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PREFACE 

This text brings to  the frontiers of much current research in topologi- 
cal rings a reader having an acquaintance with some very basic point-set 
topology and algebra, which is normally presented in semester courses at 
the beginning graduate level or even at the advanced undergraduate level. 
Many results not in the text and many illustrations by example of theo- 
rems in the text are included among the exercises, sufficient hints for the 
solution of which with references to the pertinent literature are offered so 
that solving them does not become a major research effort for the reader. 
Within mentioned constraints, a bibliography intended to be complete is 
given. Expectations of a reader include some familiarity with Hausdorff, 
metric, compact and locally compact spaces and basic properties of contin- 
uous functions, also with groups, rings, fields, vector spaces and modules, 
and with Zorn’s Lemma. 

In view of the readers for whom the book is written, the exposition is 
more detailed than would be necessary for readers who are mature mathe- 
maticians. In addition, quite a bit of algebra, both commutative and non- 
commutative, is included, since many of those readers will need additional 
background in algebra to understand parts of the text. Obviously, there 
is considerable overlap with my earlier text, Topological Fields, in this se- 
ries (North-Holland Mathematics Studies 157, Notas de Matdmatica (126)), 
since both require a common core of knowledge, but in some instances the 
presentation here of such material (e.g., the completion of a commutative 
Hausdorff group) is quite. different from that in Topological Fields. I deeply 
regret the omission of ad applications of categorical concepts to topologi- 
cal rings. To have included the requisite background for those for whom 
the book is written would have greatly lengthened an already long book 
and overbalanced any introduction to  the use of categorical concepts in the 
theory of topological rings that could reasonably be presented. 

This seems a natural place to record significant errors thus far discovered 
in Topological Fields, and an Errata correcting such errors is included. 

The book is typeset by AMS-TEX, with the exception of the indices, 
which are typeset by Latex. I am deeply grateful to Dr. Yun-Liang Yu, sys- 
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tems programmer of the Duke Mathematics Department, who has patiently 
guided me through the intricacies of A ~ S - Q x a n d  Duke’s computer sys- 
tem. When I began the task of typesetting this volume, I remarked to Dr. 
Yu, a recent arrival from China, that I felt like “an immigrant who has just 
gotten off the boat and doesn’t know a word of English.” Thanks to him, I 
now have a rudimentary grasp of the language. 

Seth Warner 
Mathematics Department, Duke University 
Durham, North Carolina 
15 March 1993 
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CHAPTER I 

TOPOLOGICAL RINGS AND MODULES 

In this introductory chapter we shall define and give examples of topo- 
logical rings, modules, and groups, show how they may be introduced by 
specifying the neighborhoods of zero, and present a few basic constructions. 

1 Examples of Topological Rings 

By a ring is meant an associative ring, not necessarily one having a mul- 
tiplicative identity. A ring with identity is a ring possessing a multiplicative 
identity 1 such that 1 # 0 .  Thus a zero ring, one having only one element, 
is not a ring with identity. A ring A is trivial if zy = 0 for all 2, y E A.  
Any commutative group is thus the additive group of a trivial ring. A zero 
ring is a particularly trivial ring. 

We shall denote by N, Z, Q, R, @, and W the set of natural numbers 
(including zero), integers, rationals, real numbers, complex numbers, and 
quaterions respectively. The set of real numbers greater than zero is denoted 
by R>o, and those greater than or equal to zero by R>o. - 

If A is a ring, A* denotes the set of its nonzero elements, and if A is 
a ring with identity, A X  denotes the multiplicative group of its invertible 
elements. 

If X and Y are sets, X \ Y denotes the relative complement of Y in X ,  
that is, X \ Y = {z E X : 2 $ Y } ,  and Yx denotes the set of all functions 
from X to Y. The cardinality of a set X is denoted by card(X), 

A topological ring is simply a ring furnished with a topology for which 
its algebraic operations are continuous: 

1.1 Definition. A topology 7 on a ring A is a ring topology and A ,  
furnished with 7, is a topological ring if the following conditions hold: 

(TR 1) 

(TR 2) 

(TR 3) 

(z,y) + z + y is continuous from A x A to A 

z -, -z is continuous from A to A 

(z,y) + zy is continuous from A x A to A 

1 



2 TOPOLOGICAL RINGS AND MODULES 

where A is given topology 7 and A x A the Cartesian product topology 
determined by 7. 

A ring topology on a ring A clearly induces a ring topology on any subring 
of A,  and unless the contrary is indicated, we shall assume that a subring 
of a topological ring is furnished with its induced topology. 

Norms furnish examples of topological rings: 

1.2 Definition. A function N from a ring A to R>o - is a norm if the 
following conditions hold for all z, y E A: 

If N is a norm on a ring A ,  then d ,  defined by d ( z ,  y) = N ( z  - y)  for 
all z, y E A,  is a metric. Indeed, (N 1) and (N 5 )  imply that d ( z , y )  = 0 if 
and only if z = y, (N 3) implies that d(z ,y)  = d ( y , z ) ,  and (N 2) yields the 
triangle inequality, since 

d ( z ,  Z) = N ( z  - Z) = N ( ( z  - y) + (y - z)) 

- < N ( z  - 9) + N ( Y  - Z) = d ( z , y )  + d ( y ,  z ) .  

If d is a complete metric, we say that N is a complete norm. 
Often symbols similar to 11..11 are used to denote norms. 

1.3 Theorem. Let N be a norm on a ring A.  The topology given by 

Proof. Let a, b E A.  For all z, y E A ,  

the metric d defined by N is a ring topology. 

Hence (TR 1) holds. For all z E A ,  d( -z ,  -u)  = N ( - z  + u )  = N ( z  - a)  = 
d ( z ,  u )  by (N 3). Hence (TR 2) holds. Finally, for all z, y E A,  

d ( z y , ~ b )  = N ( ( z  - a ) ( y  - b) + U ( Y  - b)  + (Z - a)b)  

5 N ( x  - a ) N ( y  - b)  + N ( a ) N ( y  - b)  + N ( z  - a ) N ( b ) .  

Hence (TR 3) holds. 
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1.4 Theorem. Let N be a norm on a ring A .  For all z, y E A,  

and hence N is a uniformly continuous function from A (for the metric 
defined by N )  to R>o. - 

N ( z  - y). Hence also N(y) - N ( z )  5 N(y - z) = N ( z  - y). Therefore 
Proof. N ( z )  = N ( ( z  - y) + y) L N ( z  - y) + N(y) ,  so N ( z )  - N(y)  I 

JN(4 - “Y)l 5 N(a: - Y). 

In view of 1.3, we shall say that a topological ring is normable if its topol- 
ogy is defined by a norm, and in $14 we shall give criteria for a topological 
ring to be normable. A normed ring is simply a ring furnished with a norm 
and hence with the topology defined by that norm. 

Norms on rings play a substantial role in analysis: 
Example 1. Let X be a set, B(X) the ring of all bounded real-valued (or 

complex-valued) functions on X (a function f is bounded if N ( f )  < +a, 
where N ( f )  = sup{Jf(z)l : z E X}). The function N just defined is a 
complete norm on B ( X ) ,  so B ( X )  and each of its subrings is a topological 
ring for the topology defined by N .  Special cases: (a) The ring of all 
bounded continuous functions on a topological space X. (b) The ring of 
all continuous functions f on a locally compact space X which “vanish at 
infinity,” that is, such that for every E > 0 there is a compact subset K 
(depending on f )  of X such that If(.) \  5 E for a l l  z E X \ K .  (c) The ring 
of all continuous functions on a compact space X .  (A topological space X 
is compact if it is Hausdorff and if every collection of open subsets of X 
whose union is X contains finitely many members whose union is X,  and 
X is locally compact if it is Hausdorff and each point of X has a compact 
neighborhood. ) 

Example 2. Let A be the ring of all analytic functions on a connected 
open subset D of C, and let K be an infinite compact subset of D. Then 
N ,  defined by N ( f )  = sup{(f(z)I : z E K } ,  is an incomplete norm on A 
(Exercise 1.2). 

Example 3. Let D be a bounded connected open subset of @, and let A be 
the ring of all continuous complex-valued functions on Td whose restrictions 
to D are analytic functions. Then N ,  defined by 

is a complete norm on A.  
Example 4. Let A be the ring of all continuous real-valued functions f on 

a closed bounded interval [a,b] such that f has a continuous derivative f ’  
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on (a, b), and lima+=+ f'(z) and lim,,b- f'(z) both exist. Then N ,  defined 
by N(f )  = sup{lf(z)) : a 5 z 5 b} +sup{lf'(z)l : a < 2 < b}, is a complete 
norm on A. 

Example 5 .  Let L'(N) be the set of all sequences (ai)i?o of real numbers 
such that CEO Iujl < +oo, and let N be defined on L1(N) by 

i=O 

Addition on L1(N) is defined by ( a i ) i ? o + ( b i ) i g  = (ui+bi)i>o. Under either 
of the following two multiplications L1 (N) is a ring and N is a complete norm 
on L1 (N): (a) pointwise multiplication, i.e., (aj);>o(bj)i>o = (aib;)i>o; (b) 
convolution, i.e., 

For an example of a nonmetrizable (in particular, a nonnormable) topo- 
logical ring, it suffices to take the Cartesian product of uncountably many 
nonzero topological rings, in view of the following theorem: 

1.5 Theorem. The Cartesian product of a family ( A x ) x E ~  o f  topological 
rings is a topological ring. 

We shall prove a more general theorem: 

1.6 Theorem. Let (Ax)xE& be a family of topological rings, let A be a 
ring, and let ( f x ) x E ~  be a family of functions such that for each X E L, fx 
is a homomorphism from A to Ax. The weakest topology on A for which 
each fx is continuous is then a ring topology. 

Proof. That topology has as a basis of open sets all finite intersections 
of sets of the form fi'(0x) where X E L and Ox is open in Ax. It  follows 
at once that a function g from a topological space B to A is continuous for 
this topology if and only if fx 09 is continuous from B to Ax for each X E L. 
In particular, let B = A x A, and let g be either addition or multiplication 
on A, gx the corresponding composition on Ax. By the preceding, to show 
that g is continuous, it suffices to  show that fx o g is continuous from A x A 
to Ax for all X E L. But fx o g = gx o (fx x fx), where fx x fx is the 
function (z,y) --t (fx(z),fx(y)) from A x A to Ax x Ax. Since fx and gx 
are continuous, so is gx o (fx x fx). Thus g is continuous, and hence the 
topology is a ring topology. 0 
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Theorem 1.5 thus follows by applying 1.6 to the case where 

and for each X E L ,  fx = p r ~ ,  the canonical projection from nPEL A, to Ax 

1.7 Corollary. I f  ( 7 ~ ) x ~ ~  is a family of ring topologies on a ring A ,  

(defined by P T A ( ( 2 , ) p E L )  = 4. 

then supAEL 7~ is a ring topology. 

Proof. That topology is the weakest on A such that for each A, the iden- 
tity mapping from A to A,  furnished with topology 55, is continuous. 0 

If 7 1  . . . 7p are topologies on a ring A defined by norms N l ,  . . . N p ,  it is 
easy to  see that is a norm defining the topology ~ u p ~ < ~ < ~ i r , .  
This permits us to construct some unusual norms, for example, on txe-field 
C of complex numbers. For this, we first observe that the only continuous 
automorphisms of @ are the identity automorphism and the conjugation 
automorphism z + 2.  Indeed, if 0 is a continuous automorphism of C, then 
o(z) = z for all z E Q, the prime subfield of C, so as o and the identity 
function must agree on a closed set, ~ ( z )  = z for all z E W. On the other 
hand, as ~ ( i ) ~  = o(i2) = a(-1) = -1, a( i )  must be either i or 4. It 
readily follows that a is the identity automorphism in the former case, the 
conjugation automorphism in the latter. 

By the general theory of algebraically closed fields, however, there are 
nondenumerably many automorphisms of @, so there exists a noncontinuous 
automorphism cr . We may further assume, by replacing a with its composite 
with the conjugation isomorphism, if necessary, that a( i )  = i. Let N ( a )  = 
sup{IzI, l a ( z ) l } .  Then N is a norm inducing the usual absolute value on 
the subfield Q(i) of C ,  but, as we shall see later (Corollary 13.13), the 
completion of C for the metric defined by N may be identified with the ring 
C x C and hence contains proper zero-divisors (i.e., nonzero zero-divisors). 

1.8 Definition. Let K be a division ring. An absolute value on K is 
a norm A such that A(zy) = A(z)A(y) for d z, y E K .  

It follows that A(1) = 1 since A(1) = A(l )A( l )  and A ( l )  # 0; more 
generally, if z is a root of unity, (i.e., if z n  = 1 for some n 2 l),  then 
A ( z )  = 1. 

The most familiar absolute values, of course, are the usual absolute values 
on R,C, W, and their subfields. 

If A is an absolute value on a division ring K ,  the elements z of A 
satisfying A(z) < 1 may be characterized topologically as those elements z 



6 TOPOLOGICAL RINGS AND MODULES 

such that limn--tm xn = 0; in any topological ring, such an element is called 
a topological nilpotent. 

For any division ring K, the function Ad, defined by Ad(0) = 0 and 
&(x) = 1 for all x E K*, is called the improper absolute value since the 
topology it defines is the discrete topology. Moreover, it is the only absolute 
value on K defining the discrete topology. Indeed, if A is an absolute value 
other than Ad, then A(x) # 1 for some z E K*, so either x or x-l is a 
topological nilpotent, and therefore the topology defined by A is not the 
discrete topology. In particular, the only absolute value on a finite field is 
the improper absolute value. An absolute value on a division ring is proper 
if it is not the improper absolute value. 

1.9 Definition. Absolute values on a division ring are equivalent if 
they define the same topology. 

1.10 Theorem. Let A1 and A2 be proper absolute values on a division 
ring K. The following statements are equivalent: 

1" A1 and A2 are equivalent. 
2" The topology defined by A2 is weaker than that defined by A1. 
3" For all x E K ,  if Al(x) < 1, then A2(x) < 1. 
4" A2 = A; for some r > 0. 

Proof. If 2" holds and if Al(x) < 1, then x is a topological nilpotent for 
the topology defined by A1 and a fortiori for the weaker topology defined 
by A2, so A2(x) < 1. Assume 3". As A1 is proper, there exists zo E K 
such that Al(z0) > 1. Then A1(xO1) < 1, so Az(xO1) < 1, and therefore 
Az(x0) > 1. Let 

T- = logA2(xo)/logAl(zo). 

Let z E K*, and let s E W be such that Al(x) = AI(x0)'. Let m, n E Z, 
n > 0. If m/n > s,  then Al(z) < A~(so)"/", so Al(z"sOm) < 1, thus 
A2(znx,") < 1, and therefore A2(z) < Az(zo)"/". Similarly, if m/n < s, 
then A2(x) > Az(zo)"/". Hence A2(z) = A2(20)~ ,  so 

and therefore Az(z) = Al(z)'. 0 

1.11 Theorem. Let A be an absolute value on division ring K ,  The set 
J of numbers T > 0 such that A' is an absolute value is an interval of W>O 
containing (0,1]. Moreover, the following statements are equvalent (where, 
for any n E N, n.1 = 1 + - .  . + 1 (n terms)): 
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1' J=R>o. 
2' For all n E N, A(n.1) 5 1. 
3' For all z, y E K ,  A(. + y) 5 sup{A(z), A(y)}. 

Proof. Let 0 < T I 1. For any c E ( O , l ) ,  0 < 1 - c < 1, so c' 2 c and 
(1 - c)' 2 1 - c, and therefore cT + (1 - c)' 2 1. Applying this inequality to 
c = A(z)/(A(z) + A(y)) where z, y E K*, we obtain 

Thus T E J. Consequently, if s E J and 0 < t < s, then At = (Aa)(l/"lt, so 
At is an absolute value as 0 < t /s  < 1. 

For any absolute value I . . [ ,  In.11 5 n for all n E N by induction. Hence 
if 1' holds, then for all T > 0, A(n.1)' 5 n and hence A(n.1) 5 n'f', so 
A(n.1) 5 1. Clearly 3' implies lo. 

Assume 2'. As A(y + z )  5 A(y) + A(z) 5 2sup{A(y),A(z)} for all 
y, I E K, an inductive argument establishes that for any sequence (yi)15i52. 
of 2' terms, 

Let z E K. Then for any T E N, if n = 2' - 1, 

A(1+ = A((1+ z ) ~ )  5 2r sup{A( 

- < 2" sup{A(zk) : 0 5 k 5 n}  = (n + 1) sup{l, A(z)"}, 

zk) : 0 5 k 5 n} (3 
so A( l  + z) 5 (n  + l)l/nsup{l,A(z)}. Hence A( l  + z) 5 sup{l,A(z)}. 
Thus, for any z, y E K*,  

1.12 Definition. An absolute value A on a division ring K is nonar- 
chimedean if A(. + y) 5 sup{A(z), A(y)} for all z, y E K ,  archimedean 
if it  is not nonarchimedean. 

By 1.11, an absolute value A on a division ring K is archimedean if and 
only if A(n.1) > 1 for some n E N. Consequently, as a finite field admits 
only the improper absolute value, a field admitting an archimedean absolute 
value has characteristic zero. 
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Some important examples of nonarchimedean absolute values are defined 
as follows: Let K be the quotient field of a principal ideal domain D, and let 
P be a representative system of primes in D. As D is a unique factorization 
domain, for each z E K* there exist a unique unit u of D and a unique 
family ( ? ~ ~ ( z ) ) ~ ~ p  of integers such that vp(z) = 0 for all but finitely many 
p E P and 

P E P  

For each p E P, we also define 2rp(0) = +oo. The function 'up from K to 
Z U {+m} clearly satisfies 

for all z,y E K ;  'up is called the p-adic valuation on K .  If c > 1, then 
x 4 c-"p(") (with the convention c-"' = 0) is a nonarchimedean absolute 
value, denoted by I,.Jp,c and called the p-adic absolute value to base c. If 
c > 1 and d > 1 and if T = log,d, then 1xIp,d = IZ);,~ for all x E K ,  so 
p-adic absolute values to different bases are equivalent. The p-adic topology 
on K is the topology defined by the p-adic absolute values. For a sequence 
(x,),~l of nonzero elements to converge to zero for the p-adic topology, it 
is necessary and sufficient that for each T E N* there exists m 2 1 such 
that for all n 2 m, z, can be expressed as a fraction whose numerator is 
an element of D divisible by p' and whose denominator is an element of D 
relatively prime to p. For the special case where K = Q and D = Z, for 
any prime integer p the p-adic absolute value ] . . I p  on Q is the one to base 
p; thus 

)ZIP = p - " P ( " )  

for all x E Q. 
1.13 Theorem. Let K be the quotient field of a principal ideal domain 

D, and let P be a representative system ofprimes in D .  The proper absolute 
values A on K such that A ( x )  5 1 for all E D are precisely the p-adic 
absolute values. 

Proof. If x E D, then vp(z) 2 0, so lz)p,c 5 1. Conversely, let A be a 
proper absolute value on K such that A ( x )  5 1 for all z E D. Let V = 
{z E K : A ( z )  5 l}, M = { x E K : A(z) < 1). As A is nonarchimedean, 
V is a subring of K containing D by 1.12, V \ M is the set of all invertible 
elements of V, and hence M is the only maximal ideal of V. In particular, 
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M is a prime ideal of V, so M f l  D is a prime ideal of D. If M f l  D = (0)) 
then A ( z )  = 1 for all z E D', so A would be the improper absolute value, 
a contradiction. Therefore M n D is a nonzero prime ideal of D and hence 
is Dp for some p E P. Let c = A@)-'.  For any z E K',  let z = apn/b  
where n = vp(z) and a and b are elements of D* relatively prime to p ;  then 
a, b E D \ Dp, so A(a )  = A(b) = 1 ,  and consequently 

Thus A is I..Jp,c.o 

there exist a prime p and s > 0 such that A ( z )  = IzJ; for all z E Q. 

p and some c > 1; we need only let s = logpc > 0. 0 

Often, the usual archimedean absolute value on Q is denoted by I..l,; 
thus In\, = 1 - n J ,  = n for all n E W. The following theorem completes 
the identification of all proper absolute values on Q: 

1.15 Theorem. JYA is an archimedean absolute value on Q, then there 

1.14 Corollary. If A is a proper nonarchimedean absolute value on Q, 

Proof. Clearly A(n)  5 1 for ad n E Z. By 1.13 A is I..(p,c for some prime 

exists s E (0,1] such that A ( z )  = for all 2 E Q. 

Proof. We shall first show that for any integers m > 1 and n > 1, 

log A(n)  - log A(m)  
log n logm 

- 

Indeed, expanding m to base n,  we obtain integers ( a k ) O < k < r  - -  in [O,n - 11 
such that 

m = a0 + a1n + . . , + a,nr 

and a, # 0. Thus 

A(m) i A(a0) + A(al )A(n)  + - + A(a,)A(n)', 

and since 0 5 A(a;)  5 a; < n for all i E [ O , T ] ,  we conclude that 

A(m)  < n(1 + A(n)  + - - - + A(n)') 5 n(r + 1) sup(1, A(n)}' 

Since m 2 n', T 5 (log m)/(log n), and therefore 

log m 
A ( m )  < n [ G  + 11 sup(1, A(n)}(log m)l('ogn) 
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Replacing m by ma for any positive integer s, we have 

+ 11 sup(1, A(n)}(a 'o~m)~(logn).  slog m 
A(m)" = A(m") < n[- 

log n 

Taking sth roots, we obtain 

Since lim,,,(as + b) l / "  = 1 for any positive real numbers a and b, we 
therefore conclude 

(2) A(m) 5 sup(1, A(n)}('Og m)/(lOg n). 

Since A is archimedean, A(q) > 1 for some integer q > 1 by 1.11. Replacing 
m by q in (2), we obtain 

1 < sup(1, A(n)}(l"gq)f(logn), 

whence A(n) > 1 as (logq)/(logn) > 0. Thus A(n) > 1 for all n > 1, so (2) 
becomes 

A(m) 5 A(n)('"B m)/(log n ) .  

Taking logarithms we conclude that 

(3) 
log A(m) log A(n) 

5 log m logn * 

Interchanging m and n in (3), we obtain (1). Let s be the common value 
of (logA(n))/(logn) for all integers n > 1. Then for all such integers, 
logA(n) = slogn = logn", so A(n) = na. It readily follows that A(z) = 
Izl: for all 2 E Q. Since 2' = A(2) 5 2, s E (0,1]. 0 

Exercises 

1.1 Show directly or by citing theorems of analysis that the norm of 
Example 1 is complete, and that the subrings defined in (a) and (b) are 
closed and hence also complete. 

1.2 Let N be the function of Example 2. (a) What theorem of complex 
analysis implies the validity of (N 5)? (b) Show that N is incomplete. [Show 
first that there exists a E D such that la\ > sup{lzl : z E K } ,  and then 
consider the functions ( f n ) n z ~  where 

n 

f n ( 4  = c (')O a 
k=O 
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for all z E D ] .  

analysis implies (a) the validity of (N 5)? (b) that N is complete? 

of Example 4 is a complete norm. 

1.3 Let N be the function of Example 3. What theorem of complex 

1.4 Show directly or by citing theorems of analysis that the function N 

1.5 Show that the function N of Example 5 is a complete norm. 
1.6 (a) If N is a function from a ring A to R>o satisfying (N 2)-(N 4) 

but not (N l), then N ( z )  2 max{ 1, i N ( 0 ) )  for z E A. (b) Let Q be a 
norm on a ring A, let c 2 1, and let N ( z )  = Q(z) + c for all  z E A. Then 
N satisfies (N 2)-(N 4) but not (N 1). 

2 Topological Modules, Vector Spaces, and Algebras 

By an A-module is meant a left module over a ring A, not necessarily 
one possessing a multiplicative identity. An A-module E is unitary if A 
possesses a multiplicative identity 1 and 1.z = z for all z E E .  An A- 
module E is trivid if X.z = 0 for all X E A,  x E E .  If E is an A-module 
where A is a ring with identity, then E contains a largest unitary submodule 
M ,  namely, {z E E : 1.z = z}, and a largest trivial submodule T ,  namely, 
{z E E : 1.z = 0}, and E is the direct sum of M and T since for any x E E ,  
1.x E M and x - 1.z E T.  

If G is a commutative group, denoted additively, there is a unique scalar 
multiplication making G a unitary 7,-module, namely, that satisfying n.2 = 
x + z + . . . z (n  terms) for all z E G, n E N. Whenever z belongs to a 
commutative group G and n E Z, n.2 refers to this scalar multiplication. 

A topological module is simply a module over a topological ring furnished 
with a topology for which its algebraic operations are continuous: 

2.1 Definition. Let A be a topological ring, E an A-module. A topology 
7 on E is an A-module topology (or simply a module topology if no 
confusion results) and E ,  furnished with 7, is a topological A-module 
(or simply a topological module) if the following conditions hold: 

( T M  1) (3, y) + x + y is continuous from E x E to E 
( T M  2) z --t -x is continuous from E to E 

( T M  3) (X,z) + Xz is continuous from A x E to E 

where E is given topology 7, E x E the Cartesian product topology de- 
termined by 7, A x E the Cartesian product topology determined by the 
topology of A and 7. If K is a division ring furnished with a ring topology 
and if E is a K-vector space, a topology 7 on E is a K-vector topology (or 
simply a vector topology if no confusion results) and E ,  furnished with 7, 
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is a topological K-vector space (or simply a topological vector space) 
if 7 is a K-module topology. 

For example, any topological ring A may be regarded as a topological 
A-module, where scalar multiplication is the given multiplication. 

A module topology on an A-module E clearly induces a module topology 
on any submodule of E, and unless the contrary is indicated, we shall assume 
that a submodule of a topological module is furnished with its induced 

If E is a topological A-module and if B is a subring of A, the B-module E 
obtained by restricting scalar multiplication to B x E is clearly a topological 
module. Also, if E is a topological A-module, E, with its given topology, 
is still a topological module over the ring A furnished with a stronger ring 

If A is a commutative ring with identity, an A-algebra (or simply an al- 
gebra) E is a unitary A-module furnished with a multiplicative composition 
that makes E into a ring and satisfies 

topology. 

topology. 

+Car> = = .(XY> 

for all X E A and all z, y E E .  

2.2 Definition. Let A be a commutative topological ring with identity 
and E an A-algebra. A topology 7 on E is an A-algebra topology (or 
simply an algebra topology if no confusion results) and E, furnished with 
7 is a topological A-algebra (or simply a topological algebra) if 7 is 
both a ring and an A-module topology. 

Norms furnish examples of topological vector spaces: 

2.3 Definition. Let K be a division ring furnished with an absolute 
value (..I, and let E be a K-vector space. A function N from E to R>o is 
a norm on E (relative to I..\) if (N 1)-(N 3) and (N 5) of Definition 1.2 
hold and also 

N(X2)  = IXlN(z) 

for all X E K and all z E E .  I f K  is a field and E a K-algebra, an algebra 
norm (or simply a norm) on E is a function which is a norm on both the 
underlying ring and K-vector space. 

A proof similar to that of 1.3 yields: 

2.4 Theorem. The topology defined by a norm on a vector space [al- 
gebra] over a division ring [field] is a vector [algebra] topology. 

Thus a normed space [normed algebra] is simply a vector space [algebra] 
furnished with a norm relative to  a given absolute value on its division ring 
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[field] of scalars and hence with the topology defined by that norm. For 
example, the rings of Examples 1-5 of $1 may be viewed as algebras over 
either W or C, and each of the norms defined is an :'gebra norm. 

A topological group is simply a group furnished with a topology for which 
its algebraic operations are continuous: 

2.5 Definition. A topology 7 on a group G, denoted multiplicatively, 
is a group topology and G, furnished with 7, is a topological group if 
the following conditions hold: 

(TG 1) 
(TG 2) 
where G is given topology 7 and G x G the Cartesian product topology 
determined by 7. 

For example, the additive group of a topological ring or module is a 
commutative topological group, since (TR 1)-(TR 2) and (TM 1)-(TM 2) 
become (TG 1)-(TG 2) in additive notation. 

A group topology on a group G clearly induces a group topology on any 
subgroup of G, and unless the contrary is indicated, we shall assume that a 
subgroup of a topological group is furnished with its induced topology. 

Topologies on noncommutative groups do arise naturally in the study of 
topological rings. For example, if A is a topological ring with identity, the 
topology of A induces a topology on the group AX that satisfies (TG 1) but 
may not satisfy (TG 2)) and for certain questions it is important to know 
whether AX is, indeed, a topological group. 

2.6 Definition. A ring topology 7 on a field [division ring] K is a field 
[division ring] topology and K ,  furnished with T, is a topological field 
[topological division ring] if multiplicative inversion is continuous on K' , 

The material presented here, however, will be needed only for discussions 
of topologies on the additive group of a ring or module. Consequently, we 
shall use additive notation throughout, even when commutativity is not 
used in a given discussion, and sometimes we shall include commutativity 
among the hypotheses of a theorem about topological groups even though 
a noncommutative generalization is available. 

A composition * on a set E induces in a natural way a composition, again 
denoted by *, on the set of all subsets of E, given by 

(2, y) + zy is continuous from G x G to G 
z + 2-l is continuous from G to G 

X * Y  = {x* y :  x E x, y E Y} 

for all subsets X, Y of E. It is also customary to denote { a } * X  by a*X and 
X * { u }  by X * a for any a E E. We shall frequently employ this notation for 
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subsets of a ring or group and its additive or multiplicative compositions. 
Similarly, if + is a group composition on E, we define 

-X = {-x E E :  x E X }  

for any subset X of E ;  we shall say X is symmetricif X = -X. Clearly the 
largest symmetric subset contained in a subset X of a group E is X n ( - X ) .  

For the next two theorems about topologies on a group G we introduce 
the following notation: Let j be inversion, defined by 

j ( z )  = -z 

for all x E G. Let s and t be addition and subtraction from G x G to G, 
defined by 

for all (x,y) E G x G, and let k be the function from G x G into G x G 
defined by 

%Y) = (2, -Y> 

for .dl (z,y) E G x G. Finally, for each a E G, let i, be the function from 
G to G x G defined by 

i a ( 4  = ( a , 4  

for all x E G. Clearly i, is continuous for any topology on G and the 
Cartesian product topology it defines on G x G .  

The 
functions z -+ -2, z + a + z, and x 4 z + a are homeomorphisms from 
G to G. Consequently, for any subset X of G, -X = -X, a + X = a +x, 
X + a = x+ a, and for any open [closed] subset P of G, -P and a + P are 
open [closed]. 

2.7 Theorem. Let G be a topological group, and let a E G. 
- -- 

Proof. Since j-l = j ,  j is a homeomorphism. The function 

s o i ,  : 2 --+ a + z  

is continuous as s and i, are, and its inverse s o i-, is similarly continu- 
ous. Thus 2 -+ a + 2: is a homeomorphism, and similarly z ---t x + a is a 
homeomorphism. 0 
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2.8 Theorem. A topology I on a group G is a group topology if and 
only if 

(w> --+ 2 - Y 
is continuous from G x G to G, where G is furnished with 7 and G x G the 
Cartesian product topology determined by 7. 

Proof. Necessity: B y  hypothesis, s and j are continuous. Hence k is 
continuous, and as t = s o  k, t is also continuous. Sufficiency: B y  hypothesis 
t is continuous. Hence as j = t o io, j is also continuous. Consequently, k is 
continuous, so as s = t o k, s is also continuous. 0 

A neighborhood of a point [subset] of a topological space T is any subset 
of T that contains an open subset containing that point [subset]. Thus a 
subset of T is open if and only if it is a neighborhood of each of its points. 

2.9 Theorem. Let G be a topological group. 
(1) If V is a neighborhood of zero, there is a neighborhood U of zero 

(2) If V is is a neighborhood of zero, so is -V. 
(3) Every [open] neighborhood U of zero contains a symmetric [open] 

Proof. (1) follows from the continuity of addition at (O,O), (2) follows 

2.10 Corollary. Let G be a topological group. If U is a neighborhood 
of zero and n 2 1, there is a symmetric neighborhood V of zero such that 
V + - 

such that U + U C V .  

neighborhood of zero, namely, U n ( -U) .  

from 2.7, and (3) follows from (2). 0 

+ V (n terms) 2 U .  

Proof. The assertion follows by induction from 2.9.0 

2.11 Theorem. Let A be a topological ring. 
(1) For each b E A, the functions z --f zb and z --+ bz are continuous 

(2) (z,y) --f yz is continuous from A x A to A. 
(3) I f f  and g are functions from a topological space T to A that are 

continuous at t E T, then f + 9, - f ,  and fg are continuous a t  t. 
(4) If A is a commutative ring with identity and if h E A [ X l , .  . . , X,], 

the ring of polynomials in n indeterminates over A, then the polynomial 
function (21,. . . , 2,) -+ h(z1,. . . ,z,) from A x * * *  x A (n terms) to A is 
continuous. 

Proof. The proof of (1) is similar to that of 2.7. (2) The function rn from 
A x A to A, defined by m(z,  y) = zy, and the function q from A x A to  A x A, 
defined by q(z ,y )  = (y,z), are continuous, so m o q is also continuous. (3) 

from A to A; if b is invertible, they are homeomorphisms. 
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Let f x g be the function from T to A X  A defined by (f x g)(s) = (f(s), g(s)). 
As f and g are continuous at t, so is f x g;  f + g and f g  are simply the 
composites of that function with addition and multiplication. (4) follows by 
induction from (3). 0 

2.12 Theorem. Let E be a topological A-module. 
(1) For each b E E, X + X b  is continuous from A to E ,  and for each 
E A, x + Px is continuous from E to E; if /3 is invertible, x 4 Px is a 

(2) I f f  is a function from a topological space T to E that is continuous 

The proof is similar to that of 2.11. 

2.13 Definition. Let GI, G2, and G be commutativegroups. A function 
f from GI x Gz to G is Z-bilinear if for each a E GI, the function y + 

f(a, y) is a homomorphism from G2 to G, and for each b E Gz, the function 
x 3 f (2, b) is a homomorphism from G1 to G. 

For example, multiplication of a ring and scalar multiplication of a mod- 
ule are Z-bilinear functions on the underlying additive groups. 

If f is Z-bilinear from G1 x G2 to G, clearly 

homeomorphism. 

at  t E T, then for each X E A, Xf is continuous at t. 

for all x E GI,  y E Gz. 

2.14 Theorem. Let GI, Gz, and G be commutative topological groups, 
and let f be a Z-bilinear function from GI x Gz to G. If, for each a E GI, 
the function y -+ f (a, y) is continuous a t  zero from G2 to G, if, for each 
b E G2, the function x --+ f (z ,  b) is continuous a t  zero from G1 to G, and if 
f is continuous a t  (O,O), then f is continuous from G1 x G2 to G. 

Proof. Let (a1,az)  E GI x G2, and let Y be a neighborhood of f ( a l , a z )  
in G. We are to show that there exist neighborhoods W1 of a1 and W2 of 
a2 such that f ( z l , z2 )  E Y for all ( 2 1 , ~ ~ )  E W1 x Wz. By 2.7 there is a 
neighborhood T of zero in G such that f (a1,az)  +T = Y ,  and by 2.10 there 
is a neighborhood W of zero in G such that W+W+W 5 2'. By hypothesis 
there exist neighborhoods 17, and V1 of zero in GI and neighborhoods U2 
and fi of zero in G2 such that f (u l ,u2)  E W for all u2 E U2, f ( u 1 , ~ )  E W 
for all u1 E U1, and f(7~1,212)  E W for all (211,212) E V1 x G. Let W1 = 
a1 + (U1 n K ) ,  W2 = a2 + (U2 f l  V2). By 2.7 W1 and W2 are neighborhoods 
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2.15 Theorem. If a topology 7 on a ring A satisfies (TR 1) and (TR 2) 
of Definition 1.1, then 7 satisfies (TR 3) if and only if i t  satisfies the fol- 
lowing two conditions: 

(TR 4) 

(TR 5) 

(z,y) 3 zy is continuous a t  (0,O) 

For each b E A, z + bz and z -+ zb are continuous a t  zero. 

The condition is necessary by (1) of 2.11 and sufficient by 2.14. 

2.16 Theorem. Let A be a topological ring, E an A-module. If a 
topology 7 on E satisfies (TM 1) and (TM 2) of Definition 2.1, then 7 
satisfies (TM 3) if and only if it satisfies the following three conditions: 

(TM 4) 

(TM 5) 

(TM 6) 

(X,z) -P Xz from A x E to E is continuous a t  (0,O) 

For each b E E, X + X b  from A to E is continuous a t  zero 

For each /I E A,z + /Iz from E to E is continuous a t  zero. 

The condition is necessary by (1) of 2.12 and sufficient by 2.14. 
Analogues of 1.5-1.7 hold for modules: 

2.17 Theorem. Let A be a topological ring, let E be an A-module, let 
( E x ) x ~ L  be a family of topological A-modules, and let (f,),,=~ be a family 
of functions such that for each X E L, fx is a homomorphism from E to Ex. 
The weakest topology on E for which each fx is continuous is an A-module 
topology. 

The proof is similar to that of 1.6. 

2.18 Corollary. The Cartesian product of a family of topological A- 
modules is a topological A-module. 

2.19 Corollary. If ( ~ , ) x ~ L  is a family of A-module topologies on an 
A-module E, then sup(7, : X E L} is an A-module topology. 
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Exercises 

2.1 [a) If 7 is a topology on a ring A with identity such that (TR 1) 
and (TR 3) hold, then (TR 2) holds. (b) If A is a topological ring with 
identity and if 7 is a topology on a unitary A-module E such that (TM 1) 
and (TM 3) hold, then (TM 2) holds. 

2.2 Let 7 be the set of all subsets P of Z such that for each a E P ,  there 
exists q 2 1 such that a + Nq C_ P. Show that 7 is a topology on the trivial 
ring whose additive group is Z that satisfies (TR 1) and (TR 3) but not 
(TR 2). 

2.3 Let 7 be the set of all subsets P of R such that for each a E P there 
exists a nonzero integer q such that a + Zq 5 P .  (a) 7 is a topology on R 
satisfying (TR l), (TR 2), and (TR 4) ,  but not [TR 5 ) .  (b) The topology 
induced on Q by 7 is a ring topology, but multiplicative inversion on @ is 
not continuous at 1. 

2.4 If N is a norm on a ring A with identity, then AX is a topological 
group, i.e., multiplicative inversion is continuous on A X .  

2.5 (a) An additive group topology on a trivial ring [module] is a ring 
[module] topology. (b) If A is a discrete topological ring, (i.e., its topology is 
the discrete topology) and if E is an A-module, an additive group topology 
on E satisfying (TM 6) is an A-module topology. 

2.6 If K is a nondiscrete topological field and if E is a nonzero K-vector 
space, then the discrete topology on E is an additive group topology satis- 
fying (TM 4) and (TM 6) but not ( T a  5 ) .  

3 Neighborhoods of Zero 

We recall that a set F of subsets of a set E is a filter on E if E E F, 0 f 3, 
the intersection of any two members of F again belongs to F, and any 
subset of E containing a member of F also belongs to F. For example, in 
a topological space T ,  the set of all neighborhoods of a point [subset] of T 
is a filter. 

A set B of subsets of E is a filter base on E if the set of all subsets F of 
E for which there exists B E B such that B F is a filter, called the filter 
generated by 23. Thus 8 is a filter base if and only if B # 0, 0 f 8, and the 
intersection of two members of 23 contains a member of B. Consequently, a 
filter base on E is also a filter base on any set containing E. In a topological 
space T, a fundamental system of neighborhoods of a point [subset] of T is 
any filter base generating the filter of neighborhoods of that point [subset]. 
For example, the open neighborhoods of a point in a topological space form 
a fundamental system of neighborhoods of that point. 

If U is the filter of neighborhoods of zero for a group topology on a 
group G ,  then by 2.7, for each a E G, a + U is the filter of neighborhoods 
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of a.  Consequently, a group topology is completely determined by the filter 
of neighborhoods of zero; that is, distinct group topologies have distinct 
filters of neighborhoods of zero. For commutative groups, the following 
theorem gives necessary and sufficient conditions for a filter to be the filter 
of neighborhoods of zero for a group topology on G: 
3.1 Theorem. I f V  is the filter of neighborhoods of zero for a group 

topology on a group G ,  then 

(TGN 1) 
(TGN 2) 

Conversely, i f  U is a filter on a commutative group G satisfying (TGN 1) 
and (TGN 2 ) ,  then there is a unique group topology on G for which U is 
the filter of neighborhoods of zero. 

Proof. The first statement is part of 2.9. Conversely, let V be a filter 
on a commutative group G satisfying (TGN 1) and (TGN 2). We have 
just seen that there is only one candidate for a group topology having U as 
its filter of neighborhoods of zero; since a set is open if and only if it is a 
neighborhood of each of its points, that candidate is the set 7 of all subsets 
0 of G satisfying 

(*) 

Clearly 0 and G satisfy (*), and the union of a family of subsets satisfying 
(*) again satisfies (*). Let 0 1 , 0 2  E 7, and let a E 01 n02 .  There exist 
V', V2 E V such that a + V1 0 1  and a + V2 C 0 2 ;  then V1 n V2 E V ,  and 
a + (VI n V2) C 0 1  n 0 2 .  Thus 01 f l 0 2  satisfies (*). Hence 7 is indeed a 
topology. 

Next we shall show that for each V E V ,  0 E V .  By (TGN 1 )  there exists 
U E V such that U+U C V ,  and by (TGN 2),  U n ( - U )  E V ,  so there exists 
a E U f I  (-17). Then a and -a belong to U ,  so 0 = a+  (-a) E U + U  C V .  

From this we may establish that for each a E G and each V E U, a + V 
is a neighborhood of a for 7. Let 

For each V E V ,  there exists U E V such that U + U C_ V 
If V E V ,  then -V E V .  

For each a E 0 there exists V E V such that a + V C 0. 

0 = ( b  E G : there exists U E V such that b + U C a + V } .  

Clearly a E 0. By the preceding paragraph, 0 C a + V .  To show that 
0 satisfies (*), let b E 0. By definition, there exists U E V such that 
b + U E a + V .  By (TGN 2 )  there exists W E V such that W + W E U .  
Then b +  W 2 0, for if w E W, b +  w + W C b +  W + W b +  U E a + V .  
Thus 0 E 7, and hence a + V is a neighborhood of a for 7. 

To show that a + V is the filter of neighborhoods of a for 7, therefore, 
we need only show that if W is a neighborhood of a for 7, there exists 
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U E U such that a + U = W .  As W is a neighborhood of a, there exists 0 
satisfying (*) such that u E 0 5 W .  By definition, there exists V E V such 
that a + V  5 0. Let U = - a + W .  Then V E - a + O  5 U, so U E V ,  and 
a + U = W .  

Finally, to show that 7 is a group topology, let a, b E G. By 2.8 it 
suffices to show that (2, y) -+ 2 - y is continuous at (a, b), or equivalently, 
that for any V E U, there exists U E It such that if 2 E a + U  and y E b + U ,  
then z - y E a - b + V. By 2.9 there exists a symmetric U E U such that 
U + U  V .  I f2  = a + u  and y = b + v  where u, v E U, then 

2 - y = (a+u) - ( b + v )  = (u- b) + (u-  v) 
E a - b + U + U ~ a - b + V . .  

3.2 Corollary. If V is a fundamental system of neighborhoods of zero 
for a group topology on a group G, then 

(TGB 1) 
(TGB 2) 
Conversely, i f U  is a filter base on a commutativegroup G such that (TGB 1) 
and (TGB 2) hold, then there is a unique group topology on G for which V 
is a fundamental system of neighborhoods of zero. 

In the proof of 3.1, the hypothesis of commutativity was needed for the 
equality (a + u)  - ( b  + v) = ( a  - b)  + (u - v). A generalization of 3.1 to 
noncommutative groups is given in Exercise 3.1. 

In view of 3.2, to specify a group topology on a commutative group, we 
need only specify a filter base V satisfying (TGB 1) and (TGB 2). This 
method, in fact, is the most frequent way of defining a group topology. For 
example, if V is a filter base of subgroups of a commutative group G, then 
It is a fundamental system of neighborhoods of zero for a group topology 
on G. 

3.3 Theorem. Let G be a topological group, let V be a fundamental 

(1) The open symmetric neighborhoods of zero form a fundamental sys- 

(2) For any [open] neighborhood V of zero, A + V is a neighborhood [an 

(3) A = n{A + V : V E U}; in particular, (0) = n{V : V E V } .  
(4) The closed symmetric neighborhoods of zero form a fundamental 

system of neighborhoods of zero. 

Proof. (1) follows from (3) of 2.9, and (2) follows from 2.7. To prove 
(3), we may, without loss of generality, assume that each member of 11 is 

For each V E V there exists U E V such that U + U G V 
For each V E V there exists U E V such that U C -V. 

system of neighborhoods of zero, and let A G G. 

tem of neighborhoods of zero. 

open neighborhood] of A. 



3 NEIGHBORHOODS O F  ZERO 21 

symmetric, in view of 2.9. First let b E A, and let V be a symmetric 
neighborhood of zero. Then A n ( b  + V) # 8,  so for some v E V, b + TI E A, 
whence b E A + V. Conversely, let b E n ( A  + V : V E V ) ,  and let W be a 
neighborhood of b. By 2.7 there exists V E V such that b+V & W and there 
exists a E A such that b E a + V, so as V is symmetric, a E A n ( b  + V) E 
A n W .  T h u s b E A .  

(4) If V is a neighborhood of zero, there is a neighborhood U of zero 
such that U + U E V by 2.9, and by (3) 6 C U + U C V. Thus every 
neighborhood of zero contains a closed neighborhood of zero. If U is a 
closed neighborhood of zero, U n (-U) is a closed symmetric neighborhood 
of zero contained in U by 2.7. 0 

A topological space T is regular if T is Hausdorff and for each a E T the 
closed neighborhoods of a form a fundamental system of neighborhoods of 
a. 

3.4 Theorem. Let G be a topological group. T h e  following statements 
are equivalent: 

1" ( 0 )  is closed. 

2" 

3' G is Hausdorff. 

4" G is regular. 

( 0 )  is the intersection o f  the neighborhoods o f  zero. 

Proof. 1' and 2' are equivalent by (3) of 3.3, and 3' and 4' are equivalent 
by (4) of 3.3. We therefore need only show that 2' implies 3'. Let z, y E 
G, 2 # y. Then z - y # 0, so by 2' there exists a neighborhood V of zero 
such that z - y 4 V. By 2.9 there is a symmetric neighborhood U of zero 
such that U + U E V .  Then 2 + U and y + U are disjoint neighborhoods of 
z and y respectively, for if z E (z + V )  n (y + U), then 

z - y = - ( 2 - z ) + ( z - y )  € U + U C V ,  

a contradiction. 0 

3.5 Theorem. Let A be a ring. I f  V is a fundamental system of neigh- 
borhoods o f  zero for a ring topology on A, then V satisfies (TGB 1 ) ,  (TGB 2 )  
and the following conditions: 

(TRN 1) 
(TRN 2) 

For each V E V there exists U E V such that UU 

For each V E V and each b E A there exists U E V such that 
bU C V and Ub C V .  

V 
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Conversely, i f  V is a filter base on A satisfying (TGB l ) ,  (TGB 2), (TRN l), 
and (TRN 2), then there is a unique ring topology on A for which V is a 
fundamental system o f  neighborhoods of zero. 

Proof. Conditions (TRN 1) and (TRN 2) restate (TR 4) and (TR 5) of 
2.15. Hence the theorem follows from 3.2 and 2.15. 0 

The most frequent way of defining a ring topology on a ring A is to  
specify a filter base satisfying the conditions of 3.5. Those conditions are 
satisfied, for example, by a filter base of ideals of A. Any ring topology 
having a fundamental system of neighborhoods of zero consisting of ideals 
is called an ideal topology. 

3.6 Theorem. Let A be a topological ring, E and A-module. I f  V is a 
fundamental system of  neighborhoods o f  zero for an A-module topology on 
E ,  then V satisfies (TGB l), (TGB Z), and the following conditions: 

(TMN 1) For each V E V there exist a neighborhood T o f  zero in A and 
U E V such that TU C V 

(TMN 2) For each V E V and each b E E there exists a neighborhood T 
o f  zero in A such that T b  5 V 

(TMN 3 )  For each V E V and each /3 E A there exists U E V such that 

Conversely, i f  V is a filter base on E satisfying (TGB l ) ,  (TGB 2),  (TMN l), 
(TMN 2) ,  and (TMN 3),  then there is a unique A-module topology on E 
for which V is a fundamental system o f  neighborhoods o f  zero. 

Proof. Conditions (TMN 1)-(TMN 3) restate (TM 4)-(TM 6) of 2.16. 
Hence the theorem follows from 3.2 and 2.16. 0 

pu v. 

Exercises 

3.1 Let G be a group, denoted multiplicatively, and let e be its neutral 
element. Modify the proof of 3.1 to establish the following: (a) If V is the 
filter of neighborhoods of e for a group topology on G, then 

(TGN 1) For each V E V there exists U E V such that UU C V 
(TGN 2) If V E V ,  then V-l E V 
(TGN 3) If V E V ,  then for each b E G, bVb-' E V .  

(b) Conversely, if V is a filter base on G satisfying (TGN 1)-(TGN 3), 
then there is a unique group topology on G for which V is the filter of 
neighborhoods of e .  

3.2 There is a unique topology on the additive group R for which x -+ a+z 
is continuous for each a E R and the sets V,, defined by V, = {x E R : 
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1.1 < 2-n and x # f 2 k  €or all k E Z} for each n 2 1, form a fundamental 
system of neighborhoods of zero. For this topology, z + -x is continuous, 
but (z, y) 

3.3 Let 7 be an additive group topology on a ring A.  The subset B of 
A, consisting of all b E A such that z + b z  and x -+ xb are continuous at 
zero, is a subring of A; furthermore, if A has an identity, B X  = B n A X .  
3.4 If 7 is a ring topology on a finite ring A,  there is an ideal J of A 

such that the neighborhoods of zero for 7 are precisely the subsets of A 
containing J .  

3.5 Let K be a nondiscrete topological field and let E be a K-vector 
space. If It is a filter base of subspaces of E whose intersection is {0}, then 
V is a fundamental system of neighborhoods of zero for a Hausdorff additive 
group topology on E and satisfies (TMN 1) and (TMN 3) but not (TMN 

3.6 Let p be a prime, let Q be furnished with the p-adic absolute value, 
let S be the unit ball of Q, let E be the subspace of the @vector space 
@ generated by SN, and let V be the filter of neighborhoods of zero in 
S" for the Cartesian product topology. Then Y is a fundamental system of 
neighborhoods of zero for a Hausdorff additive group topology on E and 
satisfies (TMN 1) and (TMN 2) but not (TMN 3). [Show that (TMN 3) 
fails if p = l/p] 

3.7 Let E be the W-vector space WN of all sequences of real numbers 
indexed by M. For each T E W>o, let 

2 + y is not continuous at (0,O). 

2). 

Then {Vr : T > 0) is a fundamental system of neighborhoods of zero for a 
Hausdorff additive group topology on E and satisfies (TMN 1) and (TMN 3) 
but not (TMN 2). 

3.8 Let K be a nondiscrete Hausdorff topological field, let L be a proper 
extension field of K ,  let L d  be I; furnished with the discrete topology, and 
regard L as a one-dimensional vector space over Ld. The filter of all neigh- 
borhoods of zero in K is a fundamental system of neighborhoods of zero 
for a Hausdorff additive group topology on L and satisfies (TMN 1) and 
(TMN 2) but not (TMN 3). 

4 Subrings, Ideals, Submodules, and Subgroups 

The closure of a subring, ideal, submodule, or subgroup is again one: 

4.1 Theorem. If H is a subgroup of a topological group G, then fT is 
a subgroup. 



24 TOPOLOGICAL RINGS AND MODULES 

Proof. The continuous function (z,y) + z - y from G x G to G takes 
of H x H into the closure H x H into H and hence takes the closure 

H of H. Thus 
x - 

is a subgroup. 0 

4.2 Theorem, If B is a subring [ideal, left ideal, right ideal] of a topo- 
logical ring A, so is B. If A is a dense subring of a topological ring A' and 
if J is an ideal [left ideal, right ideal] of A, then the closure of J in A' is an 
ideal [left ideal, right ideal]. 

The proof is similar to that of 4.1. 

4.3 Theorem. If M is a submodule of a topological module E, so is M .  

The proof is similar t o  that of 4.1. 
We shall call a Hausdorff topological group, ring, or module simply a 

Hausdorff group, ring, or module. 

4.4 Theorem. Let A be a Hausdorff ring, and let B be a subring of A. 
(1) I f B  is commutative, so is E. 
(2) A multiplicative identity of B is also a multiplicative identity of B. 
(3) The center of A is closed. 

Proof. As A is Hausdorff, continuous functions from a topological space 
T to A agree on a closed subset of 2'. (1) As (z, y) 4 yz is continuous from 
A x A to A by (2) of 2.11, it agrees with (z,y) -+ zy on a closed subset of 
A x A containing B x B and hence on B x B; thus 3 is commutative. (2) 
Assume that B has a multiplicative identity e. As the continuous functions 
x -P xe, x 3 ex, and the identity function agree on a closed subset of A 
containing B, they agree on B; thus e is the identity of B. (3) Let C be 
the center of A. As the functions of (1) agree on a closed subset of A x A 
containing A x C, they agree on its closure A x c; thus c C C, so C is 
closed. 

The conclusions of 4.4 need not hold in a non-Hausdorff topological ring. 
Indeed, they do not hold in a noncommutative ring furnished with the trivial 
topology, for in such a topological ring A, the closure of every nonempty 
subset is A. 

4.5 Theorem. The connected component C of zero in a topological ring 
A is a closed ideal, and u+C is the connected component of a for each a E A. 

Proof. The second assertion follows from 2.7. Hence if u E C, then 
C f l  (a + C) # 0, so C U (u + C) is a connected set containing zero, and thus 
u + C C C. Therefore C + C C C. Also -C is a connected subset of A 
containing zero by 2.7, so -C C C. Hence C is an additive subgroup. For 
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each b E A, bC and Cb are connected sets containing zero by (1) of 2.11, so 
bC C C and Cb G C. Thus C is a (closed) ideal. 0 

A topological space T is totally disconnected if for each t E T, { t }  is 
the connected component oft. By 4.5, a topological ring is totally discon- 
nected if and only if (0) is the connected component of zero. As connected 
components are closed, a totally disconnected ring is Hausdorff by 3.4. 

A proper subset of a set X is any subset of X other than X itself. Thus, 
for example, 0 is a proper subset of every nonempty set. 

4.6 Corollary. If A is a topological ring having no proper nonzero closed 
ideals, then the topology of A is either Hausdorff and connected, or Haus- 
dorff and totally disconnected, or the trivial topology. 

Proof. If A is not Hausdorff, then (0) is A by 4.2 and hypothesis, so for 
- -  each a E A 
{ a }  = a + (0) = a + (0) = A 

by 2.7; therefore A is the only nonempty closed subset, so the topology 
of A is { A , 0 } .  By 4.5, the topology of A is either connected or totally 
disconnected. 0 

A topological ring having no nonzero proper ideals satisfies the hypothesis 
of 4.6. In particular: 

4.7 Corollary. A ring topology on a division ring is either Hausdorff and 
connected, or Hausdorff and totally disconnected, or the trivial topology. 

The ring of all linear operators on a finite-dimensional vector space over 
a division ring also has no proper nonzero ideals, but if the dimension of the 
vector space exceeds one, it does have proper nonzero left and right ideals. 

4.8 Theorem. An open subgroup H of a topological group G is closed. 

Proof. Each left coset of H is open by 2.7; as H is the complement of 
the union of all left cosets of H other than H itself, H is closed. 0 

4.9 Theorem. If a subgroup H of a topological group G has an interior 
point, then H is open. 

Proof. By 2.7 there exist a E H and an open neighborhood U of zero 
such that a + U G H. The subgroup H is a neighborhood of each of its 
points h, as 

h E h + u = ( h  - u )  + ( a +  U) 5 H. 

Thus H is open. 0 
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4.10 Corollary. The subgroup of a topological group G generated by a 
neighborhood of  zero is both open and closed. 

4.11 Theorem. Let H be a subgroup of  a topological group G. Iffor 
some a E H there is a neighborhood V of  a such that V n H is closed in the 
topological space V ,  then H is closed. 

Proof. By 2.7 and 2.9 there is a symmetric open neighborhood U of zero 
such that a + U C_ V ,  Clearly (a + V )  n H is a closed subset of a + U .  As 

(a  + u) n H = (a  + u)  n (a  + H) = a + (V n H )  

and as z 4 a + z is a homeomorphism from G t o  G, U n H is a closed 
subset of U. Let z E z. Then there exists h E H n (z + U), so 2 E h + U 
as U is symmetric. As h + U is open and as h E H ,  

( h  + u)  n ZT 5 ( h  + u)  n H = ( h  + u) n ( h  + H) 
= h + (U n H) = h + U n H 

by 2.7. Thus 

Z E  ( h + U ) n Z G  ( h + U ) n ( h + u )  

= h + (U n H n U )  = h + (U n H )  C H.  0 

4.12 Corollary. A locally compact subgroup H of a Hausdorff group 
G is closed. 

Proof. If V is a neighborhood of zero such that V n H is compact, then 

4.13 Corollary. If a subgroup H of  a topological group G has an iso- 
lated point, then H is discrete. If G is Hausdorff and if H is a discrete 
subgroup, then H is closed. 

V n H is closed in G and hence in V .  0 

Proof. Let a E H be such that { a }  = ( a  + U) n H for some neighborhood 
U of zero. Then for each h E H ,  ( h  - a) + H = H ,  so 

( h  + U )  n H = [ ( h  - a )  + ( a  + U ) ]  n [ ( h  - a )  + H ]  

= ( h  - a)  + [ ( a  + U )  n H ]  = ( h  - a) + { a }  = {h) .  

Thus H is discrete. The second assertion follows from 4.12. 0 

In contrast, if G is a topological group whose topology is not Hausdorff, 
then (0) is a compact, discrete subgroup of G that is not closed. 
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4.14 Theorem. Let G be a topological group, and let K be a compact 
subset, F a closed subset of G. 

(1) Every neighborhood of K contains a closed neighborhood of K ;  i f  G is 
locally compact, every neighborhood of K contains a compact neighborhood 
of K .  

( 2 )  For any neighborhood U of K there is a neighborhood W of  zero such 
that K + W  G U and W + K  U .  

( 3 )  If K n F = 8, there is a neighborhoodv of zero such that 

( K  + V) n ( F +  V )  = 8 = (V+ K )  n (V + F ) .  

Proof. (1) Let U be a neighborhood of K.  By 2.7 and (4) of 3.3, for each 
3: E K there is a closed neighborhood V, of zero such that z+V, C U. Since 
{z + V,O : z E K }  is an open cover of K (where V,O denotes the interior of 
V,), there exist ~ 1 , .  . . , 3:, E K such that if 

n 

w = U(.i + V,<>, 
i=l 

then K C W .  Thus W is a closed neighborhood of K contained in U. If G 
is locally compact, we may assume that each V, is compact, in which case 
W is also. 

(2) For each z E K ,  let V, be a neighborhood of zero such that x+V, 5 U, 
and let W, be an open neighborhood of zero such that W, + W, C V,. Then 
{z + W, : 2 E K }  is an open cover of K ,  so there exist 21,. . . , zn  E K such 
that 

n 

U(z; + Wz;) 1 K.  
i=l 

Let 
n 

W, = n K. 
i= l  

Ifz E K and y E W1, then x = z i + w  for some i E [1,n] and some w E W,,, 
so 

+ y = xi + w + y E X; + Wz; + Wzj C 2; + Vx; S U. 

Thus K + W1 C U .  Similarly, there exists a neighborhood Wz of zero such 
that WZ + K G U. Finally, let W = W, n WZ. 

(3) By ( 2 )  applied to the neighborhood G\F of K ,  there is a neighborhood 
W of zero such that ( K  + W )  fl F = 8 = (W + K )  f l  F .  Clearly 

( K +  v)  n ( F +  v)  = 0 = (v + K )  n (v+ F )  
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where V is any symmetric neighborhood of zero such that V + V c W .  0 

If P is a topological space, the connected component C, of x E P is 
contained in every subset of P that is both open and closed and contains x, 
but, in general, C, is not the intersection of all such subsets. If, however, P 
is compact, C, is the intersection of all open and closed subsets containing 
x, a fact we prove under the additional assumption that P is a subspace of 
a topological group: 

4.15 Theorem. If P is a compact subset of a topological group G ,  for 
each x E P the connected component of x in the topological space P is the 
intersection of all open and closed subsets of P that contain x. 

Proof. For each symmetric neighborhood V of zero, we define (A,,v,k)a>o - 
recursively by 

and we define 

First, A,,v is open in P, for if y E A,,V,k, the neighborhood (y+ V) n P  of y 
in P is contained in A,,v,k+l. Second, A,,v is closed in P ,  for if y E P\A, ,v ,  
then 

((Y + V )  fl P )  n A2,V = 0; 

otherwise, there would exist v E V such that y + v E P n A,,v,b for some 
k 2 0, whence 

a contradiction. 
Let A, = n{A,,v : V is a symmetric neighborhood of zero}; it suffices 

to  prove that A, is connected. In the contrary case, A, = B U C where B 
and C are nonempty closed subsets of P such that x E B and B n C = 0. 
As B is closed and hence compact, there is a neighborhood U of zero such 
that (B + U) n (C + U) = 0 by (3) of 4.14. Let W be an open symmetric 
neighborhood of zero such that W + W c U, and let 

H = P \  ( ( B +  W )  u (C+ W ) ) .  
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Then H is a closed and hence compact subset of P by 2.7. We shall show 
that if V is any symmetric neighborhood of zero such that V 2 W ,  then 

Indeed, as 
A,,v J A , = B U C  

and as 
c E p \ ( B  + W ) ,  

there is a largest integer m such that A,,v,, B + W .  Thus there exists 

Also 

Thus y E HnA,,V. Consequently, as {Ae ,v:  V is a symmetric neighborhood 
of zero contained in W }  is a filter base of closed subsets of compact P ,  
A,  n H # 0, a contradiction of the identity A, = B U C. Thus A ,  is 
connected. 0 

4.16 Theorem. Let G be a locally compact group. I f  the connected 
component C of  zero is compact, then the compact open subgroups of G 
form a fundamental system of neighborhoods of C .  

Proof. We shall first prove that if Q is a compact neighborhood of C, 
there is a neighborhood U of C contained in Q that is both open and closed 
in G. Indeed, let B = Q \ Q" (where Q" is the interior of Q), the boundary 
of Q, a compact set. Let L be the set of all subsets of Q that contain zero 
and are both open and closed in the topological space Q. By 4.15, C = nc. 
If I/ n B # 0 for all I, E .C, then by compactness, 

0 #  L n B = C n B c Q o n ( Q \ Q O ) = O ,  
L€C 

a contradiction. Hence there exists U E C such that U n B = 0, whence 
U 2 Q". As U is closed in compact Q, U is closed in G; as U is an open 
subset of topological space Q that is contained in Q", U is open in Q" and 
hence in G. 
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To prove the theorem, let P be a neighborhood of C. By (1) of 4.14 there 
is a compact neighborhood Q of C contained in P ,  and by the preceding 
there is an open and closed subset U that contains C and is contained in 
Q. Since U is compact and open, by (2) of 4.14 there is a a neighborhood 
V of zero such that U + V U. Let W be a symmetric neighborhood of 
zero such that W C U n V .  Then 

w + w c u + v u, 

and an inductive argument establishes that for all n 2 1, 

W + W + * * - + W (n terms) s U. 
Thus the subgroup H of G generated by W is contained in U and hence in 
P. By 4.10, H is both open and closed and hence compact. 0 

4.17 Corollary. If G is a totally disconnected locally compact group, 
the compact open subgroups of G form a fundamental system of neighbor- 
hoods of zero. 

4.18 Theorem. If E is a topological module over a topological ring A 
and if K is a compact subset of E, then for each neighborhood V of zero in 
E there is a neighborhood U of zero in A such that UK C V .  

Proof. For each c E E ,  (X,z) --+ Xz is continuous at (O,c) ,  so there exist 
an open neighborhood P, of c and an open neighborhood U, of zero in A 
such that U,P, C V .  Since {P, : c E K }  is an open cover of K ,  there is a 
finite subset M of K such that U c E ~ P c  2 K.  Let U = ncEMUc, an open 
neighborhood of zero in A.  Then U K  

4.19 Corollary. If K is a compact subset of a topological ring A, for 
any neighborhood V of zero there is a neighborhood U of zero such that 
UK C V and KU C V. 

Proof. A is clearly a topological left and right module over itself, so by 
4.18 there exist open neighborhoods U, and V, of zero such that VlK V 
and KU2 E V; let U = Ul n U2. 

4.20 Theorem. If A is a compact totally disconnected ring, the open 
ideals of A form a fundamental system of neighborhoods of zero, that is, 
the topology of A is an ideal topology. 

Proof. By 4.17 the compact open additive subgroups form a fundamental 
system of neighborhoods of zero. Let H be a compact open additive sub- 
group. By 4.19 there is an open neighborhood U of zero such that AU s H 
and U C H, and there is an open symmetric neighborhood L of zero such 

V .  0 
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that L S U and L A  C U .  Then L,  AL, LA,  and ALA are all subsets of 
H, so the ideal J of A generated by I; ,  which is simply the additive group 
generated by L U AL U LA U ALA, is contained in H, and J is open by 
4.10. 0 

4.21 Theorem. If A is a locally compact totally disconnected ring, the 
compact open subrings of A form a fundamental system of neighborhoods 
of zero. 

Proof. By 4.17 we need only show that a compact open additive subgroup 
H contains an open subring. By 4.19 there is an open neighborhood U of 
zero such that U H. Then UU E U H  C H, and an 
inductive argument establishes that for each n 2 1, 

H and UH 

U U . .  . U (n terms) & H .  

Consequently, the subring B generated by U is contained in H, and B is 
open and closed (and hence compact) by 4.10. 0 

We conclude with a useful theorem relating the neighborhoods of zero in 
a topological group to those in a dense subgroup. 

4.22 Theorem. I f G  is a dense subgroup of a Hausdorff group GI, the 
closures in GI of a fundamental system of neighborhoods of zero in G form 
a fundamental system of neighborhoods of zero in GI. 

Proof. Let V be a neighborhood of zero in G. Then there is an open 
neighborhood U of zero in GI such that U n G E V. Hence 

so is a neighborhood of zero in GI. Conversely, any neighborhood of zero 
in GI contains a closed neighborhood W by 3.4, and W contains the closure 
W n G of the neighborhood W n G of zero in G. 0 

Exercises 

4.1 A closed discrete subset of a connected locally compact group is count- 
able. [Use 4.10.1 
4.2 Let S be a subset of a Hausdorff topological ring A. (a) The centralizer 

of S, consisting of all z E A such that z s  = sz for all s E S, is closed. (b) 
The left [right] annihilator of S, consisting of all z E A such that z s  = 0 
[sz = 01 for all s E S, is closed. 

4.3 Let J be a left ideal of a topological ring A. For each z E J ,  the left 
annihilator of z in A (Exercise 4.2) is open if either (a) J is discrete for its 
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induced topology, or (b) A is locally connected and J totally disconnected 
for its induced topology. 

4.4 If A is a nondiscrete topological ring having no nonzero zero-divisors 
and if the center of A is open, then A is commutative. 

4.5 If A is a closed subring of a topological ring B and if 

then A0 is closed and is the largest subring of B of which A is an ideal. 
4.6 Let K be a commutative topological ring with identity, and let A be 

a topological K-algebra. Let A1 be the K-algebra obtained by adjoining an 
identity to A; thus A1 = K x A, with addition, multiplication, and scalar 
multiplication defined by 

Show that A l )  furnished with the Cartesian product topology, is a topological 
K-algebra. 

4.7 (Correl [1958]) (a) Let K be a commutative topological ring with 
identity, A a topological K-algebra. The open K-submodules of A form 
a fundamental system of neighborhoods of zero for a weaker K-algebra 
topology on A. (b) In particular, if A is a topological ring, the open additive 
subgroups of A form a fundamental system of neighborhoods of zero for a 
weaker ring topology on A. 

5 Quotients and Projective Limits of Rings and Modules 

Let f be a function from S to T. We shall say that f is injective or 
an injection if for all z, y E S, f(z) = f (y )  implies that z = y, that f is 
surjective or a surjection if the range f(S) of f is T, and that f is bijective 
or a bijection if f is both injective and surjective, 

If f is a function from one group [ring, A-module, A-algebra] to another, 
f is a monomorphism [epimorphism, isomorphism] is f is an injective (sur- 
jective, bijective] homomorphism. 

Let f be a function from a topological space S to a set T. Of all the 
topologies on T for which f is continuous, there is a strongest, namely, 
(0 C T : f-'(O) is open in S},  for that collection of subsets of T is easily 
seen to be a topology on T. 

Let H be a subgroup of a group G. The canonical surjection from G to 
G / H  is the surjection 4~ defined by 4~ (z) = 2 + H for all z E H; if H is a 
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normal subgroup, $a is an epimorphism, called the canonical epimorphism 
from G to G / H .  Similarly, if J is an ideal of a ring or algebra A,  $J is 
called the canonical epimorphism from A to A / J ,  and if A4 is a submodule 
of a module E ,  4~ is called the canonical epimorphism from E to E / M .  

5.1 Definition. Let J be an ideal of a topological ring or algebra A. The 
quotient topology of A /  J is the strongest topology on A /  J for which the 
canonical epimorphism &J from A to A / J  is continuous. 

We similarly define the quotient topology of E / M  where M is a submod- 
ule [subgroup] of a topological module [group] E. 

The following theorems, stated for quotient rings determined by ideals 
of topological rings, are also valid (with essentially the same proof) for 
quotient modules [groups] determined by submodules [normal subgroups] of 
topological modules [groups]. 

A function f from a topological space S to  a topological space T is open 
if for every open subset 0 of S, f(0) is open in T. 

5.2 Theorem. If J is an ideal of a topological ring A,  the canonical 

Proof. By 5.1, C$J is continuous. I f 0  is an open subset of A, + J ' ( + J ( ~ ) )  

We shall use the following theorem in proving that the quotient topology 

epimorphism 4 j  from A to A / J  is continuous and open. 

= 0 + J ,  an open subset of A by ( 2 )  of 3.3, so ~ J ( O )  is open in A / J .  0 

of a quotient ring of a topological ring is a ring topology: 

5.3 Theorem. Let R, S, and T be topological spaces, let h be a con- 
tinuous open surjection from R to s, and let q be a function from S to T .  
If q o h is continuous [open], then q is continuous [open]. 

Proof. If 0 is an open subset of T and if q o h is continuous, then 

q - l ( 0 )  = h(h-l(q-'(O)) = h ( ( q 0  h)- l (O)) ,  

an open subset of S. If 0 is an open subset of S and if q o h is open, then 

an open subset of 2'. 0 

topology of A / J  is a ring topology. 

Proof, Let + j  x $J be the function from A x A to ( A / J )  x ( A / J )  defined 
by ( 4 ~  x + J ) ( ~ , Y )  = ( ~ J ( ~ ) , C ~ J ( Y ) )  for all (Z,Y) E A x A.  As 4~ is a 
continuous open surjection by 5.2, so is $J x C$J. If q is either subtraction 

5.4 Theorem. If J is an ideal of a topological ring A, the quotient 
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or multiplication from A x A to A,  and if p~ is the corresponding function 
from ( A / J )  x ( A / J )  to A / J ,  then 

q J  (4.7 x 4.J) = d J  q* 

As q is continuous, so is 4.~ o Q; hence q j  is continuous by 5.3. 0 

5.5 Theorem. If V is a fundamental system of neighborhoods of zero in 
a topological ring A and if J is an ideal of A, then $ J ( V )  is a fundamental 
system of neighborhoods of zero for the quotient topology of A / J .  

Proof. As 4~ is open, d j (V)  is a neighborhood of zero in A / J  for each 
V E V .  Conversely, if U is a neighborhood of zero in A / J ,  then as 4~ is 
continuous, 4J1(U) is a neighborhood of zero in A, so there exists V E V 
such that V C 4J1 ( U ) ,  whence 

'$J(v) C 4J(4y1(v)) = Uso 

5.6 Corollary. If the topology of a topological ring A is an ideal topol- 
ogy, then for any ideal J of A, the quotient topology of A / J  is an ideal 
topology. 

5.7 Theorem. Let J be an ideal of a topological ring A. 
(1) A / J  is Hausdorff if and only if J is closed. 
( 2 )  A / J  is discrete if and only if J is open. 

Proof. (1) follows from 3.4, 5.1, and the identity 

#S1 ((4 J >  \ { J H  = A \ J.  

(2) follows from 2.7, 5.1, and the identity 

4 J ' ( { J } )  = J . 0  

If B is a subring and J an ideal of a ring A such that J C B ,  then the 
quotient ring B /  J is actually a subring of A / J .  Happily, if A is a topological 
ring, the quotient topology of B / J  is identical with the topology induced 
on the subring B /  J of A /  J by the quotient topology of A/  J :  

5.8 Theorem. Let B be a subring and J an ideal of a topological ring 
A such that J & B. The quotient topology of B / J  is identical with the 
topology induced on the subring B / J  of A / J  by the quotient topology of 
A/  J. 

Proof. Let ~ S , J  and ~ A , J  be the canonical epimorphism from B to B / J  
and from A to A / J  respectively. First, let 0 be open for the quotient 
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topology of B / J .  Then Q,BfJ(0) is open in B ,  so Q,&(O) = B nQ for some 
open subset Q of A.  To show that 0 is open for the topology induced on 
B / J  by the quotient topology of A / J ,  it suffices to show that 

0 = ( B /  J )  n Q,A,J (Q) 
as Q,A,J is open. Clearly 

0 C ( B /  J )  n Q,A,J (&I. 
Conversely, let p E ( B / J )  n Q,A,J(Q). Then /? = b + J for some b E B and 
p = q+ J for some q E Q. Hence q - b  E J ,  so q E J + B  = B .  Consequently, 

q E BnQ = Q,i!j(O)r 

so p = q i- J E 0. 
Second, let 0 be open in B / J  for the topology on B / J  induced by the 

quotient topology of A / J .  Then 0 = ( B / J )  n P for some open subset P of 
A / J .  Clearly 

an open subset of B ,  so 0 is open for the quotient topology of B / J .  0 

5.9 Corollary. Let B be a subring and J an ideal of a topological ring 
A. The quotient topology of (B+ J ) / J  is identical with the topology induced 
on it by the quotient topology of AIJ.  

5.10 Definition. Let f be a function from a topological ring [module, 
group] A to another B.  The function f is a topological isomorphism 
i f f  is both an isomorphism and a homeomorphism; f is a topological 
homomorphism is f is a continuous homomorphism and is also an open 
mapping from A onto its range f ( A ) ;  f is a topological epimorphism 
[monomorphism] i f f  is a surjective [injective] topological homomorphism. 

Thus f is a topological epimorphism if and only if f is a continuous open 
epimorphism. If J is an ideal of a topological ring A, 4~ is a topological 
epimorphism from A to A / J  by 5 .2 .  If f is a homomorphism from A to B 
and i f f1  is the epimorphism obtained from f by restricting its codomain to 
its range, then clearly f is a topological homomorphism if and only if f l  is 
a topological epimorphism. 

5.11 Theorem. Let f be a homomorphism from a topological ring A 
to a topological ring B ,  and let J be an ideal contained in the kernel K of 
f. The homomorphism g from A/J  to B satisfying g o  Q, J = f is continuous 
[open, a topological homomorphism] if and only i f f  is. In particular, if 
J = K, g is a topological isomorphism [monomorphism] if and only i f f  is 
a topological epimorphism [homomorphism]. 

The assertion follows from 5.2 and 5.3. 

4StJ (0) = B n &;J(P)r 
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5.12 Corollary. If H and J are ideals of a topological ring A such that 
H ,  then the canonical epimorphism f : x + J 3 x + H from AIJ to J 

A /H is a topological epimorphism. 

The assertion follows from 5.11 applied to 4 ~ .  
5.13 Corollary. HH and J areideals ofa topological ring such that J C 

H ,  the canonical isomorphism g from ( A / J ) / ( H / J )  to A/H is a topological 
isomorphism, 

The assertion follows by applying 5.11 to the epimorphism of 5.12. 

5.14 Theorem. Let A be a dense subring of a topological ring B, and 
let J be a closed ided of A, its closure in B. Then g : x + J + x + J 
is a topological isomorphism from AIJ to the dense subring (A + J ) / j  of 
B / J .  I f  J is an open ideal of A ,  then is an open ideal of B, and g is an 
isomorphism from AIJ to B / J .  

Proof. 9 is indeed an ideal of B by 4.2. The kernel of the restriction 
to A of 4~ is J n A = J ,  so g is a continuous isomorphism from A / J  to 
( A  + s ) / j  by 5.11. As A is dense in B and as $J is continuous, + J ( A )  
(which is ( A  + s)/J) is dense in B / j .  

