, if the system is disturbed, it will tend to

remain in the disturbed position. Such an equilibrium position is called neutrally

stable or indifferent in the small. The expression ‘‘in the small’’ is used because the

definition depends on the small size of the perturbations. If the disturbances are

allowed to be of finite magnitude, then it is possible for a system to be unstable in the

small but stable in the large (point B, Fig. 1.3a) or stable in the small but unstable in

the large (point A, Fig. 1.3b).

In most structures or structural elements, loss of stability is associated with the

tendency of the configuration to pass from one deformation pattern to another. For

instance, a long, slender column loaded axially, at the critical condition, passes from

the straight configurations (pure compression) to the combined compression and

bending state. Similarly, a perfect, complete, thin, spherical shell under external

hydrostatic pressure, at the critical condition, passes from a pure membrane state

(uniform radial displacement only; shell stretching) to a combined stretching and

bending state (nonuniform radial displacements). This characteristic has been recog-

nized for many years and it was first used to solve stability problems of elastic

structures. It allows the analyst to reduce the problem to an eigenvalue problem,

and many names have been given to this approach: the classical method, the bifur-

cation method, the equilibrium method, and the static method.

1.2.3 CRITICAL LOADS VERSUS BUCKLING LOAD

At this point nomenclature merits some attention. There is a definite difference in

principle between the buckling load observed in a loading process where the loads

figure 1.2 Character of static equilibrium positions.

figure 1.3 Character of static equilibrium positions in the large.
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keep changing (observed physical phenomenon) and the buckling load calculated

from some mathematical model, which always refers to a system with prescribed

loads. Since the latter is based on theory and is usually obtained as the characteristic

or eigenvalue of some eigen-boundary-value problem, it is properly called the critical

load.

In the process of buckling in the testing machine, in the static or dynamic testing

of a structural configuration, and in the failure of the structure in actual use, we are

confronted with the physical aspects of buckling. The load at which a structure

buckles should preferably be designated as the buckling load.

The compound term critical buckling load is unnecessary and should be avoided. It

may have originated from the observation that theory (for the ideal column, for

instance) predicts several critical loads (eigenvalues) corresponding to different de-

flection patterns (eigenfunctions). In an experiment, however, only one buckling

pattern is observed, namely, the one that corresponds to the lowest eigenvalue.

This lowest eigenvalue is no more critical than any of the higher ones, but it is the

one that corresponds to the observed buckling load. If it is desired to give it a special

designation, it should be called the lowest critical load, rather than the critical

buckling load.

1.2.4 BASIC APPROACHES OF STABILITY ANALYSIS

A number of approaches have been successfully used in determining critical

conditions for elastic structures which are subject to instability. The oldest approach,

while is applicable to many problems, is concerned with the answer to the following

question. If an external cause is applied quasistatically to an elastic structure, is there

a level of the external cause at which two or more different but infinitesimally close

equilibrium states can exist? By different equilibrium states we mean that the

response of the structure is such that equilibrium can be maintained with different

deformation patterns. An example of this is the long perfect column loaded axially in

compression. As the load increases quasistatically from zero, the column is com-

pressed but remains straight. At some value of the load though, a bent position of

infinitesimal amplitude also represents an equilibrium position. Since at this value of

the load there are two different equilibrium states infinitesimally close, a bifurcation

point exists (adjacent equilibrium positions). Mathematically, in this approach, the

problem is reduced to an eigen-boundary-value problem, and the critical conditions

are denoted by the eigenvalues. This approach is usually referred to as the classical

approach, equilibrium approach, or bifurcation approach. Many examples will be

discussed in the chapters to follow.

Another approach is to write the equations governing small free vibrations of the

elastic structures at some level of the external causes (treated as a constant) and try to

find out for what level of the external cause the motion ceases to be bounded in the

small. In writing the governing equations, one must allow all possible modes of

deformation. The form of equilibrium is said to be stable if a slight disturbance (in

the form of displacement or velocity) causes a small deviation of the system from the

considered equilibrium configuration, but by decreasing the magnitude of the dis-

turbance, the deviation can be made as small as required. On the other hand, a

critical condition is reached if a disturbance, however small, causes a finite deviation

of the system from the considered form of equilibrium. This approach is known as

the kinetic or dynamic approach, and it is a direct application of the stability concept

demonstrated in Fig. 1.2.
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Next, if a system is conservative, the forces can be derived from a potential, and

the total potential of the system can be expressed in terms of the generalized

coordinates and the external forces. The generalized coordinates are the parameters

needed to express the deflectional shapes which the elastic structure could possibly

assume. In this case, the equilibrium is stable in the small if the total potential is a

relative minimum. This approach is completely equivalent to the kinetic approach (a

proof is given in Whittaker, 1944) for conservative systems, and it is known as the

potential energy method or simply the energy method. This definition of stability

requires special attention, and it will be fully justified in the next section.

Finally, there is a fourth approach in dealing with stability problems of elastic

structures. This method is usually called the imperfection method. The question in

this case is: ‘‘What is the value of the load (level of external causes) for which the

deflections of an imperfect system increase beyond any limit?’’ It should be pointed

out that certain systems, when subjected to certain external causes, are imperfection

sensitive. This means that the critical conditions of the perfect system are different

from those of the imperfect one. Imperfection sensitivity has served to explain the

discrepancy between theory and experiment for such systems. It will also be demon-

strated that there are systems for which the perfect and imperfect systems have the

same critical conditions according to the approaches defined above. It is the opinion

of the authors that the imperfection approach should not be associated with the

stability of the perfect system, but simply characterize the response of the imperfect

system. In short, the stability of a system, whether perfect or imperfect, should be

investigated by the first three methods (whichever is applicable).

1.2.5 THE ENERGY METHOD

This method is based on the kinetic criterion of stability, and it is an association of

this criterion with characteristics of the total potential (relative minimum) surface at

a position of static equilibrium. Since it requires the existence of a total potential

surface, this method is applicable only to conservative systems.

Before the energy criterion is justified, let us describe in analytical form the kinetic

criterion of stability. This concept was first introduced by Lagrange (1788) for a

system with a finite number of degrees of freedom.

A more strict definition of stability of equilibrium was given by Lyapunov (see

Chetayev, 1961; Krasoskii, 1963; Langhaar, 1962; LaSalle and Lefschetz, 1961; Liapu-

nor, 1952) as a particular case of motion. Let us assume that the position of a system

depends on n generalized coordinates qi i ¼ 1, 2, . . . , nð Þ and that a static equilibrium

state is characterized by qi ¼ 0. Let the system be at this static equilibrium position, and

at time t ¼ 0 we allow small bounded disturbances jq0
i j < d and j _qq0

i j < d. The response

of the systemat any instant t > 0 is characterized by qi tð Þ and _qqi tð Þ. If the response is also

bounded

jqi tð Þj < « and j _qqi tð Þj < « 8ð Þ

then we say that the static equilibrium position qi ¼ 0 is stable. In other words, in the

case of stable static equilibrium (in the small) positions, we can always select such

small initial conditions that the generalized coordinates and velocities are bounded.

The energy criterion is based on the Lagrange-Dirichlet theorem, which states: If

the total potential has a relative minimum at an equilibrium position (stationary

value), then the equilibrium position is stable. This theorem can easily be proven if we

simply employ the principle of conservation of energy for conservative systems,
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which states that the sum of the kinetic energy and the total potential is a constant

(T þU ¼ c). Now if we define the equilibrium position by qi ¼ 0 and let U 0ð Þ ¼ 0,

then, if U 0ð Þ is a minimum, U qið Þ must have a positive lower bound c on the

boundary of any sufficiently close neighborhood of qi ¼ 0. It is now always possible

to select q0
i and _qq0

i such that T þU ¼ c and c < c. In other words, since the sum of

the total potential and the nonnegative kinetic energy is a constant c, if c < c the

boundary of the neighborhood of qi ¼ 0 can never be reached, and the equilibrium

position qi ¼ 0 is stable (bounded motion). Unfortunately, it is very difficult to prove

the converse of the Lagrange-Dirichlet theorem. A statement of this converse the-

orem is as follows: If the equilibrium is stable at an equilibrium position character-

ized by qi ¼ 0, then U(0) is a relative minimum. Proof of this theorem under certain

restrictive assumptions has been given by Chetayev (1930). Although there is no

general proof of this converse theorem, its validity has been accepted and the energy

criterion has been used as both a necessary and sufficient condition for stability.

This criterion for stability can be generalized for systems with infinitely many degrees

of freedom (cohesive, continuous, deformable configurations).

The energy criterion can be used to arrive at critical conditions by simply seeking

load conditions at which the response of the system ceases to be in stable equilibrium.

This implies that we are interested in knowing explicitly the conditions under which the

change in the total potential is positive definite. If the total potential is expressed as a

Taylor series about the static equilibrium point characterized by qi ¼ 0, then

U q1, q2, . . . , qNð Þ ¼ U 0, 0, . . . 0ð Þ þ
XN
i¼1

@U

@qi

���
0
qi

þ 1

2

XN
i¼1

XN
j¼1

@2U

@qi@qj

���
0
qiqj þ . . .

9ð Þ

Since qi ¼ 0 characterizes a position of static equilibrium, then

@U

@qi

���
0
¼ 0 10ð Þ

and

U q1, q2, . . . , qNð Þ �U 0, 0, . . . , 0ð Þ ¼ DU ¼ 1

2

XN
i¼1

XN
j¼1

cijqiqj 11ð Þ

where

cij ¼
@2U

@qi @qj

���
0

The energy criterion requires that the homogeneous quadratic form given by Eq. (11)

be positive definite.

Theorem The homogeneous quadratic form

U q1, q2, . . . , qNð Þ ¼ 1

2

XN
i¼1

XN
j¼1

cijqiqj 12ð Þ

is positive definite if and only if the determinant D of its coefficients, cij , and its

principal minors, Di, are all positive.
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c11

c21

c31

cN1

D1 D2 D3

c12

c22

c32

cN2

c13

c23

c33

cN3

c14

c24

c34

cN4 cNN

c3N

c2N

c1N

> 0 (13)

Proof: The proof will be given in a number of steps.

1. If U is positive for any set of coordinates qi½ � 6¼ 0½ � (not all zero), then

U q1, 0, 0, 0, . . . , 0ð Þ ¼ 1

2
c11q

2
1 > 0 14ð Þ

which requires that c11 > 0. Note that if c11 is positive, then U q1, 0, 0, . . . , 0ð Þ > 0.

2. Assuming that c11 6¼ 0, we can make the following transformation:

q�1 ¼ q1 þ
c12

c11

q2 þ
c13

c11

q3 þ � � � þ
c1N

c11

qN

¼ q1 þ
XN
i¼2

c1i

c11

qi

15ð Þ

With this transformation we note that

1

2
c11 q�1
� �2 ¼ 1

2
c11 q1 þ

XN
i¼2

c1i

c11

qi

 !2

¼ 1

2
c11q

2
1 þ q1

XN
i¼2

c1iqi þ
1

2

XN
i¼2

XN
j¼2

c1ic1j

c11

qiqj

16ð Þ

From Eq. (16)

1

2
c11q

2
1 ¼

1

2
c11 q�1
� �2� q1

XN
i¼2

c1iqi þ
1

2

XN
i¼2

XN
j¼2

c1ic1j

c11

qiqj

 !
17ð Þ

Next we rewrite Eq. (12) in the following form:

U q1, q2, . . . , qNð Þ ¼ 1

2
c11q

2
1 þ q1

XN
i¼2

c1iqi þ
1

2

XN
i¼2

XN
j¼2

cijqiqj 18ð Þ

Substitution of Eq. (17) into Eq. (18) yields

U q�1, q2, . . . , qN

� �
¼ 1

2
c11q

�2
1 þ

1

2

XN
i¼2

XN
j¼2

cij �
c1ic1j

c11

� �
qiqj 19ð Þ

If we let

cij �
c1ic1j

c11

¼ aij 20ð Þ
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then Eq. (19) becomes

U q�1, q2, . . . , qN

� �
¼ 1

2
c11q

�2
1 þ

1

2

XN
i¼2

XN
j¼2

aijqiqj 21ð Þ

3. If U is positive for q�1 6¼ 0 and qi ¼ 0 i ¼ 2, 3, . . . , Nð Þ, then c11 > 0. If U is

positive for q�1 ¼ 0, q2 6¼ 0, and qi ¼ 0 i ¼ 3, . . . , Nð Þ, then a22 > 0. Note that the

converse is also true for the same condition, i.e., if c11 is positive, U is positive, and if

a22 is positive, U is positive.

These conditions for positive U can be written solely in terms of cij by use of

Eq. (20), or

c11 > 0 and c11c22 � c2
12 > 0 22ð Þ

Note that the second inequality is equivalent to the requirement D2 > 0 if c12 ¼ c21.

This requirement is by no means restrictive since Eq. (12) represents a homogeneous

quadratic form.

4. Next step 2 is repeated with c22 6¼ 0 and the following transformation:

q�2 ¼ q2 þ
XN
i¼3

a2i

a22

qi 23ð Þ

This transformation leads to the following expression for U:

U q�1, q�2, q3, . . . , qN

� �
¼ 1

2
c11q

�2
1 þ

1

2
a22q

�2
2 þ

1

2

XN
i¼3

XN
j¼3

bijqiqj 24ð Þ

where

bij ¼ aij �
a2ia2j

a22

25ð Þ

As in step 3

U q�1, 0, 0, . . . , 0
� �

> 0 if and only if c11 > 0

U 0, q�2, 0, 0, . . . , 0
� �

> 0 if and only if a22 > 0

and

U 0, 0, q3, 0, . . . , 0ð Þ > 0 if and only if b33 > 0

This requirement implies that

a22a33 � a2
23 > 0 26ð Þ

By Eq. (20)

c22 �
c2
12

c11

� �
c33 �

c2
13

c11

� �
� c23 �

c12c13

c11

� �2

> 0 27ð Þ

This last requirement is equivalent to D3 > 0 provided cij ¼ cji.

5. The continuation of this procedure eventually leads to the representation of the

homogeneous quadratic form as a linear combination of squares:

U ¼ 1

2
c11q

�2
1 þ

1

2
a22q

�2
2 þ

1

2
b33q

�2
3 þ � � � 28ð Þ

From this form, it is clearly seen that U is positive definite if and only if
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c11 > 0, a22 > 0, b33 > 0 QED 29ð Þ

Use of this theorem in the energy criterion implies that a position of static

equilibrium is stable if and only if

DN =

∂2UT

∂q2
1

∂2UT
∂q2 ∂q1

∂2UT
∂q3 ∂q1

∂2UT
∂q3 ∂q2

∂2UT

∂q2
3

∂2UT

∂qN ∂q1

∂2UT
∂qN ∂q2

∂2UT
∂qN ∂q3

∂2UT
∂q3 ∂qN

∂2UT
∂q2 ∂qN

∂2UT
∂q1 ∂qN

∂2UT
∂q1 ∂q3

∂2UT
∂q2 ∂q3

∂2UT
∂q2

2

∂2UT
∂q1 ∂q2

∂2UT

∂q2 
N

> 0

D1 D2 D3 DN

(30)

and all its principal minors D1 > 0, D2 > 0, etc.

In all problems in mechanics, dealing with the stability of elastic systems under

external causes, the total potential of the system depends not only on the generalized

coordinates (variables defining the position of the system) but also on certain

parameters that characterize the external cause or causes.

The general theory of equilibrium positions of such systems with various values of

the parameters was established by Poincaré (1885; see also Chetayev, 1930). Among

the findings of Poincaré are the following (simplified in this text for the sake of

understanding):

1. The requirements

@UT

@qi

¼ 0 and DN ¼ 0

define a point of bifurcation (intersection of static equilibrium branches at the same

value of the external cause parameter). See for example Figs. 1.4 and 1.5 (points A

and A0).
2. Changes in stability along the primary path (from stable to unstable equilibrium

positions) do occur at points of bifurcation. Consider, for example, branch OAB of

Fig. 1.4. If the part of this branch characterized by OA denotes stable static equilib-

rium positions, the part characterized by AB must denote unstable static equilibrium

positions.

These findings support the classical approach to stability problems which only

seeks bifurcation points. The external cause condition at such a point is called a

critical condition.
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1.2.6 TYPES OF BUCKLING

When the external causes are applied quasistatically and the level at which instabil-

ity occurs is reached, the elastic structure assumes an equilibrium configuration

which is distinctly different from the ones assumed during the quasistatic

application of the causes. When this occurs, we say that the elastic structure has

buckled. Since there are different ways by which the new equilibrium configuration

may be reached, buckling can be classified by the use of proper adjectives.

The type of buckling that was first studied and has been given the most attention is

the so-called classical or bifurcation buckling. This type of buckling is characterized

by the fact that, as the load passes through its critical stage, the structure passes

from its unbuckled equilibrium configuration to an infinitesimally close buckled

equilibrium configuration. As will be demonstrated in later chapters, buckling of

long straight columns loaded axially, buckling of thin plates loaded by inplane loads,

and buckling of rings are classical examples of this kind of buckling (see Fig. 1.4).

Another type of buckling is what Libove (Flügge, 1962) calls finite-disturbance

buckling. For some structures, the loss of stiffness after buckling is so great that the

buckled equilibrium configuration can only be maintained by returning to an earlier

level of loading. Classical examples of this type are buckling of thin cylindrical shells

under axial compression and buckling of complete, spherical, thin shells under

uniform external pressure (see Fig. 1.5). In Fig. 1.5a, Nx denotes the applied axial

load per unit length. In Fig. 1.5b, q denotes the uniform external pressure, V0 the

initial volume of the sphere, and DV the change in the volume during loading. The

reason for the name is that in such structures a finite disturbance during the quasi-

static application of the load can force the structure to pass from an unbuckled equi-

librium configuration to a nonadjacent buckled equilibrium configuration before

the classical buckling load, Pcr, is reached. A third type of buckling is known as

snapthrough buckling or oil-canning (Durchschlag). This phenomenon is character-

ized by a visible and sudden jump from one equilibrium configuration to another

equilibrium configuration for which displacements are larger than in the first (non-

adjacent equilibrium states). Classical examples of this type are snapping of a low

figure 1.4 Classical buckling.
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pinned arch under lateral loads (see Fig. 1.6) and snapping of clamped shallow

spherical caps under uniform lateral pressure.

The above discussion shows that there is some similarity between finite-

disturbance buckling and snapthrough buckling. It should also be mentioned that,

for many systems, nonlinear theory must be used to either evaluate critical conditions

and/or explain the buckling phenomena.

It will become evident in subsequent chapters that there are two different view-

points as far as types of buckling are concerned and two classifications within each

viewpoint. The first viewpoint is based on the existence of a bifurcation point. For the

examples shown in Figs. 1.4 and 1.5, there is a bifurcation point (A or A0). For the

example shown in Fig. 1.6, there is no bifurcation point at A.

The second viewpoint is based on the expected response of the system under

deadweight loading. For the examples in Fig. 1.4, the branches AC and A0C0

correspond to stable static equilibrium positions, and under deadweight loading

there exists the possibility for the system to pass from one deformation configuration

(the straight for the column) to another deformation configuration (the bent or

buckled) with no appreciable dynamic effects (time-independent response). For the

example shown in Fig. 1.5, since the branch AB is unstable when the system reaches

point A (under deadweight loading), it will tend to snap through toward a far stable

equilibrium position with a time-dependent response. This is very much the same

situation for the system of Fig. 1.6. When point A is reached, the system will snap

through toward a far stable equilibrium position.

In a later chapter, a model is considered which exhibits all types of buckling, top-of-

the-knee (Fig. 1.6), stable bifurcation (Fig. 1.4), and unstable bifurcation (Fig. 1.5).

This model is a low half-sine arch simply supported at both ends under quasistatic

application of a half-sine transverse loading resting on an elastic foundation.

In investigating stability problems, one should always consider the effect of load

behavior. In the case of a circular ring loaded uniformly by a radial pressure,

different critical conditions are obtained depending on the behavior of the applied

load. If the load behaves as hydrostatic pressure does (remains normal to the

deflected shape), the critical condition is different from the case for which the load

figure 1.5 Finite-disturbance buckling.
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remains directed toward the center of the ring at all times (point sink). On the other

hand, the effect of load behavior for certain structures is negligible.

For some systems there are certain constraints on the loading mechanism. This

case can also come under the classifications of load behavior problems. For instance,

suppose that the axial load on a long, straight, elastic bar is applied through a rigid

bar. At buckling, the loading member (rigid bar) may tilt, and then the load behavior

is such that it aggravates the situation. Such problems are known as tilt-buckling

problems, and they will be discussed in later chapters also.

So far, the different types of buckling of conservative systems under quasistatic

application of the external causes have been discussed. We will also discuss buckling

of a limited number of nonconservative systems (such as the ‘‘follower-force’’ prob-

lem) under quasistatic application of the load. Finally, buckling can occur under

dynamic application of the external causes. In general, if the load depends explicitly

on time, the system is nonconservative. A large class of such problems, where the

load varies sinusoidally with time, have been discussed by Bolotin (1964). This type

of dynamic loading is called by Bolotin parametric, and the associated phenomenon

of loss of stability, parametric excitation. Bolotin has shown that all systems which

are subject to loss of stability under quasistatically applied loads are also subject to

loss of stability under parametric loads.

If the dynamic load does not depend explicitly on time, the system can be

conservative (see Ziegler, 1968). Typical examples of such loads are (1) loads sud-

denly applied with constant magnitude and infinite duration and (2) ideal impulsive

loads. When such loads are applied to elastic structures we may ask: ‘‘Is buckling

possible under such loads, and if so, what are the critical conditions?’’ We may note

that such loads are obvious idealizations of two extreme cases of blast loading: blasts

of low decay rates and large decay times and blasts of large decay rates and short

decay times, respectively (see Chapter 12).

1.3 continuous deformable elastic bodies

A continuous body is called deformable if the relative distance between any two

material points changes when the system is experiencing changes in the externally

applied causes. The changes in the deformations and their gradients are related

to the changes in the load intensities and their rates through the constitutive

relations.

figure 1.6 Snapthrough buckling.
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If the loading path, characterized by the constitutive relations, is the same as the

unloading path, the continuous deformable body is called elastic. If, in addition,

these paths are characterized by linear relations in the absence of dynamic effects

(generalized Hooke’s law equations), the continuous deformable body is called

linearly elastic. Furthermore, if the properties (modulus of elasticity, Poisson’s

ratio, etc.) of such a body do not depend on the position of the material point, the

body is termed homogeneous. If these properties at a material point are independent

of direction, the body is called isotropic. If this is not so, the body is called aniso-

tropic. A particular case of anisotropic elastic bodies is orthotropic elastic bodies. An

elastic body is called orthotropic if some or all of the properties of the elastic body

differ in mutually orthogonal directions.

The branch of mechanics that deals with the behavior of elastic bodies is called

theory of elasticity. Since only a relatively small number of problems can be solved

by means of the exact field equations of the theory of elasticity, the structural

engineer is forced to make a number of simplifying assumptions in dealing with

structural problems. These simplifying assumptions depend heavily on the relative

dimensions of the structural element in three-dimensional space. Depending on

these assumptions, all of the structural elements fall in one of the following four

categories:

1. All three dimensions are of the same magnitude (spheres, short or moderate length

cylinders, etc.).

2. One of the dimensions is much larger than the other two, which are of the same

order of magnitude (columns, thin beams, shafts, rings, etc.).

3. One of the dimensions is much smaller than the other two, which are of the same

order of magnitude (thin plates, thin shells).

4. All three dimensions are of different order of magnitude (thin-walled, open-

section beams).

Structural elements of the first category are not subject to instability. All other

elements are. Typical stability problems associated with elements of the second

category will be discussed in subsequent chapters.

1.4 brief historical sketch

Structural elements that are subject to instability have been used for many cen-

turies. Although their use is ancient, the first theoretical analysis of one such struc-

tural element (long column) was performed only a little over two hundred years ago.

This first theoretical analysis is due to Leonhard Euler. Other men of the 18th and

19th centuries who are associated with theoretical and experimental investigations

of stability problems are Bresse, G.H. Bryan, Considére, Fr. Engesser, W. Fairbairn,

A.G. Greenhill, F. Jasinski, Lagrange, and M. Lévy. An excellent historical review is

given by Hoff (1954) and Timoshenko (1953).

Bryan’s work (1888, 1891) merits special attention because of his mathematical

rigor and the novelty of the problems treated.

Among the existing texts on the subject, in addition to those cited so far, we

should mention the books of Biezeno and Grammel (1956), Bleich (1952), Hoff

(1956), Leipholz (1970), and Timoshenko and Gere (1961).
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Significant contributions to the understanding of the concept of stability are

those of Koiter (1945 and 1963), Pearson (1956), Thompson (1963), and Trefftz

(1933).
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2

Mechanical Stability

Models

Before undertaking the study of stability of elastic structures, the different

methods available for understanding and obtaining critical conditions will be dem-

onstrated through the use of simple mechanical models. The discussion will be

limited to conservative systems. It is also intended to demonstrate the effect of

geometric imperfections and load eccentricity on the response of the system. For a

number of models, both the small-deflection (linear) and large-deflection (nonlinear)

theories will be used for the sake of comparison. Finally, a comprehensive discussion

of the different types of behaviors will be given to enhance understanding of

buckling, critical conditions, and advantages or disadvantages of the approaches

used.

2.1 model a; a one-degree-of-freedom model

Consider a rigid bar of length l, hinged at one end, free at the other, and supported

through a frictionless ring connected to a spring that can move only horizontally (see

Fig. 2.1). The free end is loaded with a force P in the direction of the bar. It is

assumed that the direction of the force remains unchanged. We may now ask: ‘‘Will

the rigid bar remain in the upright position under the quasistatically applied load P?’’

In trying to answer this question, we must consider all possible deflectional modes

and study the stability of the system equilibrium.Onepossible deflectionalmode allows

rotation u about the hinged end. Inwriting equilibrium conditions for some u positions,

we could be interested in small u as well as large u values.

2.1.1 SMALL-� ANALYSIS

In the casual small-u analysis, we make the usual assumption that u is so small that

u � sin u � tan u. With this restriction, we can only investigate the stability of the

equilibrium configuration corresponding to u ¼ 0. This type of investigation is

sufficient to answer the posed question. The three approaches will be used separately.
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1. The Classical or Equilibrium Method. The equilibrium equation corresponding

to a deflected position is written under the assumption of small u’s (see Fig. 2.2). The

expression for the moment about O is given by

figure 2.1 Geometry of Model A.

figure 2.2 Small u deflected position (Model A).
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M ¼ �P‘uþ kauð Þa

Since the bar is hinged at O, then

M ¼ 0 or P‘� ka2
� �

u ¼ 0 1ð Þ

Thus a nontrivial solution exists if

P‘ ¼ ka2

and the bifurcation point is located by

P ¼ ka2

‘
or Pcr ¼

ka2

‘

Fig. 2.3 shows a plot of the load parameter p ¼ P‘=ka2 versus u. Note that the

bifurcation point is located at p ¼ 1, and the u 6¼ 0 equilibrium positions are limited

by the assumption of small u.

2. Kinetic or Dynamic Approach. In this approach, we are interested in the character

of the motion for small disturbances about the u ¼ 0 position and at a constant

P value. The equation of motion is given by

I üþM ¼ 0

or

I ü� P‘� ka2
� �

u ¼ 0

2ð Þ

where dots above u denote differentiation with respect to time, and I is the moment of

inertia of the rigid bar about the hinged end O. It is easily seen from the differential

equation that if

figure 2.3 Load-deflection curve (Model A; small u analysis).
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P‘� ka2 < 0

the motion is oscillatory and the equilibrium is stable. If

P‘� ka2 > 0

the motion is diverging and the equilibrium is unstable. If

P‘� ka2 ¼ 0

the motion can still be considered diverging (constant or linear with respect to time)

and the equilibrium is unstable (neutrally stable).

Note that the frequency f is given by

1

2p

ka2 � P‘

I

� �1
2

3ð Þ

and at the critical condition f ¼ 0, or

Pcr ¼
ka2

‘

3. Energy Approach. Since the system is conservative, the externally applied force P

can be derived from a potential. Thus (see Fig. 2.2)

Up ¼ P z0 � zð Þ

and letting z0 ¼ 0, then Up ¼ �Pz and

P ¼ � dUp

dz
4ð Þ

On the other hand, the energy, Ui, stored in the system is given by

Ui ¼
1

2
k auð Þ2 5ð Þ

Thus the total potential UT is given by

UT ¼ Ui þUP

¼ �Pzþ 1

2
k auð Þ2

6ð Þ

But since z ¼ ‘ 1� cos uð Þ, then

UT ¼ �P‘ 1� cos uð Þ þ 1

2
ka2u2 7ð Þ

For static equilibrium, the total potential must have a stationary value. Thus

dUT

du
¼ 0

or

�P‘ sin uþ ka2u ¼ 0

and since sin u � u, then

�P‘þ ka2
� �

u ¼ 0 8ð Þ
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This is the same equilibrium equation we derived previously. Furthermore, if the

second variation is positive definite, the static equilibrium is stable. If the second

variation is negative definite, the static equilibrium is unstable; if it is zero, no

conclusion can be drawn.

It is seen in this case that

d2UT

du2
¼ ka2 � P‘ 9ð Þ

Therefore, for P < ka2=‘ the static equilibrium positions (u ¼ 0) are stable, while for

P > ka2=‘ they are unstable. Thus, as before,

Pcr ¼
ka2

‘

2.1.2 LARGE-Q ANALYSIS

In this particular approach, the only limitation on u is dictated from geometrical

considerations. Note from Fig. 2.4 that � cos�1 a=‘ < u < cos�1 a=‘. For u values

outside this range, the ring will fly off the rigid bar. As before, the three approaches

shall be treated separately.

1. The Classical or Bifurcation Method. Since the ring is frictionless, the force R,

normal to the rigid bar, is related to the spring force through the following expression

(see Fig. 2.4):

k a tan uð Þ ¼ R cos u

Then the moment about pin O is given by

M ¼ �P‘ sin uþ ka2 sin u

cos3 u
10ð Þ

figure 2.4 Geometry for large u analysis (Model A).
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For static equilibrium we require that M ¼ 0. Thus, the equilibrium positions are

characterized by the equation

ka2

cos3 u
� P‘

� �
sin u ¼ 0 11ð Þ

which implies that either

u ¼ 0 12að Þ

or

P‘

ka2
¼ sec3 u 12bð Þ

It is clearly seen that a nontrivial solution (u 6¼ 0) can exist for P‘=ka2 > 1 and a

bifurcation point exists at P‘=ka2 ¼ 1 (see Fig. 2.5).

The answer to the original question is yes, and Pcr ¼ ka2=‘.

2. Kinetic or Dynamic Approach. In this approach, as before, we are interested in

the character of the motion for small disturbances about the static equilibrium

positions, keeping P constant. The equation of motion is given by

I üþM ¼ 0

But

M ¼ �P‘ sin uþ ka2 sin u

cos3 u
13ð Þ

figure 2.5 Load-deflection curve (Model A; large u analysis).
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If we denote the equilibrium positions by u0 and the disturbed positions by

u ¼ u0 þ wð Þ, the Taylor-series expansion for the moment is given by

M u0 þ wð Þ ¼M u0ð Þ þ w
dM

du

� �
u¼u0

þw2

2!

d2M

du2

� �
u¼u0

þ � � � 14ð Þ

At the static equilibrium positions, M u0ð Þ ¼ 0. Through differentiation, we may write

dM

du

� �
u0

¼ ka2

cos3 u0

� P‘

� �
cos u0 þ sin u0 3ka2 sin u0

cos4 u0

� �
15ð Þ

The equilibrium positions (see Fig. 2.4) are denoted by Eqs. (12). Thus, the

equation of motion under the assumption of small disturbances for the equilibrium

positions corresponding to u0 6¼ 0 is given by

I ẅþ 3ka2 sin2 u0

cos4 u0

w ¼ 0 16að Þ

and since

3ka2 sin2 u0

cos4 u0

> 0

these equilibrium positions are stable. Note that u0 6¼ 0.

The equation of motion for the positions corresponding to u0 ¼ 0 is given by

I ẅþ ka2 � P‘
� �

w ¼ 0 16bð Þ

If P‘ < ka2, the equilibrium is stable, while if P‘ > ka2, the equilibrium is un-

stable.

The equation of motion for the particular position corresponding to u0 ¼ 0 and

P‘ ¼ ka2 is given below. We obtain this equation by taking more terms in the series

expansion for M, Eq. (14).

I ẅþ 3

2
ka2w3 ¼ 0 16cð Þ

A study of this differential equation (see the following Section, Parenthesis) indicates

that the motion is stable. Although the equilibrium position u0 ¼ 0, P‘ ¼ ka2 is

stable, the answer to the original question is that the bar will not remain in the

upright position, and the critical value of the load is given by

Pcr ¼
ka2

‘

Parenthesis. If the equation of motion of a nonlinear system is given by

ẍþ k2x2nþ1 ¼ 0 17ð Þ

where the dots above x denote differentiation with respect to time, k2 is a positive

number, and n is a positive integer, then the system is conservative and the position

x ¼ 0 is stable (see Krasovskii, 1963; LaSalle, 1961; Malkin, 1958; and Stoker, 1950).

What this implies physically is that, depending on the initial conditions, the total

energy of the system is constant (sum of kinetic and potential energies is constant,

thus the system is conservative), and the system performs nonlinear oscillations

about the null position x ¼ 0 within a bounded region enclosing the position x ¼ 0.
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The following computations will further clarify the above statements. Since

ẍ ¼ d _xx

dt
¼ d _xx

dx
: dx

dt
¼ _xx

d _xx

dx

then Eq. (17) may now be written as

_xx
d _xx

dx
¼ �k2x2nþ1

or

_xxd _xx ¼ �k2x2nþ1dx

If the initial conditions are denoted by _xx0 and x0, then integration of this last

equation yields

1

2
_xx2 � _xx2

0

� �
¼ k2

2 nþ 1ð Þ x
2 nþ1ð Þ
0 � x2 nþ1ð Þ

h i

This equation expresses the law of conservation of energy. The left side denotes

the change in kinetic energy, and the right side denotes the change in potential energy.

With reference to Eq. (16), x and _xxdenote the size of the response to initial disturbances

_xx0 and/or x0. If we let the disturbance be x0 only _xx0 � 0ð Þ, then

_xx2 ¼ k2

nþ 1ð Þ x
2 nþ1ð Þ
0 � x2 nþ1ð Þ

h i

which implies that the response is bounded.

3. Energy Approach. The total potential of the system is given by

UT ¼ �P‘ 1� cos uð Þ þ 1

2
ka2 tan2 u 18ð Þ

The static equilibrium positions are characterized by the equation

dUT

du
¼ 0

or

�P‘þ ka2

cos3 u

� �
sin u ¼ 0

Furthermore, the second variation is given by

d2UT

du2
¼ ka2

cos3 u
� P‘

� �
cos uþ 3ka2 sin2 u

cos4 u
19ð Þ

It is easily concluded that the static equilibrium positions characterized by u 6¼ 0

are stable. Similarly, the positions u ¼ 0 for P‘ > ka2 are unstable. It can also be

concluded, by considering higher variations, that the position denoted by u0 ¼ 0 and

P‘ ¼ ka2 is stable (see Chapter 1). The answer to the original question, though, still

remains the same and

Pcr ¼
ka2

‘
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2.2 model b; a one-degree-of-freedom model

Consider two rigid links pinned together and supported by hinges on rollers at the

free ends (Fig. 2.6a). The system is supported at the middle hinge by a vertical linear

spring and is acted upon by two collinear horizontal forces of equal intensity. The

two links are initially horizontal. Can the system buckle? What is the critical load? To

answer these questions, we may use small-deflection theory. The classical method and

the energy method shall be used in this case.

1. The Classical or Bifurcation Method. Using casual small-deflection theory, we

put the system into a deflected position (Fig. 2.6b) and write the equilibrium

equations.

Since the system is symmetric, the vertical reactions at the hinges are kd=2.

Furthermore, the moment about the middle hinge must vanish. This requirement

leads to the equilibrium equation

P� k‘

2

� �
d ¼ 0 20ð Þ

Thus, the equilibrium positions are defined by either d ¼ 0 (trivial solution) or

P ¼ k‘=2. In plotting 2P/k‘ versus d, we notice that a bifurcation point exists at

2P=k‘ ¼ 1 (Fig. 2.6c) and

Pcr ¼
k‘

2
21ð Þ

2. Energy Method. The total potential is the sum of the energy stored in the spring

and the potential of the external forces. Thus

UT ¼
kd2

2
� 2P ‘�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � d2

p� 	
For static equilibrium dUT=dd ¼ 0 and

kd� 2P : 1

2

2d

‘2 � d2
� �1

2

¼ 0 22ð Þ

which, under the assumption of d2 � ‘2, is identical to Eq. (20).

For the static equilibrium positions to be stable, the second variation must be

positive definite, or

d2UT

dd2
¼ k� 2P

‘2 � d2
� �1

2

þ 2Pd2

‘2 � d2
� �3

2

� k� 2P

‘
23ð Þ

Thus the equilibrium positions denoted by d ¼ 0 and P < k‘=2 are stable, and the

critical load is given by Eq. (21).

2.3 model c; a two-degree-of-freedom model

Consider the system shown in Fig. 2.7a, composed of three rigid bars of equal

length hinged together as shown. The linear springs are of equal intensity. This is a

two-degree-of-freedom system and it is acted upon by a horizontal force, P, applied
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figure 2.6 Model B.
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quasistatically. We must determine whether or not the system will buckle and the

critical value of the applied load. The load is assumed to remain horizontal.

1. The Classical or Bifurcation Method. In solving this problem, we will first use the

classical method under the assumption of small deflections.

figure 2.7 Model C.
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Denoting by u and w the rotations about the support pins (see Fig. 2.7b) and by R1

and R2 the vertical reactions at the pins, we may write the following equilibrium

equations for the deflected system:

3‘R1¼ 2k‘2uþ k‘2w

3‘R2¼ k‘2uþ 2k‘2w

R1‘¼ P‘u

R2‘¼ P‘w

9>>>>=
>>>>;

24ð Þ

Elimination of R1 and R2 yields the following system of linear homogeneous alge-

braic equations:

P� 2k‘

3

� �
u� k‘w

3
¼ 0

k‘u

3
� P� 2k‘

3

� �
w ¼ 0

9>>>=
>>>;

25ð Þ

The critical condition is derived if we require the existence of a nontrivial solution.

This leads to the characteristic equation

P� 2k‘

3

� �
� k‘

3

k‘

3
� P� 2k‘

3

� �



















¼ 0

from which

P ¼
k‘

3
k‘

8<
:

9=
; 26ð Þ

Thus, there are two solutions (eigenvalues) corresponding to two modes of deform-

ation (Fig. 2.7c):

P ¼ k‘

3
and w ¼ �u

P ¼ k‘ and w ¼ u

This shows that the smallest load corresponds to the antisymmetric mode.

2. The Energy Method. In Fig. 2.7b, the total potential for the system, which

consists of the energy stored in the springs and the potential of the external forces,

is given by

UT ¼Ui þUp ¼
1

2
k‘2u2

þ 1

2
k‘2w2 � P‘ 1� cos uð Þ þ 1� cos wð Þ þ 1� cos w� uð Þ½ �

27ð Þ

By assuming that the angles w and u can be made as small as desired, we may rewrite

Eq. (27) as

UT ¼
1

2
k‘2u2 þ 1

2
k‘2w2 � P‘ u2 þ w2 � wu

� �
28ð Þ

For static equilibrium, the total potential must be stationary; therefore
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@UT

@u
¼ @UT

@w
¼ 0 29ð Þ

which leads to the following equilibrium equations:

k‘2 � 2P‘
� �

uþ P‘w ¼ 0

P‘uþ k‘2 � 2P‘
� �

w ¼ 0

)
30ð Þ

The nontrivial solution is the same as the one obtained by the classical approach.

P ¼ k‘

3
, P ¼ k‘ 31ð Þ

Study of the stability of the equilibrium positions characterized by u ¼ w ¼ 0 for

the entire range of values of P requires knowledge of the second variations

@2UT

@u2
¼ k‘2 � 2P‘ 32ð Þ

@2UT

@w2
¼ k‘2 � 2P‘ 33ð Þ

@2UT

@u@w
¼ P‘ 34ð Þ

The equilibrium positions are stable if and only if (see Chapter 1) both of the

following inequalities are satisfied.

@2U

@u2
> 0

@2UT

@u2
: @

2UT

@w2
>

@2UT

@u@w

� �2 35ð Þ

In terms of the applied load and the structural geometry, these inequalities are

k‘ > 2P

k‘� Pð Þ k‘

3
� P

� �
> 0

36ð Þ

From these expressions, we see that equilibrium positions for which P < k‘=3 are

stable, while all equilibrium positions for which P > k‘=3 are unstable. Therefore

Pcr ¼
k‘

3

2.4 model d; a snapthrough model

In the analysis of this model, we will demonstrate the type of buckling known as

snapthrough or oil-canning.

Consider two rigid bars of length ‘ pinned together, with one end of the system

pinned to an immovable support, and the other pinned to a linear horizontal spring

(see Fig. 2.8a). The rigid bars make an angle a with the horizontal when the spring is

unstretched and the system is loaded laterally through a force P applied quasistatically

at the connection of the two rigid bars. As the load is increased quasistatically from
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zero, the spring will be compressed and the two bars will make an angle u with the

horizontal (u < a). The question then arises whether it is possible for the system to

snap through toward the other side at some value of the applied load. In seeking the

answer to this question, we will first use the equilibrium approach and then analyze the

system by considering the character of the equilibrium positions. The latter will be

accomplished through the energy approach.

1. The Equilibrium Approach. Let the horizontal reaction of the spring be F. This

force is equal to k times the compression in the spring (Fig. 2.8b), or

F ¼ 2k‘ cos u� cos að Þ 37ð Þ

Furthermore, from symmetry the vertical reactions at the ends are P/2. Since no

moment can be transferred through the middle joint, the equilibrium states are

characterized by the following equation

figure 2.8 Model D.
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P‘

2
cos u ¼ F‘ sin u 38ð Þ

Use of Eq. (37) yields

P

4k‘
¼ sin u� cos a tan u 39ð Þ

Note that �p=2 < u < a < p=2.

The equilibrium states, Eq. (39), are plotted in Fig. 2.9b. Note that loading starts

at point A and it is increased quasistatically. When point B is reached, we see that

with no appreciable change in the load the system will tend to snap through toward

the CD portion of the curve. The load corresponding to position B is a critical one,

and its magnitude may be obtained from the fact that

dP

du
¼ 0 40ð Þ

Note that the right side of Eq. (39) is a continuous function of u with continuous first

derivatives.

If we denote by uB the angles corresponding to positions B and B0, then

uB ¼ � cos�1 cos að Þ
1
3 41ð Þ

and

P

4k‘











cr

¼ j sin uB � cos a tan uBj 42ð Þ

2. Energy Approach. The total potential, UT , for the system, which is equal to

the potential of the external force and the energy stored in the spring, is given by

UT ¼ 2k‘2 cos u� cos að Þ2�P‘ sin a� sin uð Þ 43ð Þ

Static equilibrium positions are characterized by the vanishing of the first vari-

ation of the total potential, or

dUT

du
¼ 4k‘2 cos u� cos að Þ �sin uð Þ þ P‘ cos u ¼ 0

This leads to the equilibrium equation

P

4k‘
¼ sin u� cos a tan u 39ð Þ

The character of the equilibrium positions is governed by the second variation, or

d2UT

du2
¼ 4k‘2 cos u� cos að Þ �cos uð Þ þ 4k‘2 sin2 u� P‘ sin u 44ð Þ

Making use of the equilibrium condition, Eq. (39), we may write

d2UT

du2
¼ 4k‘2

cos a

cos u
� cos2 u

� 	
45ð Þ
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Thus in the region

�cos�1 cos að Þ
1
3< u < þ cos�1 cos að Þ

1
3

the second derivative is negative, and the equilibrium positions are unstable. Outside

this region, the second derivative is positive, and the equilibrium positions are stable.

Thus, Pcr is given by Eq. (42). Note that points between B and B0 represent ‘‘hills’’ on

the total potential curve, while points outside this region represent ‘‘valleys’’ (see

Fig. 2.9a).

A critical condition is reached when the load is such that the near equilibrium

point coincides with the unstable point.

Note from Fig. 2.9 that the stationary dUT=du ¼ 0ð Þ points on the total potential

curve corresponding to different values of the applied load make up the load-

deflection curve (equilibrium states).

2.5 models of imperfect geometries

In many cases it is possible to predict critical conditions for a system of perfect

geometry by studying the behavior of the system under the same load conditions but

with slight geometric imperfections.

Consider, for instance, model B with a small imperfection d0 (Fig. 2.10a) when the

spring is unstretched. The problem is to find the behavior of the imperfect system

under the quasistatic application of the horizontal forces. Once this behavior has

been established, the question arises whether or not we can predict the critical

condition for the system of perfect geometry.

From the conditions of symmetry, the vertical reactions at the end pins are equal

to 1⁄2 kd. The equilibrium condition is obtained if we require the moment about the

middle hinge to vanish.

P dþ d0ð Þ ¼ kd

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � dþ d0ð Þ2

q

� kd‘

2

46ð Þ

This equation can be written in the form

P� k‘

2

� �
dþ d0ð Þ ¼ � k‘

2
d0 47ð Þ

If we divide both sides by k‘=2ð Þd0, the equilibrium equation becomes

2P

k‘
� 1

� �
1þ d

d0

� �
¼ �1 48ð Þ

This represents a hyperbola in the coordinate system of 2P=k‘� 1ð Þ and 1þ d=d0ð Þ
(see Fig. 2.10b). When a translation of axes is used, it appears that the load-deflection

curve, in the coordinate system of 2P/k‘ and d=d0, approaches the line 2P=k‘ ¼ 1

asymptotically. Furthermore, when 2P/k‘ is plotted versus d, the single curve of

Fig. 2.10b becomes a family of curves dependent on the value of the imperfection

d0. (see Fig. 2.10c). We see from this last illustration that as d0 ! 0, the behavior of

the system is such that d remains zero until 2P/k‘ becomes equal to unity. Thus, for
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figure 2.9 Critical conditions for Model D.
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d0 ¼ 0, Pcr ¼ k‘=2. This conclusion is the same as that reached when the system of

perfect geometry was analyzed.

As a second example, consider the imperfect model shown in Fig. 2.11. Note

that as the load eccentricity approaches zero, we have the corresponding perfect

geometry model given in Problem 1 at the end of this chapter. For this particular

problem, we want to find the effect of the eccentricity, e, on the critical load, Pcr.

Once this effect is established, we can predict Pcr for the perfect configuration by

letting the eccentricity approach zero. We will use the energy approach to solve the

problem.

The total potential is given by

UT ¼
1

2
ka2 sin2 u� P‘ 1� cos uþ e

‘
sin u

� 	
49ð Þ

For equilibrium

@UT

@u
¼ 0 ¼ ka2 sin u cos u� P‘ sin uþ e

‘
cos u

� 	
50ð Þ

From this equation we obtain the load-deflection curve for a given load eccentricity e:

p ¼ P‘

ka2
¼ sin u

tan uþ e=‘ð Þ 51ð Þ

Note that if e is replaced by �e and u by �u, we have the same load-deflection

relation.

If we restrict the range of u values to 0 < u < p=2, we may study the second

variation.

2

ka2
� @

2UT

@u2
¼ cos 2u� p cos u� e

‘
sin u

� 	
52ð Þ

figure 2.10 Model B with initial imperfection.
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If we eliminate p, through Eq. (51), and use some well-known trigonometric iden-

tities, we finally obtain

2

ka2
� @

2UT

@u2
¼ cos2 u

tan uþ e=‘ð Þ � tan3 uþ e

‘

� 	

figure 2.10 Cont’d
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Clearly, if tan3 u < e=‘, the equilibrium positions are stable, and if tan3 u > e=‘, the

equilibrium positions are unstable. When tan3 u ¼ e=‘, p ¼ pcr, substitution of this

expression for u into Eq. (51) yields

pcr ¼ 1þ e

‘

� 	2
3

� ��3
2

53ð Þ

A plot of pcr versus e/‘ is shown in Fig. 2-11.

A (qualitative) plot of p versus u for this model is given in Fig. 2.12b (imperfect

geometry), and this model exhibits snapthrough buckling.

Finally, if we let the eccentricity approach zero, Pcr ¼ 1 and

Pcr ¼
ka2

‘

figure 2.11 Effect of imperfection on the critical load.
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2.6 discussion of the methods

After having considered these few mechanical models, certain observations must

be discussed in order to enhance the understanding of the question of critical loads as

well as the question of stability of elastic systems in general. In particular, attention is

given to the relationship between the classical approach and the energy approach,

which is completely equivalent to the dynamic approach for conservative systems (a

proof of this is found in Whittaker 1944), and to the need for using large-deflection

theories in certain problems.

We first noticed that, whenever the model exhibited a bifurcation point (Models A

and B), regardless of the approach used, the same result is obtained. On the other

hand, when there is no bifurcation point (Model D), the classical approach could

only lead us to a load-deflection curve, and the criticality of the load at point B (see

Fig. 2.9b) was explained as follows: If one wishes to increase the load any further, the

system will visibly snap through toward a far equilibrium position. This argument, of

course, implies deadweight-type of loading (prescription of the load rather than

deflection), and it seems rather arbitrary. When the energy approach is used, it is

very clear that the equilibrium positions between B and B0 (Fig. 2.9b) are unstable,

and therefore the load at B is critical because the slightest possible disturbance at this

equilibrium position will make the system snap toward a far equilibrium position. In

the absence of damping and assuming that the spring remains elastic, if the load at B

is maintained, the system will simply oscillate (nonlinearly) between uB and some

angle past �a (see Fig. 2.9a).

The second observation deals with the question of using large-deflection theories

for predicting instability of perfect geometries (Model A). It is clear that, when

dealing with systems characterized by model D, large-deflection theory cannot be

avoided. Therefore this question is directed to systems that exhibit bifurcational

buckling (adjacent equilibrium position). From the examples considered, we may

suspect that small-deflection theory suffices to predict critical loads. Since the analy-

sis (models A, B and C) is based on the assumption that there are no imperfections in

the geometry of the system, large-deflection theories are needed because they clearly

indicate through the load-deflection curves (equilibrium positions) whether geomet-

rical imperfections are likely to have a significant effect on the buckling of the real

structure. Consider, for example, model A (Fig. 2.5). Small geometric imperfections

have little effect on this system. This can be verified by the introduction of a small

imperfection u0 and the use of a large-u analysis on the imperfect system. The result is

qualitatively shown in Fig. 2.12a. However, it can be demonstrated that small

geometric imperfections can cause a dramatic reduction in the buckling load when

the load-deflection curve is characterized by either Fig. 2.12b or Fig. 2.12c. Note that

in all three cases (Fig. 2.12) the small-deflection theory can only predict the bifurca-

tion load.

The stability of structures immediately after buckling (bifurcation) was first in-

vestigated systematically by Koiter (1967), and alternative formulations of the

general theory have subsequently been given by Sewell (1966) and by Thompson

(1963 and 1964). Pope (1968) and Thompson (1964) show that the derivative dp=du

at the bifurcation can be calculated exactly, for complicated elastic systems, by a

finite-deformation analysis of the Rayleigh-Ritz type. Some remarks on Koiter’s

theory are presented in Chapter 5.
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figure 2.12 Possible load-deflection curves for bifurcation buckling.
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problems

1. Analyze the system shown using large-deflection theory. Give the load-deflection

curve and the critical load.

(a) Use the classical approach.

(b) Use the kinetic approach.

(c) Use the energy approach.

2. A uniform disc can rotate freely about O, except that it is restrained by a

rotational spring giving a restoring couple au for angular displacement u. A

weight W is attached at radius a and vertically above O.

(a) Show that a stable tilted position, u0, of equilibrium is possible when W > a=a.

(b) Show that when W > a=a, the frequency of small oscillations about the

position of stable equilibrium is

1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�Wa cos u0

I

r

where I is the moment of inertia (including Wa2=g).

figure p2.1
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(c) Show that when W ¼ a=a, the differential equation for small oscillations is

I
d2u

dt2
þ 1

6
au3 ¼ 0

3. In the mechanism shown, a light stiff rod is pinned at O. There is no friction. P

remains vertical if the bar tilts.

(a) By using any method, find the P-u relation for equilibrium positions, and plot

the curve.

(b) Discuss the stability or instability of all the equilibrium positions in the entire

practical range of u values.

4. In the coplanar system shown, the initially vertical rod is rigid. The block to which

the spring is attached slides in the inclined guide and is controlled so that the

spring is always horizontal. All parts have negligible mass except the weight W.

(a) Show that tilted equilibrium positions are characterized by

W ¼ ka2

‘
1� tan b tan

u

2

� �
cos u

(b) Sketch the curve for the two cases tan b small (e.g., 1/20 ) and tan b large (e.g.,

10). What conclusions can you draw as to the stability of the tilted position?

Give reasons.

(c) Show that the vertical position is stable with respect to sufficiently small

disturbances so long as W‘ < ka2, and find a formula for the frequency of

small oscillations.

figure p2.2
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figure p2.3

figure p2.4
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(d) Show that when W‘ ¼ ka2, the beginning of the motion from u ¼ 0 follow-

ing a slight disturbance will be governed by the equation

W‘2

g
ü� 1

2
ka2 tan b � u2 ¼ 0

5. Analyze model C by assuming that the lengths of the rigid bars are unequal. Let

these lengths be ‘1, ‘2, and ‘3 starting from the left. Let the spring constants be k

for both.

(a) Use the classical approach.

(b) Use the energy approach.

6. Consider the rigid bar shown with an initial rotation u0 and initial stretch c of the

spring. Use small-deflection theory, and through a complete analysis of the

behavior of the imperfect system, predict critical conditions for the perfect

system (u0 ¼ c ¼ 0). c is the initial stretch of the spring.

7. Repeat Problem 6 assuming that the initial stretch, c, is zero.

8. Two rigid bars are connected by rotational springs to each other and to the

support at C. Find Pcr, assuming that the load remains vertical.

9. Find the critical condition for model D through the kinetic approach.

Hint: Consider the left leg as a free body and study its motion about the

immovable support.

10. Consider the model shown loaded by a vertical force, P, applied quasistatically.

Establish critical conditions for the system (for C ¼ 0).

(a) Use the equilibrium approach.

(b) Use the energy approach.

figure p2.6 and 7

SIMITSES - Title 0750678755_ch02 Final Proof page 44 3.11.2005 10:04am

44 Mechanical Stability Models



11. Repeat Problem 10 assuming C is constant.

12. Repeat Problem 10 assuming C ¼ Aþ B sin uþD sin2 u (nonlinear spring). Note

that the numerical work involved is complicated and a computer program is

needed as well as knowledge of the values of the different parameters.

figure p2.8

figure p2.10, 11, and 12
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3

Elastic Buckling of

Columns

In this chapter, the problem of elastic buckling of bars will be studied using the

approach discussed in Chapter 1 and demonstrated in Chapter 2. To accomplish this,

we will derive the equations governing equilibrium for structural elements of class 2

in Chapter 1 (Section 1.3) along with the proper boundary conditions. This deriv-

ation is based on the Euler-Bernoulli assumptions, listed below, and principle of the

stationary value of the total potential (Appendix).

In analyzing slender rods and beams, we make the following basic engineering

assumptions:

1. The material of the element is homogeneous and isotropic.

2. Plane sections remain plane after bending.

3. The stress-strain curve is identical in tension and compression.

4. No local type of instability will occur.

5. The effect of transverse shear is negligible.

6. No appreciable initial curvature exists.

7. The loads and the bending moments act in a plane passing through a principal

axis of inertia of the cross section.

8. Hooke’s law holds.

9. The deflections are small as compared to the cross-sectional dimensions.

In addition, the loads are assumed to be coplanar, applied quasistatically, and are

either axial or transverse. The transverse loads include distributed loads, q(x),

concentrated loads, Pi, and concentrated couples, Cj. Finally, the ends of the struc-

tures are supported in such a way that primary degrees of freedom (translation and

rotation as a rigid body) are constrained. Before proceeding with the derivation of

the equilibrium equations and boundary conditions, it is desirable to define and

discuss the properties of some special functions.
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3.1 special functions

The following special functions and their properties will be used in the develop-

ment of the theory of slender rods and beams. See Fig. 3.1 for their graphical

representation.

1. Macauley’s Bracket

x� xi½ � ¼ 0 for x < xi

x� xi for x > xi

�
1ð Þ

figure 3.1 Special functions.
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2. Unit Step Function

I x� xið Þ ¼ 0 for x < xi

1 for x $ xi

�
2ð Þ

Note that

x� xi½ � ¼ x� xið ÞI x� xið Þ
and similarly

x� xi½ �2¼ x� xið Þ2I x� xið Þ

3. Dirac d-Function (Carslaw, 1947). The Dirac d-function in all applications is

considered as a result of a limiting process which involves a function d x, «ð Þ subject

to the following conditions:

d x, «ð Þ $ 0 for �1 # x # 1 and 0 < « <1Z 1
�1

d x, «ð Þdx ¼ 1 for 0 < « <1

An example of such a function is the following:

d x� xið Þ ¼

0 if x < xi � «

1

2
« if xi � « # x # xi þ «

0 if x > xi þ «

8>>><
>>>:

3ð Þ

Note that Z 1
�1

f xð Þd x� xið Þdx ¼ f xið Þ

4. The Doublet Function. Let this function be denoted by h x� xið Þ. This is a special

function such that

dd x� xið Þ
dx

¼ h x� xið Þ

Another property of this function (see Shames 1964 for detailed discussion) is thatZ þ1
�1

f xð Þh x� xið Þdx ¼ � df

dx
xið Þ

A particular function that has the foregoing properties is defined as

h x� xið Þ ¼

0 x < xi

1

«2
xi < x < xi þ «

0 x ¼ xi þ «

� 1

«2
xi þ « < x < xi þ 2«

0 x > xi þ 2«

8>>>>>>>><
>>>>>>>>:

4ð Þ

3.2 beam theory

The equilibrium equations and proper boundary conditions for an initially

straight beam under transverse and axial loads (beam-column) are derived using
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the principle of the stationary value of the total potential. (See Part II of Hoff 1956

and Appendix A.)

Consider the beam of length L, shown in Fig. 3.2, under the action of a distributed

local q(x), n concentrated forces, Pi, m concentrated couples, Cj, and boundary

forces and couples as shown. If u and w denote the displacement components of

the reference surface (actually, here we deal with a two-dimensional problem, and the

reference plane is the locus of the centroids), the extensional strain of any material

point, z units from the reference surface, is given by

«xx ¼ «0
xx þ zkxx 5ð Þ

where «0
xx is the extensional strain on the reference plane (average strain) and kxx is

the change in curvature of the reference plane.

The first-order nonlinear strain-displacement relation is given by

«0
xx ¼ u,x þ

1

2
w2

,x 6ð Þ

where the comma denotes differentiation with respect to coordinate x, u, and w are

displacement components of the reference plane.

The curvature for the reference plane is approximated by

kxx ¼ �w,xx 7ð Þ

figure 3.2 Beam geometry and sign convention.
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In addition, the mathematical expression of Hooke’s law is

sxx ¼ E«xx 8ð Þ

If Ui and Up denote the strain energy and potential of external forces, respectively,

and UT , the total potential of the system, then

Ui þUp ¼ UT

Use of the principle of the stationary value of the total potential leads to

d«UT ¼ d«Ui þ d«Up ¼ 0 9ð Þ

where « denotes variations with respect to strains and displacements.

Since the variation of the strain energy (see Part II of Hoff, 1956) is given by

d«Ui ¼
Z

V

sxxd«xxdV

¼
Z L

0

Z
A

E «0
xx þ zkxx

� �
d«0

xx þ zdkxx

� �
dA dx

10ð Þ

and since «0
xx, kxx, and their variations are only functions of x (note that x is a

centroidal axis), then Z
A

z dA ¼ 0

and

d«Ui ¼
Z L

0

Pd«0
xx þ EIkxxdkxx

� �
dx

where

P ¼ E«0
xx

Z
A

dA ¼ EA«0
xx

and

I ¼
Z

A

z2dA

Next, replacing the change in curvature and the variations in strain and change in

curvature by the displacement components and their variations, we obtain

d«Ui ¼
Z L

0

P du,x þ w,xdw,x
� �

þ EIw,xxdw,xx

� �
dx 11ð Þ

Note that

d«

1

2
w2

,x

� �
¼ 1

2
w,x þ dw,x
� �2�w2

,x

h i
¼ 1

2
2w,xdw,x þ dw,x

� �2h i
and neglecting higher-order terms (assuming small changes),

d«

1

2
w2

,x

� �
¼ w,xdw,x

Integration by parts of Eq. (11) yields
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d«Ui ¼Pdu

���L
0
þ Pw,xdw

���L
0
þ EIw,xxdw,x

���L
0
� EIw,xx

� �
,xdw

���L
0

þ
Z L

0

�P,xdu� Pw,x
� �

,xdwþ EIw,xx

� �
,xx

dw
h i

dx

12ð Þ

Similarly, the variation in the potential of the external forces is given by

d«Up ¼�
Z L

0

qdw dx�
Xn

i¼1

Pidw xið Þ �
Xm
j¼1

Cjdw,x xj

� �
� Pu Lð Þ þ Pu 0ð Þ þM0dw,x 0ð Þ �MLdw,x Lð Þ þ R0dw 0ð Þ � RLdw Lð Þ

13ð Þ

If we introduce the special functions d x� xið Þ and h x� xið Þ, the expression for

the variation of the potential of the external forces becomes

d«Up ¼�
Z L

0

qþ
Xn

i¼1

Pid x� xj

� �
�
Xm
j¼1

Cjh x� xj

� �" #
dw dx

� Pdu
� ����L

0
� Mdw,x
� ����L

0
� Rdwð Þ

���L
0

14ð Þ

Substitution of Eqs. (12) and (14) into Eq. (9) finally yields

d «UT ¼
Z L

0

�P,xduþ EIw,xx

� �
,xx
� Pw,x
� �

,x�q�
Xn

i¼1

Pid x� xið Þ
("

þ
Xm
j¼1

Cjh x� xj

� �)
dw

#
dxþ P� P

� �
du

���L
0

þ Pw,x � EIw,xx

� �
,x�R

h i
dw

���L
0
þ EIw,xx �M
� �

dw,x

���L
0
¼ 0 15ð Þ

The identical satisfactionofEq. (15) (sinceduanddwarearbitrarydisplacementfunc-

tions) leads to thegoverningdifferential equationsand theproperboundaryconditions.

The differential equations are

P,x ¼ 0

EIw,xx

� �
,xx
�Pw,xx ¼ qþ

Xn

i¼1

Pid x� xið Þ �
Xm
j¼1

Cjh x� xj

� � 16ð Þ

The proper boundary conditions are given by

Either Or

P ¼ P du ¼ 0) u ¼ u

Pw,x � EIw,xx

� �
,x¼ R dw ¼ 0) w ¼ 0

EIw,xx ¼M dw,x ¼ 0) w,x ¼ 0

It is clearly shown above that, at the boundaries (x ¼ 0, L), we may prescribe

either the forces and moments or the displacements and rotations, but not both.

Examples:

A free edge with no moment or shear force applied is characterized by

Pw,x � EIw,xx

� �
,x¼ 0, EIw,xx ¼ 0, and P ¼ P or u ¼ u 17að Þ
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A simply supported edge is characterized by

w ¼ 0, EIw,xx ¼ 0, and P ¼ P or u ¼ u 17bð Þ

Finally, a clamped edge is characterized by

w ¼ 0, w,x ¼ 0, and P ¼ P or u ¼ u 17cð Þ

Note that the first of Eqs. (16) implies that P ¼ constant, and from the boundary

condition, this constant is equal to P. In the case where the end shortening is

prescribed (u), there is a P ¼ constant corresponding to each value of u.

3.3 buckling of columns

When a bar is initially straight and of perfect geometry and it is subjected to the

action of a compressive force without eccentricity, then it is called an ideal column.

When the load is applied quasistatically, the column is simply compressed but

remains straight. We then need to know if the column will remain straight no matter

what the level of the applied force is. To determine this, we seek nontrivial solutions

(w 6¼ 0) for the equations governing the bending (see Eqs. 16 with q ¼ 0, Pi ¼ 0, and

Cj ¼ 0) of this column under an axial compressive load (�P) and subject to the

particular set of boundary conditions. Note that in deriving the governing differential

equations, it was assumed that the applied compressive load remained parallel to its

original direction and there was no eccentricity in either the geometry or the applied

load. Thus, the problem has been reduced to an eigen-boundary-value problem.

3.3.1 SOLUTION

In this case the solution of the problem will be discussed for a number of boundary

conditions. It will be shown that the manner in which the column is supported at the

two ends affects the critical load considerably. This approach to the problem is

known as the classical, equilibrium, or bifurcation approach. In addition, the other

approaches (dynamic and energy) will be demonstrated.

1. Simply Supported Ideal Column. The mathematical formulation of this problem is

given below.

D:E: EIw,xx

� �
,xx
þPw,xx ¼ 0 18að Þ

B:C:’s w 0ð Þ ¼ w Lð Þ ¼ 0

w,xx 0ð Þ ¼ w,xx Lð Þ ¼ 0
18bð Þ

Assuming that the bending stiffness (EI) of the column is constant and introducing

the parameter k2 ¼ P=EI allows us to write the governing differential equation in the

following form

w,xxxx þ k2w,xx ¼ 0 18cð Þ

The general solution of this equation is given by

w ¼ A1 sin kxþ A2 cos kxþ A3xþ A4 19ð Þ
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This solution must satisfy the prescribed boundary conditions. This requirement

leads to four linear homogeneous algebraic equations in the four constants Ai.

A nontrivial solution then exists if all four constants are not identically equal to zero.

This can happen only if the determinant of the coefficients of the Ai’s vanishes or

0 1 0 1

sin kL cos kL L 1

0 �k2 0 0

�k2 sin kL �k2 cos kL 0 0

��������

��������
¼ 0 20ð Þ

The expansion of this determinant leads to

sin kL ¼ 0

The solution of this equation is

kL ¼ np n ¼ 1, 2, . . .

or

P ¼ n2p2EI

L2

and the smallest of these corresponds to n ¼ 1. Thus

Pcr ¼
p2EI

L2

This is known as the Euler equation because the problem was first solved by

Leonhard Euler (see Timoshenko, 1953).

Note that if A denotes the cross-sectional area of the column and r is the radius of

gyration of the cross-sectional area, the critical stress is given by

scr ¼
p2EI

AL2
¼ p2r2E

L2
¼ p2E

L=rð Þ2
21að Þ

and the corresponding strain is

«cr ¼
pr

L

	 
2

21bð Þ

The displacement function corresponding to n ¼ 1 is w ¼ A1 sin px=L.

2. Clamped Ideal Column. For this particular problem, the mathematical formula-

tion is given below

D:E: w,xxxx þ k2w,xx ¼ 0

B:C:’s w 0ð Þ ¼ w Lð Þ ¼ 0

w,x 0ð Þ ¼ w,x Lð Þ ¼ 0

22ð Þ

The solution is given by Eq. (19) and it must satisfy the prescribed boundary

conditions. The characteristic equation for this case is given by

0 1 0 1

sin kL cos kL L 1

k 0 1 0

k cos kL �k sin kL 1 0

��������

��������
¼ 0 23ð Þ
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Expansion of this determinant yields the following equation

2 cos kL� 1ð Þ þ kL sin kL ¼ 0 24ð Þ

Since

cos kL� 1 ¼ �2 sin2 kL

2

and

sin kL ¼ 2 sin
kL

2
cos

kL

2

then Eq. (24) becomes

sin
kL

2

kL

2
cos

kL

2
� sin

kL

2

� �
¼ 0

Then either

sin
kL

2
¼ 0

or

kL

2
cos

kL

2
¼ sin

kL

2

The first of these solutions leads to

P ¼ 4n2p2EI

L2
n ¼ 1, 2, . . .

from which

Pcr ¼
4p2EI

L2
25að Þ

and

scr ¼
4p2E

L=rð Þ2

«cr ¼ 4
pr

L

	 
2
25bð Þ

The second of the solutions leads to Pcr > 4p2EI=L2. The displacement function

corresponding to n ¼ 1 is

w ¼ A2 cos
2px

L
� 1

� �

3. Ideal Column with One End Clamped and the Other Free. For this case the

boundary conditions are (assuming that the fixed end is at x ¼ 0)

w 0ð Þ ¼ w,x 0ð Þ ¼ 0

w,xx Lð Þ ¼ 0

k2w,x Lð Þ þ w,xxx Lð Þ ¼ 0

9>=
>; 26ð Þ
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The solution is still given by Eq. (19) and the characteristic equation is

0 1 0 1

k 0 1 0

�k2 sin kL �k2 cos kL 0 0

0 0 k2 0

��������

��������
¼ 0 27ð Þ

which expanded results in the following equation

k5 cos kL ¼ 0

cos kL ¼ 0

9>=
>; 28ð Þor

This equation leads to the following result

P ¼ 2m� 1

2

� �2
p2EI

L2
m ¼ 1, 2, . . .

and

Pcr ¼
p2EI

4L2

scr ¼
p2E

4 L=rð Þ2

«cr ¼
1

4

pr

L

	 
2

9>>>>>>>=
>>>>>>>;

29ð Þ

The displacement function for this case is given by

w ¼ A2 cos
px

2L
� 1

	 


3.3.2 REDUCTION OF THE ORDER OF THE DIFFERENTIAL EQUATION

If the moment and shear are prescribed at x ¼ 0, then it is possible to reduce the

order of the governing differential equation from four to two.

Starting with Eq. (18a) under the assumption of constant flexural stiffness, two

consecutive integrations yield the following equations

EIw,xxx þ Pw,x ¼ B1

and

EIw,xx þ Pw ¼ B1xþ B2

If, in addition, the normal displacement w is measured from the left end, then

w 0ð Þ ¼ 0.

Then the constants B1 and B2 can be evaluated from the known moment and shear

and (see Fig. 3.2; R1 opposite to positive w).

B1 ¼ �R0

B2 ¼ þM0

Thus the governing differential equation reduces to
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EIw,xx þ Pw ¼ �R0xþM0 30ð Þ

Note that, for the case of simply supported ideal columns, R0 ¼M0 ¼ 0 and the

equation becomes

EIw,xx þ Pw ¼ 0 31ð Þ

3.3.3 EFFECTIVE SLENDERNESS RATIO

We have seen from the previous sections that the critical load of a compressed

ideal column is affected by the boundary conditions. For all possible boundary

conditions, the critical load may be expressed by

Pcr ¼ C
p2EI

L2
32ð Þ

where C is a constant that depends on the boundary conditions and is called the end

fixity factor. Thus for both ends simply supported, C ¼ 1; for one end fixed and the

other free, C ¼ 1=4; and so on (see Table 3.1).

Similarly, the corresponding critical stress is given by

scr ¼ C
p2E

L=rð Þ2
33ð Þ

where the parameter L=r is known as the slenderness ratio of the ideal column. For

the case of simply supported ends, the end fixity factor is equal to unity. By defining a

new parameter L0 through

L0 ¼ Lffiffiffiffi
C
p 34ð Þ

we may use the simply-supported-ends equation, for all cases of boundary condi-

tions, through the equivalent slenderness ratio L0=r. Thus

scr ¼
p2E

L0=rð Þ2
35ð Þ

Note that a single curve of scr plotted versus L0=r represents critical loads for all

possible geometries and boundary conditions of ideal columns (see Fig. 3.3).

3.3.4 IMPERFECT COLUMNS

So far, we have concentrated on ideal columns. In practice, though, no column is

of perfect geometry, and the applied load does not necessarily pass through the

table 3.1 End fixity factors

Boundary Conditions C L0

Both ends simply supported 1 L

One end fixed, the other free
1

4
2L

Both ends fixed 4
L

2

One end fixed, the other simply supported
4:493

p

� �2

0.699L
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centroid of the column cross section. It is therefore necessary to study the behavior of

columns of imperfect geometries and of columns for which the load is applied

eccentrically. Another reason for studying the behavior of columns of imperfect

geometries is that by letting the imperfection disappear (limiting process), we can

predict the behavior of the perfect system.

figure 3.3 Ideal columns with various boundary conditions.
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1. Eccentrically Loaded Columns. Consider first the case of a simply supported

column (see Fig. 3.4) loaded eccentrically with the same eccentricity e at both ends.

The equilibrium equation for this case is

w,xxxx þ k2w,xx ¼ 0 36að Þ

The boundary conditions are given by

w 0ð Þ ¼ 0

w Lð Þ ¼ 0

EIw,xx 0ð Þ ¼ Pe) w,xx 0ð Þ ¼ k2e

EIw,xx Lð Þ ¼ Pe) w,xx Lð Þ ¼ k2e

9>>>>=
>>>>;

36bð Þ

The solution for this equation is

w ¼ A1 sin kx þ A2 cos kx þ A3kþ A4 19ð Þ

Use of the boundary conditions, Eqs. (36b), yields

w xð Þ ¼ e 1� cos kx� tan
kL

2
sin kx

� �
37ð Þ

Note that as the load P increases from zero, the value of k, and consequently tan

kL/2, increases. Therefore the displacement function w becomes unbounded as tan

kL/2 approaches infinity and the corresponding load P approaches p2EI=L2.

If Eq. (37) is evaluated at some characteristic point (say x ¼ L=2), it may serve as a

load-displacement relation. Denoting by d the displacement at the midpoint, we may

write

d ¼ �e 1� cos
kL

2
� tan

kL

2
sin

kL

2

� �

or

d ¼ e sec

ffiffiffiffiffiffi
P

EI

r
L

2
� 1

 !
38ð Þ

This result is plotted in Fig. 3.5, which shows that as e! 0, the plot represents the

behavior of the perfect system.

Finally, if the eccentricities are equal in magnitude but opposite in direction, the

last two of the boundary conditions, Eqs. (36b), are given by

figure 3.4 Eccentrically loaded column.
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w,xx 0ð Þ ¼ �k2e

w,xx Lð Þ ¼ k2e

)
39ð Þ

and the solution is

w xð Þ ¼ e �1þ 2x

L
þ cos kx� cot

kL

2
sin kx

� �
40ð Þ

For this case the displacement becomes unbounded when the load P approaches

4p2EI=L2, and

w
L

2

� �
¼ 0

and

w
L

4

� �
¼ e

2
sec

ffiffiffiffiffiffi
P

EI

r
L

4
� 1

 !
41ð Þ

2. Columns with Geometric Imperfections. Next consider a simply supported col-

umn with an initial geometric imperfection, w0 xð Þ, loaded along the axis joining the

end points (see Fig. 3.6).

The governing differential equation for this case becomes

EI w,xx � w0,xx

� �
þ Pw ¼ 0 42ð Þ

Note that the change in curvature for this case is �w,xx þ w0,xx

� �
.

The boundary conditions for this problem are w 0ð Þ ¼ w Lð Þ ¼ 0. Note that

w0 0ð Þ ¼ w0 Lð Þ ¼ 0.

Since the initial shape is continuous and has a finite number of maxima and

minima in the range 0 < x < L, then the shape can be represented by a sine series

(there is no initial moment at the boundaries).

w0 xð Þ ¼
X1
n¼1

an sin
npx

L

figure 3.5 P-� diagram with eccentricity effect.
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Then the differential equation, Eq. (42), assumes the following form

EIw,xx þ Pw ¼ EI
X1
n¼1

np

L

	 
2

an sin
npx

L
43ð Þ

A series solution may be assumed, each term of which satisfies the boundary

conditions

w xð Þ ¼
X1
j¼1

Aj sin
jpx

L
44ð Þ

Substitution into Eq. (43) leads to the following equation:

� EI
np

L

	 
2

� P

� 

An ¼ EI

np

L

	 
2

an 45ð Þ

Thus the solution becomes

w xð Þ ¼
X1
n¼1

Pn

Pn � P
an sin

npx

L
46ð Þ

and

w� w0 ¼
X1
n¼1

P

Pn � P
an sin

npx

L
47ð Þ

where

Pn ¼
n2p2EI

L2

Southwell (1936) considered this problem of initial geometric imperfections; and

he concluded that, as long as the imperfection is such that a1 exists, then a critical

condition arises as P! p2EI=L2. Furthermore, since in a test one can measure P

and the net deflection of the midpoint w L=2ð Þ � w0 L=2ð Þ ¼ d½ �, he devised a plot

from which P1 ¼ PE can be determined through use of the experimental data. This

plot is known as the Southwell plot.

Assume that a1 6¼ 0 and all an ¼ 0 for n ¼ 2, 3, 4, . . . . Then

d ¼ w
L

2

� �
� w0

L

2

� �
¼ Pa1

P1 � P
48ð Þ

figure 3.6 Imperfect column.
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From this we obtain

P1

d

P

� �
� a1 ¼ d 49ð Þ

And thus d=P is a linear function of d.

Since, as P! P1, the first term of the series is the predominant one, Eq. (47), then

for large values of P (but P < P1) it can safely be assumed that Eq. (49) holds and

d=P varies linearly with d. Thus, if for a test we plot d=P vs d at the higher values of d,

the relation is linear and the intercepts give a1 and a1=P1 (see Fig. 3.7).

3.3.5 TILTING OF FORCES

In many practical applications where stability of columns is a basic design criter-

ion, the force does not remain fixed in direction, but it passes through a fixed point.

This is a case of load-behavior (during the buckling process) problems where the

system may still be considered as conservative. Note that the follower-force problem

does not fall in this category. Examples of these types of problems are shown in Figs.

3.8 and 3.9.

Consider an elastic column, as shown in Fig. 3.10, with the applied load P passing

through a fixed point C. Using the free end as the origin, for displacements and the

x-coordinate, the governing equation (equilibrium) is

M ¼ EIw,xx ¼ � P cos wð Þw� P sin wð Þx

If w is a small constant (this implies that P is initially slightly tilted), the equation

becomes

w,xx þ k2w ¼ �k2wx 50ð Þ

The associated boundary conditions are

w 0ð Þ ¼ 0, w,x Lð Þ ¼ 0

figure 3.7 The Southwell plot.
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and the auxiliary condition

w Lð Þ ¼ d � aw

The general solution of Eq. (50) is

w ¼ �wxþ C1 sin kxþ C2 cos kx 51ð Þ

Use of the above conditions yields

aw ¼ �wL 1� tan kL

kL

� �
52ð Þ

Since we are only interested in the existence of a nontrivial solution, w 6¼ 0, the

characteristic equation is

tan kL ¼ kL 1þ a

L

	 

53ð Þ

This is a transcendental equation and it may be solved either numerically or graph-

ically (see Fig. 3.11).

figure 3.8 Loaded frame.
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It is seen from Fig. 3.11 that the critical value for (kL) lies between zero and 4.493.

Note the following special cases:

1. If a ¼ �L, kLð Þcr¼ p and Pcr ¼ p2EI=L2.

2. If a ¼ �1, kLð Þcr¼ p=2 and Pcr ¼ p2EI=4L2.

figure 3.9 Elastic bar on a rotating disc.

figure 3.10 Tilt-buckled column.
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An alternate solution is possible if we use the fourth-order differential equation,

Eq. (18c). The solution to this equation is given by Eq. (19), or

w xð Þ ¼ A1 sin kxþ A2 cos kxþ A3xþ A4 19ð Þ

Referring to Fig. 3.10 and placing the origin at the fixed end with x increasing toward

the free end, we obtain the boundary conditions

figure 3.11 Critical conditions of tilt-buckling.
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w 0ð Þ ¼ 0

w,x 0ð Þ ¼ 0

w,xx Lð Þ ¼ 0

� EIw,xxx Lð Þ þ Pw,x Lð Þ
� �

¼ �P �w Lð Þ
a

� 


Use of the boundary conditions leads to the following characteristic equation

0 1 0 1

k 0 1 0

sin kL cos kL 0 0

sin kL cos kL L
a
þ 1

� �
1

��������

��������
¼ 0

The expansion of this determinant is:

tan kL ¼ kL 1þ a

L

	 

53ð Þ

Tilt-buckling is also possible for other systems. Biezeno and Grammel (1956)

discuss a number of cases of tilt-buckling in torsion and in bending (see Fig. 3.12).

Consider a shaft of torsional rigidity GJ, length L, fixed at one end, and carrying a

rigid disc of diameter a, loaded as shown in Fig. 3.12a. When the disc is in the tilted

position, the applied torque is aP sin w. The torque transmitted to the shaft is

GJð Þ w=Lð Þ. From equilibrium considerations

GJ
w

L
¼ aP sin w 54ð Þ

It is clear that a bifurcation point exists at w ¼ 0 and P ¼ GJ=aL (see Fig. 3.12b).

Thus

Pcr ¼
GJ

aL
55ð Þ

Next, consider the beam shown in Fig. 3.12c. If ‘1 ¼ L, the governing differential

equation becomes

EIw,xx ¼ �
aP sin w

L
x 56ð Þ

Two integrations with respect to x and the use of the boundary conditions

w 0ð Þ ¼ w Lð Þ ¼ 0 yield

w ¼ aP

6EIL
wx L2 � x2
� �

57ð Þ

Since w ¼ �w,x Lð Þ, then

w ¼ aPL

3EI
w 58ð Þ

From this equation we see that a nontrivial solution exists if

Pcr ¼
3EI

aL
59að Þ

Similarly, the critical load for the more general case is given by

Pcr ¼
3EI

a
: ‘1 þ ‘2
‘21 � ‘1‘2 þ ‘22

59bð Þ
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Note that the result given by Eq. (59a) can be derived from Eq. (59b) if we let ‘1 ¼ L

and ‘2 ¼ 0.

3.3.6 EFFECT OF TRANSVERSE SHEAR

One of the assumptions made in deriving the governing differential equations of

beam bending (see Euler-Bernoulli assumptions) is that the effect of transverse shear

on deformations is negligible. If this assumption is removed, the beam is called a

Timoshenko beam, and the associated theory, Timoshenko theory; see Thomson

(1993) and Timoshenko and Gere (1961).

