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Preface

‘I am always obliged to a person who has taught me a single word.’

Progressive failure/fracture analysis of structures has been an active research topic for

the past two decades. Historically, it has been addressed either within the framework

of continuum computational plasticity and damage mechanics, or the discontinuous

approach of fracture mechanics. The present form of linear elastic fracture mechanics

(LEFM), with its roots a century old has since been successfully applied to various

classical crack and defect problems. Nevertheless, it remains relatively limited to simple

geometries and loading conditions, unless coupled with a powerful numerical tool such

as the finite element method and meshless approaches.

The finite element method (FEM) has undoubtedly become the most popular and

powerful analytical tool for studying a wide range of engineering and physical prob-

lems. Several general purpose finite element codes are now available and concepts of

FEM are usually offered by all engineering departments in the form of postgraduate

and even undergraduate courses. Singular elements, adaptive finite element procedures,

and combined finite/discrete element methodologies have substantially contributed to

the development and accuracy of fracture analysis of structures. Despite all achieve-

ments, the continuum basis of FEM remained a source of relative disadvantage for

discontinuous fracture mechanics. After a few decades, a major breakthrough seems

to have been made by the fundamental idea of partition of unity and in the form of the

eXtended Finite Element Method (XFEM).

This book has been prepared primarily to introduce the concepts of the newly

developed extended finite element method for fracture analysis of structures. An at-

tempt has also been made to discuss the essential features of XFEM for other related

engineering applications. The book can be divided into four parts. The first part is ded-

icated to the basic concepts and fundamental formulations of fracture mechanics. It

covers discussions on classical problems of LEFM and their extension to elastoplastic

fracture mechanics (EPFM). Issues related to the standard finite element modelling

of fracture mechanics and the basics of popular singular finite elements are reviewed

briefly.

The second part, which constitutes most of the book, is devoted to a detailed dis-

cussion on various aspects of XFEM. It begins by discussing fundamentals of partition

of unity and basics of XFEM formulation in Chapter 3. Effects of various enrichment

functions, such as crack tip, Heaviside and weak discontinuity enrichment functions are

also investigated. Two commonly used level set and fast marching methods for track-

ing moving boundaries are explained before the chapter is concluded by examining a

number of classical problems of fracture mechanics. The next chapter deals with the

orthotropic fracture mechanics as an extension of XFEM for ever growing applications

ix
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x Preface

of composite materials. A different set of enrichment functions for orthotropic media

is presented, followed by a number of simulations of benchmark orthotropic problems.

Chapter 5, devoted to simulation of cohesive cracks by XFEM, provides theoretical

bases for cohesive crack models in fracture mechanics, classical FEM and XFEM.

The snap-back response and the concept of critical crack path are studied by solving a

number of classical cohesive crack problems.

The third part of the book (Chapter 6) provides basic information on new frontiers

of application of XFEM. It begins with discussions on interface cracking, which include

classical solutions from fracture mechanics and XFEM approximation. Application of

XFEM for solving contact problems is explained and numerical issues are addressed.

The important subject of dynamic fracture is then discussed by introducing classical

formulations of fracture mechanics and the recently developed idea of time–space

discretization by XFEM. New extensions of XFEM for very complex applications of

multiscale and multiphase problems are explained briefly.

The final chapter explains a number of simple instructions, step-by-step proce-

dures and algorithms for implementing an efficient XFEM. These simple guidelines, in

combination with freely available XFEM source codes, can be used to further advance

the existing XFEM capabilities.

This book is the result of an infinite number of brilliant research works in the

field of computational mechanics for many years all over the world. I have tried to

appropriately acknowledge the achievements of corresponding authors within the text,

relevant figures, tables and formulae. I am much indebted to their outstanding research

works and any unintentional shortcoming in sufficiently acknowledging them is sin-

cerely regretted. Perhaps such a title should have become available earlier by one of

the pioneers of the method, i.e. Professor T. Belytschko, a shining star in the universe

of computational mechanics, Dr J. Dolbow, Dr N. Moës, Dr N. Sukumar and possibly

others who introduced, contributed and developed most of the techniques.

I would like to extend my acknowledgement to Blackwell Publishing Limited,

for facilitating the publication of the first book on XFEM; in particular N. Warnock-

Smith, J. Burden, L. Alexander, A. Cohen and A. Hallam for helping me throughout

the work. Also, I would like to express my sincere gratitude to my long-time friend,

Professor A.R. Khoei, with whom I have had many discussions on various subjects of

computational mechanics, including XFEM. Also my special thanks go to my students:

Mr A. Asadpoure, to whom I owe most of Chapter 4, Mr S.H. Ebrahimi for solving

isotropic examples in Chapter 3 and Mr A. Forghani for providing some of the results

in Chapter 5.

This book has been completed on the eve of the new Persian year; a ‘temporal

interface’ between winter and spring, and an indication of the beginning of a blooming

season for XFEM, I hope.

Finally, I would like to express my gratitude to my family for their love, under-

standing and never-ending support. I have spent many hours on writing this book; hours

that could have been devoted to my wife and little Sogol: the spring flowers that inspire

the life.

Soheil Mohammadi

Tehran, Iran

Spring 2007
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Nomenclature

α Curvilinear coordinate

αc Load factor for cohesion

α f , αs Thermal diffusivity of fluid and solid phases

β Curvilinear coordinate

γs Surface energy density

γ e
s , γ

p
s Elastic and plastic surface energies

γxy Engineering shear strain

δ Plastic crack tip zone

δ Variation of a function

δ(ξ ) Dirac delta function

δi j Kronecker delta function

εε Strain tensor

εε f , εεc Strain field at fine and coarse scales

εij Strain components

ε̄ij Dimensionless angular geometric function

εaux
ij Auxiliary strain components

εv Kinetic mobility coefficient

εyld Yield strain

η Local curvilinear (mapping) coordinate system

θ Crack propagation angle with respect to initial crack

θ Angular polar coordinate

κ, κ ′ Material parameters

λ Lame modulus

λ Eigenvalue of the characteristic equation

μ Shear modulus

ν, νij Isotropic and orthotropic Poisson’s ratios

ξ Local curvilinear (mapping) coordinate system

ξ(x) Distance function

ρ Radius of curvature

ρ Density

ρ f , ρc Density of fine and coarse scales

ρint Curvature of the propagating interface

σ Stress tensor

σ f ,σc Stress field at fine and coarse scales

σg Stress tensor at a Gauss point

σ
tip
t Normal tensile stress at crack tip

σ0 Applied normal traction

xi
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xii Nomenclature

σcr Critical stress for cracking

σij Stress components

σ̄ij Dimensionless angular geometric function

σ aux
ij Auxiliary stress components

σn Stress component normal to an interface

σn Stress component at time step n
σyld Yield stress

τ Deviatoric stress

τ0 Applied tangential traction

τc Cohesive shear traction

τn Time functions

τn Deviatoric stress tensor at time step n
φ(x) Level set function

φ(z) Complex stress function

φs(z) Stress function for shear problem

ϕ Angle of orthotropic axes

ϕ Phase angle for interface fracture

χ (x) Enrichment function for weak discontinuities

χ (z) Stress function

ψ (x) Enrichment function

ψ (z) Stress function

ω Oscillation index

� Boundary

�c Crack boundary

�t Traction (natural) boundary

�u Displacement (essential) boundary

� Finite variation of a function

� Coefficient matrix

Ξ Homogenisation/average operator

� Potential energy

� j (x) Moving least squares shape functions

�(x) Stress function

� Domain

� f , �c Fine and course scale domains

� f , �s Fluid and solid domains

�pu Domain associated with the partition of unity

a Crack length/half length

a Semi-major axis of ellipse

ab, af Backward and forward indexes in fast marching method

ah Heaviside enrichment degrees of freedom

ai Enrichment degrees of freedom

ak Enrichment degrees of freedom

A∗ Area associated with the domain J integral

b Width of a plate

b Semi-minor axis of ellipse

bi Crack tip enrichment degrees of freedom
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Nomenclature xiii

B Matrix of derivatives of shape functions

Bh Matrix of derivatives of final shape functions

Bc B matrix for coarse scale

B f B matrix for fine scale

Br
i Strain–displacement matrix (derivatives of shape functions)

Bu
i Strain–displacement matrix (derivatives of shape functions)

Ba
i Matrix of derivatives of enrichment (Heaviside) of shape functions

Bb
i Matrix of derivatives of enrichment (crack tip) of shape functions

c Constant parameter

c Size of crack tip contour for J integral

cij Material constants

cR Rayleigh speed

c f , cs Specific heat for fluid and solid phases

C Material constitutive matrix

d Distance

d/dt Time derivative

D Material modulus matrix

Dc, D f Material modulus in coarse and fine scales

Dloc Localisation modulus

D/Dt Material time derivative

Db
x , Df

x Backward and forward finite difference approximations

E, Ei Isotropic and orthotropic Young’s modulus

E ′ Material parameter

ft Uniaxial tensile strength

f (r ) Radial function

f Nodal force vector

f r
i Nodal force components (classic and enriched)

f b Body force vector

f t External traction vector

f c Cohesive crack traction vector

f coh Cohesive nodal force vector

f ext External force vector

f int
u Internal nodal force vector due to external loading

f int
a Internal nodal force vector due to cohesive force

Fi
l (x) Crack tip enrichment functions

g Applied gravitational body force

g(θ ) Angular function for a crack tip kink problem

g j (θ ) Orthotropic crack tip enrichment functions

G Shear modulus

G Fracture energy release rate

G1, G2 Mode I and II fracture energy release rates

Gdyn
I Dynamic mode I fracture energy release

H (ξ) Heaviside function

Hl Latent heat

i Complex number, i2 = −1

J Jacobian matrix

J J integral
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xiv Nomenclature

J act Actual J integral

J aux Auxiliary J integral

Jk Mode k contour integral J
k0 Dimensionless constant for the power hardening law

k0, k1, k2, k3, k4 Constant coefficients

ki Conductivity coefficient for phase i
ks , k f Thermal conductivity for solid and fluid phases

kn, kt Normal/tangential interface properties

K Stiffness matrix

Khom Homogenised stiffness matrix

Krs
ij Stiffness matrix components

K Stress intensity factor

KC Critical stress intensity factor

Keq Equivalent mixed mode stress intensity factor

KI, KII, KIII Mode I , II and III stress intensity factors

K̄I, K̄II Normalized mode I and mode II stress intensity factors

K aux
I , K aux

II Auxiliary mode I and mode II stress intensity factors

KIc, KIIc Critical mode I and mode II stress intensity factors

K cohesion
I Cohesive mode I stress intensity factor

K crack
I Crack mode I stress intensity factor

K dyn
I Dynamic mode I stress intensity factor

le Characteristic length

lc Characteristic length for crack propagaion

m Number of enrichment functions

mti Number of nodes to be enriched by crack tip enrichment functions

m f Number of crack tip enrichment functions

M j Mach number

M Interaction integral

M0 Total mass

Mi Lumped mass component

Mij Mass matrix component

n Power number for the plastic model (Section 2.6.4)

ng Number of Gauss points

n̄ Number of nodes within each moving least squares support domain

np Number of independent domains of partition of unity

nn Number of nodes in a finite element

n Normal vector

nint Normal vector to an internal interface

N j Matrix of shape functions

N j Shape function

N̄ j New set of generalised finite element method shape functions

p(x) Basis function

p Hydrostatic pressure

p̄ Predefined hydrostatic pressure

Pi Loading condition i
q Arbitrary smoothing function

q Heat flux
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Nomenclature xv

qi Nodal values of the arbitrary smoothing function

Q Input heat to system

Qij Matrix of homogenous anisotropic solids

r Radial distance/coordinate

rg Radial distance of a Gauss point from crack tip

rp Crack tip plastic zone

R Ramp function

s f , ss Heat source for fluid and solid phases

Sa Set of accepted nodes

Sc Set of candidate nodes

Sd Set of distant nodes

t Time

t Traction

tint Surface traction along internal boundary

T Temperature

T f , Ts Temperature of fluid and solid phases

Ti (t) Time shape functions

Tm Melting/fusion temperature

u Displacement vector

û Local symmetric displacement vector

u̇ Velocity vector

ū Prescribed displacement
¯̇u Prescribed velocity

ü Acceleration vector

uaux
i Auxiliary displacement field

ucoh Displacement field obtained from crack surface tractions

uenr Enriched displacement field

uFE Classical finite element displacement field

uh(x) Approximated displacement field

ū j Nodal displacement vector

ũ j Transformed displacement

u p Periodic displacement

ux , uy xand y displacement component

U 1, U 2 Symmetric and antisymmetric crack tip displacements

Uk Kinetic energy

Us Strain energy

U e
s , U p

s Elastic and plastic strain energies

U� Surface energy

v Velocity vector

v̄ Prescribed velocity

vn Normal interface speed

v1, v2 Longitudinal and shear wave velocities

V(t) Vector of approximated velocity degrees of freedom

w Crack opening

wc Critical crack opening

W External work

W aux Auxiliary work
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xvi Nomenclature

W coh Virtual work of cohesive force

W ext Virtual work of external loading

Wg Gauss weight factor

W r
g Radial weight function at a Gauss point g

W int Internal virtual work

W M Interaction work

Ws Strain energy

Wt (t) Time weight function

x Position vector

xc, x f Position vector for coarse and fine scales

x� Position of projection point on an interface

x1, x2 Two-dimensional coordinate system

x ′ Local crack tip coordinate axes

y′ Local crack tip coordinate axes

z = x + iy Complex variable

z̄ = x − iy Conjugate complex variable

zi Complex parameters

f ′, f ′′ First and second derivative of a function

f̄ , ¯̄f First and second integrals of a function

∇ = ∂
/
∂x Nabla operator

〈 〉 Jump operator across an interface

BEM Boundary Element Method

CBS Characteristic Based Split

COD Crack Opening Displacement

CTOD Crack Tip Opening Displacement

DCT Displacement Correlation Technique

DOF Degree Of Freedom

EDI Equivalent Domain Integral

EFG Element-Free Galerkin

ELM Equilibrium On Line

EPFM Elastic Plastic Fracture Mechanics

FDM Finite Difference Method

FE Finite Element

FEM Finite Element Method

FMM Fast Marching Method

FPM Finite Point Method

FPZ Fracture Process Zone

GFEM Generalised Finite Element Method

HRR Hutchinson–Rice–Rosengren

LEFM Linear Elastic Fracture Mechanics

LSM Level Set Method

MCC Modified Crack Closure

MEPU Multiscale Enrichment Partition of Unity

MLPG Meshless Local Petrov–Galerkin

MLS Moving Least Squares
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Nomenclature xvii

NURBS Non-Uniform Rational B-Spline

OUM Ordered Upwind Method

PU Partition of Unity

PUFEM Partition of Unity Finite Element Method
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Chapter 1  
 
 

Introduction 
 
 

 
 
 
 
 
 
1.1  ANALYSIS OF STRUCTURES 

 
The finite element method (FEM) has undoubtedly become the most popular and 
powerful analytical tool for studying the behaviour of a wide range of engineering and 
physical problems. Several general purpose finite element softwares have been developed, 
verified and calibrated over the years and are now available to almost anyone who asks 
and pays for them. Furthermore, concepts of FEM are usually offered by all engineering 
departments in the form of postgraduate and even undergraduate courses. 

One of the important applications of FEM is the analysis of crack propagation 
problems. Fundamentals of the present form of the linear elastic fracture mechanics 
(LEFM) came to the existence practically in naval laboratories during the First World 
War. Since then, LEFM has been successfully applied to various classical crack and 
defect problems, but remained relatively limited to simple geometries and loading 
conditions. 

Introduction and fast development of the finite element method drastically changed 
the extent of application of LEFM. FEM virtually had no limitation in solving complex 
geometries and loading conditions, and soon it was extended to nonlinear materials and 
large deformation problems (Zienkiewicz et al. 2005). As a result, LEFM could now rely 
on a powerful analytical tool in order to determine its fundamental concepts and 
governing criteria such as the crack energy release rate and the stress intensity factor for 
any complex problem. General LEFM stability criteria could then be used to assess the 
stability/propagation of an existing crack. 

Application of FEM into linear elastic fracture mechanics and its extension to elastic 
plastic fracture mechanics (EPFM) has now expanded to almost all crack problems. 
Parametric studies and experimental observations have even resulted in the introduction 
of new design codes for containing a stable crack. However, the essence of analyses 
remained almost unchanged: LEFM basic concepts combined with classical continuum 
based FEM techniques through smeared or discrete crack models. 

After a few decades, a major breakthrough seemed to be evolving in the fundamental 
idea of partition of unity and in the form of the eXtended Finite Element Method (X-FEM 
or XFEM). 
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1.2  ANALYSIS OF DISCONTINUITIES 

 
Progressive failure/fracture analysis of structures has been an active subject of research 
for many years. Historically, it was addressed either within the framework of continuum 
mechanics, including computational plasticity and damage mechanics, or the 
discontinuous approach of fracture mechanics (Owen and Hinton 1980).  

These methods, however, are applied to fundamentally different classes of failure 
problems. While the theory of plasticity and damage mechanics are basically designed for 
problems where the displacement field and usually the strain field remain continuous 
everywhere (continuous problems), fracture mechanics is essentially formulated to deal 
with strong discontinuities (cracks) where both the displacement and strain fields are 
discontinuous across a crack surface (Fig. 1.1) (Mohammadi 2003). 

 

 
Figure 1.1  Different categories of continuities. 
 

In practice, fracture mechanics is also used for weak discontinuity problems, and both 
damage mechanics and the theory of plasticity have been modified and adapted for 
failure/fracture analysis of structures with strong discontinuities. It is, therefore, difficult 
to distinguish between the practical engineering applications exclusively associated with 
each class of analytical methods. 

Inclusion of some basic concepts from fracture mechanics such as non-local models, 
energy release rate, softening models in combination with adaptive remeshing techniques 
have allowed for successful simulations of crack problems with a certain level of 
accuracy. 
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1.3  FRACTURE MECHANICS 

 
Fundamental concepts of fracture mechanics can be traced back to the late nineteenth and 
early twentieth centuries. Both experimental observations and theoretical elasticity helped 
to create the fundamental aspects of the theory of fracture mechanics. Major differences 
between the theoretical prediction of tensile strength in brittle materials and the 
experimentally measured one was explained by the assumption of existing minute flaws 
and defects; predicting drastic changes in the distribution of the stress field around each 
flaw, regardless of its actual size. 

Introduction of the fundamental concepts of stress intensity factor, energy release rate, 
etc. changed the way a crack problem used to be analysed. Theoretical studies proved that 
even for the case of a small tiny circular hole inside an infinite tensile plate, a tensile 
stress concentration factor of 3 is predictable at a point adjacent to the hole, and in 
addition, generation of a compressive stress field for the infinite tensile plate is also 
anticipated.  

Global (non-local) energy based methods were gradually developed and solutions for 
classical problems were also obtained. Energy based methods allowed the classical 
fracture mechanics to be extended to nonlinear problems. Introduction of the J integral 
was a major breakthrough that allowed powerful numerical methods such as the finite 
element method to be efficiently used for determining the necessary fields and variables. 
Future developments benefited greatly from this joint approach; basic formulations from 
fracture mechanics to assess the stability of cracks, and the analytical tool from the finite 
element method to allow simulation of problems with arbitrary geometries, boundary 
conditions and loadings. 
 
 

1.4 CRACK MODELLING 
 

Various methods have been developed over the years for simulation of the problems 
involved with creation and propagation of cracks. Analytical, semi-analytical and 
numerical approaches, such as the boundary integral method, the boundary element 
method, the finite element method and recently a number of meshless methods, have been 
successfully used for modelling cracks; each one provides advantages and drawbacks in 
handling certain parts of the simulation. Although the same concepts can be more or less 
applied to many numerical methods, the emphasis in this book is only put on the finite 
element method as a basis for its extension to the extended finite element method.  

Crack simulation in the finite element method has been performed by a number of 
methods. They include the continuous smeared crack model and several discontinuous 
approaches such as the discrete inter-element crack model, the discrete crack model and 
the discrete element based model. Recently a new class has been proposed that simulates 
the singular nature of discrete models within a geometrically continuous mesh of finite 
elements. The extended finite element method has emerged from this class of problems, 
and is based on the concept of partition of unity for enriching the classical finite element 
approximation to include the effects of singular or discontinuous fields around a crack.  
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1.4.1   Local and non-local models 

 
Early attempts to simulate crack problems by the finite element method adopted a simple 
plasticity based FEM. The algorithm was to check the stress state at the integration points 
against a material strength criterion, similar to hardening plasticity problems except for a 
negative hardening modulus to account for the softening effects of cracking. The 
behaviour of a point was only affected by its own stress state (point 1 in Fig. 1.2). 

However, it was soon realised that such local results may become mesh dependent 
and unreliable. The conclusion was that the cracking could not solely be regarded as a 
local point-wise stress based criterion, and non-local models had to be adopted. 

 
Figure 1.2  Local and non-local evaluation of stress state. 
 

Then, non-local models were proposed to avoid mesh dependency of the plasticity 
based solutions for simulating crack problems (Bazant and Planas 1997). To clarify the 
basic idea, consider the simple case of point 2 in Fig. 1.2, where the fracture behaviour of 
each point is determined from a non-local criterion expressed in terms of the state 
variables at that point and a number of surrounding points. 
 
 

1.4.2  Smeared crack model 
 
The smeared crack model has been frequently used in the finite element simulation of 
fracture and crack propagation problems. Rather than trying to geometrically model a 
crack, the smeared crack model simulates the mechanical effects of the crack in terms of 
stiffness or strength reduction. It is in fact a continuous approach for a 
discontinuous/singular problem. In this model, the discontinuity caused by a discrete 
crack within an element is simulated by a distributed (smeared) equivalent field over the 
entire domain of the element, as depicted in Fig. 1.3a (Owen and Hinton 1980). The main 
advantage of the method is that it does not require any local or global remeshing in the 
process of crack propagation. 
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Figure 1.3  Different models for simulation of a crack. 

Trim added in PDF - Aptara



6  Extended Finite Element Method 

 
1.4.3  Discrete inter-element crack 

 
In this approach, existing cracks are simply defined along the finite element edges (Fig. 
1.3b). The strong discontinuity is then automatically assumed in the displacement field 
across the crack. However, it cannot account for the singular field around the crack tip, 
unless special singular finite elements are used. The model is extremely simple for 
predefined existing crack paths along the element edges, however, it becomes rather 
difficult for modelling general crack propagation paths as it requires a remeshing of the 
model. It also dramatically increases the risk of mesh dependency. 
 
 

1.4.4   Discrete cracked element 
 
This model is an improvement on the inter-element discrete crack model, as it allows for 
cracks to be defined or propagated inside the finite elements. Fig. 1.3c illustrates a model 
in which the crack path is through the middle of a finite element. A local remeshing 
technique combined with adaptivity methods have to be adopted to create a new mesh by 
splitting the cracked element and dividing adjacent elements to ensure compatibility of the 
neighbouring finite elements. Adaptivity techniques are applied to compute the state 
variables within the newly created elements from the state variables of their parent 
elements.  

A class of combined finite/discrete element procedures have been successfully 
developed in the past decade for simulation of progressive fracturing due to impact and 
explosive loadings. They may also take into account the effects of post-cracking 
interactions, including fully nonlinear frictional behaviour (Mohammadi 2003). 

The method is clearly very expensive as it requires time-consuming algorithms for 
cracking, remeshing and contact detection/interactions every time a new crack or body is 
created or each time a new potential contact is anticipated. A remedy is to avoid 
remeshing of the whole model by gradual local remeshing and updating techniques 
according to the advancement of cracks. 
 
 

1.4.5   Singular elements 
 
In a major development, singular finite elements were developed for simulating crack tip 
singular fields. They provide major advantages; the model is simply constructed by 
moving the nearby midside nodes to the quarter points – absolutely no other changes in 
the finite element formulation are required (Fig. 1.3d). The use of these elements has 
considerably upgraded the level of accuracy obtained by the finite element method for 
simulation of crack tip fields (Owen and Fawkes 1983). Prior to the development of 
XFEM, singular elements have been the most popular approach for fracture analysis of 
structures. 

Singular elements, however, lacked the capability of modelling discontinuity across a 
crack path. As a result, they had to be used with one of the other preceding methods to 
simulate the crack path. 
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1.4.6  Enriched elements 

 
In this model, the singular or discontinuous displacement field within a finite element is 
simulated by a special set of enriched shape functions that allow for accurate 
approximation of the displacement field. Fig. 1.3e illustrates a model in which the crack 
path is through the middle of a finite element. Presence of the crack is not geometrically 
modelled and the mesh does not need to conform to the crack path. Additional enrichment 
approximation is added to the classical finite element model to account for the effects of a 
crack or discontinuity (Moës et al. 1999). 

The main advantage of the method is that it does not require any remeshing in the 
process of crack propagation. By advancement of the crack tip location or any change in 
its path due to loading conditions, the method automatically determines the elements 
around the crack path/tip and generates necessary enrichment functions for the associated 
finite elements or nodal points accordingly. 

Locations of initial cracks or potential propagation paths do not affect the way the 
initial finite element model is constructed. Multiple cracking and intersecting cracks can 
be similarly simulated by the same finite element mesh with comparable levels of 
accuracy. 
 
 

1.5  ALTERNATIVE TECHNIQUES 
 
The finite element method has been widely used for fracture analysis of structures for 
many years. Its earlier disadvantages have been avoided by the development of new ideas 
and techniques and it has now become a mature powerful approach for the analysis of 
many engineering and physical problems. Nevertheless, alternative methods, such as 
various classes of meshless methods, are increasingly being adopted.  

Meshless methods have developed significantly in the last decade. The element-free 
Galerkin method (EFG) (Belytschko et al. 1994), meshless local Petrov–Galerkin 
(MLPG) (Atluri and Shen 2002), smoothed particle hydrodynamics (SPH) (Belytschko et 
al. 1996), finite point method (FPM) (Onate et al. 1995), reproducing kernel particle 
method (RKPM) (Liu et al. 1996), HP-clouds (Duarte and Oden 1995), equilibrium on 
line method (ELM) (Sadeghirad and Mohammadi 2007) and many other meshless 
methods have been used for failure and fracture analysis of structures. Discussion on these 
techniques is out of the scope of this book. Nevertheless, they share similar ideas and 
many parts of the present discussion, methodology and formulation on enrichment 
techniques can be extended to meshless methods and other numerical techniques. 
 
 

1.6  A REVIEW OF XFEM APPLICATIONS 
 

1.6.1  General aspects of XFEM 
 
The basic ideas and the mathematical foundation of the partition of unity finite element 
method (PUFEM) were discussed by Melenk and Babuska (1996) and Duarte and Oden 
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(1996). Later Belytschko and Black (1999) presented a minimal remeshing finite element 
method by adding discontinuous enrichment functions to the finite element approximation 
to account for the presence of a crack. The method was then improved by Moës et al. 
(1999) and Dolbow (1999) and called the eXtended Finite Element Method (XFEM). The 
new methodology allowed for the entire crack to be represented independently of the 
mesh and constructed the enriched approximation from the interaction of the crack 
geometry with the mesh. 

More contributions from Dolbow et al. (2000a, 2000b, 2000c), Daux et al. (2000) and 
Sukumar et al. (2000) extended the method for three-dimensional crack modelling and 
arbitrary branched and intersecting cracks. 

The use of level set methods to represent the crack location was studied by Stolarska 
et al. (2001), Belytschko et al. (2001), Sukumar et al. (2001), Moës et al. (2002), 
Gravouil et al. (2002), Ventura et al. (2003), Zi et al. (2004), Budyn et al. (2004), Bordas 
and Moran (2006), and  Stolarska and Chopp (2003). Alternatively, Sukumar et al. 
(2003a) and Chopp and Sukumar (2003) combined XFEM with the fast marching method 
(FMM). 
 
 

1.6.2 Localisation and fracture 
 
Apart from earlier works that were directed towards the development of the extended 
finite element method for linear elastic fracture mechanics (LEFM), simulation of 
localisation and fracture has been the main target. Jirásek and Zimmermann (2001a, 
2001b) successfully combined XFEM with the damage theory and advocated a new 
concept of a model with transition from a smeared to an embedded discrete crack. 
Sukumar et al. (2003b) presented a two-dimensional numerical model of micro-structural 
effects in brittle fracture, while Dumstorff and Meschke (2003) and Patzak and Jirásek 
(2003) proposed an extended finite element model for the analysis of brittle materials in 
the post-cracking regime. In a fundamentally different approach, Ventura et al. (2005) 
proposed a new extended finite element method for accurately modelling the 
displacement and stress fields produced by a dislocation.  

Simulation of growth of arbitrary cohesive cracks by XFEM was reported by Moës 
and Belytschko (2002a). The method was further advanced by Zi and Belytschko (2003), 
Mariani and Perego (2003) and Mergheim et al. (2005). A proper representation of the 
discrete character of cohesive zone formulations by the so called cohesive crack segments 
was proposed by de Borst et al. (2004a, 2004b, 2004c). 

In order to develop a methodology for modelling shear bands as strong discontinuities 
within a continuum mechanics context, Samaniego and Belytschko (2005) and Areias and 
Belytschko (2006) used the enrichment ideas of XFEM. Later, Song et al. (2006) 
presented a new method for modelling of arbitrary dynamic crack and shear band 
propagation by a rearrangement of the extended finite element basis and the nodal degrees 
of freedom, describing the discontinuity superposed elements and the new concept of 
phantom nodes. 

The idea of elastic plastic enrichments was also proposed by Elguedj et al. (2006) 
based on the Ramberg–Osgood power hardening rule and Hutchinson–Rice–Rosengren 
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elastoplastic fields for representing the singularities in elastic plastic fracture mechanics 
(EPFM).  
 
 

1.6.3 Composites 
 
Fracture of composite structures constitutes a major part of recent studies related to 
LEFM and EPFM. Dolbow and Nadeau (2002) employed the extended finite element 
method to simulate fracture behaviour of micro-structured materials with a focus on 
functionally graded materials. Then, Dolbow and Gosz (2002) described a new interaction 
energy integral method for the computation of mixed mode stress intensity factors at the 
tips of arbitrarily oriented cracks in functionally graded materials. In a related 
contribution, Remmers et al. (2003) presented a new formulation for the simulation of 
delamination growth in thin-layered composite structures.  

Study of bimaterial interface cracks was performed by Sukumar et al. (2004) by 
developing partition of unity enrichment techniques. Nagashima et al. (2003) and 
Nagashima and Suemasu (2004) described the application of XFEM to stress analyses of 
structures containing interface cracks between dissimilar materials. 

To include the effects of anisotropy on the enrichment functions, Asadpoure et al. 
(2006, 2007), and Asadpoure and Mohammadi (2007) developed three independent sets 
of orthotropic enrichment functions for XFEM analysis of crack in orthotropic media. 
 
 

1.6.4 Contact 
 
Dolbow et al. (2000c, 2001) further extended the XFEM methodology for modelling of 
crack growth with frictional contact on the crack faces. The subject of contact mechanics 
was also revisited by Belytschko et al. (2002a). Recently, Khoei and Nikbakht (2006) 
applied the extended finite element method to modelling frictional contact problems, 
while Shamloo et al. (2005), Khoei et al. (2006a, 2006b) presented new computational 
techniques based on XFEM in elastoplastic behaviour of pressure-sensitive material for 
powder compaction problems. 
 
 

1.6.5 Dynamics 
 
Belytschko et al. (2003) developed a methodology for switching from a continuum to a 
discrete discontinuity where the governing partial differential equation loses hyperbolicity 
for rate independent materials. Then, Belytschko and Chen (2004) developed a singular 
enrichment finite element method for elastodynamic crack propagation. Réthoré et al. 
(2005a) proposed a generalisation of XFEM to model dynamic fracture and time-
dependent problems, while Zi et al. (2005) presented a method for modelling arbitrary 
growth of dynamic cracks without remeshing. Menouillard et al. (2006) introduced a 
lumped mass matrix for enriched elements, which enabled a pure explicit formulation to 
be used in XFEM applications. 
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In interesting reports, Chessa and Belytschko (2004, 2006) presented an enriched 
finite element method with arbitrary discontinuities in space-time. A combined space–
time extended finite element method was proposed by Réthoré et al. (2005b), based on the 
idea of using a time partition of the unity method, and it was denoted the Time eXtended 
Finite Element Method (TXFEM).   
 
 

1.6.6 Large deformation/shells 
 
Dolbow and Devan (2004) presented a geometrically nonlinear assumed strain XFEM. 
Legrain et al. (2005) focused on the application of XFEM to large strain fracture 
mechanics for plane stress problems such as rubber-like materials, and Fagerström and 
Larsson (2006) presented a general finite element approach for the modelling of fracture 
for the geometrically nonlinear case.  

A new XFEM formulation for the nonlinear analysis of arbitrary crack propagation in 
enhanced strain four-node shells was developed by Areias and Belytschko (2005a). Areias 
et al. (2006) extended the methodology for evolution of cracks in thin shells. 
 
 

1.6.7 Multiscale 
 
Multiscale analysis was also the target of Moës et al. (2003) who used the extended finite 
element method to solve scales involving complex geometries in a multiscale analysis of 
components. Peters et al. (2004) used an XFEM to study the transition from microscale 
damage phenomena to crack initiation and growth at the macroscale which constrains the 
lifetime of concrete structures. Mariano and Stazi (2004) analysed the interaction between 
a macrocrack and a population of microcracks by adapting XFEM to a multifield model of 
microcracked bodies. Later, Fish and Yuan (2005) proposed a new multiscale enrichment 
approach based on the partition of unity method (MEPU). It was a synthesis of 
mathematical homogenisation theory and the partition of unity method.  
 
 

1.6.8  Multiphase/solidification 
 
Wagner et al. (2001, 2003) described a new method for the simulation of particulate 
flows, based on the extended finite element method. The finite element basis was enriched 
with the Stokes flow solution for flow past a single particle and the lubrication theory 
solution for flow between particles.  

Chessa amd Belytschko (2003a, 2003b) applied the extended finite element method 
with arbitrary interior discontinuous gradients to two-phase immiscible flow problems. 
Lin et al. (2005) and Gutierrez and Bermejo (2005) presented a numerical method for free 
surface flows that coupled the incompressible Navier–Stokes equations with the level set 
method in the finite element framework. 

Multi-dimensional Stefan (solidification) problems were analysed by Chessa et al. 
(2002) using an enriched finite element method. Alternatively, Ji et al. (2002) presented a 
hybrid numerical method for modelling the evolution of sharp phase interfaces on fixed 
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grids, where the temperature field evolves according to classical heat conduction in two 
subdomains separated by a moving freezing front.  

Ji and Dolbow (2004) and Dolbow et al. (2004, 2005) considered the problem of 
chemically induced volume phase transitions in stimulus-responsive hydrogels, wherein a 
sharp interface separates swelled and collapsed phases of the underlying polymer 
network. Alternatively, Chen et al. (2004) presented a coupled finite element/level set 
method for incompressible multiphase flows. 

Modelling of multiphase materials by XEFM was performed by Hettich and Ramm 
(2006) and Ji et al. (2006), as well as Zabaras et al. (2006) who modelled dendrite 
solidification with melt convection using the extended finite element method.  
 
 

1.7 SCOPE OF THE BOOK 
 
This text is dedicated to discussing the basic ideas and formulation for the newly 
developed extended finite element method. Although the main goal has been set to study 
the application of XFEM for fracture analysis of structures, other major applications will 
also be considered. Therefore, in addition to fully covering the subject of fracture 
mechanics, an attempt has been made to introduce and address the essential features of 
other advanced topics related to XFEM. 

The book is designed as a textbook, beginning with the basic ideas in simple one- 
dimensional problems, and then moving towards the general formulation for two- (and 
sometimes three-) dimensional problems. In order to provide a view on the wide extent of 
applications of XFEM, the present chapter has briefly reviewed various engineering and 
physical applications of XFEM, without going into detail. 

Chapter 2 provides a review of fracture mechanics, which quickly reviews the basic 
concepts and fundamental formulations but does not provide proofs or details. Stress 
intensity factors, energy release rate and the J contour integral are explained and issues 
associated with classical finite element computations are addressed. The chapter begins 
with an introduction to the basics of the theory of elasticity, and is followed by a 
discussion on classical problems of LEFM. The same concepts are then extended to 
elastoplastic problems; elastoplastic fracture mechanics (EPFM). The chapter briefly 
reviews issues related to the finite element modelling of fracture mechanics and describes 
the basic formulation of popular singular finite elements. It also addresses the numerical 
procedures required for evaluation of the J integral, energy release rate and the stress 
intensity factor based on classical and singular finite elements. 

Chapter 3 constitutes the main chapter of the book. It covers the formulation and 
implementation of XFEM, and discusses various aspects of the approach. Concepts of the 
partition of unity and the generalised finite element are explained, and there is a 
discussion on the enrichment models. Both the intrinsic and extrinsic enrichment 
techniques are described in detail. The extended finite element method, as a special case 
of local partition of unity finite element method with extrinsic enrichment, is further 
studied by introduction of crack tip enrichment functions. Effects of various Heaviside 
enrichment functions to allow for modelling discontinuous fields across a crack are also 
investigated. A relatively comprehensive discussion on two commonly used level set and 
fast marching methods for tracking moving boundaries are also provided. The chapter 
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concludes by examining a number of classical two-dimensional isotropic problems of 
fracture mechanics.  

The next chapter (Chapter 4) deals with orthotropic fracture mechanics, which is 
important for ever growing applications of composite materials. First, the basics of 
anisotropic elasticity and anisotropic fracture mechanics are reviewed. Then, three 
different sets of enrichment functions for orthotropic media are explained. Solutions of a 
number of available problems of orthotropic composites are provided which also include a 
comprehensive sensitivity analysis of various parameters. 