To show that g is open, let 0 be an open subset of A / J  and let P = 
+yl(0). Then g(0) = $ J ( P ) ,  and P +  J = P .  As Pis  open in A, P = U n A  
for some open subset U of B. We shall show that (U + I )  n A = P .  Indeed, 
let u + h E A where u E U and h E j. As U is a neighborhood of u, there 
exists a symmetric neighborhood V of zero such that u + V C U. As h E J, 
(V + h) n J # 0, so there exists z E V such that z + h E J .  Consequently, 

Thus for some j E J ,  
u + h -  j E U n A = P  

since u + h E A ,  so u + h E P + J = P .  Therefore 

an open subset of ( A  + j ) / j ,  for if z + E + j ( U )  where x E A, then 

whence z + J E +J(P) = g ( 0 ) .  The final assertion follows from 4.22, 4.9, 
and (2) of 5.7. 0 
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5.15 Corollary. I f A  is a subring of a topological ring B, if J is a closed 
ideal of A,  and if A and 3 axe the closures of A and J respectively in B,  
then g : x + J -, x + J is a topological isomorphism from A / J  to the dense 
subring ( A  + J ) / l  of A / j .  

Proof, We need only let B = A in 5.14. 0 

5.16 Theorem. IfC is the connected component of zero in a topological 
ring A, then A / C  is totally disconnected. 

Proof. It suffices to show that if D is a closed subset of A / C  such that 
d;'(D) is disconnected, then D is disconnected; for then, if the connected 
component K of zero in A / C  contained more than one point, 4C'(K) would 
properly contain C and hence be disconnected, so K would also be discon- 
nected, a contradiction. Let X and Y be nonempty closed subsets of 4;' (D) 
(and hence of A )  such that X U Y = 4C1(D) and X n Y = 0. For each 
x E X, 2 + C is a connected subset of 4;'(D) and hence is contained in X; 
thus 

x = x + c = 4 $ ( 4 c ( X ) ) ,  

y = 4C1(4C(Y)). 

4C(X) n 4 C W  = 4C(X n Y )  = 0, 

( A m  \ 4 c w  = 4 c ( A  \ X ) ,  

and similarly 

Therefore 

and 

an open set by 5.2; thus (bc(X)  is closed in A / C ,  and similarly 4c(Y) is 
also closed. As 

we conclude that D is disconnected. 0 

5.17 Theorem. Let J be a closed ideal of a locally compact ring A, and 

(1) A/  J is a locally compact ring. 
(2) C is the intersection of all open subrings of A. 
(3) A / J  is totally disconnected if and only if J 2 C. 
(4) A is connected if and only if the additive subring generated by each 

neighborhood of zero is A .  

Proof. (1) follows from 5.2, 5.4, and (1) of 5.7. In particular, A / C  is a 
totally disconnected locally compact ring by 5.16, so {C} is the intersection 

let C be the connected component of zero in A.  
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of all open subrings of A/C by 4.21. But if L is an open subring of A / C ,  
q5C1(L) is an open subring of A. Therefore the intersection of all open 
subrings of A is contained in and thus, by 4.8, identical with $C1({C}), 
which is C. 

(3) If J does not contain C, q5~(C) is a connected subset of A / J  con- 
taining more than one point. To prove the converse, assume that J 2 C. 
By 5.13, A / J  is topologically isomorphic to ( A / C ) / ( J / C ) ;  replacing A and 
J respectively by A/C and J / C ,  we may by 5.16 further assume that A is 
totally disconnected. But then by 4.21, 5.2 and 5.5, the open subrings of 
A/  J form a fundamental system of neighborhoods of zero, so A/  J is totally 
disconnected. (4) follows from (2), 4.9, and 4.8. 0 

5.18 Theorem. Let f be a homomorphism from a topological group G 
to  a topological group H ,  and let U be a fundamental system of neighbor- 
hoods of zero in G .  

(1) f is continuous i f  and only i f f  is continuous at zero. 
( 2 )  f is open i f  and only i f  for every V E Y, f(V) is a neighborhood of 

Proof. (1) Assume f is continuous at zero. Let a E G, and let U be a 
neighborhood of f (a) in H. Then U = f ( a )  + V for some neighborhood 
V of zero in H, and f-l(V) is a neighborhood of zero in G by hypothesis. 
Consequently, a + f -'(V) is a neighborhood of a, and as f is a homomor- 
phism, 

zero in H .  

Therefore f is continuous at a. 
(2) The condition is clearly necessary: Sufficiency: To show that f is 

open, let 0 be an open subset of G. For each x E 0 there exists V, E U 
such that x + V, 0. As f is a homomorphism, for each z E 0, 

and by hypothesis, f(z) + f(V,) is a neighborhood of f(x). Thus f(0) is a 
neighborhood of each of its points, and so f(0) is open in H, 0 

A direction 5 on a set L is a reflexive, transitive, cofinal relation. Thus 
for all X E L,  X 5 A; for all A, p, u E L, if X 5 p and p 5 u,  then X 5 v ;  and 
for all A, p E L there exists y E L such that X 5 y and p 5 y. A directed 
set is a set furnished with a direction. 

5.19 Definition. Let ( E x ) x ~ L  be a family of nonempty sets indexed 
by a directed set L ,  and for each pair ( X , p )  of elements of L such that 
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A < p, let fx, be a function from Ep to  Ex. We shall say that (Ex)x,=J is 
a projective family of sets relative to (fx,) if 

for all A, p, u E L such that X 5 p 5 Y ,  If (PF) holds, the projective 
limit of ( E x ) x € L  relative to (fx,), denoted by @x€l;(Ex, fx,), or simply 
b x , = ~ E x  if no confusion results, is the set of all x E nxEL Ex such that 

for all A, p E L satisfying A 5 p (where for each a E L, pr ,  is the canonical 
projection from nxEL Ex to E J .  

5.20 Theorem. If ( E x ) x E ~  is a projective family of Hausdorff topo- 
logical spaces relative to continuous functions (fx,)) b x E ~ E x  is a closed 
subset of nxEL Ex. 

Proof. Let E = nxeL Ex. For all  A, p E L such that X 5 p, the set Ax, 
of all x E E such that fx,(pr,(s)) = p r x ( z )  is closed since fx, o p r ,  and 
~ T X  are continuous functions from E to Ex. By definition, 

and hence is closed. 0 

If ( E x ) x € L  is a projective family of rings [A-modules, groups] relative 
to homomorphisms (fx,), it is easy to see that @ x € ~ E x  is a subring [A- 
submodule, subgroup] of the ring [A-module, group] nxfL Ex. 

As before, the following theorems are stated only for topological rings, 
but their analogues for A-modules or groups are also valid, with essentially 
the same proof. 

5.21 Theorem. Let A be a Hausdorff ring, and let ( J ~ ) ~ E L  be a family 
of closed ideals of A indexed by a directed set L such that for all A, p E L,  
if X 5 p, then Jx 2 J,. Let 

be the function defined by 
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and for all A, p E L such that X < p,  let fx, be the canonical epimorphism 
from A / J p  to A/Jx defined by 

for all x E A .  For each X E L let A/Jx be furnished with a ring topology 
7 x  such that the canonical epimorphism $A from A to A/Jx is continuous, 
and let n X E L ( A / J x )  be topologized with the Cartesian product topology 
determined by (T')xE=. Under the following conditions, g is a topological 
isomorphism from A to a dense subring A0 of b x c r , ( A / J x ) :  

(1) For aU A, p E L such that X 5 p, fxp is continuous. 
(2) For every neighborhood U of zero in A ,  there exists X E L such that 

(3) For every neighborhood U of zero in A, there exists p E L such that 

Proof. For each z E A ,  clearly 

Jx C U. 

4p(U) is a neighborhood of zero for 7 p .  

whenever X 5 p,  so g(z) E @ A E L ( A / J x ) .  The kernel of g is nxEL Jx, so 
by ( 2 )  g is a monomorphism. As is continuous from A to A/Jx for each 
X E L, g is also continuous. To show that g is an open mapping from A to 
Ao, it suffices by 5.18 to show that if U is a neighborhood of zero in A, g ( U )  
is a neighborhood of zero in Ao. By (4) of 3.3 there is a closed symmetric 
neighborhood V of zero such that V + V U .  By (2) and (3) there exist 
A, p E L such that Jx E V and $p(V) is a neighborhood for zero for 7 p .  
As L is directed, there exists p E L such that X 5 p and p 5 p. As fpp is 
continuous by (1) and as 4p (V) = fii ( 4 p  ( V ) )  , c j p  (V) is a neighborhood of 
zero in A / J p  for 7p. Therefore A0 npTL1(4,,(V)) is a neighborhood of zero 
in Ao. But 

A0 n P T ; % p ( v ) )  G 9 ( n  

for if g(z) E p ~ ; ' ( c j ~ ( V ) )  where z E A, then 

so 
2 E 4k1(4p(V))  = V + J p  C V + J A  C V + V C U, 

whence g(z) E g ( U ) .  
To show, finally, that A0 is dense in & x E ~ ( A / J x ) ,  let U be a nonempty 

open subset of]CmxEL(A/Jx), and let z E U. Then thereis a family ( U x ) x E ~  
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of sets and a finite subset K of L such that Ux = A/Jx for all X E L \ K ,  
Ux is an open subset of A/Jx for all X € K, and, if V = nxEL Ux, then 

As L is directed, there exists p f L such that X 5 p for all X E K. Let 
a E A be such that a + Jp = p r p ( z ) .  For each X E K, 

Hence g(a) E V f l  A0 G U n Ao. 0 

A common example of a projective limit is that arising from the special 
case of 5.21 where J’ is a filter base of closed ideals indexed by itself with 
direction ,< defined to be 2, where A / J  is given its quotient topology for 
all J E J’, and where f J , K  is the canonical homomorphism from A / K  to 
A / J  whenever J 2 K .  Unless otherwise indicated, these are the underlying 
assumptions in any discussion of U J ~ J - ( A / J )  whenever J’ is a filter of 
closed ideals of a topological ring A. Thus U J E J ( A / J )  is the subring 
of n J E 3 ( A / J )  consisting of all ($5  + J ) J ~ Z  such that for all J, K E J’ 
satisfying J 2 K, Z J  + K = Z K  + K. In this case, the mapping 9 :  z -+ 

(Z + J ) J € ~  from A to @ J ~ ~ ( A / J )  is called the canonical homomorphism. 

5.22 Corollary. If A is a Hausdorff topological ring and J’ a filter 
base of closed ideals of A such that every neighborhood of zero contains a 
member of J’, then the canonical homomorphism g from A to ~ J ~ J  ( A /  J )  
is a topological isomorphism from A to a dense subring A0 o f & J E s ( A / J > .  

5.23 Theorem. Let A be a compact, totally disconnected ring. There is 
a fundamental system of neighborhoods of zero J’ consisting of open ideals; 
for any such J’, A is topologicdy isomorphic to @ J ~ ~ ( A / J ) .  

Proof. The first assertion is a restatement of 4.20. For any such J, the 
range of the canonical homomorphism g from A to @ J E ~ ( A )  is compact 
and hence closed as g is continuous. Therefore by 5.22, g is a topological 
isomorphism. 0 

5.24 Corollary. A topological ring A is compact and totally discon- 
nected if and only if it  is topologicdy isomorphic to the projective limit of 
a projective family of discrete finite rings. 

Proof. Necessity: If J is an open ideal of A,  A / J  is discrete by (2) of 5.7, 
but A / J  is also compact as it is the continuous image of compact A; hence 
A / J  is finite. The assertion therefore follows from 5.23. Sufficiency: By 5.20 
the projective limit A of a family of finite, discrete rings is a closed subset 
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of their Cartesian product, a compact ring by Tikhonov’s theorem that is 
totally disconnected. Therefore A is also a compact, totally disconnected 
ring. 

Corollary 5.24 may be used to prove half of a theorem illustrating the 
power, in the context of topological rings, of the assumption that a ring has 
an identity element: A compact ring is totally disconnected if and only if it 
is a topological subring of a compact ring with identity. 

5.25. Theorem. I f  A is a compact, totally disconnected ring, A is a 
topological subring of a compact ring with identity. 

Proof. A finite ring B of m elements is a subring of a ring with identity 
having m2 elements; indeed, B may be regarded as an algebra over Z/(m)  
isomorphic to a subalgebra of (Z / (m) )  x B, where addition is defined com- 
ponentwise and multiplication by 

By 5.24 A is topologically isomorphic to a subring of the Cartesian product 
of a family of discrete finite rings, and hence to a subring of the Cartesian 
product of a family of discrete finite rings with identity. 

The converse of 5.25 will be proved in $32. 

Exercises 

5.1 If X and Y are connected [compact] subsets of a topological [Haus- 
dorff] ring, then X + Y and XY are connected [compact]. 

5.2 If J is an ideal of a topological ring A and if J and A / J  are both 
Hausdorff, then A is Hausdorff. 

5.3 If C is an ideal of a topological ring A, then C is the connected com- 
ponent of zero if and only if C is connected and A / C  is totally disconnected. 

5.4 Let C be the connected component of zero in a topological ring A.  (a) 
If J is an ideal of A contained in C, then C/J is the connected component 
of zero in A / J .  [Use Exercise 5.3.1 (b) C is the smallest of the ideals J of 
A such that A / J  is totally disconnected. 

5.5 If J is an ideal of a topological ring A and if J and A / J  are both 
connected, then A is connected. [Use Exercise 5.4.1 

5.6 If J is a closed ideal of a locally compact ring A, then A is compact 
if and only if J and A / J  are compact. 

5.7 If C is the connected component of zero in a locally compact ring A 
and if J is a closed ideal of A,  then (C + J ) / J  is the connected component 
of zero in A / J .  [Use 5.17 and Exercise 5.3.1 
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5.8 (a) Ifr E R>o, the topological group W/rZ is compact. [Show that it 
is the continuous image of a compact subset of R.] (b) Exhibit a topolog- 
ical isomorphism from the compact additive group W/27rZ to  the compact 
multiplicative group {z E C : IzI = 1). 

5.9 If ( A x ) x ~ L  is a family of topological rings and if Jx is an ideal of Ax 
for each X E L ,  exhibit a topological isomorphism 

5.10 Let Q be furnished with the usual topology it inherits from R, and let 
E be the projective limit of the additive groups (Q/nZ)+l.  The canonical 
mapping g : Q + E ,  defined by 

- 

is a continuous monomorphism from the additive topological group Q to 
E. Let 7 be the topology on Q making g a topological isomorphism from 
Q to g(Q). Then 7 is an additive group topology on the one-dimensional 
Qvector space Q satisfying (TM 5) and (TM 6) of 2.16 but not (TM 4). 



CHAPTER I1 

METRIZABILITY AND COMPLETENESS 

Our first main result is that the First Axiom of Countability is not only 
necessary but also sufficient for a Hausdorff group topology on a group G 
to be metrizable, in which case the topology may be defined by a metric d 
satisfying d(a + z, a + y) = d(z ,  y) for all a, z, y E G. Such a metric on a 
commutative group defines a group topology, and the definition of a Cauchy 
sequence depends only on that topology. This enables us to define complete- 
ness for arbitrary HausdorE commutative groups and to show that each such 
group is a dense subgroup of an essentially unique complete Hausdorff com- 
mutative group. To establish this, we assume familiarity with the theorem 
that each metric space is a dense subspace of an essentially unique com- 
plete metric space in considering first the case of metrizable commutative 
groups. These results may easily be applied to show that every Hausdorff 
ring [module] is a dense subring [submodule] of an essentially unique com- 
plete Hausdorff ring [module]. We conclude by discussing conditions for 
and consequences of the continuity of inversion in a topological ring with 
identity. 

6 Metrizable Groups 

A metric space satisfies the First Axiom of Countability, that is, each 
point has a countable fundamental system of neighborhoods. Happily, the 
converse holds for Hausdorff group topologies: If one point (and hence each 
point) in a Hausdorff group G has a countable fundamental system of neigh- 
borhoods, then the topology is not only metrizable, but there exists a metric 
d defining the topology that satisfies 

d(a + 2, a + y) = d(z ,  y) 

for all a, z, y E G. To establish this and other results, we need the following 
theorem: 

6.1 Theorem. Let G be a group, denoted additively, and let (Un)nE~ 
be a family of symmetric subsets of G such that 

G = U U n  
nEZ 

44 
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and for all k E Z, 

Let g : G + W be defined by 

For all z,y E G, 
(1) g(z) 2 0, and g(z) = 0 if and only if 2 E nnEZ U n  

( 3 )  Uk = g - 1 ( [ 0 , 2 - k ] )  for all k E Z 
( 2 )  d-4 = 9 ( 4  

(4) 9 b  + Y) 4 SuP{g(4,g(Y))- 

and, if each Un is a subgroup, 

Let f : G + R be defined by 

P 
f(z) = i n f { x  g(z;)  : 21, z2, . . . , zp  E G and z1 + z2 + - - + zp  = z}. 

i s 1  

For all x, y E G, 
( 5 )  f (z)  2 0, and f ( z )  = 0 if and only if 2 E nnEZ U n  
(6) f ( - 4  = f ( 4  
(7) f(. + Y) i f ( 4  + f ( Y )  
(8) If(.) - f ( Y ) l  I f(z - Y) 

(10) f ( 4  = g ( 4 ,  whence f(. + Y) I sup{f(z),f(y)).  

(9) u k  f-'([o, 2-'])  s u k - 1  for d k E 

and, if each Un is a subgroup, 

Proof. The assertions concerning g are evident. We shall first prove by 
induction that for any sequence ( z ; ) l l i s p  of elements of G, 

i= l  

The assertion clearly holds if p = 1 or if C % l g ( z i )  = 0; indeed, in the 
latter case, 

zi n U, 
nEZ 
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for all i E [ l , p ] ,  whence for every k E Z, 

Assume that (*) holds for any sequence of p terms whenever p < q, and 
let z1, . . . , zq E G be such that a > 0 where a = C:=l g(z;). Let h be the 
smallest of the integers k such that 

Then 

and 
a h 

i=h+l i=l 
Y 

so by our inductive hypothesis, 

and, of course, 
g(zh) 5 a.  

Let k be the smallest integer such that 2-, 5 a.  Thus 

Thus (*) holds for any p 2 1. 
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Clearly f (z)  2 0 and f(z)  = 0 if z E n,,,U,. Conversely, suppose 
that f (z)  = 0, and let k E Z. Then there exist z1, . . . , z p  E G such that 
21 + ~2 + ... + zP = 2 and 

P 

so by (*I 
g(z) < - 2 * 2-("+1) = 2-k, 

and therefore z E u k .  Thus (5) holds. Also, (6) follows from (2), and (7) 
from the definition of f . By (7) , 

and similarly by (6), 

so (8) follows. 
To establish (9), we first note that if z E uk, 

f(4 i g ( 4  5 rk. 
Assume f ( z )  5 2-k. Then there exist z1, . . ., z p  E G such that z = z1 + 
.z2 + a + zp  and 

P 

Cg(z;) < 2-k+1 
i= l  

BY (*>, 
+ g ( z )  < 2-k+1, 

so g(z) < 2-"' and therefore g(z) 2 2-k+1. Consequently, z E Uk-1 by 

Finally, assume that each uk is a subgroup. We have already seen that 
f (x )  5 g ( z )  for all 2 E G and f ( z )  = g(z) = 0 for all z E nnEZ U,. Assume 
tha tz  E Un\Un+l. If(zi)l~i~Pisanysequencesuchthatzl+z2+--.+zp = 
t, then not all zj  can belong to U,+l, so there exists j E [ l , p ]  such that 
g ( z j )  > 2-(,+') and hence g ( z j )  2 2-", and consequently 

(3). 

P 

i=l 

by (3). Thus f(z) 2 g ( z ) .  0 
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6.2 Theorem. If F is a closed subset of a topological group G and if 
a E G\F, there is a continuous function h from G to [0,1] such that h(a) = 0 
and h(x) = 1 for all x E F. In particular, the topology of a Hausdorff group 
is completely regular. 

Proof. If hl has the desired properties for zero and F+(-a), then h : z + 
hl (x - a) has the desired properties for a and F. Therefore we may assume 
that a = 0. By 2.10 there is a decreasing family (Un)nE~ of symmetric 
neighborhoods of zero such that 

U, = G if n < 0, 
uo c G \ F, 

and, for a l l  n 2 0, 

Let f be the function associated to  (Un)nEz by 6.1. By (8) and (9) of that 
theorem, if x - y E Uk, then If(.) - f (y) l  5 2-k, so f is continuous from 
G t o  W. If z E F, then z E G \ Uo, so by (9)) f(z) > $. Consequently, h, 
defined by 

h(z )  = inf{2f(x), I}, 

has the desired properties. 0 

Un+l+ Un+1+ Un+l E UTL- 

6.3 Definition. A metric d on a group G is left invariant if 

d(a  + z, a + y) = d(x , y) 

for all a, z, y E G. Similarly, d is right invariant if 

d(x + a,y + a) = d ( z , y )  

for all u,  x,y E G, and d is an invariant metric if d is both left and right 
invariant. A metric d on a set E is an ultrametric if 

for all z, y, z E E .  

6.4 Theorem. Let G be a Hausdorff group. If there is a countable 
fundamental system of neighborhoods of zero, there is a left [right] invariant 
metric on G defining its topology. If there is a countable family of open 
subgroups that is a fundamental system of neighborhoods of zero, there is 
a left [right] invariant ultrametric on G defining its topology. 

Proof. By 2.10 there is a fundamental sequence (V,),>l of symmetric 
neighborhoods of zero such that Un+l + Un+l + Un+l 5 0, for all n 2 1. 
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Let U, = G for all n I 0. Let f be the function associated to (Un)nE~ by 
6.2. By that theorem, the functions dl  and d ~ ,  defined by 

dl(.,Y) = f(-. + Y) 
d z ( x , Y >  = f(. - Y) 

are easily seen to be the desired left and right invariant metrics defining the 
topology of G. If, in addition, each U, is a subgroup, then by (10) of 6.1, 
d l  and dz are ultrametrics. 0 

6.5 Definition. A function N from a commutative group G to W>o is 
a norm if N satisfies (N 1)-(N 3) and (N 5) of Definition 1.2, and% is 
an ultranorm if, in addition, 

for all x ,  y E G .  

Clearly (N 6) implies (N 2). 
An ultranorm on a ring is a norm that is an ultranorm on the underlying 

6.6 Theorem. Let G be a commutative group. An invariant [ultra-] 

additive group. 

metric d on G defines a[.] [ultralnorm N d  on G by 

N d ( 4  = 44, 
and an [ultra]norm N on G defines an invariant [ultralmetric d~ by 

d N ( x , y )  = N ( x  - Y), 

Thus d --$ N d  is a bijection from the set of all invariant [ultralmetrics on G 
to the set of all [ultra]norms on G, and its inverse is N 3 d N .  Any invariant 
metric on G defines a group topology. 

Proof. The proof of the first statement is easy. The second follows from 
the identities 

and 
NdN (z) = d N ( x ,  0) = N ( 2 ) .  

The proof of the third is contained in the proof of 1.3. 0 

Consequently, the topology defined by a norm on a commutative group 
G is the topology defined by its associated invariant metric. From 6.4 and 
6.6 we obtain: 
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6.7 Theorem. Let G be a commutative Hausdorff group. The following 
statements are equivalent: 

1" There is a countable fundamental system of neighborhoods of zero 

2" The topology of G is given by a[.] [ultralmetric. 
3" The topology of G is given by an invariant [ultralmetric. 
4" The topology of G is given by a[.] [ultra]norm. 

In contrast with the situation in topology, where two metrics on a set 
may define the same topology but yield different Cauchy sequences, any 
two invariant metrics on a commutative group that define the same topology 
yield the same Cauchy sequences, which may be identified solely in terms 
of the topology they define: 

[consisting of subgroups]. 

6.8 Theorem. Let d be an invariant metric on a commutative group 
G. A sequence (xn),>l in G is a Cauchy sequence for d if and only if for 
each neighborhood U-of zero there exists p 2 1 such that for all m, n 2 p ,  
z, - x, E U, and (z,),>1 converges to u E G if and only if for each 
neighborhood U of zero there exists p 2 1 such that for all m 2 p ,  x, - u E 
u. 

The proof follows readily from the identity d ( z ,  y )  = d(z  - y, 0). 
Consequently, we may make the following definition: 

6.9 Definition. A commutative metrizable group is complete if every 
Cauchy sequence for an invariant metric on G defining its topology con- 
verges. A topological group E is a completion of G if E is a complete 
metrizable group of which G is a dense subgroup. 

To show that every metrizable commutative group has a completion, 
we shall use the following facts from the theory of metric spaces. (1) Every 
metric space has an essentially unique completion: that is, if p is a metric on 
T, there exist a set ? containing T and a complete metric p̂  on 5 extending 
p such that T is a dense subset of ?; and if CT is a complete metric on 
a set S containing T that extends p and if T is dense in S, then there 
is an isometry f from S to T̂  such that f ( t )  = t for all t E T. (2) A 
uniformly continuous function from a dense subset D of a metric space S 
to a complete metric space T is the restriction to D of a unique uniformly 
continuous function from S to T. (3) Let p be a metric on T. The function 
p x  from (T x T) x (T x 2') to R>o, - defined by 
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is a metric on T x T yielding the Cartesian product topology defined by the 
topology given by p .  Consequently, if T with metric ?is the completion of 
T with metric p ,  T̂  x T̂  with metric p”; is the completion of T x T with 
metric p x  . Furthermore, p is uniformly continuous from T x T to R, since 

h 

6.10 Theorem. I f d  is an invariant [ultra]metric on a commutative topo- 
whose logicd group G defining its topology, then G has a completion 

topology is defined by a unique invariant [ultra]metric d^ that extends d .  

metric d .  By statement (3), G x 
G x G for metric d ,  . Let s be the function from G x G to  G defined by 

Proof. Let 6 with metric d^ be the completion of the metric space G with 
is the completion of with metric 

s(z,y) = z + y. 

Then s is uniformly continuous for the metrics d ,  and d ,  for 

Consequently s has a unique continuous extension 2 from 6 x 6 to 6. We 
define addition on 2 by 

for 2, y E 6. 
2 + y = Z(z,y) 

The functions f and g from 8 x 6 x to 6 x e, defined by 

and 
dz, Y, 4 = m, Y), 4 

are both continuous, so 20 f and 20 g are also continuous. As addition on 
G is associative, they agree on the dense subset G x G x G of 6 x x c; 
hence they agree on 6 x is associative. A 
similar argument establishes that addition is commutative on 6 and that 
the zero element of G is the zero element for addition on 6. 

x G, that is, addition on 
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The function j : x + -x is uniformly continuous from G to G, since 

d(-x, -y) = d(-x + x + y, -y + 2 + y) = d(y, 2). 

Hence j has a unique continuous extension 7 from 6 to 6. Consequently, the 
function x ---t S(x,T(x)) is continuous from 6 to 6; as it and the constant 
zero function agree on G, they agree on 6, that is, T(z) is the additive 
inverse of 2 for each 2 E G. Therefore G is a comutative topological group. 

Let a E G. As La : (z, y) 3 (a + x, a + y) is continuous from G x G to 
6 x G, d o La is continuous from 6 x 6 to R. As $0 La and ;agree on 
G x G, they agree on 6 x 6,  so 

A A 

* A  

A A  

A 

for all x, y E 6. For any x, y E G, the function z 3 d^(z + x,z  + y) is 
continuous on g; we have just seen that it agrees with the constant function 
defined by the number d(z,y) on G, so 

for all z E e. Thus ;is an invariant metric. Finally, 

is continuous from 6 x 6 x 6 to R; so h-l(IW>o) - is closed. If d is an 
ultrametric, that set contains G x G x G and hence is all of 6 x 6 x G, so 
d is an ultrametric. 0 
h 

6.11 Corollary. If the topology of a commutative topological group 
G is given by a[.] [ultralnorm N ,  the topology of 6 is given by a unique 
[ultralnorm fi that extends N .  

6.12 Theorem. Let G be a commutative metrizable topological group, 
H a closed subgroup. Then G/H is a metrizable group. If G is complete, 
so is G /H.  

Proof. Let (V,),21 be a fundamental system of symmetric neighborhoods 
of zero such that Vn+l + Vn+l C V, for all n 1 1. Then (6~(V,)) ,>l is 
a fundamental system of neighborhoods of the zero element H of G/I? by 
the group analogue of 5 .5 ,  so G / H  is metrizable by 6.4. Assume that G 
is complete, and let ( c x , ) ~ ? ~  be a Cauchy sequence in G / H .  Extracting 
a subsequence if necessary, we may assume that a,+1 - a, E ~ H ( V , )  for 
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all n 2 1. We shall inductively obtain a sequence (z,),>1 in G such that 
z, E a, and z,+1- 2, E V, for all n 2 1. Indeed, assume that 2 1 ,  . . . , 2, 
satisfyz, E a , f o r d n E  [ l ,m- l ] and~ ,+1-z ,  EV,foral lnE [ l ,m-l] .  
Let y E G be such that a,+1 = y + H. As a,+1 - a, E #H(V,), 

for some 21 E V,  and some h E H .  Let zm+1 = y - h. Then xm+l E a,+1 

and 
x,+1- 2 ,  = 21 E v,. 

Thus a sequence with the desired properties exists. For any n 2 1, p 2 1, 

Thus by 6.8, ( z , ) , ? ~  is a Cauchy sequence in G and hence converges to 
some c E G, so (an),21 converges to c + H E G / H .  0 

We have seen from 6.7, in particular, that if a metric on a group defines 
a group topology, that topology is also defined by a left [right] invariant 
metric. A much deeper theorem is that if a complete metric on a group 
defines a group topology (or even, merely, a topology for which translations 
are continuous), then the topology it defines is also given by a complete left 
[right] invariant metric: 

6.13 Theorem. If7 is a topology on a group G defined by a complete 
metric such that for each a E G, the functions z --t a + z and x + x + a 
are continuous, then 7 is a group topology and is defined by a complete left 
[right] invariant metric. 

A proof is given in 57 of Topological Fields. 
Another celebrated theorem concerning metrizable groups is the following 

“closed graph” theorem: 

6.14 Theorem. If g is an epimorphism from a complete metrizable 
group G to a complete separable metrizable group H whose graph is a 
closed subset of G x H ,  then g is continuous. 

For a proof, see, for example, Theorem 8.8 of Topological Fields. 
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Exercises 

6.1 If d is a left invariant metric on a group G and if H is a closed normal 
subgroup, the function d H  from ( G / H )  x ( G / H )  to W>O,  - defined by 

d ~ ( a , P )  = inf{d(a,b) : a E a, b E p} ,  

is a left invariant metric on G / H  defining its quotient topology. 
6.2 (Freudenthal [1935]) Let G be a metrizable group. (a) Iff is a topo- 

logical epimorphism from G to a Hausdorff group H ,  then H is metrizable; 
if ( y n ) n > l  is a sequence of points in H converging to b E H ,  then for any 
a E G s&h: that f(a) = b there is a sequence ( z k ) k > l  - in G converging to 
a such that ( f ( Z h ) ) k > l  is a subsequence of ( Y ~ ) ~ > I .  (b) If K is a compact 
subgroup of G such that G / K  is compact, then G is compact. 

6.3 (Ng and Warner [1972]) Let H be a complete metrizable commutative 
group, and let s be a continuous function from H into H such that s(0) = 0. 
Iff is a homomorphism from H into the additive group R such that for some 
K > 0, 

fW2 I Kf(s(4)  
for all 2 E H ,  then f is continuous. [Suppose that ( a k ) k > O  is a sequence 
such that l i m k + o o a k  = 0 but f ( a k )  2 e > 0 for be 
such that m 2 K / e ,  and define g : H x K --t H by 

k 2 0: Let m E 

g(z1, .2) = 21 + m.s(z2). 

Define ( g k ) k > O  recursively by g o ( z )  = z for all z E H ,  and, if g k - 1  is defined 
from H k  t o  3, Qk is defined from Hk+' to H by 

g k ( Z l , - . .  , z k + l )  = g ( ~ l , g k - l ( z Z , .  * * , z k + l ) ) *  

Show that 
g k ( Z 1 , .  * * , z k r O )  = g k - l ( Z 1 ,  * * - , x k )  

for all k 2 1. Let ( V n ) , > 1  be a decreasing fundamental sequence of neigh- 
borhoods of zero such that Vn+l +Vn+l C V, for all n > 1. Show that there 
is a subsequence ( b n ) n 1 0  of ( a k ) k > O  - such that 

g n - k + I ( b k , . . . , b n , b n + l )  - g n - k + l ( b k , - .  . , b n , O )  E vn+l 
for all k E [O,n]. Show that ( g p - k ( b k , .  . . , b p ) ) p > k  has a limit Ck for each 
k 2 0 and that 

Infer that for any T 2 1, 

2 
f ( c k )  2 e + e - l f ( c k + l )  - 
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7 Completions of Commutative Hausdorff Groups 

To extend the definition of completeness to all Hausdorff commutative 
groups, we need some additional terminology. 

Let E be a topological space, 8 a filter base on E.  The filter base 
B converges to c E E if the filter generated by B contains the filter of 
neighborhoods of c,  or equivalently, if every neighborhood of c contains a 
member of B. If E is Hausdorff, l3 converges to at most one point of E ,  for if 
U and V are disjoint neighborhoods of two points of E ,  the filter generated 
by l3 cannot contain both U and V since then it would contain the empty 
set U n V .  

If (zn),>l is a sequence of points of E ,  the filter base associated to 
(zCn),>l is the filter base {F, : n 2 l}, where F, = (2, : m 2 n} for each 
n 2 1. If E is a topological space, a sequence in E clearly converges to a 
point of E if and only if the associated filter base does. 

A point c E E is adherent to l3 (or a cluster point of B) if c belongs to 
the closure of each member of 23; the adherence of B is the set of a,ll points 
adherent to B, that is, the intersection of the closures of the members of 
B. If B converges to c, then c is adherent to B, for if B E 8 and if U 
is a neighborhood of c, then U n B # 0 since U n I3 belongs to the filter 
generated by 23. 

If ( ~ , ) ~ ? l  is a sequence of points in a topological space E ,  then c is a 
cluster point of ( x n ) n l l  if c is a cluster point of the filter base associated to 
(z,),?l, or equivalently, if for every neighborhood U of c and every n 2 1 
there exists rn 2 n such that x, E U. 

The image of B under any function f from E to F is a filter base on F .  
If F is also a topological space, if B converges to c, and if f is continuous 
at c, then f ( B )  converges to f(c), for if V is any neighborhood of f(c), the 
neighborhood f - l (V) of c contains a member B of B, so f(B) C V .  

7.1 Definition. Let G be a commutative topological group. If V is a 
neighborhood of zero, a subset F of G is V-small if F + (-F) C V ,  that is, 
if z - y  E V for all z, y E F .  A filter [base] on G is a Cauchy filter [base] 
if it  contains a V-small set for every neighborhood V of zero. A filter [base] 
23 on a subset E of G is a Cauchy filter [base] on E if the filter it generates 
on G is a Cauchy filter. 

If d is an invariant metric on a commutative group G, then by 6.8 a 
sequence in G is a Cauchy sequence for d if and only if its associated filter 
base is a Cauchy filter base. 

7.2 Theorem. Let B be a filter base on a commutative topological group 
G, and let c E G. Then B converges to c if and only if c is adherent to B 
and B is a Cauchy filter base. 
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Proof. Necessity: Let V be a neighborhood of zero, and let W be a 
symmetric neighborhood of zero such that W + W E V. By hypothesis, 
there exists B E 23 such that B C c + W .  Consequently, B is V-small, for 

B + (4) c (c + W )  + [-(c + W ) ]  = W + (-W) = W + W c v, 
Therefore 23 is a Cauchy filter base. Also, c is adherent to  B, for if U is a 
neighborhood of c and if B E B, then U n B contains a member of B and 
hence U n B # 8. 

Sufficiency: Let 23 be a Cauchy filter base to which c is adherent. Let 
V be a neighborhood of zero; we s h d  show that c + V contains a member 
of B. Let W be a neighborhood of zero such that W + W E V, and let 
B be a W-small member of 23. As c E B, there exists b E B n (c + W ) .  
Consequently as (4) + B E W ,  

B c b + W E c + W + W c  c + v .  

Thus 23 converges to c. 0 

7.3 Definition. Let G be a commutative Hausdorff group. A subset 
E of G is complete if every Cauchy filter on E converges to a point of 
E. A Hausdorff group is a completion of G if G is a dense topological 
subgroup of 3 and 

Definition 6.9 to arbitrary Hausdorff groups: 

is complete. 

The following theorem establishes that Definition 7.3 is an extension of 

7.4 Theorem. Let G be a commutative metrisable topological group, 
d an invariant metric defining its topology. Then G is complete if and only 
if d is a complete metric. 

Proof. The condition is necessary, for we have just seen that a sequence 
is a Cauchy sequence for d if and only if its associated filter base is Cauchy, 
and by 6.8 a sequence converges for d if and only if the associated filter base 
converges. Sufficiency: Let 3 be a Cauchy filter on G and let (Vn)n21 be a 
fundamental decreasing sequence of neighborhoods of zero. For each p 2 1 
let Fp E 3 be Vp-small, and let 

If m 2 p and n 2 p ,  then both 2, and zn belong to Fp, so x, - 2% E V,. 
Thus ( ~ ~ ) ~ l l  is a Cauchy sequence for d by 6.8 and hence converges to a 
point c. To show that 3 converges to c, let U be a neighborhood of zero, 
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and let p >_ 1 be such that V, + V, C U. As (x , ) ,> l  converges to c, there 
exists m 2 p such that x, - c E V, for all n 2 m. Hence F, G c + U, for if 
x E F,, then 

5 = (z- x,) + (2, - c)  + c  E v, + v p + c  

~ V p + V p + c ~ U + c . .  

7.5 Theorem. Let E be a subset of a Hausdorff commutative group G. 
(1) If E is complete, so is every closed subset of  E.  (2) If E is complete, 
then E is closed in G. (3)  If E is compact, then E is complete. 

Proof. (1) If F is a closed subset of E and if 3 is a Cauchy filter on F ,  
then by hypothesis 3 converges in the space E to a point c o f  E ;  as each 
member of F is a subset of F and as c is adherent to 3 by 7.2, c E = F ,  
and also 3 converges to c in the space F .  

(2) Let c E B, and let V = {V n E : Vis a neighborhood of c E G}. Then 
V is a filter on E converging to c in the space G, so by 7.2 V is a Cauchy 
filter on E and hence converges to a point of E ,  which must be c as G is 
Hausdorff. 

(3) The assertion follows from 7.2, since a filter base on a compact space 
has an adherent point.. 

7.6 Theorem. If a Hausdorff commutative group G has a complete 
neighborhood V of zero, then G is complete. 

Proof. By (1) of 7.5 and 3.3, we may assume that V is symmetric. Let 
3 be a Cauchy filter on G. Then F contains a V-smd set L. Let a E L, 
and let 

3 v  = { F  + ( - a )  : F E 3 and F + ( -a)  C V } .  

Since F + ( -a)  V if F C_ L ,  3 v  is a filter on V .  Let U be a neighborhood 
of zero. If F is a U-small subset contained in L, then F + ( - a )  is a U-small 
subset of V ,  for 

( F  + ( - a ) )  + [ - ( F  + ( - a ) ) ]  = F + ( -F)  E u. 

Therefore 3 v  is a Cauchy filter on V and thus converges to some c E V .  
But then, as z -, x + a is continuous, Fv + a and hence also F converge to 
c + a .  . 

7.7 Corollary. A commutative locally compact group is complete. In 
particular, a discrete commutative group is complete. 
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7.8 Theorem. Let G be the Cartesian product of a family GAEL of 
commutative topological groups. (1) If F is a filter on G, then F is a 
Cauchy filter if and only if for all X E L, p r x ( 3 )  is a Cauchy filter on Gx 
(where prx is the canonicd epimorphism from G to Gx). (2) G is complete 
if and only if G, is complete for all p E L. 

Proof. (1) Let V = nxEL Vx, where each Vx is a neighborhood of zero in 
Gx and Vx = Gx for all but finitely many X E L. Clearly F is V-small if and 
only if p r x ( F )  is Vx-small for all X E L. (2) A filter 3 on G converges to 
(cX)xEL if and only if for all X E L, p r x ( 3 )  converges to cx. Necessity: Let 
F, be a Cauchy filter on G,. For each F E F,, let F’ = n x E L F x , ,  where 
FA, = (0) if X # p and F,, = F, and let 3 = (3” : F E 3,). Clearly F is 
a Cauchy filter base on G, and pr,(F) = 3,. Therefore as F converges, so 
does F,. Sufficiency: By (l), for each X E L there exists cx E Gx such that 
p ~ x ( 3 )  converges to cx. Therefore 3 converges to  ( c x ) x E ~ .  0 

7.9 Theorem. A commutative Hausdorff group G has a completion. 
Proof. By set-theoretic considerations, we need only show that G is topo- 

logically isomorphic to a dense subgroup of a complete Hausdorff commuta- 
tive group. Let U be the set of all sequences (U,),>, such that for all n 2 1, 
U,  is a closed symmetric neighborhood of zero and Un+l+ Un+l 2 Un. For 
each U E U ,  let U n  be the nth term of U ,  so that U = (Un)nll. We 
introduce a direction 5 on U by 

U 5 V if and only if Un 2 V n  for all TZ 2 1. 
Clearly 5 is an ordering of U ;  it is a direction since for any U, V E U, if 
W = (U, n V,),>l, then W E U, U 5 W ,  and V 5 W. 

For each U E fi, let 
00 

H~ = n v,. 
n=l 

Clearly HU is a closed subgroup of G. Let q!qy be the canonical epimor- 
phism from G to G/Hu.  By 3.1, 3.4, 6.4, and the group analogue of 5.5,  
( & ~ ( U , ) ) , l l  is a fundamental system of neighborhoods of zero for a metriz- 
able group topology 7u on G/Hu weaker than the quotient topology induced 
by that of G. Indeed, for all n 2 1, 

4~(un+1) + 4~(un+l)  = 4 ~ ( u n + l +  un+l) C d ~ ~ ( u n ) )  
and 

00 00 M 

n= 1 n=l n=l 

n=l 
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by (3) of 3.3, and thus 
OQ n  MU^) = W .  

n=l  

Therefore by 6.10, G/Hu has a completion (G/Hu) for 7 ~ .  
The hypotheses of the group analogue of 5.21 are satisfied by ( H ~ ) v ~ u :  

Indeed, let U, V E U satisfy U 5 V .  Clearly H u  2 H v ,  and the canonical 
epimorphism fu,v from G/Hv to G/Hu is continuous, since for all n 2 1, 

By (4) of 3.3 and 3.2, for each neighborhood V of zero there exists U E U 
such that U, c V ,  whence HU & V and du(V) is a neighborhood of zero 
for 55. Thus by the group analogue of 5.21, G is topologically isomorphic 
to a subgroup Go of 

ImU€U(G/HU), 

itself a subgroup of 

The closure of Go in the latter is thus a completion of Go by 7.8 and 7.5. 0 

The definition of uniform continuity in the context of metric spaces can 
be carried over to topological spaces that are subsets of commutative topo- 
logical groups: 

7.10 Definition. Let G and G’ be commutative topological groups. A 
function f from a subset E of G to GI is uniformly continuous if for 
every neighborhood V of zero in G’ there is a neighborhood U of zero in G 
such that for all x, y E E ,  if x - y E U, then f (z) - f ( y )  E V .  

For example, for any a E G,  the translation x -+ a + x is uniformly 
continuous from G to G. 

7.11 Theorem. Let E and E’ be subsets respectively of commutative 
topological groups G and GI. I f f  is uniformly continuous from E to El, 
then f is continuous, and the image f (23) of any Cauchy filter base 23 on E 
is a Cauchy filter base on El. 

The proof is easy. 
The principal example of a uniformly continuous function is a continuous 

homomorphism: 
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7.12 Theorem. Let f be a homomorphism from a commutative topo- 
The foflowing logical group G to a commutative topological group G'. 

statements axe equivalent: 
1' f is continuous a t  zero. 
2' f is continuous. 
3' f is uniformly continuous. 

Proof. Assume 1'. Then for any neighborhood V of zero in G', there is 
a neighborhood U of zero in G such that for all s E U, f(s) E V. Conse- 
quently, for all 2, y E G, if 2 - y E U, then 

Thus 3' holds.. 

The proofs of the following three theorems are also easy: 

7.13 Theorem, Let G and G' be commutative Hausdorff groups, let E 
and E' be subsets of G and G' respectively, and let f be a bijection from 
E to E'. If both f and f -1 are uniformly continuous, then E is complete if 
and only if E' is complete. 

7.14 Theorem. I f G  and G' are commutative topological groups and 
i f f  is a topological isomorphism from G to GI, then a subset E of G is 
complete if and only if f (E) is. 

7.15 Theorem. Let G, H, and K be commutative topological groups, 
and let D, E, and F be subsets of G, H, and K respectively. Iff : D -+ E 
and g : E + F are uniformly continuous functions, then g o f is uniformly 
continuous. 

The main theorem concerning uniformly continuous functions is the fol- 
lowing: 

7.16 Theorem. Let E be a subset of a commutative topological group 
G, and let f be a uniformly continuous function from E to a complete 
commutative Hausdorff group G'. There is a unique continuous function g 
from 8 to G' extending f ,  and moreover, g is uniformly continuous. 

Proof. Since G' is Hausdorff, there is at most one continuous extension 
of f to 8. For each c E 8, {V f l  E : V is a neighborhood of c}, which we 
denote by V(c), is a convergent filter base on G and hence is a Cauchy filter 
on E. By 7.11, f(V) converges to a unique point of GI, which we denote 
by g(c). If c E E, then f ( V ( c ) )  converges to f (c) as f is continuous, so 
g(c) = f (c); thus g is an extension of f . Consequently, we need only show 
that g is uniformly continuous. 
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Let V' be a neighborhood of zero in GI, and let U' be a symmetric 
neighborhood of zero in G' such that U' + U' + U' & V'. By hypothesis 
there is a neighborhood U of zero in G such that if z, y E E and if z -y  E U, 
then f(z) - f (y) E U'. Let V be a symmetric neighborhood of zero such 
that V + V  + V  E U. We shall show that if z, y E %? and if z - y E V ,  then 
g(z) - g(y) E V'. Since g(z) is adherent to f ( V ( z ) )  by 7.2, 

by (3) of 3.3. Hence there exist v E V and u' E U' such that v + z E E and 
g(z) = f (v + z) + u'. Similarly, there exist w E V and z' E U' such that 
w + y E E and g(y) = f(w + y) + z'. Then 

( v + z )  - ( w + y )  = v +  (-w) + (. - y) E v + v + v  E u, 

so 
f ( v  + z) - f(w + y) E u'. 

Therefore 

7.17 Theorem. Let H be a dense subgroup of a commutative topo- 
logical group G ,  and let f be a continuous homomorphism from H to a 
complete commutative Hausdorff group GI. There is a unique continuous 
homomorphism g from G to G' extending f . Moreover, if G is Hausdorff and 
complete and i f f  is a topological isomorphism from H to a dense subgroup 
H' of GI, then g is a topological isomorphism from G to GI. 

Proof. For the first statement, it suffices by 7.12 and 7.16 to show that 
the unique continuous extension g of f is a homomorphism from the closure 
G of H to GI. The func;ions (z,y) --t g(z+y) and (z,y) -+ g(z)+g(y) from 
G x G to  G' are continuous and agree on the dense subset H x H of G x G. 
Hence as G' is Hausdorff, they agree on G x G, so g is a homomorphism. 
Suppose further that G is complete and that f is a topological isomorphism 
from H to a dense subgroup H' of GI. By what we have just proved, there 
is a unique continuous homomorphism h from G' to G extending f-'. Then 
hog is a continuous function from G to G agreeing with the identity function 
on dense subgroup H and hence on all of G. Similarly, g o h is the identity 
function on G'. Thus g is a continuous isomorphism whose inverse h is 
continuous, and hence g is a topological isomorphism. 0 
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7.18 Corollary. H G  is a dense subgroup of complete, commutative, 
Hausdorff groups G1 and G2, then there is a unique topological isomorphism 
f from G1 to G2 such that f (z )  = z for all x E G .  

Consequently by 7.9, each commutative Hausdorff group G has an essen- 
t i d y  unique completion, which we shall normally denote by 6. If H is a 
subgroup of G ,  the closure of H in 5 is a completion of H by (1) of 7.5, 
so we customarily identify @ with g.  Similarly if (Gx)xEt is a family of 
Hausdorff groups, we customarily identify the Cartesian product of ( e x ) x E ~  

with the completion of the Cartesian product of ( G x ) x E ~ ,  in view of 7.8. 
Finally, if 3-1 is a filter base of closed subgroups of G that converges to zero 
and if G / H  is complete for each H E ‘FI, then by the group analogue of 5.22, 
5.20, and 7.8, we may identify the 

7.19 Theorem. Let G1 and G2 be Hausdorff groups, and let f be a 
continuous homomorphism from G I  to G2. There is a unique continuous 
homomorphism ?from h 51 to G2 extending f. Moreover, i f f  is a topological 
isomorphism, so is f .  

with W H E ~ G / H .  

n 

The statement is a consequence of 7.17. 

7.20 Theorem. Let G1 and Gz be Hausdorff groups, and let f be a 
continuous homomorphism from G1 to G2. If there is a fundamental system 
V of neighborhoods of zero in G1 such that f (V)  is closed in the topological 
subgroup f ( G I )  of G2 for each V E V, then the kernel of the continuous 
extension 7 : --f 6 2  of f is the closure in 61 of the kernel K of f ;  in 
particular, i f f  is a continuous monomorphism, so is f. 

Proof. Replacing G2 with f ( G 1 )  if necessary, we may assume that f is 
an epimorphism. If X is a subset of G I ,  we shall denote its closure in GI 
by and its closure in by 2, and similarly for subsets Y of Gz. Thus, 
for example, Y n G2 = P. 

contains the kernel of f, let a E 31 be such that ?(a) = 0. To show that 
a E k ,  it suffices by 4.22 and (3) of 3.3 to show that for any neighborhood V 
of zero in G I ,  a E k + p. By hypothesis there is a symmetric neighborhood 
W of zero in G I  such that W + W  V and f ( W )  is closed in Ga. As a+^w 
is a neighborhood of a in by 4.22, there exists z E ( a  + E) n GI; let 
w E ^w be such that z = a + w. Then 

h 

A 

As the kernel of 7 is closed, it clearly contains 2. To show that 

h h -  - 
f ( 4  = f ( a  + 4 = ?(a) + f(4 = 24 E f ( W )  c f ( W ) .  

Thus 
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so 
x E f - ’ ( f (W))  = K + W 

h 

Therefore as W is also symmetric, 

a = x  -w E Z + F + F  i?+w+w Z+V. 0 

7.21 Corollary. If 71 and 7 2  are Hausdorff group topologies on a com- 
mutative group G such that ‘T; 2 % and there is a fundamental system of 
neighborhoods of zero for 7 1  each of which is closed for 7 2 ,  then any subset 
of G that is complete for 7 2  is also complete for ‘T; . 

Proof. For i = 1, 2, let Gi be G furnished with x, and for any subset 
X of G, let 2; be its closure in (?;. The identity map f from G1 to G2 is 
continuous, so for any subset A of G, 

Hence if A = 22, then 21 = A as ?is injective by 7.20 and f ( A )  = A. 0 

Exercises 

7.1 Let G be a Hausdorff commutative group. (a) If 3 is a Cauchy filter 
on G and if U is a fundamental system of symmetric neighborhoods of zero, 
then 3 + U is a Cauchy filter on G; moreover, 3 converges to a E G if and 
only if 3 + U converges to a. (b) If K is a closed subgroup of G and if both 
K and G / K  are complete, then G is complete. [Use (a).] 

7.2 Let ‘FI be a filter based of closed subgroups of a Hausdorff commutative 
group G that converges to zero. If G/H is compact for all H E ‘FI, then 6- 
is compact. [Use the group analogue of 5.22.1 

7.3 Let G be a dense subgroup of a Hausdorff commutative group G I .  If 
H I ,  . . . , H ,  are open subgroups of G, then in G I ,  

7.4 Let f be the function defined by f(x) = x2 from Q into R. Then f is 
continuous, the image under f of every Cauchy filter base on Q is a Cauchy 
filter base on W, and f has a continuous extension ?from 6 = IR into W, 
but f is not uniformly continuous. 

7.5 Let ( 5 5 ) ~ ~ ~  be a family of complete Hausdorff group topologies on 
a group G. If for all a, /3 E L there exists y E L such that 7, C 7, and 
7 p  c 7, , then supxEL 7~ is complete. 
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8 Completions of Topological Rings and Modules 

A topological ring or module is complete if its underlying additive group 

8.1 Theorem. Let A be a dense subring of a topological ring B, and 
let f be a continuous homomorphism from A to a complete Hausdorff ring 
B'. There is a unique continuous homomorphism g from B to B' extend- 
ing f .  Moreover, if B is Hausdorff and complete and if f is a topological 
isomorphism from A to a dense subring A' of B', then g is a topological 
isomorphism from B to B'. 

Proof. By 7.17 we need only show that the unique continuous extension 
g of f preserves multiplication. But (z,y) --t g(zy) and (z,y) -+ g(z)g(y) 
from B x B to B' are continuous and agree on the dense subset A x A of 
B x B;  hence as B' is Hausdorff, they agree on B x B. 0 

A topological ring B is a completion of a topological ring A if B is 
complete and if A is a dense topological subring of B. The existence of a 
completion of a Hausdorff ring results from the following theorem: 

8.2 Theorem. Let E, F, and G be complete Hausdorff abelian groups, 
and let A and B be dense subgroups of E and F respectively. I f f  is a 
continuous Z-bilinear function from A x B to G, then there is a unique 
continuous Z-bilinear function g from E x F to G extending f. 

Proof. For each zo E E, let U ( z 0 )  be the set of intersections with A of 
the neighborhoods of zo; as A is dense in E, U ( z 0 )  is a filter on A. Similarly, 
for each yo E F, the set V(y0) of intersections with B of the neighborhoods 
of yo is a filter on B. We shall first show that for any neighborhood T of 
zero in G and any u E A, b E B, there exist U E U ( z 0 )  and V E V(y0) such 
that for a l l  I, z' E U and all y, y' E V ,  f (z'-z,y'-y) E T, f(u,y'-y) E T, 
and f (z' - I, b) E T. Indeed, as f is continuous at (O,O), as y -, f (a, y) 
is continuous at zero, and as 2: --f f (2, b) is continuous at zero, there exist 
closed neighborhoods P and Q of zero in A and B respectively such that 
- f(P x Q) C T ,  f ( { u }  x Q) E T ,  and f (P x { b } )  C T. By 4.22 the closure 
P of P in E is a neighborhood of zero in E, so there exists a symmetric 
neighborhood PI of zero in E such that PI + Pi C P; similarly there exists 
a symmetric neighborhood QI of zero in F such that Q1 + &1 

is. 

&. Let 



8 COMPLETIONS OF TOPOLOGICAL RINGS AND MODULES 65 

so 2’ - 2 E P n A = P; similarly, if y, y’ E V ,  then y’ - y E Q. Hence for 
all z, 2‘ E U and all y, y’ E V ,  f(z‘ - z, y’ - y) E T, f(a,y‘ - y) E T, and 

Next, we shall show that f ( U ( z 0 )  x V(y0)) is a Cauchy filter base on G. 
Indeed, let W be a neighborhood of zero in G ,  and let T be a symmetric 
neighborhood of zero such that T + T + T + T C W .  By the preceding (with 
a = b = 0 ) ,  there exist U E U(z0)  and V E V ( q )  such that f(z’-z, y’-y) E 
T for all z,z’ E U and all y, y’ E V. Let a E U, b E V. Again, by the 
preceding, there exist U‘ E U ( z 0 )  and V‘ E V ( y 0 )  such that U’ E U, V’ V ,  
and for all 2, z’ E U‘ and all y, y’ E V‘,  f(a,y‘-y) E T and f(z’-z, b)  E T. 
Also, as U’ C_ U and V’ C V ,  f(z’ - z, y’ - b) E T and f(d - a, y’ - y) E T .  
Hence 

f(z‘ - z , b )  E T. 

We therefore define g(z0,yo) to be the limit of f ( U ( z o )  X V(z0) )  for all 
(zo,yo) E E x F .  As f is continuous, g is an extension of f. To show that 
g is continuous at (20, yo), let W be a closed neighborhood of g(z0,yo). By 
the definition of g(z0, yo), there exist open neighborhoods U of zo and V of 
yo such that 

f ( (un A )  x (V n B ) )  c W. 

But then g(U x V) is contained in the closure of f ( ( U  n A )  x (V n B ) )  and 
hence in W ,  for if u E U and v E V, then g(u,v) is, by definition, the limit 
of and hence adherent to a filter base of which f ( ( U  n A )  x (V n B ) )  is a 
member. Thus g is continuous at (z0,yo). 

The functions (2, z’, y) --+ g(z + z’, y) and (2, x’, y) 4 g(z, y) + g(z’, y) 
are continuous from E x E x F to G and coincide on the dense subset 
A x A x B of E x E x F .  Hence they coincide on all of E x E x F ,  so 

for all z, z‘ E E and all y E F. Similarly, 

for all z E E and all y, y’ E F. Thus g is Z-bilinear. 0 

8.3 Theorem. Let A be a Hausdorff ring. Thereis a complete Hausdorff 
ring Â  containing A as a dense subring. I f A  is commutative, so is 2. If 1 is 
the identity element for A,  1 is also the identity element of Â . If A is also a 
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dense subring of a complete Hausdorff ring B ,  there is a unique topological 
isomorphism h from Â  to B satisfying h(z )  = x for all x E A.  

Proof. Let Â  be the completion of the additive group A. We need only 
apply 8.2 to multiplication, viewed as a continuous Z-bilinear function from 
A x A to Ah, to conclude that there is a continuous multiplication on Â  that  
is distributive over addition and induces on A the given multiplication. Ver- 
ifying the associativity of multiplication on A and the remaining assertions 
about multiplication is similar to establishing the Z-bilinearity of g in the 
proof of 8.2. The final assertion follows from 8.1. 0 

* 

8.4 Theorem. Iff is a continuous homomorphism from a Hausdorff ring 
A1 to a Hausdorff ring A2, there is a unique continuous homomorphism f 
from 21 to A^2 extending f ;  moreover, i f f  is a topological isomorphism, so 
is F. 

h 

The statement is a consequence of 8.1. 
8.5 Theorem. Let A be a topological ring, and let 3 be a filter base of 

(1) If A / J  is complete for each J E 3, then ~ J ~ ~ ( A / J )  is complete, 
(2) If A is Hausdorff, if ,? converges to zero, and if some L E 3 is 

complete, then the canonical homomorphism g from A to @ j E g ( A / J )  is 
a topological isomorphism. 

Proof. (1) follows from 7.8, 5.20, and 7.5. To prove (2), it suffices by 5.22 
to prove that the range of g is @ J , ~ ( A / J ) .  Let z E w j ~ g ( A / J ) .  With 
the notation of 5.19, p r ~ ( z )  = a + L for some a E A and hence p r ~ ( z )  is 
complete by the remark following 7.10 and 7.13. Let 

3~ = { J  E J’ : J C_ L ) .  

Then the set of all  the subsets p r ~ ( z )  such that J E 3~ of A is a Cauchy 
filter base on P T L ( Z ) ,  for if V is a neighborhood of zero, there exists J E J’L 
such that J V, so the coset ~ T J ( Z )  of J is V-small. Consequently, as each 
coset of each J E ,? is closed, there exists 

closed ideals. 

c E  n p r J ( z ) .  
J E ~ L  

Thus for each J E J L ,  c belongs to the coset ~ T J ( Z )  of J ,  so 

P r J ( g ( c ) )  = c +  J = p r . J ( z ) ,  

and for any K E 3, there exists J E J-L such that J K ,  so 

I ) T K ( g ( C ) )  = f K , J ( P T J ( g ( c ) ) )  = f K , J ( p r J ( z ) )  = P r K ( Z ) -  

Thus g(c) = z ,  and the proof is complete. 0 
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8.6 Theorem. Let E be a Hausdorff module over a Hausdorff ring A. 
There is a unique scalar multiplication from 2 x i to ,!? that makes ,!? into 
a topological 2-module and extends the given scalar A multiplication A o f  the 
A-module E;  moreover, i f  E is a unitary A-module, E is a unitary A-module. 

Proof. By 8.2 there is a continuous scalar multiplication from Â  x g t o  
5 that extends the given scalar multiplication from A x E to  E and satisfies 

A(z + y) = Az + xy, 

(A + p)z  = xa: + pa: 

for all z, y E g and all A, p E 2. A proof similar to that establishing the 
bilinearity of g in 8.2 establishes the identity 

(Wa: = A ( P 4  

for all A, p E Â  and all z E @ and, if E is a unitary A-module, the identity 
lz = a: for all z E E. 0 

Often we regard Ê  as an A-module by restricting scalar multiplication 
from Â  x ,!? t o  A x g ,  The analogues of 8.4 and 8.5 hold with essentially 
the same proofs: 

8.7 Theorem. Let A be a Hausdorff ring, El and E2 Hausdorff A- 
modules. I f  u is a continuous homomorphism from El to Ez, there is a 
unique continuous homomorphism 8 from the A-module El to  the A-module 
E2 extending u; moreover, i f  u is a topological isomorphism, so is 8. 

8.8 Theorem. Let E be a topological A-module, and let M be a filter 
base o f  closed submodules of  E .  

(1) I f  E / M  is complete for each M E M ,  then @ M E M ( E / M )  is com- 
plete. 

( 2 )  I f  E is Hausdorff, i f  M converges t o  zero, and i f  some L E M is 
complete, then the canonical homomorphism g from E to  W M E M ( E / M )  
is a topological isomorphism. 

A h h 

h 

Finally, the ring analogue of 6.11 holds: 

8.9 Theorem. I f  the topology of a topological ring A is given by a[.] 
[ultralnorm N ,  the topology o f i i s  given by a[.] [ultralnorm @ that extends 
N .  

Proof. By 6.11 there is a unique [ultralnorm $ on the additive group 
2 that extends N and defines the topology of Â . Moreover, since N is 
continuous by 1.4, the function 

A 

f : (w.4 -+ m N Y )  - &Y) 
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is continuous on Â  x 2, so f-l(R>o) is closed and contains A x A and hence 
is all of Â  x Â . Thus fi is a[.] [ultralnorm on the ring A. 0 

h - 

Exercises 

8.1 If A is a complete metrizable ring, any homomorphism from A into 
the topological ring R is continuous. [Use Exercise 6.3.1 

8.2 (a) The only complete separable metrizable ring topology on the 
field R is the usual topology. [Use 6.14 and Exercise 8.1.1 (b) The only 
automorphism of the field R is the identity automorphism. 

8.3 (Andrunakievich and Arnautov [1966]) Let A be a Hausdorff ring 
with identity 1 in which every nonzero left or right ideal is dense and in 
which there is a neighborhood V of zero such that for every neighborhood 
W of zero there exists n 2 1 such that V" C W for all rn 2 n. Let a E A*. 
(a) For any neighborhood U of zero there exists z E A such that aa: + 1 E U. 
(b) There exists n 2 1 such that V"+' + V" V for all m 2 n. (c) There 
exists y E A such that a y  + 1 E Vn.  [Use (a) and expand (aa + l)".] (d) 
x ; = l ( a y + l ) k  E V for all r 1 1. [Use induction and (b).] (e) The sequence 
(3p)p2i, defined by 

P 

k=O 

is a Cauchy sequence. (f) Let 

A 

d =  lim s P € A .  
P+ 00 

Then 
yad = ya(d - S P )  + S P + l  - S P  - y. 

[Use geometric series.] (g) a(-d) = 1. (h) Every nonzero element of A is 
invertible in 2. 

8.4 Let A be a commutative topological ring with identity whose topology 
is given by a norm. The following statements are equivalent: 

1" Every nonzero ideal of A is dense. 
2' There is a subfield F of Â  containing A. 
[Use Exercise 8.3.1 

9 Baire Spaces 

Here we shall use Baire category concepts to establish that a complete, 
metrizable additive group topology on a ring for which multiplication is 
separately continuous in each variable is actually a ring topology. 
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9.1 Definition. Let E be a topological space. A subset X of E is rare 
(or nowhere dense) if the closure of X has empty interior (that is, if 
x' = 0). A subset Y of E is meager (or a first Baire category subset 
of E) if Y is the union of countably many rare subsets. 

Clearly any subset of a rare [meager] subset of E is a rare [meager] subset, 
and the union of countably many meager subsets of E is meager. 

9.2 Theorem. The following properties of a topological space E are 
equivalent: 

1' The intersection of any countable family of dense open subsets of E 
is dense. 

2' No meager subset of E contains a nonempty open subset. 
3' Every nonempty open subset of E is nonmeager. 
4' The complement of any meager subset of E is dense. 

The proof follows readily from the fact that a subset of E is meager if 
and only if it is contained in the union of countably many closed sets, each 
having an empty interior. 

9.3 Definition. A topological space E is a Baire space if E satisfies 
the equivalent properties of Theorem 9.2. 

If d is a metric on E ,  the diameter of a nonempty subset X of E, denoted 
by diam(X), is defined to be sup{d(t,y) : x, y E X}. 

9.4 Theorem. (1) A locally compact space is a Baire space. (2) A 
topological space whose topology is given by a complete metric is a Baire 
space. 

Proof. Let E be either locally compact or a complete metric space, let 
(Un)n21 be a sequence of dense open subsets of E, and let P be a nonernpty 
open subset. We shall show that 

( f i ~ , ) n ~ # ~ .  

Since E is regular and since each Un is dense, there is a decreasing sequence 
(Vn)n>l - of nonempty open sets such that VI = P and 

n=l 

If E is locally compact, we may further assume that v2 is compact; then 
there exists 

m 00 

c~ n v n g r ) u n ) n P .  
n=l n=l 
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If d is a complete metric defining the topology of E, we may further assume 
that diam(Vn) 5 l / n  for all TZ 2 2; then if cn E Vn for all n 2 1, (cn)n21 is 
a Cauchy sequence for d ,  and if c is its limit, 

m 00 

n=2 n=l  

9.5 Theorem. Let E, F, and G be commutative topological groups, 
and let j be a Z-bilinear function from E x F into G such that for each 
a E E, y --t j ( a , y )  from F to G is continuous at zero, and for each b E F, 
z + f(x, b) from E to G is continuous at zero. If E is metrizable and F a 
Baire space, then f is continuous. 

Proof. By 2.14, it suffices to show that f is continuous at (0,O). Let 
W be a neighborhood of zero in G, and let V be a closed neighborhood of 
zero in G such that V + V E W. Let (U,),rl be a decreasing fundamental 
sequence of symmetric neighborhoods of zero in E. For each n 2 1, let 

Tn = {Y E F : .f(un x {Y}) E V } .  

Since x 4 f(z, y) is continuous for each y E F, 
00 

F =  u T n .  

Since V is closed and since y 3 f (x, y) is continuous for each x E E, Tn is 
closed. Then for some m 2 1, T, has an interior point t as P is a Baire 
space. Let T = T, + (-Tm); then as 0 = t + (-t), zero is an interior point 
of T. As Urn is symmetric, 

n=l  

f(Vm x T )  c v + v c w. 
Thus f is continuous at (0,O). 0 

9.6 Theorem. If 7 is a complete metrizable additive group topology 
on a ring A such that for each a E A, x 4 a x  and x -+ xa  are continuous 
a t  zero, then 7 is a ring topology. 

The assertion follows from 9.4 and 9.5. Actually, a stronger result is 
available : 

9.7 Theorem. If 7 is a topology on a ring A defined by a complete 
metric such that for each a E A, x --t a + x, x --t ax, and x + xa are 
continuous, then 7 is a ring topology. 

The assertion follows from 6.13 and 9.6. 
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9.8 Theorem. Let A be a topological ring, and let E be an A-module 
furnished with an additive group topology such that for each a E A, x --t ax 
from E to E is continuous a t  zero and for each c E E, X --f Xc from A to E 
is continuous at zero. If A is metrizable and E a Baire space, or if A is a 
Baire space and E metrizable, then E is a topological A-module. 

The assertion follows from 9.4 and 9.5. 

Exercises 

9.1 Let E be a topological space. (a) If A is an open subset of E, then A 
is a meager subset of E if and only if there is a sequence (Un)nll of open 
dense subsets of A such that 

M n Un = 0. 

(b) If A is a meager open subset of E and if B is an open set of which A is 
a dense subset, then B is meager. 

9.2 A separable metrizable group G that is a nonmeager subset of itself 
is a Bake space, [If G contains a nonempty meager open set P, show that 
the union of a maximal family of mutually disjoint open meager subsets of 
G is a dense, meager subset of G, and apply Exercise 9.l(b).] 

9.3 A subset A of a topological space E is a nonmeager subset of itself if 
and only if A is a nonmeager subset of A. 

9.4 The Cartesian product E of a family ( E x ) x € L  of complete metric 
spaces is a Baire space. [Argue as in the proof of 9.4 by letting V, be the 
Cartesian product of (Vn,x)xE~ where, if Vn,x # Ex, then diam(V,,x) 5 1/72.] 

n=l 

10 Summability 

A net in a set E is a family of elements of E indexed by a directed 
set. Thus a net in E is simply a function from a directed set to E. Let 
( Z , ) , ~ D  be a net in E, and let 5 be the direction of D. For each p E D 
let Fp = {zY : y 2 /I}. Then {F’ : p E D }  is a filter base on E, called 
the filter base generated by (z,),€D. If E is a topological space, the net 
(x,),€D converges to c E E if the associated filter base does, that is, if 
for every neighborhood V of c there exists p E D such that xy E V for all 
y 2 p. Similarly, c is adherent to (z,),€D if c is adherent to the associated 
filter base, that is, if 

c E  n F ~ .  
K D  

If E is a topological group, a net in E is a Cauchy net if the associated filter 
base is a Cauchy filter base. 
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Here, we s h d  primarily be concerned with the directed set F ( A )  of all 
finite subsets of a set A,  directed by the relation G. 

10.1 Definition. Let G be a Hausdorff commutative group, ( x , ) , € A  a 
f d y  of elements of G. An element s of G is the sum of ( X , ) , ~ A  if the 
net ( s J ) J ~ ; F ( A )  converges to s, where for each J E F(A) ,  

S J  = 2,. 

a€ J 

The family ( x , ) , € A  is summable if it has a sum. 

s there exists J v  E F ( A )  such that 
Thus s is the sum of ( x , ) , € A  if and only if for each neighborhood V of 

a€ J 

for a l l  J E F(A)  containing Jv. 

denoted by 
The sum s of a summable family (x,),€A of elements of G is usually 

a € A  

10.2 Theorem. If (z,),EA is a family of elements of a Hausdorff com- 
mutative group G having a sum s, then for any permutation u of A, s is 
also the sum of (Z,,(,)),EA. 

Proof. Let V be a neighborhood of s. If 

a E J  

for all finite subsets J of A containing J v ,  then 

aEK 

for all finite subsets K of A containing a-'(Jv). 0 

10.3 Definition. A family ( x , ) , ~ A  of elements of a Hausdorff commu- 
tative group G satisfies Cauchy's Condition if for every neighborhood V 
of zero there is a finite subset Jv  of A such that 

aEK 

for every finite subset K of A disjoint from Jv.  
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10.4 Theorem. Let ( x , ) , E A  be a family of elements of a Hausdorff 
commutative group G. If ( z , ) , ~ A  is summable, then ( x , ) , € A  satisfies 
Cauchy’s Condition. If G is complete, then ( x , ) , € A  is sumrnable if and 
only if (z,),€A satisfies Cauchy’s Condition. 

Proof. Cauchy’s Condition is equivalent to the statement that (S J )  J € ~ ( A )  

is a Cauchy net (where S J  = CaEJx, for all J E 3 ( A ) ) .  Indeed, let V 
be a neighborhood of zero, and let W be a symmetric neighborhood of zero 
such that W + W E V. If ( x , ) , € A  satisfies Cauchy’s Condition, there exists 
Jw E F ( A )  such that SK E W for all K E F(A) disjoint from Jw. Hence 
if J1 and J z  are any finite subsets of A containing Jw, 

Conversely, if ( s J ) ~ € ~ ( A )  is a Cauchy net, there exists J v  E F ( A )  such 
that 

sJ1 - S J z  E v 
for all finite subsets J1, J z  of A containing J v ;  hence for any finite subset 
K of A disjoint from Jv, 

S K  = S K U J ~  - sjV E V. 

The assertions therefore follow from 7.2 and 7.3. 0 

10.5 Theorem. If (X,),€A is a summable famzy of elements of a Haus- 
dorff commutative group G, then for every neighborhood V of zero, x, E V 
for all but finitely many a E A. If G is complete and if the open subgroups 
of G form a fundamental system of neighborhoods of zero, then ( x ~ ) , ~ A  is 
summable if and only if for every neighborhood V of zero, x, E V for all 
but finitely many a E A. 

Proof. By 10.4 there is a finite subset K of A such that x, E V whenever 
{a} n K = 8, that is, whenever a E A \ K .  Conversely, if U is an open 
subgroup and if K is a finite subset of A such that z, E U for all a 4 K ,  
then 

& X U  
Q E J  

for all finite subsets J of A disjoint from K .  0 

10.6 Corollary. If G is a metrizable topological group and if (x,),€A 

is a summable family of elements of G, then x, = 0 for all but countably 
many (Y c A. 



74 METRIZABILITY AND COMPLETENESS 

10.7 Theorem. If G is a complete Hausdorff commutative group and if 
(x,)*EA is a summable family of elements of G, then for any subset B of 
A,  ( X ~ ) ~ E B  is summable. 

Proof. If ( X , ) * ~ A  satisfies Cauchy’s Condition, then a fortiori (x,),€B 

satisfies Cauchy’s Condition, so the assertion follows from 10.4. 0 

10.8 Theorem. If (z,),EA is a summable family of elements of a Haus- 
dorff commutative group G and if (AX)A€L is a partition of A such that 
( X , ) , € A ~  is summable with sum sx for each X E L ,  then ( S X ) X ~ L  is sum- 
mable, and 

Proof. Let 
s =  cx*, 

,€A 

and let V be a closed neighborhood of zero. For each finite subset J of A,  
let 

S J  = 2,. 

a E J  

By hypothesis there is a finite subset J v  of A such that s - SJ E V for every 
finite subset J of A containing Jv.  Let 

a finite subset of L. To show that 

X€K 

for every finite subset K of L containing Kv, it suffices by (3) of 3.3 to show 
that for any neighborhood W of zero, 

s - c sx E v + w. 

Let n be the number of elements in K .  By 2.10 there is a symmetric 
neighborhood U of zero such that U + U + - - .  + U (n  terms) W .  By 
hypothesis, for each X E K there is a finite subset J x  of Ax containing 
JV n AX such that for any finite subset 1~ of Ax containing Jx, 
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Let 
J =  u Jx, 

X€K 

a finite subset of A.  Then J 2 Jv, so as 

we have 

+ w. 
X€K a E J  X€K a€ J A  

Thus as G is regular by 3.4, 

10.9 Theorem. Let ( z , ) , E A  be a family of elements of a Hausdorff 
commutative group G. If { A l ,  . . . , An} is a partition of A and if  ( z , ) , € A ~  

is summable for each k E [l,n], then ( Z , ) , € A  is summable, and 
n 

Proof. Let V be a neighborhood of zero. By 2.10 there is a symmetric 
neighborhood W of zero such that W + W +. . . + W (n terms) C V .  For 
each k E [l, n] there is a finite subset Jk of A k  such that for any finite subset 
I k  O f  A k  COntaiIlhg J k ,  

c 2, - c 2, E w. 

Let 

If J is a finite subset of A containing Jv, then for each k E [l, n],  J f l A k  2 Jk, 
so 

and therefore 
n n 
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10.10 Theorem. Let G be the Cartesian product of a family (Gx)x€L 
of Hausdorff commutative groups. Then 8 is the sum of a family ( x , ) , € A  

of elements of G if and only if p r ~ ( s )  is the sum of ( ~ T x ( x , ) ) , ~ A  for each 
X E I;. 

Proof. For each finite subset J of A and each X E L, let 

Then P T X ( S J )  = S X J .  Therefore the net ( S J ) J € F ( A )  converges to  (SX)X,=L if 
and only if for each X E L,  the net ( S X , J )  J € F ( A )  converges to SX. 0 

10.11 Theorem. Iff is a continuous homomorphism from a Hausdorff 
cornmutative group G to a Hausdorff commutative group G’ and if (z,),€A 

is a summable f d y  of elements in G, then ( ~ ( z , ) ) , € A  is summable, and 

The proof is easy. 