Consider a beam element of length dx, as shown in Fig. 3.13a. The element

deforms in a pure shear of magnitude g and pure bending of magnitude c,x, shown

figure 3.12 Tilt-buckling of shafts and beams.
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as decomposed in Fig. 3.13b the left and right faces of which rotate through angles c

and cþ c,xdx, respectively as shown in Fig. 3.13c. The reference line rotates through

(small) angles w,x and w,x þ w,xxdx at the left and right faces. Thus, the shear strain is

g ¼ w,x � c 60ð Þ

The resultant shear force is usually written as

Q ¼ GA

n
w,x � c
� �

61ð Þ

where n is the so-called shear correction factor, included to account approximately

for the nonuniformity of the shear strain. For a solid rectangular beam cross section

n ¼ 1,2; for a solid circular cross section n ¼ 1:11; and for an I-beam, n ¼ 1:2A=Af

where A is the cross-sectional area and Af is the area of the two flanges of the I-beam.

The bending stress at any position z relative to the midsurface is given by

sx ¼ Ezc,x 62ð Þ

so that the bending moment can be written as

M ¼ EIc,x 63ð Þ

From Fig. 3.13c, we can deduce two equilibrium equations

Q,x � Pc,x ¼ 0

M,x þQþ Pg ¼ 0
64ð Þ

The last term in the second equation arises from the relative position of the reference

line on the left and right faces, as detailed in Fig. 3.13d. Note that the axial force is

assumed to rotate with the section remaining normal to each face.

P
P

P

Q

P g

y

w,x

M
w,x + w,xxdx

M + M,xdx

Q + Q,xdx
y + y,xdx

g + g,xdx

g dx

g

Reference axis
(Beam centerline)

z

dx

(a) Undeformed beam element

+ =

(b) Separate bending and shear deformations

(c) Deformed beam element (d) Computation of bending moment caused by axial force 

figure 3.13 Geometry for shear corrections.
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Considering now a simply supported column, the first of Eqs. (64) can be inte-

grated to obtain

Q� Pc ¼ 0 65ð Þ

which, when substituted into the second, gives

M,x þ P g � cð Þ ¼M,x þ Pw,x ¼ 0 66ð Þ

Again, for the simply-supported case, this equation can be integrated to obtain

M þ Pw ¼ EIc,x þ Pw ¼ 0 67ð Þ

Combining Eq. (61) with this equation, one obtains

w,xx þ
P

EI
1þ nP

GA

� �
¼ 0 68ð Þ

Since the column is simply supported, the boundary conditions associated with the

reduced-order equation, Eq. (68), are

w 0ð Þ ¼ w Lð Þ ¼ 0 69ð Þ

It is easily concluded that the first eigenvalue is p and

Pcr 1þ nPcr

AG

� �
¼ p2EI

L2
¼ P1 70ð Þ

Solving for Pcr, we obtain

Pcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4nP1=AG

p
� 1

2n=AG
71að Þ

¼ 2P1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4nP1=AG

p 71bð Þ

�P1 1� nP1

AG

� �
71cð Þ

Note that equations (71a) and (71b) are equivalent.

Another expression is obtained for Pcr by a different approach; see Art. 2.17 of

Timoshenko (1953). This expression is

Pcr ¼
P1

1þ P1=AG
72ð Þ

Note that Eqs. (71c) and (72) are approximately equal for n ¼ 1.

3.4 the kinetic approach

In using this approach, we are interested in the character of the motion (in the

small) of the beam under constant P. In other words, if the column is compressed to

any level of P, then the ends are made immovable (no additional axial deformation),
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and the column is given a small initial disturbance, what is the tendency of the

system? If the system simply tends to oscillate about the undisturbed static equilib-

rium position, then the static equilibrium is stable. Before this can be accomplished,

the differential equation governing the motion of a beam under the Euler-Bernoulli

assumptions must be derived.

If m denotes the mass per unit length and if the effect of rotary inertia is neglected,

then the equation of motion of the beam under constant axial load P is given by (see

Churchill, 1958; Courant, 1953; and Thomson, 1965)

EIw,xx

� �
,xx
þPw,xx þmw,tt ¼ 0 73ð Þ

If the ideal column is simply supported, then the solution of Eq. (73) is given by

w ¼ f tð Þ sin npx

L
74ð Þ

Note that the associated boundary conditions w 0ð Þ ¼ w Lð Þ ¼ w,xx 0ð Þ ¼ w,xx Lð Þ ¼ 0

are satisfied by this solution, Eq. (74).

Substitution into Eq. (80) yields

f,tt þ
np

L

	 
2 1

m

n2p2EI

L2
� P

� �
f ¼ 0 75ð Þ

and if

v2
n ¼

1

m

np

L

	 
2 n2p2EI

L2
� P

� �

then

f,tt þ v2
nf ¼ 0 76ð Þ

We see from Eq. (76) that, if v2
n > 0, then the motion is oscillatory, and if v2

n < 0,

then the motion is diverging. Thus

Pcr ¼
n2p2EI

L2
n ¼ 1, 2, . . . 77ð Þ

and the smallest value corresponds to n ¼ 1. Also note that the frequency of oscil-

lations decreases as P approaches Pcr, while the frequency increases as the applied

axial load increases in tension.

Another procedure that can be used here is as follows. Starting with Eq. (73), we

may write the separated solution as

w x, tð Þ ¼ g xð Þeivt 78ð Þ

where v is the frequency of small oscillations. Use of this solution leads to the

following ordinary differential equation

EIg,xxxx þ Pg,xx �mv2g ¼ 0

or

g,xxxx þ k2g,xx �
mv2

EI
g ¼ 0

9>>>=
>>>;

79ð Þ

The general solution of this is

g xð Þ ¼
Xi¼4

i¼1

Aie
lix 80ð Þ
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where the Ai are constants and the li are the roots of the biquadratic

l4 þ k2l2 �mv2

EI
¼ 0 81ð Þ

The li roots are:

l1,2 ¼ �i
kffiffiffi
2
p 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4mv2

k4EI

r !1
2

¼ �ia

l3,4 ¼ �
kffiffiffi
2
p �1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4mv2

k4EI

r !1
2

¼ �b

9>>>>>>=
>>>>>>;

82ð Þ

The requirement of satisfying the prescribed boundary conditions leads to a set of

four homogeneous algebraic equations in Ai. Since a nontrivial solution is sought,

the determinant of the coefficient of the constants Ai must vanish. This is the

characteristic equation.

To demonstrate this procedure, consider the case of a column with simply sup-

ported boundaries.

g 0ð Þ ¼ g Lð Þ ¼ 0

g,xx 0ð Þ ¼ g,xx Lð Þ ¼ 0
83ð Þ

The characteristic equation for this case becomes

1 1 1 1

�a2 �a2 b2 b2

e�iaL eiaL e�bL ebL

�a2e�iaL �a2eiaL b2ebL b2ebL

��������

��������
¼ 0 84ð Þ

Subtraction of the first column from the second, the third from the fourth, and

rearrangement of columns lead to the following

1 1 0 0

�a2 �b2 0 0

e�iaL e�bL eiaL � e�iaL ebL � e�bL

�a2e�iaL b2e�bL �a2 eiaL � e�iaLð Þ b2 ebL � e�bLð Þ

��������

��������
¼ 0 85ð Þ

Expanding the above, we obtain

b2 þ a2
� �2

e�iaL � e�iaL
� �

ebL � e�bL
� �

¼ 0 86ð Þ

and since

eiaL � e�iaL ¼ 2i sin aL

ebL � e�bL ¼ 2 sinh bL

)
87ð Þ

then Eq. (86) becomes

4 a2 þ b2
� �2

sin aL sinh bL ¼ 0 88ð Þ

It is easily seen that

4 a2 þ b2
� �2

sinh bL 6¼ 0 89ð Þ
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Thus

sin aL ¼ 0 90ð Þ

The solution of Eq. (90) leads to

aL ¼ np 91ð Þ

Replacing the expression for a and squaring both sides, we obtain

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4mv2

k4EI

r
¼ 2n2p2

L2k2

or

1þ 4mv2

k4EI
¼ 4n4p4

L4k4
� 4n2p2

L2k2
þ 1 92ð Þ

from which

v2 ¼ EI

m

np

L

	 
2 np

L

	 
2

� k2

� 

93ð Þ

We see from Eq. (93) that the motion ceases to be oscillatory as v! 0; conse-

quently, the static equilibrium point corresponding to k(P) ceases to be stable. Thus

P ¼ n2p2EI

L2

and the smallest load corresponds to n ¼ l or

Pcr ¼
p2EI

L2

3.5 elastically supported columns

In most structural configurations, columns are supported by other structural

elements which provide elastic types of restraints at the ends of the columns. These

restraints are similar to spring supports of the rotational (lb-inches per radian) as well

as the extensional type (lbs per inch). In many cases, by knowing the structural

configuration supporting the column, we can accurately estimate the intensity (spring

constant) of the corresponding spring. In this section, the characteristic equation for

a spring-supported column is derived and solutions are presented for a number of

special cases.

In Fig. 3.14, the column of length L has a constant stiffness EI. It is spring-

supported at both ends and is loaded axially by a compressive load P. The buckling

equation is, as before,

w,xxxx þ k2w,xx ¼ 0 k2 ¼ P

EI
94ð Þ

and the boundary conditions are given by

at x ¼ 0: � EIw,xxx þ Pw,x
� �

¼ a0w

EIw,xx ¼ b0w,x
95að Þ
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at x ¼ L: � EIw,xxx þ Pw,x
� �

¼ �aLw

EIw,xx ¼ �bLw,x
95bð Þ

If we introduce the new parameters a0, aL, b0, and bL

a0 ¼
a0

EI
b0 ¼

b0

EI

aL ¼
aL

EI
bL ¼

bL

EI

9>>=
>>; 96ð Þ

the buckling equation and the associated boundary conditions become

w,xxxx þ k2w,xx ¼ 0 97að Þ

w,xxx 0ð Þ þ k2w,x 0ð Þ þ a0w 0ð Þ ¼ 0 97bð Þ

w,xx 0ð Þ � b0w,x 0ð Þ ¼ 0 97cð Þ

w,xxx Lð Þ þ k2w,x Lð Þ � aLw Lð Þ ¼ 0 97dð Þ

w,xx Lð Þ þ bLw,x Lð Þ ¼ 0 97eð Þ

Thus the problem has been reduced to an eigen-boundary-value problem.

The solution to the differential equation is given by Eq. (19), and the use of Eqs.

(97a) leads to the following four linear homogeneous algebraic equations in the Ai’s

(i ¼ 1, 2, 3, 4):

a0A2 þ k2A3 þ a0A4 ¼ 0

b0kA1 þ k2A2 þ b0A3 ¼ 0

aL sin kLð ÞA1 þ aL cos kLð ÞA2 � k2 � aLL
� �

A3 þ aLA4 ¼ 0

kbL cos kL� k2 sin kL
� �

A1 � bLk sin kLþ k2 cos kL
� �

A2 þ bLA3 ¼ 0

9>>>>=
>>>>;

98ð Þ

figure 3.14 Elastically supported column.
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The requirement of the existence of a nontrivial solution leads to the vanishing of the

determinant

0 a1 k2 a1

b0k k2 bL 0

aL sin kL aL cos kL aLL� k2 aL

kbL cos kL� k2 sin kL
� �

� kbL sin kLþ k2 cos kL
� �

bL 0

�����������

�����������
¼ 0 99ð Þ

If we denote the quantity kL by u, the characteristic equation is given by the

following transcendental equation:

� a0 þ aLð Þ u
6

L6
þ
�

b0bL a0 þ aLð Þ þ a0aLL



u4

L4

�

þ a0aL b0 þ bL � b0bLLð Þ u
2

L2

�
sin u

þ
�

a0 þ aLð Þ b0 þ bLð Þ u
5

L5
� a0aLL b0 þ bLð Þ u

3

L3

� 2a0aLb0bL

u

L



cos uþ 2a0aLb0bL

u

L
¼ 0

100ð Þ

Solution of this transcendental equation (the smallest positive root) yields ucr, from

which we can compute Pcr:

Pcr ¼
u2

crEI

L2
101ð Þ

A number of special cases are reported below. These are (1) both ends pinned; (2)

both ends clamped; (3) one end clamped and the other free; (4) one end clamped and

the other pinned; and (5) both ends free against translation, constrained against

rotation.

1. Both Ends Pinned. This case is characterized by a0 ¼ aL ¼ 1 and b0 ¼ bL ¼ 0. If

every term of Eq. (100) is divided by a0aL, and if we let 1=a0, 1=aL, b0, and bL

approach zero, then

L
u4

L4
sin u ¼ 0 102ð Þ

From Eq. (102) ucr ¼ p and

Pcr ¼
p2EI

L2

2. Both Ends Clamped. This case is characterized by a0 ¼ aL ¼ b0 ¼ bL ¼ 1. If we

divide Eq. (100) by a0aLb0bL and take the limit as 1=a0, 1=aL, 1=b0, and 1=bL

approach zero, then

�L
u2

L2
sin u� 2

u

L
cos uþ 2

u

L
¼ 0 103ð Þ

Since u=L 6¼ 0, then
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u

2
sin u� 1� cos uð Þ ¼ 0

u

2
2 sin

u

2
cos

u

2
� 2 sin2 u

2
¼ 0

u

2
cos

u

2
� sin

u

2

	 

sin

u

2
¼ 0

104ð Þ

The smallest root is obtained from sin u=2 ¼ 0, or ucr ¼ 2p, from which

Pcr ¼
4p2EI

L2

3. One End Clamped, the Other Free. This special case is characterized by either

a0 ¼ b0 ¼ 0 and aL ¼ bL ¼ 1, or a0 ¼ b0 ¼ 1 and aL ¼ bL ¼ 0. For either case,

the characteristic equation reduces to

u5

L5
cos u ¼ 0

from which ucr ¼ p=2 and Pcr ¼ p2EI=4L2.

4. One End Clamped, the Other Pinned. This case is characterized by either

a0 ¼ b0 ¼ aL ¼ 1 and bL ¼ 0 or a0 ¼ aL ¼ bL ¼ 1 and b0 ¼ 0

The characteristic equation reduces to

u

L

	 
2

sin u� L
u

L

	 
3

cos u ¼ 0 105ð Þ

Since u=Lð Þ 6¼ 0, then

tan u ¼ u 106ð Þ

The smallest root of Eq. (106) leads to the critical condition or

ucr ¼ 4:493 and Pcr ¼ 20:19
EI

L2

5. Both Ends Free Against Translation, Constrained Against Rotation. This last

special case is characterized by a0 ¼ aL ¼ 0 and b0 ¼ bL ¼ 1. First divide Eq.

(82) by b0bL a0 þ aLð Þ. Then, since 1=b0 ¼ 1=bL ¼ 0 and

lim
a0!0

aL!0

a0 aL

a0 þ aL

¼ 0

the characteristic equation reduces to

u4

L4
sin u ¼ 0 107ð Þ

from which ucr ¼ p and Pcr ¼ p2EI=L2.

3.6 critical spring stiffness

To clearly demonstrate the meaning of critical spring stiffness, consider the

following example (see Fig. 3.15). The column is pinned at the left end and
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supported with an extensional spring at the loaded right end. From the discussion of

the previous section, this case is characterized by a0 ¼ 1, b0 ¼ bL ¼ 0, and aL. The

characteristic equation becomes

u

L

	 
4

� u

L

	 
2

þaLL

� 

sin u ¼ 0 108ð Þ

Since u=L 6¼ 0, then

�k2 þ aLL
� �

sin kL ¼ 0

Thus either

Pcr ¼ aLL

or

Pcr ¼
p2EI

L2
¼ PE

Notice that when for aL is very small, Pcr ¼ aLL < PE , but as aL increases, Pcr

increases until Pcr ¼ aLL ¼ PE . This can happen when aL ¼ p2EI=L3. Any further

increase in aL will yield aLL > PE , which implies that Pcr ¼ PE . This means that for

aL > p2EI=L3, the column will always buckle in an Euler mode, and therefore there

is no need to make the spring any stiffer than aL ¼ p2EI=L3 because no increase in

the critical load can result from it. Then the value p2EI=L3 is called a critical spring

stiffness.

Another case where there exists a critical spring stiffness is shown in Fig. 3.16.

Consider the spring to act at the middle of the bar and the bar to deflect in a

symmetric mode. From symmetry, the vertical reactions are Q=2 ¼ ad=2 (Fig. 3.16)

and the reduced-order equation for the range 0 < x < L=2 is

EIw,xx þ Pw ¼ Q

2
x 109ð Þ

figure 3.15 Critical spring stiffness model.
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The associated boundary and auxiliary conditions are

w 0ð Þ ¼ 0

w,x
L

2

� �
¼ 0

w
L

2

� �
¼ d

9>>>>>=
>>>>>;

110ð Þ

The solution is

w ¼ Q

2P
x� 1

k

sin kx

cos kL=2

� �
111ð Þ

where

k2 ¼ P

EI

or

w ¼ ad

2P
x� 1

k

sin kx

cos kL=2

� �
112ð Þ

figure 3.16 Elastically supported columns (spring at the midpoint).
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Using the auxiliary condition, we obtain

d ¼ ad

2Pk

kL

2
� tan

kL

2

� �
113ð Þ

The requirement of the existence of a nontrivial solution leads to the following

characteristic equation:

1 ¼ aL

4P
1� tan kL=2ð Þ

kL=2

� 


or

� 16EI

aL3

kL

2

� �2

¼ �1þ tan kL=2ð Þ
kL=2

114ð Þ

We see from Eq. (114) that kL=2ð Þcr and consequently Pcr may be calculated for any

given value of a. This may be done either numerically or graphically (see Fig. 3.17).

Note from Fig. 3.15 that as a! 0, kL=2ð Þ ! p=2 and Pcr ! p2EI=L2 as expected.

Furthermore, as a!1, kL=2ð Þcr! 4:493 and Pcr ! 20:19ð Þ4EI=L2. However, if

the bar were to buckle in an antisymmetric mode (with respect to L=2). then

figure 3.17 Critical conditions for spring-supported columns (at the midpoint).
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Pcr ¼ 4p2EI=L2; therefore there is no need for the spring to be any stiffer than

16p2EI=L3 (corresponding to kL=2 ¼ p). This maximum value of spring stiffness,

a, required for the bar to carry the maximum possible axial load (¼ 4p2EI=L2) is

called critical spring stiffness, or

acr ¼
16p2EI

L3
115ð Þ

If the elastic support is applied at a distance ‘1 from the left end of the bar, then the

characteristic equation is

� sin k‘1 sin k‘2
Pk sin kL

þ ‘1‘2
L
� 1

a
¼ 0 116ð Þ

where

‘2 ¼ L� ‘1
For details, see Art. 2.6 of Timoshenko (1961).

3.7 elastica theory for beams

The nonlinear theory of beams goes back to Kirchhoff and Clebsch, as discussed

by Love (1944). This theory is geometrically exact, which means that there are no

small-angle assumptions in the treatment of finite rotation of the cross-sectional

frame. Although elastica theory has been extended in various ways during the last

50 years, it was originally intended for beams undergoing extension, twist, and

bending in two directions. The approximation in the formulation of the theory is in

the constitutive law that relates the cross-sectional stress resultants to the generalized

strains. Asymptotic methods have been used to show that Kirchhoff-Clebsch theory

is asymptotically exact to three-dimensional elasticity for the case of h=‘! 0 where h

is a cross-sectional characteristic dimension and ‘ is the characteristic wavelength of

the deformation along the beam axis of centroids. This observation is only true if the

beam cross section is assumed to be closed and to have only one characteristic length,

thus excluding for now the important case of beams with thin-walled, open sections.

For this reason we will devote Section 3.8 to a specialized derivation for that case, not

a geometrically exact treatment however.

Kirchhoff-Clebsch theory can be derived either from vector mechanics or from the

principle of minimum total potential energy. In the latter case, however, it is neces-

sary to define the variations of the generalized strains in terms of appropriate virtual

displacement and rotation measures in such a way that those variations are inde-

pendent of the way the displacement of the axis of cross-sectional centroids and the

finite rotation of the cross-sectional frame are expressed. The resulting equations are

the same either way and are said to be ‘‘intrinsic’’—meaning that they too are

independent of the way the beam displacement and rotation measures are chosen.

3.7.1 EQUILIBRIUM EQUATIONS

Consider a beam slice (a segment of infinitesimal length) loaded by distributed

forces and moments along its length and by concentrated forces and moments at the

ends. Love (1944) shows that the resulting vector equations can be written out in

scalar form as
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F 01 þ F3K2 � F2K3 þ f1 ¼ 0

F 02 � F3K1 þ F1K3 þ f2 ¼ 0

F 03 þ F2K1 � F1K2 þ f3 ¼ 0

M0
1 � K3M2 þ K2M3 þm1 ¼ 0

M0
2 � 1þ «ð ÞF3 þ K3M1 � K1M3 þm2 ¼ 0

M0
3 þ 1þ «ð ÞF2 � K2M1 þ K1M2 þm3 ¼ 0

117ð Þ

These equations can also be written in a convenient matrix form as

F 0 þ eKKF þ f ¼ 0

M0 þ eKKM þ 1þ «ð Þeee1F þm ¼ 0
118ð Þ

where ð Þ0 denotes the derivative with respect to the axial coordinate x1 along the

beam reference line, often chosen as the locus of the centroids or of the shear centers,

F is the column matrix of stress resultant components measured in the deformed

beam cross-sectional frame with Fi ¼ F � Bi, M is the column matrix of stress mo-

ment components measured in the deformed beam cross-sectional frame with

Mi ¼M � Bi, K is the column matrix of deformed beam curvature components

measured in the deformed beam cross-sectional frame with Ki ¼ K � Bi, f is the

column matrix of applied distributed force components measured in the deformed

beam cross-sectional frame with fi ¼ f � Bi, m is the column matrix of applied dis-

tributed force components measured in the deformed beam cross-sectional frame

with mi ¼ m � Bi, e1 ¼ b 1 0 0 cT , « is the stretching strain of the beam reference

line, and fð Þð Þij ¼ �eijkð Þk. For example, for the column matrix K, the associated

matrix eKK is the antisymmetric matrix

eKK ¼ 0 �K3 K2

K3 0 �K1

�K2 K1 0

2
4

3
5 119ð Þ

where K ¼ kþ k, k is the column matrix of initial twist and curvature components

measured in the cross-sectional frame of the undeformed beam, with ki ¼ k � bi, and

k is a measure of the elastic twist and bending. Note that the cross-sectional frame

bi has b1 tangent to the reference line of the undeformed beam and b2 and b3

perpendicular to it, in the plane of the reference cross section of the undeformed

beam along the cross-sectional coordinate lines x2 and x3. If the undeformed beam is

free of initial twist and curvature, then ki ¼ 0.

The cross-sectional frame base vectors Bi are defined such that B1 is tangent to the

reference line of the deformed beam and B2 and B3 are perpendicular to it and lie

parallel to the deformed beam reference cross-sectional plane. The material points of

the reference cross section of the undeformed beam have small displacement in the

deformed beam cross-sectional frame. This displacement is referred to as warping,

and it has components both in and out of the cross-sectional plane. The warping is

determined when the constitutive law is found and is of the order of h«� where

«� ¼ max «, hk1, hk2, hk3ð Þ is the magnitude of the maximum strain in the beam.

3.7.2 CONSTITUTIVE LAW AND STRAIN ENERGY

A linear version of the constitutive law associated with the theory of Eqs. (118) is

appropriate for beams with closed cross sections and can be written as
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F1

M1

M2

M3

8>><
>>:

9>>=
>>; ¼

S11 S12 S13 S14

S12 S22 S23 S24

S13 S23 S33 S34

S14 S24 S34 S44

2
664

3
775

«

k1

k2

k3

8>><
>>:

9>>=
>>; 120ð Þ

where Sij , for i, j ¼ 1, 2, 3, and 4 are the cross-sectional stiffness constants. They may

vary along the beam (i.e. as a function of x1) and depend on the initial twist k1 and

the initial curvature components k2 and k3. The corresponding strain energy per unit

length can be written as

C ¼ 1

2

«

k1

k2

k3

8>><
>>:

9>>=
>>;

T
S11 S12 S13 S14

S12 S22 S23 S24

S13 S23 S33 S34

S14 S24 S34 S44

2
664

3
775

«

k1

k2

k3

8>><
>>:

9>>=
>>; 121ð Þ

For example, consider a homogeneous, isotropic, prismatic beam with reference line

along the coincident shear center and centroid, and with centroidal, cross-sectional

principal axes along x2 and x3. For this case the elastic constants Sij are all zero

except for S11 ¼ EA, S22 ¼ GJ, S33 ¼ EI2, and S44 ¼ EI3, where E is the Young’s

modulus, G the shear modulus, A the cross-sectional area, J the Saint-Venant

torsional constant, I2 the area moment of inertia about x2, and I3 the area moment

of inertia about x3. Nonzero values of initial twist, initial curvature, and offsets

between the reference line and shear center and/or centroid will bring coupling terms

into the model.

3.7.3 KINEMATICAL EQUATIONS

When needed, the kinematical equations can be written in a variety of ways. One

of the beautiful aspects of the equilibrium and constitutive equations, Eqs. (118) and

(120), respectively, is that they are independent of the coordinate systems in which

the displacement variables are expressed and of the definition of the finite rotation

variables used to express the change of orientation between bi and Bi. This change of

orientation may be defined in terms of the 3� 3 matrix of direction cosines C,

elements of which are

Cij ¼ Bi � bj 122ð Þ

The three generalized strains ki may now be defined in terms of the antisymmetric

matrix

ekk ¼ �C0CT þ CekkCT � ekk 123ð Þ

The quantities ki are sometimes referred to as moment strains because the partial

derivative of the strain energy per unit length, as written in Eq. (121), with respect to

ki is Mi. However, for convenience one may choose to express C in terms of three

finite rotation variables, represented here generically in terms of a 3� 1 column

matrix of rotation measures u. Thus, C can be expressed as C uð Þ, and the moment

strains can be written as

k ¼ Ru0 þ Ck� k 124ð Þ

where R and C depend on the angular displacement parameters of the formulation.

For example, for a formulation in terms of Rodrigues parameters, applied to non-

linear beam kinematics by Hodges (1987), C and R become
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C ¼
1� 1

4
uTu

� �
I � euuþ 1

2
uuT

1þ 1
4

uTu

R ¼
I � 1

2
euu

1þ 1
4

uTu

125ð Þ

where I is the 3� 3 identity matrix. This formulation is noted to be especially helpful

because of the simplicity of these expressions. Depending on the context, the symbol u

instead may be used to refer to a column matrix of orientation angles, in which case

CandRaremore complicated functionsof theangles. Inanycase, for the elastica theory

as presented here, the three rotational variables ui for i ¼ 1, 2, and 3, are not independ-

ent. This interdependence is addressed below after introducing displacement variables.

The position vector from a fixed point to a point on the deformed beam reference

line can be written as

R ¼ rþ u 126ð Þ

where r is the position vector from a fixed point to the corresponding point on the

undeformed beam reference line. Thus, u becomes the displacement vector of the

reference line. One convenient way to define the displacement variables is to let

ui ¼ u � bi 127ð Þ

where bi is the orthonormal triad associated with the undeformed beam cross-

sectional frame.

The unit vector tangent to the deformed beam reference line becomes

@R

@s
¼ B1 128ð Þ

where s is the running arc-length coordinate along the deformed beam reference line

and, by definition of the stretching strain measure, s0 ¼ 1þ «. Substituting Eq. (126)

into Eq. (128), one obtains

R0 ¼ r0 þ u0 ¼ 1þ «ð ÞB1 129ð Þ

Since

r0 ¼ b1

b0i ¼ k� bi

130ð Þ

and making use of the fixed length of B1 as unity, the stretching strain can be written as

« ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 þ u0 þ ekku
	 
T

e1 þ u0 þ ekku
	 
r

� 1 131ð Þ

Now we address the interdependence of the three rotational variables. One way to

approach this is to take an alternative expression for R0, such that

R0 ¼ r0 þ u0 ¼ 1þ g11ð ÞB1 þ 2g12B2 þ 2g13B3 132ð Þ

Here 2g12 and 2g13 are shear angles in a more general theory. Letting

g ¼ bg11 2g12 2g13cT we can again make use of Eqs. (126) to obtain

g ¼ C e1 þ ekkuþ u0
	 


� e1 133ð Þ

and constrain g so that the shear angles are zero, viz.,

SIMITSES - Title 0750678755_ch03 Final Proof page 82 9.11.2005 12:21am

82 Elastic Buckling of Columns



g ¼ «e1 or eee1g ¼ 0 134ð Þ
In the event that Rodrigues parameters are used for the finite rotation, one can use

Eqs. (133) and (134) to obtain expressions for u2 and u3, given by

u2 ¼
u1C12 � 2C13

1þ C11

u3 ¼
u1C13 þ 2C12

1þ C11

135ð Þ

with u1 remaining as an independent torsional variable, and where elements of the

first row of C can be expressed as

CTe1 ¼
e1 þ ekkuþ u0

1þ «
136ð Þ

and for small strain g11 ¼ «. Three scalar equations are implied by Eq. (136), given by

C11 ¼
1þ u01 þ k2u3 � k3u2

1þ «

C12 ¼
u02 þ k3u1 � k1u3

1þ «

C13 ¼
u03 þ k1u2 � k2u1

1þ «

137ð Þ

One may find the remaining elements of C from substituting the expressions for u2

and u3 in Eqs. (135) into the first of Eqs. (135), recalling that u1 is the independent

torsional variable.

In later Chapters we will need to make certain approximations by perturbing about

particular deformed states. Denoting the state about which the perturbations are

made by the �ð Þ and the perturbations by ^ð Þ, we will base these approximations on

C � I � êuûuuþ 1

2

ê
uûuu
ê
uûuu

� �
C

g ¼ «þ «̂«ð Þe1

K ¼ K þ k̂k

138ð Þ

where ûu is a column matrix containing themeasure numbers of an infinitesimal rotation

vector. In the sequel we shall need to keep only first-order perturbations in most cases.

However, in a few places where we need to develop the energy, we will make use of per-

turbations up through second order in ûu. One can use Eq. (123) to eliminate C0 so that

C0 ¼ Cekk� eKKC 139ð Þ

which can be used along with Eqs. (134) and (138) to obtain approximate expressions

valid through second order for «̂«, ûu2, ûu2, and k̂k, given by

«̂« ¼ f̂f1 þ
1

2 1þ «ð Þ f̂f2
2 þ f̂f2

3

	 


ûu2 ¼ �f̂f3 1� f̂f1

	 

þ 1

2
ûu1f̂f2

ûu3 ¼ f̂f2 1� f̂f1

	 

þ 1

2
ûu1f̂f3

k̂k ¼ I � êuûuu	 

ûu0 þ eKK ûuþ 1

2

ê
uûuu
ê
uûuuK

140ð Þ
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where

f̂f ¼ C ûu0 þ ekkûu
	 


141ð Þ

Simplified versions of these second-order approximations are used in Section 8.2 for

the case of a beam subjected to an axial force and a twisting moment and in Section

11.6 for a beam subjected to a bending moment that is constant in time.

For the particular case of small displacement and rotation variables, the kinemat-

ical equations can be linearized about the state of zero deformation and rewritten as

C ¼ I � euu
k ¼ u0 þ ekku

g ¼ u0 þ ekkuþeee1u

« ¼ u01 þ k2u3 � k3u2

u2 ¼ �u03 � k1u2 þ k2u1

u3 ¼ u02 þ k3u1 � k1u3

142ð Þ

3.7.4 EXAMPLE OF USING INTRINSIC EQUATIONS—EULER COLUMN

Consider a cantilevered beam loaded by an axial compressive force�Pb1 as shown

in Fig. 3.18. The unit vectors Bi are shown for a deformation in the plane of least

flexural rigidity, here denoted as the b1-b2 plane. The pre-buckling deformation is

only a compressive strain along the b1 direction, and the deformed state during

buckling is governed by the reduced constitutive law

F1

M3

� �
¼ EA

0
0

EI3

h i
«

k3

� �
143ð Þ

The pre-buckling state is, by inspection,

F ¼ �Pe1 ¼ EA«e1

K ¼ k ¼M ¼ u ¼ 0
144ð Þ

This state clearly satisfies the equilibrium equations, Eqs. (118). Denoting small

perturbations of the pre-buckling quantities by ^ð Þ, we then write them as

F ¼ F þ F̂ ¼ �Pe1 þ F̂

M ¼M þ M̂ ¼ M̂

K ¼ K þ k̂k ¼ k̂k

145ð Þ

b1

b2

P

P

B2(x1)

B1(x1)

figure 3.18 Schematic of an axially-loaded beam
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and then substitute them into Eqs. (118). To get the buckling equations, we drop

all terms of second degree and higher in the ^ terms. The buckling equations are

then

F̂ 0 þ Peee1k̂k ¼ 0

M̂0 þ 1� P

EA

� �eee1 F̂ ¼ 0
146ð Þ

Noting that M̂ ¼ M̂3e3 and k̂k ¼ k̂k3e3, one can write the only non-trivial scalar

buckling equations as

F̂ 02 �
PM̂3

EI3

¼ 0

M̂0
3 þ 1� P

EA

� �
F̂2 ¼ 0

147ð Þ

with boundary conditions F̂2 0ð Þ ¼ M̂3 ‘ð Þ ¼ 0. The first boundary condition implies

that M̂0
3 0ð Þ ¼ 0. The two Eqs. (147) can be combined into one, which is

M̂00
3 þ

P 1� P
EA

� �
EI3

M̂3 ¼ 0 148ð Þ

Since the constitutive law assumes that the strain is small compared to unity, one

should neglect P=EA compared to unity, so that

M̂00
3 þ

P

EI3

M̂3 ¼ 0 149ð Þ

with boundary conditions M̂0
3 0ð Þ ¼ M̂3 ‘ð Þ ¼ 0. The solution is

M̂3 ¼ cos

ffiffiffiffiffiffiffi
P

EI3

r
x1

� �
150ð Þ

with

Pcr ¼
p2EI3

4‘2
151ð Þ

This illustration has served to show how one can apply elastica theory to the buck-

ling of an Euler column. The treatment is simpler than a traditional displacement-

based analysis. In Chapters to come, we will apply it to more complex problems.

3.8 buckling of thin-walled beam-columns

When thin-walled, prismatic beams with open sections are loaded with a compres-

sive axial force, they may buckle in either bending or in torsion. The torsional

buckling phenomenon requires a set of equations that takes into account the effect

of axial force on the effective torsional stiffness, and the open cross section requires

that the Vlasov effect (see Section 3.8.1) be taken into account. Neither of these

effects are accounted for in the preceding Sections, so a derivation of governing

equations for this problem will now be undertaken.

SIMITSES - Title 0750678755_ch03 Final Proof page 85 9.11.2005 12:21am

Buckling of Thin-Walled Beam-Columns 85



3.8.1 VLASOV THEORY FOR THIN-WALLED, PRISMATIC BEAMS

WITH OPEN CROSS SECTION

Vlasov beam theory is a refined theory of beams that addresses effects associated

with thin-walled, prismatic beams of open cross sections. The present adaptation of

Vlasov theory1 is based on the following assumptions:

1. The beam is spanwise uniform and prismatic;

2. The beam is slender, such that a� ‘, where a is a characteristic cross-sectional

dimension and ‘ is a characteristic wavelength of elastic deformation along the

beam;

3. The beam is thin-walled, such that h� a and h� R, where h is a characteristic wall

thickness and R is a characteristic radius of curvature of the midsurface.

Assumption 2 applies to beam theory in general, including elastica theory. As-

sumption 3 introduces multiple length scales in the cross-sectional domain. Add-

itional details are discussed by Hodges (2006).

Four beam (1-D) variables are introduced, which correspond to displacement of

the cross section as a rigid body: ui x1ð Þ is the translation of the cross section at x1 in

the xi direction; and u x1ð Þ is a rotation of the cross section at x1 about x1. The

coordinates xi are Cartesian (see Fig. 3.19). For the sake of convenience a curvilinear

system of coordinates is introduced with s and j being the contour and through-the-

thickness coordinates respectively; r ¼ xibi is a position vector of the shell midsur-

face, vectors are denoted with bold letters.

In the general application of dimensional reduction to problems of elasticity one

starts with a 3-D representation and reduces the theory to 2-D or 1-D. Here, because

we are starting with a thin-walled beam structure, we start with a 2-D (shell)

representation and move to a 1-D (beam) representation. Thus, the strain energy of

a beam with cross section S is approximated in the following fashion:

h

r

τ, s, n2

x3, b3, n3

x2,  b2, n2

x2,  b1, n1, n1

n, ξ, n3

figure 3.19 Configuration and coordinate system

1 The author gratefully acknowledges the unpublished class notes of Dr. V. Volovoi in 1997 for the

development in this section.
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2U ¼
Z ‘

0

Z
S

Z h=2

�h=2

sij«ijdj ds dx1

�
Z ‘

0

Z
S

Nabgab þMabrab

� �
ds dx1

152ð Þ

Greek indices for shell variables run from 1 to 2. Summation is implied for repeated

indices, and the meaning of corresponding strain measures and stress resultants will

be explained below.

Without going into too much detail, we will use the variational-asymptotic

method in our derivation. This is a rigorous procedure that uses small parameters

that are inherent to the problem. An iterative procedure is invoked which allows one

to calculate approximations to the 3-D strain energy. In our case the main small

parameter is a=‘. The so-called ‘‘zeroth-order’’ approximation is obtained by setting

the small parameter to zero. Thus, the truncated strain energy is degenerate: it has a

null space comprised of four rigid-body motions of the cross section. These four null

space modes serve to introduce the four 1-D variables. Next, perturbations of such

‘‘rigid’’ displacements, wi, are examined. Only the leading terms with respect to the

small parameters are retained. The resulting expressions for strains are substituted

into the strain energy. Finally, the functional thus obtained is minimized with respect

to the unknowns wi. It is important to emphasize that the cross section is not

considered rigid, and general inplane displacements are present. Non-rigid inplane

displacements (in curvilinear coordinates) are denoted as w2 and w3. These ‘‘warp-

ing’’ displacements are small, but they do contribute to the strain energy of the beam

and should not be neglected. In many textbooks this warping is taken into consid-

eration by correcting the constitutive law. That approach can lead to a certain

amount of confusion since, as shown below, the warping displacements themselves

do not have to be calculated explicitly to obtain the correct 1-D strain energy.

Diplacement Field

The following notation is used

:� �
	 dð Þ

ds
; ð Þ0 	 dð Þ

dx1

t ¼ ṙ ¼ _xx2b2 þ _xx3b3

n ¼ t � b1 ¼ _xx3b2 � _xx2b3

rt ¼ t � r ¼ x2 _xx2 þ x3 _xx3

rn ¼ n � r ¼ x2 _xx3 � x3 _xx2

R ¼ _xx2=ẍ3 ¼ � _xx3=ẍ2

153ð Þ

The displacements in the curvilinear system, vi, are expressed in terms of the dis-

placements in the Cartesian system, vi, as

v1 ¼ v1

v2 ¼ v2 _xx2 þ v3 _xx3

v3 ¼ v2 _xx3 � v3 _xx2

154ð Þ

This leads to an expression for the displacement field in the cross-sectional plane

given by
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v2 ¼ u2 _xx2 þ u3 _xx3 þ urn þ w2

v3 ¼ u2 _xx3 � u3 _xx2 � urt þ w3

155ð Þ

The rigid portion of the inplane displacements is illustrated in Fig. 3.20 in which one

sees a displacement from the point Mo to M being comprised of rigid displacements

from Mo to M0 and from Mo to M00. The former is associated with u2 and u3 while the

latter is caused by a rigid-body rotation u about the origin O. The displacement

variables are defined at the point O.

The axial displacement has the form

v1 ¼ u1 þ ŵw1 þ w1 156ð Þ

The quantity ŵw1 is larger (i.e., of a lower order) than the displacements w1, w2, and

w3, and must be determined before we can go any further. At this point ŵw2 and ŵw3 are

zero.

Shell Theory

The strain energy of shells is determined by two strain measures: membrane, gab,

and bending, rab. For cylindrical shells expressions for those two types of measures

have the form

g11 ¼ v1,1 r11 ¼ v3,11

2g12 ¼ v1,2 þ v2,1 r12 ¼ v3,12 þ
1

4R
v1,2 � 3 v2,1
� �

g22 ¼ v2,2 þ
v3

R
r22 ¼ v3,22 �

v2

R

	 

,2

157ð Þ

It is noted that letting R tend to infinity, one obtains the more familiar expressions

for plates. In order to find an equation for v1, we substitute Eqs. (155) and (156) into

the expression for 2g12, yielding

2g12 ¼ ŵw1,2 þ u02 _xx2 þ u03 _xx3 þ u0rn þ w1,2 158ð Þ

The underlined terms must be cancelled out by a proper choice of ŵw1,2. This in effect

eliminates them from the strain energy by a process sometimes referred to as killing

these terms. Were the single-underlined terms not killed, the 1-D strain energy would

M

θ

u3

n2

Mo

M′

M″

b2, n2

b3, n3

r

O

n2

n, n3

t,

figure 3.20 Rigid inplane displacements
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depend on u0a, the rigid-body rotations of the section, which cannot be tolerated

because a rigid-body rotation of the entire beam should not result in any strain. Were

the double-underlined term not killed it would produce too large a torsional rigidity,

but only for open cross sections. So, we can write

ŵw1,2 ¼ �u02 _xx2 � u03 _xx3 � u0rn 159ð Þ

After these terms are killed, only w1,2 remains in g12, and r12 provides the torsional

rigidity.1 The axial displacement can now be obtained via integration with respect to

circumferential coordinate, so that

v1 ¼ u1 x1ð Þ � u02x2 � u03x3 � u0
Z s

s0

rndsþ w1 160ð Þ

where the coefficient of u0 in Eq. (160), namely

h sð Þ 	
Z s

s0

rnds 161ð Þ

is called the sectorial coordinate and is a solution of a classical Saint-Venant torsional

problem within the shell approximation. The sectorial coordinate h sð Þ must be

continuous around the contour, and the origin of the variable s should be chosen

so that
R

S
h sð Þds ¼ 0.

Semi-inversion

Let us now find the contribution of wi to the 1-D strain energy. In order to achieve

this, the constitutive relationships must be introduced, viz.,

N11

N12

N22

M11

M12

M22

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ A B

B D

� 

g11

2g12

g22

r11

2r12

r22

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

162ð Þ

where, for isotropic materials, we have

A ¼ hm

1þ s 0 s

0 1 0

s 0 1þ s

2
64

3
75

B ¼ 0 D ¼ h2

12
A

163ð Þ

with

s 	 l

lþ 2mð Þ 164ð Þ

and where m and l are the Lamé constants, which are expressed in terms of

engineering material constants as

1 For closed sections the situation is quite different: it is g12 that provides the torsional rigidity, while the

contribution from r12 can be neglected.
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m 	 G ¼ E

2 1þ nð Þ l ¼ En

1� 2nð Þ 1þ nð Þ 165ð Þ

The traditional way of deriving equations for thin-walled, open-section beams2

apparently originated with Reissner and Tsai (1972). The procedure includes invok-

ing the hypotheses

N12 ¼ 0 N22 ¼ 0 M22 ¼ 0 166ð Þ

Introducing the shell’s strain energy per unit area, �̂�, it is easily seen that Eq. (162)

follows from

N12 ¼
@�̂�

@ 2g12ð Þ

N22 ¼
@�̂�

@g22

M22 ¼
@�̂�

@r22

167ð Þ

Thus, the assumption of Eqs. (166) is seen to be equivalent to minimizing the energy

with respect to unknowns 2g12,g22 and r22. Once Eqs. (166) are obtained (either as an

assumption, or as the result of a minimization procedure), it is convenient to ‘‘semi-

invert’’ the constitutive relationship, yielding

N11

M11

M12

2g12

g22

r22

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ A B

B D

� 

g11

r11

2r12

N12

N22

M22

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

168ð Þ

Using the results of Problems 15 and 16, the beam’s strain energy per unit length is

2C ¼
Z

S

A11g2
11 þ 4A13g11r12 þ 4A33r2

12

� �
ds

¼
Z

S

Ehg2
11 þ

Gh3

3
u02

� �
ds

169ð Þ

Now, substituting the displacement field variables we’ve obtained so far into g11, one

finds that

g11 ¼ u01 x1ð Þ � u002x2 � u003x3 � u00 h 170ð Þ

For a doubly-symmetric cross section, with the origin of the coordinate system at the

intersection of the two planes of symmetry, one finds

2C ¼ EAu021 þ EI33u
00
2
2 þ EI22u

00
3
2 þ GJu02 þ EGu002 171ð Þ

where

A ¼ hp J ¼ ph3

3
G ¼

Z
S

h2ds

I33 ¼ h

Z
S

x2
2ds I22 ¼ h

Z
S

x2
3ds

172ð Þ

2 For closed sections the situation is different because constraints of single-valuedness have to be

imposed on the displacement field, leading to a more complicated procedure.
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and p is the arc-length of the contour. Here A is the cross-sectional area, J is the

Saint-Venant torsional constant, I22 and I33 are the area moments of inertia, and G is

the warping rigidity.

For a general cross section the strain energy can still be written in the form of

Eq. (171), but the displacement must be defined at the ‘‘main pole’’ of the cross

section, called the shear center. The shear center has coordinates relative to O

given by

a2 ¼
h

I22

Z
S

hOx3ds

a3 ¼ �
h

I33

Z
S

hOx2ds

173ð Þ

where hO is a sectorial coordinate with respect to the centroid of the cross section.

Like h sð Þ, the sectorial coordinate hO sð Þ must be continuous around the contour;

but, unlike h sð Þ, its line integral over S need not be zero. In Cartesian coordinates the

inplane displacements caused by rigid-body motion can then be expressed as

v2 ¼ u2 � x3 � a3ð Þu v3 ¼ u3 þ x2 � a2ð Þu 174ð Þ

Differential Equations

The strain energy from Eq. (171) leads to the following system of 1-D differential

equations in the presence of distributed lateral forces:

EAu001 ¼ 0

EI33u
0000
2 ¼ q2

EI22u
0000
3 ¼ q3

EGu0000 � GJu00 ¼ m1

175ð Þ

This is the standard form of Vlasov’s theory for a thin-walled, isotropic beam with

open cross section. In order to apply this model to buckling under compressive loads,

however, certain nonlinear effects must be brought into the analysis.

3.8.2 TORSIONAL-FLEXURAL BUCKLING UNDER A

COMPRESSIVE AXIAL LOAD

The equations of equilibrium, Eqs. (175), were derived about the undeformed

state. Another way to put it is that in the derivation the difference between the

undeformed and deformed states is taken as negligible. This is appropriate for linear

theory, but is not applicable for buckling. In order to apply our theory to buckling we

will modify these equations to take into account the initial stresses in the pre-

buckling state of the structure, while continuing to ignore the distinctions between

the undeformed and deformed configurations.

To do so, let us consider a system of axial forces that is applied in compression to

the ends of a beam s11 x2, x3ð Þ. It should be noted that the ends of the beam are free

to move toward each other, else the problem is not well-posed. If this system of forces

on the end cross sections is linear with respect to each of the Cartesian coordinates x2

and x3, then it can be verified that s11 x1, x2, x3ð Þ ¼ s11 x2, x3ð Þ is an exact solution

of the 3-D elasticity problem assuming no other applied tractions. Thus,
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s11 x2, x3ð Þ ¼ �P

A
þM2

I22

x3 �
M3

I33

x2 176ð Þ

All other stress components are zero. For example, such a system of forces can model a

concentrated, noncentroidally applied force P; see Fig. 3.21. Here moment compon-

ents M2 and M3 are induced by P and are taken about the centroidal axis.

Let us now consider a projection of the deformed state onto the x1-x2 plane (see

Fig. 3.22). Clearly, this leads to an equation of equilibrium of the form

Q2dx1ds ¼ s11hds
dx1

r2

1

r2

� v002 177ð Þ

Here r2 is the curvature of P rð Þ s, x1ð Þ, the projection of the radius vector r onto the

x1-x2 plane. A similar expression can be obtained for the x1-x3 plane. Canceling out

ds dx1 renders

Q2 ¼ s11hv002 Q3 ¼ s11hv003 178ð Þ

P

P

x1

figure 3.21 Application of a concentrated load

dx1
h ds σ11(x1) h ds σ11(x1+dx1)

b2 , n2

b1, n1

Q2

ρ2
P(r)(s,x1)

figure 3.22 Projection of the deformed state onto the x1-x2 plane

SIMITSES - Title 0750678755_ch03 Final Proof page 92 9.11.2005 12:21am

92 Elastic Buckling of Columns



Now we can integrate these expressions along the contour and obtain expressions for

the distributed lateral forces and torsional moment, given by

q2 ¼
Z

S

Q2ds q3 ¼
Z

S

Q3ds

m1 ¼
Z

S

Q3 x2 � a2ð Þ �Q2 x3 � a3ð Þ½ �ds

179ð Þ

Substituting expression for s11 from Eq. (176) into Eq. (179) yields

q2 ¼ �Pu002 � a3PþM2ð Þu00

q3 ¼ �Pu003 þ a2P�M3ð Þu00

m1 ¼ � a3PþM2ð Þu002 þ a2P�M3ð Þu003
þ �r2Pþ 2b3M2 � 2b2M3

� �
u00

180ð Þ

where

r2 ¼ I22 þ I33

A
þ a2

2 þ a2
3

b2 ¼
C3

2I33

� a2 b3 ¼
C2

2I22

� a3

C2 ¼ h

Z
S

x3
3 þ x3x

2
2

� �
ds C3 ¼ h

Z
S

x3
2 þ x2x

2
3

� �
ds

181ð Þ

We can now rewrite Eqs. (175) as

EAu001 ¼ 0

EI33u
000
2 þ Pu002 þ Pa3 þM2ð Þu00 ¼ 0

EI22u
000
3 þ Pu003 þ Pa2 �M3ð Þu00 ¼ 0

EGu000 þ Pa3 þM2ð Þu002 � Pa2 �M3ð Þu003
þ r2P� 2b3M2 þ 2b2M3 � GJ
� �

u00 ¼ 0

182ð Þ

h

a

b x2

x3

figure 3.23 Cruciform cross section
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As an example, we consider a beam with a cruciform cross section. The equations

decouple for this case, so that buckling involving only torsion is possible, the

governing equation for which is

E�u
000 þ r2P� GJ

� �
u
00 ¼ 0 183ð Þ

Thus, the torsional buckling of a beam with cruciform cross section depends on EG,

the warping rigidity; GJ, the Saint-Venant torsional rigidity; and r, the polar radius

of gyration about the shear center. The boundary conditions are more complicated

than in the usual case of Saint-Venant torsion because of the fourth-order term in the

equation. The choices at x ¼ 0 and x ¼ ‘ are

essential boundary conditions natural boundary conditions

u ¼ 0 or EGu
000 þ r2P� GJ

� �
u0 ¼ 0 184ð Þ

u0 ¼ 0 or u
00 ¼ 0

where the essential boundary conditions, i.e. those on u and u0, are appropriate for zero

rotation and zero warping, respectively, and the natural boundary conditions are for

the cases of zero twisting moment and zero longitudinal stress, respectively.

For example, for a restraint and the boundary that does not allow rotation u but

does allow the ends of the beam to freely warp, the boundary conditions are

u 0ð Þ ¼ u ‘ð Þ ¼ u
00

0ð Þ ¼ u
00
‘ð Þ ¼ 0. For a load applied at the centroid, the critical load is

Pcr ¼
EGl2 þ GJ

r2
185ð Þ

where l ¼ p=‘. Whether a beam with a specific cross-sectional geometry buckles in

torsion or in one of the two bending directions depends on which critical load is lowest.

problems

1. Calculate the critical load for an ideal column of length l and the following

boundary conditions:

(a) w 0ð Þ ¼ w ‘ð Þ ¼ 0

w,xx 0ð Þ ¼ w,x ‘ð Þ ¼ 0

(b) w 0ð Þ ¼ 0, w,x ‘ð Þ ¼ 0

w,xx 0ð Þ ¼ 0, w,xxx ‘ð Þ ¼ 0

2. An ideal column is pinned at one end and fixed to a rigid bar of length a at the

other end. The second end of the rigid bar is pinned on rollers (see figure). Find

the critical load and discuss the extreme cases (a! 0 and a!1).

3. Find the critical condition for a system similar to the one in Problem 2, with the

exception that the left end of the ideal column is clamped (see figure). Discuss the

extreme cases.

figure p3.2
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4. A simply supported imperfect elastic bar carries horizontal thrust P at each end,

with eccentricities e1 and e2. The initial line of centroids is curved and given by

w0 ¼
X1
n¼1

an sin
npx

L

Find the expression for the deflection w and the critical P value deduced from this.

5. An ideal column of length L is pinned at A and built in at B on a rigid disc of

radius R, which is supported by an immovable frictionless pin at its center (see

figure). Derive the characteristic equation and the expression for Pcr. Discuss the

extreme cases (R! 0 and R!1).

6. Find an expression for the tilt-buckling load associated with the two systems

depicted in Fig. P3.6 a and b.

7. A uniform disc of radius R rotates at constant angular velocity v. A weightless

elastic bar of length L < R is fixed at one end and carries a mass m at the free end

(see figure). Find the critical angular velocity at which buckling will occur.

figure p3.3

figure p3.4

figure p3.5
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8. A column is loaded by a tensile force T at a small angle w to the vertical (see part a

of the figure). Show by deriving and solving the differential equation that

d ¼ ‘ tan w 1� tan hg‘

g‘

� �

figure p3.6

figure p3.7
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where

g2 � T

EI

The testing machine sketched (b of the figure) is applying compressive loading 2P to

the test specimen. Show that buckling of the machine is possible, and indicate how

the vertical load varies when a/‘ is made smaller. The machine columns are built in at

both ends.

9. The top end of a flexible straight bar is attached by a stretched wire to a fixed

point A. The initial tension T in the wire does not change appreciably when a

small deflection d occurs.

figure p3.8
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(a) Show that the critical values of P are determined by the equation

k‘ð Þ2¼ T‘2

EI

‘

a
� tan k‘

ka

� �
where

k2 � P� T

EI
and sin w � d

a

(b) Check this result by taking T ¼ 0.

10. The vertical bar AB is supported by an extensional spring of stiffness a at A.

Explain what is meant by the critical value of such a spring stiffness, and find an

expression for it when the lower end B of the bar is pinned. Suppose that the elastic

bar is built in at B. Show that there is no critical spring stiffness for this case.

figure p3.9

figure p3.10
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11. A slender elastic column of length L is pinned at the left end, while the right end

is restrained by a vertical support and a linear rotational spring of stiffness a.

Derive the characteristic equation, and indicate on a sketch the range of the first

root for all spring stiffnesses (from 0 to1).

12. A flexible uniform light blade AB is pinned at A to a base. The spiral represents a

linear rotational spring. The blade carries a mass particle m at B. The base is now

made to spin (at v), in the plane, about a center O between A and B, and the

blade is consequently under tension mcv2.

(a) Examine the possibility of a critical speed v at which a slight deflection of the

blade becomes possible. Show that this possibility exists if the equation

EI

a‘
þ coth g‘

g‘
¼ ‘

‘� c

1

g‘ð Þ2
, g2 � mcv2

EI

has a real root for g‘.
(b) Consider the extreme case a!1 (clamped end). Prove that the ‘‘buckling’’

can occur when the center of rotation lies between A and B, but it can not

occur when O is below A.

figure p3.11

figure p3.12
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13.

(a) Find an expression for the critical spring stiffness for the system shown. The

member of length l is flexible and is pinned at both ends. The member of

length a is rigid and pinned at both ends.

(b) The left end of the flexible bar, instead of being pinned, is fixed into a block

that can move horizontally (frictionless rollers). Show that the characteristic

equation for a given value a is

1� tan k‘

k‘
¼ k‘ð Þ2

a‘3=EI � ‘=að Þ k‘ð Þ2

14. By use of the kinetic approach, find the critical compressive force for an ideal

column with the following boundary conditions:

(a) Both ends fixed.

(b) One end fixed, the other pinned.

(g) One end fixed, the other free.

15. Regarding the derivation in Section 3.8, show that the contribution of r11 to the

strain energy can be neglected. Hint: h� a, and all elastic moduli are assumed to

be of the same order of magnitude.

16. Regarding the derivation in Section 3.8, show that for isotropic materials

A11 ¼ hE, A13 ¼ 0, A33 ¼ mh3=12 and r12 ¼ u0.
17. Analyze the axial-torsional buckling of a thin-walled cruciform section as shown

in Fig. 3.23 in which the flange lengths (a and b) are of the same order and h� a,

b. The axial compressive load is applied at the cross-sectional centroid, and the

ends of the beam are free to move toward each other. Assume a clamped

condition at one end with zero warping, and pinned conditions at the other

end with freedom to warp. Determine values of the ratio b/a that dictate the

mode of buckling to be torsional.

18. Analyze the axial-torsional buckling of a thin-walled channel section in which

the flange lengths (b) are the same order as the width (a) and h� a, b. Assume

simply supported boundary conditions and freedom to warp at both ends, that

the axial compressive load is applied at the cross-sectional centroid, and the ends

of the beam are free to move toward each other. Determine values of the ratio b/a

that dictate the mode of buckling to be torsional.

figure p3.13
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4

Buckling of Frames

Frames of various types, especially the civil-engineering type, are widely used in

structural configurations such as buildings and bridges. These frames are subjected to

concentrated and distributed loads which, in many cases, may cause buckling of an

element or group of elements of the frame. Because the members are rigidly connected

to other members, flexural deformations in one element cause deformations in the

neighboring elements. This results in a loss of flexural rigidity of the entire system.

Knowledge of the critical condition is essential in the design of both simple and

complex frames.

This chapter is intended to familiarize the student with buckling of some simple

frames, and it presents a few of the methods that can successfully be used to arrive at

the critical condition. A more complete presentation of the buckling analysis of

frames may be found in the books of Bleich (1952) and Britvec (1973). Since one of

the methods employed for the analysis of frames is based on the theory of beam-

columns, a review section will first be presented (see also Timoshenko, 1961).

4.1 beam-column theory

A slender bar meeting the Euler-Bernoulli assumptions under transverse loads as

well as an inplane compressive load (see Fig. 4.1) is called a beam-column. The

equation governing the response of a beam-column was derived in Chapter 3:

EIw,xx

� �
,xx
þPw,xx ¼ q xð Þ þ

Xn

i¼1

Qid x� xið Þ þ
Xm
j¼1

Cjh x� xj

� �
1ð Þ

The moment, M, and shear, V, at any station x are given by the following equations:

M ¼ EIw,xx

V ¼ � EIw,xx

� �
,xþPw,x

h i 2ð Þ

The solutions to a number of problems are presented, and some of these solutions

will be used in the buckling analysis of frames.
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4.1.1 BEAM-COLUMN WITH A CONCENTRATED LATERAL LOAD

A simply supported beam-column under the application of a concentrated lateral

load, Q, at station x ¼ a is shown in Fig. 4.1. The bending stiffness, EI, of the beam-

column is taken to be constant.

The governing differential equation and the proper boundary conditions are

given by

EIw,xxxx þ Pw,xx ¼ Qd x� að Þ 3ð Þ

w 0ð Þ ¼ w Lð Þ ¼ 0

w,xx 0ð Þ ¼ w,xx Lð Þ ¼ 0
4ð Þ

If we now separate the interval [0, L] into two regions 0 < x < a and a < x < L, and

if we denote by w1 xð Þ and w2 xð Þ the displacements in the two intervals, respectively,

the differential equations and proper boundary conditions are given by

EIw1
,xxxx þ Pw1

,xx ¼ 0 5ð Þ

EIw2
,xxxx þ Pw2

,xx ¼ 0 6ð Þ

w1 0ð Þ ¼ 0 w1
,xx 0ð Þ ¼ 0

w2 Lð Þ ¼ 0 w2
,xx Lð Þ ¼ 0

7ð Þ

The solutions to Eqs. (5) and (6) are

w1 xð Þ ¼ A1 sin kxþ A2 cos kyþ A3xþ A4 8ð Þ

w2 xð Þ ¼ B1 sin kxþ B2 cos kxþ B3xþ B4 9ð Þ

where k2 ¼ P=EI .

There are eight constants to be evaluated, Ai and Bi i ¼ 1, 2, 3, 4ð Þ. These con-

stants may be evaluated by use of the boundary conditions, Eqs. (7), and the

auxiliary conditions at x ¼ a. The auxiliary conditions are based on the fact that,

at x ¼ a, the deflection, slope, and moment must be continuous and the shear is

discontinuous by a known amount DV ¼ Qð Þ.

figure 4.1 Beam-column.
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The auxiliary conditions are

w1 að Þ ¼ w2 að Þ
w1

,x að Þ ¼ w2
,x að Þ

w1
,xx að Þ ¼ w2

,xx að Þ

� EIw1
,xxx að Þ þ Pw1

,x að Þ
h i

¼ � EIw2
,xxx að Þ þ Pw2

,x að Þ
h i

þQ

10ð Þ

Use of the eight equations, Eqs. (7) and (10), leads to the following solution:

w1 xð Þ ¼ Q sin k L� að Þ
Pk sin kL

sin kx�Q

P
1� a

L

� �
x 0 # x # a

�w2 xð Þ ¼ Q sin ka

Pk sin kL
sin k L� xð Þ �Qa

P
1� x

L

� �
a # x # L

11ð Þ

By differentiation of Eq. (11), we obtain the following expressions for the slope

and curvature (approximate):

w1
,x ¼

Q sin k L� að Þ
P sin kL

cos kx�Q L� að Þ
PL

0 # x # a 12ð Þ

w2
,x ¼ �

Q sin ka

P sin kL
cos k L� xð Þ þ Qa

PL
a # x # L 13ð Þ

w1
,xx ¼ �

Qk sin k L� að Þ
P sin kL

sin kx 0 # x # a 14ð Þ

w2
,xx ¼ �

Qk sin ka

P sin kL
sin k L� xð Þ a # x # L 15ð Þ

In the particular case for which a ¼ L=2, the expressions for the deflection become

w1 ¼ Q sin kL=2ð Þ
Pk sin kL

sin kx� Q

2P
x 16að Þ

w2 ¼ Q sin kL=2ð Þ
Pk sin kL

sin k L� xð Þ �QL

2P
1� x

L

� �
16bð Þ

The maximum deflection occurs at x ¼ L=2, and the expression for it is

w
L

2

� �
¼ d ¼ Q

2Pk
tan

kL

2
� kL

2

� �
17ð Þ

In the absence of the inplane load P, the expression for the maximum deflection (at

L=2) is

d0 ¼
QL3

48EI
18ð Þ

If we rearrange the terms in Eq. (17) and make use of Eq. (18), the expression for the

maximum deflection of the beam-column becomes
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d ¼ d0

3 tan u� uð Þ
u3

19ð Þ

where u ¼ kL=2. Introducing the following notation

x uð Þ ¼ 3
tan u� u

u3
20ð Þ

the expression for d becomes

d ¼ d0x uð Þ 21ð Þ

Numerical values of x uð Þ are found in Appendix A of Ref. 1 for different values of

u, and x uð Þ is plotted versus u in Fig. 4.2 for 0 # u < p=2. The factor x uð Þ in Eq. (21)

gives the influence of the inplane load on the maximum deflection for the beam-

column. From Fig. 4.2, we can decide up to what values of the axial thrust the neglect

of its effect becomes unacceptable when we are interested in finding the deflection of

this beam-column.

For this particular case a ¼ L=2ð Þ, the rotation at x ¼ 0 is given by

dw

dx

���
x¼0
¼ uA ¼

QL2

16EI
l uð Þ 22ð Þ

where

l uð Þ ¼ 2 1� cos uð Þ
u2 cos u

23ð Þ

Here again, the first factor in Eq. (22) denotes the slope at x ¼ 0 in the absence of the

inplane load P, and l uð Þ gives the influence of inplane load P. Numerical values of

l uð Þ may be found in Appendix A of Bleich (1952). The plot of l uð Þ versus u

resembles that of x uð Þ versus u (see Fig. 4.2).

figure 4.2 A plot of x(u) versus u.
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Finally, the expression for the bending moment at x ¼ L=2 for this particular case is

Mmax ¼ EI
d2w

dx2

� �
x¼L=2

¼ �QL

4

tan u

u
24ð Þ

Note that as P approaches zero, u approaches zero, and since

lim
u!0

tan u

u
¼ 1 25ð Þ

the expression for the maximum bending moment for the beam is

M0max
¼ �QL

4

4.1.2 BEAM-COLUMN WITH TWO END-COUPLES

Consider the simply supported beam-column shown in Fig. 4.3 and loaded by two

end-couples, MA and MB. The differential equation governing equilibrium is

EI
d4w

dx4
þ P

d2w

dx2
¼ 0 26ð Þ

The proper boundary conditions are

w 0ð Þ ¼ w Lð Þ ¼ 0

EIw,xx 0ð Þ ¼MA

EIw,xx Lð Þ ¼MB

27ð Þ

The solution to Eq. (26) is given by

w xð Þ ¼ A1 sin kxþ A2 cos kxþ A3xþ A4 28ð Þ

Use of the boundary conditions leads to the following expression for w xð Þ:

w xð Þ ¼MA

P

L� x

L
� sin k L� xð Þ

sin kL

� 	
þMB

P

x

L
� sin kx

sin kL

� �
29ð Þ

Denoting by uA and uB the magnitudes of the rotation angles at A and B,

respectively, we obtain

figure 4.3 Beam-column loaded by two end-couples.
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u A ¼ �
dw

dx

���
x¼0
¼MAL

3EI
c uð Þ þMBL

6EI
w uð Þ 30ð Þ

uB ¼
dw

dx

���
x¼L
¼MBL

3EI
c uð Þ þMAL

6EI
w uð Þ 31ð Þ

where

w uð Þ ¼ 3

u

1

sin 2u
� 1

2u

� �

c uð Þ ¼ 3

2u

1

2u
� 1

tan 2u

� �

u ¼ kL

2

32ð Þ

As before, the factors c uð Þ and w uð Þ give the influence of the inplane load on the

end rotations. This means that in the absence of the inplane load P, the end rotations

uA0
and uB0

are given by

uA0
¼MAL

3EI
þMBL

6EI

uB0
¼MBL

3EI
þMAL

6EI

33ð Þ

4.1.3 SUPERPOSITION

Since beam-column problems are nonlinear problems, superposition of solutions

does not hold in the usual manner. The results can be superimposed if and only if the

axial load P is the same for two or more cases of different lateral loads. To

demonstrate the point, consider a simply supported beam-column of length L loaded

first by a lateral loading q1 xð Þ and second by q2 xð Þ. Let the response of the system to

the two loadings be denoted by w1 xð Þ and w2 xð Þ, respectively. Then the equilibrium

equations for the two problems are:

EIw1
,xxxx þ Pw1

,xx ¼ q1 xð Þ 34ð Þ

EIw2
,xxxx þ Pw2

,xx ¼ q2 xð Þ 35ð Þ

By addition, we obtain

EI w1 þ w2
� �

,xxxx
þP w1 þ w2
� �

,xx
¼ q1 xð Þ þ q2 xð Þ 36ð Þ

Next, consider the case of simultaneous application of the loadings q1 xð Þ and

q2 xð Þ. For this case the equilibrium equation is:

EIw,xxxx þ Pw,xx ¼ q1 xð Þ þ q2 xð Þ 37ð Þ

By comparison of Eqs. (36) and (37), it is clear that superposition holds for this type

of problem. Thus superposition holds for any number of transverse loadings (dis-

tributed and concentrated forces and applied moments) provided the inplane force is

the same and the beam-column is supported in the same manner for all loading cases

(see Fig. 4.4).
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4.2 application of beam-column theory to the

buckling of rotationally restrained columns

Consider a column which is supported against transverse translation at both ends

but is restrained against rotation through rotational springs (see Fig. 4.5a). The

problem here is to find Pcr as a function of the structural geometry (EI, L, b0, and

bL).

Instead of this problem, we may consider the beam-column problem of Fig. 4.5b.

According to the results of Section 4.1.2, the end rotations are given by

u0 ¼
M0L

3EI
c uð Þ þMLL

6EI
w uð Þ 38ð Þ

uL ¼
M0L

6EI
w uð Þ þMLL

3EI
c uð Þ 39ð Þ

By comparison of the beam-column problem to the original one, we may write

M0 ¼ �b0u0

ML ¼ �bLuL

40ð Þ

figure 4.4 Superposition of beam-column problems.
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Substitution into Eqs. (38) and (39) yields

M0

1

b0

þ L

3EI
c uð Þ

� 	
þML

L

6EI
w uð Þ

� 	
¼ 0

M0

L

6EI
w uð Þ

� 	
þML

1

bL

þ L

3EI
c uð Þ

� 	
¼ 0

41ð Þ

These are two homogeneous linear algebraic equations in M0 and ML. For a non-

trivial solution to exist (bifurcation), the determinant of the coefficients must vanish.

Thus the characteristic equation is:

1

b0

þ Lc uð Þ
3EI

� 	
1

bL

þ Lc uð Þ
3EI

� 	
� Lw uð Þ

6EI

� 	2

¼ 0 42ð Þ

where u ¼ kL=2 and k2 ¼ P=EI .

In the special case where b0 ¼ bL ¼ b, Eq. (42) becomes

1

b
þ Lc uð Þ

3EI
� Lw uð Þ

6EI
¼ 0 43ð Þ

From the first of Eqs. (41), it is seen that

ML ¼ �M0

1

b
þ Lc uð Þ

3EI

� 	
Lw uð Þ
6EI

� 	�1

44ð Þ

Therefore we see that the plus sign in Eq. (43) corresponds to the symmetric case

M0 ¼MLð Þ and the minus sign to the antisymmetric case M0 ¼ �MLð Þ.
For the symmetric case, substitution for the expressions c uð Þ and w uð Þ leads to the

following characteristic equation:

tan u ¼ � 2EI

bL
u 45ð Þ

figure 4.5 Rotationally restrained column.
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Figure 4.6a shows that ucr, depending on the value of b, lies between p=2 and p.

When b! 0, ucr ! p=2 and Pcr ¼ p2EI=L2 (both ends simply supported). When

b!1, ucr ! p and Pcr ¼ 4p2EI=L2 (both ends clamped).

For the antisymmetric case, substitution for the expressions c uð Þ and w uð Þ yields

tan u ¼ u

1þ 2EI

bL
u2

46ð Þ

From Fig. 4.6b we see that u lies between p and 4.493. When b! 0, ucr ! p and

Pcr ¼ 4p2EI=L2 (both ends simply supported). When b!1, ucr ! 4:493 and

Pcr ¼ 4 4:493ð Þ2EI=L2 (both ends clamped).

Therefore, for this special case b0 ¼ bL ¼ bð Þ, the column will buckle in a sym-

metric mode p=2 < ucr < pð Þ.

figure 4.6 Critical conditions for rotationally restrained columns.
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4.3 rectangular rigid frames

Consider the frame shown in Fig. 4.7 and note that, as load P increases quasista-

tically from zero, it is possible to reach some PQ combination for which the frame

will buckle (bifurcation). It is also clear that buckling may be caused by the existence

of only P or Q and that the mode of failure in any case can be either symmetric or

antisymmetric (see Figs. 4.8a and 4.8b).

In this particular problem, each member is elastically restrained against rotation

at the ends because of the rigid connection to the adjacent member. Therefore the

method described in the previous section may be applied, provided the rotational

spring constant can be expressed in terms of the structural geometry of the adjacent

members.

Symmetric and antisymmetric buckling are treated separately in the following

sections.

4.3.1 SYMMETRIC BUCKLING

If we decompose the frame shown in Fig. 4.7, and if the frame is assumed to

buckle in a symmetric mode, then the bending moments at the four corners are all

equal (see Fig. 4.9).

Noting that uA ¼ uB, from Eq. (38)

uA ¼ �
Mb

3 EIð Þ1
c u1ð Þ �

Mb

6 EIð Þ1
w u1ð Þ 47ð Þ

figure 4.7 Geometry of a rigid frame.
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where

u1 ¼ k1

b

2
and k2

1 ¼
Q

EIð Þ1
From Eq. (47) we can obtain

uA ¼ �
Mb

2 EIð Þ1
� tan u1

u1

48ð Þ

From Eq. (40), we obtain the expression for b. This equation is applicable because of

the directions of moments and rotations as applied to AC (see Figs. 4.9 and 4.5b).

figure 4.8 Buckling modes of a rigid frame.

figure 4.9 Symmetric buckling of the rigid frame.
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b�1 ¼ � uA

M
¼ b

2 EIð Þ1
tan u1

u1

49ð Þ

Use of this expression for b in Eq. (43) for the vertical member (AC ) yields (sym-

metric buckling)

b

2 EIð Þ1
tan u1

u1

þ L

3EI
c uð Þ þ L

6EI
w uð Þ ¼ 0 50ð Þ

where

u ¼ kL

2
and k2 ¼ P

EI

Thus the characteristic equation becomes

L

2EI

tan u

u
þ b

2 EIð Þ1
tan u1

u1

¼ 0 51ð Þ

or

tan u

u
¼ � EI

EIð Þ1
b

L

tan u1

u1

In the special case for which EIð Þ1=b ¼ EI=L, then

tan u

u
¼ � tan u1

u1

52ð Þ

The solution to this equation is plotted in Fig. 4.10, and it represents the boundary

between the stable and unstable regions.

Consider also the special case for which Q ¼ 0. For this case, since

lim
u1!0

tan u1

u1

¼ 1

figure 4.10 Critical conditions for a rigid square frame of constant stiffness.
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the characteristic equation becomes

tan u

u
¼ � EIb

EIð Þ1L
53ð Þ

Furthermore, if EI ¼ EIð Þ1 and b ¼ L, then

tan u ¼ �u 54ð Þ

The smallest root of this equation is 2.029; therefore

ucr ¼
kL

2

� �
cr

¼ 2:029

and

Pcr ¼ 16:47
EI

L2
55ð Þ

4.3.2 ANTISYMMETRIC BUCKLING

If the frame buckles in an antisymmetric mode, then (see Fig. 4.11)

uA ¼ �
Mb

3 EIð Þ1
c u1ð Þ þ

Mb

6 EIð Þ1
w u1ð Þ 56ð Þ

figure 4.11 Antisymmetric buckling of the rigid frame.
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From Eq. (56) and Eq. (40), we obtain

1

b
¼ b

6 EIð Þ1
: 3

u1

1

u1

� cot u1

� �
57ð Þ

Substitution of Eq. (57) into Eq. (43) yields the characteristic equation for antisym-

metric buckling:

b

EIð Þ1
1

u1

1

u1

� cot u1

� �
¼ � L

EI

1

u

1

u
� cot u

� �
58ð Þ

Let us next consider a few special cases. First consider the case of Q ¼ 0. Recog-

nizing that c 0ð Þ ¼ w 0ð Þ ¼ 1, then

1

b
¼ b

6 EIð Þ1
59ð Þ

The characteristic equation for this case is obtained if we substitute the expression for

b, Eq. (59), into Eq. (43):

1

u

1

u
� cot u

� �
¼ � EIb

3 EIð Þ1L
60ð Þ

Furthermore, if we assume that the frame is square and of constant stiffness

L ¼ b, EI ¼ EIð Þ1

 �

, then

1

u
� cot u ¼ � u

3
61ð Þ

The solution of this transcendental equation yields ucr > p, and the critical load is

higher than the corresponding symmetric mode critical load, Eq. (55).

Finally, if the frame is square with constant stiffness but Q 6¼ 0, then the charac-

teristic equation becomes

1

u1

1

u1

� cot u1

� �
¼ � 1

u

1

u
� cot u

� �
62ð Þ

For this case, a plot similar to that in Fig. 4.10 may be generated. Since the intercepts

are higher than those corresponding to symmetric buckling, the constant-stiffness

square frame will always buckle in a symmetric mode.

4.4 the simply supported portal frame

Let us consider the portal frame shown in Fig. 4.12. We are interested in finding

the smallest possible load (Pcr) which will cause the frame to buckle. To accomplish

this, we must consider all possible modes of buckling, compute Pcr for each mode,

and establish, through a comparison, Pcr and the corresponding mode. Note that the

frame is symmetric. The different buckling modes are shown in Fig. 4.13. Also note

that there is no possibility of a sway buckling mode when the horizontal bar buckles

symmetrically.

First, the rotational elastic restraint provided to the vertical bars by the horizontal

bar is the same as in the frame problem of Section 4.3 with Q ¼ 0.
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Symmetric bB ¼
2 EIð Þ1

b

Antisymmetric bB ¼
6 EIð Þ1

b

63ð Þ

The characteristic equation for the first two cases of Fig. 4.13, a and b, is given by

Eq. (42) with b0 ¼ bA ¼ 0 and bL ¼ bB, or

1

bA

þ Lc uð Þ
3EI

� 	
1

bB

þ Lc uð Þ
3EI

� 	
¼ Lw uð Þ

6EI

� 	2

64ð Þ

Multiplying Eq. (64) by bA and then setting bA ¼ 0, we have

1

bB

þ Lc uð Þ
3EI

¼ 0 65ð Þ

Substitution of the expressions for c uð Þ, Eq. (32), and bB, Eqs. (63), yields

Symmetric að Þ 1

2u
þ 2uð Þ EIb

2 EIð Þ1L
¼ cot 2uð Þ

Antisymmetric bð Þ 1

2u
þ 2uð Þ EIb

6 EIð Þ1L
¼ cot 2uð Þ

66ð Þ

It is shown qualitatively in Fig. 4.14 that the critical load for case (b) is higher than

that for case (a). In addition, we see from this figure that 2uð Þcr> p for both cases.

As a special case of the characteristic equations, Eqs. (66), for this problem, we

consider the horizontal bar to be extremely stiff. Then, EIð Þ1!1 and the charac-

teristic equation becomes

figure 4.12 Simply supported portal frame.
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figure 4.13 Buckling modes for the simply supported portal frame.
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1

2u
¼ cot 2uð Þ or tan 2uð Þ ¼ 2uð Þ 67ð Þ

Since, 2u ¼ kL, the above results in

Pcr ¼ 20:19
EI

L2

figure 4.13 Cont’d.

figure 4.14 Critical conditions for cases (a) and (b).
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This load represents the critical load for a column with one end fixed and the other

simply supported.

The characteristic equation for the sway buckling case, Fig. 4.13c, cannot be

obtained as a special case of Eq. (42) because point C is free to move in a direction

normal to the column AB. Note that Eq. (42) represents the characteristic equation

for a supported column with rotational end restraints (see Fig. 4.5a).

The characteristic equation for the case of sway buckling may be obtained if we

consider the column shown in Fig. 4.15. Note that the rotational restraint provided

by the horizontal bar in Fig. 4.14c is 6 EIð Þ1=b. The column of Fig. 4.15 is a special

case of the elastically supported column treated in Chapter 3. Therefore, the charac-

teristic equation for this model is obtained from Eq. (97) of Chapter 3 with the

following expressions for the spring constants

a0 ¼ 1 aL ¼ 0 b0 ¼ 0 bL ¼
6 EIð Þ1=b

EI

In Eq. (97) of Chapter 3, the parameter u is defined by u ¼ kL; therefore, wherever u

appears, we must use 2u.

Dividing Eq. (97) of Chapter 3 by a0 and taking the limit as 1=a0 ¼ b0 ¼ aL ! 0,

we have

� 2uð Þ6

L6
sin 2uð Þ þ 6EI1

bEI

2uð Þ5

L5
cos 2uð Þ ¼ 0

And finally

2uð Þ tan 2u ¼ 6 EIð Þ1L
EIb

68að Þ

or

tan 2uð Þ ¼ 6 EIð Þ1L=EIb

2uð Þ 68bð Þ

From Fig. 4.16 we see that 2ucr < p=2, and the critical load for the simply supported

portal frame is characterized by Eq. (68b). Therefore, as the load P is increased

quasistatically from zero, the frame will sway buckle when P reaches the value that

satisfies Eq. (68b).

Assuming that EI1L ¼ EIb, we obtain

tan 2u ¼ 3

u
69ð Þ

from which

figure 4.15 Model for sway buckling of simply supported portal frames.
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2uð Þcr¼ kLð Þcr¼ 1:350

and

Pcr ¼
1:821EI

L2

4.5 alternate approach

We have already demonstrated in Section 4.4 that we may use Eq. (97) of Chapter

3 to obtain the characteristic equation for a frame by reducing the problem to an

elastically restrained column. This approach may be used for any frame once the

amount of elastic restraint has been determined either by beam theory or beam-

column theory. This idea will be demonstrated through the rigid frame and then

applied to some additional cases.

4.5.1 RIGID FRAME

First consider the rigid frame shown in Fig. 4.7. First we reduce this problem to a

column of length L, bending stiffness EI, and rotational restraints at the ends A and

C of equal strength (bA ¼ bC ; see Fig. 4.17). Note that

bA ¼ bC ¼
2 EIð Þ1

b
� u1

tan u1

from Eq. (49) for symmetric buckling (Fig. 4.9), and

bA ¼ bC ¼
2 EIð Þ1=b

 �

u1

1=u1ð Þ � cot u1

from Eq. (57) for antisymmetric buckling (Fig. 4.11). To use Eq. (97) of Chapter 3,

we must first recognize that wherever u appears in Eq. (97), we must use 2u.

figure 4.16 Critical conditions for case (c); sway buckling.
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Furthermore, the rotational restraint constants in Eq. (97) have been divided through

by EI, or

Symmetric b0 ¼ bL ¼
bA

EI
¼ 2 EIð Þ1

bEI

u1

tan u1

Antisymmetric b0 ¼ bL ¼
bA

EI
¼

2 EIð Þ1=bEI

 �

u1

1=u1ð Þ � cot u1

70ð Þ

For the model shown in Fig. 4.17, we have a0 ¼ aL ¼ 1, and b0 ¼ bL given by

Eq. (70).

