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Introduction

In this book we present a formalization of set theory based on operations
on sets, rather than on properties of the membership relation. The two
operations are union and successor (singleton), and the algebras for these
operations will be called Zermelo-Fraenkel algebras. The definition of these
algebras uses an abstract notion of "small map". We show that the usual
axioms of Zermelo-Fraenkel set theory are nothing but a description of the
free ZF-algebra, just as the axioms of Peano arithmetic form a description
of the free monoid on one generator.

The basic ideas are quite simple, and could roughly be explained as fol-
lows. Imagine a "universe of sets" C, in which one distinguishes some sets as
"small". For example, one could take for C all the countable sets, and call a
set small if it is finite. Another example is provided by taking for C all the
classes (in the sense of set theory), and calling a class small if it is a set, rather
than a proper class. In such a universe C we consider partially ordered sets
L which have the property that each "small" subset of L has a supremum,
and which are equipped with a distinguished operation s : L -> L, called
successor. Thus L could be thought of as an algebraic structure, with rather
a lot of operations: besides the successor s, which is a unary operation, there
is for each small set S E C an S-ary operation on L, given by the S-indexed
supremum.

In spite of this multitude of operations, it is possible to apply many con-
structions and results from algebra to such "algebras" L. In fact, they are
not so different from, for example, the standard differential algebras: our
algebras have small sups instead of finite sums, and a successor s instead
of a differential d; they do not satisfy the identity d o d = 0 of differential
algebra, but we shall consider other identities for the successor s.

For two algebras L and L', a homomorphism from L to L' is of course a
mapping cp : L -+ L' which commutes with the operations. In other words,
W preserves small suprema, and commutes with the successor. With these
homomorphisms, one can apply the usual constructions of algebra by "gen-
erators and relations". For example, the free algebra on a set A, which we

1



2 INTRODUCTION

denote by V(A), is uniquely defined by the property that for any algebra L
and any mapping A --+ L, there is a uniquely defined extension to a homo-
morphism V(A) -a L. The relation to formal (Zermelo-Fraenkel) set theory
now becomes apparent: in the example, mentioned above, where C consists
of all the classes, V(A) is essentially the cumulative hierarchy of sets built
on A as a collection of atoms. In the example above where C consists of
countable sets and "small" means finite, the free algebra V(O) on the empty
set is the algebra of hereditarily finite sets. A typical example of adding a
"relation" is the algebra 0, freely generated by the condition that the suc-
cessor is monotone. In the example where C consists of all the classes, 0 is
the class of ordinal numbers. In the example where C consists of countable
sets, 0 is the set of natural numbers. The algebraic properties of 0 capture
transfinite induction for ordinals, and ordinary induction for natural num-
bers, respectively.

Of course, the theory can only be developed when one assumes that the
collection of "small" sets satisfies some suitable axioms. To get off the ground
at all, we will assume that the empty set and the one-point set are both small.
Thus, in particular, any algebra L contains the supremum of the empty sub-
set of L; i.e. L must have a smallest element 0. Furthermore, we will assume
that the union of a small family of small sets is small, and that the disjoint
sum of two small sets is small. Thus, in particular, the two-point set is small,
and hence any algebra L has an operation V : L x L -+ L of binary supremum.
There are also axioms for covers (i.e., surjections): if S -* T is a cover and S
is small then T is small; and conversely, if T is small then S contains a small
subset S' C S which already covers T. In the example where C consists of all
classes, this latter property for the existence of "small subcovers" is usually
referred to as the collection axiom of set theory. Finally, the following two
axioms play a crucial role in the construction of algebras by generators and
relations. First, for any set C in C and any small set S in C, one can form
the set (not necessarily small) CS of all functions from S to C. Secondly,
there exists a "universal" small set in C: this is a mapping ir : E -> U in
C such that for any small set S there is some point x E U for which S is
isomorphic to ir-1(x). These are essentially all the axioms that we will ask
the collection of "small" sets in the universe C to satisfy.

It is important to observe that it is only necessary for the "universe of
sets" C in which we construct and study the algebras L to possess some
very basic properties. It should be possible to interpret the basic operations
of the first order logic (conjunction, disjunction, universal and existential
quantification, etc.) in C. This means, for example, that for two mappings
a:S-->Tand Cone can form the set it ET I VsES:
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if a(s) = t then 3 r E R : /3(r) = s} inside the universe C. These logical
operations need not even satisfy the rules of classical first order logic; but
they should satisfy at least the rules of intuitionistic logic. There are many
interesting examples of such universes C which are quite different from the
usual universe of sets. Thus, C can be a universe of sheaves (i.e., sets which
vary continuously over a fixed topological space of parameters), or an "ef-
fective" universe of recursive sets. More generally, C can be any elementary
topos (see Mac Lane-Moerdijk (1992) for this notion and many examples of
elementary topoi). In this way, our theory extends both topos theory and
(intuitionistic) set theory. In particular, the theory is powerful enough to
capture in a constructive way the theory of ordinals and of transfinite induc-
tion.

In fact, one of our main motivations was the apparent discrepancy be-
tween sheaves and topoi on the one hand, and models of Zermelo-Fraenkel
set theory on the other. Elementary topoi correspond naturally to a weak
kind of set theory with only bounded quantifiers, as discussed extensively
in the early topos literature (cf. Mitchell(1972), Cole(1973), Osius(1974),
and others). For an arbitrary topos, it is in general not possible to build a
corresponding model for Zermelo-Fraenkel set theory. Nevertheless for many
topoi which are constructed using set theory to begin with (such as topoi of
Boolean sets or of sheaves), one can obtain correponding models for Zermelo-
Fraenkel set theory by a transfinite iteration of the power-set operation of
the topos along the "external", classical, ordinal numbers. For Boolean sets,
this construction goes back to Scott and Solovay (see Bell(1977)). For general
sheaves, it is discussed in Fourman(1980), Freyd(1980), Blass-Scedrov(1989),
and elsewhere.

To describe the variety of different examples of universes C having the
required properties, and to exploit relations with topos theory, we will for-
mulate our theory using the language of categories (Mac Lane(1971)). For
readers who are not sufficiently familiar with this language, we hasten to
point out that much of this book can be read and understood at a less gen-
eral level, by assuming throughout that C is an actual universe of sets, as in
the two examples - countable sets and classes - mentioned above.

In the language of category theory, the "small" objects in C will (have
to) be described in terms of small maps. Intuitively, these are the maps
f : E -+ X all of whose fibers f -1(x) are small; a small map E - X in C
can be thought of as a continuous family of small objects, parametrized by
X. A basic axiom for these small maps, which expresses that smallness is a
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property of the fibers of the map, is that in a pullback square

E'- E

the map E' -i X' is small whenever E -> X is, while conversely, if E' -+ X'
is small and X' -> X is surjective then E - X is small. Other axioms are
direct translations of the axioms for small sets mentioned before. For exam-
ple, the axiom that a small union of small sets is small can now simply be
expressed by stating that the composition of two small maps is again small.

The idea of continuous families of "small" objects, constructed as map-
pings E --+ X with suitable properties, is ubiquitous in geometry and physics.
Well-known examples include live bundles (families of lines) and proper maps
(families of compact spaces) in topology, and families of curves in algebraic
geometry. In this context, one often studies universal families of such small
objects, such as classifying spaces for line bundles (projective spaces and
Grassmann manifolds) and moduli spaces of curves. When stated for small
maps, our axiom for a universal small set takes a similar form: it states that
there is an object U with a small map a : E -p U, such that every small
map is locally a pullback of this universal small map ir : E -a U. Thus, U is
a "classifying space" for small maps, having properties much like classifying
spaces for vector bundles and other well-known classifying spaces in topol-
ogy. (To illustrate the analogy, we explain at the end of Chapter I how the
classifying space U for small maps is "unique up to homotopy".)

Our abstract framework thus consists of a suitable category C, with a
designated class of arrows in C, which are called small, and satisfy natural
axioms. In this general context, it is possible to define algebras L as ob-
jects in C equipped with an operation s : L -+ L for successor, and with a
partial order on L which is complete in the sense that the supremum exists
along any map which is designated as small. Such algebras L will be called
Zermelo-Fraenkel algebras in C. We investigate the structure of the free (ini-
tial) ZF-algebra V, and show that it can be viewed as an algebra of small
sets, via an explicit isomorphism between V and the object P8(V) of "small
subsets" of V. This free algebra V should be viewed as the cumulative hier-
archy of small sets, relative to the ambient category C and its class of small
maps. Indeed, we prove in Chapter II, §5, that under very general conditions
this algebra V is a model of the axioms for (intuitionistic) Zermelo-Fraenkel
set theory. In Chapter IV, we will explain in detail how one obtains, as par-
ticular examples, the sheaf models and effective (realizability) models for set
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theory already referred to above.
Our algebraic approach also makes it possible to distinguish different

types of ordinal numbers in a very natural way. For example, in Chapter II,
§2, we will discuss how, within the category C, the ZF-algebra 0 which is
free on a monotone successor operation t : 0 -+ 0 enables one to write V as
a cumulative hierarchy of objects Vim, suitably indexed by elements a E O.
The classical Von Neumann ordinals, defined as hereditarily transitive sets,
also appear as a free algebra, generated by the relation that the successor is
inflationary (x < s(x)). Furthermore, in Chapter II, §4, it will be discussed
how the ZF-algebra T which is free on a successor r : T -* T preserving
binary suprema enables one to give a purely constructive proof of Tarski's
fixed point theorem, using "transfinite induction" along this object T.

In Chapter III, it will be shown how all these free algebras can be explic-
itly constructed as objects of the ambient category C. This construction of
free algebras makes use of the theory of open maps, and of (bi-) simulations
for trees and forests. The explicit use of bisimulation for set theory goes back
to the work on non-well-founded sets by Aczel(1988). It would be of interest
to construct sheaf models for the theory of non-well-founded sets from our
axioms for small maps.





Chapter I

Axiomatic Theory of Small
Maps

§1 Axioms for small maps
In this first section we will present a set of axioms for a class S of small maps
in a category C. These axioms are meant to express some basic properties
of maps with "small" fibers. For example, if C is the category of sets, our
axioms are satisfied by the class of maps with finite fibers (those f : Y -> X
with f -1(x) finite for each x E X), or the class of maps with countable fibers,
etc.

The ambient category C will be assumed to be a Heyting pretopos with
a natural numbers object. This means that C is a category with enough
structure to interpret (intuitionistic) first order logic and arithmetic. (We
recall the precise definition in Appendix B.)

Our axioms for small maps are an extension of the axioms for open maps
presented in Joyal-Moerdijk(1990) and (1994), and we begin by recalling
those. Consider the following properties of a class S of arrows in the cate-
gory C.

(Al) Any isomorphism belongs to S, and S is closed under composition.

(A2) ("Stability") In any pullback square

Y'->Y
(1)

X' X-P
7
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if f belongs to S then so does g.

(A3) ("Descent") In any pullback square (1), if g belongs to S and p is epi
then f belongs to S.

(A4) The maps 0 -; 1 and 1 + 1 -+ 1 belong to S.

(A5) ("Sums") If Y -> X and Y' -> X' belong to S then so does their sum
Y-{-Y,-+X +X'.

(A6) ("Quotients") In any commutative diagram

z P
Y

(2)

if p is epi and g belongs to S then so does f.

(A7) ("Collection Axiom") For any two arrows p : Y -* X and f : X -+ A
where p is epi and f belongs to S, there exists a quasi-pullback square
of the form

Z-Y
9( if
B h A

where h is epi and g belongs to S.

(3)

(Recall that such a square is said to be a quasi-pullback if the obvious arrow
Z -+ B XA X is an epimorphism.)

The class S is said to be a class of open maps (with collection) if it
satisfies these axioms (Al - 7). For standard examples of such classes we
refer the reader to Joyal-Moerdijk(1994).

Before we state our axioms for a class of small maps, we recall that a
map f : Y -* X in C is said to be exponentiable if f is exponentiable as an
object of the slice category C/X (i.e., the functor f* : C/X -+ CIX sending
Z --> X to Z xX Y -+ X has a right adjoint).

1.1 Definition. A class S of arrows in a category C is said to be a
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class of small maps if S is a class of open maps (with collection) satisfying
the following two additional axioms (Si) and (S2).

(Si) ("Exponentiability Axiom") Every map in S is exponentiable.

(S2) ("Representability Axiom") There exists a map 7r : E --+ U in S which
is universal in the following sense: for any map f : Y -+ X in S there
exists a diagram

YE-Y'- E
(4)

X P X' >U

in which p is epi and both squares are pullbacks.

Note that this Representability Axiom states that every map in S is "locally"
a pullback of the universal map it : E --+ U.

From now on, we will refer to a map f : Y --+ X in S as a "small map",
or as a "small object over X". Furthermore, an object Y of C is said to be
"small" if the unique map Y -+ 1 belongs to S.

In the rest of this section, we will make some elementary first observations
concerning these axioms for small maps. First notice the following closure
properties for exponentiable maps.

1.2 Lemma. In any Heyting pretopos C, the class of exponentiable maps
satisfies the axioms (Al - 6) for open maps.

Proof. Write £ for the class of exponentiable maps. First recall that
a map f : Y -+ X is exponentiable if the pullback functor f* : CIX -+ C/Y
has a right adjoint H f. From this it is clear that the class £ satisfies ax-
iom (Al). Axioms (A4) and (A5) also clearly hold, the exponential of a
sum being constructed as a product (of exponentials). For (A6), it suffices
to consider the case B = 1 (replace C by C/B). But for any epimorphism
p : Y -+ X, any exponential AX can be constructed from the exponential A}'
using the universal quantifiers in C, as AX = If E A}' JVyl, Y2 E Y(p(yi) =
p(y2) = f(yi) = f(y2))}. For (A2) assume again that X = 1. Then for any
exponentiable object Y, any exponential (A -+ X')('xx'-.x') in C/X' can be
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constructed from the transpose X' -+ X'Y of the projection, as the pullback

Finally, we outline the proof for the descent axiom (A3). We may assume
again that X = 1. Suppose X' -* 1 is epi and Y x X' -+ X' is expo-
nentiable in CIX'. Consider an object A E C, and denote the exponential
(A x X' -+ X')(Yxx'-X') by E -+ X. By axiom (A2), already verified, it
follows for the two projections irl and 72 : X' x X' = X' that the two pull-
backs a= (Y x X' -+ X') are exponentiable in C/X' x X', with exponential
7r, (E) = ir; (A x X' -+ X')"<(Yxx'-»x') (for i = 1, 2). It follows that E -+ X'
is equipped with canonical descent data. Since in a pretopos every epi is an
effective descent map (see Appendix C), it follows that E -+ X' is isomorphic
to a projection D x X' -- X', for an object D E C uniquely determined up
to isomorphism. It is now routine to verify that D is the exponential AY.

1.3 Remark. It follows from Lemma 1.2 that the axioms (Si) and (S2)
for small maps are equivalent to the single axiom stating that there exists a
small map 7r : E --+ U which is universal (as in (S2)) as well as exponentiable.

1.4 Remark. Observe that Tr : E -> U is not unique, nor is (given
7r) the characteristic map c in (4). In fact, for a pullback square

E-E'
U frU'

with f epi, 7r is universal if 7r' is. However, there is a uniqueness up to
"homotopy", just as for universal vector bundles and similar constructions
in topology. We refer to the appendix in this chapter (§5) for a precise for-
mulation.

Next, we note the stability of our axioms under slicing. For this, let
S be a class of small maps in C, and let B be an object of C. Define an
induced class SB in the slice category C/B in the obvious way: writing
EB : C/B -+ C for the forgetful functor, a map f in C/B belongs to SB
if EB(f) belongs to S. In the proposition below, B* : C --+ C/B denotes the
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functor X I-+ (ir2 : X x B -+ B), right adjoint to >B.

1.5 Proposition. Let S be a class of small maps in C. Then SB is
a class of small maps in CI B; moreover, the functor B* : C -+ C/B pre-
serves small maps, as well as the universal small map.

Proof. The fact that SB satisfies the axioms for open maps is a mat-
ter of elementary verification. Furthermore, SB clearly satisfies the ex-
ponentiability axiom (Si), while (S2) holds for SB with as universal map
ir xB:ExB -+ U xBoverB.

To conclude this section, we prove that the notion of "small map" is de-
finable, in the precise sense of the following proposition. As a consequence,
one can use the predicate "small" as part of the internal logic of C, as we
will freely do in subsequent sections.

1.6 Proposition. For any arrow f in C over a base B,

Y X

q /p
B,

there exists a subobject S >-+ B such that for any map a : C -+ B in C, the
pullback f xB C : Y xB C -+ X xB C belongs to S iff a factors through S.

This object S will be denoted

S={bEBI fb:Y6-+Xbis small}.
Proof. Using exponentiability of the universal small map ir : E - U,

the desired object S can be constructed in terms of the first order logic of C, as

S = {b E B B Vx E p -1(b) 3u E U 3a E f-1(x)'r-1(') : a is an isomorphism}.

The verification that this object S has the desired property, stated in the
proposition, is straightforward (for example, by using the so-called Kripke-
Joyal semantics in C).

§2 Representable structures
In this section we will give some examples of "universal" small structures
obtained from a universal small map a : E - U.
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As a first case, consider the notion of a universal map between small
objects, defined by a representability condition as in axiom (S2). Explicitly,
a "universal" map between small objects is a commutative diagram

Fo
it - Fl

(1)

V

in which 7ro and r1 are small maps, such that for any other such diagram

X0-X1
h

B

with fo and fl small, there exist an epimorphism B' -» B and a map B' --* V
which fit into a diagram

Xo F-- Xo , Fo

X1 -Xi-F1

B- B'- V
in which all squares are pullbacks.

2.1 Proposition. There exists a universal map between small objects.

Proof. Starting from the universal small map it : E -> U given by axiom
(S2), construct pullbacks 7ro(E) -+ U x U and ai (E) --> U x U of 7r along
the two projections iro, r1 : U x U -p U. Let V = iri (E)"o(E) Z U x U be
the exponential in C/U x U (it exists, by axiom (Si)). Define Fo = a'7ro(E)
and F1 = a`7ri(E). The evaluation e : 1rl(E)ro(E) x(uxu) 7ro(E) -> 7ri(E) of
exponentials in C/U x U defines a map p = (1,e) : Fo -; F1 over V. One
readily verifies that this map is universal, in the sense explained just above
the statement of the proposition.

2.2 Corollary. There exists a universal small map between small objects.
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Proof. Consider a universal map (1) between small objects, given by
Proposition 2.1. By definability (Proposition 1.6), one can construct a sub-
object V _ {v E VIµ : iro'(v) -+ 7ri'(v) is small}. The pullback of (1)
along the inclusion V --+ V is the universal small map between small objects.

As another example, consider for any object A the notion of a "small
object labeled by A", i.e. a diagram

Y A A
fI
X

with f E S. A universal such labeled small object is such a diagram

EA µ -A
IrAI (IrAES)

UA

(2)

(3)

such that for any other such diagram (2) there exists a commutative diagram

A

Y"-Y'-SEA (4)

X - X' UA
in which both squares are pullbacks.

2.3 Proposition. For any object A, there exists a universal small object
labeled by A.

Proof. Starting from the universal small map it : E --> U given by
the representability axiom, define UA to be the following exponential in C/U:

(UA, U)=(AxU, U)(E-U);

and define
EA=UAxUE.
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Let TrA : EA -i UA be the projection, and let p : EA -+ A be the evaluation.
To verify the required universal property, consider any diagram (2) with

f small. By universality of a : E - U, the map f fits into a double pullback
diagram of the form §1 (4). The composition Y' - Y - A then gives a map
Y' -> A x U over U, i.e. a map X' xU E - A x U over U. By exponential
transposition we obtain a map X' -i UA over U. This map fits into the
following "subdivision" of the diagram §1 (4),

Y-Y'-QUA

X' -UA U

in which the middle square is a pullback, because the rectangle composed
out of the two right-hand squares is. With the obvious maps to A, this gives
a diagram of the desired form (4). This proves the proposition.

Observe that, given a universal small map ir : E -> U, the explicit
construction of a universal labeled object A - EA -+ UA is (covariantly)
functorial in A.

For our next example, consider a "directed graph" in C, i.e. a diagram of
the form

ao

a,

An action of this graph on an object f : Y -+ X over X consists of a map
e : Y -+ Go, together with an "action" map a : 8i(Y) -+ ao(Y) over X as
well as over G1. (Here a; (Y) is the pullback Y xGo G1 -- G1 of e and 49i,
with obvious map to X.) Briefly, we call such a structure (f, e, a) a G-object
over X. It is said to be small if the map f is small.

If g : X' -+ X is any map in C, then from such a small G-object
Y = (f : Y -> X, e, a) over X one can construct by pullback a small G-object
g*(Y) over X' in the obvious way. A small G-object D = (p : D -> W, e, a)
is said to be universal if for any other small G-object Y = (f : Y - X, e, a)
there exists an epimorphism g : X' -> X and a map c : X' -> W such that
there is an isomorphism g*(Y) ?' c*(D) of G-objects over X'.

2.4 Proposition. For a graph G with small codomain 81 : Gl --> Go,
there exists a universal small G-object.
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Proof. The desired universal object is constructed as follows. Start
with the universal small object labeled by Go,

EGo L> Go
I7rGO r

UIGo,

constructed in Proposition 2.3. From A : EGO -+ Go, one obtains objects
a0*(EG0) and 9 (EGo) over UGo. This last object is small over UGo, since by
assumption li : G1 -+ Go is a small map. Thus one can form the exponential

V = 8 (EG0)ai(EGO) -+ UGo

in C/UGo. Define C = V xuGO EGO, with projection p : C -+ V. This object
C is equipped with an obvious map e : C -+ Go, and a map 8;(C) -+ 8o (C)
over V. Now use the first order logic of the category C to construct a subob-
ject W C V consisting of those v E V for which the map a restricts for the
fiber p 1(v)=C,, to amap G1. Let D=WxvCbe
the restriction of C to this subobject W. Then p and e, a restrict to maps
p : D -+ W, e : D -+ Go and a : 91(D) -+ 80*(D) over W x G1. Thus
D -+ W has the structure of a G-object over W, small because p is a small
map. The verification of the desired universal property of (D -+ W, e, a) is
again routine, and left to the reader.