10.12 Corollary. If ( $ , ) , € A  and ( y a ) & € ~  are summable families of 
elements of a Hausdorff commutative group G, then so are (2, + Y,),€A, 

(-z,),EA, and ( ~ . z , ) , ~ A  for any integer m, and moreover 

Proof. The first equality is a consequence of 10.11 and the continuity of 
the homomorphism (z,y) -+ z + y from G x G to G. 0 

10.13 Theorem. Let G be a complete commutative topological group 
whose topology is given by a norm N. If ( x , ) , € A  is a family of elements 
of G such that ( N ( Z , ) ) ~ ~ A  is a summable family of real numbers, then 
( Z , ) , ~ A  is summable, and 
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Proof. Let 

If K is any finite subset of A,  then 

Consequently, as Cauchy's Condition holds for ( N ( z , ) ) , ~ A  by 10.4, it holds 
also for (Z,),€A, and therefore ( z , ) , ~ A  is summable, and moreover, 

10.14 Theorem. Let G be a complete commutative topological group 
whose topology is given by an ultranorm N ,  and let ( X , ) , € A  be a family of 
elements of G .  

(1) (z,),€A is summable i f  and o d y  if for every e > 0, N ( z , )  5 e for all 
but finitely many cy E A.  

(2) If ( ~ , ) , E A  is summable, then 

N (  C 2,) 5 sup N ( z , )  < +m. 
aEA &A 

Proof. (1) follows from 10.5. (2) Let 

s = c 2,) b = sup N ( Z , ) .  
aEA ,€A  

By 10.4 there is a finite subset J of A such that N ( z , )  5 1 if LY E A \ J .  
Consequently, 

b I sup(1, supN(2,)) < +m. 
aEJ 

If b = 0, then Z, = 0 for all a E A,  so s = 0. If b > 0, there is a finite 
subset K of A such that 

"3 - c 2,) L b, 
aEK 

so 
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10.15 Theorem. Let E, F, and G be Hausdorff commutative groups, 
let f be a continuous Z-bilinear function from E x F to G, and let (ZX)X€L 

be a summable family of elements of E ,  ( y p ) p e ~  a summable family of 
elements of F. 

(1) For each a E E ,  ( f ( a , ~ ~ ) ) ~ € ~  is summable, and 

(2) For each b E F, (f(zx, ~ ) ) X E L  is summable, and 

(4) If the open subgroups of G form a fundamental system of neighbor- 

Proof. Since y + f ( a , y )  and z 4 f(x,b) are continuous homomor- 

(3) Let 

hoods of zero, then (f(zx, 

phisms, (1) and (2) follow from 10.11, 

is summable. 

x = E X X ,  y = c YP* 
XEL PEM 

For each X E L,  ( ~ ( Z X , Y ~ ) ) ~ E M  is summable and 

by (1). Also, ( f ( z x , y ) ) ~ E ~  is summable and 

by (2). Thus by 10.8, 
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(4) By (3) and 10.5 applied to  6, it suffices to show that if U is a 
neighborhood of zero in G, then f(z,,yp) E U for all but finitely many 
( c Y , ~ )  E L x M. As f is continuous, there exist neighborhoods V and W of 
zero in E and F respectively such that f ( V  x W )  C U .  By 10.5 there exist 
finite subsets S of L and T of M such that z, E V for all a E L \ S and 
yp E W for all p E M \ T.  For each /.L E T, ( f (za ,y , ) ) ,E~ is summable by 
(2)) so by 10.5 there is a finite subset S, of L such that f(z,,y,) E U for 
all a E L \ S,. Similarly, for each X E S, ( f ( z ~ , y p ) ) p ~ ~  is summable by 
(1)) so by 10.5 there is a finite subset TX of M such that f ( z x , y p )  E U for 
all /3 E M \ Tx.  Consequently, f(z,, yp) E U for all 

(%P> 4 [ u (S, x {PHI  u [ u (0) x TX>l, 
P E T  X€S 

a finite subset of L x M. 
Theorem 10.15 applies, in particular, to scalar multiplication of a topo- 

logical module. In particular, it applies to multiplication in a topological 
ring: 

10.16 Corollary. Let ( z x ) x E ~  and (y,),€~ be summable families of 
elements of a Hausdorff ring A. For any c E A, ( czx )xE~  and ( z ~ c ) ~ c ~  are 
summable, and 

c czx = c c zx, c z x c  = c ZXC.  

XEL XEL X€L X€L 

(X,,)ELXM XEL p E M  

If the open additive subgroups of A form a fundamental system of neigh- 
borhoods of zero, then (ZXY,)(X, , )~L~M is summable. 

Exercises 

10.1 Let (Z,),€A be a family of real numbers. (a) If 2, E IW>o - for all 
a E A and if 

then ( z , ) , ~ A  is summable if and only if s < +oo, in which case 

c 2, = s. 
a E A  



80 METRIZABILITY AND COMPLETENESS 

(b) (x&€A is summable if and only if ( ~ x , ~ ) , E A  is summable. 
10.2 A family ( z a ) a E ~  of complex numbers is summable if and only if 

( I z , I ) , E A  is summable. 
10.3 If ( x x ) x E ~  and ( Y ~ ) ~ E M  are summable families of complex numbers, 

then ( X X ~ ~ ) ( ~ , ~ ) ~ L ~ M  is summable. [Use Exercises 10.2 and 10.1.1 
10.4 Let B ( X )  be the normed ring Example 1, $1, where X is an infi- 

nite set. Give an example of a summable family ( fa) ,€x of members of 
B ( X )  whose sum is the constant function 1 such that (N(fa) ) ,E~ is not 
summable. 

are 
summable families of elements of A such that ( N ( x x ) ) x € L  and ( N ( Y J ) , , ~ M  

are summable families of real numbers, then is summable. 

10.5 Let A be a normed ring with norm N. If ( x x ) x E ~  and 

11 Continuity of Inversion and Adversion 

The definition of a ring topology does not require that inversion on a 
topological ring A with identity (the function z + x - l  on A X )  be continu- 
ous; if it is, we say that A is a topological ring with continuous inversion. It 
is easy to see that if A is a ring with identity and if ( 7 9 ~ ~ ~  is a family of 
ring topologies on A for which inversion is continuous, then inversion is con- 
tinuous for supxEL 7~. In particular, the supremum of a family of division 
ring topologies is a division ring topology. 

To show that inversion is continuous on A X ,  it suffices to  show that it is 
continuous at 1: 

11.1 Theorem. Let 7 be a topology on a group G ,  denoted multiplica- 
tively, such that for each c E G ,  the functions x -+ cx and x + xc are 
continuous from G to G .  If inversion is continuous at 1 ,  i t  is continuous 
everywhere. 

Proof. Let c E G, and let V be a neighborhood of c - l .  Clearly x --+ 

cz is a homeomorphism, so CV is a neighborhood of 1. By hypothesis 
there is a neighborhood U of 1 such that U-' cV.  Also, x -+ xc is a 
homeomorphism, so Uc is a neighborhood of c. Clearly 

Let A be a commutative ring with identity, and let T be the set of 
a l l  cancellable elements of A (that is, the complement of the set of zero- 
divisors). A total quotient ring of A is a ring B containing A as a subring 
such that each t E T is invertible in B and B = { x / t  : x E A,  t E 2'). 
The proof that each integral domain A is a subdomain of a field B may 
be carried over without essential alteration to show that each commutative 
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ring A has a total quotient ring. Moreover, if B and B' are total quotient 
rings of A,  there is a unique isomorphism f from B to B' such that f(z) = z 
for all z E A. Consequently, we may speak of the quotient ring Q(A)  of A. 

A subset S of a commutative ring A with identity is multiplicative if 
1 E S, 0 4 S, and zy E S whenever z E S and y E S. For example, the 
subset T of cancellable elements is multiplicative. If S is a multiplicative 
subset of T, we denote by S- lA  the subring of the total quotient ring 
Q ( A )  of A consisting of all the elements z / s  where z E A and y E S; in 
particular, Q ( A )  = T-ld. If A is an integral domain, then T = A*, and 
T ' A ,  or Q ( A ) ,  is the quotient field of A. 

For any Hausdorff ring topology 7 on a field K there is a Hausdorff field 
topoiogy S on K weaker than 7, a consequence of the following theorem: 

11.2 Theorem. Let 7 be a ring topology on a commutative ring A 
with identity, and let S be a multiplicative set of cancellable elements of 
A such that S is a neighborhood of 1 and, for each s E S, z -+ sx is an 
open mapping from A to A.  Of all the ring topologies on S-'A for which 
inversion is continuous and which induce on A a topology weaker than 7, 
there is a strongest S. If 7 is Hausdorff, so is S. If U is a fundamental 
system of symmetric neighborhoods of zero for 7 such that 1 + V E S for 
each V E U, then 9 is a fundamental system of symmetric neighborhoods 
of zero for S, where 

9 = {V : v E U}, 

and for each V E V ,  V = { = *  W . w ,  w E V } .  

Proof. Clearly 3 is a filter base of symmetric subsets of S-l A.  If V E V ,  
there exists U E U such that U + U + UU + UU C V; easy calculations 
then establish that I? + 0 c V and ??I? C v.  If a E A, s E S, and V E U, 
there exists U E V such that aU c V and U E V; as z -+ sz is open, there 
exists W E U such that W C U n sU; therefore a s - l w  C a?? 2 V .  Thus 9 
is a fundamental system of neighborhoods of zero for a ring topology S on 
S-l A.  

If 7 is Hausdorff, so is S. Indeed, let a E A* and s E S. Then there 
U, 

To show that inversion is continuous at 1 for S, let V E U. There exists 
1 + V ,  for if u, w E U, then 

exists U E U such that a 4 U. There exists W E V such that W + W 
and there exists V E V such that sV 2 W and aV C W. Then s-la 4 V ,  

U E V such that U + U C_ V. Then (1 + o)-' 
-U 

E l + V .  
u 1 l + v  = 1 +  

l + u + w  
(l+-)- = 

l + v  l+u+w 
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Thus inversion is continuous for S by 11.1. 
Let S' be a ring topology on S-'A for which inversion is continuous and 

which induces on A a topology weaker than 7, and let T be a neighborhood 
of zero for S'. As 

is continuous at (0,O) for the Cartesian product topology determined by S', 
there is a neighborhood W of zero for S' such that W(1+ W)-' E T. By 
assumption, there exists V E V such that V G T. Thus 
S is stronger than S'. 0 

11.3 Corollary. If 7 is a Hausdorff ring topology on a field K, then of 
a.ll the field topologies on K weaker than 7 there is a strongest S, and S is 
Hausdorff. 

W n A.  Hence 

Proof. We need only let S = K *  in 11.2, for then S- lK = K .  0 

11.4 Definition. Circulation or the circle composition on a ring A 
is the composition o defined by 

x o y  = x + y - x y  

for all z, y E A. An element of A is [left, right] advertible if it is [left, 
right] invertible for 0. 

11.5 Theorem. Let A be a ring. (1) Circulation on A is an associative 
composition with neutral element zero. (2) Circulation on A is commutative 
if and only if multiplication is commutative. (3) For any a, b E A, if ab is 
left [right] advertible, so is ba. 

Proof. The proofs of (1) and (2) are easy. (3) If y o  ab = 0, then (bya - 
ba) o ba = 0, and similarly if ab o y = 0, then ba o (bya - ba) = 0. 0 

By (1) of 11.5, if x E A,  there is at most one element y E A such that 
z o y = 0 = y o 2. If such an element exists, it is called the adverse of z and 
denoted by 2". We shall denote by A" the group (under 0) of al l  advertible 
elements of A,  and call the function z -+ xu from A" to A" (or any larger 
set) adversion. If A is a topological ring and adversion is continuous on Aa, 
we shall say that A is a ring with continuous adversion. 

If A is a topological ring, circulation is clearly continuous from A x A to 
A.  In particular, z -+ a 0 E and x -+ x o a are continuous functions from 
A to A for any a E A,  and if c E A", then z -+ c o x and x + x o c are 
homeomorphisms from A t o  A.  

In a ring with identity, circulation and adversion are essentially disguises 
of multiplication and inversion, as the following theorem shows. They are 
introduced since adversion is defined in any ring, whereas inversion is defined 
only in rings with identity. 
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11.6 Theorem. Let A be a ring with identity. The function k from A 
to A, defined by 

for all x E A, is an isomorphism from the semigroup A under multiplication 
[circulation] to the semigroup A under circulation [multiplication]. 

k(z) = 1 - 2 

Proof. It is easy to see that 

(1 - z) 0 (1 - y) = 1 - zy 

and that 
1 - (z 0 y) = (1 - z)(1- y) 

for all 2,  y f A. 0 

isomorphism from AX [A"] to A" [AX]. 

0 E A", and no nonzero idempotent e belongs to A", for if 

In particular, the restriction of Ic to the group AX [the group A"] is an 

IfAisadivisionring, thenAX =A\{O), soA"=A\( l} .  Forany ring, 

e + a :  -ex  = 0, 

then 
2 o = e(e + z - ez )  = e + e z  - e2z = e. 

If A is a trivial ring, then A" = A and, in fact, z" = -z for all z E A. 

11.7 Definition. A topological ring A is advertibly open if A" is an 
open subset of A. 

Thus if A is a topological ring with identity, A is advertibly open if and 
only if AX is open. For example, a Hausdorff division ring is advertibly open. 
The Cartesian product of infinitely many topological rings with identity is 
not advertibly open, however, as every neighborhood of zero contains a 
nonzero idempotent. 

To show that a topological ring A is advertibly open, it suffices to show 
that A" is a neighborhood of zero: 

11.8 Theorem. If A is a topological ring and if A" contains an interior 
point, then A" is open. If A is a topological ring with identity and if AX 
contains an interior point, then AX is open. 

Proof. Let U be a nonempty open subset of A contained in A", and let 
c E U. For any z E A", z o C" o U is an open set containing z and contained 
in A". 0 

Certain topological conditions imply the continuity of adversion: 
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11.9 Theorem. If A is a complete, metrizable, advertibly open ring 
[with identity], then adversion on A" [inversion on A X ]  is continuous. 

Proof. A theorem of topology (see, for example, Theorem 14.9 of Topo- 
logical Fields) asserts that on any open subset of a complete metric space 
there is a complete metric defining its induced topology. The assertion 
therefore follows by applying 6.13 to A". 0 

A deep theorem asserts that local compactness may replace complete 
metrizability in 6.13 (for a proof, see $9 of Topological Fields): 

11.10 Theorem. If7 is a locally compact topology on a group G, 
denoted multiplicatively, such that for all c E G, x + cx and x + xc are 
continuous, then 7 is a group topology. 

Correspondingly, we obtain: 

11.11 Theorem. LfA is an advertibly open, locally compact ring [with 

Proof. As A" is open, it is locally compact for its induced topology, so 

Complete normed rings are advertibly open and have continuous adver- 

11.12 Theorem. Let A be a ring [with identity] topologized by a com- 
plete norm N. Then A is an advertibly open ring with continuous adversion 
[inversion]. Specifically, if N ( x )  < 1, then x is advertible [l -x is invertible], 
(xn),2l is summable, and 

identity], then adversion on A" [inversion on A X ]  is continuous. 

we need only apply 11.10. 0 

sion: 

M 00 

[(l - .)-' = E x n ] .  
n=l n=O 

Proof. Let 

n=l 

f o r a l l m 2 1 .  I f m > p > l ,  
m 00 

Consequently (xn)+l - is summable, and clearly 
m m 
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The continuity of adversion now follows from 11.9, but an elementary argu- 
ment also establishes it. By the preceding, 

m 

N(z")  5 c N ( z ) "  = N(z)[l - N ( 4 1 - 1 ,  
n=l 

so adversion is continuous at zero and hence everywhere on A" by 11.1. 0 

To show that adversion is continuous, it suffices to show that its restric- 
tion to a dense subgroup of A" is continuous: 

11.13 Theorem. Let 7 be a topology on a group G, denoted multiplica- 
tively, such that (z,y) --+ xy is continuous from G x G, furnished with the 
Cartesian product topology defined by 7, to G. If the restriction of inversion 
to a dense subgroup H of G is continuous, then inversion is continuous on 
G. 

Proof. By 11.1 it suffices to show that inversion is continuous at 1. Let 
W be a neighborhood of 1. By hypothesis there is a neighborhood V of 1 
such that VV C W .  Also by hypothesis there is a neighborhood U of 1 such 
that (U n H ) - l  5 V n H .  Again, there exists by hypothesis a neighborhood 
T of 1 such that TT 5 U and T c V .  To show that T-' c W ,  let s E T. 
As s E and as Ts is a neighborhood of s in G, Ts n H # 0. Thus there 
exists t E T such that t s  E H. Hence t s  E U n H, so 

s - 9 - l  = ( ts)- l  E v, 

whence 
-1  

S E V t C V T C V V C W . e  

11.14 Theorem. If B is a Hausdorff ring [with identity] containing a 
dense advertibly open subring A with continuous adversion, then B is a ring 
with continuous adversion [inversion]. 

Proof. Clearly A" is a dense subgroup of its closure in B", which is 
A" n B". Consequently by 11.13, the restriction of adversion to A" fl B" is 
continuous. By 4.22 and our hypothesis, A" is a neighborhood of zero in B, 
so A"n B" is a neighborhood of zero in B". Consequently, adversion on B" 
is continuous at zero and hence everywhere by 11.1. 0 

- 

As we shad shortly see, the completion of a Hausdorff field need not 
be a field or even an advertibly open topological ring, but at least it  has 
continuous inversion: 
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11.15 Corollary. If K is a Hausdorff topological division ring, the com- 
pletion K of K is a topological ring with continuous inversion; in particular, 
if 

h 

is algebraically a division ring, it is a topological division ring. 

11.16 Theorem. IfA is a complete, Hausdorff ring [with identity] whose 
open additive subgroups form a fundamental system of neighborhoods of 
zero, and if x is a topological nilpotent of A, then x is advertible [l - x is 
invertible], ( X ~ ) ~ > I  - is summable, and 

00 00 

[(l-  x)-' = c x y .  
n=l n=O 

Proof. By 10.5, (xn),+1 - is summable, and clearly 

M m 

x - C x n + x Z x n  = 0..  
n=l  n=l 

Exercises 

11.1 (a) The filter base of all  nonzero ideals of Z is a fundamental system 
of neighborhoods of zero for a ring topology 7 on Q that is not a field 
topology. (b) For each integer a > 0, let 

Va = {nfq : n E Z, Q E Z*, a 1 n, and (a, q )  = 1) 

Show that {V, : a E Z, a > 0) is a fundamental system of neighborhoods of 
zero for the strongest field topology on Q weaker than 7. 

11.2 With the terminology of 11.2, show that: (a) AX is open for 7 if 
and only if A is open in S- lA for S; (b) AX is open for 7 and inversion is 
continuous on AX if and only if every open subset of A for 7 is also open 
in S- lA for S. 

11.3 (Gould [196l]) Let A be a commutative topological ring with iden- 
tity, S a multiplicative subset of A. Of a l l  the ring topologies on A stronger 
than its given topology 7 such that for each s E S, x -+ sx is an open 
mapping, there is a weakest 7s. If V is a fundamental system of symmetric 
neighborhoods of zero for 7, then {sV : s E S, V E V} is a fundamental 
system of symmetric neighborhoods of zero for 7s. 

11.4 The supremum of a family of ring topologies on a ring A having 
continuous adversion is a ring topology having continuous adversion. 

11.5 (Warner [1955]) A topological ring A is advertibly complete if every 
Cauchy filter F on A for which there exists a E A such that 3 o a and a o F 
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converge to zero is convergent. (a) A complete topological ring is advertibly 
complete. (b) An advertibly open topological ring is advertibly complete. 
(c) A left or right ideal of an advertibly complete ring is advertibly complete. 

11.6 (Warner [1955]) Let A be a ring topologized by a norm N .  The 
following statements are equivalent: 

1" For all x E A,  if N ( x )  < 1, then z is advertible. 
2' For all z E A, if N ( z )  < 1, then (zn)n>l - is summable. 
3" A is advertibly open. 
4" A is advertibly complete 
11.7 (a) The Cartesian product of advertibly complete rings is advertibly 

complete. (b) Give an example of an advertibly complete ring that is neither 
complete nor advertibly open. 

11.8 If X is a subset of a topological space T, let X'  be its derived 
set, which consists of all t E T such that every neighborhood of t contains 
infinitely many elements of X .  Let A be a topological ring. (a) If 0 E (A")', 
then A" C (A")'. (b) Either A" n (A")' = 0, or A" E (A")'. 

11.9 If A is a complete Hausdorff ring [with identity] whose open sub- 
rings form a fundamental system of neighborhoods of zero, and if the set 
of topological nilpotents is a neighborhood of zero, then A is an advertibly 
open ring with continuous adversion [inversion]. 



CHAPTER 111 

LOCAL BOUNDEDNESS 

Normed rings and vector spaces are examples of locally bounded rings 
and modules, whose elementary properties are presented in $12. Straight 
division rings and locally retrobounded division rings, which include topo- 
logical rings whose topology is given by a proper absolute value, are in- 
troduced in $13. A condition for a topological ring to be normable and 
relations between norms and absolute values on a field are discussed in $14. 
The simple and elegant theory of Hausdorff finite-dimensional vector spaces 
over complete straight division rings (in particular, over division rings whose 
topology is given by a complete absolute value) is presented in $15. Finally, 
in $16 we derive certain classical theorems concerning topological division 
rings: Pontrhgin’s theorem on connected locdy  compact division rings, 
the Extension Theorem for complete absolute values, the Gel’fand-Mazur 
Theorem on normed division algebras, and Ostrowski’s Theorem identifying 
all archimedean absolute values. 

12 Locally Bounded Modules and Rings 

Bounded and locally bounded rings and modules constitute a central 
topic, which we introduce here. 

12.1 Definition. Let E be a topological module over a topological ring 
A.  A subset B of E is bounded if for every neighborhood U of zero in E 
there is a neighborhood V of zero in A such that V.B C U. 

If S is a ring topology on A stronger than its given topology 7, then E 
remains a topological module over A when A is retopologized with S, and 
every subset of E bounded when A is furnished with 7 remains bounded 
when A is furnished with S; in general, there may be additional bounded 
sets. For example, if S is the discrete topology on A, every subset of E is 
bounded since (O).E C_ U for any neighborhood U of zero in E. 

If 7 is a ring topology on a ring A, 7 is a module topology on the asso- 
ciated left and right A-modules A, whose scalar multiplications are simply 
the given multiplication of A. 
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12.2 Definition. A subset B of a topological ring A is left [right] 
bounded if B is a bounded subset of the right [left] topological A-module 
A, and B is bounded if it is both left and right bounded. 

Thus B is left [right] bounded if and only if for every neighborhood U of 

Any subset consisting of one element of a topological module [ring] is 
zero there is a neighborhood V of zero such that BU C V [UB c V ] .  

bounded by (TMN 2) of 3.6 [(TRN 2) of 3.51. More generally: 

12.3 Theorem. A compact subset ofa topological module or topological 
ring is bounded. 

The assertion is a restatement of 4.18 and 4.19. 
Many operations are closed under the formation of bounded sets. For 

example, any subset of a bounded set is clearly bounded. 

12.4 Theorem. Let E be a topological module over a topological ring 
A, and let B1 and B2 be bounded subsets of E ,  C a right bounded subset 
of A. Then B1, B1+ B2, B1 U B2, and C.B1 are bounded. 

Proof. Let U be a closed neighborhood of zero. There is a neighbor- 
hood V of zero in A such that V.B1 C_ U, and as scalar multiplication is 
continuous, 

V.BI c V.B1 c_ T/.B1E ?7 = u. 
Thus by (4) of 3.3,  B1 is bounded. 

Let W be a neighborhood of zero such that W + W c U, and let V1, V2 
be neighborhoods of zero in A such that VI.BI C W and v 2 . B ~  5 W .  Then 

and 
(vl n v2).p1 + B ~ )  c V ~ B ~  + V ~ B ~  c w + w c u. 

Finally, let T be a neighborhood of zero in A such that TC V .  Then 

T.(C.B1) = (TC).BI c V.B1 U.. 

Consequently, the union or sum of finitely many bounded subsets of a 
topological module is bounded. 

12.5 Corollary. If B and C are [left, right] bounded subsets of a topo- 
logical ring, then so are B, B U C, B + C ,  and CB.  
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12.6 Theorem. If u is a continuous homomorphism from a topological 
A-module E to a topological A-module F and if B is a bounded subset of 
E, then u(B)  is a bounded subst of F. 

Proof. Let U be a neighborhood of zero in F. Then u-'(U) is a neigh- 
borhod of zero in E, so there is a neighborhood V of zero in A such that 
V. B c u-' ( U ) .  Consequently, 

V.u(B) = u(V.B) U ( U - ~ ( U > )  5 U. 0 

12.7 Theorem. If u is a topological epimorphism from a topological 
ring A to a topological ring A' and if B is a [left, right] bounded subset of 
A, then u(B)  is a [left, right] bounded subset of A'. 

Proof. We consider the left bounded case. Let U be a neighborhood of 
zero in A'. Then u-'(U) is a neighborhood of zero in A, so there is a 
neighborhood V of zero in A such that BV C u - l ( U ) .  But then u(V)  is a 
neighborhood of zero in A', and 

u(B)u(V)  = u(BV)  c u(u-'(U)) U. 0 

In general, the image of a bounded set under a continuous isomorphism 
need not be bounded. For example, a ring A furnished with the discrete 
topology is bounded, but A need not be bounded for a nondiscrete ring 

12.8 Theorem. If E is the Cartesian product of a family ( E , ) , E ~  of 
topological A-modules, then a subset B of E is bounded if and only ifprx(B) 
is a bounded subset of Ex for each X E M (where prx is the canonical 
projection from E to Ex). 

Proof. The condition is necessary by 12.6. Sufficiency: Let U be the 
Cartesian product of  up),^^, where U, is a neighborhood of zero in E, for 
all p E M and for some finite subset Q of M ,  U,  = E, for all p E M \ Q. 
By assumption, for each p E Q there is a neighborhood V, of zero in A such 
that V,.pr,(B) C Up.  Therefore 

topology. 

12.9 Theorem. If A is the Cartesian product of a family (A,),€M of 
topological rings, then a subset B of A is [left, right] bounded if and only if 
prx(B) is [left, right] bounded for aU X E M. 

The proof is similar to  that of 12.8. 
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12.10 Theorem. If F is a submodule of a topological A-module E and 
if B E F ,  then B is a bounded subset of E if and only if i t  is a bounded 
subset of F. 

Proof. Clearly V.B C U if and only if V.B 

12.11 Theorem. If B is a [left, right] bounded subset of a topological 
ring A and if A’ is a subring of A, then B n A’ is a [left, right] bounded 
subset of A’. 

U f l  F .  0 

Proof. If BV 5 U ,  then ( B  r l  A’)(V fl A’) 2 U f l  A’. 0 

In contrast, a bounded subset of a subring of A need not be a bounded 

The condition given in the following theorem is the original definition of 
subset of A (Exercise 12.7). 

a bounded set in real topological vector spaces. 

12.12 Theorem. A necessary condition for a subset B of a topologi- 
cal A-module E to be bounded is that for every sequence (zn),2l of ele- 
ments of B and every sequence (A,),L~ of scalars, if A, = 0, then 
limn+- Anx, = 0. If A is metrizable, this condition is both necessary and 
sufficient for B to be bounded. 

Proof. If U is a neighborhood of zero in E ,  there is a neighborhood V 
of zero in A such that V.B C U ;  if A, E V for all n 2 m, then Anz, E U 
for all n 2 m. Conversely, assume that A is metrizable, and let (V,),ll be 
a fundamental decreasing sequence of neighborhoods of zero in A. Assume 
that B is not bounded. Then there is a neighborhood U of zero in E such 
that for each n 2 1 there exist A, E V, and x, E B such that A,z, 4 U .  
Then limn+cx, A, = 0, but ( A , z , ) , ~ ~  does not converge t o  zero. 0 

12.13 Definition. A topological A-module E and its topology are called 
bounded if E is a bounded set; E and its topology are locally bounded 
if there is a bounded neighborhood of zero (and hence a fundamental sys- 
tem of bounded neighborhoods of zero). Similarly, a topological ring A is 
[left, right] bounded if A is a [left, right] bounded set, and A is locally 
[left, right] bounded if A has a [left, right] bounded neighborhood of zero 
(and hence a fundamental system of [left, right] bounded neighborhoods of 
zero). 

12.14 Theorem. (1) If M is a submodule of a [locally] bounded module 
E ,  then both M and E / M  are [locally] bounded. 

(2) If E is the Cartesian product of a family ( E p ) p E ~  of topological A- 
modules, then E is bounded if and only if each E, is bounded, and E is 
locally bounded if and only if each E, is locally bounded and for all but 
finitely many p E M ,  E,  is bounded. 
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(3) I f E  is a Hausdorff [locally] bounded A-module, then k is [locally] 

(4) A [locally] compact module is [locally] bounded. 

Proof. (1) follows from 12.6, (2) from 12.8, (3) from 12.5 and 4.22, and 
(4) from 12.3. 0 

12.15 Theorem. (1) If J is an ideal of a [locally] bounded ring A, then 
A/ J is [locally] bounded. 

(2) If (A,),,=M is a family of topological rings and if A is their Cartesian 
product, then A is bounded if and only if each A, is bounded, and A is 
locally bounded if and only if each A, is locally bounded and for all but 
finitely many /I E M, A, is bounded. 

(3) IfA is a Hausdorff [locally] bounded ring, then A is [locally] bounded. 
(4) If A is a [locally] bounded ring, so is any subring. ( 5 )  A [locally] 

The proof is similar to  that of 12.14. 

12.16 Theorem. Let A be a topological ring whose open additive sub- 

(1) If A is [left, right ] bounded, the open [left, right ] ideals of A form a 

(2) If A is locally left [right] bounded, the open subrings of A form a 

A slight modification of the proofs of 4.20 and 4.21 yields (1) and (2) 

bounded. 

compact ring is [locally] bounded. 

groups form a fundamental system of neighborhoods of zero. 

fundamental system of neighborhoods of zero. 

fundamental system of neighborhoods of zero. 

respectively. 

12.17 Theorem. Let A be a topological ring with identity possessing 
a subset C of invertible elements such that 0 E E.  If V is a bounded 
neighborhood of zero in a unitary topological A-module E, then {XV : A E 
C} is a fundamental system of neighborhoods of zero. 

Proof. If X E A X ,  then a: -+ Xa: is a homeomorphism from E to E ,  so XV 
is a neighborhood of zero. Let U be any neighborhood of zero in E. There 
exists a neighborhood W of zero in A such that W.V C U ,  and there exists 
AEcnw,sowcv.  0 

12.18 Theorem. If A is a topological ring with identity and if zero is 
adherent to AX , the only Hausdorff bounded unitary A-module is the zero 
module. 

Proof. Let E be a Hausdorff bounded unitary A-module, By 12.17, {XE : 
X E AX} is a fundamental system of neighborhoods of zero. But XE = E 
for all X E A X ,  so as E is Hausdorff, E = (0). 0 
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12.19 Corollary. If K is a division ring furnished with a ring topology 
and if E is a nonzero Hausdorff bounded K-vectot space, then the topology 
of K is discrete. 

12.20 Corollary. If A is a Hausdorff ring with identity and if zero is 
adherent to A ', then A is left and right unbounded. h particular, the only 
Hausdorff left or right bounded topology on a division ring is the discrete 
topology. 

By 12.3, we conclude: 

12.21 Corollary. A compact division ring is finite. 

Exercises 

12.1 If (un),>l is a Cauchy sequence in a topological module E ,  then 
{a, : n 2 1) is bounded. 

12.2 Let A be a topological ring with identity such that 0 E AX, and 
let E be a locally compact unitary A-module. A subset of E is relatively 
compact (that is, its closure is compact) if and only if it is bounded. 

12.3 The topology defined in Exercise l l . l ( b )  on Q is a field topology 
that is not locally bounded. 

12.4 Let A be a topological ring with identity, C a subset of AX such that 
0 E c. (a) A subset B of A is left [right] bounded if and only if for every 
neighborhood U of zero there exists X E C such that BX C U [XB U]. 
(b) A left [right] bounded subset of A remains left [right] bounded if A is 
furnished with a weaker ring topology. 

12.5 A sequence (&),>I of bounded subsets of a topological module E 
is a fundamental sequence of bounded subsets if each bounded subset of E 
is contained in some B,. (a) If a topological module E is a Baire space and 
has a fundamental sequence of bounded subsets, then E is locally bounded. 
(b) If A is a metrizable ring with identity such that 0 E AX and if E is a 
unitary locally bounded A-module, then E has a fundamental sequence of 
bounded subsets. 

12.6 Let A be a topological ring with identity such that 0 E AX, and let 
E be a Hausdorff unitary A-module. (a) No proper submodule of E is open. 
(b) If every neighborhood of zero in E contains a nonzero submodule, then 
E is not locally bounded. (c) In particular, if E is the Cartesian product 
of infinitely many nonzero Hausdorff unitary A-modules, then the Cartesian 
product topology on E is not locally bounded. 

12.7 The subring Z of Q, furnished with its usual discrete topology, is a 
bounded subset of itself but is not a bounded subset of Q. 

12.8 If A is a bounded ring, adversion is uniformly continuous on A". 
[First, assume that A has an identity.] 



94 LOCAL BOUNDEDNESS 

13 Locally Retrobounded Division Rings 

An important class of Hausdorff division rings that includes those whose 
topology is defined by a proper absolute value is given in the following 
definition: 

13.1 Definition. Let K be a Hausdorff topological division ring. A 
topological K-vector space E is straight if for every nonzero c E E ,  X -, Xc 
is a homeomorphism from K to the one-dimensional subspace Kc of E .  
The Hausdorff topological division ring K is straight if every Hausdorff 
K-vector space is straight. 

13.2 Theorem. If K is a division ring furnished with a Hausdorff ring 
topology 7 such that every isomorphism from the K-vector space K to 
a Hausdorff one-dimensional K-vector space is a homeomorphism, then 7 
is minimal in the set of atl Hausdorff ring topologies on K ,  ordered by 
inclusion. 

Proof. Let S be a Hausdorff ring topology on K weaker than 1. Then 
K ,  furnished with S, is a topological vector space over K ,  furnished with 
7. By hypothesis, X --f X . l  = X is a homeomorphism from K, furnished 
with 7, to K, furnished with S, so S = 7. 0 

13.3 Theorem. If K is a straight division ring, its topology is minimal 
among the Hausdorff ring topologies on K, that is, there is no ring topology 
on K strictly weaker than its given topology. 

If K is a field furnished with a minimal Hausdorff ring topology, that 
topology is necessarily a field topology by 11.3. Thus, for fields, the re- 
quirement in Definition 13.1 that the inversion be continuous for the given 
topology follows from the other requirements of the Definition. 

13.4 Theorem. If K is a straight division ring, so are k and any dense 
division subring of K. 

Proof. If c is a nonzero element of a Hausdorff k-module E ,  then u, : X -+ 

Xc is a topological isomorphism from the g-module g to the submodule 
g c  of E .  Indeed, the restriction v of ti, to K is a topological isomorphism 
from K to Kc; as u, is continuous, u, is the unique continuous extension 
of v to g ;  by 8.7, therefore, u, is a topological isomorphism from k to k c .  
Thus to establish that i? is straight, it suffices by 11.15 to prove that i? is 
a division ring. 

Let c be a nonzero element of k. We have just seen that g c  is topo- 
logically isomorphic to 2 and hence is complete and therefore closed. As- 
sume that k c  is a proper left ideal of g ,  let q5 be the canonical epimor- 
phism from the k-module to the Hausdorff 2-module K/Kc, and let 

h h  
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e = 1 + k c  E g / k c .  Then for all X E k, 

h h  

so by the preceding, q5 is a topological isomorphism from k to K/Kc. Thus 
kc = q5-'(0) = (0), so c = 0, a contradiction. Therefore K c  = for all 
nonzero c E K. Thus every nonzero element of K has a left inverse, so K 
is a division ring. 

Let L be a dense division subring of K; then L is also a dense division 
subring of the straight division ring k. If c is a nonzero vector of a Hausdorff 
L-vector space E ,  then X -+ Xc from L to Lc is simply the restriction to L 
of the topological isomorphism X ---f Xc from to the subspace k c  of E ,  
and so is a topological isomorphism. 0 

h 

h h h 

13.5 Definition. Let K be a division ring furnished with a ring topology 
7. A subset V of K that contains zero is retrobounded if (K \ V)-' 
is bounded. The topology 7 is locally retrobounded if 7 is Hausdorff 
and the retrobounded neighborhoods of zero form a fundamental system 
of neighborhoods of zero. A locally retrobounded division ring is a 
division ring furnished with a locally retrobounded topology. 

13.6 Theorem. A division ring K topologized by an absolute value is 
locally retrobounded. 

Proof. If T > 0 and 

13.7 Theorem. If 7 is a locally retrobounded topology on a division 
ring K, then every neighborhood of zero is retrobounded, and 7 is a locally 
bounded division ring topology. 

Proof. Let V be a neighborhood of zero. By hypothesis there is a retro- 
bounded neighborhood U of zero such that U & V and 1 4 U U .  Then 

u c ( K  \ u)-' u (0) 

and hence is bounded, and V is retrobounded since 

(K \ V)-'  E (K \ V)-' .  
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In particular, 7 is a locally bounded topology. 
Next, we shall show that if U is a neighborhood of zero, the restriction 

of inversion to K \ U is uniformly continuous. Let V be a neighborhood of 
zero. As U is retrobounded, there is a neighborhood W of zero such that 
W(K \ U)-l 2 V , and also there is a neighborhood T of zero such that 
(K \ U)- lT  C W. Thus 

(K \ U)-lT(K \ u>-l c v. 
Hence if z, y E K \ U and if 2 - y f T, then 

Y - l  - 2-1 = z-vz  - y)y-l E (K \ U)-lT(K \ u)-1 E v. 
In particular, if U is a closed neighborhood of zero not containing 1, inversion 
is continuous on the open neighborhood K \ U  of 1, so inversion is continuous 
on K* by 11.1. 0 

13.8 Theorem. A nondiscrete locally retrobounded division ring K is 
straight. In particular, a division ring topologized by a proper absolute 
value is straight. 

Proof. By 13.7 a locally retrobounded division ring is a topological divi- 
sion ring. Let c be a nonzero vector in a Hausdorff vector space E over a 
locally retrobounded division ring K .  Since X + Xc is continuous, we need 
only show that if U is a neighborhood of zero in K, Uc is a neighborhood of 
zero in Kc. As E is Hausdorff, there is a neighborhood Y of zero in E such 
that c $! Y. There exist neighborhoods W of zero in E and V of zero in K 
such that VW C Y by 3.6. Since (K \ U)-l is bounded by 13.7 and since 
K is not discrete, there is a nonzero scalar X such that (K \ U)-lX C V. By 
2.12 XW is a neighborhood of zero in E ;  we shall show that XW n K c  c Uc.  
Indeed, let pc E W. If Ap $! U, then 

p-l = (p-lX-l)X E (K \ u)-Ix c v, 
whence 

c = p-l(pc) E VW c_ Y, 

a contradiction. Hence Xp E U, so Xpc E Uc. Thus XW n Kc 2 Uc, and 
the proof is complete. 0 

13.9 Theorem. The completion 2 of a locally retrobounded division 
ring K is a locally retrobounded division ring. 

Proof. By 13.8 and 13.4, is a topological division ring, so by 4.22 we 
need only show that if V is a closed neighborhood of zero in K, its closure 
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- 
V in 
V is retrobounded, there is a neighborhood W of zero in K such that 

is retrobounded. Let U be a closed neighborhood of zero in i?. As 

As v fl ( K  \ V )  = V f l  (K \ V) = 0,O $! K \ V. Thus as k \ is open, 

h 

Therefore as inversion is a topological automorphism of K* and as multi- 
plication is continuous on K, 

h 

and similarly 
(i? \q-w 2 u. 

By 4.22 w is a neighborhood of zero in g. Thus 7 is a retrobounded subset 
O f E .  . 

13.10 Theorem. If the topology of a topological division ring K is given 
by an absolute value A, then k is a topological division ring whose topology 
is given by a unique absolute value Â  that extends A. 

Proof. By 13.6 and 13.9, k is a division ring, and by 8.9 its topology is 
defined by a unique norm Â  that extends A. Since Â  is continuous by 1.4, 
the function 

f : (2, Y) --+ A^(z)A^(?d - &Y) 

is continuous on k x k.  As f ( z ,y )  = 0 for all (z,y) E A x A, therefore, f 
is the zero function on Â  x 2. Thus Â  is an absolute value. 0 

13.11 Theorem. Let K be a division ring [field] furnished with an ab- 
solute value A. If the topology of a K-vector space [K-algebra] E is given 
by a norm N relative to A, then the topology of E is given by a unique 
norm fi relative to Â  that extends N .  

Proof. By 6.11 [8.9], the topology of the additive group [ring] is given 
by a unique norm @ that extends N. The functions (A,z) + @(Xz) and 
(A, z) -+ A^(A)@(z) are continuous from k x to ,!? and agree on the dense 
subset K x E ;  hence they agree on 2 x E. 0 
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13.12 Theorem. (Approximation Theorem) Let K be a division ring, 
let 70, 71, . . . , 7n be distinct Eausdorff nondiscrete division ring topologies 
on K such that ?;, . . . , 7n are locdy retrobounded and 5 p 3 for all 
i E [l ,n],  let KO, K l ,  . . ., Kn be the completions of K for 3, Z, . . . , 7, 

A h  h 

- -  
respectively, and let 

n 

i = O  

(1) If Uo, Ul, . . . , Un are nonempty open subsets for 3, 3, . . . , 7, respec- 
tively, then 

n 

i = O  

(2) If K is furnished with S U ~ ~ < ~ < ~  - -  z, then the diagonal mapping A from 
K to L, defined by 

A(z) = (z,z,. . . , x) 
for all x E K ,  is a topological isomorphism from K to the division subring 
A(K) of L, and A(K) is dense in L. (3) - -  is not the discrete 

Proof. Clearly A is a topological isomorphism from K ,  furnished with 
supOlilnI,, to A(K). Therefore (2) follows from (l), and (3) follows from 
(2))  for % is not discrete by hypothesis, and if n > 0, A(K) # g. Thus it 
suffices to prove (1) .  

We shall prove (1) by induction on n. Clearly (1) is true if n = 0. 
Consequently, we shall prove (1) under the assumption that n > 0 and 

topology. 

n-1 

. .  
i = O  

whenever U i ,  Ui , . . . , UA-l are nonempty open sets for distinct Hausdorff 
nondiscrete division ring topologies 7,,', %', . . . , on K such that 7' $ 
3' for all i E [ l , n  - 11 and %', . . . , are locally retrobounded and 
q' < q' for all i E [ l ,n - I.]. 

Let UO, U1, . . . , Un be nonempty open subsets of K for 70, 3, . . . , 7n 
respectively. By 13.8 and 13.3, 'Ti ?; for all i E [2,n], so by our inductive 
hypothesis applied to q' = 5, q' = 12, . . . , = 7,) ny=lUi # 0. Let 
7 = suplliln Z. We therefore need only prove that UO n U # 0 whenever 
UO and U are nonempty open subsets of K for 70 and 7 respectively. To 
do so, it suffices to  prove (*): If Vo is a neighborhood of 1 for 3 and W a 
neighborhood of zero for 7, then V, fl W # 0. Indeed, let b E U ;  as is 
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not discrete, there is a nonzero a E b + Uo; then a-'(-b + Uo) is an open 
neighborhood of 1 for ;rO and a-l(-b+ U) is an open neighborhood of zero 
for 7, so by (*), 

and therefore VO n U # 0. 
To prove (*), we shall first establish by induction that if m E [l,n] and 

if B1, . . . Bm are subsets of K bounded for 5, . . . , 7, respectively and if 
U is a neighborhood of zero for ;rO, then 

Indeed, the statement is true if m = 1, for if U C B1, then for any neigh- 
borhood W1 of zero for % there would exist a € K' such that aB1 & W1, 

whence aU C W1; thus 71 2 l o ,  a contradiction. Assume that the state- 
ment is true if m < n, and let &, . . . , B,+1 be subsets of K bounded for 
7 1 ,  . . . , Im+l respectively and U a neighborhood of zero for 70. Let V be 
a symmetric neighborhood of zero for 'ir, such that V + V 5 U. By our 
inductive hypothesis there exists 

where C1 = B1 + B1, and Ci = Bi for all i E [2, m]; and there exists 

where Di = Bi U (y + (-Bi)) for all i E [2, m + 11. If z $ B1, then 

Assume, therefore, that z E B1, and let x = y - z E V + V 5 U. If x E B1, 
then y = x + z E C1, a contradiction, Jf x E Bi where i E [2, m + 11, then 
z = y - x E y + (-Eli) C Di, a contradiction. Hence 

m+l 

x € U \  u Bi. 
i= l  
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To prove (*), let VO be a neighborhood of 1 for '& and W a neighborhood 
of zero for 7. Then there exist retrobounded neighborhoods U,, . . . , 17, of 
zero for 3, . . . , 7, respectively such that n?==,Ui C W, and there exists a 
neighborhood Uo of zero for 70 such that -1 4 Uo and (1 + UO)-' 5 G. For 
each i E [l, n] let Bi = -1 + (K \ Ui)-', a set bounded for by hypothesis. 
By the preceding, there exists 

Then 1 + 2: # 0, and 

n 

( i + q l  E (nui )nvo  c_wnv0.0 
i = l  

Theorem 13.12 is called the Approximation Theorem because it implies 
that if A1, A2 , . . . , A, are pairwise inequivalent proper absolute values on 
a division ring K, if c1, c2, . . . , c, are elements of K, and if E > 0, there 
exists x E K such that Aj(z - ci) < E for a l l  i E [l,n]. 

13.13 Corollary. Let K be a division ring, ( ~ A ) A E L  a family of distinct 
Hausdorff nondiscrete division ring topologies on K such that for some 
a E L ,  7~ is locally retrobounded and 7~ 7a for all X E L \ {a}, and 
for each X E L,  let EA be the completion of K for 7~. Then the diagonal 
mapping 

defined by A(x) = ( Z A ) A € L ,  where Z A  = 5 for all X E L, is a topological 
isomorphism from K, furnished with supAEL IA, to a dense division subring 

h 

O f I l A E L K A *  

The assertion follows at  once from 13.12 in view of the definition of the 
topology of a Cartesian product of topological spaces. 

13.14 Corollary. If ( 7 ~ ) x c ~  is a family of distinct topologies on a divi- 
sion ring K defined by proper absolute values, and if k~ is the completion 
of K for 7~ for each X E L ,  then is a topological isomorphism from the 
completion 

A 

of K for supxGL 7~ to ITAEL Kx. 
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Exercises 

13.1 A Hausdorff ring topology on a division ring K is sequentially retro- 
bounded if for every sequence (zn)nrl in K* that contains no bounded 
subsequence, 

(a) A metrizable ring topology on K is locally retrobounded if and only 
if it is sequentially retrobounded. (b) A ring topology on K is metrizable 
and locally retrobounded if and only if it is locally bounded, sequentially 
retrobounded, and there is a fundamental sequence of bounded subsets (Ex- 
ercise 12.5). 

13.2 Let K be a division ring furnished with a HausdorE ring topology. 
(a) K is locally retrobounded if and only if for every filter F on K*, if 
K* \ B E 3 for every bounded subset B of K, then 3-1 converges to zero. 
(b) K is locally retrobounded if and only if for every subst B of K, if there 
is a neighborhood U of zero such that 1 4 UB, then B is bounded. 

13.3 Give an example of a sequence of nonzero rationals converging to  
zero for the supremum of all the topologies on Q defined by proper absolute 
values. 

13.4 Let (~A)A€L be a family of distinct topologies on a division ring K, 
each defined by a proper absolute value, and let k be the completion of K 
for supAEL f i .  Then i7 is a ring with continuous inversion; K is a division 
ring if and only if L has only one element; and k is advertibly open if and 
only if L is finite. 

13.5 Let (IA)A€L be a family of distinct locally retrobounded topologies 
on a division ring K, and let M E L. Let AL and A M  be the diagonal map- 
pings from K into nAEL Zx and nXEM kx respectively. The identity map 
f of K is continuous from K, furnished with 7 ~ ,  the topology supxEL IA, to 
K, furnished with 'TM, the topology supAEM 7~. Hence f has a continuous 
extension ?from the completion of K for 7~ to the completion k~ of 
K for 7 ~ .  Describe explicitly the continuous homomorphism AM o f o A,' 
from nAEL ZA to  n,,, k ~ .  What is its kernel? 

13.6 Let 5 be a total ordering on a field K such that for a l l  2, y, z E K, 
if 2 5 y, then x + z 5 y + z, and, if z > 0, $2 5 yz. For each a > 0, let 
V, = {z E K : -a < 2 < a}. Then {V, : a > 0) is a fundamental system of 
neighborhoods of zero for a locally retrobounded topology on K. 

13.7 (Baer and Hasse [1931]) If K is a totally disconnected locally retro- 
bounded division ring, the open and closed subsets of K containing zero form 
a fundamental system of neighborhoods of zero. [If C is open and closed 
and 0 4 C, show that an open and closed subset of C-l not containing zero 
is bounded, open and closed in K.] 

h 

h h  

- 
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14 Norms and Absolute Values 

If N is a norm on a ring A,  we shall say that a subset B of A is norm- 
bounded if there exists T > 0 such that N ( x )  < T for all z E B. 

14.1 Theorem. Let A be a topological ring whose topology is given by 
a norm N. Every norm-bounded subset of A is bounded; in particular, A is 
a locally bounded ring. If A is a ring with identity and if zero is adherent to 
A X ,  the (left, right] bounded subsets of A are precisely the norm-bounded 
subsets. 

Proof. For each T > 0, let B, = {x E A : N ( s )  < T } .  Then B, is 
bounded, for if s > 0, B,/pB, & B, and B,B,/, E B,. Conversely, assume 
that 0 E AX, and let B be left bounded. Then there exists T > 0 such that 
BB, B1, and by hypothesis there exists a E B, fl A X .  Thus for each 
x E B,  

N ( z )  < N ( x a ) N ( a - 1 )  < N(a- l ) .  0 

In contrast, any metrizable trivial ring A is a bounded normable ring by 

14.2 Definition. The core of a norm N on a ring A is the set of all 

6.7, but A itself need not be bounded in norm. 

h E A* such that 
N ( h x )  = N ( h ) N ( z )  = N ( z h )  

for all x E A. 
14.3 Theorem. If the core H of a norm N on a ring A with identity is 

not empty, then H n AX is a subgroup of A X ,  and for each h E H n AX , 
N ( h n )  = N ( h ) n  for all n E Z. 

Proof. Jf H contains an element I c ,  then N ( k )  = N ( k .  1) = N(Ic )N( l ) ,  
so N(1) = 1, and therefore 1 E H .  Let h E H f l  A X .  For any x E A, 

N ( h ) N ( x )  = N ( h z )  = N ( h x h - l h )  = N ( h ) N ( x h - l ) N ( h ) ,  

so 
N ( x ) N ( h ) - l  = N ( z h - ' ) .  

N ( x ) N ( h - l )  = N ( x h - 1 ) .  

In particular, choosing x = 1, we obtain N(h)-'  = N ( h - ' ) .  Therefore 

Similarly, N ( h - l ) N ( x )  = N(h- 'x ) .  Thus h-l E H n A X .  Clearly H n AX 
is closed under multiplication, and an inductive argument establishes that 
N(hn)  = N(h)" for all n E Z. 0 

Here is a criterion for the topology of a topological ring to be given by a 
norm: 
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14.4 Theorem. Ifd is a Hausdorff ring with identity that possesses a 
left or right bounded neighborhood V of zero [a left or right bounded open 
additive subgroup V ]  and an invertible topological nilpotent c such that 
cV = Vc, then the topology of A is given by a[.] [ultralnorm whose core 
contains an invertible topological nilpotent. 

Proof. Replacing V by V n ( - V )  if necessary, we may assume that V is 
symmetric. Let 

U = { x E A :  V x E V } .  

As V is a symmetric left bounded neighborhood of zero [left bounded open 
additive subgroup], U is a symmetric neighborhood of zero [an open additive 
subgroup]. Since cVC-' = V ,  clearly cUC-' = U ;  thus CU = Uc. For some 
p _> 1, cp E V ,  so cPU & V ,  whence U C c-PV, a left bounded set. Thus U 
is left bounded, and clearly 1 E U and UU U .  As U + U + U is therefore 
left bounded, (U + U + U)cQ C U for some q 2 1; let d = cQ,  an invertible 
topological nilpotent. Then Ud = dU, and for all n E Z, 

Udn+l + Udn+' + UdnS1 E Ud", 

and in particular, Ud"+' E U P .  By 12.17 (Udn)nEz is a fundamental de- 
creasing sequence of neighborhoods of zero. In particular, as A is Hausdorff, 

m n Ud" = (0). 
nEZ 

Also, 
U Ud" = A, 
nEz 

for if x E A, then limn,mxdn = 0, so xd' E U for some r 2 1, whence 
x E Ud-'. 

Therefore we may apply 6.1 to (Udn),Ez; let g and f be the associated 
functions. For any nonzero x ,  y E A, 

for if g ( x )  = 2-i and g(y) = 2-j, then x E Udi and y E Udj, whence 
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Consequently by 6.1 ,  if V is a left bounded open additive subgroup, g is 
an ultranorm defining the topology of A. Now d-' @ U ,  for otherwise, as 
UU C U, d-" E U for all n 2 1 ,  whence 

by 12.12, a contradiction. Hence 1 E U \ Ud,  so d E Ud \ Ud2, and therefore 
g ( d )  = 1 / 2 .  Moreover, x E Ud" \ Udn+' if and only if x d  E Udn+' \ Udn+l ,  
and also, if and only if 

d x  E dud" \ dud"" = Udn+' \ Udn+2q 

V a czi = x and c yj = y ,  
i = l  j = 1  

then 
Q P  

so 

Consequently by 6 .1 ,  f is a norm defining the topology of A. In particular, 
if x E A, then 

f(4 5 f(.)f(d). 
But if 

P 

Ctj = x d ,  

then 
P 

C t ; d - '  = X, 
i = l  
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so 

i=l i=l 

Hence 
f ( M 4  5 f ( X 4 .  

Similarly, f ( d x )  = f ( d ) f ( x ) .  Thus d belongs to the core of f .  0 

14.5 Corollary. A Hausdorff ring topology 7 on a field is defined by 
a norm if and only 7 is locally bounded and there is a nonzero topological 
nilpotent for 7. 

We begin our discussion of the relation between norms and absolute val- 
ues on fields by defining spectral norms, which are intermediate between 
the two: 

14.6 Definition. A norm N on a ring A is a spectral norm if 

N(X") = N(x)" 

for all x E A and all n 2 1. 

The norms of Examples 1-3 of $1 are spectral norms, for example, where- 

To show that to  every norm N on a field there is a largest spectral norm 

14.7 Theorem. If (Xn)n>1 - is a sequence in R>o such that Xn+k 5 XnXk 

as that of Example 4 is not. 

N, smaller than N, we need the following theorem: 

for all n, k 2 1, then limn+m xi', exists, and 

Proof. By induction, X q k  5 x z  for all k, q 2 1. Let xo = 1, and for each 
k 2 1 let 

MI, = SUP 2,.  
O<r<k 

Let k 2 1. For each n 2 1, let n = qnk + T ,  where q,, T ,  E N and 
0 5 T ,  < k. Then 
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Now 
Em (z;/k)-%/n = 1 

n+m 

as limn+oo(-tn)/n = 0, and also limn+,, M;'" = 1. Therefore 

Consequently 

14.8 Theorem. Let N be a norm on a field K .  Of all the spectral norms 
M on K such that M 5 N ,  there is a largest, N, ,  defined by 

n l/n N 8 ( z )  = lim N ( z  ) 
n+m 

for all z # 0 and N,(O) = 0. Furthermore, for each 3: E K ,  N d ( z )  = N ( z )  i f  
and only i f  N ( z " )  = N ( z ) "  for all n 2 1, every element of the core of N is 
also in the core of  N, ,  and i f  N is an ultranorm, so is N, .  

Proof. By 14.7 applied to  the sequence ( N ( z ~ ) ) ~ > ~ ,  N,(z) is indeed de- 
fined, and if z # 0, N , ( z )  = inf,>l N(zn) ' ln .  Since N ( z " )  5 N ( z ) "  for 
all n 2 1, it follows that N ,  5 N a n d  for any spectral norm M such that 
M 5 N ,  M 5 N,.  Consequently, we need only show that N ,  is a spectral 
norm. 

To show (N 2) of Definition 1.2 holds for N,, we first observe that for 
any m E N and any z E K ,  N ( m . z )  5 m N ( z ) .  Let z, y E K ,  let e > 0, and 
let m 2 1 be such that for all n 2 m, 

~ ( y " ) l / "  I ~ ~ ( y )  + e .  

Let C > 1 be such that 
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for all j E [ l ,m - 13. Let n > 2m. For any k E [O,n], if k < rn, then 
n - k > m, and if n - k < m, then k > m. Therefore 

= C"[N,(z) + N,(y) + 2e]". 

Consequently, 
N , ( z  + Y) 5 NSb) + W Y ) .  

Assume further that N is an ultranorm and that Ns(z) 5 Ng(y). Then 
N(q.1) 5 1 for all q E Z. Ifn 2 2m, 

Thus as before, 
N.9 (. + 9 )  I N8 (Y) 

As N ( - t )  = N ( t )  for all t E K ,  

for all z E K*. Hence (N 3) holds for N,.  
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Ifz,  y E K*, then 

so (N 4) holds for N ,  . 

K. But 
From (N 2)-(N 4) we conclude that {z E K : N , ( z )  = 0) is an ideal of 

Consequently, as K is a field, that ideal is the zero ideal, so (N 5 )  holds for 
Na - 

For each z E K, 
~ ~ ( z )  = inf N ( z ~ ) ' / ~  

by 14.7, so N , ( z )  = N ( z )  if and only if N ( z " )  = N ( s ) "  for all n >_ 1. 
Finally, if z belongs to the core of N, then for each y E K, N ( z n y n )  = 
N ( z n ) N ( y n )  as zn  E H by 14.3,  so N , ( z y )  = N,(z)N,(y), and consequently 
z belongs to the core of N,.  0 

n > l  

14.9 Theorem. Let N be a spectral [ultralnorm on a field K ,  and let 
c E K * .  There is a spectral [ultra]norm N, on K such that: 

(1) Nc 5 N .  
( 2 )  The core H of N is contained in that of N,, and N c ( z )  = N ( z )  for 

(3) c is in the core of N,, and Nc(c)  = N ( c ) .  

Proof. For each z E K, the sequence ( N ( ~ c " ) N ( c ) - ~ ) , > o  - is clearly de- 

a . l l x E H .  

creasing; we define N ,  by 

N , ( z )  = lim N ( Z P ) N ( C ) - ~  = inf N(zc")N(c)-".  
n+oo n20 

Let z, y E K. Then 

It is easy to  see that 
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and, if N is an ultranorm, 

Consequently, as N,(1) = 1, {z E K : N c ( z )  = 0) is a proper ideal of K 
and hence is the zero ideal. Thus N, is a[.] [ultralnorm. N, is a spectral 
norm, for if z E K and m 2 1, 

N c ( z m )  = lim N ( ~ " c ~ " ) N ( c ) - ~ "  = lim N ( ( Z C " ) ~ ) N ( C ) - ~ "  
n-+m n 4 m  

= lirn N(zc")"N(c)-"" = N,(z)". 
n+m 

Clearly (1) holds. To establish (2), let 2 E H .  Then for any y E K, 

~,(zy) = lim N ( ~ y c " ) N ( c ) - ~  
n-m 

= lim ~ ( z ) N ( y c " ) N ( c ) - "  = N ( z ) N c ( y ) .  
n+m 

Choosing y = 1, we obtain N , ( z )  = N ( z ) ,  so N c ( z y )  = N,(z)N,(y) for all 
y E K .  Thus z belongs to the core of N,. (3) As N is a spectral norm, 
Nc(c)  = N ( c ) .  For each y E K, 

N,(yc) = lim ~ ( y c " + ' ) ~ ( c ) - "  
n-m 

= lirn [ N ( ~ C " + ' ) N ( C ) - ~ - ' ] N ( C )  = ~ , ( y ) N ( c ) ,  
n+m 

so as N,(c) = N ( c ) ,  c belongs to the core of N,. 0 

The following theorem, due to Aurora "581, gives the fundamental re- 
lation between spectral norms and absolute values on a field: 

14.10 Theorem. Let N be a norm on a field K ,  and let H be its core. 

1' N is a spectral [ultralnorm. 
2' There is a family ( A X ) X ~ L  of  [nonarchimedean] absolute values on K 

The following statements are equivalent: 

such that 
N = SUP Ax. 

X L  

3' There is a family ( A c ) c E ~ .  of [nonarchimedean] absolute values on K 
such that 

N = sup A, 
c € K *  
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and for each c E K*,  A,(c) = N ( c )  and A , ( z )  = N ( z )  for aZl z E H. 

Proof. Clearly 3’ implies 2’) and 2’ implies lo. Assume lo. To prove 
3 O ,  it suffices to show that for each c E K* there exists a [nonarchimedean] 
absolute value A,  such that A,  5 N and A , ( z )  = N ( z )  for all z E N U { c } .  
Let N be the set of aU spectral [ultralnorms P on K such that P 5 N .  
We order N by declaring P 5 Q if and only if Q 5 P,  the core HQ of Q 
contains the core H p  of P, and Q(z) = P ( z )  for all z E H p .  With the 
terminology of 14.9, let 

N’, = {P E N’ : N, 5 P}.  

With its induced ordering, N, is an inductive set. Indeed, if C is a chain 
in N,, C is totally ordered for 5,  and the infimum, PO, of C for 5 clearly 
satisfies (N 1)-(N 4) of Definition 1.2 [and (N 6) of Definition 6.51 and, for 
any P E C, &(z) = P ( z )  for all 2 E H p ;  in particular, Po(c) = N,(c) # 0, 
so { E  E K : &(z) = 0) is a proper ideal of K ,  thus the zero ideal, and 
therefore PO is a [nonarchimedean] norm. Consequently, Po E N’, and Po is 
the supremum of C for 5 .  Therefore by Zorn’s Lemma, NC has a maximal 
member A,. As N, 5 A, and as N 5 N, by 14.9, A, 5 N, 5 N ,  and 
A , ( z )  = N , ( z )  = N ( z )  for all z E H U { c } .  We have left to show that A, 
is an absolute value, that is, that its core is K*. Let d E K*. With the 
notation of 14.9, (Ac)d 1: A,  N, ,  so by the maximality of A,, (Ac),j = A,, 
and therefore d belongs to the core of A,. 0 

14.11 Theorem. If 7 is a l o c d y  bounded Hausdorff topology on a field 
K for which there is a nonzero topological nilpotent, then there is a proper 
absolute value on K whose topology is weaker than 7. 

Proof. By 14.4, 7 is the topology given by a norm N .  By 14.8 there 
is a spectral norm N ,  on K such that N ,  5 N ,  and by 14.10 there is an 
absolute value A on K such that A 5 N,; consequently A 5 N ,  so the 
topology defined by A is weaker than 7. 0 

Finally, we obtain the following criterion for a Hausdorff ring topology 
on a field to be given by an absolute value: 

14.12 Theorem. A Hausdorff ring topology 7 on a field K is given by 
a proper absolute value if and only if 7 is locally retrobounded and there 
is a nonzero topological nilpotent for 7. 

Proof. The condition is sufficient by 13.7, 13.8, 13.3, and 14.11. It is 
necessary by 13.6. 
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Exercises 

14.1 A function N from a ring A to R>o is a seminorm if (N 1)-(N 4) of 
Definition 1.2 hold. (a) If N is a seminorm on A and if, for each T E W>o, 

Vr = {Z E A : N ( z )  < T } ,  

then ( V r ) T > ~  is a fundamental system of neighborhoods of zero for a locally 
bounded ring topology on A.  (b) The topology defined by N is Hausdorff 
if and only if N is a norm. 

14.2 Let N be a norm on a commutative ring A.  (a) The function Nd, 
defined by 

N,(z) = Em N ( x  n ) l / n  , 
n + w  

is a seminorm on A.  (b) For any z E A,  Nd(z) < 1 if and only if z is a 
topological nilpotent. 

14.3 Let A be a commutative Hausdorff ring with identity that contains 
an invertible topological nilpotent. The following statements are equivalent: 

1" The set R of topological nilpotents is a bounded neighborhood of zero. 
2" The topology of A is given by a spectral norm. 
3" The topology of A is given by a spectral norm whose core contains an 

[Apply 14.4 where V = R and 12.17.1 
14.4 (Kowalsky [1953]) A field K is rankfree if for every nondiscrete lo- 

cally retrobounded topology 7 on K there is a nonzero topological nilpotent 
for 7, and if each nonzero element of K is a topological nilpotent for at most 
finitely many locally retrobounded topologies. If K is rankfree and if 7 is 
a nondiscrete locally bounded ring topology on K ,  then 7 is the supremum 
of finitely many nondiscrete locally retrobounded topologies if and only if 
the set of elements that are topologically nilpotent for 7 is nonzero and 
bounded for 7. [Use 14.4, Exercise 14.3, and 14.10.1 

14.5 (Arnautov [1965b]) Let A be a metrizable ring whose topology 7 
is an ideal topology, and let (V,),zl be a decreasing, fundamental system 
of ideal neighborhoods of zero. (a) For each n 2 1, let Un be the ideal 
generated by the union of all the sets Q, K2 . . . K p  such that 2k: ' = n. 
(a) For all n 2 1, V, 
Un+m, and U,, is contained in the ideal generated by V, U VF. (c) 7 is 
defined by an ultranorm [norm] if and only if there is a neighborhood V of 
zero such that for every neighborhood W of zero, there exists n 2 1 such 
that V n  

invertible topological nilpotent. 

Un and Un+l C Un. (b) For all n, m 2 1, UnU, 

W .  [Use (a) and 6.1.1 
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15 Finite-dimensional Vector Spaces 

A linear transformation from an A-module E to an A-module F is a 
homomorphism from E to F, and a linear operator on E is simply an en- 
domorphism of the A-module E. 

An A-module E is the direct sum of submodules (Mk) l<k<,  - -  if the linear 
transformation s from n;=, Mk to E, defined by 

n 

h = l  

is an isomorphism. Clearly s is a linear transformation, so s is an isomor- 
phism if and only if it is surjective and its kernel contains only (0,. . . , 0). 
In this case, the family of projections associated to (Mk) l<k<,  - -  is the family 
(pk)lSk<,  - O f  linear operators on E defined by 

pk = ink oprk  0 s-', 

where prk is the canonical projection from n:==, Mi to Mk and i n k  is the 
canonical injection from Mk to E ;  thus 

whenever xi E Mi for all i E [l,n]. 
Similarly, a ring A is the direct sum of subrings (Bk)l<k<n if the function 

s from the ring fl;=l Bk to A, defined by (1) is an iso>&phism. Clearly 
A is the direct sum of subrings (Bk) l<k<,  if and only if B1, . . ., B, are 
ideals of A such that B;Bj = (0) whenever i # j and the A-module A is 
the direct sum of the submodules (Bk)l<k<, .  

These considerations may further be extended to any family of submod- 
ules of an A-module E. If ( M A ) A € L  is a family of A-modules, we define eAEL M A ,  sometimes called the outer direct sum of ( M A ) X € L ,  to be the 
submodule of nAEL M A  consisting of all ( Z A ) A ~ L  such that Z X  = 0 for all 
but finitely many X E L. If each M A  is a submodule of E, we define 

to be 
direct 
bY 

(2) 

the submodule of E generated by UAEL M A  and say that E is the 
s u m  of ( M A ) A ~ L  if the linear operator s from eAEL M A  to  E, defined 
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is an isomorphism. 
For example, ( b x ) x E ~  is a basis of a unitary A-module E if and only 

if E is the direct sum of (Abx)xEr, and for each X E L, { b x }  is linearly 
independent, that is, a.bx = 0 only if CY = 0. 

Similarly, if (Bx)xEL is a family of rings, we define e X E L B x  to be the 
subring of nxELBx consisting of all ( c x ) x E ~  such that 21 = 0 for all but 
finitely many X E L. This notation is primarily useful when each Bx is an 
ideal of a ring Ax, in which case eXEL Bx is an ideal of nxEL_Ax.  If each 
l ? ~  is an ideal of a ring A, the ideal B generated by UXELBx is the direct 
sum of ( B x ) x E ~  if the function s defined by (2) is an isomorphism from 

15.1 Definition. Let E be a topological module over a topological ring 
A. Then E is the topological direct sum of submodules ( M k ) l < k < ,  - -  if 
the function s from n;=, Mk to E, defined by 

$xEL B x  to B .  

s(21,. . . ) 2,) = 
i=l  

is a topological isomorphism. Similarly, a topological ring A is the topo- 
logical direct sum of subrings ( B k ) l < k < n  - -  if the function s from the ring n;=, Bk to A, defined by 

n 

k=l 

is a topological isomorphism. 

15.2 Theorem. Let E be a topological A-module [ring] that is the direct 
sum of submodules [subrings] ( M k ) l < k < n .  Then E is the topological direct 
sum of ( M k ) l ~ k ~ ,  if and only if eaihmember of the associated family of 
projections is continuous. 

Proof. Let ( P k ) l < k < n  be the associated family of projections, and let s 
be the isomorphism-from n;=, Mk to E defined by 

Since s is simply the restriction to n;=, Mh of addition on En, s is contin- 
uous. Thus s is a topological isomorphism if and only if s-l is continuous. 
But 

s (z) = (pl(z),-..,pn(z>) -1 
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for all z E E ,  and hence s-l is continuous if and only if each pk is. 0 

If M is a submodule of a module E ,  a submodule N of E is a supplement 
(or, for emphasis, an algebraic supplement) of M if E is the direct sum of 
M and N .  

15.3 Definition. Let M be a submodule of a topological module E.  A 
submodule N of E is a topological supplement of M if E is the topolog- 
ical direct sum of M and N .  

If an A-module E is the direct sum of submodules M and N and if p and 
q are the associated projections, p is called the projection on M dong N ,  q 
the projection on N along M .  Clearly q = 1~ - p where 1~ is the identity 
map of E .  

If M and N are supplementary submodules of E ,  the projection p on M 
along N is a linear operator on E satisfying p o p = p ,  and moreover, the 
range of p is M and its kernel is N .  Conversely, if p is a linear operator 
on E such that p o p = p ,  then E is the direct sum of its range M and its 
kernel N ,  and p is the projection on M along N .  Consequently, any linear 
operator on E that satisfies p o p = p is called a projection. 

15.4 Theorem. Let M be a submodule of a topological A-module E .  
A supplement N of M in E is a topological supplement if and only if the 
projection on M dong N is continuous, in which case the restriction p 
to N of the canonical epimorphism 4~ from E to E/M is a topological 
isomorphism. Moreover, M has a topological supplement if and only if there 
is a continuous projection on E whose range is M. If M has a topological 
supplement and if E is Hausdorff, then M is closed. 

Proof. Let E be the topological direct sum of M and N .  If U is open in N ,  
t henass (MxU)  = M+U, M+Uisopen inE;  thusas@) = ~ M ( M + U ) ,  
p(U) is open in E / M .  Clearly p is continuous and thus is a topological 
isomorphism. If E is Hausdorff, then M is closed as it is the kernel of the 
(continuous) projection on N along M .  0 

As we shall shortly see, if E is a Hausdorff finite-dimensional vector 
space over a complete straight division ring K ,  and if E is (algebraically) 
the direct sum of subspaces M I ,  . . . M,, then E is the topological direct 
sum of M I ,  . . . M,. 

Henceforth, K is a division ring topologized by a Hausdorff ring topology. 
A linear form on a K-vector space E is a linear transformation from E 

to the K-vector space K .  

15.5 Theorem. K is straight if and only if every linear form on a Haus- 
dorff K-vector space whose kernel is closed is continuous. 
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Proof. Necessity: Let u be a nonzero linear form on a Hausdorff K- 
vector space E whose kernel H is closed. Then there is an isomorphism v 
from the K-vector space E / H  to K satisfying u = v o 4~ where 4~ is the 
canonical epimorphism from E to E / H .  By (1) of 5.7, E / H  is Hausdorff, 
and if a = v-'(l), .-'(A) = X.a for a l l  X E K.  As K is straight, v-l is a 
homeomorphism, so ZI is continuous, and therefore u is also. 

Sufficiency: Let a be a nonzero vector of a Hausdorff K-vector space E .  
If ua, defined by ua(X) = X.a, were not a homeomorphism from K to K.a, 
then u,' would be a discontinuous linear form on K.a with closed kernel 
(0)) a contradiction. 0 

A hyperplane of a vector space E is a subspace H such that E / H  is 
one-dimensional. 

15.6 Corollary. If K is straight and if E is Hausdorff K-vector space, 
every algebraic supplement D of a closed hyperplane H is a topological 
supplement. 

Proof. If D = Ka and if p is the projection on D along H, then with the 
notation of 15.5 the linear form uZ1 o p  is continuous by 15.5, so p is also 
continuous, and the assertion follows from 15.4. 0 

The standard basis of the K-vector space K" is the basis { e l ,  e2, . . . , en}  
where for each k E [l ,n],  e k  is the n-tuple whose kth entry is 1 and whose 
remaining entries are 0. 

15.7 Theorem. Every linear form on the topological K-vector space 

Proof. Let u be a h e a r  form on K", and let u ( e k )  = f x k  E K for each 

K" is continuous; hence every hyperplane of K" is closed. 

k E [l, n]. Then for any (XI,. . . ,An) E K", 

n n n 

k = l  k = l  k = l  

so u is continuous from K" to K .  0 

Since every proper subspace of a vector space is an intersection of hyper- 
planes, the statements "Every hyperplane is closed" and "Every subspace 
is closed" about a topological vector space are equivalent. 

15.8 Theorem. The following statements are equivalent: 

1' K is straight. 
2" For each n 2 1, every isomorphism from the K-vector space K" to an 

n-dimensional Hausdorff K-vector space all of whose hyperplanes are closed 
is a topological isomorphism. 
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3 O  For each n 2 1,  every n-dimensional Hausdorff K-vector space all of  
whose hyperplanes are closed is topologically isomorphic to K" . 

Proof. To prove 2' from lo, we proceed by induction on n. Let S, be 
the statement: Every isomorphism from the K-vector space K" to an n- 
dimensional Hausdorff K-vector space all of whose hyperplanes are closed 
is a topological isomorphism. By the definition of straightness, S1 holds. 
Let m > 1, assume that S, holds whenever n < rn, and let u be an iso- 
morphism from K" to an rn-dimensional Hausdorff K-vector space E aJl 
of whose hyperplanes are closed. Let U k  = u(eh) for each k E [l,rn], where 
{el, . . . , e m }  is the standard basis of K". Let F be the subspace generated 
by al ,  . . . um-l. Then every hyperplane H of F is closed in F. Indeed, in 
the contrary case, the closure I? of H in F would be F, so as H + Ka, 
is a hyperplane of E and hence is closed in E ,  H + K a ,  would contain 
H + Ka, = F + Ka, = E ,  a contradiction. Consequently by our inductive 
hypothesis, the linear transformation w from K"-l to F ,  defined by 

- 

is a topological isomorphism. As K is straight, therefore, the isomorphism 

from Km to  F x Kam is a topological isomorphism. As F is a hyperplane 
of E ,  F is closed in E ,  so (t, y) --t z + y is a topological isomorphism from 
F x Ka, to E by 15.6. Thus as 

u is a topological isomorphism from K m  to E .  
To show that 3' implies lo, let a be a nonzero vector in a Hausdorff 

K-vector space. By 3" there is a topological K-isomorphism u from the 
topological K-vector space K to Ka. Clearly u(X) = Xb, where b = ~(1). 
Let y E K* be such that a = yb. Then R, : X -, Xy is a homeomorphism 
from K to K ,  so u o R, : X + Xu is a homeomorphism from K to K a .  

15.9 Theorem. The following statements are equivalent: 

1' K is straight and complete. 
2" For every n 2 1, every isomorphism from the K-vector space K" to  

an n-dimensional Hausdorff K-vector space is a topological isomorphism. 
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3' For every n 2 1, every n-dimensional Hausdorff K-vector space is 
topologically isomorphic to K" . 

Proof. To prove 2' from lo, we proceed by induction on n. Let T, be 
the statement: Every isomorphism from the K-vector space K" to an n- 
dimensional Hausdorff K-vector space is a a topological isomorphism. By 
the definition of straightness, 2'1 holds. Let rn > 1, and assume that T, 
holds for all n < m. To establish T,, it suffices by 15.8 to show that if H 
is a hyperplane of a Hausdorff m-dimensional K-vector space E, then H is 
closed. But as H has dimension m - 1, H is topologically isomorphic to 
Km-1 by Tm-l, hence is complete, and thus is closed. 