We first divide Eq. (97) by a0aL and take the limit as 1=a0 ¼ 1=aL ¼ 0. This leads

to the following characteristic equation for the column model of Fig. 4.17.

L
2u

L

� �3

þ 2b0�b2
0L

� � 2u

L

� �" #
sin 2uð Þ�2b0 L

2u

L

� �2

þb0

" #
cos 2uð Þþ2b2

0¼ 0 71ð Þ

If we first express the trigonometric functions in terms of the single angle, we have

L
2u

L

� �3

þ 2b0 � b2
0L

� � 2u

L

� �" #
2 sin u cos u� 2b0L

2u

L

� �2

cos2 u� sin2 u
� �

þ 4b2
0 sin2 u ¼ 0 72ð Þ

Next, if we divide Eq. (72) through by cos2 u, we obtain the following quadratic

equation in tan u:

2b2
0 þ b0L

2u

L

� �2
" #

tan2 u þ L
2u

L

� �3

þ 2b0�b2
0L

� �2u

L

" #
tanu�b0L

2u

L

� �2

¼ 0 73ð Þ

The solution for tan u by the quadratic formula is

tan u ¼ � 2u

b0L
74að Þ

cot u ¼ 1

u
þ 2u

b0L
74bð Þ

It can be shown that Eq. (74a) corresponds to a symmetric mode, and therefore use

of the corresponding expression for b0 from Eqs. (70) yields

tan u

u
¼ � EIb

EIð Þ1L
� tan u1

u1

75ð Þ

figure 4.17 Column model for leg AC of the rigid frame.
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This is the same as Eq. (51), as expected.

Similarly, Eq. (74b) corresponds to the antisymmetric mode, and substitution for

b0 yields the following expression [see Eq. (57)]:

1

u

1

u
� cot u

� �
¼ � 2

b0L
¼ � bEI

EIð Þ1L
1

u1

1

u1

� cot u1

� �
76ð Þ

4.5.2 THE CLAMPED PORTAL FRAME

Consider a portal frame similar to the one shown in Fig. 4.12 with the exception of

having fixed supports at points A and D instead of simple supports. For this new

problem, we must also consider all possible modes of failure. It is easily shown that

the smallest load corresponds to sway buckling as demonstrated in Fig. 4.18. There-

fore, we will only find Pcr for sway buckling. The column model that characterizes

this mode of failure is shown in Fig. 4.19.

Thecharacteristic equation for thismodel isobtained fromEq. (97)ofChapter3with

a0 ¼ 1, b0 ¼ 1, aL ¼ 0, and bL ¼
6 EIð Þ1
bEI

Note again that we must divide Eq. (97) by a0b0, take the limit as 1=a0 ¼ 1=b0

¼ aL ¼ 0, and use 2u instead of u. The characteristic equation is

tan 2u ¼ � 2u

bLL
¼ � 2ubEI

6L EIð Þ1
77ð Þ

From Fig. 4.20 we see that, depending on the value of bEI=L EIð Þ1, the critical value

for (2u) varies between p=2 and p as expected.

If bEI ¼ EIð Þ1L, then from Eq. (77)

figure 4.18 Sway buckling of the clamped portal frame.
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tan 2u ¼ � 2u

6

and

2uð Þcr¼ kLð Þcr¼ 2:716

from which

Pcr ¼
7:379EI

L2

4.5.3 PARTIAL FRAMES

As a final application of the alternate approach, consider the partial frames of

Fig. 4.21. The difference between these two partial frames is the support conditions at

point A.

The elastic support provided by bar BC is a rotational spring with b ¼ 4 EIð Þ1=b,
and an extensional spring, normal to the direction AB, with a ¼ EAð Þ1=b, where

EAð Þ1 is the extensional stiffness of bar BC. In most practical cases, a is taken to be

infinitely large. For such cases, the column models for the two partial frames are

those shown in Fig. 4.22.

The characteristic equations for the two models are obtained from Eq. (97) of

Chapter 3, with a0 ¼1, �0 ¼ 0, aL ¼1, �L ¼ 4 EIð Þ1=bEI for case (a), and a0 ¼1,

�0 ¼1, �L ¼1, �L ¼ 4 EI1ð Þ=bEI for case (b). These equations are

case að Þ L
2u

L

� �4

þ bL

2u

L

� �2
" #

sin 2u� LbL

2u

L

� �3

cos 2u ¼ 0

or

cot 2u ¼ 2u

LbL

þ 1

2u

cot 2u ¼ 2uð Þ EIb

4 EIð Þ1L
þ 1

2u

78ð Þ

case bð Þ 1� bLLð Þ 2u

L

� �2

sin 2u� L
2u

L

� �3

þ 2bL

2u

L

� �" #
cos 2uþ 2bL

2u

L

� �
¼ 0

figure 4.19 Model for sway buckling of clamped portal frames.
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figure 4.20 Critical conditions for sway buckling of clamped portal frames.

figure 4.21 Partial frames.
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or 1� bLLð Þ2u sin 2u� 2uð Þ2 cos 2uþ 2bLL 1� cos 2uð Þ ¼ 0 79ð Þ

where bL ¼ 4 EIð Þ1=bEI .

If EIð Þ1¼ EI and L ¼ b, the characteristic equations become

case að Þ cot 2u ¼ 2u

4
þ 1

2u
80ð Þ

case bð Þ � 3 2uð Þ sin 2u� 2uð Þ2 cos 2uþ 8 1� cos 2uð Þ ¼ 0 81ð Þ

For this particular condition and for case að Þ, 2uð Þcr¼ klð Þcr¼ 3:829 and

Pcr ¼
14:66EI

L2

4.6 nonlinear analysis

4.6.1 INTRODUCTION

In recent years considerable attention has been given to stability of systems in the

presence of initial imperfections. This attention is justified by the attempt to relate

critical load conditions to load carrying capacity of the system. One of the major

contributions to this problem is the initial post-buckling theory of Koiter (1967),

who has shown that the effect of small initial imperfections is closely related to the

initial post-buckling behavior of the corresponding perfect system. Koiter’s initial

post-buckling analysis is limited to systems that, in their ideally perfect state, exhibit

a bifurcation point at the critical load. However, the bifurcation phenomenon is an

exception rather than the rule. The majority of actual structural systems, if accur-

ately modeled (mathematical model), exhibit limit point instability rather than

figure 4.22 Column models for the partial frames.

SIMITSES - Title 0750678755_ch04 Final Proof page 126 9.11.2005 10:39pm

126 Buckling of Frames



bifurcational buckling (with either stable or unstable branching). In many instances,

the simplified modeling of a structural system, which leads to bifurcational buckling,

is very attractive. This is so because a linearization of the governing equation for the

prebuckling primary equilibrium state is possible, which in turn simplifies the

estimation of the critical load. Usually, in such cases, the entire problem reduces

to a linear eigen-boundary-value problem. On the contrary, for systems that exhibit

limit point instability, a complete nonlinear analysis is required for the estimation of

the critical load. The usual technique (Almroth et al., 1976) for determining the limit

point consists of establishing the maximum on the load versus some characteristic

displacement curve. This is accomplished by starting at some low level of the applied

load, and obtaining the corresponding displacement by solving the nonlinear equi-

librium equations in an exact (if possible) or an approximate manner. The procedure

is repeated by step-increasing the applied load. The criterion for reaching the limit

point (collapse load) is that convergence for the solution of the nonlinear equations

cannot be obtained even for very small load increments. Such procedures for

establishing critical loads (limit point) require computer solutions at many load

levels and tend to be very expensive in terms of computer time. In addition, these

procedures encounter numerical difficulties associated with convergence (Almroth

et al., 1976).

This article presents a procedure for estimating critical loads for rigid-jointed

frame structures (subject to instability including sway buckling). The procedure is

applicable to both bifurcational and limit point instability problems.

Equilibrium and buckling equations are established for an n-bar frame, and the

methodology is demonstrated through the analysis of two simple frames. The present

analysis is based on linearly elastic behavior and nonlinear kinematic relations

(moderate rotations), while the effect of transverse shear on deformation is neglected

(Euler-Bernoulli beams). The buckling equations are derived by employing the

perturbation technique (Bellman, 1969), which was demonstrated by Koiter (1966)

and Sewell (1965) for buckling problems.

Since the procedure is demonstrated through frame-type configurations, the cur-

rent state-of-the-art concerning stability analysis of such structural systems is briefly

reviewed herein. Buckling analysis of rigid-jointed plane frameworks may be traced

to Bleich (1919), Müller-Breslad (1908), and Zimmerman (1909, 1910, 1925). An

excellent historical sketch is given in Bleich’s textbook (1952), which also presents

and discusses various methods for estimating critical conditions. In all these investi-

gations, there are numerous simplifying or restrictive assumptions but, despite this,

they lead to reasonable estimates of critical loads. In addition to the works mentioned

so far, it is important to include the investigation by Chwalla (1938) of the buckling of

a rigid one-story portal frame under a symmetric transverse load not applied at the

joints of the horizontal bar. He has shown that sway buckling is possible, which

appears as an unstable bifurcation from the nonlinear primary path. In obtaining,

though, both the primary path and the bifurcation load, Chwalla employed linear

equilibrium equations and linearly elastic behavior. In more recent years, similar

problems have been studied by Barker, Horne, and Roderick (1947), Chilver (1956),

Horne (1961), Livesley (1956), Merchant (1954, 1955) and others. Many of the

aforementioned problems and procedures have been incorporated in books such as

Horne (1961) and McMinn (1962). The stability of plane rectangular frames with

sway under static and dynamic harmonic loads is investigated in Kounadis (1976)

using the kinetic approach. In addition, there are several studies in the area of post-

buckling analysis of specialized frameworks (Britvec, 1960; Britvec and Chilver, 1963;
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Godley and Chilver, 1967) that enhance understanding of when and under what

conditions critical loads can be related to load-carrying capacity. Finally, the book by

Britvec (1973) presents many of the aforementioned analyses and procedures.

4.6.2 MATHEMATICAL FORMULATIONS

Consider a general frame composed of n straight, slender, constant, cross-

sectional bars, which are rigidly connected to each other. Each bar is of length Ii,

cross-sectional area Ai, cross-sectional second moment of area Ii, and it subscribes to

a proper coordinate system (see Fig. 4.23) with displacement components j (along the

length, x) and w (normal to the bar). The external loads applied to the frame may

consist of concentrated loads and couples, as well as of distributed loads. The

expression for the total potential of the frame is

Ur ¼
1

2

Xn

i¼1

ðli

0

EAð Þi ji,x þ
1

2
w2

i; x

� �2

þ EIð Þiw2
i,xx

" !
dxþV 82ð Þ

in which E ¼ Young’s modulus of elasticity and V is the potential of the external

forces. Note that the behavior of the bars is assumed to be linearly elastic and the

kinematic relations employed correspond to those of moderate rotations.

Equilibrium Equations

By employing the principle of the stationary value for the total potential, one may

write the following equilibrium equations, when the loads are applied at the joints

ji,x þ
1

2
w2

i,x

� �
,x ¼ 0;

EIiwi,xxxx
� EAi ji,x þ

1

2
w2

i,x

� �
wi,xx ¼ 0;

i ¼ 1, 2, . . . , n 83ð Þ

P3P2P1

( 7 )

( 4 )

( 9 )

(1) ( 2 ) ( 3 )

( 10 )

( 5 ) ( 6 )

( 8 )

7 8 9

4 5 6

e

ξix,

ξix,

L2

L1

L1 L2

1 2 3

wi

wi

figure 4.23 Typical multibay, multistory, rectangular rigid-jointed frame.
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In the case for which the ith bar is loaded by a transverse distributed load, qi xð Þ,
concentrated forces, Pm

i , and couples M
n

i on 0 < x < li, then the right-hand side of

the second of Eqs. (83) is equal to

qi xð Þ þ
X
m

Pm
i d x� xmð Þ �

X
n

M
n

i h x� xnð Þ 84ð Þ

Note that d and h are the Dirac-delta and doublet functions, respectively, and xm and

xn denote the location of the concentrated forces and moments.

In addition, the associated boundary conditions for the ith bar are denoted by

Xn

i¼1

EAi ji,x þ
1

2
w2

i,x

� �
dji

� 	����
li

0

þ EIiwi,xx
dwi,x

� �( ����
li

0

þ

EAi ji,x þ
1

2
w2

i,x

� �
wi,x � EIiwi,xxx

� 	
dwi

����
li

0

þ dVð Þ
����
li

0

)
¼ 0

85ð Þ

in which dVð Þjli0 exists only for bars whose end points are coincident with loaded

frame joints. Finally, at each joint kinematic continuity must be imposed for the

displacements ji, wi, wi:x , and their admissible variations. Since in a general multi-

story, multibay, rigid-jointed rectangular frame, there are three different (two-bar,

three-bar, and four-bar joints) types of connections, the kinematic continuity equa-

tions and the natural boundary conditions are listed herein for each type separately

(see Fig. 4.23). Consider the 10-bar frame, shown on Fig. 4.23. Each bar and each

joint is identified by a number ið Þ ¼ 1� 10½ for the bars, and j ¼ 1� 9 for the joints].

The sign conventions are shown on the figure. Note that

l1 ¼ l2 ¼ l3 ¼ L�i ; l4 ¼ l5 ¼ l6 ¼ L�2; l7 ¼ l9 ¼ L1; l8 ¼ l10 ¼ L2 86ð Þ

Also, note that e denotes a small load eccentricity (positive as shown).

A typical two-bar joint is characterized by joint 7, while a typical three-bar joint

by joint 4, and a four-bar joint by joint 5. Kinematic continuity equations and

natural boundary (joint equilibrium) equations are written herein for each one of

the three typical joints. Note that in order to write the natural boundary conditions

from Eqs. (85) one must use the kinematic continuity conditions at that joint.

Joint 7

The kinematic continuity conditions are

w4 L�2
� �

¼ j7 L1ð Þ; w4,x L�2
� �

¼ w7,x L1ð Þ; j4 L�2
� �

¼ �w7 L1ð Þ 87ð Þ

The natural boundary conditions (joint equilibrium) are

EIð Þ4w4,xx
L�2
� �

þ EIð Þ7w7,xx
L1ð Þ þ P1e ¼ 0; AEð Þ4 j4,x L�2

� �
þ 1

2
w2

4,x L�2
� �� 	

þ EIð Þ7w7,xxx
L1ð Þ � AEð Þ7 j7,x L1ð Þ þ

1

2
w2

7,x L1ð Þ
� 	

w7,x L1ð Þ þ P1 ¼ 0;

AEð Þ4 j4,x L�2
� �

þ 1

2
w2

4,x L�2
� �� 	

w4,x L�2
� �

� EIð Þ4w4,xxx
L�2
� �

þ AEð Þ7 j7,x L1ð Þ þ
1

2
w2

7,x L1ð Þ
� 	

¼ 0

88ð Þ
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Joint 4

The kinematic continuity conditions are

w1 L�1
� �

¼ w4 0ð Þ ¼ j9 L1ð Þ; w1,x L�1
� �

¼ w4,x 0ð Þ ¼ w9,x L1ð Þ;
j1 L�1
� �

¼ j4 0ð Þ ¼ �w9 L1ð Þ
89ð Þ

The natural boundary conditions are

EIð Þ1w1,xx
L�1
� �

þ EIð Þ9w9,xx
L1ð Þ � EIð Þ4w4,xx

0ð Þ ¼ 0; � EIð Þ1
�

j1,x L�1
� �

:

þ 1

2
w2

1,x L�1
� �	

� EIð Þ9w9,xxx
L1ð Þ þ EAð Þ9 j9,x L1ð Þ þ

1

2
w2

9,x L1ð Þ
� 	

w9,x L1ð Þ

þ EAð Þ4 j4,x 0ð Þ þ 1

2
w2

4,x 0ð Þ
� 	

¼ 0; � EIð Þ1w1,xxx
L�1
� �

þ EAð Þ1
�

j1,x L�1
� �

:

þ 1

2
w2

1,x L�1
� �	

w1,x L�1
� �

þ EAð Þ9 j9,x L1ð Þ þ
1

2
w2

9,x L1ð Þ
� 	

þ EIð Þ4w4,xxx
0ð Þ � EAð Þ4 j4,x 0ð Þ þ 1

2
w2

4,x 0ð Þ
� 	

w4,x 0ð Þ ¼ 0

90ð Þ

Joint 5

The kinematic continuity conditions are

w2 L�1
� �

¼ w5 0ð Þ ¼ j9 0ð Þ ¼ j10 L2ð Þ; w2,x L�1
� �

¼ w5,x 0ð Þ ¼ w9,x 0ð Þ

¼ w10,x L2ð Þ; j2 L�1
� �

¼ j5 0ð Þ ¼ �w9 0ð Þ ¼ �w10 L2ð Þ 91ð Þ

The natural boundary conditions are

� EIð Þ9w9,xx
0ð Þ þ EIð Þ2w2,xx

L�1
� �

þ EIð Þ10w10,xx
L2ð Þ � EIð Þ5w5,xx

0ð Þ ¼ 0;

� EIð Þ10w10,xxx
L2ð Þ þ EAð Þ10 j10,x L2ð Þ þ

1

2
w2

10,x L2ð Þ
� 	

w10,x L2ð Þ

þ EAð Þ5 j5,x 0ð Þ þ 1

2
w2

5,x 0ð Þ
� 	

þ EIð Þ9w9,xxx
0ð Þ � EAð Þ9

�
j9,x 0ð Þ:

þ 1

2
w2

9,x 0ð Þ
	
w9,x 0ð Þ � EAð Þ2 j2,x L�1

� �
þ 1

2
w2

2,x L�1
� �� 	

¼ 0;

� EIð Þ5,xxx
0ð Þ þ EAð Þ5 j5,x 0ð Þ þ 1

2
w2

5,x 0ð Þ
� 	

w5,x 0ð Þ

þ EAð Þ9 j9,x 0ð Þ þ 1

2
w2

9,x 0ð Þ
� 	

þ EIð Þ2w2,xxx
L�1
� �

� EAð Þ2
�

j2,x L�1
� �

þ 1

2
w2

2,x L�1
� �	

w2,x L�1
� �

� EAð Þ10 j10,x L2ð Þ þ
1

2
w2

10,x L2ð Þ
� 	

¼ 0

92ð Þ

Finally, for this particular illustrative example (Fig. 4.1) one must write the proper

boundary conditions at the supports (joints 1, 2, and 3). These are, for joint 1

w1 0ð Þ ¼ 0; w1,x 0ð Þ ¼ 0; j1 0ð Þ ¼ 0 93ð Þ
for joint 2

w2 0ð Þ ¼ 0; w2,xx
0ð Þ ¼ 0; j2 0ð Þ ¼ 0 94ð Þ
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and for joint 3

w3 0ð Þ ¼ 0; w3,x 0ð Þ ¼ 0; j3 0ð Þ ¼ 0 95ð Þ

Before outlining the solution methodology, it is convenient to obtain the general

solution of the equilibrium equations for each bar, Eqs. (83). It is deduced from the

first of Eqs. (83) that the axial force in the bar (denoted by Si) is a constant, or

ji,x þ
1

2
w2

i,x ¼ �
Si

AEð Þi
96ð Þ

in which Si ¼ the magnitude of the axial force, and the positive and negative signs

characterize tension and compression, respectively.

Depending on the sign of the axial force, the second of Eqs. (83) becomes a fourth-

order, elliptic-type, ordinary differential equation (for compression) or a hyperbolic-

type equation (for tension) for Si 6¼ 0. Thus, one must differentiate between these two

cases and write the appropriate general solution for each case. First, the following

nondimensionalized parameters are introduced for convenience

k2
i ¼

Sil
2
i

EIð Þi
; l2

i ¼
l2i Ai

Ii

97ð Þ

Then, the general solutions are obtained for wi xð Þ and ji xð Þ. These are:

1. Compression in the ith bar

wi xð Þ ¼ Ai1 sin
kix

li
þ Ai2 cos

kix

li
þ Ai3xþ Ai4

ji xð Þ ¼ � k2
i

l2
i

xþ Ai5 �
1

2

ðx

0

w2
i,xdx

9>>>=
>>>;

98ð Þ

2. Tension in the ith bar

wi xð Þ ¼ Ai1 sinh
kix

li
þ Ai2 cosh

kix

li
þ Ai3xþ Ai4

ji xð Þ ¼ k2
i

l2
i

xþ Ai5 �
1

2

ðx

0

w2
i,xdx

9>>>=
>>>;

99ð Þ

Note that if a bar is also loaded transversely, the expression for wi xð Þ, Eqs. (98), must

contain the proper particular solution.

Regardless of tension or compression in the bar, there are six constants in Eqs.

(98) or (99). These constants are: ki, Aij, j ¼ 1, 2, 3, 4, 5. In addition, irrespective of

the spatial distribution of the applied loads (concentrated forces at the joints only or

in combination with distributed loads and other concentrated forces and couples),

the response of an n-bar frame is known provided that the 6n constants can be

evaluated. These 6n constants are

ki: i ¼ 1, 2, . . . , n

Aij: i ¼ 1, 2, . . . , n and j ¼ 1,2,3,4,5

)
100ð Þ

The needed 6n equations are obtained from support conditions (three for each

support) (see Eqs. 93, 94, and 95); from natural boundary conditions (equilibrium,
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three at each joint) (see Eqs. 88, 90, and 92); and from requiring kinematic continu-

ity conditions at each joint [3(p – 1)], where p denotes the number of bars that are

connected at the joint] (see Eqs. 87, 89, and 91). For an unbraced, multistory,

multibay, rigid-jointed frame, the number of available conditions is 6n. Note that

if there is cross-bracing, one bar is added; therefore, six more constants are added,

and six more kinematic continuity conditions (three at each end) must be satisfied.

In the particular case of Fig. 4.23, there are 10 bars (n ¼ 10) and thus 60 constants

must be determined for equilibrium response. The 60 needed equations come from

the following: nine relations from the support conditions (three at each support), 18

natural boundary conditions from joints 4–9, and 33 kinematic continuity continuity

conditions (nine from joint 5, six from each of joints 4, 6, and 8, and three from each

of joints 7 and 9).

In closing this section there is a very important observation that isworthmentioning.

Regardless of the position of a given bar, and regardless of the sign of the axial force in

this given bar, application of the support, kinematic continuity, and natural boundary

conditions yields only one nonlinear equation in the constants ki, Aij, j ¼ 1, 2, 3, 4, 5.

This is so because, when evaluating either Eqs. (98) or Eqs. (99), at x ¼ 0, the resulting

equations are linear in the constants; while when evaluating these equations at x ¼ li,

the resulting equations are linear except ji lið Þ. Because of this linearity, it is possible to

eliminate all constants, which appear in a linear fashion and end up with n number of

nonlinear equations in the n nondimensionalized axial forces, ki.

Buckling Equations

Regardless of whether the primary equilibrium path is linear or nonlinear, the

buckling equations are needed in order to establish the level of the load at which

there is loss of stability through the existence of either a bifurcation point or a limit

point. In addition, through the buckling equations, one may establish the modes of

deformation during the buckling process.

The buckling equations are derived by employing a perturbation method (Bell-

man, 1969; Roorda and Chilver, 1969; Sewell, 1965) based on the concept of the

existence of an adjacent equilibrium position at either a bifurcation point or a limit

point. The required steps are as follows: starting with the equilibrium equations and

proper boundary conditions expressed in terms of displacements, perturb them by

allowing small admissible changes in the displacement functions, make use of

equilibrium at a point at which an adjacent equilibrium path is possible, and retain

first-order terms in the admissible variations. The resulting inhomogeneous differ-

ential equations, for the case in consideration, are linear ordinary differential

equations. These are the buckling equations.

Let j�i xð Þ and w�i xð Þ denote displacement components on the primary equilibrium

path and ji xð Þ and wi xð Þ denote infinitesimally small but kinematically admissible

displacement functions. Then by writing

ji ¼ j�i þ ji; wi ¼ w�i þ wi 101ð Þ

By substituting these expressions into the equilibrium equations and associated

boundary terms, Eqs. (83) and (85), by recognizing that j�i and w�i satisfy primary

path equilibrium, by performing the indicated operations, and by retaining first-

order terms, one may derive the following set of buckling equations and associated

boundary conditions
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ji,x þ w�i,xwi,x

� �
,x
¼ 0;

EIð Þiwi,xxxx
� EAð Þi j�i,x þ

1

2
w�

2

i,x

� �
wi,xx

¼ EAð Þi ji,x þ w�i,xwi,x

� �
w�i,xx

102ð Þ

Xn

i¼1

EAð Þi ji,x þ w�i,xwi,x

� �
ji

h ili
0
þ
h

EIð Þiwi,xx
wi,x

ili
0
þ
��

EAð Þi
�

j�i,x



:

þ 1

2
w�

2

i,x

�
wi,x þ EAð Þi ji,x þ w�i,xwi,x

� �
w�i,x � EIð Þiwi,xxx

	
wi

�
li

0

����
�
¼ 0

103ð Þ

Note that ji and wi must satisfy kinematic continuity conditions at every joint (see,

e.g., Eqs. 88, 89 and 90).

Next Eqs. (102) may be rewritten by employing the primary state solution and by

introducing the following

EAð Þi ji,x þ w�i,xwi,x

� �
¼ Si 104ð Þ

Note that Si may be positive or negative. Assuming that the ith bar is in com-

pression at the instant of buckling, then Eqs. (102) becomes

ji,x þ w�i,xwi,x ¼
Si

AEð Þi
;

wi,xxxx
þ k2

i

l2i
wi,xx

¼ � Si

EIð Þi
ki

li

� �2

Ai1 sin
kix

li
þ Ai2 cos

kix

li

� � 105ð Þ

The solution to the second of Eqs. (105) consists of complementary and particular

parts and it is

wi xð Þ ¼ Ai1 sin
kix

li
þ Ai2 cos

kix

li
þ Ai3xþ Ai4

þ Silix

2ki EIð Þi
Ai2 sin

kix

li
� Ai1 cos

kix

li

� � 106ð Þ

The expression for ji is obtained from the first of Eqs. (105) and it is

ji xð Þ ¼ Si

AEð Þi
xþ Ai5 �

ðx

0

w�i,xwi,xdx 107ð Þ

in which the integrand may be obtained from Eqs. (106) and the first of Eqs. (98).

Note that if the member is in tension at the instant of buckling the solution for wi will

involve hyperbolic functions and the first of Eqs. (99) must be employed in Eq. (107).

Regardless of this fact, there are six constants (Aij, j ¼ 1, 2, 3, 4, 5, and Si) and the

expressions for wi and ji (buckling modes) are linear functions of these constants.

In a similar manner as in the case of equilibrium, one may write the kinematic

continuity, support, and natural boundary conditions in terms of the solutions for wi

and ji. It is important to observe here that these conditions are homogeneous and

linear, and therefore their satisfaction leads to a system of homogeneous and linear

algebraic equations in the constants Si, Aij i ¼ 1, 2, . . . nð , and j ¼ 1, 2, . . . 5).

4.6.3 SOLUTION PROCEDURE

Given an n-bar, multistory, multibay plane frame, which is loaded by concentrated

forces and moments (not necessarily at the joints) and distributed loads, the interest is
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in outlining a solution procedure for finding critical conditions. Critical condition,

herein, refers to the level of the loads or combination of the loads for which the

equilibrium of the system becomes unstable through either a bifurcation point or a

limitpoint.Note that thegoverningequations,derived in theprevious section, caneasily

be modified in order to accommodate small initial geometric imperfections.

Assuming that the interest lies in finding critical conditions, the solution procedure

is as follows:

1. Through a simple and quick buckling analysis program, such as those in Hornef

(1965), Kounadis (1977), and McMinn (1962), identify the bars (if any) that are in

tension near the true buckling load.

2. On the basis of this first step, use Eqs. (98) for those bars in compression and

Eqs. (99) for those in tension.

3. Employ the support, kinematic continuity, and natural boundary conditions to

establish the 6n equations that signify equilibrium states for any level of the applied

load.

4. Recognizing that 5n of the preceding equations are linear in the constants

Aij i ¼ 1, 2, . . . , n; j ¼ 1, 2, . . . , 5ð Þ, reduce the system to one of n nonlinear equa-

tions in ki.

5. Since satisfaction of the kinematic continuity, support, and natural boundary

conditions for the buckling solution leads to a system of 6n linear, homogeneous

algebraic equations in Si and Aij (constants associated with the buckling modes),

then the characteristic equation is established by requiring the determinant of the

coefficients to vanish (for a nontrivial solution to exist). This step provides one more

equation (nonlinear) in ki, and the applied loads, and it holds true only at the critical

equilibrium point (either bifurcation or limit point), which must correspond to the

primary equilibrium path.

6. Steps 4 and 5 provide (nþ 1) nonlinear equations in ki and the applied load. The

simultaneous solution of these gives the critical load and the corresponding complete

response (since knowledge of ki implies knowledge of Aij and together imply know-

ledge of ji xð Þ, wi xð Þ, and the associated stresses, strains, moments, etc.). In order to

solve the system of (nþ 1) nonlinear equations, one must employ an efficient com-

puting technique (Brush 1975; Merchant 1955; Timoshenko 1961) implemented on a

high-speed digital computer. For a frame with small number of bars (two or three),

the following scheme is devised by the writers. Assuming a two-bar frame, one must

solve three nonlinear equations in ki and lc (load parameter)

f1 k1, k2, lCð Þ ¼ 0; f2 k1, k2, lCð Þ ¼ 0; f3 k1, k2, lCð Þ ¼ 0 108ð Þ

If k1, k2, and lC characterize a point in the space (k1, k2, lC) that satisfies all three

equations, Eqs. (108), then these values, also denote the minimum (which is zero) of

the function F, in which

F ¼ f 2
1 þ f 2

2 þ f 2
3 109ð Þ

Themathematical search technique ofNelder andMead (1964) is employed for find-

ing this minimum. This approach is used in the illustrative examples contained herein.

Steps 1–6 provide the level of the load of the critical point, and the overall

procedure is based on the assumption that the behavior of the material is linearly

elastic. Since one can also find the complete response (equilibrium) of the system at

that load level, it is possible to find out that the stresses are in the plastic range. In

that case, if one is interested in finding out at which load level the stresses are in the
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plastic range, he may solve for the response by incrementing the applied load and

solving for the n nonlinear equations, in a similar manner.

4.6.4 ILLUSTRATIVE EXAMPLES

Two illustrative examples have been chosen to demonstrate the solution method-

ology and procedure proposed in this article. The first example consist of a two-bar

frame supported by immovable pins (see Fig. 4.24) and loaded as shown. The second

one consist of a two-bar frame supported by an immovable pin at the end of the bar,

which is parallel to the applied load (see Fig. 4.25) and by a movable (in the horizontal

direction) pin at the end of the bar,which is normal (horizontal bar) to the applied load.

These examples were chosen because both have been analyzed before by different

methods and provide excellent tests for the proposed methodology. The first example

has been investigated theoretically and experimentally by Koiter (1966), Kounadis,

Giri, and Simitses (1977), and Roorda (1965), while the second one was investigated

by Huddleston (1967) for zero eccentricity.

Each example is analyzed and considered separately, but the procedure and the

results are presented by making use of the following nondimensionalized parameters

x

li
¼ x

l
¼ x;

wi

l
¼Wi;

ji

l
¼ Ji; l2 ¼ Ail

2
i

Ii

¼ Al2i
I

; e ¼ e

l
;

b2 ¼ Pl2

EI
; lC ¼

P

Pcl

; k2
i ¼

Sil
2
i

EIð Þi
; i ¼ 1, 2

110ð Þ

in which Pcl is the linear theory critical load.

ϕ

x, x1

x, x2

e
P

bar "2"

bar "1"

Deformed
Ref. Line

w1

w2

Undeformed
Ref. Line

:

(EI )1 = (EI )2 = EI
(AE )1 = (AE )2 = AE

l1 = l2 = l

figure 4.24 Geometry and sign convention, example 1.

P
e

x, x1

x, x2
bar "2"

bar "1"

Undeformed
Ref. Line

w1

w2

l1 = l2 = l

(EI )1 = (EI )2 = EI

(AE )1 = (AE )2 = AE

figure 4.25 Geometry and sign convention, example 2.
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Example 1.—For this particular example, the solution of the equilibrium equa-

tions is given by Eqs. (98), since both bars are in compression at the critical load. For

this case, in view of Eqs. (110) the solution becomes

Wi xð Þ ¼ Ai1 sin kixþ Ai2 cos kixþ Ai3xþ Ai4

Ji xð Þ ¼ � k2
i x

l2
þ Ai5 �

1

2

ð�
0

W 2
i,�dx; i ¼ 1, 2

111ð Þ

Note that i ¼ 1 corresponds to the vertical bar and i ¼ 2 to the horizontal bar (see

Fig. 4.24).

Use of the kinematic continuity, Eqs. (87) natural, Eqs. (88) and support condi-

tions, similar to Eqs. (91), in terms of the nondimensionalized parameters yields the

following relations among the 2n (12) constants (ki; Aij, i ¼ 1, 2; and j ¼ 1, 2, . . . 5).

Thus

Ai2 ¼ Ai4 ¼ Ai5 ¼ 0; i ¼ 1, 2; k2
2A23 � k2

1 þ b2 ¼ 0; k2
1A13 þ k2

2 ¼ 0;

A11 k1 cos k1 � A21 k2 cos k2 þ A13 � A23 ¼ 0;

A11 k2
1 sin k1 þ A21 k2

2 sin k2 � b2e ¼ 0;

k2
2

l2
¼ �A11 sin k1 � A13 � B2 1ð Þ; k2

1

l2
¼ A21 sin k2 þ A23 � B1 1ð Þ:

112ð Þ

in which B1 xð Þ ¼ 1

2
A2

13 xþ 2A11A13 sin k1xþ k2
1A

2
11

2
xþ sin 2k1x

2k1

� �� 	

B2 xð Þ ¼ 1

2
A2

23 xþ 2A21A23 sin k2xþ k2
2A

2
21

2
xþ sin 2k2x

2k2

� �� 	 113ð Þ

Note that all of Eqs. (112), except the last two, are linear algebraic equations in

terms of Aij i ¼ 1, 2 and j ¼ 1, 2 . . . 5ð Þ and therefore these constants can be ex-

pressed solely in terms of ki, i ¼ 1, 2. Thus, points on the equilibrium path for any

value of the slenderness ratio, l, eccentricity, e, and level of the applied load, b2 lCð Þ
are characterized by the solution of the last two of Eqs. (112).

In summary, the expressions for the displacement components of equilibrium

points are :

Ji ¼ �
k2

i

l2
x� Bi xð Þ; Wi xð Þ ¼ Ai1 sin kixþ Ai3x; i ¼ 1, 2 114ð Þ

Once the solution is known, the complete response of the frame, at an equilibrium

path position, is known.

Since it is possible, for a given problem, to have nonacceptable equilibrium paths

that include a limit point, the development that follows is applicable only to the

primary path. This implies that the sought solution (unstable point and correspond-

ing critical condition) belongs to the primary equilibrium path, and thus it constitutes

a realistic solution.

Next, in order to find Pcr (for all l and ē), one must obtain the characteristic

equation (from the solution to the buckling equations). By introducing the nondi-

mensionalized parameters, by employing the general solution, Eqs. (106) and (107),

to the buckling equations, and by making use of Eqs. (114) and all auxiliary

conditions (kinematic continuity, etc.), one obtains a set of four linear homogeneous
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algebraic equations in A11, A21, and Si i ¼ 1, 2ð Þ (four equations in four unknowns),

because enforcement of the auxiliary conditions yields A12 ¼ A14 ¼ A15 ¼ 0, and A13

have been expressed in terms of the remaining four. Thus, a nontrivial solution exists,

if the determinant of the coefficients vanishes. This requirement yields the following

characteristic equation:

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

��������

��������
¼ 0;

in which a11 ¼ sin k1; a12 ¼ A23 sin k2 þ
A21

2
k2

2 1þ sin 2k2

2k2

� �
;

a13 ¼ l2 A11 cos k1

2k1

� A13

k2
1

þ A23 þ A21 sin k2

k2
2

� �
; a14 ¼ l2 1

l2

�

� 1

k2
1

� A23

k2
2

A23 þ A21 sin k2ð Þ þ A2
21

4
1þ sin 2k2

4k2

þ cos 2k2

2

� �
þ

A21A23

cos k2

2k2

	
; a21 ¼ k1 cos k1; a22 ¼ �k2 cos k2;

a23 ¼ l2 A11

2

cos k1

k1

� sin k1

� �
� A13

k2
1

þ 1

k2
2

� �� 	
;

a24 ¼ l2 A21

2
sin k2 �

cos k2

k2

� �
þ A23

k2
2

� 1

k2
1

� 	
; a31 ¼ �A13 sin k1

� A11k
2
1

2
2þ sin 2k1

2k1

� �
; a32 ¼ 0; a33 ¼ �l2 1

l2
� 1

k2
2

� A13

k2
1

�
A13þð

A11 sin k1Þ þ
A2

11

4
1þ sin 2k1

4k1

þ cos 2k1

2

� �
þA11A13

cos k1

2k1

	
;

a34 ¼ 0; a41 ¼ 2k2
1 sin k1; a42 ¼ 2k2

2 sin k2; a43 ¼ l2A11 2 sin k1 þ k1 cos k1ð Þ;

a44 ¼ l2A21 2 sin k2 þ k2 cos k2ð Þ: 115ð Þ

Note that the last two of Eqs. (112) and Eqs. (115) constitute a system of three

nonlinear equations in k1, k2, and b2 (l and ē are fixed parameters). Also note that

the Aij values are expressed in terms of k1, k2, and b2 by employing the remaining of

Eqs. (112). The solution of this system yields the critical load, b2
cr, and the response of

the frame at the critical load.

The solution is accomplished by employing step 6 of the previous section, and

numerical results have been generated. These results are presented graphically in Fig.

4.26 as critical load parameter ratio, lc ¼ Pcr=Pcl ¼ b2
cr=13:89, versus eccentricity ē for

various values of the slenderness ratio (l ¼ 40, 80, 120, 1). The l ¼ 40 value may be

looked upon as a lower limit for linearly elastic behavior. It is observed that, for each l

value, there is a limiting value, of the eccentricity (positive) forwhicha limit point exists.

For eccentricities below this critical value, the frame fails through the existence of a
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limit point. Contrary, for eccentricities higher than this critical value, no solution for

the system is possible, which implies that there is neither a limit point nor a bifurcation

point. For this range of eccentricities, the frame is always in stable equilibrium. Someof

the results are presented in tabular form (Table 4.1). This table gives the limit point

loads (lc or b2
cr) and the corresponding values of k1 and k2 for l ¼ 80 and for various

values of the eccentricity including the upper limit (critical eccentricity).

Example 2.—For this particular case, because of the movable support at the right

extreme of the horizontal bar, the axial force, k2, is zero and the solution to the

equilibrium equations is

W1 ¼ A11 sin k1xþ A12 cos k1xþ A13xþ A14;

J1 ¼ �
k2

1x

l2
þ A15 �

1

2

ð�
0

W 2
1,�dx;

W2 ¼ A21x3 þ A22x2 þ A23xþ A24; J2 ¼ A25 �
1

2

ð�
0

W 2
2,�dx

116ð Þ

Following the sameprocedure, as in the first example, the satisfaction of all auxiliary

LOCUS OF MAX. L. P. L.

− 10 − 8 − 6 − 4 − 2 0 2

1.00

0.98

0.96

0.94

0.92

0.90

0.88

0.86

e �103  

Koiter (1966)

Roorda (1965)

λ = ∞ 
λ = 120 
λ = 80
λ = 40 

λccr

figure 4.26 Effect of eccentricity on limit point loads for various slenderness ratios.

table 4.1 Critical Loads for l ¼ 80 and Various Eccentricities—Example 1

ē lc( ¼ b2
cr=13:89) b2

cr k2
2 k2

1

(1) (2) (3) (4) (5)

0.00047288 0.9997912 13.8871 0.001518461 13.8820

0.00000000 0.9753707 13.5479 0.09431323 13.6409

�0.00130000 0.9526637 13.2325 0.17481340 13.4195

�0.00250000 0.9390496 13.0434 0.22035590 13.2878

�0.00500000 0.9180633 12.7519 0.28645260 13.0866

�0.00700000 0.9048308 12.5681 0.32553400 12.9607

�0.01000000 0.8882145 12.3373 0.37176040 12.8035

Note: Eqs. (108) and (109) are satisfied with 10�10 accuracy.
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conditions leads to a singlenonlinear equation ink1. This equation relatesk1 to all other

parameters, l, b2, and e at points on the primary equilibrium path, and it is

k2
1

l2
¼ b2 � k2

1

3
þ k2

1 þ b2 e� 1ð Þ
k1

cot k1

� 1

4

k2
1 þ b2 e� 1ð Þ

k1 sin k1

� 	2

1þ sin 2k1

2k1

� � 117ð Þ

Similarly the characteristic equation is

3

2

k2
1 þ b2 e� 1ð Þ

k2
1 sin k1

� 	2
k1 sin k1

2
þ sin k1 sin 2k1

4
þ k2

1 cos k1

3

� �

� k1 þ b2 e� 1ð Þ
k2

1 sin k1

� 	2

2k1 þ sin 2k1ð Þ þ 2 cos k1

� 2k1 sin k1

1

3
þ 1

l2

� �
¼ 0

118ð Þ

The simultaneous solution of Eqs. (117) and (118) yields the critical load and the

corresponding value k1, and therefore the complete response of the system at the

critical load. The constants Aij i ¼ 1, 2, and j ¼ 1, 2, . . . 5ð Þ are related to k1 through

the following:

A12 ¼ A13 ¼ A14 ¼ A15 ¼ A22 ¼ A24 ¼ 0; A11 ¼
k2

1 þ b2 e� 1ð Þ
k2

1 sin k1

A21 ¼
k2

1 � b2

6
; A23 ¼

k2
1 þ b2 e� 1ð Þ

k2
1

cot k1 þ
b2 � k2

1

2

A25 ¼
k2

1 þ b2 e� 1ð Þ
k2

1

þ 1

2

ð1

0

W 2
2,�dx k2 ¼ 0 . . . ,

119ð Þ

in which the integral in the A25 expression can be expressed in terms of k1, b2, and �ee.
Numerical results are generated and presented graphically in Fig. 4.27 as plots of

lC ¼ b2
cr=1:42155 versus eccentricity for various values of the slenderness ratio

(l ¼ 40, 80, 1). As in the first example, here also there is a critical eccentricity,

which is l-dependent, up to which the frame fails through a limit point. For algebra-

ically higher values of eccentricity, the frame is always in stable equilibrium with

increasing load. From the generated results it is clear that, the linear theory buckling

load and the result of Godley and Chilver (1967) are in excellent agreement for

e ¼ 0, l!1. Note that linear theory and the approach employed in Huddleston

table 4.2 Critical Loads for l ¼ 40 and Various Eccentricities—Example 2

e lc( ¼ b2
cr=1:42155) b2

cr k2
1

(1) (2) (3) (4)

0.00187 0.99931 1.42058 1.41887

0.00000 0.93200 1.32489 1.35616

�0.00250 0.89683 1.27489 1.32407

�0.00500 0.87167 1.23912 1.30140

�0.00750 0.85123 1.21006 1.28315

�0.01000 0.83370 1.18515 1.26761
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(1967) do not account for the effect of the slenderness ratio. Some of the generated data

are presented in tabular form (Table 4.2). This table gives the values of the critical load,

b2
cr, and the corresponding value of the nondimensionalized axial force in the vertical

bar, k2
1, for various eccentricities and l ¼ 40. In addition, lC is included in Table 4.2.

Additional applications can be found in Simitses (1981, 1982, 1984, 1986, 1990),

Mohamed (1989, 1993), and Vlahinos (1986).

problems

1. A horizontal column is rigidly attached to two vertical bars as shown. Find the

expression for Pcr for buckling in the plane.

2. The horizontal column BE is rigidly attached to two vertical bars AC and FD.

LOCUS OF MAX . L.P.L.

λ = ∞

λ = 80

λ = 40

− 8 − 6 − 4 − 2 0 2− 10 4

1.04

1.00

0.96

0.92

0.88

0.84

0.80

λccr

e
 
�

 
103

figure 4.27 Effect of eccentricity and slenderness ratios on limit point loads, Example 2

figure p4.1
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The flexural rigidities EI and EIð Þ1 are for deflections normal to the plane of the

figure. If the value of EIð Þ1 is low, the critical load for such normal deflections

can be raised by increasing it. Show that such an improvement is possible only

until EIð Þ1 reaches the value p2b3 EI=12L3. The torsional rigidity of AC and FD

is to be treated as negligibly small.

3. A horizontal column AB and a vertical bar CD are rigidly attached at C. Derive

the characteristic equation and compute the value of L2=EI
� �

Pcr for the special

case of EI ¼ EI1 and 2b ¼ L.

4. Derive the characteristic equation for the cases shown in the figure.

5. A vertical column AB is rigidly attached to a flexible horizontal bar CB. B is a

roller that can turn without friction on a smooth base. The load P remains

vertical. Show that the characteristic equation is

figure p4.2

figure p4.3
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kL tan kL ¼ 3 EIð Þ1L
EIb

, k2 ¼ P

EI

Devise extreme cases to check this result.

6. Column AB and bar BC are identical and rigidly attached at B. The cross section

is circular, with radius R0 � L. Will the structure buckle in the plane of the figure

or out of the plane?

7. Analyze the following partial frames for buckling in the plane of the figure.

figure p4.4

figure p4.5
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5

The Energy Criterion

and Energy-Based

Methods

5.1 remarks on the energy criterion

As a basis for the energy criterion, we use the principle of the minimum total

potential (see Appendix A). This principle states:

Of all possible kinematically admissible deformation fields in an elastic conservative

system, for a specified level of the external loads and the corresponding internal loads,

only those that make the total potential assume a minimum value correspond to a stable

equilibrium.

First of all, the system must be conservative for the principle to hold, which implies

that the energy criterion holds only for such systems. The system is conservative if both

the external and internal forces are conservative. Since we are dealing with an elastic

system, the existence of a strain-energy density function (see Appendix A) implies that

the internal forces are conservative. The external forces are conservative if the work

done by these forces from state O to state I are independent of the path and depend

only on the initial and final values of the kinematically admissible deformations

(virtual displacements). The idea of a virtual displacement is discussed in detail in

Appendix A.

This principle is an extension of the Lagrange-Dirichlet theorem to systems with

infinitely many degrees of freedom. Although it is stated as a sufficiency condition for

stable equilibrium, the energy criterion based upon this principle has been used as

both a necessary and sufficient condition for stability.

In order to clearly state and apply the stability criterion, let UT u½ � be the total

potential (functional) at an equilibrium position characterized by u. Furthermore, let

UT uþ «u1½ � be the total potential in the neighborhood of the equilibrium position,

where u1 denotes kinematically admissible deformations and « is a small nonzero

constant. If we now expand the integrals and group them on the basis of powers of «,

then we may write
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DUT ¼ UT uþ «u1½ � �UT u½ �
¼ «dUT u,u1½ � þ «2d2UT u,u1½ � . . .

1ð Þ

According to Eq. (1), dUT , d2UT , etc., denote the first, second, etc., variations in the

total potential for kinematically admissible deformations.

For equilibrium, it is necessary that

dUT ¼ 0 2ð Þ

for all u1. For a relative minimum (stable equilibrium), it is necessary that

d2UT $ 0 3ð Þ

for all u1 (see Sagan, 1969). Note that, if the second variation is identically equal to

zero for all ui, then no conclusion can be drawn and higher variations must be

considered. For a relative minimum, since «3 can be positive or negative, the follow-

ing two conditions must be satisfied

d3UT � 0

d4UT $ 0
4ð Þ

for all ui. These steps are continued if d4UT � 0 for all ui (see Koiter, 1967).

If we assume that the second variation is not identically equal to zero, then the

stability criterion requires that d2UT be positive definite for every nonvanishing

virtual displacement. Similarly, d2UT is negative definite for instability. The implica-

tion here is that d2UT changes its character at the critical load. Consequently, the

critical load is the least value for which d2UT ceases to be positive definite and

becomes positive semidefinite. This means that there exists at least one nonvanishing

virtual displacement (buckling mode) for which the second variation is zero.

The energy criterion has been used by Timoshenko (1956) and Trefftz (1933) in

various modified forms. The formulation suggested by Timoshenko is based on the

following arguments: In a position of stable equilibrium, the total potential is a

minimum, and consequently the increment in the total potential, DUT , for every

small kinematically admissible deformation from the equilibrium position, is posi-

tive. In terms of the strain energy and potential of the external forces,

DUi þ DUp > 0 5ð Þ

Since DUp ¼ �DWe, where DWe is the work done by the external forces during these

small deviations, Eq. (5) becomes

DUi > DWe 6að Þ

This inequality becomes an equality as the load is increased to its critical value, and

DUi ¼ DWe 6bð Þ

We can demonstrate this concept by applying it to the column problem. The

Trefftz criterion, generalized herein, is based on the argument that, when the critical

load is reached, d2UT becomes positive semidefinite. This means that the minimum

value of d2UT becomes zero for certain nonvanishing virtual displacements. Now, if we

set d2UT ¼ V , we want V to possess a minimum (which is zero) for certain nonvanish-

ing virtual displacements (buckling mode). Thus, the first variation of V must be zero,

or the first variation of the second variation of UT must vanish. This criterion is applied

to the column problem in this chapter and to the shallow arch in Chapter 7.
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5.2 timoshenko’s method

Timoshenko’s method is fully outlined and applied to a number of systems in

Arts. 2.8–2.10 of Timoshenko (1956). This method, referred to by Timoshenko

(1956) as the energy method, provides a shortcut to obtaining approximate but

highly accurate values for the critical load. It avoids solving differential equations

and becomes very useful when applied to systems with nonuniform stiffness, a case

where the solution to the usual eigen-boundary-value problem is extremely difficult

and in some cases impossible.

5.2.1 THE CANTILEVER COLUMN

Consider the cantilever shown in Fig. 5.1 under a constant directional thrust P

applied quasistatically.

As the load is increased from zero, the work done by the force P is stored into the

system as stretching strain energy. If we now allow a bending deformation, w(x),

which is very small so that it does not alter the stretching energy, the change in the

total potential DUT is given by

DUT ¼ DUiB þ DUp 7ð Þ

where DUiB is the bending strain energy and DUp is the change in the potential of the

external force.

DUiB ¼
1

2

Z L

0

EI w00ð Þ2dx 8að Þ

DUp ¼ �DWe ¼ �PDL ¼ � 1

2
P

Z L

0

w0ð Þ2dx 8bð Þ

According to Timoshenko’s argument, the straight configuration is stable if DUT > 0

and unstable if DUT < 0. A critical condition is reached when DUT ¼ 0.

The additional steps are to assume a form for the admissible bending deformation,

w(x) and perform the indicated operations in the method. Let

w xð Þ ¼ A 1� cos
px

2L

� �
9ð Þ

Note that A is an arbitrary constant and 1� cos px=2Lð Þ satisfies the kinematic

boundary conditions at x ¼ 0.

figure 5.1 Geometry of the cantilever column.
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DUiB ¼
p4EIA2

64L3

and

DUp ¼ �P
p2A2

16L

From this expression we obtain that

Pcr ¼
p2EI

4L2

which, of course, is the exact solution because the chosen deformation function

happens to be the exact eigenfunction (see Chapter 3).

Next, let us use a different expression for w(x):

w xð Þ ¼ Ax2 10ð Þ

Then Timoshenko’s method yields

Pcr ¼
3EI

L2

which is higher, by approximately 21.3%, than the exact value.

Finally, we use for w(x) the shape corresponding to the solution of a cantilever

loaded transversely by a concentrated load at the free end:

w xð Þ ¼ Ax2 3L� xð Þ 11ð Þ

Timoshenko’s method then yields

Pcr ¼ 2:5
EI

L2

This value is only 1.32% higher than the exact solution. The reason we get a better

approximation in this case is because the expression for w(x), given by Eq. (11),

satisfies one of the natural boundary conditions at x ¼ L, i.e., M Lð Þ ¼ EIw00 Lð Þ ¼ 0.

This condition is not satisfied by the expression for w(x) given by Eq. (10).

5.2.2 THE SIMPLY SUPPORTED COLUMN

In a similar manner, according to Timoshenko’s method, a critical condition is

reached, when

1

2

Z L

0

EI w00ð Þ2dx ¼ P

2

Z L

0

w0ð Þ2dx 12ð Þ

Assume that w(x) is given by a function that is kinematically admissible, i.e.,

w xð Þ ¼ A L� xð Þx 13ð Þ

Then by Eq. (12)

Pcr ¼ 12
EI

L2

This value is higher than the exact value by approximately 21.3%.
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If we now choose a function that satisfies the natural boundary conditions as well,

M 0ð Þ ¼M Lð Þ ¼ 0, we should expect the solution to improve.

Let

w xð Þ ¼ A L3x� 2Lx3 þ x4
� �

w0 xð Þ ¼ A L3 � 6Lx2 þ 4x3
� �

w00 xð Þ ¼ A 12x2 � 12Lx
� �

Then by Eq. (12)

Pcr ¼ 9:88
EI

L2

which is approximately 0.13% higher than the exact value of the critical load.

5.2.3 THE RAYLEIGH AND TIMOSHENKO QUOTIENTS

When Timoshenko (Ref. 1) applied his method to the cantilever column, he did

not use, for the strain energy, the expression given by Eq. (7). Instead he made use of

the fact that (see Fig. 5.1)

M xð Þ ¼ P d� w xð Þ½ � 14ð Þ

and

w00ð Þ ¼ M

EI

Then

DUiB ¼
1

2

Z L

0

M2

EI
dx

¼ P2

2

Z L

0

d� wð Þ2

EI
dx

15ð Þ

According to his method, when P approaches Pcr

1

2
P2

cr

Z L

0

d� wð Þ2

EI
dx ¼ Pcr

2

Z L

0

w0ð Þ2dx 16ð Þ

If we now use Eq. (10) for w, and employ Eq. (16) to solve for Pcr, we have

Pcr ¼ 2:5
EI

L2

which is much closer to the exact value than what we got before (3El=L2).

Similarly, if the expression for w, given by Eq. (11), is used in Eq. (16)

Pcr ¼ 2:4706
EI

L2

This value, also, is closer to the exact value than what we got before. The improve-

ment in the value, when using Eq. (16), occurs because the operation of differenti-

ation indicated in Eq. (7) magnifies the error that exists when an approximate

expression is used for w(x).
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We have seen so far that, as a consequence of Timoshenko’s method, the expres-

sion for the critical load for any column may be written as

P ¼

Z L

0

EI w00ð Þ2dxZ L

0

w0ð Þ2dx

17ð Þ

This is called the integral or Rayleigh quotient, and it holds for all columns regardless

of the boundary conditions. The name Rayleigh is used because a similar expression

was derived and employed by Lord Rayleigh (Ref. 3) in the study of vibrations.

Southwell (Ref. 4) outlines a procedure for finding buckling loads for a column which

uses the Rayleigh quotient and refers to it as Rayleigh’s method. Similar quotients

may be derived for plates and certain shell configurations.

For the cantilever column, Eq. (16) is employed and the quotient becomes

P ¼

Z L

0

w0ð Þ2dxZ L

0

d� wð Þ2

EI
dx

18ð Þ

Finally, if the column is simply supported, the reduced-order (second-degree) equa-

tion is applicable (see Chapter 3)

EIw00 þ Pw ¼ 0 19að Þ

and

w00 ¼ �Pw

EI
19bð Þ

Substitution of this expression into the Rayleigh quotient yields

P ¼

Z L

0

w0ð Þ2dxZ L

0

w2

EI
dx

20ð Þ

Quotients of the type given by Eqs. (18) and (20) are referred to as the Timoshenko

quotient. Note that, when applicable, the Timoshenko quotient yields a closer

approximation than the Rayleigh quotient.

Finally, when a column with elastic restraints at both ends is considered (see

Fig. 3.14), the Rayleigh quotient becomes

P ¼

Z L

0

EI w00ð Þ2dxþ a0w
2 0ð Þ þ aLw2 Lð Þ þ b0 w0 0ð Þ½ �2 þ bL w0 Lð Þ½ �2Z L

0

w0ð Þ2dx

21ð Þ

Since the Timoshenko method leads to a quotient similar to that used by Lord

Rayleigh, the method is often called the Rayleigh-Timoshenko method.
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5.2.4 THE GENERAL RAYLEIGH-TIMOSHENKO METHOD

Starting with the concept of Timoshenko, we arrive at an integral quotient or the

ratio of two functionals I [u] and J [u]:

l ¼ I u½ �
J u½ � 22ð Þ

We are interested in finding the function, u, which minimizes the quotient. If we use a

series expression for u in the form of

u ¼
XN
i¼1

aigi 23ð Þ

where gi are admissible functions and elements of a complete sequence (see Appendix

A), the quotient becomes

l ¼ f1 a1, a2, . . . , anð Þ
f2 a1, a2, . . . , anð Þ 24ð Þ

Now we must adjust the coefficients ai in such a way that the ratio is a minimum.

This requirement leads to

@l

@ai

¼ 1

f 2
2

@f1
@ai

f2 �
@f2
@ai

f1

� �
¼ 0 25ð Þ

Since f2 is finite, use of Eq. (24) yields

@f1
@ai

� l
@f2
@ai

¼ 0, i ¼ 1, . . . , N 26ð Þ

This procedure is referred to by many authors, including Timoshenko (Ref. 3), as the

Ritz procedure.

As an example of this procedure, consider the cantilever of Fig. 5-1. If we employ

the Rayleigh quotient,

I w½ � ¼
Z L

0

EI w00ð Þ2dx

and

J w½ � ¼
Z L

0

w0ð Þ2dx 27ð Þ

Let

wA xð Þ ¼
X3

n¼1

anx
nþ1 28ð Þ

Then

f1 a1, a2, a3ð Þ ¼ I wA½ �

¼ 4EI a2
1Lþ 3a1a2L

2 þ 3a2
2 þ 4a1a3

� �
L3 þ 9a2a3L

4 þ 36

5
a2

3L
5

� �
29að Þ

and

f2 a1, a2, a3ð Þ ¼ J wA½ � ¼
4

3
a2

1L
3 þ 3a1a2L

4 þ 9

5
a2

2 þ
16

5
a1a3

� �
L5

þ 4a2a3L
6 þ 16

7
a2

3L
7

29bð Þ

SIMITSES - Title 0750678755_ch05 Final Proof page 151 4.11.2005 11:11pm

Timoshenko’s Method 151



If we define l ¼ PL2=EI , Eqs. (26) become

8L 1� 1

3
l

� �
a1 þ 3 4� lð ÞL2a2 þ 16 1� 1

5
l

� �
L3a3 ¼ 0

3 4� lð ÞL2a1 þ 6 4� 3

5
l

� �
L3a2 þ 4 9� lð ÞL4a3 ¼ 0

16 1� 1

5
l

� �
L3a1 þ 4 9� lð ÞL4a2 þ 32

9

5
� 1

7
l

� �
L5a3 ¼ 0

30ð Þ

Equations (30) represent a system of three linear homogeneous algebraic equations

in a1, a2, and a3. A nontrivial solution exists if the determinant of the coefficients

vanishes.

8 1� 1

3
l

� �
3 4� lð Þ 4 1� 1

5
l

� �

3 4� lð Þ 6 4� 3

5
l

� �
9� lð Þ

4 1� 1

5
l

� �
9� lð Þ 2

9

5
� 1

7
l

� �

												

												
¼ 0 31ð Þ

If only one term is considered a1 6¼ 0, a2 ¼ a3 ¼ 0ð Þ, then lcr ¼ 3 and P ¼ 3EI=L2 as

before. If two terms are considered (a1 6¼ 0, a2 6¼ 0, and a3 � 0), then lcr ¼ 2:48596,

which is only 0.75% higher than the exact solution. When all three terms are

considered (a computer program was employed), lcr ¼ 2:4677, which is extremely

close to the correct answer (2.4674).

Note that every approximation is higher than the exact solution, and as more

terms are considered, we converge to the minimum of l from above. This, as

expected, is true for all problems for which the formulation is characterized by Eq.

(22). This means that the value of l obtained by the use of an approximate expression

for u in Eq. (22) cannot be any smaller than the value of l corresponding to the exact

expression for u.

5.2.5 THE NONUNIFORM STIFFNESS COLUMN

Consider a simply supported column with a bending stiffness given by (see Fig. 5.2)

EI ¼ EI0 1þ I1

I0

sin
px

L

� �
32ð Þ

figure 5.2 Simply supported column with nonuniform stiffness.
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Furthermore, let the buckled deformation, w(x), be approximated by

wA xð Þ ¼ A1 sin
px

L
þ A3 sin

3px

L
33ð Þ

If we use the general Rayleigh-Timoshenko procedure as outlined in the previous

section, then

f1 A1, A3ð Þ ¼ EI0

p

L

� �4 L

2
A2

1 1þ 8

3p

I1

I0

� �
� 18A1A3

8

15p

� �
I1

I0

�

þ 81A2
3 1þ 72

35p

I1

I0

� �� 34að Þ

f2 A1, A3ð Þ ¼ p

2

� �2 L

2
A2

1 þ 9A2
3

� �
34bð Þ

Next, if we let l ¼ P=PE0
, where PE0

¼ p2EI0=L
2, and employ Eqs. (26), we obtain

the following system of equations in A1 and A3

1þ 8

3p

I1

I0

� �
� l

� �
A1 � 9

8

15p

� �
I1

I0

A3 ¼ 0

� 8

15p

I1

I0

A1 þ 9 1þ 72

35p

I1

I0

� �
� l

� �
A3 ¼ 0

35ð Þ

For a nontrivial solution to exist, the determinant of the coefficients must vanish.

The expansion of the determinant yields the following quadratic equation in l.

l2 � l 10þ 2224

105p

I1

I0

� �
þ 9 1þ 496

105p

I1

I0

þ 8192

1575p2

I2
1

I2
0

� �
¼ 0 36ð Þ

From Eq. (36) we obtain lcr:

lcr ¼ 5þ 3:371056
I1

I0

� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:261114

I1

I0

þ 0:413813
I2
1

I2
0

s
37ð Þ

Note that, if w ¼ A1 sin px=Lð Þ (one-term solution), then

lcr ¼ 1þ 8

3p

I1

I0

38ð Þ

The actual values for l are shown in Table 5.1 for various values of I1=I0. At

this point there are two basic questions that we must answer. First, ‘‘Since the

exact value for lcr is not known, does the two-term solution yield a good approxi-

mation for lcr?’’ Second, ‘‘Since there is considerable difficulty in obtaining lcr

for a column with nonuniform flexural stiffness, why bother to build and analyze

such columns?’’ Another way of stating the second question is the following: ‘‘Is

the critical load of a nonuniform stiffness column, PNUcr
, higher than the critical

load of a uniform stiffness column, PUcr
, when the two columns are of equal

weight?’’

Before we answer these questions, we must consider the relation between the

cross-sectional area, A, and the moment of inertia, I. If we let

I xð Þ ¼ aAn xð Þ 39ð Þ

where a is a constant, we note that, when n ¼ 1, the width varies while the height

remains constant; when n ¼ 2, both the width and height vary in the same
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proportion; and when n ¼ 3, the height varies while the width remains constant. For

a column with a rectangular cross section of height h and width b,

I ¼ bh3

12
and A ¼ bh

Now, for n ¼ 1

a ¼ bh3=12

bh
¼ h2

12

and for a to be a constant, h must be a constant.

Similarly, for n ¼ 2,

a ¼ bh3=12

b2h2
¼ 1

12

h

b

� �

and for a to be a constant, h/b must be a constant, which implies that the height and

width vary proportionally.

Finally, for n ¼ 3

a ¼ bh3=12

b3h3
¼ 1

12b2

and b must be a constant.

These conclusions are generally true for all symmetric cross-sections such as

circular, elliptic, triangular, I-, and T-sections.

Returning to the two questions, we find the answer to the second question by

comparing Pcr for the nonuniform geometry column with Pcr for the uniform

column, provided the weights of the two are equal. However, since the two-term

solution leads to a higher value for Pcr than the exact, this comparison is meaningful

only if the two-term solution is a good approximation to the exact value of PNUcr
. Let

us first obtain the expressions for the volume (weight), V , for the two columns.

For the uniform column

table 5.1 Critical loads for nonuniform and uniform columns of equal weight

lNUcr
lNUcr

=lUcrn¼1
lNUcr

=lUcrn¼2

I1

I0

One-Term

Solution

Two-Term

Solution

lUcr

n ¼ 1

lUcr

n ¼ 2

One-Term

Solution

Two-Term

Solution

One-Term

Solution

Two-Term

Solution

0 1.0000 1.0000 1.0000 1.0000 1.000 1.000 1.000 1.000

0.5 1.4244 1.4183 1.3183 1.3120 1.080 1.076 1.086 1.081

1.0 1.8488 1.8290 1.6366 1.6211 1.130 1.117 1.140þ 1.128

2.0 2.6977 2.6405 2.2732 2.2265 1.187 1.162 1.212 1.186

4.0 4.3953 4.2488 3.5465 3.4193 1.239 1.198 1.285 1.243

6.0 6.0930 5.8505 4.8197 4.6013 1.264 1.214 1.324 1.271

8.0 7.7906 7.4497 6.0930 5.7781 1.279 1.223 1.348 1.289

10.0 9.4883 9.0478 7.3662 6.9518 1.288 1.228 1.365 1.302

20.0 17.9765 17.0320 13.7324 12.7996 1.309 1.240 1.404 1.331

30.0 26.4648 25.0130 20.0986 18.6331 1.317 1.244 1.420 1.342

40.0 34.9530 32.9932 26.4648 24.4610 1.321 1.247 1.429 1.349

50.0 43.4413 40.9730 32.8310 30.2860 1.323 1.248 1.434 1.353

100.0 85.8826 80.8703 64.6620 59.3925 1.328 1.251 1.446 1.362

1 1.333 1.253 1.460 1.373
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V ¼
Z L

0

AUdx ¼ AUL 40ð Þ

For the nonuniform column

V ¼
Z L

0

ANUdx 41ð Þ

Making use of Eqs. (32) and (39)

ANU ¼
I0

�
1þ I1

I0

sin
px

L

� �� �1
n

42ð Þ

Substitution of Eq. (42) into Eq. (41) yields

V ¼ I0

a

� �1
n
Z L

0

1þ I1

I0

sin
px

L

� �1
n

dx 43ð Þ

Let j ¼ px=L, then Eq. (43) becomes

V ¼ I0

a

� �1
n L

p

Z p

0

1þ I1

I0

sin j

� �1
n

dj 44ð Þ

For a simply supported column, PUcr
is given by the Euler load, or

PUcr
¼ p2EIU

L2

Use of Eqs. (39) and (40) yields

PUcr
¼ p2E

L2
a

V

L

� �n

45ð Þ

Through the use of Eq. (44), Eq. (45) becomes

PUcr
¼ p2EI0

L2

Z p

0

1þ I1

I0

sin j

� �1
n dj

p

2
4

1
A

n

46ð Þ

From this equation

lUcr
¼

Z p

0

1þ I1

I0

sin j

� �1
n dj

p

2
4

3
5

n

47ð Þ

For n ¼ 1

lUcr
¼ 1

p

Z p

0

1þ I1

I0

sin j

� �
dj ¼ 1þ 2

p

I1

I0

There are no closed-form solutions for n ¼ 2 and 3. Values of lUcr
are presented in

Table 5.1 for n ¼ 1 and n ¼ 2 for a large range of I1=I0. In addition, the ratios of

lNUcr
to lUcr

are presented for the one- and two-term solutions.

A number of investigators have dealt with the shape of the optimum column (see

Prager and Taylor, 1968; Simitses et al., 1972; and Tadjbakhsh and Keller, 1962).

When there is no constraint on the stress level and the size of the area distribution,

it is found that the optimum shape (for the simply supported column) starts

with zero area at the ends and builds up to some maximum value at the center.
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Furthermore, the ratio of the critical load, corresponding to the optimum column, to

the critical load for a uniform geometry column of equal volume is given by 1.216,

1.333, and 1.410 for n ¼ 1, 2, and 3, respectively. A study of the results of Table 5.1

in connection with the above conclusions suggests that:

1. Since Eq. (32) does not necessarily correspond to the optimum shape (even with

I0 ¼ 0), then lNUcr
=lUcr

should be smaller than 1.216 (for n ¼ 1) and 1.333 (for

n ¼ 2). Because it is not, the two-term solution has not converged to the exact

value and more terms are needed in Eq. (33).

2. The more uniform the column is (smaller I1=I0 values), the better the convergence is.

Finally, we may conclusively state that nonuniformity in stiffness, of the type

expressed by Eq. (32), yields a stronger configuration than that of a uniform geom-

etry of the same weight.

5.3 the rayleigh-ritz method

The Rayleigh-Ritz or simply the Ritz method is explained in Appendix A. As far as

buckling problems are concerned, there are two possible applications of the method.

The first type of application concerns problems for which a Rayleigh quotient

exists (columns, plates, cylindrical shells, etc.). In this case, if the total potential, or

some characteristic functional such as d2UT according to the Trefftz criterion, is

expressed in the form of UT ¼ I u½ � � lJ u½ �, where l denotes the eigenvalues (the

lowest of which corresponds to the critical load parameter), the method suggests that

we express u in terms of a series of the type

uA ¼
XN
i¼1

aigi

where gi are kinematically admissible functions. Then,

UT ¼ f1 a1, a2, . . . , aNð Þ � lf2 a1, a2, . . . , aNð Þ 48ð Þ

where

f1 ¼ I uA½ � and f2 ¼ J uA½ �

Requiring that UT have a minimum leads to

@UT

@ai

¼ @fi
@ai

� l
@f2
@ai

¼ 0 for i ¼ 1, 2, . . . , N 49ð Þ

These equations are identical to Eqs. (26); thus, the Rayleigh-Ritz and the general

Rayleigh-Timoshenko methods are identical. This is the reason that many authors

call this particular application the Rayleigh-Ritz method as used by Timoshenko for

buckling problems. Note that in this first type of application, the variation in I � lJ

with respect to u (keeping l constant) leads to the same equations as the minimiza-

tion of the Rayleigh quotient, given by Eq. (22).

Finally, for this type of application, convergence is guaranteed because we are

dealing with a variational problem which satisfies the sufficiency conditions for a

minimum. Some authors refer to this type of application as the Rayleigh-Ritz
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method, whereas when the method is applied to variational problems (stationary)

that do not satisfy the sufficiency conditions for a minimum or a maximum, they call

it simply the Ritz method. This distinction is not important. What is important is that

there is no rigorous proof of convergence for this latter type of application, although

the method has been used very successfully.

The second type of application does not depend on the existence of a Rayleigh

quotient, and it is based on the stability criterion directly. If we express the deform-

ation(s) by the finite series

u ¼
XN
i¼1

aigi

where gi are kinematically admissible functions, the total potential, UT u½ �
(functional) becomes a function of ai, UT aið Þ. For the equilibrium to be stable,

the total potentialmust be aminimum, and the following conditionsmust be satisfied

@UT

@ai

¼ 0 i ¼ 1, 2, . . . , N 50ð Þ

and

@2UT

@2a2
1

@2UT

@a1@a2

. . .
@2UT

@a1@aN

@2UT

@a2@a1

@2UT

@a2
2

. . .
@2UT

@a2@aN

@2UT

@aN@a1

@2UT

@aN@a2

. . .
@2UT

@a2
N

													

													
> 0 51ð Þ

along with all its principal minors, such as

@2UT

@a2
1

> 0,

@2UT

@a2
1

@2UT

@a1@a2

@2UT

@a2@a1

@2UT

@a2
2

									

									
> 0, etc: 52ð Þ

Equations (50) give us the equilibrium equations that relate the load to the

displacement parameters ai (generalized coordinates). They are N equations in

N þ 1 unknowns (ai, i ¼ 1, 2, . . . , N, and the load parameter l). From these equa-

tions, we may solve for the ai’s in terms of the load parameter. Knowing the

equilibrium positions, we then proceed to study the stability or instability of these

equilibrium positions by using the inequalities given by Eqs. (51) and (52). The value

of the load parameter at which the equilibrium changes from stable to unstable is the

critical value. Note at this point that, if the expressions in Eqs. (51) and (52) are

identically equal to zero, no decision can be made about the stability or instability of

this equilibrium position, and higher variations are needed.

This procedure will be demonstrated in the following application. Consider a

simply supported column of uniform geometry as shown in Fig. 5.3. The kinematic

and constitutive relations are

«xx ¼ u,x þ
1

2
w2

,x � zw,xx

sxx ¼ E«xx
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On the basis of these, the total potential is

UT ¼
1

2

Z L

0

EA u,x þ
1

2
w2

,x

� �2

þEIw2
,xx

" #
dxþ Pu Lð Þ 53ð Þ

Let us now use the following one-term approximations for u(x) and w(x):

u xð Þ ¼ B1x

w xð Þ ¼ C1 sin
px

L

54ð Þ

Note that u 0ð Þ ¼ 0 and w 0ð Þ ¼ w Lð Þ ¼ 0, and the functions x and sin px=L are

kinematically admissible. Substitution of Eqs. (54) into Eqs. (53) yields

UT ¼
L

2
EA B2

1 þ
1

2

p

L

� �2

B1C
2
1 þ

3

32

p

L

� �4

C4
1

� �
þ 1

2
EI

p

L

� �4

C2
1

� �
þ PLB1 55ð Þ

For equilibrium

@UT

@B1

¼ @UT

@C1

¼ 0

L EAB1 þ
EA

4

p

L

� �2

C2
1 þ PL

� �
¼ 0

L

2

p

L

� �2

EAB1C1 þ
3

8
EA

p

L

� �2

C3
1 þ EI

p

L

� �2

C1

� �
¼ 0

56ð Þ

The second derivatives are given by

@2UT

@B2
1

¼ EAL

@2UT

@B1@C1

¼ EAL

2

p

L

� �2

C1

57ð Þ

@2UT

@C2
1

¼ EAL

2

p

L

� �2

B1 þ
9EAL

16

p

L

� �4

C2
1 þ

EIL

2

p

L

� �4

If we let PE ¼ p2EI=L2, the equilibrium equations, Eqs. (56), are

figure 5.3 Geometry and sign convention for a simply supported column.
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EAð ÞB1 þ
EA

4

p

L

� �2

C2
1 ¼ �P

C1 EAð ÞB1 þ
3

8
EA

p

L

� �2

C2
1 þ PE

� �
¼ 0

58ð Þ

It is easily seen from Eqs. (58) that there are two possible solutions:

að Þ B1 ¼ �
P

AE
and C1 ¼ 0

and

bð Þ B1 ¼
�P� 2 P� PE

� �
AE

and C2
1 ¼

8

AE

L

p

� �2

P� PE

� �
The corresponding deformation functions are

að Þ u xð Þ ¼ � P

AE
x, w xð Þ ¼ 0

bð Þ u xð Þ ¼ �
Pþ 2 P� PE

� �
AE

x

and

w xð Þ ¼ � 8

AE

� �1
2 L

p

� �
P� PE

� �1
2 sin

px

L

The term 8=AEð Þ
1
2 L=pð Þ P� PE

� �1
2 represents the maximum deflection, d (at

x ¼ L=2). From this, we may write the following two expressions for d.

d

L
¼ 2

ffiffiffi
2
p r

L

� � P

PE

� 1

� �1
2

or

d

r
¼ 2

ffiffiffi
2
p P

PE

� 1

� �1
2

where r is the radius of gyration of the cross-sectional area, r2 ¼ I=A. All of the

equilibrium positions are shown, qualitatively, in Fig. 5.4.

The next problem is to determine the stability or instability of all the equilibrium

positions. To this end, the two solutions are treated separately. First, let us consider

the solution corresponding to the straight configuration C1 ¼ 0.

1. Making use of the expressions for the second partial derivatives, Eqs. (57),

evaluated at B1 ¼ �P=AE and C1 ¼ 0, we obtain the conditions for stability:

EAL > 0 and L
p

L

� �2

�Pþ PE

� �
> 0 59ð Þ

It is clear from these inequalities that the straight configuration is stable for

P < PE and unstable for P > PE , as expected.
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2. Similarly, since EAL > 0, the condition for stability for the equilibrium positions

characterized by C 6¼ 0 is

EAL
EAL

2

p

L

� �2

C1

EAL
2

p

L

� �2

C1

p2

2L
EAB1 þ

9

8
EA

p

L

� �2

C2
1 þ PE

� �
								

								
> 0

Making use of the expressions for B1 and C1, and expanding the determinant, the

above inequality becomes

p2

L
P� PE

� �
> 0

This inequality is definitely true, since these equilibrium positions (bent configur-

ation) exist only if P > PE .

The only question that remains to be answered is whether the position correspond-

ing to C1 ¼ 0 and P ¼ PE (bifurcation point) is stable or unstable. If we expand the

total potential about this position for small variations in B1 and C1, we obtain

DUT ¼
1

4!

9

8

� �
EALð Þ p

L

� �4

dC1ð Þ4

Clearly, DUT > 0 and this position is stable.

In this particular application of the Rayleigh-Ritz method, it must be pointed out

that the analysis is exact for the discrete system and it is approximate for the

continuous system. The results obtained for the column are exact as far as the critical

load is concerned, mainly because the exact form for u(x) was assumed for the

straight configuration and because the expression for w(x) is that of the linear

eigenvalue problem. The results are also exact as far as the stability analysis is

concerned. The only approximation involved is in the post-buckling curve for two

reasons. First, because of the kinematic relations used, we do not expect the results to

be applicable to bent configurations for which w2
,x � 1 does not hold. Second, even if

w2
,x � 1, we do not necessarily have a good approximation for the bent configur-

ation, and we must take more terms for the deformation functions to determine the

convergence to the true deformation.

figure 5.4 Equilibrium positions for the simply supported column.
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5.4 the column by the trefftz criterion

Consider the simply supported column, shown in Fig. 5.3. The kinematic and

constitutive relations to be used are given by

«xx ¼ u,x þ
1

2
w2

,x � zw,xx

¼ «0
xx � zw,xx

60ð Þ

sxx ¼ E«xx 61ð Þ

If we let

P ¼
Z

A

sxxdA 62ð Þ

where A is the cross-sectional area, the total potential is given by

UT ¼
1

2

Z L

0

P«0
xx þ EIw2

,xx

� �
dxþ Pu Lð Þ 63ð Þ

In terms of the displacements, the total potential becomes

UT u, w½ � ¼ 1

2

Z L

0

AE u,x þ
1

2
w2

,x

� �2

þEIw2
,xx

" #
dxþ Pu Lð Þ 64ð Þ

Let u xð Þ and w xð Þ denote positions of stable equilibrium, and let b xð Þ and g xð Þ be

kinematically admissible functions for u(x) and w(x), respectively. Then

UT uþ «1b, wþ «2g½ � ¼ 1

2

Z L

0

AE u,x þ «1b,x þ
1

2
w,x þ «2g,x

� �2
� �2

(

þ EI w,xx þ «2g,xx

� �2

)
dxþ P u Lð Þ þ «1b Lð Þ½ �

65ð Þ

where «1 and «2 are small constants. After performing the indicated operations in the

integrals and collecting like powers of the «’s, we have

UT u þ «1b, wþ «2g½ � ¼ 1

2

Z L

0

EA u,x þ
1

2
w2
,x

� �2

þEIw2
,xx

" #
dx

þ Pu Lð Þ þ «1

Z L

0

EA u,x þ
1

2
w2
,x

� �
b,xdxþ Pb Lð Þ

� �

þ «2

Z L

0

EA u,x þ
1

2
w2
,x

� �
w,xg,x þ EIw,xxg,xx

� �
dx (66)

þ«2
1

2

Z L

0

EAb2
,xdxþ «1«2

Z L

0

EAw,xg,x dx

þ«2
2

2

Z L

0

EAw2
,xg2

,x þ EA u,x þ
1

2
w2
,x

� �
g2
,x þ EIg2

,xx

� �
dx

þ «1«2
2

2

Z L

0

EAb,xg2
,xdxþ «3

2

2

Z L

0

EAw,xg3
,x dxþ «4

2

8

Z L

0

EAg4
,x dx
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Note that the terms on the right side of Eq. (66) that do not contain «’s denote

UT u, w½ �. Furthermore, if we collect terms with like powers in «, we may write Eq.

(66) in the following form:

DUT ¼ dUT þ d2UT þ d3UT þ d4UT 67ð Þ

Next, if we are interested in studying the stability of equilibrium positions corre-

sponding to the straight configuration

DUT uþ «1b, «2g½ � ¼ dUT uþ «1b, «2g½ � þ d2UT uþ «1b, «2g½ � þ � � � 68ð Þ

where

dUT uþ «1b, «2g½ � ¼ «1

Z L

0

Pb,xdxþ Pb Lð Þ
� �

d2UT uþ «1b, «2g½ � ¼ «2
1

2

Z L

0

EAb2
,xdxþ «2

2

2

Z L

0

Pg2
,x þ EIg2

,xx

h i
dx

69ð Þ

Note that P ¼ EAu,x from Eqs. (60)–(62).

Equilibrium for the straight configuration is characterized by

dUT uþ «1b, «2g½ � ¼ 0 70ð Þ

This leads to P,x ¼ 0 or P ¼ constant. Use of the boundary condition at x ¼ L yields

P ¼ �P. These equilibrium positions are stable if d2UT is positive definite for all b xð Þ
and g xð Þ functions.

According to the Trefftz criterion (see Section 5.1), when the critical load is

reached, d2UT becomes positive semidefinite. From the second equation of Eqs.

(69), we notice that the first term is positive for all b xð Þ except zero. Therefore the

second term must be positive for all g xð Þ for stability. Thus, d2UT becomes positive

semidefinite when b xð Þ ¼ 0 and

d

Z L

0

Pg2
,x þ EIg2

,xx

� �
dx ¼ 0

when P ¼ �P, or

d

Z L

0

EIg2
,xx � Pg2

,x

� �
dx ¼ 0 71ð Þ

This condition leads to the same eigen-boundary-value problem as the one in Section

3.3. Note that the variations in Eq. (71) are with respect to kinematically admissible

functions.