Chapter 5 is devoted to simulation of cohesive cracks by XFEM. It provides 
theoretical bases for cohesive crack models in fracture mechanics and classical finite 
element simulations. Then, the appropriate types of XFEM enrichments that are consistent 
with cohesive cracks are discussed. The snap-back behaviour, which is one of the possible 
modes of response in cohesive crack problems, and the concept of critical crack path are 
studied by solving a number of classical cohesive crack problems. 

New frontiers of application of XFEM are described in Chapter 6. It begins with 
discussions on interface cracking, including classical solutions from fracture mechanics 
and the XFEM approximation. Application of XFEM for solving problems involved with 
contacts between two bodies is explained and numerical issues are addressed. The next 
section is devoted to the important subject of dynamic fracture. It starts with classical 
formulations of fracture mechanics and ends with the very recently developed idea of 
time-space discretization by XFEM. Implementation of XFEM for the very complex 
applications of multiscale and multiphase problems is briefly explained.  

The final chapter (Chapter 7) discusses general algorithms for implementing an 
efficient XFEM. It provides a number of simple instructions and step-by-step procedures, 
based on the discussions provided in Chapters 3, 4, 5 and 6 for a wide range of 
engineering applications. These simple guidelines, in combination with other freely 
available XFEM source codes can be used to further advance the existing XFEM 
capabilities, and to provide a launching pad for future improvements and developments. 
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Chapter 2 
 
Fracture Mechanics, a Review  

 
 
 
 
 
 
 
 

2.1  INTRODUCTION 
 
Experimental observations have shown that brittle materials tend to fracture when loaded 
beyond their critical stress level. It is, therefore, commonly accepted that the strength of a 
material to resist fracture is in fact its inherent property. This fact has resulted in a series 
of criteria in many design codes to ensure that the maximum stress a structure is to 
experience does not exceed its critical fracture stress strength (Bazant and Planas 1997). 

However, experimental observations have proved that the fracture strength does depend 
on a number of other factors, such as the testing setup, environmental conditions and 
dimensions of the specimens. For example, Evans and Marathe (1968) demonstrated that 
the tensile strength of coal specimens, in addition to being a material property, was 
inversely proportional to the thickness t of specimens; α−t , where 23.0=α . 

This is also the case in predicting the strength of materials, where the theoretical 
strength of an ideal brittle material is estimated to be 10/E , while the experimentally 
measured strength is of the order of 100/E – 1000/E . The fracture strength is related to 
the specific surface energy rather than to the tensile strength of the material. 

From an historic point of view, Griffith (1921, 1924) was the first to realise that the 
presence of internal cracks and flaws had a significant role to play in the initiation and 
propagation of fracture and it explained the reason for much lower tensile strength of 
brittle materials than the theoretical predictions. He succeeded in establishing a 
relationship between the fracture strength and the crack size; marking the start of the 
modern fracture mechanics. He derived a criterion for fracture in terms of the total change 
in energy during cracking. 

Griffith’s theory was based on the earlier works of Kirsch and Kolosoff (Meguid 1989) 
and Inglis (1913) who solved the problem of infinite tensile plate with circular and 
elliptical holes, respectively. Kirsch showed that the maximum stress around a hole is 
three times the applied traction, a terminology for the stress concentration factor 3. A 
solution for a sharp crack problem can then be obtained by degeneration of the elliptical 
hole into a straight line crack. A different approach was used by Westergaard (1939) to 
derive solutions for the stress field near a sharp crack tip. 

Another major extension was to include nonlinear effects. Irwin (1957, 1958, 1960) and 
Irwin et al. (1958) extended Griffith’s theory to include yielding at the crack tip, and 
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introduced the concept of stress intensity factor (SIF) and energy release rate, G. The 
concept of crack opening displacement (COD) was utilised by Wells (1963) as a crack 
strength parameter for elastoplastic analysis. 

Introduction of the concept of the J integral by Rice (1968, 1988), Rice and Rosengren 
(1968) and Rice and Levy (1972) opened the way for general finite element solutions of 
complex fracture mechanics problems decades later. The J integral was defined as a path 
independent contour integral equal to the rate of change of the potential energy for an 
elastic nonlinear solid during a unit crack extension.  

The finite element method (FEM) has been widely used in various problems of fracture 
mechanics. FEM was originally used as a simple analytical tool for obtaining the 
continuum based displacement and stress fields. Later, sophisticated singular elements 
were proposed by Barsoum (1974, 1975, 1976a, 1976b, 1977, 1981) and Henshell and 
Shaw (1975) and efficiently implemented by Fawkes et al. (1979) and Owen and Fawkes 
(1983) to simulate the singularity condition at crack tips. Then, it was extensively adopted 
as a major improvement to already available numerical techniques in LEFM. 

FEM has the advantage of including various models of plasticity and large 
deformations, whereas classical fracture mechanics is not capable of this. In a major 
setback, however, Bazant, in a series of studies, proved that classical continuum 
mechanics and strength of materials would lead to mesh dependent results unless the 
concepts of fracture mechanics were embedded within the solution (Bazant and Planas 
1997). 

Development of the meshless methods such as the element-free Galerkin method (EFG) 
(Belytschko et al. 1994), meshless local Petrov–Galerkin (MLPG) (Atluri and Shen 
2002), smoothed particle hydrodynamics (SPH) (Belytschko et al. 1996) and the extended 
finite element method (XFEM) (Dolbow et al. 2000b) has provided new advanced 
analytical tools, and a surge of revisiting the problems of fracture mechanics. 

This chapter briefly reviews the basic concepts of fracture mechanics for linear and 
nonlinear analyses. It is not intended to be a comprehensive discussion on all related 
topics. Instead, the goal has been set to provide the theoretical basics and a quick review 
of the main topics as a precursor to the main subject of the book, XFEM for fracture 
analysis of structures. 

 
 
2.2  BASICS OF ELASTICITY 
 
2.2.1  Stress–strain relations 

 
In the seventeenth century, Hooke proposed his fundamental stress–strain relationship for 
one-dimensional linear elastic materials: 
 

εσ E=  (2.1) 
 
where σ and ε are unidirectional stress and strain, respectively, and E is the elasticity 
(Young’s) modulus. The generalised Hooke’s law can be written as: 
 

Dεσ =  (2.2) 
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  or in indicial form, 
 

klijklij D εσ =  (2.3) 
 
The symmetry property of both σ and ε  reduces the number of constants of the fourth 

order elastic tensor, ijklD , from 81 components to only 36 independent terms. 
Hooke’s law for isotropic materials can be written as: 
 

⎟
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E εδ
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211
 (2.4) 

 
and in the form of strain–stress relations: 
 

kkijijij EE
σδνσνε −+= 1  (2.5) 

 
where ijδ  is the Kronecker delta function. 

The expanded form for 3D isotropic materials can then be written as: 
 

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

+
−−

−−
−−

=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

zx

yz

xy

zz

yy

xx

zx

yz

xy

zz

yy

xx

E

σ
σ
σ
σ
σ
σ

ν
ν

ν
νν

νν
νν

ε
ε
ε
ε
ε
ε

100000
010000
001000
0001
0001
0001

1  (2.6) 

 
or 
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 (2.7) 

 
where λ and µ are the Lame and shear modules, defined as: 
 

)21)(1( νν
νλ

−+
= E  (2.8) 

)1(2 ν
µ

+
= E  (2.9) 

 
Eqs. (2.6)–(2.7) are further simplified for the plane stress, plane strain and two-

dimensional axisymmetric cases. For the plane stress case, the dimension in one direction 
(thickness) is neglected compared to the two others, and 
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where xyxy εγ 2= is the engineering shear strain component. The strain component along 
the thickness direction, zzε , can also be derived from the Poisson’s effect: 
 

)(
1 yyxxzz εε
ν
νε +
−

−=  (2.11) 

 
A plane strain case resembles a long body undergoing no variation in load or geometry 

in the longitudinal direction. As a result, 
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Here, some other useful definitions are presented. First, the effective Young’s modulus, 

E′, is defined as: 
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and another frequently used parameterκ  
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For an axisymmetric solid of revolution, a form almost similar to the plane strain 

relation is derived in terms of polar coordinate systems: 
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When an elastic body is subjected to a loading, the body undergoes displacements 

which are linearly related to the applied loading. As a result, a certain amount of work is 
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stored in the body in the form of potential strain energy. The strain energy density can be 
defined as: 

 

εσεσ T
ijijsU

2
1d == ∫  (2.16) 

 
The strain energy will be directly used in the definitions of a number of fundamental 

concepts of fracture mechanics, such as the J integral. 
 
 

2.2.2  Airy stress function 
 
Airy developed the idea of a stress function which can satisfy both the equilibrium and the 
compatibility conditions (Sharifabadi 1990). He showed that in absence of body forces, 
such a function Φ  must satisfy the Laplace equation: 
 

( ) 0224 =Φ∇∇=Φ∇  (2.17) 
 
where  
 

2

2

2

2
2

yx ∂
∂+

∂
∂=∇  (2.18) 

 
and 
 

2

2

xxx ∂
Φ∂=σ  (2.19) 

2

2

yyy ∂
Φ∂=σ  (2.20) 

yxxy ∂∂
Φ∂−=

2
σ  (2.21) 

 
Eq. (2.17) can then be written as: 

 
( ) 02224 =+∇=Φ∇ yyxx σσ  (2.22) 

 
or in polar coordinates: 
 

( ) 024 =+∇=Φ∇ θθσσ rr  (2.23) 
 
The Airy function must also satisfy the natural (stress) boundary conditions, which 

further limits its application for complex problems. The Airy stress function will be used 
in Section 2.3.2 for a stress field around a circular hole. 
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2.2.3  Complex stress functions  
 
Kolonov and Muskheshvili (1953) developed the idea of complex stress functions, which 
enables finding solutions for more general problems including sharp corners, cracks and 
openings. Assuming )(zψ  and )(zχ to be two harmonic analytic functions of x and y,  
 

( ) ( ) 022 =∇=∇ χψ  (2.24) 
 

θireiyxz =+=  (2.25) 
 
Any stress function Φ  can be expressed as: 
 

( )[ ])()(Re zziyx χψ +−=Φ  (2.26) 
 
or in terms of the conjugate function iyxz −= : 
 

[ ])()(Re zzz χψ +=Φ  (2.27) 
 
Substituting Eq. (2.27) into Eqs. (2.19)–(2.21) results in: 
 

[ ])(Re4 zyyxx ψσσ ′=+  (2.28) 
 

[ ])()(22 zzzi xyyyxx χψσσσ ′′+′′=++−  (2.29) 

 
which can be solved for the three stress components xxσ , yyσ  and xyσ . The expressions 
f ′ and f ′′ denote the first and second derivatives of the function f . 

Cartesian displacements xu and yu can also be expressed in terms of the complex 
functions: 

 

[ ])()(1)(3 zzz
E

z
E

iuu yx χψνψν ′+′+−−=+  (2.30) 

 
In a general curvilinear coordinate system any point can be represented by ),( βα , where 

α and β are functions of coordinates ),( yx . The stress components in terms of curvilinear 
coordinates can then be defined as: 

 
[ ])(Re4 zψσσ ββαα ′=+  (2.31) 

 
[ ] θ
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and for displacements 
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The special case of polar coordinates is obtained by setting: 
 

22 yxr +=→α  (2.34) 

 
⎟
⎠
⎞

⎜
⎝
⎛=→ −

x
y1tanθβ  (2.35) 

 
It should be noted that the present form of the stress function (Eq.(2.27)) can be further 

generalised as: 
 

)()( zzz χψ +=Φ  (2.36) 
 
 

2.3  BASICS OF LEFM 
 

2.3.1  Fracture mechanics 
 
A detailed investigation of a large number of catastrophic failures of structures indicates 
that the main source of failure can be attributed to some kind of geometric discontinuity 
or stress concentration. This form of discontinuity can be a sharp change of geometry, 
opening, hole, notch, crack, etc. 

In order to explain the fundamental differences of fracture mechanics and conventional 
theory of strength of material, consider a simple example as depicted in Fig. 2.1. An 
infinite tensile plate is considered in two cases: a flawless plate and a plate with a tiny 
circular hole (flaw). 

 
Figure  2.1 An infinite tensile plate with and without a flaw. 
 

At the centre of the flawless plate, the stress field remains equal to the applied tensile 
stress, 0σ . Therefore, the maximum allowable traction can be determined from the 
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condition that the internal stress field should be limited to the material yield stress, as a 
measure of material failure strength: 

 
yld0 σσ =  (2.37) 

 
In contrast, the elasticity solution for an infinite plate with a circular defect/hole (as will 

be discussed in Section 2.3.2) predicts a biaxial non-uniform stress field with a stress 
concentration factor of 3 at the centre of the plate, regardless of the size of the hole. In a 
limiting case of a line crack, the solution from a degenerated elliptical hole shows an 
infinite stress state at the crack tip. No material can withstand such an infinite stress state. 
Therefore, instead of comparing the existing stress field with a strength criterion, fracture 
mechanics adopts a local stress intensity factor or a global fracture energy release and 
compares them with their critical values. 

In the following, a number of classical problems of fracture mechanics are reviewed. 
 
 

2.3.2  Circular hole 
 
In 1898, Kirsch analysed the problem of an infinite plate with a circular hole under 
uniform tensile stress, as depicted in Fig. 2.2a. 
 

 
Figure 2.2  Infinite tensile plate with a circular hole. a) geometry, b) distribution of stress 
components. 
 

The problem is difficult to analyse in a single coordinate system. The boundary 
conditions around the circular hole can naturally be expressed in polar coordinate 
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systems, whereas the far field Cartesian boundary conditions are better expressed in 
the xy  coordinate system. 

Recalling the definition of the stress, yyσ , in terms of the Airy stress 
function 22 / xyy ∂Φ∂=σ  would suggest a stress function of the form 2

0xσ=Φ to represent 
the far field boundary condition 0σσ =yy . Alternatively, a polar representation of Φ  is 
required to suit the circular hole with θcosrx = : 

 
θσθσ 2cos)(cos 0

22
0 rforr =Φ=Φ  (2.38) 

 
After some manipulations, the following solutions are obtained (Meguid 1989): 
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 It is of interest to examine the stress values at the edge of the hole, ar = : 
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which shows that despite application of a uniform unidirectional tensile traction, a non-
uniform biaxial stress state is generated around the hole, which may even become 
compressive at 2/3,2/ ππθ =  ( 0σσσθθ −== xx ). The stress concentration factor for θθσ  
is 3 at πθ ,0=  ( 03σσσθθ == yy ). Fig. 2.2b illustrates the distribution of stress 
components along the major axes of the plate. 
 
 

2.3.3  Elliptical hole 
 
Inglis (1913), a professor of naval architecture, independent of an earlier work by 
Kolosov, solved the problem of stress concentration around an elliptical hole in an infinite 
plate subjected to uniform stress loading, as depicted in Fig. 2.3. 

The following complex stress potential functions, proposed by Inglis in the curvilinear 
coordinate system α  and β , satisfy the boundary conditions and are periodic in β : 
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where βα ip += . The solution at 0αα =  is: 
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and for points located at the end of the ellipse in terms of a and b,  
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Figure 2.3 An elliptical hole in an infinite plate. 
 

Eq. (2.46) shows that for a circular hole ( ba = ) the stress concentration factor becomes 
3, similar to the conclusion made from the circular hole problem. Another extreme case is 
where the ellipse is degenerated into a crack ( 0=b ), generating an infinite stress. For a 
crack propagating along the applied tensile stress ( 0=a ), however, the stress at the crack 
tip remains at the finite value 0σ . 

It has been shown that Eq. (2.46) can be rewritten in terms of the radius of curvature ρ :  
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which shows that the stress concentration factor is proportional to 2/1−ρ . 
 
 

2.3.4  Westergaard analysis of a sharp crack 
 
Consider an infinite plate with a central traction-free crack of length a2  subjected to 
uniform biaxial stress 0σ , as depicted in Fig. 2.4a. 
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One solution is to superimpose Inglis solutions in the two cases of 0=a and 0=b . As 
an alternative approach, Westergaard (1939) proposed the following biharmonic stress 
function Φ as a solution to the crack problem: 

 

)(Im)(Re zyz φφ +=Φ  (2.48) 

 
where φ and φ are the first and second integrals of )(zφ , respectively. The stress 
components then become: 
 

)(Im)(Re zyzxx φφσ ′−=  (2.49) 
 

)(Im)(Re zyzyy φφσ ′+=  (2.50) 

 
)(Re zyxy φσ ′−=  (2.51) 

 
Figure 2.4  An infinite plate with a crack subjected to uniform normal and shear tractions. 
 

The complex functionφ  is determined so that the boundary conditions are satisfied 
along the crack and at infinity ( 0σ ): 
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Then, the final near crack tip solutions are obtained ( ar << ) (Meguid 1989): 
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Neglecting the higher order terms in Eqs. (2.53)–(2.55) is only acceptable for small 

values of r around the crack tip. A comparison with the exact solution: 
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shows that by increasing ( ar / ) from a small number 5.0  to a larger value 15, the relative 
error increases from 37.0 to about 10 %. 

Using a similar approach, the stress field around a crack tip in an infinite plate 
subjected to shear stresses 0τ (Fig. 2.4b) can be expressed as: 
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and 
 

)(Re)( zyz ss φ−=Φ  (2.58) 
 
 

2.4  STRESS INTENSITY FACTOR, K 
 
2.4.1  Definition of the stress intensity factor 

 
Irwin (1957) introduced the concept of stress intensity factor K (SIF), as a measure of the 
strength of the singularity. He illustrated that all elastic stress fields around a crack tip are 
distributed similarly, and rK πσ∝ controls the local stress quantity.  

Recalling Eqs. (2.53)–(2.55), the elastic stress state around a crack can now be 
represented by: 
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or in the more general form of: 
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where ijσ are the near crack tip stresses, and IIIIII ,, KKK  are the stress intensity factors 
associated with three independent modes of movement of crack surfaces, 
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The first mode stress intensity factor based on Eq. (2.61) can then be simplified to: 
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Fig. 2.5 illustrates these independent crack opening modes. In the opening mode I, 

crack surfaces are pulled apart in the normal direction (y) but remain symmetric about the 
xz and xy planes. The shearing mode II represents the sliding mode of movement of crack 
surfaces in the x direction, while remaining symmetric about the xy plane and skew 
symmetric about the xz plane. Finally, in the tearing mode III, the crack surfaces slide 
over each other in the z direction, while remaining skew symmetric about the xy and xz 
planes. 

 

 
Figure 2.5 Different modes of crack displacement. 
 
 

Similar to the conventional theory of strength of materials where the existing stress is 
compared to an allowable material stress/strength, fracture mechanics states that unstable 
fracture occurs when one of the stress intensity factors, iK , or a mixed mode of them 
reaches a critical value, icK . This critical value, icK , is called fracture toughness and 
represents the potential ability of a material to withstand a given stress field at the tip of a 
crack and to resist progressive tensile crack extension. 

Substituting Eqs. (2.61)–(2.63) into Eqs. (2.53)–(2.55) at the crack tip 0=θ , allows the 
final stress and displacement fields to be described in terms of the stress intensity factors. 
They are categorised into three pure modes of fracture (Saouma 2000). 

For pure opening mode I, the stress field is given by: 
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and the displacement field: 
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The pure mode II is governed by the following stress fields: 
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0== yzxz σσ  (2.77) 

 
with the displacement fields xu and yu , 
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The tearing mode III, has only two non-zero stress components and one non-zero 

displacement: 
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Finally, Eqs. (2.65)–(2.80) can be expressed in polar coordinates rrσ , θθσ and θσ r . In 

the opening mode I: 
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and for the shear mode II: 
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2.4.2  Examples of stress intensity factors for LEFM 
 
In this section some of the basic problems of fracture mechanics with available analytical 
SIF solutions are illustrated. First a finite tensile plate problem that includes a central 
crack will be considered, as depicted in Fig. 2.6a. The mode I stress intensity factor can be 
defined as: 
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Figure 2.6 Classical problems of fracture mechanics. 
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The second problem is similar to the previous one except that it has an edge crack, as 
shown in Fig. 2.6b. The stress intensity factor for the fracture mode I can be obtained as: 

 

a
b
a

b
a

b
a

b
aK πσ 0

432

I 42.3074.2156.1023.012.1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−=  (2.93) 

 
Now, if the edge crack is doubled, as illustrated in Fig. 2.6c, the stress intensity factor 

has to be modified accordingly,  
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The final example in this section describes the stress intensity factor for an embedded 

elliptical crack within a finite tensile plate, as depicted in Fig. 2.6d. 
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To simplify the process of determining the SIF, an approximate solution can be obtained 
by omitting the first term: 
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A comprehensive list of different problems with their analytic or approximate stress 
intensity factors can be found in handbooks and textbooks on fracture mechanics.  
 
 

2.4.3  Griffith theories of strength and energy 
 
While exploring the theoretical strength of solids by performing a series of experiments 
on glass rods of various diameters, Griffith observed that the tensile strength of glass 
decreased with an increase in diameter. He realised that something different from a simple 
inherent material property had caused the size dependency of the tensile strength.  

While studying the solution of the elliptical hole problem, Inglis initiated the idea that 
the theoretical strength of a solid has to be reduced due to the presence of internal flaws. 
In other words, he assumed that the theoretical strength of a material must be compared 
with the concentrated stress field, which is much higher than the average stress or the 
flawless based stress field. 

Instead of using a stress based criterion, Griffith derived a thermodynamic criterion for 
fracture by considering the total change in energy of a cracked body in terms of the crack 
length increase. His model described the failure of a solid material in terms of satisfying a 
critical energy criterion rather than a maximum stress based failure control. 
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Consider a crack in a deformable continuum subjected to arbitrary loading. The first 
law of thermodynamics states that the change in total energy is proportional to the amount 
of performed work and the change of heat content: 

 

( ) ( )QW
t

UUU
t

+=++ Γ d
d

d
d

sk  (2.97) 

 
where kU is the kinetic energy, sU  is the total internal strain energy, ΓU  is the surface 
energy, W is the external work and Q  is the heat input to the system.  

For an adiabatic quasi-static system, Q  and K are equal to zero: 
 

( ) ( )W
t

UU
t d

d
d
d

s =+ Γ  (2.98) 

 
Rewriting Eq. (2.98) in terms of crack half length, a, 
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This equation represents the energy balance during crack growth, and indicates that the 

work rate supplied to the continuum by the applied external load is equal to the surface 
energy dissipated during crack propagation, ΓU , plus the rate of strain energy, sU , 
decomposed into elastic e

sU and plastic p
sU  parts  

 
p
s

e
ss UUU +=  (2.100) 

 
Eq. (2.99) can be expressed in terms of the potential energy,Π : 
 

WU −=Π e
s  (2.101) 
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Therefore, the energy available for crack growth is compared with the resistance of the 

material that must be overcome for crack growth. It also indicates that the decrease rate of 
potential energy during crack growth is equal to the rate of energy dissipated in plastic 
deformation and crack growth. 
 
 

2.4.4  Brittle material 
 
For a perfectly brittle material, p

sU vanishes and Eqs. (2.101)–(2.102) reduce to: 
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where sγ is the surface energy and the factor 2  represents the existence of two material 
surfaces upon fracture. The value of sγ is experimentally measured for different materials. 
Water has a value of 077.0s =γ , while for most of the metals, 1s =γ (Saouma 2000). Eq. 
(2.103) is defined as the Griffith crack growth energy, G  
 

s2γ=
∂
Π∂−=
a

G  (2.104) 

 
Thus a criterion for crack propagation can be expressed as an inequality between the 
energy release rate per unit crack extension and the surface energy: 
 

s2
d
d γ≥Π

a
 (2.105) 

 
or 
 

ad2d sγ≥Π  (2.106) 
 
Griffith has shown that for a plane stress infinite plate with a central crack of length a2  

and unit thickness subjected to unilateral tensile loading, the strain energy required to 
introduce the crack is equal in magnitude to the work required to close the crack by the 
stresses acting on it, 
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According to Mushkelishvili or Westergaard solutions, displacements for the free 

surface of one of the crack faces can be expressed as: 
 

E
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Eq. (2.107) can then be further simplified to: 
 

E
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Therefore, going back to Eq. (2.104) gives, 
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Also, the total energy consumed over a crack extension, ad , can be determined: 
 

a
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axG aa dddd
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0
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=
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==Π ∫∫
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The critical stress for cracking that satisfies Eq. (2.110) is denoted by crσ , 
 

a
E
π
γσ s

cr
2 ′

=  (2.113) 

 
The critical stress intensity factor CK can then be defined as: 
 

aK πσ crC =  (2.114) 

 
and an unstable crack extension occurs if: 
 

CKK =  (2.115) 
 
 

2.4.5  Quasi-brittle material 
 
In order to extend the Griffith model further to quasi-brittle materials, a modification to 
Eq. (2.103) can be written as: 
 

)(2 p
s

e
s γγ +=

∂
∂ Γ

a
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where e

sγ and p
sγ are the elastic and plastic parts of the work associated with crack 

extension, respectively. For ductile metals, e
s

p
s γγ >> . Alternatively, a simple modification 

to Eq. (2.113) can be assumed:  
 

a
E
π

γα
σ p

cr
2 ′

=  (2.117) 

 
where pα is a correction factor. 
  It is also important to observe that the potential energy and surface energy scale 
differently, the former scales with 2a ( EaU /22

s πσ±= ), whereas the later is a function of 
a ( s4 γaU =Γ ). This further complicates the solution and can have serious implications on 
the stability of cracks and on size effects. 

 
 
2.4.6  Crack stability 

 
Eq. (2.102) can be rewritten as:  
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( ) 0=+Π
∂
∂

ΓU
a

 (2.118) 

 
Therefore, a crack’s growth can be considered unstable or stable when the energy at 
equilibrium is a maximum or minimum, respectively. Therefore, a sufficient condition for 
crack stability is obtained from the second derivative of ( )Γ+Π U  (Gtoudos 1993): 
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2

2

a
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To conclude the discussion on crack propagation criteria, for a crack to extend in a 

linear elastic flawed structure, two criteria can be considered: 
 

1. A local criterion based on comparing the stress intensity factor, K, determined 
from the near crack tip stress field, with a material property CK (critical stress 
intensity factor or fracture toughness). 

2. A global approach for comparing the energy release rate, G, determined from 
the crack global transfer of energy, with a material property, CG (critical energy 
release rate). 

 
 

2.4.7  Fixed grip versus fixed load 
 
An infinite plate with a crack of length a2  subjected to the loading P  is now considered. 
The change in potential energy is determined as the crack length is increased to )d(2 aa + . 
Two limiting cases of the fixed grip (displacement control) and the fixed load (load 
control) are analysed (Fig. 2.7).  

In the first case ( 12 uu = ), the external work is zero ( 0=∆W ) and any increase in crack 
length results in a decrease in stored elastic strain energy: 

 

0
2
1

2
1

1112 <−=∆ uPuPU  (2.120) 

  
and 
 

( ) 12112 2
1 uPPUW −=∆−∆=Π−Π  (2.121) 

 
This release of excess energy is consumed to form the surface energy. 

 
 
Under the fixed loading condition ( 12 PP = ), neither the external work nor the release of 

internal strain energy is zero, 
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)( 121 uuPW −=∆  (2.122) 
 
and the change in potential energy: 
 

( ) ( ) ( )12112112112 2
1

2
1 uuPuuPuuPUW −=−−−=∆−∆=Π−Π  (2.123) 

 
Half of the produced external work is consumed into strain energy, and the other half is 
released to form surface energy.  

 
Figure 2.7 Load–displacement curves for displacement control and load control 
problems. 
 
 

2.4.8  Mixed mode crack propagation 
 
The problems discussed so far were mainly in fracture mode I. Practical engineering 
problems, however, rarely fall into this category. They usually include inclined or 
curvilinear crack propagations and are subjected to multiaxial loadings (Fig. 2.8), creating 
non-zero IK  and IIK stress intensity factors. The effect of the tearing mode is neglected in 
this section.  

The analytical solution for an inclined crack in an infinite plate can be written as: 
 

aK πθσ 0
2

I sin=  (2.124) 

 
aK πθθσ 00II cossin=  (2.125) 

 
Generalisation of the original SIF based collinear crack propagation criterion ( IcI KK > ) 
to include mixed mode effects can be defined in terms of IK  and IIK  stress intensity 
factors, and IcK  and IIcK fracture toughness factors: 
 

0),,,( IIcIIIcI =KKKKf  (2.126) 
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Figure 2.8  Mixed mode crack propagation. 

 
Eq. (2.126) is further simplified because usually only the mode I fracture toughness 

IcK  is experimentally measured: 
 

0),,( IIIcI =KKKf  (2.127) 
 

In the following sections (2.4.8.1–2.4.8.5), some of the most widely used mixed mode 
criteria are briefly reviewed. 
 
 

2.4.8.1  Maximum circumferential tensile stress 
 
Erdogan and Sih (1963) developed the first theory of mixed mode stress intensity factor 
based on the solution of stress state near a crack tip. They assumed that the crack 
propagates at its tip in a radial direction within a plane perpendicular to the direction of 
maximum tension when the maximum circumferential tensile stress, ( )maxθσ , reaches a 
critical material constant. 

The mixed mode criterion for a crack angle θ can then be defined as (Fig. 2.8b): 
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or 
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2
cos II

3
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2.4.8.2  Minimum strain energy density criterion 
 
The maximum strain energy density criterion is based on this idea that a crack propagates 
along the minimum resistance path. It determines the crack propagation from the crack tip 
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in a direction θ , along which the strain energy density at a critical distance is minimum. 
Occurrence of crack propagation is controlled by checking such a minimum resistance 
until it reaches a critical value.  

The final form of the criterion according to Sih (1973, 1974) can be defined as: 
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 (2.131) 

 
 

2.4.8.3  Maximum energy release rate 
 
Another  alternative model, the maximum energy release rate, is based on the work of 
Hussain et al. (1974) who solved for the stress intensity factors )(I θK and )(II θK  of a 
major existing crack with an infinitesimal tip kink at an angleθ (Fig. 2.9) in terms of the 
stress intensity factors of the original crack IK and IIK : 
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Figure 2.9  A crack with an infinitesimal kink. 
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Adopting Irwin’s generalised expression for the energy release rate, 
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the evaluation of )(θG for the kinked crack becomes: 
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and the angle of crack propagation is found by minimizing )(θG : 
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and satisfying the instability condition, 
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The general form of Eq. (2.136) takes the following form, 
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2.4.8.4  Zero IIK  criterion 

 
In this model, the criterion is to set the in-plane stress intensity factor IIK  to vanish in 
shear mode for infinitesimal small crack extensions. For further details see Whittaker and 
Singh (1992). 
 
 

2.4.8.5 Other empirical models  
 
The following formulae define a number of mixed mode stress intensity criteria that are 
basically developed from experimental observations rather than theoretical bases. Many 
of them are valid only for specific problems in concrete, rock and composite problems, 
where the models have been experimentally obtained or calibrated. 
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2.5 SOLUTION PROCEDURES FOR K AND G 
 
For most practical problems no analytical solution is available, and numerical techniques 
such as the finite element method, boundary element method, and more recently the 
meshless method should be used. In this section, a review of available solutions related to 
the finite element method is provided. These include: 
 

1. Classical methods using the finite element method solely as a continuum based 
analytical tool. 

2. Techniques in which the SIFs are directly evaluated as part of the global 
stiffness matrix. 

3. Techniques through which the SIF can be computed from a standard finite 
element analysis via a special purpose post-processing technique. 

4. Methods in which the singularity of the stress field at the crack tip is modelled. 
 
 

2.5.1 Displacement extrapolation/correlation method 
 
The stress field at a crack tip is singular and conventional finite elements cannot represent 
it no matter how fine they are. Nevertheless, it was recognised in earlier simulations of 
LEFM that a very fine mesh is required at the crack tip if it is to be used to approximate 
the stress field for evaluation of the stress intensity factor (Chan et al. 1970).  
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Stress intensity factors can be determined at different radial distances from the crack tip 

by equating the numerically obtained displacements with their analytical expression in 
terms of the SIF. For plane stress problems in the xy plane (Fig. 2.10): 
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and for plane stress problems, the following replacement is required: 
 

ν
νν
+

→
1

 (2.150) 

 
A simple extrapolation technique, as depicted in Fig. 2.10, can then be used to 

approximately evaluate the value of SIF at the crack tip. The same procedure for stresses 
can also be used, although it is likely to yield less accurate predictions. 

 

 
Figure  2.10 Extrapolation of stress intensity factor. 
 
 

2.5.2  Mode I energy release rate 
 
A direct method for evaluation of the mode I stress intensity factor and the energy release 
rate is based on the direct definition of G :  
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aaE
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∆
∆Π≅

∂
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′
=

2
I  (2.151) 

 
and finding the difference in the total strain energy, ∆Π , of the system for initial and 
extended crack lengths a and aa ∆+ , respectively. Therefore, the algorithm requires two 
completely separate analyses, which is a computationally expensive task. The strain 
energy can be determined from either KuuT=Π  in terms of   the nodal displacement 
u and the global stiffness matrix K, or PTu=Π  in terms of the external load P  and 
displacements u. 
 
 

2.5.3  Mode I stiffness derivative/virtual crack model 
 
A major problem with the previous method is the requirement for two complete analyses 
for the evaluation of G. It should be noted, however, that the stiffness matrix of the 
second analysis (associated with aa ∆+ ) is only slightly altered from the first one 
(associated with a). A remedy, therefore, is to use relaxation methods to reduce the 
computational costs for the second analysis, as independently proposed by Parks (1974) 
and Hellen and Blackburn (1975), who called the method stiffness derivative and virtual 
crack model, respectively. 

Beginning with the definition of the potential energy: 
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and 
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and holding the equilibrium condition, results in: 
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G

∂
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2
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The method can be further simplified if the loading is assumed unaltered during the 

crack extension, 0/ =∂∂ aP : 
 

uKu
a

G
∂
∂−= T

2
1  (2.155) 

 
Therefore, the derivative of the stiffness matrix is required for evaluation of G. Instead 

of cumbersome numerical differentiations, this is usually computed by perturbing the 
elements around the crack tip (Fig. 2.11) and evaluating the modified part of the stiffness 
matrix associated with the nodes of elements along the crack extension. 
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Figure 2.11 Virtual crack models. 
 

In the case of multiple cracking, G can then be numerically evaluated from: 
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where nc  is the number of discrete cracks.  
 
 

2.5.4  Two virtual crack extensions for mixed mode cases 
 
A natural extension to the virtual crack model to include effects of mixed mode fracture is 
to use the two virtual crack extensions model. This is achieved by applying the virtual 
crack model to two independent crack extensions, 1θ and 2θ : 
 

( ))()()( 2211 θθθ GGfG +=  (2.157) 
 
Alternatively, from the known values of 1G and 2G  at two distinct values ofθ , which 

are not necessarily 0 or 2/π , the value of the mixed )(θG can be defined as: 
 

θθθ sincos)( 21 GGG +=  (2.158) 
 
A rather simple case with a closed form solution was proposed by Hellen and Blackburn  
(1975) based on the following expressions of the energy release rates for virtual crack 
extensions at 0=θ and 2/πθ = : 
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The procedure can be started by computing the total strain energy sU for an initial crack 

length a. Then the crack length is extended to aa ∆+ along 0=θ and 2/πθ = to determine  

1G and 2G , respectively. The stress intensity factors are computed from solving 
simultaneous Eqs. (2.159) and (2.160): 
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where 
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2.5.5  Single virtual crack extension based on displacement decomposition 
 
Previous techniques were computationally expensive and inefficient because they 
required at least one complete finite element analysis, followed by two separate analyses 
or two virtual crack extensions. The present approach, proposed by Ishikawa (1980) and 
Sha (1984), requires only one analysis (or one virtual crack extension) but it is limited to 
symmetrical local elements around the crack tip.  

With reference to Fig. 2.12, the nodal displacements for a symmetrical local mesh 
around the crack tip can be decomposed into two local symmetric 1U  and anti-symmetric 

2U components about the crack plane: 
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and 
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),(),(ˆ yxyx −= uu  (2.168) 

 
The fracture energy release rates can also be decomposed into: 
 

2,1)( == iUGG i
ii  (2.169) 

 
The following solutions based on two local conjugates ),( 11 PU  and ),( 22 PU can be 

obtained: 
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The two stress intensity factors can then be simply determined:  
 

2,1=′= iGEK ii  (2.171) 

 

 
Figure 2.12  Displacement decomposition for a symmetric local mesh around the crack 
tip. 
 
 

2.5.6  Quarter point singular elements 
 
Development of the sophisticated singular elements to simulate the singularity condition 
at crack tips has had an enormous impact on increasing the accuracy of various numerical 
analyses of LEFM.  It was first proposed by Barsoum (1974, 1975, 1976a, 1976b, 1977, 
1981) and independently by Henshell and Shaw (1975), as they demonstrated that the 

2/1−r  singularity characteristic of LEFM can be obtained by two-dimensional 8-node 
isoparametric elements when the midside nodes near the crack tip are placed at the quarter 
points. A direct consequence was the additional capability of an existing continuum based 
finite element code for modelling a stress singularity just by shifting the midside nodes of 
elements adjacent to the crack tip to their quarter point positions. This provides one of the 
easiest and most powerful techniques for modelling a stress singularity. 
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Hibbit (1977) and Ying (1982) studied the singularity of rectangular and triangular 

quarter elements and concluded that the singularity of a rectangular quarter point element 
is along the edges and diagonal only, whereas in a triangular element it occurs in all radial 
directions emanating from the crack tip. 

Owen and Fawkes (1983) implemented and compared different crack tip elements.  
They illustrated how those elements can be implemented within a finite element code and 
discussed various related numerical issues. 

In order to demonstrate the way a singular element performs, a simple one-dimensional 
element with three nodes is considered, as depicted in Fig. 2.13. The physical location of 
the middle node 2x  may be anywhere in between the other nodes: 11 2 <<− x , while its 
location in the mapping parametric space is always at 02 =ξ . Assuming a second-order 
basis function, leads to the following position vector x  (Macneal 1994), 
 

 
Figure 2.13  1D finite element with three nodes. 
 