2.5. Corollary. There exists a universal G-object with small action map.

Proof. By definability of smallness (Proposition 1.6), the universal G-
object (D --+ We, a) can be restricted to the subobject W' C W defined
by

W' = {wEW I a,,,: 91(D,,,)-+ 90* (D,,) is small},

to yield the desired universal G-object D' = D x w W' with small action map.

2.6 Corollary. Let G be an internal category in C, with small codomain
map a1 : G1 -+ Go. There exists a universal small (C-internal) presheaf on G.

Proof. Regard G as a graph, and start with the universal G-object
(p : D -+ W, e, a) constructed in Proposition 2.4. The condition that this
action satisfies the equations for a presheaf can be expressed in the first order
logic of C, using the composition G1 x Go G1 --+ G1 and the identities Go -+ Gl
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of the category G. Thus one can construct a subobject

W = {w E W I the G-object D,,, = p`(w) is a G-presheaf}.

The universal small G-presheaf P is the presheaf over W obtained by pull-
back, P = D xw W.

§3 Power-sets
In this section, S is a fixed class of small maps in an ambient category C as
before.

Let X be any object in C. For a "parameter" object I, an I-indexed
family of subobjects of X is a subobject S >- I x X. It is said to be a
family of small subobjects if the composition S >-+ I x X -> I belongs to the
class S. Denote by P'(X)(I) the set of all such I-indexed families of small
subobjects of X. Any map g : J -> I in C induces by pullback an operation

g# : P,(X)(I) -> P8(X)(J),

thus making P8(X) into a contravariant functor C°' --> Sets.

3.1 Theorem. The functor P$(X) is representable.

We shall denote the representing object by P,(X). Thus P,(X) has the
property that there is a bijection, natural in I, between I-indexed families
of small subobjects S >-> I x X and arrows s : I --> P,(X). We call s the
characteristic map for S, and denote it by CS.

Proof of 3.1. Consider the universal small object labelled by X, as
constructed in Proposition 2.3,

Ux -Ex A>X.

Define for each object I in C an equivalence relation on the arrows I -> UX,
by stating that two such arrows f, g : I -> UX are equivalent iff the maps
f*(EX) -> I x X and g*(EX) -> I x X, from the two pullbacks of EX along f
and g respectively, have the same image in I x X. This relation is definable
in the first order logic of the ambient category C, hence is representable by a
subobject RX C UX x UX; this means that f and g are equivalent if (f,g) :
I -+ UX x UX factors through Rx. (In logical notation, Rx = {(u, u') E
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Ux x Ux I Vx E X(3e E irx'(u).A(e) = x b 3e' E ir;'(u'))(e') = x)}.)
Define P, (X) to be the coequalizer of the equivalence relation Rx,

Rx *Ux-4P,(X).

To see that this object P,(X) indeed represents the functor P'(X), consider
a family of small subobjects S >- I x X. Then by universality of Ex --+ Ux
there is a double pullback diagram of the form

x

S S' -; Ex

IMP I'Ux.
Now for the two projections 7rl, 7r2 : I' x I I' -> I', the composites ctrl and c7r2
are equivalent (i.e., define the same image in I' xI I' x X). Hence, since p is
the coequalizer of its kernel pair irl, 7r2, one obtains a unique map cs making
the diagram

it C

- Ux

I S PS(X)

commute. This defines a map cs : I - P,(X) from S >-, I x X. Note that
the construction of cs does not depend on the choice of the cover I' -» I.

For the converse, any map f : I -. P,(X) gives by pullback a small map
Z-I'with amap Z-+X:

Z - Ex -X
1 1

I' Ux

1

I! P,(X).

Let T be the image of Z in I' x X, as in

Z-*T>-+ I'xX.
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By definition of P,(X) as the quotient of Ux by Rx, it follows that for the
two projections ir1 and 172 : I' xI I' --> I', the pullbacks xi(Z) and 7r2(Z)
have the same image ai(T) ^-' a2(T) in (I' xI I') x X. Thus T descends to
a subobject Sf >- I x X, fitting into a pullback diagram

T-I'xX-I'
i i IS>>-'-IxX-'-I.

Since the map Z -> I' is small, it follows by axioms (A6) and (A3) that
Sf -> I is also small. This defines a family of small subobjects Sf >--> I x X
from the given map f : I -> P,(X).

We leave it to the reader to verify that these two constructions, of cS
from S and of Sf from f, are mutually inverse.

This completes the proof of Theorem 3.1.

We remark that the representing object P,(X) of Theorem 3.1 is a covari-
ant functor of X. Indeed, for a subobject S >- I x X and a map f : X -' Y,
define f,(S) to be the image of S under the map 1 x f : I x X -> I x Y. Then
f!(S) belongs to P3(Y)(I) whenever S belongs to P°(X)(I). This operation
f, : P°(X)(I) -+ P'(Y)(I) is evidently natural in I. By the Yoneda lemma,
f, is given by composition with a uniquely determined map (again denoted)

fi: P,(X) -+ P.M. (1)

These maps f,, for all f : X - Y, make P,(X) into a covariant functor of X.

3.2 Remark. By the stability under slicing of the axioms for small
maps (Proposition 1.5), it follows that for any map X -+ B in C, there exists
an object P,(X -> B) in C/B which represents families of small subobjects
of X -> B in the slice category C/B. Furthermore, for any arrow f : A -> B,
the construction of these objects P,(X -> B) is stable under change of base
f* : C/B - C/A.

3.3 Remark. By the Representability Theorem 3.1, there is for each ob-
ject X a universal family of small subobjects of X, the "membership relation"
Ex- P,(X) x X, whose characteristic map is the identity P,(X) -> P,(X).
The class S is completely determined by the functor P,(X) together with all
these membership relations Ex, in the sense that a map f : Y -> X belongs
to S if f is a pullback of Ey- P3(Y). Indeed, f belongs to S if its graph
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(f, 1) : Y >-* X x Y belongs to P'(Y)(X), if there is a map f-1 : X -> P3(Y)
which fits into a pullback as on the left.

Y - EY

(M)l
Z

I- P,(Y)xYx xY i>xl

Y -> EY
fl

I
X - f_1P,(Y)

The square on the left is a pullback if the one on the right is. Thus, f
belongs to S if f is a pullback of EY-> P5(Y), as claimed.

3.4 Remark. For a small map X -> B, the object P,(X - B) of
C/B acts as a power object for X --> B, for the full subcategory S/B of
C/B with as objects all small maps into B. Thus this category S/B is an
elementary topos provided that this power object P,(X --> B) is itself a small
object over B. In Chapter II, §2, we will consider some consequences of the
"power-set axiom" which states that P,(X -+ B) is small whenever X -> B
is.

3.5 Remark. The functor P,(-) is also contravariant along small maps:
If g : Z -> Y belongs to S, then for any element R C I x Y of P'(Y)(I), the
pullback (1 x g)-1(R) >-> I x Z belongs to P'(Z)(I). Indeed, I x Z -> I x Y
is small and hence so is its pullback (1 x g)-1(R) -> R. Thus the composite
(1 x g)-1(R) -> R -> I is small, and (1 x g)-1(R) belongs to P'(Z)(I), as
claimed.

This operation of pullback is evidently natural in I, hence defines a trans-
formation g-1 : Ps(Y) -+ P'(Z). By the Representability Theorem 3.1, this
transformation corresponds to a uniquely determined arrow

9-1 : P,(Y) --> P,(Z). (2)

The covariant and contravariant operations (1) and (2) together satisfy the
so-called Beck-Chevalley condition. This condition states that for a pullback
square

X xY Z f Z
9i

IgX f->Y
with g small, the identity

9-1 0 f! = .f o g-1 : P,(X) -> P,(Z)
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holds. (This is an immediate consequence of the fact that in a pretopos,
images are stable under pullback.)

3.6 Remark. The covariant and contravariant aspects of the functor
P, can also be described together, using the formalism of bivariant theories
of Fulton-MacPherson(1981). Indeed, for a map f : X --> Y, let T(f) be the
collection of all subobjects S C X with the property that the composition
S C X --> Y is small. If f : X --+ Y and g : Y - Z are two maps and
S E T(f) while R E T(g), then there is a "product" S n f -1(R) E T (g o f ).
Furthermore, the image along f defines an operation

f* : T (g o f) -* T (g),

while for a pullback square as in 3.5 above, there is an obvious pullback
operation

f*:T(g)-'T(9).
With the pullbacks as "independent squares" and all maps "confined", these
operations satisfy all the axioms for a (set-valued) bivariant theory as defined
in op. cit. The associated covariant functor assigns to each object X the
collection Sub,(X) of small objects of X, while the associated contravariant
functor assigns to X the collection of all small monomorphisms into X. (In
many examples, the class S of small maps contains all monomorphisms, and
this is simply the collection Sub(X) of all subobjects of X.)

To conclude this section, we observe that the maps f!, constructed in
(1) on the basis of Theorem 3.1 enable us to give an equivalent formulation
of the Collection Axiom (A7). This formulation also illustrates the relation
of this axiom to the axiom of Zermelo-Fraenkel set theory bearing the same
name.

3.7 Proposition. The collection axiom (A7) is equivalent (relative to
the other axioms) to the condition that for any epimorphism f : X --+ Y, the
induced map f! : P,(X) -> P8(Y) is again epi.

Proof. (==>) Consider an epi f : X --> Y, and an arbitrary map c :
I --> P3(Y), characteristic for S >-4 I x Y with S -> I small. Form the
pullback

T>---IxX

I i

S=- IxY.
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By the collection axiom, there exists a quasi-pullback square

Z-T-SJ-I
21

with Z -* J small. Thus if we write R for the image of Z in J x X, the map
R -+ J is again small, i.e. R E Ps(X)(J). Furthermore, since the preceding
diagram is a quasi-pullback, the left-hand map in the diagram

Z- --R-JxX
I

j1xf

JxIS> ->JxY
is epi. This shows that fi(R) = J x1 S. Or in other words, the square

J-PS(X)
tf

IC P3(Y)
commutes. Since the map c that we started with was arbitrary, this shows
that f! is epi.

Consider any small map f : X -+ I and an epi p : Y -> X, as in the
formulation of the collection axiom (A7). Then (f, 1) : X -+ I x X defines an
element of PS(X)(I), or an arrow c : I -> P,(X). Since p! : P5(Y) -> P,(X)
is assumed epi, the map J --> I in the pullback diagram

I -C P3(X)
is again epi. The map d in this diagram is characteristic for a subobject
Z Thus Z -> J is small, and the composite Z -J x Y -a J x X
has as its image the pullback of (f, 1) : X -4 I x X along J x X -+ I x X.
This pullback is J x1 X, so that

Z-Y-X
J -I

is a quasi-pullback, as desired.
This completes the proof.
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§4 Complete sup-lattices
Any class of small maps gives rise to a notion of completeness. Consider a
category C equipped with a class of small maps S, as before. Let L be a
poset in C. This implies in particular that for each object A of C the set
C(A, L) of all arrows A -+ L is partially ordered. For maps g : B -+ A and
A : B -+ L, an arrow p : A -> L is said to be the supremum of A along g if
for any arrows t : C -+ A and v : C --> L, with associated pullback square

C

C
t

A,

one has
po t < v if A072< V071 (in C(C XA B, L)).

Given A and g, an arrow p with this property is necessarily unique, and
denoted

p=V9A:A->L.

(When we use the internal first order logic of C, we also write p(a) _
Vg(b)ca A(b) for this supremum.) The poset L is said to be (S-)complete
if suprema in L exist along any map in the class S.

Note that by axiom (A4), any such S-complete poset L is a semi-lattice:
the smallest element I : 1 -> L is the supremum along 0 - 1 of the unique
map 0 -> L, while the binary supremum V : L x L -> L is constructed as
the supremum of the map ("z) : (L x L) + (L x L) -i L along the map
(d) : (L x L) + (L x L) -> (L x L) (which, being a pullback of the map
1 + 1 -> 1, is small).

4.1 Example. For any object X in C, the poset P,(X) (with order
induced by inclusion of subobjects) is S-complete. Indeed, for a map A
B -> P,(X) and a small map g : B -> A, one constructs the supremum V. A

of A along g as follows: A is the characteristic map of a subobject R >- B x X
with the property that R -> B is small. Let S be the image of g x 1, as in

R>-- -B x X ->B

I 1 rS> AxX--A.
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Then S -+ A is small since R -+ B and B -+ A are both small. Thus S has
a characteristic map A -+ P,(X); this map is the required supremum.

4.2 Proposition. P,(X) is the free S-complete sup-lattice generated
by X.

For the proof, write

X --+ P,(X) ("singleton") (1)

for the characteristic map of the diagonal X > -+ X x X. Then any map
g : X -+ L into an S-complete sup-lattice L can be extended uniquely to a
map g which preserves suprema along small maps:

X - L9
11

Indeed, for r : I -+ P,(X), characteristic for R C_ I x X with R -+ I small,
let

(g o r) := V , (g7r2 : R -+ L),

where 7rl and 72 are the projections R -+ I and R -p X. This formula, for
all maps r, defines the extension g. We leave further details to the reader.
Observe that P,(X) is also free in a stronger sense which includes arbitrary
parameters (as, for example, in our description of the natural numbers ob-
ject, cf. Appendix B).

4.3 Remark. By freeness of P,(X), there is a canonical union oper-
ation U : P,P,(X) -+ P,(X), which extends the identity on P,(X) in this
way:

I's(X) i --- >_ P3(X)
of

u

P,P,(X ).

The maps X -+ P,(X) and U : P.P.(X) -+ P,(X) give the "powerset"
functor P,(-) the structure of a monad. For some applications of this monad
structure, see Appendix A.

4.4 Remark. Although we will not use this fact in the present book, it
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may be of interest to point out that the class S can be recovered from its
S-complete semi-lattices, in the sense that a map g : B -r A belongs to S if
suprema along g exist in any S-complete semi-lattice.

§5 Appendix: Uniqueness of universal small
maps

As observed in §1, the universal small map it : E - U is not unique, and
there is some choice involved in the construction of characteristic maps c (cf.
diagram (4) of §1). However, there is a uniqueness "up to homotopy", as for
classifying spaces for vector bundles in topology. This homotopy uniqueness
can be expressed by means of groupoids in C.

Let Gpd(C) denote the 2-category of internal groupoids, functors and
natural transformations in C. For an object G of Gpd(C), we denote its
"space" of objects by Go, its space of arrows by G1, and its domain and
codomain by 8o and 81, respectively,

G1 4 Go.
81

Every object X of C defines a "discrete groupoid"

id

XX;$ = (X = X)
id

with X as space of objects, and only identity arrows. This defines an em-
bedding

C -> Gpd(C).

For a map f : Y --> X in C, its kernel pair Y xX Y * Y is an equivalence
relation on Y, and can be viewed as a groupoid in C, with Y as space of
objects and Y xX Y as space of arrows. We call this groupoid the kernel of
f and denote it Ker(f).

If the map f is exponentiable, there is another groupoid associated to
f, with X as space of objects. Using the first order logic of C, the arrows
x -4 x' in this groupoid can be described as the isomorphisms between the
fibers f -'(x) - + f -'(x'). We will denote this groupoid by (Iso(f) X),
or simply by Iso(f) . The space of arrows of this groupoid can also be
described categorically, in the standard way: consider the pullbacks iri (Y)
and ir2(Y) of f : Y -+ X along the projections X1 and 72 : X X X - X, and
form the exponential ir2(Y) r1(fl -> X x X in C/(X x X). Then the space
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of arrows of the groupoid is the subspace Iso(f) C r2(Y)11(Y) consisting of
isomorphisms.

Recall that a homomorphism (internal functor) cp : G -+ H between
internal groupoids in C is said to be essentially surjective if the map 81r1 in
the diagram below is epi:

H1 x Ho Go - - H1 a' Ho

I1 80

Go-Ho.
Furthermore, cp is said to be fully faithful if the square

G1- Hl
I

is a pullback. A weak equivalence is a homomorphism W : G -a H which is
both essentially surjective and fully faithful. For example, if f : Y --> X is
an epimorphism then there is an obvious weak equivalence, denoted

f : Ker(f) =a XaiS

Let W be the collection of all weak equivalences. The homotopy cate-
gory HoGpd(C) is the category obtained from Gpd(C) by inverting all weak
equivalences:

HoGpd(C) = Gpd(C)[W-1].

This category can be constructed, for example, by first passing from the 2-
category Gpd(C) to the category iroGpd(C) of groupoids and isomorphism
classes of internal functors. Then the image ro(W) of W admits a calcu-
lus of (right) fractions in rGpd(C) (in the sense of Gabriel-Zisman(1967)),
and HoGpd(C) is the category of fractions ro(Gpd(C))[ro(W)-1]. For two
groupoids G and H in C, we denote by

[G, H]

the collection of arrows G --b H in this homotopy category. Thus any element
u of [G, H] is represented by a diagram

G - K -* H, u =cpow-1
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where the first arrow K -+ G is a weak equivalence.

Now consider "the" universal small map it : E -+ U given by the repre-
sentability axiom (S2) in §1. Let f be a small map, with characteristic map
c defined on a cover p, as in the double pullback diagram

Y- Y'- E

X p X, -U.
Then for each pair of points (z1, z2) E X' xX X', this diagram gives a specific
isomorphism of fibers

a,,z2 : E,(,,) = ir-1(c(zi)) - Yz, - Yp(=1) = Yp(=Z) - Y2 - Ec(z2)

Thus one obtains a homomorphism of groupoids

a : Ker(p) -+ Iso(ir).

Together with the weak equivalence

P : Ker(p) -+ Xdie,

one thus obtains a map a o p 1 : Xd;g --+ Iso(7r) in HoGpd(C). This construc-
tion gives an operation

{isomorphism classes of small maps over X} -+ [Xd;s, Iso(7r)]. (1)

5.1 Proposition. This operation (1) is a natural bijection.

Proof. One readily checks that the operation is natural in X. To show
it is bijective, we explicitly describe an inverse operation. Consider a map
u : Xdi, -+ Iso(ir) in the homotopy category. Then u can be represented as
u=cpow-1,

Xd;s G-°+ Iso(x),

where w is a weak equivalence. Thus w : Go -+ X is an epimorphism while
G1 Go xX Go; or in other words, G Ker(w : Go -» X). Consider the
map cp : Go -+ U on objects, and construct the pullback

P-E
I I-

Go- U.
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The map cp on arrows gives for each arrow g : z1 -- z2 in G1 an isomorphism
V(g) thus an isomorphism V(g) : Pz, --> P. Since G '"
Ker(Go -> X), these isomorphisms together provide the map P -* Go with
descent data for the epimorphism w : Go -* X. Since in a pretopos every
epimorphism is an effective descent map (see Appendix B), it follows that
there is a map f : Y - X which fits into a pullback square

YE-P
fl

IXo (2)

and is compatible with the descent data on P. It follows by the axioms (A2)
and (A3) for open maps in §1 that f is small, since it is.

It is straightforward to verify that this construction, of f : Y - X from
the map u in the homotopy category, does not depend on the chosen rep-
resentation u = v o w-1 (any other representation would have produced a
small map isomorphic to f), and that this construction provides a two-sided
inverse to the operation (1)-

5.2 Corollary. The universal small map 7r : E -> U is unique up to
weak equivalence of the associated groupoid Iso(ir) 4 U.

In other words, if ir' : E' --+ U' is any other universal small map, there
exist a groupoid G and a pair of weak equivalences Iso(7r) A G =r Iso(ir').





Chapter II

Zermelo-Fraenkel Algebras

Throughout this chapter, S is a fixed class of small maps in a Heyting pre-
topos C, as defined in Chapter I, §1.

§1 Free Zermelo-Fraenkel algebras
We begin by introducing the basic notion in this chapter.

1.1 Definition. A Zermelo-Fraenkel (ZF) algebra in C is an S-complete
sup-lattice L in C equipped with a map s : L -+ L, called the successor
operation . A homomorphism of such algebras (L, s) --+ (M, t) is a map
f : L -+ M which preserves suprema along small maps, and commutes with
successors.

In any such ZF-algebra (L, s), it is possible to define a "membership
relation" e C L x L by setting, for (generalized) elements x, y of L:

xey if s(x) < Y. (1)

Any homomorphism preserves this membership relation.
Observe that if (L, s) is a ZF-algebra in C, then for any object B the

pullback B*(L, s) = (L x B -> B) is a ZF-algebra in the slice category C/B,
with respect to the induced class SB of small maps; cf. Proposition 1.1.5.

We shall be particularly interested in free ZF-algebras . Since C need
not be cartesian closed, the freeness condition should be formulated with
arbitrary parameters (as we did for a natural numbers object in a pretopos,
cf. Appendix B). Thus, for an object A in C, a free ZF-algebra on A is such
an algebra V(A) equipped with a map z : A -+ V(A), with the property

29
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that for any object B in C and any ZF-algebra (L, s) in C/B, any map
p : B*(A) -- L in C/B can be uniquely extended to a homomorphism of
ZF-algebras cp : B*(V(A)) -* L in C/B:

AxB ' L

i,,?xBI

V(A)xB.

When A = 0 we write V for V(A). The algebra V(A) is called the cumulative
hierarchy on A.

In this section, we will derive some properties of these free algebras V(A).
In the next chapter, we will show that these free algebras exist in the cate-
gory C.

We begin by considering the free ZF-algebra V, and show that, up to
isomorphism, this is always an algebra of "small sets":

1.2 Theorem. The map r : P3(V)-+ V defined by the formula

r(E) =
/

v xEE 3(x)

is an isomorphism of S-complete sup-lattices.

Proof. In this proof, as elsewhere, we shall exploit the first order logic of
C and use set-theoretic notation to describe arrows in C, in the usual way. We
will also distinguish between the categorical membership E for generalized
elements (defined in any category), and the formal membership relation a in
a ZF-algebra, defined in (1) above.