Alternative Procedure. If we follow the approach used in Chapter 3, we notice that

DUT ¼ d«UT ¼
Z L

0

P du,x þ w,xdw,x þ
1

2
dw2

,x

� ��

þ EI w,xxdw,xx þ
1

2
dw2

,xx

� ��
dxþ Pdu Lð Þ ¼

Z L

0

Pdu,x dx

þ Pdu Lð Þ þ 1

2

Z L

0

Pdw2
,x þ EIdw2

,xx

� �
dx ¼ dUT þ d2UT

72ð Þ
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According to this approach, dUT is the same as the first of Eqs. (69). The difference

in d2UT between the two approaches [see the second of Eqs. (69)] is the termZ L

0

«2
1

2
EAb xð Þ dx 73ð Þ

This term, in the alternative approach, represents 1
2

R L

0
dP du dx which is zero since

the external and internal loads are kept constant during the virtual displacements du

and dw.

Therefore, again we have

d d2UT

� �
¼ d

Z L

0

EIdw2
,xx � Pdw2

,x

� �
dx

� �
¼ 0

which is the same as Eq. (71).

It is important to note at this point that this particular form of the second

variation is very attractive to the application of the Rayleigh-Ritz method, as

demonstrated in the first type of application in Section 5.3.

d2UT ¼ 1� lJ

where

I ¼
Z L

0

EIdw2
,xx dx

l ¼ P

J ¼
Z L

0

dw2
,x dx

74ð Þ

5.5 the galerkin method

The Galerkin method belongs in the class of approximate techniques for solving

partial and ordinary differential equations. It was introduced by B. G. Galerkin

(1941) in the study of rods and plates, and it has been extensively used ever since by

many investigators not only of problems in solid mechanics but also in fluid mech-

anics, heat transfer, and other fields. Finlayson and Scriven (1966) give an extensive

bibliography on the uses of the Galerkin method. In addition, they unify this method

with other approximate techniques under the name of the Method of Weighted

Residuals (MWR).

Before outlining and applying the method to a number of problems, we must state

that the method is not necessarily restricted to problems for which the differential

equations are Euler-Lagrange equations (derived from stationary principles), and

thus, this method is more general than the Rayleigh-Ritz technique. When dealing

with variational problems, the Galerkin and Ritz methods are closely related and

under certain conditions completely equivalent (Singer, 1962).

The basic idea of the method is as follows: Suppose we are required to solve the

differential equation
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L uð Þ ¼ 0 0 # x # L 75ð Þ

where L is a differential operator, operating on u, which is a function of a single

independent variable x, subject to some boundary conditions. We seek an approxi-

mate solution, uappr, in the form

Uappr ¼
XN
i¼ 1

ai fi xð Þ 76ð Þ

where fi xð Þ are a certain sequence of functions, each of which satisfies all of the

boundary conditions, but none of them, as a rule, satisfy the differential equation,

and ai are undetermined coefficients. We can consider the functions to be elements of

a complete sequence. If the exact solution to the differential equation, Eq. (75), is

denoted by u xð Þ, then the operator, L, operating on the difference (uappr � u) repre-

sents some kind of error or residual, e(x),

e xð Þ ¼ L uappr � u
� �

¼ L uappr

� �
� L uð Þ ¼ L uappr

� �
77ð Þ

If we substitute the series, Eq. (76), for uappr, we have

e xð Þ ¼ L
XN
i¼ 1

ai fi xð Þ
 !

78ð Þ

Next we must choose the undetermined coefficients, ai, such that the error is a

minimum. To this end, we make the error orthogonal, in the interval 0 # x # L, to

some weighting functions. In the Galerkin method the weighting functions are the

functions used in the series, fk xð Þ, k ¼ 1, 2, . . . , N. This process leads to N integrals,

called the Galerkin integralsZ L

0

L
XN
i¼1

aifi xð Þ
 !

fk xð Þ
" #

dx ¼ 0 k ¼ 1, 2, . . . , N 79ð Þ

After performing the indicated operations, we have a system of N equations in

N unknowns, ai. The solution of this system is substituted into Eq. (76) to give

the approximate solution to the problem. We obtain successive approximations

by increasing N, and this gives us some idea about the convergence to the exact

solution.

A number of questions and comments have been raised concerning choice of

functions, convergence, and other particulars of the method. First, the choice of

functions is not restricted by any means, but experience shows that, if the functions

are elements of a complete sequence, convergence is improved. Furthermore, which

complete sequence must be used depends on the particular problem. When there are

certain symmetries to be satisfied, if the functions are so chosen beforehand, it

eliminates a lot of unnecessary work. As far as the boundary conditions are con-

cerned, the method, as originally developed and applied by Galerkin, requires that

the chosen functions satisfy all of the boundary conditions. This requirement can be

relaxed, as will be shown in Section 5.5.1. This can easily be done for variational

problems (when the differential equation is an Euler-Lagrange equation), but it

presents difficulties in all other problems.

In variational problems, we know precisely which boundary residuals or errors

must be added and which must be subtracted from the Galerkin integral in order to

relax the method. In nonvariational problems, the adding or subtracting of the
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boundary errors is based on mathematical convenience or the physics of the problem,

and extreme care is required.

Second, convergence of the method has been and still is the subject of study for

many mathematicians. Whenever the Galerkin and the Rayleigh-Ritz methods are

equivalent, the convergence requirements and proofs for the Rayleigh-Ritz method

imply convergence for the Galerkin method.

When the method is used in eigen-boundary-value problems, the Galerkin inte-

grals lead to a system of N homogeneous algebraic equations in ai. The requirement

for a nontrivial solution leads to the vanishing of the determinant of the coefficients

of the ai, which is the characteristic equation.

5.5.1 THE METHOD DERIVED FROM

STATIONARY PRINCIPLES

Although the Galerkin method may be used on all initial and boundary value

problems, in the special case where it is applied to variational problems, it can be

derived directly from the principle of the stationary value of the total potential. This

is the case for all conservative problems of elastostatics.

To demonstrate this, consider the beam-column problem, Fig. 3.2, treated in

Chapter 3. Let us start with Eq. (15) of Chapter 3. For convenience, let us eliminate

the inplane component of deformation, through the use of the inplane equilibrium

equation (P,x ¼ 0, which implies that P ¼ constant, and from the boundary condi-

tions P ¼ P). With this, Eq. (15) becomesZ L

0

EIw,xx

� �
,xx
�Pw,xx � q xð Þ �

Xn

i¼ 1

Pid x� xið Þ þ
Xm
j¼ 1

Cjh x� xj

� �" #
dwdx

þ � EIw,xx

� �
,x þ Pw,x

h i
x¼L
� RL

n o
dw Lð Þ

� � EIw,xx

� �
,x

hn
þ Pw,x

i
x¼ 0

� R0

o
dw 0ð Þ þ EIw,xx

� �
x¼L
�ML

h i
dw,x Lð Þ

� EIw,xx

� �
x¼ 0

M0

h i
dw,x 0ð Þ 0 80ð Þ

where dw denotes a virtual displacement.

From Eq. (80) we obtain the Euler-Lagrange equation and the associated bound-

ary conditions.

D.E.

EIw,xx

� �
,xx
�Pw,xx � q xð Þ �

Xn

i¼ 1

Pid x� xið Þ þ
Xm
j¼ 1

Cjh x� xj

� �
¼ 0 81ð Þ

Boundary Conditions

1. At x ¼ 0

Either or

� EIw,xx

� �
,xPw,x ¼ R0 dw ¼ 0

EIw,xx ¼M0 dw,x ¼ 0
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2. At x ¼ L

Either or

� EIw,xx

� �
,xþPw,x ¼ RL dw ¼ 0

EIw,xx ¼ML dw,x ¼ 0

Now let us suppose that for a given set of loads, q xð Þ, Pi, Cj, P, we want to find the

solution to the problem by employing Galerkin’s method. We represent w(x) by the

series

w xð Þ ¼
XN
m¼ 1

am fm xð Þ 82ð Þ

where fm xð Þ satisfy all of the boundary conditions regardless of whether they are

kinematic or natural. Then, the Galerkin integrals are

Z L

0

EI
XN
m¼ 1

amfm,xx

 !
,xx

� P
XN
m¼ 1

am fm,zz � q xð Þ �
Xn

i¼ 1

Pid x� xið Þ

2
4

þ
Xm
j¼1

Cjh x� xj

� �35fkdx ¼ 0 k ¼ 1, 2, 3, . . . , N

83ð Þ

These are N linear algebraic equations in am m ¼ 1, 2, . . . , Nð Þ. We solve this

system of equations for am, and we have the approximate solution by substituting

these expressions for am into Eq. (82).

Anotherwayof looking at the procedure is to directly associate itwithEq. (80). If the

series representation for w(x), Eq. (82), is substituted into Eq. (80), and if dw is taken to

be dakfk xð Þ, thenwe arrive at the same integrals as those given byEqs. (83).Note that all

the boundary terms vanish, and dak 6¼ 0 is taken outside the integral.

Next, suppose that the functions fm xð Þ in the series expressions for w(x) satisfy

only the kinematic boundary conditions. If we substitute the series into Eq. (80) we

obtain

dak

Z L

0

"
EI
XN
m¼1

am fm,xx

 !
,xx

� P
XN
m¼1

am fm,xx � q xð Þ �
Xn

i¼1

Pid x� xið Þ

þ
Xm
j¼1

Cjh x� xj

� �#
fkdxþ

("
� EI

XN
m¼1

am fm,xx

 !
,x

þ P
XN
m¼1

am fm,x

#
x¼L

� RL

)
dakfk Lð Þ �

(
�EI

XN
m¼1

am fm,xx

" !
,x

þ P
XN
m¼1

am fm,x

#
x¼0

� R0

)
dak fk 0ð Þ þ EI

XN
m¼1

am fm,xx

 " !
x¼L

�ML

#
dak fk,k Lð Þ � EI

XN
m¼1

am fm,xx

 !
x¼0

� M0

" #
dak fk,x 0ð Þ ¼ 0

k ¼ 1, 2, . . . , N

84ð Þ
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As before, since dak 6¼ 0, Eqs. (84) represent a system of N linear algebraic

equations in am,m ¼ 1, 2, . . . , N. The solution yields am and, therefore, the approxi-

mate expression for w(x).

Note that in this modification of the Galerkin method we have added the bound-

ary errors or residuals to the original Galerkin integrals. In addition, since we have

related the method to the principle of the stationary value of the total potential, the

functions fm xð Þ must be kinematically admissible. Among other requirements (see

Appendix A), they must satisfy the kinematic boundary conditions.

5.5.2 THE CLAMPED-FREE COLUMN

Consider a column of length L, which is clamped at x ¼ 0 and free at x ¼ L. This

column is of uniform flexural stiffness, EI, and is loaded with axial load P. We will

use the Galerkin method to find Pcr. Let

w ¼
X3

n¼1

anx
nþ1

Since the functions xnþ1 n ¼ 1, 2, 3ð Þ satisfy only the kinematic boundary conditions

(at x ¼ 0) and not the natural boundary conditions (at x ¼ L), we will use the modified

Galerkin method. Substitution of the above expression for w(x) into Eq. (84) yields the

following system of three homogeneous alebraic equations in an, n ¼ 1, 2, 3. Wher-

ever P appears, we must use �P because of the sign convention.

Z L

0

EI24a3þP 2a1 þ 6a2xþ 12a3x
2

� �
 � x2

x3

x4

8><
>:

9>=
>;dxþ �EI 6a2þ 24a3Lð Þ½

P 2a1Lþ 3a2L
2 þ 4a3L

3
� �

�
L2

L3

L4

8><
>:

9>=
>;þEI 2a1þ 6a2Lþ 12a3L

2
� � 2L

3L2

4L3

8><
>:

9>=
>;¼ 0

85ð Þ

If we perform the indicated operations, divide through by EI, and introduce the

load parameter l ¼ PL2=EI , we obtain the following three equations

4 1� 1

3
l

� �
a1 þ 3L 2� 1

2
l

� �
a2 þ 8L2 1� 1

5
l

� �
a3 ¼ 0

3 2� 1

2
l

� �
a1 þ 3L 4� 3

5
l

� �
a2 þ 2L2 9� lð Þa3 ¼ 0

8 1� 1

5
l

� �
a1 þ 2L 9� lð Þa2 þ 16L2 9

5
� 1

7
l

� �
a3 ¼ 0

86ð Þ

These equations are similar to Eqs. (30) obtained by the Rayleigh-Timoshenko or

Rayleigh-Ritz method, and the solution is identical to the one obtained, above,

namely

one-term solution lcr ¼ 3

two-term solution lcr ¼ 2:4860

three-term solution lcr ¼ 2:4677
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5.6 some comments on koiter’s theory

5.6.1 CRITICAL LOAD AND LOAD-CARRYING CAPACITY

As mentioned in Chapter 1, the interest in the stability of simple structural

elements or overall structural configurations under external causes lies in the fact

that the stability limit (critical load) in many cases forms the basic criterion for

design. Because of safety reasons in designing structural configurations, the level of

the external causes is usually kept at such a value that the load in the structural

configurations is smaller than the critical load or condition. This line of thinking

might suggest that there is no reason to concern ourselves with studies of how the

structural configuration behaves past this critical condition, because the critical

condition is directly associated with the load-carrying capacity of the structural

configuration. It has been known since the last century, though, that certain struc-

tural configurations (the rectangular, simply supported plate under uniform edge

compression, the simply supported or clamped plate under uniform radial compres-

sion around its circumference, and others) can carry loads higher than the first

buckling load (and still behave elastically in many cases). This fact has been verified

experimentally. In a number of other cases it has been demonstrated experimentally

(thin spherical shells under uniform compression and thin circular cylindrical shells

under uniform compression) that the buckling load is only a small fraction of the

critical load predicted by the mathematical model, based on either the equilibrium

approach or the energy criterion. Many attempts have been made to explain this

discrepancy, and it is beyond the scope of this text to go into such explanations.

What is important, though, is the observation that critical loads, derived on the basis

that the primary path becomes unstable when a bifurcation point exists, cannot be

directly associated with the load-carrying capacity of such structural configurations.

Note that, at a point of bifurcation, the branch that characterizes the adjacent equi-

librium positions can be stable or unstable (see Figs. 1.4 and 1.5). Therefore, in the

interest of designing a safe structure, we must know how the structural configuration

behaves past the critical load or condition. The first person to systematically develop a

stability theory that deals with the question of post-buckling behavior of continuous

elastic systems is Koiter (1945) in his famous Ph.D. Thesis.

His theory is an initial post-buckling analysis, and therefore it cannot possibly

provide all the required answers in relating the critical load to the load-carrying

capacity of the structural configuration. Although it has this limitation, it is an

important first step toward achieving the true solution. These points will be discussed

in more detail with general qualitative demonstrations in Section 5.6.2.

The initial post-buckling behavior of elastic systems has received the deserved

attention only in the past fifteen years. An excellent review article on the subject was

presented by Hutchinson and Koiter (1970).

5.6.2 CONCLUSIONS BASED ON KOITER’S THEORY

Koiter’s theory, as mentioned previously, is primarily an initial post-buckling

theory, and it is applicable to problems exhibiting bifurcational buckling only. In

addition, the theory as presented in Koiter (1945) is limited to linearly elastic behav-

ior. It first concerns itself with the investigation of the equilibrium position in the

neighborhood of the buckling load. The most important conclusion of this investi-

gation is that the stability or instability of these equilibrium positions is governed by
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the stability of equilibrium at the bifurcation point. If the equilibrium is stable at the

critical load (bifurcation point), neighboring positions of equilibrium can exist only

for loads greater than the critical load, and these positions are stable (see Fig. 2.12a).

If the equilibrium position at the critical load is unstable, neighboring equilibrium

positions do exist at loads smaller than the critical load and they are unstable (see

Figs. 2.12b and 2.12c). It is true that, in this particular case, it is possible for stable

equilibrium positions also to exist at loads greater than the critical load (see

Fig. 2.12c), but these positions can be reached only by passing through the unstable

critical position, and therefore their practical significance is, to say the least, doubtful.

Another important ingredient of Koiter’s theory is the investigation of the influ-

ence of small imperfections in the actual structure in comparison to the idealized

perfect model. The most important conclusion of this part of Koiter’s work is that, if

the equilibrium position at the critical load of the perfect model is unstable (Figs.

2.12b and 2.12c), the critical load of the structural configuration may be considerably

smaller than that of the idealized perfect model because of the presence of small

imperfections (see Fig. 2.11).

Stein (1968), in a review paper, suggests that the Koiter theory can serve to

assess the imperfection sensitivity of a structural configuration through the slope of

the post-buckling curve in the neighborhood of the critical load. In a plot of

normalized load versus normalized characteristic displacement, Fig. 5.5, the pre-

buckling curve for linear theory is a 458 straight line. If we introduce an angle w

between the horizontal and the tangent to the post-buckling curve (positive in a

counterclockwise direction), then it is clear that if 0 < w < p=4, the structure is

imperfection insensitive, while if �3p=4 < w < 0, the structure is imperfection sensi-

tive. Two questions arise for this latter case. First, how large must the negative angle

w be to distinguish the cases of small versus large effects of imperfection sensitivity?

Second, by considering the tangent to the post-buckling curve at the critical load, do

we have assurance that the effect of imperfection sensitivity is considerably large?

figure 5.5 Initial post-buckling behavior.
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Suppose that there is a possibility that two structural configurations are characterized

by the same tangent at the critical load but their behavior differs considerably as we

moveaway fromthecritical load (seeFig. 5.5, cases Iand II).Thesequestionsandothers

with the assessment of the effect of imperfection sensitivity are the subject of much

research. Again the reader is strongly advised to read Hutchinson and Koiter (1970).

problems

In all of these problems, use one of the approximate methods discussed in this

chapter.

1. Find Pcr for a column which is fixed at one end and simply supported at the other.

2. A continuous column of constant flexural stiffness and total length 3L is sup-

ported as shown. Find Pcr.

3. A column of constant flexural stiffness, EI, and length, L, is fixed at one end and

supported elastically against translation (linear spring) at the other. If the column

is loaded axially by P, find Pcr.

4. A cantilever column of constant flexural stiffness, EI, and length, L, is in an

upright position with the fixed end at the lower part. If the direction of gravity

is in line with the column, determine the critical weight if the column is to buckle

under its own weight.

5. A simply supported column of length 3L is under the action of a compressive load.

Find Pcr if the flexural stiffness varies according to

EI xð Þ ¼
EI0 0 # x # L

2EI0 L # x # 2L

EI0 2L # x # 3L

(

6. A cantilever column of length 2L is fixed at x ¼ 0 and loaded at the free end by a

compressive load P. Find Pcr if the flexural stiffness varies according to

EI xð Þ ¼ 2EI0 0 # x # L

EI0 L # x # 2L

�

7. A cantilever column, with the clamped end at x ¼ L is under a compressive load P

(at the free end, x ¼ 0). Find Pcr if the stiffness varies according to

EI xð Þ ¼ EI0 1þ I1x=I0ð Þ.

figure p5.2
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6

Columns on Elastic

Foundations

6.1 basic considerations

Beams and columns supported elastically along their lengths are widely found in

structural configurations. In some cases, the elastic support, called the elastic founda-

tion, is provided by a medium which is indeed the foundation supporting the beams or

columns such as in railroad tracks, in underground piping for different uses, and in

footings for large-scale structures. In other cases, the elastic support is provided by

adjacent elastic structural elements such as in stiffened plate and shell configurations.

Regardless of the particular application, the mathematical model consists of a column

supported in some manner at its ends and with a continuous distribution of springs of

stiffness, b, called the modulus of the foundation (see Fig. 6.1). The units of b are

pounds per inch (force per length squared) and may be a constant or at most a function

of position along the length of the column for linear spring behavior. In general, the

spring behavior may be taken as nonlinear.

This chapter will present the analysis of some simple models and provide insight

into the behavior of such columns under destabilizing compressive loads. An excel-

lent and comprehensive treatment of the subject may be found in the text by Heteńyi

(1946).

To derive the buckling equations for a column on an elastic foundation, we refer

to Chapter 3 and modify the expression for the total potential to include the energy

stored into the foundation, Uf . For linear spring behavior

Uf ¼
1

2

Z L

0

bw2dx 1ð Þ

Therefore, if we use the principle of the stationary value of the total potential

d«UT ¼ d«Ui þ d«Uf þ d«Up ¼ 0 2ð Þ

we can derive the equilibrium equations for this configuration. Since P ¼ constant,

the buckling equation is
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EIw,xxð Þ,xx þ Pw,xx þ bw ¼ 0 3ð Þ

The boundary conditions are not affected by the presence of the foundation.

6.2 the pinned-pinned column

Consider a column of length, L, and constant flexural stiffness, EI, pinned at both

ends and resting on an elastic foundation (see Fig. 6.2). Let the modulus of the

foundation, b, be a constant. The mathematical formulation of the problem is given

by

D:E: w,xxxx þ k2w,xx þ
p

L

� �4

bw ¼ 0 4að Þ

B:C:’s w 0ð Þ ¼ 0 w Lð Þ ¼ 0

w,xx 0ð Þ ¼ 0 w,xx Lð Þ ¼ 0
4bð Þ

where

k2 ¼ P

EI
and b ¼ bL4

p4EI

Thus, the problem has been reduced to an eigen-boundary-value problem and we are

seeking the smallest value of k Pcrð Þ for which a nontrivial solution exists provided

that b is fixed.

Since sin mpx=L satisfies all boundary conditions for all m, the solution to the

buckling equation is taken in the form

figure 6.1 Column resting on an elastic foundation.

figure 6.2 The pinned-pinned column.
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w xð Þ ¼
X1
m¼1

Am sin
mpx

L
5ð Þ

where it is noted that m odd corresponds to symmetric modes while m even corres-

ponds to antisymmetric ones.

Substitution into the differential equations results in the following characteristic

equation:

mp

L

� �4

� k2
m

mp

L

� �2

þb
p

L

� �4

¼ 0 6ð Þ

where km denote the eigenvalues.

From Eq. (6) we obtain

k2
m

L

p

� �2

¼ Pm

PE

¼ m2 þ b

m2
7ð Þ

where

PE ¼
p2EI

L2

The critical load for a fixed value of the modulus of the foundation, b, is the

smallest of Pm. We see from Eq. (7) that Pcr and the corresponding deformation

mode depend on the value of b. Thus, Pcr is obtained from a plot of Pm=PE versus

b (see Fig. 6.3). As shown in the plot, Pcr is denoted by the solid piecewise linear

curve and
Pcr ¼ P1 0 # b # 4

Pcr ¼ P2 4 # b # 36

etc:

figure 6.3 Critical conditions for the pinned-pinned column.
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In general, the value of b at which the deformation mode changes from k half-sine

waves to (kþ 1), and the critical load from Pk to Pkþ1, is given by

b ¼ k kþ 1ð Þ½ �2 8ð Þ

Finally, if we consider m2 to be a continuous variable, minimization of Pm with

respect to m2 yields

m2
cr ¼

ffiffiffi
b

p
9ð Þ

Substitution of this expression into Eq. (7) gives us the expression for the critical

load:

Pcr ¼ 2PE

ffiffiffi
b

p
¼ 2

ffiffiffiffiffiffiffiffiffi
bEI

q
10ð Þ

This expression is also plotted in Fig. 6-3. We notice that this form of the solution is

approximate, and the approximation becomes more accurate as b increases.

Note that Eq. (10) is a solution for infinitely long columns, so that the boundary

conditions do not matter.

6.3 rayleigh-ritz solution

Using Timoshenko’s arguments about energy and work, we can derive a Rayleigh

quotient for this problem:

P ¼
R L

0
EIw2

,xxdxþ
R L

0
bw2dxR L

0
w2

,xdx
11ð Þ

The solution may be expressed in terms of the following series for the pinned-pinned

column:

w xð Þ ¼
XN
m¼1

Am sin
mpx

L
12ð Þ

When this expression is used in Eq. (11), the numerator and denominator become

functions of Am:

P ¼ f1 Amð Þ
f2 Amð Þ 13ð Þ

Next, we adjust the coefficient Am such that Pm is a minimum. This leads to the

equation

@f1
@Am

� P
@f2
@Am

¼ 0 m ¼ 1, 2, . . . , N 14ð Þ

which becomes

L EI
mp

L

� �4

þ b� P
mp

L

� �2
� �

Am ¼ 0 m ¼ 1, 2, . . . , N 15ð Þ

Thus, the introduction of PE and b yields Eq. (7), and from this point on the

arguments are the same as in Section 6.2.
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6.4 the general case

In this section we shall outline a procedure which may, in general, be applied to

columns on an elastic foundation regardless of the boundary conditions. Consider a

column of constant flexural stiffness and length 2L as shown in Fig. 6.1. Place the

origin of the coordinate system used at the midpoint of the column.

The mathematical formulation of the general problem is given by

D:E: w,xxxx þ
P

EI
w,xx þ

b

EI
w ¼ 0

B:C:s Either Kinematicð Þ Or Naturalð Þ

w ¼ 0 at x ¼ �L w,xxx þ
P

EI
w,x ¼ 0 at x ¼ �L

w,x ¼ 0 at x ¼ �L w,xx ¼ 0 at x ¼ �L

16ð Þ

Note that the clamped-clamped problem is characterized by the satisfaction of the

kinematic boundary conditions, whereas the free-free problem (floating ends) is

characterized by the satisfaction of the natural boundary conditions, etc.

The general procedure is as follows. Let the solution to Eq. (16) be of the form esx.

Then, substitution into Eq. (16) yields

s4 þ P

EI
s2 þ b

EI
¼ 0 17ð Þ

The solution for s is given by

s2 ¼ 1

2
� P

EI
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

EI

� �2

�4
b

EI

s2
4

3
5

¼ b

EI

� �1
2

� P

2
ffiffiffiffiffiffiffiffiffi
bEI

p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

2
ffiffiffiffiffiffiffiffiffi
bEI

p
 !2

�1

vuut
2
64

3
75

Denoting the expression 2
ffiffiffiffiffiffiffiffiffi
bEI

p
by P1, which represents Pcr for large values of b

(not b) or extremely long columns with simply supported boundaries, then

s2 ¼ b

EI

� �1
2

� P

P1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

P1

� �2

�1

s2
4

3
5 18ð Þ

Furthermore, if we let P=P1 ¼ g, the four roots of Eq. (17) are

s1 ¼ i
b

EI

� �1
4

g �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p� �1
2

s2 ¼ �s1

s3 ¼ i
b

EI

� �1
4

g þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p� �1
2

s4 ¼ �s3

19ð Þ
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Regardless of the boundary conditions, the following three casesmust be considered.

Case I:

g > 1

For this case, let us first introduce the real and positive parameters k1 and k2:

k1 ¼
b

EI

� �1
4

g �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p� �1
2

k2 ¼
b

EI

� �1
4

g þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p� �1
2

20ð Þ

Then the four roots and the solution to Eq. (16) become

s1 ¼ ik1 s2 ¼ �ik1 s3 ¼ ik2 s4 ¼ �ik2

and

w xð Þ ¼ C11 cos k1xþ C12 sin k1xþ C13 cos k2xþ C14 sin k2x 21ð Þ

Case II:

g ¼ 1

For this case, we first introduce the real positive parameter k3:

k3 ¼
b

EI

� �1
4

22ð Þ

Then, the four roots and the solution to Eq. (16) become

s1 ¼ ik3 s2 ¼ �ik3 s3 ¼ ik3 s4 ¼ �ik3

and

w xð Þ ¼ C21 cos k3xþ C22 sin k3xþ C23x cos k3xþ C24x sin k3x 23ð Þ

Note that we have two pairs of double roots for this case.

Case III:

g < 1

Since g is smaller than 1, then the four roots, Eqs. (19), are

s1 ¼ i
b

EI

� �1
4

g � i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p� �1
2

s2 ¼ �s1

s3 ¼ i
b

EI

� �1
4

g þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p� �1
2

s4 ¼ �s3

If we take the square root of the complex number and introduce the real positive

quantities

r ¼ b

EI

� �1
4
ffiffiffiffiffiffiffiffiffiffiffiffi
1� g

2

r

r ¼ b

EI

� �1
4
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ g

2

r 24að Þ
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the four roots become

s1 ¼ r þ ir ¼ h

s2 ¼ �r � ir ¼ � h

s3 ¼ �r þ ir ¼ v

s4 ¼ r � ir ¼ � v

24bð Þ

Note that we have two complex conjugate pairs s4 ¼ s1 and s2 ¼ s3.

The solution to Eq. (16) for this case is

w xð Þ ¼ A1e
rþirð Þx þ A2e

� rþirð Þx þ A3e
� �rþirð Þx þ A4e

r�irð Þx

or

w xð Þ ¼ C31 cosh hxþ C32 cosh vxþ C33 sinh hxþ C34 sinh vx 25ð Þ

6.4.1 THE CLAMPED-CLAMPED COLUMN

To find Pcr for this particular problem, we must investigate all three cases by

using the proper boundary conditions with the three corresponding solutions,

Eqs. (21), (23), and (25). Note that in all three cases, when the boundary condi-

tions are used, we end up with a system of four linear homogeneous algebraic

equations in the constants Cij i ¼ 1, 2, 3; j ¼ 1, 2, 3, 4ð Þ. The first subscript, i, is

associated with the particular case (I, II, and III) and the second subscript, j, with

the four roots.

The boundary conditions for the clamped-clamped case are

w�Lð Þ ¼ w Lð Þ ¼ 0

w,x �Lð Þ ¼ w,x Lð Þ ¼ 0
26ð Þ

Case III:

g < 1

Employing the boundary conditions, Eqs. (26), and the expression for w xð Þ, Eq.

(25), we obtain the following system of equations:

C31 cosh hLþ C32 cosh vL� C33 sinh hL� C34 sinh vL ¼ 0

�C31h sinh hL� C32v sinh vLþ C33h cosh hLþ C34v cosh vL ¼ 0
27ð Þ

If we add and subtract the first two equations and the last two equations, we have

an equivalent system of four linear homogeneous algebraic equations in

C3j j ¼ 1, 2, 3ð , and 4):

C31 cosh hLþ C32 cosh vL ¼ 0

C33 sinh hLþ C34 sinh vL ¼ 0

C31h sinh hLþ C32v sinh vL ¼ 0

C33h cosh hLþ C34v cosh vL ¼ 0

Thus, the equations have decomposed into two systems of equations:

Either C31 cosh hLþ C32 cosh vL ¼ 0

C31h sinh hLþ C32v sinh vL ¼ 0

�
28ð Þ
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or C33 sinh hLþ C34 sinh vL ¼ 0

C33h cosh hLþ C34v cosh vL ¼ 0

)
29ð Þ

The first system implies that C31 6¼ 0, C32 6¼ 0, and C33 ¼ C34 ¼ 0, which corres-

ponds to a symmetric mode of deformations [see Eq. (25)]. The second system

corresponds to an antisymmetric mode of deformation. Both systems must be used

for finding Pcr.

For the symmetric case, a nontrivial solution exists if

cosh hL cosh vL

h sinh hL v sinh vL

				
				 ¼ 0 30ð Þ

The expansion of the determinant yields

v cosh hL sinh vL� h sinh hL cosh vL ¼ 0 31ð Þ

This equation may now be written as

v ehL þ e�hL

 �

evL � e�vL

 �

� h ehL � e�hL

 �

evL þ e�vL

 �

¼ 0

If we substitute the expressions for h and v from Eqs. (24b), we obtain

4i r sin 2rLþ r sinh 2rLð Þ ¼ 0 32að Þ

or

sin 2rL

2rL
þ sinh 2rL

2rL
¼ 0 32bð Þ

This equationhas no solution, thereforeC31 ¼ C32 ¼ 0 (trivial solution for the system).

Similarly, for the antisymmetric case, the characteristic equation requires

sin 2rL

2rL
� sinh 2rL

2rL
¼ 0 33ð Þ

This equation has no solution for g; therefore, for this case (g < 1), there is no

bifurcation point and the only solution is w xð Þ � 0 (straight configuration).

Case II:

g ¼ 1

If the steps outlined for case III are repeated for this case using Eq. (23) for the

displacement, we obtain the following characteristic equations for symmetric buck-

ling C21 6¼ 0, C24 6¼ 0, C22 ¼ C23 ¼ 0ð Þ:

sin 2k3L ¼ �2k3L 34að Þ

and for antisymmetric buckling C21 ¼ C24 ¼ 0, C22 6¼ 0, C23 6¼ 0ð Þ:

sin 2k3L ¼ 2k3L 34bð Þ

There is no solution to Eqs. (34); therefore, there is no bifurcation for g ¼ 1.

Case I:

Substitution of Eq. (21) into the boundary conditions, Eqs. (26), yields

C11 cos k1L� C12 sin k1Lþ C13 cos k2L� C14 sin k2L ¼ 0

�C11k1 sin k1Lþ C12k1 cos k1L� C13k2 sin k2Lþ C14k cos k2L ¼ 0
35ð Þ
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As in case III, we first obtain an equivalent system of equations through subtrac-

tion and addition, which separates the problem into symmetric and antisymmetric

buckling.

For symmetric buckling C11 6¼ 0, C13 6¼ 0, C12 ¼ C14 ¼ 0ð Þ:

C11 cos k1Lþ C13 cos k2L ¼ 0

C11k1 sin k1Lþ C13k2 sin k2L ¼ 0
36ð Þ

This leads to the characteristic equation

k2 sin k2L cos k1L ¼ k1 sin k1L cos k2L

or

k1Lð Þ tan k1Lð Þ ¼ k2Lð Þ tan k2Lð Þ 37ð Þ

For antisymmetric buckling C11 ¼ C13 ¼ 0, C12 6¼ 0, C14 6¼ 0ð Þ:

C12 sin k1Lþ C14 sin k2L ¼ 0

C12k1 cos k1Lþ C14k2 cos k2L ¼ 0
38ð Þ

The characteristic equation is

k1Lð Þ cot k1Lð Þ ¼ k2Lð Þ cot k2Lð Þ 39ð Þ

To find gcr, we must solve both Eq. (37) and Eq. (39) for fixed values of b.

Heteńyi (1946) presents graphically the solution to the two characteristic equations

in a plot of g versus 4L2
ffiffiffiffiffiffiffiffiffiffiffi
b=EI

p
. In the same reference, plots for the pinned-pinned

and free-free columns are presented with the same coordinates. For the clamped-

clamped and pinned-pinned columns, as b is increased from zero, the buckling mode

changes from symmetric to antisymmetric back to symmetric, etc. For the free-free

column, as b is increased from zero, the buckling mode changes from antisymmetric

to symmetric, etc.

6.4.2 THE FREE-FREE COLUMN

The boundary conditions for this particular problem are:

w,xx �Lð Þ ¼ w,xx Lð Þ ¼ 0

w,xxx �Lð Þ þ P

EI
w,x �Lð Þ ¼ w,xxx Lð Þ þ P

EI
w,x Lð Þ ¼ 0

40ð Þ

To find Pcr, we must again consider all three cases. It can be shown that no

critical load exists for cases I and II (g > 1, g ¼ 1; see Problem 1 at the end of this

chapter). Therefore, if there is a Pcr, the characteristic equation must be found from

case III (g < 1). Substitution of Eq. (25) into the boundary conditions, Eqs. (40),

results in:

C31h2 cosh hLþC32v2 cosh vL�C33h2 sinh hL�C34v2 sinh vL¼ 0

�C31h3 sinh hL�C32v3 sinh vLþC33h3 cosh hLþC34v3 cosh vL
� 

þ P

EI
�C31h sinh hL�C32v sinh vLþC33h cosh hLþC34v cosh vL½ � ¼ 0

41ð Þ

First, we observe that P=EI ¼ � h2 þ v2

 �

. This can easily be verified through Eqs.

(24) and the expressions for g and P1:
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h2 þ v2 ¼ r þ irð Þ2þ�r þ irð Þ2

¼ 2 r2 � r2

 �

¼ 2
b

EI

� �1
2 1� g

2
� 1þ g

2

� �

¼ �2
b

EI

� �1
2

g ¼ �2
b

EI

� �1
2 P

2
ffiffiffiffiffiffiffiffiffi
bEI

p
¼ � P

EI

Next, if we add and subtract the first two and last two of Eqs. (41), we obtain the

following two systems of equations:

Symmetric Buckling:

C31h2 cosh hLþ C32v2 cosh vL ¼ 0

C31v sinh hLþ C32h sinh vL ¼ 0
42ð Þ

Antisymmetric Buckling:

C33h2 sinh hLþ C34v2 sinh vL ¼ 0

C33v cosh hLþ C34h cosh vL ¼ 0
43ð Þ

The characteristic equations for both cases must be derived and solved for Pcr.

First, for the symmetric buckling case, the characteristic equation is obtained by

requiring the system of Eqs. (42) to have a nontrivial solution:

h3 sinh vL cosh hL� v3 sinh hL cosh vL ¼ 0 44ð Þ

Use of Eqs. (24) gives

r þ irð Þ3 e2irL � e�2irL

 �

� e2rL � e�2rL

 �� 


� r � irð Þ3 � e2irL � e�2irL

 �

� e2rL � e�2rL

 �� 


¼ 0 45ð Þ

Since the second term of the above equation is the complex conjugate of the first

term, and since the difference of two complex conjugate pairs is the imaginary part

multiplied by 2i, the characteristic equation is given by

Im r þ irð Þ3 e2irL � e�2irL þ e�2rL � e2rL

 �h i

¼ 0

or

Im r3 � 3rr2 þ i 3r2r� r3

 �� 


�2 sinh 2rLþ 2i sin 2rLð Þ
� �

¼ 0

This characteristic equation assumes the following final form

3r2r� r3

 �

sinh 2rL ¼ r3 � 3rr2

 �

sin 2rL 46ð Þ

Similarly, for the antisymmetric buckling case, the characteristic equation is

3r2r� r3

 �

sinh 2rL ¼ � r3 � 3rr2

 �

sin 2rL 47ð Þ

Solutions to these equations are presented graphically in Heteńyi (1946).

We see from Eqs. (46) and (47) that, as the length increases, the right-hand side of

both equations remains finite. Since sinh 2rL increases indefinitely, the quantity

3r2r� r3 must approach zero. Therefore, as the length approaches infinity
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r 3r2 � r2

 �

¼ 0

Substitution of the expressions for r and r from Eq. (24a) gives

g ¼ 1
2

and

�PPcr ¼
ffiffiffiffiffiffiffiffiffi
bEI

q
48ð Þ

An important application of columns on an elastic foundation is in the prediction

of wrinkling of the facings in a sandwich construction where the core acts as an

elastic foundation (Goodier and Hsu, 1954). The mathematical model (buckling

equations and boundary conditions) is similar to that used for axisymmetric buckling

for thin, circular, cylindrical shells.

problems

1. Show that there is no critical load for �PP $ 2
ffiffiffiffiffiffiffiffiffi
bEI

p
when the ends of the column

are free (floating ends). Find the bifurcation loads.

2. Analyze the pinned-pinned column, resting on an elastic foundation, of length 2L

and uniform flexural stiffness by using the approach outlined in Section 6.4.

3. Find �PPcr for the clamped-clamped column, resting on an elastic foundation, of

length L and uniform flexural stiffness, by employing a Rayleigh-Ritz technique

and for 0 # b # 64.

4. Find �PPcr for the clamped-free column, resting on an elastic foundation, of length L

and uniform flexural stiffness, by employing the Rayleigh-Ritz technique and for

low values of b.

5. Find �PPcr for a pinned-pinned column, resting on an elastic foundation, of length L

and flexural stiffness EI xð Þ ¼ EI1 sin px=L, by employing some approximate

technique and for low values of b.
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7

Buckling of Rings

and Arches

Thin rings and arches (high or low) are often used as structural elements and,

when loaded in their plane and in a normal direction, are subject to instability. In this

chapter, the analyses of thin circular rings, high circular arches, and low arches are

presented. In addition, the analysis of a low half-sine arch, loaded by a half-sine

distributed load, resting on an elastic foundation, and pinned at both ends is

presented. This is an interesting model because, depending on the values of the rise

parameter and the modulus of the foundation, it exhibits the possibilities of limit

point stability (top-of-the-knee buckling), snapthrough buckling through unstable

bifurcation, and classical stable bifurcation buckling. For all cases, it is assumed that

the behavior of the material is linearly elastic.

7.1 the thin circular ring

Buckling of thin circular rings was first investigated by Bresse in 1866.

Timoshenko and Gere (1961) present the solution to this problem and a complete

historical sketch of other investigations. In addition to the references cited in the text

by Timoshenko and Gere, the investigations of Boresi (1955), Wasserman (1961),

Wempner and Kesti (1962), and Smith and Simitses (1969) are important contri-

butions to the solution of this problem.

7.1.1 KINEMATIC RELATIONS

The geometry and sign convention are given on Fig. 7.1. Let the deformation

components of the neutral surface material points be denoted by w(s) and v sð Þ. The

strain at any material point z units from the neutral surface is given by

« ¼ «0 þ z� 1ð Þ

This equation is based on the assumptions that planes remain plane after defor-

mation, the normals to the neutral axis are inextensional, and the ring is thin
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(thickness much smaller than the radius). In Eq. (1), «0 denotes the extensional strain

of material points on the neutral surface and k denotes the change in curvature. We

present the development of the expressions of «0 and k in terms of the deformation

components and their gradients separately.

First, the expression for «0 is developed. The position vector from the origin O to

any material point on the reference axis is given by

r sð Þ ¼ Rer sð Þ 2ð Þ

where er is a unit vector in the radial direction. Let d sð Þ represent the deformation

vector; then

d sð Þ ¼ w sð Þer þ v sð Þeu 3ð Þ

The position vector to a material point in the deformed state r� is given by

r� sð Þ ¼ r sð Þ þ d sð Þ 4ð Þ
or

r� sð Þ ¼ R 1þ w

R

� �
er þ veu 5ð Þ

Now consider a line segment which is tangent to the s-coordinate line (reference

axis) in the undeformed state (of length ds). This segment is given by the vector

figure 7.1 Ring geometry and sign convention.
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dr ¼ dr

ds
ds ¼ euds 6ð Þ

After deformation, the segment is represented by the vector dr�, or

dr� ¼ dr�

ds
ds ¼ dw

ds
� v

R

� �
er þ 1þ w

R
þ dv

ds

� �
eu

� �
ds 7ð Þ

The length of this segment is given by

jdr�j ¼ dw

ds
� v

R

� �2

þ 1þ w

R
þ dv

ds

� �2
" #1

2

ds 8ð Þ

Now there are two possible definitions of extensional strain denoted by «E (engin-

eering definition) and «L.

«E ¼
jdr�j � jdrj
jdrj 9ð Þ

«L ¼
1

2

jdr�j2 � jdrj2

jdrj2
10ð Þ

From Eq. (9)

jdr�j
jdrj ¼ «E þ 1 11ð Þ

Substitution of Eq. (11) into Eq. (10) results in

«L ¼ «E þ
1

2
«2

E 12ð Þ

It is clear from Eq. (12) that, for small engineering extensional strains, both

definitions give the same results. Therefore, in developing the strain-deformation

relations for the thin ring, we will use Eq. (10) to obtain

«0 ¼ w

R
þ dv

ds

� �
þ 1

2

dw

ds
� v

R

� �2

þ 1

2

w

R
þ dv

ds

� �2

13ð Þ

Note that the last term is negligibly small by comparison to the first term (in

parenthesis). Thus,

«0 ¼ w

R
þ dv

ds
þ 1

2

dw

ds
� v

R

� �2

14ð Þ

For small strains and moderately small rotations, the change in curvature can be

accurately approximated by (for details see Smith and Simitses, 1969 and Sanders, 1963):

k ¼ dw

ds
15ð Þ

where w is the rotation of the element from its undeformed state to its deformed state,

taken positive as shown in Fig. 7.1.
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It is seen from Fig. 7.1, that

w ¼ � dw

ds
þ v

R
16ð Þ

Therefore

k ¼ � d2w

ds2
þ dv

R ds
17ð Þ

Finally, if we use the variable u instead of s ¼ Ru, then

«0 ¼ w

R
þ 1

R

dv

du
þ 1

2R2

dw

du
� v

� �2

18að Þ

k ¼ � 1

R2

d2w

du2
� dv

du

� �
18bð Þ

and

« ¼ w

R
þ 1

R

dv

du
þ 1

2R2

dw

du
� v

� �2

� z

R2

d2w

du2
� dv

du

� �
19ð Þ

7.1.2 EQUILIBRIUM EQUATIONS

Consider the thin circular ring to be loaded by a uniformly distributed load

around its circumference with components pr and pu in the radial and tangential

directions, respectively. The equilibrium equations for such a configuration are

derived using the principle of the stationary value of the total potential

dUT ¼
Z 2pR

0

Z
A

E «0 þ zk
� �

d«0 þ zdk
� �

dA ds

�
Z 2pR

0

prdwþ pudvð Þds ¼ 0

20ð Þ

where A is the cross-sectional area of the thin ring. Note that linear elastic behavior is

assumed.

Let N and M denote the hoop load and bending moment, respectively,

N ¼
Z

A

E«0dA ¼ EA«0

M ¼ �
Z

A

Ez2kdA ¼ �EIk

21ð Þ

where

A ¼
Z

A

dA and I ¼
Z

A

z2dA

Substitution of Eqs. (21) into Eq. (20) yieldsZ 2pR

0

Nd«0 �Mdk� prdw� pudv
� �

ds ¼ 0 22ð Þ

From Eqs. (18), we find the expression for d«0 and dk:
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d«0 ¼ dw

R
þ 1

R

ddv

du
þ 1

R2

dw

du
� v

� �
ddw

du
� dv

� �
23að Þ

dk ¼ � 1

R2

d2dw

du2
� ddv

du

� �
23bð Þ

Substitution of Eqs. (23) into Eq. (22), integration by parts, and requiring continuity

at any point of the reference axis leads to the following equilibrium equations.

�N

R
þ d

ds
N

dw

ds
� v

R

� �� �
� d2M

ds2
þ pr ¼ 0

dN

ds
þN

R

dw

ds
� v

R

� �
� 1

R

dM

ds
þ pu ¼ 0

24ð Þ

or

�NRþ d

du
N

dw

du
� v

� �� �
� d2M

du2
þ prR

2 ¼ 0

R
dN

du
þN

dw

du
� v

� �
� dM

du
þ puR

2 ¼ 0

25ð Þ

If we assume that the loading is a uniform pressure loading, p, then pr ¼ p, pu ¼ 0,

and the primary path (prebuckling solution) is characterized by a uniform radial

expansion (or contraction). The complete solution of Eqs. (25) for the primary path

is given by

w p ¼ pR2

EA

v p ¼ 0 p p
r ¼ p

Np ¼ pR

Mp ¼ 0 p
p
u ¼ 0

w p ¼ 0

26ð Þ

7.1.3 BUCKLING EQUATIONS

According to the bifurcation approach, close to the critical load

w ¼ wp þ w� ¼ pcrR
2

EA
þ w�

v ¼ v p þ v� ¼ v�

N ¼ Np þN� ¼ pcrRþN�

M ¼Mp þM� ¼M�

pr ¼ pcr þ p�r , pu ¼ p�u

27ð Þ

Substitution of Eqs. (27) into Eqs. (25) yields

�N�Rþ d

du
pcrRþN�ð Þ dw�

du
� v�

� �� �
� d2M�

du2
þ p�rR

2 ¼ 0

R
dN�

du
þ pcrRþN�ð Þ dw�

du
� v�

� �
� dM�

du
þ p�uR

2 ¼ 0

28ð Þ
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Since the starred quantities denote the increments which take the system from the

unbuckled state to the adjacent buckled equilibrium state, they can be taken as small

(but nonzero) as we wish. Therefore by neglecting N� as small by comparison to pcrR,

we have

�N�Rþ pcrR
d2w�

du2
� dv�

du

� �
� d2M�

du2
þ p�rR

2 ¼ 0

R
dN�

du
þ pcrR

dw�

du
� v�

� �
� dM�

du
þ p�uR

2 ¼ 0

29ð Þ

Again, because the adjacent state can be taken as close to the primary state as

desired, we may use the linearized version of the kinematic relation for the starred

quantities:

N� ¼ EA
w�

R
þ 1

R

dv�

du

� �

M� ¼ EI

R2

d2w�

du2
� dv�

du

� � 30ð Þ

Substitution of Eqs. (30) into Eqs. (29) results in the buckling equations

�EA w� þ dv�

du

� �
þ pcrR

d2w�

du2
� dv�

du

� �
� EI

R2

d4w�

du4
� d3v�

du3

� �
þ p�rR

2 ¼ 0

EA
dw�

du
þ d2w�

du2

� �
þ pcrR

dw�

du
� v�

� �
� EI

R2

d3w�

du3
� d2v�

du2

� �
þ p�uR

2 ¼ 0

31ð Þ

Before we solve Eqs. (31), we must consider the behavior of the load during

the buckling process. Since p�r and p�u denote the incremental components of the

pressure load in the buckled state, the following distinction must be made. There

are three possibilities concerning the behavior of the load (cases I, II, and III). In

case I, it is assumed that the load remains normal to the deflected reference axis.

In Fig. 7.1 the pressure load is in direction I, and its components along the

original radial and tangential directions are pcr cos w� and pcr sin w�, respectively.

Since w� is taken to be small, p�r ¼ 0 and p�u ¼ pcrw
�. In case II, it is assumed

that the load remains parallel to its original direction (direction II in Fig. 7.1).

For this case p�r ¼ p�u ¼ 0. Finally, in case III, it is assumed that the load is

directed toward the initial center of curvature. For this case, p�r ¼ 0 and

p�u ¼ pcr w� þ dw�=dsð Þ. In summary

Case I:

p�r ¼ 0 p�u ¼ �
pcr

R

dw�

du
� v�

� �

Case II:

p�r ¼ 0 p�u ¼ 0 32ð Þ

Case III:

p�r ¼ 0 p�u ¼ pcr

v�

R

If we now substitute. Eqs. (32) into Eqs. (31), we obtain the buckling equation for the

three cases of load behavior
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�EA w� þ dv�

du

� �
þ pcrR

d2w�

du2
� dv�

du

� �
� EI

R2

d4w�

du4
� d3v�

du3

� �
¼ 0

EA
dw�

du
þ d2v�

du2

� �
þ pcrR

dw�

du
� v�

� �
� EI

R2

d3w�

du3
� d2v�

du2

� �
� pcrR

dw�

du
� v�

0

�v�

2
664

3
775 ¼ 0

Combining like terms in the second equation, we obtain

�EA w� þ dv�

du

� �
þ pcrR

d2w�

du2
� dv�

du

� �
� EI

R2

d4w�

du4
� d3v�

du3

� �
¼ 0

EA
dw�

du
þ d2v�

du2

� �
� EI

R2

d3w�

du3
� d2v�

du2

� �
þ pcrR

0
dw�

du
� v�

dw�

du

2
66664

3
77775 ¼ 0

33ð Þ

We clearly see from Eqs. (33) that the problem has been reduced to an eigenvalue

problem inwhichwe seek the smallest value forpcr forwhichanontrivial solutionexists.

7.1.4 SOLUTION

Before obtaining and discussing the solution, let us multiply both equations by

R2=EI . Then, let l ¼ pcrR
3=EI , and r2 ¼ I=A, where r is the radius of gyration of the

cross-sectional geometry

� R

r

� �2

w� þ dv�

du

� �
þ l

d2w�

du2
� dv�

du

� �
� d4w�

du4
� d3v�

du3

� �
¼ 0

R

r

� �2
dw�

du
þ d2v�

du2

� �
� d3w�

du3
� d2v�

du2

� �
þ l

0
dw�

du
� v�

dw�

du

2
66664

3
77775 ¼ 0

34ð Þ

Assume solutions of the form

w� ¼ Bn cos nu, v� ¼ Cn sin nu

or

w� ¼ Bn sin nu, v� ¼ Cn cos nu 35ð Þ

which satisfy the continuity requirements. Note that n ¼ 1 for the first equation and

n ¼ 0 for the second yield rigid-body modes. Substitution of the first set leads to the

following system of homogeneous linear algebraic equations in Bn and Cn:

� R

r

� �2

þ ln2 þ n4

" #
Bn �

R

r

� �2

nþ lnþ n3

" #
Cn ¼ 0

� R

r

� �2

nþ n3 þ ln

0

1

1

0
B@

1
CA

2
64

3
75Bn �

R

r

� �2

n2 þ n2 þ l

0

1

0

0
B@

1
CA

2
64

3
75Cn ¼ 0

36ð Þ
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For a nontrivial solution to exist, the determinant of the coefficients of Bn and Cn

must vanish.

The expansion of the determinant yields

l2n2

0

0

1

0
B@

1
CAþ l

R

r

� �2
n2 n2 � 1
� �
n2 � 1
� �2

n2 n2 � 2
� �

� n4 r

R

� �2

2
664

3
775þ R

r

� �2

n2 n2 � 1
� �2¼ 0 37ð Þ

The solutions for l are:

Case I:

l ¼ � n2 � 1
� �

Case II:

l ¼ �n2 38ð Þ

Case III:

l ¼ �
n2 � 1
� �2
n2 � 2ð Þ

To obtain the solution for case III, it is necessary to assume that r=Rð Þ2� 1.

The critical value is obtained by minimizing l with respect to integer values of n.

Since n ¼ 1 corresponds to rigid body motion (not of interest in this buckling

analysis), the critical condition corresponds to n ¼ 2.

Case I:

lcr ¼ �3, pcr ¼ �3
EI

R3

Case II:

lcr ¼ �4, pcr ¼ �4
EI

R3
39ð Þ

Case III:

lcr ¼ �4:5, pcr ¼ �4:5
EI

R3

Note that for all three cases, when we assume that r=Rð Þ2� 1 and n ¼ 1, from the

first of Eqs. (36) we have B1 ¼ �C1.

Next, if we introduce an orthogonal set of unit vectors, i and j (see Fig. 7.1) in the

tangential and radial directions, respectively, when u ¼ 0, we have

eu ¼ cos ui� sin uj

er ¼ sin uiþ cos uj
40ð Þ

The deformation vector, d, of any material point on the reference axis for n ¼ 1

(see Eqs. 35) is given by

d ¼ B1 cos uð Þ er � B1 sin uð Þeu 41ð Þ

Use of Eqs. (40) and Eq. (41) yields

d ¼ B1j 42ð Þ

Equation (42) shows that, when n ¼ 1, we have a rigid-body translation.
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For all three cases we have found the bifurcation load (classical buckling ap-

proach), and no attention is paid to the stability or instability of the system as a rigid

body. The reason for considering the three different cases is because all those have

been used as models for the real load case, which is pressure. The pressure behavior is

best represented by case I. It is difficult to conceive of a true application which is

represented by case II. Case III can serve as a mathematical model for the following

problem: Consider a thin ring which is loaded by a very large number of closely

spaced radial cables pulled together through a stiff, small, rigid ring at the center of

the thin ring. Singer and Babcock (1970) have shown that for case II the thin ring is

unstable as a rigid body and will rotate under arbitrarily small pressure.

7.2 high circular arches under pressure

The buckling of a high circular arch under uniform pressure has been presented in

Timoshenko (1961). As discussed in Timoshenko (1961) the solution was first

obtained by Hurlbrink and the problem was also investigated by Timoshenko and

Nicolai. The solution presented herein is based on the use of Eqs. (34). In order to

apply these equations, it is assumed that first the arch is uniformly contracted (see

Fig. 7.2). On this basis a primary state exists, which is identical to that of a complete

circular ring. Then at the instant of buckling, the supports become immovable and

the arch buckles as shown in Fig. 7.2.

If the arch is simply supported at both ends, the boundary conditions at u ¼ �a,

for the incremental quantities, are given by

figure 7.2 Geometry of pinned circular arch.

SIMITSES - Title 0750678755_ch07 Final Proof page 193 8.11.2005 9:30pm

High Circular Arches Under Pressure 193



w� ¼ 0

M� ¼ EI

R2

d2w�

du2
� dv�

du

� �
¼ 0

N� ¼ EA

R
w� þ dv�

du

� �
¼ 0

43ð Þ

These boundary conditions are satisfied by the following assumed form of solution:

w� ¼ Bn sin
npu

a

v� ¼ Cn cos
npu

a

44ð Þ

Substitution of Eqs. (44) into Eqs. (43) gives

� R

r

� �2

þ l
np

a

� �2

þ np

a

� �4

" #
Bn

þ R

r

� �2
np

a

� �
þ l

np

a

� �
þ np

a

� �3

" #
Cn ¼ 0

R

r

� �2
np

a

� �
þ np

a

� �3

þ l
np

a

� � 0

1

1

0
B@

1
CA

2
64

3
75Bn

� R

r

� �2
np

a

� �2

þ np

a

� �2

þ l

0

1

0

0
B@

1
CA

2
64

3
75Cn ¼ 0

45ð Þ

For a nontrivial solution to exist, the determinant of the coefficients of Bn and Cn

must vanish. The expansion of the determinant yields an expression similar to Eq.

(37), except that whenever n appears in Eq. (37), we must put (np=a). The solutions

for l are:

Case I:

l ¼ � np

a

� �2

�1

� �

Case II:

l ¼ � np

a

� �2

46ð Þ

Case III:

l ¼ �
np=að Þ2�1

h i2
np=að Þ2�2

h i
The critical condition corresponds to the smallest n, which is one for this case.

Therefore,

Case I:

pcr ¼ �
EI

R3

p

a

� �2

�1

� �
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Case II:

pcr ¼ �
EI

R3

p

a

� �2

47ð Þ

Case III:

pcr ¼ �
EI

R3

p=að Þ2�1
h i2

p=að Þ2�2

The solution for case I is the same as the one reported in Timoshenko (1961). For

this case we note that, when a ¼ p, we have a complete ring and pcr ¼ 0. The reason

for this undesirable result is that we have a complete ring with a hinge, and it is free to

rotate as a rigid body about this hinge for arbitrarily small pressure. The continuous

complete ring corresponds to a ¼ p=2. When a ¼ p=2, Eqs. (47) are identical to Eqs.

(39).

These results, which are derived by assuming the buckling mode of Fig. 7.2, are

not applicable to shallow arches. The low arch is treated in a later section.

The solution to the clamped arch is presented in Timoshenko (1961). This solution

is due to E. L. Nicolai:

pcr ¼ �
EI

R3
k2 � 1
� �

48ð Þ

where k is the solution of the following transcendental equation

k tan a cot ka ¼ 1 49ð Þ

7.3 alternate approach for

rings and arches

An alternate approach for solving the ring and high arch problem is to eliminate v�

from Eqs. (34) and obtain a single higher-order buckling equation in w� alone. This

single equation is then solved, subject to the appropriate boundary conditions (when

applicable). This approach is used in this discussion for load case I. Equations (34)

may be written as
L1w

� þ L2v
� ¼ 0

L3w
� þ L4v

� ¼ 0
50ð Þ

where Li i ¼ 1, 2, 3ð , and 4) are the following differential operators

L1 ¼ �
R

r

� �2

þ l
d2

du2
� d4

du4

L2 ¼ � lþ R

r

� �2
" #

d

du
þ d3

du3

L3 ¼
R

r

� �2
d

du
� d3

du3

L4 ¼ 1þ R

r

� �2
" #

d2

du2

51ð Þ
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Since these operators are linear, they are commutative

L1L4 ¼ L4L1, L2L4 ¼ L4L2, etc:

By operating with L4 on the first of Eqs. (50), with L2 on the second of Eqs. (50), and

by subtracting the two resulting equations, we have

L1L4 � L3L2ð Þw� ¼ 0 52ð Þ

Substitution of the expressions, Eqs. (51), for the operators yields the following single

buckling equation:

d6w�

du6
þ 2� lð Þ d

4w�

du4
þ 1� lð Þ d

2w�

du2
¼ 0 53ð Þ

If we let the solution to Eq. (53) be of the form egu, we obtain

g2 g4 � l� 2ð Þg2 � l� 1ð Þ
	 


¼ 0 54ð Þ

and the six roots are

g1 ¼ þi
ffiffiffiffiffiffiffiffiffiffiffi
1� l
p

¼ ik

g2 ¼ �i
ffiffiffiffiffiffiffiffiffiffiffi
1� l
p

¼ �ik

g3 ¼ þi

g4 ¼ �i

g5 ¼ g6 ¼ 0

55ð Þ

where

k ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� l
p

and l ¼ 1� k2

From this, the general solution to Eq. (53) is

w� ¼ A1 sin kuþ A2 cos kuþ A3 sin uþ A4 cos uþ A5uþ A6 56ð Þ

Note that l is a negative number because buckling of the ring is possible only when

the uniform radial pressure is compressive and k is the positive square root. Similarly,

if we eliminate w* from Eqs. (50), we obtain a single higher-order equation in v� (the

same as Eq. 53). The solution for v� is

v� ¼ B1 sin kuþ B2 cos kuþ B3 sin uþ B4 cos uþ B5uþ A7 57ð Þ

If we substitute Eqs. (56) and (57) into Eqs. (50), we have

B1 ¼ �
A2

k

k2 þ R=rð Þ2

1þ R=rð Þ2
, B2 ¼

A1

k

k2 þ R=rð Þ2

1þ R=rð Þ2

B3 ¼ �A4, B4 ¼ A3, A5 � 0

B5 ¼ �
R=rð Þ2

1� k2 þ R=rð Þ2
A6

58ð Þ

Next, if we make use of the thin ring assumption, r=Rð Þ2� 1, and if we substitute

Eqs. (58) into Eq. (57), we have

v� ¼ A1

k
cos ku� A2

k
sin kuþ A3 cos u� A4 sin u� A6uþ A7 59ð Þ
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Substitution of Eqs. (56) and (59) into Eqs. (30) yields the following results for the

incremental hoop load, N*, and the incremental bending moment, M*,

N� � 0

M� ¼ EI

R2
1� k2
� �

A1 sin kuþ A2 cos kuð Þ þ A6

	 
 60ð Þ

We obtain the expression for the rotation at any point by substituting Eqs. (56) and

(59) into Eq. (16):

w� ¼ � 1

R

k2 � 1

k
A1 cos ku� A2 sin kuð Þ þ A6u� A7

� �
61ð Þ

Finally, the expression for the radial shear, Q�r , is given by

Q�r ¼ �
1

R

dM�

du
¼ EI

R3
k k2 � 1
� �

A1 cos ku� A2 sin kuð Þ 62ð Þ

7.3.1 THE CIRCULAR RING

For this particular case, the characteristic equation is obtained from requiring

continuity in w�, v�, w�, M�, and Q�r at the ring reference axis. The continuity

equations are:

w� 0ð Þ ¼ w� 2pð Þ
v� 0ð Þ ¼ v� 2pð Þ
w� 0ð Þ ¼ w� 2pð Þ

M� 0ð Þ ¼M� 2pð Þ
Q�r 0ð Þ ¼ Q�r 2pð Þ

63ð Þ

Substitution of Eqs. (56), and Eqs. (59) through (62) into Eqs. (63) gives

A1 sin 2kp þ A2 cos 2kp � 1ð Þ ¼ 0 64ð Þ

A1

1

k
cos 2kp � 1ð Þ � A2

1

k
sin 2kp � A6 2pð Þ ¼ 0 65ð Þ

A1 1� k2
� �

sin 2kp þ A2 1� k2
� �

cos 2kp � 1ð Þ ¼ 0 66ð Þ

k2 � 1

k
A1 cos 2kp � 1ð Þ � A2 sin 2kp½ � þ A6 2pð Þ ¼ 0 67ð Þ

and

A1 cos 2kp � 1ð Þ � A2 sin 2kp ¼ 0 68ð Þ

Note that Eqs. (64) and (66) are dependent. Moreover, Eq. (68) can be obtained from

a linear combination of Eqs. (65) and (67). Thus, Eqs. (65), (66), and (67) comprise a

system of three linear homogeneous algebraic equations in A1, A2, and A6. For a

nontrivial solution to exist, the determinant of the coefficients must vanish.

1

k
cos 2kp � 1ð Þ � 1

k
sin 2kp 2p

1� k2
� �

sin 2kp 1� k2
� �

cos 2kp � 1ð Þ 0

k2 � 1

k
cos 2kp � 1ð Þ � k2 � 1

k
sin 2kp 2p

���������

���������
¼ 0 69ð Þ
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The expansion of this determinant yields

cos 2kp ¼ 1 70ð Þ

Equation (70) is the characteristic equation, and the solution is

2kp ¼ 2np, n ¼ 0, 1, 2, . . . 71ð Þ

From Eq. (71), the critical load parameter, l, corresponds to n ¼ 2 and lcr ¼ �3.

Since kcr ¼ n ¼ 2, then from Eqs. (64) through (67),

A6 ¼ A7 ¼ 0 72ð Þ

In addition, for this value of k, Eq. (68) is satisfied and thus continuity in shear Q�r
does exist. Note that A3 and A4 do not appear in any of the continuity equations.

This is not surprising because the A3 and A4 terms, in the expressions for w* and v�,
denote rigid body translation.

7.3.2 THE PINNED CIRCULAR ARCH

For this particular case, we assume that the ring supports are on rollers and a

membrane state exists (see Fig. 7.2). At the instant of buckling, the pin supports

become immovable. Thus, the boundary conditions for the buckling equations, Eqs.

(34), are

w� �að Þ ¼ w� að Þ ¼ 0

M� �að Þ ¼M� að Þ ¼ 0

v� �að Þ ¼ v� að Þ ¼ 0

73ð Þ

Using Eqs. (56), (59), and (60) in Eqs. (73), we obtain

�A1 sin kaþ A2 cos ka� A3 sin aþ A4 cos aþ A6 ¼ 0 74ð Þ

1� k2
� �

�A1 sin kaþ A2 cos kað Þ þ A6 ¼ 0 75ð Þ

A1

1

k
cos ka� A2

1

k
sin kaþ A3 cos a� A4 sin a� A6aþ A7 ¼ 0 76ð Þ

Addition and subtraction of each pair of equations, Eqs. (74), (75), and (76), yield the

following two sets of linear homogeneous algebraic equations in A1, A3, A7, and

A2, A4, and A6.

A1 sin kaþ A3 sin a ¼ 0

A1 1� k2
� �

sin ka ¼ 0

A1

1

k
cos kaþ A3 cos aþ A7 ¼ 0

77ð Þ

A2 cos kaþ A4 cos aþ A6 ¼ 0

A2 1� k2
� �

cos kaþ A6 ¼ 0

A2

1

k
sin kaþ A4 sin aþ A6a ¼ 0

78ð Þ

Equations (77) correspond to an antisymmetric mode of deformation, w*, while Eqs.

(78) correspond to a symmetric mode, with respect to u ¼ 0.
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Antisymmetric Buckling. From Eqs. (77), we obtain the characteristic equation

sin ka sin a 0

1� k2
� �

sin ka 0 0
1

k
cos ka cos a 1

�������
������� ¼ 0 79ð Þ

The expansion of the determinant gives

sin ka ¼ 0 80ð Þ

and
ka ¼ np, n ¼ 1, 2, 3, . . . 81ð Þ

Thus kcr ¼ p=a and lcr ¼ � p=að Þ2þ1, as expected. Note that A3 ¼ A7 ¼ 0 for this

case.

Symmetric Buckling. The characteristic equation for symmetric buckling is obtained

from Eqs. (78):

cos ka cos a 1

1� k2
� �

cos ka 0 1
1

k
sin ka sin a a

�������
������� ¼ 0 82ð Þ

The expansion of the determinant yields

tan ka ¼ kað Þ3 tan a� a

a3
þ kað Þ 83ð Þ

The corresponding expression for w� is given by

w� ¼ A2 cos ku� k2 cos ka

cos a
cos uþ k2 � 1

� �
cos ka

� �
84ð Þ

Evaluation of the roots of Eq. (83) reveals that jlcrj for symmetric buckling is

always greater than jlcrj for antisymmetric buckling. For � less than �=2 it is greater

by a factor of 2.25.

7.3.3 THE CLAMPED ARCH

Following the same line of thinking as in the pinned arch case, we find that the

boundary conditions for this case are

w� �að Þ ¼ w� að Þ ¼ 0

w� �að Þ ¼ w� að Þ ¼ 0

v� �að Þ ¼ v� að Þ ¼ 0

85ð Þ

Use of Eqs. (56), (59), and (61) in Eqs. (85) yields

�A1 sin kaþ A2 cos ka� A3 sin aþ A4 cos aþ A6 ¼ 0 86ð Þ

k2 � 1

k
A1 cos ka� A2 sin kað Þ � A6a� A7 ¼ 0 87ð Þ

A1

1

k
cos ka� A2

1

k
sin kaþ A3 cos a� A4 sin a� A6aþ A7 ¼ 0 88ð Þ
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Following the same steps as in the case of the pinned arch we have:

Antisymmetric Buckling.

A1 sin kaþ A3 sin a ¼ 0

A1

k2 � 1

k
cos ka� A7 ¼ 0

A1

1

k
cos kaþ A3 cos aþ A7 ¼ 0

89ð Þ

From Eqs. (89) the characteristic equation is

sin ka sin a 0

k2 � 1

k
cos ka 0 �1

1

k
cos ka cos a 1

����������

����������
¼ 0 90ð Þ

The expansion of the determinants yields

k tan a cot ka ¼ 1 91ð Þ

This equation is identical with Eq. (49).

Symmetric Buckling.

A2 cos kaþ A4 cos aþ A6 ¼ 0

A2

k2 � 1

k
sin ka� A6a ¼ 0

A2

1

k
sin kaþ A4 sin aþ A6a ¼ 0

92ð Þ

The characteristic equation is

cos ka cos a 1

k2 � 1

k
sin ka 0 �a

1

k
sin ka sin a a

����������

����������
¼ 0 93ð Þ

which yields

cot ka ¼ ka

a

1

tan a
� 1

a

� �
þ 1

ka
94ð Þ

Note that, when a ¼ p, both Eqs. (91) and (94) yield kcr ¼ 2 and therefore lcr ¼ �3.

When a is less than p, jlcrj for symmetric buckling is always greater than jlcrj for

antisymmetric buckling. For a < �, it is greater by a factor 1.6.

7.4 shallow arches

Shallow arches have been used widely as structural elements. One important

response of such elements when loaded transversely (see Fig. 7.3) is snapthrough

buckling or oil-canning. This buckling phenomenon is characterized by a visible and

sudden jump from one equilibrium configuration to another for which displacements

are distinctly larger than the first. The significance of snapthrough buckling, insofar
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as it illustrates certain important features in more complicated buckling problems of

plates and shells, was pointed out by Marguerre (1938), who constructed a simplified

mechanical model to demonstrate these features. Timoshenko (1935) obtained an

approximate solution to the problem of a low arch under a uniformly distributed

transverse load. Biezeno (1938) considered the problem of a low arch loaded trans-

versely at the midpoint with a concentrated load. According to Timoshenko (1961),

this problem was first discussed by Navier (1833). Fung and Kaplan (1952) investi-

gated the problem of pinned low arches of various initial shapes (parabolic, half-sine,

circular, etc.), and spatial distributions of the lateral load. They also considered the

effect of prestress on the critical value of the load. About the same time, Hoff and

Bruce (1954) presented results for the pinned half-sine low arch under a half-sine

distributed load, as a special case of their dynamic analysis of the buckling of

laterally loaded low arches. The results of these two analyses show that a very

shallow arch snaps through symmetrically (limit point instability), whereas a higher

shallow arch snaps through asymmetrically (unstable bifurcation).

Gjelsvik and Bodner (1962) obtained an approximate solution to the problem of a

clamped low circular arch with a concentrated lateral load at the midpoint. Schreyer

figure 7.3 The shallow arch: geometry and sign convention.
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and Masur (1966) obtained an exact solution to this problem (and to the case of

uniform pressure), and they showed that for the concentrated load case, the arch

snaps-through symmetrically regardless of the value of the rise parameter. Masur and

Lo (1972) presented a general discussion of the behavior of the shallow circular arch

regarding buckling, post-buckling and imperfection sensitivity. The effects of inelas-

tic material behavior have been considered by Franciosi, Augusti and Sparacio

(1964), by Lee and Murphy (1968), and by Onat and Shu (1962). Experimental

results have been reported in Fung and Kaplan (1952), and by Roorda (1965).

Finally, snapping of low pinned arches resting on an elastic foundation has been

investigated by Simitses (1973). This work is presented in a later section because it

provides an interesting model for stability studies. This model exhibits all forms of

experimentally observed buckling phenomena.

7.4.1 MATHEMATICAL FORMULATION

The equilibrium equations and proper boundary conditions will be derived first.

Consider a slender arch of small initial curvature. We assume that all of the assump-

tions of slender beams are satisfied except that we now have initial shape, such that

material points on the undeformed midline (midplane) are characterized by w0 xð Þ (see
Fig. 7.3). Let u(x) and w(x) denote the location of material points on the deformed

midline. On the basis of these assumptions, the strain at any material point is given by

« ¼ «0 þ zk 95ð Þ

where «0 and k denote the reference-plane extensional strain and change in curvature,

respectively. The appropriate kinematic relations are derived by reference to Fig. 7.3.

Let D and D� denote the undeformed and deformed positions of a material point of

the reference line [intersection of the plane of symmetry, x-z, with the reference plane

(neutral surface)]. The coordinates of D and D� are x, w0ð Þ and xþ u xð Þ, w½ �,
respectively. If ds and dsð Þ� denote the undeformed and deformed lengths of elements

on the reference line, then for small strains, the reference plane extensional strain, «0,

is given by

«0 ¼ 1

2

ds�ð Þ2� dsð Þ2

dsð Þ2
96ð Þ

Since

ds�ð Þ2 ¼ dxþ duð Þ2þ dwð Þ2

dsð Þ2 ¼ dxð Þ2þ dw0ð Þ2
97ð Þ

then

«0 ¼ du

dx
þ 1

2

dw

dx

� �2

� 1

2

dw0

dx

� �2

98ð Þ

The expression in Eq. (98) is based on the assumption that dw0=dxð Þ2� 1 and

du=dx� 1.

In addition, for small initial curvature and for dw=dxð Þ2� 1, the expression for the

change in curvature, k, is given by

k ¼ dw

dx
¼ � d2w

dx2
� d2w0

dx2

� �
99ð Þ
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Assuming that the behavior of the material is linearly elastic and denoting by P and

M the axial force and bending moment, respectively, we have

P ¼ EA«0

M� ¼ EIk
100ð Þ

where A is the cross-sectional area and I is the second moment of this area about the

neutral axis.

We obtain the equilibrium equations by making use of the principle of the station-

ary value of the total potential. The total potential consists of the sum of the energy

stored in the system and the potential of the external forces. The energy stored in the

system is the sum of the stretching strain energy, bending strain energy, and energy

stored into the foundation. If we let U�m, U�b , and U�f denote the linear stretching,

bending, and foundation energy densities, we can write the following expressions

U�m ¼
1

2
EA «0
� �2¼ P2

2EA

U�b ¼
1

2
EIk2 ¼M�2

2EI

U�f ¼
1

2
b w� w0ð Þ2

101ð Þ

where b is the modulus of the foundation (same as in Chapter 6). The potential of the

external forces, U�PT , includes the contributions of the distributed load Q� xð Þ, the

concentrated loads F�, R
�
, and P, and the couples M

�
.

U�PT ¼�
Z L

0

Q� þ F �d� x� xð Þ½ � w� w0ð Þdx

� R
�

w� w0ð Þ
	 
L

0
þ M

�
w

	 
L
0
� Pu
	 
L

0

102ð Þ

where d� x� xð Þ is the Dirac-delta function.

Since Eqs. (101) denote linear densities, the total potential is obtained through

integration of these expressions, over the entire length, and added to U�PT , Eq. (102).

U�T ¼
Z L

0

P2

2EA
þM�2

2EI
þ 1

2
b w� w0ð Þ2� Q� þ F �d� x� xð Þ½ � w� w0ð Þ


 �
dx

� R
�

w� w0ð Þ
	 
L

0
þ M

�
w

	 
L
0
� Pu
	 
L

0
103ð Þ

Before we proceed with the derivation of the equilibrium equations and the proper

boundary conditions, it is convenient to express all of the parameters in a nondimen-

sional form. We do this by introducing the following parameters:

j ¼ px

L
, h jð Þ ¼ w xð Þ

r
, v jð Þ ¼ u xð Þ

r
, d� x� xð Þ ¼ rd j � j

� �
q jð Þ ¼ rQ� xð Þ

PE«E

, b ¼ bL4

p4EI
, F ¼ F�

PE«E

R ¼ R
�

PE«E

, p ¼ P

PE

, M ¼ M�

rPE

, UT ¼
4U�T

PE«EL
, ð Þ0¼ d

dj

104ð Þ

where

r2 ¼ I

A
, PE ¼

p2EI

L2
, and «E ¼

pr

L

� �2
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Note that r is the radius of gyration for the cross-sectional area, PE is the Euler load

for a pinned column of length L, and «E is the corresponding Euler strain.

With these new nondimensionalized parameters, Eqs. (100), (101), and (102)

become

P ¼ PE

2
2

v0ffiffiffiffiffiffi
«E

p þ h0ð Þ2� h00
� �2� �

M� ¼ �rPE h00 � h000
� � 105ð Þ

U�m ¼
PE«E

8
2

v0ffiffiffiffiffiffi
«E

p þ h0ð Þ2� h00
� �2� �

U�b ¼
PE«E

2
h00 � h0

00ð Þ2

U�f ¼
PE«E

2
b h� h0ð Þ2

106ð Þ

UPT ¼�
1

p

Z p

0

4qþ 4Fd j � j
� �	 


h� h0ð Þdj � 1

p
R h� h0ð Þ
	 
p

0
4
ffiffiffiffiffiffi
«E

p� �
� 4

p
M h0 � h00
� �	 
p

0
� 1

p

4ffiffiffiffiffiffi
«E

p
� �

pv½ �p0
107ð Þ

Finally, the nondimensionalized total potential, Eq. (103), becomes

UT ¼
4U�T

PE«EL
¼ 1

p

Z p

0

1

2
2

v0ffiffiffiffiffiffi
«E

p þ h0ð Þ2� h00
� �2� �2

þ 2 h00 � h000
� �2(

þ 2b h� h0ð Þ2�4q h� h0ð Þ � 4Fd j � j
� �

h� h0ð Þ
)

dj

� 1

p
R h� h0ð Þ
	 
p

0
4
ffiffiffiffiffiffi
«E

p� �
þ 4 M h0 � h00

� �	 
p
0
þ 4ffiffiffiffiffiffi

«E

p pv½ �p0

 �

108ð Þ

According to the principle of the stationary value of the total potential, the

first variation of the total potential must be zero for equilibrium. To accomplish

this, we express the functional UT in terms of v jð Þ þ «1z jð Þ and h jð Þ þ «2g jð Þ,
where z jð Þ and g jð Þ are admissible functions of j, and «1 and «2 are small arbi-

trary constants. Thus «1z and «2g denote the variations in v and h, respectively (dv

and dh).

UT vþ «1z, hþ «2g½ � ¼ 1

p

Z p

0

(
1

2
2

v0 þ «1z0ffiffiffiffiffiffi
«E

p þ h0 þ «2g0ð Þ2� h00
� �2� �2

þ2 h00 þ «2g00 � h000
� �2þ2b hþ «2g � h0ð Þ2�4q hþ «2g � h0ð Þ

� 4Fd j � jð Þ hþ «2g � h0ð Þ
)

dj � 1

p
4
ffiffiffiffiffiffi
«E

p� �
R hþ «2g � h0ð Þ
	 
p

0

� 4

p
M h0 þ «2g0 � h00
� �	 
p

0
� 1

p

4ffiffiffiffiffiffi
«E

p
� �

p vþ «1zð Þ½ �p0 109ð Þ

SIMITSES - Title 0750678755_ch07 Final Proof page 204 8.11.2005 9:30pm

204 Buckling of Rings and Arches



If we perform the operations indicated in the integrand and group terms according to

the powers in «1 and «2, we recognize that the terms that do not contain «’s denote

UT v, h½ � and thus

UT vþ «1z, hþ «2g½ � ¼ UT v, h½ � þ 1

p

**
«1ffiffiffiffiffiffi
«E

p
Z p

0

2 2
v0ffiffiffiffiffiffi
«E

p þ h0ð Þ2� h00
� �2� �++

z0dj

� «1ffiffiffiffiffiffi
«E

p 4pz½ �p0þ«2

Z p

0

2
2v0ffiffiffiffiffiffi
«E

p þ h0ð Þ2� h00
� �2� �

h0g0 þ 4 h00 � h0
00ð Þg00




þ 4b h� h0ð Þg � 4qg � 4Fd j � j
� �

g

)
dj � «2 4

ffiffiffiffiffiffi
«E

p
Rg

	 
p
0
�«2 4Mg0

	 
p
0

þ 1

p
«2

1

Z p

0

2

«E

z0ð Þ2dj þ «1«2

Z p

0

4ffiffiffiffiffiffi
«E

p h0g0dj




þ «2
2

Z p

0

2 h0ð Þ2 g0ð Þ2þ 2v0ffiffiffiffiffiffi
«E

p þ h0ð Þ2� h00
� �2� �

g0ð Þ2þ2 g00ð Þ2þ2bg2


 �
dj

�

þ 1

p

«1«2
2ffiffiffiffiffiffi

«E

p
Z p

0

2z0 g0ð Þ2dj þ 2«3
2

Z p

0

h0ð Þ g0ð Þ3dj

� �
þ «2

4

2p

Z p

0

g0ð Þ4dj

110ð Þ
From Eqs. (105), the first variation becomes

d1UT ¼
1

p

**
4«1ffiffiffiffiffiffi

«E

p
Z p

0

pz0dj � pzð Þjp0
� �

þ 4«2

Z p

0

ph0g0 þ h00 � h000
� �

g00 þ b h� h0ð Þg � qg
	


�Fd j � j
� �

g


dj �

ffiffiffiffiffiffi
«E

p
Rg

	 
p
0
� Mg0
	 
p

0

�++
111ð Þ

By setting the first variation equal to zero, we obtainZ p

0

pz0dj � pz½ �p0¼ 0

Z p

0

ph0g0 þ h00 � h000
� �

g00 þ b h� h0ð Þg � qg � Fd j � j
� �

g
	 


dj

�
ffiffiffiffiffiffi
«E

p
Rg

	 
p
0
� Mg0
	 
p

0
¼ 0

112ð Þ

Integration by parts yields the following form for Eqs. (112)

�
Z p

0

p0z dj þ p� pð Þz½ �p0¼ 0

Z p

0

� ph0ð Þ0þ h00 � h000
� �00þb h� h0ð Þ � q� Fd j � j

� �h i
g dj

þ ph0 � h00 � h000
� �0� ffiffiffiffiffiffi

«E

p
R

h i
g

n o��p
0
þ h00 � h000

� �
�M

	 

g0

� ���p
0
¼ 0

113ð Þ

Through the fundamental lemma of the calculus of variations, we obtain from

Eqs. (113) equilibrium equations and boundary conditions.
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Equilibrium Equations.

p0 ¼ 0 114ð Þ

h00 � h000
� �00� ph0ð Þ0þb h� h0ð Þ � q� Fd j � j

� �
¼ 0 115ð Þ

Boundary Conditions.