 

2
2)1( xx ξξ −+=  (2.172) 

 
Eq. (2.172) illustrates that for values of  212 >x , the value of x can lie outside the 

range of ]1,1[ +− . Physically, the middle node crosses the corner nodes and the element 
spills over its boundaries. 

It can also be observed that placing the middle node at the quarter point ( 212 ±=x ) 
allows the element to simulate a stress singularity at the corner. The strain can be 
determined from: 

 
xxx uu ,,, ξε ξ==  (2.173) 

 
which becomes infinity at the corner point 1=ξ , provided that the middle point is at the 
quarter point 212 =x : 
 

0, =ξx , ∞=x,ξ  (2.174) 
 
The same conclusion can be made for two- and three-dimensional elements. The stress 

tensor in an isoparametric finite element is given by (see Section 3.3): 
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iuDBσ =  (2.175) 

 
where the components of the B  matrix is evaluated from the components of jacobian J. 
In order to simulate a singular stress field, Eq. (2.175) requires B to be singular, as the 
other two components are constants. Consequently, from Eq. (3.7) the determinant of J 
must vanish at the crack tip. This is possible only if either one of the diagonal terms 
becomes zero. 
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Now referring to Eq. (2.176), it is found that this is achieved only if the midside node 

of the element is located at 212 =x ( 4/l ) instead of 02 =x ( 2/l ). As a result, the stresses 
and strains at the nearby corner node will become singular (Fig. 2.14). 

It can be proved that the quarter point element approximates to the displacement field 
along 1−=η in the general form of: 
 

2
1

321 ⎟
⎠

⎞
⎜
⎝

⎛++=
l
xAxAAu  (2.177) 

 
which is an indication of the order of singularity of 2/1−r  for the strain (derivative of 
displacement) and so the stress field. 
 
 

 
Figure  2.14  a) Quarter point (singular) quadrilateral and triangular finite elements and  
b) four quarter point elements around a crack tip. 
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It should be mentioned that the quarter point singular quadrilateral elements provide 

radial singular strain and stress fields along the corresponding edge and diagonal only, 
and the strain and stress fields remain finite (not singular) in other directions. Therefore, 
using four singular elements around node C in Fig. 2.14b generates four independent 
radial strain fields along edges CA, CI, CH, CG and CE, and non-singular strain fields 
elsewhere.  

In contrast, triangular quarter elements create singularity in all radial directions (inside 
the element) emanating from the crack tip. They also raise the number of radial rays 
around a crack tip representing singular strain fields. 

Singular finite elements allow for an efficient and fast approach for evaluation of the 
stress intensity factors (Shih et al. 1976). Referring to Fig. 2.14b, the basic idea is to 
equate the local displacement field in the quarter point singular element with the 
theoretical solution: 
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where 'xu and 'yu are the local displacements of the nodes along the crack in the singular 
element, with x′ aligned with the crack axis, as depicted in Fig. 2.14b. 

On the other hand, the analytical solution for yu  can be obtained from Eq. (2.71) along 
the crack axis: 
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Equating yy uu =' , results in: 
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which can be generalised for mixed mode problems,  
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Theoretically, the same procedure may be performed on stress components. The 

problem is that the stress field is discontinuous across element edges. In any case, 
extension of the method to the case of more than one singular element, and possible 
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discrepancy of the results obtained from different singular elements, remains unresolved. 
Nevertheless, the method has remained popular because of the advantage of being 
exceptionally simple and fast. 

 
 

2.6  ELASTOPLASTIC FRACTURE MECHANICS (EPFM) 
 
Under the assumptions of linear elastic fracture mechanics, the stress at the crack tip is 
theoretically infinite. Consequently, it may usually lead to conservative and expensive 
solutions as it does not account for plastification at the crack tip. From a physical point of 
view, however, no material can withstand infinite stress, and a small plastic/fractured 
zone will be formed around the crack tip. As a result, an extension to ductile fracture or 
elastoplastic fracture mechanics (EFPM) is required. 

In this section, first the problem of the size of the plastic zone is addressed, using 
various levels of approximations. Then the concepts of the crack opening displacement 
(COD) and the J integral are discussed. Theoretically, the models can be extended to more 
sophisticated plasticity models for simulation of material nonlinear behaviour around the 
crack tip. 

 
 
2.6.1  Plastic zone 

 
2.6.1.1  First-order uniaxial stress criterion 

 
Here, only the uniaxial stress state normal to the crack axis is considered. The simplest 
estimate of the size of the plastic zone is obtained by equating the uniaxial stress yyσ to the 
yield stress yldσ . Recalling Eq. (2.66) (for plane stress problems), 
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the size of the plastic zone, prr = , can be obtained at 0=θ , 
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or in terms of the stress intensity factor, aK πσ 0I =   
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Similarly, the size of the plastic zone for mode II for both plane stress and plane strain 

problems can be obtained from: 
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The main problem with this approximation is that it simply ignores all stresses 

exceeding yldσ  (Fig. 2.15a). As a result, equilibrium is no longer satisfied. 
 
 

 
Figure  2.15  First- and second-order approximations of the plastic zone, and the Dugdale 
model. 

 
 

2.6.1.2  Second-order uniaxial stress criterion 
 
In an alternative approach to avoid violation of equilibrium equations, Irwin (1960) 
developed a second-order approximation for the plastic zone based on the stress 
redistribution occurring at the crack tip. In this model, the area under the stress curve 
which was eliminated in the first order approach, is redistributed to satisfy equilibrium 
requirements (Fig. 2.15b), 
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The final solution is then obtained as: 
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implying that the second-order size is twice the first-order size. Thus, the first-order 
solution pr  (Eq.(2.187)) may still be used with an effective crack length of  pra +  
extending to the centre of the plastic zone. Thus, 
 

)( p0I raK += πσ  (2.190) 
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2.6.1.3  Dugdale criterion 

 
Another alternative to satisfy equilibrium equations was proposed by Dugdale (1960) 
based on the assumption of replacing the actual physical crack length ( a2 ) by a total 
effective crack length c2 , where δ+= ac  (Fig. 2.15c). Dugdale assumed that a closing 
constant stress yldσ is applied over the lengthδ , causing a negative yldK . As a result, the 
combined model requires the overall stress intensity factor to vanish: 

0yldcombined =+= KKK , determining the length c orδ . 
Using the Westergaard’s approach, the solution for c is obtained from: 
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Then, applying Taylor’s expansion and neglecting higher order terms results in (for plane 
stress): 
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and for plane strains, 
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2.6.1.4  First-order multiaxial yield criterion 
 
In this section, the idea of a plastic zone is further extended to the first-order multiaxial 
conditions to include points other than 0=θ . The idea is to assume that yielding would 
occur when the effective stress effσ computed from any specified yield criterion 
reaches yldσ .  

In order to provide sample explicit solutions, the Von Mises yield criterion is 
considered: 
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where principal stresses 1σ , 2σ  and 3σ are related to IK  through Eqs. (2.65)–(2.67). The 
size of the plastic zone )(p θr  can be evaluated for plane strain problems as: 
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and a much larger size for plane stress conditions: 
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2.6.2   Crack tip opening displacements (CTOD) 
 
In a totally different approach, a local criterion based on the crack tip opening 
displacement (CTOD) has been proposed to account for elastoplastic behaviour around 
the crack tip (Cottrell 1961, Wells 1963). In LEFM and brittle fracture, sharp cracks are 
considered and the CTOD is always zero. In contrast, CTOD is not negligible in ductile 
fracture and elastoplastic fracture mechanics due to relatively large deformation and 
blunting of the crack (Fig. 2.16). 

Similar to the method of determining the size of the plastic zone, two first- and second- 
order CTOD approaches are available. 

 

 
Figure 2.16  Estimation of the CTOD. 
 

 
2.6.2.1  First-order CTOD 

 
The first-order solution for CTOD is based on Irwin’s solution for the mode I vertical 
displacement of a point next to the crack tip, as depicted in Fig. 2.16. 
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Substituting πθ ±=  results in the evaluation of crack tip opening (COD) at a distance 

r : 
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For prr = , where pr  is the Irwin plastic zone, the final crack tip opening (CTOD) 
estimation is obtained: 
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2.6.2.2   Second-order CTOD 
 
The second-order CTOD formulation is based on the application of the second-order 
Dugdale model along the crack for determination of COD (Kanninen 1984): 
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with 222 ace −= . Eq. (2.200) is further simplified for ax =  
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Using Eq. (2.191) results in: 
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and adopting a series expansion leads to: 
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Recalling the definition of the energy release rate as EKG ′= /2 , the following 

approximation can be assumed: 
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2.6.3  J integral 
 
In a pioneering work, Eshelby (1956, 1974) defined a number of contour integrals that 
were path independent by virtue of the theorem of energy conservation. This was 
achieved while he was studying dislocations in elastic domains, and he did not realise its 
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importance or applications in fracture mechanics. It was up to Rice and Rosengren (1968) 
to notice the importance of the J  integral as a criterion for crack growth in fracture 
mechanics (Anderson 1995). While the original introduction of the J  integral was limited 
to problems with no unloading, no internal stress/strains and no crack face tractions, the 
new developments have now been well extended to cohesive crack and dynamic 
problems. Path independency of J also allows for evaluation of linear and nonlinear 
elastic energy release rates and elastoplastic work far from the crack tip. 

First, the problem is considered without the presence of the body force and crack 
tractions ( 0cb == ff ). The two-dimensional form of one of these integrals can be written 
as: 
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and  
 

ijijW εσε∫= 0s d  (2.206) 

 
is the strain energy density, Γ is a closed counter-clockwise contour, Γd is the differential 
element of the arc along the pathΓ, σnt = is the traction vector on a plane defined by the 
outward normal n, and u  is the displacement vector (Fig. 2.17a). 

 
Figure 2.17  Definition of the J integral around a crack, and the equivalent domain *A . 
 

To elaborate the path independency of the J integral for crack problems, consider a 
body in the state of equilibrium with continuous stress and displacement gradients, as 
depicted in Fig. 2.17. For this body, Eq. (2.205) is equal to zero for any closed 
contour; 0=J . With reference to Fig. 2.17b, a closed path 4321 Γ+Γ+Γ+Γ=Γ  is 
constructed, where 1Γ and 3Γ are arbitrary contours, and 2Γ and 4Γ  are placed on opposite 
faces of the traction free crack: 

 
04321 =+++= ΓΓΓΓ JJJJJ  (2.207) 
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The contributions to J  from 2Γ and 4Γ  vanish, because both yd  and it  are zero on 

2Γ and 4Γ . 
 

031 =+= ΓΓ JJJ  (2.208) 
 
It can be concluded that the absolute values of the J integral evaluated over arbitrary paths 

1Γ and 3Γ  remain identical; an indication of the path independency of J . As a result, if a 
contour begins from one crack surface and ends at the other face, it can be used to 
determine of the J integral.  

Selection of the size and shape of the appropriate contour curve for a specific problem 
requires complementary numerical studies. Practically, they should also be related to the 
geometry of the crack and the finite element model, as will be further discussed in the 
following sections. 

It can be shown that when J is applied along a contour around a crack tip, it represents 
the change in potential energy for a virtual crack extension ad . The total potential energy 
of a two-dimensional domain including a traction free crack that is surrounded by a 
contour curve Γunder quasi-static conditions and in the absence of body forces can be 
defined as: 

 

∫∫ ΓΩ
Γ−Ω=Π dds iiutW  (2.209) 

 
For a virtual crack extension ad , the change in potential energy is  
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 (2.210) 

 
Applying the divergence theorem and omitting zero terms, results in  
 

∫Γ ⎟
⎠
⎞

⎜
⎝
⎛ Γ

∂
∂−=Π− dd

d
d

s x
yW

a
ut  (2.211) 

 
which is similar to Eq. (2.205), hence 
 

a
J

d
dΠ−=  (2.212) 

 
This is equivalent to the definition of the fracture energy release for linear elastic 

materials, Ga =∂Π−∂ / , 
 

GJ =  (2.213) 
 
Eq. (2.212) can also be used to define the energy release rate for a unit crack extension in 
nonlinear elastic materials. 
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2.6.4  Plastic crack tip fields 

 
In order to illustrate how the concept of the J integral can be used in nonlinear analysis, a 
typical elastoplastic problem based on the Ramberg–Osgood power hardening law is 
considered (Hutchinson 1968, 1990), 
 

n
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+=
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σ
σ

ε
ε  (2.214) 

 
where n  is the strain hardening exponent, and 0k  is a dimensionless constant. Neglecting 
the elastic strain in the vicinity of the crack tip,  
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where coefficients ik  are constants. The relationship between J  and the crack tip 
displacement, stress and strain fields can be expressed as: 
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where nI is an integration constant which depends on the stress–strain curve, and σ  and 
ε are dimensionless geometric functions of n  andθ .  
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2.6.5  Generalisation of J 

 
The original definition of J can be regarded as the first component of a more general path 
independent vector: 
 

∫
Γ

Γ
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂−= ds

k
kk x

nWJ ut  (2.221) 

 
or simply 
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⎩
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∂−= dds1 x

yWJ ut  (2.222) 
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Γ ⎭

⎬
⎫

⎩
⎨
⎧

Γ
∂
∂−= dds2 y

xWJ ut  (2.223) 

 
The generalised J also satisfies the following relation for crack extensions parallel and 

perpendicular to the crack (Hellen and Blackburn 1975) 
 

)2(1
III

2
II

2
I21 KiKKK

E
iJJJ ++

′
=−=  (2.224) 

 
 

2.6.5.1  Effect of crack surface traction 
 
Karlsson and Backlund (1978) extended the concept of the J integral to account for the 
effect of crack surface tractions by simply extending the definition of the contour path to 
include the crack surfaces: 
 

∫∫
ΓΓ

Γ
∂
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⎭
⎬
⎫

⎩
⎨
⎧ Γ

∂
∂−=

c

ddd c
s xx

yWJ ufut  (2.225) 

 
where cΓ is the portion of the crack surfaces between the points in between the two ends 
of Γ and cf is the crack surface traction vector, as depicted in Fig. 2.17a. 
 
 

2.6.5.2  Effect of body force 
 
In the case of present body force, bf , the equilibrium equation can be written as: 
 

0b
, =+ ijij fσ  (2.226) 

 
and a modified J integral has to be defined (Atluri 1982): 
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∫∫
ΩΓ

Ω
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⎭
⎬
⎫

⎩
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⎧ Γ

∂
∂−= ddd b

s xx
yWJ ufut  (2.227) 

 
 

2.7  NUMERICAL METHODS BASED ON THE J INTEGRAL 
 
The equivalency of the J integral and G within the context of LEFM allows for evaluation 
of J according to the available approaches previously discussed for the energy release 
rate. In this section, however, algorithms for direct evaluation of J are presented. 

At present, most simulations are based on the direct evaluation of the J integral, which 
is more compatible with the structure of the finite element method. The results will then 
be used to determine the stress intensity factor and the energy release rate from the 
classical concepts of fracture mechanics. 
 
 

2.7.1  Nodal solution 
 
First consider the rather simple case where stresses are known at the nodes, then the 
numerical evaluation of J would become relatively simple (Fig. 2.18a). 
 

 
Figure 2.18  Contour of J integral passing through finite element nodes or Gauss points. 

 
Beginning with a modification of Eq. (2.222) for a crack along theξ in a plane stress 

problem: 
 

∫∫
ΓΓ

Γ
∂
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or 
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where  
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θσθθσθσσ 22 sincossincos yyxyxxn ++=  (2.231) 

 
)sin(coscossin)( 22 θθσθθσστ −+−= xyxxyyt  (2.232) 

 
θθ sincos yxn uuu +=  (2.233) 

 
θθθ cossinsin yxt uuu +−=  (2.234) 

 
The J integral can be calculated by evaluation of the values of the following expression 

between adjacent nodes and computing the total sum around the contour, 
 

]d)sinsin(

d)cossin(dsindcos

dsindcosdsindcos[

)dcosd(sin

txyyy

nxyxxxyxyxyxy

yyyyxxxyyyxyxxxx

u

uxy

xxyy

yxwJ

θσθσ
θσθσθεσθεσ

θεσθεσθεσθεσ

θθ

+−

−+−+

−−+−

+=

∫
∫

 (2.235) 

 
where θ is the angle between the normal to the contour and x  direction at each node.  
 
 

2.7.2   General finite element solution 
 
Most standard finite element codes, however, only provide Gauss point stresses, and 
hence care must be exercised in properly determining the J integral along a path passing 
through them. Consider a crack to be along the x axis as illustrated in Fig. 2.18b. From 
the definition of J , 
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Defining the traction and displacement vectors, the strain energy density and the arc 

length in terms of the problem specifications,  
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Evaluation of Eq. (2.241) is performed by a Gauss integration rule along the contour 

path Γ: 
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where gW is the Gauss weighting factor, ng  is the number of integration points and gI  is 
the integrand evaluated at each Gauss point g : 
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The path is intentionally designed so the same integration points associated with the 

element stiffness matrix can be used. Therefore, the contour path must pass through the 
finite element Gauss points, as depicted in Fig. 2.18b. Consequently, all the terms of Eq. 
(2.243) are known: the stress components are available at the Gauss points, strains can be 
determined from derivatives of the shape functions ( B matrix), and η∂∂ /y is a component 
of the known Jacobian matrix J. 
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2.7.3  Equivalent domain integral (EDI) method 

 
Li et al. (1985) proposed the equivalent domain integral method as an alternative 
approach, which requires only one analysis. According to Fig. 2.17b, the J integral can 
be defined as (Li et al. 1985, Babuska and Miller 1984): 
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where q  is an arbitrary smoothing function which is equal to unity on 3Γ and zero on 1Γ .  
In fact, the contour integral has been replaced by an equivalent area integral, which is 
more suited to finite element solutions.  

The value of q within an element can be interpolated as 
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where n is the number of nodes per element, iq are the nodal values of q , and iN are the 
element shape functions. Evaluation of J  then follows: 
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In FEM, the inner contour 3Γ is often taken as the crack tip, and so *A  naturally 

corresponds to the area inside 1Γ . The boundary 1Γ should also coincide with element 
boundaries to facilitate numerical calculations.  
 
 

2.7.4  Interaction integral method 
 
In the interaction integral method, auxiliary fields are introduced and superimposed onto 
the actual fields satisfying the boundary value problem (Sih et al. 1965). Stresses and 
strains for the auxiliary state should be chosen so as to satisfy both the equilibrium 
equation and the traction free boundary condition on the crack surface in the *A  area. 
These auxiliary fields are suitably selected in order to find a relationship between the 
mixed mode stress intensity factors and the interaction integrals. The contour J  integral 
for the sum of the two states can be defined as 
 

MJJJ ++= auxact  (2.247) 
 
where actJ and auxJ are associated with the actual and auxiliary states, respectively, and 
M is the interaction integral: 
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with the actual, auxiliary and interaction works defined as: 
 

ijijW εσ=s  (2.251) 
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One of the choices for the auxiliary state is the displacement and stress fields in the 

vicinity of the crack tip. From the relation of the J  integral and mode I and II stress 
intensity factors, 
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the following relationship is obtained: 
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Therefore, the mode I and II stress intensity factors can be obtained from: 
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by choosing 1aux

I =K , 0aux
II =K  for mode I and 0aux

I =K , 1aux
II =K  for mode II. 
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Chapter 3 
 

Extended Finite Element Method for 
Isotropic Problems 
 
 
 
 
 
 
 
3.1  INTRODUCTION 

 
This chapter is devoted to a full discussion on various aspects of the extended finite 
element method. The goal has been set to describe in detail all theoretical and 
computational bases of the approach, including advantages and potential drawbacks. The 
discussion is limited to two-dimensional XFEM, although many of the basic formulations 
can be similarly extended to three-dimensional problems. 

The chapter begins with a comprehensive review of the development of the XFEM 
methodology. Specific applications may have been left out of the present chapter, which 
is mainly dedicated to the basic formulations. More advanced topics will be discussed in 
the next three chapters. 

The main discussion starts with the definition of the partition of unity and its extension 
to more advanced frameworks. The concept of enrichment will then be explained in detail 
based on the concept of partition of unity and the extended finite element method. It 
covers a wide range of available techniques and enrichment functions, comprising 
asymptotic crack tip enrichments and jump functions to approximate field discontinuity 
across a crack within a finite element. 

Weak formulation of the boundary value problem and its discretization using the 
XFEM methodology will be explained and associated numerical implications regarding 
Gauss integration rules, sub-quad and sub-triangle methods, multiple crack paths and 
branching will be addressed. 

Level set and fast marching methods, as powerful alternatives to classical approaches 
for representing crack paths and crack intersections, will be discussed. The chapter 
concludes with illustrative examples that provide comparable results for a number of well 
known problems in fracture mechanics.  
 
 

3.2  A REVIEW OF XFEM DEVELOPMENT 
 
In this section, a brief review of the development of the extended finite element method is 
presented. This overview is dedicated to the basic ideas of XFEM and does not cover 
application issues. They have already been reviewed in Chapter 1 and will be dealt with in 
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more detail in Chapters 4, 5 and 6. There are also a number of available review papers and 
comprehensive documents published by Moës and Belytschko (2002b), Karihaloo and 
Xiao (2003), Bordas and Legay (2005) and Rabczuk and Wall (2006). 

The basic mathematical foundation of the partition of unity finite element method 
(PUFEM) was discussed by Melenk and Babuska (1996). They illustrated that PUFEM 
can be used to employ the structure of the differential equation under consideration to 
construct effective and robust methods. The global solution of PUFEM has been the 
theoretical basis of the local partition of unity finite element method, to be called later the 
extended finite element method. 

The first effort for developing the extended finite element methodology can be traced 
back to 1999 when Belytschko and Black (1999) presented a minimal remeshing finite 
element method for crack growth. They added discontinuous enrichment functions to the 
finite element approximation to account for the presence of the crack. The method 
allowed the crack to be arbitrarily aligned within the mesh, though it required remeshing 
for severely curved cracks.  

Later, Moës et al. (1999) improved the method and called it the extended finite element 
method (XFEM). The improved methodology allowed for independent representation of 
the entire crack from the mesh, based on the construction of the enriched approximation 
from the interaction of the crack geometry with the mesh.  

A major step forward was probably achieved by Dolbow (1999) with his PhD thesis at 
Northwestern University (Extended finite element method with discontinuous enrichment 
for applied mechanics). This work resulted in a number of papers for solution of two-
dimensional elasticity and Mindlin–Reissner plates using both a jump function and the 
asymptotic near tip fields using XFEM (Dolbow et al. 2000a), presenting a technique to 
model arbitrary discontinuities in the finite element framework by locally enriching a 
displacement based approximation through a partition of unity method (Dolbow et al. 
2000b, 2000c).   

Sukumar et al. (2000) then extended the XFEM for three-dimensional crack modelling 
and addressed geometric issues associated with the representation of the crack and the 
enrichment of the finite element approximation. Modelling of arbitrary branched and 
intersecting cracks with multiple branches, multiple holes and cracks emanating from 
holes, was the subject of another study by Daux et al. (2000) as extensions to the original 
XFEM.  

Level set methods gradually evolved to represent the crack location, including the 
location of crack tips. Stolarska et al. (2001) introduced coupling the level set method 
(LSM) with XFEM to model crack growth. Belytschko et al. (2001) presented a technique 
for modelling arbitrary discontinuities in the function and its derivatives in finite 
elements. The discontinuous approximation was constructed in terms of a signed distance 
function, so level sets could be used to update the position of the discontinuities. Also, 
Sukumar et al. (2001) described modelling holes and inclusions by level sets in the 
extended finite element method. At the same time, Moës et al. (2002) and Gravouil et al. 
(2002) discussed the mechanical model and level set update for non-planar three-
dimensional crack growth, based on a Hamilton–Jacobi equation to update the level sets 
with a velocity extension approach to preserve the old crack surface. 
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Sukumar et al. (2003a) developed a numerical technique for planar three-dimensional 
fatigue crack growth simulations that couples the extended finite element method to the 
fast marching method (FMM). Chopp and Sukumar (2003) extended the method to 
multiple coplanar cracks, where the entire multiple crack geometry was represented by a 
single signed distance (level set) function and merging of distinct cracks could be handled 
by the FMM with no necessity of collision detection or mesh reconstruction procedures. A 
different approach for tackling the same set of problems was proposed by Ventura et al. 
(2003) 

A major number of developments followed the initial success of the method, including 
extension to strong and weak discontinuities by Sukumar and Prevost (2003), Huang et al. 
(2003) and Legay et al. (2005), discussion on ways of construction of blending elements 
by Chessa et al. (2003) and formulating higher order elements for curved cracks by Stazi 
et al. (2003). Liu et al. (2004) proposed an improved XFEM by direct evaluation of mixed 
mode stress intensity factors (SIFs) without extra post-processing. The main idea was to 
include the higher order terms of the crack tip asymptotic field for enriching the finite 
element approximation of the nodes surrounding the crack tip and applying a penalty 
function method, thus ensuring that the displacement approximations reduce to the actual 
asymptotic fields adjacent to the crack tip.  

Other contributions include Bellec and Dolbow (2003) and Mariani and Perego (2003) 
for simulation of cohesive crack propagation by assuming a cubic displacement 
discontinuity that allowed reproduction of the typical cusp-like shape of the process zone 
at the tip of a cohesive crack, Areias and Belytschko (2005a, 2005b) presenting a 
viscosity-regularised continuum damage constitutive model coupled with the XFEM 
formulation resulting in a regularised ‘crack-band’ version of XFEM. Alternatively, Lee 
et al. (2004) combined the extended finite element method and the mesh superposition 
method (s-version FEM) for modelling of stationary and growing cracks. In a different 
approach, Mergheim et al. (2006) presented a geometrically nonlinear XFEM by doubling 
the degrees of freedom in the discontinuous elements. In contrast to the standard XFEM, 
the suggested approach thus relies exclusively on displacement degrees of freedom.  

Simulation of growth of multiple cracks was the goal of several other studies. Budyn et 
al. (2004) presented a combined XFEM/level set method for modelling homogeneous and 
inhomogeneous linear elastic media. Zi et al. (2004) discussed the junction of two cracks 
and presented a numerical XFEM model to analyse the growth and the coalescence of 
cracks in a quasi-brittle cell containing multiple cracks. Béchet et al. (2005) proposed a 
geometrical enrichment instead of the usual topological one in which a given domain size 
would be enriched even if the elements did not touch the crack front. 

Accuracy, stabitity and convergence were also the target of Laborde et al. (2005) and 
Chahine et al. (2006), who studied the convergence for a variety of XFEM on cracked 
domains. Peters and Hack (2005) discussed the ways that a singular stiffness matrix may 
be avoided by deleting some of the enhanced degrees of freedom. Ventura (2006) showed 
how standard Gauss quadrature can be accurately used in the elements containing the 
discontinuity without splitting the elements into subcells or introducing any additional 
approximation.  
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Xiao and Karihaloo (2006) discussed improving the accuracy of XFEM crack tip fields 
using higher order quadrature and statically admissible stress recovery procedures. They 
proposed a statically admissible stress recovery (SAR) scheme to be constructed by basis 
functions and moving least squares (MLS) to fit the stresses at sampling points (e.g. 
quadrature points) obtained by XFEM. Imposition of Dirichlet-type conditions was 
studied by Moës et al. (2006), who introduced a strategy to impose Dirichlet boundary 
conditions while preserving the optimal rate of convergence. The key aspect was the 
construction of the correct Lagrange multiplier space on the boundary.  

XFEM and meshless methods have used the partition of unity enrichment for solving 
the crack problems. Belytschko et al. (2002b) and Xu (2005) described methods based on 
the partition of unity for approximating discontinuous functions in finite element and 
meshless formulations. Recently, Fries and Belytschko (2006) presented a new intrinsic 
enrichment method for treating arbitrary discontinuities in a finite element (FE) context. 
Unlike the standard XFEM, no additional unknowns were introduced at the nodes whose 
supports were crossed by discontinuities. An approximation space was constructed 
consisting of mesh based, enriched moving least squares (MLS) functions near 
discontinuities and standard FE shape functions elsewhere.  

XFEM has been successfully adopted for simulation of various engineering problems.  
The localisation problem has been solved by Jirásek and Zimmermann (2001a, 2001b), 
Jirásek (2002), Sukumar et al. (2003b), Patzak and Jirásek (2003), Dumstorff and 
Meschke (2003), Samaniego and Belytschko (2005), Areias and Belytschko (2006), Song 
et al. (2006), Ferrie et al. (2006), Ventura et al. (2005), Larsson and Fagerström (2005) 
and Stolarska and Chopp (2003). 

The problem of cohesive cracks has been studied by Moës and Belytschko (2002a), Zi 
and Belytschko (2003), Mergheim et al. (2005) and de Borst et al. (2004a, 2004b, 2004c), 
while Dolbow and Nadeau (2002), Dolbow and Gosz (2002), Remmers et al. (2003), 
Sukumar et al. (2004), Nagashima et al. (2003), Nagashima and Suemasu (2004), 
Asadpoure et al. (2006), Asadpoure et al. (2007) and Asadpoure and Mohammadi (2007) 
have extensively studied the behaviour of crack in composites using XFEM. 

Contact, plasticity and large deformation have always been regarded as difficult 
computational obstacles to overcome. Modelling contact by XFEM was first introduced 
by Dolbow et al. (2000c, 2001) and revisited by Belytschko et al. (2002a). Khoei and 
Nikbakht (2006) applied the available formulation to modelling frictional contact 
problems. Introduction of plastic enrichment terms into XFEM was first reported by 
Elguedj et al. (2006) based on the Hutchinson–Rice–Rosengren (HRR) fields to represent 
the singularities in EPFM. Many researchers have tackled the XFEM within large 
deformation regime, among them Dolbow and Devan (2004), Legrain et al. (2005) and 
Fagerström and Larsson (2006) presented a geometrically nonlinear XFEM. 

Areias and Belytschko (2005a) developed a new XFEM formulation for arbitrary crack 
propagation in shells with a new enrichment of the rotation field. Areias et al. (2006) then 
presented a XFEM methodology similar to the Hansbo and Hansbo approach for 
evolution of cracks in thin shells using midsurface displacement and director field 
discontinuities.  

Dynamic XFEM was proposed by Belytschko et al. (2003), Belytschko and Chen 
(2004) and Zi et al. (2005) based on the singular enrichment finite element method for 
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elastodynamic crack propagation. Also, Réthoré et al. (2005a) proposed a generalised 
XFEM to model dynamic fracture and time dependent problems. Later, Menouillard et al. 
(2006) presented an explicit XFEM by introduction of a lumped mass matrix for enriched 
elements. 

In an interesting development, Chessa and Belytschko (2004, 2006) presented a locally 
enriched space–time extended finite element method for solving hyperbolic problems with 
discontinuities. The coupling was implemented through a weak enforcement of the 
continuity of the flux between the space–time and semi-discrete domains in a manner 
similar to discontinuous Galerkin methods. They successfully applied the TXFEM to the 
Rankine–Hugoniot jump conditions to linear first order wave and nonlinear Burgers’ 
equations. Furthermore, Réthoré et al. (2005b) proposed a combined space–time extended 
finite element method, based on the idea of the time extended finite element method, 
allowing a suitable form of the time stepping formulae to study stability and energy 
conservation. 

 
 
3.3   BASICS OF FEM 
 
3.3.1  Isoparametric finite elements, a short review 

 
Consider a domain in the state of equilibrium descretized by a four-node quadrilateral 
finite element mesh, as depicted in Fig. 3.1. According to the finite element methodology, 
the coordinates ),(T yx=x  are interpolated from the nodal values ),(T yx=x : 
 

∑
=

=
4

1j
jjxNx  (3.1) 

 
where jN  is the matrix of finite element shape functions, 
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0
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Figure 3.1  An isoparametric finite element. 
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In an isoparametric finite element representation, displacement fields ),(T

yx uu=u  are 
similarly interpolated from the nodal displacements nodal values ),(T

yx uu=u : 
 

∑
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=
4

1j
jjuNu  (3.3) 

 
The strain field is computed directly from Eq. (3.2): 
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where the matrix jB is defined in terms of derivatives of the shape functions jN , 
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and the chain rule is invoked to determine the coefficients of jB : 
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where J  is the Jacobian matrix  
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Finally, the stiffness matrix eK of an element eΩ  can be determined from: 
 

∫Ω Ω=
e

e dTDBBK  (3.8) 

 
where D  is the material stress–strain or constitutive matrix ( iuDBσ = ). Eq. (3.8) can be 
rewritten in local curvilinear coordinates ηξ , : 
 

( ) ηξηξηξ dddet),(),(1
1

1
1

T JBDBK ∫ ∫− −
=  (3.9) 
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3.3.2  Finite element solutions for fracture mechanics 

 
The classical contribution of the finite element method in fracture mechanics is to provide 
an analytical tool for determination of the displacement, strain and stress fields. Those 
will then be used for evaluation of the stress intensity factor K  and the energy release 
rate G. Available two-step solutions and the simplified one-step method have been 
discussed in a previous chapter. 

Another major contribution has been the development of singular finite elements which 
resemble crack tip stress fields. They have already been discussed in Section 2.5.6, and 
are expected to provide more accurate results with a lower number of finite elements.  

Evaluation of the J integral is different, in the sense that the calculations have to be 
carried out over a contour curve. Such a contour, in general, may neither pass through the 
nodal points of the finite elements nor include the predefined Gauss points.  

First assume the contour path passes through the finite element Gauss points. Recalling 
Eq. (2.236), J for a crack along the x axis (Fig. 2.18b) can be defined as, 
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In a direct approach, Eq. (3.10) is expressed in terms of the stress and strain components 
(Eqs. (2.241)),  
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Evaluation of Eq. (3.11) is performed by the Gauss integration rule along the path Γ, 
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where gW is the Gauss weighting factor, ng is the order of integration, and the integrand 
I is defined as: 
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In an alternative approach, the equivalent domain integral method is increasingly 

preferred for determination of the contour J integral. Recalling Eqs. (2.244)–(2.245) and 
referring to Fig. 2.17b, the J integral can be defined as: 
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where q is an arbitrary smoothing function which is equal to unity on the inner contour 
and zero on the outer one. Discretization of q  in terms of its nodal values, 

∑= ii qNq )()( xx , leads to the following form of the domain integral: 
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Finally, application of the finite element method for evaluation of the J integral by the 

interaction integral method (M integral) is based on Eq. (2.247) 
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or in a discretized form is obtained through a Gauss integration scheme, 
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where the superscript aux  respresents the auxiliary state in comparison to the actual states 
(without superscript). 
 

 
3.4  PARTITION OF UNITY 

 
The concept of partition of unity has been used in various computational disciplines 
(Melenk and Babuska 1996). A partition of unity is defined as a set of m functions 

)(xkf within a domain puΩ  such that 
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It can easily be shown that by selection of any arbitrary function )(xψ , the following 

property is automatically satisfied: 
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k
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1
)()()( xxx ψψ  (3.19) 

 
This is equivalent to the definition of the reproducing condition or completeness. 

Completeness is expressed in terms of the order of the polynomial )()( xx p=ψ , which 
must be represented exactly by approximating functions )(xkf . Then, zero completeness 
is achieved if Eq. (3.19) holds for a constant )(xp . 

The set of isoparametric finite element shape functions, jN , also satisfy the condition of 
partition of unity, 
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1
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where n is the number of nodes for each finite element. The concept of partition of unity 
provides a mathematical framework for the development of an enriched solution, as will 
be discussed in the next section. 

 
 
3.5 ENRICHMENT 

 
Theoretically, enrichment can be regarded as the principal of increasing the order of 
completeness that can be achieved. Computationally, it may simply target higher accuracy 
of the approximation by including the information obtained from the analytical solution. 
The choice of the enriched functions depends on the a priori solution of the problem. For 
instance, in a crack analysis this is equivalent to an increase in accuracy of the 
approximation if analytical near crack tip solutions are somehow included in the 
enrichment terms. 

Let us begin with the classical approximation of a field variable u within a finite 
element method: 
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or in a more appropriate form in terms of the m basis functions p, 
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where unknowns ka are determined from the approximation at nodal points. 

For one- and two-dimensional problems, the basis function may be defined for different 
orders of completeness: 
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The basic idea of the enrichment is to transform Eqs. (3.21) or (3.22) into a more 

appropriate form to enhance the way approximation is constructed. The enhancement may 
be attributed to the degree of consistency of the approximation, or to the capability of 
approximation to reproduce a given complex field of interest. 

There are basically two ways of enriching an approximation: enriching the basis vector 
(intrinsic enrichment) and enriching the approximation (extrinsic enrichment). The 
following sections discuss both approaches. 

 
 
3.5.1  Intrinsic enrichment 

 
In this approach, the idea is to enhance approximation Eq. (3.22) by transforming the 
basis function p to include new terms to satisfy a certain condition of reproducing a 
complex field (Fries and Belytschko 2006). For instance, for a first-order standard linear 
basis function },,1{lin yx=p , new enrichment terms },{ 21

enr ff=p  are added: 
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To further elaborate the concept of enrichment, consider the classical crack problem of 

Section 2.4. The asymptotic near tip displacement field can be written as: 
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where r andθ are defined in Fig. 3.2, and IK and IIK  are the mode I and II stress 
intensity factors, respectively. 

It can be shown that the asymptotic near crack tip displacement field (Eqs. (3.26)–
(3.27)) can be expressed by the following basis function )(xp , defined in the polar 
coordinate system, 
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Figure 3.2  Polar coordinates at the crack tip. 
 

The basis function for the total solution must include the constant and linear terms: 
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which is a familiar basis function previously used for fracture analysis by the meshless 
element-free Galerkin (EFG) method (Belytschko et al. 1994), 
 

)()()( T xaxpxu =h  (3.29) 
 
where )(xa is a vector of coefficients obtained from one of the least square techniques for 
minimizing the overall error of approximation. The vector )(xa can be set as constants or 
variables depending on the adoption of weighted least squares (WLS) or moving least 
squares (MLS) techniques, respectively (Onate et al. 1995).  
 