Finally, assume 3'. By 15.8, K is straight. Suppose that K were not 
complete. Let a E \ K, and let E = K + Ka, furnished with the topology 
inherited from 2. Then E is a two-dimensional Hausdorff K-vector space, 
and K is a dense one-dimensional subspace of E. Consequently, E is not 
topologically isomorphic to K 2  by 15.7, a contradiction of our hypothesis. 0 

15.10 Corollary. Let E be a finite-dimensional vector space over a 
complete straight division ring K. There is one and only one Hausdorff 
vector topology on E. For any basis {al, . . ., a,} of E, 

n 

21 : ( A l , .  , . ,A")  --+ c XhUk 
k=l 

is a topological isomorphism from K" to E, furnished with its unique Haus- 
dorff vector topology. 

15.11 Theorem. Let K be a division ring furnished with a complete 
proper absolute value, and let E be a finite-dimensional K-vector space. The 
unique Hausdorff vector topology 7 on E is normable; indeed, if { bl , . . . b,} 
is a basis of E, then 11..11, defined by 

is a norm on E defining 7. 

15.12 Theorem. Let K be a complete straight division ring. 

(1) Every Hausdorff finite-dimensional K-vector space is complete; hence 

(2) Every linear transformation from a finite-dimensional Hausdorff K-  
every finite-dimensional subspace of a Hausdorff K-vector space is closed. 

vector space to a Hausdorff K-vector space is continuous. 
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(3) A Hausdorff finite-dimensional K-vector space that is the direct sum 
of a sequence of subspaces is the topological direct sum of those subspaces. 

(4) Every linear transformation from a Hausdorff K-vector space to a 
finite-dimensional Hausdorff K-vector space whose kernel is closed is a topo- 
logical homomorphism . 

( 5 )  If M is a closed subspace and N a finite-dimensional subspace of a 
Hausdorff K-vector space E ,  then M + N is closed. 

P ~ o o f .  (1) follows from 15.10 and 7.14, since K" is complete for all n 2 1 
by (2) of 7.8. 

To prove (2)) let u be a linear transformation from a Hausdorff finite- 
dimensional K-vector space E to a Hausdorff K-vector space F .  By (1)) the 
kernel H of u is closed, so E/H is a Hausdorff finite-dimensional K-vector 
space. By 15.9, the isomorphism from E / H  to u ( E )  satisfying V O ~ H  = u, 
where 4~ is the canonical epimorphism from E to E / H ,  is a topological 
isomorphism, so u is a topological homomorphism by the module analogue 
of 5.11. (3) follows from (2)) and the proof of (4) is similar to  that of (2). 

(5) As M is closed, E / M  is Hausdorff, so the finite-dimensional subspace 
q 5 ~ ( N )  of E/M is closed by (1) (where 4~ is the canonical epimorphism 
from E to E / M ) ,  and therefore 4 ; ( 4 ~ ( N ) )  is closed. But $ $ ( ~ M ( N ) )  = 
M + N . .  

15.13 Definition. Let A be a ring. A function u is A-multilinear if for 
some n 3 1 the domain ofu is the Cartesian product of a sequence ( E k ) l < k < ,  

of n A-modules, its codomain is an A-module F ,  and for each k E [l,nFand 
each sequence c1 E El, . . . , Ck-1 E E k - 1 ,  C k + l  E &+I, . . . , c, E En, the 
function x .--) u(c1,. . . , Ck-1, z, C k + 1 , .  . . , c,) is a linear transformation from 

For example, if E is an algebra over a commutative ring with identity A, 
multiplication is an A-multilinear transformation from E x E to E.  

Theorem 15.14. Let K be a complete straight division ring. Any K -  
multilinear transformation from the Cartesian product of Hausdorff finite- 
dimensional K-vector spaces to a Hausdorff K-vector space is continuous. 

Proof. Let u be a multilinear transformation from the Cartesian product 
E of Hausdorff finite-dimensional K-vector spaces ( E k ) l < k < n  to a Hausdorff 
K-vector space F .  For each k E [l,n], let m(k) be the zmension of &, 
let (ek,j)l sjsm( k)  be a basis of E k ,  and let PTk be the canonical projection 
from E to E k .  For each k E [l ,n] and each i E [l,m(k)], let Qk,i be the 
linear form on E h  defined by 

Ek t o F .  

j=l 
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By (2) of 15.12, each Qk,i is continuous. Let M = nF=l[ l ,m(k)] ,  and for 
each i E M, let i k  be its kth component, so that z = ( i l , .  . . , i n ) .  For each 
i E M and each k E [ l ,  n], the function o P T k  is continuous from E to 
K, so the function Pi, defined by 

is continuous from E to K. For each i E M let U; be the function from K 
into F defined by 

Vi(X) = Xu(e;, , . . . , e;,). 

Then 

and hence is continuous. 0 

15.15 Corollary. If A is a finite-dimensional algebra over a complete 
straight field K, then the unique Hausdorff vector topology on A is an 
algebra topology, that is, multiplication is continuous from A x A to A. 

Exercises 

Let E be a vector space over a field. We denote by E* the vector space of 
aU linear forms on E. A subspace E' of E* is total if for each nonzero z E E 
there exists u E E* such that U ( Z )  # 0. If K is a Hausdorff topological field 
and if E' is a subspace of E ,  we denote by ~ K ( E , E ' )  the weakest topology 
on E making each u E E' continuous, a vector topology by 2.17. 

15.1 Let K be a Hausdorff field, E a K-vector space, E' a subspace of 
E*. (a) aK(E,E') is Hausdorff if and only if E' is a total subspace of E*. 
(b) If the topology of K is given by a proper absolute value, then a linear 
form v on E is continuous for UK(E,E' )  if and only if 2) E E'. [Show that 
there exists a linearly independent sequence ( ' l l k ) l < k < n  - -  in E' such that, if 

then H C v-l(O), and observe that each U k  induces a linear form i i k  on 
E/H and that ( i i k ) l < k < n  is a basis of (E/H)* .]  

15.2 (Warner [195q)-Let A be an algebra over a field K furnished with an 
absolute value, and let A' be a total subset of A*.  (a) If (TR 2) of Theorem 
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2.15 holds for ~ K ( A ,  A’) ,  then for every w E A’, v-l(O) contains an ideal of 
finite codimension. [Let W be a neighborhood of zero such that 

W U W 2  U W 3  C {z E A : Iv(z)I 5 1)) 

let ( u k ) ~ < k < ~  - -  be a sequence in A’ such that 

{z E A : Iuh(z)I 5 1 for all k E [l,n]} C_ W, 

and let 

Show that the sets A J ,  J A ,  and A J A  are all contained in the kernel of v.]  
(b) If K is complete and if the kernel of each w E A’ contains an ideal of 
finite codimension, then (TR 2) holds for ~ K ( A , A ’ ) .  [Apply 15.13 to AIL,  
where L is a closed ideal of finite codimension contained in w-’ (O).] 

15.3 If L is a field that is an infinite-dimensional extension of a field 
K ,  furnished with a proper absolute value, then O K ( L , L ’ )  is a Hausdorff 
topology on the field L satisfying (TR 1) and (TR 2) of Definition 1.1 and 
(TR 5) of Theorem 2.15, but not (TR 4). [Use Exercise 15.2.1 

15.4 Let L be a field furnished with a proper absolute value that is an 
infinite-dimensional extension of a subfield K ,  and let L’ be the K-vector 
space of all continuous linear forms on the K-vector space L. The topology 
~ K ( L , L ’ )  on L, regarded as a vector space over L, satisfies (TM 5) and 
(TM 6) of Theorem 2.16 but not (TM 4). [Modify the proof of Exercise 
15.2 (a) .] 

16 Topological Division Rings 

Here we present some classical theorems concerning topological division 
rings. We begin with some theorems concerning locally compact division 
rings. 

The hypothesis of 16.1 implies that  multiplicative inversion is continuous 
by 11.11, but we do not need that fact in the proof. 

16.1 Theorem. If 7 is a l o c d y  compact ring topology on a division 
ring K ,  the set of all topological nilpotents is a neighborhood of zero. 

Proof. We may assume that 7 is not the discrete topology. Let U be 
a compact neighborhood of zero; as 7 is not discrete, there is a compact 
neighborhood V of zero such that V C U; let W = {z E K : ZU c V}. 
Then WW W ,  for if z, y E W ,  then xyU 5 zV c XU C V. Consequently, 
if z E W ,  then by induction zn E W for all n 2 1. By 12.3, W is a 
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neighborhood of zero; we shall show that each u E W is a topological 
nilpotent. As V is closed, so is W ;  as U contains a nonzero element d and 
as Wd C V ,  W E V d - ' ,  a compact set; hence W is compact and contains 
an for all n 2 1. Therefore to show that a is a topological nilpotent, it 
suffices to show that no nonzero element of K is an adherent point of the 
sequence (un),>l. - 

Assume that b is a nonzero adherent point of (un),>1. Then b @ bW, since 
otherwise 1 E W and hence U C V, a contradiction.As bW is compact, by 
(3) of 4.14 there is a neighborhood T of zero such that b + T and bW + T 
are disjoint, and by 12.3 there is a neighborhood S of zero such that S E T 
and SW C_ T. As b is adherent to ( ~ , ) ~ > l ,  there exist integers m and p 
such that p > m and both an and u p  belong to b + S. But then 

up = umup-n E ( b +  S)W c_ bW+ sw 2 bW +T, 

a contradiction. Therefore u is a nonzero topological nilpotent. 0 

16.2 Theorem. If E is a nonzero Hausdorff vector space over a nondis- 
Crete topological division ring K that is straight and complete, then E is 
locally compact if and only if E is finite-dimensional and K is locally com- 
pact. 

Proof. Sufficiency: If E has dimension n, then E is topologically isomor- 
phic to the K-vector space K" by 15.9 and hence is locally compact. 

Necessity: By hypothesis there is a nonzero vector c E E. By (1) of 15.12, 
K c  is closed in E and hence is locally compact. As the K-vector space K 
is topologically isomorphic to K c  by hypothesis, K is locally compact and 
and E is not discrete. By 16.1 K has a nonzero topological nilpotent a. Let 
V be a compact neighborhood of zero in E. As aV is a neighborhood of 
zero, there exist a l ,  . . . , a, E V such that 

n 

v c u (Uk + aV). 
h=l 

Let M be the finite-dimensional subspace of E spanned by al, . . . , an. 
Then M is closed in E by (1) of 15.12, so E / M  is a Hausdorff K-vector 
space. Let W = q 5 ~ ( V ) ,  where q 5 ~  is the canonical epimorphism from E to 
E / M .  Then W is a compact neighborhood of zero in E / M ,  and W C aW. 
By induction, W 5 anW for all n 2 1, so 
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Let w E W; then for each n 2 1, w = anwn for some w, E W. Hence as W 
is bounded by 12.3, 

w = lim anwn = 0 
n+oo 

by 12.12. Thus W = {0}, so V C M. For any z E E, limn400anz = 0, so 
a m x  E V for some m 2 1, whence 

Thus E = M. 0 

Once again, the hypothesis of the following theorem implies that multi- 
plicative inversion is continuous by 11.11, but we shall obtain that conclusion 
by appealing to the much more elementary 11.12. 

16.3 Theorem. A l o c d y  compact ring topology 7 on a field K is 
defined by an absolute value. 

Proof. We may assume that 7 is not the discrete topology. By 16.1 there 
is a nonzero topological nilpotent u E K. By 12.3, 14.4, and 7.7, 7 is defined 
by a complete norm, and hence inversion on K* is continuous by 11.12. By 
14.12 we need only show that 7 is locally retrobounded. 

Let V be an open neighborhood of zero. Then K \ V  is closed, so (K\V)-l 
is closed in K',  and therefore (K \ V)-' U (0) is closed in K. By 12.3, 
therefore, as 7 is metrizable, we need only obtain a contradiction from the 
assumption that there is a sequence (xP) ,21  in K \ V such that (Z;')~Z~ 
has no adherent point. In  particular, zero is not an adherent point, so there 
is a compact neighborhood T of zero such that z;' E K \ T for aJl p 2 1. 

For each p 2 1, limk,, u k z p l  = 0, so there is a smallest n(p)  E N such 
that un(p)xp l  E T; moreover, n(p) 2 1 since xp' @ T, so un(p)-'zpl @ T. 
If n(p) 5 T for infinitely many p 2 1, then for d such p, 

T 

x P  -l E u C k T ,  
k=l 

a compact set, so ( ~ p ' ) ~ ? l  would have an adherent point, a contradiction. 
Thus limp--,, n ( p )  = +oo, so limp--roo u n ( p )  = 0. As un(p)zpl E T for all 
p 2 1, some subsequence of it converges; let 

Ern a n ( P k )  x,; - = b. 
k + o o  

Then 
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so a-lb # o as 
an(Pk)-l -1 4 T 

xPh 

for all k 2 1, and therefore b # 0. As inversion is continuous on K*,  

a contradiction as x p  E K \ V for aJl p 2 1. 0 

16.4 Theorem. (Fkobenius) If D is a division algebra over R every 
commutative division subalgebra of which has dimension a t  most 2, then D 
is isomorphic to R, @, or W. 

Proof. We identify W with the division subalgebra R.1 of D. For any 
commutative division subalgebra F properly containing W, dimngF = 2 by 
hypothesis, so F is R-isomorphic to CC, and hence F = W ( j )  for some j E F 
satisfying j 2  = -1. 

Case 1: The center Z of D properly contains R. Then Z = R(i) for some 
i E z satisfying i2 = -1. If x E D \ Z, Z(x) is a commutative division 
subring properly containing 2, and hence dimngZ(z) > 2, a contradiction. 
Therefore D = 2 = R(i), so D is isomorphic t o  @. 

Case 2: 2 = R and D # 2. Let a E D \ R. Then R(a) is a commutative 
division subalgebra properly containing W, so R(a)  = R(i) for some i E R(a)  
satisfying i2 = 1. Let D+ = {x E D : ix = zi}, D- = {z E D : ix = -zi}. 
Then D+ is a division subalgebra of D. As D+D- = D-, D- is a D+-vector 
space. Clearly D+ n D- = {O}; moreover, D+ + D- = D, for if z E D, 

1 1 
2 2 

2 = -(z - izi) + -(z + i2i) E D+ + D-. 

Now D+ = R(i), for if c E D+ \R(i), c would commute with each member 
of R(i), and hence R(i, c )  would be a commutative division subalgebra whose 
dimension exceeds 2, a contradiction. Since W ( i )  is commutative, R(i) # D, 
so there is a nonzero b E D-. As b $! D+ = R(i), R(b) fl R(i) is a proper 
division subalgebra of the 2-dimensional subalgebra R(i), so R(b) fl D+ = 
R(b) n R(i) = R. Consequently, 

Moreover, b2 < 0, for otherwise b2 would have two square roots in R in 
addition to the square root b, so the field R(b) would contain three square 
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roots of b2, which is impossible. Consequently, b2 = -r for some T > 0; let 
j = r -*b  E D-; then j2 = -1. If 2 E D-, then xj-l E D-D- C D+, 
so x = (xj-l)j E D + j .  Thus {j} is a basis of the D+-vector space D-. 
Therefore as D+ = R(i) and as (1, j }  is a basis of the D+-vector space 
D = D+ + D-, (1, i, j ,  ij} is a basis of the R-vector space D. Let k = ij. 
It is easy to see that k2 = -1, jk = i, ki = j ,  ja = -k, kj = 4, and 
ik = -j, so D is isomorphic to W.0 

16.5 Theorem. (Pontrfigin [1931]) If D is a division ring furnished 
with a connected locally compact ring topology, then D is topologically 
isomorphic to R, C, or W. 

Proof. First, we observe that D cannot contain a closed subfield F whose 
topology is given by a proper nonarchimedean absolute value. For otherwise, 
as F is complete by 7.7, the left F-vector space D would be topologically 
isomorphic to Fn for some 7t 2 1 by 16.2, 15.9, and 13.8 and hence would 
be totally disconnected, as F is. 

As D is connected, it is not discrete, so by 16.1 D contains a nonzero 
topological nilpotent c. The set K of all elements of D commuting with 
c is easily seen to be a closed and hence locally compact division subring 
of D, and its center F is thus a closed and hence locally compact subfield. 
As c E F, F is not discrete, By 16.3 the topology of F is defined by a 
proper absolute value A which, by the preceding, is archimedean. Hence 
F has characteristic zero by a remark following 1.12, so we may assume 
that F contains the rational field Q. By 1.15 the topology induced on Q 
is that defined by the usual absolute value I..IOo, so the closure of Clp in 
F is topologically isomorphic to  R. Consequently, we may regard D as a 
division algebra over W that has finite dimension by 16.2. By 16.4 there is 
an isomorphism from R-division algebra D to either R, C, or W, and by 15.9 
that isomorphism is a topological isomorphism. 0 

We shall discuss totally disconnected locally compact division rings in 
$18. 

To prove the Extension Theorem for absolute values, we need the fol- 
lowing theorem concerning multilinear transformations on normed vector 
spaces, 

16.6 Theorem. Let E l ,  . . . , En, F be vector spaces over a division ring 
K furnished with a proper absolute value I..[, let N1, . . . , N,, N be norms 
respectively on E l ,  . . . , En, F ,  and let u be a multilinear transformation 
from the Cartesian product E of (Ek)l<k<n - -  to F. The fofiowing statements 
are equivalent: 

1" u is continuous. 
2" u is continuous a t  (0,. . . , 0). 
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3" There exists c > 0 such that 

N ( U ( Z 1 ,  * * , 4) I cW.1) * m4 
for all (21, ..., zn) E E .  

Proof. Assume 2". Thus there exists T > 0 such that if Nk(zk)  I T for 
all k E [l,n], then N(u(z1,.  . . , z,)) I 1. As I..\ is proper, there exists 
(Y E K* such that Icy1 < inf{l,T}; let c = To establish 3O, let 
(21,. . . ,z,) E E .  If x; = 0 for some i E [l,n], then u(x1,.  . . ,z,) = 0, so we 
may assume that zi # 0 for each i E [l,n]. Let mi be the integer such that 

mi+l < Ni(Zi) 5 14 I I mi t 2 

Then 

for each i E [l, n], so 

N i ( K r n i Z i )  = ICyI--"'N~(Zi) 5 Icy1 5 T 

N(U(CY--"1Z1,. . . , (Y-m"Z,)) 5 1, 

N ( u ( z ~ , .  . . ,z,>> I 1 0 1 ~ 1 .  . . I ( Y ~ ~ "  < ~ ( l ~ l - 2 N i ( z j ) )  

whence 
n 

i=l 

= C N I ( Z 1 )  ... N,(zn). 

Next, assume 3 O ,  let (a l ,  . . . ,a,) E E ,  and let 
n 

M = n SUP{l, N(ale)). 
i=l 

Given e > 0, let 
d = inf{l,e[(2, - l ) ~ l M ] - ~ } .  

Let (z1,  ..., z,) E E be such that Nk(zk) I d for all Ic E [1,n]. For each 
proper subset H of [l,n], let U H  = u ( y 1 , .  . . ,y,), where y; = ai if i E H, 
yi = zi if i $! H ;  then as u is multilinear, 

U ( a 1  + 2'1,. - . ,a ,  + 2,) - U ( a 1 , .  . . , a n )  = U H ,  

HE? 

where P is the set of all proper subsets of [l,n]. Given H E P, let j $! H; 
then 

N ( ~ H )  I cNj(zj) n s u p { ~ ( a i ) , ~ ( z i ) }  I c d ~ .  
ifi 

Hence 
N ( ~ ( a ~ + z l , .  . . ,a,+z,)-u(al,. . .,a,)) 5 

Thus u is continuous at (a l ,  . . . , a,). 0 

N ( u H )  5 (2,-l)cdM 5 e .  
HE'P 
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16.7 Theorem. Let A be a topological algebra over a field K, furnished 
with a proper absolute value. If N is a norm defining the topology of 
the underlying K-vector space, there is a K-algebra norm 11..11 defining its 
topology. Furthermore, if A has an identity element e, there is a K-algebra 
norm 11..111 defining the topology such that I le((1 = 1. 

Proof. As multiplication is a K-bilinear, by 16.6 there exists c > 0 such 
that N(zy) 5 c N ( z ) N ( y )  for all 2, y E A .  Define 11..11 by 1 1 ~ 1 1  = cN(z).  
Clearly 11..11 is a K-vector space norm defining the same topology as N ,  and 

Suppose, in addition, that A has an identity element e. For each z E A, 
the K-linear mapping L,  : t -+ zt  is continuous, and therefore by 16.6 there 
exists c, > 0 such that for all t E A, llztll 5 c,lltll. Thus { ( (z t (J l l t ( ( - l  : t E 
A*}  is bounded, so Ilz((1 is well defined by 

Clearly ((..(I1 is a K-algebra norm satisfying ((ell1 = 1, for if y # 0, 

1 1 ~ 1 1 1 1 ~ 1 1 - 1  5 Il4l1 I1141 
for aU z E A, ))..(\I defines the same topology as 11..11. 0 

16.8 Theorem. (Extension Theorem) HA is a proper complete absolute 
value on a field K and if L is a finite-dimensiond extension field of K, there 
is a unique absolute value AL on L extending A.  Moreover, for each c E L, 

where (YO is the constant coefficient and m the degree of the minimal poly- 
nomial of c over K. 

Proof. By 13.8 and 15.10 there is a unique K-vector topology 7 on L, 
and 7 is defined by a K-vector norm by 15.11. By 15.14 L is a topological 
K-algebra, so by 16.7 there is a K-algebra norm N defining 7 such that 
N(1) = 1 and hence 

N(Xz) = A ( X ) N ( x )  = A ( X ) N ( l ) N ( z )  = N(Xl)N(z) = N ( A ) N ( z )  
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for all X E K and all z E L. Thus K is contained in the core of N and hence 
in the core of the associated spectral norm N ,  by 14.8. Choosing z = 1 in the 
above equalities yields A(X) = N(X)  and hence N,(X) = A(X) by 14.8. By 
14.10 there is an absolute value AL on L such that AL(X) = N,(X) = A(X) 
for all A E K. If B is an absolute value on L extending A, then both B and 
AL define the unique K-vector topology on L, so there exists T > 0 such 
that B' = AL by 1.10. Let t E K* be such that A(t) # 1. Then 

B ( t )  = A(t) = A L ( ~ )  = B(t)', 

so T = 1 and B = AL.  
Let c E L,  and let f be the minimal polynomial of c over K ,  and let 

m 

in a splitting field fl of f over L. The constant coefficient a0 of f is 
(-l)mcl . . . cm. For each k E [1,m] there is a K-automorphism B k  of fl 
such that q ( C )  = Ck. As fl is a finite-dimensional extension of K ,  there 
is a unique absolute value An on fl extending A by what we have already 
proved, and the restriction of An to L is, of course, AL.  But for each 
k E [l, m], An o c7k is clearly an absolute value on SZ extending A, so by the 
uniqueness of An, An o fq = An. Thus 

for all k E [1,m]. Consequently, 

SO AL(c) = A(ao)'/", 0 

Let D be a finite-dimensional division algebra over a field K. For any 
c E D, the norm N D , K ( c )  of c relative to K is the determinant of the linear 
operator L, : z + cz on the K-vector space D. Let X" + a,Xm-' + 
. . . + alX + a0 be the minimal polynomial of c over K. Then K(c) is 
an extension field of K ,  and (1, c ,  . . . , cm-'} is a basis of the K-vector 
space K(c) .  Let {el, . . . , eP} be a basis of the (left) K(c)-vector space D. 
Then {el , cel, . . . , cm-' el ,  e2, ce2, ' * * , cm-l e2, . . ., ep, cep, . . ., cm--lep} 
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-0 0 0 ... 0 0 0 -a0 - 
1 0 0 . . *  0 0 0 -a1 
0 1 0 * * .  0 0 0 -a2 

0 0 0 ... 1 0 0 -a,-3 

0 0 0 ... 0 1 0 -a,-2 

-0 0 0 ... 0 0 1 -a,-1- 

. . .  A = : : : * .  . . .  . * .  . . . .  

is a basis of the K-vector space D. Relative to this basis, the matrix of L, 
is 

A 0 ... 
. .  . .  
0 0 ... 

where 

Thus 
N D / K ( c )  = (detA)P = (-1)"'at; = (-1) n a. n / m  . 

16.9 Theorem. Let A be a proper complete [nonarchimedean] absolute 
value on a field K, and let D be an n-dimensional division algebra over K. 
There is a unique [nonarchimedean] absolute value AD on D extending A. 
Moreover, for each c E D ,  

Proof. For each c E D, K(c)  is an extension field of K, so by 16.8 there 
is a unique absolute value AK(,) on K ( c )  extending A; moreover, if a0 is 
the constant coefficient and m the degree of the minimal polynomial of c 
over K, 

AK(,)(c)~ = A(CYO>"/" = A(CY;/") = A((-~)"CY;/") = A(ND/K(c)). 

Thus the only possible absolute value on D extending A is the function AD 
defined above, and the restriction of AD to K ( c )  is an absolute value on 
K ( c )  for any c E D .  

To show that AD is an absolute value, let c, d E D. Since 
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AD(&) = A D ( C ) A D ( ~ > .  To show that A ~ ( c + d )  5 A D ( c ) + A D ( ~ ) ,  we may 
assume that c # 0. Then 1 + c- ld  E K(c- ld ) ,  so as the restriction of AD 
to K(c- ld )  is an absolute value, 

A o ( l +  c-'d) 5 Ao(1)  + A D ( c - ' ~ )  = 1 + A D ( c - ' ~ ) ,  

whence 

By the remark after 1.12,  AD is nonarchimedean if and only if A is. 0 

16.10 Theorem. If A is a proper absolute value on a field K and if L 
is a finite-dimensional extension field of K ,  there is an absolute value B on 
L extending A .  

Proof. Let fl be the algebraic closure of k.  There is a K-isomorphism B 

from L to a subfield L' of fl. As dimK L' < +m, there exist 2 1 ,  . . . , z,_~ 
L' such that L' = K(z1 , .  . . , x n ) .  Then 2 1 ,  . . . , x ,  are algebraic over K ,  
so dimg K(x1, .  . . ,z,) < -too. By 16.8 there is an absolute value B' on 
k(z1,. . . ,z,) extending Â , the unique absolute value on extending A 
and defining the topology of k. Then B,  defined by B ( z )  = B'(a(z))  for 
all z E L,  is an absolute value on L extending A. 0 

Lastly, we prove the impossibility of extending an archimedean absolute 
value or a norm relative to an archimedean absolute value on W to a field 
larger than C: 

h 

16.11 Theorem. (Ostrowski [1915]) If K is a field properly containing 

Proof. Assume that such an extension A exists. Let a E K \ @, and let 

C and if 0 < T 5 1, there is no absolute value A on K extending I..I',. 

m = inf A( .  - A) 
X€C 

Since C is locally compact, by 7.7 and 7.5, C is a closed subfield of  K ,  
topologized by A .  Therefore rn > 0. Let A, E @ be such that 

1 
m 5 A ( u -  A,) 5 m+ - 

n 

for each n 2 1. Then 

A ( L )  5 A(a - A,) + A(a)  5 m + 1 + A(a) ,  



130 LOCAL BOUNDEDNESS 

so 
]A,) 5 [rn + 1 + A(a)] l / ' .  

Thus a subsequence of (Xn)nzl converges to some p E C, and A(a-,f3) = m. 
Let b = a - p. Then for all v E C, 

A(b - V )  2 A(b) 

since A(b - v) = A ( .  - ( p  + v)) 2 rn = A(b).  
We shall show that if c E K* satisfies A(.  - v )  2 A(c) for all v E @, then 

A(c - A)  = A(c)  for every A E C such that A(X) < A(c) .  Indeed, let Cn be 
a primitive nth root of unity in @. By our assumption, 

A(c - <:A) 2 
for all k E [O,n - 13, so 

n-1 n-1 

A(cn - An) = A( ( c  - <:A)) = A(c - <:A) 2 A(c - X ) A ( C ) ~ - ' .  
k=O k=0 

Consequently, 

A(c - A)A(c)"-' 5 A(cn - An) 5 A(c)" + d(X)n, 

A(c - X)A(c)-l 5 1 + (A(X)A(c)- l )".  
so 

Therefore 

A(c - X)A(c)-' 5 lim [1+ (A(X)A(c)-')"] = 1 

as A(A)A(c)-l  < 1. Hence A(c-A) 5 A(c) ,  so by our assumption, A(c-A) = 
A(c) .  In addition, for any Y E @, by our assumption 

n-oo 

A ( ( c  - A) - V) = A(c - ( A  + v ) )  2 A(c)  = A(c  - A). 

Let A E C* be such that lXl&, = d(A) < A(b) .  Applying the conclusion 
of the preceding paragraph successively to b, b - A, b - 2 A ,  . . . , b - (n  - l ) X ,  
we conclude that 

A(b) = A(b - A)  = A(b - 2X) = . . . = A(b - nA) 

for all n 2 1. Thus for each n 2 1, 

2A(b) = A(b - n X )  + A(b) 2 A(nX) = /.XI', = n'lXl',. 

1 
A(b) 2 -nrlA[k 

2 

Consequently, 

for all n 2 1, an impossibility. 0 
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16.12 Theorem. If D is a normed division algebra over W, furnished 
with the absolute vdue I..l', where 0 < T 5 1, there is a topological isomor- 
phism from D to one of the W-algebras W, C, W. 

PTOO~. By 16.7 there is a norm N on the algebra D that is equivalent to 
the given one and satisfies N(l) = 1. Consequently, for any X E W, 

N(X.1) = p[&N(l) = [XI&. 

We identify W with W.1. Thus N is a norm on the division ring D that 
extends I..I', and contains W in its core. To apply 16.4, let K be a commu- 
tative division subalgebra of D, N' the restriction of N to K .  By 14.8 the 
corresponding spectral norm N: on K agrees with I..I'$ on R and contains 
W in its core. By 14.10 there is an absolute value A on K that agrees with 
iVl and hence I..I', on R. By 16.10 there is an absolute value A' extending 
A to K ( i ) ,  the field obtained by adjoining a root of X2 + 1 to K. But 
K ( i )  2 W(i)  = C, so as Wis complete for I..[',, A'(x) = lzl', for aJl x E R(i) 
by 16.8. Therefore K ( i )  = C by 16.11, so dimRK 5 2. By 16.4 there is an 
isomorphism Q from D to one of the W-algebras W, C, W. As these algebras 
are finite-dimensional, Q is a topological isomorphism by 15.10. 0 

16.13 Corollary. (Gel'fand-Mazur) If D is a normed division algebra 
over C, furnished with the absolute value I../', where 0 < T 5 1, then D is 
one-dimensional. 

Proof. Restricting the scalar field to R, we conclude from 16.12 that 
D is isomorphic to a subalgebra D' of W that contains C in its center. 
Consequently, D' = C, that is, D is one-dimensional over C. 0 

16.14 Theorem. (Ostrowski) If A is an archimedean absolute value on 
a division ring [field] D, there exist s E (0,1] and an isomorphism Q from 
D to a division subring [subfield] of W [q such that 

for d x E D .  

Proof. By a remark following 1.12, the characteristic of D is zero, so we 
may regard D as a Qalgebra. By 1.15 there exists s E ( O , l ]  such that 
A(X.l) = for aU X E Q. Consequently, A is a norm on the algebra 
D over Q, furnished with the absolute value I..[&. Therefore by 13.10 and 
13.11, the unique absolute value Â  on .6 that extends A and defines the 
topology of .6 is a norm on the algebra 5 over = R, furnished with I..[&,. 
Consequently by 16.12 there is an isomorphism Q from the W-algebra 5 t o  
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either Iw, @, or W, and we may exclude W, of course, if D and hence also 6 
axe commutative. Now the functions t --+ A^(o-l(t)) and I..[: are absolute 
values on o(5), and 

IAl& = Z(A,l) = Z(o-f(A)) 
for all X E R. Therefore by 1.10, 

Exercises 

16.1 Let A be a proper complete absolute value on a field K .  If L is an 
algebraic extension of K, there is a unique [nonarchimedean] absolute value 
AL on L that extends A. [Use 16.8.1 

16.2 Derive the Fundamental Theorem of Algebra from 16.8 and 16.11. 
16.3 (a) There are 2card(R) subfields of @ isomorphic to R, but only one 

of them, W, is closed. [Use the fact that there are 2card@) automorphisms 
of @. (b) If K is a locally compact proper subfield of C, then K = R. 

16.4 (Baer and Hasse [1931]) Let C- be the Riemann sphere, the Alek- 
sandrov one-point compactification of C. A theorem of Janiszewski [1915], 
generalizing the Jordan Curve Theorem, asserts that if F1 and F2 are closed 
connected subsets of Cw , each containing more than one point, and if 3’1 nF2 
is not connected, then Coo \ (F1 U 8’2) is not connected. Use this theorem 
to show that if K is a subfield of C that contains a closed connected subset 
of C containing more than one point, then K = W or K = C. [Observe that 
if F1 U Fz C K U (00) and if a E C \ K ,  then a + (Fl U 272) C Cm \ K.] 

16.5 Let A be an advertibly open topological algebra with identity over a 
complete straight field K .  (a) Every maximal ideal of A is closed. (b) Every 
homomorphism from A to the K-algebra K is continuous. ( c )  If K is C, 
furnished with I..I’, for some T E (0,1], then an element z of A is invertible 
if and only if u(z) # 0 for every nonzero homomorphism u from A to C. 

16.6 (Cantor [1883], Bendixson [1884]) Let X be a topological space. A 
subset A of X is perfect if A is closed and contains no isolated points. A 
point c is a condensation point of a subset A of X if every neighborhood 
of c contains uncountably many points of A.  (a) The set of condensation 
points of a subset A of X is closed. (b) If X is a 2’1-space and if every 
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open subset of X is a Lindelof space (that is, every open cover contains a 
countable subcover), then the set B of condensation points of a subset A of 
X is a perfect set, and d \ B is countable. (c) If A is a nonempty perfect 
subset of a complete metric space X, then card(A) 2 card@). [Define 
recursively A(a0, .  . . ,an) for all n E N, where each a k  is either 0 or 1, 
so that for each finite sequence ao, . . . , a, of 0’s and 1’s) d(a0,. . . ,a,, 0) 
and A(a0,.  . . ,a,, 1) are disjoint infinite closed subsets of d(a0,. . . ,a,)  of 
diameter 5 l / ( m  + 1); for each a E (0, l}’, let 

16.7 Let X be a connected complete separable metric space each point 
c of which has a fundamental system V ,  of neighborhoods such that for 
all V E Vc,  V \ {c} is connected. (a) If G is a nonempty open nondense 
subset of X, the boundary of G contains a nonempty perfect subset. [To 
apply Exercise 16.6(b), observe that the boundary of G is a nonempty Baire 
space, and conclude that it is uncountable.] (b) (Livenson [1936]) If A is 
a dense subset of X that intersects nonvacuously each nonempty perfect 
subset of X, then A is connected. 

16.8 (Dieudonne [1945]) Let c = card@), and let 7 be the smallest ordinal 
of cardinality c; thus card([O,y)) = c, and if p < 7, card([O,P)) < c. (a) 
There is a bijection /3 --f Pp from [O,y) to the set of all nonempty perfect 
subsets of C such that 0 E PO. (b) There is an injection cy + K ,  from 
[O,y) to the set of all subfields of C such that KO = Q, Kp C K ,  whenever 
P < a, and for all (Y E (O,?), if KL = Up<,Kp, then K, = KL(ua) where 
u, is transcendental over KL and u, E Pa. [Use Exercise 16.71 (c) Let 
K = U,<,K,. Then K is a purely transcendental extension of 0, and K is 
connected. [Use Exercise 16.7(b).] Also, K is locally connected. [Observe 
that if X is an open disk of center zero, every nonempty perfect subset of X 
contains a nonempty perfect subset of C.] (d) There is a field K‘ containing 
K that is isomorphic to R; with its induced topology, K’ is connected and 
locally connected but not locally compact. 
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REAL VALUATIONS 

Some basic definitions and theorems concerning real valuations are given 
in $17. Discrete valuations, discussed in $18, are the principal real valuations 
we will encounter later. In $19 some subsequently needed theorems about 
extensions of real and discrete valuations are presented. 

17 Real Valuations and Valuation Rings 

We adjoin to R a new element, denoted by +a, and denote the set 
RU{+oo} by W,. We extend addition on W to an associative, commutative 
composition on W, by declaring, for all a E W, 

a+ (+a) = (+m) + a  = 00 

(+oo) + (+m) = +oo. 

We also define a. (+m) and (+XI) . a to be +oo for all a E R>o. Finally, 
we extend the total ordering of W to one of R, by declaring a 5 +oo for 
all a E W,. Thus for all a, p, 7 E W,, if a 5 /3, then a + y 5 /3 + y. 

R, is a real valuation of A if for al2 z, y E A ,  
17.1 Definition. Let A be a ring with identity. A function v from A to 

Let v be a real valuation of A. If zn = 1, then 0 = v(z") = n.v(z), so 
v ( z )  = 0. In particular, v(-1) = 0, so by (V l), v(-y) = v(y) for all y E A.  
Ifz E A X ,  then 

0 = v(1) = v(zz-1) = v(z) + v(z- l ) ,  

so ~(z) # +oo, and v(z-l) = -v(z), 

134 



17 REAL VALUATIONS AND VALUATION RINGS 135 

17.2 Theorem. Let v be a real valuation of A, and let zl, . . . , .z, E A.  

n 
Then 

and if there exists T E [l,n] such that ~(2,) < v(zi) for all i # T ,  then 

In particular, if v(z)  < v(y), then v(z  + y) = v(z). 

Proof. The first assertion follows from (V 2) by induction. For the sec- 
ond, let z = z,, y = &,zi. Then v(y) > v(z), so v(x + y) 2 v(z). If 
v ( z  + y) > v(z) ,  we would have 

a contradiction. Hence v(z + y) = v(z). 0 

17.3 Corollary. If v is a real valuation of A and if 21, . . . , zn  are ele- 
ments of A* such that z1 + * .  + 2, = 0, then there exist distinct integers 
T ,  s in [l, n] such that 

v(z,) = v(z,) = iqf .(xi). 
l<r<n 

Henceforth, we shall consider only real valuations of division rings. 

17.4 Theorem. Let v be a real valuation of a division ring K, and let 
I? be the commutator subgroup of K* (the subgroup of the multiplicative 
group K* generated by all elements of the form zyx-'y-'). Let 

A, = {z E K : v(z)  2 0)) 

M, = {z E K : v(z)  > 0). 

(1) v(K*)  is an additive subgroup of R. 
(2) A, is a subring of K containing 1, Mu is a proper ideal of A, con- 

taining every proper ideal of A,, A,X = A, \ M,, and A, /M,  is a division 
ring. 

(3) ( K  \ AU)-' = Mu; in particular, the smallest division subring con- 
taining A, is K itself. 

(4) I' C A:; A,t = tA ,  for every t E K; hence every left or right ideal of 
A, is an ideal of A,. 
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( 5 )  For all c, d E K * ,  v(c) 5 v(d) if and only i f  d E A,c. 

Proof. By (V l), the restriction of v to K* is a homomorphism, so (1) 
holds. Clearly A ,  is a subring of K containing 1, and Mu is a proper ideal 
of A,. As v(z) = 0 if and only if v(3- l )  = 0, A,X = A, \ M ,  = {z E K : 
w(x) = 0). In particular, every proper ideal of A, is contained in Mu, and 
A , / M ,  is a division ring. Since z E K \ A, if and only if ~(z) < 0, or 
equivalently, v(z-l) > 0, (3) holds. 

If z, y E K * ,  then zyz-ly-l E A,X since 

v(zyz-'y-l) = ?I(.) + v(y) - v(.) - v(y) = 0. 

Consequently, I' C_ A:. Therefore A,t = t A ,  for every t E K ,  so every left 
or right ideal of A, is an ideal. 

( 5 )  If v(c) 5 v ( d ) ,  then dc-' E A, since v(dc-') = v (d )  - v(c) 2 0, 
so d = (dc - l ) c  E A,c. Conversely, if d = ac where a E A, then v(d) = 
.(a) + v(c)  1 v(c) .  

17.5 Definition. Let w be a real valuation of a division ring K .  The 
valuation ring A ,  of v is the subring of K consisting of all 5 E K such 
that v(z)  2 0 ,  the valuation ideal of  v is the ideal Mu of A consisting of 
all z E A such that v(z) > 0 ,  and the value group G ,  of v is the additive 
subgroup v (K*)  of R. The residue division ring (or residue field, i f  it 
is a field) of ZI is the quotient ring A,/M, .  

The only real valuations heretofore encountered (in $1) are the valuations 
of the quotient field of a principal ideal domain determined by primes of that 
domain. Let K be the quotient field of a principal ideal domain D ,  and let 
up be the valuation defined by a prime p of D. The valuation ring A of 
vp is then the ring of all fractions a/s where a E D, s E D*, and p 1 s, 
and the valuation ideal it4 of v p  is P A .  Furthermore, M n D = pD,  for if 
pals = b E D where p 1 s ,  then pa = sb, so p I sb, whence p I b as p 1 s, 
therefore b = pt for some I! E D, and hence a/s  = t E D .  

The discussion on page 8 of the absolute values on a field defined by a 
p-adic valuation is equally valid for arbitrary real valuations. If v is a real 
valuation of a division ring K and if c > 1, the defining properties of a real 
valuation imply that V,, defined by 

Vc(z )  = c-u(=) 

for all z E K (where we adopt the convention c-" = 0)) is a nonarchimedean 
absolute value on K, called the absolute value of v to base c .  An absolute 
value of w is simply an absolute value of w to base c for some c > 1. If 
c > 1 and d > 1, the absolute values of v to bases c and d are equivalent, 
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since Vd = VE where s = log, d. Thus the absolute values of v all define the 
same topology, called the topology defined by v. The valuation ring A, and 
maximal ideal Mu of v are then the closed unit ball and open unit ball of 
any absolute value V of v, that is, 

A, = {z E K : V(z) 5 1) 
M ,  = {z E K : V ( z )  < 1). 

17.6 Definition. The improper valuation of a division ring K is the 
real valuation v defined by v(0) = +m, v(z) = 0 for all x E K*. A real 
valuation of K is proper if it is not the improper valuation. 

17.7 Theorem. The following statements about a real valuation v of a 
division ring K are equivalent: 

1" v is improper. 
2" The valuation ring of v is K. 
3" The value group of v is (0). 
4" The topology defined by v is the discrete topology. 

The proof is easy. 

17.8 Definition. Real valuations v and w of a division ring K are 
equivalent if they define the same topology. 

17.9 Theorem. Let v and w be proper real valuations of a division ring 
K with valuation rings A, and A,, valuation ideals M, and M,, and value 
groups G, and G, respectively. The following statements are equivalent: 

1" v and w are equivalent. 
2" A, = A,. 
3" A,  C A,. 
4" M,  = M,. 
5" Mu C M,. 
6" There exists T E IW>o such that w = T V .  

7" There is an increasing isomorphism r$ from G, to G, such that w (x) = 
(40  v)(z)  for all z E K*. 

Proof. By 1.10 applied to absolute values of v and w, lo, 5" ,  and 6" are 
equivalent. Clearly 6" implies 4 O ,  which implies 5" ,  and 6" implies 7", which 
implies 2", which implies 3". We need only show, therefore, that 3" implies 
5" .  But if A, C A,, then K \ A, C K \ A,, so ( K  \ A,)-' G (K \ A,)-', 
that is, M, \ (0) C M, \ (01, and hence M, C M,. 0 
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17.10 Theorem. Let A be the valuation ring of a proper real valuation 
v of a division ring K .  Every nonzero ideal of A is open and hence closed 
for the topology defined by v, and the nonzero principal ideals of A form a 
fundamental system of neighborhoods of zero. Furthermore, the restriction 
of v to K* is continuous from K* to the value group G of v, furnished with 
the discrete topology. 

Proof. A is a neighborhood of zero and hence is open by 4.9. If b is a 
nonzero element of K ,  then bA is open since z + bz is a homeomorphism 
from K to K .  Consequently, every nonzero ideal is open by 4.9 and thus 
closed by 4.8. Let V be the absolute value defined by v to base c > 1, 
and let T > 0. Since v is proper, G is a nonzero subgroup of R under 
addition and hence is unbounded; therefore there exists a E K such that 

< inf{l,T}. Then v(u) > 0, so a E A,  and if s = c - " ( ~ ) ,  

Aa = {z E K : v(z) 2 .(a)} = {z E K : V(z) 5 s} 

G {z E K : V(z) < T } ,  

Let V, = {x E K : v(z)  > a }  and W, = {z E K : v(z) 2 a }  for each 
a E G. Both V, and W, are additive subgroups of K ,  so as V, = {z E K : 
V(z) < c-"} ,  V, is open and hence closed by 4.8, and W, is open by 4.9. 
Consequently, as .-'(a) = W, \ V,, v-l(a) is open. Thus v is continuous 
from K* to the discrete group G. 0 

17.11 Definition. A real valuation of a division ring is complete if the 
topology it defines is complete. 

17.12 Theorem. Let v be a real valuation of a division ring K .  The 
completion k of K for the topology defined by v is a division ring, and there 
is a unique real valuation 5 on 2 that extends v and defines the topology 
of k ,  The value group of G is the value group G of w ,  the valuation ring 
and ideal of 37 are the closures in k of the valuation ring A and valuation 
ideal M of v respectively, and consequently the residue division ring AIM 
of w is canonically isomorphic to the residue division ring A I M .  

Proof. Since 2 = K if v is the improper valuation, we shall assume that 
21 is proper. Let c > 1, and let V be the absolute value to base c defined 
by v. By 13.10 and 13.11, k is a division ring whose topology is defined 
by a unique absolute value ? extending V .  Let i7 = -log, ? (with the 
convention - log, 0 = -too). Clearly G is a red  valuation of 2 that extends 
w ,  and is the absolute value of 5 to base c. Thus the topology of 
defined by G is its given topology. If w is a real valuation of that defines 
its topology and extends v, then w and G are equivalent, so there exists 

h h  
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T > 0 such that w = ~ 3 .  As w is proper, there exists z E K* such that 
V b )  # 0, so 

TV(2) = T+) = W(.) = v(z), 

and therefore T = 1 and w = 3. 
As the valuation ring and ideal of 3 are closed by 17.10, they contain Â  

and M  ̂respectively. The statements that the value group of 3 is G and that 
the valuation ring and ideal of 5 are contained in Â  and M^ respectively all 
follow from the fact that for any z E z* and any open neighborhood U of z, 
there exists y E U n  K* such that G(z) = w(y). Indeed, by 17.10, F1(3(z)) 
is open in 2, so there exists y E K n U n G-'(G(z)), and consequently 
v(y) = G(y) = G(z). Finally, the function g from AIM t o  AIM defined by 
g(z + M )  = z + M^ is an isomorphism by 5.14. 0 

A h  

17.13 Theorem. Tfv is a proper complete real valuation of a field K 
with value group G and if D is an n-dimensional division algebra over K ,  
there is a unique r e d  valuation VD of D extending v with value group 
(1ln)G. 

Proof. Let A be an absolute value of v. There is a unique nonarchimedean 
absolute value AD on D extending A and consequently a valuation VD of D 
extending w with value group ( l /n )G by 16.9. Arguing as in the proof of 
17.12, we may conclude that VD is the only valuation of D extending v. 0 

17.14 Theorem. If A is the valuation ring of a proper real valuation w 
of a division ring K ,  then A is maximal in the set of all proper subrings of 
K ,  ordered by E . 

Proof. By 17.7, A is indeed a proper subring of K .  Let B be a subring 
of K properly containing A.  Then there exists b E B such that v(b) < 0. 
To show that B = K ,  let z E K \ A.  Then w(z) < 0, so by the archimedean 
property of W, there exists n E N such that n.v(b) < v(z). Consequently 
zb-" E A B as v(zb+) = v(z) - nv(b) 2 0, so z = ~ b - ~ b "  E B. 0 

17.15 Theorem. If k is the residue division ring and G the value group 
of a real valuation v of a division ring K ,  then card(K) 5 card(lcG). 

Proof. Let A be the valuation ring and M the maximal ideal of w. For 
each X E G, let Ax = {z E K : w(z) 2 A}. Let ( C X ) X ~ G  be a family of 
elements of K such that .(.A) = X for all X E G, and for each X E G let 
Bx be a subset of K such that Bx contains precisely one member of each 
coset of Ax in the additive group K (thus K/Ax = { b  + Ax : b E Bx}). For 
each z E K and each X E G, let bx,, be the unique member of Bx such that 
z + Ax = bx,= + Ax. Then v(a: - b ~ , , )  2 A, so cX'(z - b ~ , ~ )  E A.  For each 
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z E K and each X E G, let 

an element of I c .  To show that z -+ 2 is an injection from K to kG, assume 
that z and y are distinct elements of K, and let 6 = v(x - y). Then 

so b6,= = b6,y. Consequently 

so $(a) # $(a). . 
Exercises 

An archimedean-ordered group is a commutative group G furnished with 
a total ordering 5 such that for all x, y, z, E G ,  x 5 y implies x + z 5 
y + z ,  and for all a, b E G such that b > 0 there exists n E N such that 
n.b 2 a. In the proof of 17.14 we used the fact that the ordered group R 
is archimedean-ordered. A celebrated theorem of Baer [1928] states that 
if G is an archimedean-ordered group, then there is a strictly increasing 
monomorphism from G to the additive totally ordered group R. 

17.1 A subring A of a field K is a valuation subring of K if for all x E K*, 
either z E A or x-l E A. Let A be a valuation subring of a field K. (a) 
1 E A, and if M = A \ A X ,  M is an ideal of A containing every proper ideal 
of A (and hence is called the maximal ideal of A ) .  (b) The A-submodules of 
K are totally ordered by &. In particular, the ideals of A are totally ordered 
by C. (c) Let G ( A )  = {Ax : z E K*}.  We define a composition on G ( A )  by 
Az + Ay = Azy and an ordering by declaring Az 4 Ay if Az 2 Ay. Under 
this multiplication, G ( A )  is a commutative group, and for all x, y, z E K ,  
Ax 6 Ay implies (Ax) (Az )  d (Ay)(Az). (d) Let ZIA be the function from 
K* to G ( A )  defined by v(z)  = Az. For all z, y E K*,  V A ( Z ~ )  = VA(Z)Z)A(Y) 

and, if 5 + 
17.2 Let A be a valuation subring of a field K that is maximal in the set 

of all proper subrings of K, ordered by E, and let M be the maximal ideal 
of A. (a) For each b E M, 

# 0, ~ A ( X  + y) 2 i n f { v ~ ( ~ ) , v ~ ( ; y ) } .  

00 

K =  U Ab-". 
n=O 
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(b) G(A) (Exercise 17.1) is an archimedean-ordered group. (c) A is the 
valuation ring of a proper real valuation on K. [Use Exercise 17.1 and 
Baer's theorem, mentioned above.] 

17.3 Prove directly that if G is a subgroup of the additive group R and 
if $J is an increasing isomorphism from G to a subgroup H of W, then there 
exists T E W>o such that d(z) = T Z  for all z E G. [Consider separately the 
cases where W>o n G does or does not have a smallest element. In the latter 
case, show that G is dense in W and that $J is continuous.] 

18 Discrete Valuations 

A nonzero subgroup G of W is clearly cyclic if and only if G is isomorphic 
to the additive group Z. Furthermore, if G is a nonzero cyclic subgroup 
of W, it has a a unique positive generator C, which is the smallest positive 
element of G. 

18.1 Definition. A discrete valuation of a division ring K is a proper 
real valuation of K whose value group is cyclic. If v is a discrete valuation 
of K and if C is the unique positive generator of its value group, any element 
u of K such that v(u) = C is called a uniformizer of v. 

I fp  is a prime of a principal ideal domain D, the p-adic valuation up of 
the quotient field K of D is an example of a discrete valuation, and p is a 
uniformizer of up.  

18.2 Theorem. Let u be a uniformizer of a discrete valuation v of a 
division ring K, and let A be the valuation ring of K. If M is a nonzero 
proper submodule of the A-module K, there is a unique m E Z such that 
M = Au". Thus, every nonzero proper A-submodule of the A-module K 
is a member of the strictly decreasing sequence ( A u ~ ) ~ ~ ~  of A-submodules. 
In particular, if J is a nonzero ideal of A, there is a unique m E N such 
that J = Aum. Thus, every nonzero ideal of A is a member of the strictly 
decreasing sequence ( A U ~ ) ~ ~ N  of ideals. 

Proof. Let G be the value group of v, let M be a proper nonzero sub- 
module of the A-module K, and let H = v ( M )  n G. If p E H, then H 
contains every (Y E G such that a 2 p by (5) of 17.4. If H were G, then, 
again by (5) of 17.4, M would be K, a contradiction. Consequently, H 
contains a smallest multiple mv(u) of v(u), and H = {nv(u) : n 2 m}. As 
v(um) = mv(u), M = Au" by (5) of 17.4. 0 

18.3 Theorem. If v is a proper real valuation of a division ring K, then 
v is a discrete valuation if and only if each ideal of its valuation ring A is a 
principal left ideal. 
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Proof. The condition is necessary by 18.2. Sufficiency: Let M be the 
maximal ideal of v. By hypothesis, there exists u E A such that M = Au. 
Furthermore, n,m=lAun is clearly an ideal of A, so by hypothesis there exists 
t E A such that 

W 

At = n Au". 

Thus for each n E N there exists z, E A such that t = z,un+l. Therefore 
for all n E N, zou = z,u"+l, so zo = x,un E Au". Hence 20 E At, which 
is t A  by (4) of 17.4, so 20 = ta for some a E A. Thus t = xou = tau. 
Consequently, if t # 0, au = 1 and hence u would be invertible in A, a 
contradiction. Thus t = 0 and 

M 

n=l 

To show that u is a uniformizer of v, let z E A*. Then there is a largest 
n E N such that Ax 2 Au" by what we have just proved. Consequently, 
AXIL-'' 5 A, but if A m v n  C M = Au, then Az Aun+l, a contradiction; 
hence Azu-" = A, so xu-" is a unit of A. Therefore ~ ( z u - " )  = 0, so 
~ ( z )  = nv(u). Finally, if z E K' \ A ,  then 2-l E A, so -v(z) = v(x-l) = 
nv(u) for some n E N, whence V ( Z )  = -nv(u). 0 

18.4 Definition. Let v be a proper real valuation of a division ring K, 
and let A and M be the valuation ring and ideal of v respectively. A subset 
S of A is a representative set for v (or for the residue division ring of v) 
if 0 E S and the restriction to S of the canonical epimorphism from A to 
AIM is a bijection from S to AIM. 

18.5 Theorem. Let v be a discrete valuation of a division ring K, let 
6 be the the positive generator of its value group G, let A be the valuation 
ring of v, and let S be a representative set for v. For each n E Z, let u, E K* 
be such that v(u,) = nC. 

( 1 )  For each c E K there is a unique family (s,),Ez of elements of S such 
that Sn = 0 for all but finitely many n < 0, ( S n U n ) n E z  is summable, and 

c = c s,u,; 
nEZ 

moreover, if v(c)  = mc, then s, = 0 for all n < m and s, # 0. 
(2) If v is complete and if (tn),Ez is a family of elements of A such that 

tn = 0 for a.U but finitely many n < 0, then (tnun)nEZ is summable; if, 
moreover, t, = 0 for all n < m and v ( t m )  = 0, then 

V(Zt"U,)  = mi. 
nEZ 
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Proof. (1) Let u = u1, a uniformizer of v. Then for each n E Z, U,U-" is 
invertible in A, so Aun = Au". We may assume that c # 0 and v(c)  = mC. 
A recursive argument establishes the existence of a sequence ( s , ) ,~ ,  in S 
such that 

0 

n=m 

for all p 2 m. Indeed, let c = a,u, where a,  E A \ Au; we define s ,  to 
be the unique member of S such that 8, - a,,, f Au; then 8, # 0, and 

c - s,u, = (am - s,)u, E AUU, = Au"+l. 

Similarly, if s, . . . , sp are defined so that 

P 

c - C s,u, = ap+luP+'I 
n=rn 

where ap+l E A, we need only let sp+l be the unique member of S such that 
sp+i - ap+l E Au. Let si = 0 for all i < m. As (Aun),>1 - is a fundamental 
system of neighborhoods of zero, ( S , U , ) , ~ ~  is summable and 

c = c snu,. 
nEZ 

Uniqueness: Suppose that 

where s,, t ,  E S for all n E Z amd = tn = 0 for all but finitely many 
n < 0. If there were integers j such that sj # t i ,  there would be a smallest 
such integer m; but then v(sm - tm)  = 0 as sm - t,,, E A \ Au, so 

by what we have just seen, a contradiction. 

~ ( t , )  = 0 and t ,  = 0 for all n < m, then 
(2) Since v(tnun) 2 nC for all n E Z, (tnun)nEZ is summable by 10.5. If 
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for all p 2 m by 17.2, and consequently 

by 17.10. 0 

One choice of the sequence (U,)~GZ is (U~),~Z where u is a uniformizer 
of v. Then for each c E A there is a unique sequence ( s n ) n i o  of elements of 
S, called the development of c determined by S and u, such that 

n=Q 

18.6 Theorem. Let v be a real valuation of a division ring K ,  let F be 
a subfield of its center such that K is n-dimensional over F, and let w be 
the restriction of v to F. 

(1) v is improper if and only if w is improper. 
(2) v is discrete if and only if w is discrete. 

Proof. Let c E K*. Then c is algebraic over F, so there is a nonconstant 
polynomial f over F of degree 5 n such that f(c) = 0. Consequently by 
17.3 there exist a, b E F' and distinct T ,  s E [0, n] such that v(acr) = v(bc'), 
whence w ( a )  + T V ( C )  = w(b) + sv(c). 

Assume, first, that w is improper. Then ~ ( a )  = w(b) = 0, so T V ( C )  = 
sv(c) and hence v(c) = 0. Thus v is improper. 

Assume, next, that w is discrete, and let G be its (cyclic) value group. 
Then 

w(b) - w(a> E v(c) = 
T - s  n! 

Thus the value group of v is a subgroup of the cyclic group (l/n!)G and 
hence is cyclic. 0 

If the topology defined by a proper real valuation of a division ring is 
locally compact, that valuation is necessarily discrete: 

18.7 Theorem. Let v be a proper red valuation of a division ring K. 
The topology defined by v is locally compact if and only if the following 
conditions hold: 

1" v is complete. 
2 O v  is discrete. 
3" The residue division ring of v is finite. 



18 DISCRETE VALUATIONS 145 

These conditions hold i f  and only if  the valuation ring A of v is compact. 

Proof. Let G be the value group, A the valuation ring, and A4 the valu- 
ation ideal of v. Let c 2 1, let V be the absolute value to base c defined by 
v, and for each a! E G let 

for each a! E G. Necessity: 1' holds by 7.7. By hypothesis, Wp is compact 
for some p E G. Then as A = b-lWp where b is any element of K such 
that v(b) = p, A is also compact. Consequently, as M is open, AIM is a 
compact discrete space and hence is finite. Thus 3' holds. 

To prove 2 O ,  it suffices by 18.3 it suffices to show that if J is a proper 
nonzero ideal of A ,  then J is a principal left ideal. Let b be a nonzero 
element of J. We may assume that J \ Ab # 0. As J and Ab are both 
open and hence closed, J \ Ab is a closed subset of compact A and hence 
is compact. Therefore by 17.10, v ( J  \ Ab) is a nonempty compact subset of 
the discrete space G, so v ( J  \ Ab) is finite and hence has a smallest element 
y. Let c E J \ Ab be such that v ( c )  = y. If v ( c )  2 v(b) ,  then c E Ab by (5) 
of 17.4, a contradiction. Thus v(b) 2 v ( c ) ,  so b E Ac, and hence Ab E Ac. 
If z E J \ Ab, then v ( x )  2 v(c) ,  so z E Ac by ( 5 )  of 17.4. Thus J = Ac. 

Sufficiency: Let u be a uniformizer of v. For each n E N, Au" is open, 
hence closed, and therefore complete by 1". Consequently by 18.2 and (2) of 
8.5, A is topologically isomorphic to W n > l ( A / A u n ) ,  By 5.24, therefore, it 
suffices to show that each A/Aun is finite. b y  3 O ,  A/Au is finite as Au = M. 
Assume A/Aum is finite. Now z + xu" + Aurn+' is an epimorphism from 
the additive group A to the additive group Aum/Aum+l whose kernel is Au, 
so AU~/AU"+' is isomorphic t o  A/Au and hence is also finite. Therefore 
as (A/AU"+~)/(AU"/AU'"+~) is isomorphic to A/Aum, A/Au"+l is also 
finite. Thus by induction, A/Aun is finite for all  n 2 1. 0 

18.8 Theorem. Let p be a prime in a principal ideal domain D ,  and 
let A, be valuation ring of the valuation up of the quotient field K of D 
defined by p .  Then D is dense in A,, pD is dense in the maximal ideal PA, 
of v,, and consequently the restriction to D of the canonical epimorphism 
from A, to the residue field A,/pA, is an epimorphism with kernel pD.  

Proof. As z -+ p x  is a homeomorphism from K to K, the second assertion 
follows from the first, and the third follows from the first by 5.14 and the 
remark following 17.5. By 18.2, it suffices to show that for any n E N and 
any a, b E D such that b # 0 and p does not divide b, there exists s E D 
such that a 

b 
s - - E pnAp. 
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As b and p n  are relatively prime, Db + Dpn = D, so there exist s, t E D 
such that s b  + tp" = a, whence 

18.9 Definition. Let p be a prime integer. The completion of Q for 
the p-adic valuation up is called the p-adic number field and is denoted 
by Q,, The valuation Gp of Q, is c d e d  the p-adic valuation of Q p ;  its 
valuation ring is called the ring of p-adic integers and is denoted by Z,. 
The absolute value ! . . I p  of Gp to base p is called the p-adic absolute value 
on 0,. 
18.10 Theorem. Let p be a prime integer. 
(1) Q, is a l o c d y  compact field. 
(2) The compact valuation ring Z, of up is the closure of Z in Q,. 
(3) The only nonzero proper closed additive subgroups of Q, are the 

compact groups p"Z,, where n E Z, and each p"Z, is the closure in Q of 

(4) The nonzero ideals of Z are the ideals pnZ ,  where n E N; in particular, 
pZ, is the maximal ideal of Z,. 

( 5 )  The restriction to Z of the canonical epimorphism from Z, to Z,fpZ, 
is an epimorphism with kernel p Z ,  so the residue field of G, is the finite field 
of p elements, and (0, 1, . . . p - 1) is a representative set for G,. 

Proof. By 18.8, Z is dense in the valuation ring A, of up,  pZ is dense 
in its maximal ideal PA,, and the restriction to Z of the canonical epimor- 
phism from A, to the residue field A,/pA, is an epimorphism with kernel 
p Z .  Consequently ( 5 )  holds by 5.14. The value group of 5, is Z by 17.12. 
Therefore (1) and (2) follow from 18.7. Since p is a uniformizer of G,, (3) 
and (4) follow from 18.2. 0 

p"Z . 

18.11 Theorem. If K is a division ring of characteristic zero furnished 
with a nondiscrete Hausdorff ring topology, then K is locally compact and 
totally disconnected if and only if K is a finite-dimensional extension of Qp 
for some prime p, in which case its topology is given by a unique valuation 
extending the p-adic valuation of Q. 

Proof. The condition is sufficient by 13.8, 18.10, and 16.2. Necessity: By 
4.21, there is a compact open subring A of K, and A contains a nonzero 
element a as K is not discrete. The sequence ( 2 ' u ) k > l  - lies in A and therefore 
has an adherent point b. Then ba-' is an adherent point of (2k)k>l. If 
the topology induced on Q were discrete, then Q would be closed by4.13, 
so no sequence of distinct rationals would have an adherent point in K .  
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Consequently, the topology induced on Q is not discrete. The center F 
of K is closed by 4.4 and hence is a locally compact field containing Q. 
Consequently, as F is not discrete, its topology is given by a proper absolute 
value V by 16.3. Moreover, K is a finite-dimensional over F by 16.2, and 
hence by 15.10 F cannot be connected, as otherwise K would be. If V were 
archimedean, then as F is complete, F would be isomorphic to either R 
or C by 16.14 and hence would be connected. Thus V is nonarchimedean. 
Therefore by 1.14 the topology induced on Q is given by the p-adic valuation 
for some prime p .  The closure of Q in K is therefore Qp, and K is finite- 
dimensional over Qp by 16.2. The final assertion follows from 17.12 and 
17.13. 

Let K be a commutative ring with identity. The ring [K-algebra] of 
formal power series over K is the ring [K-algebra] S(K,  2,) of all sequences 
( U ~ ) , ~ Z  of elements of K such that a, = 0 for all but finitely many n < 0, 
where addition is defined componentwise, multiplication by 

(a definition which makes sense as for each n E Z there are only finitely many 
couples (i ,j)  such that i + j = n and aibj # 0), and scalar multiplication 
by 

It is easy to  verify that S ( K ,  2) is, indeed a commutative ring [K-algebra]. 
Let 6;,j = 0 if i # j and Si,j = 1 if i = j. The identity element of S ( K , 2 )  
is then ( 6 0 , n ) n E ~ .  It is easy to see that if K is an integral domain, S ( K , Z )  
is also. Furthermore, if K is a field, S ( K , Z )  is a field, for an inductive 
argument establishes that if ( u n ) , € ~  E S ( K , Z ) * ,  there exists (b,)nEZ E 
S(K ,Z)  such that 

c(an),EZ = ( C G J n E Z .  

i + j = n  

for all n E Z. We denote by X the sequence ( 6 1 , n ) n E ~ .  An inductive 
argument then establishes that X" = ( S m , n ) n E ~  for all m E 2. 

We define the order of each nonzero   an),,=^ E S(K, 2) to be the smallest 
of the integers m such that a, # 0, and we denote it by ord((an),EZ. We 
also define the order of the zero sequence to  be +a. It is easy to see that 
for any f ,  9 E S ( K ,  a, 



148 REAL VALUATIONS 

Consequently, if c > 1 and 

for aJl f E S ( K , Z ) ,  I I . . I I  is a norm on S(K,Z) for which (V,),>o is a 
fundamental system of neighborhoods of zero, where for each m E Z, 

V, = {f E S(K,Z) : ord(f) 2 m}.  

We furnish S(K ,  Z) with the topology defined by this norm, c d e d  the order 
topology. It is easy to see that for any (an)nEZ E S ( K , Z ) ,  (anXn)nEZ is 
summable, and 

(an)nEiZ = C anXn* 

l l f l l  = c-O 'd ( f )  

nEZ 

Consequently, we commonly denote S(K,  Z) by K (  (X)) and the subring Vo 

If K is an integral domain, then ord is a real valuation of K ( ( X ) ) .  If K 
is a field, the valuation ring of ord is K [ [ X ] ]  (= VO),  and the valuation ideal 
of ord is (X) (= V1). 

18.12 Theorem. I f  K is a commutative ring with identity, K ( ( X ) )  is 
complete for the order topology. 

Proof. Let (fm)m>O be a Cauchy sequence in K ( ( X ) ) ,  and for each m 2 
0, let 

by K"X1I. 

f m  = C am,nXn* 
nEZ 

For each k E Z, the additive homomorphism P T k ,  defined by 

P T k ( x  C n X n )  = ck, 
n E Z  

is continuous from K ( ( X ) )  to the discrete group Z, since p " r ( v k + l )  = (0). 
Consequently, bTk( fm) )m>O is a Cauchy sequence in Z by 7.12 and 7.11. 
Thus there exists mk E Z &d bk E K such that am,k = b k  for all m 2 mk. 
Suppose that b k  # 0 for infinitely many k < 0. Then there would exist a 
strictly decreasing sequence (&),.>I - of integers such that for all T 2 1, 

and bk,+l # 0, whence 
kr+1 < i n f { o r d ( f t n k r ) >  k v }  

Ord(fmk, ,+ l  5 < Ord(f,k,) 

and therefore 

Ord(fmh,+l - fnV.,) = ~ r d ( . f m , ~ + ~  ) I k,+1) 

a contradicition of our hypothesis that ( f m ) m > o  is a Cauchy sequence. 
Therefore ( b k ) k E Z  belongs to K ( ( X ) ) ,  and it is easy to see that (fm)m20 
converges to  Z k E Z  bkx ' .  
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18.13 Corollary. I f K  is a field, then K ( ( X ) )  is locally compact if and 
only if K is finite. 

Proof. With the terminology of the proof of 18.12, the restriction of pro 
to the valuation ring K [ [ X ] ]  of ord is an epimorphism from the ring K [ [ X ] ]  
to K whose kernel is the maximal ideal (X) of K [ [ X ] ] ,  so the residue field 
K [ [ X ] ] / ( X )  of ord is isomorphic to K. The assertion therefore follows from 
18.12 and 18.7. 

18.14 Theorem. If K is a nondiscrete locally compact field of prime 
characteristic p, then there is a finite field k such that K is topologically 
isomorphic to k ( ( X ) ) .  

Proof. By 16.3, the topology of K is given by a proper absolute value, 
which is necessary nonarchimedean by the remark following 1.12. Conse- 
quently by 18.7, the topology of K is defined by a proper valuation v whose 
value group is iz, whose valuation ring A is compact, and whose residue field 
k ,  is finite. By the theory of finite fields, the order q of k ,  is a power of p ,  
and the multiplicative group k,* is cyclic. Let Q be a generator of k,*, and let 
a E A be such that $(a)  = Q, where $ is the canonical epimorphism from 
A to  k,. Then $(aQ - a )  = QQ - Q = 0, so v(aQ - a) 2 1, and therefore 

As A is compact, some subsequence (aQ"') of (aQn)n> l  - converges to a point 
b of A. Then 

bQ - b = lim (aq""' - aQn') = lim (aQ - a)QnL = 0, 
k-oo k-oo 

so b is algebraic over the prime field P of K, and hence the smallest subfield 
P(b) of K containing b is contained in A. Moreover, 

+(b)  = lim +(aqnk) = lim QQ"' = a. 
k+oo k-oo 

Let k = P(b) .  The restriction to k of 4 is therefore an isomorphism from k 
to k,. In particular, k is a representative set for 2). Let u be a uniformizer 
for v. By 18.7 and the remark following, for each element z of K there is a 
unique sequence ( c ~ ) ~ ~ z  in k such that cn # 0 for only finitely many n < 0 
and 

2 = CCn?P, 
nEZ 

and furthermore, if z # 0, v(z)  is the smallest of the integers m 
that c, # 0; furthermore, for any sequence (cn)nEz of elements of k 

such 
such 
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that c, = 0 for all but finitely many n < 0, (C,U")nEZ is summable and 
CnEZcnun E K. Therefore K is topologically isomorphic to Ic( (X)) .  

To describe nondiscrete locally compact division rings of prime character- 
istic, we shall use the following theorem, due to Artin and Whaples [1942]: 

18.15 Theorem. Let D be a division ring, C its center. If F is a division 
subring of D such that D, regarded as a left vector space over F, has finite 
dimension, and if F' is the division ring consisting of all elements of D 
commuting with each element of F, then dimcF' 5 dimpD. 

18.16 Theorem. If K is a division ring ofprime characteristic furnished 
with a nondiscrete locdy  compact ring topology, then its center C is a 
nondiscrete locally compact field and hence is topologically isomorphic to 
Ic((X)) for some finite field I c ,  and K is a finite-dimensional division algebra 
over C. 

Proof. By 16.1, D has a nonzero topological nilpotent c. As in the proof 
of 16.5, the set K of all elements of D commuting with c is a closed and hence 
locally compact division subring of D ,  and its center F is thus a closed and 
hence locdy compact subfield. As c E F, F is not discrete. The topology 
of F is thus given by a discrete valuation v by 16.3, the remark following 
1.12, and 18.7, so D, regarded as a topological left vector space over F, is 
finite-dimensional by 16.2, 7.7, and 13.8. By 18.15, the division subring F' 
of all elements of D commuting with each element of F is finite-dimensiond 
over C. But as F is commutative, F' 2 F, and therefore F, which clearly 
contains C, is finite-dimensional over C. Consequently by 18.6, the topology 
of C is given by a discrete valuation and hence is nondiscrete, and 

dimcK = (dimFK)(dimcF) < +oo. 

The theorem now follows from 18.14. 0 

18.17 Theorem. A nondiscrete locally compact division ring is finite- 
dimensional over its center, a nondiscrete locally compact field, and its 
topology is given by a proper, complete absolute value. 

Proof. The assertion follows from 16.5, 18.11, 18.16, 16.9, and 7.7. 0 

Exercises 

If p is a prime of Z, the p-adic development of c E Z, is the sequence 
(sn)n>o in (0, 1, . . . , p - 1) such that 

c = c s,pn* 
n=O 
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18.1 Let p be a prime of Z. Use geometric series to establish the following 
equalities in 0,: 

00 k 00 

(a)  - 1 = c(p - 1)p". (b)  - p-l - - C k P "  
n = O  n=O 

for each k E [ l ,p - 11. 
18.2 Find the 5-adic development of 2/3. 
18.3 Let p be a prime of Z, and let ( sn) ,yo  be the p-adic development of 

c E Z,. If there exist k 2 1 and m 2 0 such that s,+k = s, for all n 2 m, 
then c E Q. 

18.4 Let p be a prime of Z, and let (s,),?~ be the p-adic development of 
the rational a/b,  where a, b E Z, b > 0, and p { b. (a) For each k 2 1, let 

k-I  

n=O 

Show that 0 5 q k  5 p k  - 1 and that a - bqk = akpk where ak E Z. (b) 
There exist m 2 1 and k 2 1 such that am+k = a,. [Show first that 

(c) For all n 2 m, an+l+k = an+l and S,+k = 5,. 

[Show that a,+lp = a, - bs, for all n 2 1, and use induction.] 
18.5 Let G be a nonzero subgroup of R. If A and B are well ordered 

subsets of G, then A + B is well ordered, and for each y E A + B, there 
are only finitely many (a ,P)  E A x B such that y = a + P. [If a nonempty 
subset M of B + C had no smallest element, show that there would exist 
a strictly decreasing sequence (p, + yn),>1 of elements of M such that for 
each n 2 1, P, E B ,  yn E C, and yn is the smallest of the elements y E C 
such that b, + y E M ;  extract a strictly increasing subsequence (P , , , )k> l  of 
(Pn)n>lJ and consider {y,, : k 2 1). 

18.6 Let G be a nonzero subgroup of R, and let K be a commutative ring 
with identity. The support of f E KG,  denoted by supp(f), is {a E G : 
f ( a )  # 0). (a) The subset S(K,G) ,  consisting of all functions f from G to 
K such that supp(f) is a well-ordered subset of G, is a K-submodule of the 
K-module K G .  (b) Under multiplication defined by 

- b 5 a k  < 

for all a E G (cf. Exercise 18.5), S(K,G)  is a K-algebra. (c) If K is an 
integral domain, so is S(K ,  G). (d) If K is a field, S ( K ,  G) is a K-division 
algebra. [Suppose that 0 is the smallest element in supp(f); to show that 
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f is invertible, consider the set of all Q 2 0 for which there exists a unique 
g a  E S(K,G)  such that supP(g,) C [O,a], (fga)(o) = 1, and ( f g a ) ( P )  = 0 
for d P E (O,a].] 

18.7 Let G be a nonzero subgroup of R, and let K be a commutative ring 
with identity. For each nonzero f E S(K,G) ,  the order of f, denoted by 
ord(f), is the smallest element in supp(f), and that of the zero function is 
defined to be +w. (a) Show that for all f ,  g E S(K,G) ,  

(b) If c > 1 and 11..11 is defined by 

for all f E S ( K , G ) ,  11..11 is a norm on the ring S(K,G)  for which ( V a ) a E ~  
is a fundamental system of neighborhoods of zero, where for each a E G, 
Va = {f E S(K,G) : ord(f) 2 a). The topology defined by this norm is 
called the order topology of S ( K ,  G) .  (c) If K is an integral domain, ord is 
a real valuation of S(K,  G).  If K is a field, then the valuation ring of ord 
is fi, its maximal ideal is {f E S ( K ,  G)  : ord(f) > 0}, and its residue field 
is isomorphic to  K .  (d) For each cu E G, let XQ be the function from G to 
K taking a into 1 and p into 0 for all P # a. Then X"+p = X " X p  for all 
a, p E G. (e) For each f E S(K,  G ) ,  ( f ( a ) X Q ) ) , E ~  is summable, and 

(f)  If (fn)n21 is a Cauchy sequence in S(K,G) ,  then for each a E G there 
exists n, 2 1 such that fm(p) = fp(p) for all m, p 2 n, and aIl p _< a. (g) 
S ( K ,  G) is complete for the order topology. 