Either kinematicð Þ Or Naturalð Þ
«1z ¼ dv ¼ 0 p ¼ �p

«2g0 ¼ dhð Þ0 ¼ 0 h00 � h000 ¼M

«2g ¼ dh ¼ 0 � h00 � h000
� �0þph0 ¼

ffiffiffiffiffiffi
«E

p
R

116ð Þ

Note that, if the supports are immovable, then dv ¼ 0 or v 0ð Þ ¼ v pð Þ ¼ 0. Further-

more, if the immovable supports are pinned, dh ¼ 0 or h 0ð Þ ¼ h pð Þ ¼ 0,

h00 0ð Þ ¼ h000 0ð Þ and h00 pð Þ ¼ h000 pð Þ. Finally, if the immovable supports are clamped

h 0ð Þ ¼ h pð Þ ¼ 0, and h0 0ð Þ ¼ h00 0ð Þ and h0 pð Þ ¼ h00 pð Þ.
When the supports are immovable, the expression for p, Eqs. (105), after an

integration over the length, becomesZ p

0

p dj ¼ 1

2

Z p

0

2v0ffiffiffiffiffiffi
«E

p þ h0ð Þ2� h00
� �2� �

dj

and

p ¼ 1

2p

Z p

0

h0ð Þ2� h00
� �2h i

dj 117ð Þ

Note that this expression uses the fact that p jð Þ ¼ constant, according to the first of

the equilibrium equations, Eqs. (114). With this, we may express the total potential,

Eq. (108), solely in terms of h and its space-dependent derivatives. The boundary

terms vanish for supported ends (either pinned or clamped).

UT ¼
1

p

Z p

0

1

2p2

Z p

0

h0ð Þ2� h00
� �2h i

dj

� �2

þ 2 h00 � h0
00ð Þ2

(

þ 2b h� h0ð Þ2�4q h� h0ð Þ � Fd j � j
� �

h� h0ð Þ
)

dj

118ð Þ

7.5 the sinusoidal pinned arch

The problem to be considered here is a low half-sine pinned arch loaded quasi-

statically by a half-sine spatially distributed load. The initial shape is given by

h0 ¼ e sin j 0 # j # p 119ð Þ

where e is the initial rise parameter. Since w0ð Þmax¼ re, then e ¼ w0ð Þ max=r, and if the

cross section is rectangular of width l and thickness h, then r ¼ h=2
ffiffiffi
3
p

and
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e ¼ 2
ffiffiffi
3
p

w0ð Þmax=h, which clearly shows that e is a measure of the ratio of the initial

maximum rise to the thickness of the arch. The expression for the loading is given by

q jð Þ ¼ q1 sin j 120ð Þ

The deflection may be represented by an infinite sine series, each term of which

satisfies the boundary conditions

h jð Þ ¼ h0 jð Þ þ
X1
n¼1

an sin nj 121ð Þ

Boundary conditions:

h 0ð Þ ¼ h pð Þ ¼ 0, h00 0ð Þ ¼ h00 pð Þ ¼ 0 122ð Þ

Substitution of Eq. (121) into the expression for the total potential, Eq. (118), yields

UT ¼
1

8

X1
n¼1

n2a2
n þ 2ea1

 !2

þ
X1
n¼1

n4a2
n � 2q1a1 þ b

X1
n¼1

a2
n 123ð Þ

We are interested in finding, for the entire range of the free parameters b and e, the

load at which instability (snapthrough or bifurcation buckling) is possible. This load

is called critical load. We find it by first writing the equilibrium equations and then

studying the character of these static equilibrium positions (stability in the small).

To find the static equilibrium positions, we use the principle of the stationary

value of the total potential, or

@UT

@ak

¼ 0 k ¼ 1, 2, 3, . . . 124ð Þ

This leads to

1

4

X1
n¼1

n2a2
n þ 2ea1

 !
a1 þ eð Þ þ a1 þ ba1 ¼ q1

1

4

X1
n¼1

n2a2
n þ 2ea1

 !
k2ak þ k4ak þ bak ¼ 0, k ¼ 2, 3, 4, . . .

125ð Þ

There are three possible cases that result from Eqs. (125)

Case I: a1 6¼ 0 and ak � 0 for k ¼ 2, 3, 4, . . .

Case II: a1 6¼ 0, am 6¼ 0, and ak � 0 for k ¼ 2, 3, 4, . . . , except m ¼ k.

Case III: When b ¼ m2j2, then it is possible that a1 6¼ 0, am 6¼ 0, aj 6¼ 0, and

ak � 0 for k ¼ 2, 3, 4, . . . , except k ¼ j and m.

Case III will be treated separately. For the first two cases, a more convenient form

of the equilibrium equations may be obtained if we introduce the following new

parameters:

r1 ¼ a1 þ e, Q ¼ q1 þ 1þ bð Þe 126ð Þ

With these new parameters, the equilibrium equations are

1

4
r2
1 � e2 þ k2a2

k þ 4 1þ bð Þ
	 


r1 ¼ Q

k2

4
r2
1 � e2 þ k2a2

k

� �
þ k4 þ b
� �� �

ak ¼ 0

127ð Þ
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We see from the equilibrium equations, Eqs. (127), that there are two possibilities:

(1) r1 6¼ 0 and ak � 0, and (2) r1 6¼ 0 and ak 6¼ 0. All the possible positions of static

equilibrium are shown in Fig. 7.4. Note that the starting (undeformed) position is A

(see Fig. 7.5), and the possibility of the existence of the ak-mode is present for

e2 > 4 k4 þ b
� �

=k2.

1. If ak � 0 then, from Eqs. (127), the equilibrium equation which also represents the

load-deflection curve is

r3
1 � e2 � 4 1þ bð Þ

	 

r1 ¼ 4Q 128ð Þ

We see from Eq. (128) that, for e # 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ b
p

, there is a one-to-one Q-to-r1 dependence,

and there is no possibility of a snapthrough phenomenon. For e > 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ b
p

, since there

is a range of Q values for which there are three equilibrium positions for the same Q

value, the possibility for a snapthrough phenomenon exists (see Fig. 7.5). It will be

shown that for this case the near and far static equilibrium positions are stable and the

figure 7.4 Positions of static equilibrium in the (r1, ak)-space.

figure 7.5 Load-deflection graph for symmetric buckling [e > 2(1þ b)1=2].
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intermediate one is unstable. When the near static equilibrium position becomes

unstable in the small, snapping occurs and the corresponding load is a critical one.

2. If e2 > 4 k4 þ b
� �

=k2, then it is possible for ak 6¼ 0, and the load-displacement

relation is given by the following set of equations in addition to Eq. (128):

r1

k2 � 1

k2
b� k2
� �

¼ Q 129ð Þ

a2
k ¼

1

k2
e2 � 4

k2
k4 þ b
� �

� Q2k4

k� 1ð Þ2 b� k2ð Þ2

" #
130ð Þ

Thus we see from Eqs. (128), (129), and (130) that the load-displacement relation for

the entire range of initial rise parameter values and all possible cases of its relation to

the values of k and the modulus of the foundation may be represented by the six

graphs of Fig. 7.6.

Critical load shall be defined as the smallest load for which the near static

equilibrium position becomes unstable (in the small).

The necessary and sufficient condition for stability (in the small) of the static

equilibrium positions given by the roots of Eqs. (128), (129), and (130) is that

@2UT

@r2
1

> 0,
@2UT

@r2
1

: @
2UT

@a2
k

>
@2UT

@r1@ak

� �2

131ð Þ

The expression for UT obtained by substitution of expressions (126) into Eq. (123) is

given by

figure 7.6 Typical load-deflection (equilibrium) curves.
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UT ¼
1

8
r2
1 � e2 þ k2a2

k

� �2� 1þ bð Þ e2 � r2
1

� �
þ 2Q e� r1ð Þ þ k4 þ b

� �
a2

k 132ð Þ

From Eq. (132), we obtain the following expressions for the second derivatives

@2UT

@r2
1

¼ 1

2
3r2

1 � e2 þ k2a2
k þ 4 1þ bð Þ

	 

,

@2UT

@r1@ak

¼ k2r1ak

@2UT

@a2
k

¼ 1

2
r2
1 � e2 þ 3k2a2

k

	 

k2 þ 2 k4 þ b

� � 133ð Þ

figure 7.6 Cont’d.
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First, we investigate the stability of the equilibrium positions that are character-

ized by the ellipse (see Fig. 7.4). These positions are shown in Figs. 7.6b (AA0), 7.6e

(DD0), and 7.6f (EE0). Making use of the equilibrium equations, the necessary and

sufficient conditions for stability, inequalities (131), become

r2
1 þ 2

k2 � 1

k2
b� k2
� �

> 0, k4a2
k 2

k2 � 1

k2
b� k2
� �� �

> 0 134ð Þ

We see from these inequalities that, if b > k2, the ellipse equilibrium positions are

stable positions. The test fails only for the ak ¼ 0 positions of the ellipse, but it can

figure 7.6 Cont’d.
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easily be shown from the consideration of the third and fourth variations that these

two positions are stable.

For the case of b > k2, we see that at point A of Fig. 7.6b and point C of Fig. 7.6d

there is a possibility of stable bifurcation, (classical buckling—paths AA0, Fig. 7.6b,

and CC0, Fig. 7.6d). When this happens, the primary state equilibrium position

becomes unstable past the bifurcation point (COB of Fig. 7.6d) because the second

of Eqs. (131) is not satisfied.

Case III: The existence of a three-mode equilibrium shape.

A three-mode equilibrium position is possible only for b ¼ n2k2 where n and k are

differing integers greater than 2. For these distinct values of b, the equilibrium

equations, Eq. (125), become

r2
1 � e2 þ k2a2

k þ n2a2
n

� �
þ 4 1þ n2k2
� �	 


r1 ¼ 4Q

k2 r2
1 � e2 þ k2a2

k þ n2a2
n

� �
þ 4 k4 þ n2k2
� �	 


ak ¼ 0

n2 r2
1 � e2 þ k2a2

k þ n2a2
n

� �
þ 4 n4 þ n2k2
� �	 


an ¼ 0

135ð Þ

All the possible static equilibrium positions are plotted in Fig. 7.7. Note that the

starting point is characterized by r1 ¼ e, and the possibility of the existence of all

three modes is realized when r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 4 n2 þ k2ð Þ

p
with the additional condition

that e > 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ n2
p

.

A typical load-deflection Q� r1ð Þ plot is shown in Fig. 7.8. The initial (unloaded)

position is denoted by point A. As the system is loaded, position B (bifurcation point)

is reached, and the system may follow either path BC (Eq. 128) or path BOB0.

figure 7.6 Cont’d.
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which is characterized by

Q ¼ 1þ n2k2
� �

� n2 þ k2
� �	 


r1 136ð Þ

Note that, since n2k2 > n2 þ k2, the slope of the BOB0 curve is positive as shown in

Fig. 7.8.

It is shown next that the equilibrium positions on the ellipsoid (Fig. 7.7) are stable,

and therefore points on BB0 (Fig. 7.8) are stable equilibrium positions. Finally, since

path BC becomes unstable, classical buckling takes place. Therefore, there is no

possibility of a snapping phenomenon for this case.

The total potential for this case is

UT ¼
1

8
r2
1 � e2 þ k2a2

k þ n2a2
n

� �2� 1þ n2k2
� �

e2 � r2
1

� �
þ2Q e� r1ð Þ þ n2 þ k2

� �
k2a2

k þ n2a2
n

� � 137ð Þ

The necessary and sufficient condition for stability of the equilibrium positions on

the ellipsoid is that the following determinant and all its principal minors (dashed

lines) be positive definite

∂ 
2UT

∂ r2 
1

∂ 
2UT

∂ r1∂ a1

∂ 
2UT

∂ r1∂ an

∂ 
2UT

∂ ak∂ a2

∂ 
2UT

∂a2 
n

∂ 
2UT

∂ r1∂ an

∂2UT
∂ ak∂ an

∂ 
2UT

∂a2 
k

∂ 
2UT

∂ r1∂ ak

> 0 ð138Þ

Use of the expression for the total potential and the equilibrium equations leads to

the fact that the principal minors are positive definite, but the determinant is

identically equal to zero; therefore the test fails.

Checking the higher variations, we can show that d3UT � 0 and d4UT (fourth

variation) is positive definite because all of the fourth-order derivatives are zero except

figure 7.7
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@4UT

@r4
1

¼ 3,
@4UT

@r2
1@a

2
k

¼ k2,
@4UT

@r2
1@a

2
n

¼ n2,

@4UT

@a4
k

¼ 3k4,
@4UT

@a4
n

¼ 3n2

139ð Þ

Because of this, the equilibrium positions on the ellipsoid are stable, and path BB0

(Fig. 7.8) is a stable path. Finally, the primary path, BC, becomes unstable and the

model exhibits classical buckling (adjacent equilibrium) at point B.

7.5.1 CRITICAL LOADS

Note from Eqs. (134) that if b $ k2, k ¼ 2, 3, . . . , there is no possibility of

snapping but there is bifurcation buckling. Therefore, we must consider the following

two ranges for b values separately.

Range 1, b < 4. Snapping is possible and the following cases must be distinguished:

1. If 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ b
p

< e <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ b
p

(see Fig. 7.6c), then the system will reach point B and

snap through in an a1-only mode. The critical load for this case is obtained from Eq.

(128) with r1 ¼ e2 � 4 1þ bð Þ
	 
1=2

=31=2

Qcr ¼ �
1

2

e2 � 4 1þ bð Þ
3

� � 1
2

q1cr ¼ � 1þ bð Þe� 1

2

e2 � 4 1þ bð Þ
3

� � 1
2

140ð Þ

2. If 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ b
p

<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ b
p

< e <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22� b=2

p
, then, although an unstable bifurcation

through mode a2 is possible, the system will snap initially through an a1-mode,

because during the loading process point B will be reached before point D (see

Fig. 7.6e). In this case, the critical load is still given by Eq. (140).

3. If e >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22� b=2

p
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ b
p

> 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ b
p

, then snapping will take place through

an a2-mode (point E of Fig. 7.6f ), and the critical load is given by Eq. (129) with r1

equal to the value corresponding at the bifurcation point or

figure 7.8 Typical load-deflection curves for the three-mode case.

SIMITSES - Title 0750678755_ch07 Final Proof page 214 8.11.2005 9:30pm

214 Buckling of Rings and Arches



q1cr
¼ � 1þ bð Þe� 3 1� b

4

� �
e2 � 16þ bð Þ
	 
1

2 141ð Þ

Range 2, b $ 4. Stable bifurcational buckling takes place and the load at the

bifurcation point is given by (the subscript cl.B. means classical buckling)

Qc1:B: ¼
k2 � 1

k2
b� k2
� �

e2 � 4

k2
k4 þ b
� �� �1

2

142ð Þ

We see from this expression that the smallest bifurcation load and the corresponding

mode of deformation depend on the value of the modulus of foundation, b.

For 4 # b # 36, k ¼ 2 and Qc1:B: ¼
3

4
b� 4ð Þ e2 � 18þ bð Þ

	 
1
2

For 36 # b # 144, k ¼ 3 and Qc1:B: ¼
8

9
b� 9ð Þ e2 � 4

9
81þ bð Þ

� �1
2

For 144 # b # 400, k ¼ 4 and Qc1:B: ¼
15

16
b� 16ð Þ e2 � 1

4
256þ bð Þ

� �1
2

Note that at b ¼ k2 kþ 1ð Þ2, bifurcation occurs either through an ak-mode or

through an akþ1-mode or a combination of ak- and akþ1-modes (the three-mode case).

Numerical results are presented graphically in Figs. 7.9 and 7.10. For b ¼ 0, the

results reduce to those reported in Fung and Kaplan (1952) and Hoff and Bruce

(1954). For b ¼ 2, if e #
ffiffiffiffiffi
12
p

, there is no possibility of snapthrough. Ifffiffiffiffiffi
12
p

< e <
ffiffiffiffiffi
21
p

, the critical load is given by

q1cr ¼ �3e� 1

2

e2 � 12

3

� �3
2

and snapping occurs through a limit point instability (top-of-the-knee). If e >
ffiffiffiffiffi
21
p

the critical load is given by

q1cr ¼ �3e� 9

4
e2 � 18
� �1

2

and snapping takes place through an unstable bifurcation. These results are shown in

Fig. 7.9 as �qcrð Þ versus the initial rise parameter.

For b > 4 the results are presented in Fig. 7.10 as classical buckling load versus the

initial rise parameter. Note that when b ¼ 36, the stable branch is characterized by the

a2-mode alone or a3-mode alone, or a combined a2-, a3-mode. This phenomenon is

similar to the pinned straight column on an elastic foundation. When b ¼ k2 k2 þ 1
� �

,

the column can buckle in either k or kþ 1 half-sine waves (see Fig. 6.3).

7.6 the low arch by the trefftz criterion

According to the Trefftz criterion, we must set the first variation of the second

variation of the total potential equal to zero at the critical condition. In order to have

a convenient expression for the second variation, we shall use one of the conditions

for equilibrium or p ¼ constant, Eq. (114). Through Eqs. (105), (114), and (117)

2v0

«
1=2
E

þ h0ð Þ2� h00
� �2¼ 1

p

Z p

0

h0ð Þ2� h00
� �2h i

dj 143ð Þ
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If we take the variations of both sides, we have

p
2v0

«
1=2
E

þ 2«1

z0

«
1=2
E

þ h0ð Þ2� h00
� �2þ2«2h0g0 þ «2

2 g0ð Þ2
" #

¼
Z p

0

h0ð Þ2� h00
� �2h i

dj þ
Z p

0

2«2h0g0 þ «2
2 g0ð Þ2

h i
dj 144ð Þ

Now, making use of Eq. (143), we obtain

p 2«1

z0

«
1=2
E

þ 2«2h0g0 þ «2
2 g0ð Þ2

" #
¼
Z p

0

2«2h0g0 þ «2
2 g0ð Þ2

h i
dj 145ð Þ

figure 7.9 Snapthrough critical load, (�qcr), versus initial rise parameter, e(b < 4).
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Squaring both sides and integrating over p does not violate the validity of Eq. (145).

ThusZ p

0

«1

z0ffiffiffiffiffiffi
«E

p þ «2h0g0 þ 1

2
«2

2 g0ð Þ2
� �2

dj ¼ 1

4p

Z p

0

2«2h0g0 þ «2
2 g0ð Þ2

h i
dj


 �2

146ð Þ

Next we return to Eq. (110) which can be written as

figure 7.10 Classical buckling load, (�qcl:B), versus initial rise parameter, e (b $ 4).
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DUT ¼ d1UT þ
1

p

Z p

0

2
«2

1

«E

z0ð Þ2þ2
«1«2ffiffiffiffiffiffi

«E

p h0z0g0 þ «2
2 h0ð Þ2 g0ð Þ2

�


þ «1«2
2ffiffiffiffiffiffi

«E

p g0ð Þ2z0 þ «3
2h0 g0ð Þ3þ 1

4
«4

2 g0ð Þ4
�
þ 2p«2

2 g0ð Þ2þ2«2
2 g00ð Þ2þ2b«2

2g2

�
dj

147ð Þ

Rearranging the terms of the integrand on the right-hand side, we obtain

DUT ¼ d1UT þ
1

p

Z p

0

2 «1

z0ffiffiffiffiffiffi
«E

p þ«2h0g0 þ1

2
«2 g0ð Þ2

� �2

þ 2p«2
2 g0ð Þ2þ2«2

2 g00ð Þ2þ2b«2
2g2

( )
dj

148ð Þ

Use of Eq. (146) for the first term in the integrand results in the following form for

Eq. (148):

DUT ¼ d1UT þ
1

2p2

Z p

0

2«2h0g0 þ «2
2 g0ð Þ2

h i
dj


 �2

þ 2«2
2

p

Z p

0

p g0ð Þ2þ g00ð Þ2þbg2
h i

dj

149ð Þ

Performing the indicated operations and grouping terms on the right-hand side

according to powers of «2, we have

DUT ¼ d1UT þ
2«2

2

p

Z p

0

1

p

Z p

0

h0g0dj

� �
h0g0 þ p g0ð Þ2þ g00ð Þ2þbg2

� �
dj

þ 2«3
2

p

Z p

0

h0g0dj

Z p

0

g0ð Þ2dj þ «4
2

2p

Z p

0

g0ð Þ2dj

� �2
150ð Þ

From Eq. (150), it is clear that

d2UT ¼
2«2

2

p

Z p

0

1

p

Z p

0

h0g0dj

� �
h0g0 þ p g0ð Þ2þ g00ð Þ2þb gð Þ2

� �
dj 151ð Þ

Next, let p=2«2
2

� �
d2UT ¼ V g½ � and find the first variation. Let u jð Þ be a kinemat-

ically admissible function of j (same as g) and «3 be a small constant; then

V g þ «3u½ � ¼
Z p

0

1

p

Z p

0

h0 g0 þ «3u0ð Þdj

� �
h0 g0 þ «3u0ð Þ

�

þ p g0 þ «3u0ð Þ2þ g00 þ «3u00ð Þ2þb g þ «3uð Þ2
�
dj

152ð Þ

Performing the indicated operations and grouping terms according to powers of «3,

we have

V gþ «3u½ � ¼
Z p

0

1

p

Z p

0

h0g0dj

� �
h0g0 þ p g0ð Þ2þ g00ð Þ2þbg2

� �
dj

þ «3

Z p

0

1

p

Z p

0

h0u0dj

� �
h0g0 þ 1

p

Z p

0

h0g0dj

� �
h0u0 þ 2pg0u0 þ 2g00u00 þ 2bgu

� �
dj

þ «2
3

Z p

0

1

p

Z p

0

h0u0dj

� �
h0u0 þ p u0ð Þ2þ u00ð Þ2þbu2

� �
dj

153ð Þ
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It is clear from Eq. (153) that the first variation in V, which must vanish, is given by

d1V ¼ 2«3

Z p

0

1

p

Z p

0

h0g0dj

� �
h0u0 þ pg0u0 þ g00u00 þ bgu

� �
dj ¼ 0 154ð Þ

Integration by parts yields

�g000 þ pg0 þ 1

p

Z p

0

h0g0dj


 �
h0

� �
u

� �p

0

þ g00u0½ �p0

þ
Z p

0

g0000 � pg00 � 1

p

Z p

0

h0g0dj

� �
h00 þ bg

� �
udj ¼ 0

155ð Þ

Since u and g are kinematically admissible, the first of the boundary terms is zero,

Eq. (155), as long as the arch is supported, h 0ð Þ ¼ h pð Þ ¼ 0, and regardless of

whether the support is pinned or clamped. Furthermore, the necessary condition

for the vanishing of the first variation is the following differential equation in h and

g, and boundary conditions

g0000 � pg00 � 1

p

Z p

0

h0g0dj

� �
h00 þ bg ¼ 0 156að Þ

Either u0 ¼ 0 dg0 ¼ 0ð Þ Or g00 ¼ 0 156bð Þ
Since Z p

0

h0g0dj ¼ �
Z p

0

h00gdj þ h0g½ �p0

Eq. (156) becomes

g0000 � pg00 þ 1

p

Z p

0

h00gdj

� �
h00 þ bg ¼ 0 157ð Þ

In summary, we conclude that the response of the arch (primary path), h jð Þ, the

critical load, qcr, and the buckling mode, g jð Þ, are established through the simultan-

eous solution of Eqs. (115) and (157) subject to the proper boundary conditions. This

is demonstrated in the next section where we consider the pinned half-sine arch under

a half-sine spatial distribution of the load.

7.6.1 THE SINUSOIDAL ARCH

Consider a half-sine arch under a half-sine load pinned at both ends. It has been

demonstrated in Section 7.5 that Eq. (115) is satisfied (with b ¼ 0) if

1

4

�
r2
1 � e2 þ k2a2

k

�
r1 þ r1 ¼ Q

1

4

�
r2
1 � e2 þ k2a2

k

�
þ k2

� �
ak ¼ 0

127ð Þ

where

h0 ¼ e sin j, q ¼ q1 sin j

r1 ¼ a1 þ e, Q ¼ q1 þ e

h ¼ eþ a1ð Þ sin j þ ak sin kj

p ¼ 1

2p

Z p

0

h0ð Þ2� h00
� �2h i

dj

158ð Þ
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Substitution of the needed expressions in Eqs. (158) into Eq. (157) yields

g0000 � 1

4

�
r2
1 � e2 þ k2a2

k

�
g00 þ r1 sin j þ k2ak sin kj

� �
: 1

p

Z p

0

r1 sin j þ k2ak sin kj
� �

gdj ¼ 0

159ð Þ

If we let g ¼
P1
m¼1

Am sin mj, we note that every term in the series for g is kinematically

admissible and satisfies the boundary conditions, g00 0ð Þ ¼ g00 pð Þ ¼ 0. Substitution

into Eq. (157), because of the linear independence of the functions sin mj, yields

m ¼ 1: A1 1þ 1

4

�
r2
1 � e2 þ k2a2

k

�� �
þ 1

2
r1 r1A1 þ k2akAk

� �
¼ 0 160ð Þ

m ¼ k: k2Ak k2 þ 1

4

�
r2
1 � e2 þ k2a2

k

�� �
þ k2

2
ak r1A1 þ k2akAk

� �
¼ 0 161ð Þ

m 6¼ 1, k: m2Am m2 þ 1

4

�
r2
1 � e2 þ k2a2

k

�� �
¼ 0 162ð Þ

From Eq. (162) it is clear that, if one Am is not zero, all other Am must be zero.

Furthermore, it can be shown that all Am must be zero for a meaningful solution to

exist (see Problems at the end of the chapter).

Now we can proceed to find the position of the bifurcation point r1cr
, akcr

, Qcrð Þ
and the buckling mode A1, Akð Þ. This is done by seeking the simultaneous satisfac-

tion of Eqs. (127), (160), and (161).

1

4
r2
1cr
� e2 þ k2a2

kcr

� �
r1cr
þ r1cr

¼ Qcr

1

4
r2
1cr
� e2 þ k2a2

kcr

� �
þ k2

� �
akcr
¼ 0

A1 1þ 1

4
r2
1cr
� e2 þ k2a2

kcr

� �� �
þ 1

2
akcr

r1cr
A1 þ k2akcr

Ak

� �
¼ 0

Ak k2 þ 1

4
r2
1cr
� e2 þ k2a2

kcr

� �� �
þ 1

2
akcr

r1cr
A1 þ k2akcr

Ak

� �
¼ 0

163ð Þ

Equations (163) denote a system of four equations in five unknowns; r1cr
and akcr

are

the positions of the bifurcation point on the r1-ak equilibrium positions space (see

Fig. 7.4), Qcr is the corresponding critical load (limit point or bifurcation), and A1, Ak

are the amplitudes of the buckling mode (both cannot be determined uniquely).

Recognizing that, as the load is increased from zero, the primary path is associated

with an r1-only mode ak � 0ð Þ and that through the Trefftz criterion we may obtain

both the limit point as well as the bifurcation point, we must consider only the case of

r1 6¼ 0 and ak � 0. There is no need to consider the case of r1 6¼ 0 and ak 6¼ 0 which

may also satisfy the equilibrium equations. (See cases I and II of Section 7.5.) With

this, Eqs. (163) become
1

4
r2
1cr
� e2

� �
r1cr
þ r1cr

¼ Qcr 164ð Þ

A1 1þ 1

4
r2
1cr
� e2

� �
þ 1

2
r2
1cr

� �
¼ 0 165ð Þ
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Ak k2 þ 1

4
r2
1cr
� e2

� �� �
¼ 0 166ð Þ

Equations (164) through (166) suggest two possible solutions: (1) A1 6¼ 0, Ak ¼ 0 and

(2) A1 ¼ 0, Ak 6¼ 0. In the case for which A1 6¼ 0, and Ak � 0, from Eq. (165) we have

r1cr ¼
e2 � 4

3

� �1
2

167ð Þ

Substitution of this expression for r1cr, Eq. (167), into Eq. (164) gives

Qcr ¼ �
1

2

e2 � 4

3

� �3
2

168ð Þ

These are the results obtained in Section 7.5 for top-of-the-knee buckling (limit point

stability). It is clear that buckling is possible for arches with e > 2.

In the case for which A1 ¼ 0 and Ak 6¼ 0, from Eq. (166) we obtain

r1cr ¼ e2 � 4k2
� �1

2 169ð Þ

Substitution into Eq. (164) yields

Qcr ¼ � k2 � 1
� �

e2 � 4k2
� �

170ð Þ
Minimization of Qcr with respect to integer values of k show that k ¼ 2 and

r1cr ¼ e2 � 16
� �1

2

Qcr ¼ �3 e2 � 16
� �1

2

171ð Þ

These are identical to the results obtained in the case of bifurcation snapping in

Section 7.5. Note that antisymmetric buckling is possible if e > 4. Note also that if

the limit point is reached before the bifurcation point (see Fig. 7.6), Qcr is still given

by Eq. (168):

e2 � 4

3

� �1
2

> e2 � 16
� �1

2

e <
ffiffiffiffiffi
22
p

Thus, for 2 < e <
ffiffiffiffiffi
22
p

Qcr ¼ �
1

2

e2 � 4

3

� �3
2

and for e >
ffiffiffiffiffi
22
p

Qcr ¼ �3 e2 � 16
� �1

2

7.7 energy formulation based on

geometrically exact theory

In this section we specialize the geometrically exact theory for the case of stretch-

ing and bending of isotropic beams that have constant initial curvature. We consider

the case in which both the undeformed beam and its deformed counterpart

possess the same plane of symmetry. For the kinematics, the geometrically exact
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one-dimensional (1-D) measures of deformation are specialized for small strain. A 1-

D constitutive law is used in which the magnitudes of initial radius of curvature and

wavelength of deformation are assumed to be comparable, and both the strain and

the ratio of cross-sectional diameter to initial radius of curvature (h=R) are taken to

be small. In spite of a very simple final expression for the second variation of the total

potential, it is shown that the only restriction on the validity of the buckling analysis

is that the pre-buckling strain remains small.

Buckling of rings and high arches will be considered as examples. For illustrating

the approach, we consider a pressure loading which is a constant force per unit

deformed length and acting perpendicular to the reference line of the deformed beam.

This is the closest representation of hydrostatic pressure. Although it is a follower

force, we will prove that for many practical cases it is conservative, having a

potential, in accordance with Berdichevsky (1983).1

7.7.1 1-D STRAIN ENERGY

To form the strain energy of a planar, constant-curvature beam, we develop the

geometries of both undeformed and deformed states. The beam is symmetric about the

plane in which it is initially curved, and its displacement field is symmetric about that

plane. We then make use of a 1-D strain energy per unit length derived for initially

curved beams by use of the variational-asymptotic method by Berdichevsky and Star-

oselskii (1983) and Hodges (1999). This function depends only on the geometrically

exact stretching and bending measures, which we specialize for the case of small strain.

Undeformed State

Consider an initially curved beam with radius of curvature R in its undeformed

state. The undeformed beam reference line (the line of area centroids will suffice in

this case) is shown as the heavy, dark line in Fig. 7.11. The position vector from some

fixed point to an arbitrary point p on the beam reference line is denoted by r x1ð Þ,
where x1 ¼ Rf is the arc-length coordinate along the undeformed beam reference

line. The base vectors associated with the undeformed beam are b1 x1ð Þ, b2 x1ð Þ, and

s

R

x1

a1

a2

B1

B2

b2

b1

φ

q3

figure 7.11 Schematic of undeformed and deformed beam.

1Portions of this material are based on Hodges (1999), used by permission.
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b3 ¼ b1 � b2 ¼ a3 (b3 is not a function of x1). Spatially fixed base vectors are denoted

by ai, for i ¼ 1, 2, and 3, as shown in Fig. 7.11; note also that a3 ¼ a1 � a2. The

relationship between these vectors is seen from the geometry to be

b1

b2

b3

8<
:

9=
; ¼

cos f sin f 0

� sin f cos f 0

0 0 1

2
4

3
5 a1

a2

a3

8<
:

9=
; 172ð Þ

The unit vector tangent to the curve described by r x1ð Þ is

dr

dx1

¼ r0 ¼ b1 173ð Þ

where ð Þ0¼ dð Þ=dx1. The curvature vector for the undeformed state is defined as

k ¼ b3

R
174ð Þ

so that

b0i ¼ k� bi 175ð Þ

The initial curvature then is exhibited, as expected, in

b01 ¼
b2

R
b02 ¼ �

b1

R
176ð Þ

Deformed State

The deformed beam is shown as a heavy, gray line in Fig. 7.11. The mathematical

description of the deformed state is a straightforward extension of the above. The

position vector to the reference line of the deformed beam is

R x1ð Þ ¼ r x1ð Þ þ u x1ð Þ 177ð Þ

where ui x1ð Þ ¼ u 	 bi is the displacement vector. The curvature vector for the

deformed state is

K ¼ 1

R
þ k3

� �
b3 178ð Þ

To derive a theory of the ‘‘classical’’ type, which neglects transverse shear deform-

ation, we require the cross-sectional plane of the deformed beam to be normal to the

tangent of the local deformed beam reference line, so that

R0 ¼ 1þ «ð ÞB1 179ð Þ

where « ¼ s0 � 1, with s as the running arc-length of the deformed beam, and B1 is the

unit vector tangent to the reference line of the deformed beam.

Strain Energy per Unit Length

Assuming the cross section to be doubly symmetric, the strain energy density is

given by

C ¼ 1

2
EA«2 þ EI3k2

3 �
2 1þ nð ÞEI3

R
«k3

� �
þO

EAh2«2

R2

� �
180ð Þ
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where the Oð Þ means that all terms of order ð Þ are excluded. Based on this

approximate 1-D energy, the corresponding 1-D constitutive law is then

F1 ¼
@C

@«
¼ EA«� 1þ nð ÞEI3

R
k3 þO

EAh2«

R2

� �

M3 ¼
@C

@k3

¼ � 1þ nð ÞEI3

R
«þ EI3k3 þO

EAh3«2

R2

� � 181ð Þ

where F1 and M3 are the tangential force resultant and bending moment, respect-

ively. The two underlined terms are O h=Rð Þ relative to the leading terms and

represent a stretching-bending coupling indicative of a shift in the position of the

neutral axis away from the area centroid. The only approximations in the dimen-

sional reduction (i.e., the determination of the constitutive law in Eq. 181) are thus

«� 1 and h2=R2 � 1. Later it will be shown that these conditions dovetail into one

condition for ring- and high-arch-buckling problems. The next approximation would

produce terms in the 1-D energy which are O h2=R2
� �

relative to the leading terms.

These are associated with large initial curvature and transverse shear effects, not

necessary in the present treatment. It should also be noted that the stretch-bending

term does not affect the buckling loads for the idealized pre-buckling states consid-

ered here; however, general pre-buckling displacements, curvature, and bending

moment of high arches are impossible to calculate accurately without this term, as

shown by Hodges (1999).

1-D Strain-Displacement Relations

From the above, the unit tangent to the reference line of the deformed beam (see

Fig. 7.1) is

dR

ds
¼ B1 182ð Þ

where B1 is a unit vector tangent to the reference line at P and s is the arc-length

coordinate along the deformed beam. By choosing a specific set of displacement

variables, one can find the relationship between s and x1.

Let u ¼ u1b1 þ u2b2. This way, u1 is the ‘‘tangential’’ displacement and u2 is the

‘‘radial’’ displacement. Using Eqs. (176) to express the derivatives of the base vectors,

one finds

B1 ¼
dR

ds
¼ R0

s0
¼

1þ u01 � u2

R

� �
b1 þ u02 þ u1

R

� �
b2

s0
183ð Þ

However, it is also clear from the restriction to planar deformation that one can

regard the unit vectors B1, B2, and B3 ¼ B1 � B2 ¼ b3 ¼ a3 in terms of a simple

rotation by an angle, say, u3 such that

B1

B2

B3

8<
:

9=
; ¼

cos u3 sin u3 0

� sin u3 cos u3 0

0 0 1

2
4

3
5 b1

b2

b3

8<
:

9=
; 184ð Þ

Now, we can determine three things by comparing the expressions for B1 in Eqs.

(183) and (184). The first two are that cos u3 and sin u3 can be found as
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cos u3 ¼
1þ u01 � u2

R

s0

sin u3 ¼
u02 þ u1

R

s0

185ð Þ

and the third is that, since B1 must be a unit vector

s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u01 �

u2

R

� �2

þ u02 þ
u1

R

� �2
r

186ð Þ

Since s0 ¼ 1þ «, for completeness we note that

« ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u01 �

u2

R

� �2

þ u02 þ
u1

R

� �2
r

� 1 187ð Þ

Finally, the state of deformation of a beam is characterized by the bending energy,

which depends on the curvature. Reissner (1972) makes use of a ‘‘moment strain’’

which is k3 ¼ u03 rather than du3=ds. These only differ by a factor of s0 ¼ 1þ «, and

for a small strain analysis one can ignore « compared to unity (i.e. set s0 equal to

unity) in the bending measure while retaining the stretching energy. Thus, we can

develop k3 ¼ u03 by differentiating the second of Eqs. (185), yielding

u03 cos u3 ¼
s0 u002 þ

u0
1

R

� �
� s00 u02 þ u1

R

� �2
s02

188ð Þ

Now using the first of Eqs. (185) and noting that

s00 ¼
1þ u01 � u2

R

� �
u001 �

u0
2

R

� �
þ u002 þ

u0
1

R

� �
u02 þ u1

R

� �
s0

189ð Þ

we find (after a remarkable series of cancellations!)

u03 ¼
1þ u01 � u2

R

� �
u002 þ

u0
1

R

� �
� u02 þ u1

R

� �
u001 �

u0
2

R

� �
s02

190ð Þ

which, when specialized for R!1, is in agreement with Hodges (1984). We note

that to be consistent with Hooke’s law, one must restrict « ¼ max «, hk3ð Þ to be small

compared to unity. Thus, for small strain we may regard s0 ¼ 1 in the denominator of

Eq. (190), yielding a polynomial in the displacement functions and their derivatives

for the moment strain, similar to the results of Epstein and Murray (1976):

k3 ¼ 1þ u01 �
u2

R

� �
u002 þ

u01
R

� �
� u02 þ

u1

R

� �
u001 �

u02
R

� �
191ð Þ

Other than small stretching strain «� 1, we have made no approximations in the 1-D

variables. The difference between this expression for curvature and that found in

calculus texts is discussed fully in Hodges (1984). An alternative approximation that

is discussed in Hodges (1984) for straight beams is to make use of the fact that the

stretching strain is essentially zero in order to altogether eliminate u1 from the moment

strain (see also Hodges et al., 1980). However, this approach cannot be used to

eliminate u1 for an initially curved beam; it can be used only to write u01 � u2

R
in terms

of u02 þ u1

R
as done by Gellin (1980). This does not serve to eliminate a variable but
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instead introduces an unnecessary mathematical singularity into the formulation,

along with a limit on the resulting rotation variable ju02 þ u1

R
j < 1. The magnitude of

the difference between results based on Gellin’s approach and the singularity-free one

obtained from Eq. (191) is of the order of the strain compared to unity.

The 1-D strain energy is then the integral of C over the length, namely

U ¼ 1

2

Z
L

EA«2 � 2EI3 1þ nð Þ
R

«k3 þ EI3k2
3

� �
dx1 192ð Þ

where L is the total length of the beam. As one can see, the strain energy density

becomes quite complicated when Eqs. (187) and (191) are substituted into

Eq. (192). There are many problems for which the result does become tractable,

however, and for this reason this approach is to be preferred over ad hoc approaches

in which one cannot easily assess the error associated with particular approxima-

tions.

7.7.2 POTENTIAL ENERGY OF APPLIED PRESSURE LOADING

In anticipation of applying the above theory to inplane deformation and buckling,

here we develop the potential energy by first finding the virtual work of the applied

loading. Then we establish the criteria by which the virtual work can be represented

as the variation of a functional, namely the negative of the potential energy.

Virtual Work of Pressure

We consider the case of a distributed follower force that is a constant per unit

deformed beam length. This means that the local force on an element of the deformed

beam is, say, f2B2ds where f2 is a constant. The work done by this force through a

virtual displacement is then

dW ¼
Z

L

f2s
0B2 	 du1b1 þ du2b2ð Þdx1 193ð Þ

where the dW is the virtual work and the bar over the symbol indicates that it is not

necessarily equal to the variation of a functional W. We already know that

B2 ¼ � sin u3b1 þ cos u3b2 so that, from Eqs. (185), we have

dW ¼ f2

Z
L

1þ u01 �
u2

R

� �
du2 � u02 þ

u1

R

� �
du1

h i
dx1 194ð Þ

Potential Energy Functional

For a beam of length ‘, this can now be put into the form

dW ¼ f2d

Z
L

u2 �
u2

1

2R
� u2

2

2R
� u1u

0
2

� �
dx1 þ f2u1du2

���‘
0

195ð Þ

It is clear then that there are situations in which the trailing term vanishes which, in

turn, allows the follower force to be derived from a potential function. Namely, this

is the case if the ends of the beam are not allowed to displace, or if the beam is a

closed ring, for which the ends are joined so that u1 ‘ð Þdu2 ‘ð Þ ¼ u1 0ð Þdu2 0ð Þ; for a
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discussion of this type of ‘‘holonomicity’’ see Berdichevsky (1983), pp. 159–162. In

these cases, the potential energy functional is

V ¼ �f2

Z
L

u2 �
u2

1

2R
� u2

2

2R
� u1u

0
2

� �
dx1 196ð Þ

7.7.3 BUCKLING OF RINGS AND HIGH ARCHES

Inplane deformation and buckling of circular rings and high arches are considered

as applications. A simple buckling analysis will be developed from the total potential

energy, and the pre-buckling deflections will be determined for cases in which they

are not trivial.

To facilitate these analyses, it is now helpful to nondimensionalize the equations.

This we do by dividing through the total potential U þ V by EAR while simultan-

eously changing the meaning of certain symbols. We replace u1 and u2 with Ru1 and

Ru2, respectively; we replace k3 with k=R; and finally we let ð Þ0 denote dð Þ=df. We

also introduce the new symbols r2 ¼ I3=AR2 and l ¼ f2R
3=EI3. All these operations

yield, for the nondimensional total potential F ¼ U þ Vð Þ=EAR

F ¼
Z a

�a

«2

2
� 1þ nð Þr2«kþ r2k2

2
� lr2 u2 �

u2
1

2
� u2

2

2
� u1u

0
2

� �� �
df 197ð Þ

where

« ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u01 � u2

� �2þ u02 þ u1

� �2q
� 1 198ð Þ

and

k ¼ 1þ u01 � u2

� �
u002 þ u01
� �

� u02 þ u1

� �
u001 � u02
� �

199ð Þ

Note that h=R ¼ O rð Þ, so that r2 � 1; for a ring a ¼ p.

It is helpful, before proceeding further, to rewrite k2 in a more compact way. To

do so, we note that

k2 ¼ 1þ u01 � u2

� �2
u002 þ u01
� �2

� 2 u02 þ u1

� �
u001 � u02
� �

1þ u01 � u2

� �
u002 þ u01
� �

þ u02 þ u1

� �2
u001 � u02
� �2 200ð Þ

and that

1þ «ð Þ2¼ 1þ u01 � u2

� �2þ u02 þ u1

� �2
201ð Þ

Thus, Eq. (200) can be rearranged, making use of Eq. (201), to obtain

k2 ¼ 1þ «ð Þ2� u02 þ u1

� �2h i
u002 þ u01
� �2þ 1þ «ð Þ2� 1þ u01 � u2

� �2h i
u001 � u02
� �2

� 2 u02 þ u1

� �
u001 � u02
� �

1þ u01 � u2

� �
u002 þ u01
� � 202ð Þ

which, in light of the fact that «0 ¼ s00, given in Eq. (189), simplifies to

k2 ¼ 1þ «ð Þ2 u002 þ u01
� �2þ u001 � u02

� �2�«02
h i

203ð Þ

When r2k2 is compared to «2, the last term in Eq. (203) becomes negligible because

r2 � 1. For small strain k2 can finally be written as
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k2 ¼ u002 þ u01
� �2þ u001 � u02

� �2
204ð Þ

For the first application we consider the buckling of rings and high arches. For the

buckling analysis of high arches, we will follow the approach used earlier in this

Chapter of assuming that the boundary conditions are such that the displacements in

the pre-buckled state are the same as those for a ring with the same values of l, n,

and r. This has the effect of simplifying the analysis of the pre-buckled state.

Pre-Buckled State

In the pre-buckled state, we note that the ring remains circular so that all

derivatives with respect to f vanish. Denoting the pre-buckled state variables with

overbars and noting that u2 is the only nonzero displacement or rotation variable, we

find that « ¼ �u2 and k ¼ 0, so that the functional reduces to

F ¼
Z a

�a

u2
2

2
� lr2 u2 �

u2
2

2

� �� �
df 205ð Þ

from which we find, upon equating the variation to zero

u2 ¼
lr2

1þ lr2
206ð Þ

Here we make an important observation: the strain in the pre-buckled state

« ¼ �u2 ¼ �
lr2

1þ lr2
207ð Þ

is of the order of r2. So, for a consistent small-strain analysis we need to ignore r2

with respect to unity. To improve on this analysis we would not only need to keep

r2 compared to unity, we would also have to take transverse shear into account

thereby improving on Eq. (192) so that r2 is not neglected compared to unity in the

dimensional reduction. This would be much more complicated. Furthermore, be-

cause r2 is of the order of the strain, if terms of order r2 are to be kept to be consistent

we would be compelled to treat material non-linearities. Obviously, since the ring is

slender and the pre-buckling strain is small compared to unity, these modifications

are not necessary. This observation leads to a great simplification in the buckling

analysis.

Buckling Analysis

To further simplify the total potential, we consider that the perturbations of

the pre-buckled state at the onset of buckling can be regarded as arbitrarily small.

We need to keep all terms of powers 1 and 2 in the perturbation quantities. Using

the concept of the Taylor series to make certain all such terms are retained, we note

that

« ¼ «þ «̂«1 þ «̂«2

k ¼ k̂k1 þ k̂k2

208ð Þ

The subscripts indicate the power of the perturbation displacements. Because of the

nonzerovalueof «,weneedbothfirst- and second-order terms.For small strain,wefind
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«̂«1 ¼ ûu01 � ûu2

«̂«2 ¼
1

2 1þ «ð Þ ûu02 þ ûu1

� �2¼ 1

2
ûu02 þ ûu1

� �2
k̂k1 ¼ ûu002 þ ûu01
k̂k2 ¼ ûu01 � ûu2

� �
ûu002 þ ûu01
� �

þ ûu02 þ ûu1

� �
ûu001 � ûu02
� �

209ð Þ

Now we can write the perturbations of the energy. First, keeping only terms that are

linear in the ^ð Þ quantities, we obtain

F̂F1 ¼
Z a

�a

�
««̂«1 � 1þ vð Þr2«k̂k1 � lr2 1þ «ð Þûu2

�
df 210ð Þ

the variation of which is identically zero, as expected. Equating to zero the variation

with respect to ûu1, one obtains an identity; equating to zero the variation with respect

to ûu2, one finds an equation that is satisfied given Eq. (206).

Now, let us consider the second-order terms (which amounts to a second vari-

ation):

F̂F2 ¼
1

2

Z a

�a

�
2««̂«2 þ «̂«2

1 � 2 1þ nð Þr2«k̂k2 � 2 1þ nð Þr2«̂«1k̂k1 þ r2 ûu002 þ ûu01
� �2

þ r2 ûu001 � ûu02
� �2þlr2 ûu2

1 þ ûu2
2 þ 2ûu1ûu

0
2

� ��
df

211ð Þ

When « ¼ �lr2 is substituted into Eq. (211), the third term drops out, being O r4
� �

relative to the leading term. It should be clear that all the remaining terms in F̂F2 are

proportional to r2 except the «̂«2
1 term. Minimization of F̂F2 with respect to ûu1 shows

that the leading term is essentially driven to zero and that

ûu01 ¼ ûu2 þ r2n ûu002 þ ûu2

� �
þ . . . 212ð Þ

or alternatively

ûu2 ¼ ûu01 � r2n ûu0001 þ ûu01
� �

þ . . . 213ð Þ

so that

«̂«1 ¼ r2n ûu002 þ ûu2

� �
þ . . .

¼ r2n ûu0001 þ ûu01
� �

þ . . .
214ð Þ

Either ûu1 or ûu2 can be eliminated completely from the energy using these relations.

Considering first the elimination of ûu2, substitution of Eq. (213) into Eq. (211), one

obtains

F̂F2 ¼
r2

2

Z a

�a

ûu0001 þ ûu01
� �2�l ûu001 þ ûu1

� �2þl ûu2
1 þ ûu021 þ 2ûu1ûu

00
1

� �h i
df 215ð Þ

which simplifies to

F̂F2 ¼
r2

2

Z a

�a

ûu0001 þ ûu01
� �2�lû00u0021 þ lûu021

h i
df 216ð Þ
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The essential boundary conditions on ûu2 must be transferred over as essential

boundary conditions on ûu01 in order to make proper use of this energy functional.

Alternatively, the variable ûu1 can be eliminated but not without a somewhat

unusual treatment of the boundary conditions. Integrating both sides of Eq. (212)

for a ring, when specialized for r2 � 1, one finds

ûu1ja�a ¼ 0 ¼
Z a

�a

ûu2df 217ð Þ

This equation is satisfied for the sinusoidal comparison functions used in predicting

ring buckling (for which a ¼ p). However, for buckling of high arches one must be

careful. Although functions that are antisymmetric about f ¼ 0 automatically satisfy

this condition for high arches, symmetric functions do not, in general. This condition

is an essential (i.e., a displacement) boundary condition, and it is therefore manda-

tory that any admissible/comparison function satisfy it or else the results from

Rayleigh’s method, for example, will be wrong. Using Eq. (212), one can write the

energy functional in terms of ûu2 only as

F̂F2 ¼
r2

2

Z a

�a

ûu002 þ ûu2

� �2�l ûu022 � ûu2
2

� �h i
df 218ð Þ

subject to Z a

�a

ûu2df ¼ 0 219ð Þ

These expressions for the second variation of the total potential provide very simple

treatments relative to most published work. In spite of this simplicity, the only

approximation employed is that «� 1, which, because of the pre-buckling state, is

equivalent to r2 � 1.

Now, using either Eq. (216) or Eqs. (218) and (219) one can derive an upper bound

for the buckling load of a ring from Rayleigh’s quotient. For example, using the latter

lcr ¼
R a

�a
ûu002 þ ûu2

� �2
dfR a

�a
ûu0 22 � ûu2

2

� �
df

220ð Þ

and assuming that ûu2 ¼ sin mf, which satisfies Eq. (219), one finds that

lcr ¼ m2 � 1 221ð Þ

Since m ¼ 1 is a rigid-body mode, as shown in Section 7.1, the critical load is then at

m ¼ 2 so that

lcr ¼ 3 222ð Þ

in agreement with results therein.

Earlier in this chapter, high arches were treated approximately by allowing the

boundaries to move in the pre-buckling problem, yielding a simplified pre-buckling

state identical to that of the ring. For those cases described in Section 7.2, one can

quite easily verify that Eq. (220), subject to Eq. (219), as well as its analog in terms of

ûu1, provide upper bounds for the published symmetric or antisymmetric buckling

loads when either symmetric or antisymmetric admissible or comparison functions

are substituted therein.
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7.8 alternative formulation based

on elastica theory

In this section we provide an alternative formulation based on the intrinsic

equations augmented by appropriate kinematical and constitutive equations. For

this problem the constitutive law can be written as

F1

M3


 �
¼ EA � EI 1þ nð Þ

R

� EI 1þ nð Þ
R

EI

2
4

3
5 «

k3


 �
223ð Þ

The pre-buckling state can be described in terms of

F ¼ F1e1

M ¼M3e3

K ¼ 1

R
e3 or k3 ¼ 0

224ð Þ

where F 1 and M3 are constants, e1 ¼ b 1 0 0 cT , and e3 ¼ b 0 0 1 cT . The pre-

buckling state is brought about by a constant force per unit length

f ¼ lEI

R3
e2 225ð Þ

where e2 ¼ b 0 1 0 cT and l is a nondimensional pressure parameter. Thus, the

only non-trivial pre-buckling equilibrium equation is

F 1

R
þ 1þ «ð Þ lEI

R3
¼ 0 226ð Þ

which can be solved yielding

« ¼ � lr2

1þ lr2

 �lr2 227ð Þ

where

r2 ¼ I

AR2
228ð Þ

in agreement with Eq. (207). We note that the pre-buckling strain is of the order of

r2, so that r2 � 1.

The perturbations of the equilibrium equations are then

F̂ 01 �
F̂2

R
¼ 0

F̂ 02 þ F1k̂k3 þ
F̂1

R
þ lEI «̂«

R3
¼ 0

M̂M0
3 þ F̂2 ¼ 0

229ð Þ

and the perturbations of the constitutive equations can be written as

F̂1

M̂M3
R

( )
¼ EA

1 � 1þ nð Þr2

� 1þ nð Þr2 r2

� �
«̂«

Rk̂k3


 �
230ð Þ
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Given the smallness of r2, we may write the inverse relation as

«̂«

Rk̂k3


 �
¼ 1

EA

1 1þ n

1þ n
1

r2

2
4

3
5 F̂1

M̂3

R

8<
:

9=
; 231ð Þ

Letting ð Þ0 be replaced by ð Þ0=R ¼ dð Þ=df and dropping terms of order r2 com-

pared to unity, the perturbation equations in terms of force and moment quantities

only become

F̂ 01 � F̂2 ¼ 0

F̂ 02 � l
M3

R
þ F̂1 ¼ 0

M̂M0
3

R
þ F̂2 ¼ 0

232ð Þ

These equations suggest that that F̂1, F̂2, and M̂M3=R are all of the same order and can

be collapsed into a single equation, for example,

F̂ 002 þ lþ 1ð Þ F̂2 ¼ 0 233ð Þ

For a ring, we can assume that F̂2 ¼ F2 sin mfð Þ so that

F2 l�m2 þ 1
� �

¼ 0 234ð Þ

or

l ¼ m2 � 1 235ð Þ

Since m ¼ 0 and m ¼ 1 are rigid-body modes, the minimum value corresponds to

m ¼ 2 so that

lcr ¼ 3 236ð Þ

in agreement with the treatment earlier in this Chapter and illustrating the simplicity

of the approach based on the intrinsic equations.

problems

1. Find the critical load for a thin ring under uniform pressure (load case I) when one

section of the ring is fixed in space (say, at u ¼ 0, v ¼ 0, w ¼ 0, and w ¼ 0).

2. Consider an arch as shown in Fig. 7.2 and labeled ‘‘original’’ and find pcr (load

case I). As boundary conditions, assume that the shear in the radial direction is

zero instead of the displacement.

3. Consider a clamped arch on rollers (similar to Fig. 7.2 labeled ‘‘original’’) and find

pcr (load case I).

4. Using the alternate solution (Section 7.4.2), find pcr for a pinned arch for load

case II.

5. Using the alternate solution (Section 7.4.2) find pcr for a pinned arch for load

case III.

6. Show that there is no meaningful solution if Am 6¼ 0 in Eq. (162).
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7. Using the Trefftz criterion approach (Section 7.6.1), analyze a pinned half-sine

arch under a half-sine loading and resting on an elastic foundation.

8. Using the energy formulation for Section 7.7, find approximate Raleigh quotient

solutions for a clamped high arch under case I loading and comment on their

accuracy.

9. Using the elastica formulation of Section 7.8, find the exact solution for a pinned

high arch under case I loading.
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8

Buckling of Shafts

A shaft is defined here as a beam-like structural member that is designed to carry a

large twisting moment. Shafts can buckle under such loads, and the buckling load

can, in turn, be influenced by an axial force. In this Chapter we consider the stability

analysis of flexible shafts subject to twisting moments and to combined axial force

and twisting moments. This Chapter is in four parts, the first being the governing

equations of the shaft interior, the second the strain energy of the shaft interior, the

third the applied loads and other conditions at the boundaries, and the fourth the

treatment of specific example problems.

8.1 perturbation equations governing buckling

We will make use of elastica theory as specialized for a beam of circular cross

section, so that the constitutive law reduces to

F1

M1

M2

M3

8>><
>>:

9>>=
>>; ¼

EA 0 0 0

0 GJ 0 0

0 0 EI 0

0 0 0 EI

2
664

3
775

«

k1

k2

k3

8>><
>>:

9>>=
>>; 1ð Þ

for a transversely isotropic shaft (where G and E are independent). When the shaft is

subjected to an axial compressive force P and a twisting moment Q, one may write

F ¼ �Pe1 þ F̂ and M ¼ Qe1 þ M̂ where F̂ and M̂ are perturbations of the cross-

sectional force and moment and e1 ¼ b1 0 0cT . With these changes of variable,

one has

k ¼ Q

GJ
e1 þ k̂k 2ð Þ

and the equilibrium equations, Eqs. (3.115), reduce to

F̂ 0 þ Q

GJ
eee1 F̂ þ Peee1k̂k ¼ 0

M̂0 þ Q

GJ
eee1M̂ �Qeee1k̂kþeee1 F̂ ¼ 0

3ð Þ
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where eð Þij¼ �eijk ð Þk as in Eq. (3.116)

Using Eqs. (8.1), one may eliminate M̂ in favor of k̂k to rewrite the moment

equations as

k̂k0 þ Q

GJ
� Q

EI

� �eee1k̂kþ 1

EI
eee1 F̂ ¼ 0 4ð Þ

One can relate k̂k to the rotation as follows. First, by definition for a prismatic beam

ekk ¼ �C0CT 5ð Þ

with

C ¼ I � êuûuu� �
C 6ð Þ

where I is the 3� 3 identity matrix and C is the matrix of direction cosines for the

pre-buckled state, given by

C ¼
1 0 0

0 cos u1 sin u1

0 � sin u1 cos u1

2
4

3
5 7ð Þ

and u1 is the pre-buckling twist angle along the beam. The column matrix of rotation

variables then becomes

u ¼ u1e1 þ ûu 8ð Þ

Note that ekk ¼ �C
0
C

T
9ð Þ

or

C
0 ¼ �ekkC 10ð Þ

Substituting Eq. (6) into Eq. (5), making use of Eq. (9), and dropping all terms of

second and higher degree in the^quantities, one finds that

ekk ¼ ekkþ êuûuu0 þfekkûuekkûu 11ð Þ

which can be simplified to obtain

k ¼ u
0
1e1

k̂k ¼ ûu0 þ ekkûu

¼ ûu0 þ Q

GJ
eee1ûu

12ð Þ

The generalized strains of the reference line are here written as the column matrix g in

terms of the reference line displacement u ¼ u1e1 þ ûu so that

g ¼ C e1 þ u0ð Þ � e1

¼ I � êuûuu� �
C e1 þ u01e1 þ ûu0
� �

� e1

¼ u01e1 þ Cûu0 þ eee1ûu

13ð Þ

Constraining this result so that eee1g ¼ 0 gives the results that g ¼ «e1 ¼ u01e1 and

ûu ¼ ûu1e1 þeee1Cûu0 14ð Þ
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Making use of these results, we find that

k̂k ¼ ûu01e1 þ eee1Cûu00 15ð Þ

Taking the derivative and using Eqs. (10), one finds that

k̂k0 ¼ ûu001e1 �
Q

GJ
eee1eee1Cûu00 þ eee1Cûu000 16ð Þ

The perturbations of u1 are uncoupled from the bending equations and can be

ignored. Therefore, by virtue of Eqs. (4), (15), and (16), one obtains

eee1ûu
000 þ Q

EI
ûu00 þ 1

EI
C

Teee1 F̂ ¼ 0 17ð Þ

Solving the first of Eqs. (3) for F̂F 0, and substituting the result into the derivative of

Eq. (17), one eventually obtains two scalar equations for the bending deflections,

given by

ûu00002 þ
Q

EI
ûu0003 þ

P

EI
ûu002 ¼ 0

ûu00003 �
Q

EI
ûu0002 þ

P

EI
ûu003 ¼ 0

18ð Þ

It can be seen that all effects of GJ have disappeared from the governing equations.

Of course, the boundary conditions may contain some effects of GJ in the pre-

buckling torsional rotation (see Section 8.3).

8.2 energy approach

It can be shown that the above equations can also be derived from the energy

approach. In order to do so, however, one must have all the terms in the total

potential up through second degree in the perturbations. Because of the axial

compressive force P and twisting moment Q, one must use geometrically nonlinear

strain-displacement relations for « and k1 that are valid up through second degree in

the perturbations. Eqs. (3.137) can be simplified to obtain these as well as expressions

for k2 and k3 linearized about the deformed state described by the twist angle

u1 ¼ Qx1=GJ and the compressive strain « ¼ �P=EA. Thus,

« ¼ � P

EA
þ ûu01 þ

1

2
ûu02

2 þ ûu03
2

� �
k1 ¼

Q

GJ
þ ûu01 þ

1

2
ûu002 ûu

0
3 � ûu003 ûu

0
2

� �
Þ

k2 ¼ ûu002 sin u1 � ûu003 cos u1

k3 ¼ ûu002 cos u1 þ ûu003 sin u1

19ð Þ

where we have used the direction cosines for the twisted beam, given by Eq. (7). The

strain energy for a shaft of length ‘ is given by

U ¼ 1

2

Z ‘

0

EA«2 þ GJk2
1 þ EI k2

2 þ k2
3

� �� �
dx1 20ð Þ

from which one finds a set of terms that are linear in the perturbation quantities and

another that is quadratic. The linear terms lead to equations that are identically

satisfied, while the quadratic terms are
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U ¼ 1

2

Z ‘

0

EI ûu0022 þ ûu0023

� �
þQ ûu002 ûu

0
3 � ûu02ûu

00
3

� �
� P ûu022 þ ûu023

� �� �
dx1 21ð Þ

Note that this expression does not include the potential of the applied loads from the

ends of the shaft, if any, which are taken into account in Section 8.3.

8.3 application of forces and

moments—boundary conditions

The boundary conditions that we need to impose on our model of shafts are either

displacement or natural. The former is on the displacement or rotation at an end of

the shaft, and the latter relates to the system of forces and moments acting at an end

of the shaft. Typically one or both ends of the shaft may have prescribed loads. In

addition, some components of displacement and rotation may be prescribed at one or

both ends. Bearings constrain the rotation caused by bending, and they are generally

idealized in accordance with whether they are short or long. A very short bearing

restrains displacement at the point where it is located, but the rotation induced by

bending is allowed at that point. This makes it similar to a pin, but the kinematical

details are slightly different. On the other hand, a long bearing will restrain both

displacement and rotation, similar to the case of a clamped condition.

The shaft may also be subjected to twisting moments modeled in a variety of ways

depending on the kinematics of the device that restrains or applies loads to the shaft.

These include nonconservative axial or follower torques, as well as a variety of

conservative torques such as those from quasi-tangential, semi-tangential, and

Hooke joint mechanisms. Natural boundary conditions are generally expressed in

the basis of the deformed beam, Bi, when applying the intrinsic equations of the

elastica theory. On the other hand, when applying the energy approach they are

normally cast in terms of derivatives of the displacement variables.

It is well known that when taking into account the application of forces to

nonlinear structural models, one must account for the possible reorientation of the

force as the structure deforms. For example, when the orientation of the line of

action for any force of constant magnitude remains fixed in space, we speak of

the force as being conservative, because its virtual work can be represented as the

variation of the work done by that force. In such cases the work is, of course, the

negative of the potential energy. For example, consider a force given by

F ¼ Fb1
b1 þ Fb2

b2 þ Fb3
b3 applied at a point with bi being a set of unit vectors that

does not change with the displacement and the values of Fbi
are constants. The

virtual work is thus

dW ¼ Fb1
du1 þ Fb2

du2 þ Fb3
du3

¼ duTFb

22ð Þ

where ui ¼ u � bi, u is the displacement vector of the point at which the load is

applied, and du and Fb are column matrices. Thus,

V ¼ �Fb1
u1 � Fb2

u2 � Fb3
u3 ¼ �uTFb 23ð Þ

Forces of constant magnitude which have lines of action that change in orienta-

tion with the deformation of the structure do not in general possess a potential

energy and are called follower forces. Consider a follower force given by

F ¼ F1B1 þ F2B2 þ F3B3 with Bi being the unit vectors fixed in the cross-sectional
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frame of the deformed beam at the point of application of the load, Cij ¼ Bi � bj , and

Fi being constants. Thus,

dW ¼ duTCTF 24ð Þ

which clearly cannot be expressed as the variation of a functional.

Unfortunately, the classification of structures loaded with torques is much more

complex. For the purpose of our present discussion, let us apply the torque to a frame

to which a structural system is rigidly attached. Thus, to apply a torque to, for

example, an end of a beam, one actually applies the torque to a frame which is

attached to an end cross section; the displacement and orientation measures at that

end of the beam are constrained to be the same as those of the frame. First, one can

show that a torque vector with constant components along axes that rotate with the

frame is nonconservative. That is, given M ¼M1B1 þM2B2 þM3B3 and the virtual

rotation vector

dc ¼ dc1B1 þ dc2B2 þ dc3B3 25ð Þ

with the column matrix form being

dc ¼ Rdu 26ð Þ

and R uð Þ being the matrix in Eq. (3.121),

dW ¼ dc
T
M ¼ duTRTM 27ð Þ

There is no functional, the variation of which will give this virtual work. This is not at

all unexpected, given the nature of follower forces. After all, such a torque can be

constructed from a set of equal and opposite follower forces acting equidistant from,

and on opposite sides of, the deformed beam reference line.

However, it is also true that a torque vector with constant components along space-

fixed axes is, in general, nonconservative. That is, given M ¼Mb1
b1 þMb2

b2 þMb3
b3,

dW ¼ dc
T
CMb ¼ duTRTCMb 28ð Þ

As before, one cannot find this virtual work by taking the variation of a functional.

The only exception for such torques is a special case: when the attached frame to

which the torque is applied is constrained to rotate about an axis fixed in space the

resulting torque is clearly conservative.

On the other hand, we can specify conservative torques by constructing them from

conservative forces. As alluded to above, the most elementary form of a conservative

torque is applied about a rigid shaft that is fixed in space. One can then attach to that

shaft mechanisms, such as universal joints or deforming structural elements, and thus

transmit the conservative torque to other parts of the system. (This assumes that we

may neglect any dissipative effects in these mechanisms, of course.) Another way to

apply a conservative torque is with pulleys and taut cables. Any torque that can be

applied as a system of conservative forces acting on taut cables connected to the

structure by means of pulleys is conservative.

Fig. 8.1 shows a beam represented by a heavy line, the dashed portion of which is

hidden from view by the frame attached at the end. This frame is represented by a

circular disk of radius a. Cords are wrapped around the periphery of the disk, and

equal and opposite conservative forces are applied by them, as shown, to obtain a

moment that is about b1 in the pre-buckled state. Thus, at the onset of buckling,

the applied moment has components in other directions that may be regarded as
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infinitesimally small. For a moment of magnitude Q, P ¼ Q= 2að Þ. As the beam de-

forms, the end of the beam rotates, and the direction associated with the tangent vector

to the end of the beam (B1) becomes distinct from that of the moment vector. Such a

conservative torque is called quasi-tangential and is similar to the torque applied by

means of aHooke joint, also referred to as aCardan joint or universal joint (see below).

Another type of conservative torque may be formed by superposing an additional

set of equal and opposite forces 908 out of phase with the two shown in Fig. 8.1 to

achieve a system like that shown in Fig. 8.2. For a moment of magnitude

Q, P ¼ Q= 4að Þ. This is called a semi-tangential torque.

Other possibilities include the pseudo-tangential torque, achieved by applying the

equal and opposite forces to the ends of a rod attached rigidly to the end of the beam.

We will not consider this case herein. A simplified treatment for all of these torques is

presented by Ziegler (1968) based on a collection of older work by Greenhill.

In addition to the quasi-tangential and semi-tangential cases, we also consider in

this Chapter the important case of a Hooke joint. In the present Chapter we will

analyze the buckling of shafts subject to applied twisting moments that are of these

forms. In Chapter 9 the lateral-torsional buckling of deep beams caused by an

applied bending moment at one end is considered. In that treatment the present

expressions for the torques will be adapted to the different direction.

Here as in the remainder of the text, elastica theory will be used as needed for

treatment of various elastic stability problems. For additional examples that involve

its use as an alternative to the more usual approaches, the reader is referred to its use

in Chapter 7. The methods for assessing stability for systems with follower forces and

nonconservative moments are more involved, requiring application of the kinetic

method. Hence we will postpone extensive discussion of nonconservative loading

until Chapter 11 and treat mostly conservatively loaded structures for the present.

8.3.1 QUASI-TANGENTIAL TORQUE

In Fig. 8.1 we see that this applied moment depends on the direction of the

applied forces in a plane parallel to b2 and b3, which is determined by the angle a

b1

b2

b3

P
P

a

α

figure 8.1 Schematic of a quasi-tangential twisting moment applied to the end of a shaft
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between the line of action of either force and b2. The expression for the torque is

easily obtained by making use of the following observation: The position vector

from the end of the deformed beam to either of the points on the periphery of the

disk that lie on the line of action of the force is normal both to the force and to B1,

the unit tangent to the deformed beam. The expression for the torque is lengthy

in the general case of the geometrically-exact theory, but it may be greatly simpli-

fied for the case of small rotations of the disk caused by bending (with no restriction

on the rotation of the disk caused by torsion). Thus, C12 and C13 are small

compared to unity, and C22 ¼ C33 ¼ cos u1 and C23 ¼ sin u1 ¼ �C32 with the pre-

buckling twist angle u1 not restricted to be small. The simplified quasi-tangential

torque becomes

M ¼ Q B1 � C12 cos aþ C13 sin að Þ cos a� u1

� �
B2 þ sin a� u1

� �
B3

� �	 

¼ Q b1 þ C12 sin2 a� C13 cos a sin a

� �
b2 þ �C12 cos a sin aþ C13 cos2 a

� �
b3

� �
29ð Þ

We note that quasi-tangential moments for the other two directions can be found by

permutation of the indices of Eq. (29).

8.3.2 SEMI-TANGENTIAL TORQUE

Recalling Fig. 8.2, one can show that the full expression for this type of torque is

even more lengthy than that of the quasi-tangential case. However, for the case of

small rotations of the disk caused by bending, and again with no restriction on the

rotation of the disk caused by torsion, the expression for the torque becomes

independent of the angle a and actually simpler than Eq. (29). Again, C12 and C13

are small compared to unity, and C22 ¼ C33 ¼ cos u1 and C23 ¼ sin u1 ¼ �C32 with

the pre-buckling twist angle u1 not restricted to be small. The semi-tangential torque

then becomes

b1

P
Pa

P

P

b2

b3

α

figure 8.2 Schematic of a semi-tangential twisting moment applied to the end of a shaft
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M ¼ Q B1 �
1

2
C12C22 þ C13C23ð ÞB2 �

1

2
C12C32 þ C13C33ð ÞB3

� �

¼ Q b1 þ
1

2
C12b2 þ

1

2
C13b3

� � 30ð Þ

As before, semi-tangential moments for the other two directions can be found by

permutation of the indices of Eq. (30).

8.3.3 TORQUE APPLIED BY A HOOKE JOINT

Here we consider a beam loaded through a Hooke joint. Hooke joints have three

parts: an interior part called the spider and two outer parts called yokes, all assumed

here to be rigid. Consider a shaft to which a Hooke joint is attached and constrained

as indicated in Fig. 8.3. As indicated here, the spider is free to rotate relative to the

inner and outer yokes about bearings (axes of relative rotation) fixed in the yokes.

The outer yoke is attached to the loading fixture and is constrained to rotate about a

spatially fixed axis. The inner yoke is attached to the end cross-sectional frame of the

beam. Thus, one axis of rotation for the spider is fixed in the end cross-sectional

frame of the deformed beam, and the other is fixed in the loading fixture and in the

outer rigid yoke.

Consider a shaft to which a Hooke joint is attached and constrained as indicated

in Fig. 8.3. For the configuration under consideration, the loading fixture is con-

strained so that it can only rotate about b1; the angle of rotation is u1 and is caused by

the application of a moment about b1 of magnitude Q. Thus, a tip twisting moment

applied to the beam, and the pre-buckling deflection will only consist of pure twist.

At buckling small perturbations of the beam deformation occur. The spider is free to

rotate relative to the fixture about a line passing through the beam reference line and

parallel to cos aþ u1

� �
b2 þ sin aþ u1

� �
b3, where a is a parameter that is specified

according to the way the joint is attached to the beam; note that a ¼ 0 in the case

illustrated. The other axis of rotation is fixed in the deformed beam cross-sectional

frame at the beam end; assuming the cross members of the spider to be perpendicular

to each other, the spider is thus free to rotate about a line parallel to

inner rigid yoke

outer rigid yoke

rigid spider

flexible shaft

bearings

bearings

b3

b2

b1

figure 8.3 Schematic of Hooke joint attached to a shaft (undeformed state with a ¼ 0)
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� sin aB2 þ cos aB3. Given an applied moment so that M � b1 ¼ Q and

M � cos aþ u1

� �
b2þ sin aþ u1

� �
b3

� �
¼M � �sinaB2þ cosaB3ð Þ ¼ 0, one may deduce

that M is given by

M ¼ Q B1 � C12 cos aþ u1

� �
þ C13 sin aþ u1

� �� �
cos aB2 þ sin aB3ð Þ

	 

¼ Q b1 þ C12 sin2 aþ u1

� �
� C13 cos aþ u1

� �
sin aþ u1

� �� �
b2

	
þ �C12 cos aþ u1

� �
sin aþ u1

� �
þ C13 cos2 aþ u1

� �� �
b3g

31ð Þ

This expression thus is identical to that for the quasi-tangential torque with a

replaced by aþ u1.

8.3.4 POTENTIAL ENERGY OF CONSERVATIVE TORQUES

Regarding the direction cosines C12 � ûu3 ¼ ûu02 and C13 � �ûu2 ¼ ûu03 as small per-

turbation quantities at the beam end, one can now find potential energy expressions

for all three cases of conservative torques. In the potential energy, all terms of third

and higher degree of the unknowns C12 and C13 may be dropped. To find the

potential energy, one must first find the virtual work of the torques. Since the b1

component of the torque does not contain these unknowns, this component of the

virtual rotation must be taken to a higher order. Thus, the virtual rotation can be

written as

dc ¼ du1 þ
1

2
C12dC13 �

1

2
C13dC12

� �
b1 � dC13b2 þ dC12b3 32ð Þ

For the quasi-tangential case the virtual work is simply the dot product of dc and the

torque, Eq. (29), given by

dW¼Q du1þ
cos 2að Þ dC13C12þdC12C13ð Þ

2
þcosasina C13dC13�C12dC12ð Þ

� �
33ð Þ

For the quasi-tangential case, one easily finds by integration of Eq. (33) a quantity V

such that dV ¼ �dW where

V ¼ �Qu1 þ
Q

2
cos a sin a C2

12 � C2
13

� �
� cos 2að ÞC12C13

� �
34ð Þ

For the Hooke joint, one need only substitute aþ u1 for a, while for the semi-

tangential torque,

V ¼ �Qu1 35ð Þ

The simplicity of the potential energy of the applied load suggests that the energy

approach may be a good one to follow for problems involving conservative torques.

This will be illustrated later when specific problems are solved.

8.4 example problems

Four examples will be presented in this Section. The first is a clamped-clamped

shaft undergoing a twisting moment. The second is for a pinned-pinned shaft

undergoing various types of twisting moments. The third brings in the effect of an

axial compressive force, and the fourth considers rotation about the shaft axis.
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8.4.1 CLAMPED-CLAMPED SHAFT UNDER TWISTING MOMENT

This case is among the simplest and is idealized for longbearings at each end.Wewill

undertake the solution from the differential equations, which are Eqs. (8.18), with

boundary conditions written in terms of displacements as ûu2 0ð Þ ¼ ûu2 ‘ð Þ ¼ ûu3 0ð Þ
¼ ûu3 ‘ð Þ ¼ ûu02 0ð Þ ¼ ûu02 ‘ð Þ ¼ ûu03 0ð Þ ¼ ûu03 ‘ð Þ ¼ 0. We presuppose a pre-buckling state

with zero axial force such that one end of the shaft is rotated about b1. Thus, the torque

along the shaft is uniform with value Qb1. Thus, Eqs. (8.18) become

ûu00002 þ
Q

EI
ûu0003 ¼ 0

ûu00003 �
Q

EI
ûu0002 ¼ 0

36ð Þ

If we introduce a complex variable u such that u ¼ ûu2 þ iûu3, then a single equation in

u can be found by multiplying the second equation by i and adding the equations, so

that

u0000 � iqu000 ¼ 0 37ð Þ
where q ¼ Q‘=EI and the nondimensional axial coordinate x ¼ x1=‘ has been intro-

duced, along with redefining ( )0 as d ( )/dx. The equation easily reduces to

u0 � iqu ¼ a

2
x2 � x
� �

38ð Þ

subject to u 0ð Þ ¼ u 1ð Þ ¼ 0 with a as an arbitrary constant. The solution is in terms of

polynomial and trigonometric functions, and the characteristic equation can be

reduced to

tan
q

2

� �
¼ q

2
39ð Þ

the smallest root of which is qcr ¼ �8:98682 ¼ 2:86059p so that Qcr ¼ �8:98682

EI=‘, obtained by Greenhill in 1883 and Nicolai in 1926.

8.4.2 SHAFT WITH SHORT BEARINGS UNDER TWISTING MOMENT

For this case one must consider a variety of possibilities, depending on how the res-

traint at each end is constructed. The easiest case to deal with analytically is the tangen-

tial torque, for which M̂a 0ð Þ ¼ M̂a ‘ð Þ ¼ 0 for a ¼ 2 and 3. Thus, ûu00a 0ð Þ ¼ ûu00a ‘ð Þ ¼ 0 in

addition to ûua 0ð Þ ¼ ûua ‘ð Þ ¼ 0. Using the same complex variable u as before, one finds

u00 � iqu0 ¼ axþ b 40ð Þ

where a and b are constants. The solution is again in terms of polynomial and

trigonometric functions, and the characteristic equation is

cos q ¼ 1 41ð Þ
so that qcr ¼ �2p.

Another simple case is the axial torque, for which M ¼ Qb1 ¼ Q B� ûu3B2

�
þûu2B3Þ

so that

M̂2 0ð Þ ¼ �Qûu3 0ð Þ
M̂2 ‘ð Þ ¼ �Qûu3 ‘ð Þ
M̂3 0ð Þ ¼ Qûu2 0ð Þ
M̂3 ‘ð Þ ¼ Qûu2 ‘ð Þ

42ð Þ
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which gives the governing equation as

u00 � iqu0 ¼ 0 43ð Þ

with boundary condition u 0ð Þ ¼ u 1ð Þ ¼ 0. This yields the same critical load as the

tangential case. We should not place too much stock in either of these answers,

however, because both of these types of torques are nonconservative. Hence, one

really needs to use the kinetic method in case there is a flutter instability at a value of

q below 2p.

Next, let’s consider the case of the semi-tangential torque. The most straightfor-

ward way to get the boundary conditions is to consider the variation of the total

potential, recalling that V ¼ 0 and U is given by Eq. (21). This yields the governing

ordinary differential equation, Eq. (40), with boundary conditions

u 0ð Þ ¼ u 1ð Þ ¼ u00 0ð Þ � iq

2
u0 0ð Þ ¼ u00 1ð Þ � iq

2
u0 1ð Þ ¼ 0 44ð Þ

The solution is again in the form of polynomial and trigonometric functions, with a

characteristic equation given by

q

6
þ tan

q

2

� �
¼ 0 45ð Þ

The critical torque is qcr ¼ �4:91129 ¼ �1:56331p.