 
3.5.2 Extrinsic enrichment 

 
Another form of enrichment is based on a so-called extrinsic enrichment. This uses 
extrinsic bases )(xkp to increase the order of completeness. 
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where ka are additional unknowns or degrees of freedom associated to the enriched 
solution. In a general partition of unity enrichment, Eq. (3.30) is rewritten as, 
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where )(pu xkf are set of the partition of unity functions defined over the support domain of 
the partition of unity enrichment puΩ , as illustrated in Fig. 3.3. 

 
Figure 3.3  Definition of the enrichment support domain puΩ .  

 
 
3.5.3 Partition of unity finite element method 

 
Similar methodology is followed in the partition of unity finite element method (PUFEM) 
(Melenk and Babuska 1996) using the classical finite element shape functions )(xjN . For 
a general point x  within a finite element, 
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The approximation (3.32) is clearly a partition of unity. As a result, a compatible 

solution is guaranteed. Examining the approximate solution (3.32) for a typical enriched 
node ix  leads to: 
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where the first part vanishes, except for iiiiN uux =)( . Therefore, 
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which is not a feasible conclusion. To satisfy interpolation at nodal points, Eq. (3.32) is 
transformed to: 
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which ensures ii

h uxu =)( . 
 
 
3.5.4 Generalised finite element method 

 
In the generalised finite element method (GFEM), different shape functions are used for 
the classical and enriched parts of the approximation. Beginning with Eq. (3.32), 
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The generalised form can then be written as: 
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where )(xjN  are the new set of shape functions associated with the enrichment part of the 
approximation. 
 
 

3.5.5 Extended finite element method 
 
In contrast to PUFEM and GFEM, where the enrichments are usually employed on a 
global level and over the entire domain, the extended finite element method adopts the 
same procedure on a local level. 

Assumption of the approximation (3.36) generates a compatible solution even if a local 
partition of unity is adopted. This is a considerable computational advantage as it is 
equivalent to enriching only nodes close to a crack tip; a basis for the extended finite 
element solution. The extended finite element method will be comprehensively discussed 
in Section 3.6.  
 
 

3.5.6 Hp-clouds enrichment 
 
The meshless Hp-cloud (Duarte and Oden 1995) uses extrinsic bases )(xkp to increase the 
order of completeness within a moving least squares (MLS) approximation, 
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where n is the number of nodes within each MLS support domain, jka are additional 
degrees of freedom introduced to enrich the domain of interest and )(xjΦ are the MLS 
shape functions evaluated over a moving support domain procedure.  
 
 

3.5.7 Generalisation of the PU enrichment  
 
The original PU enrichment (3.35) can be further generalised if a number of different PU 
support domains l

puΩ and associated partition of unity functions )(xl
kf are used for the 

enrichment: 
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where l

ka are the additional unknowns associated with each set of np domains of partition 
of unity. 
 
 

3.5.8 Transition from standard to enriched approximation  
 
Application of the enrichment for near crack tip analysis may lead to solution 
incompatibility and interior discontinuities, if it is not employed in the entire domain of 
consideration. The reason can be attributed to different orders of approximation for 
neighbouring domains while each domain follows a different basis function. As a result, 
different values may be obtained for the common nodes; an indication of occurrence of 
internal discontinuities. 

A remedy to this drawback is to design a blending procedure over a transition domain 
connecting the domains with and without enrichment (Fig. 3.4): 
 

)()()1()( enr xuxuxu RRh +−=  (3.40) 
 
where R  is a blending ramp function set to 1 on the enriched boundary and 0 on the 
linear boundary. A linear blending ramp function R  ensures the continuity of the 
displacement field, while it cannot guarantee the continuity of the strain field. Higher 
order blending functions are therefore required to ensure continuous strain (displacement 
derivative) fields. 

The same problem of internal discontinuities may occur in both intrinsic and extrinsic 
enrichments, if different types of approximations are to be used for modelling near and far 
fields.  
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Figure 3.4  A smooth transition between the enriched and linear approximations. 

 
From a different point of view, finite elements used for modelling an entire domain 

may be classified into three categories: standard finite elements, elements with enriched 
nodes and partially enriched elements which consist of standard and enriched nodes (Fig. 
3.5). The first two categories are fully governed by either the classic FEM or XFEM 
approximations, whereas the third category (blending elements) is only partially involved 
with XFEM. 

 
Figure 3.5  Standard, enriched and blending elements. 
 

Three different types of blending elements are shown in Fig. 3.5. Typical element A has 
three enriched nodes and one standard node, while element B has two enriched and two 
standard nodes. Element C has the least number of enriched nodes in comparison to the 
number of standard nodes.  
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Now, consider a typical blending element B. Approximation of the displacement field 

for this element can be expressed as, 
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The second part of Eq. (3.41) is no longer a partition of unity. Neverthelss, it has little 
direct effect on the approximation because such a blending element does not include any 
singularity at all.  
 
 

3.6 ISOTROPIC XFEM 
 

The basic concept of XFEM is to enrich the approximation space so that it is capable of 
reproducing certain features of the problem of interest, in particular discontinuities such 
as cracks or interfaces. Although it is a local version of the partition of unity finite 
element enrichment applied only in a certain local subdomain, it has strongly relied on the 
development of extrinsic enrichments for crack simulations by a number of meshless 
methods such as EFG and Hp-clouds. Naturally, the first XFEM approximations were also 
developed for simulation of strong discontinuities in fracture mechanics. This was later 
extended to include weak discontinuity and interface problems. XFEM can be assumed to 
be a classical FEM capable of handling arbitrary strong and weak discontinuities. 

In the extended finite element method, first, the usual finite element mesh is produced. 
Then, by considering the location of discontinuities, a few degrees of freedom are added 
to the classical finite element model in selected nodes near to the discontinuities to 
provide a higher level of accuracy. 

3.6.1 Basic XFEM approximation  

 
Consider x, a point in a finite element model. Also assume there is a discontinuity in the 
arbitrary domain discretized into some n  node finite elements. In the extended finite 
element method, the following approximation is utilised to calculate the displacement for 
the point x locating within the domain (Belytschko and Black 1999) 
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where ju  is the vector of regular degrees of nodal freedom in the finite element method, 

ka is the added set of degrees of freedom to the standard finite element model and )(xψ is 
the discontinuous enrichment function defined for the set of nodes that the discontinuity 
has in its influence (support) domain. 
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The influence domain associated to a node, located on an edge, consists of the elements 

containing that node, whereas for an interior node (in higher order elements) it is the 
element surrounding the node. Fig. 3.6 illustrates definitions of the influence domain for a 
node located on edges of elements (a corner node) as well as an internal node.  

The enrichment function )(xψ  can be chosen by applying appropriate analytical 
solutions according to the type of discontinuity. The main objectives for using various 
types of enrichment functions within an XFEM procedure can be expressed as the 
following: 

 
1. Reproducing the singular field around a crack tip. 
2. Continuity in displacement between adjacent finite elements. 
3. Independent strain fields in two different sides of a crack surface. 
4. Other features according to the specific discontinuity problem. 

 
 

 
Figure 3.6  Influence (support) domains of an edge node J and an internal node J′ in an 
arbitrary finite element mesh. 
 

The first term on the right-hand side of Eq. (3.42) is the classical finite element 
approximation to determine the displacement field, while the second term is the 
enrichment approximation which takes into account the existence of any discontinuities. 
The second term utilises additional degrees of freedom to facilitate modelling the 
existence of any discontinuous field, such as a crack, without modelling it explicitly in the 
finite element mesh. 

For np multiple discontinuities within a finite element, the approximation (3.42) can be 
further extended to: 

 

∑∑∑
= ==

+=+=
np

l

m

k

l
k

l
k

n

j
jj

h NN
1 11

enrFE )()()()( axxuxuuxu ψ  (3.43) 

Trim added in PDF - Aptara



78  Extended Finite Element Method 

 

 
3.6.2  Signed distance function 

 
The distance d from a point x to an interface Γ is defined as, 
 

Γ−= xxd  (3.44) 
  
where Γx is the normal projection of x on Γ  (Fig. 3.7). The signed distance function 

)(xξ can then be defined as, 
 

( ))(min)( Γ

Γ∈

Γ −⋅−=

Γ

xxnxxx
x

sign
43421

ξ  
(3.45) 

 
where n is the unit normal vector. 
 
 

 
Figure 3.7  Definition of the signed distance function. 
 
 

3.6.3 Modelling strong discontinuous fields 
 
In the extended finite element method, approximation of a discontinuous displacement 
field is based on the definition of specially designed shape functions by the use of 
enrichment functions. The method operates on additional independent virtual degrees of 
freedom for the definition of the crack boundary and approximation of the displacement 
field. It will then be combined with the classical finite element method to approximate the 
overall solution. 

In order to discuss various effects of the modelling, a one-dimensional problem is 
considered which consists of four nodes and three finite elements with a strong 
discontinuity (crack) in an arbitrary location )( cc ξx within the middle element, as depicted 
in Fig. 3.8. Similar one-dimensional examples can be found almost in all XFEM-related 
documents and references. 
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Figure 3.8  Simulation of a crack in a one-dimensional problem using the standard linear 
finite element shape functions. 
 
Only nodes 2 and 3 are required to be enriched, whereas nodes 1 and 4 are not influenced 
by the crack.  

There have been a number of possible choices for the enrichment function )(xψ in Eq. 
(3.42). The following sections explain the basic ideas and discuss the various effects of 
enrichment on this simple one-dimensional problem. 

 
 
3.6.3.1  A simple model 

 
Earlier models used a simple enriched shape function in the form of: 
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 (3.46) 

 
where iN is the conventional finite element shape function and iΩ is part of the element 
in between the crack and node i , as illustrated in Fig. 3.9.  
 

 
Figure 3.9  An element cut across by a crack. 
 

Fig. 3.10 shows how this jump enrichment can affect the shape functions for a simple 
one-dimensional case of Fig. 3.8. 
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Figure 3.10  A simple description of discontinuity by a jump function. 
 

One problem with this type of jump function is that it provides similar strain fields 
(derivative of the displacement field) in both sides of the discontinuity (Fig. 3.11). This is 
in contrast to the independent physical response of the segments anticipated in a cracked 
element. 

Another drawback is the lower number of degrees of freedom required by 
approximation (3.46) than other recently available techniques. This may directly affect the 
quality of approximation field and the crack analysis. 

 

 
Figure 3.11  Deformation of a quadrilateral element with the first jump function. 

 
 
3.6.3.2  The Heaviside function 

 
Different definitions have been adopted for the Heaviside function over the years. The 
first type of Heaviside function )(ξH can be defined as a step function, 
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A simple one-dimensional representation of this step function is depicted in Fig. 3.12a. 
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Figure 3.12  Different types of Heaviside function )(ξH . 
 

 

 
Figure 3.13  Enriched shape functions for nodes 2 and 3 and application of the shifting 
Heaviside function. 
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Approximation (3.42) then reads, 
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Fig. 3.13a illustrates the way the step function simulates the discontinuity. 

To examine whether the approximation (3.48) is an interpolation, the value of the field 
variable )(xu on an enriched node i can be obtained as: 
 

iiii
h H auxu )()( ξ+=  (3.49) 

 
which means that approximation (3.48) is not an interpolation and the nodal parameter 

iu is not the real displacement value on the enriched node i. A simple remedy to this 
shortcoming is to shift the step function around the node of interest: 
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Consequently, interpolation can be automatically guaranteed. Fig. 3.13b illustrates the 

effect of the modified approximation on the one-dimensional crack problem. The overall 
jump in the displacement field can be obtained from: 
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Application of the aforementioned jump function on a quadrilateral element may lead to 

a discontinuous field, as depicted in Fig. 3.14. The deformation field includes all potential 
displacement fields independently for both sides of the crack. The strain fields also remain 
independent for both sides of the crack, compared with the previous case illustrated in 
Fig. 3.11. 

 
Figure 3.14  Deformation of a quadrilateral element with a jump function. 
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In order to avoid numerical instabilities, the following smoothed Heaviside functions 

can also be used for a small value of β  less than the element size (Bordas and Legay 
2005): 
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The derivative of the Heaviside function is the Dirac delta function )(ξδ  
 

)()(, ξδξ =iH  (3.54) 
 
which can be approximated by the following smoothed functions 
 

⎪⎩

⎪
⎨
⎧ <<−+=

otherwise0

sin
2
1

2
1

)( βξβ
β

πξ
ββξδ  (3.55) 
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An alternative form has also been proposed by Chessa and Belytschko (2003a). 
  

3.6.3.3  The signed function 
 
An alternative Heaviside enrichment function is assumed to be the signed function 
  

⎩
⎨
⎧

<∀−
>∀

==
01
01

)(sign)(
ξ
ξ

ξξH  (3.57) 

Trim added in PDF - Aptara



84  Extended Finite Element Method 

 

A simple one-dimensional representation of the step function is depicted in Fig. 3.12b. 
Fig. 3.15a illustrates the way the step function simulates the discontinuity. 

Again, approximation (3.48) is no longer an interpolation and the value of the field 
variable )(xu on an enriched node i is not equal to the nodal value iu  
 

iiiii
h H uauxu ≠+= )()( ξ  (3.58) 

 
A simple shifting procedure guarantees the interpolation: 
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Fig. 3.15b illustrates the effect of the modified approximation on the one-dimensional 
crack problem. The overall jump in the displacement field can be obtained from: 
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It is important to note that the choice of the jump in the enrichment function does not 
affect the overall solution. Similar forms as Eqs. (3.52)–(3.53) can be derived for 
smoothed equivalent functions for the Heaviside sign function. 

 

 
Figure 3.15  Enriched shape functions for nodes 2 and 3 and application of the shifting 
Heaviside function. 
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3.6.4  Modelling weak discontinuous fields 

 
The same one-dimensional problem as discussed in Section 3.6.3 is considered (Fig. 3.8). 
The only difference is the assumption of a weak discontinuity in an arbitrary location 

)( cc ξx within the middle element.  
The XFEM approximation (3.48) can now be defined by replacing the Heaviside 

function  )(ξH with an appropriate enrichment function  )(xχ (Bordas and Legay 2005) 
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where  )(xχ is the weak discontinuous enrichment function defined in terms of the 
signed distance function )(xξ : 
 

)()()( kk xxx ξξχ −=  (3.62) 
 
Fig. 3.16a illustrates these signed distance functions for the simple problem. 

 
Figure 3.16 Weak discontinuous enrichment functions, and final enriched shape 
functions. 

 
Fig. 3.16b depicts how the original shape functions are transformed as an effect of 

enrichment by the weak discontinuous enrichment functions. According to this figure, a 
kink in the displacement field is introduced. As a result, a jump in its derivative, i.e. a 
discontinuity in the gradient of the function is anticipated.  
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The normal jump in the gradient field, seen clearly in Fig. 3.16b at the position of weak 

discontinuity, can be computed as: 
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3.6.5 Plastic enrichment 

 
Elguedj et al. (2006) have recently proposed the concept of plastic enrichment to include 
effects of crack tip platstification based on the Ramberg–Osgood plasticity model. In 
principle, other plasticity models may also be adopted with some modifications. 
Beginning with the Hutchinson–Rice–Rosengren power law hardening material model 
(2.214) (Hutchinson 1968): 
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Asymptotic crack tip displacement, strain and stress fields can be defined according to 
Eqs. (2.219)–(2.220) (Elguedj et al. 2006):  
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where J is the well known contour integral and nI is a dimensionless constant that 
depends on n. The terms ijσ , ijε and iju are dimensionless angular functions. Applying a 
Fourier decomposition on iju  for modes I and II allows for the pure mode I and II 
displacement fields to be defined from the following basis function 
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In practice, Elguedj et al. (2006) have used and compared the following options derived 

from Eq. (3.68): 
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3.6.6 Selection of nodes for discontinuity enrichment 

 
There have been different approaches for the selection of nodes to be enriched by the 
Heaviside function. The procedure discussed in this section is only related to the 
Heaviside enrichment, and crack tip enrichments are separately applied to all nodes of the 
element that contains the crack tip. 

One method allows for the discontinuity to be modelled across the crack over the points 
along the crack surface. The value of the modified (enriched) shape function h

iN  remains 
zero at all nodes and edges that do not intersect with the crack. This is important in 
satisfying the inter-element continuity requirements. This method only affects the element 
containing a crack, and does not directly influence other elements, even if they share a 
common node with the enriched element.  

Fig. 3.17 illustrates this simple procedure for selection of nodes for enrichment. At each 
stage of the propagation, nodes on edges cut by the crack path are enriched. Even if the 
crack tip locates just on an edge, the corresponding nodes are not enriched. A potential 
source of instability and divergence is when a crack path passes along the finite element 
edges. 

This technique adds two enrichment degrees of freedom to an element per any enriched 
node. As a result, for a quadrilateral element on the path of a crack, sixteen degrees of 
freedom (DOF) are assigned: eight classical DOFs and eight enriched DOFs.  

The XFEM using classical jump functions, applies the enrichment onto the nodal 
points. As a result, elements containing an enriched node are affected by the enrichment 
degrees of freedom. Fig. 3.18 illustrates the procedure of node selection for enrichment 
based on this formulation. 
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Figure 3.17  Enrichment nodes at different stages of crack propagation. 
 
 

Other effects include the influence of external forces on the enrichment degrees of 
freedom in classical jump functions, while this approach avoids these direct interaction 
effects. 

In a finite element mesh, as depicted in Fig. 3.19, the set of nodes that must be enriched 
with Heaviside or crack tip functions are marked by circles and squares, respectively. The 
crack does not affect other nodes and their associated classical finite element degrees of 
freedom. 
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Figure 3.18  Enrichment nodes at different stages of crack propagation. 
 

 

 
Figure 3.19  Node selection for enrichment at different stages of a crack propagation; 
nodes marked by squares are enriched by crack tip functions and the circled ones are 
enriched by the Heaviside function. 
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3.6.7  Modelling the crack 

 
Moёs et al. (1999) proposed that Eq. (3.42) be rearranged in order to model crack surfaces 
and tips in the extended finite element method as below 
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 (3.72) 

 
where m is the set of nodes that have the crack face (but not the crack tip) in their support 
domain, while 1mt and 2mt  are the sets of nodes associated with crack tips 1 and 2 in 
their influence domain, respectively; ju are the nodal displacements (standard degrees of 
freedom). ha , 1

kb and 2
kb  are vectors of additional degrees of nodal freedom for 

modelling crack  faces and the two crack tips, respectively, and 2,1),( =iF i
l x represent 

mf crack tip enrichment functions. 
To include the corrections related to interpolation failure of the enrichment, Eq. (3.72) 

can be rewritten as: 
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 (3.73) 

 
Despite the fact that Eq. (3.72) lacks the interpolation property, it has been frequently 
used for XFEM fracture analysis. 
 
 

3.7  DISCRETIZATION AND INTEGRATION 
 

3.7.1  Governing equation 
 
Consider a body in the state of equilibrium with the boundary conditions in the form of 
traction and displacement conditions, as depicted in Fig. 3.20.  
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Figure 3.20  A body in a state of elastostatic equilibrium. 
 
The strong form of the equilibrium equation can be written as: 
 

Ω=+∇ in 0. bfσ  (3.74) 
 
with the following boundary conditions: 
 

t
t on Γ=⋅ fnσ  (3.75) 

 
uon Γ= uu  (3.76) 

 
con 0 Γ=⋅nσ  (3.77) 

 
where  tΓ , uΓ and  cΓ are traction, displacement and crack boundaries, respectively, σ is 
the stress tensor and bf and tf are the body force and external traction vectors, 
respectively.  

The variational formulation of the boundary value problem can be defined as: 
 

extint WW =  (3.78) 
 
or 
 

∫∫∫ ΓΩΩ
Γ⋅+Ω⋅=Ω⋅ ddd tb ufufεσ δδδ  (3.79) 

 
 
3.7.2  XFEM discretization 

 
Discretization of Eq. (3.79) using the XFEM procedure (Eq. (3.72)) results in a discrete 
system of linear equilibrium equations: 
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fKu =h  (3.80) 

 
where K  is the stiffness matrix, hu is the vector of degrees of nodal freedom (for both 
classical and enriched ones) and f  is the vector of external force. The global matrix and 
vectors are calculated by assembling the matrix and vectors of each element. K  and f for 
each element e are defined as 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
bbbabu

abaaau

ubuauu

KKK
KKK
KKK

K

ijijij

ijijij

ijijij
e
ij  (3.81) 

 
{ }T4321 bbbba fffffff iiiii

u
i

e
i =  (3.82) 

 
and hu is the vector of nodal parameters: 
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with 
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In Eq. (3.84), B is the matrix of shape function derivatives,  
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[ ]4321 bbbbb BBBBB iiiii =  (3.90) 
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To include the effects of interpolation, the following shifting amendments are required: 
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The rest of the computation depends on the definition of the enrichment function. The 

following types are considered: 
 
1. The Heaviside function )()( ξψ Hx =  
 
Derivative of the Heaviside function is the Dirac delta function: 
 

)()(, ξδξ =iH  (3.94) 
 
which vanishes except at the position of the crack interface: 
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As a result, Eq. (3.89) can be rewritten as: 
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To include the effects of interpolation, )(ξH should be replaced by )()( iHH ξξ − . 
 
2. The weak discontinuity function )()()( xxx ξχψ ==  
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Derivative of the weak discontinuity enrichment function can be obtained from 
 

)()()( ,, xx ii sign ξξψ =  (3.97) 
 
Derivatives of )(xξ are calculated from the derivatives of the shape functions if a 
standard finite element interpolation is adopted to define the function in terms of its nodal 
values: 
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3. The near tip enrichment functions ),( θψ α rF=  
 
The near tip enrichment functions have already been defined in terms of the local crack 
tip coordinate system ),( θr , (Fig. 3.2) 
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                      Derivatives of ),( θα rF  with respect to the crack tip polar coordinates ),( θr  become 
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and the derivatives of ),( θα rF with respect to the local crack coordinate system 

)','( yx can then be defined as: 
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Finally, the derivatives in the global coordinate system are obtained, 
 

)(sin)(cos ',',, αα ααα yxx FFF −=  (3.109) 
 

)(cos)(sin ',',, αα ααα yxy FFF +=  (3.110) 
 
where α is the angle of crack path with respect to the x axis. 
 

 
3.7.3  Element partitioning and numerical integration 

 
The Gauss quadrature rule is widely used in finite element analysis for numerical 
evaluation of various integrals over a specified domain of interest such as a finite element. 
For polynomial integrands, the Gauss quadrature is proved to be exact. However, for non-
polynomial integrands, it may result in substantial accuracy reduction. 

Even for a specified integrand, using a small number of Gauss points may introduce 
excessive error. Introduction of discontinuity within a finite element transforms the 
displacement and stress fields into highly nonlinear fields. This is further complicated as 
the crack path turns to be substantially curved. As a result, an efficient approach is 
required to define the necessary points needed for the integration within an enriched 
element. The approach has to be consistent with the geometry of the crack as well as the 
order of the enrichment functions. 

Because the ordinary Gauss rules do not accurately calculate the integration of 
enrichment functions in elements cut by a crack, Dolbow (1999) proposed two methods to 
overcome this numerical difficulty. The first method is to subdivide the element at both 
sides of the crack into sub-triangles whose edges are adapted to crack faces and the 
second one is to subdivide the element into sub-quads. Both methods are illustrated in Fig. 
3.21.  

In both methods, if values of )/( −+− + AAA  and )/( −++ + AAA , where +A  and −A  
are the area of the influence domain of a node above and below the crack, respectively 
(see Fig. 3.22a), are smaller than an allowable tolerance value, the node must not be 
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enriched. A tolerance of 0.01% was proposed by Dolbow (1999), although it should be set 
according to each specific problem. In an alternative approach, a node is enriched if each 
side of the crack in its influence domain includes at least one Gauss point. Fig. 3.22b 
shows a mesh that contains a crack while the sub-quad partitioning was applied. Although 
the crack cuts the element in Fig. 3.22b, node J must not be enriched because there is no 
Gaussian point above the crack. On the contrary, node J in Fig. 3.22a has to be enriched. 

 
Figure 3.21  Two methods for partitioning the cracked element. 

 
Figure 3.22  Criteria for node enrichment: a) based on definitions of +A and −A  in its 
support domain, b) based on the existence of Gauss points within its support domain. 
 

The final point is that in XFEM analysis of fracture mechanics problems, elements 
containing a crack tip should also have a singularity at the crack tip. Hence, a sub-
triangulation procedure might not be accurate enough if Gauss points of the sub-triangles 
are close to the stress singularity. 

 
 
3.7.4  Crack intersection 

 
The basic equation for XFEM enrichment requires further modification if two or more 
cracks intersect within a finite element, as illustrated in Fig. 3.23. 
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Figure 3.23  Intersecting cracks within a finite element. 
 

 
The XFEM approximation of the displacement may be written as (Daux et al. 2000): 
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 (3.111) 

 
Some researchers have proposed a more efficient approach that avoids the cross terms by 
introduction of modified signed distance functions (Zi et al. 2004). 

 
 
3.8  TRACKING MOVING BOUNDARIES 

 
One important aspect of problems with moving interfaces is to track them as they evolve. 
Most conventional numerical techniques attempt to follow moving boundaries by putting 
a collection of marker points on the evolving front. This is usually performed by the use 
of general B-spline or non-uniform rational B-spline (NURBS) functions (Fig. 3.24) 
(Patrikalakis 2003). Positions of the particles are then advanced in accordance with a set 
of finite difference approximations to the equations of motion (Fig. 3.24). Such schemes 
usually become unstable around points of high curvature and cusps. The reason can be 
attributed to the fact that any small error in determining the position may produce large 
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errors in the evaluation of the curvature (Sethian 1987, 1996, 1999a, 1999b, Adalsteinsson 
and Sethian 2003). 

One alternative is to consider the reformulation of the equations of motion as a 
conservation law with viscosity, and solve these equations with the techniques developed 
for gas dynamics. These techniques, based on high-order upwind formulations, are 
particularly attractive, since they are highly stable, accurate, and preserve monotonicity 
(Sukumar et al. 2001).  

This idea forms one cornerstone of numerical methods based on partial differential 
equations for tracking evolving fronts. It has contributed to two different, yet 
complementary techniques: (1) a more general but slower general-purpose time-
dependent level set method; (2) an extremely efficient but limited-purpose fast marching 
method for certain front problems. Both methods are designed to handle problems in 
which the separating interfaces develop sharp corners and cusps, change topology, break 
apart and merge together. These techniques have a wide range of applications, including 
problems in fluid mechanics, combustion, manufacturing computer chips, computer 
animation, image processing, structure of snowflakes, and the shape of soap bubbles 
(Sethian 1987). 
 

 
Figure 3.24  Tracking marker points on a moving boundary. 

 
 
3.8.1  Level set method 

 
A powerful tool for tracking interfaces is the level set method (LSM). Though it is not 
mandatory to use level sets in XFEM, many XFEM formulations take advantages of the 
level set method. 

The level set approach, introduced by Osher and Sethian (1988), instead of following 
the interface itself, takes the original curve and builds it into a surface. A major property 
of this cone shaped surface is that it intersects the xy plane exactly where the curve sits. 
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Such a surface is called the level set function because it accepts a point in the plane and 
generates back its height (level) (Fig. 3.25). 

It seems odd to replace the problem of a moving curve with a moving surface. 
However, the level set function is well behaved and all the complicated problems of 
breaking and merging can be easily handled. 

In LSM, the interface of interest is represented as the zero level set of a function )(xφ . 
This function is one dimension higher than the dimension of the interface. The evolution 
equation for the interface can then be expressed as an equation for the evolution ofφ . 

There are many advantages to using LSM for tracking interfaces. First, unlike many 
other interface tracking schemes, the motion of the interface is computed on a fixed 
Eulerian mesh. Second, the method handles changes in the topology of the interface 
naturally. Third, the method can be easily extended to higher dimensions. Finally, the 
geometric properties of the interface can be obtained from the level set functionφ . 

One drawback of LSM is that the level set representation requires a function of a higher 
dimension than the original crack, potentially leading to higher storage and computational 
costs. 

 

 
Figure 3.25  A simple description of LSM and FMM, including the original front 
projected on the xy plane and the level set function as the intersection of surface and xy 
plane.  

 
 
3.8.1.1  Definition of the level set function 

 
Consider a domain Ω  divided into two non-overlapping subdomains, 1Ω and 2Ω , sharing 
an interface Γ, as illustrated in Fig. 3.26. The level set function )(xφ  is defined as: 
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Figure 3.26  Definition of the level set function. 
 
An interpretation of Eq. (3.112) is that the interface Γ can be regarded as the zero level 
contour of the level set function )(xφ . 

One of the common choices for the level set function, )(xφ , can then be simply defined 
in terms of the signed distance function: 
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where d  is the normal distance from a point x to the interface Γ. Note that the signed 
distance function satisfies the unity property: 
 

1)( =∇ xφ  (3.114) 
 

Using the definition of the Heaviside function, )(ξH , 
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domains 1Ω and 2Ω can then be defined as 
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or in a more appropriate form 
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The normal vector n to the interface Γ  at a point Γ∈x can then be defined as: 
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For the special case of 1)( =∇ xφ , 
 

)(xn φ∇=  (3.119) 
 

Discretization of the level set allows for the evaluation of the level set at the element 
level based on the nodal level set values )( jj xφφ =  and known finite element shape 
functions )(xjN : 
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This is practically an important concept for implicitly defining the level set function for 

describing a general solid shape. This simple procedure of defining the level set function 
can also be extended to other meshless methods and even other arbitrary distributions of 
points, providing that the value of the level set function at each point is known. Convex 
and concave boundaries, cracks, holes and multiple surfaces can be similarly prepared 
(Sukumar et al. 2001).  

Another major advantage of this approximation is that it avoids the necessity for 
derivatives of the level set function at nodal points by expressing it in terms of derivatives 
of the finite element shape functions: 
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3.8.1.2  Other types of level sets 

 
The signed distance function is perhaps the most favourite type of level set function. 
However, there are other types, such as circular, elliptical and polygonal functions. The 
circular level set function can be defined as (Sukumar et al. 2001): 
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where jΩ is the domain of the jth void, cn is the number of circular holes, and j

cx is the 
location of the centre of the jth circular hole with radius j

cr .  
The elliptical level set function can be expressed as (Sukumar et al. 2001): 

 

Trim added in PDF - Aptara



102  Extended Finite Element Method 

 

 

{ { })(min)(
,...,1

j

nj
i f

c

ξφ
=

=x  (3.123) 

 
where )( jf ξ is the equation of ellipse j in the local coordinate system, 
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where jj ba , are the semi-major and semi-minor axes of ellipse with centre j

cx , 
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Finally, the polygonal level set function takes the form of a polygon (Sukumar et al. 
2001): 
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where minx is the orthogonal projection of x on the interface Γ and minn is its associated 
normal to the interface. The polygonal interface Γ consists of p segments pΓ : 
 

i
p
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3.8.1.3  Evolving surfaces 

 
In the case of a moving surface, its position is no longer known a priori. From the fact 
that  the level set is zero on the surface, its material time derivative has to vanish: 
 

0
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which can be written in the form of the Hamilton–Jacobi equation of motion: 
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or simply, 
 

0, =+ ii vφφ&  (3.132) 
 
where v is the velocity of the interface. Eq. (3.132) can be transformed into a more 
appropriate incremental form using a first-order time integration scheme within a time 
step t∆ : 
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This, however, is unlikely to be appropriate for crack propagation analyses, as the crack 
speed is not generally known. 

 
 
3.8.1.4  Level sets for a crack 

 
One of the main difficulties in the application of the level set method to crack problems is 
constraining the evolution of the signed distance function while the crack propagates so 
that the existing crack surface remains frozen. Since level sets are generally updated by 
the integration of the Hamilton–Jacobi equation, special techniques have to be adopted for 
cracks so the level sets describing the existing crack are not modified (Ventura et al. 
2003). Another reason for a new approach may be attributed to this fact that the level set 
functions are not updated with the speed of an interface in the direction normal to itself 
but with the speed at the crack fronts. 

A different approach proposed by Ventura et al. (2003) is based on the vector level set 
formulation and avoids the difficulty mentioned above. In this method, the level set is 
only defined on a narrow band around the crack and the evolution of the level set function 
does not alter the previously formed crack. The method takes into consideration the effect 
of new points having a geometric closest point projection onto a segment when a crack 
advances. A simple updating procedure will then allow for the inclusion of advancing 
cracks. 

The previous definition of the level set for closed interfaces must be modified or altered 
if it is to be used for an open curve such as a crack. One level set φ is not generally 
sufficient to describe the crack, and another level setψ  at the crack tip is required. A one- 
dimensional crack growth in a level set framework is modelled by representing the crack 
as the zero level set of a function ),( txψ . An endpoint of the crack is represented as the 
intersection of the zero level set of ),( txψ  with a zero level set of the function ),( tk xφ , 
where k is the number of tips on a given crack. The crack tip level set ψ is generally 
assumed to be orthogonal to φ  
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0,, =iiψφ  (3.134) 

 
The values of the level set functions are stored only at the nodes. The functions can be 
interpolated over the mesh by the same finite element shape functions (Stolarska and 
Chopp 2003), 
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An important consideration is that although the actual crack is embedded inside a domain, 
the zero level set of ψ cuts through the entire domain. It is also assumed that once a part 
of a crack has formed, that part will no longer change shape or move. 

Crack growth is modelled by appropriately updating the kφ and ψ functions, then 
reconstructing the updated φ function. The evolution of kφ and ψ is determined by the 
crack growth directionθ . In each step, the displacement of the crack tip is given by the 
prescribed velocity vector ),( yx vvv = , which is always normal to the interface. The 
following steps describe the simple procedure of evolution of the level set functions k

nφ  
and nψ  at the step n (Stolarska and Chopp 2003): 
 
Step 1: Determine the rotated level set of k

nφ : rk ,φ  
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Step 2: Determine 1+nψ  
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Step 3: The updated location of the crack tip can be computed: 
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Step 4: 1+nφ  is updated, if more than one crack tip exists: 
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Step 5: The location of the new crack tip k can now be determined by finding the 
intersection of the zero level sets of k

n 1+φ and 1+nψ . 
 
At a point x , the polar coordinates with respect to the tangent to the crack tip are defined 
as: 
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and 
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3.8.2 Fast marching method 

 
The fast marching method (FMM) was first introduced by Sethian (1996) and later 
improved by Sethian (1999a) and Chopp (2001). FMMs are designed to track a 
propagating interface and to find the first arrival of the interface as it passes a point. They 
are limited to problems in which the speed of propagation is isotropic; the speed function 
never changes sign, so that the front is always moving forward or backward. That speed 
can change from point to point, but there is no preferred direction. This allows the 
problem to be converted into a stationary formulation, which provides a tremendous 
speed. This is in contrast to level set methods that are designed for problems in which the 
speed function can be positive in some places and negative in others. As a result, the front 
may move forwards and backwards. 

At first glance, it seems, surprisingly, that FMM transforms the problem of a moving 
boundary into a new non-moving problem. To illustrate the procedure, consider a 
structured background grid for a closed curve initial disturbance model propagating 
outwards, as depicted in Fig. 3.25, and suppose that somebody is standing at each grid 
point x to measure the time, )(xt , for the front to cross that point. The function )(xt gives 
a cone-shaped surface that has the property of intersecting the xy plane exactly where the 
curve was initially placed. Also, at any height )(xt , the surface gives the set of points to 
which the curve has reached at time t (Sethian 2006). 

FMM is closely related to Dijkstra's method, which is a well known method for 
computing the shortest path on a network of weighted graph edges and nodes. To explain 
the approach, consider a network in which a different cost has been assigned for reaching 
each node. In an optimal control, the cost of reaching a point depends on both where the 
present standing point is and the direction of movement.  

Here, the basic idea is briefly explained. First, the starting point is placed in a set of 
accepted nodes. Grid points which are one link away are considered as neighbour or 
candidate nodes. Then the correct cost of reaching each of these candidates is computed. 
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The node with smallest cost is removed from the set of candidates and added to the set of 
accepted nodes. The procedure continues by computing the cost and adding any new 
candidates that are not already accepted. The process terminates when all points are 
accepted. The algorithm is in fact a systematic ordering procedure for determining the 
cost of reaching points from a known starting point. 

Fast marching methods have many desirable qualities. They do not require any iterative 
procedure and provide the solution in one pass, which allows a systematic ordering update 
of the points so that each point is touched only once. As a result, the method allows for 
very fast computation of order )log( tt nnO , where tn  is the total number of grid points.  

For a set of distributed finite element nodes, the methodology described by Sukumar et 
al. (2003) is followed. Fig. 3.27 illustrates the procedure of nodal classification into three 
non-overlapping sets; the set of accepted nodes aS , whose values of )(xφ (replacing )(xt ) 
have been computed, the set of all candidate (neighbour) nodes cS that are candidates for 
inclusion into the set aS , and the set of all distant nodes dS that are too far from aS  to be 
candidates. The method begins by systematically moving the nodes from the set dS into 
the set cS and consequently into the set aS , and terminates when all nodes are accepted. 

FMM computes the unique crossing time )(xφ for a monotonically advancing front 
when it crosses the point x. Thus )0(1−φ defines the initial position of the front and at any 
later time t , the front can be described by )(1 t−φ . The crossing time is computed by 
solving the following equation, 
 

)(
1)(
xv

x =∇φ  (3.143) 

 
where )(xv is the front speed at the point x. 

 

 
Figure 3.27  Classification of nodes into accepted, candidate (neighbour) and distant 
nodes (Sukumar et al. 2003). 
 