For the proof, we first use the singleton map V --* P3(V) (see §1. 4,
(1)) to define a successor operation

s':P,(V)-'P,(V)

by

S '(E) = { `/ xEE
s(x)}.

Since P,(V) is a complete sup-lattice (cf. §I.4), this defines a ZF-algebra
(P5(V), s'). Since V is the free ZF-algebra, there is thus a unique homomor-
phism of ZF-algebras

i:V->P,(V).
On the other hand, there is the map r : P,(V) -+ V as defined in the
statement of the theorem. This map r clearly preserves small suprema, and
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it preserves the successor by the very definition of s'. In other words, r is a
homomorphism of ZF-algebras. But then r o i = id : V --p V, by freeness of
V. Or more explicitly, for any v E V the identity

v = VxEi(v)S(x) (2)

holds. But then also

s'i(71) = {V Ei(V)S(x)} = {v}. (3)

Hence for any E E P3(V),

ir(E) = i(VXEE s(x))

= VxEE 7S(x)

VxEE S'i(x)

= VxEE {x} (by (3))

= E.

This shows that i and r are mutually inverse isomorphisms, and completes
the proof.

1.3 Remark. In Appendix A we present an abstract version of this
proof, which shows that Theorem 1.2 is in fact a special instance of a general
property of algebras for a monad.

We single out some immediate consequences of Theorem 1.2 and its proof.

1.4. Corollary. The free algebra (V, s) has the following properties:

x=y.

(ii) Vy E V : {xjxey} is small (in other words, 7r2: {(x, y) E V xVlxey} - V
belongs to S) and y = Vxys(x).

(iii) (Irreducibility of successors) For any y E V and any E E P,(V): if
sy : VxEE x then 3x E E(sy < x).
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Proof. (i) follows from (3) above and the identity s'i = is; indeed, if
sx < sy then isx < isy, or s'ix < s'iy, whence by (3) {x} C_ {y}, which
implies x = y.

For (ii), first observe that for any x, y E V,

x E i(y) if {x} < i(y)

if s'i(x) < i(y)

if is(x) < i(y)

if s(x) < y

if xey.

Hence, since the identity
P3(V), also

(by (3))

E = UxEE{x} = {xlx E E} holds for any E E

i(y) = {xlxey}, (4)

and in particular, the right-hand side of this equation is small. Now apply
the isomorphism r to (4), to get

y = ri(y) = Vxey r({x})

= Vxey s(x).

This proves (ii).
Finally, for (iii), assume sy < VXEE x. Then by applying the isomorphism

i, and using (3) and (4), we find that in P,(V)

{y} = s'i(y) = is(y) < Z(VxEE X)

= VXEE 2(x)

= VXEE {zlzex}

{zl3xeE(zex)}.

Thus 3x E E(yex), as required.
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The analog of Theorem 1.2 for the cumulative hierarchy on an object
A E C reads:

1.5 Theorem. The map r : P,(A) x P,(V(A)) -/> V(A) defined by

r(U, E) = v aEU 71(a) V v xEE s(x)

is an isomorphism of S-complete sup-lattices.

Proof. Notice first that if we define the map

,q': A -+ P,(A) x P,(V(A))

by

,q'(a) = ({a}, 0),

then 77' corresponds to i under the intended isomorphism r, in the sense that
77 = ro7J'. In addition to this map ii', equip the sup-lattice P,(A) x P,(V(A))
with a successor

s' : P,(A) x P,(V(A)) -* P3(A) x P3(V(A))

defined by
s'(U, E) = (0, {VaEU ii(a) V VXEE s(x)})

= (0, {r(U, E)}).

Then by freeness of V (A), there is a unique homomorphism of ZF-algebras

i : V(A) -+ P., (A) x P,(V(A))

with the property that i o q =,q.
In the reverse direction, consider the map r: P,(A) x P,(V(A)) -+ V(A)

as defined in the statement of the theorem. This map r clearly preserves
sups, and satisfies the equation s o r = r o s'; thus r is a homomorphism of
ZF-algebras. Furthermore, r o q' = q, as observed above. Thus the composite
r o i is a homomorphism V(A) --* V(A) which respects q : A -> V(A), hence
must be the identity. In other words, for any v E V(A), for which we can
write i(v) = (il(v),i2(v)), the identity

v = VaEi1(v)ii(a) V V xEi2(v)s(x) (5)
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holds. Furthermore, by definition of s',

s'(v) _ (0,{ri(v)})

(6)
_ (0, {v}).

Thus for any E E P,(V(A)),

ir(0, E) = i(VxEE s(x))

= VxEE 2S(x)

= VxEE S'i(x)

= VxEE (0, {x})

_ (0, E).

And similarly, for any U E P,(A),

ir(U, 0) = 2(VaEU'I(a))

= VaEU i?1(a)

= VaEU 0'(a)

= VaEU ({a}, 0)

(by (6))

But then, for an arbitrary (U, E) E P,(A) x P,(V(A)),

ir(U, E) = ir((U, 0) V (0, E))

= ir(U, 0) V ir(0, E)

(U, 0) V (0, E)

(U, E).

This shows that it is the identity map. Thus i and r are mutually inverse
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isomorphisms, and the theorem is proved.

1.6 Remark. This theorem expresses that V(A) is an algebra of pairs of
small sets (U, E), where U is a set of "atoms" (elements of A) and E is a set
of such pairs of small sets. In set theory, one usually defines a universe V'(A),
constructed from a collection of atoms of A, to consist of atoms, or sets of
elements of V'(A). In other words, V'(A) satisfies the "recursion equation"

V'(A) = A + P3(V'(A)).

One obtains a solution to this equation from the free algebra V(A), by defin-
ing V'(A) := A + V(A). Indeed, by the theorem, one then has

A + P8(V'(A)) = A + PS(A+ V(A))

A+(P$(A) x P.,(V(A)))

A+V(A)

= V'(A).

Observe that for A = 0 we have V'(A) = V(A) = V. We will show in
§5 below that under suitable hypotheses, V'(A) is a model of intuitionistic
Zermelo-Fraenkel set theory.

The analog of Corollary 1.4 for V(A) is the following:

1.7 Corollary. The free algebra V(A) on A has the following proper-
ties:
(i) For any x, y E V (A), s(x) < s(y) implies x = y.

(ii) For any y E V(A), the subobjects {ali(a) y} C A and
{xlxey} C V(A) are small, and

y = [V,rlal<y i(a) V v Ys(x)1.

(iii) (Irreducibility of generators and successors) For any a E A, any
y E V(A) and any E E P3(V(A)):

if y(a) < VxEE x then 3x E E(rl(a) < x);
if s(y) < VXEE x then 3x E E(s(y) < x).
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Proof. (i) For (U, E) and (V, F) in P,(A) x P,(V(A)), one has

s'(U, E) < s'(V, F) if

if

if

if

(0, {r(U, E)}) < (0, {r(V, F)})

{r(U, E)} < {r(V, F)}

r(U, E) = r(V, F)

(U, E) = (V, F),

the last since r is an isomorphism. In particular, for any x, y E V(A),

s(x) < s(y) if is(x) < is(y)

if s'i(x) < s'i(y)

if i(x) = i(y)

if x = Y.

This proves part W-
For (ii), write i(y) = (il(y),i2(y)), as before. Then for any a E A,

a E il(y) if

if

if

if

{a} < il(y)

({a}, 0) < i(y)

r({a}, O) < y

y(a) < y.

Or in other words,

i1(y) = {a E AIzj(a) < y}. (7)
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In particular, the right-hand side of (7) is small.
Similarly, for any x E V (A),

x E i2(y) if {x} < i2(y)

if (0, {x}) < i(y)

if r(0, {x}) < y

if s(x) < y (i.e., xey).

Thus

i2(y) = {x E V(A) I s(x) < y}, (8)

and the right-hand side is again small. Now we can write

y = ri(y) = r(ii(y),z2(y))

= V VxEi2(y) S(x) (def. of r)

= V,(.),5, 71(a) V Vxey s(x) (by (7), (8)),

and (ii) is proved.
Finally, we prove (iii). For y, a, E as in the statement of part (iii) of the

corollary,

S(y) !5 VXEE x iff ZS(y) : VxEE 2(x)

lff S'2(y) i(s)

iff (0, {y}) < VxEE z(x) (by (6))

if {y} < VXEE 22(x)

if {y} < {zI3x E E (s(z) < x)} (by (8))

if 3x E E s(y) < x.
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Similarly,

VxEE X

This proves part (iii).
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if il'(a) = i77(a) < VxEE i(x)

if ({a}, 0) C VXEE 2(x)

if {a} VxEE 21(x)

if .3x E E q(a) < x

§2 Ordinal numbers

(def. of q')

(by (7)).

In this section we consider the free ZF-algebra with a monotone successor,
and denote it by (O, t). Thus 0 is an S-complete sup-lattice, the successor
t : 0 --+ 0 satisfies

x < y = tx < ty,

and (0, t) is the initial ZF-algebra with these properties. (Moreover, since
freeness is to be interpreted with arbitrary parameters, (0, t) remains initial
when pulled back to any slice category of C.) We shall call (O, t) the algebra
of ordinal numbers .

As a first observation, we note that the successor t is inflationary:

2.1 Proposition. In the algebra (O, t) of ordinal numbers, the inequality
x < t(x) holds.

Proof. Let A = {x E OIx < tx}. We show that A is closed under
small suprema as well as under the successor t. It then follows by freeness of
0 that A = O. For small sups, assume {xi} is a small collection of elements
of A, and consider x = V xi. Since xi _< x, also t(xi) _< t(x) for each i.
Thus, since xi < t(xi) by assumption, also xi < t(x). This holds for all i,
so x < t(x). This shows x E A. For the successor, suppose x E A, so that
x < t(x). Since t is monotone, also t(x) _< tt(x), i.e. t(x) E A. This shows
that A is closed under small sups and successor, as required.

In the next section, we will consider the free ZF-algebra equipped with an
inflationary successor. This algebra is in general different from the algebra
(O, t).
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Next, we derive an analog of Theorems 1.2 and 1.5 for the algebra of or-
dinals (0, t). Again, this result can be viewed as a special case of Appendix
A, Theorem 1.

Define a preorder -< on P3(O), by setting for E, F E P3(O),

E-<F if VxEE3yEFx<y. (1)

This preorder -< defines an equivalence relation - on P3(O) in the usual way:

E-F if E-<F and F-<E.
Let

D,(O) := P3(O)/ -

One should think of D,(O) as the object of downwards closed subclasses of
O which are generated by small sets. To suggest this, we write j. (E) for the
equivalence class in D. (0) of an element E E P,(O).

The preorder -< on P,(O) induces a partial order on D,(O). Equipped
with this order, D,(O) is a sup-lattice, with smallest element 1(0), and binary
supremum given by

1(E) V I (F) = J. (E U F).

More generally, small suprema exist in D,(O), and are constructed from
suprema (unions) in P,(O). The proof uses the collection axiom for the class
S of small maps.

2.2 Proposition. The sup-lattice D,(O) is S-complete. For a small
family £ = {E1Ji E I} E P,P,(O) of small subsets of 0, the sup in D,(O) is
computed as

ViEI 1(E) = 1 (UiE1Et). (2)

Proof. Consider the quotient map

.j: P3(O) -s D,(O).

By the collection axiom (A7), the induced map P,(1) : P,P,(O) -+ P,(D,(O))
is again epi (cf. Proposition 1.3.7). We claim that there exists a unique
factorization, as dotted in the diagram

P3P.(O)
P------------(1

P. -D,(0)

U v
Y

P3(O) 1 D,(O).
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Indeed, since in a pretopos any epi is the coequalizer of its kernel pair, the
existence of the dotted map follows from the fact that 1 o u equalizes the
kernel pair of P,(1); or, in set-theoretic notation, that for any E _ {E; I i E I}
and F = {Fj I j E J} in P,P,(O), if

{1(E;) I i E I} = {1(Fj) j E J} in P,D,(O),

then also

1(U1E,Ei) = 1(UjEJF9)
in D,(O).

Finally, one readily checks that this map V : P,D,(O) -+ D,(O) indeed
defines suprema for D,(O).

Now define a successor t on D,(O) by the formula

t(1 E) =1 {V.1EE t(x)}. (3)

This successor t is well-defined on equivalence classes; for t is order pre-
serving, so if E -< F in P3(O) then also VxEE t(x) C VyEF t(y) in 0,
whence {VXEE t(x)} {VyEF t(y)} in D,(O). The same argument shows
that t : D,(O) -; D,(O) is monotone.

2.3 Theorem. The map 0 : (D,(0), t) -+ (O, t) defined by

0(1 E) = V XEE t(x)

is an isomorphism of ZF-algebras.

Proof. It is clear that the map 0 is well-defined on equivalence classes,
as well as order preserving. The map 0 also preserves small suprema, since
by the preceding proposition these are computed as unions in D,(O). Fur-
thermore, for E E P,(0),

0(1(1 E)) = t(VxEE t(x))

= t(0(1 E)).

This shows that 0 : D,(0) -> 0 is a homomorphism of ZF-algebras.
On the other hand, the successor ton D,(O) is monotone, and (0, t) is the

free algebra with a monotone successor, so there is a unique homomorphism

71 : (O, t) -* (D3(0), ).
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By freeness, 0 o 71 is the identity on O. This means that for any x E 0 and
any Ex E P5(O) representing 1t(x) (that is, y(x) =,1. (Ex)), one has

x = 61)(x) = VyEE.. t(y). (4)

Now consider an arbitrary E E P3(O) and its associated equivalence class
j (E) E V., (0). The map y : 0 D., (0) gives a small subset

A = {1)(x) I x E E} C D., (0).

By collection, the map P,(1) : P,P,(O) -> PE), (0) is epi, so there is a small
family E = {Ei I i E I} of small subsets of 0, such that

A={j(E;)IiEI}.

But then
p0(j E) = ?I(VXEE t(x))

= VxEE II t(x)

= VxEE t17(x)

= ViEI 41 Ei) (by (5))

= ViEI I {VyEE[ t(y)}

= j (UiEI{VyEE; t(y)}) (by (2))

(5)

= j {VyEE: t(y)Ii E I}.

But each Ei represents some ii(x) where x E E, so by (4) we have for such
an x that x = VyEE;t(y) Since every x E E is so represented by some Ei, it
follows that

{VyEE;t(y)I iEI)={xlxEE}=E.

With the previous computation, this yields

1t6(j E) =1(E).

This proves that q and 0 are mutually inverse isomorphisms, and the theorem
is established.
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2.4 Corollary. The algebra (O, t) of ordinal numbers has the follow-
ing properties:

(i) For all x, y E 0, if t(x) < t(y) then x < y.

(ii) For any x E 0, the family {y E Olty < x} is generated by a small
set, and x = Vty<x ty.

(iii) (Irreducibility of successors) For any y E 0 and any small E C O,
if t(y) < VxEE x then 3x E E (t(y) < x).

Proof. (i) For x, y E 0, let Ex and Ey represent 77(x) and q(y), and
write, as in (4),

x = VaEE. t(a), y = V bEEy t(b).

t(x) = Otrt(x) = O(j {VaEE. t(a)}) = O(j {x}),

t(y) = O(J. {y}). (6)

t(x) < t(y) if O(j {x}) < O(j {y})

if

if

J {x} <j{y}

{x} {y}

if x < Y.

(ii) For x E 0 let Ex represent y(x) so that x = VaEE.t(a), as before.
Then for any y E 0, (6) yields

t(y) < x if O(j {y}) < x

if j {y} < rt(x) = j (Ex)

if 3aEExy<a.
Thus {yjt(y) < x} is generated by the small set E. Furthermore, clearly
x = Vt(y)<x t(y), since x = VaEEm t(a).



ORDINAL NUMBERS 43

(iii) For the small set E C_ 0, let {Eili E I} be a small collection of
small subsets of 0 with the property that

{r/(x)I xEE}={J.(Ei)I i E I},

as in (5) above. Then, again using (6),

t(y) < VXEE x lff

If

{y}) < VXEE X

lff 1 {y} S 77(VxEE x) = VxEE rl(x)

if 1 {y} <

if 3iEI 3wEEi y<w.
But this Ei represents y(x) for some x E E, so for this x we find ty < tw <
VaEE. t(a) = x.

This completes the proof of Corollary 2.4.

Since the algebra (V, s) considered in the previous section is initial, there
is a unique homomorphism of ZF-algebras (V, s) -> (0, t), which we denote

rank: V-+O.

In other words, this rank function satisfies the usual identities

rank(sx) = t(rank(x)), rank(V xi) = V rank(xi)

(7)

for successor and small sups, and is uniquely determined by these identities.
We now show that the algebra of ordinals can be used to build up the free

ZF-algebra V as a cumulative hierarchy indexed by the ordinals, as expressed
by Theorem 2.7 below. For this, we shall make the additional assumption
that the class S of small maps C satisfies the following "power-set axiom"
(cf. Remarks 1.3.2,1.3.4):

(S3) ("Power-set Axiom") For any small map X -4B in the category C,
the power-object Ps(X -> B) is a small object of C/B.

Recall that, given the earlier axioms for small maps, this axiom is equivalent
to the condition that for each object B of C, the category S/B of small ob-
jects over B is an elementary topos.
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2.5 Proposition. Suppose the class of small maps S satisfies the power-
set axiom (S3). Then there exists an "internal" power-set operation

p:V -*V

with the property that for all x, y E V,

y<x iff sy<p(x).

Proof. We use the mutually inverse isomorphisms

iVP,(V)

of Theorem 1.2. Thus i(x) = {ylsy < x} while r(E) = VxEE sx. Define, for
xEV,

p(x) = EEP,(ix)sr(E).

Here we view i(x) as a small subobject of V, so that any E E P,(ix) can be
viewed as an element of P,(V), and r(E) thus makes sense. The supremum
occurring in the definition of p(x) exists, since by the power-set axiom P,(ix)
is small. Now for any y E V,

s(y) < p(x) if 3E E P,(ix) s(y) < sr(E) (by 1.4(iii))

if 3E E P,(ix) y = r(E) (by 1.4(ii))

if 3E E P,(ix) iy = E

if iy < ix

if y<x.
This proves Proposition 2.5.

2.6 Corollary. For any x E V, its down segment 1(x) = {y E V Jy < x}
is a small set. Or, in other words, (S3) implies that the second projection
{(y,x)ly < x} -> V belongs to S.

Proof. Immediate from 2.5 and 1.4(ii).

2.7 Theorem. Suppose the class S of small maps satisfies the powerset
axiom (S3). Then the map rank : V -+ 0 has a right adjoint V(-) : 0 -> V,
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i.e.

(i) x < Vc. iff rank(x) < a (any x E V, a E 0),

having the following additional properties:

(ii) V« = V;EIV;, for any small sup a = Vai in 0,

(iii) Vt. = p(Va.), for any a E 0,

(iv) rank(Va) = a, for any a E 0.
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Proof. Consider the powerset operation p : V -+ V constructed in
Proposition 2.5. From the property

y < x if sy < p(x)

stated there, together with Corollary 1.4(ii), it is clear that p is monotone.
Thus (V, p) is a ZF-algebra with a monotone successor. Since (0, t) is the
free one, there exists a unique homomorphism of ZF-algebras (0, t) -- (V, p),
which we denote

V _) : O --- V.

The identities (ii) and (iii) of the theorem express that V_) is a homomor-
phism of ZF-algebras. Furthermore, again by freeness of (0, t), the composite
homomorphism rank oV(_) : 0 -; 0 must be the identity, thus proving prop-
erty (iv). It remains to prove the adjointness. Since we already showed that
V_) is right inverse to rank, it is in fact enough to show that x < Vrank(x) for
any x E V. Let A = {x E V jx <_ Vrank(x)}. Then A is closed under small
sups, since the operations rank and V(-) preserve small sups. Furthermore,
A is closed under the successor s : V -> V, since if x < Vrank(x) then also

s(x) < p(x) (by Proposition 2.5)

<_ p(Vrank(x)) (p is monotone)

= Vt(rank(x)) (by part (iii))

= Vrank(sx)

Since (V, s) is initial, it follows that A = V. Thus x _< Vrank(x) for all x E V,
as required.
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This completes the proof of the theorem.

2.8 Remark. Consider the composite V_) o rank : V -+ V. It fol-
lows from Theorem 2.7 that this map is idempotent, and that 0 = {x E
V I Vrank(x) = x}. This argument can also be reversed, to provide a con-
struction of 0 from V. Indeed, independent of 0, freeness of (V, s) gives a
unique homomorphism it : (V, s) -+ (V, p). It is not difficult to show that
{x E Vlir2(x) = a(x)} is closed under small sups and successor, so that Xr
must be idempotent. Thus there is a coequalizer for the image of 7r,

V 4 V 14 Im(ir),
id

by means of which one can show directly that (Im(7r), p) is the free initial
ZF-algebra with monotone successor. (Cf. Theorem 3.1 in the next section
for an analogous argument.)

§3 Von Neumann ordinals
In this section we will consider the free ZF-algebra with an inflationary suc-
cessor . We will denote it by

(N, s),

and call it the algebra of Von Neumann ordinals . Thus

x < s(x)

for all x E N, and (N, s) is initial with this property. We will show that
(N, s) can be constructed from the algebra (Vs) considered in §1, as the
subobject consisting of "hereditarily transitive sets" (Theorem 3.4 below).

For a first construction of N from V, consider the map

s:V -+V , s(x)=xVs(x).

Viewing s as a successor operation, this gives a new ZF-algebra (V, s). Since
(V, s) is the free ZF-algebra, there is thus a unique homomorphism p :

(V, s) -+ (V, s). The map p : V -+ V is the unique one with the proper-
ties

P(V xi) = V P(xi) , P(s(x)) = P(x) V s(P(x)), (1)

for any small supremum V xi and any x E V.