19 Extensions of Real Valuations 

We begin by describing all ring topologies on a simple algebraic extension 
L of a field K that induce on K the topology given by a proper absolute 
value. For this, we need a preliminary theorem: 

19.1 Theorem. Let E be a finite-dimensional Hausdorff vector space 
over a straight division ring K .  If B is a finite set of generators of the 
K-vector space E, B also generates the k-vector space g .  In particular, 
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Proof. By 13.4, 2 is straight, so by (1) of 15.12, the subspace & B k b  

is closed in g .  As &B gb contains the dense subspace E ,  

bEB 

19.2 Theorem. Let K be a field, 7 v  the topology on K given by a 
proper absolute value V of K. Let L be a simple algebraic extension of  K, 
c an element o f  L such that L = K(c), and f the minimal polynomial of  c 
over K. There is a bijection g + 19 from the set D( f) of all monic divisors 
o f f  in k[X] t o  the set o f  all ring topologies on L inducing 7 v  on K such 
that for all g, h E D ( f ) ,  g I h if  and only i f  'ir, C 7h. For each g E D ( f ) ,  the 
completion 2, o f  L for 19 is a 2-algebra generated by 1 and c, and g is the 
minimal polynomial of  c in L,. In particular, 

dimzz, = deg g. 

Each ring topology on L inducing 7 v  on K is normable and hence is a field 
topology. The topologies on L defined by proper absolute values extending 
V are precisely the topologies lp where p is a prime polynomial in g[X] 
belonging to D( f ). 

Proof. For each g E D ( f ) ,  let A, be the 2-algebra Z [ X ] / ( g ) ,  and let 
cg = X + (9)  E A,. Clearly A, = 8I.91, and the minimal polynomial over 
2 of cg is g. Since g I f in @XI, f (c,) = 0; but as f is a prime polynomial 
over K ,  f is the minimal polynomial of c, over K. Thus there is a unique 
K-isomorphism ug from L to K[c,] satisfying ug(c) = cg. By 15.15 there 
is a unique Hausdorff topology on A, making it a k-topological algebra; 
that topology is complete by (1) of 15.12, defined by a k-algebra norm by 
16.7, and hence has continuous inversion by 11.12. We define 7, to be the 
topology on L making u, a homeomorphism from L to K[c,], furnished 
with the topology it inherits from A,, and we shall denote by L, the field 
L furnished with topology 7,. Clearly 19 is a field topology that induces 
55 on K. By 19.1, K[c,] is dense in A,, so there is by 8.7 and 8.4 there is 
a unique topological 2-isomorphism 2, from L,  to A, extending u,. Since 
2,(c) = c,, the minimal polynomial over K of c is g. Consequently, 

deg&, = deg g. 

h 

h 

h 

Assume that 7g E 7h. The identity mapping from L h  to L, is then 
continuous and hence is the restriction of a continuous K-homomorphism 
w from Lh to L,. Thus I c ,  defined by 

k = u, 0 w o G i l ,  

h 

h h 

h 
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h 

is a continuous K-homomorphism from Ah to A, taking ch into c,. Conse- 
quently, as h(ch) = 0, 

0 = W C h ) )  = h ( k ( C h ) )  = G g ) ,  

so the minimal polynomial g of cg divides h. In particular, if & = 7 h ,  then 
g = h. 

Conversely, assume that g I h. The canonical epimorphism from Ah = 
k[X]/(h)  to A, = k[X]/(g) is k-linear and hence continuous by (2) of 
15.12, and takes ch into c,. Its restriction q to the subfield K[ch] of Ah is 
therefore a continuous isomorphism from K[ch] to K[cg] satisfying q ( q )  = 
cg. Hence u;' o Q o uh is the identity map of L and is continuous from Lh 
to  L,. Thus I, 7h. 

Let 7 be a ring topology on L inducing Tv on K ,  and let 2 be the 
completion of L for 7. Then 2 is a topological g-algebra, and by 19.1, 
L  ̂ = @c]. The minimal polynomial g of c over L̂  divides f in k[X] and 
hence belongs to D(f). Thus there is a unique g-isomorphism from 2 into 
A, taking c to cg, and that isomorphism is a topological isomorphism by 
(2) of 15.12; its restriction to L is clearly u,, so 7 = 7,. 

Since 2, is i?-isomorphic to A, = I?[X]/(g), z, is a field if and only 
if g is a prime factor of f in k [ X ] .  Thus a topology on L defined by an 
absolute value extending V is necessarily one of the topologies 7, where p 
is a prime factor of f  in z [ X ] ,  by 13.10. Conversely, if p is a prime factor of 
f in @XI, the unique Hausdorff topology on A, making it a 2-topological 
algebra is given by an absolute value extending ? by 16.8. 0 

If L is an extension field of a field K, we shall frequently denote dimKL 
by [L : K ] .  

19.3 Theorem. Let L be a simple algebraic extension of a field K ,  and 
let V be a proper absolute value on K [a proper real valuation of K]. There 
are only finitely many absolute values [real valuations] V,, . . . , Vm on L 
extending V, any two of  them are inequivalent, and 

m 

k = l  

where 2, is the completion o f  L for vk. I f L  is a separable extension of K ,  
and if  is the topological defined by V; for each i E [l ,m],  then equality 
holds in (l), and for each ring topology 7 on L that induces the topology 
7- defined by V on K ,  there is a unique nonempty subset J of [1,m] such 
that 

7 = sup&. 
k € J  
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Proof. The assertion for a real valuation V follows directly from that for 
an absolute value by replacing V with an absolute value of V .  Consequently, 
we s h d  consider only the absolute value case. Let c E L be such that 
L = K(c) ,  and let f be the minimal polynomial of c over K.  Let (pk)l<k<m 
be the distinct prime polynomials in k [ X ]  that divide f in g[X]. Then 
their product divides f in k [ X ] ,  so by 19.2 

m m 

k = l  k = l  

Equivalent absolute values A and B on a field L that induce the same 
proper absolute value V on a subfield K are identical, however, for there 
exists t E K such that V ( t )  > 1, and by 1.10 there exists T > 0 such that 
B = A", so 

A(t)' = B( t )  = V ( t )  = A ( t ) ,  

whence r = 1. Thus there are exactly m absolute values that extend V .  
Assume henceforth that L is a separable extension of K .  Then f is the 

product of (pk)l<kSm of distinct prime polynomials in K [ X ] ,  so equality 
holds in (1). 

A 

If H and J are distinct nonempty subsets of [l, mf, then 

Indeed, if they were identical and if, for example, T E H \ J ,  there would 
exist for each k E J an open neighborhood uk of zero for 7pk such that 
the unit ball B, of L for Tpr would contain nhcJuk ,  and consequently any 
nonempty subset U, of L open for 'Tpr and disjoint from B, would be disjoint 
from n h E J U h ,  in contradiction to (1) of 13.12. 

Consequently, the topologies SUPkfJ TPk where J is a nonempty subset 
of [1,m] are Zrn - 1 in number and thus, by 19.2, are all the ring topologies 
on L extending 7 ~ .  0 

Since an inseparable finite-dimensional extension L of a field K of prime 
characteristic is a purely inseparable extension of the separable closure (or 
largest separable extension) of K in L,  a discussion of the extensions to L 
of a real valuation of K is reduced to the separable case by virtue of the 
following theorem: 

19.4 Theorem. If L is a finite-dimensional purely inseparable extension 
of a field K of prime characteristic p and if v is a real valuation of K ,  there 
is exactly one real valuation w of L extending v, defined by 

w ( 2 )  = p-nZ1(ZPn), 
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wherep" = [L : K ] ,  for all x E L.  

clearly w extends v. Moreover, for all 2, y E L,  
Proof. The function w is well defined since xPn E K for all x E L,  and 

w ( 2  + y) = p-"v((x + y)"") = p-nv(Z"n + y"") 

w(zy) = p-"v((Zy)q = p-*v(z P" y P" ) 
2 p-ninf{v(zpn) v(yp">} = inf{w(s>, w(y>} 

= p-"(v(x"=) + v(y"=)) = w(x) + w(y). . 
To illustrate 19.2 and 19.3 let K = Q furnished with the restriction A to Q 

of)..I,,andlet L = Q ( J 2 ) .  Thenf=X2-2 ,andf=pq inR[X]  =Q[X], 
w h e r e p = X - a a n d q = X + f i .  Thusu;l(c,) = @andu,'(cq) = -a, 
so the topologies lP and Ip are defined respectively by absolute values I..[" 
and ] . . I q ,  where la + b&lp = la + balm and la + baIq = la - balm for 
all a, b E Q. Consequently, 7f is defined by the norm sup{I..lp, / . . I q } .  

Let v be a real valuation of a field K with valuation ring A,, maximal 
ideal M,, and residue field k, (= A , / M , ) .  Let v' an extension of v to a larger 
field L, with A,!,  M , I ,  and k,t similarly defined. Then d,~,, : k, -+ k, t ,  
defined by 

for all z E A,, is a monomorphism from k, to k,!, called the canonical 
embedding of k, in k,!. We also regard k,t as a vector space over k, under 
the scalar multiplication 

cjv',,(2 + M,) = 2 + Md 

(x + M,).(y' + M d )  = xy' + M,! 

for all x E A, and all y' E A,!. It is easy to verify that the scalar multipli- 
cation is, indeed, well defined and converts k,! into a k,-vector space. 

19.5 Definition. Let v be a real valuation of a field K, v' a real valuation 
of a larger field K' that extends v. Let k and k' be respectively the residue 
fields of v and v', and let G and G' be respectively the value groups of v 
and v'. The index (G' : G) of G in G' is called the ramification index of 
v' over v and is denoted by e(v'/v). The dimension of the k-vector space k' 
is called the residue class degree of v' over v and is denoted by f(v' /v).  

19.6 Theorem. Let K, K', and K" be fields such that K C K' C K", 
and let v" be a real valuation of K", v' and v its restrictions to K' and K 
respectively. Then 

e(v"/v')e(v'/v) = e(v"/v), 
f(v"/v')f(v'/v) = f(v"/v). 

The equalities are apparent. 
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19.7 Theorem. Let v be a real valuation of a field K, 6 its continuous 
extension to  2. Then 

e(G/v) = 1 = f(ij/v). 

Ifv’ is a real valuation extending v to a larger field L and G’ its continuous 
extension to E, then 

e($‘/ij) = e(v’/v) 
f ($’ /G)  = f(u’/v). 

Proof. The first equality is a consequence of 17.12. The other two follow 
from the first and 19.6, for 

e(u‘/v) = e(G’/v’)e(v’/v) = e($’/v) 
= e(G’/G)e(G/v) = e(ij‘/ij), 

and similarly f(v’/v) = f($’/$). 0 

Let v be a real valuation of a field K with valuation ring A and residue 
field k. For any 2 E A we shall frequently denote by 5 its image under the 
canonical epimorphism from A to k, and if f = C:=oakXk E A [ X ] ,  we 
shall similarly denote by f the polynomial CL=oZkXk E k[X]. 

19.8 Theorem. Let K be a field, L a finite-dimensional extension of K, 
v a real valuation of K ,  v’ a real valuation of L extending K .  Then e(v’/v) 
and f (v‘/u) are finite, and 

e(v‘/v)f(v’/v) 5 [L  : K ] .  

Proof. Let n = [L : K ] .  Let A,, and A,, be the valuation rings of v 
and w’ respectively, k, and k,,, their residue fields, G and G‘ their value 
groups. Let T and s Ee any positive integers not exceeding e(v’/v) and 
f(v’/v) respectively. It suffices to show that T S  5 n. 

There exist 21, . . . , 2,. E L* such that .(xi) - v(zj) $! G whenever i # j ,  
and there exist y1, . . . , ys E A,,! such that their images in k,,) form a linearly 
independent set over k, (in particular, v’(yk) = 0 for all k E [l, s]). To show 
that T S  5 n, we need only show that { ~ y j  : i E [ l , ~ ] ,  j E [l,s]} is linearly 
independent over K .  Assume that 

T x a i j x i y j  = 0 
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where aij E K but not all aij = 0. Let p E [l, T ]  and Q E [l, s] be such that 

v‘(apqzp) = inf{v’(aijzi) : i E [ I ,T ] ,  j E [I,s]}. 

By our assumption, apq # 0. If i # p, then 

for each j E [I, s], for otherwise 

a contradiction. Let 
b;j = ( u ; ~ z ~ ) ( u ~ ~ z ~ ) - ’ .  

From (2) we obtain 

s s 

j=l i f p  j=l 

and 
v’(bijyj) = V ’ ( b i j )  > 0 

i f i f p ,  

for ad j E [l, s]. Therefore in K,I  

v’(b,jyj) = v’(bpj) 2 O 

j=l 

- - - 
whereas bpq = 1, in contradiction to the linear independence of II , . . . , ya.  0 

In an important case, the inequality of 19.8 is an equality: 

19.9 Theorem. Let v be a complete discrete valuation of  a field K ,  let 
L be an extension field of K ,  and let v’ be an extension of  v to L such that 
e(v’/v) < +oo and f(v’/v) < +m. Then L is a finite-dimensional extension 
of  K ,  and 

e(v’/v)f(v’/v) = [L : K ] .  

Proof. We abbreviate e(v’/v) and f(v’/w) to e and f respectively. We 
may assume that the value group of v is Z; let G’ be the value group of v’. 
As (G’ : Z) = e ,  eG’ C Z, and hence G’ E ( l / e ) Z .  Thus G‘ = ( l /e)Z as no 
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other group H between Z and (l /e)Z satisfies (H : Z) = e. In particular, 
v' is discrete. 

Let u and t be uniformizers of v' and v respectively, and for each n E Z, 
let zn = tQur where n = qe + T and 0 5 T < e .  Then v'(zn) = n / e .  

Let A,, and M,, be the valuation ring and ideal respectively of v'. By 
hypothesis there exist bl, . . . , b f  E A,, \ M,, whose images in the residue 
field k,, of v' form a basis of k,, over the residue field k, of v. Let S be a 
representative set for v. Then S', defined by 

is a representative set for d. By 19.8 it suffices to show that {biu' : 1 5 
i 5 f, 0 5 T < e} generates the K-vector space L. 

Let z E L. By (1) of 18.5 there exists a family (cn)nEz of elements of S' 
such that cn = 0 for all but finitely many n < 0 and 

By the definition of S', for each q E Z and each T E [O,e - 11 there exists a 
sequence (Sq,T,j)l<i<f in S such that 

and moreover, for a l l  but finitely many q < 0, sq,+ = 0 for all T E [0, e - 11 
and all i E [l,f]. Thus by (2) of 18.5, for each such T and i, ( ~ ~ , ~ , j t ~ ) ~ ~ ~  is 
summable in K ;  let 

By 10.12, 10.8, and 10.2, 

nEZ q E Z  r=O 
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19.10 Theorem. Let v be a discrete valuation of a field K, and let L be 
a simple algebraic extension of K. There are only finitely many valuations 
v l, . . . , v& of L extending v, and I 

(3) 

Further, if L is a separable extension of K ,  equality holds in (3).  

Proof. By 19.3 there are only finitely many extensions. Let 2, be the 
completion of L for vL. Then 

m m m 

by Theorems 19.7 and 19.9, so the assertions hold by 19.3. 0 

A real valuation v of a field K induces in a natural way a real valuation 
6 of the field K ( X )  of fractions over K: 

19.11 Theorem. I f v  is a real valuation of a field K ,  there is a valuation 
6 of K(X) satisfying 

for every polynomial UkXk over K. 

Proof. The function w with domain K[X] defined by 

n 

2u(r dkXk) = inf{v(uk) : k E [o, n]} 
k=O 

is easily seen to be a r ed  valuation of K[X]. We extend it to a function zi 
on K(X)  by 

W S )  = 4 f )  - 4 7 )  

for all polynomials f, g over K such that g # 0, and it is easy to see that ii 
is a real valuation of K ( X ) .  0 
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19.12 Theorem. Let v be a real valuation of a field K, and let A be its 
valuation ring. Iff is a monic polynomial over A and iff  = 91 . . . gn where 
9, .. ., 9% are polynomials over K ,  then there exist a l ,  . . ., a,  E K* such 
that if 9: = aig i  for each i E [l, n], then each gt  is a polynomial over A, and 

Proof. For each i E [ l ,n  - 11, let bi E K* be such that v(bi) = T ( g i ) .  We 

I f = 9; . . . g n .  

need only let a; = b i l  for all i E [ l ,n  - 13 and a, = b l b z . .  . bn-1. Then 

so ' i i (gi)  = 0 and hence gi E A[X] for all i E [l,n]. 0 

19.13 Corollary. Let 'u be a real valuation of a field K ,  and let A be 
its valuation ring. Iff is a monic polynomial over A that is an irreducible 
element of A[X], then f is a prime polynomial over K .  

Proof. If f were not a prime polynomial over K ,  then there would exist 
nonconstant polynomials g and h over K such that f = g h ,  and hence by 
19.12 there would exist nonconstant polynomials g', h' E A[X] such that 
f = g'h', a contradiction of our hypothesis that f is irreducible in A[X] .o  

19.14 Theorem. Let v be a valuation of a field K .  If k; is a finite- 
dimensional [separable] extension of the residue field k of v, there exist 
a finite-dimensional [separable] extension K' of K and a valuation v' of 
K' extending v such that the residue field k' of v' is k-isomorphic to k;, 
f (v'/v) = [K' : K ] ,  and e(v'/v) = 1. 

Proof. By induction and the theorem of the primitive element, we may 
assume that k; = k [ a ]  where a is [separable] algebraic over k.  Let f be a 
monk polynomial over the valuation ring A of v such that f is the minimal 
polynomial of a. In particular, f is a prime polynomial over k. If f = g h  
where g and h are nonunits of A [ X ] ,  then their leading coefficients are 
invertible elements of A, so neither is a constant polynomial; hence f = 3% 
where neither nor h is a constant polynomial, a contradiction. Thus f is 
an irreducible element of d[X] and hence, by 19.13, a prime polynomial over 
K. Moreover, if f is separable, then its derivative Of # 0, so of = Of # 0, 
hence Df # 0, and therefore f is separable. 

Let K' = K[a] where a is a root of f. It follows at once from 16.10 (or 
from 19.2) that there is a real valuation v' of K' extending v ;  let A' be its 
valuation ring, k' its residue field. If .'(a) < 0, then v ' ( g ( a ) )  = nv'(a) < 0 
for any monic polynomial g of degree n over A by 17.2; consequently as 
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f(a) = 0, v’(a) 2 0 and thus a E A’. As f is prime, f is the minimal poly- 
nomial of h E k’ since f ( h )  = f (a)  = 8. Therefore there is a k-isomorphism 
u from k[E]  to k [ a ] ,  and 

p 

[k [Z]  : k] = degf = deg f = [K’ : K ] .  

Consequently by 19.8, k[E] = k’, and e(v’/v) = 1. 0 

Our final result extends 19.14: 

19.15 Theorem. Let v be a proper real valuation of a field K with 
residue field k, ,  and let $ be a monomorphism from k, to a field Q. There 
exist an extension field H of K ,  a real valuation w of H extending v, and 
an isomorphism 9 from the residue field k ,  of w to Q such that e(w/v) = 1 
and 9 o 4,,, = $. 

Proof. Let G be the value group of v, and let E be a set such that 
card(E) > card(QG). Let C be the set of all (F ,u ,o)  such that F is an 
extension field of K ,  the set F is a subset of E ,  u is a real valuation of F 
extending v whose value group is G ,  and u is an monomorphism from the 
residue field k ,  of u to fl such that u o q5u,v = $, Clearly C is a set, and 
( K ,  v, $) E t. The relation 6 on C satisfying 

if and only if F2 is an extension field of F1, u2 is an extension of u1, and 
( ~ 2  o ~ u 2 , u I  = 01, is easily seen to be an ordering. To show that (C, 6 )  
is inductive, let {(Fx,ux,ux) : X E L }  be a totally ordered subset of C, 
indexed by a set L, let Ax and M A  be the valuation ring and maximal ideal 
of each ux, and let 5 be the total ordering on L satisfying a 5 p if and only 
if (Fa,%,%) s ( F p , u p , u p ) .  Let 

a subset of E .  There are unique compositions, addition and multiplication, 
on F that are extensions of addition and multiplication on each FA, and 
with them F is a field. Since G is the value group of each ux, there is a 
unique real valuation u of F that extends each u ~ ,  and its value group is G .  
The valuation ring A and maximal ideal M of u are then given by 
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and moreover, M n Ax = M A  for all  X E L .  We define u : A / M  -+ 52 as 
follows: For each z E A,  let X E L be such that z E Ax, and define a ( z + M )  
to be ux(z + MA).  This is well defined, for if also z E A,  where X < p, then 

ax(z + MA) = (0, 0 4 v , , v x ) ( z  + MA) = + M,). 

Clearly u is a monomorphism from AIM to Q, and u o q5u,uA = ux for all 
X E L. In particular, let X E L;  then 

c.7 0 4u ,v  = u 0 421,UA 0 4 q , v  = o x  0 4ZLA,V = $. 

Thus (F ,u ,u )  E C, and clearly 

( F ,  = SUP(Fx, ux,  ax). 
XEL 

By Zorn’s Lemma, therefore, C contains a maximal member ( H ,  w ,  Q). 
Let A ,  and k, be respectively the valuation ring and residue field of w. We 
need only show that Q(k , )  = 0. By 17.15, 

card(H) 5 card(k$) 5 card(OG) < card(E) 

and hence card(E \ H )  = card(E). Suppose there exists t E Q \ \E(b,) .  
Case 1: t is transcendental over \E(k,). Now 

Consequently, by a set-theoretic “push-out,” there is a field extension H ( z )  
of H such that the set H ( z )  is contained in E and z is transcendental over 
H .  By 19.11 there is a valuation W of H ( z )  satisfying 

n 

i ~ ( ~ a j ; c j )  = inf{w(aj) : j E [0,n1} 

for all ao, a l ,  . . . , an E H. The value group of F is thus G. By definition, 
W(z)  = 0, so F # Gin the residue field k~ of W. Moreover, 55 is transcendental 
over the subfield 4z,,(k,) of kc. Indeed, let ao, a l ,  . . . , an E A,. If 

j=O 

n c &7,, ( E j ) F j  = 0, 
j = O  

then 
n . -  

z a j z 3  = 0, 
j = O  
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n 

Z ( Z U j Z j )  > 0, 
j = O  

thus w(uj) > 0 for all j E [O,n], and hence iij = for all j E [O,n]. It 
is easy to see that kF is the field [q4+,,(kw)](Z) of rational functions in 
the transcendental element Z over r$a ,w(kw) .  As @ o r&tw is an isomor- 
phism from &,,,,(kw) to @ ( k w ) ,  there is a unique isomorphism T from kz 
to [ @ ( k y ) ] ( t )  satisfying 30 q&,, = and $(Z) = t. Thus ( H ( z ) , Z , % )  E C 
and (H(z) ,E ,$)  + (H, w,@), a contradiction. 

Case 2: t is algebraic over lP( k,). If Ho is an n-dimensional field extension 
of H ,  then as in Case 1 card(H0 \ H) < card(E \ H), so there is a bijection 
T from HO to a subset H1 of E containing H such that ~(z) = 2 for a l l  
z E H ,  and consequently H I  may be made into a field such that T is an H -  
isomorphism from HO to HI. Therefore by 19.4 there exist a field extension 
HI of H such that HI c E, a real valuation w1 of H I  extending w whose 
value group is G, and an isomorphism \El from the residue field kwl of w1 
to \ E ( k w ) ( t )  such that @I o = 9. Consequently, (HI,wl,\El) E C and 
(HI, w1, @I) + (H, w ,  @I) ,  a contradiction. 

Exercises 

In Exercises 19.1-19.3 A is a proper absolute value of a field K, 7 is the 
topology defined by A, L is the field extension K[c] where c is algebraic over 
K, n = [L  : K], and f is the minimal polynomial of c over K. 

19.1 The following statements are equivalent: 

1" There are n absolute values on L extending A. 
2' There are 2" - 1 ring topologies on L inducing 7 on K .  
3" L is a separable extension of K ,  and g contains a splitting field of f .  

19.2 The following statements are equivalent: 

1" There are n ring topologies on L inducing 7 on K ,  but there is only 

2" There are n ring topologies on L inducing 7 on K ,  and they are totally 

3" c is purely inseparable over k.  
19.3 The completion of L for some ring topology on L inducing 7 on K 

has a nonzero nilpotent if and only if there is a prime polynomial p over 2 
such that p 2  I f in z [ X ] .  

one absolute value on L extending A. 

ordered by inclusion. 
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19.4 If v is a complete proper real valuation of a field K and if L is an 
algebraic extension of K, there is a unique real valuation of L extending D. 
[Use Exercise 16.1.1 

19.5 If D is a real valuation of an algebraically closed field K, then the 
residue field of D is algebraically closed and the value group of D is the 
additive group of a @vector space. 

19.6 (Ostrowski [1932]) Let il be an algebraic closure of the 2-adic field 
0 2 ,  and let (c,) ,?~ be a sequence of elements of 0 satisfying co = 2, 
c, = c,-1 for all n 2 1. Let K ,  = Qz(c,) for each n E N, and let 2 

(a) For all n E N, [K : 0 2 1  = 2". (b) There is a unique real valuation D 
of K extending the 2-adic valuation of Q2 = KO. [Use Exercise 19.4.1 The 
value group of the restriction v, of D to K ,  is 2n.Z, and the value group G 
of D satisfies 2.G = G. (c) [K(&) : K ]  = 2. [Use (b) in showing [IT,(&) : 
K,] = 2 for all n E N.] (d) There is a unique valuation w of K(&) 
extending DO, and for all a, b E K ,  w(a+b&) = ~ ( a - b f i ) .  (e) e(w/v) = 1. 
(f) w(sn - &) = 1 - 2-("'l) where s, = 1 + 2(cF1 + cil + . . . + c;'). 
[Calculate v(s; - 3) by expanding s;, and use (d).] (g) f(w,v) = 1. [If 
w(a + b&) 2 0 where a, b E Kn, use (d) to show that w(a) 2 -1 and 
w(b) 2 -1. If the restriction w, of w to K,(&) satisfies f(w,/v,) = 2, 
use (b), (d), and (f) to show that w((a+b&)-(a-b&)) > 0, and consider 
a + bS,+l .I 



CHAPTER V 

COMPLETE LOCAL RINGS 

Here we investigate an area of commutative algebra in which the topol- 
ogy determined by an ideal of a commutative ring, for which the powers 
of the ideal form a fundamental system of neighborhoods of zero, plays a 
crucial role. After an introductory discussion of local and noetherian rings 
in $20, we establish in $21 I, S. Cohen's fundamental theorem that a local 
noetherian ring complete for the topology determined by its maximal ideal 
contains a special type of subring, called here a Cohen subring. This theo- 
rem is applied in $22 to describe complete discrete valuation rings: such a 
ring is either the valuation ring of a formal power series field or is finitely 
generated as a module over a Cohen subring, which, in turn, is completely 
determined by its characteristic and residue field. In $23 we give character- 
izations of complete local noetherian rings, and after a general discussion 
of the topologies determined by an ideal, we show in $24 that a complete 
semilocal noetherian ring is the topological direct sum of complete local 
noetherian rings. 

20 Noetherian Modules and Rings 

Here we shall give some basic properties of noetherian rings and modules. 

20.1 Definition. Let A be a ring. An A-module E is noetherian 
if every submodule M of E is finitely generated, that is, if there exist 
21, . . . , x, E M such that M = Z . q +  Ax1 + . . . + Z.x, + Ax,. A ring is 
noetherian if it is noetherian as a left module over itself, that is, if every 
left ideal is finitely generated. 

If A is a ring with identity and E a unitary A-module, then E is noether- 
ian if and only if for each submodule M of E there exist 51, . . . , 2, E M 
such that M = A q  + - - + AT,. 

20.2 Theorem. If E is an A module, the following statements are equiv- 

1" E is noetherian. 
2' If(Mn)n>l is any increasing sequence of submodules of E, there exists 

alent: 

q 2 1 such that M ,  = Mq for all n 2 q. 

166 
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3" Every nonemptyset ofsubmodules of E ,  ordered by inclusion, contains 
a maximal element. 

Proof. Assume lo, let (M,),Q~ be an increasing sequence of submodules 
of E ,  and let 

m 

M =  U M , .  
,=I 

Then M is a submodule, so by lo, M is generated by a finite subset 
(21, . . . , zm}. Consequently, there exists q 2 1 such that (21, . . . , z,} 
M,, so M = M,, and hence M ,  = Mq for all n 2 q. 

To show that 2" implies 3", assume that M is a nonempty family of 
submodules of E that ,  ordered by inclusion, contains no maximal element, 
Then for each M E M ,  the set SM of all submodules in M strictly con- 
taining M is nonempty. Consequently, by the Axiom of Choice, there is 
a function c from M into itself such that for each M E M ,  c ( M )  E SM, 
whence c ( M )  3 M .  Let MI E M .  The sequence (cn(M1)),>0 is thus a 
strictly increasing sequence of submodules, so 2" does not hold: 

Finally, 3" implies lo, for we need only apply 3" to the set of all finitely 
generated submodules of a given submodule of E .  0 

Thus, a ring is noetherian if every increasing sequence of left ideals is 
eventually stationary, or equivalently, if every nonempty set of left ideals, 
ordered by inclusion, contains a maximal member. 

The statement of 2" is frequently called the Ascending Chain Condition. 

20.3 Theorem. If E is an A-module and F a submodule of E ,  then E 
is noetherian if and only if both F and EIF  are noetherian. 

Proof. Necessity: Clearly every submodule of F is finitely generated. If 
Q is a submodule of E / F  and if 4~ is the canonical epimorphism from E to  
E / F ,  then +-'(Q) is generated by finitely many elements 21, . . . , z,, and 
hence Q ,  which is + ~ ( + i l ( Q ) ,  is generated by 21 + F,  . . . ,zq + F .  

Sufficiency: Let M be a submodule of E. By hypothesis, ( M  + F ) / F  
and it4 n F are finitely generated, so there exist 21, . . . , z, E M and 
z,+1, . . . , z p  E M n F such that 

n P 

i = l  i=n+l 

P 
Then 

i=l 
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for if z E M ,  

there exist a,+ 
z - C:=1 (a;.; 

there exist ai, ..., a, E A and q1, ..., 4, E Z such that 
+ 4i.q) belongs to F and hence to M fl F ,  and therefore 

-1 , . . . , up E A and qn+l , . . . , qp E Z such that 
n V 

i=l i=n+l  

and consequently z belongs to the submodule generated by xl, . . . , zp.  0 

A / J  is a noetherian ring. 

precisely the submodules of the A-module A / J .  0 

20.4 Corollary. If A is a noetherian ring and if J is an ideal of A, then 

Proof. The assertion follows from 20.3, since the left ideals of A / J  are 

20.5 Corollary. The sum of finitely many noetherian submodules of an 
A-module €3 is noetherian. 

Proof. By induction, it suffices to prove that the sum of two noetherian 
submodules is noetherian. If F1 and F2 are noetherian submodules, then 
Fl/(Fl nF2) is noetherian by 20.3, so as (FI +Fz>/F2 and Fl / (Fl  nF2) are 
isomorphic A-modules, (F1 + Fz)/Fz also is noetherian; therefore by 20.3, 
F1 +F2 is noetherian. 0 

20.6 Corollary. The Cartesian product of finitely many noetherian A- 
modules is noetherian. 

Proof. By induction, it suffices to show that if E and F are noetherian 
A-modules, so is E x F .  As the submodules E x (0) and (0) x F of E x F 
are respectively isomorphic to E and F ,  they are noetherian, and hence 
their sum E x F is noetherian. 0 

20.7 Theorem. The Cartesian product of finitely many noetherian rings 

Proof. By induction it suffices to show that if A and B are noetherian 
rings, so is A x B. We make A and B into (A x B)-modules by defining 
(a, b)x = ax and ( a ,  b)y = by for all a, x E A and all b, y E B. The left ideals 
of A and B respectively are then precisely the submodules of the (A x B)- 
modules A and B. Consequently by 20.6 the (A x B)-module A x B is 
noetherian, that is, the ring A x B is noetherian 0 

20.8 Theorem. If A is a noetherian ring with identity, a unitary A- 
module E is noetherian if and only if E is finitely generated. 

Proof. Sufficiency: By 20.5 it suffices to show that if x E E ,  then Ax is a 
noetherian A-module. But if N = {a  E A : ax = 0}, then Ax is isomorphic 
to the A-module A/N, which is noetherian by 20.3. 0 

is noetherian. 
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We recall that an ideal P of a commutative ring with identity A is prime 
if P is a proper ideal and for all a ,  b E A, if ab E P ,  then either a E P or 
b E P; equivalently, an ideal P is prime if and only if A / P  is an integral 
domain. 

20.9 Theorem. if every prime ideal of a commutative ring with identity 
A is finitely generated, then A is noetherian. 

Proof. Suppose that the set 3 of ideals of A that are not finitely gener- 
ated is nonempty. Ordered by inclusion, 3 is inductive, for if the union S 
of a totally ordered subset S of 7 were generated by a finite set F, some 
member of S would contain F ,  hence be identical with S and thus be finitely 
generated, a contradiction. By Zorn’s Lemma, there is an ideal M that is 
maximal in 3 for the ordering defined by inclusion. To obtain a contradic- 
tion, we need only show that M is a prime ideal. Suppose that ab E M 
but that a 4 M and b $! M .  By the maximality of M ,  M + Ab is finitely 
generated, say, by ml + zlb, . . . ,m, + snb  where ml ,  . . . , m, E M and 
z1, . . . , x, E A.  Let J = {z E A : zb E M } .  Then J contains both M and 
a and hence is finitely generated, so Am1 + a  - +Am,  + J b  is also. To show 
that M is contained in the latter ideal, let z E M C M + Ab. Then there 
exist y1, . . . , y, E A such that 

i=1 

n n 
As 

i=l i= 1 

y1zl-t  - .  - + y,~, E J .  Thus z E Am1 + * .  . + Am, + Jb. But by definition 
of J ,  Am1 + . - - + Am, + J b  s M .  Therefore M = Am1 + - .  - + Am, + Jb, 
a finitely generated ideal. 0 

Henceforth we shall use the following notational convention: Let A be 
a ring, E an A-module. For any additive subgroup J of A and any addi- 
tive subgroup F of E ,  we shall denote by J F  the additive subgroup of E 
generated by all cz, where c E J and z E F. Thus 

n 

J F  = {x cizi : n 2 1, and for all i E [l, n], ci E J and z E F } .  
i=l 

This convention is applicable, in particular, to additive subgroups of A, 
regarded as a left module over itself. Thus, if I and J are additive subgroups 
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of A, I J  is the additive subgroup of A generated by the elements ab, where 
a E I and b E J .  This notational convention for products of additive 
subgroups of a ring is, of course, in conflict with that introduced on page 
13 where the composition * is the multiplicative composition of a ring, but 
in any context it will be clear which convention is meant. 

Let I ,  J ,  and K be additive subgroups of A, F and G additive subgroups 
of E .  Clearly 

( I J ) F  = I (  J F )  

( I +  J ) F  = I F +  J F  

I ( F  + G) = IF + IG.  
If I is a left ideal, I F  is a submodule. If ( I ~ ) x E L  is a family of additive 
subgroups of A and F an additive subgroup of E ,  then 

X€L X€L 

and if I is an additive subgroup of  A and (Fx)xE~ a family of additive 
subgroups of E ,  then I(n F ~ )  c n  IF^. 

X € L  XEL 

In particular, ( I J ) K  = I (  J K ) ,  I J  is a left ideal if I is, I J  is a right ideal if 
J is, and thus I J  is an ideal if I is a left ideal, J a right ideal. 
20.10 Theorem. Let A be a commutative ring with identity. U F  is 

a finitely generated unitary A-module and if J is an ideal of A such that 
J F  = F ,  then J contains an element a such that (1 - a ) F  = (0). 

Proof. Let F = Azl + .. .  + Az, ,  let Fk = Azk + . . .  Az, for each 
k E [l,n], and let F,+1 = (0). We shall show inductively that for each 
k E [q,n + 11 there exists ak E J such that ( 1  - ak)F C Fk; then a,+l is 
the desired a. Let a1 = 0, and assume that there exists ak E J such that 
( 1  - ak)F C Fk where k E [l,n]. By hypothesis, 

(1 - ak)F  = (1 - a k ) J F  = J ( 1  - a k ) F  2 JFk ,  
SO there exist akk, . . . ak, E J such that 

n 
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20.11 Theorem. Let A be a commutative noetherian ring with identity, 
and let E be a finitely generated unitary A-module. If F is a submodule of 
E and J an ideal of A, there exists n 2 1 such that J n E  n F E J F .  

Proof. The set A of submodules G of E such that G n F = J F  is 
nonempty since J F  E A. Consequently, as E is noetherian by 20.8, A 
contains a maximal member H. We need only show that J n E  E H for 
some n 2 1. If J = Aal + a  - . + Aa, and if a y E  C H for each j E [l, T ] ,  then 
clearly J'"E & H .  Thus it suffices to show that if a E J ,  then a"E 2 H 
for some m 2 1. 

Let D, = {z E E : arz  E H }  for each T 2 1. Then (DT),21 is an 
increasing sequence of submodules, so there exists m 2 1 such that Dm+l = 
D,. Clearly (a"E+H)nF _> H n F  = JF.  Conversely, let y = amz+h E F 
where z E E ,  h E H .  Then 

ay = arn+'z + ah E aF C J F  C H ,  

so a m f l z  E H .  Thus z E Dm+l = D,, so arnx E H and hence y E H .  
Therefore y E H n F = J F .  Consequently, (amE + H )  n F = J F ,  so by the 
maximality of H ,  amE 2 H .  

20.12 Corollary. Let A be a commutativenoetherian ring with identity, 
E a finitely generated unitary A-module. If J is an ideal of A and if F = 
nz=lJnE ,  then J F  = F .  

Proof. By 20.11 there exists n 2 1 such that 

F = J n E  n F JF F ,  

so F = J F .  

20.13 Corollary. Let A be a commutative noetherian ring with identity, 
and let E be a finitely generated unitary A-module. If J is an ided of A, 
there exists a E J such that 

03 

(1 - .)( n P E )  = (0). 
n= l  

Conversely, if z E E satisfies (1 - a)z = 0 for some a E J ,  then 
00 

E n J V .  
n=l 

Proof. The first assertion follows from 20.12 and 20.10. If (1 - a)z = 0 
where a E J ,  then z = a x ,  so by induction z = anz E JnE for all n 2 1. 
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20.14 Definition. A local ring is a commutative ring with identity 
having only one maximal ideal, and a local domain is an integral do- 
main that is a local ring, If A is a local ring with maximal ideal M ,  the 
residue field of A is the field A I M ,  and the natural topology of A is the 
ring topology for which the ideals (M"),>l - form a fundamental system of 
neighborhoods of zero. 

If M is a proper ideal of a commutative ring with identity A ,  clearly A 

A field is a local ring. More generally, the valuation ring of a real valua- 
is a local ring with maximal ideal M if and only A X  = A \ M .  

tion of a field is a local ring by (2) of 17.4. 

20.15 Theorem. If J is a proper ideal of a local ring A ,  then A / J  is a 
local ring whose natural topology is the quotient topology induced by the 
natural topology of A .  

Proof. Let M be the maximal ideal of A .  Clearly M / J  is the unique 
maximal ideal of A / J .  Since (MIJ)" = (M" + J ) / J  for all n 2 1, the final 
assertion follows. 0 

20.16 Theorem. The natural topology of a local noetherian ring A is 
Hausdorff, and each of its ideals is closed for that topology. 

Proof. Let M be the maximal ideal of A ,  and let 2 E n,"==,M". By 20.13 
applied to E = A ,  there exists a E M such that (1 - a)z = 0, whence z = 0 
as 1 - a is invertible in A .  Thus A is Hausdorff by 3.4. If J is a proper ideal 
of A ,  then A / J  is Hausdorff for its natural topology by 20.4 and what we 
have just proved, so J is closed by 20.15 and 5.7. 0 

We conclude by characterizing the local domains that are discrete valu- 
ation rings: 

20.17 Theorem. Let A be a local domain distinct from its quotient field 
K, and let M be its maximal ideal. The following statements are equivalent: 

1" A is the valuation ring of a discrete valuation. 
2' A is noetherian and the valuation ring of a real valuation. 
3' A is a principal ideal domain. 
4' A is noetherian, and M is a principal ideal. 
5" M is a principal ideal, and nrZl M" = (0). 

Proof. By 18.2, 1' implies 2" and 3'. Assume 2". By (5) of 17.4, the 
principal ideals of A are totally ordered by inclusion. Consequently, if M = 
Azl  + . - * + Ax,, then there exists k E [1,n] such that Azk 2 A t j  for all 
j E [l,n], whence M = Ask.  Thus 4' holds. Clearly 3" implies 4") and 4" 
implies 5' by 20.16. 
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Assume, finally, 5", and let M = Ap. As D # K and hence p # 0, 
( A p n ) n E ~  is a strictly decreasing sequence of A-submodules of K whose 
intersection is (0) by hypothesis and whose union in K; indeed, for each 
a E A* there is a unique n E N such that a E Ap" \ Apn+', so a = up" where 
u E A \ Ap and hence is a unit of A ,  and therefore a-1 = u-lp-" E Ap-". 
For each z f K*,  let v(z) be the unique n E Z such that 2 E Ap" \ Apn+', 
and let v(0) = -too. Clearly v(a + b) 2 inf{v(a), v(b)} for all  a,  b E K .  If 
.(a) = n and v(b) = m, then a = tp" and b = upm where t ,  21-E A \ Ap 
and hence are units of A; thus ab = tupn+" where tu is a unit of A ,  so 
ab E Apn+m \ Ap"+"+l, and hence v(ab) = n + m = .(a) + v(b). Thus v is 
a discrete valuation of K ,  and clearly A is its valuation ring. 0 

Exercises 

20.1 (a) If A is a finite-dimensional algebra over a field, the ring A is 
noetherian. (b) Let K be an infinite field, and let A be the K-algebra 
K x K where addition is defined componentwise and multiplication by 

for all s, t ,  2, y E K. Let J = { 0 }  x K.  The ring A is noetherian and J is 
an ideal of A,  but J is not a noetherian ring. 

20.2 If E is a vector space over a division ring K ,  the ring A of all linear 
operators on E is noetherian if and only if E is finite-dimensional. 

20.3 Let D be a noetherian domain, and let a be a noninvertible element 
of D*. (a) There is an irreducible element p of D such that p 1 a. [Consider 
the family of proper principal ideals containing (a).] (b) a is the product of 
irreducible elements. [Consider the family of principal ideals ( a / d )  where d 
is a product of irreducible elements and d I u.] 

20.4 Let A be a commutative ring with identity. (a) A proper ideal P 
of A is a prime ideal if and only if for all ideals I ,  J of A,  if I J  5 P,  then 
either I C P or J 5 P. (b) If L is a proper ideal of A that is not prime, 
then there exist ideals I and J properly containing L such that IJ  C_ L. 

20.5 If A is a commutative noetherian ring with identity, every ideal of A 
contains a product of prime ideals. [Use Exercise 20.4(b) in considering the 
set of a l l  proper ideals of A that do not contain a product of prime ideals.] 

21 Cohen Subrings of Complete Local Rings 

The completeness of the natural topology of a local noetherian ring has 
important consequences, which we shall investigate in the remainder of this 
chapter and in Chapter 9. 
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21.1 Definition. A local ring is equicharacteristic if it has the same 

We shall extend to local rings the notational convention introduced on 
page 158: Let M is the maximal ideal of a local ring A ,  4~ the canonical 
epimorphism from A to A I M .  For any x in A we shall denote ~ M ( x )  by T, 
and for any f E A [ X ]  we shall denote by f i t s  image under the epimorphism 
from A [ X ]  to ( A / M ) [ X ]  induced by q 5 ~ .  

21.2 Theorem. Let p be the characteristic of the residue field of a local 
ring A. If p = 0, then A has characteristic zero and, in particular, is 
equicharacteristic. I f p  is a prime, then the characteristic of A is either zero 
orp' for some r 2 1 .  

characteristic as its residue field. 

Proof. The first assertion is obvious. Assume that the characteristic q 
of A is not zero, let M be the maximal ideal of A ,  and let q = p's where 
p t s .  Then s.1 # 0, so s.1 4 M and hence s.1 is invertible. Therefore as 
0 = q.1 = ( p r . l ) ( s . l ) ,  p'.1 = 0 and s = 1. 0 

21.3 Definition. A complete local ring is a local ring that is Haus- 
dorff and complete for its natural topology. A ring C is a Cohen ring if 
C is a complete local ring whose maximal ideal is the principal ideal gener- 
ated by p .1 ,  where p is the characteristic of its residue field. If A is a local 
ring, a subring C of A is a Cohen subring (or a Cohen subfield if 
it is a field) if C is a Cohen ring and the restriction to C of the canonical 
epimorphism from A to its residue field k is an epimorphism from C to k. 

For example, for each prime p the ring Z, of p-adic integers is a Cohen 
ring. 

Let C be a local ring whose maximal ideal is the principal ideal generated 
by p.1, where p is the characteristic of its residue field. If p = 0, or if the 
characteristic of C is p ,  then C is a field and its natural topology is the 
discrete topology and, in particular, is complete. By virtue of the following 
theorem, if the characteristic of C is a prime power p",  then the natural 
topology of C is again discrete. Consequently, the requirement that a Cohen 
ring be complete and Hausdorff for its natural topology is substantive only 
if it has characteristic zero and its residue field has prime characteristic. 

A ring (or ideal) A is nilpotent if for some n 2 1, A" = {0}, or equiva- 
lently, if zero is the only product of n terms of A. A is nilpotent of index n 
if n is the smallest natural number such that A" = (0). 

21.4 Theorem. Let A be a local ring whose maximal ideal is a principal 
ideal Ab satisfying nr==,Ab" = (0). If b is nilpotent of index n, then Ab is 
nilpotent of index n, hence the natural topology of A is discrete, for every 
nonzero x E A there is a unique unit u and a unique T E [O,n - 11 such 
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that x = ub', and (Abk))o<kln is a strictly decreasing sequence consisting 
of all ideals of A.  If b is not nilpotent, then A is an integral domain and, 
furthermore, is the valuation ring of a discrete valuation of its quotient field. 

Proof. For each nonzero x, there is a largest integer T such that x E Ab', 
so x = ub' where u E A\Ab and hence is a unit, as 2 $! Ab'+'; clearly T < n 
if b" = 0. If J is a nonzero ideal, clearly J = Abk where Ic is the smallest 
of the integers T such that for some unit u ,  ub' E J .  Assume, finally, that 
b is not nilpotent. If x = ub' and y = vb' where u and v are units, then 
xy = uvb'+' # 0. Hence A is an integral domain, so the final assertion 
follows from 20.17. 0 

21.5 Lemma. Let A be a local ring, M its maximal ideal. Let K be a 
subfield of A ,  let g E K [ X ] ,  and let a E A be such that zi is a simple root 
of i j  in A I M .  If Q and N are proper ideals of A such that g(a)  E Q and 
g(a)"+' E N where n 2 1, there exists a1 E A such that a - a1 E Q and 
g(a1)" E N ;  moreover 61 is a simple root of i j .  

Proof. As ii is a simple root of g, Dij(ii) # 0, where Dij is the derivative of 
8. Consequently, as Dg(zi) = Dg(a) ,  Dg(a)  $! M and therefore is invertible. 
Let 

b = D g ( a ) - l ( g ( a )  - l), h = bg(a), ~1 = u + h. 

Then a - a1 E Q. The set of all f E K [ X ]  such that f ( u  + h) - f ( u )  - 
h D f ( a )  E Ah2 is clearly a subspace of K [ X ]  containing all monomials and 
hence is K [ X ] ;  consequently, there exists c E A such that 

Hence g(a1)" is a multiple of g(u)2" and thus belongs to N .  The final 
assertion follows since iil = ii as a - a1 E Q C M .  0 

21.6 Lemma. Let A be a local ring furnished with a complete metrizable 
ideal topology for which every element of the maximal ideal M of A is a 
topological nilpotent. Let K be a subfield of A,  let g E K [ X ] ,  and let a E A .  
Ifii is a simple root of i j  in AIM,  then there is a root b of g in A such that 
b = i i .  

Proof. As the topology is a Hausdorff ideal topoloy, M is open and thus 
closed. Let ( N k ) k > o  be a decreasing fundamental system of ideal neighbor- 
hoods of zero SUCK that NO = M .  We shall show that there is a sequence 
( a k ) k > ~  - of elements of A such that a0 = a ,  g ( a k )  E Nk for all k 2 0, and 

- 
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- 
a k  - U k - 1  E N k - 1  for d k 2 1. Indeed, as g(a)  = i j(6) = b by hypothesis, 
g ( a 0 )  E M = NO. Assume that k 2 0, that g ( U k )  E N k  C M ,  and, if k 2 1,  
that U k  - a k - 1  E N k - 1 .  Then g ( U k ) "  = 0 by hypothesis, so there 
exists m 2 1 such that g(Uk)"  E N k + 1 ;  by 21.5 applied m - 1 times, there 

quently, f i m k + , ( a k + l  - a k )  = 0, so as the topology is a complete ideal 
topology, ( a k ) k > O  converges to an element b E A.  Also l i m k + , g ( a k )  = 0, 
so as g is a polfnomial and therefore continuous, 

exists a k + l  E A such that g ( a k + l )  E N k + 1  and a k + l  - a k  E N k .  COnSe- 

0 = lim g ( U k )  = g ( b ) .  
k + w  

As M is closed and as 

k - 1  Ic-1 

j=O j = O  

for all k 2 1,  we conclude that a - b E M and hence that 6 = 6. 0 

21.7 Theorem. Let A be an equicharacteristic local ring furnished with 
a complete metrizable ideal topology for which every element of the maximal 
ideal M of A is a topological nilpotent. Then A contains a subfield K such 
that the residue field k of A is a purely inseparable algebraic extension of 
the image of K under the canonical epimorphism from A to k; indeed, if 
K is any maximal subfield of A, k is a purely inseparable algebraic extension 
of K. 

Proof. If A has prime characteristic, clearly A contains a prime subfield. 
If A has characteristic zero and if n E Z*, then n.T # b since by hypothesis k 
has characteristic zero, so n.1 4 M and thus is invertible in A.  Therefore if A 
has characteristic zero, A contains a subfield isomorphic to 0. Consequently 
by Zorn's Lemma, A contains maximal subfields, so it remains to show that 
if K is a maximal subfield of A ,  k is purely inseparable over z. 

If ii E k were transcendental over K, then for every nonzero g E K [ X ] ,  we 
would have i j(6) # b, whence g ( a )  4 M ,  and thus g(a)  would be invertible 
in A; the set of all f ( a ) / g ( a ) ,  where f ,  g E K [ X ]  and g # 0, would then be a 
subfield of A properly containing K ,  a contradiction. Thus k is an algebraic 
extension of K. If B is separable over and if g E K [ X ]  is such that ij is 
the minimal polynomial of a over 1?, then by 21.6 there is a root b E A of g 
such that = ii; as i j  and hence also g are irreducible, K[b] is a subfield of A 
containing K ,  so by maximality K[b] = K and thus ii = 6 E z. Therefore 
k is a purely inseparable extension of K. 0 
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21.8 Corollary. If A is an equicharacteristic local ring of characteristic 
zero furnished with a complete metrizable ideal topology for which every 
element of the maximal ideal of A is a topological nilpotent, then A contains 
a Cohen subfield. 

21.9 Definition. An ideal J of a ring A is a nil ideal if every element of 
J is nilpotent; if r 2 1, J is a nil ideal of index r if x‘ = 0 for all 2 E J 
but xT-l # 0 for some x E J ;  J is a nil ideal of bounded index if J is a 
nil ideal of index r for some r 2 1. 

Applying 21.8 to the discrete topology, we obtain: 

21.10 Theorem. If A is an equicharacteristic local ring of characteristic 
zero whose maximal ideal is a nil ideal, then A contains a Cohen subfield, 
and moreover, every maximal subfield of A is a Cohen subfield. 

21.11 Theorem. If A is a local ring whose characteristic is a prime p 
and whose maximal ideal M is a nil ideal of index 5 p, then A has a Cohen 
subfield, and moreover, the Cohen subfields of A are precisely the maximal 
subfields of A containing the image a ( A )  of A under the endomorphism 
u : x -+ x p  of A.  

Proof. To show that a ( A )  is a field, let x E u(A) ,  z # 0. Then there 
exists y E A such that yp = x. If y E M ,  then 0 = yp = 2, a contradiction; 
hence y is invertible in A,  and y-P E a ( A )  is clearly the inverse of 2. 

The set F of al l  subfields of A containing a ( A ) ,  ordered by inclusion, 
is clearly inductive and hence contains maximal members; but a maximal 
member of F is maximal in the set of all subfields of A.  Therefore, to 
complete the proof, we need only show that if C is a subfield of A,  then C 
is a Cohen subfield if and only if C is a maximal subfield and C 2 o ( A ) .  
Necessity: A Cohen subfield C is clearly maximal. To show that C 2 o(A), 
let x E a ( A ) ,  and let y E A be such that yP = 2. There exists z E C such 
that z - y E M ,  whence 

,$J - y p  = (. - y)” = 0 

by hypothesis. Thus x = yP = z p  E C. 
Sufficiency: Let C be a maximal subfield of A that contains a ( A ) ,  and 

let a E A.  By 21.7 applied to the discrete topology of A ,  the residue field Ic 
of A is a purely inseparable algebraic extension of the image c of C under 
the canonical epimorphism from A to k. Assume that zi 4 c. Then since 
a p  E ??, the minimal polynomial of zi over c is XP - zip. As XP - i i p  is 
thus irreducible over c, XP - U P  is irreducible over C. Therefore C ( a )  is 
a subfield of A properly containing C, as zi 4 c, a contradiction. Hence 

= I c ,  so C is a Cohen subfield of A.  0 
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21.12 Lemma. Let A and A' be local rings whose characteristics are 
powers of a primep, let f be an epimorphism from A to A', and let C' be a 
Cohen subring of A'. Then f-'(C') is a local ring whose maximal ideal is 
contained in the maximal ideal M of A .  If C is a Cohen subring of f-'(C') , 
then C is a Cohen subring of A ,  and f(C) = C'. 

Proof. Let M' be the maximal ideal of A'. As the residue field of A' has 
characteristic p ,  p.A' C MI. As C' is a local ring whose maximal ideal is 
p.C', clearly f-'(C') is a local ring whose maximal ideal is f-'(p.C'), and 

f-'(p.C') 2 f-'(p.A') 2 f - ' (M ' )  = M .  

Let C be a Cohen subring of f-'(C'). To show that C is a Cohen subring 
of A,  let u E A.  As f is an epimorphism and C' a Cohen subring, there exists 
b E f-'(C') such that f (u)  - f ( b )  E M' ,  whence u - b E f-'(M') = M ;  
also there exists c E C such that b - c E f-'(p.C') M ;  thus a - c = 

To show that f (C)  2 C', let p' be the characteristic of A', and let y E C'. 
We shall show by induction that there is a sequence 21, . . . , 2, of elements 
of C such that for each n E [ l ,~] ,  

(u  - b) + ( b  - c)  E M. 

Indeed, let z E f-'(C') be such that f(x) = y; there exists 21 E C such 
that 2 - 2 1  E f-'(p.C'), so y - f(q) E p.C'. If 21, . . . , 2, are elements of 
C satisfying (1) where n < T ,  there exists z E C' such that 

y - f(.' + p.22 + * * * + pn-l.2,) = p".z. 

Let u E f-'(C') be such that f(u) = z. There exists 2,+1 E C such that 
u - z,+1 E f-l(p.C'). Then 

y - f(z1 + p.22 + - +pn.Z,+l) = pn.z - P".f(%+l) 

= p " . f ( u  - 2,+1) E P"+'.C'. 

Thus such a sequence exists. By (1) where n = T ,  

y = f(21 +p*22 + 1 . .  +p'-'.2,) E f(C).. 



21 COHEN SUBRINGS OF COMPLETE LOCAL RINGS 179 

21.13 Lemma. Let A be a local ring furnished with a complete Haus- 
dorff ring topology, and let (Jn),>l be a decreasing sequence of proper 
closed ideals of A that converges to zero. For all m, n E W such that 
m 2 n 2 1, let f n , ,  be the canonical epimorphism from A / J m  to A / J , ,  
let A0 = @,21(A/Jn) ,  and let p be the characteristic of the residue field 
of A .  If for all n 2 1 the local ring A / J n  contains a Cohen subring C,, if 
f n , n + l ( C n + l )  = Cn for all n L 1, and if 

m m 

n=l n=l 

then Co is a local ring whose maximal ideal is Mo, for all m 2 1 the 
restriction to CO of the canonical projection p r ,  from n:==, Cn to C, is an 
epimorphism, and the restriction to Co of the canonical epimorphism from 
A0 to its residue field ko is an epimorphism. 

Proof. By (2) of 8.5, the canonical homomorphism g from A to A0 is a 
topological isomorphism, so in particular, A0 is a local ring. If m 2 n 2 1, 
then since 

fn ,m = fn,n+1 0 fn+l,n+2 0 * * * 0 f m - l , m ,  

clearly fn,,(Cm) = C,. To show that the restriction to Co of p ~ ,  is * sur- 
jective, let y m  E C,. For each j E [ l ,m  - 11 let y j  = fj,,(y,) E Cj. 
By hypothesis there is a sequence (Yk)k>m+l - such that for all k 2 m + 1, 
y k  E c k  and fk- l ,k (Yk)  = y k - 1 -  

pYrn(y> = 9,- 
Since p.C, is the maximal ideal of C, for all n 2 1, MO is a proper ideal 

of CO. Let ( c , ) , > ~  E CO \ Mo. Then for some rn 2 1, c, $ p.Cm, so c ,  
has an inverse c 2  E C,. Consequently, if j E [ l ,m - 11, then cj, which is 
f j , , ( cm) ,  is invertible in Cj. If k 2 m + l ,  then f m , k ( C k )  = c ,  $ p.C,, so as 
f m , k ( p . c k )  = p.C,, C k  $ p.Ce and therefore C k  is invertible in ck. Clearly 
(c;'),>l E Ao, so ( c ; ' ) , ?~  is the inverse of (c,),>1 - in CO. Therefore CO is 
a local ring whose maximal ideal is Mo. 

Let M be the maximal ideal of A.  By hypothesis, the restriction q1 to C1 
of the canonical epimorphism from A/J1 to its residue field ( A / J 1 ) / ( M / J 1 )  
is surjective. Let r be the canonical isomorphism from ( A / J l ) / ( M / J l )  to 
A I M ,  ij the isomorphism from AIM to ko induced by the isomorphism g 
from A to Ao. Let 

Let = ( y k ) k > l ;  clearly y E CO and 

h = ij 0 T 0 q10 T I  

where T I  is the restriction to CO of p q .  Since ~1 is an epimorphism from CO 
t o  C1, h is an epimorphism from CO to ko. To see that h is the restriction 
to  Go of the canonical epimorphism from A0 to ko, let c E Co. Since g is an 
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isomorphism, there exists b E A such that g ( b )  = c. Then c = (b+ J,),21. 
Consequently, 

h(c)  = (9 o T 0 ~ l ) ( b  + J1) = g ( b  + M )  = g ( b )  + M = c + M .  

21.14 Theorem. Let A be a local ring of prime characteristic p ,  fur- 
nished with a complete Hausdorff ideal topology, let a be the endomorphism 
of A defined by a(.) = z p  for d z E A ,  and let M be the maximal ideal 
of A.  If the filter base (a"(M)),>o - converges to zero, then A contains a 
Cohen subfield. 

Proof. For each n E N let J ,  be the closure of the ideal Qn generated 
by a" (M) .  Since the given topology is an ideal topology and is, by 3.4, 
regular, the filter base (J,),~o also converges to zero. Furthermore, as the 
topology is an ideal topology, the maximal ideal M is necessarily open and 
hence closed, so JO = M .  Let A0 = b n 2 0 ( A / J , ) .  By (2) of 8.5 A is 
topologically isomorphic to Ao, so we need only show that A0 has a Cohen 
subfield. 

For each n E N let f, be the canonical epimorphism from A/J,+1 to 
A/J, .  We shall first show that if C, is a Cohen subfield of A / J , ,  then there 
is a Cohen subfield Cn+l of A/J,+1 such that fn(Cn+l) = C,. By 21.12 
it suffices to show that the local ring fL1(Cn) contains a Cohen subfield, 
and for this, it suffices by 21.11 to show that the maximal ideal fl'(0) = 
Jn/Jn+l of fL1(Cn) is a nil ideal of index 5 p .  If a E Q,, then 

9 

a = C a i m p "  
i=l  

where ai E A and mi E M for all i E [l,s], so 
S 

Thus a(&,) G Qn+l.  Since a is continuous, a(J,) 5 J,+l, so Jn/Jn+l is a 
nil ideal of A/J,+l  of index 5 p .  

In particular, since A/Jo is a field and hence is a Cohen subfield of itself, 
by the preceding and induction there exists (C,),>l such that for all n 2 1, 
C, is a Cohen subfield of A / J ,  and fn(Cn+l) = c,. Let 

M 

co = (n C n )  n Ao. 
n=l 

By 21.13, the maximal ideal Mo of CO is the zero ideal, since each C, has 
characteristic p .  Thus CO is a subfield of Ao, and by 21.13 it is a Cohen 
subfield. 0 
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21.15 Theorem. Let A be a local ring of prime Characteristic p ,  fur- 
nished with a complete Hausdorff ideal topology, let Q be the endomorphism 
of A defined by a ( z )  = XP for all z E A,  let M be the maximal ideal of A,  
and let ko be a perfect subfield of the residue field k of A.  If (an(M)),>o 
converges to zero, then A contains a unique subfield KO such that the &- 
striction to KO of the canonical epimorphism from A to k is an isomorphism 
from KO to ko. 

Proof. Since A has a Cohen subfield C by 21.14, {z E C : 5 E ko} is 
such a field KO. To establish its uniqueness, it suffices to show that for each 
a E ko, the element a of C such that ii = a is the only element z of A such 
that 3 = a and x P - ~  E A for all  n E N. Indeed, for each n E N, since 

- E M ,  so 

Consequently, 
00 

- a n c T n ( ~ )  = (0) 
n=O 

by hypothesis. 0 

21.16 Corollary. If A is a local ring of prime characteristic p whose 
maximal ideal Mis a nil ideal of bounded index, then A contains a Cohen 
subfield; if, moreover, ko is a perfect subfield of the residue field k of A,  
then there is a unique subfield KO of A such that the restriction to KO of 
the canonical epimorphism from A to k is an isomorphism from KO to ko. 

The assertion follows from 21.14 and 21.15 for the case where the topology 
is the discrete topology. 

21.17 Theorem. A local ring whose maximal ideal is nilpotent contains 
a Cohen subring. 

Proof. The assertion follows from 21.10 if the characteristic of the residue 
field is zero. Consequently, we need only prove by induction on n the as- 
sertion that a local ring whose residue field has prime characteristic p and 
whose maximal ideal is nilpotent of index 5 n contains a Cohen subring. 

First, we consider the case n = 2: Let A be a local ring whose residue 
field has characteristic p and whose maximal ideal M satisfies M 2  = (0). 
Then p.1 E M ,  so the characteristic of A is p or p 2 .  Moreover, A/p.A is 
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a local ring whose characteristic is p and whose maximal ideal M/p .A  is 
nilpotent of index not exceeding 2. As 2 5 p ,  A/p .A has a Cohen subfield 
F by 21.11. Let C = +-'(F), where + is the canonical epimorphism from 
A to A/p.A.  Then C is a local ring whose maximal ideal, +-I(O), is p.A. 
To show that C is a Cohen subring of A,  it therefore suffices to show that 
if x E A, there exists y E C such that x - y E M and p . x  = p . y .  As the 
maximal ideal of A/p.A is M/p.A,  there exists y E C such that 

whence z - y E M ;  moreover, 

P . X  - p . y  E (p.l)M E M 2  = (0), 

so p . x  = p.3 .  
Finally, assume the truth of the assertion if n < m, where m 2 3 ,  and let 

A be a local ring whose residue field has prime characteristic p and whose 
maximal ideal M satisfies M" = (0). As p.A C M ,  p"-l.A C_ let 
f be the canonical epimorphism from A/(p"-l.A> to A/Mm-l .  The index 
of nilpotency of the maximal ideal M/Mm-' of AIMrnw1 clearly does not 
exceed m - 1, so by our inductive hypothesis, has a Cohen subring 
C'. Then f-'(C') is a local ring whose maximal ideal is f-'(p.C'). It is 
easy to  verify that 

f - l (p .C' )  G @.A + Mrn-l)/(p"-l .A).  

Now 

m-1 
(p.A + Mm-')m-l E pm-'. A + C p r n - l - k  M(m-l)k 

b = l  
m-1 

c p m - l . ~  + C M m - l - k + ( m - l ) k  - m-1 A 
- - P  a 

k=l 

since, asm 2 3, m- l -k+(m- l )k  2 mfor all  k E [1,m-11. Therefore the 
index of nilpotency of f-'(p.C> does not exceed rn - 1, so by our inductive 
hypothesis, f-'(C') contains a Cohen subring C. The characteristic of 
A/(p"-'.A) is clearly p' for some T E [ l , m  - 11, so by 21.12, C is a Cohen 
subring of A/(p"-l .A) .  

Let 4 be the canonical epimorphism from A to A/(p"-'.A). If x E A,  
there exists y E 4-'(C) such that 

4 b )  - 4(Y) E M/(Pm-l .A) ,  



21 COHEN SUBRINGS OF COMPLETE LOCAL RINGS 183 

whence z - y E M .  Therefore, since (6-'(C) is a local ring whose maximal 
ideal is q5-1 (p.C), to  show that q5-I (C) is a Cohen subring of A it suffices 
to show that p.6-'(C) = 4-'(p.C). Clearly p.+-'(C) C 4-'(p.C). Con- 
versely, let z € c$-'(p.C); then there exist y € 4-'(C) and z € A such 
that 

2 = p.y + pm--1.Z. 

As C is a Cohen subring of A/(pm-l .A) ,  there exists t E 4-'(C) such that 

whence t - z E M ,  and therefore 

Thus 
2 = p . y + p m - l . t  =p.(y+pm-2.t)  Ep.(Ir'(C).. 

21.18 Theorem. Let A be a local ring of characteristic zero with max- 
imal ideal M whose residue field has prime characteristic p ,  and let C be a 
subring of A that is the valuation ring of a real valuation v of some field. 
If 7 is a Hausdorff ideal topology on A for which (M'),>1 converges to 
zero, then the topology on C induced by 7 is the topology defined by u,  for 
which all nonzero ideals of C form a fundamental system of neighborhoods 
of zero. 

Proof. Since the ideals of C are totally ordered and since 7 induces on C 
a Hausdorff ideal topology, every nonzero ideal of C is open for the topology 
induced by 7. Consequently, we need only show that the zero ideal is not 
open for that topology. In the contrary case, J fl C = (0) for some ideal 
J of A that is open for 7. By hypothesis, M" J for some n 2 1, and 
p.1 E M .  Hence 

p n . l  E M" n C J n C = (0), 

in contradiction to our hypothesis that A has characteristic zero. 0 

21.19 Theorem. If A is a local ring furnished with a complete Hausdorff 
ring topology that is weaker than its natural topology, then A contains a 
Cohen subring. 

Proof. Let M be the maximal ideal of A.  For each n 2 1, the closure Qn 
of M" is an ideal, and (Qn)">l converges to  zero since the topology is reg- 
ular by 3.4. The ring topology 7 on A for which (Qn)">1 is a fundamental 
system of neighborhoods of zero is then stronger than the given complete 
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topology and hence is also complete by 7.21. Replacing the given topol- 
ogy by 7, therefore, we may assume that the topology of A is a complete 
metrizable ideal topology for which (Mn),>l converges to zero. 

If the residue field of A has characteristic zero, then A contains a Cohen 
subfield by 21.8. Therefore we may assume that the residue field has prime 
characteristic p. 

Since M is necessarily open, there is a fundamental decreasing sequence 
(J,)n21 of neighborhoods of zero such that each J,  is an open ideal and 
J1 = M .  The maximal ideal M / J n  of each A / J ,  is then nilpotent and the 
characteristic of A / J ,  is a power of p; indeed, J, contains M' for some 
T 2 1 by hypothesis, so (M/Jn) '  = (0), and as p.1 E M ,  p'.l E M' Jn, 
so A / J n  has characteristic p' for some s E [ l ,r] .  Let A0 = w n > l ( A / J , ) .  - 
By (2) of 8.5 we need only show that A0 contains a Cohen subring. For each 
n 2 1, let p r ,  be the canonical projection from A0 onto A/J, ,  and let fm,n 
be the canonical epimorphism from A / J ,  to A / J m  whenever n 2 m 2 1. 
By the definition of projective limit, fm,, o pr, = pr,. 

We shall first show that if C, is a Cohen subring of AIJ,, then there is 
a Cohen subring Cn+l of A/J,+l such that f,,,+l(C,+l) = C,. By 21.12 
the maximal ideal of f ; i + l ( C n )  is contained in that of A/Jn+l and hence 
is nilpotent, so by 21.17, fl i+l (C,) contains a Cohen subring Cn+l,  and 

Let Cl be the field A/J1. By the preceding and induction, there exists 
(C,), / l  such that for each n 2 1, C, is a Cohen subring of A / J ,  and 

fn,n+l(Cn+l) = c, by 21.12. 

fn,n+l(Cn+l) = cn. Let 

n=l n=l 
By 21.13, we need only show that Mo = p.Co and, if A has characteristic 
zero, the discrete valuation ring Co is complete. For each n 2 1, let pTn 
be the characteristic of A / J n  and hence of C,. Since Cn is an epimorphic 
image of C,+l, T ,  5 T,+I .  

Case 1: The characteristic of A is p' for some T 2 1. Then there exists 
s such that p'-'.l $I! J,,  so T ,  = r and hence r ,  = T for all n >_ s. By 
21.13, prs(Co) = C,. To show that the restriction A ,  of pr, to Co is an 
isomorphism from CO to C,, let (z,),>1 - E CO be such that x, = 0. If 
j E [ l , ~  - 11, X i  = fj,s(Z,) = 0. Suppose that xk # 0 for some k > s; by 
21.4, zk = pt.uk where uk is invertible in Cr, and t E [O,r - 11. Since 

0 = 2 s  = . f s , k ( z k )  =pt*fs,k(uk) 

and since f, ,k(ug) is invertible in C,, t 2 r ,  = +, a contradiction. Thus 
xn = 0 for all n 2 1. Therefore A ,  is an isomorphism from Co to C,, so the 
maximal ideal MO of CO is A;' (p.Cs) = p.Co. 
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Case 2: The characteristic of A is zero. Then (T,),>I is an increasing 
sequence diverging to  +oo, since for any m 2 1 thereexists k 2 1 such 
that pm.l $! J k ,  whence ~k 2 m. Let y E Mo. Then y = ( p . ~ ~ ) ~ > l  where 
yn E C, for all n 2 1 and fm,n(p.y,) = p.y, whenever n 2 m 2 1. By 
21.13, for each n 2 1 there exists z, E CO such that prn(zn) = y,. We shall 
show that (z,),>l - is a Cauchy sequence in Co, or equivalently by 7.8. that 
(pr,(z,)>,>l - is an eventually stationary sequence in C, for each m 2 1, 
since A / J ,  is discrete. Let Q > m be such that rq > T,, and let s > Q. 
Then 

Therefore p.(pr,(z,  - z,)) = 0, so p q ( z q  - z,) E p'q-'.Cq by 21.4, and 
consequently 

Since each A/Jn  is discrete, CO is closed in A0 and thus complete for the 
topology it inherits from Ao. Therefore (zn),2l has a limit z E CO, and 
consequently limn-+oo p.z, = p . r .  If n > m, 

Hence 

Therefore p.z = (p.y,),~1 = y. Consequently Co is a discrete valuation 
ring that is complete for the topology it inherits from Ao, which by 21.4 
and 21.18 is its valuation topology. 0 

21.20 Corollary. A complete local ring contains a Cohen subring. 

Exercises 

21.1 Let A be the valuation ring, M the valuation ideal of a proper real 
valuation 'u of a field K .  (a) If 'u is not discrete, then M 2  = M ,  and hence 
the natural topology of A is not Hausdorff. (b) If Q is an ideal of A properly 
contained in M ,  then nr=lQ" = (0). 
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In the following exercises, F is a field, f is a prime polynmomial in F [ X ] ,  
v ~ f  is the valuation of F ( X )  determined by f ,  and A f  is the valuation ring 
of Gf. We recall that a stem field of f is a field F ( c )  generated by F and a 
root c of f .  

21.2 (a) The residue field of ijj is isomorphic to a stem field of f over F. 
(b) If f is separable, At contains a stem field of f over F. [Use 21.7.1 

21.3 (I. S. Cohen [1945]) Let F be an imperfect field of prime charac- 
teristic p, and let f be the prime polynomial X P  - a where a E F has no 
pth root in F. (a) A f  contains no root of f .  [If c were a root, calculate 
$ j ( X  - c), and use 17.12.1 (b) a does not belong to any Cohen subfield of 

21.4 For every prime polynomial f E F [ X ] ,  there is a Cohen subfield of 
Af * 

A f  containing F if and only if F is perfect. 

22 Complete Discretely Valued Fields 

From the results of $21 we may derive a classical description of all com- 
plete discretely valued fields and their valuation rings. The equicharacter- 
istic case is immediate: 

22.1 Theorem. Let v be a complete discrete valuation of a field K 
whose value group is Z and whose residue field k has the same characteristic 
as K, and let u be a uniformizer of v. The valuation ring A of v contains a 
Cohen subfield, If C is a Cohen subfield of A and 4 the restriction to C of 
the canonical epimorphism from A to k ,  then the function 9 from k ( ( X ) )  
to K defined by 

is an isomorphism satisfying w o 9 = ord, the canonical valuation of k( ( X ) ) ;  
in particular, @ ( k [ [ X ] ] )  = A. 

Proof. The first assertion is a consequence of 21.8 and 21.14. Let C be 
a Cohen subfield of A. By 18.5, for each family (c,),Ez of elements of L 
such that c, = 0 for aU but finitely many n < 0, the family (4-1(C,)un)nEZ 
of elements of K is summable, and 9 is a bijection from k ( ( X ) )  to K 
satisfying w o 9 = ord. In particular, 9 ( k [ [ X ] ] )  = A. By 10.12 and 10.16, 9 
is a homomorphism. 

Thus a complete discrete valuation whose valuation ring is equicharac- 

The nonequicharacteristic case requires a further concept: 

22.2 Definition. Let A be a local domain. An Eisenstein polynomial 
over A is a monk polynomial whose nonleading coefficients all belong to the 

teristic is completely determined by its residue field. 
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maximdideal M of A and whose constant coefficient does not belong to M 2 .  
An Eisenstein polynomial relative to v, where is a real valuation of 
a field, is an Eisenstein polynomial over the valuation ring of v. 

22.3 Theorem. Let v be a discrete valuation of a field K .  Every Eisen- 
stein polynomial relative to v is a prime polynomial over K .  If u is a root in 
an extension field of K of an Eisenstein polynomial relative to v of degree 
m, then v has a unique extension v’ to K(u) ,  e(v’/v) = m, f(v’/v) = 1, and 
u is a uniformizer of v‘. 

Proof. We may assume that Z is the value group of v. Let u be a root 
of an Eisenstein polynomial g relative to v ,  and let 

g ( ~ )  = X” + am-lXm--l + . . . + a1X + ao. 

Let w’ be an extension of w to K(u) .  By hypothesis, v (a j )  2 1 for all 
j E [O,m - 11, and v’(um) = v ’ ( C ~ ~ l a j u j ) .  If ~ ’ ( u )  5 0, then for each 

v’(ajuj)  2 1 + jv’(u) > mv’(u) = v’(um), 

j E [O,m - 11, 

so 
m-1 

v’( C a j d )  2 inf{v’ ( a j u j )  : j E LO, m - 11) > v’(um), 
j = O  

a contradiction. Hence v‘(u) > 0. Thus if j E [O,m - 13, 

“ ’ ( U j U j )  2 1 + jv‘(u) > 1, 

but v’(a0) = 1 by hypothesis, so 

by 17.2, and consequently v’(u) = l /m. 
The value group of v’ therefore contains (l/rn)Z, so e(v’/v) 2 m. Since 

g is a multiple of the minimal polynomial of u over K ,  m 2 [K(u)  : K] .  By 
19.8, 

[ ~ ( u )  : K ]  2 e(w’/v)f(v’/v) 2 e(v’/v). 

Therefore m = e(v’/v), so the value group of v’ is ( l /m)Z,  and hence u is 
a uniformizer of v‘; deg g = m = [K(u)  : K ] ,  so g is a prime polynomial; v’ 
is the only extension of v to K ( u )  by 19.10; and f(v’/v) = 1. 0 

The preceding theorem admits a converse: 
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22.4 Theorem. Let v be a discrete valuation of a field K, let v’ be a 
valuation of a finite-dimensional extension field K’ of K that extends v, and 
let m = [K’ : K] .  Ife(v’/v) = m, then v’ is the only extension ofv to K‘, and 
for each uniformizer u of a’, K’ = K(u) ,  the minimal polynomial of u over 
K is an Eisenstein polynomial relative to v, and A’ = A+Au+ . . . +Aum-’, 
where A and A’ axe respectively the valuation rings of v and v‘. 