FMM solves Eq. (3.143) by replacing the gradient with suitable upwind operators, and 
then systematically advancing the front by marching outwards from the boundary data. 
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A candidate value for a node x of the set of accepted nodes aS , and each neighbouring 

node aS∉y can be constructed by using the following second-order forward and 
backward finite difference approximations for )( , jix xφ  (Stolarska and Chopp 2003), 
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where b

xD  and f
xD  denote the backward and forward finite difference operators, 

respectively, 
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In order to compute ji,φ with a1,,1 , Sjiji ∈+− xx , the following quadratic equation should 

be solved: 
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The procedure begins by taking the node cS∈x with the smallest value for )(xφ  and 

moving it from the set cS into aS . Then, each node y adjacent to the node x is updated 

Trim added in PDF - Aptara



108  Extended Finite Element Method 

 

according to Eq. (3.150). If dS∈y , it is moved from dS to cS . For further details see 
Sukumar et al. (2003). 

 
 
3.8.3  Ordered upwind method 

 
In FMM, the solution is systematically updated from known values to unknown spots. At 
each step, one exploits the fact that the gradient of the front is in the direction from which 
information must come.  

This, however, is not true when the speed is not isotropic (Fig. 3.28). If the speed varies 
irregularly and depends on a number of other effects including the direction, then one can 
not assume that information always arrives at a trajectory perpendicular to the evolving 
wave front. 

A possible solution is to keep track of the characteristic directions, defined as the ratio 
between the fastest and slowest speed at each point. Accordingly, the entire Dijkstra 
methodology can be held while modifying it to include anisotropic speeds. This method is 
called the ordered upwind method (OUM). This maintains the procedure of point 
ordering, while systematically computing the solution by relying on previously known 
computed information.  

OUMs have been developed in both semi-Lagrangian and fully Eulerian versions. They 
use partial information about the characteristic directions, obtained by examining the 
anisotropy ratio between fastest and slowest speeds to decouple the large system of 
coupled nonlinear discretized equations, producing one pass algorithms of greatly reduced 
computational efforts of an order )log( tt nnO (Sethian  2001, 2006). 

In order to provide a view on FMM extension by the OUM, a more general form of Eq. 
(3.150), which accounts for the change in direction, takes the following form (Sukumar et 
al. 2003a): 

 
 

 
 
Figure 3.28  Isotropic expanding waves are always circular, even if they are different in 
size. In contrast, anisotropic evolving waves are irregularly shaped. 
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Similar methodology has been reported as part of the fast marching method by a 

number of references. For further details on the fast marching and ordered upwind 
methods see Sukumar et al. (2003a) and Sethian (2001, 2006). 

 
 
 
3.9  NUMERICAL SIMULATIONS 

 
In this section a number of classical examples of fracture mechanics are simulated by 
XFEM. For comparing results, stress intensity factors (SIFs) are calculated based on the 
equivalent domain integral method. They include: 
 

1. A tensile plate with a central crack. 
2. A double edge crack in a tensile plate. 
3. A double internal collinear crack. 
4. A central crack in an infinite plate. 
5. An edge crack in a finite tensile plate. 

 
In all examples, simulated by Ebrahimi (2007), the normalised stress intensity factors 

defined as )/(II aKK πσ= are computed and compared to assess the performance of 
XFEM simulations. Further examination of XFEM performance will be provided in 
Chapters 4 and 5 for orthotropic and cohesive crack problems. 

 
 

3.9.1 A tensile plate with a central crack 
 
In order to verify the proposed approach, first a classical isotropic rectangular plate with a 
central crack is considered (Fig. 3.29a). The tensile plate is discretized by a structured 
finite element mesh. Different meshes of quadrilateral finite elements ( 5024×  and 

9048× elements) are used to assess the accuracy of results. 
Fig. 3.30a shows the crack tip and Heaviside enrichment nodes. Elements that are fully 

cut by a crack are enriched by the Heaviside enrichment, whereas elements containing a 
crack tip are enriched by the crack tip enrichment functions. Element matrices are 
integrated over the set of Gauss points, as depicted in Fig. 3.30b.  
 

Trim added in PDF - Aptara



110  Extended Finite Element Method 

 

 
Figure 3.29  Geometry of the tensile plate with a central crack. 
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Figure 3.30  Selection of enrichment and position of Gauss points around the central 
crack. 
 

Table 3.1 compares the normalised stress intensity factors for various meshes as well as 
different ratios of crack length a to plate width b. Computed errors show a close 
agreement between the numerical results and the exact solution, according to Irwin’s 
classical solution.  
 
Table 3.1  Normalised values of stress intensity factors. 

Mesh 5024×  Mesh 9048×  
ba /  

Irwin 
IK IK  Error (%) IK  Error (%) 

1/8 1.040 1.033 0.72 1.035 0.56 
1/6 1.075 1.066 0.78 1.069 0.59 
1/4 1.189 1.180 0.81 1.183 0.56 

 
 

3.9.2  Double edge cracks 
 
The second example is another classical problem of fracture mechanics. A double edge 
crack plate is subjected to tensile stresses, as depicted in Fig. 3.29b. Three different crack 
to width ratios are analysed and the normalised stress intensity factor is calculated for two 
different finite element discretizations ( 5024×  and 9048× elements). They are compared 
to the classical solutions by Irwin, as illustrated in Table 3.2. 
 
Table 3.2  Normalised values of stress intensity factors. 

Mesh 5024×  Mesh 9048×  
ba /  

Irwin 
IK IK  Error (%) IK  Error (%) 

1/8 1.129 1.103 2.34 1.108 1.90 
1/6 1.130 1.112 1.60 1.116 1.29 
1/4 1.170 1.163 0.59 1.166 0.30 
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Contours of xxσ and yyσ are shown in Fig. 3.31. In both cases, a stress concentration is 
observed around the crack tip. This is unlikely to be obtainable by similar finite elements 
with conventional formulation. 

  
a) xxσ  b) yyσ  

Figure 3.31 Contours of stress distribution.  
 

 
3.9.3  Double internal collinear cracks 

 
A double internal collinear crack within an infinite tensile plate is considered (Fig. 3.29c). 
The same 7070×  finite element mesh is used to analyse different crack geometries 
( sa / ratios). Fig. 3.32 compares xσ and yσ stress contours for three different sa / ratios. 

To investigate the effect of the mesh size on the solution, the 2/ =sa  case is analysed 
by two different mesh sizes, 7070×  and 120120× . Table 3.3 compares the normalised 
stress intensity factors for all four analyses. It can be clearly seen that the difference 
between the two meshes does not constitute a large error. This is an indication of the 
capability of the XFEM for calculation of different crack geometry problems with a single 
relatively coarse finite element mesh. 
 
Table 3.3  Normalised values of stress intensity factors 

Domain and crack IK  

a s b L 
Mesh Outer 

tip 
Inner 

tip 
Average Exact 

Error 
(%) 

1 2.0 3.0 10 7070×  0.722 0.727 0.725 0.743 2.4 
1 1.0 2.0 10 7070×  0.738 0.750 0.744 0.800 6.8 
1 0.5 1.5 10 7070×  0.754 0.801 0.777 0.910 14.5 
1 0.5 1.5 10 120120×  0.755 0.800 0.777 0.910 14.6 
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a) xxσ for 5.0/ =sa  b) yyσ  for 5.0/ =sa  

 
 

c) xxσ  for 1/ =sa  d) yyσ  for 1/ =sa  

  
e) xxσ  for 2/ =sa  f) yyσ  for 2/ =sa  

 
Figure 3.32  Stress distribution contours for different sa / ratios. 
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3.9.4  A central crack in an infinite plate 

 
This test illustrates a different approach for analysis of an infinite plate. The exact 
elasticity solution is used as an input imposed displacement field on the boundaries of a 
finite plate to resemble an infinite plate with a central crack. Only half of the plate is 
modelled due to symmetry, as illustrated in Fig. 3.29d. Two different finite element 
meshes including 4040×  and 8080× elements are used to assess the accuracy of results. 

Fig. 3.33 illustrates the contours used for evaluation of the J integral for the two 
different finite element meshes.  
 

 
Figure 3.33  Contour domains for evaluation of the J integral on each crack tip. 

 
Fig. 3.34 compares the exact deformed shape with the XFEM evaluation on a 30 times 

magnified shape for better illustration of the differences around the crack. 
 

 
Figure 3.34  Comparison of the exact and predicted deformed shapes of the plate 
(magnified by 30). 
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Table 3.4 compares the normalised stress intensity factors for various meshes, as well 

as different ratios of crack length a to plate width b. It can be concluded that the accuracy 
of the results remains unaltered with the change in the crack length. It can be attributed to 
the imposition of the accurate boundary conditions, which avoids the dependency of the 
solution to the dimensions selected for modelling an infinite plate.   
 
Table 3.4  Normalised values of stress intensity factors 

Mesh 4040×  Mesh 8080×  
ba / 

IK  Error (%) IK  Error (%) 
1/10 17.281 2.5 17.242 2.6 
1/20 17.281 2.5 17.242 2.6 

 
 

3.9.5  An edge crack in a finite plate 
 
The final test in this chapter is a finite tensile plate with an edge crack, as depicted in Fig. 
3.29e. Fig. 3.35 illustrates the deformed shape of the plate. A magnification factor of 20 is 
used to enable a clear description of how the model performs around the crack. 
 

 
Figure 3.35  Deformed shape of the plate (magnified by 20). 

 
Table 3.5 compares the normalised stress intensity factors for various meshes as well as 
different ratios of crack length a to plate width b. Computed errors show a close 
agreement between the numerical results and the exact solution according to Irwin’s 
classical solution.  

Distribution of the stress components in two cartesian coordinates, xxσ and yyσ , are 
illustrated in Fig. 3.36.  
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Table 3.5  Normalised values of stress intensity factors for various discretization and 
crack sizes 

Mesh 4020×  Mesh 8040×  
ba /  

Irwin 
IK  IK  Error (%) IK  Error (%) 

0.30 1.660 1.630 1.83 1.646 0.86 
0.45 2.420 2.362 2.41 2.396 0.99 
0.60 4.027 3.876 3.75 3.961 1.65 

 
 
 

  
a) xxσ  b) yyσ  

Figure 3.36  xxσ and yyσ stress contours.  
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Chapter 4 
 

XFEM for Orthotropic Problems 
 
 
 
 
 
 
 
 
 
4.1  INTRODUCTION  

 
Orthotropic materials such as composites are widely used in different branches of 
engineering and structural systems like those in aerospace and automobile industries, 
power plants, etc. Since the ratio of strength to weight and stiffness of such materials in 
many cases is higher than other conventional engineering materials, applications of these 
orthotropic materials have been widely expanded. Generally, composite materials are 
utilised in thin shell forms, which are very defect susceptible. A major type of defect that 
is most likely to take place in these structures is cracking. Cracks can be initiated under 
different circumstances, such as initial weakness in material strength, fatigue, yielding and 
imperfection in production procedure. As a result, properties related to fracture mechanics 
of these types of material are highly prominent; reviving greatly the research efforts in 
this area. 

Several analytical investigations have been reported on the fracture behaviour of 
composite materials such as the pioneering one by Muskelishvili (1953) dealing with 
isotropic elastic material, Sih et al. (1965),  Tupholme (1974), Viola et al. (1989) and 
more recently Lim et al. (2001). Bogy (1972), Bowie and Freese (1972), Barnett and 
Asaro (1972) and Kuo and Bogy (1974) have worked on finding the stress and 
displacement fields around a linear crack in an anisotropic medium. More advanced 
contributions can be found in Carloni and Nobile (2002), Carloni et al. (2003) and Nobile 
and Carloni (2005). 

Also, there are many numerical methods available for analysing orthotropic composites 
such as the boundary element method (BEM) (Cruse 1988), the finite element method 
(FEM) (Swenson and Ingraffea 1988), the finite difference method (FDM), and meshless 
methods such as the element-free Galerkin method (Belytschlo et al. 1994). Boundary 
element methods, regardless of all the benefits, are barely capable of being employed in 
nonlinear systems; furthermore, the majority of meshless methods are not sufficiently 
versatile to deal with arbitrary boundary conditions and geometries. In contrast, the finite 
element method is capable of analysis of nonlinear systems and can be easily adapted to 
general boundary conditions and complex geometries. Therefore, its extension to XFEM 
allows for new capabilities while preserving the finite element original advantages. 
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The development of XFEM has substantially contributed to new studies of fracture 

analysis of various types of composite materials. Dolbow and Nadeau (2002) and Dolbow 
and Gosz (2002) employed the extended finite element method to simulate fracture 
behaviour of microstructred materials, alleviating the need to remesh the domain between 
different microstructural realisations. They addressed some fundamental theoretical and 
numerical issues concerning the application of effective properties for the failure analysis 
of microstructured materials, with a focus on functionally graded materials. 

In a related contribution by Remmers et al. (2003), a partition of unity finite element 
was presented for the simulation of delamination growth in thin layered composite 
structures. The delamination crack was incorporated in the element as a jump in the 
displacement field. Similar studies were performed by Nagashima and Suemasu (2004) 
who applied the extended finite element method to composites. 

Development of orthotropic crack tip enrichment functions was reported in a series of 
papers by Asadpoure et al. (2006, 2007), Asadpoure and Mohammadi (2007) and 
Mohammadi and Asadpoure (2006). They developed three different sets of enrichment 
functions for various types of composites based on the analytical solutions recently 
developed for fracture analysis of anisotropic composites by Carloni and Nobile (2002), 
Carloni et al. (2003) and Nobile and Carloni (2005). 

Recently, Piva et al. (2005) further extended the orthotropic crack tip solutions to 
elastodynamic problems. It is, therefore, expected that new dynamic orthotropic 
enrichment functions can be developed using the same methodology of elastic orthotropic 
enrichment functions. 

This chapter begins with a review on anisotropic and orthotropic elasticity. It is 
followed by a comprehensive discussion on near crack tip fields for orthotropic materials, 
as a means of developing the necessary enrichment functions for the XFEM formulation, 
which will be briefly discussed in a separate section. Finally, a number of numerical 
simulations are provided to illustrate the validity, robustness and efficiency of the 
proposed approach for evaluation of mixed mode stress intensity factors and J integrals in 
composites and other orthotropic structures. 
 
 

4.2  ANISOTROPIC ELASTICITY 
 

4.2.1   Elasticity solution 
 
The general form of an anisotropic stress–strain relationship can be defined as: 
 

Dεσ =  (4.1) 
 
or 
  

Cσε =  (4.2) 
 
where D and C are anisotropic material stiffness and compliance matrices, respectively. 
Eq. (4.2) can also be written in a component form, 
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6,,3,2,1, K== jic jiji σε  (4.3) 

 
which only requires 36 independent constants ijc due to symmetry properties. 

For an orthotropic material which has three mutually orthogonal planes of elastic 
symmetry, Eq. (4.3) is reduced to: 
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and there remain only 5 independent constants for a transversely isotropic material, 
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Eqs. (4.4) and (4.5) are valid for arbitrarily selected coordinate systems. Further 

simplification is obtained if Eq. (4.4) is written for the principal directions of orthotropy: 
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with the following additional relations to keep the number of independent constants 
unchanged: 
 

122211 νν EE =  (4.7) 
 

233322 νν EE =  (4.8) 
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311133 νν EE =  (4.9) 

 
 

4.2.2 Anisotropic stress functions 
 
The Airy stress function is limited to isotropic problems. For an extension to more 
complex problems, including anisotropic problems, the stress function ),( yxΦ can be 
written as 
 

[ ])()(Re2),( 2211 zzyx Φ+Φ=Φ  (4.10) 
 
where )( 11 zΦ and )( 22 zΦ are arbitrary functions of ysxz 11 +=  and ysxz 22 += , 
respectively. Combining the definition of stress components from the Airy stress function 
and satisfying the compatibility equation, the following relation is obtained for anisotropic 
solids in absence of body forces: 
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which reduces to the following simplified equation for isotropic problems, 
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The characteristic equation of the homogenous partial differential equation (4.11) is 
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Lekhnitski (1968) discussed the availability and conditions for the roots of Eq. (4.13). 

Here, only the two isotropic and orthotropic cases are considered. For an isotropic case, 
the roots are iss == 21 and iss −== 21 , whereas for an orthotropic material with axes of 
orthotropy )2,1(  coinciding cartesian ),( yx axes, 02616 == cc , the characteristic Eq. (4.13) 
is reduced to:  
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 (4.14) 

 
Finally, the stress components are defined from the second derivatives of the complex 

stress function iΦ ′′ : 
 

[ ])()(Re2 22
2
211

2
1 zszsx Φ′′+Φ′′=σ  (4.15) 

 
[ ])()(Re2 2211 zzy Φ′′+Φ′′=σ  (4.16) 
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[ ])()(Re2 222111 zszsxy Φ′′+Φ′′−=σ  (4.17) 

 
and the displacements are obtained from the first derivatives of the complex stress 
function, iΦ′ : 
 

[ ])()(Re2 222111 zpzpux Φ′+Φ′=  (4.18) 

 
[ ])()(Re2 222111 zqzquy Φ′+Φ′=  (4.19) 

 
where 
 

2,11612
2

11 =−+= isccscp iii  (4.20) 
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22
12 =−+= ic

s
cscq

i
ii  (4.21) 

 
 

4.2.3  Orthotropic mixed mode problems 
 
Saouma et al. (1987) extended the original isotropic maximum circumferential tensile 
stress theory to anisotropic solids.  

In this case, the fracture toughness is no longer uniquely defined. Instead, two values of 
1
IcK and 2

IcK are required for characterizing the brittle behaviour of the crack in a 
homogenous transversely isotropic solid with elastic constants 1E , 2E , and 12µ  (Fig. 4.1). 

 
 

 
 
Figure 4.1 Fracture toughness for a homogeneous anisotropic solid. 
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For a crack arbitrarily oriented with respect to direction 1, θ
IcK would be a function of 

1
IcK and 2

IcK : 
 

θθθ 22
Ic

21
IcIc sincos KKK +=  (4.22) 

 
In order to avoid performing two separate fracture toughness tests, it is assumed that the 

ratio of the fracture toughness in both directions is equal to the ratio of the elastic modulus 
(Saouma et al. 1987): 
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EKK =  (4.23) 

 
The crack propagation is assumed to be along the direction of the maximum tangential 

stress θσ , while the shear stress is zero: 
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where  
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The angle of crack propagation θ ′  is found by maximizing: 
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 (4.27) 

 
The estimated angleθ ′ has to be checked against the following condition:  
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4.2.4  Energy release rate and stress intensity factor for anisotropic materials 
 
Sih et al. (1965) extended Eqs. (2.159)–(2.160) for anisotropic materials: 
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4.2.5  Anisotropic singular elements 
 
The same idea of singular quarter point finite elements can be extended to anisotropic 
problems. Saouma et al. (1987) proposed the following procedure for anisotropic 
materials in the form of: 
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where ju~ is the transformed displacement obtained from the displacements of those nodes 
along the crack in the singular quarter point element, as shown in Fig. 4.2: 
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and the matrix Q is obtained from the analytical solution to the displacements around the 
crack tip in homogeneous anisotropic solids (Saouma et al. 1987): 
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where ip and iq are defined in Eqs. (4.20) and (4.21), respectively, is are the roots of the 
characteristic equation (4.13) and α is determined from the size of the singular element 
and the elasticity parameters (Saouma et al. 1987). 

It should be noted, however, that the problem is very complex and requires a number of 
different finite element models to verify the model and to assess the accuracy of the 
results. 
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Figure 4.2 Displacement field around the crack tip. 
 
 

4.3   ANALYTICAL SOLUTIONS FOR NEAR CRACK TIP 
 

In the extended finite element method, near tip displacement fields are required to derive 
a basis for enrichment functions. Several analytical solutions for near crack tip fields in 
orthotropic materials have been proposed. Some of them can only be applied to specific 
applications, while others can be applied to general orthotropic media. In this section, 
three methods are discussed. The first two are each dedicated to a specific class of 
orthotropic materials, while the third approach can be used for all orthotropic problems. 
 
 

4.3.1  Near crack tip displacement field (class I) 
 
In this section, the analytical displacement fields derived by Carloni and Nobile (2002), 
Carloni et al. (2003) and Nobile and Carloni (2005) are discussed. 

Consider a crack in an orthotropic medium with axes of elastic symmetry coincident 
with the cartesian coordinates axes ( xx =1 , yx =2 ) and the orthotropic body is subjected 
to a uniform biaxial load ( 0σ and 0σk ) at infinity, applied along X  and Y  directions, 
respectively (Fig. 4.3). The stress–strain equations can be defined as: 
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Figure 4.3  Crack positioning and implied stresses. 
 
 
where )6,2,1,( =jicij are the relevant components of the compliance matrix of the 
material in 1x , 2x directions. The set of equations for an inplane elastostatic problem can 
be expressed as: 
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Following the methodology proposed by Viola et al. (1989), a transformation is applied 

in order to express the formulation in terms of complex functions, 
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and 
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Eigenvalues λ of the matrix Λ  can be obtained by  
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with 
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212 αα=a  (4.44) 

 
Two types of orthotropic materials can be defined based on the existence of the real 

part of the solution: 21 aa > (type I) and 21 aa < (type II). Only the first type is 
considered in this section. The second type will be dealt with in the next section. 

According to Carloni and Nobile (2002), Carloni et al. (2003), Nobile and Carloni 
(2005) and Asadpoure (2006) and with reference to Fig. 4.3, the displacement field can be 
written as: 
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where 1m , 2m , 3m and 4m  are coefficients related to material properties, defined in 
(Carloni et al. 2003), and:  
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(4.48) 

and 
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where r  and θ are the polar coordinates and 1x and 2x are the cartesian coordinates in 
the local coordinate system at each crack tip (see Fig. 4.4). 

 
Figure 4.4  Local coordinates at both crack tips. 
 

To extract near tip functions it is noted that these functions must span the displacement 
fields in Eqs. (4.45) and (4.46); therefore (Asadpoure et al. 2007): 
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According to Eq. (4.51), the first two terms are continuous across the crack faces while 

the remaining ones are discontinuous. It is important to note that the enrichment functions 
(4.51) can not be directly adopted for isotropic problems because Eqs. (4.45)–(4.46) 
become indefinite (0/0) expressions. The mathematical solution for the limiting isotopic 
case leads to similar results as those defined in Eq. (3.27): 
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4.3.2  Near crack tip displacement field (class II) 
 
The same problem with the condition of 21 aa <  is now considered (type II). An 
infinite orthotropic plate, consisting of a traction free line crack, is subjected to uniform 
biaxial ( 0σ  and 0σk ) and shear ( 0τ ) loads at infinity. Fig. 4.5 shows the crack geometry, 
loading conditions and the cartesian and polar coordinates utilised in this section. 
 

 
Figure 4.5  Crack geometry, loading condition and global and local coordinates. 
 

The following complex variables are defined: 
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where 
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Viola et al. (1989) explained the procedure of obtaining the complex variables and 

functions. Neglecting the velocity of the crack propagation for the present static case, the 
basic solution proposed by Viola et al. (1989) results in the following displacement fields 
in the x and y directions, 
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with (for the definition of 1β see Eq. (4.41)) 
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( ) ( ) 2211211212212115 XBXBAYBBAh γγγγγγ −++−−=  (4.62) 
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and the main contributing terms 
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It is noted that the displacement fields in Eqs. (4.57)–(4.58) are only valid for 1/ <ar ; 
near the crack tip and they should not be used elsewhere. 

The analytical solution for displacement in the vicinity of the crack tip can be used to 
derive the crack tip enrichment functions which must span the possible displacement 
space that may have occurred in the analytical solution. Therefore, from Eqs. (4.57)– 
(4.58), the orthotropic enrichment functions can be defined as (Asadpoure et al. 2006): 
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4.3.3  Unified near crack tip displacement field (both classes) 
 
In this section, a unified formulation is adopted to include both classes of orthotropic 
materials within a unified approach.  

This formulation is based on the work by Sih et al. (1965) who used the stress function 
(4.10) for an infinite anisotropic plate with a central crack and solved the final 
displacement fields. 

Assume an anisotropic body containing a crack is subjected to arbitrary forces with 
general displacement and traction boundary conditions. Global cartesian coordinates are 

),( 21 XX  and local cartesian coordinate ),( 21 yxxx ==  and local polar coordinate ),( θr  
are defined on the crack tip as illustrated in Fig. 4.4. Recalling the characteristic equation 
(4.13) of the governing fourth-order partial differential equation (Lekhnitskii 1968)  
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According to Lekhnitskii (1968), the roots of Eq. (4.77) are always complex or purely 

imaginary ( 2,1, =+= kisss kykxk ) and occur in conjugate pairs as 1s , 1s  and 2s , 2s . 
Sih et al. (1965) derived the two-dimensional displacement and stress fields in the 

vicinity of the crack tip by means of analytical functions and complex variables, 
2,1, =+= kysxz kk . The stress components for pure mode I are defined as, 
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and in the same way, for pure mode II (skew-symmetric loading), the stress and 
displacement fields are defined as: 
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The following equations can also be simply derived for mode III: 
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where IK , IIK and IIIK  are stress intensity factors for modes I, II and III, respectively, and 

kp and kq  are defined in Eqs. (4.20) and (4.21). 
In order to extract crack tip enrichment functions, Eqs. (4.81), (4.82), (4.87) and (4.88) 

are transformed into a simpler form by introducing two auxiliary complex variables in 
polar forms (Asadpoure and Mohammadi 2007) 
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The imaginary and real parts of the main field of Eqs. (4.81), (4.82), (4.87) and (4.88) 

can be written as: 
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Eqs. (4.81), (4.82), (4.87), (4.88), (4.97) and (4.98) are used to extract crack tip 
enrichment functions (Asadpoure and Mohammadi 2007) as they should include all 
possible displacement states: 
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Eq. (4.99) is in a similar form as those presented in Asadpoure et al. (2006, 2007). 

However, functions kθ and )(θkg defined in Eqs. (4.95) and (4.96), have different 
definitions for different classes of composites. For the first class, Eqs. (4.45), (4.46), 
(4.49) and (4.50), define the first category 21 aa >  (Asadpoure et al. 2007) 

 

2,1sincos)(
2
1

2

2
2 =⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= j

e
g

j
j

θθθ  (4.100) 

Trim added in PDF - Aptara



134  Extended Finite Element Method  

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

jj
j exe

y θθ tanarctanarctan  (4.101) 

 
while 21 aa <  represents the second branch (Asadpoure et al. 2006) based on Eq. 
(4.70),  
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The present formulation is capable of spanning the whole range of orthotropic media in 

a single unique formulation, Eq. (4.99). 
 
 
4.4   ANISOTROPIC XFEM 

 
The general methodology of isotropic extended finite element can be similarly extended 
to include anisotropic problems, if anisotropic enrichment functions are embedded into an 
anisotropic finite element procedure. Generalised Heaviside and near crack tip anisotropic 
enrichment functions are included as an extra few degrees of freedom in addition to the 
classical finite element model in selected nodes near the discontinuities. 

 
 
4.4.1  Governing equation 

 
The strong form of the equilibrium equation can be written as: 
 

Ω=+∇ in 0. bfσ  (4.104) 
 
with the following boundary conditions: 
 

t
t on Γ=⋅ fnσ : external traction (4.105) 

 
uon Γ= uu : prescribed displacement (4.106) 

 
con 0 Γ=⋅nσ : traction free crack (4.107) 

 
where  tΓ , uΓ and  cΓ are traction, displacement and crack boundaries, respectively, σ  is 
the stress tensor and bf and tf are the body force and external traction vectors, 
respectively (Fig. 3.20).  

The variational formulation of the boundary value problem can be defined as: 
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extint WW =  (4.108) 

 
or 
 

∫∫∫ ΓΩΩ
Γ⋅+Ω⋅=Ω⋅ ddd tb ufufεσ δδδ  (4.109) 

 
 
4.4.2  XFEM discretization 

 
Consider a body in the state of equilibrium with the boundary conditions in the form of 
traction and displacements that also include a crack, as depicted in Fig. 4.6.  
 

 
Figure 4.6 A crack within an orthotropic domain. 
 

 
In the extended finite element method, in order to include the effects of crack surfaces 

and crack tips, the approximation (3.72) is utilised to calculate the displacement for point 
x locating within the domain (Moës et al. 1999) 
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where m is the set of nodes that have crack face (but not crack tip) in their support 
domain, while 1mt and 2mt  are the set of nodes associated with crack tips 1 and 2 in 
their influence domain, respectively; ju are the nodal displacements (standard degrees of 
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freedom); ha , 1
kb and 2

kb  are vectors of additional degrees of nodal freedom for 
modelling crack  faces and the two crack tips, respectively. 2,1),( =iF i

l x represent 
mf crack tip enrichment functions and H(x) is the generalised Heaviside function. 

The first term on the right-hand side of Eq. (4.110) is the classical finite element 
approximation to determine the displacement field, while the remaining terms are the 
enrichment approximation in order to take into account the existence of any 
discontinuities. They utilise additional degrees of freedom to facilitate modelling the 
existence of any discontinuous field, such as a crack, without modelling it explicitly in the 
finite element mesh. 

Discretization of Eq. (4.109) using the XFEM procedure (4.110) results in a discrete 
system of linear equilibrium equations: 

 
fKu =h  (4.111) 

 
where K  is the stiffness matrix, hu is the vector of degrees of nodal freedom (for both 
classical and enriched ones) and f  is the vector of external force. The global matrix and 
vectors are calculated by assembling matrices and vectors of each element. For each 
element, K  and f  are defined as: 
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and hu is the vector of nodal parameters: 
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where uBi , aBi and bBi are derivatives of shape functions defined in Eqs. (3.88), (3.89) and 
(3.90), respectively. 
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Crack tip enrichment functions are obtained from the analytical solution for 

displacement in the vicinity of the crack tip, Eqs. (4.51), (4.76) and (4.99): 
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Eq. (4.119) can not be directly used in isotropic media because it may lead to indefinite 

( 0/0 ) expressions (Mohammadi and Asadpoure 2006). A straightforward remedy is to 
apply the original isotropic enrichment functions (3.100)  
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4.4.3  SIF calculations  

 
The stress intensity factor (SIF) is one of the important parameters representing fracture 
properties of a crack tip. Here, the domain integral method proposed by Kim and Paulino 
(2002) is adopted for evaluating the mixed mode stress intensity factors in homogenous 
orthotropic media. 

Fig. 4.7 shows an arbitrary area surrounding a crack tip. The standard path independent 
J integral for the cracked body is defined as (Rice and Rosengren 1968): 
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where jn is the jth component of the outward unit normal to Γ, j1δ  is Kronecker delta, 

sW is the strain energy density for linear elastic material, and Γ  is an arbitrary contour 
around the crack tip which encloses no other cracks or discontinuities. 

Eq. (4.121) is not well suited for the finite element solutions, and an equivalent form of 
the J integral can be obtained by exploiting the divergence theorem in the form of the 
domain integral approach (Kim and Paulino 2003) 
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where A  is an area surrounding the crack tip (the interior region of Γ ) and q  is a 
smoothly varying function. Γ  is usually assumed as a circular or rectangular area whose 
centre locates on the crack tip. 

As proposed by Dolbow (1999) and Moёs et al. (1999), a simple function q , varying 
linearly from 1=q  at the crack tip to 0=q  at the exterior boundary Γ, is used in the 
finite element model (Fig. 4.8). Therefore, the elements away from the boundary can be 
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neglected. It is worth noting that the value within the parentheses in Eq. (4.122) is not 
necessary to be evaluated in the area that q  is constant (and so its gradient vanishes). 
From a numerical aspect, in spite of the fact that the stress gradient in elements containing 
a crack tip is usually very high, it is more appropriate to avoid locating the contour on the 
elements including a crack tip (Asadpoure et al. 2007). 

 

 
Figure 4.7  Local crack tip coordinates and the contour Γ and its interior area, A. 

 

 
Figure 4.8  Nodal values for function q. 
 

The method of interaction integral, based on the definition of an auxiliary state, is used 
to extract mixed mode stress intensity factors. Suppose there are two equilibrium states; 
state 1 corresponds to the actual state and state 2 corresponds to an auxiliary state for the 
given problem geometry.  

Auxiliary stress and strain states should be chosen so as to satisfy both the equilibrium 
equation and the traction free boundary condition on the crack surface in the area A. One 
of the choices is the displacement and stress fields in the vicinity of the crack tip provided 
by Sih et al. (1965) and Asadpoure et al. (2007), 
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where superscript aux stands for the auxiliary state, 1s and 2s are crack tip material 
parameters evaluated by solving the characteristic equation of homogenous partial 
differential equation of anisotropic stress function (4.11) (Lekhnitskii 1968) and ip and iq  
are defined in  Eqs. (4.20) and (4.21). 

By combining the actual and auxiliary states for obtaining the J integral, one can write: 
 

MJJJ ++= auxact  (4.128) 
 
where J corresponds to the superposition state, and actJ and auxJ are the actual and 
auxiliary states J integrals, respectively, and: 
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where )(5.0 auxauxM

ijijijijW εσεσ +=  for linear elastic conditions.  
The strain of the auxiliary field could be chosen by either the strain–stress relationship, 

i.e. auxaux
klijklij C σε =  or as the symmetric part of the displacement gradient, 

i.e. )(5.0 aux
,

aux
,

aux
ijjiij uu +=ε ; these are compatible with each other as long as the material is 

homogeneous and ijklC  has one value in the domain. After some manipulations 
(Asadpoure et al. 2007 and Asadpoure and Mohammadi 2007): 

 
( ) aux

IIII22II
aux
I

aux
III12

aux
II11 22 KKtKKKKtKKtM +++=  (4.130) 

 
where 
 

⎟⎟
⎠

⎞
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⎝

⎛ +−=
21

2122
11 Im

2 ss
ssct  (4.131) 

 

( )21
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21

22
12 Im

2
1Im

2
ssc

ss
ct +⎟⎟

⎠

⎞
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⎝

⎛
−=  (4.132) 

 
( )21

11
22 Im

2
ssct +=  (4.133) 

 
The stress intensity factor can then be obtained by considering the two states and 

solving a system of linear algebraic equations. These two states are state 1: 
0;1 aux

II
aux
I == KK  and state 2: 1;0 aux

II
aux
I == KK . By calculating M from both Eqs. 

(4.129) and (4.130) and solving a system of linear algebraic equations, the actual mixed 
mode stress intensity factors associated with state 1 and state 2 are obtained (Asadpoure et 
al. 2007 and Asadpoure and Mohammadi 2007): 

 

12I11
)1( 2 tKtM +=  (4.134) 

 
II22I12

)2( 2 KtKtM +=  (4.135) 
 
 

4.5  NUMERICAL SIMULATIONS 
 
In order to verify performance of the developed anisotropic XFEM approach, several 
examples with initial internal flaws are considered. They are: 
 

1. An orthotropic plate with a crack parallel to one of the principle material 
orthotropic axes subjected to tensile stresses. 
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2. An orthotropic plate with various oblique principle material orthotropic axes 

with an edge crack subjected to tensile stresses. 
3. An orthotropic plate with various oblique edge cracks subjected to tensile 

stresses. 
4. An orthotropic plate with various central oblique cracks subjected to tensile 

stresses. 
5. A circular plate with various oblique cracks subjected to a couple of 

concentrated forces. 
6. A crack between orthotropic and isotropic materials subjected to tensile 

tractions. 
 

All examples are solved with the following independent engineering constants 
( ijE , ijν , ijG , 2,1, =ji ),  

 

2211EEE =  (4.136) 

 
2112ννν =  (4.137) 

 

21

12

22

11
ν
νδ ==

E
E  (4.138) 

 
νκ −=

12
0 2G

E  (4.139) 

 
where E  is the efficient Young’s modulus, ν  is the effective Poisson’s ratio, δ  is the 
stiffness ratio and 0κ  is the shear parameter.  

Stress intensity factors and J integrals are calculated for all examples using the 
proposed XFEM with associated enrichment functions and are compared to other 
available analytical and numerical solutions. Results are presented in terms of the stress 
intensity factors IK and IIK and/or normalised stress intensity factors aKK πσ/II =  
and aKK πσ/IIII = for the applied uniform stress and aEKK πεδ 0

2
II /=  and  

aEKK πεδ 0
2

IIII /=  for fixed-grip loading. 
A quadrature partitioning approach is used for integration over an element, if it contains 

a crack. Any element cut by a crack is numerically partitioned into ten sub-quads to 
accurately calculate the numerical integrals and a 22 × Gauss rule is utilised for 
integrations in each one. Furthermore, a 22 × Gauss rule is applied for other regular finite 
elements without any partitioning. 

Finally, the effect of proposed XFEM enrichment functions is investigated for different 
problems. To simplify the illustrations, the following notations are assumed: 

 
1. XFEM-I: Class I orthotropic materials using the enrichment functions (4.51) 

and (4.49)–(4.50) which are based on the displacement fields (4.45), (4.46) 
(Asadpoure et al. 2007). 
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2. XFEM-II: Class II orthotropic materials using the enrichment functions 

(4.76) and (4.74)–(4.75), which are based on the displacement fields (4.57), 
(4.58) (Asadpoure et al. 2006). 

3. XFEM-III: All classes of orthotropic materials using the enrichment functions 
(4.99) and (4.95)–(4.96) based on the displacement and stress fields (4.78), 
(4.92) (Asadpoure and Mohammadi 2007).  

 
 
4.5.1  Plate with a crack parallel to material axis of orthotropy   

 
A very simple example, a crack aligned along one of the axes of orthotropy in the centre 
of a plate, is investigated. Fig. 4.9a illustrates the geometry and boundary conditions of 
the cracked plate with a fixed-grip loading, which is obtained by a constant tensile 
traction by utilizing a uniform unit stress ( 1=σ ), or a tensile load equivalent to uniform 
unit strain ( 10 =ε ) in the corresponding uncracked plate. The plate is composed of a 
graphite-epoxy material with the following orthotropic properties: 8.1141 =E  GPa, 

7.112 =E  GPa,  66.912 =G GPa, 21.012 =ν . 

 
Figure 4.9  Geometry and boundary conditions for a plate with a crack parallel to material 
axis of orthotropy and the FE model. 
 
 
Table 4.1 Values of the stress intensity factor IK  for a plate with a crack parallel to 
material orthotropic axes 

Method 
Number of 
elements 

DOFs IK  

Reference 2001 11702 1.767 
XFEM-II  2025   4278 1.804 
XFEM-III  2025   4278 1.807 
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The domain is discretized into 2025 quadrilateral finite elements and 2116 nodes (Fig. 