VON NEUMANN ORDINALS 47

3.1 Theorem. The map p is idempotent, its image p(V) C V is closed
under the operation s, and (p(V), s) is (isomorphic to) the initial ZF-algebra
with an inflationary successor.

On the basis of this theorem, we will identify (N, s) with (p(V), s).

Proof. To see that p2 = p, it suffices to show that p2 : V -+ V sat-
isfies the same defining equations (1) as p does. Clearly, if p preserves all
small sups, then so does p2.

Furthermore, for any x E V one has

P2(sx) = P(P(x) V sp(x))

= P2(x) V P(sp(x))

= P2(x) V (P2(x) V sP2(x))

= P2(x) V sp2(x).

This shows p2 = p.
Next, the image p(V) is clearly closed under the operation s, since s(p(x))

= p(x) V sp(x) = p(sx). Thus (p(V), s) is a ZF-algebra. In order to show
that this algebra is the free algebra with an inflationary successor, note first
that p(V) fits into a split coequalizer

VV -'P(V),
as for any idempotent map. Now suppose (L, t) is an arbitrary ZF-algebra
with a successor t having the property that x < t(x) for all x E L. By freeness
of (V, s), there is a unique map cp : V --+ L which preserves small sups and
satisfies cp(sx) = t(cp(x)). We claim that cp = cpp. Clearly Wp preserves small
sups. Furthermore

PP(sx) = P(P(x) V sp(x))

= cpp(x) V cpsp(x)

= IPP(x) V t(,PP(x))

= t(VP(x))'
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the last since t is inflationary. Thus cpp preserves the successor. This shows
that cpp satisfies the conditions which uniquely determine cp, hence cp = cop.
By the coequalizer above, co thus factors uniquely as cp = i o p, where the
map 0 : (p(V), s) --+ (L, t) preserves small sups and successor since co and
p : (V, s) --> (p(V), s) do. Moreover, b is clearly unique with this property.

This completes the proof.

3.2 Corollary. In the algebra (N, s) of Von Neumann ordinals, suc-
cessors are irreducible : for any y E N and any small E C N,

§(Y):5 V-EE x 3x E E (s(y) < x).

Proof. By Theorem 3.1, it suffices to show that for any y E p(V) and any
small family {x, : i E I} of elements of p(V), if s(y) < V xi then s(y) < xi for
some i. Suppose s(y) < V xi. Since s(y) < s(y) and successors are irreducible
in V (Corollary 1.4 (iii)), we find s(y) < xi for some i. But y,xi E p(V), so
these are fixed points of p. Thus

y V s(y) = P(sy) : P(xi) = xi,

or s(y) < xi, as required.

Note that since p is idempotent, its image N = p(V) coincides with
the equalizer of p and id: V 4 V. Thus

N = Ix EV I p(x)=x}.

We will now show that N can be described by the familar definition of or-
dinal numbers as "transitive sets of transitive sets" . To this end, define an
operation

U:V-*V
for "union" by

Ux = V
8(v)<= Y. (2)

Notice that this is well-defined, since by Corollary 1.4(ii) the supremum in
(2) is small. Also notice that by part (i) of that corollary, the identity

Us(x) = x (3)

holds. Now define the following two subobjects of V:

T=IxEVI Ux<x},

T(2)={xETjVyEV(sy<x yET)}.
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3.3 Lemma. Both T C_ V and TO) C V are closed under small suprema
as well as under the operation s : V -> V, s(x) = x V s(x).

Proof. By irreducibility of successors in V (Corollary 1.4(iii)), we have

U(ViEIxi) = V{y I s(y) < ViEtxi}

= V{yI3iEI s(y)<xi)

= ViEI V{y I S(Y) < xi}

= ViEI(Uxi)
Thus T is closed under small sups, because these are preserved by the union
operation. Furthermore,

U s(x) = U (x V s(x))

= Ux V Us(x)

=UxVx,
the latter by (3) above. Thus if Ux _< x then Us(x) = x _< s(x), showing
that T is closed under the operation s.

For TO), it follows again from irreducibility of successors in V that TO) is
closed under small sups. For closure under s, suppose x E T(2) and consider
y E V with s(y) < s(x) = x V s(x). Then either s(y) < x in which case
y E T since x E T(2), or y = x in which case clearly y E T. Thus s(x) E T(2)

This proves the lemma.

3.4 Theorem. N = T(2). Thus (T(2), s) is the initial ZF-algebra with an
inflationary successor.

Proof. Recall that for the operation p : V -- V we have made the
identification

N=p(V)={xEV I p(x)=x}.
To show that N = p(V) C T(2), consider the subobject C of V defined by
C = {x E V I p(x) E T(2)}. Since TO) is closed under small suprema and
under s, it is clear from the definition (1) of p that C is closed under small
sups and s : V --> V. Since (V, s) is initial, it follows that C = V, whence
N C T(2).
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For the converse inclusion TP> C N, we prove that p(x) = x for all
x E TP). To this end, define a subobject A C V by

A = {x E V I (x E TM #- p(x) = x) & Vy E T1'1(sy < x = p(y) = y)}.

To show A = V, it suffices to show that A is closed under small suprema and
under the successor operation s : V -> V. For small sups, suppose x = V xi
where each xi E A. Then, by irreducibility of successors, any y with sy < x
also satisfies sy < x, for some xi, so x surely satisfies the second requirement
in the definition of A. For the first requirement, assume x E TO), and write
(cf. Corollary 1.4)

x = VsyEx sy
=

Vi Vsy<x,
sy.

Now sy < xi implies py = y, since xi E A by assumption. Thus

px = Vi Vsy<x; P(sy)

Vi Vsy<xi [P(y) V sp(y)]

Vi Vsy<x, [y V s(y)J

Vsy<x Y V Vsy<x s(y)

= Ux V X.

But x E TP> by assumption, so Ux V x = x, whence px = x as desired.
This shows that A is closed under small sups.

For successors, suppose x = sz with z E A. We show x E A. First, for
any y E V, Corollary 1.4 gives that sy < x implies y = z. So clearly x satis-
fies the second requirement in the definition of A. For the first requirement,
suppose x E TO). Then also z E TO), since TM is itself "transitive", in the
sense that aeb E TM2) implies a E TO). Hence since z E A by assumption,
also p(z) = z. Therefore p(x) = p(z) V sp(z) = z V s(z) = z V x. But
x E T and zex, so z < x. Thusp(x)=z V x=x. ThisprovesxEA.

This completes the proof of the theorem.

As a consequence, one obtains an analog of Theorem 1.2 for the alge-
bra N of Von Neumann ordinals. Let

D(N)={EEP3(N)I VxEEVyEN(sy<x=* yEE)}.

Thus D(N) is the poset of small down-segments in N, for the "strict" order
defined on N by y < x if sy < x.
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3.5 Corollary. The isomorphism V ?' P3(V) restricts to an isomor-
phism

N = D(N).

Proof. The isomorphism i : V -+ P5(V) of Theorem 1.2, defined by
i(x) = {y E V p sy < x}, clearly maps N into D(N), because for x E N
and sy < x also y E N. In the other direction, D(N) C_ P3(V), and we
will show that for any E E D(N) the isomorphism r : P3(V) -> V sends
E to an element r(E) of N. Indeed, xer(E) if x E E, so clearly E C N
gives Vxer(E)(x E T). Furthermore, yexer(E) gives yex E E, hence y E E
since E is downwards closed; thus yer(E). This shows that r(E) E T. In
other words, r(E) E T(2) = N. We have proved that the mutually inverse
isomorphisms i : V -+ P3(V) and r : P3(V) -+ V of Theorem 1.2 restrict to
maps N -+ P,(N) and P3(N) -* N, thus proving the corollary.

3.6 Remark. We consider the possible monotoneity of the successor
operations : N -+ N of the algebra N = p(V) = T(') of Von Neu-
mann ordinals. For x < y in N, the inequality sx < sy means that
sx < x V s(x) = sx < y V s(y), hence xey or x = y, by irreducibil-
ity of successors. So s : N -- N is monotone if

x < y xey or x = y (all x,yENCV). (4)

It follows that if s : N -+ N is monotone then any small mono U >-+ X
has a complement. Indeed, it suffices to prove this for X = 1 (replace C by
CIX). We use the internal logic, and let U C_ 1 = {*}. Note that 0 E V
(empty sup), hence 0 E N since N C_ V is closed under small sups. Then
also s0=OVsO=s0EN. Let

U= V{sO I* E U}.

Thus U E N whenever U is small, again since N is closed under small sups.
But clearly U < sO, so (4) would imply that UesO or U = sO. In the first
case U = 0, hence not * E U, i.e. U = 0. In the second case, 0eU hence
*EU,i.e. U = 1.

In particular, if the class S of small maps in C satisfies the separation
axiom, stating that every mono is small (see Theorem 4.6 below and §5 of
this chapter), the successor s : N -+ N is monotone if every subobject in C
is complemented. Or in other words, for such a class S,

N = 0 if C is Boolean.
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3.7 Remark. By Proposition 2.1 and freeness of the algebra (N, s), there
is a unique homomorphism

h:(N,.)-- (O,t),
showing that 0 is a quotient algebra of N. Now suppose that the class S
of small maps satisfies the power-set axiom (S3), discussed in the previous
section. Then we can define a monotone successor o : N -- N, similar to
the "power-set" successor p : V -+ V, by

o(x) = Vy<x s(y) (x, y E N).

Let i : (0, t) -- (N, o) be the unique homomorphism of ZF-algebras for this
new successor o. The composite map h o i : 0 --> 0 preserves small sups,
and by monotonicity of the successor t, it also preserves successors, since

h(oi(x))

Vy<t(x) h(. y)

Vy<s(-) t(h(y))

t(hi(x)).

By freeness of (O, t), it follows that h o i = id. Thus 0 is a retract of N. In
particular, by Theorem 3.4, the algebra 0 can be taken to consist of transi-
tive sets of transitive sets. Is it possible to describe the algebra (0, t) directly
in terms of an explicit "set-theoretic" property of such hereditarily transitive
sets, analogous to the description of the ordinal algebra (N, s) in Theorem
3.4?

We conclude this section with some remarks on the subobject T C V
defined above (cf. Lemma 3.3). There is always an operation of "transitive
closure"

preserving small sups and satisfying

T(sx) = r(x) V s(x).

To construct r, first define a successor k : V x V -> V x V by k(x, y) _
(s(x),y V s(x)). This makes V x V into a ZF-algebra. By freeness of V,
there is a unique map

(\,-r): V --+VxV
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which preserves small sups and satisfies (A, r)(sx) = k((A, r)(x)). Thus
both A and r are sup-preserving maps V -> V, and A(sx) = sA(x) while
r(sx) = r(x) V s(Ax). By freeness of V, the map A must be the identity;
hence r(sx) = r(x) V s(x), as desired.

3.8 Lemma. The map r : V -+ V is idempotent and satisfies x < r(x).

Proof. One easily shows that the subobject B C_ V defined by B =
{x E V I x < r(x) = r2(x)} is closed under successors and small sups.
Hence B = V, since (V, s) is free.

3.9 Proposition. T = {x E V I r(x) = x}.

Proof. (2) Let C = {x E V I U x < r(x)}. Then C is closed un-
der small sups, since these are preserved by both U and r. C is also closed
under the successor s, since by (3), x E C gives

Us(x) = x < r(x) < r(sx),

hence s(x) E C. Thus C = V, and hence Ux < x whenever r(x) = x.
(C) For this inclusion, we use the natural numbers object N of the ambient

category C, and the map

N x V -+ V , (n, x) '-, U(")x = U U x (n times).

By induction on n E N, one proves that for all x E T

Vn E N(UN"N x < x).

Thus, to show r(x) < x for any x E T, it suffices to prove that for any x E V:

Vy E V : (yer(x) = 3n E N ye UI"i x).

To this end, let

(5)

A = Ix EVIVyer(x)2nENy&U(")x}.

Then clearly A is closed under small sups, since these are preserved by T.
To show that A is also closed under successors, suppose x E A, and consider
any y E V with yer(sx) = r(x) V s(x). If yer(x), then yE U(") x since x E A
by assumption; but Us(x) = x, so yE U(") X = U("+1)s(x). And if yes(x) then
ye U(°) s(x), so again ye U(") s(x) for some n. This proves that s(x) E A,
so that A is closed under successors as well. Thus A = V, proving (5) as
required.

(This proof of the inclusion "C" is due to J. van Oosten.)
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§4 The Tarski fixed point theorem
In this section we introduce yet another type of ordinal numbers, suitable
for proving a "constructive" version of Tarski's fixed point theorem in the
general context of a Heyting pretopos C with a class of small maps S.

Recall that a subset D of a partially ordered set P is directed if D is
inhabited (i.e., the unique arrow D -p 1 is epi), and for any d, d' E D there
exists a d" E D with d < d" and d' < d". If only this last condition is
satisfied, we call D weakly directed. Notice that in a poset P, all sups of
weakly directed subsets exist if P has a smallest element 0 and all directed
sups exist.

In this section, we wish to consider the poset T in our ambient category C
which is free with the following properties: T has all small directed suprema,
a successor operation r : T --> T which is monotone (i.e. x < y implies
rx < ry), and a constant 0 E T with 0 < r(0).

Observe that this definition differs from that of the algebras of ordinals
(0, t) and (N, s), in that T is not by definition a ZF-algebra, since a priori T
has directed small suprema only. However, we will prove in this section that
(T, r) is in fact a ZF-algebra, and we will refer to it as the algebra of Tarski
ordinals .

First, we note that 0 E T is the smallest element, and that r is inflation-
ary:

4.1. Lemma. For all x E T the inequalities

0 < x < r(x)

hold.

Proof. Let A = {x E T 1 0 < x < r(x)}. To prove that A = T, it
suffices by freeness of T to show that A contains 0 and is closed under small
directed suprema and under the successor operation r. Now clearly 0 E A.
For directed sups, suppose x = ViEI xi is a directed supremum where each
xi E A. Since the index set I must then be inhabited, and 0 < xi for each i,
it follows that 0 < V xi = x. Also,

x = V xi < V r(xi) < r(V xi) = r(x),

where the first inequality holds since we assume xi E A, while the second
one holds since r is monotone. This proves x E A. Thus A is closed under
directed sups. The proof that A is closed under the operation r is even easier,
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and omitted. Thus A = T, as required.

By this lemma and the remarks preceding its statement, T is also free
with small weakly directed sups and a monotone successor r.

Next, we show that T is isomorphic to a poset of suitable subsets of T,
analogous to earlier results for the algebra 0 of ordinal numbers (cf. Propo-
sition 2.2 and Theorem 2.3). To this end, and similarly to the treatment in
§2, let

Ad(T)
be the collection of down segments in T which are generated by small weakly
directed sets E C T, and denote such a down segment by I (E). Exactly
as for 0 in §2, the object D,d(T) inherits a partial order from T, a bottom
element 0 =1(0), and a successor a : DU(T) -+ DU(T) defined by

a(I E) =1 { VxEE r(x)}.

Also, Ad(T) has weakly directed sups, given by unions:

V, I (E_) = I (U Ei ),

for {1(E;) I i E I} small and weakly directed. Analogous to the maps rl, 0
for 0 in §2, there are maps

77

T D,d(T).
e

The map q is given by freeness of T, and is the unique one which preserves
successor and weakly directed sups. The map 0 is explicitly defined, as

0({E) = xEE r(x).

4.2 Theorem. These maps 77 and 0 are mutually inverse isomorphisms
T c---- Ad (T).

Proof. Note first that 0 preserves the successor as well as weakly di-
rected sups, so that 0 o = 1. In particular, if x E T and Ex represents fi(x)
(i.e., Ex is a small weakly directed subset of T and j(x) =1 (Ex), as in §2),
then

x = 0q(x) = VYEE. r(y). (1)

Exactly as in the proof of 2.3 for 0, we can then use the collection axiom to
show that 77 o 0 = 1: For E C T weakly directed and small, first pick a small
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family {Ei I i E I} such that each E; is a weakly directed small subset of T,
and such that

Then

{77(x)1xEE} = {J.(Ei)IiEI}.

i19(J,E) = rl(VxEE r(x)) (def. of 0)

VxEE aj(x)

(since 77 preserves weakly directed sups and successor)

(2)

= V;EI a(J. Et) (by choice of the Ei)

= ViEI 1 {VyEE, r(y)} (def. of a)

= VxEE 1 {x} (by (1) and (2))

= 1(E)

This completes the proof that rt and 0 are mutually inverse isomorphisms.

4.3 Corollary. For the algebra (T, r) of Tarski ordinals the following
properties hold:

(i) For all x, y E T : if r(x) < r(y) then x < y.

(ii) For any x E T, the family {y E T I r(y) < x} is generated by a small
weakly directed set, and

x = Vr(y)<x
r(y).

(iii) (Irreducibility of successors) For any y E T and any small weakly
directed E C T, if r(y) < VxEE x then 3x E E(r(y) < x).

Proof. Analogous to the proof of Corollary 2.4.

We are now ready to show that (T, r) is in fact a free ZF-algebra:

4.4 Theorem. (i) All binary suprema exist in T, and are preserved
by the successor r : T -> T. In particular, (T, r) is a ZF-algebra.
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(ii) (T, r) is the free ZF-algebra on a successor r which preserves binary
suprema.

Proof. (i) We first show that r preserves all binary sups that exist
in T. Or more precisely, if x, y E T and x V y exists then r(x) V r(y) exists
and r(x) V r(y) = r(x V y). To this end, consider the map

a : T - D3d(T) , a(x) =J, {x},

so that a = y o r and 0 o a = r. Since 0 is an isomorphism by Theorem 4.2, it
suffices to show that a preserves a binary sup whenever this sup exists. But
for any small weakly directed E C T,

a(x V y) <J, (E) if 3u E E (x V y < u)

if 3uEE(x<u)and3vEE(y<v)

(since E is weakly directed)

if a(x) <J (E) and a(y) <J (E).

Thus a(x V y) = a(x) V a(y), as claimed.
Having established this, we show that all binary sups in T exist. Write

Ax= {yETIx V yexists} andA={xETI A,, =T}. By freeness of
T it suffices to show that 0 E A and that A is closed under successor and
small directed sups. Clearly 0 E A since 0 V y = y for all y, by Lemma
4.1. Next, suppose that x E A. To prove that r(x) E A, or A,(x) = T, we
use freeness of T again, and show that A,(x) is closed under the operations.
First, clearly 0 E A,(x). Next, if y = V yi is a small directed sup where
yi E Ar(x), then each r(x) V yi exists and hence r(x) V y also exists since
r(x) V y = r(x) V V yi = V(r(x) V yi). Finally, if y E Ar(x) then also
r(y) E A,(x), since by assumption x E A so x V y exists; thus, as shown
above, r(x) V r(y) exists (and equals r(x V y)). This shows r(x) E A.
It remains to be shown that A is closed under directed sups. But clearly, if
x = V xi is such a sup where each xi E A, then for any y E T the supremum
xi V y exists. Then x V y also exists, since x V y = V(xi V y). This
completes the proof of part (i) of the theorem.

(ii) As always, freeness should be interpreted with arbitrary parameters.
For illustration, we will write the parameters explicitly here. So let U be
any parameter object in C, and let P - U be a ZF-algebra in C/U with a
(fiberwise) successor operator b : P -> P which preserves binary sups. By
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freeness of T for weakly directed sups, there is a unique map

cp:U x T ->P, cp(u,x)=cpu(x),

over U, such that each Vu preserves the successor and weakly directed small
sups. It suffices to show that Vu also preserves binary sups. To this end, de-
fine for each x E T a subobject Bu,x = {y E T I Wu(x V y) = cpu(x) V cpu(y)},
and let Bu = {x E T I Bu,x = T}. Then one readily shows that Bu = T, by
a "double induction" much as for Ax and A in part (i). We omit the details.

4.5 Remark. It follows that the algebra (T, r) of Tarski ordinals is
a retract of the algebra (0, t) of ordinal numbers. Indeed, having shown that
T is indeed a ZF-algebra, monotonicity of the successor r and freeness of
(O, t) give a unique homomorphism of ZF-algebras y : (O, t) -+ (T, r). On
the other hand, freeness of (T, r) for directed sups and a monotone successor
gives a map v : T -40. This map v is not a ZF-algebra homomorphism, but
it is the unique map which preserves the successor as well as small weakly
directed sups. By freeness of T, the composite map y o v must be the iden-
tity.

As an extension of the problem noted at the end of Remark 3.7, it is
natural to ask whether there is an explicit description of T as the object of
hereditarily transitive sets with a certain "set-theoretic" property.

We will come back to the inclusion of T into 0 when we explicitly con-
struct T as a subobject of 0 in Chapter III, §5.

To conclude this section, we present the promised constructive version
of Tarski's fixed point theorem. For its proof, we will assume the following
additional axiom for the class of small maps S:

(S4) ("Separation Axiom") Every monomorphism belongs to S.

We already briefly encountered this axiom in Remark 3.6, and we will con-
sider it again in relation to the axioms of Zermelo-Fraenkel set theory, in the
next section. We point out that this separation axiom holds in most of the
examples considered in Chapter IV.

Before we state the theorem, we recall that a (global) fixed point of an
operator a : P -+ P, on a poset P in the category C, is an arrow p : 1 -+ P
with a o p = p. It is said to be a least fixed point if for any arrow q : X -+ P
in C with the property that a o q = q, the inequality

(X-*1-*P) < (X-q
+ P)
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holds in C(X, P).

4.6 Theorem. Let C be a Heyting pretopos, with a class of small maps
S satisfying the separation axiom (S4). Suppose the algebra (T, r) of Tarski
ordinals exists in C. Let P be any small poset in C with weakly directed
suprema, and let a : P -* P be a monotone endomorphism. Then a has a
least fixed point.

(For the existence of (T, r), see Theorem 5.4 of Chapter III.)