Proof. We may assume that the value group of v is Z, so by hypothesis the 
value group of v‘ is (l/m)Z. Let u be a uniformizer of v’; then d ( u )  = l /m.  
If a ,  b E K’ and if 0 5 j < k 5 m - 1, then .(a) E Z, v(b)  E Z, so 

j k 
m m 

v’(auj) = .(a) + - # v(b) + - = v’(buk). 

Consequently, by 17.2, if ao, q,  . . . , a,-l E K ,  then 

m-I 

In particular, {I, u, u2, . . . , urn-’} is linearly independent. Consequently, 
the minimal polynomial g of ‘ t ~  cannot have degree < m, so deg g = m and 
hence K’ = K[u].  Therefore by 19.10, v’ is the only valuation of K’ that 
extends v. Let 

g = xm + b,-lXm-l + ... blX+bO. 

Then 

If j E [l ,m - 11, then u(bj)  + (j/m) $! Z, so 1 = w(b,-,) < v(bj)  + (j/m) and 
consequently 1 = v(bo) 5 v(bj).  Therefore g is an Eisenstein polynomial 
relative to v. Finally, let c E A’. As K’ = K ( u ) ,  c = C ~ ~ l a j u J ’  where 
ao, a l ,  . . ., a,-l E K.  Then 

j O 5 v‘(c) = inf{v(aj) + - : j E [O,m - I]}. 
m 

Thus for each j E [O,m - 11, v(aj) + ( j /m)  2 0, so v ( a j )  2 0 as v(aj) E 22; 
consequently, c E A + Au + . . . + Aurn-l, 0 
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22.5 Definition. Let v be a real valuation of a field K .  A finite- 
dimensional extension field K' of K is an Eisenstein extension relative 
to v if there exists u E K' such that K' = K(u)  and the minimal polynomial 
of u over K is an Eisenstein polynomial relative to v. 

From 22.3 and 22.4, we conclude: 

22.6 Theorem. Let v be a discrete valuation of a field K .  A finite- 
dimensional extension field K' of K is an Eisenstein extension relative to v if 
and only if there is a valuation v' of K' extending v such that e(v'/v) = [K' : 
K ] ;  in this case, v' is the only valuation of K' extending v, the uniformizers 
of v' are precisely the elements u of K' such that K' = K(u) ,  the minimal 
polynomial of u over K is an Eisenstein polynomial relative to v, and the 
valuation ring A' of v' is a finitely generated module over the valuation ring 
A ofv. 

The codimension of a subfield K of a field K' is [K' : K ] .  The following 
theorem reduces the problem of describing complete discrete valuations in 
the nonequicharacteristic case to that of characterizing those whose valua- 
tion rings are Cohen rings: 

22.7 Theorem. If v is a complete discrete valuation of a field K of 
characteristic zero whose residue field has prime characteristic p ,  there is a 
finite-codimensional subfield KO of K such that the restriction vo of v to KO 
is a complete discrete valuation whose valuation ring is a Cohen ring, and 
K is an Eisenstein extension of KO relative to VO. 

Proof. By 20.17 and 21.20 the valuation ring A of v contains a Cohen 
subring Ao; let KO be the quotient field in K of Ao. The restriction vo of 
v to KO is then a complete discrete valuation by 21.18 and 7.6. We may 
assume that the value group of v is Z. The value group of vo is then a 
nonzero subgroup of Z and hence is m.Z for some m 2 1. Consequently, 
e(v/vo) = (Z : m.Z)  = m < +coo. By the definition of a Cohen subring, 
f(v/vo) = 1. Therefore by 19.9 [K : KO] = e(v/vo) < +w, so by 22.6, K is 
an Eisenstein extension of KO relative to vo. 0 

An investigation of complete discretely valued fields therefore devolves 
upon nonequicharacteristic Cohen rings of characteristic zero. The main re- 
sult is that  for any field F of prime characteristic there is one and, to within 
isomorphism, only one Cohen ring of characteristic zero whose residue field 
is isomorphic t,o F .  

22.8 Theorem. Let F be a field of prime characteristic p .  If q is either 
zero or a power ofp, there is a Cohen ring of characteristic q whose residue 
field is isomorphic to F. 
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Proof. Assume first that q = 0. The ring C a p  of p-adic integers is a 
Cohen ring of characteristic zero whose residue field is the prime field of p 
elements. By 19.15, there is a real valution w of a field K extending the 
p-adic valuation Gp of Qp such that the value group of w is Z and the residue 
field of w is isomorphic to F. The valuation ring A$ of w^ is then the desired 
Cohen ring of characteristic p whose residue field is isomorphic to F by 19.7. 
If q = p n ,  then A;;/p"A,- is a Cohen ring of characteristic q whose residue 
field is isomorphic to  F. 0 

Our first step in establishing the uniqueness of Cohen rings is to show 
that a Cohen ring is the only Cohen subring of itself, an assertion that is 
clearly true if the Cohen ring is a field. 

22.9 Theorem. If B is a Cohen subring of a Cohen ring C whose residue 
field has prime characteristic p ,  then B = C. 

Proof. Since pC is the maximal ideal of C, for each 2 E C there exists 
y E B such that y E 2 (modpC); consequently, C = B + pC. If C = 
B+p"C,  t h e n p C = p B + p " + l C , s o C = B + p C = B + p " + ' C .  An 
inductive argument thus establishes that C = B + pnC for all n 2 1. If 
C has characteristic p r ,  then, in particular, C = B +p'C = B. If C has 
characteristic zero, then 

n=l 

by (3) of 3.3, but as B is a complete subring of C, B = B. 0 

22.10 Lemma. Let p be a prime, let C1 and C2 be Cohen rings of 
characteristic p", let K1 and K2 be Cohen rings of characteristic p n  where 
1 _< n < m, let f 1  and f2 be epimorphisms respectively from C1 to K1 and 
from C2 to K2, and let g be an isomorphism from K1 to K2. Then there is 
an isomorphism h from C1 to C2 such that f 2  o h = g o f1.  

Proof. By 21.4, the only ideals of C1 are the ideals p'C1 where k E [O,m], 
and the characteristic of Cl/pkC1 is p k .  Since the characteristic of K1 is 
p n ,  therefore, the kernel of f 1  is p"C1. Similarly, the kernel of f 2  is p"C2. 
Let 

A = {(21,22) E c1 x c2 : g ( f d 2 1 ) )  = f i ( 2 2 ) ) .  

Clearly A is a subring of C1 x C2 containing p"C1 x pnC2. Let q1  and 42 be 
the restrictions to A of the canonical projections from C1 x C2 to CI and 
C2 respectively. Each is surjective since both g o f1 and f 2  are surjective. 
Let 

= ( f 2  0 4 - ' ( p K 2 ) .  
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As 42 and f 2  are surjective, and as pK2 is the maximal ideal of K2, M is a 
maximal ideal of A. Also, M is nilpotent, for by the definition of A, 

( 9  0 f l  0 q 1 ) W " )  c ( f 2  0 Q2)(M") = (PK2)" = (0) 

and hence ( f 1  oql)(M") = (0)) so M n  2 ql(M") x q2(Mn) E p"C1 xp"C2, 
and therefore 

M"" E p""C1 x p""C2 = (0).  

Since a prime ideal of a commutative ring with identity necessarily contains 
every nilpotent and since a maximal ideal is prime, M is the only maximal 
ideal of A. 

Consequently by 21.17, A contains a Cohen subring C. Again by 21.4, the 
kernel of q1 is pkC for some k E [O,m]. As the characteristic of C/pkC is p k  
and as the characteristic of the subring ql(C) of C1 is p m ,  therefore, k = m, 
so pkC = (0)  and q1 is injective. To show that ql(C) is a Cohen subring of 
C1, let $1 E C1. As 41 is surjective, there exists 22 E C2 such that ( z 1 , q )  E 
A. Consequently, there exists (y1, y2)  E C such that ( y l ,  y 2 )  - ( z 1 , ~ )  E M ,  
so 

the maximal ideal of K2, and thus y1 - z1 belongs to the maximal ideal 
pC1 of C1. Therefore q,(C) is a Cohen subring of C1, so ql(C) = Cl by 
22.9, and thus q1 is an isomorphism from C to C1. Similarly, q2 is an 
isomorphism from C to C2. Let h = 42 o q;', an isomorphism from C1 to 
C2. A ~ f i o q 2 = g 0 f i 0 ~ i , f 0 h = f 2 0 q 2 0 ~ l ~ = g o f i .  

22.11 Theorem. Let C1 and C2 be Cohen rings of the same character- 
istic, and let f 1  and f 2  be the canonical epimorphisms from C1 and C2 to 
their residue fields kl and k2 respectively. If g1 is an isomorphism from k1 

to  k2, there is an isomorphism h from C1 to C2 such that f 2  o h = g1 o f 1 .  

Proof. If the common characteristic is pm,  we need only apply 22.10 
where K1 = k l ,  K2 = Ic2. Therefore we may assume that the characteristic 
of C1 and C2 is zero and the characteristic of kl and k2 is a prime p .  For each 
n 2 1, let f n , l  and fn ,2  be the canonical epimorphisms from Cl/p"+lC1 to  
C1/pnC1 and from C2/pn+lC2 to C2/pnC2 respectively. By 22.10 there is 
an isomorphism 9 2  from C1/p2Cl t o  C2/p2C2 such that f 1 , 2  0 g2 = 910 f l , l ,  

and in general, by an inductive argument, there is a sequence (gn )"2 l  such 
that each gn is an isomorphism from Cl/p"Cl to C2/pnC2 and f n , 2  ogn+1 = 
gnOfn,l for all 71.2 1. For each ( 4 z > l  E Lmn~l(Cl/PnCl),  (gn(Gl))n>l E 
@n21(C2/pnC2), for if m L 1, fm,1(2m+1) = 2,) SO 

f n , 2  (gm+l ( X m + 1 ) )  = g m  (fm,l (zm+1)) = gm (5,) * 
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is easily seen to be an isomorphism. By (2) of 8.5,  the canonical homo- 
morphisms hl : z -+ (z + pnC1),21 from C1 to l;m,>l(C1/pnCi) - and 
h2 : z + (z + pnC2),,21 from C2 to b,>l (C2/pnC2)  - are isomorphisms. 
Thus h,  defined to be hgl o g o h l ,  is an isomorphism from C1 to C2. Let 7r1 

be the restriction to @,>I - (C2/pnC2) of the canonical projection prl from 
n;==,(C2/pnC2) to Cz/pC2. Then 91 o f1 = .?rl 0 g 0 hi and f 2  = .?r1 0 h2, so 

Thus a Cohen ring is completely determined by its residue field and its 
characteristic. 

23 Complete Local Noetherian Rings 

Let A be a commutative ring with identity. By the definition on page 
148, A[[X]] is the ring or A-algebra of all sequences ( U , ) , ~ Z  of elements 
of A such that a, = 0 for all n < 0. For notational convenience, we shall 
henceforth omit reference to the terms of negative index, and denote any 
such (an)nEZ by ( a n ) n E N  or (a,)n>o. 

For every (u,),Ew E A[[X]], ( U , X ~ ) , ~ N  is summable and its sum 

for the order topology. Here we shall be concerned with Hausdorff ring 
topologies strictly weaker than the order topology, but any family of ele- 
ments summable in A[[X]] for the order topology is a fortiori summable 
(with the same sum) for any such weaker topology. In any case, even 
if we have no specific topology in mind, we shall usually denote the se- 
quence  an),€^ by CnENuanXn.  Consequently, the elements of Af[X]] are 
frequently called formal power series, If a E A, the constant formal power 
series determined by a is CnENanXn where a0 = a and a, = 0 for all 
n 2 1; we shall frequently identify a with the constant formal power series 
it defines. The constant term of a formal power series C n E N a n X n  is the 
element a0 of A. 

The principal ideal of A[[X]] generated by X consists of all formal power 
series C n E N a a n X n  such that a0 = 0. It is easy to see, by an inductive 
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argument, that C n E W a n X n  is invertible in A [ [ X ] ]  if and only if a0 is in- 
vertible in A .  Indeed, if CnENu,Xn is a formal power series such that a0 
is invertible, then CnEN b,X" is the inverse of ZnEN a,Xn where ( b , ) , ? ~  
is defined recursively by bo = a i l ,  

-1 
b,+l = -a0 ( U l b ,  + . . . U , + l b O ) .  

Consequently, we have: 
23.1 Theorem. If A is a local ring with maximal ideal M ,  then A [ [ X ] ]  

is a local ring with maximal ideal M + ( X ) .  

23.2 Theorem. If A is a commutative noetherian ring with identity, so 
is A [ [ X ] ] .  I f  A is an integral domain, so is A [ [ X ] ] .  

Proof. Let B = A [ [ X ] ] .  The second statement is easy to verify. For 
the first, it suffices by 20.9 to show that each prime ideal P of B is finitely 
generated. The constant terms of formal power series belonging to P form an 
ideal Q of A ,  so there exist a l ,  . . . , am E Q such that Q = Aal+ . . . +Aam. 
If X E P ,  the constant power series determined by each q E Q clearly 
belongs to P,  so P = Bal+ . . . + B a , + B X .  We need only show, therefore, 
that if X $ P and if, for each j E [l, m], f j  is a member of P whose constant 
term is a j ,  then P = Bfi + . . . + B f m .  

Let g E P. We define recursively sequences ( b ~ , ~ ) ~ ~ o ,  . . . , (bm,n)n>O 

such that for each n E N, 
m n-1 

Indeed, if (1) holds, then 
m n-1 

j = 1  k=O 

for some h E B. Since P is a prime ideal and X $ P ,  h E P ,  so its 
constant term c belongs to Q. Thus there exist bl ,n ,  . . . , b,,, E Q such 
that c = C;, bj,,aj. The constant term of h - Cj"=, bj , ,  f j  is then zero, so 

n n  m 

Let 

for each j E [l,m]. Then by (l), g - C;, hjfj  E BX" for all n E N, so 
m 

= C j = 1  h j f j .  
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23.3 Theorem. Let A be a local ring. (a) If the natural topology of 
A is Hausdorff, the natural topology of A [ [ X ] ]  is Hausdod. (b) ff A is a 
complete local ring, so is A [ [ X ] ] .  

Proof. Let B = A [ [ X ] ] ,  and let M be the maximal ideal of A. By 23.1, 
the maximal ideal N of B is M + B X .  Consequently 

ivk = iwk + M ~ - ~ x  + . . . + M X ~ - - '  + B X ~  

for all k 2 1. It readily follows that if nr=oMk = (0}, then nEoNk = (0) 
also. Thus (a) holds. 

To show that ( f n ) n 2 1  

converges to an element of B ,  it suffices by 7.2 t o  show that some f E B is 
adherent to (fn)n21, and thus we may assume, by extracting a subsequence 
if necessary, that for each k 2 1, fn  - fk E N k  for all n 2 k. Let 

(b) Let (fn)n>1 be a Cauchy sequence in B. 

If n 2 k 2 j ,  then a,,j - U k , j  E M"j, so (an,j),>l is a Cauchy sequence in 
A.  Let a j  = limn+= a,j for each j E N, and let 

f = c UjXj. 

j EN 

Since a,,j - a k , j  E M"j whenever n >_ k >_ j and since M"j is open and 
thus closed for the natural topology of A ,  aj - ak,j E MiWk for all k 2 j ,  
and hence 

for all k 2 1. Thus f = fimk+oo f i e .  

There is a natural extension of the definition of the power series ring 
(in one variable) over a commutative ring A with identity to one of the 
power series ring in several variables over A: Let m 2 1, and let Nm be 
the Cartesian product of m copies of the additive semigroup N. The ring of 
formal power series in rn variables over A is the set S[A,  Nm] of all families 
of elements of A indexed by Nm (or equivalently, the set of all functions from 
Nm into A ) ,  where addition is defined componentwise and multiplication by 
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For each n E N"', let ni be the i th component of n for all i E [l,m], so 
that n = ( n l ,  . . . ,n , ) .  It is customary to choose some capital letter, say 
X, and denote by Xi the element (u , )~€w where a, = 0 unless ni = 1 
and nj = 0 for all other j E [ l , m ] ,  in which case a, = 1. From the 
definition of multiplication, it then follows that for any T E IT, the element 
(u , ) ,~w,  where a, = 1 and a ,  = 0 for all n # T ,  is simply Xr1X'2 . . . Xrm. 
Consequently, if ( a , ) , e ~  is any element all but finitely many of whose 
terms are zero, 

For this reason, we denote any element (U,),~N~ by 

or, for short, c a,xn 
nENm 

where X" stands for X ~ l X ~ z  . . . X z m .  Consequently, we customarily denote 
the ring S[A,M"] by A [ [ X l , X z , .  . . , X , ] ] .  

The ring ( A [ [ X 1 ,  X2,  . . . , X m - l ] ] ) [ [ X n ] ]  is naturally isomorphic to the 
formal power series ring A[[X1,  X , ,  . . . , X,]]  under the isomorphism 9 de- 
fined by 

Consequently we obtain by induction from Theorems 23.1-23.3: 

23.4 Theorem. Let A be a commutative ring with identity, m 2 1. 
(a) If A is a local ring with maximal ideal M ,  A [ [ X l , .  . . , Xm]]  is a local 
ring with ideal M + ( X I )  + . . . + ( X , ) .  (b) If A is noetherian [an integral 
domain], so is A [ [ X 1 , .  . . , X,]]. (c) If A is a local ring that is Hausdorff for 
its natural topology, then so is A [ [ X 1 , .  . . , X,] ] .  (d) If A is a complete local 
ring, so is A[[X1,  . . . , X , ] ] .  



196 COMPLETE LOCAL RINGS 

23.5 Theorem. Let A be a commutative ring with identity that is Haus- 
dorff and complete for the ring topology for which (Jn),>1 is a fundamental 
system of neighborhoods of zero, where J is an ideal of 2. Let C be a sub- 
ring of A such that the restriction to C of the canonical epimorphism from 
A to A/J is a surjection, and let 21, . . . , 2, E J. For any family (Cn)nEp 
of elements of C indexed by Nm, the family (cnzT1 . . . z ~ ~ ) ~ ~ ~ , . , , , ~ , , , ) ~ ~  is 
summable in A, and the function S from C [ [ X , ,  . . . , X,]] t o  A defined by 

is a homomorphism. If (21, . . . , xm} generates J ,  then S is an epimorphism. 

Proof. For each n E Nm we shall denote n1+ . . . + n, by In(, the mono- 
mial Xr'  . . . X:m by X " ,  and the element zT1 . . . xkm of A by xn. For any 
family (cn)nEm of elements of C ,  ( c , x ~ ) ~ ~ ~  is summable by 10.5, since 
cnzn E J k  whenever In1 2 k. By 10.12 and 10.16, S is a homomorphism. 

Assume further that J = Ax1 +. . + As,. To show that S is surjective, 
let y E A. We shall define c, inductively for all n E Nm so that 

y - cnxn E J'". 

Indeed if that statement holds, then 

where up E A for all p E Nm such that lpl = b.  By hypothesis, for each such 
p E Nm there exists cp E C such that cp - up E J ,  so 

Clearly 

We may now characterize complete local noetherian rings: 

23.6 Theorem. Let A be a commutative ring with identity. The fol- 

1' A is a complete local ring whose maximal ideal is finitely generated. 
lowing statements are equivalent: 
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2" A is a complete local noetherian ring. 
3" There exist a Cohen ring C and m 2 0 such that A is an epimorphic 

image of C[[X , ,  . . . , X,]] . 

Proof. Clearly 2" implies lo. If 1" holds, then A contains a Cohen sub- 
ring by 21.20, so 3" holds by 23.5. Assume 3". Then A is isomorphic 
to C [ [ X , ,  . . . , X,]]/J for some proper ideal J of C [ [ X , ,  . . ., X,]]. Conse- 
quently, 1" follows by 23.4, 20.16, 20.15, 6.4, and 6.12. 0 

Exercise 

23.1 (Nagata [1949]) Let K be a field, and let A = { f / g  E K ( X ) :  the 
constant coefficient of g is not 0). (a) A is a subring of K[[X]] and hence of 
K[[X,Y]]. (b) Let B = A+K[[X,Y]]Y, N = AX+K[[X,Y]]Y. Show that 
B is a local ring whose maximal ideal is N ,  and that N = BX + BY. (c) 
Let M be the maximal ideal of K [ [ X ,  Y]]. Show that N = M f l B  and, more 
generally, that N" = M " n B  for all n 2 1. (d) B,  furnished with its natural 
topology, is a proper dense subring of K [ [ X ,  Y ] ] ,  furnished with its natural 
topology. (e) There exists z f K[[X]]  \ B, and zY E B. (f) The ideal BY 
of B is not closed in B .  [Use (d) and (e).] (g) B is a local nonnoetherian 
ring whose maximal ideal is finitely generated and whose natural topology 
is Hausdorff. [Use 20.16.1 

24 Complete Semilocal Noetherian Rings 

Theorems relating properties of a commutative noetherian ring to those 
of its completion for the topology for which the powers of an ideal form a 
fundamental system of neighborhoods of zero have important applications 
in commutative algebra. Here we will present a few basic examples of such 
theorems. 

24.1 Definition. Let J be an ideal of a ring A. The J-topology on A 
is the ring topology for which ( Jn),>1 is a fundamental system of neighbor- 
hoods of zero. If E is an A-module, the J-topology on E is the additive 
group topology for which (JnE),>l - is a fundamental system of neighbor- 
hoods of zero. 

24.2 Theorem. let E be an A-module, J an ideal of A. If A is furnished 
with its J-topology, then E, furnished with its J-topology, is a topological 
module over A. If M is a submodule of E, the quotient topology induced 
on EIM by the J-topology of E is the J-topology of E/M. 

Proof. Clearly { J n E  : n 2 l} satisfies (TMN 1)-(TMN 3) of 3.6 if A 
is furnished with the J-topology. The second assertion follows from the 
identity J"(E/M) = ( J n E  + M ) / M .  0 
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24.3 Theorem. I f E  is a finitely generated unitary module over a com- 
mutative noetherian ring A with identity and i f  J is an ideal of  A, then for 
each submodule F o f  E ,  the topology induced on F by the J-topology o f  E 
is the J-topology o f  F .  

The assertion is a consequence of 20.11. 
Let E be an A-module, J an ideal of A, and assume that the J-topologies 

of A and E are Hausdorff. By 24.2 and 8.6 we may regard the completion 
of E for the J-topology as a module over the completion Â  of A for its 

J-topology. If F is a submodule of E ,  we shall denote its closure in Ê  by 
2, since that is the completion of F for the topology induced on F by the 
J-topology of E. If the hypotheses of 24.3 hold, F^ is also the completion of 
F for its J-topology. 

24.4 Theorem. Let E be a unitary A-module, and let X I ,  . . . , x ,  E E 
be such that E = Ax1 + . . . Ax,. I f  J is an ideal o f  A and i f  the J topologies 
o f  both A and E are Hausdorff, then 

A h  A 

E = Ax1 + . . . + A x ,  = ZE.  

Proof. Let y E k. There is a Cauchy sequence (Ya)k>l - in E such that 
limk+= Y k  = y .  By extracting a subsequence if necessary, we may assume 
that Yk+l - yk E J k E  for all k 2 1. Thus for each k 2 1, there exist 
C k J )  . . . , Ck+(k)  f J k  and % k J ,  . . . , zk,s(k) E E such that 

For each i E [l, s(k)] let 

where dk,i,j E A for all j E [l ,n].  Then 

where 

i=l 
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Let 

j = 1  

where b l , l ,  . . . b 1 , n  E A. For each J' E [1,n] we define ( b k , j ) k > l  recursively 
by b k + l , j  = b k , j  + An inductive argument establishes that 

n 

Y k  = b k , j x j  

j = 1  

for 
in A and hence has a limit b j  in Â . Clearly 

k 2 1. Since b k + l , j  - b k , j  = a k , j  E Jk, ( b k , j ) k > l  - is a Cauchy sequence 

n n 

j = 1  j = 1  

24.5 Corollary. Let E be a finitely generated unitary A-module, J a 
finitely generated ideal of A. If the J-topologies of A and E are Hausdorff, 
then 

J ~ E  = FE = 2 J ~ E  

for all n 2 1, and in particular, 
then 

= A Ĵn. If, moreover, A is commutative, 

(T)" = F, 
and the topologies of E and Â  are their ?-topologies. 

Proof. The topology induced on JnE by the J topology of E is the J- 
topology of J"E, since Jm(JnE) = Jm+"En J"E for all m 2 1. Therefore 
JTE is also the completion, for the J-topology, of P E ,  which is finitely 
generated as both E and J are. Consequently by 24.4, JTE = A^JnE. In 
particular, Ĵ n = A ^ J ~ .  

Assume further that A is commutative. Then Â  is commutative by 8.3, 

h 

so 
(,f)" = ( i J ) "  = iJn = Jn. 

Consequently, 

As (J%)">l - is a fundamental system of neighborhoods of zero for the 
topology of ,!? by 4.22, therefore, the topology of ,!? is its ,?-topology. In 
particular, the topology of Â  is its ,f-topology. 0 
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24.6 Corollary. Let A be a commutative noetherian ring with identity, 
and let E be a finitely generated unitary A-module. If J is an ideal of A 
such that the J-topologies of both A and E are Hausdorff, then for any 
9, , . .Lxn  E E ,  if F = Axl + ... + Ax,,, the closure F^ of F in ,6 is 

is also the completion of F for its J-topology, so by 

h 

A F  = Ax1 + . . . Ax,. 

Proof. By 24.3, 
A -  A h 

28.4, F = A F  =  AX^ + . . . + AX,. 0 

24.7 Theorem. Let A be a commutative ring with identity furnished 
with the M-topology, where M is an ideal of A and the M-topology of A is 
HausdorK (1) If A is noetherian, then Â  is noetherian, and the topology of 
Â  is its M^-topology. (2) If M is a finitely generated maximal ideal, then Â  
is a local noetherian ring whose maximal ideal is M^, and the topology of Â  
is its natural topology. 

Proof. In both cases, the topology of A^ is its M^-topology by 24.5. (1) 
By 5.14 applied to the dense subring A of A^ and its open ideal M and by 
23.5, Â  is an epimorphic image of A[[Xl,. . . ,X,]] for some rn 2 0, so Â  is 
noetherian by 23.4 and 20.4. (2) If x E M^, then x is a topological nilpotent, 
so 1 - x is invertible by 11.16. Thus each element of 1 + M is invertible 
in x. By 5.14, AIM and AIM are isomorphic, so M  ̂is a maximal ideal of 
2. Therefore if y E Â  \ M^, there exists z E Â  \ M^ such that 1 - yz E M^; 
by the preceding, yz is invertible in A, so y is also. Thus A is a local ring 
whose maximal ideal is M^. By 24.5, M^ = Â M and hence M^ is a finitely 
generated ideal of Â . Therefore by 23.6, Â  is noetherian. 0 

h 

A -  

h A 

24.8 Corollary. The completion of a local noetherian ring, furnished 
with its natural topology, is a complete local noetherian ring, furnished with 
its natural toology. 

For our subsequent discussion, we shall need the following definitions and 
three theorems of algebra: 

24.9 Definition. Let A be a ring. Ideals I and J are relatively prime 
if I + J = A. A family ( I ; \ ) x E ~  of ideals is pairwise relatively prime if 
I;\ and I, are relatively prime whenver A, J.L E L and X # p .  

The hypothesis ( A / I ) 2  = A / I  of the following theorem, which is equiv- 
alent to the statement A2 + I = A, is always satisfied if A has an identity 
element. 

24.10 Theorem. Let I, J1, ..., J,, be ideals of a ring A such that 
= A/I .  If I and JI,  are relatively prime for each k E [l,n], then 
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I and J1 J2 . . . J ,  are relatively prime, and a fortiori I and J1 n J2 9 - n J ,  
are relatively prime. In particular, if I and J are relative prime, then for 
any n 2 1, I and J" are relatively prime. 

Proof. By induction, ( A / I ) ,  = A / I  for all m 2 1, that is, A" + I = A. 
In particular 

A = A" + I  = ( I +  J 1 ) ( I +  J 2 ) .  .. ( I +  J,) + I  = I +  JlJ2 .. . J,. 

Since J1 J2 . . . Jn C J1 f l  J2 n - - n J,, the second assertion also holds. 0 

24.11 Theorem. Let J1, J2, . . . , J ,  be pairwise relatively prime ideals 
of a ring A such that ( A / J k ) 2  = A / J k  for each k E [ l ,n  - 11. Then 
a :  z + ( z+J l , z+J2 ,  ..., z+J,)isanepimorphismfromA t o n t = , ( A / J k ) ,  
that is, for any sequence a l ,  a2, . . . ) a, E A there exists c E A such that 
c G ak (mod J k )  for each k E [l ,n].  I f ,  moreover, A is a commutative ring 
with identity, then J1 n J2 n 

Proof. We shall show by induction that if there exists b E A such that 
b = U k  (mod J k )  for d k E [m,n], where 1 < m 5 n, then there exists 
c E A such that c = U k  (mod J k )  for d k E [m - 1,n]. By 24.10, Jm-l 
and fl;=,Jk are relatively prime, so there exist z E J,-1 and y E flE,,Jk 
such that x + y = b - u,-1. Let c = z + a,-l = b - y. Then c = a,-l 
(mod J,-1), and for each k E [m,n], c f b a k  (mod Jk ) .  Thus by 
induction, the first assertion holds. 

For the second assertion, assume that J ,  n . + r l  J ,  = J ,  . . . J ,  where 
1 < m 5 n. We shall show that J,-1 n J ,  n - - n Jn = J,-1 J ,  . . . Jn.  Let 
J = J ,  n - . n J ,  = J ,  . . . J,. By 24.10, Jm-l and J are relatively prime, 
so there exist e E Jm-l and f E J such that e + f = 1. If z E Jm-l n J ,  
then z = xe + xf E JJ,-1 + Jm-l J .  Thus Jm-l n J C J,-I J C Jm-l n J ,  

J,-~ n J ,  n . . . n J ,  = J,-lJ,. . . J,. 

n J ,  = J1 J2 . . . J,. 

so 

An inductive argument thus establishes the assertion. 0 

24.12 Theorem. Let ( A x ) x E ~  be a family ofrings with identity, let A be 
a subring o f n x E L  Ax containing exEL Ax, and for each ,u E L let p r ,  be the 
canonical projection from nxEL Ax to A,, defined by p r , ( ( z x ) x E ~ )  = z,. 
If J is a left or right ideal of A, then e x E L p ~ x ( J )  C J ;  in particular, if L 
is finite, J = n x E L p r x ( J ) .  

Proof. For each ,u E L let in, be the canonical injection from A, to nxEL Ax (so that pr ,  o in, is the identity mapping of A,), and let e, = 
in,(l,), where 1, is the identity element of A,. Then e ,  E eXEL Ax E A, 
and for any z E A, 

in,(pr,(z)) = ze, = e,z. 
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Let ( z x ) x E ~  E @ x E L p ~ x ( J ) ;  then for each X E L there exists yx E J such 
that zx = prx(yx ) ,  and there is a finite subset M of L such that zx = 0 for 
all X E L \ M .  Therefore 

if J is a left ideal, and similarly ( z x ) x E ~  = C p E M y p e P  E J if J is a right 
ideal. 0 

The 24.13 Definition. Let A be a commutative ring with identity. 
radical of A is the intersection of the maximal ideals of A. 

24.14 Theorem. Let A be a commutative noetherian ring with identity, 

1" Every finitely generated unitary A-module is Hausdorff for the J -  

2" Every submodule of every finitely generated unitary A-module is 

3" Every ideal of A is closed for the J-topology. 
4' J is contained in the radical of A. 

In particular, if R is the radical of A, the R-topology of A or of any 

and let J be an ideal of A. The following statements are equivalent: 

top ology. 

closed for the J-topology. 

finitely generated unitary A-module is Hausdorff. 

Proof. To show that 1" implies 2", let F be a submodule of a finitely 
generated unitary A-module E. By lo, E / F  is Hausdorff for its J-topology, 
which by 24.2 is quotient topology induced on E / F  by the J-topology of 
E .  Therefore by 5.7, F is closed in E. 

To show that 3" implies 4", assume that J is not contained in the radical 
of A. Then there is a maximal ideal M of A such that J sf M ,  so Mf J = A. 
By 24.10, M + J" = A for d n 2 1, so the closure of M for the J-topology 
is A by (3) of 3.3. 

Finally, to show that 4" implies lo, let E be a finitely generated unitary 
A-module, and let z E n,"==,J"E. By 20.13 there exists a E J such that 
(1 - a)z = 0. Since a is contained in the radical of A, 1 - a belongs to no 
maximal ideal of A and hence is invertible, so z = 0. 0 

24.15 Definition. A semilocal ring is a commutative ring with identity 
that has only finitely many maximal ideals. The natural topology of a 
semilocal ring A or of a unitary A-module E is its R-topology, where R is 
the radical of A. A complete semilocal ring is a semilocal ring that is 
Hausdorff and complete for its natural topology. 
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24.16 Theorem. Let A be a semilocal ring with radical R .  
(1) AIR has only finitely many ideals. 
(2) The natural topology of A is the supremum ofits M-topologies, where 

( 3 )  R is a nilpotent ideal if and only if (0) is a product of maximal ideals. 
(4) If A is noetherian, then A is Hausdorff and each of its ideals is closed 

for the natural topology; more generally, if E is a finitely generated unitary 
A-module, then E is Hausdorff and each of its submodules is closed for the 
natural topology. 

Proof. Let M I ,  . . . , MT be the maximal ideals of A. By 24.11, AIR is 
isomorphic to  n ; = , ( A / M k ) ,  the Cartesian product of T fields, so AIR has 
2' ideals by 24.12. By 24.10 and 24.11, 

M is a maximal ideal of A .  

R" = (Mi n * * . n M,)" = (Mi  . . . M,)" = M;;" . . . M," = M;;" n * - r) M,". 

Thus (2) and (3) hold, and (4) follows from 24.14.0 

24.17 Theorem. Let A be a semilocal ring, R its radical. (1) If R is 
finitely generated, so is each maximal ideal of A.  (2) If the natural topology 
of  A is Hausdorff and if each maximal ideal of A is finitely generated, then 
the completion Â  of A for the natural topology is a semilocal noetherian 
ring whose maximal ideals are the closures in Â  of the maximal ideals of A ,  
Â  is the topological direct sum of finitely many complete local noetherian 
rings, and the topology of Â  is its natural topology. 

ideal of A,  there exist t l ,  . . . , zs E M such that 
Proof. By (1) of 24.16 and 20.2, AIR is noetherian, so if M is a maximal 

M / R  = ( A / R ) ( z 1  + R )  + * - * + ( A / R ) ( z ,  + R ) ,  

whence M = Ax1 + . . . , +Ax, + R.  Thus if R is finitely generated, so is M. 
Then for any n 2 1, 

M,", . . . , M: are pairwise relatively prime by 24.10, so 
Let MI, . . . ,  MT be the maximal ideals of A .  

T T 

R" = (0 Mk)" = (.Mi ... M,)" = MT ... M," = n M; 
k = l  k = l  

by 24.11. To prove (2), for each k E [ l , ~ ]  let Nk = nrZlM;, and let 
Ak = A/Nk,  furnished with its (Mk/Nk)-topology. By (2) of 24.7, .& is a 
local noetherian ring whose topology is its natural topology. By hypothesis, 

r T O O  00 
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Therefore the function A from A to nLZ1 Ah, defined by 

A(z) = (Z + N1, . . ., z + N?) ,  

is a monomorphism. Moreover, for any n 2 1, 

r 

AW) = l-'J p; /~ n A W ,  
k=l 

for z E Rn if and only if for all i E [l, T I ,  z E M:, or equivalently, z + Nj E 
M?/Ni = (M;/Ni)" .  Therefore A is a topological isomorphism from A 
to its range A'. Furthermore, A' is dense in n;=, Ah, for if n 2 1 and 
if a l ,  , . . , a, E A ,  there exists z E A such that z E ah (mod M;) for all 
Ic E [ l , ~ ]  by 24.11. By 8.4 there is a topological isomorphism from Â  to  
n;=, A^k that extends A. Thus Â  is the topological direct sum of finitely 
many complete local noetherian rings. In particular, Â  is noetherian by 
20.7, and its topology is its natural topology. 0 

24.18 Theorem. I f A  is a semilocal ring, then A is noetherian if and 
only if each maximal ideal of A is finitely generated and each ideal of  A is 
closed for the natural topology. 

Proof. The condition is  necessary by 24.14. Sufficiency: Since the zero 
ideal is closed, the natural topology of A is Hausdorff. By 24.17, Â  is 
noetherian. If ( J,),>l - is an increasing sequence of ideals in A ,  their closures 
(?,),>I in Â  form an increasing sequence of ideals, so there exists q 2 1 
such that J ,  = 

h 

for all n 2 q,  whence 
h h 

J , =  J , ~ A = J , ~ A =  J~ 

for al l  n 2 q,  as each ideal of A is closed. a 

24.19 Theorem. If A is a commutative ring with identity, then A is a 
complete semilocal noetherian ring if and only if A is the topological direct 
sum of finitely many complete local noetherian rings. 

Proof. The condition is necessary by (2) of 24.17. Sufficiency: Let A = nyZl A; where each Aj is a complete local noetherian ring with maximal 
ideal Mi. The maximal ideals of A are clearly the ideals p8F1(Mi) where 
i E [ l ,n ]  and p ~ j  is the canonical projection of A on Ai.  Thus A is semilocal 
and its radical R satisfies 

n ' n  

i=l i=l 
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By 20.7 A is noetherian, and clearly Rk = ny==, M! for all k 2 1, so the 
Cartesian product topology on A determined by the natural topologies of 
A l ,  . . . , A,  is the natural topology of A.  By 7.8, A is complete for that 
topology. 

Exercises 

In these exercises, all rings are commutative rings with identity. 
24.1 A ring topology on a ring A is a Zariski topology is it is an ideal 

topology for which every ideal is closed. For example (Zariski [1945]), if A 
is a noetherian ring and if J is an ideal of A ,  the J-topology is a Zariski 
topology if and only if J is contained in the radical of A (Theorem 24.14). 
(a) A Zariski topology on a ring is Hausdorff. (b) If J is an ideal of ring 
A ,  the topology induced on A / J  by a Zariski topology on A is a Zariski 
topology. (c) If A is complete for a Zariski topology, it is complete for 
any stronger ideal topology. [Use 7.21.1 (d) (Chevalley [1943]) If Â  is the 
completion of A for a Zariski topology and if c is a cancellable element of 
A ,  then c is a cancellable element of 2. [Use 7.20.1 

24.2 (Zariski [1945]) If a noetherian ring A is Hausdorff and complete for 
the J-topology, where J is an ideal of A ,  then the J-topology is a Zariski 
topology, and consequently A is also complete for any stronger ideal topol- 
ogy. [Use 24.6.1 

24.3 (Lafon [1955]) If J1, . . . , J, are ideals of a noetherian ring A and if 
E is a finitely generated A-module, then the supremum of the Jk-topologies, 
k E [ l , ~ ] ,  is the (J1.. . J,)-topology on E .  [Use 20.11.1 

24.4 Let M I ,  . . . , M ,  be distinct maximal ideals of a commutative ring 
A with identity. If J is an ideal of A contained in U:==, Mi, then for some 
k E [ l ,n ] ,  J 5 Mk. [Use 24.11 and 24.12.1 



CHAPTER VI 

PRIMITIVE AND SEMISIMPLE RINGS 

This chapter is mostly devoted to fundamental concepts occurring in the 
theory of noncommutative rings. In $25 we discuss primitive rings, in $26 
the radical of an arbitrary ring, and in $27 artinian rings and modules, 
where we conclude with the celebrated Artin-Wedderburn theorem. 

25 Primitive Rings 

If E is a commutative group, End(E) is the ring of all endomorphisms of 
E ,  and if E is a K-module, EndK(E) is the ring of all linear operators on 
E .  

25.1 Definition. I f E  is a commutative group, a subring A of End(E) 
is a primitive ring of endomorphisms of E if for all 2, y E E such that 
z # 0 there exists a E A such that a(.) = y. 

If E is a vector space, then A is a primitive ring of endomorphisms of 
(the additive group) E if and only if A is 1-fold transitive in the following 
sense: 

25.2 Definition. Let E be a vector space over a division ring K. A 
subring A of End(E) is n-fold transitive if for every linearly independent 
sequence 21, . . . , 2, of n vectors of E and every sequence y1, . . ., yn of 
vectors of E there exists a E A such that .(zj) = yj for all i E [l,n]. The 
ring A is a dense ring of linear operators on E if A is n-fold transitive 
for all n 2 1. 

For example, any subring of EndK(E) that contains all linear operators 
whose range is finite-dimensional is a dense ring of linear operators. 

We shall need an extension of Definition 25.2 to one for left ideals of 
a ring of linear operators. If L is a subset of EndK(E), we shall call the 
subspace of all z E E such that w(z) = 0 for aJl w E L the annihilator of L 
and denote it by AnnE(L). 

25.3 Definition. Let A be a ring of linear operators on a vector space 
E over a division ring K such that AnnE(A) = (0). If L is a left ideal of 
A and if M = Annz(L), then L is n-fold transitive if for every sequence 

206 
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51, . . , , 2, of vectors of E such that 21 + M, . . . , x, + M is a linearly 
independent sequence of vectors in E / M  and for every sequence y1, . . . , yn 
of vectors of E there exists a E L such that a(zj) = yi for all i E [l,n]. 

25.4 Theorem. Let E be a vector space over a division ring K, let A be 
a 1-fold transitive ring oflinear operators on E, let L be a left ideal of A, and 
let M = AnnE(L). For any n 2 1, L is n-fold transitive if and only if for 
every sequence z1, . . . , z, of n vectors of E such that z1 + M, . . . , z, + M 
is a linearly independent sequence of n vectors of E / M  there exists a E L 
such that a ( z n )  # 0 and a(z i )  = 0 for all i c n. 

Proof. Sufficiency: Let y1, . . . , yn E E. For each j E [l, n], the sequence 
zj+l + M, . . . , 2, + M ,  21 + M ,  . . . , zj  + M is a linearly independent se- 
quence, so there exists a j  E L such that aj(zi) = 0 if i # j and aj(zj)  # 0. 
As A is 1-fold transitive, for each i E [l,n] there exists bj E A such that 
bi(u;(zi)) = yi. Let 

n 

Clearly .(xi) = yi for all i E [1,n]. 0 

25.5 Theorem. Let E be a vector space over a division ring K. If a 
subring A of End(E) is 1-fold transitive and if a left ideal L of A is 2-fold 
transitive, then L is n-fold transitive for all n 2 1. 

Proof. Let M = AnnE(L). First, L is 1-fold transitive, for if x E E \ M 
and if y E E, there exists a E L such that a(.) # 0, and hence there exists 
b E A such that b ( a ( z ) )  = y; then ba E L and (ba)(z) = y. 

Assume that L is n-fold transitive for all n < m, where m 2 3. To show 
that L is m-fold transitive, it suffices by 25.4 t o  show that if $1, . . . , z, 
are vectors of E such that z1 + M, . . . , z, + M is a linearly independent 
sequence of vectors of E / M ,  there exists c E L such that c(zj) = 0 for all 
i < m and ~(z,)  # 0. By assumption, for each i E [ l ,m - 11 there exists 
ai E L such that a; (z i )  = zj and a;(xj) = 0 for all j E [1,m - 11 such that 
j # i. Let 

m-1 

i=l  

Case 1: a(z,) - z, @ M. By hypothesis there exists b E L such that 
b(a(z,) - 2,) # 0. Thus if c = ba-b E L, then c has the desired properties. 

Case 2: a(x,) - z, E M. Suppose that for all i < m, zi + M and 
a;(z,) + M were linearly dependent vectors in E / M .  Then for each i < m 
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there would exist X i  E K such that Xixi - ai(z,) E M .  Consequently, 

m-1 m-1 

a contradiction of the linear independence of x1 + M ,  . . . , zm + M .  Thus 
there exists j < m such that xj + M and a j ( zm)  + M are linearly indepen- 
dent. As L is 2-fold transitive, there exists b E L such that b ( z j )  = 0 and 
b(aj(2,))  # 0. If c = baj E L,  then c has the desired properties. 0 

25.6 Theorem. (Density Theorem) Let A be a primitive ring of endo- 
morphisms of a nonzero commutative group E. The set D of all endomor- 
phisms of E that commute with each member of A is a division subring of 
End(E). Under scalar multiplication defined by X.z = X(z) for all X E D 
and all x E E ,  E is a vector space over D, A is a dense ring of linear oper- 
ators on the D-vector space E ,  and more generally, every left ideal L of A 
is n-fold transitive for all n 2 1. 

Proof. Clearly D is a ring with identity. Assume that X E D*. Then 
there exists z E E such that A(.) # 0. For any nonzero y E E there exist 
a ,  b E A such that a(X(x)) = y and b ( y )  = x, whence 

so X is surjective, and 

so X is injective. Therefore X is an automorphism of E. As X commutes 
with each member of A ,  so does X - l .  Thus D is a division ring. 

Clearly E is a D-vector space under the indicated scalar multiplication, 
and each a E A is a linear operator on the D-vector space E ,  since for all 
X E D and all z E E, 

a(X.z) = a(X(2) )  = X(a(2))  = X.a(z) 

Let L be a left ideal of A,  and let M = AnnE(L). As A is primitive, 
A is 1-fold transitive. To show that L is n-fold transitive for all n >_ 1, it 
suffices by 25.5 and 25.4 to show that if 21 + M and 22 + M are linearly 
independent vectors of E / M ,  there exists a E L such that a(z1) = 0 and 
4 2 2 )  # 0. Suppose, on the contrary, that for all a E L ,  a(x1)  = 0 implies 
a(x2)  = 0. Then p : a ( q )  --$ 4 x 2 )  for all a E L is a well-defined function 
from E into E. To establish this, we first note that for any z E E there 



25 PRIMITIVE RINGS 209 

exists a E L such that a(z1) = x. Indeed, as x1 4 M ,  there exists c E L 
such that c ( q )  # 0, so as A is primitive, there exists b E A such that 
b(c(zl)) = x; thus if a = bc E L, then a(x1)  = x. Moreover, if b ( q )  = c(x1) 
where b, c E L,  then ( b  - c)(x1) = 0, so by assumption ( b  - c ) ( x 2 )  = 0, that 
is, b ( x 2 )  = c(x2). Thus p is well defined, and p is clearly an endomorphism 
of the additive group E. If a E L and b E A, then ba E L ,  so 

Hence p E D. For any a E L ,  

so a ( p . q  - 22) = 0; hence p.zl - 22 E M ,  a contradiction of the linear 
independence of x1 + M and 22 + M .  Therefore there exists a E L such 
that a(x1)  = 0 and a(x2)  # 0. 

Applying this result to the case L = A ,  we conclude that A is a dense 
ring of linear operators on E .  0 

Conversely, if A is a dense ring of linear operators on a nonzero K-vector 
space E ,  then K is in a natural way isomorphic to the ring of all endomor- 
phisms of the commutative group E that commute with each member of 
A: 

25.7 Theorem. If A is a dense ring of linear operators on a nonzero 
K-vector space E ,  and if for each A E K, is the endomorphism of the 
commutative group E defined by i(x) = A.z for all x E E ,  then A -+ is 
an isomorphism from K to the division ring D of all endomorphisms of the 
commutative group E that commute with each member of A.  

Proof. The only nontrivial verification is to show that if v E D, then 
v = i for some A E K. For any nonzero x E E ,  if z and v ( x )  were 
linearly independent, then there would exist u E A such that ~ ( x )  = x and 
u ( v ( x ) )  = x, whence (uv)(x) = x # v(x) = ( v u ) ( x ) ,  a contradiction. Thus 
for each nonzero x E E there exists A, E K such that v(x) = Azx. We 
need only show, therefore, that if x and y are nonzero vectors of E ,  then 
A, = A,. There exists u E A such that u ( z )  = y, so 

x,y = v(y) = ( v u ) ( x )  = (uv)(x) = u(A,z) = A,u(z) = x,y, 

whence A, = A,. 0 
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25.8 Corollary. Let A be a dense ring of linear operators on a K-vector 
space E, and let L be a left ideal of A.  If F = Anng(L) + N where N is a 
finite-dimensional subspace, then for any u E A satisfying u ( y )  = 0 for all 
y E AnnE(L) there exists v E L such that v(x) = u(z)  for all z E F. 

Proof. Let M = AnnE(L), and let ( 2 1 ,  . . ., 2,) be a basis of a supple- 
ment of M in F. Then (z1 + M ,  . . . , x, + M} is a basis of F/M, so by 
25.6 and 25.7 there exists v E L such that .(xi) = u ( x ; )  for all i E [l,n]. 
Consequently, v(z) = u(z)  for all z E F. 0 

If A is a ring of linear operators on a vector space E and if F is a subspace 
of E ,  we shall call the annihilator of F in A the left ideal of all u E A such 
that u(F) = (0) and denote it by AnnA(F). 

25.9 Corollary. Let A be the ring of all linear operators on a nonzero 
finite-dimensional K-vector space E. Then L -+ AnnE(L) is an order- 
inverting bijection from the set of all left ideals of A to the set of all subspaces 
of E, and its inverse is the bijection F + AnnAF. Thus the zero ideal is 
the only proper ideal of A .  

Proof. By 25.8, if L is a left ideal of A, AnnA(AnnE(L)) = L, and clearly 
for any subspace F of E, AnnE(AnnA(F)) = F. 0 

25.10 Theorem. Let A be a dense ring of linear operators on a K -  
vector space E. (1) A nonzero ideal J of A is also a dense ring of linear 
operators on E. (2) If e is a nonzero idempotent of A with range M and 
if for each v E eAe, V M  is the function obtained by restricting the domain 
and codomain of v to M, then v --t VM is an isomorphism from eAe to a 
dense ring of linear operators on M. 

Proof. (1) By hypothesis there exist u E J and nonzero vectors a and b 
such that .(a) = b. Let 2 1 ,  . . . , z, be a linearly independent sequence of 
vectors, and let y1, .. ., yn E E. For each i E [l,n] there exist vi, wi E A 
such that vi(xi) = a, vi(xj) = 0 if j # i, and wi(b) = yi. Let 

m ... 

t = c w j u v j  E J. 
j=1  

Clearly t(zi) = yi for all i E [I,n]. 
(2) Let 21, . . . , z, be a linearly independent sequence of vectors in M, 

and let y1, . . . , yn E M. There exists u E A such that .(xi) = yi for all 
i E [l,n]. But then, as e(z )  = 2 for all z E M, eueM(z i )  = eue(z;) = yi  
for all i E 11, n]. If v E eAe is such that v ( M )  = (0) and if N is the kernel 
of e ,  then v(N) = (0) as v = eve,  so v = 0 as E is the direct sum of M 
and N. Thus v + OM is an isomorphism from eAe to a dense ring of linear 
operators on M .  0 
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25.11 Corollary. Let A be a dense ring of linear operators on a K-  
vector space E. I f 1  and J are ideals such that IJ = (0), then either 
I = (0) or J = (0). In particular, A is not the direct sum of two proper 
ideals. 

Proof. Suppose I # (0) and J # (0), and let a be a nonzero vector in 
E .  By (1) of 25.10 there exist u E I and ZI E J such that .(a) = a = ~ ( a ) ,  
whence uv # 0. 0 

25.12 Definition. A ring A is left primitive, or simply primitive, if 
it is isomorphic to a primitive ring of endomorphisms of a nonzero commu- 
tative group; A is right primitive if A is anti-isomorphic to a left primitive 
ring. 

Primitivity may be expressed in terms of modules: An A-module E is 
simple if E contains no proper nonzero submodules, and E is fa i thful  if 
AnnA(E) = (0). Let 4 : a -+ iL be an isomorphism from a ring A to a ring 
a of endomorphisms of a nonzero commutative group E.  We may make E 
into an A-module by defining a.z = &(x) for all a E A, x E E .  If A is a 
primitive ring of endomorphisms of E ,  then A.x = E for d nonzero z E E ,  
and hence E is a simple nontrivial A-module; as 9 is injective, E is faithful. 
Thus a primitive ring admits a faithful simple nontrivial module. 

Conversely, assume that E is a faithful simple nontrivial A-module, and 
for each a E A,  let ii be the endomorphism of the commutative group E 
defined by ii(x) = a.2. Since E is faithful, 4 : a + ii is an isomorphism from 
A to  a subring a of End(E). For each z E E ,  Ax is either E or (0) as E is 
simple, but as E is nontrivial, {z E E : Ax = (0)) is a proper submodule 
of E and hence is the zero submodule; thus Az = E for all nonzero 2 E E ,  
so A is a primitive ring of endomorphisms of E. 

In sum, a ring is primitive if and only if it admits a faithful simple 
nontrivial module. Similarly, a ring is right primitive if and only if it admits 
a faithful simple nontrivial right module. 

25.13 Theorem. A ring A is primitive if and only if A is isomorphic to 
a dense ring of linear operators on a nonzero vector space. 

The assertion follows from 25.6. 

25.14 Corollary. A commutative primitive ring is a field. 

25.15 Corollary. Let A be a primitive ring. Every nonzero ideal of 
A is a primitive ring, and for every nonzero idempotent e of A, eAe is a 
primitive ring. Moreover, A is not the direct sum of two proper ideals. 

The assertions follow from 25.13, 25.10, and 25.11. 
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A left [right] ideal I of a ring A is a minimal left [right] ideal if I is minimal 
in the set of all nonzero left [right] ideals of A, ordered by inclusion. 

25.16 Theorem. If I is a minimal left ideal of a ring A, then either 
I 2  = (0) or there is an idempotent e such that I = Ae. 

Proof. Assume that I 2  # (0). Then there exists b E I such that I b  # (0). 
Since {z E I : zb = 0) is therefore a left ideal properly contained in I, it is 
the zero ideal, so z b  # 0 for all nonzero z E K. As I b  is a nonzero left ideal 
contained in I, I b  = I, and hence there exists e E I such that eb = b. Then 
(e2 - e)b = 0, so e2 - e = 0. In particular, e E Ae, so Ae is a nonzero left 
ideal contained in I, whence Ae = I. 0 

25.17 Theorem. Let A be a ring having no nonzero nilpotent ideals. 
Then A has no nonzero left or right nilpotent ideals, and consequently if I 
is a minimal left ideal of A, there is an idempotent e such that I = Ae. 

Proof. Let I be a left ideal, and let J = I + IA,  the ideal of A generated 
by I. If J k  = Ik + I'A, then 

J"' = (I+ IA) ( Ih  + I k A )  = Ik+' + I ( A I k )  + I I k A  + I (AIk)A 
- - 1k++1 + Ik++1A. 

Hence if 1" = (0), then J" = (0), so J = (0) and thus I = (0). The final 
assertion therefore follows from 25.16. 0 

25.18 Theorem. Let e be an idempotent of a ring A having no nonzero 
nilpotent ideals, and for each a E A, let a L  be the endomorphism of the 
commutative group Ae defined by aL(z) = az for all z E Ae. (1) Ae is a 
minimal left ideal of A if and only if eAe is a division ring. (2) If Ae is a 
minimal left ideal, then Ae is a right vector space over eAe under the scalar 
multiplication defined by a.c = ac for all a E Ae, c E eAe, and X : a --t a L  is 
an epimorphism from A to a dense ring AL of linear operators on the right 
eAe-vector space Ae; furthermore, if A is primitive, X is an isomorphism. 

Proof. If J = {z E A : Az = (0)}, then J is an ideal satisfying J 2  = (0), 
so J = (0). Thus for every nonzero z E A, Az # (0). Assume first that 
Ae is a minimal left ideal. By the remark just made, Az  = Ae for every 
nonzero z E Ae. Therefore AL is a primitive ring of endomorphisms of the 
commutative group Ae. Let K be the ring of all endomorphisms of Ae that 
commute with each member of AL. By 25.6, K is a division ring. For each 
c E eAe, let CR be the endomorphism of Ae defined by CR(Z) = z c  for all 
z E Ae. Clearly C R  E K. If CR = 0, then Aec = (0), so c = ec = e2c = 0. 
Let p E K, and let c = p(e) E Ae. Then 
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so c = ec E eAe. For any a E Ae, ae = a, so 

P(a) = P(ae) = P ( a ~ ( e ) )  = a ~ ( P ( e ) )  = ~ L ( c )  = ac = C R ( ~ ) ,  

and therefore p = C R .  If c, d E eAe, clearly (cd)R = dRcR. Therefore 
p : c --t CR is an anti-isomorphism from eAe to K ,  so eAe is also a division 
ring. Clearly X is an epimorphism from A to A L ,  and by 25.6, AL is a dense 
ring of linear operators on the right eAe-vector space Ae. The kernel L of 
X satisfies LAe = (0) and hence L(Ae + AeA) = (0 ) ,  so if A is primitive, 
L = (0) by 25.11. 

Finally, assume that eAe is a division ring, and let I be a nonzero left 
ideal contained in Ae. Then Ire = I as e is a right identity of Ae. Hence 
if e l  = (0)) then I 2  = IeI = (0)) a contradiction of our hypothesis by 
25.17. Therefore there exists u E I such that eu # 0. As u E Ae, u = ue, 
so eue # 0. Therefore there exists z E A such that (eze)(eue) = e ,  so 
e = (eze)u  E I ,  whence Ae 

If A is a ring, the ring opposite A ,  or the opposite ring of A ,  is the 
ring obtained from A by replacing the multiplicative composition of A with 
the composition *, defined by 2 * y = yz for all z, y E A .  The identity 
mapping is thus an anti-isomorphism from a ring to its opposite. If 7 is 
a ring topology on A ,  7 is also a ring topology on its opposite by (2) of 
2.11, and if A has an identity element, A and its opposite have the same 
multiplicative inversion, which therefore is continuous on A for 7 if and only 
if it is on the ring opposite A. Clearly A and its opposite have the same 
ideals, the same nilpotent ideals and the same idempotents. Moreover, if e 
is an idempotent, e * A * e = eAe, and eAe is a division subring of A if and 
only if its opposite is a division subring of the opposite ring of A. Therefore 
by applying 25.14 to  the opposite ring of A,  we conclude: 

25.19 Corollary. Let e be an idempotent of a ring A having no nonzero 
nilpotent ideals, and for each a E A ,  let aR be the endomorphism of the 
commutative group eA defined by U R ( ~ )  = za for all z E eA. (1) eA 
is a minimal right ideal of A if and only if eAe is a division ring. (2) If 
eA is a minimal right ideal, then eA is a left vector space over eAe under 
the scalar multiplication defined by c.a = ca for afl c E eAe, a E eA, and 
p : a -, aR is an anti-isomorphism from A to a dense ring AR of linear 
operators on the left eAe-vector space eA; furthermore, if A is primitive, p 
is an an ti-isomorphism. 

25.20 Theorem. If A is a dense ring of linear operators on a K-vector 
space E ,  then I is a minimal left ideal of A if and only if there is an idem- 
potent e € A such that I = Ae and e is a projection on a one-dimensional 
su bspace of E .  

I. Thus Ae is a minimal left ideal. 0 
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Proof. Necessity: By 25.11 and 25.17, I = Ae where e is an idempotent 
of A. Thus e is a projection on a subspace M of E. Suppose that M 
contained linearly independent vectors a and b, Then there would exist 
u E A such that .(a) = a and u(b) = 0. Thus eue # 0, so Aue # (0) and 
hence Aue = Ae. Consequently, there would exist v E A such that vue = e,  
whence b = e(b) = vue(b) = vu(b) = 0, a contradiction. Therefore M is 
one-dimensional. 

Sufficiency: Let e E A be a projection on a one-dimensional subspace 
K.a of E ,  and let u E Ae, u # 0. As u = ue, the kernel of u contains that 
of e, a subspace supplementary to K.a, so u(a) # 0. Therefore there exists 
v E A such that v (u (a ) )  = a. Since the kernel of vu contains that of e, 
therefore, 'uu = e, and hence e E Au, so Ae Au. Thus Ae is a minimal 
left ideal. 

25.21 Theorem. Let A be a dense ring of linear operators on a K- 
vector space E that has a minimal left ideal. (1) Every nonzero left ideal 
of A contains a minimal left ideal. (2) The ideal of all linear operators in A 
of finite-dimensional range contains a projection on each finite-dimensional 
subspace of E, is the smallest nonzero ideal of A, and is the sum of all the 
minimal left ideals of A. 

Proof. By 25.20, A contains a projection e on a one-dimensional subspace 
K.c. (1) Let L be a nonzero left ideal of A.  There exist nonzero a ,  b E E 
and t E L such that t ( a )  = b. There exist T ,  s E A such that T ( C )  = a 
and s(b) = c. If f = rest E L, then f is a projection on K.a, so Af is 
a minimal left ideal contained in L by 25.20. (2) Let { a l ,  . . . ,a,} be a 
basis of a subspace M .  For each i E [1,n] there exist u;, 'ui E A such that 
ui(ai) = c, ui(ak) = 0 for all k # i, and q ( c )  = a;. Then EL1 vieui is a 
projection on M .  Finally, let J be a nonzero ideal of A, let w be a linear 
operator in A with n-dimensional range, and let al ,  . . . , a, be such that 
{w(al) ,  . . . , 'w(a,)} is a basis of w(E) .  By 25.10, for each i E [1,n] there 
exists ui E J such that ui(w(ai)) = ai and ui('w(aj)) = 0 for all j # i. Let 
ej = uiw E J. Then ei is a projection on K.ai, so Aei is a minimal left ideal 
by 25.16. Moreover, 

w = C wei, 
n 

i=l  

so 'w belongs to Ael + + Ae, and to J. 0 

We conclude with an application to topological rings: 

25.22 Theorem. If A is a Hausdorff primitive topological ring with a 
minimal left ideal Ae, where e is an idempotent, then A is topologically 
[anti-]isomorphic to a topological dense ring AL [AR] of continuous linear 
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operators containing nonzero Linear operators of finite rank on the straight 
Hausdorff right [left] vector space Ae [eA] over the division ring eAe, where 
Ae [eA] and eAe are topologized as subsets of A ,  (u, z) -+ u(z)  is continuous 
from AL x Ae to Ae [AR x e A  to eA],  and the additive groups Ae, [eA],  and 
eAe are topological epimorphic images of the additive group A .  

Proof. With the notation of (2) of 25.18, let AL be furnished with the 
topology making X : a 3 UL a topological isomorphism. Since scalar mul- 
tiplication of the right ede-vector space Ae is simply the restriction to 
Ae x eAe of multiplication on A ,  Ae is a topological eAe-vector space. 
Also (u,z) -+ u(z )  from A L  x Ae to Ae is simply the mapping (u ,z)  -+ 

(X-'(u), z) from A L  x Ae to A x Ae followed by the restriction of multi- 
plication to A x Ae and hence is continuous. In particular, each u E A L  is 
continuous. 

To show that Ae is a straight vector space over eAe, we first observe that 
A + e.X from eAe to  e.eAe is simply the identity mapping of eAe and hence 
is a homeomorphism. For any nonzero c E Ae there exist v ,  w E A such 
that wL(e) = c and W L ( C )  = e ,  so the restriction of OL to e.eAe and that 
of W L  to c.eAe are continuous maps that are inverses of each other; hence 
e.X + c.X is a homeomorphism. Consequently, X 3 c.X is the composite of 
two homeomorphisms and hence is a homeomorphism. 

Finally, for any subset U of A ,  U n Ae C Ue and U r l  eAe E eUe. Thus 
z + z e  and z + eze  are respectively continuous open epimorphisms from 
the additive group A to the additive groups Ae and eAe. The ring AR and 
the anti-isomorphism from A to AR are defined in 25.19, and the analogous 
statements concerning them are similarly proved. 0 

25.23 Theorem. A topological ring A is a locally compact, connected, 
primitive ring with a minimal left ideal if and only if it is topologically 
isomorphic to the ring of all Linear operators on a nonzero finite-dimensional 
right vector space E over R, @, or W, furnished with the unique Hausdorff 
topology making it a topological algebra over R. 

Proof. Sufficiency: By 25.13 and 25.20, A is a primitive ring with a 
minimal left ideal, and A is locally compact and connected since, as a topo- 
logical R-vector space, it is by 15.10 topologically isomorphic to Rna where 
n =  dimwE. 

Necessity: By 25.13 and 25.11, A has no nonzero nilpotent ideals, so by 
25.16 A has an idempotent e such that Ae is a minimal left ideal. Therefore 
by 25.22 we shall regard A as a locally compact dense ring of continuous 
linear operators on a right Hausdorff vector space E over a division ring K 
furnished with a Hausdorff ring topology such that the additive groups E 
and K are topological epimorphic images of A.  Consequently, both E and 
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K are connected and locally compact, so K is topologically isomorphic to 
W, C, or W by 16.5 and E is finite-dimensional by 16.2. 0 

Exercises 

25.1 If A is a dense ring of linear operators on a vector space E and if A 
contains a minimal left ideal, then for any finite-dimensional subspace F of 
E ,  A contains a projection on F .  

25.2 A primitive ring that contains a nonzero finite left or right ideal is 
finite. 

25.3 Let E be a Hausdorff vector space over a complete, straight division 
ring K .  If every finite-dimensional subspace of E has a topological supple- 
ment, then the ring A of all continuous linear operators on E is a dense ring 
of linear operators containing a minimal left ideal. [Use 15.2.1 (Corollaries 
of the Hahn-Banach theorem imply that the hypothesis holds if K is W or C 
and E is a normed (or, more generally, a Hausdorff locally convex) space.) 

25.4 Let E be the topological vector space Q + Qq'z over Q, where 
both E and Q are given the topology induced from R. The ring of all 
continuous linear operators on E is not a primitive ring of endomorphisms 
of the additive group E .  [Use 8.7.1 

26 The Radical of a Ring 

In $24 we defined the radical of a commutative ring with identity to  be 
the intersection of its maximal ideals. Here we extend that definition to one 
for arbitrary rings. 

26.1 Definition. An ideal J of a ring A is left primitive, or simply 
primitive, if A/ J is a primitive ring, and J is right primitive if A /  J is a 
right primitive ring. 

26.2 Definition. A left ideal J of a ring A is regular if there exists 
e E A such that x - xe E J for all x E A, and a right ideal J of A is regular 
if there exists e E A such that x - ez E A for all x E A. A maximal 
regular left [right] ideal of A is a left [right] ideal that is maximal in the 
set of all proper regular left [right] ideals of A ,  ordered by inclusion. 

Clearly any left [right] ideal containing a regular left [right] ideal is again 
regular, and if A has an identity element, every left or right ideal is regular. 
Consequently, a maximal regular left [right] ideal is actually maximal in the 
set of d proper left [right] ideals of A,  and thus is a regular maximal left 
[right] ideal, and conversely, a regular maximal left [right] ideal is clearly a 
maximal regular left [right] ideal. 
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26.3 Theorem. A proper regular left [right] ideal of a ring A is con- 
tained in a maximal regular left [right] ideal. 

Proof. Let J be a proper regular left ideal. Then there exists e E A such 
that z - z e  E J for all z E A. As J is proper, e f J .  The set of all ideals 
of A containing J but not e, ordered by inclusion, is clearly inductive, and 
so by Zorn's Lemma contains a maximal member M .  Any left ideal of A 
properly containing M would therefore contain e and hence would be A; 
thus M is a maximal regular left ideal. 0 

If J is a regular left ideal of a ring A ,  we define P( J )  and D (  J )  by 

P ( J )  = { a  E A : aA C J }  D ( J )  = { d  E A : J d  C J } .  

26.4 Theorem. If J is a regular left ideal of a ring A,  P (  J) is the largest 
ideal of A contained in J ,  and D ( J )  is the largest subring of A in which J 
is an ideal. 

Proof. There exists e E A such that z - ze  E J for all z E A.  If z E P (  J ) ,  
J ,  and hence P ( J )  is then z = (z - ze)  + z e  E J + J = J .  Thus P ( J )  

the largest ideal of A contained in J .  0 

26.5 Theorem. Let A be a ring. (1) If M is a regular maximal left 
ideal of A and if, for each a E A and each d E D ( M ) ,  ii and 2 are the 
endomorphisms of the commutative group AIM well defined by 

ii(z + M )  = a z  + M J(z + M )  = zd + M 

for d x E A,  then 4 : a + ii is an epimorphism from A to  a primitive ring 
A of endomorphisms of AIM whose kernel, P ( M ) ,  is thus a primitive ideal, 
$ : d t ci is an anti-epimorphism with kernel M from D ( M )  to the division 
ring D of d endomorphisms of AIM that commute with each member of 
A, AIM is a right vector space over D ( M ) / M  under the well defined scalar 
mul tiplica tion 

(z + M).(d  + M )  = zd+ M 

for all 2 E A ,  d E D ( M ) ,  and A is a dense ring of linear operators on the 
D(M)/M-vector space AIM.  (2) If P is the kernel of an epimorphisrn T,!I 

from A to a primitive ring A of endomorphisms of a nonzero commutative 
group E ,  then for each nonzero x E E ,  the left ideal M z ,  defined by 
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is a regular maximal left ideal of A, and P = P(M,). (3) If P is a primitive 
ideal of A ,  then P is the intersection of all the regular maximal left ideals 
M such that P = P ( M ) .  

Proof. Let e E A be such that z - ze E M for all z E A. (1) Clearly iZ. and 
2 are well defined. To show that A is a primitive ring of endomorphisms 
of A I M ,  let z E A \ M and y E A, Now Ae p M ,  since otherwise z = 
(2-ze)+ze E M for all z E A, a contradiction. Thus ( d  E A : Ad C M }  is a 
proper left ideal of A containing M and hence is M .  Consequently, Az M ,  
so Az + M = A.  In particular, there exists a E A such that ax - y E M ,  so 
b(z + M )  = y + M .  Thus A is a primitive ring of endomorphisms of A I M ,  
so the kernel of 4, which is clearly P ( M ) ,  is a primitive ideal. 

If d E D(M), then for all a ,  z E A, 

( b o J ) ( z + M )  = & ( z d + M )  = a z d + M = J ( a e + M )  = ( J o & ) ( a : + M ) ,  

so d’ E D. Conversely, let 6 f D, and let d E A be such that d + M = 
6(e + M). Then for any z E A ,  z + M = ze + M since x - ze E M ,  so 

b ( z + M )  = 6(ze+M) = 6 ( i ( e + M ) )  = i ( b ( e + M ) )  = 2 ( d + M )  = z d + M .  

In particular, if z E M ,  then M = 6 ( 0 + M )  = 6(x + M )  = z d + M ,  so zd  E 
M .  Thus d E D ( M ) ,  and for each 2 E A, 6(z + M )  = xd + M = J(z + M ) ,  
so 6 = a. Clearly, if c, d E B ( M ) ,  cd = 20 2.. Moreover, 

- 
+ I - l (O)  = { d  E A :  Ad M } n D ( M )  = M n D ( M )  = M 

as we saw above. Therefore D ( M ) / M  is isomorphic to the division ring 
opposite D, and thus A is a dense ring of linear operators on the right 
D(M)/M-vector space AIM by 25.6. 

(2) Clearly each M ,  is a proper left ideal containing P ,  and 

P = n{M, : E ,  # 0). 

It therefore suffices to show that each M ,  is a regular maximal left ideal 
and that P = P(M,).  Since A is primitive, there exists e E A such that 
;(z) = 2, so a - ae E M,  for all  a E A ,  and thus M, is a regular left ideal. 
To show that for any c € A \ M,, A = Ac + M,, let d E A. As t ( z )  # 0, 
there exists a E A such that 

b ( E ( 2 ) )  = &), 
so ac - d E M,, and thus d E Ac + M,. Hence M ,  is a regular maximal left 
ideal of A .  Since P(M,)  is the largest ideal of A contained in M ,  by 26.4, 
P cl P(M,) .  Conversely, let a E P(M,) ,  and let y E E .  Then there exists 
b E A such that b(z) = y, so as ab E M,, 

h 

b(y )  = b ( i ( z ) )  = ( a b ) ( z )  = 0. 
Thus ii = 0, so a E P. Clearly (3) follows from (2). 0 
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26.6 Theorem. If M is a maximal ideal of a ring A that is also a regular 
left ideal, then M is primitive. 

Proof. By 26.3, M is contained in a maximal regular left ideal N .  By 
26.4, M = P ( N )  and hence by (1) of 26.5, M is primitive. 0 

26.7 Definition. Let A be a ring. The radical of A is A if A has no 
proper regular left ideals, the intersection of all regular maximal left ideals 
of A if A has a proper regular left ideal. The ring A is semisimple if its 
radical is {0}, a radical ring if its radical is A. 

Thus, if A is a commutative ring with identity, the radical of A is the 
intersection of a l l  the maximal ideals of A,  in accordance with Definition 
24.13. 

26.8 Theorem. The radical of a ring is the intersection of d its prim- 
itive ideals and thus is an ideal. 

The assertion follows from 26.5 and 26.4. 

26.9 Theorem. Let R be the radical of a ring A. (1) Each element of 
R is advertible. (2) For any c E A, the following statements are equivalent: 

1' ac is left advertible for all a E A. 
2" ca is left advertible for all a E A. 
3" acb is left advertible for all a ,  b E A. 
4" c E R. 

Proof. (1) Let c E A have no left adverse, and let J = {z - z c  : 2 E A } .  
Clearly J is a regular left ideal, and J is proper since -c $! J. By 26.3, J 
is contained in a maximal regular left ideal M ,  and c $! M ,  since otherwise, 
for any z E A,  z = (z - zc) + z c  E J + M = M ,  a contradiction. Therefore 
c 4 R. 

Let b E R. We have just seen that b has a left adverse a ,  and a = ab- b E 
R by 26.8, and hence a also has a left adverse c. Therefore as o is associative, 
b = c,  and a is the adverse of b. 

(2) By (1) and 26.8, 4" implies each of 1' - 3". Suppose that c $i! R. 
By 26.8, there is a primitive ideal P of A such that c $i! P. By definition, 
P is the kernel of an epimorphism a -+ ZL from A to a primitive ring of 
endomorphisms of a nonzero commutative group E. As i. # 0, there ex- 
ists 2 € E such that t ( z )  # 0. Therefore there exist a ,  b € A such that 
ZL(i.(z)) = z and b(z)  = z. For any u E A,  [u o a c ] ( z )  = 2 # 0,  so ac is not 
left advertible, [ u o c a ] ( E ( z ) )  = t ( z )  # 0,  so ca is not left advertible, and 
[u o acb](z )  = z # 0,  so acb is not left advertible. 0 
- 
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26.10 Corollary. If R is the radical of a ring A,  then the ring opposite 
R is the radical of the ring opposite A. 

Proof. By (1) and 3" of (2) of 26.9, c E R if and only if acb is advertible for 
all a ,  b E A.  Since a ring and its opposite clearly have the same advertible 
elements, the assertion follows. 

26.11 Theorem. Let R be the radical of a ring A.  (1) R is the inter- 
section of the right primitive ideals of A .  ( 2 )  For any c E A ,  the following 
statements are equivalent: 

1" ac is right advertible for all a E A.  
2" ca is right advertible for all a E A.  
3" acb is right advertible for aJJ a, b E A. 
4" c E R. 

Proof. The statements follow from 26.8, 26.9, and 26.10. For example, 
1" of 26.9, applied to the ring opposite A,  becomes 2" of this theorem. 

26.12 Theorem. If A is a primitive or right primitive ring, then A is 
semisimple. In particular, a dense ring of linear operators on a vector space 
is semisimple. 

The assertion follows from 26.8 and 26.10. 

26.13 Theorem. Let J be a left or right ideal of a ring A .  If every 
element of J is left [right] advertible, then J is contained in the radical of 
A.  

The assertion follows from 26.9 and 26.11. 
Extending Definition 21.9, we shall say that a left or right ideal of a ring 

is nil if each of its elements is nilpotent. 

26.14 Corollary. A nil left or right ideal of a ring is contained in its 

Proof. If zn = 0, then the adverse of z is - CLz: zn. 0 

26.15 Theorem. Let A and A' be rings with radicals R and R' respec- 
tively, and let h be an epimorphism from A to A'. (1) h(R) C R'. (2) If 
h-l(O) C R, then h(R) = R'. 

Proof. (1) By (1) of 26.9, h(R) is an ideal of A' all of whose elements 
are advertible, so h(R) C R' by 26.13. (2) If Q is a primitive ideal of A', 
then h- l (Q)  is a primitive ideal of A since h induces an isomorphism from 
A / h - l ( Q )  to A'/Q.  If P is a primitive ideal of A,  then h-l(O) R P, 
so h- ' (h(P))  = P, and consequently h(P) is a primitive ideal of A' since 
A'/h(P)  is isomorphic to A / h - l ( h ( P ) )  = A / P .  Thus P + h ( P )  is a 

radical. 
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bijection from the set P of primitive ideals of A t o  the set Q of primitive 
ideals of A', and its inverse is Q -+ h-'(Q). Hence by 26.8, 

so R' = h(h- ' (R'))  = h(R).  0 

then R / J  is the radicai o f  A / J .  In particular, AIR is a semisimple ring. 

eRe is the radical o f  eAe. 