4.9b). The size of the finite elements around the crack tip is set to one-sixteenth of the 
crack length. Stress intensity factors are calculated by XFEM-II (Asadpoure et al. 2006) 
and XFEM-III (Asadpoure and Mohammadi 2007) enrichments, and compared with the 
results provided by Kim and Paulino (2002) using a total of 2001 elements and 5851 
nodes, as given in Table 4.1. 

The mode I stress intensity factor predicted by XFEM-III (Asadpoure and Mohammadi 
2007) is different by about 2.3% from Kim and Paulino's (2002) and 0.2% from the 
XFEM-II (Asadpoure et al. 2006); however, Kim and Paulino (2002) used almost three 
times the present degrees of freedom (DOF). 

Two coarser finite element meshes are used to investigate the effect of the number of 
finite elements on stress intensity factors. According to Table 4.2, even with 4 times the 
reduction in the number of degrees of freedom, the computed SIFs have changed only 
1.5%; illustrating the efficiency of the proposed enrichment approach in crack modelling. 
The results of Table 4.2 are associated to a specific value of c/a where a converged 
solution is obtained. In Fig. 4.10, the rate of convergence of the mode I stress intensity 
factor with respect to the relative integration domain size is illustrated.  
  
Table 4.2  Values of the stress intensity factor IK for a plate with a crack parallel to 
material axis of orthotropy for three different finite meshes 

Mesh 
Number of 
elements 

DOFs c/a IK  

1 2025 4278 0.5 1.807 
2   784 1712 0.5 1.800 
3   400   904 1.5 1.781 
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Figure 4.10  The rate of convergence of the mode I stress intensity factor with respect to 
the relative integration domain size. 
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Table 4.3 compares the computed stress intensity factors for enrichment with and 
without crack tip functions and shows the rate of convergence for various integration 
domain sizes (c). According to Table 4.3, small domain sizes cannot be used without the 
inclusion of crack tip enrichment functions, and in order to compensate for the local 
effects of the crack tip, larger domains should be selected.  

Inclusion of crack tip enrichment functions allows for smaller domain sizes around the 
crack tip, as higher rates of convergence are anticipated. Numerical results show that 
when 5.0/ =ac , the values of SIFs become nearly independent from the domain size 
(Asadpoure et al. 2006). 
 

 
Table 4.3 Comparison of mode I stress intensity factors with and without crack tip 
functions for a plate with a crack parallel to material orthotropic axis 

Relative domain 
size (c/a) IK without crack tip function IK with crack tip function 

0.25 1.804 1.804 
0.50 1.802 1.802 

           1 1.802 1.802 
           2 1.800 1.804 

 
The effect of the number of elements in the numerical analysis is investigated by 

utilizing some coarser meshes. Table 4.4 compares the results for SIFs when isotropic and 
orthotropic enrichment functions are applied. According to Table 4.4, the results are only 
slightly different (0.2%). 
 
 
Table 4.4 Comparison of stress intensity factors for orthotropic and isotropic enrichment 
functions 

IK  
Mesh 

Number of 
elements 

Number 
of 

DOFs 
XFEM-II Isotropic enrichment 

1 2025 4278 1.804 1.810 
2   784 1712 1.803 1.806 
3   400   904 1.802 1.801 

 
 
4.5.2  Edge crack with several orientations of the axes of orthotropy  

 
Consider a rectangular plane stress plate with an edge horizontal crack subjected to a 
tensile distributed load, as depicted in Fig. 4.11a. The width of the plate is one half of its 
height and the length of the crack is one fourth of its height. The plate is composed of a 
graphite-epoxy material with the following orthotropic properties: 8.1141 =E  GPa, 

7.112 =E  GPa, 66.912 =G GPa, 21.012 =ν . Several orientations of material elastic axes 
are studied. 
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Figure 4.11  Geometry and loading of a single edge crack in a rectangular plate with 
several orientations of the axes of orthotropy and the finite element mesh.  
 
 

The finite element model is composed of 1836 four-node elements with 1925 nodes 
(Fig. 4.11b). Forty-two additional degrees of freedom are associated with the enrichment 
part of the approximation. A 22 × Gauss quadrature is adopted for finite elements, while 
a 55× Gauss quadrature is utilised for integration in elements containing Heaviside 
enriched nodes. 

The effects of changing the material elastic angle on mixed mode stress intensity 
factors in the plate are investigated. The relative integration domain size (c/a) is about 
0.12 of the crack's length. Moreover, a study of variations of stress intensity factors for 
different domain sizes has shown that the domain size does not substantially affect the 
value of SIFs. Fig. 4.12 compares the results by XFEM-I (Asadpoure et al. 2007) and 
XFEM-III (Asadpoure and Mohammadi 2007) enrichments with the reference results by 
Aliabadi and Sollero (1998) who performed similar studies on the same problem using the 
boundary element method.   

The results show that the trend of mode I stress intensity factor changes around o45=α . 
It has an increasing trend in the span of o0=α  to o45=α  and then decreases in the span 
of o45=α  to o90=α .  The turning point for the mode II stress intensity factor is about 

o30=α .  
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Figure 4.12  The effect of various inclinations of elastic material axes on the mode I and 
mode II stress intensity factors. 
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4.5.3  Single edge notched tensile specimen with crack inclination 

 
Fig. 4.13 illustrates the geometry of a plate composed of Norway spruce (Picea abies) and 
a crack along one of the material elastic axes that emanates from the edge of the plate. 
Cracks usually propagate either along the wood fibres or perpendicular to them. A tensile 
uniform loading is applied and the analysis is performed in the plane strain state. 

 
 

 
Figure 4.13  Specimen geometry used for mixed mode analysis in a rectangular plate with 
single notched crack. 
 
 

Dimensions of the specimen are cmh 6= , cmb 3= , Poisson’s ratios are 38.0=LRν , 
56.0=LTν  and 4.0=RTν , and elastic modulus are GPa81.0=RE , GPa84.11=LE , 

GPa64.0=TE , GPa63.0=LRG . 
The same finite element model as in the previous example is utilised for all crack 

inclinations; showing the ability of analysing the XFEM for simulation of different crack 
patterns with the same finite element mesh. Mixed mode stress intensity factors are 
computed by both XFEM-I and XFEM-III enrichments and are compared with the similar 
effort made by Jernkvist (2001). The mesh presented by Jernkvist (2001) was focused at 
the crack tip, with 36 rows of elements in circumferential and 10 rows in radial direction, 
respectively. He correlated the mixed mode stress intensity factors to load through a 
simple procedure with six crack inclinations in the range of o0  to o45 .  

A 22 × Gauss quadrature rule is applied to evaluate the stiffness matrix of the classical 
finite element. Sub-quad partitioning is adopted for elements which have enriched nodes, 
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utilising ten sections in both directions and a 22 × Gauss quadrature in each section.  
The results are calculated on the base of converged values within the range of relative 

integration domain size, c/a of about 0.1 to 0.5 of crack length, which correspond to two 
to ten elements far from the crack tip position, respectively. Jernkvist (2001) proposed the 
following expressions to approximate stress intensity factors, based on a correlation 
approach through the usual procedure of identifying displacements of nodal points on the 
crack surfaces close to the crack tip by six crack inclinationsϕ in the range of o0 to o45  
(ϕ in degrees): 

 
( )36243

I 1014.91073.31022.3028.3 ϕϕϕπσ −−− ×−×+×−= aK  (4.140) 

 
( )[ ]ϕϕπσ 3

II 1089.4644.0)2(sin −×+= aK  (4.141) 

 
Table 4.5 shows that XFEM-I computes the mode I and II stress intensity factors 

by a margin of error within 0.2–2.0% and 0–3.6%, respectively. The maximum difference 
between the XFEM-III and Jernkvist (2001) for modes I and II are about 1.2% and 3.2%, 
respectively. It is clearly observed that XFEM-III (Asadpoure and Mohammadi 2007) and 
XFEM-I (Asadpoure et al. 2007) produce only slightly different results. 

The maximum difference between the results of XFEM-III and Jernkvist (2001) for 
both stress intensity factors occurred at the maximum inclination o45=ϕ . The stress 
intensity factor for mode I has a maximum when crack inclination is about o30 ; then, it 
decreases to lower values. In contrast, the values of IIK  continue increasing from o0=ϕ  
to o45=ϕ .  

Fig. 4.14 illustrates the rate of convergence of the stress intensity factor for various 
relative integration domain sizes, c/a. It is found that the rate of convergence of XFEM-III 
is slightly higher than XFEM-I. 

Fig. 4.15 illustrates the effect of the number of sub-quad partitioning in each element  
(ns) for an inclined crack o30=ϕ . It shows that the converged values for stress intensity 
factors for each mode can be obtained when ns is set to 6. 

 
 

Table 4.5 The effect of crack angle on the stress intensity factors in a rectangular plate 
with single notched cracked 

Jernkvist (2001) XFEM-I XFEM-III oϕ  
IK  IIK  IK  IIK  IK  IIK  

  0 6.573    0 6.449    0 6.454    0 
15 6.699 0.793 6.617 0.795 6.620 0.797 
30 7.045 1.598 7.059 1.612 7.052 1.612 
45 7.244 2.230 7.391 2.310 7.378 2.303 
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Figure 4.14  Variations of the mode I and II stress intensity factors with respect to c/a  for 
a horizontal and an inclined o30=ϕ  crack, respectively. 
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Figure 4.15  The effect of the number of sections (ns) in each element on mode I and II 
stress intensity factors for an inclined crack, o30=ϕ , when partitioning is applied. 
 

Fig. 4.16 illustrates variations of the SIFs with respect to the order of Gauss quadrature 
rule without any partitioning. This is important in showing that a higher-order Gauss 
quadrature rule may not always replace the partitioning technique.  According to Fig. 
4.16, even by applying a 1010× Gauss quadrature, a converged value for the normalised 
stress intensity factor in mode II cannot be achieved (Asadpoure et al. 2007). 

 
 
4.5.4  Central slanted crack  
 

Consider a rectangular tensile orthotropic plate with a central slanted crack, as depicted in 
Fig. 4.17a. The crack has a length of 222 =a with the initial angle of o45 . Elastic 
properties are assumed as GPa5.31 =E , GPa122 =E , GPa312 =G , 7.021 =ν . 
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Figure 4.16  The influence of higher-order Gauss quadrature rules on stress intensity 
factors ( o30=ϕ ). 

 
 
The same problem, as a classic problem of mixed mode stress intensity factor, has been 

investigated by several others; Sih et al. (1965) utilised a complex variable method, Atluri 
et al. (1975) used hybrid-displacement finite element method, Wang et al. (1980) adopted 
a conservation law of elasticity, and Kim and Paulino (2002) employed two 
methodologies of the modified crack closure (MCC) and displacement correlation 
technique (DCT).  

The finite element model is constructed by 2400 quadrilateral elements and 2501 nodes. 
Element sizes are smaller in the vicinity of the crack than the other parts of the model. 
The same mesh is used for all crack angles. In total, 5064 degrees of freedom are 
employed which include 5002 normal DOF and 62 enrichment DOF. The extended finite 
element method combined with the interaction integral method has been used by both 
XFEM-II (Asadpoure et al. 2006) and XFEM-III (Asadpoure and Mohammadi 2007) for 
solving this problem. 
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Figure 4.17  Geometry and applied loads of an orthotropic plate with a central slanted 
crack under remote tension and the finite element mesh.  

 
Table 4.6 compares the results of XFEM simulations based on two types of orthotropic 

enrichment functions with the available reference results. XFEM analyses were performed 
by using a relative integration domain size, c/a, of about 0.85. The differences are about 
2.6% and 3.9% for modes I and II, respectively, in comparison to the solution obtained by 
Sih et al. (1965). Again, both XFEM enrichments produce relatively similar results. 
 
 
Table 4.6 Mixed mode stress intensity factors for an orthotropic plate with a central 
slanted crack under remote tension 

Method IK IK IIK  IIK  
XFEM-II (Asadpoure et al. 

2006) 
  1.081 0.513   1.092 0.518 

XFEM-III (Asadpoure and 
Mohammadi 2007) 

  1.084 0.514   1.095    0.519 

Sih et al. (1965) 1.0539 0.500 1.0539    0.500 
Atluri et al. (1975) 1.0195 0.484 1.0795 0.512 
Wang et al. (1980)   1.023 0.485   1.049 0.498 

Kim and Paulino (2002) (DCT)   1.077 0.511   1.035 0.491 
Kim and Paulino (2002) (MCC)   1.067 0.506   1.044 0.495 
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Fig. 4.18 illustrates the normalised SIFs corresponding to different crack angles 

oo 900 −=ϕ . The mode I stress intensity factor reduces steadily by an increase in crack 
angle, whereas the mode II stress intensity factor increases and reaches its maximum 
value at o45=ϕ , and then decreases (Asadpoure et al. 2006). 
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Figure 4.18 Normalised mode I and II stress intensity factors corresponding to different 
crack angles for a plate with a slanted crack subjected to remote tension. 
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Fig. 4.19 compares the value of J for various relative integration domain sizes for the 

crack angle o45 .  Similar patterns are obtained for XFEM-II and XFEM-III orthotropic 
enrichments. 

Values of SIFs corresponding to different sizes of the integration domain are illustrated 
in Fig. 4.20. As the domain size c reaches about 0.75a, the results become almost domain-
independent (Asadpoure et al. 2006).  
 If isotropic enrichment functions are applied, values for mixed mode SIFs for the case 
of o45=ϕ  are obtained as 1.083 and 1.074 for mode I and II, respectively. To further 
investigate the difference between orthotropic and isotropic enrichment functions, the rate 
of convergence of SIFs for both cases is studied for a crack angle o30=ϕ . According to 
Table 4.7, the differences of computed SIFs are not negligible and may exceed 5%. This 
is in contrast to the previous example where the differences were relatively small.  
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Figure 4.19  The value of the J integral for various relative integration domains for the 
crack angle o45=ϕ  (Asadpoure and Mohammadi 2007). 

 
 

Table 4.7 Comparison of stress intensity factors for the proposed and isotropic 
enrichment functions when several meshes are used ( o30=ϕ ) 

XFEM-II Isotropic enrichment  Number of 
elements 

Number of 
DOFs IK  IIK  IK  IIK  

  816 1836 1.682 1.016 1.635 0.930 
1496 3260 1.619 0.961 1.608 0.925 
2400 5112 1.621 0.961 1.611 0.925 
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Figure 4.20 Rate of convergence of mode I and mode II stress intensity factors with 

o60=ϕ  with respect to relative domain size in a plate with a slanted crack under remote 
tension. 
 
 

Finally, the rate of convergence of SIFs with respect to the relative domain size for a 
crack angle o30=ϕ  is illustrated in Fig. 4.21. Almost similar rates of convergence for 
both enrichment functions are obtained (Asadpoure et al. 2006). 
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Figure 4.21  Rate of convergence of mode I and mode II stress intensity factors with 

o30=ϕ  with respect to relative domain size in a plate with a slanted crack under remote 
tension for isotropic and proposed enrichment functions using 1496 elements. 

 
4.5.5 An inclined centre crack in a disk subjected to point loads 

 
Consider a disk with an inclined central crack subjected to double point loads, as 
illustrated in Fig. 4.22. The material elastic axes are assumed to be coincident with 1x and 

2x axes with the following material properties: E11 = 0.1, E22 = 1.0, G12 = 0.5, v12 = 0.03. 
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Figure 4.22 Geometry and boundary conditions for an inclined centre crack in a disk 
subjected to point loads. 

 
Figure 4.23  FEM discretization for an inclined centre crack in a disk subjected to point 
loads. 
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The finite element model is constructed by 920 finite elements with 1960 classical 
degrees of freedom, as depicted in Fig. 4.23. Only one finite element model is utilised for 
calculating the stress intensity factors for all crack inclinations. 

Fig. 4.24 shows the value of mixed mode stress intensity factors while ϕ  is in the 
range of o0  to o45 . Variations of mode I and mode II stress intensity factors appear to be 
sinusoidal in their quarter periods; which are in accordance with the classical results 

( ) ϕπσ 22/1
I sinaK =  and ( ) ϕϕπσ cossin2/1

II aK =  in an infinite plate (Asadpoure and 
Mohammadi 2007). 
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Figure 4.24  Effects of various crack inclinations on the mode I and II stress intensity 
factors. 
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Fig. 4.25 illustrates the rate of convergence for mode I and II stress intensity factors. 
The apparent oscillations may be attributed to sudden changes in the size of unstructured 
elements when different values of c are used (Asadpoure and Mohammadi 2007).  
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Figure 4.25  The rate of convergence of mode I and II stress intensity factors with respect 
to the relative integration domain size ( o45=ϕ ). 
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Mixed mode stress intensity factors for the case of o30=ϕ , evaluated by the XFEM-II 

and XFEM-III methods, are compared in Table 4.8 with Kim and Paulino (2002), using 
999 elements and 2712 nodes for their classic finite element crack simulation. The 
difference of XFEM-II solutions is about 1.7–2.2% for mode I and 2.4–3.4% for mode II 
with respect to the solution proposed by Kim and Paulino (2002). The results show that 
while stress intensity factors decrease by increase of the crack inclination for mode I, they 
remain increasing for mode II (Asadpoure and Mohammadi 2007).  

 
 

Table 4.8 Values of stress intensity factors for an inclined centre crack in a disk subjected 
to point loads when angle of crack alignment with respect to 1x axis is o30=ϕ  

Method 
Number of 
elements 

Number of 
DOFs IK  IIK  

XFEM-II (Asadpoure et al. 
2006) 

920 1960 17.01 11.60 

XFEM-III (Asadpoure and 
Mohammadi 2007) 

920 1960 17.08 11.65 

Kim and Paulino (2002) (MCC) 999 5424 16.73 11.33 
Kim and Paulino (2002)  

(M- integral) 
999 5424 16.75 11.38 

 
 
4.5.6 A crack between orthotropic and isotropic materials subjected to tensile tractions  

 
The last example of the chapter is dedicated to the analysis of a crack in between two 
orthotropic and isotropic materials, as depicted in Fig. 4.26. The infinite plate is subjected 
to far tensile stress traction 0σ . The material properties are defined as: GPa137=LE , 

GPa8.10== ZT EE , GPa36.3=ZTG , GPa65.5== TLZL GG , GPa36.3=TZν , 
238.0== TLZL νν and mmt ply 127.0= , where ZTL ,, are longitudinal, transverse and 

through the thickness axes, respectively. 
A model similar to Fig. 4.9b with 1025 quadrilateral finite elements is used to simulate 

the plate with dimensions 20// == ahab . 
The stress intensity factors derived analytically by Qu and Bassani (1993) for a crack 

between two anisotropic materials in an infinite plate can be expressed as: 
 

( )( )[ ] 0221)( σωωωπ iaiYaK −∞ +=  (4.142) 

 
where ω is the index of oscillation (see Section 6.2.2), )(ωY is a matrix function 
representing the oscillatory field (Chow and Atluri 1998), and 
 

{ }T
IIIIII KKKK =∞  (4.143) 

 

{ }T0
23

0
12

0
22

0 σσσ=σ  (4.144) 
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Figure 4.26  A crack between orthotropic and isotropic materials. 
 
 
For the present problem 00

23
0
12 == σσ . Table 4.9 compares the differences between the 

exact solution by Qu and Bassani (1993) with the mixed mode stress intensity factors 
obtained by XFEM and the one reported by Chow and Atluri (1998). Clearly, better 
results are obtained by XFEM. 
 
 
Table 4.9 Comparison of the difference between the reference and XFEM results with the 
analytical stress intensity factor (Qu and Bassani 1993) 

Method 
Number of 
elements 

Number of 
nodes 

Error ( IK ) Error ( IIK ) 

Chow and Atluri 
(1998) 

216 2037 0.60 0.10 

XFEM 852 2120 0.05 0.05 
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Chapter 5 
 

XFEM for Cohesive Cracks  
 
 
 
 
 
 
 
 
 
5.1  INTRODUCTION  

 
In previous chapters, the fracture process was always considered to occur at the tip of a 
sharp crack. However, such models are strictly applicable only when the fracture process 
zone is small compared to the relevant dimensions of the specimen. Furthermore, they 
neglect a detailed description of what is happening in the fracture process zone. 

Under the assumptions of linear elastic fracture mechanics, the stress at a crack tip 
becomes theoretically infinite. Form a physical point of view, however, no material can 
withstand such an infinite stress state, and a small plastic/fractured zone will be formed 
around the crack tip. 

This chapter introduces some of the simplest models that describe the fracture process. 
Even if the fracture process zone is small, describing what is going on inside it may be 
convenient for the purpose of understanding the fracture mechanisms and designing 
appropriate modifications of the material. 

The fracture process zone can be described by two simplified approaches:  
 

1. The entire fracture process zone is lumped into the crack line and is 
characterised in the form of a stress–displacement law which exhibits softening. 
Different names have been used for this class of methods in the literature such 
as cohesive crack model, fictitious crack model, Dugdale–Barrenblatt model, 
and stress bridging model. 

2. In the second approach, called the crack band model, the inelastic deformations 
in the process zone are smeared over a band of certain width, imagined to exist 
in front of the main crack. 

 
Both approaches are capable of simulating the details of fracture process in the 

direction of crack. None of them can resolve the fracture process detail across the width of 
the fracture process zone. This chapter is mainly dedicated to the first approach and only 
briefly discusses some basic points regarding the second approach. It deals with the 
extension of the original idea of XFEM to include the effects of cohesive cracks where the 
type of discontinuity is different from normal cracks. 

Trim added in PDF - Aptara



164  Extended Finite Element Method 

 
Historically, Moës and Belytschko (2002a), were the first to apply XFEM to modelling 

growth of arbitrary cohesive cracks, where the growth of the cohesive zone was governed 
by requiring the stress intensity factors at the tip of the cohesive zone to vanish. 

Modelling cohesive cracks was further advanced by Zi and Belytschko (2003). They 
developed a new version of XFEM for applications of static cohesive cracks. All cracked 
elements were enriched by the sign function so that no blending of the local partition of 
unity was required. The entire crack was treated with only one type of enrichment 
function, including the elements containing the crack tip. This scheme was applied to 
linear 3-node triangular elements and quadratic 6-node triangular elements.  

In a similar methodology, Mariani and Perego (2003) presented a methodology for the 
simulation of quasi-static cohesive crack propagation in quasi-brittle materials. 
Assumption of a cubic displacement discontinuity allowed reproducing the typical cusp-
like shape of the process zone at the tip of a cohesive crack. 

Further development was reported by Mergheim et al. (2005) who proposed the 
computational modelling of cohesive cracks in quasi-brittle materials, whereby the 
discontinuity was allowed to propagate freely through the elements. As a result, only two 
independent copies of the standard basis functions were required: one set was put to zero 
on one side of the discontinuity, while the other set took its usual values on the opposite 
side, and vice versa for the other set. In contrast to the classical XFEM, the suggested 
approach only relied exclusively on displacement degrees of freedom. On the 
discontinuity surface, the jump in the deformation is related to the cohesive tractions to 
account for smooth crack opening.  

More recently, de Borst et al. (2004c) proposed a proper representation of the discrete 
character of cohesive zone formulations by the so-called cohesive crack segments, which 
avoided any mesh bias by exploiting the partition of unity property of finite element shape 
functions. 
 
 

5.2  COHESIVE CRACKS 
 
Analytical solutions for cracks based on the theory of elasticity leads to singular (infinite) 
strain and stress fields at the crack tip. Such an infinite stress cannot be tolerated by any 
material and the material has to undergo nonlinear behaviour in the vicinity of the crack. 
This nonlinear behaviour increases the strength of material to cracking and dissipation of 
energy. The cohesive crack model is one of the available approaches for solving this 
problem.  

Effects of nonlinear behaviour around a crack tip can be classified into two classes. In 
the first class, all nonlinear behaviour of the material is utilised within a so-called fracture 
process zone (FPZ) on the crack surface (Fig. 5.1). Interactions between the aggregates 
and crack surfaces prevent further opening of the crack. The rest of the model is assumed 
to behave elastically. The point with zero displacement is called the fictitious or 
mathematical crack tip, while the physical crack tip is the point where the crack surface 
tractions vanish. According to Fig. 5.2, a variable traction field governs the crack face 
interactions. 
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Figure 5.1 Interface cohesive behaviour due to aggregate interlocking, frictional contact, 
etc. 
 

 
Figure 5.2  Fracture process zone for modelling a cohesive crack. 
 

The second approach, called the smeared crack model, assumes that the plastic 
deformations are distributed in a specific domain around the crack tip. The method 
assumes that any discontinuity caused by the presence of a crack within a finite element, 
can be simulated as a smeared (distributed) strain field over the element. The next step is 
to set up a definition for the stress–strain relationship which leads to the evaluation of an 
equivalent stiffness matrix. 

In addition to the nonlinear behaviour of a material, other effects may also contribute to 
the cohesive behaviour, such as aggregate locking, frictional contact, fibre bridging, 
atomic bonds and dislocation effects. 

 

Trim added in PDF - Aptara



166  Extended Finite Element Method 

 
The main characteristic of a cohesive crack model is the removal of singularity at crack 

tips. As a result, the stress intensity factor at the crack tip should vanish, which implies 
that the crack closes smoothly. This condition is also called the zero stress intensity factor. 
Owing to the fact that the mode II stress intensity factor is typically negligible compared 
to the mode I stress intensity factor, only the mode I stress intensity factor can be taken 
into account: 

 
0I =K  (5.1) 

 
This condition is caused by the superposition of two independent stress fields; singular 

crack tip stress field and non-singular crack surface traction field: 
 

0cohesion
I

crack
I =+ KK  (5.2) 
 
The direction of a mixed mode crack growth can be determined by using the mode I 

and II stress intensity factors IK and IIK : 
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II

I1

K
K

K
Kθ  (5.3) 

 
In an alternative approach, a stress condition can be adopted (Zi and Belytschko 2003). 

The zero stress intensity factor implies that the stress at the crack tip should be finite. As a 
result, the stress projection in the normal direction n of the crack can be assumed to equal 
the tensile strength of the material: 

 
ttip f=σ  (5.4) 

 
where tipσ is the stress at the crack tip and tf is the tensile strength of material. The crack 
propagation is then assumed to be in the direction perpendicular to the direction of the 
maximum principle stress. 

Whilst the first criterion can be efficiently calculated by means of the domain integral 
technique, the second criterion is simpler and can be implemented readily.  
 
 

5.2.1  Cohesive crack models 
 
Several models have been proposed to simulate the complex behaviour of a cohesive 
crack and to simplify it into a more computationally friendly model. Barrenblatt (1959), 
Dugdale (1960), Willis (1967), Wunk (1974) and Hillerborg et al. (1976) were among the 
first to propose models for simulating the cohesive behaviour. Hong et al. (2003) 
presented an analytical approach defined within an inverse method to extract cohesive 
zone laws from elastic far fields using a field projection method.  
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Another formulation for cohesive interface element was proposed by Chowdhury and 

Narasimhan (2000), while de Borst et al. (2004c) studied the delaminaion buckling 
phenomena for crossing discontinuities. For a detailed review of other available models 
see Bazant and Planas (1997). 
 

 
5.2.1.1  Dugdale uniform traction model 

 
Dugdale proposed a simple uniform traction equal to the yield stress within the fracture 
process zone (Fig. 5.3a). The length of the process zone is determined to satisfy Eq. (5.2) 
and to avoid stress singularity at the crack tip. 

Tractions are independent of the crack length in the Dugdale model and the model is 
more suited to ductile materials. 
 
 
 

 
Figure 5.3  Cohesive crack models. 
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5.2.1.2  Non-uniform traction models 

 
Owing to the fact that the material strength is reduced by an increase in crack opening, a 
number of non-uniform traction models have been proposed over the years. Their main 
difference is in how to define non-uniformity, but they share the same concept of 
softening behaviour whereby the traction has the maximum intensity at the crack tip and a 
minimum value (usually zero) at the point of critical crack opening, as illustrated in Fig. 
5.3b. 

Fig. 5.4 illustrates different non-uniform models in terms of traction-opening curves. 
They include linear, bilinear and exponential models in comparison to the uniform 
Dugdale model. Non-uniform models require extra experimentally determined material 
parameters to define their associated traction-opening curves.  

 

 
Figure 5.4  Non-uniform models in comparison to the uniform model. 
 
 

5.2.2  Numerical models for cohesive cracks 
 
Similar to other crack propagation problems, various methods have been successfully 
adopted for simulating the behaviour of cohesive cracks. Analytical, semi-analytical and 
numerical approaches, such as the boundary integral method, the boundary element 
method,  the finite element method and recently a number of meshless methods, have 
been successfully used for modelling cohesive cracks; each one provide advantages and 
drawbacks in handling certain parts of the simulation. 

 

Trim added in PDF - Aptara



Cohesive XFEM 169 

 
In this book, the emphasis is only put on the finite element method as a basis for its 

extension into the extended finite element method. In the FEM, simulation of cohesive 
crack is performed by one of the following methods. 
 
 

5.2.2.1  Discrete inter-element crack model 
 
In this approach, cracks can only be defined along the finite element edges. As a result, a 
strong discontinuity is directly assumed in the displacement field. The cohesive behaviour 
is simulated by inter-element nonlinear springs/tractions, as depicted in Fig. 5.5. 
 

 
 
Figure 5.5  Discrete inter-element crack model. 
 
 

The model is extremely simple for predefined crack paths along the element edges. It 
becomes rather difficult for general crack paths as it requires a remeshing of the model. 
Another major drawback of the model is its higher potential of mesh dependency 
(Mohammadi 2003). 
 
 

5.2.2.2  Smeared crack model 
 
In this model, the discontinuity caused by a discrete crack within an element, is simulated 
by a distributed (smeared) equivalent strain field over the entire domain of the element, as 
depicted in Fig. 5.6. The method uses a traction-opening law to derive the equivalent 
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stiffness matrix for each cracked element. The main advantage of the method is that it 
does not require any remeshing in the process of crack propagation. 
 
 

 
 
Figure 5.6  Discrete and smeared crack models. 

 
 
 

5.2.2.3  Discrete cracked element model 
 
Fig. 5.7 illustrates a model in which the crack path is through the middle of a finite 
element. In this model, a local remeshing technique combined with adaptivity techniques 
is required to create a new mesh by splitting the cracked element and dividing adjacent 
elements to ensure compatibility of the neighbouring finite elements. Adaptivity 
techniques are applied to compute the state variables within the newly created elements 
from the state variables of their parent elements. Combined finite/discrete element 
procedures have been successfully applied to these classes of problems and may take into 
account the effects of post-cracking interactions including fully nonlinear frictional 
behaviour (Mohammadi 2003). 

The procedure usually avoids remeshing of the whole model by gradual local 
remeshing techniques according to the advancement of the crack. It may require, 
however, a global remeshing if the mesh becomes excessively distorted or includes 
elements with bad aspect ratios as a result of multiple cracking. 
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Figure 5.7  Discrete cracked element model. 
 

 
 

5.2.2.4  Enriched elements model 
 
Fig. 5.8 illustrates a model in which the crack path is through the middle of a finite 
element. In this model, the discontinuous displacement field within a finite element is 
simulated by a special set of shape functions. The main advantage of the method is that it 
does not require any remeshing in the process of crack propagation. Partition of unity 
finite element method and XFEM are among this set of models. 

 
Figure 5.8  Enriched elements model. 
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5.2.3   Crack propagation criteria 

 
The Rankine maximum tensile stress criterion is usually adopted to govern the behaviour 
of the mathematical crack tip in a cohesive crack model. 
 

{ }332211 ,,max σσσ=σ  (5.5) 
 
In order to avoid the inaccuracy of direct evaluation of the local strain field at the crack 

tip, a non-local weighted approach is adopted to determine the stress field at the crack tip 
from the stress at neighbour Gauss points (Wells and Sluys 2001): 

 

∑
=

=
ng

g
ggW

1

rσσ  (5.6) 

 
with the radial weight function r

gW defined as: 
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where gσ is the stress tensor at a Gauss point g  with a distance gr from the crack tip and 

cl is a characteristic length, assumed to be equal to the average element size. Fig. 5.9 
illustrates the way the stress tensor at a crack tip can be evaluated from the stress tensors 
at Gauss points of neighbouring elements. 
 
 

 
Figure 5.9  Non-local evaluation of stress at the crack tip. 
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Several studies in recent decades have shown that adoption of a non-local stress 

evaluation may drastically change the local path of the crack propagation (Tvergaard and 
Hutchinson 1992, Saleh and Aliabadi 1995, Wells and Sluys 2001, Dumstorff and 
Meschke 2003). 
 
 

5.2.4  Snap-back behaviour 
 
Snap-back phenomenon is one of the commonly observed response modes while 
investigating the equilibrium path of crack propagation. In a snap-back mode, the 
reduction in material stiffness caused by the crack propagation is smaller than the 
reduction in critical applied load.  

Fig. 5.10 illustrates a simple description of snap-back behaviour. It is obvious that such 
a response cannot be simulated by using a load control or displacement control approach 
alone. Instead other methods such as the arc length method are usually preferred. 
Alternative methods in fracture mechanics are the so-called crack length control and the 
fracture process zone control. 

 
Figure 5.10  Snap-back and snap-through behaviours. 
 

 
The method of crack length control is based on the superposition of two independent 

analyses of the model subject to external and internal loads. The procedure may be 
summarised as: 

 
1. Initial estimates of the crack profile and fracture process zone are assumed. 

The results at the end of previous iteration are usually considered. 
2. Calculation of cohesive stress according to the assumed crack profile. 
3. Solving the model for the cohesive stress loading. 
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                   cohcoh fKu =  (5.8) 

 
4. Solving the model for external loading. 
 

                   extext fKu =  (5.9) 
 
5. Satisfying the maximum stress condition at the crack tip. 
 

                   cohext σσσ +=α  (5.10) 
 
6. Solving for the nodal displacements. 
 

                   cohext ffKu +=α  (5.11) 
 
7. Evaluation of the loading coefficient from the crack propagation condition. 
 

                   t
tip f=σ  (5.12) 

 
8. Control of the fracture process zone and checking it against the initial 

estimate. 
9. Repeat the procedure from step 2, if the solution has not converged. 

 
 

5.2.5  Griffith criterion for cohesive crack 
 
Assume a plate, containing a cohesive crack, is subjected to normal and tangential traction 
loadings, as illustrated in Fig. 5.11.   

The J contour integral can be defined as: 
 

∫Γ Γ⎟
⎠

⎞
⎜
⎝

⎛
∂
∂−= ds x

WJ utn  (5.13) 

 
Path independency of the J integral allows for  evaluation of J along the crack surfaces: 
 

Γ
∂
∂−= ∫ΓΓ d

cc
c

x
J uf  (5.14) 

 
where  cΓ identifies the fracture process zone (FPZ), and Eq. (5.14) can be expressed as: 
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Assuming that differentiation and integration can commute, Eq. (5.15) is transformed 

into (Saouma 2000): 
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Figure 5.11   The contour J integral and Griffith criterion. 
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For the case of pure mode I and mode II, Eq. (5.16) is further simplified: 
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where yw and xw are the critical crack opening and sliding, respectively, for which 
normal and tangential stresses can no longer be transferred across the crack. 

 
 
5.2.6  Cohesive crack model 

 
A cohesive crack resists any relative displacement between crack faces. Referring to Fig. 
5.12, the relative displacement can be decomposed into normal and tangential 
components nuδ , tuδ , respectively. 

Trim added in PDF - Aptara



176  Extended Finite Element Method 

 

 
Figure 5.12  A cohesive crack before and after deformaion. 
 
 

Interface forces between the crack surfaces can be defined as: 
 

( )n
c
n

c
n uff δ=  (5.19) 

( )tn
n
t

n
t , uuff δδ=  (5.20) 
 
It is important to note that the tangential force is a function of both the normal opening 

and the tangential sliding of crack faces. Any further opening of the crack reduces the 
aggregate interlocking and, therefore, reduces the interaction forces between crack faces.  
 
 

5.3  XFEM FOR COHESIVE CRACKS 
 

5.3.1  Enrichment functions 
 
In the extended finite element method, approximation of a discontinuous displacement 
field is based on the definition of specially designed shape functions by the use of 
enrichment functions. The method operates on additional virtual degrees of freedom for 
the definition of the crack boundary and approximation of the displacement field. 

Earlier models used a simple enrichment function in the form of: 
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 (5.21) 

 
where iN is the conventional finite element shape function and iΩ is part of the element 
in between the crack and node i , as illustrated in Fig. 5.13a. Fig. 5.13b shows how this 
jump enrichment can affect the shape functions for a simple one-dimensional case. 

A problem with this type of jump function is that it provides similar strain fields 
(derivatives of the displacement field) in both sides of the crack. This is in contrast to the 
physical observations that both segments of a cracked element behave independently. 
Another drawback is the lower number of degrees of freedom required by this 
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approximation than other recently available techniques. This may directly affect the 
quality of approximation field and the crack analysis. 
 
 

 
Figure 5.13  An element cut across by a crack. 
 
 

The following Heaviside/jump function can also be used: 
 

)()( xx ii
h
i NHN =  (5.22) 
 

with 
 

⎩
⎨
⎧

Ω∉
Ω∈

=
i

i
iH

x
x

x
1
0

)(  (5.23) 

 
The present definition of the jump function allows for the discontinuity to be modelled 

across the crack over the points along the crack surface. The value of the modified shape 
function h

iN  is zero at all nodes and edges that do not intersect with the crack. This is 
important in satisfying the inter-element continuity requirements. 

XFEM using classical jump functions applies the enrichment onto the nodal points. As 
a result, elements containing an enriched node are affected by the enrichment degrees of 
freedom. In contrast, the present approach only affects the element containing a crack, and 
does not directly influence other elements, even if they share a common node with the 
enriched element. Fig. 5.14 compares the effect of different definitions of the jump 
function on the final shape function for a simple one-dimensional problem. 