Finally, let’s consider the case of a quasi-tangential torque with a ¼ 0 at the end

where x1 ¼ 0 and varying a at the other end. (The closely related case of a Hooke

joint with varying a and GJ / EI is left as an exercise for the reader.) Straightforward

variation of the total potential yields the governing equations as

u00002 þ qu0003 ¼ 0

u00003 � qu0002 ¼ 0
46ð Þ

and boundary conditions

u2 0ð Þ ¼ u3 0ð Þ ¼ u2 1ð Þ ¼ u3 1ð Þ ¼ u002 0ð Þ ¼ u003 0ð Þ � qu02 0ð Þ ¼ 0

u002 1ð Þ þ q sin2 a u03 1ð Þ þ q sin a cos a u02 1ð Þ ¼ 0

u003 1ð Þ � q cos2 a u02 1ð Þ � q sin a cos a u03 1ð Þ ¼ 0

47ð Þ

where q ¼ Q‘=EI , u2 ¼ ûu2=‘, u3 ¼ ûu3=‘, x ¼ x1=‘, and ð Þ0¼ dð Þ=dx. This system of

equations can be integrated to yield

u002 þ qu03 ¼ a1xþ a2

u003 � qu02 ¼ a3x
48ð Þ

the characteristic equation of which is

8� 8q2 þ q4
� �

cos q� 4� 8q2 þ q4
� �

cos q� 2að Þ
þ4 2� q2

� �
cos 2að Þ � cos qþ 2að Þ þ q 2þ q2

� �
sin q� 2� q2

� �
1þ q sin q� 2að Þ½ �

	
�2q sin 2að Þg ¼ 0 49ð Þ

The lowest root for jqj is plotted against a in Fig. 8.4 for �p=2 � a � p=2. At

a ¼ 2:31675, the nondimensional critical load is 0:915531p whereas for a ¼ 1:09012

the nondimensional critical load is 1:29155p – a 41% fluctuation in the critical load

depending on a. It is important to note that although these results (tangential/axial,
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at �2p; semi-tangential, at �1:56331p; and quasi-tangential, varying from

�0:915531p to �1:29155p) are nowhere near each other, the differences among

these torques are infinitesimal!

It is interesting and instructive to verify that the boundary conditions for the

moment are consistent with those on the second derivative of displacement as derived

from the energy approach. The internal moment in the shaft can be expressed as

M ¼ Qþ GJk̂k1ð ÞB1 þ EI k̂k2B2 þ k̂k3B3ð Þ
� Qþ GJk̂k1ð Þb1 þ �EIûu003 þQûu02

� �
b2 þ EIûu002 þQûu03

� �
b3

50ð Þ

so that

M̂b2
¼ �EIûu003 þQûu02

M̂b3
¼ EIûu002 þQûu03

51ð Þ

The use of the second of Eqs. (8.29) shows that at x1 ¼ ‘

M̂b2
‘ð Þ ¼ Q ûu02 ‘ð Þ sin

2 a� ûu03 ‘ð Þ cos a sin a
� �

M̂b3
‘ð Þ ¼ Q �ûu02 ‘ð Þ cos a sin aþ ûu03 ‘ð Þ cos2 a

� � 52ð Þ

which is consistent with the boundary conditions derived from the energy in Eqs.

(8.47).

8.4.3 EFFECT OF AXIAL COMPRESSIVE FORCE

Next, we turn to the case of a shaft clamped at x1 ¼ 0 and undergoing axial

compression and a semi-tangential torque at x1 ¼ ‘. The Euler equations can be

expressed as

u0000 � iqu000 þ pu00 ¼ 0 53ð Þ

where p ¼ P‘2=EI . The essential boundary conditions are u 0ð Þ ¼ u0 0ð Þ ¼ 0 and the

natural boundary conditions are

u00 1ð Þ � iq

2
u0 1ð Þ ¼ 0

u000 1ð Þ � iqu00 1ð Þ þ pu0 1ð Þ ¼ 0

54ð Þ

−1.5 −1 −0.5 0.5 1 1.5
α

1.1

1.2

1.3

| q |

π

figure 8.4 Buckling torque for a shaft loaded by a quasi-tangential twisting moment
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The general solution is given by

u ¼ a1 þ a2xþ a3 exp ia1xð Þ þ a4 exp ia2xð Þ 55ð Þ

where

a1 ¼
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4p

p
2

> 0

a2 ¼
q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4p

p
2

< 0

56ð Þ

After imposing the boundary conditions, one can find (after a great deal of algebra)

that

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4p

p
2

 !
¼ 0 57ð Þ

or

q2 þ 4p ¼ p2 58ð Þ

The relationship between q and p is shown in Fig. 8.5, from which one can conclude

that shafts undergoing compression buckle much more easily under a twisting

moment, and shafts undergoing tension buckle less easily under a twisting moment.

Similarly, shafts undergoing twisting moments buckle more easily under compressive

forces.

8.4.4 CRITICAL SPEEDS OF LOADED, ROTATING SHAFTS

The inertial load has a quasi-static component when the shaft is rotating about its

undeformed axis at a constant angular speed. The kinetic energy per unit length

caused by this quasi-static component is

T ¼ 1

2
mV2 u2

2 þ u2
3

� �
59ð Þ

where Vb1 is the angular velocity of the shaft. Application of Hamilton’s principle

leads to a weak form of the equilibrium equations of the form

−6 −4 −2 2 4 6
q

−6

−4

−2

2

p

figure 8.5 Buckling torque for a clamped shaft loaded by a semi-tangential twisting moment q

and an axial force p
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�
1

2

Z 1

0

u0022 þ u0023 � q u02u
00
3 � u002u

0
3

� �
� p u022 þ u023
� �

� v2 u2
2 þ u2

3

� �� �
dx ¼ 0 60ð Þ

with u2 ¼ ûu2=‘, u3 ¼ ûu3=‘, q and p defined as before, and v2 ¼ m‘4V2=EI . From

setting the first variation equal to zero and integrating by parts, the resulting

Euler-Lagrange equations can be put into the form

u0000 � iqu000 þ pu00 � v2u ¼ 0 61ð Þ

with u ¼ u2 þ iu3 as before. The general solution to this equation is difficult to

manipulate algebraically. However, one can observe a number of things. First, this

equation with q set equal to zero is identical to that used to find the natural

frequencies and mode shapes of an axially compressed beam. The critical angular

speeds from this equation are the same as the natural frequencies of the loaded and

nonrotating beam. As the beam is loaded with both p and q, the critical speeds

decrease significantly. An approximate solution via the Rayleigh-Ritz method is left

as an exercise for the reader.

Two important points must be made here. First, the static method can only tell us

where the critical speeds are. It cannot tell us about the stability of the shaft when its

angular speed exceeds the first critical speed but is less than the second, for example.

Second, it is more typical for critical speeds to be calculated for the combination of a

shaft and heavy disk. The shaft mass and disk flexibility are often neglected in such

cases. This analysis requires the presence of gyroscopic terms in the differential equa-

tions, and hence the kinetic approach must be used. However, even the kinetic ap-

proach leaves unanswered the stability of the shaft when its angular speed is in between

two critical speeds. This is because, fundamentally, the problem of the critical speed is a

resonance problem, which can be treated by use of imperfections and obtaining the

solutionof the governingordinary differential equations in the timedomain.Adetailed

discussion of the problem of finding critical speeds can be found in Ziegler (1968).

problems

1. Consider a shaft loaded only by a twisting moment which at the x1 ¼ 0 end is

clamped, and at the x1 ¼ ‘ end has a long bearing that is free to move but that is

not free to rotate as the shaft bends. Find the critical twisting moment.

ans.: Qcr ¼ 2pEI=‘

2. Find the critical torsional buckling load for a shaft that is clamped at one end and

with zero shear/zero rotation condition at the other. Determine and plot the mode

shape.

3. Show that the conditions stated in the text do in fact lead to Eqs. (31).

4. Show that the boundary conditions obtained from the energy approach are

equivalent to those obtained using the intrinsic equations for a pinned-pinned

shaft loaded by a quasi-tangential torques at both ends. Let a ¼ 0 at the end

x1 ¼ 0 and a be a variable at the end x1 ¼ ‘.
5. Consider a shaft which is pinned at both ends and is loaded by quasi-tangential

twisting moments at both ends. Taking a ¼ 0 at the end x1 ¼ 0 and letting a be a

variable at the end x1 ¼ ‘, find the critical twisting moment for the case of

GJ=EI ¼ 3=4 for a ¼ �1 and a ¼ p=2.

ans.: For a ¼ �1, Qcr ¼ 0:920217pEI=‘, and for a ¼ p=2, Qcr ¼ 1:02094pEI=‘
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6. Consider a shaft which is pinned at both ends and is loaded by twisting moments

applied by Hooke joints at both ends. Taking a ¼ 0 at the end x1 ¼ 0 and letting a

be a variable at the end x1 ¼ ‘, find the critical twisting moment for the case of

GJ=EI ¼ 3=4 for a ¼ �1 and a ¼ p=2, taking into account the pre-buckling

twist.

ans.: For a ¼ �1, Qcr ¼ 1:25831p EI=‘, and for a ¼ p=2, Qcr ¼ 0:915904p EI=‘

7. Consider a loaded shaft with nonzero q and p, with the x1 ¼ 0 end clamped and

the x1 ¼ ‘ end loaded with a semi-tangential torque. Using three polynomial

admissible functions for u2 and u3, determine an approximate relationship

among the critical speeds v, q, and p. Check your result to make certain it gives

good results for the Euler load, the critical torque, and the critical speeds of the

unloaded beam (same as the natural frequencies of the nonrotating beam).
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9

Lateral-Torsional

Buckling of Deep Beams

Lateral-torsional buckling is the name commonly associated with an instability of

the ‘‘plane form of bending’’ of deep beams. When such a beam is loaded in the plane

of greatest flexural rigidity, small inplane deformation results. In this pre-buckled

state, the beam typically undergoes deflection caused by inplane bending, extension,

and possibly inplane shear. When the critical load is reached, the beam deflects out

of that plane and undergoes combined deformation involving both out-of-plane

bending and torsion. In this chapter we will consider two sets of examples of such

buckling analysis, one very straightforward and the other quite the opposite. The

straightforward examples involve pure, constant bending in the pre-buckled state.

The complex examples are cantilevered beams, some of which have a more compli-

cated pre-buckled state depending on the loading. The changes of the critical load

associated with the Vlasov effect, initial curvature, load offset, and methods of

applying moments are examined for some of the cases. The equations of Section

3.7 are used, augmented by the Vlasov correction of Section 3.8.1, where appropriate.

9.1 pinned-pinned beam

In this section we will consider the lateral-torsional buckling of a pinned-pinned

beam subject to loads that produce constant planar bending deformation in the pre-

buckled state. We first consider a straight beam that is much stiffer in one flexural

plane than in the other and for which the Vlasov effect is not important. A thin strip-

like beam would fulfill this condition. Next we consider the Vlasov correction. Beams

with thin-walled, open cross sections would require this correction, such as I-beams.

Finally, we introduce a small amount of initial curvature and determine its effect on

the lateral-torsional buckling.

9.1.1 PRISMATIC STRIP-BEAM

In this example, the beam is attached to rigid frames at each end, as depicted in

Fig. 9.1. The beam is free to rotate relative to the frames about B2 at each end. At the
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left end where x1 ¼ 0, the frame is stationary. However, at the right end where

x1 ¼ ‘, the frame is free to displace in any direction, but it is only free to rotate

about the spatially fixed direction b3 and is subjected to a specified torque Qb3. The

governing equations are Eqs. 3.118, the intrinsic force and moment equilibrium

equations. Thus, the beam, in its pre-buckled state, is undergoing pure bending, i.e.,

F ¼ 0

« ¼ 0

M ¼ Qe3

k ¼ Q

EI3

e3

1ð Þ

where e3 ¼ b 0 0 1 cT . One can now write linearized perturbation equations about

this exact equilibrium state to examine its stability. These equations are written in

terms of perturbation force, stretch, moment, and curvature variables (F̂F , «̂«, M̂, and

k̂k, respectively) so that

F̂ 0 þ Q

EI3

eee3 F̂ ¼ 0

M̂0 þ Q

EI3

eee3M̂ �Qeee3k̂kþ eee1 F̂ ¼ 0

2ð Þ

where e1 ¼ b 1 0 0 cT . The force equations, along with boundary conditions,

F̂ ‘ð Þ ¼ 0, show that F̂3 � 0 and that there is an instability at a large value of torque

which can be found from

F̂ 001 þ
Q

EI3

� �2

F̂1 ¼ 0 3ð Þ

or

F̂ 002 þ
Q

EI3

� �2

F̂2 ¼ 0 4ð Þ

as Qcr ¼ pEI3=‘. This instability is only of academic importance, however, owing to

the much smaller critical load that can be found from the first two of the moment

equations

M̂0
1 �

Q

EI3

M̂2 þQk̂k2 ¼ 0

M̂0
2 þ

Q

EI3

M̂1 �Qk̂k1 ¼ 0

5ð Þ

B2(0)

B1(0)

B2(l)

B1(l)

Qb3

figure 9.1 Schematic of pinned-pinned strip-beam undergoing pure bending from torque

applied at free end
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After noting that k̂k1 ¼ M̂1=GJ and k̂k2 ¼ M̂2=EI2, one can rewrite these equations as

M̂0
1 þQ

1

EI2

� 1

EI3

� �
M̂2 ¼ 0

M̂0
2 �Q

1

GJ
� 1

EI3

� �
M̂1 ¼ 0

6ð Þ

which can be combined into a single equation for M̂2, viz.,

M̂00
2 þ b2M̂2 ¼ 0 7ð Þ

where

b2 ¼ Q2 1

EI2

� 1

EI3

� �
1

GJ
� 1

EI3

� �
> 0 8ð Þ

The solution is

M̂2 ¼ a sin bx1ð Þ þ b cos bx1ð Þ 9ð Þ

Since M̂2 0ð Þ ¼ M̂2 ‘ð Þ ¼ 0, then b ¼ 0 and a sin b‘ð Þ ¼ 0. Thus, the lowest critical load

is such that b‘ ¼ p so that

Qcr ¼ �
p

‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJ EI2

1� GJ
EI3

� �
1� EI2

EI3

� �
vuut 10ð Þ

In the limit of infinitely deep beams, for which GJ � EI3 and EI2 � EI3, the critical

torque is found to be

Qcr ¼ �
p

‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJ EI2

p
11ð Þ

For deep beams, this value is close to but somewhat smaller than its more accurate

counterpart in Eq. (10), showing that the effects of pre-buckling deformation, which

are associated with EI3, are secondary. Since they raise the predicted buckling load

they are typically regarded as more of academic interest.

9.1.2 CORRECTION FOR THE VLASOV EFFECT

The Vlasov effect stems from the effect of warping rigidity, generally appropriate

only for thin-walled beams with open cross sections. In Section 3.8.1 the strain energy

per unit length and equilibrium equations for this effect are derived. They have the

form

C ¼ 1

2
EGk021 þ GJk2

1 þ . . .
� �

12ð Þ

This has the effect of changing only the torsional equation, so that the equations

governing the buckling are

�ET k̂k0001 þ M̂0
1 þQ

1

EI2

� 1

EI3

� �
M̂2 ¼ 0

M̂0
2 �Q

1

GJ
� 1

EI3

� �
M̂1 ¼ 0

13ð Þ
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Since M̂1 ¼ GJk̂k1 ¼ GJûu01 and both ûu1 ‘ð Þ and M̂2 ‘ð Þ vanish, the second equation can

be integrated once to yield

M̂2 ¼ Q 1� GJ

EI3

� �
ûu1 14ð Þ

which, when substituted into the first equation, yields

�EG

GJ
ûu00001 þ ûu001 þ b2ûu1 ¼ 0 15ð Þ

Letting ûu1 ¼ ûu exp fx1ð Þ, we get a characteristic equation of the form

�EG

GJ
f4 þ f2 þ b2 ¼ 0 16ð Þ

so that

ûu1 ¼ a sin a1x1ð Þ þ b cos a1x1ð Þ þ c sinh a2x1ð Þ þ d cosh a2x1ð Þ 17ð Þ

where

a2
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4b2 EG

GJ

q
� 1

2 EG
GJ

¼ �f2
1

a2
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4b2 EG

GJ

q
þ 1

2 EG
GJ

¼ f2
2

18ð Þ

The boundary conditions are ûu1 0ð Þ ¼ ûu1 ‘ð Þ ¼ 0 and either specifying ûu0 or ûu00 at the

ends; the former sets the warping displacement equal to zero, and the latter repre-

sents a condition of zero stress. Let us consider here the case of zero stress, so that

ûu00 0ð Þ ¼ ûu00 ‘ð Þ ¼ 0. The boundary conditions at x1 ¼ 0 require that b ¼ d ¼ 0. The

boundary conditions at x1 ¼ ‘ give rise to the characteristic equation

a2
1 þ a2

2

� �
sin a1‘ð Þ sinh a2‘ð Þ. Thus, a1‘ ¼ p, so that

Qcr ¼ �
p

‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJ EI2

1� GJ
EI3

� �
1� EI2

EI3

� �
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2EG

‘2GJ

r
19ð Þ

As expected, this correction raises the critical torque at which buckling occurs.

The size of the correction is strongly dependent on the cross-sectional configur-

ation.

9.1.3 CORRECTION FOR INITIAL CURVATURE

Let’s add a correction for initial curvature to the formulation. According to

Hodges (1999) the constitutive law is

F1

M1

M2

M3

8>><
>>:

9>>=
>>; ¼

EA 0 0 � EI3 1þnð Þ
R

0 GJ 0 0

0 0 EI2 0

� EI3 1þnð Þ
R

0 0 EI3

2
664

3
775

«

k1

k2

k3

8>><
>>:

9>>=
>>; 20ð Þ

with I3 � AR2.
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For the pre-buckled state, M3 ¼ EI3k3 ¼ Q. As before, F ¼ 0 and M ¼ Qe3.

However, here

K ¼ 1

R
þ k3

� �
e3 21ð Þ

The perturbation equations then become

F̂ 0 þ 1

R
þ k3

� �eee3 F̂ ¼ 0

M̂0 þ 1

R
þ k3

� �eee3M̂ �Qeee3k̂kþ eee1 F̂ ¼ 0

22ð Þ

As before the perturbation force equation contributes mainly the result that F̂1 � 0,

and the first two of the moment equations become

M̂0
1 þ

Q

EI2

� Q

EI3

� 1

R

� �
M̂2 ¼ 0

M̂0
2 �

Q

GJ
� Q

EI3

� 1

R

� �
M̂1 � F̂F%3

0

¼ 0

23ð Þ

These equations can be combined into a single equation of the form

M̂00
2 þ b2M̂2 ¼ 0 24ð Þ

where

b2 ¼ Q

EI2

� Q

EI3

� 1

R

� �
Q

GJ
� Q

EI3

� 1

R

� �
25ð Þ

With the vanishing of M̂2 at each end, it follows that

b2‘2 ¼ p2 26ð Þ

so that

p2 ¼ Q2‘2

GJ EI2

1� EI2

EI3

� EI2

QR

� �
1� GJ

EI3

� GJ

QR

� �
27ð Þ

The critical torque can be found by solving this expression for Q, yielding two roots.

For zero initial curvature (i.e. infinitely large R), these roots are the same as those of

Eqs. (10). When the initial curvature is small so that Ra ¼ ‘ and a� 1, the roots can

be written as

Qcr ¼ Q0 �1þ Aþ B� 2ABð Þa
2
ffiffiffiffiffiffiffi
AB
p

1� Að Þ 1� Bð Þp

" #
28ð Þ

where

Q0 ¼
p

‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJ EI2

1� GJ
EI3

� �
1� EI2

EI3

� �
vuut

A � GJ

EI3

B � EI2

EI3

29ð Þ
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In the limit for an extremely deep beam, we have A! 0 and B! 0, so that

Qcr ¼ �
p

‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJ EI2

p
þ GJ þ EI2

2R
30ð Þ

The magnitude of the positive root increases because of the presence of initial

curvature. However, the magnitude of the negative root decreases because of the

presence of initial curvature. To put it more in practical language, a deep beam with

initial inplane curvature buckles with a load of smaller magnitude when it is being

bent in such a way as to straighten it, whereas it requires a larger load to buckle such

a beam when it is being bent so as to bend it more.

9.2 cantilevered beam under bending moment

As seen in the previous chapter, a torque can be applied in a variety of ways. We

can conceive of a mechanism that applies a moment, the direction of which follows

the end cross section of the deformed beam, and which induces bending. We expect a

static analysis of this nonconservative load to be inconclusive. That is, we know that

a kinetic analysis is necessary to ascertain the nature of the instability. Despite this,

for completeness we consider a cantilevered beam under a torque created by follower

forces applied at the free end. Such a torque could be realized by equal and opposite

jets in the longitudinal direction applied at the ends of rigid rods attached to the end

of the beam, oriented normal to the axis of the deformed beam; see Fig. 9.2.

For such a beam, the pre-buckled state can be found as

F ¼ 0

M ¼ Qe3

31ð Þ

where Q is the magnitude of the follower moment. The perturbation equations

become

F̂ 0 þ eKK F̂ ¼ 0

M̂0 þ eKKM̂ �MeK̂K þeee1 F̂ ¼ 0
32ð Þ

P

P

B2(l)

B1(l)

b2

b1

figure 9.2 Cantilevered beam under bending induced by equal and opposite follower forces
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The first perturbation equation shows that F̂ 03 ¼ 0. Thus, because F̂3 ¼ 0 at the

boundary where the load is applied, we have F̂3 � 0. The second equation gives

way to two moment equations for out-of-plane bending and torsion, viz.,

M̂0
1 þ

Q

EI2

� Q

EI3

� �
M̂2 ¼ 0

M̂0
2 �

Q

GJ
� Q

EI3

� �
M̂1 � F̂F%3

0

¼ 0

33ð Þ

which leads to a single equation for M̂1 as

M̂00
1 þ b2M̂1 ¼ 0 34ð Þ

where

b2 ¼ Q

EI2

� Q

EI3

� �
Q

GJ
� Q

EI3

� �
35ð Þ

Because M̂1 ¼ M̂2 ¼ 0 at the end where the load is applied, one finds that b � 0,

so that only the trivial solution exists. Therefore, buckling is not possible. Exactly the

same conclusion follows from a moment whose components are constant in the

space-fixed frame.

Thus, we focus here on conservatively applied torques at the free end. To do so, we

can make use of the equations above, specifically, Eqs. (34), together with equations

derived in Chapter 8 for quasi- and semi-tangential torques and for torques applied

through a Hooke joint. Because of the direction of the applied moment here, we

permute the indices associated with the moments of Chapter 8 by the following

replacement rules: 1! 3, 2! 1, and 3! 2. The simplest case is the semi-tangential

torque, which in the deformed-beam cross-sectional basis can be written as

M ¼ Q � 1

2
C31C11 þ C32C12ð ÞB1 �

1

2
C31C21 þ C32C22ð ÞB2 þ B3

� 	

¼ Q � 1

2
ûu2B1 þ

1

2
ûu1B2 þ B3

� �

¼ Q
1

2
ûu03B1 þ

1

2
ûu1B2 þ B3

� � 36ð Þ

which are independent of the pre-buckling deformation. Using the second of these

relations, one finds that the perturbed moment components in the deformed beam

cross-sectional frame can simply be written as

M̂1 ‘ð Þ ¼ �
Q

2
ûu2 ‘ð Þ

M̂2 ‘ð Þ ¼
Q

2
ûu1 ‘ð Þ

37ð Þ

or, in column matrix form, as

M̂ ¼ Q

2
eee3ûu 38ð Þ

In addition we’ll need at least the rotational kinematics since the boundary condi-

tions involve u. Recalling Eqs. (3.137), one can write the curvature to first order as
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k̂k ¼ ûu0 þ ekkûu

¼ ûu0 þ Q

EI3

eee3ûu
39ð Þ

To keep the analysis tractable, we need to ignore the pre-buckling curvature and

rotation, both here and in Eq. (34), so that

M̂0
1 þ

Q

EI2

M̂2 ¼ 0

M̂0
2 �

Q

GJ
M̂1 ¼ 0

40ð Þ

with

k̂k ¼ ûu0 41ð Þ

Letting

b2 ¼ Q2

GJEI2

42ð Þ

the solution can be found as b‘ ¼ p or

Qcr ¼
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GJEI2

p

‘
43ð Þ

The quasi-tangential torque and a torque applied through a Hooke joint have

identical expressions for the case when pre-buckling curvature and rotation are

ignored, given by

M ¼ Q � C31 cos aþ C32 sin að Þ cos aB1 þ sin aB2ð Þ � B3½ �
¼ Q � ûu2 cos a� ûu1 sin a

� �
cos aB1 þ sin aB2ð Þ � B3


 � 44ð Þ

so that

M̂1 ‘ð Þ ¼ Q cos a ûu1 sin a� ûu2 cos a
� �

M̂2 ‘ð Þ ¼ Q sin a ûu1 sin a� ûu2 cos a
� � 45ð Þ

One can express the solution as

b‘ ¼ � cot�1 sin a cos a

ffiffiffiffiffiffiffi
GJ

EI2

r
�

ffiffiffiffiffiffiffi
EI2

GJ

r !" #
46ð Þ

To get an idea of how this varies with a for a particular case, consider an isotropic

beam with deep rectangular cross section, so that

GJ

EI2

¼ 1

2 1þ nð Þ
1
3
bh3

1
12

bh3
¼ 2

1þ n
47ð Þ

For this case

Qcr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJ EI2

p

‘
cot�1 1� nð Þ cos a sin affiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffi

1þ n
p

� 	
48ð Þ

A plot of b‘=p versus a for n ¼ 1=3 is shown in Fig. 9.3 where it is noted that the

solution is valid for positive or negative values of Q and where for a ¼ 0 or 908 its

SIMITSES - Title 0750678755_ch09 Final Proof page 258 3.11.2005 7:26pm

258 Lateral-Torsional Buckling of Deep Beams



value is p=2. This means that the lateral-torsional buckling load for a semi-tangential

torque is at least twice that for a quasi-tangential torque. Remember that these

torques differ from each other by an infinitesimal amount! Thus, the lateral-torsional

buckling moment for a cantilever under an applied bending moment is very sensitive to

small differences in the way the moment is applied: tangentially, no buckling is

possible; semi-tangentially, b‘ ¼ p; and quasi-tangentially, b‘ � p=2.

9.3 cantilevered beam under transverse force

The original work on the lateral-torsional stability of cantilevered beams goes

back to the pioneering work of Michell (1899), Prandtl (1899), and H. Reissner

(1904). Michell formulated the linear model for deep beams, and Prandtl and

Reissner independently developed closed-form approximations for the buckling

load that included some effects of bending prior to buckling. Hodges and Peters

(1975) corrected some small errors in the earlier work. The corrected equations

turned out to be simpler than the original ones, and Hodges and Peters used an

asymptotic expansion to develop a closed-form buckling load formula that included

the effect of bending prior to buckling in an asymptotically correct way. The method

of asymptotic expansions was also used by E. Reissner (1979) to include the effect of

shear deformations on the buckling of cantilever beams.

Since 1979, little further attention was given to the lateral buckling of cantilever

beams until the advent of practical applications with composite materials. Work which

attempts to address the potential of composites to improve the lateral-torsional stabil-

ity of I-beams was presented by Pandey et al. (1995) based on the composite I-beam

theory of Bauld and Tzeng (1984). Unfortunately, the theory of Bauld and Tzeng has

been shown to fail in certain situations by comparison with numerical solutions and

with asymptotically exact treatments of composite I-beams, such as the one developed

by Volovoi et al. (1999). Here we will present the theory in terms of the stiffnesses of

the beam model of Section 3.7, Eq. (3.117) in particular, augmented with the Vlasov

correction (see Section 3.8.1). In this Section we will present a derivation of

20 40 60 80
α

0.1

0.2

0.3

0.4

0.5

bl
π

figure 9.3 Plot of nondimensional lateral-torsional buckling load caused by applied quasi-

tangential torque versus a
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the governing equations for the lateral-torsional buckling of a cantilevered composite

beam. In the governing equations the effects of pre-buckling deflections, offset of

the applied load from the centroid, and elastic coupling will be included. For the

strip-beam case an approximate, closed-form solution is presented for the buckling

load taking into account all of these phenomena. The equations including the Vlasov

effect are much more complicated. Results obtained from numerical solutions without

some of the secondary effects will be included. For formulae that govern the more

general case, the reader is referred to Hodges and Peters (2001).1

9.3.1 DERIVATION OF GOVERNING EQUATIONS

Consider a thin-walled composite I-beam. When the flange length is zero, the beam

has a thin rectangular cross section (herein termed a ‘‘strip-beam’’), so the treatment

here is designed to treat both cases. Let the beam be cantilevered and loaded at its free

end with a transverse dead load. The point of application for the load is in the plane of

greatest flexural rigidity and at a distance e above the centroidal axis; see Fig. 9.4. The

load is directed vertically downward, perpendicular to the undeformed beam axis and

parallel to the plane of the beam’s greatest flexural rigidity. In the figure B1, B2, and

B3 are unit vectors fixed in the cross-sectional frame. The beam is spanwise uniform

and made of generally anisotropic materials, the only restriction being that the plane

of greatest flexural rigidity is assumed to be a plane of symmetry for the beam

geometry, material, and loading. This implies that pre-buckling deflections of the

beam axis occur in this plane and that in the pre-buckling state there is neither torsion

nor out-of-plane bending. Thus, the cross-sectional frame rotates about b3 ¼ B3 by

the angle u3ðx1Þ, where x1 is the beam axial coordinate.

Ignoring the stretching of the beam, this means that there is elastic coupling only

between torsion and bending about the weak flexural axis. Asymptotically-exact

formulae for the cross-sectional stiffness constants of thin-walled anisotropic strip-

and I-beams can be found in Volovoi et al. (1999). The only difference in the two

cases is that the Vlasov term (see Fig. 9.4) is absent in the strip-beam case but very

important for the I-beam. For the present analysis, the constitutive law is only

needed for the moment stress resultants. Letting x2 and x3 be its cross-sectional

principal axes for bending, it is of the form

e

P

B2(l)

B1(l)

b1

b2

figure 9.4 Schematic of end-loaded cantilever

1 Portions of this material are based on Hodges and Peters (2001), used by permission.
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M1 ¼ D11k1 þD12k2

M2 ¼ D12k1 þD22k2

M3 ¼ D33k3

Q1 ¼ D44k01

49ð Þ

where ð Þ0 denotes the derivative with respect to x1. Here Latin indices vary from 1 to

3, and Greek ones from 2 to 3. It is noted that B0i ¼ k� Bi with ki ¼ k � Bi. Thus, k1

is the elastic twist per unit length, and ka are the elastic bending curvatures. The

cross-sectional moment stress resultant is M, with Mi ¼M � Bi; Q1 is the bi-moment.

For isotropic beams D12 ¼ 0; D11, D22, D33, and D44 are usually written as GJ,

EI2, EI3, and EG with G as the shear modulus, E as the Young’s modulus, J as the

Saint-Venant torsion constant, Ia as area moments of inertia, and G as the Vlasov

constant (sometimes called warping rigidity). The only difference between the models

for the two types of beams considered is the presence (absence) of the stiffness

constant D44 in the case of the I-beam (strip-beam).
The present analysis will be based on the geometrically-exact equilibrium equa-

tions of classical1 beam theory as augmented with the Vlasov effect. One can write

these equations in a compact form as demonstrated in Section 3.7 and easily augment

them with the Vlasov effect to yield

F 01 � F2k3 þ F3k2 ¼ 0

F 02 � F3k1 þ F1k3 ¼ 0

F 03 � F1k2 þ F2k1 ¼ 0

M0
1 �M2k3 þM3k2 �Q001 ¼ 0

M0
2 �M3k1 þM1k3 � 1þ «ð ÞF3 � k3Q

0
1 ¼ 0

M0
3 �M1k2 þM2k1 þ 1þ «ð ÞF2 þ k2Q

0
1 ¼ 0

50ð Þ

where the cross-sectional stress resultant is F, and Fi ¼ F � Bi. For small-strain

analysis, it is permissible to drop the stretching strain « compared to unity in the

last two equations.

For lateral-torsional buckling analysis, one can let

ki ¼ ki þ k̂ki

Fi ¼ Fi þ F̂i

Mi ¼Mi þ M̂i

Q1 ¼ Q1 þ Q̂Q1

51ð Þ

where the^quantities are regarded as infinitesimal, and write two sets of equations

from the above. The first set, which contains no^quantities, can be described as the

pre-buckling equations of equilibrium. The second set which is linear in the^quan-

tities is the set of equations which govern the stability.

Thepre-bucklingequilibriumequationsonly involveF1, F2, andM3 andaregivenby

F
0
1 � F2k3 ¼ 0

F
0
2 þ F1k3 ¼ 0

M
0
3 þ F 2 ¼ 0

52ð Þ

1 The term ‘‘classical’’ is used to refer to the fact that transverse shear deformation is neglected.
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where k03 ¼ u
0
3. Letting F 1 ¼ P sin u3 and F2 ¼ P cos u3, one can reduce the pre-

buckling equations to one equation

D33u
00
3 þ P cos u3 ¼ 0 53ð Þ

subject to boundary conditions u3 ‘ð Þ ¼ 0 and M3 0ð Þ ¼ �eP sin u3 0ð Þ.
The required perturbation equations for buckling analysis can be written as

F̂ 03 � P sin u3k̂k2 þ P cos u3k̂k1 ¼ 0

M̂0
1 � k3M̂2 þMM3k̂k2 � Q̂Q001 ¼ 0

M̂0
2 �M3k̂k1 þ k3M̂1 � F̂3 � k3Q̂Q

0
1 ¼ 0

54ð Þ

subject to boundary conditions F̂3 ‘ð Þ ¼ 0, k̂k1 ‘ð Þ ¼ 0, k̂k01 0ð Þ ¼ 0, M̂1 0ð Þ � Q̂Q01 0ð Þ �
eF̂3 0ð Þ ¼ 0, and M̂2 0ð Þ ¼ 0.

The exact solution to these equations is unknown. The approach of Hodges and

Peters (1975) provides an approximate formula for the buckling load in the presence

of a variety of secondary phenomena. To undertake this approach in the present

context, one must introduce a set of small parameters. First, the square of the

pre-buckling rotation is assumed to be small compared to unity, so that u
2

3 � 1.

Thus, the pre-buckling rotation equation, Eq. (53), can be simplified to

D33u
00
3 þ P ¼ 0 55ð Þ

Using arguments similar to those of Hodges and Peters (1975) one can easily show

that the following small parameters are all of the same order

max u3

� �
¼ P‘2

D33

e ¼ e

‘

A ¼ D11

D33

B ¼ D22

D33

56ð Þ

Thus, ignoring terms that are second order in these small parameters, one can solve

Eq. (55) to obtain

u3 ¼
P ‘2 � x2

1

� �
D33

57ð Þ

It should be noted that Hodges and Peters (1975) did not consider the parameter e.

Introducing z and g such that

D12 ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p
D44 ¼ gD11‘

2 ¼ gAD33‘
2

58ð Þ

one can write the entire constitutive law in terms of D33 and the non-dimensional

parameters A, B, z, and g. Following Hodges and Peters (1975), we note that the

combination of the second of Eqs. (54) plus u3 times the third yields an equation

which, when small terms are consistently neglected, is a perfect differential of the

following equation:

SIMITSES - Title 0750678755_ch09 Final Proof page 262 3.11.2005 7:26pm

262 Lateral-Torsional Buckling of Deep Beams



kþ Bk̂k2 þ Ak̂k1u3 þ
ffiffiffiffi
A
p ffiffiffiffi

B
p

z k̂k1 þ k̂k2u3

� �
þ F̂3u

0
3

P
� A‘2gu3k̂k001 ¼ 0 59ð Þ

where k is an arbitrary constant to be determined later. This equation can be solved

along with the first of Eqs. (54) for k̂k1 and k̂k2. When small terms are discarded

consistently, one obtains

k̂k1 ¼ �f0 þ
u3

ffiffiffiffi
A
p ffiffiffiffi

B
p

zf0 � fu
0
3

� �
B

k̂k2 ¼
�Bkþ

ffiffiffiffi
A
p

B
3
2zf0 � Bfu

0
3 þ

ffiffiffiffi
A
p

u3

ffiffiffiffi
A
p

B 1� 2z2
� �

f0 þ 2
ffiffiffiffi
B
p

zfu
0
3 �

ffiffiffiffi
A
p

B‘2gf000
h i

B2

60ð Þ

where the nondimensional perturbation out-of-plane shear force f ¼ F̂3=P. Thus,

the M̂1 equation, the second of Eqs. (54), and all the boundary conditions can now be

expressed completely in terms of f and its derivatives with respect to x1.

To facilitate the writing of this equation, we introduce a nondimensional buckling

load b such that P ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p
=‘2 ¼ b

ffiffiffiffiffiffiffi
AB
p

D33=‘
2 and a nondimensional axial

coordinate x such that ‘x ¼ x1. By using the boundary conditions the constant k

can be found to be

k ¼
A

3
2

ffiffiffiffi
B
p

b 1� z2
� �

f0 0ð Þ � gf000 0ð Þ

 �

2
61ð Þ

where the prime now indicates a derivative with respect to x. However, use of the

boundary conditions leads to homogeneous equations with boundary values of the

unknown in them. It turns out that the boundary conditions must be multiplied by

appropriate constants in order to make them variationally consistent. The details of

this operation are straightforward and not given here. The resulting equation is

g 1� A 1� x2
� �

bz

 �

f0000 þ 4Axbgzf000

� 1� z2 � Ab

2
3 3x2 � 1
� �

bg þ 2z 3g þ 1� x2
� �

1� z2
� �
 �� 
� �

f00

þAxb 9bg � 2z þ 2z3
� �

f0

�b 1� Bð Þx2b� z � Ab 3g þ x2 1� x2
� �

bz þ 1� 3x2
� � 1

2
� z2

� �� 	� �
f ¼0

62ð Þ

and the boundary conditions are

f 1ð Þ ¼ f0 1ð Þ ¼ 0

g 1�Abzð Þf00 0ð Þ �Ab2f 0ð Þ
2

� 	
¼ 0

g 1�Abzð Þf000 0ð Þ � 1� z2
� �

1�Abzð Þ �Abg z� bð Þ

 �

f0 0ð Þ �
ffiffiffiffi
B
p

ebf 0ð Þffiffiffiffi
A
p ¼ 0

63ð Þ

For stability analysis it is convenient to work in terms of an energy functional in

terms of f and its derivatives and boundary values. This functional can be shown to

be of the form

L ¼ 1

2

Z 1

0

L0f2 þ L1f02 þ L2f002
� �

dxþ Ab2gf 0ð Þf0 0ð Þ
2

�
ffiffiffiffi
B
p

ebf2 0ð Þ
2
ffiffiffiffi
A
p 64ð Þ
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where

L0 ¼ �b 1� Bð Þx2b� z

 �

þAb2

2
1þ 6g � 2x4bz � 2z2 � x2 3� 2bz � 6z2

� �
 �
L1 ¼ 1� z2 �Ab

2
3 3x2 � 1
� �

bg þ 2z g þ 1� x2
� �

1� z2
� �
 �� 


L2 ¼ g 1�A 1� x2
� �

bz

 �

65ð Þ

The above differential equation, boundary conditions, and functional reduce to the

corresponding expressions given by Hodges and Peters (1975) when g ¼ e ¼ z ¼ 0.

For both the strip- and I-beam cases, the load offset parameter e is multiplied byffiffiffiffiffiffiffiffiffiffi
B=A

p
in its only appearance in the formulation. Somewhat complicating the pro-

cedure from here on, is the fact that this quantity may be large under certain

circumstances, thus magnifying the influence of the e parameter. In such cases, the

assumption that e is small has to be relaxed.

9.3.2 APPROXIMATE SOLUTION

Case of Zero Warping Rigidity

For thin beams having rectangular cross sections—e.g., strip-beams—the Vlasov

effect may be ignored even for anisotropic beams according to Volovoi et al. (1999).

For the case of zero warping rigidity, i.e., g ¼ 0, the above equations and energy

functional are greatly simplified. The main reason for the simplification mathemat-

ically is that the order of the governing equation and number of boundary conditions

are reduced. The differential equation becomes

1� Abz 1� x2
� �
 �

1� z2
� �

f00 þ 2Abzx 1� z2
� �

f0

þ b 1� Bð Þx2b� z � Ab x2 1� x2
� �

bz þ 1� 3x2
� � 1

2
� z2

� �� 	� �
f ¼ 0

66ð Þ

and the boundary conditions are

f 1ð Þ ¼ 1� z2
� �

1� Abzð Þf0 0ð Þ þ
ffiffiffiffi
B
p

ebf 0ð Þffiffiffiffi
A
p ¼ 0 67ð Þ

The corresponding energy functional is

L ¼ 1

2

Z 1

0

L0f2 þ L1f
02

� �
dx�

ffiffiffiffi
B
p

ebf2 0ð Þ
2
ffiffiffiffi
A
p 68ð Þ

where

L0 ¼ �b 1� Bð Þx2b� z

 �

þ Ab2

2
1� 2x4bz � 2z2 � x2 3� 2bz � 6z2

� �
 �
L1 ¼ 1� z2 � Ab

2
2z g þ 1� x2

� �
1� z2
� �
 �� 
 69ð Þ

An analytical solution of this boundary-value problem is not known to the authors.

However, using the solution to the case A ¼ B ¼ e ¼ z ¼ 0 to obtain an accurate

comparison function, as done by Hodges and Peters (1975), one obtains a useful

result. To do so, one notes that the simplified equation is

f00 þ b2x2f ¼ 0 70ð Þ
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with boundary conditions f 1ð Þ ¼ f0 0ð Þ ¼ 0. The solution is given by

f ¼
ffiffiffi
x
p

J�1
4

4:01260x2

2

� �
71ð Þ

where the factor 4.01260 is the smallest positive zero of the Bessel function J�1=4 b=2ð Þ.
Using this function in the energy functional allows one to obtain an approximate

solution for b, given by

b ¼ 4:01260 1þ 0:642365Aþ B

2
� 1:02543

ffiffiffiffi
B

A

r
e

 !
þ 2:78473z � 1:04000z2 72ð Þ

where z2 is taken to be of the same order as A, B, and e. Subject to a few limitations,

one can use this expansion to find the buckling load of uniform strip-beams. The

pre-buckling deflection effects are associated with A and B and, while accurately

captured by the formula, tend to be small corrections to the standard result of

b ¼ 4:01260. Because they tend to raise the buckling load, they are typically ignored.

The effects of z and e do not fall into this category, as both can lower the buckling

load.

Fortunately, the expansion in z is valid for jzj# 0:3 or so, which is sufficiently

large for most practical purposes. To illustrate the utility of the buckling formula of

Eq. (72), in Fig. 9.5 we compare results from it with those of the exact solution of Eq.

(66) with all secondary effects set equal to zero except z. Note that the exact solution

for this special case can be expressed in terms of the Kummer confluent hypergeo-

metric function; see Abramowitz and Stegun (1970). As long as z is small, the

formula and the exact solution agree quite well. The accuracy of the formula for

A and B < 0:1 is comparable to its accuracy for jzj < 0:3.

However, when e
ffiffiffiffiffiffiffiffiffiffi
B=A

p
is not small of the same order as A, B, and e, the

expansion in Eq. (72) breaks down. As an example, this can happen in anisotropic

strip-beams when the effective ratio of extension modulus to shear modulus (E/G)

−0.4 −0.2 0.2 0.4
z

b

1

2

3

4

5

figure 9.5 Plot of b versus z ignoring all other secondary effects; solid line is exact solution of

Eq. (66) with A, B and e set to zero, and dashed line is from Eq. (72)
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becomes large, which tends to magnify the influence of the load offset. The solution

for the case in which e
ffiffiffiffiffiffiffiffiffiffi
B=A

p
6¼ 0 but where otherwise A ¼ B ¼ z ¼ 0 is

f ¼
ffiffiffi
x
p

c1J�1
4

x2b

2

� �
þ c2J1

4

x2b

2

� �� 	
73ð Þ

subject to the boundary conditions

f 1ð Þ ¼ 0

f0 0ð Þ þ
ffiffiffiffi
B
p

ebf 0ð Þffiffiffiffi
A
p ¼ 0

74ð Þ

which leads to the characteristic equation

4e
ffiffiffi
B
A

q ffiffiffi
b
p

G 3
4

� � J1
4

b

2

� �
� 4

G 1
4

� �þ 1

G 5
4

� �
" #

J�1
4

b

2

� �
¼ 0 75ð Þ

which can be solved numerically for b given any value of e
ffiffiffiffiffiffiffiffiffiffi
B=A

p
. A plot of the

solution is shown in Fig. 9.6. Indeed, in the limit of large and positive e
ffiffiffiffiffiffiffiffiffiffi
B=A

p
, the

result approaches the case of applying a downward compressive load at the end of a

long, rigid rod extending upward from the beam axis (instead of from within the

beam cross section). This buckling load b clearly approaches zero as the length of

the rigid rod increases. On the other hand, when e
ffiffiffiffiffiffiffiffiffiffi
B=A

p
is large and negative, the

buckling load approaches that for a downward tensile load applied at the end of a

long, rigid rod extending downward (i.e., in the direction of the load). In this case

the buckling load approaches that for the case of f 0ð Þ ¼ 0, for which b ¼ 5:56178,

the smallest positive zero of J1=4 b=2ð Þ. Obviously no linear function of e such as

Eq. (9.72) can capture this behavior outside of a small range near e
ffiffiffiffiffiffiffiffiffiffi
B=A

p
¼ 0. Eq.

(72) is then not valid in the cases when e
ffiffiffiffiffiffiffiffiffiffi
B=A

p
is not small, but it can serve to

indicate the trend of b versus e. One can develop a comparison function which

contains e as a parameter, but the resulting buckling load formula turns out to be

very complex.

−4 −2 2 4

1

2

3

4

5

b

0
e

B

A

figure 9.6 Plot of b versus e
ffiffiffiffiffiffiffiffiffiffi
B=A

p
ignoring all other secondary effects
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Case of Nonzero Warping Rigidity

The case of nonzero warping rigidity is far more difficult. The governing equations

and boundary conditions with all secondary effects set to zero are

gf0000 � f00 � x2b2f ¼ 0

f 1ð Þ ¼ f0 1ð Þ ¼ f00 0ð Þ ¼ gf000 0ð Þ � f0 0ð Þ ¼ 0
76ð Þ

Other than an infinite series solution, results of which are presented by Timoshenko

and Gere (1961) (and also following), the solution to this deceptively simple-looking

boundary-value problem is not known to the authors. Without a one-term solution

which has an explicit behavior in g, one has no exact ‘‘zeroth-order’’ solution to use

as the assumed mode in the energy to find the buckling load in the presence of the

small parameters A, B, e, and z. The only alternative seems to be an approximate

comparison function.

In Eq. (76), the parameter, g, can vary from being small compared to unity to

being considerably larger than unity. In order to obtain a better understanding of

the behavior of the equation, it is interesting to first look at the limiting behaviors

for cases of g small and g large. A natural means of doing this is the method of

matched asymptotic expansions. In that method, the buckling load parameter, b,

must be expanded in some selected powers of g as must the solution, f, itself.

Furthermore, there must be an expansion of the independent variable, x, in terms of

powers of g at the fixed and free ends (the boundary layers) in order to capture the

correct limiting behavior. The solutions in the boundary layers (inner solutions)

must be matched (as the inner variables become large) to the general solution away

from the ends (outer expansion) as the outer variable approaches either end. This

yields a unique solution for the buckling load and the buckling mode shape. Since

the term with g multiplies f0000, and the next highest derivative is f00, all expansions

for small g must be done in powers of g1=2 in order to allow the inner and outer

solutions to be matched. As it turns out, only the fixed end (x ¼ 1) has a boundary

layer that affects the outer solution and buckling load to order g1=2 or g1. The

resultant expansion shows that the boundary layer dies out into the outer solution as

exp 1� xð Þ=g1=2

 �

. The next term in the outer expansion (and the next term in the

expression for the approximate buckling load) can then be found by solving a

nonhomogeneous, second-order equation for the outer solution. This involves inte-

grals of the Bessel functions that are rather involved. For our purposes here, it is

enough to know how the fixed-end boundary layer behaves and, particularly, how it

decays into the outer region.

The large g solution can be written in terms of confluent, hypergeometric func-

tions, described by Abramowitz and Stegun (1970). Since no derivatives are lost as g

becomes large, there are no boundary layers or matching required in that case. One

can do a straightforward expansion in terms of the small parameter, 1=g. The first

expansion term in that solution involves fairly complicated integrals of the hypergeo-

metric functions and is not tractable in closed form. Nevertheless, the fact that there

are no boundary layers in that solution indicates that an approximation for the

entire mode, fairly accurate at all values of g, might be constructed from simple

polynomials plus the crucial boundary layer terms. In contrast to the asymptotic

expansions, in which boundary conditions are satisfied only to the order of the

expansion that is taken, here, we use the exponential decay term for the fixed end

and add the simplest possible polynomial that will match the other boundary condi-

tions exactly. We expect that this comparison function will provide accurate results.
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Whether or not this expectation is realized can only be determined by comparison

with numerical solutions to the exact equations.

Taking a cubic polynomial along with the exponential, one finds the simplest

comparison function of that form (i.e., one which satisfies all the boundary condi-

tions in Eqs. 9.76) to be

u ¼ 1� xð Þ2 1þ 2x� 6gð Þe�
1ffiffi
g
p þ 6e

�1�xffiffi
g
p

g 1þ 2gð Þ

þ 2
ffiffiffi
g
p

1� x3 � 3
ffiffiffi
g
p þ 6 1� xð Þg � 6g

3
2

h i 77ð Þ

Simplifying the energy functional of Eq. (64) by setting A, B, e, and z equal to zero,

one can obtain an approximate closed-form expression for the nondimensional

buckling load b, given by

b2
0 ¼

R 1

0
f
02 þ gf

002
� �

dxR 1

0
x2f2dx

78ð Þ

The accuracy of this predicted buckling load as a function of g can be regarded as a

measure of how well u performs as a one-term approximation of the actual buckling

mode f. The resulting nondimensional buckling load can be written as

b0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0 þ h1e

� 1ffiffi
g
p þ h2e

� 2ffiffi
g
p

d0 þ d1e
� 1ffiffi

g
p þ d2e

� 2ffiffi
g
p

vuut 79ð Þ

where

h0 ¼ 1512g 3� 15
ffiffiffi
g
p þ 40g � 60g

3
2 þ 60g2 � 60g

5
2

� �
h1 ¼ 756

ffiffiffi
g
p

3� 10g 1� 12g 1þ 2gð Þ½ �f g

h2 ¼ 756 1� 10g
3
2 3þ 4 2

ffiffiffi
g
p þ 3g þ 3g

3
2 þ 3g2

� �h in o
d0 ¼ 2g 140� 9

ffiffiffi
g
p

140� 520
ffiffiffi
g
p þ 70g þ 8862g

3
2 � 47355g2

�h
þ131880g

5
2 � 215460g3 þ 224280g

7
2 � 243180g4

�i
d1 ¼

ffiffiffi
g
p

133� 18 28
ffiffiffi
g
p � 3g � 28g

3
2 � 2436g2 þ 21672g

5
2

�h
�75600g3 þ 124320g

7
2 þ 40320g4 þ 161280g

9
2 þ 362880g5

�i
d2 ¼ 19� 18gh7� 3g 4� 35

ffiffiffi
g
p

1þ 2gð Þ 8� 3g 111þ 416
ffiffiffi
g
p þ 190g

� �
 �� 

i

80ð Þ

Indeed, one finds an error of less than 1% over a wide range of g, certainly within an

acceptable range of error for design purposes. In Fig. 9.7, the value of b0 is plotted

versus g over a wide range. The symbols are the exact solutions at discrete values of g

taken from Table 6.3 of Timoshenko and Gere (1961), page 259, corrected values of

which are presented in Table 9.1. Notice that the symbols are on top of the curve, to

within plotting accuracy, over the whole range of g shown. Moreover, for g ! 0, the

relative error from Eq. (79) is only 0.3% off the exact solution of 4.01260. For g !1,

the limiting value of b0 is 13:9473g, only about 1% off the exact value of 13:8058g.

When f ¼ u is substituted into the energy, Eq. (64), one can make use of symbolic

computational tools to solve for b in terms of g and the small parameters A, B, e, and

z. The resulting formula is quite lengthy (see Hodges and Peters, 2001) but can be

programmed in a spreadsheet to give rapid estimation of the lateral-torsional buck-

ling load over a wide range of g and small values of A, B, e, and z.
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To give some indications of the behavior of the solution, numerical results from

the exact perturbation equations are presented in Figs. 9.8–9.18. In Figs. 9.8–9.10,

the effect of pre-buckling deflections on the buckling load is shown. This effect was

shown by Hodges and Peters (1975) to be reflected in the parameters A and B. It

should be noted that since the buckling load increases significantly for larger A and

B, these cases tend to become of less practical significance. In Figs. 9.11 and 9.12 the

variation of the buckling load with the offset of the load, e, is shown for small and

moderately large values of A and B. Clearly this is a very significant parameter and

shifts the buckling load radically. In Fig. 9.13 we look at the effect of elastic coupling.

It is shown that bending-torsion coupling can strongly affect the buckling load, either

positively or negatively. The behavior with z appears to be nearly linear for this case.

It is clear that elastic coupling could be used to tailor the structure to have a larger

buckling load without changing the bending or torsional stiffnesses. In Figs. 9.14 and

table 9.1 Corrected results

from Timoshenko and Gere (1961).

g b

10 44.3391

1 15.7078

1/2 12.1650

1/3 10.6487

1/4 9.75474

1/6 8.69273

1/8 8.05211

1/10 7.60915

1/12 7.27860

1/14 7.01961

1/16 6.80964

1/24 6.24835

1/32 5.91400

1/40 5.68755

2 4 6 8 10
g

10

20

30

40

b0

figure 9.7 b0 versus g from Eq. (79) compared with exact solution (symbols) from Timoshenko

and Gere (1961)
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9.15 the effects of the Vlasov term are depicted, with zero and nonzero values of all

other parameters, respectively.

For I-beams as well as for the strip-beam, when e
ffiffiffiffiffiffiffiffiffiffi
B=A

p
is not small of the same

order as A, the above approximate solution breaks down. For I-beams, however, the

value of
ffiffiffiffiffiffiffiffiffiffi
B=A

p
can be large for two different reasons. First, just as for strip-beams,

the effective G=E can be small for anisotropic I-beams causing A to be smaller than

B. Second, even for isotropic I-beams, B=A can be large because the flange width is

typically larger than the wall thickness. This means that the effect of load offset for

composite I-beams can be much more significant than for isotropic strip-beams. To

see this more clearly, we consider the composite beam example presented by Pandey

et al. (1995). Results obtained therein will also be compared with the present results.

The I-beam has a uniform wall thickness of 0.00953 m, a depth of 0.2032 m, and a

flange width of 0.1016 m. The length considered here is ‘ ¼ 1:2192 m. In the under-

taking of this comparison, the following difficulties were encountered. First, the 3-D
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figure 9.8 Buckling load versus A ¼ B for e ¼ 0, z ¼ 0, g ¼ 0:1 from a numerical solution of

exact equations
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figure 9.9 Buckling load versus B ¼ 2A for e ¼ 0, z ¼ 0, g ¼ 0:1 from a numerical solution of

exact equations
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elastic constants for the material system considered by Pandey et al. (1995) were not

given directly. Only the fiber and matrix properties were given, along with the

statement that the fiber volume fraction was taken to be 60%. No statement was

given as to which model was used to obtain the 3-D elastic constants, nor was their

actual value given. By comparison with their results, however, it was ascertained

that the simple strength of materials model was used. This gives elastic constants

ofE11 ¼ 42:7� 109 N=m2
, E22 ¼ 8:02� 109 N=m2

, G12 ¼ 3:10 � 109 N=m2
, and n12

¼ 0:248.

The second difficulty was that the plots of torsional rigidity D11, bending stiffness

D22, and warping rigidity D44 in Pandey et al. (1995) are at variance with those

obtained from the asymptotically correct formulation of Volovoi et al. (1999) as well

as with the basic physics of the problem. The I-beam considered was such that the

upper and lower flanges were unidirectional with 08 ply angle. Only the web con-

tained off-axis fibers, being basically a single layer of material with ply angle u. Since
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figure 9.10 Buckling load versus A ¼ 2B for e ¼ 0, z ¼ 0, g ¼ 0:1 from a numerical solution

of exact equations
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figure 9.11 Buckling load versus e for A ¼ 0:025, B ¼ 0:025, z ¼ 0, g ¼ 0:1 from a numerical

solution of exact equations
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the web does not contribute to the smallest bending rigidity, it should not be a

function of ply angle. This is not at all reflected in the plots of D22 and D44 in Pandey

et al. (1995). For both these elastic constants, the asymptotic analysis shows them to

be constant with ply angle, as expected, with values of D22 ¼ 71200 N-m2 and

D44 ¼ 735 N-m4. Although our values for these constants at 08 ply angle are very

close to theirs (see their Fig. 9), they show both D22 and D44 to be sharply decreasing

from their maximum values at 08 ply angle to very small values at a ply angle of 908.
It is also noted that the units given by Pandey et al. (1995) are incorrect for D44, the

correct units being N-m4 rather than kN-m.

Finally, Pandey et al. (1995) show the torsional rigidity, D11, on the same plot as

D22, reaching a maximum value at ply angle of 458. However, results from the

asymptotic analysis for D11 are three orders of magnitude smaller than theirs;

moreover, from the asymptotic analysis the correct peak value is not nearly as
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figure 9.12 Buckling load versus e for A ¼ 0:05, B ¼ 0:05, z ¼ 0, g ¼ 0:1 from a numerical

solution of exact equations

−0.4 −0.2 0.2 0.4
z

2

4

6

8

10

b

figure 9.13 Buckling load versus z for e ¼ 0, A ¼ 0:025, B ¼ 0:025, g ¼ 0:1 from a numerical

solution of exact equations
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large relative to the 08 ply angle value as the one they obtained. For ply angle of 08,
we obtain D11 ¼ 364 N-m2, and for ply angle of 458 we obtain D11 ¼ 610N-m2. For

completeness, we note that for 08 ply angle D33 ¼ 1:14� 106 N-m2 and for ply angle

of 458 we get D33 ¼ 912000 N-m2.

The cases with ply angles of 08 and 458 are chosen for presentation here. For both

cases z ¼ 0; indeed, we have found it difficult to conceive of an I-beam configuration

which will yield a large value of z. For the case with ply angle equal to 08, the

nondimensional constants are A ¼ 0:000319, B ¼ 0:0625, and g ¼ 1:36. For the case

with ply angle of 458, A ¼ 0:000669, B ¼ 0:0780, and g ¼ 0:810. The sensitivity with

respect to e is large for both cases because of the large values of
ffiffiffiffiffiffiffiffiffiffi
B=A

p
, resulting in

highly nonlinear behavior of b relative to e as shown in Figs. 9.16 and 9.17. As with

the strip-beam, when
ffiffiffiffiffiffiffiffiffiffi
B=A

p
is large, one must not expect a linear trend with respect

to e to be valid. Moreover, for the case in which e < 0, the buckling load increases, so

the use of the value for e ¼ 0 is conservative.
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figure 9.14 Buckling load versus g for e ¼ 0, A ¼ 0:025, B ¼ 0:025, z ¼ 0 from a numerical

solution of exact equations
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figure 9.15 Buckling load versus g for e ¼ 0:1, A ¼ 0:0125, B ¼ 0:025, z ¼ �:2 from a numer-

ical solution of exact equations
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Given the significant discrepancies in the cross-sectional constants used in Pandey

et al. (1995), one should not expect our results to be in agreement with theirs. At 08
ply angle, their results give a buckling load of approximately 72,000 N, versus

63,500 N from our analysis. At 458 they obtained 54,000 N, whereas our results

give 67,500 N. Indeed, not only are the numerical values very different; more signifi-

cantly, the trend versus ply angle is the opposite. Their results are maximum at 08,
while ours peak at 458; their results are minimum at 458 but ours at 08. From the

above discussion of the section properties, there are significant reasons to believe

that the results presented by Pandey et al. (1995) are incorrect. On the other

hand, although we do not have any results from a truly independent approach to

validate ours (such as 3-D finite elements), there are good reasons to suggest

the present results are correct: the well-validated asymptotic formulae used for

the section constants and the trends in these constants following the expected

behavior.

Accurate treatment of the cases where e
ffiffiffiffiffiffiffiffiffiffi
B=A

p
is not small compared to unity is

far more problematic. Somehow one must remove the restriction that e is a small

parameter, because it always appears multiplied by
ffiffiffiffiffiffiffiffiffiffi
B=A

p
in the boundary condi-

tions. Alternatively, it could mean treating A as a much smaller parameter than all
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figure 9.16 Plot of b versus e for composite I-beam of Pandey et al. (1995) with ply angle of 08
from a numerical solution of the exact equations using elastic constants from Volovoi et al. (1999)
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figure 9.17 Plot of b versus e for composite I-beam of Pandey et al. (1995) with ply angle of 458
from a numerical solution of the exact equations using elastic constants from Volovoi et al. (1999)
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others. Proceeding as above with these kinds of changes would make the already long

formulae above far more complicated. For the case in which all pre-buckling deflec-

tions are ignored, an approach based on the treatment of Rayleigh’s quotient with a

free parameter can be developed as follows; see Hodges (1997).

The governing equation is the same as Eq. (76), but with a different boundary

condition at the free end, viz.,

gf0000 � f00 � x2b2f ¼ 0

f 1ð Þ ¼ f0 1ð Þ ¼ f00 0ð Þ ¼ gf000 0ð Þ � f0 0ð Þ �
ffiffiffiffi
B
p

ebf 0ð Þffiffiffiffi
A
p ¼ 0

81ð Þ

The simplest possible admissible function that satisfies the first three boundary

conditions and contains both the exponential term and a free parameter a is used,

given by

u ¼ � 1� xð Þ2e�
1ffiffi
�
p
þ 2 1� xð Þ ffiffiffigp þ 2ge

� 1�xffiffi
�
p
� 2g 1� a 2� 3xþ x3

� �
 �
82ð Þ

The energy functional depends on f and its derivatives and is of the form

L ¼ 1

2

Z 1

0

gf002 þ f02 � b2x2f2
� �

dx�
ffiffiffiffi
B
p

ebf2 0ð Þ
2
ffiffiffiffi
A
p 83ð Þ

One first substitutes f ¼ u into L, then minimizes L with respect to a, and finally

solves the resulting quartic equation for b. This yields a closed-form approximate

formula for the buckling load. Although it is a very complicated expression (too long

to print here), it is not too difficult for computerized symbolic manipulation to

handle. Results from this approximate closed-form expression for the buckling

load are compared with a numerical solution of Eqs. (81) in Fig. 9.18. The agreement

is excellent. To add the pre-buckling deflections may present difficulties for some

symbolic computational tools. However, as shown above, these effects generally

make the predicted buckling load larger and frequently may be ignored for design

purposes.
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figure 9.18 Plot of b versus e
ffiffiffiffiffiffiffiffiffiffi
B=A

p
for an I-beam with g ¼ 1, ignoring pre-buckling deflec-

tions; solid line is from the numerical solution of Eqs. (81), and dashed line (nearly coincident) is from

minimum over a of L (Eq. 83) with f ¼ u from Eq. (82)
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problems

1. Determine the Vlasov correction for lateral-torsional buckling of a pinned-pinned

I-beam with zero warping displacement at both ends.

2. For an initially curved isotropic strip-beam, determine the relative contribution of

the initial curvature case as a function of the geometric parameters (b, h, ‘, and R).

Choose n ¼ 1=3 and consider effects of the nondimensional cross-sectional aspect

ratio (thickness to depth) and slenderness ratio (length to depth).

3. For an isotropic strip-beam, consider the formula developed for the lateral-

torsional buckling of a deep beam subjected to a moment applied at the right

end (with the sense of an inplane bending moment) with zero inplane rotation at

the left end, zero torsional rotation at both ends, and free out-of-plane rotation at

both ends. Determine for a beam with rectangular cross section the relative

increase (b=4:01260) in the critical load that arises due to our taking into account

the pre-buckling deformation as a function of the thickness ratio of the cross

section (say b=a where b > a). Discuss the implications of your results.

4. For a thin-walled, isotropic I-beam, determine the relative contribution of pre-

buckling deformations for the cantilever case as a function of the geometric

parameters. Choose n ¼ 1=3 and consider the cross-sectional aspect ratio (width

to depth), the thinness parameter (constant wall thickness to depth) and slender-

ness ratio (length to depth).

5. Carry out the analysis described below Eq. (83) to obtain the plot shown in

Fig. 9.18.

6. Consider a deep beam with rectangular cross section, which is attached to

spherical bearings at each end that are only free to move closer to each other

and loaded by a semi-tangential bending moment of magnitude Q at x1 ¼ ‘. Let

the undeformed beam lie in a plane parallel to the a1-a2 plane. Ignoring pre-

buckling curvature and rotation (but not bending moment!), determine the

buckling load. Discuss the implications of your results.

7. Consider a deep beam with rectangular cross section, which is attached to

spherical bearings at each end that are only free to move closer to each other

and loaded by a quasi-tangential bending moment of magnitude Q at x1 ¼ ‘. Let

the undeformed beam lie in a plane parallel to the a1-a2 plane. Ignoring pre-

buckling curvature and rotation (but not bending moment!), determine how the

buckling load depends on the angle a which defines the direction of the forces

comprising the quasi-tangential moment. Discuss the implications of your results.
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10

Instabilities Associated

with Rotating Beams

When slender structural members such as beams are forced to rotate in specific

ways, at least portions of the structure may be put under compression. As expected,

this situation may induce buckling. However, there are also situations involving

rotation that induce static instability in which only tensile forces are involved. We

will examine both situations in this chapter. The first section deals with axial

instability of rotating rods that are oriented perpendicular to the axis of rotation

and hence referred to as ‘‘radial’’ rods; we define a rod as a special case of a beam that

only undergoes stretching caused by an axial force. The second section looks at the

buckling instability of radial beams.1

10.1 axial instability of radial rods

For strain sufficiently small such that Hooke’s Law is valid, we will show that only a

linear model for axial deformation of rotating rods can be derived. This linear model

exhibits an instability when the angular speed reaches a certain critical value. However,

unless this linearmodel is valid for large strain, it is impossible todeterminewhether this

instability occurs in reality. This is because the strain ceases to be small well short of the

critical speed as the angular speed increases. In order to understand this situation in

more detail, we will undertake the analysis of axial deformation of rotating rods using

two strain energy functions to model nonlinear elastic behavior. The first of these

functions is the usual quadratic strain energy function augmented with a cubic term.

With this model it is shown that no instability exists if the nonlinearity is stiffening (i.e.,

if the coefficient of the cubic term is positive), although the strain can become large.

However, if the nonlinearity is of the softening variety, then the critical angular speed

drops as the degree of softening increases. Still, the strains are large enough that, except

for rubber-like materials, a nonlinear elastic model is not likely to be appropriate. The

second strain energy function is based on the square of the logarithmic strain and yields

a softening model. It quite accurately models the behavior of certain rubber rods which

exhibit the instability within the validated range of elongation.

1 Portions of this material are based on Hodges and Bless (1994), used by permission.
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Since the system is conservative, the static approach is adequate to study the

nature of the instability. The instability was noted first by Bhuta and Jones (1963)

and independently by Brunelle (1971). Although Brunelle makes it clear that non-

linearities need to be considered, it is not clearly indicated how nonlinear elastic

models would behave. In particular, when pure extensional motion is considered, one

must include material nonlinearities in order to obtain a physically meaningful non-

linear rod model.

10.1.1 LINEAR ELASTIC MODEL: QUADRATIC ENERGY

We consider a prismatic rod of cross-sectional area A undergoing purely axial

deformation in the range of validity of Hooke’s law. If the rod is made of homoge-

neous, isotropic material with Young’s modulus E, Saint-Venant’s interior solution

for the stress field is uniaxial so that the strain energy per unit length, normalized by

EA, is given by

C ¼ «2

2
1ð Þ

where « is the average longitudinal strain of the cross section. Were the rod subject to

bending and torsional deformation, one would expect C to contain three additional

quadratic terms in appropriate bending and torsional generalized strain measures.

This looks like a linear theory except that the extensional, bending, and torsional

generalized strain measures would, in general, be nonlinear functions of displacement

and rotation variables. When C contains only terms of second degree in nonlinear

generalized strain measures, we call this a ‘‘geometrically’’ nonlinear theory. This sort

of theory is reasonable for modeling slender beams, which can undergo large bending

and torsional deflections without large strain. However, in the special case of small-

strain, purely axial deformation, geometrically nonlinear expressions for « in terms of

the axial displacement are inappropriate, since all such measures reduce to the

elongation when it is small compared to unity. The only consistent way to obtain a

nonlinear structural model for pure axial displacement is to retain terms in C which

are of cubic and higher degree in the elongation. This type of model, often called a

nonlinear elastic or a ‘‘physically’’ nonlinear model, is normally intended for treating

strains which are larger than those typically encountered in the linear range. Theories

based on such models we can call ‘‘physically’’ nonlinear.

Consider a rotating radial rod that undergoes stretching caused by the axial

centrifugal force. The rod remains normal to and rotates about an axis that is both

fixed in space and passes through the rod root end at point O. The undeformed rod

length is denoted by ‘, and the longitudinal displacement of the cross section at

x1 ¼ ‘x by u1 ¼ ‘u xð Þ. Thus, one can write the elongation as

« ¼ u0 2ð Þ

where ð Þ0 represents the derivative with respect to x.

Let the rod rotate with angular speed V as depicted in Fig. 10.1. As the rod

stretches, its cross-sectional area would decrease (for rods made of materials with

Poisson’s ratio n > 0) as depicted in the Figure. Letting x ¼ 0 be at the center of

rotation (point O) and r be the mass per unit undeformed volume of the rod material,

one can represent the action of centrifugal forces as a distributed tensile force

EAv2 xþ uð Þ where v2 ¼ rV2‘2=E. Thus, it is clear that the deformation is governed

by the minimization of the total energy functional
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F 1 ¼
Z 1

0

u02

2
� v2

2
xþ uð Þ2

� �
dx 3ð Þ

subject to the geometric boundary condition that u 0ð Þ ¼ 0, as shown in Fig. 10.1.

Note that the first term represents C and that the axial force in the rod is EAT where

T ¼ @C

@u0
¼ u0 4ð Þ

indicating a linear structural model. The minimum is obtained when the Euler-

Lagrange equation

u00 þ v2 xþ uð Þ ¼ 0 5ð Þ

and the geometric boundary condition u 0ð Þ ¼ 0 and the natural boundary condition

u0 1ð Þ ¼ 0 are satisfied. The solution is

u ¼ sin vxð Þ
v cos v

� x 6ð Þ

The mathematical model exhibits an instability reflected in the blowing up of this

expression when v reaches the lowest critical value p=2. However, Eq. (6) was

derived based on Hooke’s law, in which the strain is small compared to unity.

Thus, its validity is limited. For small strain u0 � 1, and a simple perturbation

analysis reveals that

u0 ¼ cos vxð Þ
cos v

� 1 ¼ v2

2
1� x2
� �

þ . . . 7ð Þ

Obviously, the strain is O v2=2
� �

� 1, and as v is increased from zero, Hooke’s law

ceases to be valid long before the instability at v ¼ p=2 ever comes into play. In other

words, the instability predicted by the mathematical model is far outside the domain

of its applicability.

If the solution is approximated as

u � v2 x

2
� x3

6

� �
8ð Þ

then it should be noted that this is the solution of

u00 þ v2x ¼ 0 9ð Þ

which is a consistent approximation of Eq. (5) taking into account the observation

that u0 � 1 implies u� x for all x > 0.

�

unstretched rod
O

x1, u1, b1

stretched rod

figure 10.1 Flexible radial rod rotating about fixed point O

SIMITSES - Title 0750678755_ch10 Final Proof page 281 3.11.2005 7:29pm

Axial Instability of Radial Rods 281



It should be noted that if the strain energy has the behavior reflected in the first

term of Eq. (3) even when the strain is large, then the instability would exist. This

would mean that the axial force in the rod would be linear with u0 even for large

strain—a situation which is rare at best.

10.1.2 NONLINEAR ELASTIC MODELS

The linear model is based on the simple quadratic energy per unit length of Eq. (1).

There are two ways to extend this energy per unit length to a physically nonlinear

problem: (a) add a term of cubic or higher degree in «, or (b) write the strain energy

per unit length in terms of a nonlinear function which, when expanded, will agree

with the appropriate physically linear model for small values of «. In this section we

will look at one of each, because the physical behaviors of these two approaches are

quite different from each other.

Case I: Quadratic and Cubic Energy

It is more reasonable to assume a normalized strain energy per unit length of the

form

C ¼ u02

2
þ bu03

3
u0$0 10ð Þ

where b is a nondimensional constant which depends on the material and section

geometry. Since the axial force T ¼ u0 þ bu02, it is straightforward to determine b

experimentally for an actual rod, but a theoretical determination would be problem-

atic. With this model the existence of an instability of the type described above as v

increases depends on the value of b, and thus cannot be determined on the basis of

linear theory.

The behavior of this model is governed by minimization of the functional

F 2 ¼
Z 1

0

u02

2
þ bu03

3
� v2

2
xþ uð Þ2

� �
dx 11ð Þ

which gives the Euler-Lagrange equation

1þ 2bu0ð Þu00 þ v2 xþ uð Þ ¼ 0 12ð Þ

with boundary conditions u 0ð Þ ¼ u0 1ð Þ ¼ 0, unchanged. For small v2 the perturb-

ation solution is appropriate

u ¼ v2u 1ð Þ þ v4u 2ð Þ þ . . . 13ð Þ

where

u 1ð Þ ¼ x

2
� x3

6

u 2ð Þ ¼ 5� 6bð Þx
24

� 1� 2bð Þx3

12
þ 1� 6bð Þx5

120

..

.

14ð Þ

Since exact solutions of Eq. (12) have not been published to date, we will seek to

minimize F 2 with one- and two-term approximations to gain a qualitative under-
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standing of the behavior. An essentially exact numerical solution is also obtained to

ensure that the one-term approximations are accurate.

In accordance with extensive studies by Geer and co-workers, e.g. Geer and

Andersen (1989), the solutions to perturbation equations make excellent trial func-

tions. Indeed, as long as v2 < p2=4, a one-term approximation based on the form of

u 1ð Þ above, such that

u ¼ 3u1

x

2
� x3

6

� �
15ð Þ

where u1 ¼ u 1ð Þ is the tip displacement, gives excellent agreement with a two-term

approximation based on functions of the form of u 1ð Þ and u 2ð Þ above and with the

‘‘exact’’ solution. The one-term solution is simply

u1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1764� 1428v2 þ 3024bv2 þ 289v4

p
� 42þ 17v2

108b
16ð Þ

for the relevant one of the two roots (the irrelevant root has a minus instead of a plus

before the square root but will in one case be plotted below for completeness). From

examining the behavior of this equation, we must differentiate between a nonstiffen-

ing model (b � 0) and a stiffening model (b > 0).

Nonstiffening Model: When b � 0 there is an instability. If b ¼ 0, the structural

model is linear and the instability is the same as that reported for the linear model. It

is encountered at v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
42=17

p
, which differs from the exact solution v ¼ p=2 by

only 0.065%. This small error is indicative of the accuracy of the one-term approxi-

mation for v2 < p2=4. As v2 tends toward this value the displacement u1 blows up.

The behavior of the one-term solution is shown in Fig. 10.2 for b ¼ �0:1, b ¼ 0,

and b ¼ 0:1. The instability for b < 0 is exhibited by the turning of the solution back

to the left, a so-called limit-point instability so named because the value of u1 is finite

at the nose of the curve. The long-dashed part of the b < 0 curve is the ‘‘irrelevant’’

root, shown for completeness. As v2 is increased to the point where the slope is

vertical, the effective stiffness goes to zero. That equilibrium point is unstable, and no
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figure 10.2 Tip displacement u(1) versus v2 for b ¼ �0:1, 0, and 0.1
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equilibrium exists for values of v2 greater than that critical value. This is somewhat

different from the situation when b ¼ 0 for which the vertical slope is only asymp-

totically reached. Thus, if the angular speed is increased toward the critical value, no

equilibrium will be reached at or beyond the critical value of v2 for b ¼ 0. For b 6¼ 0,

to plotting accuracy, the relevant roots are virtually indistinguishable from the

‘‘exact’’ numerical solution. See below for discussion of the stiffening model where

b > 0.

The stability boundary for b � 0 can be found by solving for the value of v2 at

which the quantity under the radical in Eq. (16) vanishes. Denoting this by v2
c , one

obtains

v2
c ¼

42

289
17� 36bþ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b 18b� 17ð Þ

ph i
b � 0 17ð Þ

This stability boundary is shown in Fig. 10.3 versus b. Clearly, for larger negative

values of b the instability is encountered at lower values of angular speed. This limit-

point instability is analogous to tensile instabilities as encountered in load-controlled

experiments. The one-term approximation is quite accurate throughout the range of

v2 � v2
c for �b ¼ O 1ð Þ, and the instability still occurs at large strains in this range.

Stiffening Model: It is seen from Fig. 10.2 that if b > 0, there is no instability, but

the strain can become large when v2 becomes large. The tip displacement is shown in

Figs. 10.4 and 10.5 for two different values of b. The dashed lines represent asymp-

totes for small and large v2. When b is small, the two asymptotes cross near the value

of v2 where the tip displacement begins to grow more rapidly and depart significantly

from the small v2 value of

u1 ¼
v2

3
small v2 asymptote 18ð Þ

and approach the large v2 asymptote, given by

u1 ¼
14

17
� 7

9b
þ 17v2

54b
large v2 asymptote 19ð Þ
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figure 10.3 Critical value of v2 versus b < 0
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Both asymptotes can be easily extracted from the one-term solution. Note that for

small b the tip displacement (and strain) become large as v2 is increased. For large b,

on the other hand, v2 must become much larger to reach a given value of tip

displacement than with small b. The suddenness with which the strain increases is

exacerbated as b becomes small compared to unity due to the appearance of b in the

denominator. In the limit as b! 0, the unstable behavior is reached as the large v2

asymptote becomes vertical.

Note that the one-term solution exhibits linear behavior when b ¼ 17=18, where

the asymptotes match exactly. Linearity is a condition that is unlikely to occur in the

exact solution since the equilibrium equation is nonlinear when b 6¼ 0. Thus, for

positive b one is led to expect, and indeed finds, growing differences between the

one-term solution based on Eq. (15) and the exact solution when v2 becomes large.
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figure 10.4 Tip displacement versus v2 for b ¼ :05
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figure 10.5 Tip displacement versus v2 for b ¼ 5

SIMITSES - Title 0750678755_ch10 Final Proof page 285 3.11.2005 7:29pm

Axial Instability of Radial Rods 285



This is reasonable since a trial function which provides an accurate approximate

solution for small v2 cannot be expected to work well when v2 is large. Thus, an

improved trial function is needed.

A trial function which gives excellent results when v2 is large compared to unity

can be determined by the following change of variable. Let u ¼ fv2=b and multiply

the equilibrium equation through by b=v4. This leads to a new governing equation

2f0f00 þ fþ f00 þ bxð Þ
v2

¼ 0 20ð Þ

To find the appropriate trial function we note that first approximation for the large

v2 solution is then governed by the homogeneous equation

2f0f00 þ f ¼ 0 21ð Þ

subject to f 0ð Þ ¼ f0 1ð Þ ¼ 0. This equation can be rewritten as

f02
� �0þf ¼ 0 22ð Þ

which, upon use of the boundary condition f0 1ð Þ ¼ 0 can be written in first-order

form as

f02 ¼
Z 1

x

f jð Þdj 23ð Þ

This nonlinear equation can be used in an iterative sense to improve a trial function.

The simplest possible admissible function, satisfying only the essential boundary

condition, f 0ð Þ ¼ 0, is given by f ¼ x. Substituting this into the right hand side of

Eq. (23), solving for f, and normalizing so that u 1ð Þ ¼ u1, one obtains a comparison

function

u ¼ 2u1

p
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

þ arcsin xð Þ
h i

24ð Þ

which, as a trial function, yields the lowest value of the energy functional from which

Eq. (22) can be derived among all those tried. The result is

u1 ¼
16384� 2880p2 þ 1215bp2

72b 45p2 � 256ð Þ

þ
v2 45p2 � 256
� �

540b
improved large v2 asymptote

25ð Þ

for the tip displacement at large v2.

An exact solution for Eq. (22) is derived as follows. Consider a functional of

the form

F 3 ¼
Z 1

0

f03

3
� f2

2

� �
dx 26ð Þ

Note that the minimization of F 3 subject to f 0ð Þ ¼ 0 yields Eq. (22). Introducing the

relation t ¼ f0 and a Lagrange multiplier l to enforce it, one can write

F �3 ¼
Z 1

0

t3

3
� f2

2
þ l t � f0ð Þ

� �
dx 27ð Þ
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The minimization of F 3 now takes on the form of an optimal control problem; see

Bryson and Ho (1975). Variation with respect to t shows that

l ¼ �t2 28ð Þ

which leads to an energy integral (analogous to the Hamiltonian) for Eq. (22)

H ¼ 2t3

3
þ f2

2
¼ constant 29ð Þ

Since t ¼ 0 at x ¼ 1, it is clear that

4t3

3
¼ f2

1 � f2 30ð Þ

This can be written as a first-order equation

f0 ¼ 3

4
f2

1 � f2
� �� �1

3

31ð Þ

Using f 0ð Þ ¼ 0 and f 1ð Þ ¼ f1, we can write this as a simple quadrature relation

3

4f1

� �1
3

¼
Z 1

0

dj

1� j2
� �1

3

32ð Þ

yielding

f1 ¼
3

4

ffiffiffiffi
p
p

Gð2
3
Þ

2G 7
6

� �
" #3

� 0:3465 33ð Þ

The one-term approximation based on f ¼ 2f1

p
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

þ arcsin xð Þ
h i

gives

f1 ¼
45p2 � 256

540
� 0:3484 one-term approximation 34ð Þ

for an error of 0.55%.

Two features of the improved asymptote in Eq. (25) are worth noting. First, the

slope of this asymptote is quantitatively only about 10% different from the earlier one

in Eq. (19) (based on the small v2 trial function), but it differs from the exact, closed-

form solution of Eq. (22) by only 0.55%. Second, an almost unnoticeable qualitative

difference is exhibited in the possibility of finding a value of b which yields a linear

solution. The value b ¼ 1:004 which makes the intercept vanish yields a slope of

0.3470, which is slightly different from the slope for small v2 of 1/3. Thus, there seems

to be no value of b for which the solution behaves exactly linearly, but the nonlinear

behavior is almost negligible when b ¼ 1:004.