26.16 Corollary. I f  J is an ideal o f  a ring A contained in its radical R, 

26.17 Theorem. I f  e is an idempotent in a ring A with radical R, then 

Proof. Let S be the radical of eAe. As eRe is an ideal of eAe, to show 
that eRe 2 S, is  suffices by 26.13 to show that each c E eRe has an adverse 
in eAe. As eRe 2 R and as c = ece, c has an adverse ca in A by 26.9 and 
26.11. Thus 

caece - ece = ca = ececa - ece, 

so ca E Ae n e A  = eAe. 
Conversely, let c E S. To show that c E R (and hence in eRe) ,  it suffices 

by 26.11 to show that for any a E A, ca has a right adverse in A. Now ceae 
has an adverse b in eAe by 26.9 and 26.11. As c = ce and b = eb, 

ca o b = cea + b - ceab = cea + b - ceaeb 

= [ceae + (cea - ceae)] + b - ceaeb 

= (ceae o b) + (cea - ceae) = cea - ceae. 

As c = ec, (cea - = 0, and hence if d = - ( m a  - ceae), d i s  the 
adverse of cea - ceae. Thus ca o b o d = (cea - ceae) o d = 0 ,  so ca is right 
advertible in A.  0 

26.18 Theorem. If R is the radical o f  a ring A and i f  J is an ideal o f  
A, then the radical R( J )  o f  the ring J is R n J .  

Proof. Let P be the set of primitive ideals of A, and let & be the subset 
of those primitive ideals P not containing J .  If P E &, then ( J  + P ) / P  is 
a nonzero ideal of the primitive ring A/P  and hence is a primitive ring by 
25.15. As J / ( P  f7 J )  is isomorphic to  ( J  + P ) / P ,  therefore, 

R f I J = ( n  P ) n J =  n ( P n J ) =  n ( P n J ) > R ( J ) .  

But also, R n J is an ideal of J each of whose elements is an advertible 
element of A and hence also an advertible element of J ,  so R n J C_ R ( J )  
by 26.13. 0 

P E P  PEP PEQ 



222 PRIMITIVE AND SEMISIMPLE RINGS 

26.19 Corollary. If R is the radical of a ring A, then R is a radical ring 
and is the radical of the ring A1 obtained by adjoining an identity element 
to A .  

Proof. A is an ideal of A1 , and A1/A is isomorphic to the semisimple ring 
Z, so by (1) of 26.15, applied to the canonical epimorphismfrom A1 to Al/A, 
the radical R1 of A1 is contained in A. Thus by 26.18, R1 = R1 fl A = R. 0 

26.20 Theorem. If A is a semisimple ring and if J is a left ideal of A, 
the radical R ( J )  of the ring J is {z E J : Jx = (0)). 

Proof. Let I = {z E J : J x  = (0)). J R ( J )  is a left ideal of A contained 
in R(J) ,  so each of its elements is advertible by (1) of 26.9. Consequently, 
J R ( J )  is contained in the radical of A by 26.13, so J R ( J )  = (0) by hypoth- 
esis, and thus R(J) E I .  But also I is an ideal of J satisfying I2 = (0), so 
I C_ R(J )  by 26.14. Thus R(J )  = I. 

We shall call a left or right ideal of a ring advertible if each of its elements 
is advertible. By 26.9 and 26.13, the radical of a ring is an advertible ideal 
and is the largest advertible left or right ideal of the ring. 

26.21 Theorem. If ( A x ) x € L  is a family of rings and if Rx is the radical 
of Ax for each X E L, then nxGL Rx is the radical of nxEL Ax; in particular, 
if each Ax is semisimple, so is nxEL Ax. 

Proof. Let A = nXGL Ax, and let R be the radical of A. For each p E L, 
let p r ,  be the canonical projection from A to A,. By 26.15, prx(R) C Rx 
for each X E L,  so R E nXEL Rx. But nxEL Rx is clearly an advertible ideal 
of A since each Rx is an advertible ideal of Ax. Therefore nxGL Rx R by 
26.13. 

E'rom 26.21 and 26.18 we obtain: 

26.22 Theorem. If ( A X ) X E L  is a family of rings and if Rx is the radical 
of Ax for each X E L, then eXEL Rx is the radical of exEL Ax. 

the underlying ring A need not be an ideal of the algebra A.  
If A is an algebra over a commutative ring with identity K ,  an ideal of 

26.23 Theorem. Let A be an algebra over a commutative ring K with 
identity. (1) Every regular maximal left ideal of the ring A is a left ideal 
of the algebra A.  (2) Every primitive ideal of the ring A is an ideal of the 
algebra A.  (3) The radical of the ring A is an ideal of the algebra A. 

Proof. By (3) of 26.5 and 26.8, we need only prove (1). Let M be a 
regular maximal left ideal of A,  and let e E A be such that z - z e  E M for 
all 2 E A.  Suppose that M were not a left ideal of the algebra A. Then the 
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algebra left ideal K . M  generated by M would strictly contain M and hence 
be A ,  SO there would exist mi, . . . , mn E M and scalars X i ,  . . ., An such 
that e = C;=, Xjmj. But then, for any z E A ,  ze = C;=l(Ajz)mj E M ,  so 
z = (z - ze) + ze E M ,  and hence M = A ,  a contradiction. 0 

26.24 Theorem. Let A be a primitive ring that is an algebra over a 
field F .  There exist a regular maximal left ideal M of A ,  an isomorphism 
4 : a + Ei from A to a dense ring A of linear operators on a K-vector space 
A I M ,  where K is the division ring of all endomorphisms of AIM commuting 
with each & E A, and an isomorphism y5 : T --.t TI from F to a subfield F of 
the center of K such that A is a subalgebra of the F-algebra of all linear 
operators on A I M ,  and TG = .i.& for all T E F and all a E A .  

Proof. As the zero ideal of A is a primitive ideal, by (3) and (1) of 
26.5 there is a regular maximal ideal M of A such that q5 : a + Ei is an 
isomorphism from A onto a primitive ring A of endomorphisms of AIM,  
where &(z + M )  = uz + M for d a, z E A .  By 26.23, M is an algebra left 
ideal, so for each T E F ,  TI : z + M + T.Z + M is a well-defined endomorphism 
of the additive group A I M .  For each T E F ,  1: E K since for all a ,  z E A ,  

( T I  o 6)(z + M )  = ~ . ( a z )  + M = a(r .z)  + M = (6 0 +)(z + M ) .  

Clearly 2 ~ ,  : T + i is an epimorphism from F to its range i in K; since i is 
the identity linear operator on E ,  $ is an isomorphism from F to P. Also, 
for all T E F ,  a E A ,  TZ = r̂  o 6, since for any z E A ,  

rG(z  + M )  = (r.a)z + M = r . (az)  + M = (1: o 6)(z + M ) .  

To show that @ is a subfield of the center of K ,  let T E F ,  X E K ,  and let 
z E A \ M .  As A is a primitive ring of endomorphisms, there exists a E A 
such that iE(z + M )  = z + M .  Then by the preceding, 

x0.i OEi = x 0 TYU = rra 0 x = 1: o h  0 x = TI 0 x 0 Ei, 

and consequently ( X o . i ) ( z + M )  = (XoTIo&)(z+M) = ( i o X o E i ) ( z + M )  = 
( T I  o A)(z + M ) .  By the definition of a scalar multiple of a linear operator, 
where the scalar belongs to the center of the coefficient division ring, 

(TI.Ei)(z + M )  = TI.(az + M )  = T . ( u ~ )  + M = (T .U)Z + M = rG(z  + M )  

for all T E F ,  a, z E A .  Thus i.Ei = 2 E A, so A is a subalgebra of the 
F-algebra of all linear operators on the K-vector space A I M .  0 

By set-theoretic considerations, we may construct a field K1 containing 
F as a subfield, an isomorphism T from K1 to K such that T ( T )  = r̂  for 
all T E F and a scalar multiplication from K1 x ( A I M )  to AIM such that 
t.(z + M )  = ~ ( t ) ( z  + M )  for all t E K1 and all z E A .  Consequently, we 
obtain: 
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26.25 Corollary. A primitive ring A that is i ~ l l  algebra over a field F 
is isomorphic to a dense F-algebra of Linear operators on a vector space E 
over a division ring K containing F in its center. 

We shall conclude by applying these concepts to obtain some information 
about advertibly open rings. 

26.26 Theorem. (1) IfA is an advertibly open ring, then every quotient 
ring of A and every left or right ided of A is advertibly open. (2) If J is an 
ideal of a topological ring A, then A is advertibly open if and only if J and 
A / J  are advertibly open. 

Proof. (1) Clearly every epimorphic image of an advertible element is 
advertible. Consequently, if J is an ideal of A and $J the canonical epimor- 
phism from A to A / J ,  then +j(A") is an open subset of (AIJ)",  so A / J  is 
advertibly open by 11.8. Also, if x is advertible, then as xa = zz" - z = 
xaz - x, xa belongs to every left or right ideal I that x does. Consequently, 
A" n I E I", so I is advertibly open by 11.8. (2) Assume that J and A / J  
are advertibly open, where J is an ideal of A. Then 4 s 1 ( ( A / J ) " )  is open, 
and each of its elements is advertible: Indeed, if b+ J is the adverse of a + J 
in A / J ,  then a o b and b o a belong to J and hence have adverses c and d 
respectively, Thus a o ( b  o c) = (a  o b)  o c = 0 = d o  ( b  o a) = ( d o  b)  o a, so a 
is left and right advertible and hence advertible as o is associative. 0 

26.27 Theorem. If A is an advertibly open ring, then every regular 
maximal left ideal of A, every primitive ideal of A ,  and the radical of A are 
closed. 

Proof. Let M be a regular maximal left ideal, and let e E A be such that 
z - z e  E M for aJl x E A.  Suppose that M is not closed. Then as is a 
left ideal properly containing M ,  % = A.  Consequently, as A" is an open 
neighborhood of zero, there exists m E M such that e - m E A". Let q be 
the adverse of e - m. Then e = rn - ( q  - qe)  - qm E M ,  and hence M = A ,  
a contradiction. Therefore M is closed. Similarly, every regular maximal 
right ideal is closed. By (3) of 26.5, every primitive ideal is therefore closed, 
and also the radical of A is closed by 26.7. 0 

26.28 Theorem. If e is an idempotent of a Hausdorff ring A,  then Ae 
is a closed left ideal, eA is a closed right ideal, and eAe is a closed subring. 

Proof. The function f from A to A, defined by f(z) = z - z e ,  is con- 
tinuous, and clearly f-'(O) = Ae. Similarly, eA is closed. Therefore as 
eAe = eA n Ae, eAe is closed. 0 
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26.29 Theorem. If A is a Hausdorff, advertibly open, semisimple ring, 
a left [right] ideal I is a minimal closed left [right] ideal of A (that is, I is 
minimal in the set of d nonzero closed left [right) ideals of A, ordered by 
inclusion) if and only if I is a minimal left [right] ideal of A,  in which case 
there is an idempotent e such that I = Ae [I  = eA].  

Proof, The condition is sufficient by 26.14, 25.17, and 26.28. Necessity: 
Let I be a minimal closed left ideal of A .  First, we shall show that if J 
is a nonzero proper closed left ideal of the ring I ,  then I J  = (0). Indeed, 
suppose that IJ # (0). Then there exists c E J such that I c  # (0). As Ic  is 
a left ideal of A,  therefore, z = I .  Thus as J is closed in A, I = C J C I ,  
a contradiction. Thus I J  = {0}, and, in particular, J 2  = (0). 

By 26.26 I is advertibly open, so by 26.27 its radical R(I )  is closed. 
Now I is not a nilpotent left ideal by 26.14, so by 26.20 R(I)  is a proper 
ideal of I ;  consequently by the preceding, I R ( I )  = {0}, and I / R ( I )  is a 
nonzero Hausdorff ring that is semisimple and advertibly open by 26.16 and 
26.26. By the preceding and 26.14, R ( I )  contains every proper closed left 
ideal of the ring I .  Consequently, I / R ( I )  contains no proper nonzero closed 
left ideals, and hence by 26.27 the zero ideal of I / R ( I )  is the only regular 
maximal left ideal of I / R ( I ) .  Let D = I / R ( I ) .  Then D has a right identity 
E and no proper nonzero left ideals. Consequently, the right annihilator of 
D in D is (0), the left annihilator of each nonzero T in D is (0), cy - ELY = 0 
for each a E D, and finally, D is a division ring. 

Let J be a nonzero left ideal of A contained in I .  If J C R ( I ) ,  then 
J C R ( I )  C I ,  as R(I )  is closed, contradicting the minimality of I .  Thus 
J R(I )  and hence, as D is a division ring, J is mapped surjectively to 
D by the canonical epimorphism from I to D .  In particular, J contains an 
element f mapped onto the identity of D, so f 2  - f E R(I) .  Consequently 

- 

f 3  - f 2  = f ( f 2  - f )  E J R ( I )  S: I R ( I )  = (0). 

Therefore if e = f 2 ,  e is an idempotent of J mapped onto the identity of D 
and hence is nonzero. By 26.28, Ae is closed, so I = Ae 2 J 2 I .  Therefore 
I is a minimal left ideal and I = Ae. 0 

Exercises 

26.1 Let E be a K-vector space having a countably infinite basis, let A = 
EndK(E), and let P be the ideal of all u E A such that dimKu(E) < +co. 
(a) P is a maximal ideal of A.  (b) P is a primitive ideal of A .  (c) A / P  is 
a ring with identity that has no proper nonzero ideals and no minimal left 
ideals. [If u E A \ P ,  construct v E A such that u 4 Avu + P.] 

26.2 Let A be a topological ring, M a regular maximal left ideal of A. 
With the notation of the proof of (1) of 26.5, let g be the isomorphism 
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from A / P ( M )  to A defined by g(a + P ( M ) )  = ii for all a E A .  If A is 
equipped with the topology making g a topological isomorphism, then A 
is a topological ring, and (u,x) + u(z)  is continuous from a x ( A I M )  to 
A/M. 

26.3 Let A be a Hausdorff ring such that adversion is uniformly continu- 
ous on the radical R of A (a condition holding, for example, if A is bounded 
(Exercise 12.8)). (a) E is a radical ring. (b) 5 is contained in the radical of 
2. (c) If R is open in A,  then is the radical of Â . [Use 5.14.1 (d) (Kurke 
[1967]) If A is complete, R is closed. 

26.4 (Yood [1962]) Let A be a dense subring of an advertibly open ring 
B. The following statements are equivalent: 

1" A is advertibly open. 
2" Every regular maximal left ideal of A is closed. 
3" Every regular maximal right ideal of A is closed. 

[If a E A has an adverse in B and if J,  = {x - xu : x E A}, show that J ,  is 
dense in B.] 

26.5 A Hausdorff ring is a radical ring if and only if it is advertibly open 
and has no proper closed regular left ideals. 

26.6 A Gel'fand ring is an advertibly open, Hausdorff ring with continuous 
adversion. (Kaplansky [1947c]) If J is a closed ideal of a Hausdorff ring A, 
then A is a Gel'fand ring if and only if J and A / J  are Gel'fand rings. 

26.7 (Correl [1958]) Let A be a Gel'fand ring whose completion Â  is 
locally compact. (a) Â  is a Gel'fand ring. [If U is a symmetric neighborhood 
of zero in the topological group Aa and if the closure 6 of U in Â  is compact, 
show that @ C (Â )". (b) If A is a field, there is a Hausdorff field topology S 
weaker than the given topology of A such that the completion A1 of A for 
S is a locally compact topological field, and A1 is a continuous epimorphic 
image of Â . [Use (a), 26.27, and 11.11 in considering A^/M, where it4 is a 
maximal ideal of A^.] 

27 Artinian Modules and Rings 

Here we shall give some basic properties of artinian rings, algebras, and 

27.1 Definition. Let A be a ring. An A-module E is artinian if every 
nonempty set of submodules of E ,  ordered by inclusion, contains a minimal 
element. A ring is artinian if i t  is artinian as a left module over itself, 
that is, if every nonempty set of left ideals, ordered by inclusion, contains a 
minimal element. If A is an algebra over a commutative ring with identity 
K, A is an artinian K-algebra if every nonempty set of left (K-algebra) 
ideals, ordered by inclusion, contains a minimal element. 

modules. 
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If A is a K-algebra such that A2 = A (in particular, if A has an identity 
element), then A is an artinian ring if and only if it is an artinian K-algebra, 
simply because every left ideal of the ring A is also a left ideal of the K- 
algebra A. If A is a finite-dimensional algebra over a field K ,  then A is an 
artinian K-algebra, since if I and J are left ideals such that I C J ,  then 
dirnh-1 < dimKJ. The ring of all linear operators on a finite-dimensional 
vector space over a division ring is also artinian by 25.9. 

An argument similar to that in the proof of 20.2 establishes the following 
equivalent formulation: 

27.2 Theorem. An A-module E is artinian if  and only if  for every 
decreasing sequence (Mn)n21 of submodules o f  El there exists q 2 1 such 
that M ,  = Mq for all n 2 q. A K-algebra A is artinian i f  and only i f  for 
every decreasing sequence (Mn),>1 o f  (K-algebra) left ideals, there exists 
q 2 1 such that M ,  = Mq for all n 2 q. 

The condition of 27.2 is frequently called the Descending Chain Condi- 
tion. 

27.3 Theorem. I f  E is an A-module and F a submodules of  E ,  then E 
is artinian if and only i f  both F and E / F  are artinian. 

Proof. Necessity: Clearly F is artinian. If (M,),?l were a strictly de- 
creasing sequence of submodules of E / F ,  then (4j1(M,)),>l would be a 
strictly decreasing sequence of submodules of E ,  where 4~ is-the canonical 
epimorphism from E to E / F .  Sufficiency: Let (1Mn)nll be a decreasing 
sequence of submodules of E .  By hypothesis, there exists p 2 1 such 
that M ,  n F = M p  i l  F for all n 2 p ,  and there exists q 2 p such that 
( M ,  + F ) / F  = (Mq + F ) / F  for all n 2 q. Then M ,  = Mq for all n 2 q. 
Indeed, let n 2 q andlet 3: E M q .  Then z + F  E ( M , + F ) / F ,  so there exists 
y E M ,  such that x - y  E F .  Then x - y  E F n M ,  = F n M , =  F n M , .  
Consequently, z = (x - y) + y E Idn. 0 

The proofs of the following five statements are similar to the proofs of 
20.4-20.8. 

27.4 Corollary. I f  A is an artinian ring [K-algebra] and if  J is an ideal 
of A, then A/ J is an artinian ring [K-algebra]. 

27.5 Corollary. The  sum of  finitely many artinian submodules o f  an 
A-module E is  artinian. 

27.6 Corollary. The Cartesian product of finitely many artinian A- 
modules is  artinian. 



228 PRIMITIVE AND SEMISIMPLE RINGS 

27.7 Theorem. The Cartesian product of finitely many artinian rings 
[ K -alge bras] is artinian. 

27.8 Theorem. If A is an artinian ring with identity and if E is a 
finitely generated unitary A-module, then E is artinian. 

27.9 Theorem. If (Mn)Olnlk is a decreasing sequence of submodules 
of an A-module E such that MO = E and Mk = {0}, then E is noetherian 
[artinian] if and only if M , - l / M ,  is noetherian [artinian] for each n E [I, k]. 

Proof, An inductive argument based on 20.3 [27.3] establishes that E / M n  
is noetherian [artinian] for each n E [l, k]. 0 

27.10 Theorem. If J is a proper ideal of a ring A with identity such that 
A/ J is noetherian [artinian] ring, and if (M,),>o is a decreasing sequence of 
finitely generated submodules of a unitary A-module E such that Mo = E 
and JMn-l M ,  for all n 2 1, then E/Mk is a noetherian [artinian] 
A-module for all k 2 1. 

Proof. For each n 2 1 we may regard M,-l/Mn as an A/J-module 
having the same submodules as the A-module M,-l/M,. By hypothesis, 
M,-1 / M ,  is finitely generated unitary A-module, hence a finitely generated 
unitary A/ J-module, therefore a noetherian [artinian] A/ J-module by 20.8 
[27.8], and hence also a noetherian [artinian] A-module. Therefore by 27.9, 
the A-module E/Mk is noetherian [artinian]. 0 

27.11 Definition. A ring [K-algebra]A is simple if A has no proper 
nonzero [K-algebra] ideals and A is not a radical ring. 

27.12 Theorem. The following statements about a ring A [F-algebra 
A, where F is a field] are equivalent: 

1' A is primitive and is an artinian ring [F-algebra]. 
2' A is isomorphic to the ring [F-algebra] of all linear operators on a 

nonzero finite-dimensional vector space over a division ring K [that contains 
F in its center]. 

3" A is a simple artinian ring [F-algebra]. 

Proof. Assume 1". By 25.13 [26.25] we may suppose that A is a dense 
ring [F-algebra] of linear operators on a K-vector space E ,  where K is a 
division ring [containing F in its center]. Suppose that (z,),21 were a 
linearly independent sequence in E .  For each n 2 1, let 

J, = {u  E A : .(xi) = 0 for all i E [l,n]}. 

Clearly (Jn)n>l is a strictly decreasing sequence of left [F-algebra] ideals, 
a contradiction. Thus E is finite-dimensional, and hence A is the ring [F- 
algebra] of all linear operators on E .  
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If 2" holds, then A is artinian by 25.9, not a radical ring as it has an 
identity element, and hence a simple ring by (2) of 25.21. 

If 3" holds, then A contains a primitive [F-algebra] ideal by 27.11 [and 
26.231, so the zero ideal is primitive as A has no other proper [F-algebra] 
ideals, and consequently A is primitive. 0 

27.13 Corollary. An ideal P of an artinian ring or F-algebra A, where 
F is a field, is primitive if and only if i t  is a maximal ideal and AIP has an 
identity element. 

Proof. We need only apply 27.12 to AIP.  

27.14 Theorem. (Artin- Wedderburn) The following statements about 

1" A is a semisimple artinian ring [F-algebra]. 
2" A is the direct sum of finitely many rings [F-algebras], each isomorphic 

to the ring [F-algebra] of all linear operators on a nonzero finite-dimensional 
vector space over a division ring [that contains F in its center]. 

3' A is the direct sum of finitely many simple artinian rings [F-algebras]. 
Proof. The following argument for a ring A is equally valid if A is an F- 

algebra, since every primitive ideal of the ring A is also an algebra ideal by 
26.23. Assume lo. As A is not a radical ring, it contains primitive ideals. 
As A is artinian, the set Q of all finite intersections of primitive ideals, 
ordered by inclusion, has a minimal element; let P I ,  . . . , P, be primitive 
ideals such that PI n . . n P, is minimal in &. If PI n - .  . n P, contained a 
nonzero element a ,  there would be a primitive ideal Q such that a 4 Q as A 
is semisimple, and hence PI n . . n P, n Q C PI n . - n P,, a contradiction 
of the minimality of PI n . a f l  P,. Thus PI n - .  n P, = (0). Moreover, 
any two primitive ideals are relatively prime as they are maximal ideals by 
27.13. Consequently by 24.11, as PI n n P, = (0)) A is isomorphic to 
n:=, (A/Pi ) .  Therefore 2" holds by 27.12, and by that same theorem, 2' 
and 3" are equivalent. If 3" holds, then A is semisimple by 26.21 as the 
radical of a simple ring is the zero ideal, and A is artinian by 27.7. 0 

27.15 Theorem. The radical R of an artinian ring [K-algebra] A is a 
nilpo ten t ideal. 

Proof. If A is a K-algebra, by 26.23 its radical is an algebra ideal. Since 
(Rk)k>1 is a decreasing sequence of ideals, there exists q 2 1 such that 

RQ for all k 2 0. Let N = RQ, and suppose that N # (0). The set 
C of nonzero left [algebra] ideals L such that N L  # (0) is nonempty, since 
N 2  = R2Q = RQ # (0) and thus N E C. Therefore C has a minimal element 
M .  Since N M  # (0), there exists b E M such that N b  # (0). As 

a nonzero ring A [F-algebra A,  where F is a field] are equivalent: 

N ( N b )  = N 2 b  = N b  # (0) 
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and N b  & M ,  N b  = M by the minimality of M .  Thus there exists n E N 
such that nb = b. As n E N 2 R,  n is advertible, so 

b = b -  (na o n ) b  = b - nab - nb +nanb = ( b  - nb) - na(b - nb) = 0, 

a contradiction. Thus N = (0). 0 

We next apply these results to the commutative case: 

27.16 Theorem. If A is a commutative ring with identity and if the zero 
ideal of A is a product of finitely many maximal ideals, then A is artinian 
if and only if A is noetherian. 

Proof. Let (0) = MI . . .Ma where ( M k ) ~ < k < ~  is a sequence of (not nec- 
essarily distinct) maximal ideals. Let A0 = 2 A d  Ak = MI . . . Mk for each 
k E [l,s]. Then for each such I c ,  Ak-l/Ak is a noetherian A-module if and 
only if it is an artinian A-module. Indeed, as Ak = Ak-lMk, is 
a vector space over the field A/Mk under the well-defined scalar multipli- 
cation (a  + M k ) . ( x  +Ah) = ax + Ah for all a E A and all IC E Ak-1, and 
the submodules of the A-module Ak-l/Ak are identical with the subspaces 
of the (A/Mk)-vector space Ak-l/Ak. Consequently, if A is artinian [noe- 
therian], then the A-module Ak-l/Ak is artinian [noetherian] by 27.6 [20.3], 
so the (A/Mk)-vector space Ak-l/Ak is artinian [noetherian], hence finite- 
dimensional [by 20.21, therefore noetherian [artinian], and so the A-module 
Ak-l/Ak is noetherian [artinian]. Consequently, by 27.9, A is an artinian 
ring if and only if it is a noetherian ring. 0 

27.17 Theorem. If A is a commutative ring with identity with radical 
R, then A is an artinian ring if and only if A is a semifocal noetherian ring 
and R is nilpotent, or equivalently, if and only if A is the direct sum of 
finitely many local noetherian rings whose maximal ideals are nilpotent. 

Proof. Necessity: By 26.16 and 27.14, AIR is the direct sum of finitely 
many fields, so AIR is a semilocal ring, and consequently A is also. By 
27.15 and (3) of 24.16, (0) is the product of finitely many maximal ideals, 
so by 27.16, A is a noetherian ring and its natural topology is discrete and 
thus complete, again by 27.15. Consequently, A has the desired descriptions 
by 24.19. The condition is sufficient by 27.16. 0 

We conclude with an application to topological rings. 
By the minimum condition on a class Q of subrings of a ring or submod- 

ules of a module, we mean the statement that every nonempty subset of Q, 
ordered by inclusion, contains a minimal element. This statement implies 
and, by the Axiom of Choice, is implied by the descending chain condition 
on &: There is no strictly decreasing sequence ( Q n ) n > ~  - of members of Q. 
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27.18 Theorem. If A is a Hausdorff, advertibly open, primitive ring 
satisfying the minimum condition on closed left ideals, then A is a simple 
artinian ring. 

Proof. By hypothesis, the set of nonzero closed left ideals of A contains 
a minimal member I .  By 26.29, I is a minimal left ideal of A and there 
is an idempotent e in A such that I = Ae. Consequently by 25.22 we 
may regard A as a topological dense ring of continuous linear operators 
containing nonzero linear operators of finite rank on a Hausdorff right vector 
space E over a division ring K furnished with a ring topology such that 
(u ,  x) ---f u(z )  is continuous from A x E to E. In particular, for each z E E ,  
u --+ u ( z )  is continuous from A to E.  Suppose that E had an infinite 
sequence (zn),>l of linearly idependent vectors. If J ,  = ( u  E A : u ( q )  = 
0 for all i E [l,n]}, then (J,),21 would be a strictly decreasing sequence 
of closed left ideals, a contradiction. Thus E is finite-dimensional, so A is 
isomorphic to the ring of all linear operators on a finite-dimensional vector 
space and hence is a simple artinian ring by 27.12. 0 

The discrete case of Theorem 27.18 is Theorem 27.12. 

Exercises 

27.1 Let A be a ring. (a) A is simple if and only if A is primitive and 
A has no proper nonzero ideals. (b) A is a simple ring with a minimal left 
ideal if and only if A is isomorphic to a dense ring of linear operators of 
finite rank on a vector space over a division ring. 

27.2 Let E be a K-vector space having a countably infinite basis, let A 
be the ring of a l l  linear operators on E ,  and let P be the ideal of all linear 
operators on E of finite rank. (a) P is a maximal ideal of A. (b) P is a 
primitive ideal of A [Use 26.6.1 (c) A / P  is a simple ring that has no minimal 
left ideals. [If u E A \ P, construct v E A such that u 4 Avu + P.] 

27.3 If J is a finitely generated ideal of a commutative ring with identity 
A that  is contained in its radical and if A / J  is artinian, then A is semilocal 
and the J-topology is the natural topology of A [Use 27.17 and 27.15.1 

27.4 (Kaplansky [1947c]) A Hausdorff, semisimple, advertibly open ring 
satisfying the minimum condition on closed left ideals is an artinian ring. 
[Use 27.18 in arguing as in the proof of 27.14.1 

27.5 If A is a trivial ring that is a nonzero, finite-dimensional vector space 
over a field F of characteristic zero, then the F-algebra A is artinian, but 
A is not an artinian ring. 



CHAPTER VII 

LINEAR COMPACTNESS AND SEMISIMPLICITY 

Linearly compact rings include compact, totally disconnected rings and 
discrete artinian rings, and hence offer a natural domain for generaliza- 
tions of theorems concerning those two subjects. In this chapter, we shall 
primarily be concerned with semisimple rings. We conclude with a discus- 
sion of connected locally compact rings and present some informaton about 
semisimple locally compact rings. 

28 Linearly Compact Rings and Modules 

28.1 Definition. A topological A-module E is linearly topologized, 
and its topology is a linear topology, if the open submodules of E form 
a fundamental system of neighborhoods of zero. A [closed] linear filter 
base on E is a filter base consisting of cosets of [closed] submodules of El 
and a linear filter is a filter having a linear filter base. 

If M is a submodule of a linearly topologized A-module E ,  the topology of 
E clearly induces linear topologies on M and E / M .  The Cartesian product 
of a family of linearly topologized A-modules is also a linearly topologized 
A-module. 

28.2 Definition. A topological A-module E is linearly compact, and 
its topology is a linearly compact topology, if E is Hausdorff and lin- 
early topologized, and if every linear filter on E has an adherent point. 

Thus a Hausdorff linear topology on E is linearly compact if and only if 
every closed linear filter base has a nonempty intersection. If 7 is a linear 
[linearly compact] topology on an A-module E ,  and if the topology of A is 
replaced by a stronger ring topology (for example, the discrete topology), 
then 7 is still a linear [linearly compact] topology on E .  

28.3 Theorem. If ZL is a continuous homomorphism from a linearly 
compact A-module E to a Hausdorff linearly topologized A-module F, then 
u ( E )  is linearly compact. 

232 
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Proof. If 3 is a closed linear filter base on u(E), then u - l ( 3 )  is a closed 
linear filter base on E ,  so there exists b E E such that b E u-l(F) for all 
F E 3, whence u ( b )  E u(u - l (F) )  = F for all F E 3. 0 

28.4 Corollary. I f  7 is a linearly compact topology on a module, so is 
every weaker Hausdorff linear topology. 

28.5 Theorem. A linearly compact module is complete. 

Proof. Let 3 be a Cauchy filter on a linearly compact A-module E ,  and 
let V be the set of open submodules of E .  For each V E V ,  let Fv E 3 be 
V-small, and let av E Fv; then Fv av + V, an open and hence closed 
set. As 3 is a filter, {av + V : V E V )  is a closed linear filter base, so by 
hypothesis there exists 

a n (aV +v). 
VEV 

Consequently, for each V E V ,  a + V = av + V, so Fv C a + V. Thus 3 
converges to  a. 0 

28.6 Theorem. Let E be a Hausdorff linearly topologized A-module. 
(1) If a submodule M of E is linearly compact for i ts  induced topology, then 
M is closed. (2) I f  E is linearly compact, then a submodule o f  E is linearly 
compact i f  and only i f  it is closed. (3) I f  E is linearly compact and i f  M 
and N are closed submodules of E ,  then M + N is closed. 

Proof. (1) follows from 28.5. (2) If M is a closed submodule of a linearly 
compact module E, an adherent point of a filter base of subsets of M must 
belong to M ,  so M is also linearly compact. (3) E / M  is Hausdorff and hence 
linearly compact by 28.3. Let 4~ be the canonical epimorphism from E to 
E / M .  By (2) ,  N is linearly compact, so ~ M ( N )  is linearly compact and 
hence closed by 28.3 and (1). Therefore as M + N = $2 ( q 5 ~ ( N ) ) ,  M + N 
is closed. 0 

The use of ultrafilters in proving Tikhonov’s theorem in topology has 
a counterpart in proving that the Cartesian product of linearly compact 
modules is linearly compact. A maximal linear filter on an A-module E 
is a linear filter on E maximal for the ordering E on the set of all linear 
filters on E. The set of all linear filters on E containing a given linear filter 
3 is clearly inductive, since the supremum of a totally ordered set r of 
such filters is its union UcErC.  Consequently by Zorn’s Lemma: A linear 
filter is contained in a maximal linear filter, for a linear filter maximal 
in the set of all linear filters containing a given linear filter 3 is clearly 
maximal in the set of all linear filters. Furthermore: If c is adherent to 

a maximal linear filter U for a linear topology on E ,  then U converges to  



234 LINEAR COMPACTNESS AND SEMISIMPLICITY 

c. Indeed, let V be an open coset containing c. Then V n F # 8 for all 
F E U, so {V n F : F is a coset in U} is a linear filter base for a linear 
filter containing and hence identical with U ;  therefore V f U. Thus U 
converges to  c. Consequently: A Hausdorff linear topology on E is linearly 
compact if and only if every maximal linear filter on E converges to a point 
of E. Necessity: A maximal linear filter has, by hypothesis, an adherent 
point and hence converges to it. Sufficiency: If F is a linear filter, F is 
contained in a maximal linear filter U, which converges to some c E E by 
hypothesis, and hence c is adherent to U and a fortiori to F. Finally: If 
f is an epimorphism from an A-module E to an A-module F and if U is a 
maximal linear filter on E, then f(U) is a maximal linear filter on F. If not, 
there would exist a coset V $! f ( U )  intersecting nonvacuously f(U) for every 
U ~ U , s o a s 0 # f - ~ ( V n f ( U ) ) = f - ~ ( V ) n U , f - ~ ( V )  wouldbeacosetin 
E not belonging to U (as otherwise V = f ( f - l (V))  E f ( l4 ) )  that intersects 
nonvacuously each member of U, a contradiction of the maximality of U. 

28.7 Theorem. The Cartesian product E of a family ( E x ) x E ~  oflinearly 
compact A-modules is linearly compact. 

Proof. For each X f L, let prx be the projection from E to Ex. Let U 
be a maximal linear filter on E. Then for each X f L ,  prx(U) is a maximal 
linear filter on Ex, so p ~ x ( U )  converges to some cx E Ex, and therefore U 
converges to (cx)xE~.  0 

28.8 Definition. A topological ring A is linearly compact if A, re- 
garded as a left module over itself, is a linearly compact A-module. 

For example, a totally disconnected compact ring is linearly topologized 
and hence linearly compact by 4.20. Linear compactness distinguishes an 
important class of real valuations, as is shown by the following theorem, 
which we shall not use and hence will omit the proof 

28.9 Theorem. Let K be a field topologized by a real valuation v, and 
let A be the valuation ring of v. The following statements are equivalent: 

1" A is a linearly compact ring. 
2' K is a linearly compact A-module. 
3" If w is a r e d  valuation of an extension field L of K extending 2, such 

that e(w/v) < +oo and f(w/v)  < +a, then [L : K] = e(w/v)f(w/v),  and 
w is the only real valuation of L extending v. 

4" If w is a real valuation of an extension field L of K extending v such 
that e(w/v) = 1 = f (w/v) ,  then L = K. 

A proof may be found, for example, in Topological Fields, 31.12 - 31.21. 
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For example, the valuation ring of a complete discrete valuation is linearly 
compact by 19.9, a fact also established by the equivalence of 8" and 5' of 
36.33. 

28.10 Definition. If E is a topological A-module, E is strictly linear- 
ly compact and its  topology is a strictly linearly compact topology 
if E is linearly compact and every continuous epimorphism from E to  a 
Hausdorff linearly topologized A-module is a topological epimorphism. A 
topological ring A is a strictly linearly compact ring if the (left) A- 
module A is strictly linearly compact. 

For example, a totally disconnected compact ring A is a strictly linearly 
compact ring and is, moreover, a strictly linearly compact module over any 
of its subrings. Indeed, the open ideals of A form a fundamental system of 
neighborhoods of zero by 4.20, and a theorem of topology establishes that 
if f is a continuous epimorphism from the additive group A to  a Hausdorff 
topological group B with kernel K ,  then the induced isomorphism f from 
A / K  to B is a homeomorphism, so f is a topological epimorphism. 

28.11 Theorem. I f u  is a continuous homomorphism from a strictly 
linearly compact A-module E to a Hausdorff linearly topologized A-module 
F, then u ( E )  is strictly linearly compact. 

Proof. By 28.3, u ( E )  is linearly compact. If v is a continuous epimor- 
phism from u( E )  to a Hausdorff linearly topologized A-module F ,  then v o u 
is a continuous epimorphism from E to F, so v o u is open by hypothesis. 
Consequently, if 0 is open in u(E) ,  then as v ( 0 )  = (v o u)(u-l(O)),  v ( 0 )  
is open in F. 0 

28.12 Definition. A Hausdorff linear topology 7 on an A-module E is 
minimal if there are no Hausdorff linear topologies on E strictly weaker 
than 7, that is, if 7 is minimal in the set of all Hausdorff linear topologies 
on E ,  ordered by inclusion. 

28.13 Theorem. A strictly linearly compact topology on an A-module 
E is minimal. 

The assertion is evident. 

28.14 Theorem. Let E be an A-module. (1) If E is artinian, the dis- 
crete topology is the only Hausdorff linear topology on E .  (2) E is strictly 
linearly compact for the discrete topology if and only if E is artinian. 

Proof. (1) By hypothesis, the filter base of open submodules for a linear 
topology on E contains a minimal member, which is actually the smallest 
member. 
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(2) Necessity: Let (Mn)n21 be a decreasing sequence of submodules of 
E ,  and let 

m 

M = n M n .  

Then ( M n / M ) n 2 1  is a fundamental system of neighborhoods of zero for 
a Hausdorff linear topology on E / M .  By hypothesis and 28.11, E / M  is 
strictly linearly compact for the discrete topology, so in particular, the dis- 
crete topology is minimal by 28.13. Consequently, there exists q 2 1 such 
that for all n 2 q,  Mq/Mn = (0)) or equivalently, Mq = M,. 

Sufficiency: Let F be a linear filter base on an artinian A-module E. 
Then 3 contains a minimal and hence a smallest member M .  Let a E E 
be such that a + M E 3. Then each member of 3 contains a + M, so a is 
adherent to F. Thus E is linearly compact. Let u be an epimorphism from 
E ,  furnished with the discrete topology, to a Hausdorff linearly topologized 
A-module F. Then F is isomorphic to a quotient module of E and hence 
is artinian by 27.3. Consequently by ( l ) ,  the topology of F is the discrete 
topology, so u is a topological epimorphism. 0 

28.15 Theorem. Let E be a Hausdorff linearly topologized A-module, 
and let ( U x ) x E ~  be a fundamental system of neighborhoods of zero con- 
sisting of open submodules. (1) E is linearly compact if and only if E is 
complete and for each X E L,  E/Ux is linearly compact for the discrete 
topology. (2) E is strictly linearly compact if and only if E is complete and 
for each X E L ,  E/Ux is artinian. 

Proof. (1) The condition is necessary by 28.5 and 28.3. Sufficiency: By 
the module analogue of 5.22, E is topologically isomorphic to &nxEr,(E/Ux), 
where each E/Ux has the discrete topology. By 5.20, b x E ~ ( E / U x )  is a 
closed submodule of n A E L ( E / U x ) ,  which is linearly compact by 28.7. Thus 
by 28.6, E is linearly compact. 

(2) The condition is necessary by 28.5, 28.11, and 28.14. Sufficiency: By 
(1) and 28.14, E is linearly compact. To establish that E is strictly lin- 
early compact, let u be a continuous epimorphism from E to a Hausdorff 
linearly topologized A-module F ,  and let 0 be an open submodule of E .  
Then 0 is closed, so by 28.3 and 28.6, u ( 0 )  is closed in F ,  and thus the 
induced topology of F / u ( O )  is Hausdorff. The kernel H of the epimor- 
phism z + U ( Z )  + u ( 0 )  from E to F / u ( O )  contains 0, hence is open, and 
therefore contains Ux for some X E L. Consequently, E / H  is isomorphic to 
a quotient module of the artinian module E/Ux and hence is artinian by 
27.3. Therefore as E / H  is isomorphic to F / u ( O ) ,  the discrete topology is 
the only Hausdorff linear topology on F/u(O)  by 28.14. Consequently, the 
quotient topology of F / u ( O )  is the discrete topology, so u ( 0 )  is open. 0 

n=l 



28 LINEARLY COMPACT RINGS AND MODULES 237 

28.16 Theorem. Let E be a Hausdorff linearly topologized A-module, 
and let F be a closed submodule of E .  (1) E is linearly compact if and only 
if F and E / F  are linearly compact. (2) E is strictly linearly compact if and 
only if F and E / F  are strictly linearly compact. 

Proof. Let 4 be the canonical epimorphism from E to E / F .  (1) The 
condition is necessary by 28.3 and 28.6. Sufficiency: Let ( F A ) A ~ L  be a 
linear filter base on E ,  and for each X E L let FA = ZA + M A ,  where M A  
is a submodule of E. Since E / F  is linearly compact, there exists z E E 
such that for each X E L ,  +(z)  E ~ ( Z A  + M A ) ,  whence as 4 is a topological 
epimorphism, 

z E 4 - l ( 4 ( ~ ~  + M A ) )  = ~ - ' ( $ ( . Z A  + M A ) )  = zx + M A  + F .  

Consequently by (3) of 3.3, for each open submodule V of E and for each 
x E L ,  z E zA + MA + F  + v ,  so 

Therefore the set of all ( ( z  - z x )  + M A  + V )  fl F such that X E L and V is 
an open submodule of E is a filter base of cosets of open and hence closed 
submodules of F .  Consequently, as F is linearly compact, there exists a E F 
such that for all X E L and all open submodules V of E ,  a E ( z - z x ) + M ~ + V .  
Thus for each X E L,  z - a E z~ + M A  + V for all open submodules V of E ,  

(2) Necessity: By 28.11, E / F  is strictly linearly compact, and by (l), F 
is linearly compact and hence complete. Consequently, by (2) of 28.15, to 
show that F is strictly linearly compact, it suffices to show that if U is an 
open submodule of E ,  then F / ( F  n U )  is artinian. But as F / ( F  n V )  is 
isomorphic to ( F  + V ) / U ,  a submodule of E/U,  which is artinian by (2) of 
28.15, F / ( F  n U )  is artinian by 27.3. 

Sufficiency: By (l), E is linearly compact and hence complete, so by (2) 
of 28.15, it suffices to show that if U is an open submodule of E ,  then E/U is 
artinian. Since (U+F)/F is an open submodule of E / F ,  ( E / F ) / ( ( U + F ) / F  
is artinian by (2) of 28.15, so its isomorphic copy E / ( U + F )  is also artinian. 
Now ( U + F ) / U  is isomorphic to F / ( U n F ) ,  which is artinian by (2) of 28.15 
since F is strictly linearly compact. Therefore as ( E / U ) / ( ( U  + F ) / U )  is 
isomorphic to E / ( U  + F ) ,  E/U is artinian by 27.3. 0 

28.17 Theorem. If E is the Cartesian product of a family ( E x ) x ~ L  of 
strictly linearly compact A-modules, E is strictly linearly compact. 

SO z - u E ZA + M A  by (3) of 3.3. 

Proof. By 28.7, E is linearly compact and hence complete. Consequently, 
it suffices by (2) of 28.15 to show that if UA is an open submodule of Ex for 



238 LINEAR COMPACTNESS AND SEMISIMPLICITY 

each X E L and if Ux = Ex for d X E L\Q, where Q is a finite subset of L, 
then E / ( J - J x E L  Ux) is an artinian module. But E/(J -JAEL Ux) is isomorphic 
to n x E Q ( E x / U x ) ,  which is artinian by (2) of 28.15 and 27.6. 0 

28.18 Theorem. I f E  is a Hausdorff linearly topologized module over a 
[strictly] linearly compact ring A and if 21, . . . , z, E E, then Azi + a  .+Ax, 
is a [strictly] linearly compact, hence complete and thus closed submodule 
of E. 

+ Az, is the image of the A-module A" under the 
homomorphismu: (ul, ..., un)  - - t u l z l + . + - + u n z n .  By28.7 [28.17], A" is 
a [strictly] linearly compact A-module, so as u is continuous, the assertion 
follows from 28.3 [28.11] and 28.5. 0 

28.19 Theorem. If 7 is a linearly compact topology on an A-module 
E for which every submodule is closed, then E is linearly compact for the 
discrete topology. 

Proof. The adherence for 7 of any linear filter base on E is simply its 

Proof. Azl + 

intersection. Hence E is linearly compact for the discrete topology, 0 

28.20 Theorem. Let Af be a linear filter base on a linearly compact 
A-module E. (1) If u is a continuous homomorphism from A to a Hausdorff 
linearly topologized A-module F, and if C is the adherence of Af, then u(C) 
is the adherence of u(n/). (2) If each member of J\r is closed and if M is a 
closed submodule of E ,  then 

Proof. (1) For each N E Af, u ( r )  E u ( N )  as u is continuous. As % is 
linearly compact by 28.6, u ( r )  is closed by 28.3 and 28.6, so u(x) 2 u ( N ) .  
Thus u(N)  = u ( N )  for each N E Af. Consequently, if 

c E ~ =  nr, 
N E N  

then 
.(.) .( n r) C_ n = n u(~), 

N E N  N E N  N E N  

the adherence of u(J\r). Conversely, let 
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Then for each open submodule V of F and each N E Af, (d+V)nu(N)  # 8, 
SO u-l(d+V)nN is a coset of a submodule of E; let GV,N = u-'(d+V)nN. 
As E is linearly compact, there exists c belonging to ~ V , N  for all N E Af 
and d open submodules V of P. In particular, for each open submodule 
V of F, since u-l(d + V) is open and thus closed, c E u-l(d + V), that is, 
u(c)  - d E V. Therefore as F is Hausdorff, U ( C )  = d. Also for each N E Af, 
c E ~ F , N  E r, that  is, c E C. 

(2) Let 4 be the canonical epimorphism from E to E / M .  If N E N ,  then 
4 ( N )  is closed by 28.3 and 28.6, so 

by (1)) whence 

28.21 Theorem. Let E be the Cartesian product of a family ( E x ) x € L  
of nonzero A-modules. If F is a submodule of E that is linearly compact 
for the discrete topology and dense in E for the Cartesian product topology, 
where each Ex is given the discrete topology, then L is finite. 

Proof. By 28.4, F is also linearly compact for the topology induced by 
the Cartesian product topology, so by 28.6, F = E. Consequently, Ex 
is a submodule of F and therefore is also linearly compact for the discrete 
topology by 28.6. Replacing F by $ X E L . E ~  in the preceding argument, we 
conclude that $ X E L E ~  = E, whence L is finite. 0 

28.22 Theorem. I f  a strictly finearly compact A-module E is the direct 
sum of closed submodules M I ,  . . . , Mn, then E is the topological direct sum 
of  M i ,  . . ., M,. 

Proof. By (1) of 28.16 and 28.17, n;=, Mk is strictly linearly compact, 
so as 

n 

k = l  

is a continuous isomorphism from n:==, Mk to E ,  it is a topological isomor- 
phism by 28.10. 0 
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Exercises 

28.1 Let E be an A-module. A Zariski topology on E is a linear topology 
for which all submodules are closed. (a) A Zariski topology is Hausdorff. (b) 
If F is a submodule of E ,  a Zariski topology on E induces Zariski topologies 
on F and E / F .  (c) A linear topology on E stronger than a Zariski topology 
is a Zariski topology. 

28.2 Let E be an A-module furnished with a Zariski topology. (a) Let 
f be a continuous homomorphism from a Hausdorff linearly topologized A- 
module D to E ,  and let f b e  the continuous extension of f to a continuous 
homomorphism from 5 to 2. The kernel of f is the closure in 5 of 
the kernel K of f .  [Use 7.20.1 (b) (Zariski [1945]) In particular, if f is a 
monomorphism, so is f? (c) (Zariski [1945]) If E is complete for a Zariski 
topology, E is complete for any stronger linear topology. (d) If M I ,  . . . , M ,  
are submodules of E and if cy’l a; = 0 where a; E Mi, the closure of M; in 
2, for all i E [l, n], then for each i E [l, n] there is a net ( z i , x ) x E ~  in Mi such 
that limxEr; z;,~ = u; and Cy=l xi ,x  = 0 for all X E L. (e) If M I ,  . . . , M ,  are 
submodules of E such that Cy=l M; is the direct sum of M I ,  . . . , Mn, then 
Cy=l $i is the direct sum of Mi,  . . . , 2%. (f) If F and G are submodules 
of E ,  F n G = $ n 6. [Consider the mapping (2, y) -, z - y from F x G to 

28.3 Let E be a linearly compact vector space. (a) If E is discrete, then 
E is finite-dimensional. (b) If U is an open subspace of E ,  E / U  is finite- 
dimensional. (c) The topology of E is strictly linearly compact. 

28.4 (Lefschetz [1942]) Let E be a linearly compact vector space. (a) If 
M and N are subspaces of E such that M + N = E ,  then for all z, y E E ,  
there exists z E E such that z z z (mod M )  and z = y (mod N ) .  (b) If 
HI, . . . , Hn are subspaces of E of codimension 1, none of which contains 
the intersection of the others, and if 21, . . . , 2, E E ,  there exists z E E 
such that z E zi (mod H i )  for all i E [l ,n].  (c) There is a family ( H ~ ) X ~ L  
of open subspaces of E of codimension 1 such that 

h 

h 

E.1 

n 

i= 1 

whenever XO, XI, . . . , Xn are distinct members of L and 

X€L 

(d) The function 9 : z --t ( z  + Hx)xE~ from E to n,,,(E/Hx) is a topo- 
logical isomorphism. Thus E is topologically isomorphic to the Cartesian 
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product of discrete one-dimensional vector spaces. (e) Conversely, the carte- 
sian product of discrete one-dimensional vector spaces is a linearly compact 
vector space. 

28.5 Let A be a ring with identity. For each left ideal J of A and each 
c E A, we define ( J  : c) by 

( J  : c) = {z E A : zc E J } .  

Let 7 be a linear topology on A. For each left ideal J ,  let 

J‘ = { c  E A : ( J  : c) is open}. 

Topology 7 is a Gabriel topology if a left ideal J is open whenever J’ is 
open. (a) If J is a left ideal, J’ is a left ideal containing J .  (b) If I and J 
are left ideals and if c E A, then ( I  f l  J)’ = I’ fl J’ and ( J  : c)‘ = (J’ : c ) .  
(c) For each left ideal J of A, define J ,  recursively for all n E N by Jo = J ,  
J,+l = (J,)’. If I and J are left ideals and if c E A, then (J,)’ = (J’),, 
( I n  J ) ,  = Inn  J,, and ( J ,  : c)  = ( J  : c), for all n E N. (d) The set of all 
left ideals J such that J ,  is open for some n E N is a fundamental system of 
neighborhoods of zero for the weakest Gabriel topology on A stronger than 
7. 

29 Linearly Compact Semisimple Rings 

Here we shall describe all linearly compact semisimple rings. Basic to our 
description is the ring of A of all linear operators on a discrete vector space 
E over a discrete division ring K ,  furnished with the topology of pointwise 
convergence, that is, the weakest topology on A such that for all x E E ,  
u -+ u(z )  is continuous from A to E. 

First, we shall extend two definitions introduced on pages 206 and 210: 
If E is an A-module and if L is a subset of A, we shall call the annihilator 
of L in E the submodule of all LC E E such that uz = 0 for all u E L and 
denote it by AnnE(L), and if F is a subset of E ,  we shall call the annihilator 
of F in A the left ideal of all u E A such that uz = 0 for all 2 E F and 
denote it by AnnA(F). 

If A is a ring of linear operators on a vector space E ,  we shall regard E 
as an A-module under the scalar multiplication (u ,z )  -+ u(z) .  Thus E is a 
simple A-module if and only if A is a primitive ring of endomorphisms of 
the additive group E .  

Let E be a topological space, F a set. The topology of pointwise (or 
simple) convergence on E F ,  the set of all functions from F to E ,  is the 
weakest topology on E F  such that for al l  z E E ,  u + u ( x )  is continuous 
from EF to E. Thus the topology of pointwise convergence is simply the 
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Cartesian product topology on E F ,  regarded as the Cartesian product of 
( E , ) , ~ F  where E, = E for all 2 E F. We shall also call the topology it 
induces on any subset of E F  the topology of pointwise convergence on that 
set, and denote it by 7". 

In particular, let A be the ring of all linear operators on a discrete vector 
space E over a discrete division ring K ,  whence A & E E .  A fundamental 
system of neighborhoods of zero for Z on A is then {AnnA(X): X is a 
finite subset of E } ,  or equivalently, {AnnA(M): M is a finite-dimensional 
subspace of E}, since clearly if M is the subspace generated by a finite 
subset x, AnnA(X) = AnnA(M). If B is a ring of linear operators on E ,  
clearly B is a dense ring of linear operators if and only if B is (topologically) 
dense in A for the topology 7,. 

29.1 Theorem. Let A be the ring of all linear operators on a discrete 
vector space E over a discrete division ring K .  Furnished with the topology 
7, of pointwise convergence, A is a strictly linearly compact ring, and E is 
a topological A-module. 

Proof. For any subset X of E, AnnA(X) is a left ideal of A, and clearly 
the intersection of all the annihilators of all finite subsets of E is the zero 
ideal. Thus 78 is a Hausdorff linear topology on A. To show that 7, is a ring 
topology, therefore, it suffices by 2.15 to show that for any E A, u + u o 21 

from A to A is continuous at zero. But for any finite subset X of E, v ( X )  
is finite, and clearly 

Moreover, E is a topological A-module by 2.16, for (TM 4) holds as the 
image of A x (0) under scalar multiplication is (0). 

For each b E E ,  let Eb be the topological A-module E. Let B be a basis 
of the vector space E. Then f : u ---f ( U ( b ) ) b E B  is a continuous isomorphism 
from the topological A-module A to the topological A-module nb, -B  Eb. To 
show that f is also open, let M be a finite-dimensional subspace of E. Then 
there is a finite subset C of B such that M is contained in the subspace 
generated by c. Let Hb = (0) if b E c, Hb = E if 6 E B \ c; then n & B  Hb 

is an open neighborhood of zero in n & B E b  contained in f(AnnA(M)). 
Thus by 5.18, f is a topological isomorphism from A to n b , - B E b .  Since E 
is complete, so is u I B E B E b  by (2) of 7.8, and therefore A is also complete 
by 7.14. 

Consequently, to show that 'T8 is strictly linearly compact, it suffices by 
(2) of 28.15 to show that if M is a finite-dimensional subspace of E ,  then 
A/AnnA(M) is an artinian A-module. Let { b l ,  . . . , 6 , )  be a basis of M. 
Then u 3 (u(bl) ,  . . . , u(b,)) is an epimorphism from the A-module A to  
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the A-module E b i  whose kernel is AnnA(M). Since E is a simple A- 
module, it is trivially artinian. Hence by 27.6, A/AnnA(M) is an artinian 
A-module. 0 

29.2 Theorem. Let A be the ring of all linear operators on a discrete 
vector space E over a discrete division ring K .  There is no linearly compact 
topology on the A-module A that is strictly stronger than the topology 'ir, 
of pointwise convergence. 

Proof. Let 7 be a linearly compact topology on the A-module A stronger 
than 7,. Let L be a left ideal of A that is open for 7, let B be a ba- 
sis of the vector subspace AnnE(L), and for each b E B let Eb be the 
A-module E .  Then f : u -+ ( U ( b ) ) & B  is an epimorphism from A to nbEB Eb with kernel AnnA(AnnE(L)). Thus nb,-B Eb is isomorphic to 
A/AnnA(AnnE(L)), which by 28.3 is linearly compact for the discrete topol- 
ogy as AnnA(AnnE(L)) 2 L. By 28.21, B is finite, so AnnA(AnnE(L)) is 
open for z. But also, as L is open, thus closed and hence by (2) of 28.6 
linearly compact for the topology induced by 7, L is also linearly compact 
and hence closed for 7' by 28.4 and (1) of 28.6. By 25.8, L is dense in 
AnnA(AnnE(L)) for z. Therefore L = AnnA(AnnE(L)). Thus 7 = I,. 0 

29.3 Theorem. Let u be a continuous epimorphism from a [strictly] 
linearly compact ring A to a Hausdorff linearly topologized topological ring 
B .  Then B is a [strictly] linearly compact ring, [u is an open mapping], and 
if L is a closed left ideal of A, u(L) is a closed left ideal of B .  

Proof. We convert B into an A-module by defining a.b to be u(a )b  for 
all a E A, b E B. This scalar multiplication is continuous from A x B to 
B since u is continuous and multiplication on B is continuous. Moreover, u 
is a homomorphism from the A-module A to the A-module B since for all 
2, Y E A, 

u(x.y) = u(.y) = u(.)u(y) = ..u(y). 

By 28.3 [28.11], B is a [strictly] linearly compact A-module. The left ideals of 
the ring B are precisely the submodules of the A-module B as u is surjective 
[and if J is a left ideal of B,  the A-submodules and B-submodules of A / J  
coincide], so B is a [strictly] linearly compact ring. Moreover, if L is a closed 
left ideal of A, u(L) is a closed left ideal of B by 28.3 and 28.6. 0 

29.4 Corollary. If P is a closed ideal of a [strictly] linearly compact 
ring A, then A / P  is a [strictly] linearly compact ring. 

29.5 Theorem. The Cartesian product of a family of [strictly] linearly 
compact rings is a [strictly] linearly compact ring. 

Proof. Let A be the Cartesian product of a family ( A x ) x ~ L  of [strictly] 
linearly compact rings. We convert each Ax into an A-module by defining 
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z.yx to be prx(z)yx for all z E A, y E Ax, where prx is the canonical 
epimorphism from A to  Ax. Since prx is continuous and multiplication is 
continuous on Ax, Ax is a topological A-module. Since prx is surjective, 
the left ideals of Ax are precisely the A-submodules of Ax [and if Jx is a left 
ideal of Ax, the Ax-submodules and the A-submodules of Ax/Jx coincide]. 
Consequently, each Ax is a [strictly] linearly compact A-module. By 28.7 
[28.17], A is a [strictly] linearly compact A-module, that is, A is a [strictly] 
linearly compact ring. 0 

29.6 Theorem. If M is an open regular maximal left ideal of a linearly 
compact ring A ,  the largest ideal P ( M )  of A contained in M is closed, 
and A / P ( M )  is topologically isomorphic to the ring of all linear operators 
on a discrete vector space over a discrete division ring, furnished with the 
topology of pointwise convergence. 

Proof. Since M is open, M is closed, so as P ( M )  = { a  E A : aA C_ M }  
by 26.4, P ( M )  is also closed. With the notation of (1) of 26.5, A is by 
25.6 a dense of linear operators on the K-vector space AIM, where K is 
the division ring of all endomorphisms of AIM that commute with each 
member of A, and there is an isomorphism g from A / P ( M )  to A satisfying 
g(a + P ( M ) )  = iL for all a E A .  Since M is open, AIM is discrete. Let 7 
be the topology on A for which g is a topological isomorphism. By 29.4, 7 
is a linearly compact ring topology. For each x E A \ M ,  6 -+ 6(z + M )  is 
continuous from A, furnished with ‘T, to  AIM by 5.11 since a -+ ax + M is 
a continuous epimorphism from the additive group A to AIM whose kernel 
contains P ( M ) .  Therefore 7 is stronger that the topology of pointwise 
convergence on A. Consequently by 29.3 applied to the identity mapping 
of A, that topology is a linearly compact ring topology, hence is complete 
by 28.5, and thus A is closed in the ring B of al l  linear operators on the 
discrete K-space AIM for the topology I, of pointwise convergence. Since 
A is also dense in B for that topology, A = B. By 29.2, 7 = I,. 0 

29.7 Theorem. A topological ring A is semisimple and linearly compact 
if and only if A is topologically isomorphic to the Cartesian product of a 
family of topological rings, each the ring of all linear operators on a discrete 
vector space over a discrete division ring, furnished with the topology of 
pointwise convergence. In particular, the intersection of the closed primitive 
ideals of a semisimple linearly compact ring is the zero ideal. 

Proof. The condition is sufficient by 29.1, 29.5, and 26.21. Necessity: Let 
(Px)xE~ be the family of all the primitive ideals P ( M )  where M is an open 
regular maximal left ideal of A ,  and for each X E L,  let Ax = A/Px.  The 
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canonical homomorphism 9 from A to nxEL Ax, defined by 

@ ( a )  = (a  + PX)XEL 
for all a E L,  is then continuous. By 29.6 we need only show that @ is a 
topological isomorphism. 

To establish the final assertion and the injectivity of @, we shall show 
that n px = (0). 

X€L 

Let c E A*. As A is semisimple, by 26.9 there exists b E A such that cb is 
not left advertible; let J = {z - zcb : z E A}. Then J is a regular left ideal 
of A not containing cb. Moreover, J is a linearly compact A-module by 28.3 
since it is the image of A under the continuous homomorphism z + z - xcb. 
Therefore J is closed by (1) of 28.6, so by (3) of 3.3 there is an open left 
ideal I of A such that cb $! J + I .  As J is regular, so is J + I .  By 26.3 
there is a maximal regular left ideal M containing J + I, and cb $! M since 
otherwise 2 = (z - zcb) + zcb E J + M = M for a l l  z E A. As J + I is 
open, so is M ,  and therefore P ( M )  = Px for some X E L. Finally, c $! PA, 
for otherwise cb E M ,  a contradiction. 

For each p E L let 4, be the canonical epimorphism from A to A,, a 
linearly compact ring with an identity element by 29.6 and 29.1. To show 
that PA + P, = A whenever X and p are distinct members of L, we may 
assume that PA Pp. Then 4,(Px) = A, since 4,(Px) is a nonzero closed 
ideal by 29.3 and is also dense by 25.10. Thus 

P A  + P, = d,'(h(Px)) = 4L1(A,) = A. 

Moreover, as each A/Px has an identity element, ( A / P X ) ~  = A/Px. There- 
fore by 24.11, @(A) is dense in n,,, Ax. By 29.3, @(A) is linearly compact, 
thus closed by 28.5, and hence closed in nxEL Ax. Therefore 

@(A) = IT Ax. 
X € L  

To show that @ is open, let J be an open left ideal of A, and for each 
p E L let 

Then J is closed in A, so @(J) is closed in nxeL Ax by 29.3, and conse- 
quently @(J) = nxEL Jx by 24.12, since each Ax has an identity element. 
Thus A/ J  is isomorphic to  nxEL(Ax/Jx) and hence to n A E N ( A x / J x >  where 
N = {A E L : J x  # Ax}. Consequently, since J is open, the A-module 
nxEN(Ax/Jx)  is linearly compact for the discrete topology. By 28.21, there- 
fore, N is finite, so *(J) is open in nxEL Ax. Thus Q is open. 0 

J, = PT,(@(J)) c A,. 
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29.8 Corollary. If A is a nonzero semisimple linearly compact ring, 
then A is strictly linearly compact and has an identity element, and every 
nonzero closed left ideal of A contains a minimal left ideal. 

Proof. By 29.7, 29.1, and 29.5 the first two assertions hold. For the third, 
we may by 29.7 assume that A = n x E L A x ,  where each Ax is the ring of 
all linear operators on a vector space. Let J be a closed left ideal of A. By 
24.12, J = nxEL Jx, where each Jx is a left ideal of Ax. As J # (0), there 
exists p E L such that J ,  # (0), so by (1) of 25.21, J ,  contains a minimal 
left ideal N,. Then in,(N,) is clearly a minimal left ideal of A contained 
in J ,  where in, is the canonical injection from A,  to A.  0 

29.9 Corollary. A topological ring A is semisimple and linearly com- 
pact and its topology is an ideal topology if and only if A is topologically 
isomorphic to the Cartesian product of discrete rings, each the ring of all 
linear operators on a finite-dimensional vector space. 

Proof. The only Hausdorff ideal topology on the ring A of d linear op- 
erators on a vector space E is the discrete topology by (2) of 25.21, and 
the topology of pointwise convergence on A is discrete if and only if E is 
finite-dimensional. 0 

29.10 Corollary. A topological ring A is commutative, semisimple, and 
linearly compact if and only if A is topologically isomorphic to the Cartesian 
product of a family of discrete fields. 

Theorem 29.7 generalizes the Artin-Wedderburn theorem (27.14). In- 
deed, if A is a semisimple artinian ring, then A is (strictly) linearly compact 
for the discrete topology by (2) of 28.14, so A is isomorphic to the Cartesian 
product of finitely many rings, each the ring of all linear operators on a 
finite-dimensional vector space by 29.7, since a Cartesian product of topo- 
logical rings with identity is discrete if and only if the number of such rings 
is finite and each is discrete, and the topology of pointwise convergence on 
the ring of all linear operators of a vector space is discrete only if the vector 
space is finite-dimensional. 

29.11 Theorem. A topological ring A is primitive [right primitive] 
and linearly compact if and only if A is topologically isomorphic [anti- 
isomorphic] to the ring of all linear operators on a discrete nonzero vector 
space over a discrete division ring, furnished with the topology of pointwise 
convergence. 

Proof. For primitivity, the condition is sufficient by 29.1 and necessary by 
26.12, 29.7, and 25.11. The assertion for right primitivity therefore follows 
from 25.12. 0 
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29.12 Theorem. The radical of a linearly compact ring A is closed. 

Proof. By 26.9 and 26.13 it suffices to  prove that the closure of an ad- 
vertible left ideal J is an advertible left ideal. Let a € 7, and let C be the 
set of all open left ideals of A. For each L E C, let 

HA = { X  E A : x - X U  E L} ,  

an open left ideal since z -+ z - za  is continuous on A, let a~ E J be such 
that a - a~ E L ,  and let ZL be the adverse of U L .  To show that the open 
cosets {XL + HL : L E C} form a filter base, let L ,  M E C be such that 
M C L.  Then 

and similarly a + ZM - x ~ a  E M ,  so 

(zL - x M )  - (ZL - X M ) U  = [ U + X L  - X L U ]  - [ U + Z M  - X M U ]  € L+ M = L 

and therefore z~ - X M  E H L ,  whence ZM + H M  
exists 

X L  + H L .  Thus there 

E n (XL +w. 
L€C 

For each L E L, z - XL E H L ,  so x - ZL - (z - z ~ ) a  E L,  and thus 

a +  2 - zu  = [a+ ZL - z L a ]  + [ ( x  - ZL) - (z - ZL).] E L+ L = L. 

Consequently, x is the left adverse of a. But z E 7 since 3 is a left ideal, so 
by what we have just proved, x also has a left adverse. Consequently as o 
is associative, a is advertible. 0 

29.13 Corollary. The radical R of a linearly compact ring A is the 
intersection of its closed primitive ideals, and AIR is a strictly linearly 
compact, semisimple ring. 

Proof. By 29.12, 29.4, 29.8, and 26.16, AIR is a strictly linearly com- 
pact, semisimple ring. Therefore by 29.7, R is the intersection of the ideals 
q5-l(P) where P is a closed primitive ideal of AIR and q5 is the canoni- 
cal epimorphism from A to AIR; but each such q5-'(P) is closed as q5 is 
continuous and is primitive since A/q5-'(P) is isomorphic to (A /R) /P .  0 
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29.14 Theorem. Let A be a linearly compact ring that is not a radical 
ring, and let R be the radical of A. The following statements are equivalent: 

1" AIR is artinian. 
2" AIR is noetherian. 
3" R is open. 
4" AIR is topologically isomorphic to the Cartesian product of finitely 

many discrete rings, each the ring of all linear operators on a finite-dimen- 
siond vector space. 

5" Every ideal of AIR is closed. 

Proof. By 29.13, AIR is a linearly compact, semisimple ring. The equiv- 
alence of the assertions readily follows from 29.7 and 25.10, applied to the 
ideal of all linear operators of finite-dimensional range. 0 

29.15 Theorem. If e is an idempotent of a [strictly] linearly compact 
ring A, then eAe is a [strictly] linearly compact ring. 

Proof. By 26.28, Ae and eAe are closed in A. Hence if L is a closed 
left ideal of eAe, is a closed left ideal of A contained in Ae. Clearly 
L = e z ,  for as e is the identity of eAe, L = eAeL = eAL, and thus 
L C e z  C eAL = = L. Let (ZL + L ) L ~ L  be a closed linear filter base 
on eAe. Then ( x ~  + ~ ) L ~ L  is a closed linear filter base on A and hence 
its intersection contains some c E A. Therefore for each L E L, 

- 

- 
ec - ZL = e(c - ZL) E eAL = L. 

Thus ec E n L E t ( z L  + L). 
Assume that A is strictly linearly compact. As 2 -+ xe is a continuous 

epimorphism from the A-module A to the A-module Ae, the latter is strictly 
linearly compact by 28.3. The submodules of the A-module Ae are, of 
course, the left ideals of A contained in Ae. For each closed left ideal L 
of eAe, let 3~ be the set of all A-submodules J of Ae such that e J  C L. 
Clearly the sum of two members of J'L is again a member of J L ,  so the 
union L' of all the members of J L  is a member of 3 ~ .  As the closure of a 
member of 3~ also belongs to J L ,  L' is a closed A-submodule of Ae such 
that eL' = L,  since E JL. If L is open in eAe, then L' is open in Ae: 
indeed, there exists an open submodule J of Ae such that J n eAe S: L;  
then as J = Je ,  e J  = e J e  C eAe and e J  C J, so e J  C J n eAe C L. Thus 
J is an open A-submodule of Ae belonging to JL.  Therefore J S: L', so L' 
is open in Ae. Thus L + L' is an increasing injection from the set of all 
closed [open] left ideals of eAe to the set of all closed [open] submodules of 
the A-module Ae. In particular, if U is an open left ideal of eAe, L + L' 
is an increasing injection from the set of left ideals of eAe containing U to 
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the set of A-submodules of Ae containing the open submodule U'; hence as 
the A-module Ae/U' is artinian by bypothesis, the eAe-submodule eAe/U 
is artinian. Consequently by 28.15, eAe is strictly linearly compact. 0 

Exercises 

29.1 Let E be a Hausdorff vector space over a division ring K furnished 
with a ring topology, and let A be the ring of all continuous linear operators 
on E ,  furnished with the topology of pointwise convergence. (a) For each 
w E A, u -+ u o w and u -+ w o u are continuous from A to A. (b) If K 
is nondiscrete, complete, and straight, if E is infinite-dimensional, and if 
every finite-dimensional subspace of E has a topological supplement, then 
(u, w )  -+ u o w is not continuous at (0,O). [Cf. Exercise 25.3.1 

29.2 If P is a closed primitive ideal of a linearly compact ring A ,  then 
P is the intersection of open regular maximal left ideals, and if M is any 
closed maximal left ideal containing P ,  then M is open, a regular left ideal, 
and P = P ( M ) .  [Use 29.11 and 25.8.1 

In the remaining exercises Mn(K) denotes the ring of all n by n matrices 
over a topological ring K ,  furnished with the Cartesian product topology. 

29.3 M,(K) is a topological ring. 
29.4 Let { b l ,  . . ., b,} be a basis of an n-dimensional Hausdorff vector 

space E over a Hausdorff division ring K ,  and let A be the ring of all  linear 
operators on E ,  furnished with the topology of pointwise convergence. For 
each (i, j) E [l, n] x [l, n], let e;j be the linear operator satisfying eij ( a j )  = 
a; ,  e;j(ak) = 0 if k # j ,  and for each X E K let i, be the linear operator 
satisfying i \ ( a k )  = Auk for all k E [l,n]. Let M be the isomorphism from 
A to M n ( K )  determined by the basis { b l ,  . . . , b n } ;  thus for each u E A, 
M ( u )  = ( X u ; ; , j )  where 

n 

i= 1 

for all j E [l,n], and 

(a) M-' is continuous from M n ( K )  to A. (b) If E is a straight vector 
space, M is continuous from A to M,(K).  [First show that u Xu;,.,3b1 

is continuous from A to  E.] (c) If E is a straight vector space, A is a 
topological ring. 

(a) If K 
is advertibly open, then M n ( K )  is advertibly open. [Use the determinant 

29.5 Let K be a Hausdorff commutative ring with identity. 
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function.] (b) If K is a ring with continuous inversion, then M n ( K )  is a 
ring with continuous inversion. [Recall that if A E M,(K)' and if adj(A) 
is the adjoint of A, then A-' = (det A)-'adj(A).] 

29.6 (Kaplansky [1946]) Let K be a Gel'fand ring (Exercise 26.6), and 
let n 2 1. (a) For each neighborhood U of zero contained in K" there is 
a neighborhood V of zero contained in K" such that if c i , j ,  dj  E V for all 
i, j E [l,n], then there exist (unique) 2 1 ,  . . . , 2, E U such that 

for all i E [l, n]. [Use induction on n; circle each side of the first equation of 
(1) on the left by c:,~ to arrive at an explicit expression for 2 1 ;  substitute 
it in the i th  equation of (1) for each i E [2,n] to obtain n - 1 equations of 
form (l).] (b) M,(K) is advertibly open. 

29.7 Let A be the ring of all linear operators on a vector space E ,  and let 
P = { e  E A : e is a projection on a one-dimensional subspace of E } .  (a) 
e E P if and only if e is a nonzero idempotent and for every idempotent 
f E A such that ef = f e ,  either ef = e or ef = 0. (b) For each finite 
subset J of P let V ( J )  = { u  E A : u e  = 0 for all e E J } .  Then { V ( J )  : 
J is a finite subset of P} is a fundamental system of neighborhoods of zero 
for the topology of pointwise convergence on A, where E is given the discrete 
topology. (c) If 4j is an isomorphism from A to  the ring B of all linear 
operators on a vector space F ,  then $ is a topological isomorphism when E 
and F are given the discrete topology, A and B the topology of pointwise 
convergence. (d) If is an isomorphism from one linearly compact primitive 
ring to another, then @ is a topological isomorphism. (e) A primitive ring 
admits at most one linearly compact ring topology. 

29.8 (Warner [1960b], Arnautov and Ursul[1979]) Let ( A x ) X E ~ ,  ( B , ) , E ~  
be families of rings with identity, and let A and B be their respective carte- 
sian products. For each X € L ,  we denote by inx the canonical injection 
from Ax to A and by prx the canonical epimorphism from A to Ax (so that 
p ~ x  oinx is the identity automorphism of Ax), and similarly for each p E M .  
(a) If h is a homomorphism from A to A such that the restriction of h to 
eXEL AX is the identity automorphism of exEL Ax, then h is the identity 
automorphism of A.  (b) Assume that for each X E L and each p E M ,  Ax 
and B, are indecomposable rings, that is, not the direct sum of two proper 
subrings. If h is an isomorphism from A to B, then there exist a bijection 
CT from M to  L and, for each p E M ,  an isomorphism h, from to B, 
such that 

h ( ( Z X ) ) X € L  = ( ~ , ( ~ U ( , ) ) ) C L € M '  
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[Observe that if 1~ is the identity element of Ax, then {inx(lx) : X E I,} is 
the set of indempotents e in the center of A such that for every idempotent 
f in the center of A,  either e f  = 0 or e f  = e. Then show that for every 
p E M there exists a ( p )  E L such that pr ,  o h o inc(,) is an isomorphism 
from to B,. Use (a).] (c) If 9 is an isomorphism from one linearly 
compact semisimple ring to another, then 9 is a topological isomorphism. 
[Use (b) and Exercise 29.7.1 (d) A semisimple ring admits at most one 
linearly compact ring topology. 