Other effects include the influence of external forces on the enrichment degrees of 
freedom in classical jump functions, while the present approach avoids these direct 
interaction effects. 

Application of the mentioned jump function on a quadrilateral element may lead to a 
discontinuous field as depicted in Fig. 5.13c. The deformation field includes all potential 
displacement fields independently for both sides of the crack. Strain fields also remain 
independent in both sides of the crack. 
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Fig. 5.15 illustrates the procedure for selection of nodes for enrichment. If a crack 

passes an edge of an element, nodes associated with that edge are selected for enrichment. 
Even if the crack tip locates on an edge, the corresponding nodes are not enriched.  

 

 
Figure 5.14  Comparison of shape functions based on different definitions of the jump 
function. 
 
 

 
Figure 5.15  Enrichment nodes at different stages of crack propagation. 
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The present formulation adds two enrichment degrees of freedom to an element per any 

enriched node. As a result, for a quadrilateral element on the path of a crack, sixteen 
degrees of freedom including 8 classical DOFs and 8 enriched DOFs are assigned.  

Efficiency of XFEM for crack propagation analysis can be simply explained from Fig. 
5.15. At each stage of the propagation, nodes on edges cut by the crack path are enriched. 
Special attention is required because a potential source of instability and divergence is 
when a crack path passes along the finite element edges. 

It should be noted that the procedure discussed in this section is only related to the 
Heaviside enrichment. Crack tip enrichments, if required, are applied to all nodes of the 
element that contains the crack tip. The discontinuous crack tip enrichment functions 
discussed in Section 3.5.1, however, can no longer be used for cohesive crack modelling, 
as they do not represent the displacement field around a cohesive crack tip. 
 
 

5.3.2  Governing equations 
 
A body in the state of equilibrium and subjected to body forces is assumed. The boundary 
conditions include the external traction and displacement conditions, as depicted in Fig. 
5.16.  

 
Figure 5.16  Deformation of a quadrilateral element with a jump function. 
 
 

The virtual work of the boundary value problem can be defined as: 
 

extint WW =  (5.24) 
 
or 
 

∫∫∫ ΓΩΩ
Γ⋅+Ω⋅=Ω⋅

t
ddd tb ufufεσ δαδδ  (5.25) 
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where bf and tfα are the body force and external traction vectors, respectively, and σ is 
the stress tensor; α  is the load factor which controls the solution increments. In fact, both 
load and displacement controls can be activated at the same time. 

Now, consider that the body also includes a cohesive crack with tractions cf along the 
fracture process zone cΓ  and cf  is assumed to be functions of the crack opening cw . The 
weak form of the equilibrium equation can then be modified to (Zi and Belytschko 2003): 

 
cohextint WWW +=  (5.26) 

 
or 
 

( )∫ ∫∫∫ Γ Γ
−+

ΩΩ
Γ−⋅+Γ⋅+Ω⋅=Ω⋅

t c
dddd ctb uufufufεσ δδδαδδ  (5.27) 

 
Discretization of Eq. (5.27) using the XFEM procedure results in: 
 

cohext ffKu +=  (5.28) 
 
with 
  

∫Ω Ω= dT BDBK  (5.29) 

 
Ω+Γ= ∫∫ ΩΓ

dd bTtText
t

fff NNα  (5.30) 

 
Γ−=Γ−= ∫∫ ΓΓ

d2d2
cc

cTcTcoh nTff NN  (5.31) 

 
where B is the strain–displacement matrix, and )( c

c wT is a cohesive softening law relating 
the crack surface normal traction cf to the crack opening cw . 

The solution should simultaneously satisfy the equilibrium condition and a cohesive 
criterion such as the cohesive stress condition. The procedure for a given cohesive crack 
can be summarised as the following (Carpinteri and Colombo 1989): 

 
1. An initial value of the load factor α  is obtained from the condition that the 

stress at the notch tip should be equal to the strength tf . 
2. The stiffness matrix K  is constructed. 
 

                   ∫Ω Ω= dTDBBK  (5.32) 

 
3. The derivative of cohf with respect to nodal displacements u is calculated (Zi 

and Belytschko 2003): 
 

                   Γ⋅⋅⋅
∂

∂
−=

∂
∂

∫Γ d
)(

2 TT

c

c
ccoh

c
NN

w
w

nn
T

u
f  (5.33) 
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4. The Jacobian of the Newton–Raphson method, its residual and the increments 

are calculated. 
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⎥
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 (5.34) 
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⎪
⎨
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−
−−⋅=
t
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t

cohext

fσ
ffuKr  (5.35) 

                  
where tip

tσ is the normal tensile stress at the crack tip and tf is the material 
tensile strength. The second row of Eq. (5.35) can be replaced by other 
sophisticated material models, if required. 

 
5. Step 3 is iterated until u  and α  converge. The incremental solution for 

iteration i  reads, 
 

                   ( ) )1()1(
1

)(
−−

− ⋅Λ−=
⎭
⎬
⎫

⎩
⎨
⎧
∆
∆

ii
i

r
u
α

 (5.36) 

 
6. The direction of the crack propagation and the crack extension is calculated. 
7. The geometry of the model (for classical finite element method) is updated. 

 
 

5.3.3  XFEM discretization 
 
Recalling the XFEM approximation: 
 

( )axxNuxNxu )()()()( H+=  (5.37) 
 
where u and a are the real and enrichment degrees of freedom. The strain tensor can be 
defined from the derivative of )(xu : 
 

( ) ( )axxNaxxBuxBxε uu )()()()()()( δ++= H  (5.38) 
 
where δ is the Dirac delta function. Alternatively, from Section 3.7.2, 
 

)()()( xuxBxε h=  (5.39) 
 
with 
 

{ }Tauu =h  (5.40) 

Trim added in PDF - Aptara



182  Extended Finite Element Method 

and 
 

[ ]au BBB =  (5.41) 
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Using variational principles and assuming independent real and enrichment degrees of 

freedom u and a, lead to the following equations: 
 

intext
uff =  (5.44) 

 
intcoh
aff =  (5.45) 

 
with 
 

∫Γ Γ=
t

dtText ff αN  (5.46) 

 
∫Ω Ω= d)( Tint σBf u  (5.47) 

 
∫Γ Γ=

c
dcTcoh ff N  (5.48) 

 
∫Ω Ω=

enr
d)( Tint σBf a

a  (5.49) 

 
The final incremental form of the equilibrium equations (5.44)–(5.45) takes the form 

of: 
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with 
 

∫Ω Ω= d)( T uuuu DBBK  (5.51) 

 
∫Ω Ω=

enr
d)( T uaua DBBK  (5.52) 
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∫∫ ΓΩ

Γ+Ω=
cenr

dd)( cTT NN TDBBK aaaa  (5.53) 

 
where )( c

c wT is determined from the cohesive crack behaviour and its derivative with 
respect to the crack opening. The cohesive behaviour has direct effect on both the 
stiffness matrix and the nodal force vector. 
 

 
5.4  NUMERICAL SIMULATIONS 
 
5.4.1   Mixed mode bending beam 

 
Fig. 5.17 shows a beam subjected to an un-symmetric loading which generates a mixed 
mode crack propagation. Material properties are assumed as: 26 kg/cm105.3 ×=E , 2.0=ν  
and 2kg/cm300=tf  with a linear softening model for the cohesive behaviour. Crack 
surfaces are assumed frictionless. 
 

 
 
Figure 5.17   Geometry of the beam for mixed mode analysis. 
 

 
Fig. 5.18 compares the crack propagation path predicted by XFEM with the results 

reported by (Wells and Sluys 2001). Again, close agreement is observed. 
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a) XFEM solution b) Reference results. 
 
Figure 5.18   Crack propagation path obtained by XFEM (Forghani 2005) and the 
reference (Wells and Sluys 2001). 
 
 
 

5.4.2   Four point bending beam 
 
A four point bending beam, depicted in Fig. 5.19a, is considered. Material properties are 
assumed as: 26 kg/cm100.1 ×=E , 3.0=ν  and 2kg/cm5.87=tf with a linear softening 
model for the cohesive behaviour. The beam is subjected to a symmetric loading 
condition and behaves in pure mode I. 

According to Fig. 5.20, the tensile stress in elements near the crack tip is decreased by 
the distance from the crack tip. The cohesive traction has practically vanished at a 
distance of four elements from the crack tip. 

Fig. 5.21a compares the load–deflection curve obtained from the present XFEM 
analysis with the results of Carpinteri and Colombo (1989), which shows a close 
agreement. Also, the load–deflection behaviour for different values of the critical 
opening cw is compared in Fig. 5.21b. 

According to Fig. 5.21b, the snap-back behaviour is observed in all cases where the 
critical crack opening is a small value; an indication for a small value of critical energy of 
crack propagation. The response is, therefore, close to a linear elastic fracture mechanics 
(LEFM). 

In contrast, for large values of the critical crack opening, the absorbed energy within the 
cohesive zone is relatively large, and the overall response is an elastoplastic behaviour. As 
a result, neither snap-back nor instability is expected to take place, and the LEFM cannot 
be used for simulation. 

Any values in between the two limiting cases can be considered as a transition from the 
LEFM to the elastoplastic response, which gradually transforms the snap-back behaviour 
into a stable softening response. 
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Figure 5.19  Geometry of the four point bending beam and its deformed shape (magnified 
by a factor of 10). 
 

 
Figure 5.20  The xxσ contour (Forghani 2005). 
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a) Comparison of XFEM with the reference results for 023.0c =w  
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b) Load–deflection curves for different values of critical opening cw  

 
Figure 5.21  Comparison of XFEM and the reference (Carpinteri and Colombo 1989). 

Trim added in PDF - Aptara



Cohesive XFEM 187 

 
5.4.3   Double cantilever beam 

 
The double cantilever beam has long been one of the main tests for determining the 
fracture mechanics parameters (Forghani 2005). Experimental tests induce a notch to 
facilitate crack extension in a straight path. Here, in contrast, there is no constraint to limit 
the crack extension path.  

Fig. 5.22a depicts a cm330900 × double cantilever beam with the following material 
properties: 26 kg/cm100.1 ×=E , 3.0=ν  and 2kg/cm5.87=tf  with a linear softening 
model for the cohesive behaviour. The critical crack opening is set to cm004.0c =w . 
 

 
Figure 5.22  A double cantilever beam and predicted path of crack propagation. 
 

Fig. 5.22 also shows the path of crack propagation predicted by the present XFEM. In 
contrast to the symmetry of the initial geometry and loading, the crack path has deviated 
from the symmetric solution. 

In order to clarify how such an un-symmetric result has been obtained from a 
symmetric solution, it is necessary to discuss the requirements for one of the three 
possible crack propagation paths, as illustrated in Fig. 5.23. 

Fig. 5.24 depicts the XFEM response prediction for each case. For path 1, an additional 
constraint is necessary to limit the crack path to a straight one. As a result, it requires the 
maximum level of energy to be activated, and so it is less probable to happen. 

Any of the paths 2 or 3 is a result of local bending in each individual cantilever 
segment. The bending causes the extra tensile stress in far points across the height of the 
segment to be increased from the maximum tensile strength. As a result, the crack path 
turns to a curve. No distinction is theoretically possible for paths 2 or 3. Numerical errors 
or a small defect or perturbation in any part of the model may help to win the race for 
either path.  
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Figure 5.23   Potential crack propagation paths. 
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Figure 5.24   Load versus relative crack opening for different crack paths (Forghani 
2005). 
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Chapter 6 
 
New Frontiers  
 
 
 
 
 
 
 
 
6.1  INTRODUCTION 

 
This chapter is dedicated to describing new applications of the extended finite element 
method in different engineering applications.  
 Fundamental aspects of the extended finite element method were developed mainly for 
crack propagation problems. Then it was further extended to simulate other localisation 
problems in solid mechanics, especially in bimaterial and composite applications. 
However, the exceptional power of XFEM for modelling discontinuous fields has allowed 
for analysis of other engineering and physical applications. Problems involved with large 
deformations, plasticity and contact mechanics or in dynamic regimes have been 
extensively studied by many researchers based on the XFEM methodology. Multiphase 
problems naturally comprise internal discontinuous interfaces and can therefore be 
theoretically modelled by XFEM. 

The first part of this chapter deals with interface cracks in solid media. It begins with 
classical elasticity and fracture mechanics solutions for an interface between isotropic 
materials and an extension to anisotropic materials. Available analytical displacement 
fields will then be used to present enrichment functions. 

Contact problems constitute the second part of the chapter. It provides a review on 
available techniques for XFEM simulation of contact problems. Practically, strong and 
weak discontinuous enrichment functions are sufficient for most of the contact problems; 
the remaining aspects should be dealt with within the general concepts of contact 
kinematics and nonlinear frictional contact mechanics (Mohammadi 2003).  

The next section is dedicated to dynamic fracture mechanics. Again, first classical 
concepts of fracture mechanics are extended to dynamic problems. Then an extension to 
include orthotropic effects is explained. The XFEM methodology for handling the 
dynamic fracture problems is then discussed comprehensively. In order to introduce the 
concepts of time discretization, the time integration schemes are briefly explained. Then, 
the new idea of time finite element method (TFEM) is introduced and followed by the 
time extended finite element method (TXFEM). 

A brief discussion on multiscale applications constitutes the next part. The subject is 
too complicated to be discussed in detail in this book. Only the basic formulation and its 
XFEM approximation developed earlier by other authors are provided. 
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The final part of this chapter deals with the multiphase application. The strong and 

weak forms of the governing equations of solid–fluid multiphase solidification problems 
and the multiphase fluid flow simulations are provided, followed by the XFEM 
discretization. Again, the subject is too complex to be discussed in detail in this chapter, 
and only a very brief introduction is provided based on the original work of corresponding 
authors.   
 
 

6.2  INTERFACE CRACKS 
 

6.2.1   Elasticity solution for isotropic bimaterial interface 
 
Interface crack propagation is rapidly gaining wide attention. Such a crack growth is 
exceedingly important for delamination and debonding analysis in composite materials, 
and can be extended to other brittle and semi-brittle materials such as concrete and rock 
crack interfaces. 

Williams (1952) extended his early contribution on V notch to analyse a crack at the 
interface between two dissimilar materials, as depicted in Fig. 6.1. Following the classical 
elasticity procedures, two stress functions 1Φ and 2Φ  are now required: 
 

),(),( 1 λθθ λ
ii Frr +=Φ  (6.1) 

 
and 
 

θλθλθλθλλθ )1(sin)1(sin)1(cos)1(cos),( 4321 ++−+++−= iiiii AAAAF  (6.2) 
 
Solving for the unknown coefficients iA1 , iA2 , iA3 and iA4 allows for determination of 

near crack tip stresses for each material i : 
 
 

 
Figure 6.1 An interface crack between two dissimilar isotropic materials. 
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where the first and second derivatives of F are defined as: 
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jλ are the roots of the following characteristic equation (Saouma 2000): 
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with  
 

i

i
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να
+

=
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 (6.9) 

 
 

6.2.2   Stability of interface cracks 
 
After evaluation of displacement and stress fields, a criterion is required to determine 
whether an interface crack is either stable or propagates in an unstable manner. The 
unstable crack can propagate along the interface, kink into one of the materials, or branch 
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out along the interface and then kink, depending on the relative toughness of the interface 
and both materials. 

Consider a bimaterial interface crack, as depicted in Fig. 6.1. Hutchinson and Sue 
(1992) expressed the near tip normal and shear stresses in a complex form, 
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where the complex stress intensity factor K  is defined in terms of its components: 
 

21 iKKK +=  (6.11) 
 
and ω is the oscillation index defined as (Nagashima et al. 2003): 
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It should be noted that the present definition of K , Eq. (6.11), is proportional to 

)2/(1)( εilength − , which is different from the classical stress intensity factor as of 
2/1)(length (Sukumar et al. 2004). Eq. (6.10) implies a high frequency stress noise around 

the crack tip. Furthermore, the relative proportion of interfacial normal and shear stresses 
varies slowly with distance from the crack tip. Therefore, 1K  and 2K cannot be 
decoupled; they are not the familiar mode I and II stress intensity factors, respectively. 

The energy release rate G for extension of the crack along the interface for a plane 
strain problem is defined by (Carlsson and Prasad 1993) 
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The phase angleϕ that is an important parameter in the characterisation of interfacial 

fracture toughness, and measures the relative proportion of shear to normal tractions at a 
characteristic length l ahead of the crack tip can be defined as (Sukumar et al. 2004): 
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or 
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According to Rice (1988), near crack tip asymptotic displacement fields within the 

material 2,1=m  can be written as: 
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with (Nagashima et al. 2003 and Sukumar et al. 2004) 
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The same equations can be used for material 2 by replacing ωπ with ωπ− . 
 
 

6.2.3   XFEM approximation for interface cracks 
 
The standard XFEM approximation (3.72) for crack analysis can be extended to include 
new enrichment terms according to Eq. (6.22)  
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where 2,1, =jF j
l are the new enrichment functions for crack tips 1 and 2, respectively, 

defined in terms of the local polar coordinate system ),( θr  and the oscillation indexω  
(Sukumar et al. 2004), 
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Sukumar et al. (2004) provided the cartesian derivatives of the interface enrichment 
functions for use in XFEM discretization and evaluation of the system matrices, as 
discussed in Section 3.7.2. 

In a rather complicated problem, Asadpoure (2006) solved the problem of an interface 
crack between two orthotropic materials (see Section 4.5.6). 

A more complicated problem of a cracked sliding interface between anisotropic 
bimaterials was studied by Wang and Zhong (2003). This class of problems may also be 
studied in the next section, as the problem of contact is investigated. 
 
 

6.3   CONTACT  
 

6.3.1   Numerical models for a contact problem 
 
Contact between two deformable bodies is one of the important subjects in computational 
mechanics. Among them are the behaviour of a cracked structure, metal forming, 
moulding and frictional contact between a concrete dam and its foundation, etc. 

Contact mechanics plays an important role in metal forming processes, where the 
existing differences between the elasticity modulus and deformability of the tool and 
workpiece leads to the occurrence of relative tangential displacement at the interface of 
die and plate. Existence of surface asperities further complicates the frictional contact 
phenomenon and may result in the development of local plastic zones and the generation 
of new microcracks. 

In its simplest form, a contact interaction between two bodies can be represented 
simply by a series of normal and tangential linear or nonlinear springs connecting the two 
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objects. These additional stiffness terms prevent the bodies from getting too close or too 
far from each other according to a predefined load–displacement law for the springs. 

The contact can be assumed to be occurring in a virtually zero thickness or very thin 
interface layer. As a result, the normal finite elements cannot be used directly for 
simulation of such tiny long zones because their aspect ratios become unacceptably large, 
causing numerical instabilities. 

Finite element procedures, however, adopt the concept of interface (contact) elements 
defined between the nodes on both sides of the interface. Efficient large deformation 
formulations are now available in practically all general-purpose finite element software 
packages. A problem with this kind of modelling is that the nodes on both sides of the 
interface must match each other, limiting the contact procedure to be further extended for 
multiple crack propagations and progressive fracture analysis of structures.  

More advanced procedures are also available which include general node-to-node, 
node-to-face and face-to-face contacts based on the penalty, Lagrange and augmented 
Lagrangian constraint enforcement methods (Mohammadi 2003). They are designed to 
undergo large deformations and may response in a fully nonlinear frictional contact both 
in hardening and softening regimes. Such a nonlinear response usually requires iterative 
contact stress update procedures to achieve quadratic rate of convergence based on 
evaluation of the consistent contact modulus. 

A complex aspect of contact problems is the governing kinematics. Rigidity and 
deformability of both or any of the contact couples change the way the deformation 
kinematics is formulated. Also, smooth and non-smooth contacts have to be addressed 
(Wriggers 2002). In general, the contact surface is not always a predefined known part of 
the problem, and the contact boundary conditions may have to be determined within the 
solution process. Consequently, by its nature the contact is a mathematically nonlinear 
problem. 

Another important contribution of contact mechanics is in analysing multibody 
dynamics for simulation of granular flow by the discrete element technique. Extremely 
large numbers of contacts take place at any time, which requires an expensive efficient 
contact detection procedure. Nevertheless, each contact interaction is usually simple and 
associated computations remain fast, non-iterative and clear. 

In a dynamic contact problem, the contact surface changes by time, and in addition to a 
contact detection approach, an efficient algorithm is required to transfer the history 
dependent contact state variables from the old position to a new one. This may itself 
become a main source of error in the overall numerical solution. The problem is further 
complicated for curved deformable objects and around sharp corners.  
 
 

6.3.2   XFEM modelling of a contact problem 
 
In this section, a fundamentally different approach based on the concepts of extended 
finite element method is presented. The inspiration is to avoid explicit definition of the 
contact surface by adopting a similar procedure of modelling cracks by XFEM. Therefore, 
the whole domain can be discretized by a finite element mesh regardless of the size, 
extent and position of the contact interface. Standard XFEM procedure is followed to 
simulate the discontinuity path within the finite elements by enriching the classical finite 
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element approximation. Level set methods have been successfully used for tracking the 
moving contact interfaces, and its combination with XFEM can be efficiently used for 
solving complex contact problems.  

Dolbow et al. (2000c) extended XFEM for modelling of crack growth with frictional 
contact on the crack faces. The subject of contact mechanics was further investigated by 
Dolbow et al. (2001) and Belytschko et al. (2002a). Recently, Shamloo et al. (2005), 
Khoei and Nikbakht (2006) and Khoei et al. (2006a, 2006b) applied the extended finite 
element method to modelling frictional contact in elastoplastic behaviour of pressure-
sensitive material for powder compaction problems. 

Beginning with the extended finite element approximation at a point x, 
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the enrichment function )(xψ for approximating a contact interface is assumed to be the 
Heaviside function )(ξH , 
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where n is the number of nodes in a standard finite element and m is the number of 
enrichment terms. The Heaviside enrichment function is assumed to be the signed 
function defined in terms of the signed distance function )(xξ from the interface 
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Similar improvements as (3.59) can also be used to satisfy the interpolation 

requirements for the enriched solution. 
Alternatively, a weak discontinuity enrichment (Section 3.6.4) can also be used, if an 

adhesive interface is being modelled: 
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where  )(xχ is the weak discontinuous enrichment function defined in terms of the 
signed distance function )(xξ : 
 

)()()( kk xxx ξξχ −=  (6.28) 

 
The rest of the procedure is basically similar to the XFEM procedure for cracks. Similar 

sub-triangle or sub-quad methods have to be used to facilitate the Gauss quadrature rule 
and to provide acceptable levels of accuracy for the integration of the discretized system 
equation.  
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The only difference is that instead of using the material properties of the bodies in 

contact, one has to use the so-called interface properties. For an interface with normal and 
tangential material properties nk and tk , the following compliance matrix can be defined 
(Nikbakht 2005) 
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whereθ is the angle of interface with the x-axis. These properties are applied to the Gauss 
points defined in the sub-quad or sub-triangle within a predefined contact zone, as 
depicted in Fig. 6.2. The size of the contact zone depends on the interface properties and 
the magnitude of the shear force. No specific size can be recommended and a 
comprehensive sensitivity study is required to assess its effects. 

 
 
Figure 6.2  Definition of a contact zone. 
 

Discussion on the details of contact mechanics procedures is out of the scope of this 
book. They are still among the most complicated problems in computational mechanics. 
Here, only the basic steps for a contact stress update procedure are provided. Assume that 
a system comprising of two contacting objects is in a state of equilibrium at an 
increment j , and the new displacement, strain and stress states are sought for a new 
increment )1( +j : 

 
1. The stiffness of elements containing part of the interface is updated according 

to the interface property at corresponding Gauss points within the contact 
zone. 

2. The global stiffness matrix is assembled and the incremental equilibrium 
equation is solved for the incremental displacements ju∆ . 
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                 jj fuK ∆=∆  (6.30) 

 
3. The incremental and total strains are then evaluated and their components in 

normal and tangential directions (with respect to the interface) are determined. 
4. The normal and tangential contact stresses are then estimated using the 

converged solution at the end of increment j. Non-associated slip rules are 
usually adopted. 

5. Nonlinear frictional contact procedures based on non-associated slip rules are 
used to correct the predicted trial stress state to determine the final normal and 
tangential contact stresses. 

6. The residual force vector is computed and the convergence of the solution is 
examined. 

 
The above approach has the least modification in a standard XFEM methodology, if 

any at all. Reports by Shamloo et al. (2005), Khoei and Nikbakht (2006) and Khoei et al. 
(2006a, 2006b) seem to be using this methodology.  
 
 

6.4  DYNAMIC FRACTURE 
 

6.4.1  Dynamic crack propagation by XFEM 
 
Static and quasi-crack analyses have been widely used for fracture analysis of structures. 
Nevertheless, they do not represent real world crack problems; they are only used as 
efficient simplified models for other highly complex dynamic phenomena. 

The usual approach for solving dynamic problems in the finite element method is to 
discretize the time and space independently. Discretization in time is performed by means 
of implicit or explicit time integration techniques, while the discretization in space is 
carried out by standard finite element shape functions. In this section, the problem of 
dynamic crack analysis by the extended finite element method is briefly reviewed. 

Two independent parts are involved in dynamic crack analysis by XFEM. First, a crack 
tracking procedure is required to represent an existing crack and its evolution by time. 
Fortunately, the level set method and the fast marching approach are available. They have 
been successfully implemented in the XFEM codes and can be used for quasi-static or 
dynamic crack evolution problems. Short descriptions of these methods have been given 
in Sections 3.8.1 and 3.8.2, respectively, and are not repeated. 

The second part is related to the way dynamic crack propagation is formulated. 
Belytschko et al. (2003) developed a methodology for switching from a continuum to a 
discrete discontinuity where the governing partial differential equation loses hyperbolicity 
for rate independent materials. They adopted the technique of loss of hyperbolicity in 
combination with the XFEM cohesive crack models. The idea was to track the change of a 
hyperbolicity indicator to compute the direction and velocity of dynamic crack 
propagation. They applied the method to solve problems involving crack branching. The 
idea of loss of hyperbolicity was previously developed by Gao and Klein (1998) for 
analysing dynamic crack propagations. Later, Peerlings et al. (2002) and Oliver et al. 
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(2003) further studied the loss of hyperbolicity and added this technique into equilibrium 
equations. 

Further improvements were reported by Chessa and Belytschko (2004) and Chessa and 
Belytschko (2006). They presented a locally enriched space–time extended finite element 
method for solving hyperbolic problems with discontinuities. The coupling was 
implemented through a weak enforcement of the continuity of the flux between the space–
time and semi-discrete domains in a manner similar to discontinuous Galerkin methods. 
They successfully applied the TXFEM to the Rankine–Hugoniot jump conditions to linear 
first order wave and nonlinear Burgers equations. 

Furthermore, Réthoré et al. (2005b) proposed a combined space–time extended finite 
element method, based on the idea of the time extended finite element method (TXFEM), 
allowing a suitable form of the time stepping formulae to satisfy stability and energy 
conservation criteria. XFEM was used to implicitly define a virtual crack field tangential 
to the crack front. The concept of a virtual field allowed for separation of mixed modes of 
fracture.  

Other contributions include the work by Belytschko and Chen (2004) who developed a 
singular enrichment finite element method for elastodynamic crack propagation, Zi et al. 
(2005) who presented a method for modelling arbitrary growth of dynamic cracks without 
remeshing, and Menouillard et al. (2006) who introduced a lumped mass matrix for 
enriched elements, which allowed the use of a pure explicit formulation in XFEM 
applications. 
 
 

6.4.2  Dynamic LEFM 
 
The concept of dynamic stress intensity factors can be directly derived from the classical 
definition of stress intensity factors in linear elastic fracture mechanics: 
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Evaluation of dynamic stress intensity factors are indirectly made by computation of 

the J integral using the domain integral approach or the interaction integral method. The 
latter is based on the definition of auxiliary fields defined by Piva et al. (2005), as 
discussed in previous sections. 

The mixed mode crack propagation is investigated by similar forms of static mixed 
mode criteria (2.126), (2.127), etc., except for using dynamic stress intensity factors. 

Once the direction of crack propagation and its corresponding dynamic stress intensity 
factor are obtained, the speed of the crack tip a& can be determined from the dynamic 
fracture toughness dyn

CK . For example, if the maximum circumferential tensile 
stress ( )maxθσ  is used as the mixed mode criterion, the following simplified equation can 
be used (Piva et al. 2005): 
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where Rc is the Rayleigh wave speed. 
 
 

6.4.3  Dynamic orthotropic LEFM 
 
The methodology described in Section 4.3.1 for an orthotropic near crack tip displacement 
field is now briefly extended to dynamic problems. Using the same notation, the steady- 
state equations of motion can be expressed as (Piva et al. 2005): 
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Coefficients iα and iβ are different from Eq. (4.41) and are defined as: 
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The Mach numbers jm are defined as: 
 

2,1== j
v
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j
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where c is a constant velocity and 21, vv are the longitudinal and shear wave velocities, 
respectively, defined in terms of the material density ρ  
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The characteristic equation of the matrix Λ remains similar to Eq. (4.42), 
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Piva et al. (2005) derived the displacement and stress fields in terms of analytical 

solutions of Eq. (6.34). Those highly complex solutions are further simplified for an 
infinite plane orthotropic problem containing a steadily propagating semi-infinite crack 
subjected to traction 0σ . The dominant displacement fields near the crack tip can be 
expressed as (Piva et al. 2005): 
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and the dominant stress fields (Piva et al. 2005):  
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where  
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πσ /22 0I aK = is the mode I stress intensity factor and )(1 θrgr = is defined with respect 

to the crack tip polar coordinates ),( θr   
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The dynamic energy release rate can also be obtained as (Piva et al. 2005): 
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A procedure similar to the one presented in Section 4.3.1 is expected to provide a basis 

for deriving the enrichment functions from the dominant displacement fields (6.44)–(6.45) 
for a dynamic crack analysis in orthotropic media. 
 
 

6.4.4 Basic formulation of dynamic XFEM 
 
Consider a body Ω  with an initial traction-free crack cΓ  in the state of dynamic 
equilibrium, as depicted in Fig. 3.20. The fundamental elastodynamic equation can be 
expressed as: 
 

ufσ &&ρ=+⋅∇ b  (6.53) 
 
with the following boundary conditions: 
 

uon),(),( Γ= tt xuxu  (6.54) 
 

t
t onΓ=⋅ fnσ  (6.55) 

 
con0 Γ=⋅nσ  (6.56) 

Trim added in PDF - Aptara



New Frontiers  203 

 
and initial conditions: 
 

)0()0,( uxu ==t  (6.57) 
 

)0()0,( uxu && ==t  (6.58) 
 
where  tΓ , uΓ and  cΓ are traction, displacement and crack boundaries, respectively; σ is 
the stress tensor and bf and tf are the body force and external traction vectors, 
respectively. 

The variational formulation of the initial/boundary value problem of Eq. (6.53) can be 
written as: 
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Γ⋅+Ω⋅=Ω⋅+Ω⋅ dddd tb ufufεσuu δδδδρ &&  (6.59) 

 
 

6.4.5  XFEM discretization 
 
In the extended finite element method, approximation (3.42) is utilised to calculate the 
displacement  )(xuh for a typical point x 
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or in a compact form 
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where u  is the vector of regular degrees of nodal freedom in finite element method, ka is 
the added set of degrees of freedom to the standard finite element model and )(xψ is the 
discontinuous enrichment function defined for the set of nodes that the discontinuity is in 
its influence (support) domain. 

hN is regarded as the global matrix of shape functions relating the generalised 
unknowns at each point x to their nodal values. 

The discretized form of Eq. (6.59) using the XFEM procedure (6.61) can be written as: 
 

fKuuM =+ hh&&  (6.62) 
 
where hu and hu&& denote the vector of nodal parameters (displacements u  and enrichment 
degrees of freedom a) and its second time derivative, respectively: 
 

{ }T,auu =h  (6.63) 
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The stiffness matrix K, mass matrix M and the external load vector f are defined as: 
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where the stiffness components uuK ij , uaK ij and aaK ij associated with the classical FEM, 
coupled and enrichment parts of XFEM approximation, respectively, can be defined from 
Eq. (3.84): 
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where NB ∇= is the matrix of derivatives of shape functions, defined in Eqs. (3.88) and 
(3.89). Classical and enrichment components of the consistent mass matrix can be 
expressed as: 
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Finally the force vectors associated with the classical and enrichment degrees of 

freedom are defined as:  
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6.4.6  Time integration 

 
The Newmark time integration scheme is usually used in dynamic analysis, because it can 
be designed to remain unconditionally stable. Eq. (6.62) for a specific time )1( +n  can be 
expressed as: 
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⎟
⎠
⎞

⎜
⎝
⎛

∆
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+ t
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&&&& 12
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The method is unconditionally (with respect to the size of timestep) stable if βγ 25.0 ≤≤ . 

In the special case of 0=β and 5.0=γ , the Newmark approach becomes similar to the 
central difference technique, which is only conditionally stable. Nevertheless, the central 
difference technique combined with a lumped mass matrix allows for decoupling the 
solution of degrees of freedom. As a result, the solution of the simultaneous system of 
equations can be avoided and a very fast explicit approach suitable for vectorise and 
parallel processing systems is obtained. Another important advantage of such explicit 
algorithms is that it does not require storage of the global stiffness matrix, and the process 
of assembly/solution is separately performed for each individual degree of freedom. 

There are a number of techniques for constructing the lumped mass matrix from the 
standard finite element consistent mass matrix. They, however, cannot be used directly in 
the extended finite element method. Menouillard et al. (2006) have recently proposed a 
lumped mass matrix to be used instead of Eq. (6.65) that allows for adoption of an explicit 
time integration technique. They used the idea of exact discrete kinetic energy to derive 
their lumped mass matrix (Menouillard et al. 2006): 

 

Ω= ∫Ω d1 20
e

i
en

i ln
M ψM  (6.78) 

 
where 0M is the total mass of element, nn is the number of nodes and: 
 
 

⎪
⎩

⎪
⎨

⎧
=

3Dvolume
2Darea
1Dlength

el  (6.79) 

 
They discussed the effect of enrichment and mass lumping on the size of the critical 

timestep required for stability of an explicit dynamic analysis. For further details, see 
Menouillard et al. (2006). 
 

Trim added in PDF - Aptara



206  Extended Finite Element Method 

 
6.4.7  Time finite element method 

 
The idea of time finite element method (TFEM) was first proposed by Zienkiewicz 
(1977). Beginning with the elastodynamics equation in terms of the displacement ),( txu  
 

)(),(),( ttt fxKuxuM =+&&  (6.80) 
 
The basic equation is to interpolate the displacement in time according to: 
 

∑
+

−=
=

1

1
)()(),(

n

ni
ii ttTt uxu  (6.81) 

 
where )(tTi are the time shape functions. Eq. (6.80) is then solved in a weighted residual 
form: 
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⎡
+ fuKuM &&  (6.82) 

 
where )(tWt is an appropriate weight function in time. The solution will depend on the 
selection of the weight function. Eq. (6.81) replaces the conventional set of Newmark 
equations ((6.76) and (6.77)). 

Later, Wood (1984) modified the original approach to include the velocity terms in the 
time interpolation: 

 

[ ])()()()()(),( 1

2

tttt
t

ttttt nnnnn uuuuuxu &∆−−⎟
⎠

⎞
⎜
⎝

⎛
∆

++= +  (6.83) 

 
The rest of the procedure is similar to the original approach. 

Alternatively, Réthoré et al. (2005b) presented a new formulation in terms of the 
velocity field )(tv : 

 
)()()( 11 ttt nnnn +++= ττ vvv  (6.84) 

 
where  
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n
n tt

ttt
−
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+

1
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n tt
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−
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+

+
1
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and the displacement is obtained by integration of Eq. (6.84) 
 

∫+= t
tn ttt
0

d)()( vuu  (6.86) 
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6.4.8  Time extended finite element method 

 
The same procedure as discussed in the previous section was extended to the XFEM 
formulation by Réthoré et al. (2005b), which was motivated by the fact that polynomial 
interpolation cannot approximate time discontinuities well. 

The fundamental XFEM approximation of the velocity field  )(thv is defined in terms 
of n classical and m enrichment degrees of freedom v and a, respectively (Réthoré et al. 
2005b): 

 

  )()()()(
0 10
∑∑∑
= ==

+=
n

j

m

k
jkkj

n

j
jj

h tttt avv ψττ  (6.87) 

 
which can be assumed to be an extension of Eq. (6.84). 
 
 

6.5   MULTISCALE XFEM 
 

6.5.1  Basic formulation 
 

The finite element method has recently been applied to multiscale analysis, in which 
different levels of accuracy are sought through appropriate formulations ranging from 
atomic scales to macro simulations of usual engineering problems. 

The original idea of global–local approximation was introduced to enhance the FEM 
over the entire region or part of the domain. Hirari et al. (1985) proposed a family of so-
called zooming methods, using refined finite element meshes for the local regions 
containing stress concentrations.  

In a superposition multiscale approach, global and local parts are modelled 
independently, and then superimposed to provide the final solution by satisfying the 
compatibility equations. An alternative approach is the multiple scale expansion technique 
based on homogenisation of field variables at each scale. Finally, domain decomposition 
techniques divide the domain into several subdomains connected to each other with 
interface elements (Haidar et al. 2003) 

Multiscale analyses have been performed using the partition of unity approach by a 
number of researchers. A micro–macro approach for crack propagation with local 
partition of unity enrichment was developed by Guidault et al. (2004). Haidar et al. 
(2003) proposed a two-scale approach for modelling crack propagation in concrete 
structures. Recently, Fish and Yuan (2005) developed a new multiscale enrichment based 
on the concept of partition of unity. A multifield XFEM approach was also presented by 
Mariano and Stazi (2004) to solve the problem of strain localisation due to crack–
microcrack interactions. 

Fig. 6.3 illustrates the multiscale methodology for a crack analysis. Part of the domain 
that requires an accurate approximation is simulated by a fine scale approach (Guidault et 
al. 2004). 
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Figure 6.3  A simple illustration of multiscale analysis. 
 