Proof. By freeness of (T, r), there exists a unique map cp : T -- P which
preserves small directed sups and has the property that cp(r(x)) = a(cp(x))
for all x E T. Now factor cp as T -> Q -> P, where T -* Q is epi and Q -> P
is mono. Since P is assumed small, the separation axiom implies that Q is
also small. Now work in the internal logic of C, and use the collection axiom
(A7) to find a small R C_ T with V(R) = Q. By Theorem 4.4, the small set
R has a supremum x E T. Let p = cp(x). Note that p does not depend on
the choice of R, since p = V Q. (Thus p is a global section p : 1 -4P.) Now
a(p) = a(cp(x)) = cp(r(x)) E Q, so a(p) < V Q = p. On the other hand,
x < r(x) in T (cf. Lemma 4.1), so p = cp(x) < co(r(x)) = a(cp(x)) = a(p).
Thus p = a(p), as required.

To show that p is the smallest fixed point, suppose q E P is such that
a(q) = q. It suffices to prove that V(y) < q for all y E T. But, writing
A = {y E T V(y) < q}, one readily shows that A is closed under small
weakly directed sups and under the successor r : T --> T. Thus, by freeness
of (T, r), it follows that A = T.

This completes the proof.

Another constructive approach, leading to a double-negation variant of
Tarski's fixed point theorem, is contained in Taylor(1994).

§5 Axioms for set theory
For the first order (intuitionistic) predicate calculus in a language with one
unary predicate symbol A (for "atoms") and one binary symbol - (for "mem-
bership"), we consider the following familiar axioms and axiom schemata for
Zermelo-Fraenkel set theory; we use S(x) ("x is a set") as an abbreviation
for -'A(x).
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(Z1) (Extensionality for sets ) Sx A Sy [x = y 4* Vz(zey 4* zey)]
(Z2) (Pairing) 3z [xez A yez]
(Z3) (Union) 3yVz [zey 3w(wex A zew)]
(Z4) (e-Induction) Vx [Vyexep(y) = cp(x)] = Vxcp(x)
(Z5) (Power-set) 3yVz [zey t* (Sz AVwez(wex))]
(Z6) (Separation) 3y [Sy AVz(zey # zex A cp)]
(Z7) (Collection) Vyex3wV 3zVyex3wezcp
(Z8) (Infinity) 3x [3y(yex) AVyex(y U {y}ex)]
(Z9) (Decidability between atoms and sets) Ax V Sx
(Z10) (Only sets have members) 3y(yex) = Sx
(Z11) (Classical logic) cp V -'cp

(Z12) (No atoms) VxSx

In these axioms, we have used the standard convention of abbreviating the
expressions Vy(yez and 3y(yez A ...) to Vyez(...) and 3yez(...) respec-
tively; also, in (Z8) we have used 0 and {y} as common abbreviations for the
empty set and the singleton. Various combinations of these axioms give stan-
dard set theories. For example, IZFA - for "intuitionistic Zermelo-Fraenkel
set theory with atoms" - is the theory axiomatized by (Z1-10). Other fa-
miliar theories are IZF , ZFA, ZF, etc. One should read these abbreviations
as follows: dropping the I means adding (Z11); dropping the letter A means
adding (Z12) (then (Z9), (Z10) are redundant). Thus ZF is the usual classi-
cal Zermelo-Fraenkel set theory axiomatized by (Z1-8,11,12).

We will also consider the following weakening of the separation axiom
(Z6):

(Z6') (Decidable separation)

Vz(,p(z) V -,p(z)) = 3y [Sy A Vz(zey zex A cp].

Of course, (Z6') is equivalent to (Z6) in the presence of the schema (Z11) for
classical logic.

Now let C be a Heyting pretopos equipped with a class of small maps
S. Recall that, by definition, the class S satisfies the axioms (A1-7) for open
maps, and the axioms (Si) for exponentiability and (S2) for representability.
Recall also that we have already considered the following additional possible
axioms for S (see 2.5, 4.6):

(S3) (Power-set) If X -+ B belongs to S then so does P3(X - B).
(S4) (Separation) Every monomorphism belongs to S.
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As a last property of the class S, we will consider in this section the ax-
iom

(S5) (Infinity) For the natural numbers object N of the pretopos C,
the map N -p 1 belongs to S.

Let A be any object of C, and let V(A) be the free ZF-algebra gener-
ated by A. Construct V'(A) = A + V(A) as in Remark 1.6, and define a
successor

s : V'(A) -> V'(A) (1)

on V'(A) which extends the successor s : V(A) -4 V(A), by letting the
restriction of s in (1) to the summand A be the composition of the map
0 : A --> V(A) with the coproduct inclusion V(A) ---> V'(A). This extended
successor defines an extended membership relation on V'(A), by the usual
formula: xey if s(x) < y. (But V'(A) is of course not a ZF-algebra.) Thus
V'(A) provides us with an interpretation of our language with predicate sym-
bols A and e. In the special case where A = 0, one has V'(0) = V(0) = V,
equipped with the usual successor and membership.

5.1 Proposition. For any class of small maps S, the axioms (Z1-4),
(Z6'), (Z7), (Z9) and (Z10) hold for V'(A).

Proof. We verify the axioms in the order in which they are listed above.
(Z1) By Corollary 1.7, any y E V(A) satisfies the identity

y = V,,(a)<y rl(a) V VZEy s(z). (2)

But rt(a) = s(a), for a E A and for the extended successor s : V'(A) -* V'(A)
in (1). So (2) can be rewritten as

y = V {s(a) I a E A, aey} V V {s(z) I z E V(A), zey}

= V{s(w)I wEA+V(A), wey},

from which extensionality for V'(A) = A + V(A) is evident.
(Z2) The pairing axiom holds, as witnessed by the operation

(x)

on V'(A).
(Z3) The union axiom holds, as witnessed by the union operation x --*
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Ux := V,,<x y discussed for V in (2) of Section 3, and the similar operation
for V(A).

(Z4) (e-Induction) First suppose the formula V(x) contains no other free
variables than x. Define two subobjects H, C < 1 in C by

H = [ Vx[Vyexp(y) = V(x)] 1,

C = [ 1,

where x ranges over V'(A). We have to show H C_ C. By passing to the
slice C/H, we may assume H = 1. Let B = {x E V (A) I cp(x) A `dyexea(y)}.
Using H = 1, it is readily seen that B is closed under small suprema and the
successor operation s : V(A) --> V(A). Moreover, if a E A then ry(a) E B.
Indeed, if y E V'(A) and yer7(a) then y = a, whence y has no elements;
thus V (y) since H = 1. Since this holds for all such y, also cp(q(a)), again
since H = 1. By freeness of V(A) it follows that B = V(A). In particular,
Vx E V'(A)(Sx #- cp(x)) holds. From H = 1 and the fact that atoms do not
have elements (cf. axiom (Z10) to be verified below), also Vx E V'(A)(Ax =
cp(x)). Thus C = 1, as required. The general case where cp is a formula
cp(wl, ..., wn, x) is dealt with by first passing to the appropriate slice category
C/V'(A)n.

(Z6') (Decidable separation) We assume we are given a global section
x : 1 -> V'(A) and we suppose that V(z) has at most the variable z free.
(The case where x is any generalized element and (p contains parameters is
proved in exactly the same way, after replacing C by the appropriate slice
category.) Write 1 = Ax + Sr, where Ax and Sx are the pullbacks along x of
A -> V'(A) and V(A) --> V'(A). Define y : 1 - V(A) by

y I Ax = 0 : Ax --> 1 --+ V (A),

and y I Sx : Sx -> V(A) constructed as follows: Working in C/Sx, we have by
Corollary 1.7 that

{a E A y(a) < x} and {z E V(A) s(z) < x}

are small subobjects of A and V(A) respectively. Now by assumption on
gyp, we may assume that [Vz(cp(z) V -cp(z))] = 1 (possibly after passing to
an appropriate slice category again). Thus the mono {z E V'(A) I cp(z)} >-+
V'(A) has a complement, hence is a small map (being a pullback of the small
map 1 >-* 1 + 1). It follows that

M = {a E A I cp(a) and q(a) < x}
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and

N = {z E V(A) I p(z) and s(z) < x}

are both small. Define

y = V -E11 i (a) V VzEN s(z).

This is a global section of V(A) in C/Sx, i.e. a map

y:SX--*V(A)

in C. One readily checks, using irreducibility of successors and atoms (Corol-
lary 1.7), that for this y the formula S(y)AVz(zey a zexncp) is valid in C/Sx.
Since the same formula is evidently valid for y = 0 in C/Ax and Ax + Sx = 1,
the validity of (Z6') has been established.

(Z7) (Collection) Here we use the collection axiom (A7) for the class S
of small maps. Again, by replacing C by an appropriate slice, it suffices to
consider a global section

x : 1 -p V'(A),

and a formula cp(y, w) containing only the variables y and w free. We have
to show that there is an inclusion of subobjects of 1,

Q Vyex3wcp 1 < [ 3z`dyex3wezcp ].

Again by moving into a slice of C, we may assume [ Vyex3wcp 1. Define Ax
and Sx exactly as in the proof of decidable separation, and work in CIA., and
C/Sx, respectively. In C/Ax, the given x is an atom, hence has no elements,
so any z : 1 -+ V'(A) in C/Ax will witness validity in C/Ax of `dyex3wezcp.
On the other hand, in C/Sx the map x : 1 -+ V'(A) factors through the
summand V (A) V'(A). Thus by Corollary 1.7, both

D = {a E A 171(a) < x}

and

E = {y E V(A) I s(y) < x}

are small. Furthermore, the assumption that Q `dyex3wcp l = 1 implies that
the projection to D + E is epi, as in the diagram

F 7' D+E

I I
V'(A) x V'(A) A + V (A) = V'(A)
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where F = {(y, w) I yex A yo (y, w)} I. By the collection axiom for S, there is
thus a diagram of the form

J D+E

1

where a belongs to S and where the map J - I x (D + E) is epi. Define
z : I -; V(A) as the supremum along a of the map J -p V(A) defined by

J -+ F A +V(A)-4V(A)

(where s is the extended successor, given on the summand A by 71 : A
V(A)). Then in C/I, and for this z, the formula

V yex3wezcp

is valid.
Finally, (Z9) holds since A is a summand of V'(A), and (Z10) holds by

definition of e in terms of the extended successor s : V'(A) -* V'(A) (whose
image is contained in the summand V(A)).

This completes the proof of the proposition.

The following three lemmas relate the additional properties (S3-5) for
the class S of small maps to the remaining axioms of Zermelo-Fraenkel set
theory.

5.2 Lemma. If the class S satisfies the power-set axiom (S3), then
(Z5) holds for V'(A).

Proof. For V, the validity of the power-set axiom (Z5) is witnessed by
the operation p : V --> V described in Proposition 2.5. For V(A), the power-
set axiom (S3) for the class S gives a similar operation p : V(A) -> V(A)
such that for any x,z E V(A),

z < x if s(z) < p(x).

To define p, use the isomorphism V(A) = P,(A) x P,(V(A)) of Theorem 1.5.
Under this isomorphism, the desired map p corresponds to the operation
p : P,(A) x P,(V(A)) -> P,(A) x P,(V(A)) defined in terms of the successor
s' on P,(A) x P,V(A), by

p(U, E) = VVEP.(U),FEP,(E) S' (V, F).
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Then the power-set axiom (Z5) for V'(A) is witnessed by the extension of
this map p : V(A) -* V(A) to a map p : V'(A) - V'(A) which sends any
atom to the bottom element 0 E V(A).

5.3 Lemma. If the class S satisfies the separation axiom (S4), then
(Z6) holds for V'(A).

Proof. The proof is the same as the proof of decidable separation (Z6')
in Proposition 5.1, except that the mono {z E V'(A) I cp(z)} >- V'(A) is now
shown to be small by using (S4) (rather than the earlier assumption that this
mono has a complement).

5.4 Lemma. If the natural numbers object of C is small (as in (S5)),
then (Z8) holds for V'(A).

Proof. There is a unique map f : N --> V(A) in C for which f(0) = 0
and f (n + 1) = f (n) V s(f (n)). When N is small, one can define an element
x E V(A) by

x = V-EN f (n) : 1 -* V(A).

This x witnesses the validity of the axiom of infinity.

Putting the results 5.1-4 together, we obtain the following two theorems.

5.5 Theorem. Let C be a Boolean pretopos with a natural numbers
object, equipped with a class of small maps S satisfying (S3) and (S5). Then
for any object A in C, with associated free Zermelo-Fraenkel algebra V(A),
the object V'(A) = A + V(A) is a model of ZFA. In particular, the initial
algebra V is a model of ZF.

And in the non-Boolean case:

5.6 Theorem. Let C be a Heyting pretopos with a natural numbers ob-
ject, equipped with a class S of small maps satisfying (S3-5). Then V'(A) is
a model of IZFA. In particular, the free algebra V is a model of IZF.





Chapter III

Existence Theorems

Let C be a suitable pretopos equipped with a class of small maps S, as in
Chapter II. In this chapter, we will make the additional assumption that the
pretopos C has a subobject classifier (cf. Appendix B). This will be seen to
imply that the various kinds of free Zermelo-Fraenkel algebras considered in
the previous chapter exist in C. Using the theory of bisimulations for the
category of forests, we will give explicit constructions of the free ZF-algebra
V, and of the different algebras of ordinals, 0, N and T, discussed in Chapter
II.

§1 Open maps and (bi-) simulations
Let £ be a suitable category equipped with a distinguished class of open
maps 0. (Thus 0 is a class of arrows in £ satisfying the axioms (A1-6)
from Section I.1.) In the examples to be developed, £ will be a category of
presheaves, equipped with its canonical class of open maps: recall from Joyal-
Moerdijk(1994) that for presheaves on a small category I, a map cp : P --+ Q
is said to be open if for any arrow u : j -* i in I, the square on the left is a
quasi-pullback:

P(i) --- Q(i)

P(")I
IQ(u)

P(.7) QW

(1)

This means that for any x E Q(i) and any y E P(j) with V (y) = Q(u)(x)
there exists a point z E P(i) such that P(u)(z) = y and cp(z) = x, as on the
right. Note that this canonical class of open maps is closed under infinite

67
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sums; i.e., infinite versions of axioms (A4) and (A5) hold.
A diagram (span)

E F
(2)

in the category E is said to be a simulation from E to F if a is an open
surjection while ,Q is an open map. In this case we also write

S:E<F.
If a is an open surjection but ,Q is just any map in the category E then S is
said to be a weak simulation , denoted

S:E<,,,F.

A bisimulation between E and F is a span (2) in which both a and 0 are
open surjections. In this case we write

S:E - F.

Many different examples of this abstract notion of bisimulation are discussed
in Joyal-Nielsen-Winskel(1993).

Observe that if S : E < F and T : F < E are simulations, one can
construct an obvious bisimulation S + TOP : E ' F. In other words,

S:E<F and T:F<E = S+T°P:E-.F. (3)

Also notice that (by the quotient axiom (A6) for open maps), for any
(bi-)simulation of the form (2), the image S' = (a, /3)(S) C E x F is again
a (bi-)simulation from E of F. Thus, if we are interested in the mere exis-
tence of (bi-)simulations between E and F, we may restrict our attention to
subobjects S of E x F.

There is an obvious "unit" bisimulation E : E - E, given by the identity
span

E
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Furthermore, the composition of spans by pullback,

SXFT

Z N
S T, ToS-SxFT

E F G

69

defines a composition on (weak/bi-)simulations, having the following evident
properties:

1.1 Lemma. (i) IfS:E<F andT:F<G thenToS:E<G.
(ii) IfS:E-FandT:F-Gthen ToS:E-G.
(iii) IfS:E<,,,F andT :F<,,,G then ToS:E<,,,G.

Proof. Clear from the fact that open maps are stable under pullback
and composition (axioms (Al) and (A2) in Chapter I, §1).

There is a preorder on the objects of E, defined by

E<F iff 3SCExF such that S:E<F. (4)

The associated equivalence relation E - F iff E < F and F < E is given by
bisimulation (cf. (3)):

E - F iff 3SCExF such that S:E - F. (5)

We will denote by [E] the equivalence class of an object E of S.
There is also a larger preorder, defined from weak simulation in the same

way:
E < F if 3S C E x F such that S: E <,,, F. (6)

The associated equivalence relation is denoted by E -,,, F, and we write
[E],,, for the equivalence class of an object E of S.

In this way, we obtain two partial orders £/ - and £/ from the cat-
egory S and the class of open maps O. We next observe that sums in S give
suprema in these partial orders.

1.2 Lemma. For any coproduct F = F; in the category S and any
object G of £:
(i) Each coproduct inclusion F; --4F gives a simulation F; : FZ < F.
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(ii) If Si : Fi < G are simulations, then so is > Si : Fi < G.
(iii) If Si : Fi <w G then > Si : > Fi <w G.

Proof. From the axioms for open maps (with infinite versions of (A4) and
(A5)) it is clear that

is a simulation, and that a family of (weak) simulations as below on the left
is transformed into a (weak) simulation as on the right:

d \ d N
Fi G; E Fi G.

1.3 Corollary. For F = i Fi and G as above,
(i) [F] < [G] iff [Fi] < [G] for each i,
(ii) [F]w <w [G],,, iff [F1]. <,,, [G]. for each i.
In other words,

Vi[F1] = [E Fi] in £/ - ,

Vi[FF]w = [> Fi]w in £/ '.'w .

Let : £ -p £ be any endomorphism which preserves open surjections.
Then induces a well-defined operation on equivalence classes:

4:£/--+ £/,.'. (7)

Thus £/ - becomes a Zermelo-Fraenkel algebra with successor (D. Similarly,
4 induces a monotone operation

4:£/-w--* £/-w' (8)

thus making £/ ',,, into a Zermelo-Fraenkel algebra with monotone succes-
sor. In this chapter, we will show how the free ZF-algebras considered in
Chapter II can be obtained by a suitable internal version of this construction
in the ambient pretopos C with its class of small maps S.
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§2 Forests
We work in the ambient category C equipped with a class of small maps,
as in earlier chapters. Recall that in this chapter, we assume that C has a
subobject classifier Q. This implies in particular that for every small object
S the power-object P(S) = Sts exists, since small objects are exponentiable.
When arguing about structures in the category C, we shall often exploit the
first order logic of C, and write informally, as if C were the category of sets.

Let N be the natural numbers object of C. One can view N as a category,
with a unique arrow n -+ m if n < m, as usual. A forest is by definition an
(internal) presheaf on N. Such a presheaf F can be represented informally
as a sequence of objects and "restriction" maps in C,

F=(Fo;° F,4-F2+- ...).

For two such forests F and G, a map between forests co : F --> G is a
natural transformation; i.e., cp is a sequence of functions ca : F,, --+ G
which commute with the restriction functions of F and G. This defines a
category

(Forests)c

of forests and maps between them in C. We note that this category is a
Grothendieck topos, relative to C. In particular, it has C-indexed sums,
which are constructed "pointwise".

A forest is said to be (internally) connected if it cannot be written as
a sum F = EiE, F; (for I E C) except in the trivial way F = F + 0. A
connected forest is called a tree . Thus F is a tree if F0 is "the" terminal
object of C; the unique element of F0 will then be called the root of the tree.
Every forest is (isomorphic to) a sum of trees, its connected components.
The trees form a full subcategory (Trees)c of the category of forests. Note
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that these categories (Trees) and (Forests) are equivalent categories, by the
operations

s
(Forests) ; (Trees)

C
(1)

Here C chops off the root of the tree,

C(F). = Fn+l,

and the successor operation S adds a new root to a forest,

S(F)o = {r} = 1 , S(F),+1 = F,,.

2.1 Notation. For a forest F = (Fo %° F1 <-- ) we will also write F
for the "total space" En>o F,,. For x E F,, and y E Fm we write y < x if
n < m and rn o o rm_1(y) = x; if furthermore n < m we write y < x,
and if n + 1 = in we write y < x. In this case y is said to be an immediate
predecessor of x. (Thus, the trees grow downwards from the root.) For each
x E F,, there is a tree 1(x) defined by

1(x)k={yEF".+k Iy<_x},

with the obvious restriction maps J (x)k}1 - .1 (x)k inherited from F. Note
that there is a map of forests

ix:.1(x)->F,

defined for y E 1(x)k by ix(y) = the unique z E Fk so that y < z.

As a presheaf category, the category of forests in C comes equipped with
a canonical class of open maps. Explicitly, a map cp : F -> G is open if (it is
internally valid in C that) for any x E F,, and y E G",+1 with y < W(x) there
exists a z E F,,+1 with z < x and V(z) = Y.

The following lemma for the functor S, defined in (1) above, is clear:

2.2 Lemma. The successor operation S preserves open surjections.

Thus the functor S passes to a well-defined operation on (weak) bisimu-
lation classes, defined as in the previous section by S([F]) = [S(F)] (respec-
tively, S([F],,,) = [S(F),,]).

We will now restrict our attention to small and well-founded forests.
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2.3 Definition. A forest F = (F0 1 F, ) is said to be small
if its total space F = E,,>o F, is a small object (i.e. F -- 1 belongs to S)
and each restriction map r, is small. (Or in more global terms, the restriction
map r : s*(F) - F is small, where s : N --* N is the successor of the natural
numbers object and s* denotes pullback along s.)

Note that this implies that Fo, as a complemented subobject of F, is
small. The fact that the restriction maps r; are small can be rephrased by
saying that for any x E F, the set {y E F I y < x} is small.

For a small forest F, the power-set 9' = 'P(F) exists in C, since F is
exponentiable. Thus the notion of a small weld founded forest in C can be
defined, using the first order logic of C, in the usual way:

2.4 Definition.(i) A subobject A C F is said to be inductive if

`dxEF[VyEF(y<x yEA) = xEA].
(ii) A small forest F is said to be well founded if

VA E P(F)[A is inductive = A = F].

2.5 Lemma. Let cp : F --> G be a map between small forests.
(i) If G is well founded then so is F.
(ii) If cp is an open surjection and F is well-founded then so is G.

Proof. (i) Let A C F be inductive. Then `d,p(A) = {x E G I V-1(x) C A}
is inductive in G, so V,(A) = G since G is assumed well-founded. But then
A = F, showing F well-founded.