In summary, the instability occurs only for b # 0, but only at large strains, even

for b ¼ �1:5. Strains of such magnitudes are not encountered within the range of

elastic deformation except in rubber-like materials. So it may be useful to look at

a ‘‘model which performs well for rubber rods.

Nonlinear Elastic Model II: Hencky Strain Energy

One such model is the Hencky strain energy model, shown by Degener et al. (1988)

to give excellent correlation with experimental data for stretching of rubber rods
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(tubes) up to values of elongation of the order of 0.5. For axial deformation alone,

this model reduces to finding the minimum of the functional

F 4 ¼
Z 1

0

log2 1þ u0ð Þ
2

� v2

2
xþ uð Þ2

" #
dx 35ð Þ

Letting z ¼ xþ u so that z0 ¼ 1þ u0 ¼ v, one can rewrite F 4 as

F �4 ¼
Z 1

0

log2 v

2
� v2z2

2
þ l v� z0ð Þ

" #
dx 36ð Þ

Again, l can be found as

l ¼ � log v

v
37ð Þ

The constancy of the Hamiltonian and the natural boundary condition v 1ð Þ ¼ 1

show that

log2 v

2
� log vþ v2

2
z2
1 � z2

� �
¼ 0 38ð Þ

where z1 ¼ z 1ð Þ. Thus,

log v ¼ log z0 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2 z2

1 � z2
� �q

39ð Þ

The minus is taken in front of the square root because v 1ð Þ ¼ 1. Using the above

procedure and z 0ð Þ ¼ 0, one can show that

z1 ¼
eR 1

0
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2z2

1
1�j2ð Þ

p
dj

40ð Þ

(We note here that a similar procedure can be used with the quadratic/cubic model.

Since the resulting procedure is computationally intensive, it was used only to verify the

accuracy of the one-term approximation.) Thus, u1 is governed by the exact relation

1þ u1 ¼
eR 1

0
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2 1þu1ð Þ2 1�j2ð Þ

p
dj

41ð Þ

Numerical evaluation is done by first picking values of a2 ¼ v2 1þ u1ð Þ2, finding the

integral by numerical quadrature (which can be done to any accuracy desired by

using Mathematica), finding 1þ u1 from Eq. (41), and finding v2 as a2= 1þ u1ð Þ2. The

largest value of a2 chosen for plotting was 0.8592, where the slope of u1 versus v2 is

infinite.

Results are shown in Fig. 10.6, and clearly this model has similar behavior to that

of our simple nonstiffening model above. The instability is at v2 ¼ 0:4210 at which

u 1ð Þ ¼ 0:4285. However, the maximum elongation at the root is u0 0ð Þ ¼ 0:8667.

Although this is somewhat larger than the maximum elongations observed in the

experiments of Degener et al. (1988), it is possible that this instability could occur for

some rubber rods whose force-deformation relation is of the form
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T ¼ log 1þ u0ð Þ
1þ u0

42ð Þ

if the allowable strain were this large.

10.2 buckling of rotating radial beams

In Fig. 10.7 we have a flexible beam cantilevered to the rim of a rotating wheel and

directed toward the center of rotation. (Note that in this example the beam has

distributed mass and thus differs from the case depicted in Fig. 3.9 in which the beam

is massless and has a tip mass.) Thus, as the wheel spins, the beam is compressed

axially. The transverse displacement along the beam is u2 x, tð Þ and the longitudinal

displacement is u1 x, tð Þ. Only longitudinal and inplane bending displacements are

shown in the figure, but the out-of-plane displacement u3 is also possible. Thus, the

position vector to any point along the beam is

r ¼ x1 þ u1ð Þb1 þ u2b2 þ u3b3 43ð Þ

where the unit vectors b1 and b2 are both parallel to the plane of rotation, along and

perpendicular to the undeformed beam, respectively, and b3 is parallel to the axis of

rotation (normal to the plane of the figure).

Thus, in the case of static deformation in the rotating frame, the additional kinetic

energy caused by rotation is

T ¼ V2

2

Z ‘

0

m �Rþ x1 þ u1ð Þ2þu2
2

h i
dx1 44ð Þ

where m is the mass per unit length. The beam is to be treated as inextensible, and for

the pre-buckled state the beam properties are assumed to be such that it remains in the
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0

0.1
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figure 10.6 v2 versus u(1) for Hencky strain energy model
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radial orientation. Thus, u1 ¼ u2 ¼ u3 ¼ 0, and the strain energy for the pre-buckled

state zero. Thus, the weak form of the equation governing the pre-buckled state is

�

Z ‘

0

F1u
0
1 � mV2 �Rþ x1 þ u1ð Þ2

h i
dx1 ¼ 0 45ð Þ

where ð Þ0 is the derivative with respect to the axial coordinate and F1 is a Lagrange

multiplier that enforces zero axial strain in the pre-buckled state. Physically F1 is the

steady-state axial force, which is not constant with x1. The resulting Euler-Lagrange

equation is

F
0
1 þ mV2 �Rþ x1 þ u1ð Þ ¼ 0 46ð Þ

and boundary condition that F1 ‘ð Þ ¼ 0. Therefore, for constant mass per unit length

m and zero strain in the pre-buckled state such that u1 ¼ 0, the axial force is

F1 ¼ mV2‘2
1

2
1� x2
� �

� a 1� xð Þ
� �

47ð Þ

with x ¼ x1=‘ and a ¼ R=‘. Notice that if a < 0, then the beam is facing radially

outward and is entirely in tension. If 0 < a < 1, then the beam passes through the

R

Ω

Rim of wheel

beam

u2b2 (x1+u1)b1

figure 10.7 Flexible beam cantilevered to the rim of a rigid wheel
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center of rotation and sticks out on the other side of it; part of the beam is in tension

and part in compression. If a > 1 the beam is entirely in compression. The problem

of interest is to determine the stability of small perturbations about the steady-state

solution.

Assuming small perturbations about the pre-buckled state, the unit vector tangent

to the beam can be written as

B1 ¼ r0 ¼ 1þ ûu01
� �

b1 þ ûu02b2 þ ûu03b3 48ð Þ

Since the beam is assumed to be inextensible, we can identify this as a unit vector, so

that

1þ ûu01
� �2þûu022 þ ûu023 ¼ 1 49ð Þ

which leads to a constraint on ûu1 of the form

ûu01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ûu022 � ûu023

q
� 1 50ð Þ

For small deflections, this means that the axial displacement is a second-order

quantity (but one which we need) given by

ûu01 � �
1

2
ûu022 þ ûu023
� �

51ð Þ

Dropping all terms of degree three and higher in the unknowns, one finds that the

kinetic energy associated with the perturbations is

T ¼ mV2

2

Z ‘

0

�Rþ x1 þ ûu1ð Þ2þûu2
2

h i
dx1

¼
Z ‘

0

mV2ûu2
2

2
� F

0
1ûu1

 !
dx1

¼
Z ‘

0

mV2ûu2
2

2
þ F1ûu

0
1

 !
dx1

¼ 1

2

Z ‘

0

mV2ûu2
2 � F1 ûu022 þ ûu023

� �� 	
dx1

52ð Þ

where the boundary condition ûu1 0ð Þ ¼ 0 was used. The strain energy for the per-

turbed state is

U ¼ 1

2

Z ‘

0

EI2ûu
002
3 þ EI3ûu

002
2

� �
dx1 53ð Þ

Interestingly enough, some of the terms that originated as kinetic energy terms have

how become potential energy-like terms associated with the load F 1, so that the

negative of the Lagrangean can be written as

U � T ¼ 1

2

Z ‘

0

EI2ûu
002
2 þ EI3ûu

002
2 þ F 1 ûu022 þ ûu023

� �
� mV2ûu2

2

� 	
dx1 54ð Þ

and the resulting weak forms are decoupled:

SIMITSES - Title 0750678755_ch10 Final Proof page 291 3.11.2005 7:30pm

Buckling of Rotating Radial Beams 291



d

Z ‘

0

EI3ûu
002
2 þ F1ûu

02
2 � mV2ûu2

2

� �
dx1 ¼ 0

d

Z ‘

0

EI2ûu
002
3 þ F 1ûu

02
3

� �
dx1 ¼ 0

55ð Þ

We first look at the out-of-plane case in terms of nondimensional parameters. Using

the ð Þ0 to now represent the derivative with respect to x, and introducing w ¼ ûu3=‘
and

v2 ¼ mV2‘4

EI2

56ð Þ

one can write the weak form as

d

Z 1

0

w002

2
� v2 a 1� xð Þ � 1

2
1� x2
� �� �

w02

2


 �
dx ¼ 0 57ð Þ

the Euler-Lagrange equation of which is

w0000 þ v2 a 1� xð Þ � 1

2
1� x2
� �� �

w0

 �0

¼ 0 58ð Þ

with corresponding boundary conditions w 0ð Þ ¼ w0 0ð Þ ¼ w00 1ð Þ ¼ w000 1ð Þ ¼ 0. The

equation can be integrated once and written in terms of b ¼ w0 to yield

b00 þ v2 a 1� xð Þ � 1

2
1� x2
� �� �

b ¼ 0 59ð Þ

with b 0ð Þ ¼ b0 1ð Þ ¼ 0. This equation has a solution in terms of Kummer confluent

hypergeometric functions; see Abramowitz and Stegun (1970). The value of vcr

depends on a: Buckling is not possible for a #
ffiffiffiffi
p
p

=3, and when a ¼ ffiffiffiffi
p
p

=3,

vcr !1. The behavior of vcr versus a is depicted in Fig. 10.8.

Although we have an exact solution, it is a very complicated one, and a good

numerical approximation may be of more value for use by designers. We can write

down a weak form for b directly from Eq. (57) by substituting b for w0, yielding

d

Z 1

0

b02

2
� v2 a 1� xð Þ � 1

2
1� x2
� �� �

b2

2


 �
dx ¼ 0 60ð Þ
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α
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wcr

figure 10.8 vcr versus a for the out-of-plane case
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Thus, a one-term Rayleigh quotient approximation for the critical angular speed can

be written as

v2
cr # R fð Þ ¼

Ð 1

0
f02dxR 1

0
a 1� xð Þ � 1

2
1� x2ð Þ

� 	
f2dx

61ð Þ

where f is an admissible function, at least satisfying the essential boundary condition

f 0ð Þ ¼ 0, and the inequality is an indication that the quantity on the right hand side

is an upper bound. We can also see that buckling is not possible when

a # a� ¼
R 1

0
1� x2
� �

f2dx

2
R 1

0
1� xð Þf2dx

62ð Þ

where the same function must be used in the Eq. (62) as in Eq. (61); it has not been

proven that the latter is an upper bound, but it generally does turn out to be larger

than the exact value.

The simplest admissible function is f ¼ x, which is also a comparison function

(i.e. it satisfies all the boundary conditions). The result is

vcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

60

5a� 4

r
63ð Þ

At a ¼ 1, for example, this yields vcr ¼ 7:74597 compared to the exact value of

vcr ¼ 5:67467, which is the lowest root of the Bessel function J � 1
4
, v

2
ffiffi
2
p

� 

¼ 0.

Unfortunately, the value of a� ¼ 0:8 is well above the exact value offfiffiffiffi
p
p

=3 � 0:590818.

Let us employ the technique of Stodola and Vianello (see Hodges, 1997), which

allows us to construct improved trial functions by iteration. We solve the governing

differential equation for the highest derivative term, yielding

f00iþ1 ¼ �v2 a 1� xð Þ � 1

2
1� x2
� �� �

fi i ¼ 0, 1, . . . 64ð Þ

where f0 ¼ x. Using the boundary condition fi 0ð Þ ¼ 0, one finds the results for fi

for i > 0 to be more involved polynomial comparison functions. A sampling of the

numerical results may be found in Table 10.1. The results for the critical angular

speed are excellent, converging to the exact solution to four places in only two

iterations. The size of the resulting polynomial functions is easily manageable with

Mathematica. However, as well as this technique may work for a wide class of

problems, it falls short of achieving a good approximation for a�. The reason for

this is important to note: As a! a� from above, vcr tends to infinity, which creates a

table 10.1 Results for out-of-plane buckling.

Iteration number vcr for a ¼ 1 a�

0 7.74597 0.800000

1 5.69011 0.778794

2 5.67501 0.772134

3 5.67468 0.768790

4 5.67467 0.766788

exact 5.67467 0.590818
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boundary layer for the solution of the differential equation. The curvature becomes

infinitely large near the point x ¼ 0, making it more and more difficult to capture the

behavior with a polynomial function. Admissible functions that have an exponential

term may be useful to combat this problem.

The inplane problem is governed by a more complex equation. Introducing

v ¼ ûu2=‘ and

v2 ¼ mV2‘4

EI3

65ð Þ

one can write the weak form as

d

Z 1

0

v002

2
� v2 a 1� xð Þ � 1

2
1� x2
� �� �

v02

2
� v2v2

2


 �
dx ¼ 0 66ð Þ

the Euler-Lagrange equation of which is

v0000 þ v2 a 1� xð Þ � 1

2
1� x2
� �� �

v0

 �0

�v2v ¼ 0 67ð Þ

with corresponding boundary conditions v 0ð Þ ¼ v0 0ð Þ ¼ v00 1ð Þ ¼ v000 1ð Þ ¼ 0. This is

a much more difficult equation to solve, and an exact solution is unknown to the

authors. The converged result after five iterations for vcr by the Stodola and Vianello

method is vcr ¼ 2:99391 for a ¼ 1, which is close to the published numerical solu-

tions of Lakin and Nachman (1979). However, the best result for a� ¼ 0:184937 is

nowhere near the exact value of a� ¼ 0, known from asymptotic considerations. The

behavior of the inplane critical angular speed for the inplane case is shown in Fig.

10.9.

problems

1. Apply the method of Rayleigh’s quotient with a free parameter (as described in

Chapter 9) to find the critical angular speed for out-of-plane buckling of an

inwardly-directed, rotating, uniform beam, the tip of which is at the center of

rotation. Try to get the best one-term approximation.

2 4 6 8 10
α

1

2

3

4

5

wcr

figure 10.9 vcr versus a for the inplane case
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2. Apply the method of Rayleigh’s quotient with a free parameter (as described in

Chapter 9) to find the critical angular speed for inplane buckling of an inwardly-

directed, rotating, uniform beam, the tip of which is at the center of rotation. Try

to get the best one-term approximation.

3. Apply the method of Rayleigh’s quotient with the Stodola-Vianello method (as

described in this chapter) to find the critical angular speed for inplane buckling of

an inwardly-directed, rotating, uniform beam, the tip of which is at the center of

rotation. Try to get the best one-term approximation. Compare the results and the

effort to that of Problem.

4. Apply the method of Ritz or the Galerkin method with multiple modes to find the

critical angular speed for inplane buckling of an inwardly-directed, rotating,

uniform beam, the tip of which is at the center of rotation. Compare the results

and the effort to those of Problems 2 and 3.
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11

Nonconservative Systems

11.1 preliminary remarks

All of the previous chapters have dealt with the stability of conservative elastic

structural systems under static loads. A classification of loads and reactions, when

dealing with all mechanical systems, is given by Ziegler (1968). A system is conser-

vative when subjected only to conservative forces (see Chapter 1). One example of

nonconservative forces is the follower force. A follower force follows the deform-

ations of the body in some manner such that the work done by the force is path-

dependent. Consider the system in Fig. 11.1. It is easily seen that the applied force P,

which follows the orientation of the upper rod, is nonconservative. Let us consider

two different sequences of deflection away from the starting point when q1 ¼ q2 ¼ 0.

First, as the load is applied in that state, zero work is done. Then, let q2 move from

zero to q2 ¼ q̂q2. In this motion zero work is done. Then let q1 move from zero to

q1 ¼ q̂q1. During this motion, the work done by P is also zero. So, the total work done

to get in this first way from q1 ¼ q2 ¼ 0 to q1 ¼ q̂q1 and q2 ¼ q̂q2 is zero. Now the

second scenario is very similar but simply reversed in order. The load is again applied

when q1 ¼ q2 ¼ 0, where zero work is done. Then the system moves so that q1 ¼ q̂q1

so that the work done is P‘ 1� cos q̂q1ð Þ � P‘q̂q2
1=2. Finally, the system moves again so

that q2 ¼ q̂q2, for which the work done is zero. So, the total work done to get in this

second way from q1 ¼ q2 ¼ 0 to q1 ¼ q̂q1 and q2 ¼ q̂q2 is approximately P‘q̂q2
1=2.

Additional scenarios with still different answers for the work done are not hard to

conceive. Thus, it is quite clear that the follower force in Fig. 11.1 is nonconservative.

Another aspect of the properties of such a force is that it does not possess a potential

energy function which, when varied, will give the negative of the force’s virtual work.

To put it another way, the virtual work of the forces cannot be ‘‘integrated’’ to

provide the negative of the force’s potential energy. Follower forces are typically

nonconservative in this sense, but the distributed follower forces in Section 7.7

provide an interesting exception.

As pointed out by Bolotin (1963, 1964), the study of the stability of structures

under follower force systems apparently started with work by Nikolai in the late

1920s. In addition to the books by Bolotin and others, there are also many papers

devoted to this subject; see, for example, the work of Leipholz (1978), Celep (1979),
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Park (1987), Chen and Ku (1992), and Higuchi (1994). Much of the analytical

research to date has focused on the stability of beams subjected to various types of

follower forces and examination of the effects of various physical phenomena, such

as damping and transverse shear deformation.

Analytical examples of solved follower force problems help to clarify the nature of

these systems and their analysis. For example, it is now commonly understood that

static analysis of elastic systems subjected to follower forces may erroneously show

that the system is free of instability. In order to ascertain whether a system subjected

to follower forces is stable requires a kinetic analysis. For problems that do in fact

lose their stability by buckling, the kinetic method will predict that one of the system

natural frequencies will tend to zero as the critical load is approached (see Problem 1).

However, for nonconservative systems one may also find flutter instabilities in

addition to possible buckling instabilities. By this we mean that small perturbations

about the static equilibrium state oscillate with increasing amplitude.

In this chapter we will present several examples and then present an alternative

solution method based on the fully intrinsic equations of beam vibration. The first of

the examples is a mechanical analog to the so-called Beck column, which consists of a

cantilevered beam undergoing a compressive concentrated follower force at its free

end; see Beck (1952). Next, both exact and approximate analyses of the Beck column

itself are presented. Then, a column undergoing a compressive and uniformly distrib-

uted follower force, as analyzed by Leipholz (1975), is treated. The next example is a

shaft subject to a tangential follower torque, previously considered by the static

method in Chapter 8. The final example is a deep cantilevered beam with a lateral

follower force applied at the tip and in the plane of greatest flexural rigidity. These and

other follower force problems can be also solved by use of the fully intrinsic equations,

P

l

l

q2

q1

k2, c2

k1, c1

figure 11.1 Schematic of mechanical model subjected to a follower force.
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derived in the final section of this chapter and used to set up two of the follower force

example problems.

11.2 mechanical follower force model

Let us recall the simple mechanical models discussed in Chapter 2, in particular

Model A. For this the kinetic method yields a differential equation of the form (see

Eq. 2 in Section 2.2)

I üþ ka2 � P‘
� �

u ¼ 0 1ð Þ

Assuming a solution of the form u ¼ ǔ exp stð Þ, we find the characteristic equation to be

s2 þ 1� p ¼ 0 2ð Þ

where s2 ¼ Is2= ka2
� �

and p ¼ P=Pcr ¼ P‘= ka2
� �

. In Figs. 11.2 and 11.3 one finds the

real and imaginary parts of s, respectively, versus p, showing that the real parts of

both roots become nonzero when the applied force exceeds the critical load. Since the

real part for one of the two roots is positive when p > 1, the perturbations about the

static equilibrium state grow in amplitude. However, it is also interesting to note that

for p � 1 the imaginary part is identically zero. This is characteristic of all systems

that lose their stability by buckling: one of the natural frequencies of oscillations

0.5 1 1.5 2
p

−1

−0.5

0.5

1

Re(s)

figure 11.2 Real part of s for mechanical Model A (see Chapter 2) subjected to a nondimen-

sional dead force p.

0.5 1 1.5 2
p

−1

−0.5

0.5

1

Im(s)

figure 11.3 Imaginary part of s for mechanical Model A (see Chapter 2) subjected to a

nondimensional dead force p.
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about the static equilibrium state becomes zero as the critical load is approached.

This is one of the differences that will be seen for nonconservatively loaded systems.

In Fig. 11.1 a mechanical model of a simple system loaded by a follower force is

depicted. The system is comprised of two particles of mass m joined together with

massless rigid rods of length ‘. The rods are joined to each other with a rotational

hinge, and one of the rods is also joined to the ground with a rotational hinge. The

motion of the system takes place in a plane, and the hinges are spring- and damper-

restrained with elastic and damping constants equal to ka and ca, respectively, with

a ¼ 1 and 2. This system is a mechanical model that behaves in a manner similar to

Beck’s column, treated in Section 11.3.

Here we will use Lagrange’s equations to derive equations of motion for this

system. For small angles q1 and q2, the kinetic and potential energies are

T ¼ m‘2

2
_qq2
1 þ

m‘2

4
_qq2
2 þ 2 _qq1 _qq2

� �
V ¼ k

2
q2

1 þ
k

2
q2 � q1ð Þ2

3ð Þ

The virtual work of the nonconservative applied and damping forces is

dW ¼ �P‘ q2 � q1ð Þdq1 � c1 þ c2ð Þ _qq1 � c2 _qq2½ �dq1 � c2 _qq2 � _qq1ð Þdq2 4ð Þ
Thus, the equations of motion are

m‘2
m‘2

2
m‘2

2

m‘2

2

2
664

3
775 qq̈q1

qq̈q2

� �
þ c1þc2 �c2

�c2 c2

� �
_qq1

_qq2

� �
þ 2k�P‘ P‘�k

�k k

� �
q1

q2

� �
¼ 0

0

� �
5ð Þ

First, we consider only the static terms in the equation, viz.,

2k� P‘ P‘� k

�k k

� �
q1

q2

� �
¼ 0

0

� �
6ð Þ

From this one sees that a nontrivial solution can only exist when

2k2 � Pk‘þ Pk‘� k2 ¼ 0, which cannot happen for nonzero k. Thus, no matter how

large a force P is applied, the mechanism does not exhibit a static buckling instability.

To better treat the dynamic case, we introduce nondimensional variables for time,

t ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k= m‘2ð Þ

p
; force, P ¼ P‘=k; and damping parameters, ca ¼ ca=

ffiffiffiffiffiffiffi
km
p

. Then one

can write the equations of motion more simply as

1
1

2

1

2

1

2

2
664

3
775 q001

q002

( )
þ

c1þ c2 �c2

�c2 c2

" #
q01

q02

( )
þ

2�P P� 1

�1 1

" #
q1

q2

( )
¼

0

0

( )
7ð Þ

where ð Þ0 represents the derivative with respect to t. Letting qa ¼ �qqa exp stð Þ, we find

that a nontrivial solution only exists when

s2 þ c1 þ c2ð Þsþ 2� P
s2

2
� c2sþ P� 1

s2

2
� c2s� 1

s2

2
þ c2sþ 1

�������
������� 8ð Þ

If the damping is ignored for now, the characteristic equation becomes

s4 þ 4 3� Pð Þs2 þ 4 ¼ 0 9ð Þ
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Notice that s ¼ 0 is not a root, so a loss of stability by buckling (i.e., passing from a

stable system directly to a buckled one) is not possible. The quartic equation has four

roots such that

s2 ¼ �2 3� Pð Þ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 6Pþ P2

p
10ð Þ

The first sign change of the radicand is at P ¼ 2. If P � 2 the real parts of all roots are

zero, as shown in Fig. 11.5; the real part of one root becomes positive when P > 2,

which means that there is a loss of stability. Since Im sð Þ 6¼ 0 when P > 2, the unstable

motion is oscillatory with increasing amplitude. This type of instability is usually

referred to as flutter in the mechanics literature and is closely related mathematically

to the flutter instability of aeroelasticity.1 When P > 4 all roots are real and there is a

strong buckling instability; but the system always first loses stability by flutter.

The addition of damping forces to the model of a nongyroscopic conservative

system will generally stabilize the system. Such is not the case with either gyroscopic

conservative systems or with nonconservative systems. The potential destabilizing

effect of damping is often exacerbated when there is a strong disparity in the amount

of damping in the various degrees of freedom. For example, in Fig. 11.6 the real part

of s is plotted versus P and a loss of stability is observed for P > 0:401928. Such

a dramatic change in the stability boundary can lead to catastrophic failure if not

1 2 3 4 5 6
P

0.5

1

1.5

2

2.5

3

Im(s)

figure 11.4 Imaginary part of nondimensional eigenvalue s versus P for double mechanical

pendulum model without damping.
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P
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−2

−1

1
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Re(s)

figure 11.5 Real part of nondimensional eigenvalue s versus P for double mechanical pendu-

lum model without damping.

1 The physical connection is weak, however, in that unsteady aerodynamics are involved in the aero-

elasticity problem.
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properly accounted for in the design of a system undergoing nonconservative forces.

See Herrmann (1967) for further discussion of this point.

11.3 beck’s column

Consider a cantilevered beam of length ‘ undergoing planar deformation and

having bending stiffness EI and mass per unit length m that are constant along the

beam. The beam is subjected to a force of constant magnitude P, the line of action of

which passes through the elastic axis of the beam at the end cross section and remains

tangent to the beam in its deformed state. The addition of damping, which should be

included in order to adequately account for the physics of follower forces, is left as an

exercise for the reader; see Problem 3 at the end of this chapter.

The beam is depicted in Fig. 11.7 and the transverse displacement along the beam

is u2 x1,tð Þ and the longitudinal displacement is u1 x1,tð Þ. Thus, the position vector to

any point along the beam reference line is

r ¼ x1 þ u1ð Þb1 þ u2b2 11ð Þ
where the unit vectors b1 and b2 are both in the plane of deformation, along and

perpendicular to the undeformed beam, respectively. Considering the beam as inex-

tensible, one finds the unit vector tangent to the beam to be

B1 ¼
@r

@x1

¼ 1þ @u1

@x1

	 

b1 þ

@u2

@x1

b2 12ð Þ

Since this is a unit vector, the length of the vector must be equal to unity, so that

1þ @u1

@x1

	 
2

þ @u2

@x1

	 
2

¼ 1 13ð Þ

0.5 1 1.5 2
P

0.6

0.4

0.2

0.2

Re(s)

figure 11.6 Real part of nondimensional eigenvalue s versus P for double mechanical pendu-

lum model with damping parameters c1 ¼ 0:0001 and c2 ¼ 0:1:

b1

b2

P

P

B2(x1,t)

B1(x1,t)

−

−

figure 11.7 Schematic of beam undergoing compressive axial follower force.
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which leads to a constraint on u1 of the form

@u1

@x1

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� @u2

@x1

	 
2
s

� 1 14ð Þ

For small deflections, this means that

@u1

@x1

� � 1

2

@u2

@x1

	 
2

15ð Þ

or

u1 x1,tð Þ ¼ � 1

2

Z x
1

0

@u2 j, tð Þ
@j

� �2

dj 16ð Þ

Now the relationship between the unit tangent vector B1 and the unit vectors of the

inertial frame bi may be written as

B1 ¼
@r

@x1

� 1� 1

2

@u2

@x1

	 
2
" #

b1 þ
@u2

@x1

b2 17ð Þ

The strain energy of the beam is

U ¼ 1

2

Z ‘

0

EI
@2u2

@x2
1

	 
2

dx1 18ð Þ

and we find the kinetic energy, ignoring the higher-order longitudinal motion, to be

T ¼ 1

2

Z ‘

0

m
@u2

@t

	 
2

dx1 19ð Þ

Ignoring higher-order terms in the section rotation @u2=@x1, the virtual work of the

applied force is

dW ¼ �PB1 ‘, tð Þ � du1 ‘, tð Þb1 þ du2 ‘, tð Þb2½ �

¼ �PB1 ‘, tð Þ � �b1

Z ‘

0

@u2

@x1

@du2

@x1

dx1 þ du2 ‘, tð Þb2

� �

¼ P

Z ‘

0

@u2

@x1

@du2

@x1

dx1 �
@u2

@x1

‘, tð Þdu2 ‘, tð Þ
� �

20ð Þ

Clearly, the first term of the last line can be expressed as the variation of a potential

energy functional and is the standard term one finds in energy treatments of strings

and beams undergoing axial forces. However, the second term cannot be derived

from a potential. Using integration by parts and the root boundary condition that

u2 0, tð Þ ¼ 0, one may write the virtual work in the simplest form as

dW ¼ �P

Z ‘

0

@2u2

@x2
1

du2dx1 21ð Þ

Applying Hamilton’s principle to obtain the equation of motion and boundary

conditions, one first obtainsZ t2

t1

dU � dT � dW
� �

dt ¼ 0 22ð Þ
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or Z t2

t1

Z ‘

0

EI
@2u2

@x2
1

@2du2

@x2
1

� m
@u2

@t

@du2

@t
þ P

@2u2

@2x1

du2

	 

dx1

� �
dt ¼ 0 23ð Þ

Integrating by parts in time and setting the virtual displacement du2 x1,tð Þ equal to

zero at t ¼ t1 and t2, one finds that the time integral is no longer necessary. The result

is a weak form of the equation of motionZ ‘

0

EI
@2u2

@x2
1

@2du2

@x2
1

þ m
@2u2

@t2
þ P

@2u2

@x2
1

	 

du2

� �
dx1 ¼ 0 24ð Þ

Integrating by parts in x1, one now findsZ ‘

0

@2

@x2
1

EI
@2u2

@x2
1

	 

þ m

@2u2

@t2
þ P

@2u2

@x2
1

� �
du2dx1

þ EI
@2u2

@x2
1

@du2

@x1

� @

@x1

EI
@2u2

@x2
1

	 

du2

� ������
‘

0

¼ 0

25ð Þ

The virtual displacement and rotation are arbitrary everywhere except at the beam

root where they both vanish. In order for this expression to vanish, the integrand

must vanish. The result is the Euler-Lagrange partial differential equation of motion

@2

@x2
1

EI
@2u2

@x2
1

	 

þ m

@2u2

@t2
þ P

@2u2

@x2
1

¼ 0 26ð Þ

and the boundary conditions are

u2 0, tð Þ ¼ @u2

@x1

0, tð Þ ¼ EI ‘ð Þ @
2u2

@x2
1

‘, tð Þ ¼ @

@x1

EI
@2u2

@x2
1

	 

‘, tð Þ ¼ 0 27ð Þ

For constant EI, one may simplify these to

EI
@4u2

@x4
1

þ m
@2u2

@t2
þ P

@2u2

@x2
1

¼ 0 28ð Þ

with

u2 0, tð Þ ¼ @u2

@x1

0, tð Þ ¼ @
2u2

@x2
1

‘, tð Þ ¼ @
3u2

@x3
1

‘, tð Þ ¼ 0 29ð Þ

This problem can be solved exactly. Below we will also present an approximate

solution by the Ritz method, but here we consider exact solutions to both the static

and dynamic problems to illustrate an important point. As with the mechanical

system in the last section, we consider the static terms first to explore the possibility

of buckling, which is governed by

EI
@4u2

@x4
1

þ P
@2u2

@x2
1

¼ 0 30ð Þ

the solution of which is

u2 ¼ a1 þ a2x1 þ a3 sin kx1ð Þ þ a4 cos kx1ð Þ 31ð Þ
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Making use of the boundary conditions, we obtain

u2 0ð Þ
u02 0ð Þ
u002 ‘ð Þ
u0002 ‘ð Þ

8>><
>>:

9>>=
>>; ¼

1 0 0 1

0 1 k 0

0 0 �k2 sin k‘ð Þ �k2 cos k‘ð Þ
0 0 �k3 cos k‘ð Þ k3 sin k‘ð Þ

2
664

3
775

a1

a2

a3

a4

8>><
>>:

9>>=
>>; ¼

0

0

0

0

8>><
>>:

9>>=
>>; 32ð Þ

with ai being arbitrary constants. A nontrivial solution can only exist if the deter-

minant of the coefficient matrix

1 0 0 1

0 1 k 0

0 0 k2 sin k‘ð Þ k2 cos k‘ð Þ
0 0 �k3 cos k‘ð Þ k3 sin k‘ð Þ

��������

��������
¼ k5 33ð Þ

vanishes. Clearly this value cannot vanish except when k ¼ 0 (i.e., for a trivial

solution). Thus, no matter how large the applied force is, buckling will not take place.

So, now let us consider the dynamic case. Introducing x ¼ x1=‘, P ¼ P‘2=EI , and

nondimensional time t ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI= m‘4ð Þ

p
, and substituting u2 ¼ n xð Þ exp stð Þ into the

equation of motion, Eq. (28), one finds the governing equation reduces to

n0000 þ Pn00 þ s2n ¼ 0 34ð Þ
where ð Þ0¼ dð Þ=dx. The general solution is

n ¼ a1 sin axð Þ þ a2 cos axð Þ þ a3 sinh bxð Þ þ a4 cosh bxð Þ 35ð Þ

where ai are arbitrary constants and

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 � 4s2
p

þ P
p

ffiffiffi
2
p

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 � 4s2
p

� P
p

ffiffiffi
2
p

36ð Þ

Using the boundary conditions as above, one finds that

u2 0ð Þ
u02 0ð Þ
u002 ‘ð Þ
u0002 ‘ð Þ

8>><
>>:

9>>=
>>; ¼

0 1 0 1

a 0 b 0

�a2 sin a �a2 cos a b2 sinh b b2 cosh b

�a3 cos a a2 sin a b3 cosh b b3 sinh b

2
664

3
775

a1

a2

a3

a4

8>><
>>:

9>>=
>>; ¼

0

0

0

0

8>><
>>:

9>>=
>>; 37ð Þ

or

0 1 0 1

a 0 b 0

�a2 sin a �a2 cos a b2 sinh b b2 cosh b

�a3 cos a a2 sin a b3 cosh b b3 sinh b

��������

��������
¼ 0 38ð Þ

which reduces to

a4 þ b4 þ ab 2 a b cos a cosh bþ a2 � b2
� �

sin a sinh b
� �

¼ 0 39ð Þ

This can be simplified by noting that

a4 þ b4 ¼ P2 � 2s2

a2 � b2 ¼ P

a2b2 ¼ �s2

40ð Þ
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so that

P2 � 2s2 1þ cos a cosh bð Þ � iPs sin a sinh b ¼ 0 41ð Þ

Since the solution is represented in the form of exp stð Þ, the characteristic equation

must be independent of the sign of the imaginary part of s. Thus, we can further

simplify the last term yielding

P2 � 2s2 1þ cos a cosh bð Þ � i P s sgn Im sð Þ½ � sin a sinh b ¼ 0 42ð Þ

The roots of Eq. (42) must be found by numerical methods. When P ¼ 0, the

roots are all pure imaginary and are equal to s ¼ �i1:875102, � i4:694092, . . . . The

curves in Figs. 11.8 and 11.9 show the variation of the lowest two roots with P. As

P tends toward P ¼ Pcr ¼ 20:0510, the imaginary parts of the first two roots

coalesce near Im sð Þ ¼ 11:0156 and the real parts remain zero. When P exceeds Pcr,

the real parts of the two roots being tracked suddenly become nonzero, while the

imaginary parts lock onto one another becoming only one curve. When P > Pcr, one

root will always have a positive real part, which means that we have vibrations with

growing amplitude. This is, then, a flutter instability just as in the case of the

mechanical analog above.
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figure 11.8 Exact solution for imaginary part of nondimensional eigenvalue s versus nondi-

mensional force P for Beck’s column.
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figure 11.9 Exact solution for real part of nondimensional eigenvalue s versus nondimensional

force P for Beck’s column.
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It is very tedious to work with such equations as Eq. (42). Thus, it will prove to be

convenient to solve the problem approximately using the method of Ritz in conjunc-

tion with the principle of virtual displacements. To do so, we assume that the

displacement can be written as a truncated series involving a complete set of basis

functions. For example, here we may write

u2 x1,tð Þ ¼
XN
i¼1

ji tð Þfi x1ð Þ 43ð Þ

where fi are the uniform cantilever beam free-vibration mode shapes given by

fi ¼ cosh aix1ð Þ � cos aix1ð Þ � bi sinh aix1ð Þ � sin aix1ð Þ½ � 44ð Þ

with

bi ¼
cosh ai‘ð Þ þ cos ai‘ð Þ
sinh ai‘ð Þ þ sin ai‘ð Þ 45ð Þ

Note that cos ai‘ð Þ cosh ai‘ð Þ þ 1¼0, so that a1‘ ¼ 1:87510, b1 ¼ 0:734096,

a2‘ ¼ 4:69409, b2 ¼ 1:01847, etc.; the natural frequencies of the unforced system are

equal to ai‘ð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI= m‘4ð Þ

p
. The mode shapes are normalized such that, for all i,Z ‘

0

f2
i dx1 ¼ ‘ 46ð Þ

For application of the Ritz method, we substitute this series into the weak form,

yielding

XN
i¼1

dji

XN
j¼1

jj

Z ‘

0

EIf00i f00j þ Pfif
00
j


 �
dx1 þ

XN
j¼1

€jjj

Z ‘

0

mfifjdx1

" #
¼ 0 47ð Þ

which, for arbitrary dji yields a system of linear, second-order, ordinary differential

equations of the form

XN
j¼1

Mij
€jjj þ Kijjj

� �
¼ 0 i ¼ 1, 2, . . . , N 48ð Þ

or, in matrix form,

M½ � j̈
� �
þ K½ � jf g ¼ 0 49ð Þ

where

Kij ¼
Z ‘

0

EIf00i f00j þ Pfif
00
j


 �
dx1

Mij ¼
Z ‘

0

mfifjdx1

50ð Þ

We note that [K] is not symmetric, thus allowing for the possibility of complex

eigenvalues. The matrix [K] carries the elastic forces, proportional to EI, and the

applied forces, proportional to P. The matrix [M] carries the inertial forces, propor-

tional to m. The system of governing equations is linear with constant coefficients.

Letting jf g ¼ �jj
� �

exp stð Þ, s2 ¼ m‘4s2=EI , P ¼ P‘2=EI , and x ¼ x1=‘, one finds

that the equation can be expressed as
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s2
--
1 --

h i
þ

--
ai‘ð Þ --

4
h i

þ P A½ �
h i

�jj
� �
¼ 0 51ð Þ

where

Aij ¼
Z 1

0

fi xð Þf00j xð Þdx 52ð Þ

and where for N ¼ 2, A11 ¼ 0:858244, A12 ¼ �11:7432, A21 ¼ 1:87385, A22 ¼
�13:2943.

This system has only a trivial solution for arbitrary values of P and s. For P ¼ 0,

the roots for s are purely imaginary and equal to the values of �i a1‘ð Þ2¼ �1:875102i

and�i a2‘ð Þ2¼ �4:694092i. As P increases, the roots remain imaginary at first as they

come together, but there is a point at which the roots coalesce into a pair of double

roots, both purely imaginary (see Figs. 11.10 and 11.11). Since the governing eigen-

value problem reduces to a bi-quadratic in s, i.e.,

as4 þ bs2 þ c ¼ 0 53ð Þ

with a ¼ 1, b ¼ a1‘ð Þ2þ a2‘ð Þ2þP A11 þ A22ð Þ, and

c ¼ P2 A11A22 � A12A21ð Þ þ PA22 a1‘ð Þ4þPA11 a2‘ð Þ4þ a1‘ð Þ4 a2‘ð Þ4 54ð Þ

the point of the coalescence can be determined to be when the discriminant, b2 � 4ac,

vanishes. The value of P at this point is then the value at flutter, denoted by Pcr and

given by

Pcr ¼
a2‘ð Þ4� a1‘ð Þ4

A11 � A22 � 2
ffiffiffiffiffiffiffiffiffiffiffi
�A12

p ffiffiffiffiffiffiffiffi
A21

p ¼ 20:1048 55ð Þ

at which point the nondimensional flutter frequency Im scrð Þ ¼ 11:1323. The plots in

Figs. 11.10 and 11.11 not only look very similar to those in Figs. 11.8 and 11.9, but

these values are very close to the exact solution, where Pcr ¼ 20:0510 and

Im scrð Þ ¼ 11:0156. When P > Pcr, the imaginary parts of the two roots remain

equal to each other, while the real parts of the roots have the same magnitude but

opposite signs. This means that when P > Pcr there is always a root with a positive

real part, which means that the system will oscillate sinusoidally with an exponen-

tially increasing amplitude.

5 10 15 20 25 30
P

5

10

15

20

Im(s)

figure 11.10 Approximate solution for imaginary part of nondimensional eigenvalue s versus

nondimensional force P for Beck’s column.
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Actual follower forces typically have damping associated with them, which will

mean that subcritical values of s will not be purely imaginary. In this case we would

look for the value of P for which the real part of s crosses the zero axis and becomes

positive, as in Fig. 11.6. Herrmann (1967) was evidently the first to point out that the

addition of damping for nonconservative systems can destabilize a system. However,

it is also known that without some damping mechanism in the model, a follower

force may not represent a realistic phenomenon, as pointed out by Langthjem and

Sugiyama (2000). Cases with damping are left as exercises for the reader.

11.4 leipholz’s column

Leipholz (1975) has considered the problem of a beam subjected to a uniformly

distributed follower force p along its length (see Fig. 11.12). This development

follows closely that of the last section, the only difference being in the virtual work

of the applied load, which is now uniformly distributed along the beam length instead

of concentrated at the tip. Thus, assuming the beam to be inextensible, one can

express the force on each differential element of length dx1 as �pB1 x1,tð Þdx1, the

total virtual work of which given by

dW ¼ �p

Z ‘

0

B1 � du1b1 þ du2b2½ �dx1

¼ �p

Z ‘

0

B1 � �b1

Z x1

0

@u2 jð Þ
@j

@du2 jð Þ
@j

dx1 þ du2b2

� �� �
dx1

¼ p

Z ‘

0

‘� x1ð Þ @u2

@x1

@du2

@x1

� @u2

@x1

du2

� �
dx1

56ð Þ

where the step from the second line to the last is accomplished by integration by

parts.

Taking the contributions from strain and kinetic energy from the previous section,

one finds a weak form of the equation of motion to beZ ‘

0

EI
@2u2

@x2
1

@2du2

@x2
1

þ m
@2u2

@t2
þ p

@u2

@x1

	 

du2 � p ‘� x1ð Þ @u2

@x1

@du2

@x1

� �
dx1 ¼ 0 57ð Þ

5 10 15 20 25 30
P

6

4

2

2

4
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Re(s)

figure 11.11 Approximate solution for real part of nondimensional eigenvalue s versus non-

dimensional force P for Beck’s column.
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or, alternatively,Z ‘

0

EI
@2u2

@x2
1

@2du2

@x2
1

þ m
@2u2

@t2
þ p ‘� x1ð Þ @

2u2

@x2
1

du2

� �
dx1 ¼ 0 58ð Þ

To obtain the partial differential equation of motion and boundary conditions,

one now integrates by parts in x1 to obtainZ ‘

0

@2

@x2
1

EI
@2u2

@x2
1

	 

þ m

@2u2

@t2
þ p ‘� x1ð Þ @

2u2

@x2
1

� �
du2dx1

þ EI
@2u2

@x2
1

@du2

@x1

� @

@x1

EI
@2u2

@x2
1

	 

du2

� ����‘
0
¼ 0

59ð Þ

The virtual displacement and rotation are arbitrary everywhere except at the beam

root where they both vanish. In order for this expression to vanish, the integrand

must vanish. The resulting partial differential equation of motion is then

@2

@x2
1

EI
@2u2

@x2
1

	 

þ m

@2u2

@t2
þ p ‘� x1ð Þ @

2u2

@x2
1

¼ 0 60ð Þ

and the boundary conditions are

u2 0, tð Þ ¼ @u2

@x1

0, tð Þ ¼ EI ‘ð Þ @
2u2

@x2
1

‘, tð Þ ¼ @

@x1

EI
@2u2

@x2
1

	 

‘, tð Þ ¼ 0 61ð Þ

For constant EI, one may simplify these to

EI
@4u2

@x4
1

þ m
@2u2

@t2
þ p ‘� x1ð Þ @

2u2

@x2
1

¼ 0 62ð Þ

with

u2 0, tð Þ ¼ @u2

@x1

0, tð Þ ¼ @
2u2

@x2
1

‘, tð Þ ¼ @
3u2

@x3
1

‘, tð Þ ¼ 0 63ð Þ

An exact solution for this problem is not known, so an approximate solution via

the Ritz method is in order. As with the Beck column, let

b1

b2

B2(x1,t )

B1(x1,t )

p

figure 11.12 Uniform beam subjected to uniformly distributed follower force.
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u2 x1,tð Þ ¼
XN
i¼1

ji tð Þfi x1ð Þ 64ð Þ

where fi are the uniform cantilever beam free-vibration mode shapes. For applica-

tion of the Ritz method, we substitute this series into the weak form, yielding

XN
i¼1

dji

XN
j¼1

jj

Z ‘

0

EIf00i f00j þ p ‘�x1ð Þfif
00
j

h i
dx1þ

XN
j¼1

€jjj

Z ‘

0

mfifjdx1

( )
¼ 0 65ð Þ

which, for arbitrary dji yields a system of linear, second-order, ordinary differential

equations of the form

XN
j¼1

Mij
€jjj þ Kijjj

� �
¼ 0 i ¼ 1, 2, . . . , N 66ð Þ

or, in matrix form,

M½ � j̈
� �
þ K½ � jf g ¼ 0 67ð Þ

where

Kij ¼
Z ‘

0

EIf00i f00j þ p ‘� x1ð Þfif
00
j

h i
dx1

Mij ¼
Z ‘

0

mfifjdx1

68ð Þ

We note that [K] is not symmetric, thus allowing for the possibility of complex

eigenvalues. The matrix [K] carries the elastic forces, proportional to EI, and the

applied forces, proportional to p. The matrix [M] carries the inertial forces, propor-

tional to m. The system is linear with constant coefficients.

Letting jf g ¼ �jj
� �

exp stð Þ, s2 ¼ m‘4s2=EI , p ¼ p‘3=EI , and x ¼ x1=‘, one finds

that the equation can be expressed as

s2
--
1 --

h i
þ

--
ai‘ð Þ --

4
h i

þ p A½ �
h i

�jj
� �
¼ 0 69ð Þ

where

Aij ¼
Z 1

0

1� xð Þfi xð Þf00j xð Þdx 70ð Þ

with A11 ¼ 0:429122, A12 ¼ �4:33714, A21 ¼ 1:18178, and A22 ¼ �6:64714. The real

and imaginary parts of the roots are plotted versus p in Figs. 11.13 and 11.14,

respectively. The two-mode solution reveals that flutter takes place at p ¼ 40:7746

and with a nondimensional flutter frequency of Im sð Þ ¼ 11:0531. These results are

comparable to values published by Leipholz (1975).

11.5 cantilevered shaft subject

to tangential torque

Here we consider a cantilevered shaft subject to a twisting moment, the direction

of which follows the deformation of the shaft as it undergoes perturbations in

bending. Because of the complexity of the solution, we will only solve the problem

approximately by making use of Galerkin’s method.
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The strain energy for a shaft loaded by a twisting moment has already been

developed in Chapter 8, Eq. (8.21). Owing to their being decoupled from the bending

perturbations, we ignore the longitudinal and torsional contributions. Here we

present the strain energy for the special case of zero axial force from Section 8.2,

such that

U ¼ 1

2

Z ‘

0

EI ûu0022 þ ûu0023

� �
þQ ûu002 ûu

0
3 � ûu02ûu

00
3

� �� �
dx1 71ð Þ

The kinetic energy is

T ¼ 1

2

Z ‘

0

m _̂uûuu2
2 þ _̂uûuu2

3


 �
dx1 72ð Þ

The applied load is nonconservative, and hence it does not possess a potential energy.

The virtual work of the applied load is easily developed. The applied torque is in the

tangential direction and is QB1 ‘, tð Þ. The virtual rotation is

dc ¼ dc1B1 þ dc2B2 þ dc3B3 73ð Þ

so that the virtual work is

10 20 30 40 50
p

5

10

15

20

Im(s)

figure 11.13 Imaginary part of nondimensional eigenvalue s versus nondimensional force p

for Leipholz’s column.

10 20 30 40 50
p

−4

−2

2

4

Re(s)

figure 11.14 Real part of nondimensional eigenvalue s versus nondimensional force p for

Leipholz’s column.
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dW ¼ QB1 ‘, tð Þ � dc ‘, tð Þ
dW ¼ Qdc1 ‘, tð Þ
¼ QeT

1 R dujx¼‘

¼ Q

2
duTeee1ûujx¼‘ þ . . .

¼ Q

2
ûu02 ‘ð Þdu03 ‘ð Þ � ûu03 ‘ð Þdu02 ‘ð Þ
� �

þ . . .

74ð Þ

where the third and fourth lines apply only for small perturbations (indicated by the

hats), and the ellipses indicate terms of second and higher orders of the perturbation

quantities.

The equations of motion take the form

EIûu00002 þQûu0003 þ m €̂uûuu2 ¼ 0

EIûu00003 �Qûu0002 þ m €̂uûuu3 ¼ 0
75ð Þ

For the clamped-free condition, we have zero displacement and rotation at the root

and zero moment and shear at the tip, so that the boundary conditions are

ûu2 0ð Þ ¼ ûu3 0ð Þ ¼ ûu02 0ð Þ ¼ ûu03 0ð Þ ¼ 0

ûu002 ‘ð Þ ¼ ûu003 ‘ð Þ ¼ ûu0002 ‘ð Þ ¼ ûu0003 ‘ð Þ ¼ 0
76ð Þ

We now undertake these steps: (a) Let ǔ ¼ ûu2 þ iûu3; (b) introduce the nondimensional

axial coordinate x ¼ x1=‘; (c) let the prime now refer to derivatives with respect to x;

(d) let ǔ ¼ u exp stð Þ with s ¼ ms2‘4=EI . This yields

u0000 � iqu000 þ s2u ¼ 0 77ð Þ
with q ¼ Q‘=EI and

u 0ð Þ ¼ u0 0ð Þ ¼ u00 1ð Þ ¼ u000 1ð Þ ¼ 0 78ð Þ

The solution to this equation is quite involved, but a simple one-term approxima-

tion will suffice to show the result. Let u ¼ c xð Þ with

c ¼ cosh a1xð Þ � cos a1xð Þ � b1 sinh a1xð Þ � sin a1xð Þ½ � 79ð Þ

which is the first mode shape of a cantilevered beam undergoing free vibration, where

a1 ¼ 1:87510, b1 ¼ 0:734096, and Z 1

0

c2dx ¼ 1 80ð Þ

Letting A ¼
R 1

0
cc000dx ¼ �3:78953, and using Galerkin’s method, the resulting

eigenvalue problem becomes a simple quadratic equation in s, given by

s2 þ a4
1 � iAq ¼ 0 81ð Þ

the roots of which are

s ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� a4

1 þ Aiq

q
¼ � ia2

1 �
jqjA
2a2

1

þO q2
� �

¼ �3:51602i � 0:538896jqj þO q2
� �

82ð Þ

SIMITSES - Title 0750678755_ch11 Final Proof page 313 8.11.2005 9:35pm

Cantilevered Shaft Subject to Tangential Torque 313



One of these roots has a positive real part for any nonzero value of q! Moreover, the

magnitude of the real part can be shown to be independent of the number of modes

taken in the Galerkin approximation to first order in q. The fact that the system is

unstable for even infinitesimal values of q is clearly a nonphysical result and has

caused some to question the very existence of follower forces. However, the addition

of a small amount of viscous damping to the model leads to a region of stability; see

Problem 2 at the end of this chapter. Therefore, a more reasonable conclusion is that

models of follower forces should include damping in some form; see Langthjem and

Sugiyama (2000).

11.6 deep cantilever with transverse follower

force at the tip

In spite of all the published work on systems with follower forces, there seems to

be very little literature concerned with the lateral-torsional stability of deep canti-

levered beams loaded by a transverse follower force at the tip. This problem has some

practical applications, such as the effect of jet engine thrust on the aeroelastic flutter

of a flexible wing. According to Bolotin (1963), this type of system was first con-

sidered in Bolotin (1959). Although the analysis presented therein is applicable to the

tip-loaded cantilever case, no results specific to that case were presented. Como

(1966) analyzed a cantilevered beam subjected to a lateral follower force at the tip.

The distributed mass and inertia properties of the beam were neglected, although a

concentrated mass and inertia at the tip were included. Without neglecting the

distributed mass and inertia properties of the beam, Wohlhart (1971) undertook an

extensive study, and results for a wide variation of several parameters were presented.

Additional results and observations were presented by Hodges (2001). Barsoum

(1971) developed a finite element solution to the problem, which was later revisited

by Detinko (2002). Other than these six papers, to the best of the authors’ knowledge,

this problem appears to have received no further attention in the literature. It is the

objective of this section to consider further this nonconservative elastic stability

problem and present a few results and observations that go beyond those of Wohl-

hart (1971).

We first develop a weak form of the partial differential equations of motion for a

deep, symmetric beam under the action of a tip follower force acting in the plane of

symmetry. Then an approximate solution using cantilever beam bending and tor-

sional modes is obtained. The effects of three parameters are investigated: the ratio

of the uncoupled fundamental bending and torsional frequencies, dimensionless

parameters reflecting the mass radius of gyration, and the offset from the elastic

axis of the mass centroid.

11.6.1 EQUATIONS OF MOTION

Consider a cantilevered beam with torsional stiffness GJ and bending stiffnesses

EI2 and EI3 with EI3 � EI2. It is noted here that the bending analysis neglects

transverse shear deformation and rotary inertia, and the torsional analysis neglects

the warping restraint; thus, the beam theory is strictly along classical lines. The

Cartesian coordinates x1, x2, and x3 are along the elastic axis and the two transverse

directions, respectively, as shown in Fig. 11.15. For the purpose of analysis, we

introduce two sets of dextral triads of unit vectors. The unit vectors of the first set,
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bi with i ¼ 1, 2, and 3, are parallel to xi and fixed in an inertial frame. Those of the

other set are fixed in the local cross-sectional frame of the deformed beam and denoted

by Bi x1,tð Þ, with i ¼ 1, 2, and 3. Denote the displacements along bi as ui x1,tð Þ with

i ¼ 1, 2, and 3; and denote the section rotation caused by torsion as u1 x1,tð Þ. The load

is directed along unit vector B2 ‘,tð Þ where B2 ‘,tð Þ ¼ �u02 ‘,tð Þb1 þ b2 þ u1 ‘,tð Þb3;

here ð Þ0 denotes a partial derivative with respect to x1. Thus, the virtual work done

by this force through a virtual displacement is

dW ¼ PB2 ‘,tð Þ � du1 ‘,tð Þb1 þ du2 ‘,tð Þb2 þ du3 ‘,tð Þb3½ �
¼ P �u02du1 þ du2 þ u1du3

� �
j‘0

83ð Þ

In keeping with the nonconservative nature of the follower force, there exists no

potential energy which, upon variation, will yield this expression for the virtual work.

We will subsequently ignore the longitudinal displacement u1.

For a beam subject to a bending moment M3 that is constant in time but varying

in x1, and in which deflections caused by that moment are ignored (since EI3 � EI2),

we need the third component of moment strain to second order. This can be obtained

from Eq. (3.137) as

k3 ¼ �kk3 þ u002 þ u1u
00
3 84ð Þ

Thus, the strain energy can written as

U ¼
Z ‘

0

GJ

2
u021 þ

EI2

2
u0023 þM3 u002 þ u1u

00
3

� �� �
dx1 85ð Þ

To find the equilibrium state of deformation in the beam, one may consider only the

first-order terms in dU � dW , such thatZ ‘

0

M3du002 � Pdu02
� �

dx1 ¼ 0 86ð Þ

x1, u1 ,b1

  u2, b2

  u3, b3

  P B2

figure 11.15 Schematic of deep beam showing coordinate systems and follower force.
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Thus,

M3 ¼ P ‘� x1ð Þ 87ð Þ

as expected. To obtain a weak form that governs the behavior of small static

perturbations about the equilibrium state, one may set the second-order terms in

dU � dW equal to zero, so that

dU � dW ¼
Z ‘

0

EI2u
00
3du003 þ GJu01du01 þ P ‘� x1ð Þ u1du003 þ u003du1

� �� �
dx1 � Pu1du3j‘0 ¼ 0 88ð Þ

Integration by parts can eliminate the trailing term, so that

dU � dW ¼
Z ‘

0

EI2u
00
3du003 þ GJu01du01 þ P ‘� x1ð Þu003du1 þ P ‘� x1ð Þu1½ �00du3

� �
dx1 ¼ 0 89ð Þ

It can be shown that there is no value of P that will result in buckling. To proceed

with an investigation of the stability by the kinetic method, one may now add the

variation of the kinetic energy and, using Hamilton’s principle, consider the stability

of small vibrations about the static equilibrium state.

The kinetic energy of the vibrating beam is simply

T ¼ 1

2

Z ‘

0

m _uu2
2 þ m _uu2

3 þ ms2 _uu2
1 þ 2me _uu1 _uu3

� �
dx1 90ð Þ

where _ð Þ is a partial derivative with respect to time, m the mass per unit length, e the

offset in the b2 direction of the mass centroid from the reference line, and s the cross-

sectional mass radius of gyration. We now undertake a straightforward application

of Hamilton’s principle Z t2

t1

dU � dW � dT
� �

dt ¼ 0 91ð Þ

where t1 and t2 are fixed times. Integrating by parts in time, setting du3 and du1 equal

to zero at the ends of the time interval, removing the time integration, assuming that

the motion variables are proportional to est, and introducing a set of nondimensional

variables, such that

ð Þ0 ¼ dð Þ
dx

x1 ¼ x‘

u3 ¼ ‘w exp stð Þ u1 ¼ u exp stð Þ

p ¼ P‘2

sEI2

s2¼ m‘4s2

EI2

s ¼ s

‘
e ¼ e

‘

r2 ¼ EI2a4
I s2

GJg2
1

92ð Þ

one obtains a weak form governing the flutter problemZ 1

0

(
w00dw00 þsp 1�xð Þu½ �00dwþ s2 wþ euð Þdwþ a4

1

r2g2
1

u0du0 þ p

s
1�xð Þw00du

þ s2 e

s2
wþu


 �
du

)
dx¼ 0 93ð Þ
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where the dimensionless parameters e and s govern the offset of the mass centroid and

mass radius of gyration, respectively. The dimensionless parameter r is the ratio of the

fundamental bending and torsion frequencies of the unloaded beam with e ¼ 0.

11.6.2 Approximate Solution and Results

This weak form can be solved approximately by assuming a set of uncoupled

cantilever beam free-vibration modes for bending and torsion. To obtain converged

results for the range of parameters considered, four of each type were found to be

adequate. Specifying values for r, e, and s, one can solve for the real and imaginary

parts of s as functions of p. Depending on the values chosen for these parameters,

flutter will occur when the imaginary parts of two modes coalesce. The modes that

coalesce can be traced back to modes that for p ¼ 0 are either two bending modes,

two torsion modes, or one of each.

It can easily be shown that when e ¼ 0, the eigenvalues do not depend on s. This

surprising result makes it possible to characterize the critical load in terms of only

one parameter, r. It should be noted, however, that the mode shapes are not

independent of s when e ¼ 0. In a typical case, the real parts of all eigenvalues are

zero for sub-critical values of p. The imaginary parts of the eigenvalues depend only

on p and r when e ¼ 0, and on p, r, s and e when e 6¼ 0. At the point when

coalescence occurs, the real part of one mode becomes negative, while the real part

of another becomes positive.

Example results for e ¼ 0 are shown in Figs. 11.16 – 11.20. In Fig. 11.16 the

imaginary parts of the four smallest eigenvalues are shown versus p for a large value

of r ¼ 3:8. In this case, at p ¼ 0, two modes that start out as the first two torsional

modes coalesce. Notice that the next higher modes, the first bending and third torsion

modes at p ¼ 0, coalesce for just a bit larger value of p. If r is taken to be a little

larger, a complicated pattern emerges with the critical load, because multiple tor-

sional modes occur below the first bending mode, and the critical coalescence may

jump up to the second two modes. Fig. 11.17 shows the usual zero real part up to the

coalescence and the positive real part thereafter. More realistic values are shown in

Figs. 11.18 and 11.19. In the former case, the first bending mode is above the first

bending, and in the latter it is below. As r becomes smaller still, the critical load

greatly increases. The variation of the critical load versus r for e ¼ 0 is shown in Fig.

11.20. Notice that an arbitrarily small force destabilizes the system when r ¼ 1;

similar observations were made by Bolotin (1964, p. 349) and Wohlhart (1971).

0.5 1 1.5 2
p

1

2

3

4

Im(s)

figure 11.16 Imaginary parts of the four smallest eigenvalues versus p for r ¼ 3:8 and e ¼ 0.

SIMITSES - Title 0750678755_ch11 Final Proof page 317 8.11.2005 9:35pm

Deep Cantilever with Transverse Follower Force at the Tip 317



For a typical value of s ¼ 0:05, small values of the mass centroid offset parameter

e do not change the results qualitatively, except for removing the ‘‘cusp’’ in the plot

of pcr versus r at r ¼ 1. Rather than a cusp at r ¼ 1, when e 6¼ 0 one finds a smooth

curve that has a nonzero minimum value. Plots for e ¼ 0:005 and e ¼ �0:005 are

shown in Figs. 11.21 and 11.22, respectively, each also showing results for e ¼ 0. One

finds a greater qualitative change for positive values of e than for negative values.

The variation of the results versus e for typical values of r ¼ 2=3 and r ¼ 3=2 are

shown in Fig. 11.23 for s ¼ 0:05 and in Fig. 11.24 for s ¼ 0:025. Note the increased

sensitivity of the critical load versus e curve for the smaller value of s and for positive

0.5 1 1.5 2 2.5 3
p
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figure 11.17 Real part of the eigenvalue for the unstable mode versus p for r ¼ 3:8 and e ¼ 0.
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figure 11.18 Imaginary parts of the two smallest eigenvalues versus p for r ¼ 3=2 and e ¼ 0.
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figure 11.19 Imaginary parts of the two smallest eigenvalues versus p for r ¼ 2=3 and e ¼ 0.
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values of e. Finally, we consider the variation of pcr versus s for typical values of

r ¼ 2=3 and r ¼ 3=2. Fig. 11.25 shows the variation of pcr versus s for e ¼ 0:005 and

Fig. 11.26 for e ¼ �0:005. One sees pcr decreasing with increasing s for both positive

and negative values of e. For the values of r chosen for these plots, the curve pcr

versus s becomes rather flat as s becomes large. Depending on the value of r, these

flat regions can tend monotonically and asymptotically to the e ¼ 0 value of pcr or

they may reverse while converging asymptotically. The value of r governs the types of

motion that make up the two lowest modes.
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figure 11.20 Critical load for e ¼ 0 versus r.
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figure 11.21 Critical loadversus r fors ¼ 0:05with e ¼ 0 (solid line) and e ¼ 0:005 (dashed line).
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figure 11.22 Critical load versus r for s ¼ 0:05 with e ¼ 0 (solid line) and e ¼ �0:005 (dashed

line).
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11.7 fully intrinsic formulation for beams

The advantages of the intrinsic form of the equations of motion include low-order

nonlinearities in the equations of motion and the absence of displacement and finite-

rotation variables from the equations of motion. Still, the adjoined kinematical

equations must contain displacement and finite-rotation variables in order to be

useful in the general case. Although one may find that having such variables appear
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figure 11.23 Critical load versus e for s ¼ 0:05 with r ¼ 3=2 (solid line) and r ¼ 2=3 (dashed

line).
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figure 11.24 Critical load versus e for s ¼ 0:025 with r ¼ 3=2 (solid line) and r ¼ 2=3 (dashed

line).
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figure 11.25 Critical load versus s for e ¼ 0:005; r ¼ 3=2 (solid line) and r ¼ 2=3 (dashed

line).
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only in a subset of the equations an attractive feature, when the finite rotation is

represented by orientation angles there are sines and cosines of those angles. When it

is represented by Rodrigues parameters, there are rational functions. Both involve

infinite-degree nonlinearities. In fact, the kinematical equations must contain infinite-

degree nonlinearities unless Euler parameters or the direction cosines themselves are

used as finite-rotation variables; see Hodges (1987). These latter approaches add

more rotational variables and more Lagrange multipliers, thus creating more un-

knowns. Finally, the high-order nonlinearities and/or additional unknowns inherent

in these approaches make analytical solutions more laborious if not intractable.

This section presents an alternative approach, one in which displacement and

finite-rotation variables do not appear. Of course, they or a subset of them can be

added to the formulation in order to make possible their recovery; even so, depend-

ing on the problem, it may be possible to avoid nonlinearities of order greater than

two and still have fewer equations and unknowns than would be necessary for the

usual approach applied to the most general case.

In this section, the intrinsic formulation for beams is reviewed, including the

equations of motion, the spatial and temporal constitutive equations, and the spatial

and temporal kinematical equations needed to close the formulation. From the

kinematical equations, the intrinsic kinematical equations are derived. Advantages

of this formulation are demonstrated with examples treated by other methods earlier

in this chapter.1

11.7.1 EQUATIONS OF MOTION

Consider a beam of length ‘ undergoing finite deformation. The displacement

vector beam of the reference line is denoted by u x1,tð Þ where x1 is the running length

coordinate along the undeformed beam axis of cross-sectional centroids. The orthog-

onal set of basis vectors for the cross section of the undeformed beam is denoted by

bi x1ð Þ, where b1 is chosen to be tangent to the reference line. The orthogonal set of

basis vectors for the cross section of the deformed beam is denoted by Bi x1,tð Þ, where

B1 is not in general tangent to the reference line of the deformed beam. The direction

cosines are denoted as Cij x1,tð Þ ¼ Bi � bj. It is important to note that when the beam is

in its undeformed state that these two sets of unit vectors coincide so that C reduces

to the identity matrix.

The equations of motion in matrix form are given by
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figure 11.26 Critical loadversus s for e ¼ �0:005; r ¼ 3=2 (solid line) and r ¼ 2=3 (dashed line).

1 Portions of this material are based on Hodges (1990, 2003), used by permission.
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F 0 þ eKKF þ f ¼ _PPþ eVVP

M0 þ eKKM þ eee1 þ eggð ÞF þm ¼ _HH þ eVVH þ eVVP
94ð Þ

where, as before, ð Þ0 denotes the partial derivative with respect to the axial coordinate

x1, and _ð Þ denotes the partial derivative with respect to the time t; column matrices

F¼ bF1 F2 F3cT , M ¼ bM1 M2 M3cT ,g ¼ bg11 2g12 2g13cT , K¼ bK1 K2 K3cT ,

P ¼bP1 P2 P3cT , H ¼ bH1 H2 H3cT , V ¼ bV1 V2 V3cT , V ¼ bV1 V2 V3cT ,

and e1 ¼ b1 0 0cT ; f ¼ bf1 f2 f3cT ; m ¼ bm1 m2 m3cT ; g11 is the extensional

strain of the reference line; 2g12 and 2g13 are the transverse shear measures.

All the unknowns are functions of x1 and t. Recall that the various indexed scalar

variables have the following meanings: Fi ¼ F � Bi with F x1,tð Þ being the resultant

force of all tractions on the cross-sectional face at a particular value of x1 along the

reference line.

Mi ¼M � Bi with M x1,tð Þ being the resultant moment about the reference line at a

particular value of x1 of all tractions on the cross-sectional face, Ki ¼ K � Bi with

K x1,tð Þ being the curvature of the deformed beam reference line at a particular value

of x1 such that B0i ¼ K	 Bi, Vi ¼ V � Bi with V x1,tð Þ being the inertial velocity of a

point at a particular value of x1 on the deformed beam reference line, Vi ¼ V � Bi

with V x1,tð Þ being the inertial angular velocity of the deformed beam cross-sectional

frame such that _BBi ¼ V	 Bi, Pi ¼ P � Bi with P x1,tð Þ being the inertial linear mo-

mentum of the material points that make up the deformed beam reference cross

section at a particular value of x1, Hi ¼ H � Bi with H x1,tð Þ being the inertial angular

momentum of all the material points that make up a reference cross section of the

deformed beam about the reference line of that cross section at a particular value of

x1, fi ¼ f � Bi with f x1,tð Þ being the applied distributed force per unit length, and

mi ¼ m � Bi with m x1,tð Þ being the applied distributed moment per unit length.

11.7.2 CONSTITUTIVE EQUATIONS

It is not necessary to retain all the variables in Eq. (94). For the purposes of the

present discussion, the generalized strains and momenta will be eliminated. For

beams with solid cross sections (and strip-beams with small axial loading), we have

small strain and small local rotation; see Hodges (2006). Thus, the constitutive

equations are linear and are written in the form

g11

2g12

2g13

k1

k2

k3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

R11 R12 R13 S11 S12 S13

R12 R22 R23 S21 S22 S23

R13 R23 R33 S31 S32 S33

S11 S21 S31 T11 T12 T13

S12 S22 S32 T12 T22 T23

S13 S23 S33 T13 T23 T33

2
6666664

3
7777775

F1

F2

F3

M1

M2

M3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

95ð Þ

where k ¼ K � k and k ¼ bk1 k2 k3cT , ki ¼ k � bi, and k x1ð Þ is the initial curvature/

twist vector at x1, such that b0i ¼ k	 bi. Thus, k1 is the initial twist and k2 and k3 are

the initial curvature measures. Here the coefficients R11, R12, . . . , T33 are cross-

sectional flexibility coefficients. This equation may also be written as

g

k

� �
¼ R S

ST T

� �
F

M

� �
96ð Þ

Similarly, the generalized momentum-velocity relations are
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P1

P2

P3

H1

H2

H3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

m 0 0 0 mx3 �mx2

0 m 0 �mx3 0 0

0 0 m mx2 0 0

0 �mx3 mx2 i2 þ i3 0 0

mx3 0 0 0 i2 i23

�mx2 0 0 0 i23 i3

2
6666664

3
7777775

V1

V2

V3

V1

V2

V3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

97ð Þ

where m is the mass per unit length, x2 and x3 are offsets from the reference line of the

cross-sectional mass centroid, and i2, i3, and i23 are the cross-sectional mass moments

and product of inertia, respectively. This equation may also be written as

P

H

� �
¼ mI �mexx

mexx I

� �
V

V

� �
98ð Þ

where x ¼ b0 x2 x3cT .

11.7.3 CLOSING THE FORMULATION

This formulation can be closed by using a set of kinematical relations. For this we

introduce displacement variables u ¼ bu1 u2 u3cT and express the change in orienta-

tion in terms of the direction cosine matrix C. The kinematical relations are a set of

generalized strain-displacement equations that relate g and k to u and C and a set of

generalized velocity-displacement equations that relate V and V to u and C. See

Hodges (1990, 2003, 2006) for additional details.

Generalized Strain-Displacement Equations

The generalized strain-displacement relations are of the form

g ¼ C e1 þ u0 þ ekku

 �

� e1 99ð Þ

and

ekk ¼ �C0CT þ CekkCT � ekk 100ð Þ

Generalized Velocity-Displacement Equations

The generalized velocity-displacement relations are of a similar form, viz.,

V ¼ C vþ _uuþ evvuð Þ 101ð Þ
and

eVV ¼ � _CCCT þ CevvCT 102ð Þ

where v and v are column matrices which contain measure numbers of the velocity

and angular velocity of the frame of reference to which the beam is attached,

expressed in the local undeformed beam cross-sectional frame basis. In the present

applications these can be set equal to zero, but they are useful for handling rotating

beams, for example.

Derivation of Intrinsic Kinematical Equations

Intrinsic kinematical equations can now be derived by careful elimination

of all displacement and rotation variables from the generalized strain- and
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velocity-displacement equations. Starting with differentiation of V with respect to x1,

one obtains

eVV0 ¼ � _CC0CT � _CCCT þ C0evvCT þ Cevv0CT þ CevvC0T 103ð Þ

where v0 ¼ �ekkv. Similarly, differentiation of k with respect to t yields

e_kk_kk ¼ � _CC0CT � C0 _CCT þ _CCekkCT þ Cekk _CCT 104ð Þ

These equations involve C0, which can be expressed in terms of K using Eq. (100),

and _CC, which can be expressed in terms of V using Eq. (102). Both equations contain
_CC0, which can be eliminated with algebraic manipulation to yield a single relation

between V0 and _kk that, when simplified, is given by

V0 ¼ _kkþ eVVK 105ð Þ

In a similar manner, V is differentiated with respect to x1, yielding

V 0 ¼ C0 vþ _uuþ evvuð Þ þ C v0 þ _uu0 þ evv0uþ evvu0ð Þ 106ð Þ

and g is differentiated with respect to t, leading to

_gg ¼ _CC e1 þ u0 þ ekku

 �

þ C _uu0 þ ekk _uu

 �

107ð Þ

This time we make use of Eq. (101) to write

vþ _uuþ evvu ¼ CTV 108ð Þ

and Eq. (99) to write

e1 þ u0 þ ekku ¼ CT e1 þ gð Þ 109ð Þ

and again Eq. (100) and (102) are used to eliminate C0 and _CC, respectively. We must

also use the relation that

v0 ¼ evve1 � ekkv 110ð Þ

Now, we can eliminate _uu0 and find a single relation between V 0 and _gg, namely,

V 0 ¼ _gg þ eVVK þ eVV e1 þ gð Þ 111ð Þ

Eqs. (94), (96), (98), (105) and (111) constitute a closed formulation. The beauty of

the formulation is striking, especially with regard to the similarity in structure of the

left-hand sides of Eq. (94a) and (105) and Eq. (94b) and (111). Moreover, this

formulation can be used in the solution of a variety of problems. For example, for

situations in which the applied loads f and m and the boundary conditions on F, M,

V, and V are independent of u and C, these equations allow the solution of nonlinear

dynamics problems without finite rotation variables. As these variables are fre-

quently the source of the highest degree nonlinearities and a possible source of

singularities or of the need for Lagrange multipliers or trigonometric functions, to

be able to avoid finite rotation variables can be quite advantageous. Finally, this

formulation leads to explicit expressions for two conservation laws, which may have

practical applications in development of computational algorithms; see Hodges

(2003, 2006). An example is now presented showing advantages of the formulation

for stability problems involving nonconservative forces.
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11.7.4 EXAMPLES SHOWING ADVANTAGES OF THE INTRINSIC FORMULATION

In this section the utility of the fully intrinsic formulation will be addressed for

problems involving nonconservative forces. Two examples are presented: first, Beck’s

column, and second, the deep cantilever with a tip transverse follower force.

Considering a prismatic and isotropic beam with the mass centroid coincident

with the reference line and the principal axes of the cross section along the b2 and b3

directions, the constitutive law becomes

g11

2g12

2g13

k1

k2

k3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

1
EA

0 0 0 0 0

0 1
GA2

0 0 0 0

0 0 1
GA3

0 0 0

0 0 0 1
GJ

0 0

0 0 0 0 1
EI2

0

0 0 0 0 0 1
EI3

2
66666664

3
77777775

F1

F2

F3

M1

M2

M3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

112ð Þ

and the cross-sectional generalized momentum-velocity relations are

P1

P2

P3

H1

H2

H3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 i2 þ i3 0 0

0 0 0 0 i2 0

0 0 0 0 0 i3

2
6666664

3
7777775

V1

V2

V3

V1

V2

V3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

113ð Þ

Beck’s Column

For Beck’s problem, the constitutive relations, along with a consistent lineariza-

tion of Eqs. (94), (105), and (111), are used to produce governing equations for the

stability of small motions about the static equilibrium state. In the static equilibrium

state, the beam is subject to axial compression by a follower force P as depicted in

Fig. 11.7, so that the equilibrium state is F ¼ �Pe1 and all other variables are equal

to zero. Ignoring rotary inertia (i2 ¼ i3 ¼ 0) except in the torsional equation, con-

sidering infinite axial and shearing rigidities (1= EAð Þ ¼ 1= GA2ð Þ ¼ 1= GA3ð Þ ¼ 0),

and letting V x1,tð Þ ¼ V x1ð Þ þ V̂V x1,tð Þ and similarly for all other variables, one

obtains the following equations, linearized in the ð̂ Þ quantities:

V̂V 02 ¼ V̂V3

V̂V03 ¼
_̂

MM̂MM3

EI3

F̂ 02 ¼ m
_̂
VV̂VV 2 þ

PM̂3

EI3

M̂0
3 ¼ � F̂2

114ð Þ

where the planar deformation is assumed to take place in the x1-x2 plane and EI3 is

the smallest bending stiffness of the beam. These equations can be collapsed into

a single equation for any of the variables. When written in terms of V̂V2, these

equations reduce to a single, fourth-order equation which, together with its bound-

ary conditions, is of identical form to those of the displacement-based analysis in

Section 11.3.
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Deep Cantilever with Tip Transverse Follower Force

The problem of Section 11.6 provides an interesting illustration of the utility of the

subject methodology for follower-force problems. In this problem, a cantilevered

beam is loaded with a transverse follower force at its tip, as shown in Fig. 11.15.

These relations, alongwith an exact linearization ofEqs. (94), (105), and (111), are used

to produce governing equations for the stability of small motions about the static

equilibrium state. Ignoring rotary inertia (i2 ¼ i3 ¼ 0) except in the torsional equation,

considering infinite axial and shearing rigidities (1= EAð Þ ¼ 1= GA2ð Þ ¼ 1= GA3ð Þ ¼ 0),

and letting V x1,tð Þ ¼ V x1ð Þ þ V̂V x1,tð Þ and similarly for all other variables, one ob-

tains the following equations, linearized in the ^ð Þ quantities:

M̂0
1 þM3M̂2

1

EI2

� 1

EI3

	 

� i2 þ i3ð Þ _̂

VV̂VV1 ¼ 0

M̂0
2 �M3M̂1

1

GJ
� 1

EI3

	 

� F̂3 ¼ 0

F̂ 03 þ
F 2M̂1

GJ
� F 1M̂2

EI2

� m
_̂
VV̂VV 3 ¼ 0

V̂V01 �
M3V̂V2

EI3

�
_̂

MM̂MM1

GJ
¼ 0

V̂V02 þ
M3V̂V1

EI3

�
_̂

MM̂MM2

EI2

¼ 0

V̂V 03 þ V̂V2 ¼ 0

115ð Þ

where the equilibrium state is governed by three first-order equations given by

F
0
1 �

M3F2

EI3

¼ 0

F
0
2 þ

M3F1

EI3

¼ 0

M
0
3 þ F 2 ¼ 0

116ð Þ

The compactness and ease of derivation are noteworthy, as are the beauty and

symmetry of the final equations. To appreciate the simplicity of the above formula-

tion, one should compare it with the equations of Detinko (2002). It is clear that the

present formulation is considerably simpler. The simplicity of the present formula-

tion for this problem stems from the boundary conditions’ independence of displace-

ment and orientation variables, a property typical of follower force problems.

problems

1. Show that a pinned-pinned shaft loaded by tangential torques on both ends only

loses its stability by buckling as predicted by the static method in Section 8.4.2.

2. Determine the effect of viscous damping on the stability of a shaft undergoing

twist from a tangential torque. For a one-term approximation, show that

the system is stable for j q j # 2za4
1=A where z is the damping ratio and

A ¼ �
R 1

0
cc000dx ¼ 3:78953.
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3. Add viscous damping terms to each discrete equation in the two-mode model for

Beck’s column derived in the text. In particular, show that damping can be

destabilizing if one of the damping ratios is sufficiently large (or small) relative

to the other.

4. Consider a free-free beam loaded axially in compression by a follower force P

applied at one end. Show that the axial force is P ‘� x1ð Þ and that the boundary

conditions are u002 0,tð Þ ¼ u0002 0,tð Þ ¼ u002 ‘,tð Þ ¼ u0002 ‘,tð Þ ¼ 0. Using a four-term

Galerkin approximation (two rigid-body modes and two ‘‘elastic’’ modes), deter-

mine the critical load Pcr and the nature of the instability.

5. Consider a cantilevered beam lodaded by a transverse follower force at its tip, as

shown in Fig. 11.15 Using Eqs. (116) with F 1ð‘Þ ¼M1ð‘Þ ¼ 0 and F2ð‘Þ ¼ P,

determine the steady-state solution. Compare with the approximate steady-state

solution found in Eq. (87). Next, using Eqs. (115), determine the critical value of

P. Compare your results to those in Section 11.6.2.

6. Using the fully intrinsic method, analyze a cantilevered deep beam undergoing

a follower moment at the free end that leads to static, steady-state bending in the

plane of greatest flexural rigidity. Determine the value of the moment at which

flutter occurs using a Galerkin approximation with one term for each of the

unknowns.
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12

Dynamic Stability

12.1 introduction and fundamental concepts

Dynamic stability or instability of elastic structures has drawn considerable atten-

tion in the past 40 years. The beginning of the subject can be traced to the investigation

of Koning and Taub (1933), who considered the response of an imperfect (half-sine

wave), simply supported column subjected to a sudden axial load of specified

duration. Since then, many studies have been conducted by various investigators on

structural systems that are either suddenly loaded or subjected to time-dependent

loads (periodic or nonperiodic), and several attempts have been made to find common

response features and to define critical conditions for these systems. As a result of this,

the term dynamic stability encompasses many classes of problems and many different

physical phenomena; in some instances the term is used for two distinctly different

responses for the same configuration subjected to the same dynamic loads. Therefore,

it is not surprising that there exist several uses and interpretations of the term.

In general, problems that deal with the stability of motion have concerned

researchers for many years in many fields of engineering. Definitions for stability

and for the related criteria and estimates of critical conditions as developed through

the years are given by Stoker (1955). In particular, the contributions of Routh (1975)

Thompson and Tait (1923) deserve particular attention. Some of these criteria find

wide uses in problems of control theory (Lefschetz, 1965), of stability and control of

aircraft (Seckel, 1964), and in other areas (Crocco and Cheng, 1956).