 

6.5.2 The zoom technique 
 

Consider a solid domainΩ descretized by a finite element mesh, as depicted in Fig. 6.3. 
The equilibrium equation of the system can be written as: 
 

fuσBu TT d δδ ∫Ω =ΩT  (6.88) 

 
where Tuδ is the variation of nodal displacement vector. The domain is split into a coarse 
scale linear elastic part cΩ and a fine scale nonlinear part fΩ with an interface intΓ . Eq. 
(6.88) can then be transformed into the followings (Hirari et al. 1985): 
 

fuσBuuBDBu TTTTT dd δδδ ∫∫ ΩΩ
=Ω+Ω

fc
fccccccc  (6.89) 

 
and 
 

∫∫ ΓΩ
Γ=Ω

int
dd TT

ffff N
f

pσB  (6.90) 

 
ffff uBDσ =  (6.91) 

 
where subscripts fc, represent the corresponding variables in coarse and fine scales, 
respectively. 
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Applying the boundary conditions along the internal interface of the coarse and fine 

scales, results in the following form of the governing equations (Haidar et al. 2003): 
 

ccc
c

ffσB +=Ω∫Ω dT  (6.92) 

 
0d

int

intT =Γ+ ∫Γ tf fc N  (6.93) 

 
where intt denotes the internal surface traction along the fine/coarse boundary intΓ . 
 
 

6.5.3 Homogenisation based techniques 
 

The fact that the presence of a crack in a macro–micro or coarse–fine approach may 
influence both the coarse and fine scales, raises questions regarding the kinematics and 
the description of forces on the two scales.  A solution for keeping the structure of the 
global coarse scale solution unchanged is to introduce a displacement discontinuity on the 
fine scale (Guidault et al. 2004). 

Assume cx and fx denote the coordinates at coarse and fine scales, respectively. 
Macroscopic stress and strain fields cσ , cε  are determined from the average 
(homogenised) Ξ  microscopic stress and strain fields fσ , fε , 

 

[ ]),()( fcfcc xxσxσ Ξ=  (6.94) 

 
[ ]),()( fcfcc xxεxε Ξ=  (6.95) 

 
whereΞ is the average/homogenisation operator. One of the important features of 
homogenisation based methods is that any fine scale solution can be completely described 
by the coarse scale (Fish and Yuan 2005).  

Assuming a periodic microstructure allows for a homogenisation procedure that is built 
on a single basic cell. Denoting the periodic displacement by pu , the displacement field 
can now be decomposed into (Mariano and Stazi 2004) 

 
)()(),( fpfccfc xuxxεxxu +⋅=  (6.96) 

 
and the fine scale strain can be computed from its derivative, 
 

pccff εxεxε += )()(  (6.97) 
 
The governing equation for a basic cell can then be defined as (Moës et al. 2003): 
 

0)(div =fxσ  (6.98) 
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with 
 

)()()( ffffff xεxDxσ =  (6.99) 
 
where fD is the fine scale constitutive matrix. The strain localisation tensor can also be 
defined: 
 

)()()( loc ccfff xεxDxε =  (6.100) 
 
and the effective homogenised stiffness matrix homK  as (Moës et al. 2003): 
 

[ ])()(hom flocff xDxDΞK =  (6.101) 

 
 

6.5.4 XFEM discretization 
 
In order to allow for variation of the coarse scale solution over the unit cell domain, the 
dependency of the fine scale functions on the coarse scale solutions should be removed 
(Fish and Yuan 2005). The partition of unity feature of XFEM allows for 
replacing )( cc xε with an independent set of degrees of freedom. 

Alternatively, the standard form of XFEM can be used to approximate the displacement 
field around any discontinuity boundary: 
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==

+=
m

k
kk
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j
jj

h NN
11

)()()()( axxuxxu ψ  (6.102) 

 
Moës et al. (2003) proposed the following enrichment functions )(xψ  instead of using 

the conventional Heaviside functions:  
 

∑
=

=
m

i
ii N

1
)()( xx φψ  (6.103) 

 
and 
 

∑∑
==

−=
m

i
ii

m

i
ii NN

11
)()()( xxx φφψ  (6.104) 

 
The rest of the procedure remains similar to the finite element modelling of multiscale 
problems. For further details see Moës et al. (2003), Mariano and Stazi (2004) and Fish 
and Yuan (2005). 
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6.6   MULTIPHASE XFEM 
 

6.6.1  Basic formulation 
 
Consider a domain Ω consisting of two phases of fluid fΩ and solid sΩ , as depicted in 
Fig. 6.4.  
 

 
Figure 6.4  A two-phase problem with an internal interface. 
 
 

Governing equations for the temperature T evolution in the fluid and solid phases can 
be defined as (Zabaras et al. 2006): 

 

ff TT
t
T Ω∈∇=∇⋅+
∂
∂ xv 2

n α  (6.105) 

 

ss T
t
T Ω∈∇=
∂
∂ x2α  (6.106) 

 
where fα and sα are thermal diffusivities of liquid and solid phases, respectively, and 

nv is the normal interface speed. The conditions on solid–fluid interface intΓ can be 
expressed as: 
 

intvintcm on Γ−−== vTTT fs ερε  (6.107) 
 
and the jump in the heat flux normal to the interface 
 

intnl on Γ−=−=>< −+ vHqqq  (6.108) 
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where cε and vε are the surface tension coefficient and the kinetic mobility coefficients, 
respectively, and intρ is the curvature of the propagating interface. lH is the latent heat 
for the phase change, mT is the melting/fusion temperature and q is the heat flux. 

Neglecting any material transport caused by an expansion or shrinkage due to phase 
change or buoyancy effects, the energy conservation equation in Ω can be defined as (Ji 
et al. 2002): 

 

( ) ( ) fsisTkTc
t iiiiiii ,,in =Ω+∇⋅∇=
∂
∂ρ  (6.109) 

 
where ρ , c, k and s are density, specific heat, thermal conductivity, and the heat 
source, respectively. The conditions on solid–fluid interface intΓ can then be expressed as: 
 

inton Γ== mfs TTT  (6.110) 

 
[ ] intint on Γ⋅∇−∇=−=>< −+ nssff TkTkqqq  (6.111) 

 
Chessa et al. (2002) developed a backward difference formula for the time derivative to 

derive the following weak form for solving Eq. (6.109): 
 

( ) ( )[ ] ( )

Ω+Γ−=

Ω∇⋅∇+Ω−
∆

∫∫

∫∫

Ω
+

Γ
+

Ω
+

Ω
+

dd

dd1

11

11

nn

nnn

TsTq

TkTcTcTT
T

q
δδ

δρδ
 (6.112) 

 
Solid and fluid parameters are used for evaluation of Eq. (6.112) at corresponding gauss 
integration points. 

Alternatively, Ji et al. (2002) used a trapezoidal time stepping rule. They also proposed 
an independent approximation for the time derivative of the temperature field )(, xn

tT  to 
account for its discontinuity across the phase boundary using the Heaviside 
function, )(xH  (Ji et al. 2002): 

 

( ) ( )∑∑
==

+++=
∂

∂ m

k
kk

i
iiiiii

n
HMaMaMaM

t
T

1

1
4

1

332211 )()( xbx
 (6.113) 

 
where j

iM are tensor products of the one-dimensional Hermite interpolants (Ji et al. 
2002). 
 
 

6.6.2  XFEM approximation 
 
The extended finite element approximation for the temperature field ),( tT h x can be 
defined as: 
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11
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kk
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jj

h xNaxxxx =+= ∑∑
==

ψ  (6.114) 

 
where ka are the added set of degrees of freedom to the standard finite element model, 

)(xψ is the discontinuous enrichment function and hN can be regarded as the global 
matrix of shape functions: 

 
{ }T121 )(,...),(),(,...),(),()( tttTtTtTtT mn aa=  (6.115) 

 
{ }T121 ),()(,...),,()(),(,...),(),()( tNtNNNN mn

h xxxxxxxxN ψψ=  (6.116) 

 
Arbitrary material interfaces can be modelled through the use of an enrichment function 

with discontinuous derivatives (Ji et al. 2002). This can be examined by the gradient of 
the XFEM approximation Eq. (6.114), 

 

[ ]∑∑
==

∇+∇+∇=∇
m

k
kkk

n

j
jj

h ttNtNtTNtT
11

)(),()(),()()()(),( axxxxxx ψψ  (6.117) 

 
which reveals that gradient discontinuities will arise in the approximation for the 
temperature field wherever they exist in the enrichment function. As a result, weak 
discontinuous enrichment functions similar to Eq. (3.61) have to be adopted. 

Eq. (6.114) is not an interpolation and )(tT j do not return the exact nodal temperatures. 
An alternative solution is to use the interpolating XFEM formulation: 

 

 [ ]∑∑
==

−+=
m

k
kkk

n

j
jj

h tttNtTNtT
11

)(),(),()()()(),( axxxxx ψψ  (6.118) 

 
Substituting Eq. (6.114) into the weak form (6.112) results in the following discretized 
system of equations (Chessa et al. 2002): 
 

1111 11 ++++ ++
∆

=+
∆

n
s

n
q

nnn T
t

TT
t

ffMKM  (6.119) 

 
where  
 

( ) Ω= +

Ω

++∫ d1,1T1, nhnnh k BBK  (6.120) 

 
( ) Ω= +

Ω

++∫ d1,1T1, nhnnh c NNM ρ  (6.121) 
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( ) Ω= ∫

Ω

+ d,T1, nhnnh c NNM ρ  (6.122) 

 
( ) Γ−= ∫

Γ

+++ d1T1,1

q

nnhn
q qNf  (6.123) 

 
( ) Γ−= ∫

Ω

+++ d1T1,1 nnhn
s sNf  (6.124) 

 
with  

 
1,1, ++ ∇= nhnh NB  (6.125) 

 
The level set method is used to explicitly track intΓ . The location of the boundary intΓ is 

defined with a signed distance function φ . The basic idea is to determine the movement 
of the interface with a correct speed v to satisfy (6.105) in a weak form. For further 
details see Chessa et al. (2002) and Ji et al. (2002). 
 
 

6.6.3  Two-phase fluid flow 
 
Chessa and Belytschko (2003a, 2003b) developed an extended finite element procedure 
for simulation of two-phase fluids. Consider a domain Ω partitioned into two time-
varying subdomains 1Ω and 2Ω , corresponding to fluids 1 and 2, respectively, with an 
interface intΓ  between the two phases, as depicted in Fig. 6.4.  

In the absence of surface tractions, the Navier–Stokes equations for a two-phase 
incompressible flow take the following forms for the velocity field v, 

 

 ( ) 0=⋅∇−⎥⎦
⎤

⎢⎣

⎡ −⊗⋅∇+
∂
∂ σgvvv

t
ρ  (6.126) 

 
0=⋅∇ v  (6.127) 

 
where ρ is the fluid density, g is the applied body force, and σ  is the Cauchy stress 
tensor,  
 

Iτσ p−=  (6.128) 
 

( )∇+∇= vvτ µ  (6.129) 
 
which is valid for Newtonian fluids. The governing Eq. (6.126) can now be rewritten as 
(Lin et al. 2005): 
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( ) ( ) gvvvv ρµρ +∇⋅∇=∇+⎥⎦
⎤

⎢⎣
⎡ ⊗⋅∇+
∂
∂ p

t
 (6.130) 

 
The main boundary conditions can be defined as: 
 

vt Γ= on),( vxv  (6.131) 

 
t

tt Γ=⋅ on),( fxσn  (6.132) 

 
or in terms of the hydrostatic pressure p and deviatoric stress τ: 
 

tptp Γ= on),(x  (6.133) 

 
t

tt Γ=⋅ on),( fxτn  (6.134) 

 
The internal boundary conditions are expressed as: 
 

intint on0 Γ=>⋅< nσ  (6.135) 

 
inton0 Γ=>< v  (6.136) 

 
 

6.6.4  XFEM approximation 
 
It is obvious that discontinuous derivatives of velocity and pressure may occur at the 
interface (Kolke et al. 2003). To capture these discontinuous gradient fields, the following 
weak discontinuity form of XFEM approximation is adopted: 
 

)()()(),()()()(),(
11

tttNtNt h
m

k
kkk

n

j
jj

h VxNaxxvxxv =+= ∑∑
==

ψ  (6.137) 

 
where )(xNh and )(tV  are the global shape functions and degrees of freedom, 
respectively, and the enrichment function ),( tk xψ is defined in terms of the level set 
distance function ),( txφ (see Eq. (3.62)): 
 

),(),(),( ttt kk xxx φφψ −=  (6.138) 

 
Chessa and Belytschko (2003b) derived the following discretized form of the governing 

equations using a characteristic based split (CBS) algorithm (Chorin 1968 and 
Zienkiewicz and Codina 1995), 
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nnnn t fVKfKVCVMVVM
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 (6.139) 

 
pu

n
p pt fVGK −=∆ +1  (6.140) 

 
111 +−+ ∆−= nTn pt GMVV  (6.141) 

 
where (Chessa and Belytschko 2003b) 
 

( )∫Ω
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⎡
−

−
= d

100
011
011

,T1, nhnnh BBK µ  (6.142) 

 
( )( ) ( )( )∫Ω

+ Ω∇∇−= d
2
1 ,TT1,T nhnnnhn

u NvNvK ρ  (6.143) 

 
∫Ω Ω= dTBBK p  (6.144) 

 
( )∫Ω

++ Ω= d1,T1, nhnnh NNM ρ  (6.145) 

 
( )∫Ω

+ Ω= d1,T1, nhnnh NNM ρ  (6.146) 

 
( ) ( )∫Ω

+ Ω∇= d,T1, nhnnnh NvNC ρ  (6.147) 

 
( )∫Ω

+ Ω= d
T1, hnh NBG  (6.148) 

 
( )∫Ω Ω= d

T, nnnh
u NρBG  (6.149) 

 
∫∫ Γ

+
Ω

+ Γ+Ω=
t

dd 1,1, tNNf nhnh gρ  (6.150) 

 
Γ⋅= ∫Γ

+ d
t

1T n
p vnNf  (6.151) 

 
with  

 
NB ∇=  (6.152) 
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hh NB ∇=  (6.153) 
 
Wagner et al. (2001, 2003) developed new formulations based on the XFEM 

enrichment procedure to simulate the fluid flow around rigid particles. The fluid flow was 
governed by the Stokes formulation, and a lubrication theory was adopted to allow for a 
combined fluid-particle model. 
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Chapter 7  
 
 

XFEM Flow 
 
 
 
 
 
 
 

7.1  INTRODUCTION 
 
Previous chapters have comprehensively discussed various aspects of the extended finite 
element methodology for fracture analysis of structures. Other aspects of XFEM for 
simulation of different engineering and physical applications have also been addressed. 

This chapter is designed to summarise a successful XFEM application in a step-by-step 
algorithmic approach. The aim has been to briefly provide a general overview of the 
whole process of code implementation for the XFEM methodology.  

It is not intended to go into the details of the programming techniques, as they depend 
on the artistry and experience of the programmer and the level of smartness and genius 
put forward. Additionally, no specific XFEM source code is provided, and the reader may 
refer to a number of freely available source codes, if necessary. Instead, only the general 
algorithms and the main solution procedures are explained. 

First, the general parts of a finite element analysis are described briefly. They cover the 
linear elastic solution, large deformation and elastoplastic analysis within a conventional 
finite element analysis.  

Then, the basic steps of XFEM simulation are provided. Subsections are included on 
front tracking algorithms, criteria for selection of enrichment nodes/elements, definition 
and determination of various enrichment functions, including crack tip asymptotic 
functions, strong and weak discontinuous enrichments, biomaterial and orthotropic 
enrichments, and elastoplastic enrichments algorithms.   

The next section deals with the items related to solving governing equations, which 
includes solution of static simultaneous equations, dynamic time integration techniques, 
and the crack length control for large deformation snap-back response.  

The post-processing section addresses the main objectives of a fracture analysis by 
determining the mixed mode stress intensity factors, and controlling the crack growth 
criteria. Other applications of XFEM require a redesign for this section.  

The final section briefly discusses the configuration update. Such an update is 
necessary if a large deformation analysis is performed or if a crack propagation criterion 
is met. The update procedure may be involved with geometric entities, or require the 
handling of complex data structures for updating the internal variables. 
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7.2  AVAILABLE OPEN-SOURCE XFEM 
 

There are several freely available XFEM software packages on the internet. Both 
executable files and open-source files may be obtained and used, of course with great 
caution. FORTRAN, C++ and MATLAB source codes are available and may be used 
appropriately. 

MATLAB is popular and highly appropriate for the development stages of any novel 
numerical approach. It facilitates the vector and matrix manipulations and is capable of 
powerful debugging of the code. However, for practical large-scale simulations, a move to 
FORTRAN or C++ implementations seems unavoidable. 
 

 
7.3 FINITE ELEMENT ANALYSIS 
 
7.3.1  Defining the model 
 

The first step is to define the finite element model: 
 

1. Define the boundary of the physical model. 
2. Define different zones of the model, for which different finite element sizes are 

to be used. This is usually based on the experience of the analyst and an 
anticipation of the potential concentration or singular regions. 

3. Ignore the presence of any predefined crack, hole or interface if the XFEM 
methodology is used. 

4. Define the loading conditions: 
a. Static loading. 
b. Quasi-static incremental loading conditions. 
c. Loading–time curves for dynamic analysis. 

5. Assign the appropriate material models to the finite elements. 
a. Linear elastic model. 
b. Nonlinear elastoplastic models. 

6. Define the boundary conditions. 
a. Essential boundary conditions (displacements). 
b. Natural boundary conditions (tractions). 

7. Define the contact surfaces. 
 
 
7.3.2  Creating the finite element mesh 
 

The finite element model is constructed according to the following steps: 
 

1. Generate the finite element mesh using a conventional structured or 
unstructured mesh generator based on descriptions of Section 7.3.1. 
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2. The mesh generation is performed while ignoring the presence of any cracks or 
discontinuity.  

3. There is basically no major difference between the triangular or quadrilateral 
elements in XFEM. 

4. Both linear and higher-order finite elements can be used. Linear elements, 
however, have been more common and easier to implement. 

5. The data structure related to the degrees of freedom should be designed to 
account for the additional variable number of unknowns in XFEM.  

 
 
7.3.3 Linear elastic analysis 
 

The following steps are usually taken for a classical linear elastic finite element analysis: 
 

1. Determination of the equivalent nodal force vector. 
2. Derivation of  the stiffness matrix: 
 

               ∫ Ω= dTDBBK  (7.1) 

 
a. Constructing element stiffness matrices. 
 

                               ( ) gg
e W∑= JDBBK detT  (7.2) 

 
b. Assembling eK into the global stiffness matrix K. 

3. Imposition of boundary conditions. 
4. Solving the set of simultaneous equations fKu = for the unknown field 

variable u  (displacements). 
5. Computing the nodal internal forces: 
 

               ∫ Ω= dTσBf  (7.3) 

 
 
7.3.4  Large deformation 

 
There are a number of advanced algorithms for the finite element analysis in the large 
deformation regime. Here, a rather simple updated Lagrangian approach based on the 
predictor-corrector methodology is explained: 
 

1. The loading is defined in a number of increments. For each increment, the 
following steps have to be taken: 

2. Beginning of the iteration loop. 
a. Compute the stiffness matrix of the system using a standard or 

modified Newton–Raphson approach or a secant stiffness. 
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b. Solve the set of simultaneous equations for the displacements. 
c. Compute the strain and stiffness tensors, based on the nonlinear Green 

strain. 
d. Compute the equivalent internal nodal force vector. 
e. Determine the residual force vector (difference between the internal 

nodal force vector and the external loading vector). This is also used 
as part of the loading for the next iteration. 

f. Check for a convergence criterion based on appropriate norm of 
displacement, residual, energy, etc. 

g. GOTO 3 if the convergence criterion is met. 
h. GOTO 2 for new trial iteration. 

3. Update the geometry. 
4. GOTO 1 for the next incremental loading. 

 
 
7.3.5  Nonlinear (elastoplastic) analysis 

 
In order to explain the methodology of an elastoplastic update procedure, a rather simple 
description of the elastic prediction-plastic correction approach is briefly explained: 
 

1. The external force vector is divided into a predefined number of load 
increments. For each increment, the following steps are considered. 

2. Beginning of the iteration loop. 
a. Determine the initial or tangential stiffness matrix. 
b. Solve the set of simultaneous equations to compute the displacements. 
c. Assume a Green definition of strain tensor, and compute the strain 

field at the quadrature points. 
d. Compute a trial stress increment by assuming an elastic material 

response. 
e. Compute the total trial stress at the quadrature points. 
f. Perform the stress update procedure: 

i. Compute the failure criterion. 
ii. Follow the linearisation procedure to determine new stress 

state. 
iii. Determine new consistent stiffness. 
iv. Check for the stress convergence. 
v. If the convergence is not met, return to (2d) using an 

updated material stiffness. 
g. The final updated stress state is available at the end of the iteration. 
h. Compute the nodal internal force vector from the elasoplastic updated 

stress state. 
i. Evaluate an index of convergence using an appropriate global norm. 
j. If the convergence is not achieved, GOTO 2. 

3. Update the geometry to include the effects of large deformation. 
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7.3.6   Material constitutive matrix 
 

If a material point, usually a Gauss integration point, is due to undergo plastic 
deformations, the material stiffness matrix must be updated accordingly. The procedure 
should be basically designed for any specified type of plastic rule.  

 
 
7.4  XFEM  
 
7.4.1  Front tracking 
 

In order to define various object entities such as cracks, holes, etc., an automatic 
procedure is required to first define the so-called front within an independent finite 
element mesh, and then to track any potential changes that may occur in time or subject to 
incremental loading conditions. The following steps are followed: 
 

1. Defining various object entities: 
a. Cracks 
b. Holes 
c. Inclusions 
d. Interfaces 
e. … 

2. Objects can be represented by explicit mathematical functions, adopting general 
curve defining algorithms such as B-splines, or as a collection of discrete points.   

3. Tracking potential changes of the object geometry (front). 
 
Tree data structures are required for efficient data management and reduction of various 
search times by invoking a hierarchical domain decomposition and data structure at the 
same time. 

 
 
7.4.1.1  Standard method 
 

For simple shaped cracks, the problem of defining and tracking the crack evolution is 
simple and straightforward and does not require any sophisticated tracking approach. In 
the case of more complicated problems, the standard approach for front tracking can be 
summarised as: 
 

1. Define the front by one of the B-spline, NURBS or similar techniques by setting 
a number of marker nodes on the front. 

2. Define a regular set of finite difference grid on the front. 
3. Move the marker points in accordance with the finite difference approximation 

of the equation of the motion. 
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7.4.1.2  Level set approach 
 

The level set method solves the problem of a moving interface on a fixed Eulerian mesh. 
The following steps are followed to define the level set approach: 
 

1. Define the level set φ in terms of the signed distance function ξ  
 

                )()( xx ξφ =  (7.4) 
 
2. The front can be defined as the zero level set 0=φ . 
3. The level set φ is descretized in terms of the nodal values 
 

                ∑
=

=
n

j
jjN

1
)()()( xxx φφ  (7.5) 

 
4. The Hamilton–Jacobi equation of motion (3.131) is solved for determining the 

front evolution with the velocity v  
 

                0,, =+ ii vφφ&  (7.6) 
 
         or in an incremental form 
 

                n
i

n
i

nn t ,,
1 v∆−=+ φφ  (7.7) 

 
 
7.4.1.3  Vector level set approach 
 

A crack growth is modelled by appropriately updating the crack tip level set ψ and crack 
level set φ . At a step n : 
 

1. The prescribed velocity vector ),( yx vvv = (normal to the front interface) is 
known. 

2. Determine the rotated level set of k
nφ  

 

                
v

v
v
v y

k
x

k
rk yyxx )()(, −+−=φ  (7.8) 

 
3. Determine 1+nψ  
 

                
v

v
v

v x
k

y
kn yyxx )()(1 −+−±=+ψ  (7.9) 

 
4. The updated location of the crack tip k

n 1+φ can be computed: 
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                vtrkk

n ∆−=+
,

1 φφ  (7.10) 

 
5. Update 1+nφ for more than one crack tip: 
 

                )(max),( k
k

t φφ =x  (7.11) 

 
6. The location of the new crack tip k is determined by finding the intersection of 

the zero level sets of k
n 1+φ and 1+nψ . 

 
 
7.4.1.4  Fast marching method 
 

The following simple procedure describes the way a fast marching algorithm is 
constructed: 
 

1. Initialise the crack front given by )0(1−φ . 
 

                )0()0( 1
1

1 −− = ϕφ  (7.12) 
                11 =∇ϕ  (7.13) 

 
2. Use the FMM to compute the signed distance function. 
3. Compute crack front speed v using the XFEM. 
4. Use the FMM to extend the front speed: 
 

                01 =∇⋅∇ ϕv  (7.14) 
 
5. Use the FMM to compute the location of the advancing crack front at time t∆ : 
 

                
)(

1
xv

=∇φ  (7.15) 

 
6. Advance crack front by the time step size t∆  
 

                t∆−= φφ  (7.16) 
 
 
7.4.2  Enrichment detection 
 

An efficient XFEM analysis requires a systematic algorithm for detection of the nodes or 
elements for enrichment. Such an algorithm must take into account: 
 

1. Different enrichment types (crack tip, discontinuity, etc.) in the detection 
procedure.  
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2. The detection approach must also be capable of properly defining the transition 

domain between the classical finite element and the enriched domain, and 
specifying normal and enriched nodes associated to any transitional element. 

3. The detection process must also be updated in time by any change in crack path 
due to the crack propagation.  

4. Some of the previously enriched nodes may no longer be a candidate for 
enrichment or may require a different type of enrichment function. 

5. The detection procedure should also prepare a list of interacted elements and 
nodes to facilitate application of the enrichment functions and assembly 
procedures.  

6. A criterion is required to decide on whether to include interior nodes of higher-
order elements in the enrichment process. 

7. A fixed enrichment domain such as a circle centred at the crack tip can be used 
to determine the candidates for crack tip enrichments. 

8. For Heaviside enrichments, only the nodes that belong to an element split by a 
discontinuity may be used.  

9. Alternatively, a boundary zone close to the interface can well work for specific 
problems. 

 
 
7.4.3  Enrichment functions 
 

Both the enrichment functions and their derivatives should be evaluated. The following 
sections summarise the most important enrichment functions. 

 
 
7.4.3.1 Isotropic crack tip enrichment 
 

Eq. (3.27) for the isotropic crack tip enrichment, and Eqs. (3.101)–(3.110) for the 
derivatives can be used. 
 

{ }
⎭
⎬
⎫

⎩
⎨
⎧== 2

sinsin,
2

cossin,
2

sin,
2

cos),( 4
1

θθθθθθθ rrrrrF ll  (7.17) 

 
 

7.4.3.2 Orthotropic crack tip enrichment 
 

Three different classes of orthotropic crack tip enrichment functions have been presented 
in Chapter 4. The first two classes are associated with only part of the composite 
problems, whereas the third one can be adopted for any orthotropic crack simulation. 

The procedure for an inclined crack in an orthotropic medium can be summarised as: 
 

1. Select the appropriate class of orthotropic formulations. 
2. Determine the function jg and angles jθ from Eqs. (4.49)–(4.50), (4.74)–(4.75) 

or (4.95)–(4.96) for class I, II and III orthotropic XFEM, respectively. 
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3. Use Eq. (4.99) to compute the orthotropic enrichment functions: 
 

  

⎭
⎬
⎫

⎩
⎨
⎧=

)(
2

sin,)(
2

sin

,)(
2

cos,)(
2

cos),(

2
2

1
1

2
2

1
1

θθθθ

θθθθθ

grgr

grgrrF
 (7.18) 

 
 

7.4.3.3 Strong discontinuity enrichment 
 

Eqs. (3.47) and (3.57) or their smoothed approximations can be used as the strong 
discontinuity enrichments: 
 

⎩
⎨
⎧

<∀
>∀

==
00
01

)()(
ξ
ξ

ξψ Hx  (7.19) 

 

⎩
⎨
⎧

<∀−
>∀

===
01
01

)(sign)()(
ξ
ξ

ξξψ Hx  (7.20) 

 
For the derivatives, Eqs. (3.94) and (3.95) should also be used. 

 
 
7.4.3.4 Weak discontinuity enrichment 
 

In order to define a weak discontinuity enrichment, Eqs. (3.61) and (3.62) are used. 
 

)()()()( kk xxxx ξξχψ −==  (7.21) 

 
The derivatives are computed similarly. 

 
 
 
7.4.3.5 Frictional contact interface 
 

Most of the existing studies on contact interfaces have used the Heaviside enrichment to 
simulate a sliding contact interface. This will then resemble the strong or weak 
discontinuity enrichments. It is anticipated that a new class of contact interface 
enrichment functions are evolving from the available analytical solutions. When 
published, they should replace the conventional approach to contact enrichment.  
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7.4.3.6  Bimaterial interface enrichment 
 

Various types of bimaterial interfaces such as solid–solid, solid–fluid and fluid–fluid 
interfaces can be considered. Each one may require its own set of enrichment functions. 
For a solid–solid bimaterial interface, Eq. (6.23) is adopted: 
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(7.22) 

 
7.4.3.7 Elastoplastic enrichment 
 

Elastoplastic enrichment functions are computed from Eqs. (3.68)–(3.71): 
 

[ ]
⎭
⎬
⎫

⎩
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⎧

∈⎟
⎠
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2
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2
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1

kkkrF nj
l

θθx  (7.23) 

 
An iterative approach is required to perform the elastoplastic stress update procedure in 

combination with the elastoplastic crack enrichment functions: 
 

1. A trial solution is computed from the elastic solution. 
2. XFEM enrichments are applied and the new set of incremental equilibrium 

equations is formed. 
3. The solution for the displacement increments is used to evaluate the strain and 

stress rates (increments). 
4. The Newton–Raphson approach should be used with a consistent elastoplastic 

material modulus to satisfy both the equilibrium and consistency conditions in 
an iterative converging procedure (see Section 7.3.3). 

5. The method should be adapted according to each specific elastoplasic material 
model. 
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7.4.4 Ramp (transition) functions 
 

The ramp functions are defined according to Eq. (3.40). Linear and spline functions are 
frequently used. Derivatives of the ramp functions are also required. 
 

1. Define the appropriate ramp function to satisfy the 0C or 1C continuity between 
the enriched and classical finite element approximations.  

2. Linear and spline functions are usually preferred. 
3. The size of the transition zone should be selected. 
4. Compute the necessary terms associated with the transition domain. 
5. The number of enriched and classical nodes in a transitional finite element may 

suddenly change in nearby elements. Special precautions are required to avoid 
potential mistakes in defining the correct numbers for different summations. 

 
 

7.4.5 Evaluation of the B matrix 
 

Evaluation of the B matrix is an essential part of constructing the stiffness matrix. This is 
achieved by computing the derivative of the finite element shape function and the 
enrichment functions. 
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7.5 NUMERICAL INTEGRATION 
 

To form the discretized set of equilibrium equations and the system matrices, numerical 
integration techniques have to be used to evaluate the existing integrals defined over the 
global or local domains. The Gauss quadrature rule is usually preferred for finite element 
analysis.  
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The Gauss quadrature rule can provide accurate numerical solutions for integrands of 

polynomial nature. Unfortunately, this is not the case for enriched finite element solutions 
as they include highly nonlinear and even discontinuous functions. Two approaches are 
available for improving the accuracy of the Gauss integration scheme. 

 
 
7.5.1  Sub-quads 
 

In this method: 
 

1. The element domain is uniformly partitioned into a regular subgrid of 
quadrature elements (sub-quads). 

2. Each sub-quad is assigned a predefined set of Gauss quadrature points and 
weights. 

3. The integrand and the weight function are computed at each Gauss point. 
4. The final solution of the integral is obtained from the summation over all Gauss 

points within the element. 
5. A node is enriched only if there exists at least one Gauss point on both sides of 

the crack.  
 
 
 

7.5.2  Sub-triangles 
 

This is an alternative to the sub-quad approach by construction of a local mesh of 
triangular quadrature elements between the crack and the element boundaries: 
 

1. Determine whether the crack crosses an element.  
2. If the area between the crack and a corner node is very small compared to the 

element area, neglect the presence of crack and avoid sub-triangulation. 
3. Use a simple triangulation technique by adding a limited predefined number of 

points inside the element and on its boundaries and connecting them to form 
consistent well shaped triangles. 

4. A local Delaunay triangulation scheme may always be used as an automatic 
approach for creation of quadrature sub-triangles. 

5. Each sub-triangle is assigned a predefined set of Gauss quadrature points and 
weights. 

6. The integrand and the weight function are computed at the Gauss points. 
7. The final solution of the integral is obtained from the summation over all Gauss 

points within the element. 
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7.6 SOLVER 
 
7.6.1 XFEM degrees of freedom 
 

One of the complicated aspects of XFEM is the use of different types of degrees of 
freedom (DOF) that may change by time or by propagation of a crack. As a result, a 
systematic way of handling the normal degrees of freedom (displacements) and the 
enrichment degrees of freedom are required. The following remarks should be considered: 
 

1. Different types of degrees of freedom. 
a. Displacements, ju  
b. Heaviside related DOFs, ka  
c. Crack tip related DOFs, kb  

2. Different number of DOFs. 
3. The number of DOFs may change by time or by crack evolution. 
4. Applying the boundary conditions may affect the enriched DOFs. 
5. Special techniques such as lumping should be avoided or reformulated for the 

enrichment DOFs. 
 
 
7.6.2 Time integration 
 

There are a number of different time integration schemes for a dynamic XFEM analysis. 
Among them the Newmark method and a simplified explicit approach can be adopted: 
 

1. For a Newmark approach, 
a. The approximation in time takes the following forms: 
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b. The solution has to be obtained by one of the following assumptions 

for the stiffness update in nonlinear analyses:  
i. Constant stiffness 

ii. Newton approach 
iii. The modified Newton. 

2. In a central difference explicit analysis, 
a. Compute the approximation for any degrees of freedom i : 
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b. The appropriate lumped mass matrix (6.78) must be used: 
 

                                Ω= ∫Ω d1 20
e

i
en

i

ln
Mm ψ  (7.30) 

 
3. Alternative techniques such as TFEM and TXFEM can be designed based on 

sections 6.4.7 and 6.4.8. 
 
 
7.6.3 Simultaneous equations solver 
 

The solution of the simultaneous equations of the system can be performed by any of the 
well developed available techniques. The following notes should be considered: 
 

1. The system of equations involves different types of unknowns (DOFs).  
2. The symmetry/asymmetry of the system matrices is not changed by the 

introduction of the enrichment approximations. 
3. There is a possibility of ill conditioning if proper enrichments are not adopted in 

accordance with appropriate domains of influence. 
 
 
7.6.4  Crack length control 

 
A stable crack path, as discussed in Section 5.2.4, can be associated to a snap-back 
response. As a result neither the displacement control nor the force control solutions can 
simulate the whole stable path of crack propagation. Instead, the following simplified 
crack length control can be used: 
 

1. Apply crack initiation preferences. 
2. Compute/update the stiffness matrix of the system. Evaluate new stiffness 

matrix if the geometry has been changed due to crack propagation. 
3. Beginning of the iteration loop. 

a. Solve the system under internal loadings from cohesive crack 
tractions. The final converged configuration of the system at the 
previous step can be assumed as a basis for evaluation of crack profile 
and cohesive forces. The stress state at the crack tip is obtained for 
this system of internal loading. 

 
                               cohcoh fKu =  (7.31) 

 
b. The system is then solved under the external loading. Again, the stress 

state is computed at the crack tip. 
 

                               extext fKu =  (7.32) 
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c. The maximum crack tip stress criterion is used to evaluate the 

external load factor α . As a result, the set of coupled external and 
internal loadings that satisfy the crack propagation criterion is 
obtained. 

 
                               cohext ffKu +=α  (7.33) 

 
                               21 σσσ +=α  (7.34) 

 
d. The crack propagation criterion is satisfied if the maximum tensile 

stress at the crack tip, tipσ , reaches to the material tensile strength tf : 
 

                               t
tip f=σ  (7.35) 

 
4. The convergence is verified by comparing the computed load factors at the 

present iteration with the previous one. 
5. If the crack propagation criterion is satisfied, it is extended along the plane of 

maximum tensile stress.  
 
 
7.7  POST-PROCESSING 
 
7.7.1  Stress intensity factor 
 

To determine the stress intensity factor, the interaction integral approach is used to 
evaluate the J integral: 
 

1. An appropriate line contour is set around the crack tip. 
2. The finite elements and associated Gauss integration points within the contour 

area are determined. 
3. The appropriate auxiliary field is set according the interaction integral approach. 

For the case of orthotropic crack analysis, the auxiliary fields defined in Section 
4.4.2 have to be used. 

4. Numerically evaluate J using a conventional Gauss integration rule.  
5. Relate the computed J to its associated stress intensity factor. 

 
 
7.7.2 Crack growth 
 

The following steps are followed for each crack tip: 
 

1. Check if the crack is unstable by comparing the computed stress intensity 
factor with the critical stress intensity factor. 

2. Compute the propagation direction. 
3. Adopt one of the available rules for crack increment length. 
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7.7.3  Other applications 
 

Other applications require specific post-processing procedures. For example, multiphase 
interactions may require post-solution computations to handle further macro- or micro- 
scale phenomena. 

 
 
7.8 CONFIGURATION UPDATE 
 

In a standard finite element method, the geometry of a model has to be updated if a crack 
is initiated or an existing crack is to propagate. In contrast, no remeshing is required in the 
XFEM simulation of crack propagation. 

In an updated Lagrangian formulation of large deformation analysis, however, the 
converged configuration of the model has to be updated by computed nodal 
displacements. This is also the case for an XFEM analysis.  

The final point is that even in the case of a crack analysis, where no remeshing and 
geometry update is necessary, XFEM may require an update procedure for handling the 
database changes associated with evolving cracks and changing DOFs. 
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