(ii) Let B C G be inductive. Then cp-1(B) C F is also inductive, pre-
cisely because cp is open. Thus cp-'(B) = F since F is assumed well-founded.
Hence B = G since cp is surjective. This shows G well-founded.

2.6 Lemma. (i) If F; (i E I) is a collection of well founded small
forests indexed by a small object I E C, then EiEr F, is again small and
well founded.
(ii) If F is a well founded small forest then so is its successor S(F).
(iii) If F is a well founded small forest, then for any point x E F the tree
1 (x) is again small and well founded.

Proof. By the definability of small maps (Chapter I, Proposition 1.6),
we can argue "internally" about smallness, using the first order logic of C.
Then (i) and (ii) are straightforward. For (iii), let B = {x E F I J. (x) is
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small and well-founded}. It suffices to show that B is inductive. But if y E B
for every y < x, then also x E B since

(x) s(E 1(y))
y<x

and we can apply parts (i) and (ii) of the lemma.

§3 Height functions
Let (L, a) be a Zermelo-Fraenkel algebra with successor o-. An L-valued
height function on a small forest F is a map h : F -> L such that

h(x) _ a(Vy<x h(y)) (1)

for any x E F. Notice that since F is assumed small, the sup occurring in
this equation is over a small set, hence exists in L.

3.1 Lemma. For any well-founded small forest F, and any ZF-algebra
(L, a), there exists a unique L-valued height function hF : F - L.

Proof. For uniqueness, let h, k : F --> L be two height functions, and let
U = {x E F I h(x) = k(x)}. From the identity (1) for h and for k it is clear
that U is inductive. Since F is well-founded, U = F, hence h = k.

For existence, let E = {x E F I there exists a height function j (x) -+ L}.
If x E E then this height function j (x) -* L is unique by the first part of
the proof, since . (x) is small and well-founded by Lemma 2.6 (iii). So we
can denote it by hx : 1(x) --+ L. To complete the proof, it suffices to show
that E is inductive. But if x E F is such that y E E whenever y < x,
then we can define hx : 1 (x) -* L by hx(z) = hy(z) if z < y < x, and
hx(x) = a(Vy<x hy(y)). This proves the lemma.

3.2 Definition. Let F be a well-founded small forest, and L a ZF-
algebra. If hF : F -+ L denotes the unique height function, the L-valued
height of F is defined by

L-height (F) := VxEFO hF(x).

Observe that this L-height satisfies the following obvious identities with
respect to small sums and successor:

L-height(EF;) = V, (L-height(F;)), (2)
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L-height(S(F;)) = o(L-height(F)).

These identities determine the height:

(3)

3.3 Proposition. Let H be any operation assigning to each well founded
small forest F an element H(F) E L, such that H is invariant under iso-
morphism between forests, transforms small sums of forests into sups (as in
(2)) and such that H preserves the successor (as in (3)). Then for any small
well founded forest F one has H(F) = L-height(F).

Proof. For a small well-founded forest F, with unique L-valued height
function hF : F - L, let A = {x E F I H(,I. (x)) = hF(x)}. Then the
isomorphism 1(x) S(Ey<x 1(y)) shows that A is inductive. Thus A = F.
But then

H(F) = H(1: j (x)) = V
xEF0

hF(x) = L-height(F).
xEFo

For height functions into a Zermelo-Fraenkel algebra (L, o) with a mono-
tone successor (x < y = o(x) < o(y)), we observe the following special
properties:

3.4 Lemma. Let F be a well founded small forest, and let hF : F -p L
be its unique height function into a ZF-algebra (L, o). If a is monotone, then
for any x, y E F
(i) hF(x) < ohF(x),
(ii) x < y = hF(x) hF(y)

Proof. (i) Let A = {x E F I hF(x) _< ohF(x)}. It suffices to show
that A is inductive. Suppose hF(y) < ohF(y) for all y < x. Then

Vy<x hF(y) Vy<x ohF(y)

< o(Vy<x hF(y)),

the latter since or is monotone. Applying or to this inequality gives

o(Vy<x hF(y)) o2(Vy<x hF(y)),

or hF(x) < or hF(x). This shows A is inductive.
(ii) It suffices to consider the case where y < x. (Then the general case

for y < x with y E Fm and x E F, follows by induction on m - n.) But for
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y < x, part (i) gives

hF(y) C o hF(y) C 0'(V p<x hF(p)) = hF(x).

This proves the lemma.

Next, we consider invariance properties of height functions under (weak)
simulations. Below, (L, a) denotes a fixed ZF-algebra, and hF : F --> L de-
notes the unique height function, for any small well-founded forest F.

3.5 Proposition. Let F - S -p G be a span in the category of forests,
and assume F and G are small and well founded.
(i) If S is a simulation from F to G then

Vs E S : hF(a(s)) = hG(O(s))-

(ii) If S is a weak simulation from F to G, and if the successor o in the
ZF-algebra is monotone, then

Vs E S : hF(a(s)) < hG(/3(s))

Proof. (i) We show that for any x E F

Vs E S (a(s) = x = hF(x) = hG(/3(s)) (4)

by induction on the well-founded tree F. Suppose (4) holds for all y E F
with y < x. To show that (4) holds for x, take any s E S with a(s) = x.
Since a is an open map, there exists for any y < x a t E S with t < s
and a(t) = y. Then 3(t) < 0(s), and hF(y) = hG(/3(t)) by the induction
hypothesis. This shows that

Vy < x 3z < /3(s) : hF(y) = hG(z).

A symmetric argument, using openness of the map /3, similarly shows that

Vz < /3(s) 3y < x : hF(y) = hG(z).

It follows that

Vy<x hF(y) = Vz<a(8) hG(z),
and hence, by applying or to this identity, that

hF(x) = hG(0(s))-
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This shows that (4) holds for x, as required.
(ii) We show that for any x E F,

Vs E S(a(s) = x = hF(x) < hG(,(3(s)), (5)

again by induction on x E F. If (5) holds for all y < x, then, using that a is
open, we can show exactly as in part (i) that for any s E S with a(s) = x

Vy < x 3z < /3(s) : hF(y) < hG(z)

Thus

Vy<x hF(y) C Vz<
(3)

hG(z)

Applying the monotone operator or yields

hF(x) < hG(,3(s)),

so that (5) holds for x.

3.6 Corollary. Let F and G be well founded small trees.
(i) If there exists a simulation S : F < G then L-height (F) < L-height(G).
(ii) If there exists a bisimulation S : F - G then L-height (F) = L-height(G).
(iii) Assume L has a monotone successor o. If there exists a weak simulation

S : F <,,, G then L-height(F) < L-height(G).

Proof. (i) Write a : S -» F and /3 : S -* G for the maps in the
simulation. Since a is surjective, Vx E Fo 3s E S a(s) = x. Hence by 3.5(i),
with y = /3(s),

`dx E Fo 3y E Go hF(x) = hG(y).

From this the inequality L-height(F) < L-height(G) immediately follows, by
Definition 3.2.

Part (ii) follows from (i). The proof of (iii) is the same as that of (i), now
using 3.5(ii).

§4 Construction of V and 0
In this section we will prove the existence of the initial ZF-algebra V con-
sidered in Chapter II, Section 1. In fact we will give an explicit construction
of V from the universal small forest. This construction is a straightforward
consequence of the properties of small forests and height functions considered
before. Analogous constructions will also prove the existence of the algebra 0
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of ordinals, which is free on a monotone successor, and of the algebra V(A),
which is free on an object A of generators. We recall from the beginning of
this chapter that these existence proofs assume that the ambient pretopos C
has a subobject classifier Il, and hence a power-object P(S) for each small
object S.

4.1 Lemma. There exists a universal small well founded forest , de-
noted p : F -+ U (with forest structure e : F -+ N and a : s*(F) -> F).

Proof. We will show that this is a consequence of Chapter I, Corol-
lary 2.5. For the natural numbers object N, denote by G(N) the graph with
G(N)o = N as space of vertices, and an edge n -p m iff m = n + 1. Then N
as a category is free on the graph G(N), so a presheaf on N is the same thing
as a G(N)-object. Since the codomain map of G(N) is the successor map
s : N -+ N, which - being a monomorphism with a complement - is a small
map, Corollary 1.2.5 gives that there exists a universal small G(N)-object
with small action map, call it D = (D -4W, e, a). Then D is the univer-
sal small forest. Now by exponentiability of small maps and the existence
of a subobject classifier 11, well-foundedness for small forests is definable in
the first order logic of the pretopos C (cf. Definition 2.4). Thus there is a
subobject U C W in C, defined as

U = {x E W I Dx is well-founded}.

Let F - U be the pullback of the universal small forest D -4W along this
inclusion U y W. Then F -* U is the desired universal small well-founded
forest.

As usual, we shall denote the fiber of this universal small well-founded
forest p : F --+ U over a point x E U by Fx = p-1(x). Thus, informally, uni-
versality means that each Fx is a small well-founded forest, and that every
other such forest G is isomorphic to Fx for some point x E U.

Next, we define a subobject B C U x U by

B = {(x, y) I 3S E P(Fx x Fy) : S is a bisimulation between Fx and Fy}.

Notice that B is a well-defined object of C, since Fx x F. is small so that
P(Fr x Fy) exists. Also, by the properties of bisimulations discussed in §1,
B is an equivalence relation on U.

4.2 Lemma. The quotient U/B has the structure of a Zermelo-Fraenkel
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algebra (U/B, V, s).

Proof. As before, we will argue in this proof using the internal logic
of the category C in an informal way, as if C were the category of sets. In
the proof,

q:U->U/B
will denote the quotient map.

To begin with, define another subobject P C U x U, by

P = {(x, y) I 3S E P(Fx x Fy) : S is a simulation from Fx to Fy}.

Then, by the properties of (bi-) simulations discussed in Section 1, P is a
preorder on U and B is the associated equivalence relation, B = {(x, y) E
U X U I (x, y) E P and (y, x) E P}. Thus P induces a partial order < on the
quotient U/B.

Next, we show that for this partial order all small suprema exist in U/B.
To this end, let A C_ U/B be any small subset. By the Collection Axiom
(A7) for small maps, there exists a small subset A' C U with q(A') = A. Let
G = EXEA. F. Then G is a small well-founded forest. So by universality of
F --> U, there exists a point y E U for which there is an isomorphism G = F.
Define V A = q(y) E U/B. It follows from the properties of simulation in
Lemma 1.2 and Corollary 1.3 that this point q(y) is indeed the supremum of
A in (U/B, <).

Finally, we define a successor operation s : U/B -4U/B. For this, pick
any point E U/B, and let x E U be any point such that q(x) = . The
successor of the corresponding small well-founded forest Fx gives another
forest S(FF), which is again small and well-founded (cf. Lemma 2.6 (ii)).
By universality of F -> U, there is thus a point y E U with S(Fx) = Fy.
Define s(e) = q(y) for this y. To see that this gives a well-defined map
s : U/B - U/B, note that if x' is any other point with q(x) = e, then there
exists a bisimulation Fx - Fx,. Hence, by Lemma 2.2, also S(FF) S(Fr').
Thus if y, y' E U are such that S(FF) F, and S(Fx) = Fy,, there exists
a bisimulation F. - Fy,. But then q(y) = q(y'). This shows that q is well-
defined, and completes the description of the ZF-algebra structure on U/B.

4.3 Theorem. (UIB,V,s) is the initial ZF-algebra in C.

Proof. Let (L, a) be another ZF-algebra. We define a homomorphism
cp : U/B ---> L as follows. For E U/B, let x E U be any point with q(x)
and let Fx be the corresponding small well-founded forest. Define

L-height(FF) E L.
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Note that this is independent of the choice of x. For if q(x) = = q(x'), then
there exists a bisimulation Fx - F.,; hence, by Corollary 3.6 (ii), Fx and F,
have the same height.

Using the construction of suprema and successors in U/B from the proof
of Lemma 4.2, we check that cp is a homomorphism of ZF-algebras. First,
if < ( in U/B and = q(x) while ( = q(y), then (x, y) E P; i.e.
there exists a simulation from Fx to F. Thus by Corollary 3.6 (i) we have
L-height(FF) < L-height(Fy), or cp is mono-
tone. Next, since suprema in U/B are defined by sums of small well-founded
forests, it follows from the identity (2) in §3 that cp preserves small suprema.
Similarly, since the successor s : U/B -+ U/B is defined by the usual succes-
sor of small well-founded forests, identity (3) in §3 shows that cp preserves
this successor.

Finally, for uniqueness, suppose V, : U/B --> L is any other homomor-
phism. Let G be any small well-founded forest. By universality of F -> U,
there exists a point x E U for which Fx = G. We thus obtain an element
H(F) := O(q(x)) E L. Note that H(G) does not depend on the choice of
x; indeed, if FF = G = Fx, then Fx - Fx,, hence q(x) = q(x'). Further-
more, by the explicit description of sups and the successor on U/B, it follows
that H(EG;) = V H(Gt) for any small family {G,} of small well-founded
forests G;, while H(S(G)) = o(H(G)) for any small well-founded forest G.
By uniqueness (Proposition 3.3), we must have H(G) = L-height(G). Thus

This completes the proof of the theorem.

This theorem provides a construction of the cumulative hierarchy V. In
a completely analogous way, one can also construct the algebra 0 of ordinal
numbers, free on a monotone successor. Define a subobject P,, C U x U by

P,,, = {(x, y) I 3S E P(Fx x Fy) : S is a weak simulation from Fx to Fy}.

By the properties of weak simulations derived in §1, P,,, is a preorder on U.
Let

B. = {(x) y) I (x, y) E P. and (y, x) E

be the associated equivalence relation. Exactly as in the proof of Lemma 4.2,
sums and successor of small well-founded forests define on U/BW the struc-
ture of a ZF-algebra. Observe that this successor on U/B,,, is monotone,
because the successor of forests preserves weak simulations (cf. Lemma 2.2).

4.4 Theorem. The ZF-algebra U/B,,, is the initial ZF-algebra with a
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monotone successor.

Proof. The proof is completely analogous to that of Theorem 4.3, now
using the properties of height functions on forests with values in a ZF-algebra
L with monotone successor (cf. Corollary 3.6(iii)).

4.5 Remark. In a similar way one can prove the existence of the free
ZF-algebra V(A) on an arbitrary object of generators A E C. For this, one
uses small well-founded forests F equipped with a "labeling" of the nodes.
Such a labeling consists of a complemented subset E C_ F, such that each
x E E is an end-node of F (i.e. x has no immediate predecessors), together
with a map ,1 : E -a A. There is a straightforward generalization of the
notions of (bi-)simulation and height-functions (with values in a ZF-algebra
L equipped with a map A -p L) to such labeled forests, and V(A) can be
constructed as the bisimulation quotient of the universal well-founded small
forest equipped with a labeling in A. The details are analogous to those for
the construction of V just presented.

§5 Construction of Tarski ordinals
Recall from Chapter II, §4, that the object of Tarski ordinals (T, r) is the
initial poset with small weakly directed suprema and a monotone successor
r. In this section we will show that (T, r) exists, by giving an explicit con-
struction of T as a subobject of the algebra 0 = U/B,,, of ordinal numbers,
constructed in the preceding section from weak simulation. Such a weak
simulation between small well-founded forests is a diagram

(1)

F G

where a is an open surjection and /3 is any map between forests. From these
simulations, we defined a preorder F <,,, G on small well-founded forests.
For a single such forest F, this induces a preorder <,,, on the points of F
defined by

x <w Y if .J (x) <wl (y)

A small well-founded forest F is said to be a Tarski forest if the following
two conditions hold:
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(i) For each x E F, the set {y E F I y < x} of immediate predecessors of
x is weakly directed in the preorder <,,,;

(ii) Fo is weakly directed in this preorder.

Note the following obvious closure properties of the collection of Tarski
forests:

5.1 Lemma. (i) If F is a Tarski forest then so is its successor S(F).
(ii) If {F;} is a small collection of Tarski forests, which is weakly directed for
the preorder <,,,, then EFt is again a Tarski forest.

Now consider a poset P with small weakly directed sups and a mono-
tone successor v. Define a height function from a Tarski forest F into such
a poset P to be a map h : F --; P such that for each x E F, the set
{h(y) I y < x} is weakly directed, and moreover, such that

h(x) = o,(Vy<x h(y)), (2)

exactly as before. (This formula (2) makes sense since the sup occurring in it
is weakly directed.) Evidently, such a height function is unique when it exists.

5.2 Lemma. Let F and G be Tarski forests, and let S : F <,,, G be
a weak simulation from F into G, as in (1). Suppose there exist height func-
tions h:F --+ P and k:G-+P. Then

Vs E S : h(a(s)) < k(/3(s)) in P.

Proof. The proof of Proposition 3.5(ii) applies verbatim, since for Tarski
forests F and G all the suprema occurring there are weakly directed.

5.3 Lemma. For any Tarski forest F there exists a unique height func-
tion hF : F --> P.

Proof. As already noted, uniqueness is clear. For existence, let E =
{x E F 13 P-valued height function hx :J, (x) --> P}. We show that E is
inductive. Suppose x E F is such that y E E whenever y < x. Since F is
a Tarski forest, Lemma 5.2 implies that the set {hy(y) I y < x} is weakly
directed. Thus its supremum exists in P, and we can define hx :J, (x) -+ P,
by hx(z) = hy(z) for z < y < x and hx(x) = o,(V{hy I y < x}).

Now let p : F --i U be the universal small well-founded forest, con-
structed in Lemma 4.1. Since the notion of Tarski forest can be expressed
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in the first order logic of the ambient category C, we can define a subobject
U' C U by U' = {x E U I Fx is a Tarski forest}, and we can construct the
universal Tarski forest by a pullback

Let B,' be the equivalence relation on U', induced by the equivalence
relation B,,, on U considered in §4. Consider the quotient U'/Bv,. This
quotient inherits a partial order <,,, from the preorder P,,, on U, so that the
inclusion U' - U induces an embedding of posets

U'/B' -a U/B,,,. (3)

It follows by Lemma 5.1, and the construction of suprema and successor on
U/BW in Section 4, that this successor restricts to an operation

s' : U'/BL, -p U'/B,', ,

and that all weakly directed small sups exist in U'/B,,, and are preserved by
this embedding (3).

5.4 Theorem. The poset U'/B,,, with its successor s' inherited from
the successors : U/B,,, -+ U/B,,,, is the initial poset with weakly directed
sups and a monotone successor.

Thus (U'/B,',,, s') is (isomorphic to) the object of Tarski ordinals.

Proof. The proof uses Lemma 5.3 and is otherwise completely analo-
gous to the proof of Theorem 4.3.

§6 Simulation for Von Neumann ordinals
Theorems 3.1 and 3.4 of Chapter II provide constructions of the object (N,
of Von Neumann ordinals, as a retract of (V, s) and as the object of hereditar-
ily transitive "sets" inside V. It is also possible to construct (N,.§) directly
from well-founded small forests and (bi-)simulations. In this section, we
present one such construction.

Besides the category of forests, we consider a larger category with as ob-
jects the sets (i.e., objects of C) S equipped with a strict (irreflexive) partial
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order < , and with as arrows all functions which preserve this order. This
category is denoted (Strict Orders)c. Note that this category has sums and
pullbacks (computed in terms of the underlying sets), but no terminal object.

In this category of strict orders, there is a notion of open map analogous
to the one for forests: A map cp : (S, <) -+ (T, <) between strict orders is
said to be open if, for any s E S and t E T with t < cp(s), there exists an
5'ESwith s'<sandcp(s')=t.

There is an evident inclusion functor

I : (Forests)c - (Strict Orders)c,

which sends a forest F to its total space F with the order < described in 2.1.
This inclusion functor preserves open maps.

Now define an order simulation from a forest F to a forest G to be a
diagram in this category of strict orders,

T

I(F) I(G)
(1)

where a and 0 are open maps and a is surjective. The diagram is said to
be an order bisimulation if /3 is also surjective. For such a simulation or
bisimulation, we use the notation

T : F <o G , respectively T : F -o G.

These more general kinds of (bi-) simulations have exactly the same formal
properties as the ones discussed in §1. In particular, order (bi-)simulations
can be composed by pullback, and the sum of order simulations Ti : F; <, G
gives an order simulation T = > Ti : I F2 <o G. There is also an evident
successor operation S on the category of strict orders, defined by adding a
new top element. The inclusion functor I commutes with this successor. Also
note that S transforms an order bisimulation I(F) <- B -> I(G) into an order
bisimulation I(SF) = S(IF) i- S(B) - S(IG) = I(SG). Furthermore, we
observe that there is for any forest F an obvious open embedding

I(F) y I(SF),

such that

I(F) : F <, S(F). (2)
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It can now be shown that the Von Neumann ordinals can be constructed
from the universal small well-founded forest F -+ U by factoring out the
equivalence relation B,, on U given by

(x, y) E B,, if 3S E Fx x Fy : S is an order bisimulation between Fx and F

Then U/Bo is partially ordered by the relation <,, of order simulation, de-
fined analogously to the partial order on U/B in §4. And exactly as before,
small suprema in U/Bo exist, and are constructed from small sums of forests.
Moreover, there is a well-defined successor operations : U/Bo -+ U/Bo, in-
duced by the successor operation F t-, S(F) on small forests. But now note
that, by (2), this successor is inflationary.

The proof that (U/Bo, s) is the initial ZF-algebra with an inflationary suc-
cessor is based on the following analog of Proposition 3.5(i). In this lemma,
(L, v) is a fixed ZF-algebra with inflationary successor (x < Q(x)), and for a
small well-founded forest F the unique L-valued height function is denoted
byhF:F -+ L.

6.1 Lemma. Let F and G be well founded small forests, and suppose
that I(F) +-_ T 0-4 I(G) is an order simulation from F to G. Then for all
t E T

hF(at) = hG(/3t).

Proof. First notice that (as in Lemma 3.4) hF is order preserving. In-
deed, if y < x in F then

hF(y) Vp<x hF(p)

< a(Vp<x hF(p))

hF(x)

It follows that hF(y) < hF(x) whenever y < x in F.
Next, we prove by induction on the well-founded small forest F x G that

for all(x,y)EFxG:

3t E T(x = a(t) and y = Q(t)) = hF(x) = hG(y).