The class of problems falling in the category of parametric excitation, or para-

metric resonance, includes the best defined, conceived, and understood problems of

dynamic stability. An excellent treatment and bibliography can be found in the book

by Bolotin (1964). Another reference on the subject is Stoker’s book (1950).

The problem of parametric excitation is best defined in terms of an example.

Consider an Euler column, which is loaded at one end by a periodic axial force.

The other end is immovable. It can be shown that, for certain relationships between

the exciting frequency and the column natural frequency of transverse vibration,

transverse vibrations occur with rapidly increasing amplitudes. This is called

parametric resonance and the system is said to be dynamically unstable. Moreover,

the loading is called parametric excitation.
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Other examples of parametric resonance include (1) a thin flat plate parametri-

cally loaded by inplane forces, which may cause transverse plate vibrations; (2)

parametrically loaded shallow arches (symmetric loading), which under certain

conditions vibrate asymmetrically with increasing amplitude; and (3) long cylin-

drical, thin shells (or thin rings) under uniform but periodically applied pressure,

which can excite vibrations in an asymmetric mode. Thus, it is seen that, in

parametric excitation, the loading is parametric with respect to certain deforma-

tion forms. This makes parametric resonance different from the usual forced vibra-

tion resonance. In addition, from these few examples of parametric excitation,

one realizes that systems that exhibit bifurcational buckling under static condi-

tions (regardless of whether the bifurcating static equilibrium branch is stable

or unstable) are subject to parametric excitation.

Moreover, there exists a large class of problems for which the load is applied

statically but the system is nonconservative. An elastic system is conservative when

subjected to conservative loads; the reader is also referred to Ziegler’s book (1968)

for a classification of loads and reactions. An excellent review on the subject

of stability of elastic systems under nonconservative forces is given by Herrmann

(1967). He classifies all problems of nonconservative systems into three groups. The

first group deals with follower-force problems, the second with problems of rotating

shafts (whirling), and the third with aeroelasticity (fluid–solid interaction; flutter).

All of these groups, justifiably or not, are called problems of dynamic stability.

In the opinion of the author, justification is needed only for the first group. Ziegler

(1956) has shown that critical conditions for this group of nonconservative systems

can be obtained only through the use of the dynamic or kinetic approach to stability

problems. The question of applicability of the particular approach was clearly

presented by Herrmann and Bungay (1964) through a two-degree-of-freedom

model. They showed that in some nonconservative systems, there exist two instabil-

ity mechanisms, one of divergence (large deflections may occur) and one of flutter

(oscillations of increasing amplitude). They further showed that the critical load

for which the flutter type of instability occurs can be determined only through

the kinetic approach, as illustrated in Chapter 11, while the divergence type of

critical load can be determined by employing any one of the three approaches

(classical, potential energy, or kinetic). It is understandable, then, why many authors

refer to problems of follower-forced systems as dynamic stability problems. Fur-

thermore, the problem of flow-induced vibrations in elastic pipes is another fluid–

solid interaction problem that falls under the general heading of dynamic stability.

The establishment of stability concepts, as well as of estimates for critical conditions,

is an area of great practical importance. A few references (Au-Yang and Brown,

1977; Benjamin, 1961; Blevins, 1977; Chen, 1975a, b; Chen, 1978; Chen, 1981;

Gregory, 1966; Hill and Swanson, 1970; Junger and Feit, 1972; King, 1977;

Paidoussis, 1970; Paidoussis and Deksnis, 1970; Reusselet and Hermann, 1977;

Scanlan and Simin, 1978) are provided for the interested reader. In addition, a few

studies have been reported that deal with the phenomenon of parametric resonance

in a fluid–structure interaction problem (Bohn and Hermann, 1974; Ginsberg, 1973;

Paidoussis and Issid, 1976; Paidoussis and Sundararajan, 1975). For completeness,

one should refer to a few studies of aeroelastic flutter (Dowell, 1969, 1970;

Dugundji, 1972; Kornecki, 1970; Kuo et al., 1972).

Finally, a large class of structural problems that has received considerable atten-

tion and does qualify as a category of dynamic stability is that of impulsively loaded

configurations and configurations that are suddenly loaded with loads of constant
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magnitude and infinite duration. These configurations under static loading are

subject to either limit point instability or bifurcational instability with an unstable

post-buckling branch (violent buckling). The two types of loads may be thought of as

mathematical idealizations of blast loads of (1) large decay rates and small decay

times and (2) small decay rates and large decay times, respectively. For these loads,

the concept of dynamic stability is related to the observation that for sufficiently

small values of the loading, the system simply oscillates about the near static

equilibrium point and the corresponding amplitudes of oscillation are sufficiently

small. If the loading is increased, some systems will experience large-amplitude

oscillations or, in general, a divergent type of motion. For this phenomenon to

happen, the configuration must possess two or more static equilibrium positions,

and escaping motion occurs by having trajectories that can pass near an unstable

static equilibrium point. Consequently, the methodologies developed by the various

investigators are for structural configurations that exhibit snapthrough buckling

when loaded quasi-statically.

Solutions to such problems started appearing in the open literature in the early

1950s. Hoff and Bruce (1954) considered the dynamic stability of a pinned half-sine

arch under a half-sine distributed load. Budiansky and Roth (1962), in studying the

axisymmetric behavior of a shallow spherical cap under suddenly applied loads,

defined the load to be critical when the transient response increases suddenly with

very little increase in the magnitude of the load. This concept was adopted by numer-

ous investigators (Budiansky, 1967; Budiansky and Hutchinson, 1964; Hsu, 1967,

1968a, b, c; Simitses, 1974; Tamura and Babcock, 1975) in subsequent years because

it is tractable to computer solutions. Finally, the concept was generalized in a paper by

Budiansky (1967) in attempting to predict critical conditions for imperfection-

sensitive structures under time-dependent loads.

Conceptually, one of the best efforts in the area of dynamic buckling under

suddenly applied loads is the work of Hsu and his collaborators (Hsu, 1967, 1968a,

b, c; Hsu et al., 1968). Hsu defined sufficiency conditions for stability and sufficiency

conditions for instability, thus finding upper and lower bounds for the critical

impulse or critical sudden load. Independently, Simitses (1965), in dealing with the

dynamic buckling of shallow arches and spherical caps, termed the lower bound a

minimum possible critical load (MPCL) and the upper bound a minimum guaranteed

critical load (MGCL). Some interesting comments on dynamic stability are given by

Hoff (1967). Finally, Thompson (1967) presented a criterion for estimating critical

conditions for suddenly loaded systems.

The totality of concepts and methodologies used by the various investigators in

estimating critical conditions for suddenly loaded elastic systems (of the last cat-

egory) can be classified in the following three groups:

1. Equations of motion approach (Budiansky and Roth, 1962). The equations of

motion are (numerically) solved for various values of the load parameter (ideal

impulse, or sudden load), thus obtaining the system response. The load parameter

at which there exists a large (finite) change in the response is called critical.

2. Total energy–phase plane approach (Hsu, 1967, 1968a, b, c; Hsu et al., 1968).

Critical conditions are related to characteristics of the system’s phase plane, and

the emphasis is on establishing sufficient conditions for stability (lower bounds)

and sufficient conditions for instability (upper bounds).

3. Total potential energy approach (Simitses, 1965). Critical conditions are related to

characteristics of the system’s total potential. Through this approach also, lower
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and upper bounds of critical conditions are established. This last approach is

applicable to conservative systems only. The concepts and procedure related to

the last approach are explained next in some detail.

12.2 the total potential energy approach:

concepts and procedure

The concept of dynamic stability is best explained through a single-degree-of-

freedom system. First, the case of ideal impulse is treated and then the case of

constant load of infinite duration.

12.2.1 IDEAL IMPULSE

Consider a single-degree-of-freedom system for which the total potential (under

zero load) curve is plotted versus the generalized coordinate (independent variable)

(see Fig. 12.1). Clearly, points A, B, C denote static equilibrium points, and point B

denotes the initial position (u ¼ 0) of the system.

Since the system is conservative, the sum of the total potential U
o

T (under ‘‘zero’’

load) and the kinetic energy To is a constant C, or

U
o

T þ To ¼ C 1ð Þ

Moreover (see Fig. 12.1), since U
o

T is zero at the initial position (Q ¼ 0), the constant

C can be related to some initial kinetic energy To
i . Then

U
o

T þ To ¼ To
i 2ð Þ

Next, consider an ideal impulse applied to the system. Through the impulse–momen-

tum theorem, the impulse is related to the initial kinetic energy To
i . Clearly, if To

i is

equal to D (see Fig. 12.1) or U
o

T QIIð Þ, the system will simply oscillate between QI and

QII. On the other hand, if the initial kinetic energy To
i is equal to the value of the total

potential at the unstable static equilibrium point C, U
o

T Cð Þ, then the system can reach

point C with zero velocity (To ¼ 0), and there exists a possibility of motion escaping

(passing position C) or becoming unbounded. Such a motion is termed buckled

motion. In the case for which motion is bounded and the path may include the initial

point (B), the motion is termed unbuckled motion.

A

D

C

BΘI ΘII Θ

U� 
T

figure 12.1 Total potential curve (zero load, one degree of freedom).
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Through this, a concept of dynamic stability is presented and the necessary steps

for estimating critical impulses are suggested. Note that once the unstable static

equilibrium positions (points A and C) are established, the critical initial kinetic

energy is estimated by

To
icr ¼ U

o

T Cð Þ 3ð Þ

Moreover, since To
i is related to the ideal impulse, the critical impulse is estimated

through Eq. (3). Observe that an instability of this type can occur only when the

system, under zero load, possesses unstable static equilibrium points. Furthermore, if

position C corresponds to a very large and thus unacceptable position Q (from

physical considerations), one may still use this concept and estimate a maximum

allowable (and therefore critical) ideal impulse. For instance, if one restricts motion

to the region between QI and QII, the maximum allowable ideal impulse is obtained

from Eq. (3), but with D or U
o

T QIIð Þ replacing U
o

T Cð Þ. Because of this, a critical or an

allowable ideal impulse can be obtained for all systems (including those that are not

subject to buckling under static conditons such as beams, shafts, etc.).

A similar situation exists for a two-degree-of-freedom system. Fig. 12.2 depicts

curves of total potential lines corresponding to the value of the total potential at

points A and A’, in the space of (fþ u) and (f� u). Note that f and u denote the two

generalized coordinates. The total potential curves are typical for the mechanical

model shown in Fig. 12.3. Further, note that f ¼ 0 denotes symmetric behavior (see

Simitses 1990). Returning to Fig. 12.2, points O, A, A’, B, and C denote static

equilibrium under zero load. The value of the total potential in the shaded area is

smaller than the value of the total potential at points A and A’. Everywhere else the

total potential is larger than that at points A and A’. Positions O and C correspond to

stable static equilibrium positions, while positions A and A’ (saddle points) and

B correspond to unstable ones. Point O is the starting or natural unloaded position.

Here also, as in the case of the one-degree-of-freedom system, the work done by

the ideal impulsive load is imparted into the system instantaneously as initial kinetic

A�

UO 
T UO 

T (A) A

UO 
T UO 

T

B

(A)

(A�)(A) =UO 
T UO 

T

UO 
T UO 

T (A)

0 (START)

(f − q)

(f + q)C

figure 12.2 Curves of constant total potential (zero load, two degrees of freedom).
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energy. Through the impulse–momentum theorem, the ideal impulse can be related

to the initial kinetic energy. For small values of the initial kinetic energy, motion is

confined to some small area surrounding the starting (stable) static point, O. In this

case, there is no possibility of buckled motion. If the kinetic energy value is equal to

the value of the total potential at point A (or A’), then there exists a possibility of the

system reaching either position A or A’ with zero kinetic energy and motion to take

place toward point C (buckled motion). Note that if the value of the initial kinetic

energy is equal to the value of the total potential at the unstable static position B (top

of the hill), Uo
T Bð Þ, then motion toward the far stable position C (buckled) is

guaranteed. Thus, in the first case a possibility of escaping motion exists, while in

the latter case escaping motion is guaranteed.

On the basis of the above explanations for both systems, the following definitions

may now be given:

Possible locus or path. A possible locus or path on the total potential surface is one

that corresponds at every point of the locus or path to a nonnegative kinetic energy.

Unbuckled motion. Unbuckled motion of the system is defined as any possible

locus or path on the total potential surface that passes through or completely

encloses only the near equilibrium point.

Note that for the case of the ideal impulse, the near static equilibrium point is also

the starting point.

Buckled motion. If the possible locus or path passes through or encloses other

static equilibrium points (stable or unstable), then the motion is defined as buckled.

Note that buckled motion may also be referred to as escaping motion, and the

phenomenon as dynamic snap through buckling.

Minimum possible critical load (MPCL). The least upper bound of loads for which

all possible loci correspond only to unbuckled motion. At the MPCL there exists at

least one possible locus on the potential surface that the structure can follow to

dynamically snap through.

Note that Hsu (1967, 1968a, b, c) and Hsu et al. (1968) refer to this bound as

a sufficiency condition for stability (dynamic).

Minimum guaranteed critical load (MGCL). The greatest lower bound of loads for

which no possible loci correspond to unbuckled motion.

Note that, in this case, dynamic snapthrough will definitely happen. This bound is

termed by Hsu a sufficiency condition for instability (dynamic).

From the above definitions, it is evident that for one-degree-of-freedom systems,

the two critical loads are coincident. On the other hand, for multi-degree-of-freedom

systems, the critical load can only be bracketed between an upper bound (MGCL)

and a lower bound (MPCL).

m

A

L

B

P

Deformed

L

P
C

C�B�

m

kDaa
fq

bb
Undeformed

L

D9

figure 12.3 A two-degree-of-freedom mechanical model (rigid bars).
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One final comment for the case of ideal impulse: Note from Fig. 12.1, in the

absence of damping (as assumed), the direction of the ideal impulse is immaterial. If

the system is loaded in one direction (say that the resulting motion corresponds to

positive Q), then a critical condition exists when the system reaches position C with

zero kinetic energy. If the system is loaded in the opposite direction, then some

negative position will be reached with zero kinetic energy; after that the direction of

the motion will reverse, and finally the system will reach position C with zero kinetic

energy. Both of these phenomena occur for the same value of the ideal impulse. This

is also true for the two-degree-of-freedom system (see Fig. 12.2 and 12.3). The critical

load (ideal impulse) is not affected by the direction of the loading. (Starting at point

O, the system will initially move along the uþ f axis, to the right or to the left.)

12.2.2 CONSTANT LOAD OF INFINITE DURATION

Consider again a single-degree-of-freedom system. Total potential curves are

plotted versus the generalized coordinate on Fig. 12.4. Note that the various curves

correspond to different load values Pi. The index i varies from 1 to 5, and the

magnitude of the load increases with increasing index value. These curves are typical

of systems that, for each load value, contain at least two static equilibrium points Ai

and Bi. This is the case when the system is subject to limit point instability and/or

bifurcational buckling with unstable branching, under static application of the load

(shallow arches and spherical caps, perfect or imperfect cylindrical and spherical

shells, two-bar frames, etc.).

UP 
T B1

B2

B3

A2

A1

A3

A4, B4

P2

P3

P4

P5

P1 = α

Θ
Θ1

figure 12.4 Total potential curves (one degree of freedom).
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Given such a system, one applies a given load suddenly with constant magnitude

and infinite duration. For a conservative system,

U
P

T þ TP ¼ C 4ð Þ
The potential may be defined in such a way that it is zero at the initial position

(Q ¼ 0). In such a case, the constant is zero, or

U
P

T þ TP ¼ 0 5ð Þ
Since the kinetic energy is a positive definite function of the generalized velocity,

motion is possible when the total potential is nonpositive (shaded area, in Fig. 12.4,

for P2). From this it is clear that for small values of the applied load, the system

simply oscillates about the near static equilibrium position (point A2). This is also an

observed physical phenomenon. As the load increases, the total potential at the

unstable point Bi decreases, it becomes zero (point B3), and then it increases nega-

tively until points Ai and B1 A4, B4ð Þ coincide (the corresponding load P4 denotes the

limit point under static loading). For loads higher than this P4ð Þ, the stationary

points (static equilibrium positions) disappear from the neighborhood. When the

sudden load reaches the value corresponding to P3, a critical condition exists,

because the system can reach position B3 with zero kinetic energy and then move

toward larger Q values (buckled motion can occur). Thus, P3 is a measure of the

critical condition. Note that the value of P3 is smaller than the value of the limit point

P4. This implies that the critical load under sudden application (infinite duration) is

smaller than the corresponding static critical load.

In this case, also, one may wish to limit the dynamic response of the system to

a value smaller than B3 (see Fig. 12.4), say Q1. Then in such a case, the maximum

allowable and consequently the critical dynamic load is denoted by P2.

As in the case of the ideal impulse, for systems of two or more degrees of freedom,

upper and lower bounds of critical conditions can be established.

Figure 12.5 shows typical constant-potential (zero) lines in the space of the

generalized coordinates fþ u and f� u (see Fig. 12.3). In this case, the total

potential is defined such that the constant in Eq. (4) is zero (in the absence of initial

kinetic energy). Points O, A, A’, B, and C denote the same static equilibrium positions

as in Fig. 12.2. Note that in the shaded areas the total potential is nonpositive, and

everywhere else the total potential is nonnegative. In Fig. 12.5a, the motion is

confined to the shaded area enclosing point O (starting point) and the motion is

unbuckled. As the value of the load increases, the value of the total potential at A and

A’ continuously decreases until it becomes zero at load PII (Fig. 12.5b). At this load,

the system can possibly snap through toward the far equilibrium position C and

either oscillate about C or return to region (OAA’) and oscillate about O, and so on.

Load, PII denotes the lower bound for a critical condition (MPLC) because there

exists at least one path through which the system can reach position A or A’ with zero

kinetic energy and possibly escape toward (snap through to) position C. As the value

of the applied load is further increased, buckled motion will always occur at some

value PIII (larger than PII). This load denotes the upper bound. The system shown on

Fig. 12.3 is analyzed in detail in a later section. For this load case also, the concepts

of dynamic stability are applied to continuous structural systems in later sections.

Moreover, these concepts and the related methodologies for estimating critical

conditions are modified and applied to the case of suddenly loaded systems with

constant loads of finite duration. These modifications are also presented in Simitses

(1990). In addition, since most structural configurations in service are subject
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to static loads, the effect of static preloading on the critical dynamic conditions is

presented by similar concepts (see Simitses 1990). An example of this would be

a submarine resting at a depth of 1,000 feet (static preloading) and subjected to a

blast loading (dynamic) of small decay rate and large decay time (sudden load of

constant magnitude and infinite duration).

12.3 extension of the dynamic stability concept

The concept of dynamic stability, discussed in the previous section, is developed

primarily for structural configurations that are subject to violent buckling under

UP 
T

Up 
T= 0

Up 
T= 0Up 

T 0

Up 
T 0

UP 
T = 0

Up 
T 0

f + q

f − q

A

B

A�

(a)

A

A�

B

Up 
T 0

0

UP 
T 0

Up 
T = 0

UP 
T = 0

f − q

f + q

(b)

O

O

C

C

figure 12.5 Curves of constant (zero) total potential (two degrees of freedom). (a) jPIj < jPcr1 j
(MPCL). (b) jPIIj > jPIj, PII ¼ Pcr1 (MPCL).
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static loading. It is also observed that the concept can be extended, even for these

systems, when one limits the maximum allowable deflection resulting from the

sudden loads. This being the case, then, the extended and modified concept can be

used for all structural configurations (at least in theory).

This is demonstrated in this section through a simple model. First, though, some

clarifying remarks are in order.

All structural configurations, when acted on by quasi-static loads, respond in a

manner described in one of Fig. 12.6 to 12.10. These figures characterize equilibrium

positions (structural responses) as plots of a load parameter P versus some charac-

teristic displacement u. The solid curves denote the response of systems that are free

of imperfections, and the dashed curves denote the response of the corresponding

imperfect systems.

Figure 12.6 shows the response of such structural elements as columns, plates,

and unbraced portal frames. The perfect configuration is subject to bifurcational

buckling, while the imperfect configuration is characterized by stable equilibrium

(unique), for elastic material behavior.

Figure 12.7 typifies the response of some simple trusses and two-bar frames. The

perfect configuration is subject to bifurcational buckling, with a smooth (stable)

branch in one direction of the response and a violent (unstable) branch in the

other. Correspondingly, the response of the imperfect configuration is characterized

by stable equilibrium (unique) for increasing load in one direction, while in the other,

the system is subject to limit point instability.

Figure 12.8 typifies the response of troublesome structural configurations such as

cylindrical shells (especially under uniform axial compression and of isotropic con-

struction), pressure-loaded spherical shells, and some simple two-bar frames. These

systems are imperfection-sensitive systems and are subject to violent buckling under

static loading.

A large class of structural elements is subject to limit point instability. In some

cases, unstable bifurcation is present in addition to the limit point. The response of

Bifurcation

Stable

P

q

: Imperfect geometry

figure 12.6 Bifurcated equilibrium paths with stable branching.
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Unstable

Stable
P

q

figure 12.7 Bifurcated equilibrium paths with stable and unstable branches.

Unstable

P

q

figure 12.8 Bifurcated equilibrium paths with unstable branching.

P

q

figure 12.9 Snapthrough buckling paths (through limit point or unstable branching).
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such systems is shown in Fig. 12.9. Two structural elements that behave in this

manner are the shallow spherical cap and the low arch. Both elements have been

used extensively in practice.

Finally, there is a very large class of structural elements that are always in

stable equilibrium for elastic behavior and for all levels of the applied loads. These

systems are not subject to instability under static conditions. Typical members of this

class are beams and transversely loaded plates. For this class of structural elements,

the load-displacement curve is unique and monotonically increasing (Fig. 12.10).

The concept of dynamic stability, as developed and discussed (see also Budiansky

and Hutchinson, 1962; Hsu, 1967; Simitses, 1965), is always with reference to systems

that are subject to violent buckling under static loading. This implies that dynamic

buckling has been discussed for systems with static behavior as shown in Fig. 12.7 (to

the left), 12.8, and 12.9.

In developing concepts and the related criteria and estimates for dynamic buck-

ling, it is observed that, even for systems that are subject to violent (static) buckling,

critical dynamic loads can be associated with limitations in deflectional response

rather than escaping motion through a static unstable point. This is especially

applicable to the design of structural members and configurations, which are deflec-

tion limited. From this point of view, then, the concept of dynamic stability can be

extended to all structural systems.

The extended concepts are demonstrated through the simple mass-spring (linear)

system shown in Fig. 12.11.

P

q

figure 12.10 Unique stable equilibrium path.

k

m

P(t)

− x = O

figure 12.11 The mass-spring system.
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12.3.1 THE MASS-SPRING SYSTEM

Consider the mass-spring (linear) system shown in Fig. 12.11. Consider a suddenly

applied load P(t) applied at t ¼ 0. This load may, in general, include the weight (mg).

In the case of finite duration, consider the weight to be negligible.

First, the problem of constant load suddenly applied with infinite duration is

considered.

For this case, one may write the equation of motion and solve for the response by

imposing the proper initial conditions:

€xxþ k

m
x ¼ P

m
6ð Þ

subject to

_xx 0ð Þ ¼ x 0ð Þ ¼ 0 7ð Þ

where the dot denotes differentiation with respect to time.

By changing the dependent variable to

y ¼ xþ C 8ð Þ

where C is a constant, the equation of motion and initial conditions become

€yyþ k

m
y ¼ 0 9ð Þ

y 0ð Þ ¼ �P

k
and _yy 0ð Þ ¼ 0 10ð Þ

The solution is

y ¼ P

k
cos

ffiffiffiffi
k

m

r
t

and

x ¼ P

k
1� cos

ffiffiffiffi
k

m

r
t

 !
11ð Þ

Note that

xmax ¼
2P

k
12ð Þ

and it occurs at ffiffiffiffi
k

m

r
t ¼ p or at t ¼ p

ffiffiffiffi
m

k

r
¼ T0

2
13ð Þ

where T0 is the period of vibration.

Note that if the load is applied quasi-statically, then

Pst ¼ kxst 14ð Þ

From Eqs. (12) and (14), it is clear that if the maximum dynamic response xmax

and maximum static deflection xstmax
are to be equal and no larger than a specified

value X (deflection-limited response), then
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Pst ¼ 2Pdyn 15ð Þ

Because of this, many systems for which the design loads are dynamic in nature

(suddenly applied of constant magnitude and infinite duration) are designed in terms

of considerations but with design (static) loads twice as large as the dynamic loads,

Eq. (15). Note that both loads (Pst, Pdyn) correspond to the same maximum (allow-

able) deflection X.

Next, the same problem is viewed in terms of energy considerations.

First, the total potential UP
T for the system is given by

UP
T ¼

1

2
kx2 � Px 16ð Þ

and the kinetic energy TP by

TP ¼ 1

2
m _xxð Þ2 17ð Þ

Note that the system is conservative, the kinetic energy is a positive definite

function of the velocity (for all t), and UP
T ¼ 0 when x ¼ 0. Then,

UP
T þ T ¼ 0 18ð Þ

and motion is possible only in the range of x values for which UT is nonpositive (see

shaded area of Fig. 12.12).

It is also seen from Eq. (16) that the maximum x value corresponds to 2P/k.

Note that the static deflection is equal to P/k, Eq. (14) and point A on Fig. 12.12.

Therefore, if the maximum dynamic response and maximum static deflection are to

be equal to X, Eq. (15) must hold.

Now, one may develop a different viewpoint for the same problem. Suppose that a

load P is to be applied suddenly to the mass-spring system with the condition that the

maximum deflectional response cannot be larger than a specified value X. If the

magnitude of the load is such that

2P

k
< X 19ð Þ

we shall call the load dynamically subcritical.

When the inequality becomes an equality, we shall call the corresponding load

dynamically critical. This implies that the system cannot withstand a dynamic load

P > kX=2 without violating the kinematic constraint. Therefore,

U
O 
T U

P 
T

U
P 
T

UT

X

xO

D

A(  ,O)P
K

B(  ,O)2P
K

figure 12.12 Total potential curves (suddenly loaded mass-spring system).
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Pdyncr ¼
kX

2
20ð Þ

Moreover, on the basis of this concept, one may find a critical ideal impulse.

The question, in this load case, is to find the ideal impulse such that the system

response does not exceed a prescribed value X. From Fig. 12.12 and conservation of

energy,

Uo
T þ To ¼ To

i 21ð Þ

and To
i is critical if the system can reach position D with zero velocity (kinetic

energy). Thus,

To
icr
¼ Uo

T Dð Þ ¼ Uo
T Xð Þ 22ð Þ

From the impulse–momentum theorem, the ideal impulse, Imp, is related to the

initial velocity and consequently to the initial kinetic energy:

Imp ¼ lim
t!0

Pt0ð Þ ¼ m _xxi 23ð Þ

where _xxi is the initial velocity magnitude (unidirectional case) and t0 is the duration

time of a square pulse.

From Eq. (23),

_xx ¼ Imp

m
24ð Þ

and use of Eq. (17) yields

_xxi ¼
2To

i

m

� �1
2

25ð Þ

Since the critical initial kinetic energy is given by Eq. (22),

Impcr ¼ mkð Þ
1
2X 26ð Þ

Next, the following nondimensionalized parameters are introduced:

p ¼ 2P

kX
, j ¼ x

X
, � ¼ t

ffiffiffiffi
k

m

r

UT ¼
2UT

kX 2
, T ¼ 2T

kX2
, Imp ¼ 2 Imp

X
ffiffiffiffiffiffiffi
km
p

27ð Þ

On the basis of this, Eq. (26) becomes

Impcr ¼ 2 28ð Þ

Similar examples, as well as this one, are treated in Simitses (1990) for the case of a

step load of finite duration.

12.4 behavior of suddenly loaded systems

So far, from the discussion of the subject of dynamic stability of suddenly loaded

structural configurations, it is seen that the following phenomena are possible:
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1. Parametric resonance. Systems that are subject to bifurcational buckling under

static conditions are subject to parametric resonance if the loading is sudden (ideal

impulse or constant load of infinite duration) and certain conditions are met.

For example, a perfectly straight column (Wauer, 1980) loaded suddenly with-

out eccentricity is subject to parametric resonance if the inplane motion is

accounted for. What happens in this case, as shown by Wauer (1980), is that

the inplane motion is periodic, which leads to a periodic axial force and yields a

Mathieu–Hill type of equation for transverse motion and therefore a possibility of

parametric resonance. (See also Simitses, 1990.)

Similarly, a perfectly symmetric shallow arch loaded by a sudden symmetric

loading may lead to parametric resonance in an antisymmetric mode because of

the coupling between symmetric and antisymmetric modes.

Parametric resonance for suddenly loaded systems is more of a theoretical

possibility than an actual physical phenomenon, because neither the structural

system nor the external (sudden) loading is free of imperfections.

More details are presented in Appendix A of Simitses (1990). The material

presented is by no means complete, but it suffices to make the discussion self-

contained.

2. Escaping motion type of instability. Systems that are subject to the violent type of

buckling under static loading can and do experience an escaping motion type of

instability when suddenly loaded (Fig. 12.7 [to the left], 12.8, and 12.9). Examples

of these include shallow arches, shallow spherical caps, certain two-bar frames,

and imperfect cylindrical shells. The concepts discussed in Section 12.2 are for

these systems. Moreover, the Budiansky–Roth criterion and the concepts devel-

oped by Hsu and his collaborators were developed for these systems. The physical

phenomenon for this case is as follows: For small values of the load (suddenly

applied) parameter, the system simply oscillates (linearly or nonlinearly) about the

near static equilibrium point. As the load parameter is increased, a value is

reached for which an escaping or large-amplitude motion is observed. This

phenomenon is demonstrated through several examples in later sections and in

Simitses (1990).

3. Linear or nonlinear oscillatory motion. Systems that under static loading are

subject either to bifurcational (smooth) buckling with a stable postbuckling

branch [Fig. 12.7 (to the right) and 12.6] or are not subject to buckling at all

(Fig. 12.10) do not experience any type of dynamic instability. These systems,

when suddenly loaded, simply oscillate about the stable static equilibrium

position. Examples of these systems include the imperfect column, unbraced

portal frames, and transversely loaded (suddenly) beams and thin plates.

Note that, through the application of the extended concept of dynamic stability

(Section 12.3), critical conditions (loads) may be found for these systems by imposing

limitations on the dynamic response characteristics of the system (either a maximum

allowable amplitude of vibrations, a maximum allowable inplane strain, or some

other constraint).

12.5 simple mechanical models

Two single-degree-of-freedom mechanical models are employed in this section to

demonstrate the concept of dynamic stability for the extreme cases of the ideal

impulse and sudden constant load of infinite duration. These models are typical of
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imperfection-sensitive structural configurations. They are kept as simple as possible,

so that the emphasis can easily be placed on the concepts rather than on complex

mathematical theories. For each model, the static stability analysis, based on the

total potential energy approach, is given in detail. In addition, the total energy phase

plane approach is used for one model. For the same model, the equations of motion

approach is also used, for demonstration and comparison purposes. The main

emphasis, though, is placed on the total potential energy approach.

Finally, a few observations are presented that result from these simple studies but

are general in applicability.

12.5.1 MODEL A: A GEOMETRICALLY IMPERFECT MODEL

Consider the model shown in Fig. 12.13. This model consists of two rigid bars of

equal length L pinned together. The left bar is pinned on an immovable support A,

while the right end of the second bar is pinned on a movable support C and loaded by

a horizontal constant-directional force P. A linear spring of stiffness k connects the

common pin B to an immovable support D, which is a distance L directly below

support A. The initial geometric imperfection uo is an angle between the horizontal

line joining supports A and C and bar AB (or BC). The deformed position is

characterized by angle u as shown (in its positive direction). For simplicity, the two

rigid bars are assumed to be weightless, and the mass m of the system is concentrated

at joint B.

12.5.1.1 Static Stability Analysis of Model A

The stability analysis of this model under quasi-static application of the load P is

performed by employing the energy approach. Through this approach, equilibrium is

characterized by

dU
p
T

du
¼ 0 29ð Þ

where UT is the total potential, and the character of equilibrium (stable or unstable)

by the sign of the second derivative.

The total potential is

U
P

T ¼
UP

T

kL2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin u
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin uo

p� �2

�p cos uo � cos uð Þ 30ð Þ

L

A

k

D

L B m
L C P

q

qo

figure 12.13 Geometry and sign convention for Model A.
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where p ¼ 2P=kL and U
P

T denotes the nondimensionalized total potential. The

superscript P implies ‘‘under load P.’’

The static equilibrium points are characterized by

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin u
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin uo

p� � cot uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin u
p for uo 6¼ 0 31ð Þ

Note that, for uo ¼ 0 equilibrium is characterized by

either u ¼ 0 or p ¼ cot u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin u
p

� 1
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin u
p

32ð Þ

Equilibrium positions are plotted in Fig. 12.14 as p versus u� uo for various values of

the geometric imperfection uo. The stability test reveals that the dashed line positions

are stable, while the solid line positions are unstable and snapping (violent buckling)

takes place through the existence of a limit point. Also note that positions charac-

terized by negative values for u� uo (not shown here) are stable and there is no

possibility of buckling. Therefore, our interest lies in the area of uo > 0 and u > uo.

12.5.1.2 Dynamic Analysis: Ideal Impulse

Assume that the load P is suddenly applied with a very short duration time To and

that the impulse (PTo) is imparted instantaneously into the system as initial kinetic

energy.

Through impulse–momentum, one obtains the following relation:

LOCUS OF
LIMIT PTS.

0.020

0.010

0.005

0.0
0.001

PERFECT

q0 (rad)

.50

.45

.40

.35

.05 .10 .15 .20

p

q − q0

0

figure 12.14 Load-displacement curves (Model A).

SIMITSES - Title 0750678755_ch12 Final Proof page 346 8.11.2005 9:38pm

346 Dynamic Stability



lim
To!0

PToð Þ ¼ 1

2

mL _uuo

sin uo

� �
33ð Þ

where _uuo ¼ du=dt at u ¼ uo.

Since the system is conservative,

Uo
T þ To ¼ const: ¼ To

i 34ð Þ

where Uo
T denotes the total potential ‘‘under zero load’’ and To is the kinetic energy,

given by

To ¼ 1

2
mL2 _uu2 35ð Þ

Note that To
i is the initial kinetic energy imparted instantaneously by the impul-

sive load.

The expression for U
o

T is given by

U
o

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin u
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin uo

p� �2

36ð Þ

Figure 12.15 is a plot of U
o

T versus u� uo.

According to Eq. (34), and since To is positive definite, motion is possible if and

only if

To
i �Uo

T$0 37ð Þ

This implies that, for a given initial kinetic energy, Eq. (35), and consequently a given

impulse, say To
i ¼ D (see Fig. 12.15—total potential presented in nondimensiona-

lized form), motion is confined in the region QI < u� uo < QII. It is clearly seen then

that, as long as To
i ¼ D < U

o

T Cð Þ, the motion of the system is bounded, and it

contains only the stable zero-load static equilibrium point B. Such a motion is termed

ΘI ΘIIB

D

A

C

(1 + sinq0)

Stationary Pts: A, B, C

q − q0

 − q0
π
2

 + q0− π
2

U
O 
T

(  2 − 1 + sinq0 )2

figure 12.15 ‘‘Zero-load’’ total potential versus u� uo (Model A).
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unbuckled. For the motion to cease to be unbuckled, that is, to become unbounded,

and cease to include only the initial stable static equilibrium point B,D must be at

least equal to the value of U
o

T at the unstable static point C. Then that point C can be

reached with zero velocity, and the motion can become unbounded. Clearly, if D is

even slightly higher than the U
o

T value at point C, the motion does become un-

bounded, and it can contain other static equilibrium points, such as point C. Such a

motion is called buckled, and a critical condition exists when the impulse is large

enough to satisfy the relation

To
icr
¼ Uo

T Cð Þ 38ð Þ

Introducing nondimensionalized time and load parameters

t ¼ t 2k=mð Þ
1
2, to ¼ To 2k=mð Þ

1
2, p ¼ 2P=kL 39ð Þ

then

T
o

i ¼
To

kL2
¼ 1

2

m

k

� �
_uu2
0 ¼

du

dt

� �2

uo

40ð Þ

where _uu0 is the initial angular speed.

From Eq. (33) one obtains

lim
T!0

ptoð Þ ¼ 2

sin uo

du

dt

� �
uo

41ð Þ

The zero-load static equilibrium positions are obtained by requiring the total

potential, Eq. (36), to have a stationary value, or

dU
o

T

du
¼ 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin u
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin uo

p� �
cotu=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin u
p

for uo 6¼ 0 42ð Þ

This requirement yields

u ¼ uo or u ¼ �p=2 43ð Þ

Through the second derivative (variation) of U
o

T with respect to u, it can easily be

shown that position u ¼ uo is a stable one (point B on Fig. 12.15) whereas positions

u ¼ �p=2 (points C and A on Fig. 12.15) are unstable.

A critical condition exists when T
o

i ¼ U
o

T u ¼ p=2ð Þ, or

T
o

icr
¼

ffiffiffi
2
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin uo

p� �2

44ð Þ

From Eqs. (12) and (13),

p�oð Þcr¼
2

sin uo

T
1
2

icr
¼ 2

ffiffiffi
2
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin uo

p� �
= sin uo 45ð Þ

Two observations are worth mentioning at this point: (1) Because this is a one-

degree-of-freedom model, the critical impulse (ptoÞcr given by Eq. (45) represents

both the minimum possible (MPCL) and minimum guaranteed (MGCL) critical

load. Although the concept presented so far is clear, and it leads to a criterion and

estimate of the critical condition, it might be impractical when applied to real

structures. In the particular example shown so far, it is clear that, according to the

presented concept of dynamic instability, buckled motion is possible if the system is

allowed to reach the position u ¼ p=2. In many cases such positions may be con-

sidered excessive, especially in deflection-limited designs. In such cases, if u cannot be
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larger than a specified value, then the allowable impulse is smaller and its value can

be found from Eq. (35), if C is replaced by the maximum allowable value of u, say

QL. In this case,

p�oð Þcr¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin QL

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin uo

p� �
= sin uo 46ð Þ

Related to this discussion is the broad definition of stability proposed by Hoff (1967):

‘‘A structure is in a stable state if admissible finite disturbances of its initial state of

static or dynamic equilibrium are followed by displacements whose magnitudes

remain within allowable bounds during the required lifetime of the structure.’’ (2)

Finally, as already mentioned in this chapter (Section 12.1.2), the sense of the

impulsive load (in the absence of damping) has no effect on the critical condition.

If the load is applied (extremely short duration) to the right instead of the left (see

Fig. 12.13) then the system tends to move with negative values for u� u0 (see Fig.

12.15; the system would move toward Q1). The critical value for the initial kinetic

energy is still given by Eq. (44), because the system would reach position E (see Fig.

12.15) with zero velocity, reverse its motion, pass through the stable static equilib-

rium position B, and then reach the unstable static equilibrium point C with zero

kinetic energy (buckled motion, thus, is possible).

12.5.1.3 Dynamic Analysis: Sudden Constant Load of Infinite Duration

For this case, the sum of the total potential and kinetic energy is zero:

U
P

T þ T ¼ 0 47ð Þ

Figure 12.16 shows plots of U
P

T versus u� uo (in radians) for various values of the

applied load p. It is seen from this figure that for p < 0.432 motion is confined

between the origin and u� uo < A, or the motion is unbuckled. A critical condition

exists when the motion can become unbounded by including position A’’ (buckled

motion).

Thus, the critical load is found by requiring [see Eq. (47)] that U
P

T be zero at the

unstable static equilibrium position, A’’ (see Fig. 12.16; the curves on this figure

correspond to uo ¼ 0:005).

Numerically, the critical dynamic load is found by solving the following two

equations simultaneously:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin u
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin uo

p� �2

� p cos uo � cos uð Þ ¼ 0 48ð Þ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin u
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin uo

p� �
cot u=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin u
p

49ð Þ

subject to the condition d2U
P

T=du2 < 0, at the solution of Eqs. (48) and (49).

The inequality condition ensures that U
P

T ¼ 0, Eq. (48), at an unstable static

equilibrium position. The simultaneous solution of Eqs. (48) and (49) (two equations

in the unknowns u and p) yields the dynamic critical load and the corresponding

position of the unstable static equilibrium point A’’ (see Fig. 12.16).

Values of critical dynamic loads for the case of suddenly applied constant loads of

infinite duration are shown graphically in Fig. 12.17 for various small imperfection

angles uo, and they are compared to the corresponding static critical loads (see

Fig. 12.14).
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For this load case also, since the system is a single-degree-of-freedom system, the

minimum possible (MPCL) and minimum guaranteed (MGCL) critical loads are one

and the same. Furthermore, if the value of u is limited by other considerations (say

the maximum allowable u value is such that u� uo is equal to the value denoted by A’
on Fig. 12.16), then there is no escaping motion type of instability, but the value

p ¼ 0:42 (see Fig. 12.16) would be a measure of the maximum allowable sudden

(dynamic) load and therefore critical (in the sense that the kinematic constraint is not

violated for loads smaller than p ¼ 0:42).

12.4.2 MODEL B: A LOAD IMPERFECTION MODEL

Model B, shown in Fig. 12.18, is representative of eccentrically loaded structural

systems, exhibiting limit point instability. The bar is rigid and of length L, the spring

is linear of stiffness k, and the load eccentricity is denoted by e. The bar is assumed to

be weightless, and the mass m of the system is concentrated on the top of the rod,

point B.

p 
= 

0.
40

p = 0.42

p =
 0.432

p = 0.44p = 0.46
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figure 12.16 Total potential versus displacement for various loads (Model A).
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figure 12.17 Static and dynamic critical loads (Model A).
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figure 12.18 Geometry and sign convention for Model B.
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Static Stability Analysis of Model B

For this model also, the energy approach is employed in the static stability

analysis.

The total potential is given by

UP
T ¼

1

2
ka2 sin2 u� PL 1� cos uþ e

L
sin u

� �
50ð Þ

First, nondimensionalized parameters are introduced:

�ee ¼ e

L
, p ¼ PL

ka2
, U

P

T ¼
2UP

T

ka2
51ð Þ

With the aid of Eqs. (51), the expression for the total potential becomes

U
P

T ¼ sin2 u� 2p 1� cos uþ �ee sin uð Þ 52ð Þ

For equilibrium,

dU
P

T

du
¼ 0 ¼ 2 sin u cos u� 2p sin uþ �ee cos uð Þ 53ð Þ

From this equation, one obtains all of the static equilibrium positions. These are

plotted in Fig. 12.19 for both positive eccentricity (as shown in Fig. 12.18) and

negative eccentricity. The positions (of static equilibrium) corresponding to zero

eccentricity are also shown.

If �ee ¼ 0, the static equilibrium positions are characterized by (see Eq. 53)

sin u ¼ 0! u ¼ 0 and p ¼ cos u 54ð Þ

On the other hand, if �ee 6¼ 0, the static equilibrium positions are characterized by

p ¼ sin u= tan uþ �eeð Þ 55ð Þ

Note that if �ee is replaced by ��ee and u by �u, the load deflection relation, Eq. (55),

does not change. This is reflected in Fig. 12.19 by the two curves, one corresponding

to �ee ¼ A2 and the other to �ee ¼ �A2.

p

e = 0

e = A2e = −A2

0 q cr
q 

− π
2

π
2

figure 12.19 Positions of static equilibrium for Model B.
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The stability or instability of the static equilibrium positions, Eq. (55), is next

established through use of the second variation. If we restrict the range of u values to

0 < u < p=2, we study the sign of the second derivative of the total potential

evaluated at static equilibrium points:

d2U
P

T

du2
¼ cos 2u� p cos u� �ee sin uð Þ 56ð Þ

and
d2U

P

T

du2
equil:pts:

¼ cos2 u

tan uþ �ee
�ee� tan3 u
� ����� 57ð Þ

It is clearly seen from Eq. (57) that the sign of the second derivative (evaluated at

static equilibrium points) depends on the sign of �ee� tan3 u. Thus

if tan3u < �ee, we have stability,

and if tan3u > �ee, we have instability 58ð Þ

The stable positions correspond to the solid lines of the �ee ¼ �A2 curves of Fig.

12.19, while the dashed lines characterize unstable static positions. When

tan3 u ¼ �ee, p ¼ pcr and substitution for this u into Eq. (55) yields

pcr ¼ 1þ �ee
2
3

� ��3
2

59ð Þ

Similar arguments can be used for �p=2 < u < 0 and the results are the same.

Dynamic Analysis: Ideal Impulse

Following the same procedure as for Model A, one can easily establish critical

conditions for this load case.

The expressions for the zero-load total potential and kinetic energy are given by

U
o

T ¼ sin2 u 60ð Þ

T
o ¼ 2To

ka2
¼ 2I

2ka2

du

dt

� �2

61ð Þ

where I is the moment of inertia of the mass of the system about the hinge A (see Fig.

12.18)

Introducing a nondimensionalized time parameter t, where

t ¼ t ka2=I
� �1

2 62ð Þ

the expression for the kinetic energy becomes

T
o ¼ du

dt

� �2

63ð Þ

Use of the angular impulse momentum theorem yields

lim
To!0

PToð Þ
	 


�e ¼ I
du

dt

� �
i

64ð Þ
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and in terms of nondimensionalized parameters where To and to are taken as small as

one wishes and the limit sign is thus dropped (but implied),

ptoð Þ ¼ 1

�ee

du

dt

� �
i

65ð Þ

where i implies initial velocity and/or kinetic energy.

Note from Eq. (60) that there exist three static equilibrium points under zero load.

These correspond to u ¼ 0 and u ¼ �p=2 (see Fig. 12.19). Thus, a critical condition

exists if the ideal impulse is instantaneously imparted into the system as initial kinetic

energy, T
o

i , of sufficient magnitude for the system to reach the unstable static points

(�p=2; see Fig. 12.19 for stability or instability) with zero kinetic energy. In such a

case, buckled motion is possible, and

T
o

icr
¼ sin2 �p=2ð Þ ¼ 1 66ð Þ

From Eqs. (63) and (65),

ptoð Þcr¼ 1=�ee 67ð Þ

It is observed for this model also that the sense of the impulsive load does not

affect the critical condition. The only difference is that dynamic instability can

take place by escaping motion either though unstable position u ¼ p=2 or u ¼ �p=2.

Moreover, in deflection-limited situations, say juj < jQLj where jQLj < p=2, the

maximum allowable (and therefore critical) impulse is given by

ptoð Þcr¼
sin QL

�ee
68ð Þ

12.4.2.3 Dynamic Analysis: Sudden Constant Load of Infinite Duration

In a similar manner as for Model A, a critical condition exists if buckled motion

can take place. This is possible if the total potential is zero at an unstable static

equilibrium position. The critical condition is obtained through the simultaneous

solution of the following two equations (in two unknowns p and u):

U
P

T ¼ 0 ¼ sin2 u� 2p 1� cos uþ �ee sin uð Þ 69ð Þ

and
p ¼ sin u= tan uþ �eeð Þ 70ð Þ

subject to the condition

d2U
P

T

du2
equil:pt:

< 0

����� 71ð Þ

Note that Eq. (70) characterizes static equilibrium positions.

Results are presented graphically in Fig. 12.20 for several values of the load

eccentricity, and they are compared to the static (critical) conditions. Note that the

static curve represents a plot of Eq. (59).

It is important to note that for both Models A and B the total potential, U
P

T, is

defined in such a way that it is zero at the initial (unloaded) position. Thus, in the

absence of initial kinetic energy, the energy balance for both models is given by Eq.

(5) of Section 12.1, or

U
P

T þ T P ¼ 0 72ð Þ
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Model B is used to demonstrate the other two approaches that are discussed in

previous sections.

12.5.2.4 The Total Energy–Phase Plane Approach

First the case of the ideal impulse is treated. This approach is also based on the

total energy balance (conservation of energy), but instead of associating critical

conditions with characteristics of the total potential surface (under ‘‘zero load’’ for

the ideal impulse), the critical condition is associated with characteristics of the

system phase plane.

Conservation of energy requires

U
o

T þ T
o ¼ T

o

i 73ð Þ

Use of Eqs. (60), (63), and (65) yields

sin2 uþ du

dt

� �2

¼ ptoð Þ�ee½ �2 74ð Þ

1.00

.90

.80

p c
r

0 10

e 3 103

20

DYNAMIC

STATIC

figure 12.20 Static and dynamic critical loads (Model B).
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This equation is plotted on the phase plane ( _uu ¼ du=dt versus u curves) for various

values of the right-hand side (Fig. 12.21).

Clearly, if

ptoð Þ�ee½ �2< 1 75ð Þ

Eq. (74) denotes a closed curve about the null position ( _uu ¼ u ¼ 0) in the phase plane.

In this case the motion is called unbuckled (see Fig. 12.21). When pto�ee½ �2¼ 1, Eq. (74)

denotes a curve that can escape the closed loop and thus the motion becomes

buckled. Therefore,

ptoð Þcr¼
L

e
¼ 1

�ee
76ð Þ

Clearly, the result is the same as before, Eq. (67).

Next, the case of a sudden constant load of infinite duration is considered.

Use of Eqs. (69) and (63) yields the following expression for the total energy:

_uu2 þ sin2 u� 2p 1� cos uþ �ee sin uð Þ ¼ 0 77ð Þ

This equation is shown qualitatively on Fig. 12.22b for different values of the

sudden load. Fig. 12.22a shows total potential curves for various values of the

applied load starting from zero. The two figures are shown together and clearly

demonstrate the applicability of both concepts in establishing critical conditions. The

symbol pcr is used on Fig. 12.22 to denote the critical load for the case of suddenly

applied loads with infinite duration.

Note on Fig. 12.22 that for sudden loads smaller than the critical, the system

simply oscillates about the near static equilibrium position Ai. At the critical load,

escaping (buckled) motion is possible through the unstable static equilibrium pos-

ition B3.

(PTo) <
L
e

(PTo) >
L
e

(PTo) =
L
e

π−
2

π
2

q

θ

figure 12.21 Phase plane curves for Model B.
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For two-degree-of-freedom systems, dealing with phase plane curves is consider-

ably more complex. As the number of degrees of freedom increases, the complexity

increases exponentially to the point of intractability. As far as the continuum is

concerned, this approach can be used only by reducing the phase space to a finite-

dimensional space by constraining the motion. This means that the deformation of

the continuum is represented by a finite number of degrees of freedom (Ritz,

Galerkin, finite-element and finite-difference methods).

P = 0

(a)

(b)

P < Pcr�

P < Pcr�

P < Pcr�

A1 A2 A3 B1
B2 B3

P > Pcr�

Pcr�

Pcr�

B3
q

B2
B1

UT

A1

A2

A3

q

q

figure 12.22 Critical conditions for Model B: constant load of infinite duration. (a) Total

potential curves. (b) The phase plane.
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12.5.2.5 The Equations of Motion Approach

As stated in Section 12.1 this approach was first applied by Budiansky and Roth

(1962) in finding critical conditions for a pressure-loaded, clamped, shallow, thin,

spherical shell. The pressure was assumed to be applied suddenly with constant

magnitude and infinite duration. The equations of motion are solved for several

values of the load parameter, starting from a small value and incrementing it. At low

values of the load parameter, the system experiences small oscillations. The max-

imum response amplitude, wmax, increases smoothly with l. Fig. 12.23 gives

a qualitative description of the phenomenon. At some level of l, the maximum

response amplitude experienced a large jump. The l value at which this jump takes

place is identified as the critical dynamic load, lcr.

For Model B (see Fig. 12.18) the equation of motion is given by

I
d2u

dt2
þM uð Þ ¼ 0 78ð Þ

where M uð Þ is the restoring moment, which can be expressed in terms of the

contributions of the spring force and the externally applied force, or

M uð Þ ¼ ka2 sin u cos u� PL sin uþ e

L
cos u

� �
79ð Þ

Note that u is a function of time, and the sudden force P is a step function of time.

Substitution of the expression for M uð Þ, Eq. (74), into the equation of motion, Eq.

(75), and use of the nondimensionalized parameters, Eqs. (51) and (62), yields

d2u

dt2
þ sin u cos u� p sin uþ �ee cos uð Þ ¼ 0 80ð Þ

This equation is solved numerically (using a finite-difference scheme), for �ee ¼ 0:02

and several values of the load parameter p: p ¼ 0.1, 0.5, 0.8, 0.85, and 0.9. The results

are presented graphically on Fig. 12.24 and 12.25. Fig. 12.25 shows plots of u tð Þ
versus time t for various values of the load parameter. Note that for p < pcr1 (see

wmax

lcr l

figure 12.23 Description of the Budiansky–Roth criterion of dynamic stability.
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figure 12.24 A plot of umax versus p (Model B).
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figure 12.25 Plots of u versus time t for various load values p (Model B).
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Fig. 12.8), the motion is simply oscillatory. The oscillations are between zero and a

maximum amplitude that is much smaller than p=2. They seem to take place about

the near static stable equilibrium position. For p > pcr1 (p ¼ 0.9, Fig. 12.25), the

motion has a very large amplitude (umax > p=2), and it appears to be oscillating

about the value of p. The important observation here is that if the range of allowable

u values is extended beyond �p=2, then u ¼ �p is a stable static equilibrium

position, and the system tends to oscillate about this far (u ¼ p) static position.

Moreover, the amplitude decreases with time, because the force p yields restoring

moments about the hinge, and the position u ¼ p is an asymptotically stable position

(even in the absence of damping). Asymptotically stable means that for t!1, the

system will come to rest at this position. Fig. 12.25 shows a plot of the maximum

response amplitude versus the load parameter. Clearly, there is a large jump in the

maximum amplitude of oscillation, umax, between p ¼ 0.85 and p ¼ 0.90. According

to the Budiansky–Roth criterion, pcr is estimated to be 0.87, which is in excellent

agreement (as expected for a single-degree-of-freedom system) with the value

obtained from energy considerations.

problems

1. Consider the model shown on Fig. P12.1. The bars are rigid and hinged. For

simplicity, assume the mass of the system to be concentrated at the hinge between

the two bars. Find (numerically) for the entire range of a values ð08# a < 908Þ
a. Values for the critical ideal impulse.

b. Values for the critical dynamic load for the case of infinite duration. Compare

these values to the static critical load values.

For this problem use (i) the total potential energy approach and (ii) the total

energy-phase plane approach.

2Lcos a

2Lcos q

q
a

L

m

P

P

L

k

figure p12.1 Problem 1 model.
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2. Consider the mechanical model shown in Fig. P12.2. The two bars are rigid and

the spring stiffness is constant, k. Assume that the mass of the system is concen-

trated at the right-end hinge.

a. Give a complete static analysis.

b. Find (numerically), for uo ¼ 0:001, uo ¼ 0:05, uo ¼ 0:10, (i) values for the

critical ideal impulse and (ii) values for the critical dynamic load (constant

magnitude of infinite duration). Use the potential energy approach.

3. Consider the mechanical model shown in Fig. P12.3. The two bars are rigid and

the rotational spring stiffness is constant, b. The constant k may be determined

from geometric considerations and uo is some small geometric imperfection.

Assume that the system mass is concentrated at the right-end hinge.

a. Give a complete static analysis.

b. Find (numerically), for uo ¼ 0:01, 0:05, 0:10, and 0:20 (i) values for the critical

ideal impulse and (ii) values for the critical dynamic load ( constant load of

infinite duration). Use the potential energy approach.
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Work- and Energy-Related

Principles and Theorems

This appendix will summarize the work and energy principles (and theorems

derived from these) that have been used in stability analysis and are directly referred

to in this text. In addition, some explanations and definitions will be given to

facilitate understanding and application of these concepts. Because of this, only the

principles and derived theorems associated with virtual work will be treated. Com-

plementary energy and complementary virtual work concepts, principles, and the-

orems are not included. The student interested in an extensive and thorough treatise

of all the work and energy principles is referred to the texts of Argyris (1960),

Dym and Shames (1973), Fung (1965), and Langhaar (1962). One of the first and

best-written texts on the subject (with numerous applications on structural problems)

is the book by Hoff (1956).

a.1 strain energy

A deformable body is said to be perfectly elastic if the state of stress and the

corresponding state of strain are the same for the same level of the external forces

regardless of the order of application of the loads and of whether this level is during

loading or unloading of some or all of the loads. This statement is clearly under-

standable when related to the simple tensile test. If the stress-strain relation for such a

test is the same during the loading and unloading processes, the behavior is called

elastic and the specimen is called a perfectly elastic body.

If a perfectly elastic body is under the action of external loads (distributed and

concentrated forces, distributed and concentrated moments), the body deforms and

work is done by these external loads. This work, in the absence of kinetic energy

(quasistatic application of the loads), is stored in the system. Because of the assump-

tion that the material is perfectly elastic, the work done by the loads can be regained

if the loads are quasistatically decreased to zero. The energy stored in the system is

known as the strain energy.
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If we consider a deformable body at state I and apply a set of loads that strain the

body to state II, and if we use a cartesian reference frame, x, y, z, the work done by

these forces, We, is equal to the strain energy, Ui, and it is given by (for small strains)

We¼Ui ¼
Z

V

Z II

I

�xxd«xxþ�yyd«yyþ�zzd«zzþ�xydgxyþ�yzdgyzþ�zxdgzx

� �� �
dV 1að Þ

or

Ui ¼
Z

V

UidV 1bð Þ

where Ui is defined as the strain-energy density (strain energy per unit volume).

The existence of the strain-energy density function and the energy balance ex-

pressed by Eqs. (1) is in agreement with the first and second laws of thermodynamics

for isentropic processes. In this case, the energy stored in the system is called internal

energy. In addition, if the process is a reversible isothermal one, then the stored

energy is often called the free energy (see Dym and Shames, 1973 and Fung, 1965). In

effect, the strain-energy density represents the energy that can be converted to

mechanical work in a reversible adiabatic or isothermal process.

Since the strain-energy density at a point depends on the state of strain, the

incremental strain-energy density, which is a perfect differential for perfectly elastic

behavior, dUi, is given by

dUi ¼
@Ui

@«xx

d«xx þ
@Ui

@«yy

d«yy þ
@Ui

@«zz

d«zz þ
@Ui

@gxy

dgxy þ
@Ui

@gyz

dgyz þ
@Ui

@gzx

dgzx 2ð Þ

From Eqs. (1), it can be seen that

�xx ¼
@Ui

@«xx

, �yy ¼
@Ui

@«yy

, �zz ¼
@Ui

@«zz

�xy ¼
@Ui

@gxy

, �yz ¼
@Ui

@gyz

, �zx ¼
@Ui

@gzx

3ð Þ

When the material follows Hooke’s law (linearly elastic behavior), then

Ui ¼
1

2
�xx«xx þ �yy«yy þ �zz«zz þ �xygxy þ �yzgyz þ �zxgzx

� �
4ð Þ

If the linear stress-strain relations are used in Eq. (4) in terms of Poisson’s ratio, n,

and Young’s modulus of elasticity, E, the strain-energy density can be expressed

solely either in terms of strains or in terms of stresses.

THREE-DIMENSIONAL CASE

Ui ¼
E

2 1þ nð Þ 1� 2nð Þ 1� nð Þ «2
xx þ «2

yy þ «2
zz

� �h

þ 2n «xx«yy þ «yy«zz þ «zz«xx

� �
þ 1� 2n

2
g2

xy þ g2
yz þ g2

zx

� �i 5að Þ

Ui ¼
1

2E
�2

xx þ �2
yy þ �2

zz

� �
� 2n �xx�yy þ �yy�zz þ �yy�xx

� �h
þ2 1þ nð Þ �2

xy þ �2
yz þ �2

zx

� �i 5bð Þ
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TWO-DIMENSIONAL CASE

1. Plane stress (x-y plane):

Ui ¼
1

2 1� n2ð Þ «2
xx þ «2

yy þ 2n«xx«yy þ
1� n

2
g2

xy

� �
6að Þ

Ui ¼
1

2E
�2

xx þ �2
yy � 2n�xx�yy þ 2 1þ nð Þ�2

xy

h i
6bð Þ

2. Plane strain (x-y plane):

Ui ¼
E

2 1þ nð Þ 1� 2nð Þ 1� nð Þ «2
xx þ «2

yy

� �
þ 2n«xx«yy þ

1� 2n

2
g2

xy

� �
7að Þ

Ui ¼
1

2E
1� n2
� �

�2
xx þ �2

yy

� �
� 2n 1þ nð Þ�xx�yy þ 2 1þ nð Þ�2

xy

h i
7bð Þ

ONE-DIMENSIONAL CASE

For this case, let us consider an Euler-Bernoulli beam with the x-z plane as a

plane of structural symmetry. Then �xy ¼ �xz ¼ �yy ¼ �yz ¼ �zz ¼ 0 and,

Ui ¼
E

2
«2

xx 8að Þ

Ui ¼
1

2E
�2

xx 8bð Þ

a.2 the principle of virtual displacement

or virtual work

Before we state this principle, we must first clearly explain what is meant by

‘‘virtual displacement.’’ A virtual displacement is a hypothetical displacement

which must be compatible with the constraints for a given problem. If we deal with

a particle, a virtual displacement is a single vector without any limitations on

magnitude and direction. If we deal with a rigid body, a virtual displacement is a

displacement field u x, y, zð Þ which must be compatible with the requirement that the

body be rigid (see Fig. A.1). Note that in Fig. A.1a, in addition to the rotation u, the

system may be translated, and the combination comprises a virtual displacement.

Lastly, when we deal with a cohesive deformable continuum, the virtual displacement

must be compatible with (1) the constitution of the medium, and (2) the associated

method of analysis. The latter statement means that the virtual displacements must

be consistent with the theory and its related kinematic assumptions that lead to the

field equations that govern the response of the system to any set of external causes.

First, what we mean by compatible with the constitution of the medium is that,

since we deal with a cohesive continuum, the virtual displacement components must

be single-valued continuous functions of positions (material points coordinates) with

continuous derivatives. Second, compatible with the associated method of analysis

implies the following: (1) Since we are interested in deformations in the analysis of

SIMITSES - Title 0750678755_appendix Final Proof page 369 8.11.2005 9:43pm

The Principle of Virtual Displacement or Virtual Work 369



deformable bodies, then the virtual displacement is a deformation field u x, y, zð Þ
which is consistent with the kinematic constraints on the bounding surface. (2) Since

there are different approximating theories describing the kinematics of the problem,

as for example the theory of small deformation gradient, the virtual deformation field

must be consistent with these approximations. Therefore, a deformation field which

has these properties is referred to as a kinematically admissible field, and thus any

kinematically admissible field can be used as a virtual displacement. Finally, the

reason the virtual displacement is called hypothetical is that during virtual displace-

ment the forces, internal and external, are kept constant, which is not compatible

with the behavioral response of systems, in general.

The principle of virtual displacements or virtual work may be stated as follows:

A body is in equilibrium, under a given system of loads, if and only if for any virtual

displacement the work done by the external forces is equal to the strain energy.

Note that:

1. A principle in mechanics is like an axiom in mathematics. There is no proof of a

principle, although one may show its equivalence to another principle or law.

2. If we realize that a virtual displacement is kinematically admissible and that the

forces are kept constant during virtual displacements, the principle holds for deform-

able bodies as well as rigid bodies and particles. In the case of rigid bodies and

particles, the strain energy is zero.

3. The mathematical expression for the principle is

d«W ¼ d«Ui 9ð Þ

for deformable bodies, and

figure a.1 Compatible and incompatible virtual displacements for a rigid bar.
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d«W ¼ 0 10ð Þ

for rigid bodies and particles. In Eqs. (9) and (10), d«W represents the work done by

the external forces and d«Ui is the strain energy during a virtual displacement

denoted by the subscript «.

A few simple applications of the principle are given below.

1. A Particle under N Forces. Given a particle under the application of N forces Fi,

according to the principle, this particle is in equilibrium if and only if

d«W ¼ 0

Let u be a virtual displacement. Then by the principle

F1
:uþ F2

:uþ � � � þ FNu ¼ 0

or

F1 þ F2 þ F3 þ � � � þ FNð Þ:u ¼ 0

XN
i¼1

Fi

 !
:u ¼ 0

11ð Þ

For this to be true, either
PN
i¼1

Fi is normal to u or zero. But since u is any displacement

vector, then
PN
i¼1

Fi must be zero. This is in complete agreement with the necessary and

sufficient conditions for equilibrium of a particle under static loads which are derived

from Newton’s second law.

2. The Fulcrum Problem. Consider the rigid bar of Fig. A.2.

The virtual displacement consists of a translation in the positive y-direction and a

rotation u as shown. (Note that the rigid bar ACB which is originally straight remains

straight as A0C 0B 0 during the virtual displacement (compatible with the fact that the

bar is rigid).

The work done by the forces during the virtual displacement is zero

figure a.2 Fulcrum geometry.
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�F1 jð Þ:AA0 þ Rjð Þ:CC0 þ �F2jð Þ:BB0 ¼ 0 12ð Þ

where AA0, CC0, and BB0 are position vectors from A to A0, C to C0, and B to B 0,
respectively

AA ¼ a 1� cos uð Þiþ d � a sin uð Þj
CC0 ¼ dj 13ð Þ
BB0 ¼ �b 1� cos uð Þiþ d þ b sin uð Þj

Substitution of Eqs. (13) into Eq. (12) yields

�F1 d � a sin uð Þ þ Rd � F2 d þ b sin uð Þ ¼ 0

or

�F1 þ R� F2ð Þd þ F1a� F2bð Þ sin u ¼ 0 14ð Þ

Since d and u are independent (we can have d 6¼ 0 and u � 0 or u 6¼ 0 and d � 0),

then

F1 þ F2 ¼ R and F1a ¼ F2b 15ð Þ

These equations are in complete agreement with the necessary and sufficient

conditions for equilibrium of a rigid body (sum of forces equals zero, and sum of

moments about C equals zero, respectively).

3. Extension of a Bar. Consider the straight bar shown in Fig. A.3. Making the

usual linear theory assumptions (small deformation gradients and linearly elastic

behavior) and reducing the problem to a one-dimensional one, we may write

«xx ¼
du

dx

�xx ¼ E«xx

16ð Þ

where u is a function of x only. If we allow u to denote a virtual displacement, then u

must be kinematically admissible and u 0ð Þ ¼ 0. On this basis, the corresponding

virtual strain is given by

«xx ¼
du

dx
17ð Þ

figure a.3 Bar geometry.
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The virtual work and corresponding strain energy are given by

d«W ¼ P u Lð Þ 18að Þ

and

d«Ui ¼
Z

V

�xx«xxdV

¼
Z L

0

�xxA
du

dx
dx

18bð Þ

Integration by parts yields

d«Ui ¼ �xxAuð Þ
���L
0
�
Z L

0

d

dx
�xxAð Þu dx 19ð Þ

Since u 0ð Þ ¼ 0, by the principle of virtual work we obtain

P� A�xxð Þu½ �x¼L�
Z L

0

d

dx
�xxAð Þu dx ¼ 0 20ð Þ

Because u is a virtual displacement, then

d

dx
�xxAð Þ ¼ 0�!�xxA ¼ constant

and P ¼ A�xx since u Lð Þ is arbitrary. The system is in equilibrium if and only if

�xx ¼ P=A ¼ constant.

a.3 derivatives of the principle of virtual work

A number of principles, theorems, and methods may be considered as direct

derivatives from the principle of virtual work. The most pertinent of these derivatives

are listed in this section.

A.3.1 THE PRINCIPLE OF THE STATIONARY VALUE

OF THE TOTAL POTENTIAL

If the system is conservative, then the work done by the loads from the zero

deformation state (strain-free position) to a final state is equal to the negative change

in the total potential of the external forces, Up. If this potential is defined such that it

is zero at the zero deformation state, then

�W ¼ Up 21ð Þ

Next, the variation in the work done during virtual displacements is related to the

variation in the potential of the external forces by

d«W ¼ �d«Up 22ð Þ

Substitution of Eq. (22) into Eq. (9) yields

d«Ui þ d«Up ¼ 0
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or

d« Ui þUp

� �
¼ d«UT ¼ 0 23ð Þ

where UT is called the total potential (energy) of the system. This equation implies that:

An elastic deformable system is in equilibrium (static) if and only if the first

variation of the total potential vanishes for every virtual displacement.

Note that virtual displacements must be kinematically admissible and that the loads

and stresses remain constant during such deformations.

If we consider that the total potential is a function of N deformation parameters

qi, and that a virtual displacement can be taken to be any one of these qi’s, then by

Eq. (23)

d«UT ¼
@UT

@qi

dqi i ¼ 1, 2, . . . , N 24ð Þ

Since dqi is arbitrary, this equation implies that

@UT

@qi

¼ 0 i ¼ 1, 2, . . . , N 25ð Þ

for static equilibrium.

By Eq. (25) the total differential of UT must be zero, or

dUT ¼
XN
i¼ 1

@UT

@qi

dqi ¼ 0 26ð Þ

This argument may be extended to a deformable system, and we conclude that the

vanishing of d«UT implies the vanishing of dUT . Next, since dUT vanishes at

stationary points (relative minima, maxima, or saddle points), and UT is said to

have a stationary value at such points, then Eq. (23) may be interpreted as the

mathematical expression of the following principle.

An elastic deformable system is in equilibrium (static) if and only if the total potential

has a stationary value.

An equivalent statement to the above is:

Of all possible kinematically admissible deformation fields in an elastic conservative

system, for a specified level of the external loads and the corresponding internal loads,

only those corresponding to equilibrium (static) make the total potential assume a

stationary value.

This statement is known as the principle of the stationary value of the total potential.

In reality, it is a theorem because it is derived from and proven by a basic principle,

the principle of virtual work.

A.3.2 THE PRINCIPLE OF THE MINIMUM TOTAL POTENTIAL

The above theorem is easily extended to an equivalent of the Lagrange-Dirichlet

theorem (see Chapter 1) for an elastic conservative system by requiring the stationary

value to be a relative minimum. If this happens, the equilibrium is stable. Often,

this theorem is referred to as the principle of the minimum total potential, and it is

given below.
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Of all possible kinematically admissible deformation fields in an elastic conservative

system, for a specified level of the external loads and the corresponding internal loads,

only those that make the total potential assume a minimum value correspond to a stable

equilibrium.

A.3.3 CASTIGLIANO’S FIRST THEOREM (PART I)

Another derivative of the principle of virtual work is Castigliano’s first theorem,

part I.

Consider an elastic system under the action of N concentrated loads, Pj, (forces

and moments). Let yj denote the components of deformation (or rotations) at the

points of applications of the forces (or moments) and in the directions of these loads.

If dyj denote virtual displacements, then the virtual work is given by

dW ¼
XN
j¼ 1

Pjdyj 27ð Þ

If we can express the deformation components of the material points on the body in

terms of the yj components, the stresses, strains, and consequently the strain energy of

the elastic system become functions of the yj components, the structural geometry, and

the elastic behavior (stress-strain law which need not necessarily be linearly elastic). If

we now give each component yj a small variation dyj (virtual displacement), then

dUi ¼
XN
j¼ 1

@Ui

@yj

dyj 28ð Þ

By the principle of virtual work

XN
j¼ 1

@Ui

@yj

� Pj

� 	
dyj ¼ 0 29ð Þ

Therefore, since the virtual displacements are independent, we have the mathematical

expression of Castigliano’s first theorem

@Ui

@yj

¼ Pj 30ð Þ

Note that this theorem applies to elastic systems regardless of the behavior (nonlinear

elastic behavior as well). For applications, see Przemieniecki (1968) and Oden (1967).

One important application of the theorem is in finding reaction forces for struc-

tural systems. For example, if the deformation component is known to be zero at

some point and for a given direction, first we let yr exist; then we express Ui in terms

of yr. Finally, the sought reaction is equal to (@Ui=dyr), evaluated at yr ¼ 0, accord-

ing to Eq. (30).

A.3.4 THE UNIT-DISPLACEMENT THEOREM

Another important derivative of the principle of virtual work is the unit-displace-

ment theorem. This theorem is used to determine the load Pr (force or moment)

necessary to maintain equilibrium in an elastic system when the distribution of true

stresses is known. Let the true stresses be given by (�xx, �yy, . . . , �zx). Consider a

virtual displacement dyr at the point of application and in the direction of Pr.
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This virtual displacement produces virtual strains d«r
ij and according to the principle

of virtual work

Prdyr ¼
Z

v

�xxd«r
xx þ �yyd«r

yy þ � � � þ �zxd�r
zx

� �
dV 31ð Þ

In a linearly elastic system, the virtual strains d«r
ij are proportional to yr:

d«r ¼ «rdyr 32ð Þ
where «r represents compatible strains due to a unit virtual displacement (dyr ¼ 1).

Assuming, therefore, that dyr ¼ 1, Eq. (30) becomes

Pr ¼
Z

v

�xx«r
xx þ �yy«r

yy þ � � � þ �zxg r
zx

� �
dV 33ð Þ

This equation is the mathematical expression of the unit-displacement theorem,

which is stated below:

The force necessary to maintain equilibrium under a specified stress distribution

(which is derived from a specified deformation state) is given by the integral over the

volume of true stresses tij multiplied by strains «r
ij compatible with a unit displacement at

the point and in the direction of the required force.

This theorem, because of Eq. (32), is restricted to a system with linearly elastic

behavior. For a more extensive treatment and applications, see Hoff (1956), Oden

(1967), Pestel and Leckie (1963), and Przemieniecki (1968).

Some authors refer to the above as the unit-dummy-displacement method (not a

theorem). This method or theorem may be used very effectively for the calculation of

stiffness properties of structural elements employed in matrix methods of structural

analysis (Pestel, 1963 and Przemieniecki, 1968).

A.3.5 THE RAYLEIGH-RITZ METHOD

A variational formulation of a boundary-value problem is very useful for the

approximate computation of the solution. One of the most widely used approximate

methods is the Rayleigh-Ritz or simply Ritz method. This method was first employed

by Lord Rayleigh (1945) in studies of vibrations and by Timoshenko (1961) in

buckling problems. The method was refined and extended by Ritz (1909), and since

then it has been applied to numerous problems in applied mechanics including

deformation analyses, stability, and vibrations of complex systems. Although the

method is based on the variational formulation of a specific problem, it may be

considered as a derivative of the principle of the stationary value of the total potential

when applied to elastic systems under quasistatic loads.

The basic ideas of the method are outlined by using as an example the deformation

analysis of a general three-dimensional elastic system under the application of quasi-

static loads (stable equilibrium). For a more rigorous treatment of the method from a

mathematical (variational) point of view, refer to the texts of Courant and Hilbert

(1953), Gelfand and Fomin (1963), and Kantorovich and Krylov (1958).

An elastic system consists of infinitely many material points; consequently, it has

infinitely many degrees of freedom. By making certain assumptions about the nature

of the deformations, we can reduce the elastic system to one with finite degrees of

freedom. For instance, the deformation components u, v, and w may be represented

by a finite series of kinematically admissible functions multiplied by undetermined

constants
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u x, y, zð Þ ¼
XN
i¼ 1

ui x, y, zð Þ ¼
XN
i¼ 1

aifi x, y, zð Þ

v x, y, zð Þ ¼
XN
i¼ 1

vi x, y, zð Þ ¼
XN
i¼ 1

bigi x, y, zð Þ

w x, y, zð Þ ¼
XN
i¼ 1

wi x, y, zð Þ ¼
XN
i¼ 1

cihi x, y, zð Þ

34ð Þ

Note that, if we use small-deformation gradient theory, what is meant by kinematic

admissibility is that the functions fi, gi, and hi must be single-valued, continuous,

differentiable, and must satisfy the kinematic boundary conditions. Then with Eqs.

(34) the total potential, which is a functional, becomes a function of the 3-N

undetermined constants ai, bi, and ci or

UT u, v, w½ � ¼ UT ai, bi, cið Þ 35ð Þ

Now, since the functions fi, gi, and hi are kinematically admissible, the virtual

displacements can be taken as

du ¼ dai fi, dv ¼ dbigi, dw ¼ dcihi 36ð Þ

and the variation in the total potential is given by

dUT ¼
XN
i¼ 1

@UT

@ai

dai þ
@UT

@bi

dbi þ
@UT

@ci

dci

� 	
37ð Þ

Therefore, the elastic system is in equilibrium if

@UT

@ai

¼ 0,
@UT

@bi

¼ 0,
@UT

@ci

¼ 0 i ¼ 1, 2, . . . , N 38ð Þ

Equations (A-37) represent a system of 3N linearly independent algebraic

equations in the 3N undetermined constants ai, bi, and ci. The solution of this

system yields the values for these constants, and substitution into Eqs. (34) leads to

the approximate expressions for the deformation components u, v, and w. Once

these are known, we can evaluate the strains from the kinematic relations, and

consequently the stresses from the constitutive relations. Thus the analysis is com-

plete because we know the state of deformation and the stress and strain at every

material point.

A number of questions arise, as far as the method is concerned, regarding the

choice of the functions fi, gi, and hi and the accuracy of the solution (convergence).

These questions are discussed rigorously and in detail in Berg (1962), Courant and

Hilbert (1953), Gelfand and Fomin (1963), and Kantorovich and Krylov (1958). In

summary, some of the important conclusions, in answer to these questions, are:

1. The Rayleigh-Ritz method is applicable to variational problems which satisfy the

sufficiency conditions for a minimum (maximum) of a functional. The central idea is

that of a minimizing (maximizing) sequence. A sequence u1, u2, . . . , uN (and conse-

quently v1, v2, . . . , vN , and w1, w2, . . . , wN) of kinematically admissible functions is

called a minimizing (maximizing) sequence if
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UT

XN
i¼ 1

ui,
XN
i¼ 1

vi,
XN
i¼ 1

wi

 !

converges to the minimum (maximum) of UT [u, v, w] as N increases.

2. A minimizing (maximizing) sequence converges to a minimizing (maximizing)

function, if constructed properly, for all one-variable problems (beams, columns)

and all two- and three-variable problems (plates and shells) in which the order of the

Euler differential equation is at least four.

3. A properly constructed minimizing (maximizing) sequence must be complete.

This means that we select a set u1, u2, . . . , uN of admissible functions such that

any admissible function, including the minimizing (maximizing) function, and its

derivatives can be approximated arbitrarily closely by a suitable linear combination

a1u1 þ a2u2 þ � � � þ aNuN 39ð Þ

For example, in one-dimensional problems, L� xð Þxnþ1 n ¼ 0, 1, 2, . . .ð Þ is a

complete set vanishing on the boundary of the interval 0 # x # L. Similarly,

sin npx=Lð Þ n ¼ 1, 2, . . .ð Þ vanishes for the same case. Again in one-dimensional

problems, x2 L� xð Þnþ2
n ¼ 0, 1, 2, . . .ð Þ is a complete set vanishing on the boun-

dary, along with its first derivative, of the interval 0 # x # L. Similarly,

cos npx=Lð Þ � cos nþ 2ð Þpx=L½ � n ¼ 0, 1, 2, . . .ð Þ is a complete set for this latter case.

4. When the Rayleigh-Ritz method is used for beam, plate, and shell problems, it

leads to fairly accurate expressions for the deformations. If one is interested in

rotations, moments, and transverse shears, the accuracy decreases, respectively,

because these quantities expressed in terms of deformations require higher deriva-

tives of the deformations, and the derivatives are less accurate approximations than

the functions themselves.

5. Also, because of the reasons given in item 4, equilibrium at a point is not satisfied

exactly. Stresses computed through approximate deformations do not, in general,

satisfy equilibrium equations.

The application of the Rayleigh-Ritz method to stability problems is presented in

Chapter 5 of this text. As an application of the method for stable equilibrium, consider

the beam shown in Fig. A.4. Using pure bending theory, the total potential is given by

UT ¼
EI

2

Z L

0

w00ð Þ2dx� Pw
L

2

� 	
40ð Þ

Since sin mpx=Lð Þ ðm ¼ 1, 2, . . . , NÞ satisfy the kinematic boundary conditions, let

w ¼
XN
m¼ 1

am sin
mpx

L
41ð Þ

Substitution of Eq. (41) into Eq. (40) yields

UT ¼
EIL

4

XN
m¼ 1

a2
m

mp

L

� �4

�P
XN
m¼ 1

am sin
mp

2
42ð Þ
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By the principle of the minimum of the total potential,

EIL

2
am

mp

L

� �4

�P sin
mp

2

� �
¼ 0 m ¼ 1, 2, . . . , N 43ð Þ

Equations (43) represent a decoupled system of N linear algebraic equations in

am m ¼ 1, 2, . . . , Nð Þ. The solution is

am ¼
2P

LEI

L

mp

� 	4

sin
mp

2

and

w ¼
XN
n¼ 1

2P

LEI

L

mp

� 	4

sin
mp

2
sin

mpx

L
44ð Þ

From Table A.1, we see that the convergence is very rapid. Although the conver-

gence for the deformation is very rapid, this is not so for the moment and shear. For

example, the shear, V(x), is given by

V xð Þ ¼ �EIw000 ¼ 2P

p

XN
m¼ 1

1

m
sin

mp

2
cos

mpx

L
45ð Þ

In addition, because the minimizing sequence is orthogonal, N can be taken as

infinity, in which case

table a.1 Comparison with the exact solution

EI

PL3
w at

Solution L/8 L/4 3L/8 L/2

Exact 0.00765 0.01432 0.01904 0.02083

One-term 0.00806 0.01452 0.01891 0.02053

Two-term 0.00786 0.01432 0.01906 0.02081

Three-term 0.00765 0.01432 0.01904 0.02083

figure a.4 Beam geometry.
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w xð Þ ¼ 2PL3

EIp4

X1
m¼1

1

m4
sin

mp

2
sin

mpx

L
46ð Þ

In such cases, if the series can be closed or if all of the terms are considered, the

Rayleigh-Ritz method gives exact results. The series may be closed when evaluated at

a point or in general (for any x) through different mathematical operations such as

the calculus of residues (Phillips, 1954), integration of series (Carslaw, 1960 and

Franklin, 1960), and others. (See Table A.2 for typical examples.)
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