Suppose this is true for all (p, q) E F x G with p < x and q < y. To prove
the assertion for (x, y), suppose x = a(t) and y = /3(t), for some t E T.
Consider any p E F with p < x. Since a is open, p = a(s) for some s < t
in T. Let q = /3(s). Then q < y, hence q < r < y for some r E G. Thus
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hF(p) = hG(q) < hG(r). This shows that from mere openness of a it follows
that

Vp < x 3 r < y : hF(p) < hG(r),

and hence

VP<x hF(p) : V,Ey hG(r).
A symmetric argument using openness of /3 yields the reverse inequality.
Thus

VP<X hF(p) = V,,y hG(r).

Applying o yields the desired identity hF(x) = hG(y).

We conclude for an inflationary ZF-algebra (L, a):

6.2 Corollary. Let F and G be well founded small forests. If F <o G
then L-height(F) < L-height(G). Furthermore, if F do G then L-height(F) _
L-height(G).

Exactly as before, one then derives the following result, analogous to
Theorems 4.3, 4.4 and 5.4.

6.3 Theorem. The quotient (U/Bo, s) is the initial ZF-algebra with an
inflationary successor.

In other words, (U/Bo, s) is isomorphic to the algebra (N, s) of Von Neu-
mann ordinals.



Chapter IV

Examples

In this short chapter we will briefly describe some of the simplest examples
of classes of small maps. Before we embark on this, we should make two
remarks: First, as yet not much is known about the various free ZF-algebras
in most of these examples. We hope that future research will shed some
light on their exact nature. Second, there are many other natural examples
of classes of maps, not mentioned below, which satisfy some but not all
of our axioms for a class of small maps. These examples are often of a
geometric nature, and related to the examples of classes of open and etale
maps considered in Joyal-Moerdijk(1994).

We begin with two obvious examples, related to sets and classes, and to
Kuratowski finiteness, respectively.

§1 Sets and classes
The easiest examples are provided by (the usual models of) Zermelo-Fraenkel
set theory. Let C be the category of sets (relative to a fixed model of set
theory), and let tc be an infinite regular cardinal. Let S be the class of
maps f : Y --> X with the property that for each point x E X the fiber
f-1(x) has cardinality strictly less than K. This class S satisfies the axioms
(A1-7) for open maps. It also satisfies the additional axioms (Si) and (S2)
for small maps. To construct a universal small map ir : E --> U, let S be
a fixed set of cardinality tc, and let U = {A C S I card(A) < rc}, while
E = {(a, A) I a E A E U}. Define ir : E -+ U to be the projection,
ir(a, A) = A. Observe that the axiom of choice is not needed for showing
the universality of this map. Indeed, given a small map f : Y -+ X, let
X' _ {(x, e, A) I x E X, A E U, e : A Z f-1(x)}. Then the projection
X' -+ X is surjective, and together with the projection X' -> U it fits into a

87



88 EXAMPLES

double pullback of the required form:

YE-Y' -E

X--X' -U
where Y' _ {(x, e, A, a) I (x, e, A) E X' and a E A}, and e(x, e, A, a) = e(a).
The additional separation axiom (S4) also holds in this example, since C is
Boolean.

As to the hypotheses for theorems 11.5.5 and 11.5.6, if is > w then the
natural numbers object of C is small (S5), and if # is inaccessible then S
satisfies the power-set axiom (S3). As the initial algebra V one recovers the
hierarchy VK, and all the algebras of ordinals coincide in this example.

A related example is obtained by letting C be the category of classes
(say, in (a fixed model of) Godel-Bernays set theory), and by defining a map
f : Y -> X to be small if each fiber f-1(x) is (isomorphic to) a set.

§2 Kuratowski finite maps
Let £ be an elementary topos with a natural numbers object N. Call a
map f : Y -> X Kuratowski finite (K-finite) if f is Kuratowski finite as an
object of £/X (cf. Johnstone(1977), p. 302). Let K be the class of these
K-finite maps. This class 1C satisfies all the axioms for small maps. For the
representability axiom (S2), define 7r : E --+ U, using the internal logic of £,
as follows. Let

U = {(n, R) I n E N , R an equivalence relation on {1, , n}}

(this object U can be constructed as a subobject of N x P (N x N)),

E = I (n, R) E U, e E

and let it : E -+ U be the projection.
In this example, a ZF-algebra is a semi-lattice (a poset L with a bottom

element 0 and binary sups) with a successor. The initial such algebra V is
the object of internally hereditarily finite sets.

Since every K-finite monomorphism is complemented, the algebra of or-
dinals 0 and the algebra of Von Neumann ordinals N coincide (cf. Chapter
II, Remark 3.6), and are isomorphic to the natural numbers object N. Since
every K-finite subset of N is weakly directed, the Tarski ordinals T are also
given by the natural numbers object.
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§3 Sheaves on a site
The construction of sets and classes in §1 can be generalized to the context
of an arbitrary Grothendieck topos . This construction is related to forc-
ing models of set theory, and their sheaf-theoretic construction discussed in
Fourman (1980).

Consider the topos Sh(C) of sheaves on a site C, and assume that C
has pullbacks, and that the topology of C is subcanonical. Let is be a fixed
infinite regular cardinal, with the property that every cover in the site C has
cardinality strictly less than K. (For example, if Sh(C) is a coherent topos
one can take K = w.) Define a sheaf X on C to be K-small if X is covered by
a collection of representable sheaves of cardinality strictly less than ic, as in

> C1EC,card(I)<ic.

Here we have identified each object C, E C with the corresponding repre-
sentable sheaf C(-, C,). Next, define a map f : Y -> X in the category
Sh(C) of sheaves to be ,c-small if for any C E C and any arrow x : C -i X,
the fiber f -'(x), constructed as the pullback

f-1(x) _ Y

1

if

C X X

is a k-small sheaf.

3.1 Proposition. The class of K-small maps between sheaves satisfies
the axioms (A 1-7) and (Si), (S2) for small maps.

For the proof of the axioms (A1-7) for open maps, one uses the following
simple properties of this class.

3.2 Lemma. Let f : X -+ C be any map into a representable sheaf.
(i) If f is K-small, then so is each pullback D x C X -* D along a map D -+ C
in the site C.
(ii) If {C, --+ C}j is a cover in the site C and each pullback C; xc X -+ C;
is ic-small, then f : X -+ C is K-small.

Proof. (i) is clear by the assumption that C has pullbacks, and (ii)
follows by our assumption that K exceeds the cardinality of each cover in the
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site.

The proof of the axioms (A1-7), for open maps, for this class of K-small
maps is now straightforward. For the descent axiom (A3), use Lemma 3.2(ii).
By way of example, we verify the collection axiom (A7). For this, consider
a small map f :Y -+ X and an epip:Z-*Y. Letx:C -+Xbeany
map from a representable object C. By assumption on f, there exists a
quasi-pullback

Y

EiEi Ci - Y

I
If

C------ X

for a set I of cardinality < K. For each i E I, consider for the composition
yi : Ci --+ > C, --+ Y the pullback p-1 (yi) = Ci xy Z -* Ci. Since this map
is epi, there is a cover {aij : Di,, -+ Ci I j E Ji} with the property that
each aij factors through p-, (Yi) -* Ci. The sum of all these covers gives a
quasi-pullback diagram

X,

where the left-hand vertical arrow is small, by the assumption on the size
of the covers in C. The sum of all these quasi-pullback squares, for all
x : C -+ X, gives a quasi-pullback square

E.D.- Z - Y
I

if

Ex C X

of the required form. This proves the validity of the collection axiom (A7).
The exponentiability axiom (Si) evidently holds; in fact, since Sh(C) is

a topos, every object in exponentiable.
For the representability axiom (S2), consider for each object D E C the set

.'D of all families f = { fi : Ci -+ D}1Ej of arrows into D where card(I) < K.
For such a family f, we write Cf = >iE1 Ci, and we also write f : Cf -+ D for
the arrow induced by the fi. Now let R f be the set of fiberwise equivalence
relations R on Cf -+ D. (This means that R is an equivalence relation on
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Cf so that R C Cf XD Cf.) Now define

U = > E E C(-,D).
DEC fEF'D RE1Z j

For each summation index D, f, R, let ED,f,R = Cf/R which is an object
over D. Define E to be the sum of all these, which is then an object over U:

Cf-.'Cf/RAE

D U (coproduct inclusion for D, f, R).

To show that E --+ U is universal, consider any small map Y -> X. The
codomain X can be covered by a family of representables a : D -+ X, and
for each such D the pullback D x x Y is a small sheaf. Thus D x x Y is
covered by a family of representables of cardinality < K, say

EC, -'*DxxY.
iEI

Write f, : C, --+ D for the composition

C,-,1:C, p+DxxY x'+ D.

For the notation introduced above, we then have Cf = E C,, and f : Cf -+ D
is 7r1 o p. Let R = Ker(p) be the kernel pair of p. Then R E Rf and
Cf/R = D xx Y. All this fits into a diagram

YE DxxY-'E

XED` U
in which both squares are pullbacks; the map D --+ U here is the coproduct
inclusion for D, f, R. Taking the sum, for all a : D --+ X in the family of
representables covering X, yields a double pullback diagram of the required
form:

Y-EaD xxY-'-E
(2)

XF EaD U.

This proves the representability axiom for the class of is-small maps in Sh(C),
and completes the proof of Proposition 3.1.
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3.3 Remarks. (a) Note that in this example, an "infinite" version of
axiom (A5) holds.

(b) For a coherent topos and , = w, the K-small objects (or maps) are
precisely the quasi-coherent ones.

(c) The Separation Axiom (S4) holds for this class of K-small maps when
* exceeds the cardinality of the set of all arrows in the site C.

(d) As to the other hypotheses for Chapter II, Theorem 5.5 and 5.6, if
K > w and C has a terminal object then the natural numbers object in Sh(C)
is small (axiom (S5)); and if, in addition, K is inaccessible, then the Power-set
Axiom holds.

Finally, we note that there is an analogous construction of a class of
small maps in the pretopos of sheaves of classes on C, where a map is small
if all its fibers are sets.

§4 Realizability
This example is related to realizability models of set theory, cf. Friedman
(1973), McCarty (1984). For our ambient category C we take the effective
topos Eff, proposed by D. Scott and first described in Hyland (1982). Recall
that there are adjoint functors

F:Eff Sets: A, (1)

with r left (sic!) adjoint to A, where r preserves finite limits (and, as a
left adjoint, all colimits), and A preserves epimorphisms. Also recall from
Robinson-Rosolini (1990) that the category Eff has enough projectives. In
particular, if S is a separated object of Eff, then S has a canonical projective
cover S -* S with S C S x N over S. Here N denotes the natural numbers
object of Eff. The collection of projective objects in Eff is closed under
finite products, and under double-negation-closed subobjects. Moreover, the
functor L in (1) preserves projectives.

Now fix a regular cardinal K > w, and define a map Y -+ X in Eff to be
r-small if there exists a diagram

Q,Y
(2)
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where P -+ X is an epimorphism, as indicated, and where Q -+ P x x Y is
epi as well (i.e., the square is a quasi-pullback), and where moreover P and
Q are both projective and FQ --> PP is a is-small map in Sets. (Recall from
§1 that this means that the fibers of FQ --+ FP have cardinality strictly less
than ic.)

4.1 Proposition. This class of K-small maps in Eff satisfies all the
axioms (A 1-7), (Si) and (S2) for small maps. Moreover, the separation ax-
iom (S4) and the axiom of infinity (S5) are satisfied. If k is inaccessible, the
power-set axiom (S3) holds for the class of Kc-small maps.

Proof. The verification of the axioms for open maps (Al-7) is straight-
forward. By way of example, we verify closure under composition (Al),
which is probably the least obvious case. For this, suppose f : Y -+ X and
g : Z -+ Y are small, as witnessed by a diagram (2) for f and a similar
diagram for g,

R - Y.
First construct the pullback Q xyR. Since the projection Q xYR -+ Q is epi,
as a pullback of the epi R -+ Y, and since Q is projective, this projection has
a section (1,0) : Q -> Q xy R. For this map o : Q -+ R, form the pullback
Q x R S. Then

Q XRS---Z

is readily seen to be a quasi-pullback. Moreover, since R is projective, hence
separated, the pullback Q xR S is a double-negation-closed subobject of
Q x S; hence Q XR S is projective. Finally, since the functor r : Eff -4 Sets
preserves pullbacks, the properties of K-small maps in Sets immediately imply
that P(Q XR S) -+ F(Q), and hence the composite F(Q XR S) -> F(Q) -+
F(P), are /6-small. This proves that the preceding diagram witnesses that
the composition f o g: Z -+ X is a K-small map in Eff

The Exponentiability Axiom (S1) holds since Eff is an elementary topos.
Postponing the proof of the Representability Axiom (S2), we observe that
the Axiom of infinity (S5) holds, since the natural numbers object N of Eff
is projective while F(N) is the set of natural numbers.

For the Separation Axiom (S4), consider a monomorphism Y >-+ X, and
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let P -» X be any projective cover of X. Then S = P xX Y is a subobject
of P, hence is separated. Form the canonical projective cover S -» S. Then
the square

,s - s- P x X Y- Y

P X

is a quasi-pullback. Furthermore, since S C S x N C P x N, the map
r(S) - r(P) has countable fibers, hence is small.

Finally, for the representability axiom (S2) and the powerset axiom (S3),
we use the following equivalent description of the is-small maps in Eff, in
terms of the internal logic of Eff (In this description, P(AK) denotes the
power object S (K) in Eff )

4.2 Lemma. Let K be a fixed set of cardinality ,c. A map f : Y - X is
is-small iff the sentence

Vx E X 3Q, T E P(AK) [3 epi e : Q -> f -1(x), and

QCT= --T, and-'3epiT-+0(K)]
is valid in Eff.

Proof. Let cp : Q -> P be the map in a square of the form (2),
witnessing that f : Y -> X is ic-small. Since F(W) : r(Q) -> r(P) is a
r.-small map of sets, there exists an embedding of each fiber of r(W) into the
set K, thus giving a mono r(Q) -> r(P) x K over F(P). By exponential
transposition, we thus obtain a map

Q - A(r(P) x K) = Ar(P) x A(K) (3)

over Ar(P). This map is again mono. (Indeed, if S is any separated object
of Eff and L is any set, then for a mono r(S) >-- L the transposed map
S -> 0(L) is again mono, since A preserves monos while the unit S -> SF(S)
is mono.) Pulling back the mono (3) along the unit P -> AF(P) yields a
mono Q >-4 P x 1(K) over P. This mono is a subobject of 0(K) in Eff/P.
Moreover, writing x for the point of X in Eff/P given by the map P -> X in
(2), the fact that (2) is a quasi-pullback gives an epi Q --> f -1(x) in Eff/P.
Finally, let T >-+ P x 0(K) be the pullback of T'= Ar(Q) >-4 Ar(P) x 0(K)
along P -> AF(P). Now in Eff/Ar(P), the sentence

"-'-'T'=T' and --3 epi T'->A(K)"
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is easily seen to be valid, since r(Q) -+ P(P) has all its fibers of cardinality
strictly below the cardinality of K. This sentence remains valid after pulling
back to Eff/P, showing that

" --T = T and -'-i3 epi T -+ 0(K)

is valid in Eff/P. This proves that

Ef /P 3Q, T E P(AK)[...],

as in the statement of the lemma, for the map x : P -+ X. Since this map is
epi, it follows that

Eff Vx E X 3Q,T E P(AK)[...],

as required.
For a map f : Y -> X, validity of the sentence in the statement of

the lemma means that there exists a diagram

T' Y

r 1P x A(K), PX
(4)

where T C P x A(K) is double-negation-closed, such that the right-hand
square is a quasi-pullback while "-'3 epi T --> 0(K)" holds in Eff/P. We
may assume that P is projective. Then T is also projective, being a double-
negation-closed subobject of the projective object P x 0(K). Furthermore,
the fact that Eff/P = 3 epi T -+ 0(K)" readily implies that all the
fibers of r(T) - F(P) have cardinality strictly below ic. To complete the
proof, note that Q is separated, and let Q C_ Q x N be its canonical projective
cover. Then

P- -X
is a quasi-pullback, and F(Q) , I'(P) is K-small in Sets, since F(Q) -> I'(Q),
r(Q) F(T) and r(T) r (P) all are. Thus (4) witnesses that Y X is
a is-small map in Eff.

This proves the lemma.

The proof of Proposition 4.1 can now easily be completed. Indeed, by
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Lemma 4.2, it follows that "the" universal small map a : E --+ U can be
constructed using the internal logic of Eff, as follows. Let

U = {(S, R, T) I S C T = -»T, R is an equivalence

relation on S, and -3 epi T -> A(K)},

and define E -p U as the internal sum

E= E SIR.
(S,R,T)EU

Universality of E --* U is immediate from Lemma 4.2.

Finally, for the power-set axiom (S3), note that since the separation axiom
(S4) holds, we have for any small object X in Eff that P5(X) = P(X) = SIX.
For an inaccessible ic, this exponential IZ is clearly again small. Similarly,
one readily verifies that P(X -+ B) is a k-small object in Eff/B whenever
X - B is, for an inaccessible K.

This completes the proof of Proposition 4.1.

§5 Choice maps
The previous example is in fact an illustration of a more general phenomenon.
Recall that an object A in a topos C is said to be internally projective if (_)A
preserves epimorphisms. There is an obvious equivalent description, which
does not use exponentials and makes sense in any pretopos: A is internally
projective if for any epimorphism Y -* X and any arrow T x A -+ X there
exist an epi T' -» T and a map T' x A -* Y such that the square

T'xA-Y

TxA- X

commutes. In terms of the logic of C, an object A is internally projective if
the internal axiom of choice holds for quantifiers of the form

where X is any other object of C. Thus we say that A is a choice object if A
is internally projective. More generally, a map B -; A is said to be a choice
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map if B -> A is internally projective as an object in C/A. In terms of the
logic of C, this means that the axiom of choice along the map B - A is valid.

We note the following simple closure properties of the class of choice maps
in a pretopos C:

5.1 Proposition. In any pretoposC, the class of all choice maps satisfies
the axioms (AI-5) for open maps.

Now let A be any class of choice maps in the pretopos C, which con-
tains all isomorphisms, is closed under composition, pullbacks and sums,
and contains 0 --+ 1 as well as 1 + 1 -> 1 (i.e., A satisfies axioms (A1,2,4,5)).
Define a map Y --> X to be A-small if there exists a quasi-pullback

(1)

A-X
where B -. A belongs to A. Denote this class of A-small maps by S(A).

5.2 Proposition. The class S(A) satisfies all the axioms (AI-7) for
open maps.

The proof of this proposition is routine, and omitted.

Now suppose C is an elementary topos, and assume that the class of choice
maps A is representable; i.e., there exists a "universal" map r : E - U in
A such that for every other map f : Y --+ X in A there exists a double
pullback of the form of diagram (4) in Chapter I, §1. It follows that the class
of A-small maps S(A) is representable as well. Indeed, let

V = {(u, R) I u E U, R an equivalence relation on Eu}.

This object V can be constructed in C, as a subobject of the power-object
P(E xU E -+ U) in the topos C/U. Then V xU E -> V is the universal map
in A equipped with a fiberwise equivalence relation R, and the universal A-
small map is constructed as the quotient F = (V xU E)/R -> V.

Thus Proposition 5.2 can be extended as follows.

5.3 Proposition. Let A be a class of choice maps in a topos E, sat-
isfying axioms (Al), (A2), (A!) and (A5) for open maps, as well as the
Representability Axiom (S2). Then the class S(A) of A-small maps satisfies
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all the axioms for small maps.

For an example, define a map Y -+ X in the effective topos Eff to be
quasi-modest if there exists a diagram of the form

X' x N E-<U -Y\I 1
X'------ 4.X,

where the right-hand square is a quasi-pullback and U is a double-negation-
closed subobject of X' x N in the topos Eff/X' (here N denotes the natural
numbers object of Eff). So a map Y -+ X is quasi-modest if its fibers are sub-
countable, in the strong sense of being quotients of double-negation-closed
subsets of N.

These quasi-modest maps are closely related to the category of what are
now commonly called the modest sets . In fact, if we call a map Y --+ X
modest if, in addition to being quasi-modest, its diagonal Y --+ Y xX Y is
double-negation-closed, then the modest sets are exactly the objects Y for
which Y -+ 1 is a modest map.

5.4 Proposition. The class of quasi-modest maps satisfies all the ax-
ioms for small maps, as well as the additional axioms (S4) for separation
and (S5) for infinity.

Proof. Consider in the effective topos Eff the class A consisting of all
maps B -+ A which are double-negation-closed subobjects of N in Eff/A.
Each such B --+ A is a choice map. Indeed, if P -» A is any projective cover
of A, then B xA P is a double-negation-closed subobject of N x P. Since N
and P are both projective, so is B XA P. It follows that B --+ A is inter-
nally projective, i.e., a choice map. This class A is evidently closed under
pullbacks and sums, and contains 0 -+ 1 as well as 1 + 1 -+ 1. Furthermore,
using the isomorphism N x N = N, one readily verifies that A is closed under
composition. Finally, A is clearly representable: a universal member of A is
obtained by pulling back the membership relation EN >-- N x P(N) - P(N)
along the inclusion P __(N) >--+ P(N) given by the double-negation-closed
subsets of N. By Proposition 5.3, the associated class S(A) satisfies the ax-
ioms for small maps. It also clearly satisfies the Axiom of Infinity (S5), since
N -+ 1 belongs to A. Finally, to prove that S(A) satisfies the Separation
Axiom, suppose Y -+ X is mono. Let T -» X be a separated cover of X,
and write S = Y xX T >-* T. Then S is also separated, so S has a canonical
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projective cover S -* S, with S C_ S x N over S. The composite inclusion
S C S x N C T x N represents a double-negation-closed subobject of T x N.
Therefore Y -i X belongs to S(A).

This completes the proof.





Appendix A. Monads and
algebras with successor

The purpose of this appendix is to present an abstract version of the proof
of Theorem 11.1.2. For the basic definitions concerning monads and their
algebras, we refer the reader to Mac Lane(1971), Chapter VI.

Let C be an arbitrary category, and let P = (P, o,,,a) be a monad on C.
Let P-Alg(C) be the category of P-algebras (X, a : P(X) -+ X). Recall that
each object X E C generates a free P-algebra

(P(X ), Iix : P2(X) -+ P(X )) (1)

A P-algebra with a successor operation - briefly, a successor algebra - is
a P-algebra (X, a) equipped with a map s : X --+ X. With algebra homo-
morphisms which respect the successor operation, these successor algebras
form an obvious category

P-Alg succ(C).

A.1 Theorem. Suppose (V, a, s) is an initial object in the category
P-Alg succ(C) of successor algebras in C. Then the map

r:P(V)->V , r=aoP(s)
is an isomorphism.

Proof. The proof will be an almost verbatim transcription of the proof
of Theorem 11.1.2, and, to facilitate the comparison, we will use the same
notation as much as possible.

First, the algebra (P(V),,u) is the free algebra on V, so the successor map
s : V -+ V can be extended uniquely along the unit a : V -+ P(V) to an
algebra homomorphism r : (P(V), p) --> (V, a):

P(V) - -V roa=s,
r o p= a o P(r).

V
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Observe that the successor s : V -+ V induces a homomorphism of free
algebras P(s) : (P(V), µ) -> (P(V), µ), while one can view the algebra
structure a : P(V) -+ V as a homomorphism a : (P(V),p) --+ (V, a). This
gives a composite homomorphism aoP(s), which satisfies the defining identity
for r:

aoP(s)oo = aoaos = s.
Thus, by uniqueness of r,

r = a o P(s),

as in the statement of the theorem.
Now define a successor s' on the free algebra (P(V),µ) by

s'=o, or : P(V)->P(V).

Since (V, a, s) is the initial successor algebra, there exists a unique map
i : V -> P(V) which is an algebra homomorphism,

poP(i) = ioa,

and preserves the successor,

ios = s'oi.

We will show that i and r are mutually inverse isomorphisms. For r o i = lv,
it suffices (by initiality of V) to prove that the algebra map r preserves the
successor. This is indeed the case, since

ros' = rooor = sor.

For for = lP(v) , it suffices by freeness of (P(V)), µ) to prove that ioroa = o,.
But

iorov= ios
= s'oi
= or oroi
= a,

the last since we have proved already that r o i = lv.
This proves the theorem.

There is a similar abstract version of Theorem 11.1.5. Let A be an object
of C, and suppose the category C has finite sums. (In fact we only need sums
A + (-).) For maps f : A -+ Y and g : B -> Y in C, we write [f, g] for the
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induced map A + B -> Y. The free successor algebra generated by A is a suc-
cessor algebra (V(A), a, s) with a map 7 : A -> V(A), such that for any other
successor algebra (W, b, t), any map g A - W can be uniquely extended
along rl to a homomorphism of successor algebras g : (V (A), a, s) -+ (W, b, t).

A.2 Theorem. Suppose (V(A), a, s) is the free successor algebra gen-
erated by A (via the map q : A -+ V(A)). Then the map

r : P(A + V(A)) -+ V(A) , r = a o P([i1,s])

is an isomorphism.

Using some monad theory, this theorem can be seen to be a consequence
of Theorem A.1, see Remark A.3 below. We first give a direct proof, analo-
gous to the proof of Theorem 11.1.5.

Proof. Since (P(A + V(A)), µ) is the free algebra on A + V(A) (as
in (1) above), the map [,q, s] can be extended uniquely to an algebra homo-
morphism r, as in

P(A+V(A))r ->V(A)
o1

roo = [ii, s],
rolc=aoP(r).

A+V(A)

Since the composite homomorphism of algebras

(P(A + V(A)), µ) pcl) (P(V(A)), µ) - * (V(A), a)

also satisfies the defining identity for r, i.e.

aoP([rl,s])ov= aouo[1J,s]

it follows that
r=aoP([i,s]),

as in the statement of the theorem.
Now define a map

77 77'=voc1i
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where cl : A -> A + V(A) is the first coproduct inclusion, and v = v(A+V(A))
is the unit of the monad P. Also define a successor

s': P(A+ V(A)) -+ P(A+ V(A)), 1= v o c2 o r

(with c2 : V (A) - A + V (A) the second coproduct inclusion). This makes
(P(A+V(A)),,u, s') into a successor algebra. Since V(A) is the free successor
algebra on A, there is a unique map

i : V(A) --> P(A+V(A))

which is an algebra homomorphism,

p0P(i)=ioa,
preserves the sucessor,

and extends 77',

ios=s'oi,

io77=q'.
As in the previous proof, r and i are mutually inverse isomorphisms. Indeed,
r is in fact a homomorphism of successor algebras, since

ros'= rovoc2or
= [77, s] o c2 o r

= sor.
Furthermore,

roi'= roo ocl
= [[77, s] 0 Cl
=

'77/)

thus r "preserves" the generators. It follows that r o i is a homomorphism of
successor algebras such that r o i o 77= r o'1' = rl. Hence r o i must be the
identity map, since V(A) is freely generated by A.

To show that the other composite i o r is the identity map, it suffices to
prove that iorov = v : A+V(A) -> P(A+V(A)), because (P(A+V(A)), u)
is the free algebra on A + V(A). But

ioroor i o [77, s]

[io77, ios]
[v', s' o i]
[q', o 0C2oroi]
[voC1, voce]
or.
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This shows that i o r = id, and completes the proof of the theorem.

A.3 Remark. Using distributive laws for the composition of monads
(Beck(1969)), Theorem A.2 can be seen as a special case of Theorem A.I.
Indeed, note that for an object A of C, there is a monad

A = (A + (-), c2, 0),

with as unit the second coproduct inclusion c2 : X -4A + X, and as multi-
plication the codiagonal Vx : A + A + X -4A + X. An A-algebra structure
on an object X is the same thing as a map h : A --> X. Or in other words,
the category (A-Alg) of A-algebras is (equivalent to) the slice category A.

If P = (P, a,,u) is any other monad, there is an obvious natural map

bx:A+P(X)->P(A+X),
which satisfies the equations for a distributive law given in Beck(1969). Thus
there is a composite monad P o A with as underlying functor X P(A+X ).
And a (P o A)-algebra structure on an object X is given by a map h : A - X
and a P-algebra structure a : P(X) -4X. The initial (P o A)-algebra (with
successor) is the same thing as the free P-algebra (with successor) generated
by A. Thus Theorem A.1, applied to the composite monad P o A, yields the
isomorphism of Theorem A.2.

It was pointed out to us by J. Benabou, and, independently, by M. Jid-
bladze, that our Theorem A.1 is related to a similar result of Lambek(1970).
To explain this relation, consider any endofunctor P : C -+ C (not neces-
sarily the underlying functor of a monad), and define a P-algebra to be an
object X with a map a : P(X) -> X. With the evident morphisms, these
P-algebras form a category. If P is part of a monad P = (P, a, µ), we will
call such P-algebras weak P-algebras , to emphasize the distinction between
such and the algebras for the monad P.

We recall Lambek's result:

A.4 Proposition.(Lambek). Let P : C --> C be an endofunctor. If
(V, h : P(V) -; V) is an initial (weak) P-algebra, then the algebra map h is
an isomorphism.

Proof. For the weak algebra (P(V),P(h) : P2(V) -> P(V)), the ini-
tiality of (V, h) gives a unique homomorphism i : (V, h) --> (P(V), P(h)); in
particular

P(h) o P(i) = i o h.
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Also, h is a homomorphism h : (P(V), P(h)) - (V, h). Since (V, h) is
initial, the composite homomorphism h o i must be the identity. But then
i o h = P(h) o P(i) = P(h o i) = P(1) = 1. Thus i and h are mutually inverse
isomorphisms.

The following result now relates Lambek's isomorphism to our isomor-
phism in Theorem A.l:

A.5 Theorem. (Benabou, Jidbladze). Let P = (P, a, p) be a monad
on the category C.

(i) If (V, a, s) is an initial successor algebra then (V, a o P(s)) is an ini-
tial weak P-algebra.

(ii) If (V, h) is an initial weak P-algebra (so that h is iso by Proposition
A.4) then (V, h,P(h-'), h o o,) is an initial successor algebra.

(Note that these two constructions are inverse to each other.)

Proof. (=) Assume (V, a, s) is an initial successor algebra. To show that
(V, a o P(s)) is an initial weak algebra, let (X, b : P(X) -4 X) be any other
weak algebra. We will show that there is a unique homomorphism V -+ X
of weak algebras. First, the free P-algebra (P(X),,u) on X comes equipped
with a successor or o b : P(X) -* X -+ P(X). Since (V, a, s) is initial, there is
a unique homomorphism of successor algebras (V, a, s) -> (P(X ),,u, ab), i.e.
a map

cp:V-->P(X)

such that

u o P(<p) = cp o a, (2)

cpos = aobocp.

Then b o cp : V -+ X is a homomorphism of weak algebras, since

bocooaoP(s)= b op o P(V) o P(s) (by (2))
bopoP(cps)
b o p o P(Qbcp) (by (3))
b o (u o P(a)) o P(bcp)
b o P(by) (by the unit law for P).

(3)
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To see that bcp : V -- X is the unique homomorphism of weak algebras,
suppose tk : V -+ X is any other such homomorphism, such that

0oaoP(s)=boP(zb). (4)

Then for s' = o, o r = o, o a o P(s) as in the proof of Theorem A.1, the map
P(O) : P(V) -+ P(X) is a homomorphism of successor algebras (P(V), µ, s')
--> (P(X), p, ab); indeed,

P(hi)os'= P(O) oQoaoP(s)
= Qo0oaoP(s)
= Q o b o P(z/)) (by (4)).

Thus the composition of P(&) with the unique homomorphism i : (V, a, s)
(P(V), p, s') (already used in the proof of Theorem A.1) must be the unique
homomorphism cp above, i.e., cp = P(0) o i. But then

cp= Ooroi
= b o P(,) o f (by (4), since r= a o P(s))
= b o cp.

This shows that b o cp is unique, as required.
Suppose (V, h) is the initial weak algebra. Write

a:=hopoP(h-1), s:=ho Q.

To show that (V, a, s), thus defined, is the initial successor algebra, consider
any other such algebra (X, b : P(X) -+ X, t : X -+ X). Then (X, b o P(t))
is a weak algebra, so there is a unique homomorphism of weak algebras
cp : (V, h) -+ (X, b o P(t)); thus

b o P(t) o P(cp) = So o h. (5)

But then cp is also a homomorphism of successor algebras. Indeed, cp is an
algebra homomorphism, since

cpohoyoP(h-1)
b o P(t) o P(V) o tt o P(h-1) (by (5))
b o o P2(tcp) o P(h-1) (naturality of p)
b o P(b) o P2(tcp) o P(h-1) (associativity of (X, b))
b o P(b o P(t) o P(cp)) o P(h-1)
b o P(cph) o P(h-1) (by (5))
b o P(cp),
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and cp preserves the successor, since

pos= Wohoo, (def. of s)
= b o P(t) o P(cp) o o (by (5))
= boo otocp (naturalityof o)
= t o cp (unit law for (X, b)).

It remains to be shown that cp is the unique such homomorphism. To this
end, suppose V --> X is another homomorphism of successor algebras,
i.e.

0oa=boP(0), Oos=tob. (6)

Then 0 is also a homomorphism of weak algebras, since

?,boh= Ooho po P(a) (unit law for P)
= 0 o h o p o P(h-1)o P(h)oP(o,)
= 0 o a o P(s) (def. of a and s)
= b o P(O) o P(s) (by (6))
= b o P(t) o P(hi) (by (6)).

Since cp : (V, h) -+ (X, b o P(t)) was defined to be the unique homomorphism
of weak algebras, we must have = cp.

This proves the theorem.



Appendix B. Heyting pretopoi

For the convenience of the reader, we recall in this appendix the definitions
of the relevant properties of the ambient category, usually denoted C in the
preceding chapters.

A category C is said to be a pretopos if it has the following properties P1-4.

(P1) C has pullbacks and a terminal object (hence all finite limits).

(P2) C has finite sums, and these are disjoint and stable under pullback.

Thus in particular C has an initial object 0 (the empty sum); disjointness
means that for a finite sum Y = Yl + + Y,,, the pullback Y xy Y is
isomorphic to 0 whenever i # j, and stability means that for any family
{ f; : Y --> X I i = 1, , n} (any n > 0) and any arrow X' -> X, the
canonical map E(X' xX Y) -+ X' x x E Y is an isomorphism. For the other
defining properties of a pretopos, say that a diagram R X --> Y is exact
if X --> Y is the coequalizer of R X while R X is the kernel pair of
X --> Y (i.e., R= X xy X as subobjects of X x X).

(P3) For any equivalence relation R 4 X there exists some arrow
X --* Y for which R : X -> Y is exact.
And for any epimorphism X -4Y there exists R 4 X for
which R X -> Y is exact.

(P4) If R 4 X -> Y is exact, then for any arrow Z --+ Y the
diagram Zxy R=3 Zxy X -.Zxy Y = Z is again exact.

Pretoposes are categories with the structure necessary for interpreting
coherent logic ; for more on pretoposes, see e.g. Artin et.al.(1972), John-
stone(1977) or Makkai-Reyes(1977).

To interpret (intuitionistic) first order logic in C, some additional struc-
ture is needed. For each object X of C, write Subc(X) for the poset of
subobjects of X. The axioms for a pretopos imply that each such poset
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Subc(X) is a distributive lattice. Furthermore, each arrow f : X -+ Y
induces a lattice homomorphism by pullback,

f-': Subc(Y) -- Subc(X).

This pullback map has a left adjoint

3f : Subc(X) -> Subc(Y),

which sends a subobject U >-- X to the image of the composite U >--> X -> Y.
(The pretopos axioms imply that such images exist.) The category C is said
to be a Heyting pretopos if each pullback map f-' also has a right adjoint,

Vf : Subc(X) -+ Subc(Y).

Thus, by the definition of adjoints, for U C_ X and V C Y one has f-'(V)
U if V C `df(U). This operation `d f is called universal quantification along
f. Using these left adjoints, one can define an implication operator on each
lattice Subc(X), making it into a Heyting algebra: for U, V E Subc(X), write
i for the inclusion U >--> X, and define

(U V) = bt(U n v).

In Chapter III, we considered pretoposes which possess a subobject clas-
sifier. This is an object Il, equipped with a "universal" subobject t : 1 -> St;
this means that for any other monomorphism U >-+ X, there is a unique
arrow cu : U -> 9 so that U = cU' (t), as in the pullback

- Q.X CU

Recall that an elementary topos is a pretopos C with a subobject classifier
Q, in which every object is exponentiable (cf. e.g. Johnstone(1977), Mac
Lane-Moerdijk(1992) ).

A pretopos C is said to be Boolean if every monomorphism U -+ X has a
complement, i.e. a subobject U` >-- X such that X - U + U` (by the maps
U >-+ X and U° >-- X). Thus in a Boolean pretopos, the subobject lattices
Subc(X) are in fact all Boolean algebras. Every Boolean pretopos is Heyting
(define `d f(U) as 3f (Uc)c), and has a subobject classifier (namely, 1 = 1 + 1,
with for t : 1 --> ft one of the coproduct inclusions).

Finally, a natural numbers object in a pretopos C is an object N, which
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is equipped with arrows z : 1 -> N (zero) and s : N -4 N (successor),
and which is initial with this structure. Thus for any (parameter) object P
and any arrows f : P -+ Y and t : P x Y -> Y in C, there is a unique
f: P x N -+ Y for which the diagram

Px1 ` )--PxN id">PxN

111

1Orl,f) I fPAP x YY
commutes.

(If C is cartesian closed, it suffices to require this for P = 1, which gives a
perhaps more familiar version of the definition of a natural numbers object.)





Appendix C. Descent

We conclude this appendix with a brief discussion of effective descent in a
pretopos C. Let f : Y -+ X be a map in C, and let p : E -> Y be an object
over Y. Descent data on E --> Y (relative to f) are given by a map

0:YxxE-->E

which makes the following three diagrams commute:

E

E1xO

YxXE B

10

For sets, we can denote 0 (by a family of maps

BY1,Y2 = O(y2, -) : p 1(yl) - P -'(Y2)

and the commutativity of these diagrams corresponds to the equations

p0Y,,Y2(e) = y2,
0Y,Y(e) = e,
0Y2,Y3(OY1,Y2(e)) = eY1,Y3(e).

If (E 2, Y, 0) and (E' 4 Y, 0') are two such objects over Y equipped with
descent data, then one considers maps u : E -+ E' in C over Y (i.e., p'ou = p)
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which respect descent data (i.e., u o 9 = O' o (1 x u)). In this way, one obtains
a category

Des(f)

of objects over Y equipped with descent data relative to f.
If D -+ X is any object over X, then the pullback f*(D) = (irl : Y xX

D --> Y) has canonical descent data, namely 0 = 713 : Y x x Y x x D ->
Y x x D. Thus, one has a functor

f* :C/X -; Des(f). (1)

When this functor is an equivalence of categories, the map f is said to be an
effective descent morphism (Grothendieck(1959)).

It follows readily from the axioms that, in a pretopos, every epimorphism
is an effective descent map. Indeed, the condition that the functor f* in (1)
is full and faithful comes down to the fact that for any two objects D and
D' over X, any arrow u : Y xX D -* Y xX D' over Y which makes both
left-hand squares in the diagram

"23YxxYxXDAYxxD "' D
Iv

"23 VYxxYxxD'YxxD' 2 D'
"F13

(2)

commute gives rise to a unique map v : D --+ D' (over X) making the
whole diagram commute. But this follows immediately from the axioms for
a pretopos. Indeed, since f : Y --p X is assumed an epimorphism, the
diagram

YxXY4Y--+ X
is exact, as is any pullback of it. In particular, both rows in (2) are exact, so
that a unique v exists, as required.

To see that the functor f* in (1) is essentially surjective, take any object
p : E --> Y equipped with descent data 0, and consider the associated equiv-
alence relation 0, 7r2 : Y x X E : E. This gives rise to a diagram with exact
rows,

YxxE E
"2

I

I

I*

YXXY

13

I1XU lu

'IF I
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for a unique map r. In particular, one obtains a map (p, q) : E -+ Y xX Q
f*(Q). On the other hand, exactness of the diagram

YxxYxxE4YxxE l- YxxQ,
IrI3

together with the fact that 9 o (1 x 0) = 9 o 'r13 by definition of descent data,
yields a unique map s : Y xX Q - E such that s o (1 x q) = 0. It is easy
to verify that s is a two-sided inverse for (p, q) : E -* f *(Q), and that under
this isomorphism E ^_' f*(Q), the given descent data 0 on E correspond to
the canonical descent data on f*(Q) (given by the definition of the functor
f* in (1)). This shows that f* is essentially surjective, and proves that every
epimorphism in a pretopos is an effective descent map.
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- of successors 31, 42, 56
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irreducible 48
Iso(f) 24
IZF 60, 65
IZFA 60

K
Ker(f) 24
Kuratowski finite 88

L
L-valued height function 74
least fixed point 58
logic, coherent 109
-, intuitionistic first order 109

M
map, characteristic 10, 16
maps, A-small 97
-, choice 96
-, class of small 9
-, open 7, 8, 67
-, small 7
membership relation 18, 29
models, forcing 89
-, realizability 92
modest sets 98
-, quasi- 98
monads 101
monotone successor 38
morphism, effective descent 114

N
(N,,4) 46
natural numbers object 110

0
0 38

object, choice 96
-, natural numbers 110
-, small 9
objects, universal map between

small 12
open maps 7, 8, 67
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operation, successor 29, 72
order bisimulation 84
- simulation 84
ordinals, Tarski 54, 83
-, Von Neumann 46, 83

P
P"(X) 16
P,(X->B)18
P,(X) 16
P-algebras, weak 105
pairing 60
point, fixed 58
-, least fixed 58
power-set 60
- axiom 19, 43, 60
-, internal 44
power-sets 16
presheaf, universal small

(C-internal) 15
presheaves 67
pretopos 109, 110
-, Heyting 110
projective, internally 96

Q
quasi-modest 98
quasi-pullback square 8

R
rank 43, 44
realizability models 92
relation, membership 18, 29
representability axiom 9

S
S-complete 22
- sup-lattice, free 23
separation 60
- axiom 58, 60
-, decidable 60
sets, decidability between atoms

and 60

INDEX

-, extensionality for 60
-, modest 98
-, transitive sets of transitive 48
sheaves 89
simulation 68
-, order 84
-, weak 68
singleton 23
site 89
small 73
- maps 7
- object 9
- object labeled by A 13
- well-founded forest 73
square, quasi-pullback 8
stable 109
structures, universal small 11
subobject classifier 67, 110
successor algebra 101
- algebra, free 103
- operation 29, 72
-, inflationary 46, 47
-, monotone 38
successors, irreducibility of 31, 42,

56
supremum 22
surjective, essentially 25

T
T 49
T2 49
Tarski forest 81
- ordinals 54, 83
Tarski's fixed point theorem 54
theories, bivariant 20
theory, Zermelo-Fraenkel set 60
topos, elementary 110
-, Grothendieck 89
transitive closure 52
- sets of transitive sets 48
tree 71
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U
union 60
uniqueness, homotopy 24
universal 9
- map between small objects 12
- small G-object 14
- small (C-internal) presheaf 15
- small structures 11
- small well-founded forest 78

V
V 30
V(A) 29
Von Neumann ordinals 46, 83

w
weak P-algebras 105

- equivalence 25
- simulation 68
weakly directed 54

z
Zermelo-Fraenkel (ZF) algebra 29
- set theory 60, 65
ZF 60
ZFA 65
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