29.9 A ring A is von Neumann regular if for each a E A there exists x E A 
such that a m  = a. (a) The ring of a l l  linear operators on a vector space is 
von Neumann regular. (b) An ideal of a von Neumann regular ring is a von 
Neumann regular ring. (c) The Cartesian product of von Neumann regular 
rings is a von Neumann regular ring. (d) A von Neumann regular ring is 
semisimple. [Use the paragraph preceding 11.7.1 (e) (Wiegandt [1965a]) A 
linearly compact ring is von Neumann regular if and only if it is semisimple. 

29.10 Let e be an idempotent of a topological ring A. (a) If A is linearly 
compact, eA is a linearly compact ring. [Modify the proof of 29.15.1 (b) 
(Anh [1980]) If A is strictly linearly compact, ed is a strictly linearly com- 
pact ring. [Show that if H and L are left ideals of eA generating the same 
left ideal of A ,  then H = L.] 

30 Strongly Linearly Compact Modules 

30.1 Definition. A topological module or ring E is strongly linearly 
compact if E is linearly topologized and the Z-module E is linearly com- 
pact. 

Thus a linearly topologized module or ring is strongly linearly compact 
if and only if the intersection of any filter base of cosets of closed additive 
subgroups is nonempty. Consequently, a strongly linearly compact module 
or ring is linearly compact. By 28.16, if F is a closed submodule of a linearly 
topologized module E ,  E is strongly linearly compact if and only if F and 
E / F  are strongly linearly compact. Our principal purpose here is t o  show 
that a strongly linearly compact module or ring is strictly linearly compact 
by determining the structure of discrete, linearly compact Z-modules. 

We recall that an abelian group D is divisible if for each x E D and 
each nonzero integer n there exists y E D such that n.y = x. Thus, D is 
divisible if and only if n.D = D for each nonzero integer n. Clearly the 
sum of two divisible subgroups of an abelian group is a divisible subgroup, 
an epimorphic image of a divisible group is divisible, and the zero group is 
the only finite divisible group. Furthermore, a divisible group D contains 
no proper subgroups H of finite index, for if D/H had order n and 2 E D ,  
then for some y E D ,  x = n.y E H .  
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30.2 Theorem. A divisible subgroup H of an abelian group G has an 
algebraic supplement. 

Proof. By Zorn's Lemma, G contains a subgroup K maximal for the 
ordering E among all the subgroups L of G such that H 17 L = (0). It 
suffices to  show that H + K = G. Suppose there existed x 4 H + K.  Then 
by maximality, H n ( K  + Z .x) # (0)) so there would exist a smallest integer 
n 2 1 such that for some h E H and some k E K ,  h = k + n.x # 0 ,  whence 
n.x E H + K .  As n # 1, there is a prime p dividing n. Let y = (n /p ) . x .  
Then y 4 H + K but p.y E H + K. As H is divisible, there would exist 
hl E H such that p.hl = h. Let t = y - hl. Then t 4 H + K ,  so as before, 
H n ( K + Z . t )  # (0)) and thus there would exist m 2 1, h2 E H ,  and k2 E K 
such that h2 = kz + m.t # 0. Now p . t  = n.x - h = k E K ,  so p 1 m since 
otherwise m.t E K and thus 

0 # h2 = Ic2 + m.t E H n K = (0)) 

a contradiction. Therefore p and m would be relatively prime, so there 
would exist a,  b E Z such that a m  + bp = 1, whence 

t = a.(m.t) + b . (p . t )  = a.(h2 - k2) + b.(p. t )  E H + K ,  

a contradiction. Thus G = H + K .  0 

30.3 Theorem. An abelian group G has a largest divisible subgroup 
D, and i f  K is an algebraic supplement of D ,  the zero subgroup is the only 
divisible subgroup of  K .  

Proof. The set 'D of all divisible subgroups of G is nonempty as it contains 
the zero subgroup, and the union of a family of divisible subgroups, totally 
ordered by C ,  is clearly a divisible subgroup. Therefore by Zorn's Lemma, 
G contains a maximal divisible subgroup D. If H is any divisible subgroup 
of G, D + H is also clearly divisible, so by the maximality of D ,  H C D. 
Thus D is the largest divisible subgroup of G, and in particular, an algebraic 
supplement of D can contain no nonzero divisible subgroup. 0 

30.4 Definition. An abelian group G is a torsion group if  for each 
x E G there exists an integer m 2 1 such that m.2 = 0. I f p  is a prime, G is 
a p-primary group i f  for each x E G there exists r E M such that pr.x = 0; 
G is a primary group i f  G is p-primary for some prime p.  

Let G be an abelian group. The subset of G consisting of all x E G such 
that n.x = 0 for some integer n 2 1 is clearly the largest subgroup of G 
that is a torsion subgroup, and hence is called the torsion subgroup of G. 
If p a prime, the subset of G consisting of all x E G such that p'.x = 0 
for some r E N is clearly the largest p-primary subgroup of G, called its 
p-primary component. 
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30.5 Theorem. Let G be an abelian torsion group, (Tp)pEp its primary 
components, where P is the set of primes. Then G is the direct sum of 
(Tp)pEp,  and i f f  is an epimorphism from G to an abelian group H ,  then 
H is a torsion group whose primary components are (f(Tp))pEp. 

Proof. Let 2 E G, let m > 1 be such that m.2 = 0, and let m = p;' . . .pz 
where p l ,  . . . , p ,  are distinct primes. For each j E [l, n] let q j  = m / p y .  
Then q1, .. ., q, are relatively prime, so there exist a l ,  . . . , a,  E Z such 
that alql + . - + anqn = 1. Consequently, 

2 = al.(ql.z) + . * *  + an.(qn.2),  

and clearly each qj.z E Tpj . 
Thus to establish the first assertion, we need only show that if z1+ . . . + 

z, = 0 where 2; E Tpi for each i E [l, n] and pl, . . . , p ,  are distinct primes, 
then each zi = 0. For each j E [l, n] let T j  2 0 be such that p y  .xj  = 0, and 
for each i E [1,n] let 

j#i 

Then qi.zj = 0 for d j # i, so 

qj .2 ;  = Qj.(Zl + * * + 2,) = 0. 

As qj and pi' are relatively prime, there exist a, b E Z such that aqi+bpii  = 
1, whence 

zi = a&+) + b.(p;".zi) = 0. 

If f is an epimorphism from G to H ,  clearly H is a torsion group. and 
for each prime p ,  f(T') is contained in the p-primary component. But as 
f (G)  = H and as H is the direct sum of its primary components, f (Tp)  
must therefore be the p-primary component of H .  0 

30.6 Theorem. If G is a p-primary abelian group, then G is divisible if 
and only ifp.G = G. 

Proof. Sufficiency: Let 2 E G, let rn 2 1, and let rn = p"q where p q 
and s 2 0. Let n 2 1 be such that p".x = 0. As pn and q are relatively 
prime, there exist a, b E Z such that ap" + bq = 1, so 

2 = a.(p, .z)  + q . (b . z )  = q . ( b . z ) .  

By hypothesis there exists y E G such that ps.y = b.x; therefore 

m.y = q. (b . z )  = 2.. 
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30.7 Definition. Let p be a prime. A group G is a basic divisible 
p-primary group if G is the union of an increasing sequence (Hn),?1 of 
cyclic subgroups such that the order of H ,  is p" for all n >_ 1. 

To justify the terminology, let G and (Hn),21 be as in Definition 30.7. We 
recall that a finite cyclic group of order m contains precisely one subgroup 
of order d for each divisor d of m. It readily follows that p.H,+1 = H,  for 
all n 2 1 and, more generally, that p'.Hn+' = H ,  for all n, s 2 1. Clearly 
G is p-primary since p".z = 0 for a l l  x E H,. Also as p.Hn+1 = H ,  for all 
n 2 1, we conclude that p.G = G, whence G is a divisible group by 30.6. 

If 2 E G is an element of order p n ,  then z is a generator of H,, for z E H ,  
for some m 2 1, and clearly m 2 n, whence H ,  is the unique subgroup of 
H ,  of order p n .  It readily follows that the only nonzero proper subgroups 
of G are the groups H ,  where n 2 1. Consequently, the Z-module G is an 
artinian module but not a a noetherian module. 

The additive group Q p / Z p  is a basic p-primary group, as we need only 
let H ,  = p-"Z,/Z, for each n 2 1. Indeed, H, clearly has order p n ,  and if 
z E Q, and if vp(z) = -n where n 2 1, then pnx E Z,, so z E p-"Z,. 

Any basic divisible p-primary group G is generated by elements (zn),?1 

where z1 # 0, p . z l  = 0, and p.z,+1 = z, for all n 2 1. Consequently, any 
two basic divisible p-primary groups are isomorphic, for if (z;),?~ is such 
a sequence for G', then there is a unique isomorphism f from G to G' such 
that f ( z n )  = z: for a l l  n >_ 1. Indeed, as zn and z: are generators of the 
unique cyclic subgroups H, and Hi of order p" of G and G' respectively, 
there is a unique isomorphism fn from H ,  t o  HL such that fn(z,) = XI. 
If n > 1, then as z,-1 = p . z ,  and EL-, = p . ~ , ,  fn(z,-l) = X L - ~ ,  and 
therefore the restriction of fn to H,-1 is f n - l .  The function f from G t o  
G' whose restriction to each H, is fn is therefore a well-defined isomorphism 
from G to G' satisfying f ( z n )  = .I, for a l l  n 2 1. 

t 

In sum, we have proved: 

30.8 Theorem. Let p be a prime. There exist basic divisible p-primary 
groups, and any two are isomorphic. If G is a basic divisible p-primary 
group, then for each n 2 1 G contains exactly one subgroup H ,  of order 
p n ,  Hn is cyclic, (Hn)n>1 is an increasing sequence of subgroups of G whose 
union is G, and the H,'s are the only nonzero proper subgroups of G. In 
particular, G is an artinian Z-module but not a noetherian Z-module. 

The traditional notation for a basic divisible p-primary group is Z (p") . 
By 30.5, to describe all  divisible torsion groups, it suffices to describe 

30.9 Theorem. Let p be a prime. An abelian group G is a divisible p -  
primary group if and only if G is the direct sum of a family of basic divisible 

divisible primary groups: 
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p-primary subgroups. 

Proof. The condition is clearly sufficient, since a sum of divisible [p- 
primary] groups is a divisible [p-primary] group. Necessity: We first observe 
that any nonzero divisible p-primary group H contains a basic divisible p- 
primary subgroup. Indeed, H contains a sequence (z,),>l of elements such 
that 21 # 0, p . z l  = 0, and p.zn+l = zn for all n 2 l.-By induction, the 
subgroup H ,  generated by 2, is a cyclic group of order pn for all n 2 1, 
and (Hn),21 is an increasing sequence of subgroups of H whose union is 
therefore a basic divisible p-primary subgroup of H .  

We may assume that G is a nonzero group. Let (HA)A€L be the family of 
all basic divisible p-primary subgroups of G. We have just seen that L # 0. 
Let h/ be the set of all subsets N of L such that CAEN H A  is the direct sum 
of (HA)x€N. Clearly h/, ordered by inclusion, is inductive and therefore by 
Zorn's Lemma contains a maximal member M .  We need only show that 
G = CAEM HA. In the contrary case, G is the direct sum of CAEM H A  and 
a nonzero subgroup K by 30.2, as CXEM H A  is a divisible group. Then K is 
isomorphic to G/ CAEM H A ,  which is divisible as it is an epimorphic image 
of G. Therefore by the preceding, K contains a basic divisible p-primary 
group H,,  where p E L \ M .  Clearly M U { p }  E h/, a contradiction of the 
maximality of M .  Thus G = CAEM H A .  0 

are equivalent: 
30.10 Theorem. Let G be an abel'an group. The following statements 

1" The Z-module G is linearly compact for the discrete topology 
2" G is the direct sum of  a finite subgroup and finitely many basic divisible 

3" The Z-module G is artinian. 

Proof. Since a basic divisible primary group is an artinian Z-module, 2" 
implies 3" by 27.5. Also 3" implies 1" by 28.14. To show that 1' implies 2", 
we first observe that the Z-module Z is not linearly compact for the discrete 
topology. Indeed, if F, = 7 + Z.3", it is easy to see that (F,),z1 is 
a decreasing sequence of cosets of subgroups whose intersection is empty. 
Let G satisfy 1". For each a E G, the Z-module Z.a is isomorphic to the 
Z-module Z/Annz(a); since Z.a is also linearly compact for the discrete 
topology, therefore, Annz(a) # (0) by the preceding. Thus G is a torsion 
group. By 30.5 and 28.21, the p-primary component of G is nonzero for only 
finitely many primes p; thus G is the direct sum of finitely many primary 
subgroups. Therefore to establish 2", we may assume that G is a p-primary 
group for some prime p. 

By 28.3, G/p.G is a linearly compact Z-module for the discrete topology. 
Let Fp be the prime field Z/p.Z of p elements. We may regard G/p.G as a 

primary subgroups. 

3" -1 
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vector space over Fp; the subgroups of G/p.G then coincide with the sub- 
spaces of the Fp-vector space G/p.G. Thus G/p.G is a linearly compact Fp- 
vector space for the discrete topology. By 28.21 G/p.G is finite-dimensional 
over Fp and hence is finite. Thus there exist a l ,  . . . , a ,  E G such that if 
H = Z.cz1-t.. .+Z.a,, then G = H+p.G. As G is ap-primary group, H is a 
finite p-primary group and thus its order is pT for some T 2 0. Consequently, 

p'.G = p T . H  +pT+'.G =pT+'.G. 

Therefore p".G = pT.G for all s 2 T .  Let K = pT.G. Then p.K = K ,  
so K is a divisible group by 30.6, and hence G is the direct sum of K 
and a subgroup HO by 30.2. For each s E [l ,r  - 11, r 4 pa.x  +p"+'.G 
is an epimorphism from G to p'.G/p"+'.G whose kernel contains p.G, so 
p".G/paS1.G is an epimorphic image of G/p.G and hence is finite. Therefore 
as G/p.G,p.G/p2.G, . . . , pT-'.G/pT.G are all finite, so is G/pT.G; as HO is 
isomorphic to G/K = G/pT.G, therefore, Ho is finite. Since K is also a 
linearly compact Z-module for the discrete topology, K is the direct sum of 
finitely many basic divisible p-primary subgroups by 30.9 and 28.21. 0 

30.11 Corollary. A strongly linearly compact module or ring is strictly 
linearly compact. 

Proof. If U is an open submodule of a strongly linearly compact A- 
module E ,  then E/U is a discrete, linearly compact Z-module by (1) of 
28.16, so E / U  is an artinian Z-module by 30.10 and a fortiori an artinian 
A-module. Consequently, E is strictly linearly compact by (2) of 28.15. a 

Exercises 

30.1 Let A be a ring. (a) The largest divisible subgroup of the additive 
group A is an ideal. (b) The torsion subgroup of the additive group G is an 
ideal, and for each prime p, the p-primary component of the additive group 
A is an ideal. 

30.2 If A is a torsion ring (that is, if its additive group is a torsion group), 
then the largest divisible ideal of A is contained in AnnA(A). 

30.3 A topological A-module E is a compact, totally disconnected, torsion 
module if and only if E is strongly linearly compact and for some m 2 1, 
m.E = (0). [Necessity: Use 9.4.1 

3 1 Locally Linearly Compact Semisimple Rings 

Here we will determine the structure of linearly topologized semisimple 
rings having a linearly compact open left ideal. 
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31.1 Theorem. Let B be a ring furnished with an additive group topol- 
ogy such that for all b E B, x -+ xb is continuous from B to B. Let A be 
a subring of B such that for all a E A, x --f ax is continuous from B to B 
and, with its induced topology, A is a linearly topologized A-module. Then 
A is a linearly topologized topological ring. 

Proof. Let L be a left ideal of A.  For each a E A, as a -+ ux is continuous, 
a z  C aL/ C z. Hence A z  c z. For each b E z, as x + xb is continuous, 
Ab 2 Ab, a subset of the closure of AE and hence of z. Thus xz c I;. 
In particular, AA C 3, so x is a subring of B,  and by 4.22 the topology 
induced on x is an x-linear topology. Since for each b E 2, x -+ zb is 
continuous from 2 to x by hypothesis, therefore, 2 is a topological ring by 
2.15. 

- 

- 
-- 

31.2 Theorem. If A is a semisimple topological ring having a nonzero 
open left ideal L that is a linearly compact A-module for its induced topol- 
ogy, then L contains a minimal left ideal of A. 

Proof. Since L is complete by 28.5, the topology of pointwise convergence 
on the A-module LL of all functions from L to L is also complete by 7.8. 
The A-submodule End(L) of all endomorphisms of the additive group L is 
closed in LL and hence is also complete. Let U be the fundamental system 
of neighborhoods of zero consisting of all open left ideals of A contained in 
L. For each finite subset X of L and each U E U, let 

W ( X , U )  = {u  E End(L) : u ( X )  C_ U } .  

The set of all such W ( X ,  U )  is then a fundamental system of neighborhoods 
of zero for the topology of pointwise convergence on End(L). That topology 
is an A-linear topology, for as U is a left ideal, W ( X ,  U )  is an A-submodule. 

With composition as multiplication, End(L) is also a ring. Moreover, for 
each b E End(&), u + u o b is continuous at zero and hence everywhere, 
since 

W b ( X ) ,  U )  0 b c W ( X ,  U )  

for any finite subset X of L and any U E U. For each a E A, let ii E 
End(L) be defined by & ( x )  = ax for all x E L. Then 4 : a ---f & is a 
homomorphism from the ring A to the ring End(L). For each a E A and 
each u E End(L), a.u = ii o u (since by definition, u.u is the function 
x --t u u ( x ) ) .  Therefore as the topology of End(L) is an A-module topology, 
u -+ & o u is continuous from End(L) to  End(L) for each a E A. Moreover, 
for each U E U, W ( X ,  U )  n 4(A) is a left ideal of d(A) since W ( X ,  U )  is 
a submodule of End(L). By 31.1, therefore the closure 4(A) of 4(A) in 
End(L) is a linearly topologized topological ring. 

- 
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A h  

Now +(A) is also a submodule of the A-module End(L) since a.b = ab 
for all a ,  b E A. Therefore +(A) is a submodule of the A-module End(L). 
To show that +(A) is a linearly compact ring, it therefore suffices to show 
that the closed A-submodules of +(A) coincide with the closed left ideals 
of +(A) and that +(A) is a linearly compact A-module. If J is a closed 
A-submodule of +(A), then for any a E A and any u E J, ii o u = a.u E J, 
so +(A) o J 5 J ,  whence 

- 
- 

- 
- - 

- 

- -  m o ~ = + ( ~ ) o ~ ~ J = ~  
- - 

as +(A) is a topological ring. Conversely, if J is a left ideal of +(A), then 
J is an A-submodule of +(A) since a.u = 6 o u E J for all a E A, u E 
J. To show that +(A) is a linearly compact A-module, we observe that if 
{q, . . . )  zn} & L and if U E 3, then 

- 
- 

21 --+ (u(x1) + U, . . * ,U(Z,) + U )  

- 
is an A-module homomorphism from +(A) to (L/U) x + - x (L/U) whose 
kernel is +(A) n W((z1 ,  . . . , zn}) U ) .  Since L/U is a discrete linearly com- 
pact A-module, so is ( L / U )  x . . .  x ( L / U )  by 28.7, and hence each of its 
submodules is a discrete, linearly compact A-module. In particular 

__ 

- - 
is a discrete, linearly compact A-module. As +(A)  is closed in End(L), + ( A )  
is complete. Therefore +(A) is a linearly compact ring by (1) of 28.15. 

Furthermore, + is continuous from A into End(L), for if X is a finite 
subset of L and if U E U, there exists V E U such that VX E U ,  whence V C 
+- ' (W(X ,  U ) ) .  Consequently, +(L) is a linearly compact, hence complete, 
and thus closed subset of End(L). Hence +(L)  is a closed left ideal of + ( A ) .  

Let z E L. Then u --+ u o 2 is continuous from End(L) to  End(L) as 
noted earlier, and u --$ u(z) is also continuous from End(L) to End(L) since 
it is the composite of the continuous function u + u(z )  from End(L) to L 
and 4. For each a E A, ii o i = G = ii(z). Consequently, 

- 

- 

- 
for all u E +(A) and ad z E L. 

The restriction #L of + to 1; is a monomorphism. Indeed, the kernel K 
of + is clearly {a  E A : aL = (0)). The kernel of +h is therefore L n K ,  a 
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left ideal; but as K L  = (0), ( L  f l  K ) 2  = (0), so L f l  K = (0) by 26.14 as A 
is semisimple. 

To show that $(A)  is semisimple, let R be its radical. As $(L)  is a left 
ideal of $ ( A ) ,  R o $ ( L )  is an advertible left ideal of $ ( A )  contained in $ ( L ) ,  
so as #L is an isomorphism from L to #(L)  and as 

- 
- - 

$-l(R o $ ( L ) )  n L is an advertible left ideal of A and thus is (0) by 26.13, 
that is, 

Now 

and q5-'(R o $(L))L  C L. Hence by (2), #-l(R o # ( L ) ) L  = (0), that is, 
q5-l(R o q5(L))) c K ,  whence 

Let T E R. To show that T = 0, it suffices to show that ~ ( z )  = 0 for each 
z E L. By (3), r o 2 = 0, that is, r ( z )  = 0 by (l), whence T ( Z )  E K and 
thus T ( Z )  E L n K = (0). - 

By 29.8 there is a minimal left ideal NO of $(A)  contained in $(L) .  Let 

a nonzero left ideal of A contained in L. To show that N is a minimal left 
ideal, let N1 be a left ideal of A contained in N .  If $ ( L N l )  = (0), then 

so N,2 c LNl = (0), and therefore N1 = (0) by 26.14, as A is semisimple. 
We may suppose, therefore, that $(LN1) # (0). For any y, z E L, ii(yz) = 
ayz = ii(y)z for all a E A ,  so as u 4 u ( y z )  and u + u ( y ) z  are continuous 
fromEnd(L) to L ,  
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- - 
for all u E 4 ( A ) .  
y1, . . . , yn E L and if z1, . . . , z, E N1, then for any u E 4 ( A ) ,  

Consequently, +(LN1) is a left ideal - of 4 ( A ) ,  for if 

n n 

i=l i= l  i=3 
n 

by (1) and (4). Furthermore, 

so by minimality, +(LN1) = NO. Therefore 

But as LN1 2 L, 

(LNl + K )  n L & LNl + ( K n L )  = m1 c N~ 

as K n L = (0). Thus N = N1, so N is a minimal left ideal. 0 

31.3 Theorem. Let E be a discrete vector space over a discrete division 
ring K ,  and let A = E n c l ~ ( E ) ,  furnished with the topology of pointwise 
convergence. Let M be a proper subspace of El and let L = Ann*( M )  , 
With its induced topology, L is a linearly compact ring if and only if M is 
a finite set. 

Proof. For each u E L,  let g(u )  be the linear operator on the K-vector 
space E / M  that is well defined by 

g(u)(z + M )  = u(z )  + M .  

It is easy to verify that g is a topological epimorphism from the ring L to 
the ring EndK(E/M), furnished with the topology of pointwise convergence. 
Let N be the kernel of g .  Then N is closed and the topological ring L/N 
is topologically isomorphic to EndK(E/M) and hence, by 29.1, is a linearly 
compact ring. Therefore the L-module L/N  is linearly compact as the left 
ideals of the ring L / N  coincide with the submodules of the L-module &IN. 
Consequently by (1) of 28.16, L is a linearly compact ring if and only if 
N is a linearly compact L-module. Clearly N = { u  E L : u(E)  & M}, so 
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L N  = (0)) and thus N is a trivial L-module. Consequently, L is a linearly 
compact ring if and only if N is strongly linearly compact, or equivalently 
by 30.11 and (2) of 28.15, if and only if N / U  is an artinian Z-module for all 
subgroups U forming a fundamental system of neighborhoods of zero. 

Necessity: Let b E E \ M ,  let U = {u E N : u(b) = 0}, an open L- 
submodule of N ,  and let Y be a linearly independent subset of E containing 
a basis of M such that Y U { b }  is a basis of E.  Suppose that M contained an 
infinite linearly independent sequence (zj)j?l. Let vj be the linear operator 
satisfying vi(b) = zi, v;(y) = 0 for all y E Y. For each k 2 1 let GI, be the 
additive subgroup generated by {vi + U : i 2 k}. The linear independence 
of (zi)ill insures that 211, + U $i! Gk+l for all k 2 1. Thus (GI , ) I ,>~ is a 
strictly decreasing sequence of additive subgroups of N / U ,  so N/U-is not 
artinian. Consequently, M is finite-dimensional. 

Next, suppose that K is infinite but that there exists a nonzero vector 
a E M .  Case 1: K has characteristic zero. Let u be the linear operator 
satisfying u(b) = a and u ( y )  = 0 for all y E Y .  Then u E N ,  but if n 
and m are distinct integers, then n.u - m.u $! U since (mu - m.u)(b) # 0. 
Consequently, {n.(u + U )  : n E Z} is a subgroup of N / U  isomorphic to Z, 
so N / U  is not artinian. Case 2: K has prime characteristic p .  Then K is 
infinite-dimension& over its prime subfield 8''. For each X E K let ux be 
the linear operator satisfying u x ( b )  = Xa, u x ( y )  = 0 for all y E Y .  Then 
X --f u x  + U is an isomorphism from the additive group K to an additive 
subgroup of N / U ,  for if X # p,  (ux - u,)(b) = ( A  - p)a # 0. Thus if 
N / U  were artinian, K would be also. Let ( X i ) i l l  be a denumerable subset 
of a basis of K over Fp, and for each k 2 1 let GI, be the additive group 
generated by { X i  : i 2 k}. Clearly XI, $! G I , + ~ ,  so (Gk)1,>1 is a strictly 
decreasing sequence of subgroups of K .  Consequently, the additive group 
K is not an artinian Z-module, so neither is N / U .  

Thus, either K is finite and M is finite-dimensional, or M = (0); equiv- 
alently, M is a finite set. 

Sufficiency: Let X = (21, ..., z,} E ,  and let U = N n AnnA(X). 
Then h : u --f (~(21)). . . ,u(z,)) is a homomorphism from the additive 
group N to the additive group M x x M (n  terms) with kernel U .  
Consequently, N / U  is finite and hence is artinian. 0 

31.4 Theorem. Let A be a topological ring, L a proper nonzero left 
ideal of A .  The following statements are equivalent: 

1' A is primitive and linearly topologized, L is open in A and is a linearly 
compact ring for its induced topology. 

2' There is a topological isomorphism I$ from A to the topological ring 
EndK(E) of all linear operators on a discrete vector space E over a (discrete) 
finite field K ,  furnished with the topology of pointwise convergence, such 
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that 4(L)  is the annihilator in EndK(E) of  a proper nonzero finite-dimen- 
sional subspace of E .  

Proof. Assume lo. Since L is a linearly compact ring, it is a fortiori a 
linearly compact A-module. By 31.2, A possesses a minimal left ideal. By 
25.6 and 25.11, A has no nonzero nilpotent ideals. Therefore by 25.17 and 
25.18, A has an idempotent f such that fAf is a division ring, Af is a 
minimal left ideal and is a right vector space over fAf under multiplication 
as scalar multiplication, and 4 : a + a~ is an isomorphism from A to  a 
dense ring of linear operators on the right fAf-vector space Af,  where 
a ~ ( z )  = az for all z E Af. Since L is Hausdorff and open, A is Hausdorff, 
so any minimal left ideal of A is discrete. Let E = A f ,  K = fAf, and 
let B = EndK(E), furnished with the topology of pointwise convergence. 
The monomorphism 4 from A to B is continuous since for each z E E ,  
a --t a ~ ( z )  is simply the continuous function a -, az. Therefore by 29.3, 
4(L)  is linearly compact, hence complete, and thus closed in B. By 4.2, as 
d(L)  is a left ideal of 4 ( A ) ,  4 ( L )  = 

Let M = AnnE(4(L)). By 25.8, d ( L )  = AnnB(M), since 4(L)  is a closed 
left ideal of B ,  so M is a proper nonzero subspace of E as $(L)  is a proper 
nonzero left ideal. Since 4(L)  is a linearly compact subring, by 31.3 M is 
finite. Consequently, K is finite and hence, by Wedderbura's theorem, is a 
field, M is a finite-dimensional subspace, and 4(L)  is open in B. Therefore 
4(A)  is also open and hence closed in B, so 4(A) = B. 

is a left ideal of = B. 

By 29.1 and 31.3, 2' implies 1'. 0 

31.5 Definition. Let (Ax)xE1 be a family of rings, for each X E I let L A  
be a subring of  Ax, and let Dx be the largest subring of Ax in which LA is 
an ideal (thus Dx = {z E Ax : LAX U zLx C LA}) .  The local direct sum 
of (Ax)xE1 relative to (Lx)xE1 is the subring A of  n,,, Ax consisting of all 
( z x ) x E ~  such that zx E Dx for all but finitely many X E I .  I f  each Ax is a 
topological ring and i f  each L A  is open in Ax, the local direct sum topo- 
logy of  A is that for which the neighborhoods of  zero in n,,, LA,  fur- 
nished with its Cartesian product topology, form a fundamental system of 
neighborhoods of zero. 

To show that the local direct sum topology on A is indeed a ring topology, 
it suffices by 2.15 to verify (TR 5 ) .  Let b = ( b x ) x E ~  E A, and let M be the 
finite subset of I such that bx E Dx for all X E I \ M .  Let V = nxE1 Vx 
where each Vx is a neighborhood of zero in LA (and hence also in Ax) and 
V .  = L A  for all X E I\N for some finite subset N of L. For each X E MUN, 
let Wx be a neighborhood of zero in Ax that is contained in LA and satisfies 
W x b x  C Vx and bxWx C Vx, and let Wx = LA for all X E I \ ( M  U N ) .  If 
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X E I \  M UN, then 

bxWx u Wxbx c DxLx u LxDx 

V where W = n,,, Wx. 

LA = vx. 
Therefore bW U Wb 

31.6 Definition. Let A be thelocal direct sum ofrings (Ax)xE1 relative 
to subrings ( L x ) x E z .  A subringB ofA is an algebraically dense subring 
of A if B 2 n,,, L A  and if, for each finite subset J of I ,  pr  j(B) = nx, Ax, 
whereprJ is the canonical projection from n,,, Ax to nXEJ Ax. If each Ax 
is a topological ring and each LA an open subring, the local direct sum 
topology on B is the topology induced by the local direct sum topology of 
A .  

31.7 Theorem. If B is an algebraically dense subring of the local direct 
sum of semisimple rings (Ax)x ,=I  relative to subrings ( L x ) x E z ,  then B is 
semisimple. 

Proof. Let R be the radical of B .  For each p E I, the restriction to B of 
the canonical projection pr ,  from n x E z A x  to A,  is an epimorphism from 
B to A,, so by 26.15, pr,(R) = (0). Therefore R = (0). 0 

31.8 Theorem. Let A be a topological ring. The following statements 
are equivalent: 

1" A is a semisimple linearly topologized topological ring possessing an 
open left ideal L that is a linearly compact ring for its induced topology. 

2" There is a topological isomorphism 4 from A to Ao x A1 x A2 where: 
A0 is a discrete semisimple ring; A1 is an algebraically dense subring of the 
local direct sum of a family (Ax)xE J of topological rings relative to proper 
nonzero open left ideals (Lx)xE J, where for each X E J ,  Ax is the topological 
ring EndK,Ex of all linear operators on a discrete vector space Ex over 
a finite field Kx, furnished with the topology of pointwise convergence, 
LA = AnnAx MA where MA is a nonzero proper finite-dimensional subspace 
of Ex, the largest subring Dx of Ax in which LA is an ideal is ( u  E Ax : 
u(Mx)  C MA},  and the topology of A1 is the local direct sum topology; 
A2 = nPEM A,, where for each p E M ,  A, is the topological ring EndKr E, 
of all linear operators on a discrete nonzero right vector space E, over a 
division ring K,, furnished with the topology of pointwise convergence; and 

Proof. Statement 2" implies 1" by 31.7, 26.21, 29.1, and 29.5. Assume 
1". We may further assume that L # (0), since otherwise 2" holds where 
A o = A ,  J = M = 8 .  
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(a) We first show that there is an idempotent e such that L = Ae. Let 
Rad(L) be the radical of the ring L. By 29.12,29.4, and 26.16, L/Rad(L) is a 
semisimple linearly compact ring, and L # Rad(L) since otherwise L would 
be a nonzero advertible left ideal of the semisimple ring A, in contradiction 
to 26.13. Consequently by 29.8 there exists e E L whose coset in L/Rad(L) 
is the identity element of that ring. Thus for any z E L, z -ze  E Rad(L), an 
advertible ideal of L, whence {z - z e  : z E L} is an advertible left ideal of 
A and so is (0) by 26.13. Consequently for a l l  z E L, z = ze. In particular, 
e2 = e, and Ae C L = Le 

(b) Next we show that the intersection of the set P of all the primitive 
ideals P ( M ) ,  where M is an open regular maximal left ideal of A, is the 
zero ideal. Since each such M is closed and P ( M )  = { a  E A : aA 5 M } ,  
each P E P is closed. 

First, if z E A and re # 0, then z 4 P for some P E P. Indeed, as A is 
semisimple, there exists a E A such that aze is not left advertible by 26.9. 
Let D = {z - zaze : z E A } ,  a regular left ideal; clearly aze $ D. To show 
that D is closed, it suffices by 4.11 to show that L n D is closed in L. As 
e E L, L n D = {z - zaze : z E L}, the image of L under the continuous 
endomorphism z -+ z - zaze of the L-module L. Consequently L n D is 
closed in L by 28.3 and 28.6. Therefore, since A is linearly topologized, there 
is an open left ideal I such that aze+l C_ A\D. As D is a regular left ideal, so 
is D+I;  therefore by 26.3 there is a maximal regular left ideal M containing 
D + I, and rue 4 M since otherwise z = (z - zaze)  + xaze E D + M = M 
for a l l  z E A.  As I is open, M is open. If z E P ( M ) ,  then az E P ( M ) ,  so 
aze E M, a contradiction. Thus z 4 P ( M ) .  

Second, if z' = z - ez  for some z E A and if z' # 0, then z' $ P for 
some P E P .  Indeed, there exists a E A such that z'a is not left advertible 
by 26.9. Let D' = {z - zz'a : z E A } .  Then e = e - ez'a E D', so 
L = Ae C_ D'. Thus D' is an open regular left ideal not containing z'a. 
As in the preceding paragraph, there is by 26.3 an open regular maximal 
left ideal M' containing D' but not z'a. If z' E P ( M ' ) ,  then z'a E M' ,  a 
contradiction. 

It follows that if z - ez # 0, then z 4 P for some P E P. Indeed, in the 
contrary case, z - ez would also belong to each P E P, whence z - ez = 0 
by the preceding paragraph, a contradiction. 

Finally, let z belong to each P E P .  By what we proved first, z e  = 0, so 
z = z - ze. By what we proved second, z - ez = 0, so z = e z  = e(z - ze) = 
e z  - eze. But for all y, z E A ,  (ey - eye)(ez - eze) = 0. Thus 

Ae. 

( n = (o), so n P = (0) 
PEP PEP 

by 26.14. 
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(c) Next, Let PO = n { P  E P : P 2 L } ,  let (Px)x,=i = { P  E P : P 2 L}, 
and let I' = I U ( 0 ) .  For each X E I', let Ax = A/Px, let $A be the canonical 
epimorphism from A to A/Px = Ax, and let LA = #Jx(L). Then A0 is a 
discrete semisimple ring, Lo = ( 0 ) ,  and for each X E I ,  LA is a nonzero open 
left ideal of Ax, and LA is a linearly compact ring by 29.3. Therefore by 
31.4, for each X E I we may regard Ax as the ring EndK,(Ex) of all linear 
operators on a discrete vector space Ex over a discrete division ring Kx, 
furnished with the topology of pointwise convergence, and we may regard 
LA as AnnAA(Mx) where MA is a proper finite subspace of Ex (and thus 
LA = Ax if M A  = (0) and, in particular, if K is infinite). 

(d) Let q5 be the continuous homomorphism from A t o  I T x E I l  Ax, fur- 
nished with the Cartesian product topology, defined by 

#J(z) = (#Jx (z ) ) xu  = (z + P x ) x w .  

By (b), #J is an isomorphism from A to $(A) .  We shall show that for any 
finite subset Q of 1', 

pTQ($(A)) = Ax, 

where PTQ is the canonical projection from n,,,i Ax to n,,, Ax. For this, 
we shall first show that if A, y E I' and if X # y, then PA + P, = A .  If PO 
is one of PA, P,, say P,, then P, = PO p PA since L S PO but L PA. If 
Po is neither PA nor P,, we may assume that P, PA. Then $x(P,) is a 
nonzero ideal of Ax and so is dense in Ax = EndK, (Ex)  by 25.10. Therefore 
as PA + P, = q5X1 ($x(P,)), PA + P, is dense in A. Thus it remains to show 
that PA + P, is closed in A, and for this it suffices by 4.11 to show that 
L n (PA + P,) is closed in L. By (a), 

L n (PA + P,) = (PA + P,)e = Pxe + P,e = (L n PA) + (L n P,). 

As PA and P, are closed in A, L n PA and L fl P, are closed submodules of 
the linearly compact L-module L,  so L n PA + L n P, is closed in L by (3) of 
28.6. Therefore PA + P, = A whenever X # y. Consequently, as Ax has an 
identity element for all X E I, p r ~ ( $ ( A ) )  = n,,, Ax for each finite subset 
Q of I' by 24.11. 

(e) Next, we shall show that $(L) = nxEIl LA. For this, we s h d  first 
show that for each finite subset Q of I', 

X € Q  

PrQ($(L)) = LA. 
X € Q  

Indeed, let 
Y = ( $ A b X ) ) X € Q  E JJ L A ,  

X € Q  
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where yx E L for a l l  X E Q .  By (d) there exists z E A such that p r g ( # J ( z ) )  = 
y, that is, #A(.) = #x(yx) for all X E Q. Since ze = z for all z f L by (a), 
for each X E Q, 

and z e  E L. Therefore #J(L)  is dense in nxEZl LA for the Cartesian product 
topology. By 29.3, #J(L)  is a linearly compact ring, and so is complete and 
thus closed in n,,,, LA. Therefore #(L) = ITXEzl L A .  

(f) Next, we shall show that L is a strictly linearly compact ring. As 
noted in (a), L/Rad(L) is a semisimple linearly compact ring and therefore 
by 29.8 is a strictly linearly compact ring. It follows readily that L/Rad(L) 
is also a strictly linearly compact L-module. Consequently, by (2) of 28.16, 
it suffices to  show that Rad(L) is a strictly linearly compact L-module. By 
26.20, Rad(L) = { u  E L : Lu = (0)}, so Rad(L) is a trivial L-module. Con- 
sequently, as Rad(L) is a linearly compact &-module, Rad(L) is a strongly 
linearly compact A-module, and therefore a strictly linearly compact L- 
module by 30.11. 

(g) Next we shall show that #(A)  is a subring of the local direct sum of 
(Ax)xEp relative to the left ideals (Lx )x ,g .  By (e) and (f) ,  the restriction 
of #J to L is a topological isomorphism from L to nXELf L A .  Let 7 be the 
topology on #(A)  for which #J is a topological isomorphism. Then nXEzf LA 
is open for 7 and its induced topology is the Cartesian product topology. 
For each X E I’ let Dx be the largest subring of Ax in which LA is an ideal, 
that is, let Dx = {u  E Ax : Lxu L A } .  Thus Do = Ao, and for each 
X E I ,  Dx = LA = Ax if K A  is infinite, Dx = {u  E Ax : u(Mx)  C M A )  
otherwise. Let z E +(A) .  Since z ---t zz is continuous for 7, there is an 
open neighborhood U of zero for 7 such that U r  C nxEr L A ,  and we may 
assume that p r x ( U )  is an open submodule of LA for each X E I’ and that 
p r x ( U )  = LA for all but finitely many X E 1’. Let z = ( z x ) x E p ;  then for all 
but finitely many p E 1’, 

and hence z, E D,. 
By (d), (e), and (g), #(A)  is an algebraically dense subring of the local 

direct sum of (Ax)xEp relative to left ideals (Lx)xEp, and since the restric- 
tion of # to L is a topological isomorphism from L to n,,,, L A ,  7 is the 
local direct sum topology. Letting M = {A E I : LA = Ax} ,  J = I \ M ,  we 
obtain the desired decomposition of #(A)  and + ( L )  given in 2’. 0 
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31.9 Corollary. A topological ring A is semisimple, linearly topolo- 
gized, and possesses an open ideal L that is a linearly compact ring for its 
induced topology if and only if L is a semisimple linearly compact ring and 
A is the topological direct sum of a discrete semisimple subring and L .  

Proof. The condition is sufficient by 28.7 and 26.21. Necessity: If M is a 
proper nonzero subspace of a K-vector space E ,  AnnE(M) is not an ideal 
of EndK(E), so in the terminology of 31.8, J = 8. 0 

An abelian group is torsionfree if its torsion subgroup is the zero sub- 
group, that is, if n . x  # 0 whenever x is a nonzero element of G and n is a 
nonzero integer. 

31.10 Corollary. Let A be a topological ring whose additive group is 
torsionfree. Then A is semisimple, linearly topologized, and possesses an 
open left ideal L that is a linearly compact ring for its induced topology if 
and only if L is a semisimple linearly compact ring and A is the topological 
direct sum of a discrete semisimple ring and L. 

Proof. Necessity: Once again, the hypothesis implies that J = 0. 0 

32 Locally Compact Semisimple Rings 

To apply the information thus far obtained to compact and locally com- 
pact semisimple rings with complete generality, we need a deep theorem 
concerning locally compact abelian groups, whose proof is beyond the scope 
of this book: 

32.1 Theorem. Let T be the multiplicative topological group of all 
complex numbers of absolute value one. If G is a locally compact abelian 
group, for each nonzero a E G there is a continuous homomorphism h from 
G to T such that h(a)  # 1. 

A continuous homomorphism from G to 'IT is called a character of G. 
From Theorem 32.1 we obtain important information about the connected 
component of zero in a locally compact ring: 

32.2 Theorem. Let C be the connected component of zero in a locally 
compact ring A .  (1) If B is a left [right] bounded additive subgroup of 
A, then BC = (0) [CB = (O)]. (2) If A is a locally compact left [right] 
bounded ring such that zero is the only element c of A satisfying Ac = (0) 
[cA = ( O ) ] ,  then A is totally disconnected, and the open left [right] ideals of 
A form a fundamental system of neighborhoods of zero. (3) If A is a locally 
compact left [right] bounded ring that either has an identity element or is 
semisimple, then A is totally disconnected. 
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Proof. (1) Let B be a left bounded additive subgroup of A ,  let H be 
the set of all characters of the locally compact additive subgroup A, and 
for each h,  let sh = {u  E A : h(Bu) = (1)). Let P = {e ie  : (dl  < n/2}, 
an open neighborhood of 1 in 'IT, and let V be a neighborhood of zero in 
A such that BV h-l(P) .  Suppose that h(bv) # 1 for some b E B ,  
v E V .  Let h(bv) = eie where 0 < (81 < n/2,  and let n 2 2 be the smallest 
positive integer such that n(81 2 n/2. Then n/2 5 Indl < n. Therefore 
as h(n.bu) = cine, h(n.bv) $ P ,  but n.bv = (n.b)v E BV, a contradiction. 
Consequently, Sh 2 V .  Since Sh is clearly an additive subgroup, therefore, 
Sh is open and hence closed, so Sh 2 C. Thus 

so if c E C and b E B,  h(bc) = 1 for all h E H, whence bc = 0 by 32.1. 
Clearly (2) follows from (1) and 12.16. Also (3) follows from (2) and (l), 
since C2 = (0), and hence C = (0) if A is semisimple by 26.14. 0 

32.3 Corollary. Let C be the connected component ofzero in a compact 
ring A.  (1)AC = (0) = CA.  (2) If zero is the only element c of A such 
that Ac = cA = (0)) then A is totally disconnected. (3) If A either has an 
identity element or is semisimple, A is totally disconnected. 

This corollary enables us to complete a discussion begun in $5:  

32.4 Corollary. A topological ring A is compact and totally discon- 
nected if and only if it is a closed subring of a compact ring with identity. 

Proof. The condition is necessary by 5.25. Sufficiency: Since a compact 
ring is bounded by 12.3, a compact ring with identity is totally disconnected 
by 32.3, and hence each of its subrings is. 0 

32.5 Theorem. A compact, t o t d y  disconnected ring A is a strictly 
linearly compact ring, and its topology is an ideal topology. 

Proof. The topology of A is an ideal topology by 4.20, so A is linearly 
topologized and hence is clearly linearly compact. Let f be a continuous 
epimorphism from the compact A-module A to  a Hausdorff, linearly topolo- 
gized A-module B ,  and let K be the kernel of f. Then f = g o  q 5 ~  where q5K 

is the canonical topological epimorphism from A to A / K  and g is a continu- 
ous bijection from A / K  to B;  as A/K is compact, g is a homeomorphism by 
a theorem of topology, and hence f is a topological homomorphism. Thus 
A is strictly linearly compact by 28.10. 0 
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32.6 Theorem. A topological ring A is semisimple and compact if and 
only if i t  is topologically isomorphic to the Cartesian product of a family of 
discrete rings, each the ring of all linear operators on a finite-dimensional 
vector space over a finite field. 

Proof. Necessity: The assertion follows from 32.3, 32.5 and 29.9, since 
the Cartesian product of a family of nonempty topological spaces is compact 
only if each member of the family is compact, and a compact discrete space 
is finite. The condition is sufficient by Tikhonov’s theorem and 26.21. 0 

32.7 Corollary. A nonzero, compact, semisimple ring has an identity 
elem en t . 

32.8 Corollary. A commutative topological ring is compact and semi- 
simple if and only if i t  is topologically isomorphic to the Cartesian product 
of a family of finite fields. 

32.9 Theorem. A topological ring A is left bounded, locally compact, 
and semisimple if and only if i t  is topologically isomorphic to the Cartesian 
product of a discrete semisimple ring, an algebraically dense subring of the 
local direct sum of (discrete) finite rings (Ax)xE J, each the ring of all linear 
operators on a finite-dimensional vector space over a finite field, relative to 
proper nonzero left ideals (Lx)xE J, and a compact semisimple ring. 

Proof. The condition is sufficient by 31.8 and 32.6. Necessity: By 32.4 
and 12.16, A is linearly topologized and hence has a compact open left ideal 
L ,  which is clearly linearly compact. With the notation of 31.8, for each 
X E J U M ,  L A  is a continuous epimorphic image of L and hence is compact, 
Therefore A2 is compact and, by 26.21, semisimple. Also, for each A E J ,  
there exists cx E Ex \ MA,  so u t .(.A) is a continuous surjection from LA 
to Ex, and consequently Ex is compact and discrete and thus finite. Thus 
by 31.8, the condition holds. 0 

32.10 Corollary. A topological ring A is bounded, locally compact, 
and semisimple if and only if it  is the topological direct sum of a discrete 
semisimple ring and a compact semisimple ring. 

The proof is similar to that of 31.9. 
If K is a nondiscrete locally compact division ring and if A is the ring 

of all linear operators on a nonzero finite-dimensional vector space E over 
K, then there is a unique topology on A making A a topological K-vector 
space by 15.10, 18.17, and 13.8; that topology is a locdy  compact ring 
topology by 15.15 as A is a finite-dimensional algebra over the center C 
of K by 18.17. A natural problem is to determine conditions under which 
a topological ring may be described as topologically isomorphic to one of 
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this type. By 25.23, a locally compact, connected, primitive ring with a 
minimal left ideal admits this description. We shall prove here that two 
other classes of locally compact rings may be so described: primitive rings 
with a minimal left ideal whose additive group is torsionfree (in $35 we shall 
show that the existence of a minimal left ideal is unneeded), and simple rings 
with a minimal left ideal (we need consider only totally disconnected rings 
of this class by 25.23 and 4.5). 

32.11 Theorem. I f  G is a nonzero, compact, totally disconnected abel- 
ian group, there is a prime p such that for some nonzero a E G, 

lim pn .a  = 0 .  
n+oo 

Proof. Let x E G, and let p be a prime. For each open subgroup U of G, 
let HU be the set of all z E G such that z is an adherent point of (pn.x),>l 
and, for some m 2 1, p " . ( z  - z )  E U for all n 2 m. As U is open, GTU 
is compact and discrete and hence finite. Then p k . t  E U for some k >_ 1 if 
and only if t + U belongs to the p-primary component Tp of G/U, in which 
case p a . t  E U where p" is the order of Tp, and hence, as U is a subgroup, 
pn . t  E U for all n 2 s. As U is closed and as the function z --f p" . (x  - z )  
is continuous, { z  E G : p " . ( z  - z )  E U }  is closed. As the adherence of a 
sequence is closed, therefore, HU is closed. 

We show next that HU is nonempty. As G is compact, the sequence 
( p " . ~ ) ~ ? l  has an adherent point y. Therefore there is a sequence (nk)k>I 
of integers 2 1 such that nk+l > 2nk for all k 2 1 and pnk .x  - y E U for 
all k 2 1. Let mk = nk+l - nk for all k 2 1. Then nk+l > mk > nk for all 
k 2 1, so an adherent point z of ( p m b . 2 ) k > 1  - is a fortiori an adherent point 
of ( p " . ~ ) ~ ? l .  Let T be so large that p"r.x - z E U .  Then 

p?(z - x) = (P"'.Z - p",+l.x) + (p"r+I.x - y) + (y - p"r..) 

E p n q .  - p"T.2) + u + u E p n - u  + u + u = u. 

If V is an open subgroup contained in U, clearly Hv E Hu. Therefore 
{ H u  : U is an open subgroup of G} is a filter base on compact G, and con- 
sequently there exists v belonging to each Hu. Thus for any open subgroup 
U, p" . ( s  - w )  E U for all but finitely many n 2 1, so by 4.17, 

lim p".(x - v) = 0. 
n-+w 

By 4.17, G contains a proper open subgroup U. As G/U is a finite group, 
there is a prime p dividing the order of G/U,  and consequently there exist 
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b E G and s 2 1 such that the order of b + U is p a .  Therefore b $! U but 
pn.b E U for all n 2 s. Hence b is not an adherent point of (pn.b) ,>l .  
By the preceding, there exists an adherent point c of (p".b),>l - such that 
lim,,,p".(b - c) = 0. Thus if a = b - c, a # 0 and 

lim pn.a = 0. 0 
n 4 M  

For our next result, we need a simply proved fact about rings: 

32.12 Theorem. If an ideal I of a topological ring A is a ring with 
identity element e and if J = {x E A : xe = 0}, then e belongs to the center 
of A, J is an ideal of A, A is the topological direct sum of I and J, and 
J = {y - ye : y E A } .  

Proof. For any x E A, ze  = exe = ez since xe and ex belong to I. 
Consequently, J is an ideal, and J = {y - ye : y E A) since xe = 0 if and 
only if there exists y such that x = y - ye. Since x --$ xe is a continuous 
projection on I whose kernel is J and since I and J are ideals such that 
IJ = JI = (0), A is the topological direct sum of I and J by 15.4 and the 
discussion on page 112. 0 

32.13 Theorem. A topological ring A is a locally compact primitive 
ring with a minimal left ideal whose additive group is torsionfree if and 
only if i t  is topologically isomorphic to the ring of all (continuous) linear 
operators on a finite-dimensional Hausdorff vector space over a nondiscrete 
locally compact division ring of characteristic zero. 

Proof. The condition is clearly sufficient. Necessity: By 25.22 there is an 
idempotent e such that Ae is a minimal left ideal, eAe is a division ring, 
and A is topologically isomorphic to a locally compact dense ring AL of 
linear operators containing nonzero linear operators of finite rank on the 
right eAe-vector space Ae. Furthermore, eAe is locally compact as it is a 
topological epimorphic image of the additive group A, and has characteristic 
zero as A is torsionfree. Consequently by 16.2, 18.17, 13.8 and 7.7, it suffices 
to show that eAe is nondiscrete. We first note that if J is a nonzero closed 
ideal of A, then J is a locally compact primitive ring with a minimal left 
ideal. Indeed, J is locally compact as it is closed. Its image J L  in AL under 
the topological isomorphism from A to AL contains all linear operators in 
AL of finite rank by 25.21, so by 25.10, 25.13, and 25.20, JL is a primitive 
ring with a minimal left ideal, and thus J also has those properties. 

If the connected component C of A is not the zero ideal, then by the 
preceding and 25.23, C satisfies the condition of the theorem and, in par- 
ticular, has an identity element. Therefore by 32.12 and 25.11, C = A and 
the condition holds for A. 
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Consequently, we may assume that A is totally disconnected. If, for some 
prime p ,  lirnndoopn.z = 0 for all z E A ,  then in particular, limn+=p .e = 
0 ,  so eAe is not discrete as it has characteristic zero, and therefore the 
condition holds. 

In general, A contains a compact open subgroup by 4.17 and hence by 
32.11 there exist a prime p and a nonzero a E A such that limn-rm p .a = 0. 
Let J = {z E A : limn-roopn.x = 0). Clearly J is an ideal of A. Also, J 
is closed, for if a E 7 and if U is an open additive subgroup, there exists 
b E J such that a - b E U, and there exists m 2 1 such that pn.b E U for 
all n 2 m, so 

n 

n 

pn.a = pn.(a - b)  + pn.b E p".U + U = U 

for all n 2 m. By the first part of the proof and the preceding paragraph, 
J satisfies the condition of the theorem and, in particular, has an identity 
element. Therefore by 32.15 and 25.11, J = A,  so the condition holds for 
A.  0 

To show that a locally compact, totally disconnected, simple ring with 
a minimal left ideal is topologically isomorphic to the ring of all linear 
operators on a finite-dimensional vector space over a nondiscrete locally 
compact division ring, we need two preliminary theorems, the first purely 
topological: 

32.14 Theorem. Let E and F be topological spaces, and let H be a 
subset ofFE furnished with a topologysuch that (u, z) --f u ( z )  is continuous 
from H x E to F. For any open subset 0 of F and any compact subset K 
of El T ( K ,  0), defined by 

T(K,O)  = {u  E H : U(K)  & O}, 

is open in H .  

Proof. Let v E T(K,O) .  Then v ( K )  0, so for each z E K there are by 
hypothesis neighborhoods U, of v in H and V, of z in E such that u(t)  E 0 
for all u E U, and all t E V,. As K is compact, there exist 21, . . . , z, E K 
such that Uy=lVzi 2 K .  Let U = n;.=,U,. Then ~ ( z )  E 0 for d u E U and 
all x E K ,  so v E U C T ( K ,  0). Thus T ( K ,  0) is a neighborhood of each of 
is points and hence is open. 0 

32.15 Theorem. If A is a totally disconnected locally compact ring of 
linear operators of finite rank on a vector space E such that for each x E El 
u -+ u(z)  is continuous from A to E, furnished with the discrete topology, 
then A is discrete. 
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Proof. If E is finite-dimensional, then A is discrete, for if (c1, . . . , cn} is 
a basis of E ,  

n 

(01 = n{. A : .(.J = 01, 
i=l  

a neighborhood of zero, since E is discrete. Therefore we shall assume that 
E is infinite-dimensional. 

We shall first show that for each n 2 0, the set Fn of all linear operators 
of rank 5 n is closed in A.  Indeed, let w E Fn,  and let z1, . . . , z, be a 
sequence of n + 1 vectors. There is a filter 3 on Pn converging to w,  so 
by hypothesis, F(z i )  converges to ~ ( z i )  for each i E [ l ,n  + 11. Since E is 
discrete, there exists Hi E 3 such that u(z j )  = w(zi) for all u E Hi. Let 
u E ny$Hi. As u E Fn, there exist scalars X i ,  . . ., Xn+l,  not all zero, such 
that 

Hence 
n+l n+l  c X;w(z;) = c XiU(Zj) = 0. 
i= 1 i= 1 

Therefore rank w 5 n. 
By 9.4, A is a Baire space. Hence as UElFn = A,  there exists n 2 0 

such that Fn has an interior point w ,  so by 4.17, there is an open additive 
subsgroup G of A such that v + G F,. For any w E G, 

rank w 5 rank(w + w) + rank(-v) 5 n +rank v, 

so the ranks of members of G are bounded. Let m be the largest of the 
ranks of members of G, and let u E G have rank m. Let 21, . . . , z, E E 
be such that { ~ ( z l ) , .  . . ,u(zm)} is a basis of the range M of u. As E is 
discrete, V ,  defined by 

V = {W E G : ~ ( z i )  = 0, 1 5 i 5 m}, 

is an open neighborhood of zero in A.  
We shall show that if v E V ,  then v ( E )  C M .  If not, let v E V and 

y E E be such that v(y) 4 M .  Then u + v E G, so rank(u + v) 5 m. But 
(u + v)(zi) = u(z j )  if i E [l,m], and (u + w)(y) = u ( y )  + v(y) 4 M since 
v(y) $! M ;  hence u ( q ) ,  . . ., u(z,), u ( y )  + w(y) is a linearly independent 
sequence of m + 1 vectors belonging to the range of u + w, a contradiction. 

Since E is infinite-dimensional, there exist y1, . . . ym E E such that 
~ ( 2 1 ) )  . . . , ~(z,), y1, . . . , ym is a linearly independent sequence of 2m vec- 
tors. As A is dense, there exists w E A such that w(u(z i ) )  = yi for each 
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i E [l,m]. As w --f ww is continuous, there is a neighborhood U of zero in 
A such that U C V and w U  2 V. To show that U = {0}, let E U ,  z E E. 
Then w(z) f M, so there exist scalars X I ,  . . . , Am such that 

m 

i = l  

Consequently, 
m 

w.(.) = c XiYi, 
i=l 

but ww(x) E M as wv E V; hence ww(z) = 0, SO X i  = 0 for all i E [l ,m],  
whence w(z) = 0. Thus U = (01, so the topology of A is the discrete 

32.16 Theorem. A topological ring A is a nondiscrete, l o c d y  compact, 
totally disconnected, simple ring with a minimal left ideal if and only if A 
is topologically isomorphic to the ring of all (continuous) linear operators 
on a finite-dimensional Hausdorff vector space over a nondiscrete, locally 
compact, totally disconnected division ring K ,  furnished with its unique 
topology as a topological vector space over K .  

Proof. The condition is sufficient by the discussion on page 269. Neces- 
sity: By 25.22, as A is primitive, there is an idempotent e in A such that 
Ae is a minimal left ideal, eA is a minimal right ideal, and eAe is a divi- 
sion ring, and furthermore, with their induced topologies, eAe is a locally 
compact ring, Ae is a straight, locally compact, right vector space over eAe, 
eA is a straight, locally compact, left vector space over eAe, and there is a 
topological [anti-]isomorphism a + a~ [a --f a ~ ]  from A to a dense ring AL 
[AR] of linear operators of finite rank on the right [left] eAe-vector space Ae 
[eA] such that (u,z) + ~(z) is continuous from AL x Ae [AR x eA] t o  Ae 
[eA].  If eAe is not discrete, then the conclusion holds by 18.17, 13.8, and 
16.2. Consequently, we shall assume that eAe is discrete and prove that A 
is discrete. 

We shall first prove the conclusion under the additional assumption that 
the eAe-vector space Ae is generated by a compact neighborhood V of zero. 
By 25.20, eL is a projection on a one-dimensional subspace M of Ae; let N 
be the kernel of eL. As Ae is straight, M is a discrete subspace and hence is 
closed, so V f l  M is a compact discrete subset and hence is finite. Therefore 
there is an open neighborhood W of zero in Ae such that W n M = (0). 
Now N = e i l ( W ) ,  for if z E eL1(W), then e L ( z )  E W n it4 = (0); but 
e i l ( W )  is open as eL is continuous. Let 

topology. . 

U = { U  E A : U L ( V )  2 N } .  
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By 32.14, UL is an open neighborhood of zero in AL.  As V generates Ae, 

U = {u  E A : uL(Ae) E N } ,  

so (eU)L = eL OUL = (0). As eAnU E eU = { 0 } ,  therefore, eA is discrete. 
Consequently by 32.15, AR is discrete. Therefore A is discrete. 

We turn, finally, to the general case. Let E = Ae, and let V be a compact 
neighborhood of zero in E. If V = {0}, then by 32.14 A is discrete; we shall 
assume, therefore, that  V contains a nonzero vector. Let F be the subspace 
of E generated by V. Then F is locally compact, hence complete and thus 
closed, so the subring B of AL,  defined by 

B = {U E AL : u ( F )  E F } ,  

is a closed and hence locally compact subring of AL. For each u E B ,  let U F  

be the restriction of u to F ,  and let p be the epimorphism from B to a ring 
B’ of continuous linear operators of finite rank on F defined by p(u) = U F .  

The kernel H of p then satisfies 

H = {ti E B : u ( F )  = ( 0 ) ) .  

Now H is clearly closed in B,  so the topological ring B / H  is Hausdorff 
and hence locally compact by 5.2. We topologize B’ so that the algebraic 
isomorphism from B / H  to B’ induced by p is a topological isomorphism. 
Thus p is a topological epimorphism from B to B‘. 

To show that B’ is a dense ring of linear operators on F, let 51, . . . , z, be 
a linearly independent sequence of vectors of F ,  and let y1, . . . , y, E F .  By 
25.21 AL contains a projection p on the subspace generated by {yl, , . . , g,}, 
and there exists u E AL such that u ( q )  = yi for all i E [l,n]. Then 
pu(E) 5 F ,  so ( ~ u ) F  E B’ and ( p u ) ~ ( z i )  = y; for all i E [l,n]. As a 
subspace of E ,  F is straight. Moreover, (v ,z )  + v(z)  from B’ x F t o  F is 
continuous since (u , z )  -+ u(z )  is continuous from B x F to F and p is an 
open mapping from B to B‘. Therefore from the first part of the proof, B’ 
is discrete. Consequently, H is open in B. But as V generates F ,  

a neighborhood of zero in AL by 32.14. Hence B is an open subset of AL,  
so H is an open left ideal of B. 

For each 2 E E ,  let 

H ,  = {U E AL : U(Z) = 0). 
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Let z be a nonzero vector of F. Then H ,  2 H ,  so H ,  is an open left 
ideal of AL.  For any z E E there exist g E AL such that g ( z )  = z and a 
neighborhood W of zero in AL such that Wg H,;  hence W 2 H,, so H ,  
is open. Therefore for each z E E ,  u --f u(z )  is continuous from AL to E ,  
furnished with the discrete topology. Consequently by 32.15, AL is discrete. 
Therefore A is discrete. 0 

Next, we shall construct an example to show that the hypothesis of 32.13 
that the additive group of A be torsionfree and that the hypothesis of 32.16 
that A have a minimal left ideal may not be omitted. For this, we shall use 
a special example of an inductive limit of rings: 

Let ( A , ) , L ~  be a sequence of sets, and for each n 2 1 let +,+I,, be an 
injection from A,  to A,+1. The inductive limit of the sets (A,),?l relative 
to the injections (g5,+1,,),>1 - is the set A of all sequences (an),>, such that 
a ,  E A,, either m = 1 or m > 1 and a ,  # 4, , , -1(Arn-l~ and for all 
n 2 m, g5,+1,,(an) = a,+l.  The index of (a,),,, is the integer m. For 
each n 2 1, we shall denote the identity map of 1, by &,,, and for each 
T > n we shall denote by 4,,, the injection &,.-I 0 g5,-1,?-2 0 . . . 0 &+I,, 
from A,  to A,. Thus, for any (a,),?, E A,  a, = 4,,,(am) for all n 2 m. 

For each q 2 1, let Ah be the subset of A consisting of all elements of 
index 5 q. It is easy to see that for each a E A, there is a unique element 
(an),>, in A: such that a, = a;  we denote that element by x,(a). The 
function X ,  is readily shown to be a bijection from A, to A:, and is called 
the canonical embedding of A, in A.  If T 2 q,  clearly 

and 

q=l  

Assume, in addition, that each A, is a ring and each &+I,, a monomor- 
phism from A, to A,+1. We may then define a ring structure on each A: 
so that X ,  is an isomorphism. If T 2 q, Ah is then a subring of A: by (1). 
Consequently by (2), A has a unique ring structure such that each A: is a 
subring of A.  

The example we shall use is that where A,  is the ring of all square 
matrices of order 2" over a finite field F, and where associates to 
each X E A,  the matrix in A,+1 that, in block form, is 
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For each q 2 1, let B, be the subring of A, consisting of all matrices that 
are of the block form 

(: ;) 
where Y is a square matrix of order 2 q - l .  Clearly 

(3) Bi = (0)  

f o r a l l q > l .  I f r > q ,  

since for any X E A,, +,.,,(X) is a matrix of the block form 

For each n > 0 and each T 2 1, let 

k = l  k = l  

by (1). We shall show by induction on T that for each n 2 0, Cn,n+r is a 
nilpotent ring with index of nilpotency 5 2'. As Cn++1 = xn+1(Bn+l), the 
assertion holds for T = 1 by (3). Assume the assertion is true for T .  Let 

Then 

By our inductive hypothesis, Cn+l,n+l+r is a ring, so D2 E D, and therefore 
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Consequently, 

Thus by (6), 
2 

Cn,n+r+1 Cn+l , (n+ l )+r  C Cn,n+r+ l .  

Therefore Cn,n+r+ l  is a ring, and moreover 

by our inductive hypothesis. 
For each rn 2 1, let 

w k  m 

r=l  k=m i=m 

Then (U,),>l is a fundamental system of neighborhoods of zero for a ring 
topology 7 on A .  Indeed, U, is the union of the increasing sequence of 
subrings and hence is a subring, so (TRN 1) of 3.5 holds; if i > q,  then by 
(1) and (4), 



32 LOCALLY COMPACT SEMISIMPLE RINGS 279 

so for any m > q, 

and therefore (TRN 2) of 3.5 holds by (2). In particular, if 1 5 Q < m 
then x,(B,)Um U Umxq(Bq) C U, by (7)) whereas if 4 2 m, x,(B,)U, U 
UmXq(Bq) C U,U, C U,. Thus for each m 2 1, U ,  is an ideal of the ring 
Ul . 

Suppose there were a nonzero b E n:=, U,. As b E U1, there would 
exist an integer q 2 1 and elements bl E B1, . . . , b, E B, such that b = 
C:=l xi(bi), and as b E Uq+l there would exist for some integer T > q 
elements b,+l E Bq+i, . . . , b, E B, such that b = C;=,+, xj (bj) and b, # 0. 
Consequently, 

r-1 

a r-1 

i=l j = q + l  

r-1 

Q r-1 

and thus b, E B, n q5r,r-1(Ar-1) = (0)) a contradiction. Therefore 7 is 
Hausdorff. 

For any m 2 2, 171 = EL;' xi(&) + U,; as EL;' xi(&) is finite, so 
is Ul/U,.  Consequently by 5.22, there is a topological isomorphism from 
U1 to a dense subring of b,>,(U1/U,), a closed subset of the Cartesian 
product of finite discrete spaces-by 5.20 and hence a compact set. Therefore 
by 8.4 the completion $1 of UI is compact. Hence by 4.22, the completion 
Â  of A is locally compact. 

Next, we shall show that each element a of $1 is a topological nilpotent. 
By 4.22, (Cn),>l - is a fundamental system of neighborhoods of zero in Â , 
and by 4.2, each Cn is an ideal in $1. Let n 2 1. By 3.3, $1 = U1 + cn, 
so there exist b E U1 and c E Gn such that a = b + c. By definition and 
an earlier result, U1 is a union of nilpotent rings, and hence is a nil ring. 
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h h 

Therefore b' = 0 for some T 2 1. Hence as U, is an ideal of U1, for any 

am = ( b  + c ) ~  E b" + 6, = 6,. 
m 1 T ,  

Thus limn--too an = 0. 
Since +%+I,, takes the identity matrix of A, to the identity matrix of 

An+l for a l l  n 2 1, A has an identity 1, and hence Â  does also by 4.4. 
Therefore Â  is not a radical ring, so t o  show that it is simple, it suffices to 
show that the ideal generated by any nonzero a E Â  is 2. There exists n 2 1 
such that a 4 6,. By 3.3, a = b + c  where b E A and c E 61. By (2), there 
exists Q 2 n such that b E xq(Aq) .  By 3.3,  there exist u E U1 and v E gq+1 

such that c = u + v. For some T > q there exist u1 E X I ( & ) ,  . . . , E 
xT(B, )  such that u = & ui. Let b' = b + C:=l u;, c' = v + C:=q+l ui. 

Then b' E A:, c' E Uq+l, and a = b + c = b + u + v = b' + c'. As 

a $! U, and hence a 6 Cq+l, b' # 0. As A: is a simple ring, there exist 
zl, . . . , z,, y1 . . . , ys E A: such that 

h 

h 

1 = E z i b ' y ; .  
i= 1 

so 
S 

i= l  

Let z = - CE1 xic'y;. As z E U1, z is a topological nilpotent, and therefore 
1 - z is invertible by 11.16. Thus 

i=l i=l i= l  

Consequently, A is a simple ring. 
We shall finally establish that A is not isomorphic to the ring of all linear 

operators on a finite-dimensional vector space by showing that A has an 
infinite sequence (en),>1 of nonzero idempotents such that enen = 0 if 
m # n. Let S, be th7: square matrix of order 2,-' and T, the square 
matrix of order 2" defined by 
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and let e, = ~ ~ ( 2 ’ ~ ) .  If m < n, then 4n,m(Tm)T, = 0 = T,4n,m(Tm) since 
T, has a nonzero entry only on the diagonal in the row numbered 2,-l, 
whereas q5,.,+(Tm) has nonzero entries only on the diagonal in rows whose 
numbers are odd multiples of 2”-l. 

In sum, Â  is a locally compact simple (in particular, primitive) ring with 
identity that is not algebraically isomorphic to the ring of all linear operators 
on a finite-dimensional vector space over a division ring. 

Exercises 

32.1 A left bounded locally compact primitive ring is discrete. 
32.2 Let A be the local direct sum of (A,),?l relative to open subrings 

(Ln),21 where for each n 2 1 and some prime p, A,  is the field Qp of p-adic 
numbers and L,  is the ring Z, of p-adic integers. Then A is a commutative, 
semisimple, locally compact, metrizable ring with identity, but z --$ 2-l is 
not continuous on A X .  

32.3 A nonzero topological ring A is a locally compact, advertibly open, 
semisimple ring satisfying the minimum condition on closed left ideals if and 
only if A is the topological direct sum of finitely many subrings, each either 
the ring of all linear operators on a nonzero, Hausdorff, finite-dimensional 
vector space over a nondiscrete locally compact division ring, furnished with 
its unique topology as a finite-dimensional algebra over the center of the di- 
vision ring, or the discrete ring of all linear operators on a finite-dimensional 
vector space over a division ring. [Use Exercise 27.4.1 

32.4 (Kaplansky [1947c]) Let F be a finite field, furnished with the dis- 
crete topology, and let E = FN, furnished with the Cartesian product topol- 
ogy. For each n E N let 

and let A = {u  E End(E): there exists q E N such that u(M,) E M ,  for 
all n 2 q } ,  J = {u  E End(E): u(M,) E M ,  for all n 2 0). (a) A is a 
primitive ring of endomorphisms of E. (b) {u  E A : u(M0) = (0)) is a 
minimal left ideal of A. (c) For each n E W, let V, = { u  E J : u ( E )  2 
M,}. Then (V,),?O is a fundamental system of neighborhoods of zero for 
a compact ring topology on J .  [Observe that it is the weakest topology 
on J for which u t u(z )  is continuous from J to E for each x E E.] (d) 
The additive group topology 7 on A for which (V,),?O is a fundamental 
system of neighborhoods of zero is a locally compact ring topology on A. (e) 
A contains an infinite sequence (e,),?o of nonzero idempotents such that 
enem = 0 whenever n # m, and hence A is not isomorphic to the ring of all 
linear operators on a finite-dimensional vector space over a division ring. In 
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sum, A is a locally compact primitive ring with an identity and a minimal 
left ideal that is not a simple ring. 

32.5 In the example of a locally compact simple ring i i n  the text, for each 
n 2 1 let en = xn(En), where En is the square matrix of order 2n having 1 
in the first row and column and zeros elsewhere. Show that ( i e n ) n 2 1  is a 
strictly decreasing sequence of closed left ideals whose intersection is (0). 



CHAPTER VIII 

LINEAR COMPACTNESS IN RINGS WITH RADICAL 

The behavior of the powers of the radical R of a ring A is intimately 
connected with the existence of a strictly linearly compact topology on A. 
Specifically, a linearly compact ring A admits a weaker strictly linearly 
compact topology if and only if R is “transfinitely nilpotent.” To establish 
this, we shall first show in $33 that if 7 is a linearly compact topology on a 
module E ,  of all the linearly compact topologies on E weaker than 7 there 
is a weakest 7*. 

Next, in $34 we shall determine conditions under which’ an orthogonal 
family of idempotents in AIR can be “lifted” to an orthogonal family of 
idempotents of A. The possibility of doing so is of crucial importance for 
establishing certain structure theorems. In particular, if A is commutative 
and linearly compact, any family of orthogonal idemptoents of AIR may 
be lifted to  A, but we need additional restrictions, including the transfinite 
nilpotence of R,  to establish the corresponding result for noncommutative 
linearly compact rings. Lifting idempotents is a technique employed in the 
proofs of most of the theorems concerning locally compact rings, given in 

Rings linearly compact for the radical topology, for which the powers of 
the radical form a fundamental sytem of neighborhoods of zero for a Haus- 
dorff ring topology, offer a natural domain for generalizations of theorems 
concerning artinian rings, since artinian rings are linearly compact for the 
discrete topology, which is the radical topology as the radical of an artinian 
ring is nilpotent. Generalizations of some classical theorems about artinian 
rings are given in $36. 

$35. 

33 Linear Compactness in Rings with Radical 

We first establish that of all the Hausdorff linear topologies on an d- 
module weaker than a given linearly compact topology, there is a weakest. 

33.1 Definition. Let E be an A-module. A proper submodule M of 
E is sheltered if the set of submodules of E strictly containing M has a 
smallest member, called the shelter of M .  
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Thus S is the shelter of M if and only if S 3 M and for any submodule 

33.2 Theorem. If N is a proper submodule of an A-module E, then N 

N of E, if N 3 M, then N I, S. 

is the intersection of sheltered submodules of E. 

Proof. Let x E E \ N .  The set of submodules containing N but not 2 is 
inductive for the inclusion relation and hence contains a maximal member 
M by Zorn's Lemma. Each submodule properly containing M therefore 
contains the submodule S generated by M U {z}, so M is a sheltered sub- 
module with shelter s, and M contains N but not 2. 0 

33.3 Definition. Let 7 be a linear topology on an A-module E. The 
Leptin topology associated to 7 is the additive group topology 7, on E 
for which the finite intersections of the sheltered submodules open for 7 is a 
fundamental system of neighborhoods of zero, and 7 is a Leptin topology 
i f7= 'Z .  

A sheltered submodule open for 7 is again a sheltered submodule open 
for 7, and conversely, so (7,), = 7,. Thus the Leptin topology associated 
to a linear topology is indeed a Leptin topology. 

33.4 Theorem. If 7 is a linear topology on an A-module E, then 7, 
is a linear topology on E having the same closed submodules as 7. In 
particular, if 7 is Hausdorff, so is 7*. 

Proof. If U is a submodule open for 7, and if b E E ,  then as U is open 
for 7, there is a neighborhood T of zero in A such that T.b C U .  Therefore 
by 3.6, 7, is a linear topology. 

Let M be a proper submodule of E that is closed for 7, By 3.3, M is 
the intersection of the submodules M + U where U is a submodule open for 
7, and M + U is a proper subset of E .  Each such M + U is the intersection 
of sheltered submodules by 33.2, each of which is necessarily open for 7 
as M + U is, and is therefore open for 7,. Thus M is the intersection of 
submodules open and hence closed for 7,, so M is closed for 7*. Conversely, 
as 7, is weaker than 7, each submodule closed for 7, is closed for 7. 0 

33.5 Theorem. Let 7 be a linearly compact topology on an A-module 
E. Every filter base of submodules of E whose adherence is (0) converges 
to zero for 7,. 

Proof. Let 3 be a filter base of closed submodules of E such that nFEr F 
= (0). Let U be an open sheltered submodule, and let S be its shelter. By 
28 -20, 

U = U +  nF= n ( u + F ) .  
FEF F€F 
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Consequently, there exists F E 3 such that U + F 2 S, so U + F = U ,  that 
is, F E U .  As each neighborhood of zero for 7, contains the intersection of 
finitely many sheltered submodules open for 7, therefore, 3 converges to 
zero for 7,. 0 

33.6 Corollary. A linearly compact topology 7 on an A-module E is 
a Leptin topology if and only if every filter base of submodules of E whose 
adherence is (0) converges to zero. 

Proof. The condition is necessary by 33.5. Sufficiency: Let V be the 
filter base of submodules open for 7,. By 4.8 and 33.4, V is a filter base of 
submodules closed for 7 whose adherence is (0). Therefore V converges to 
zero for 7, that is, 7 is weaker than and hence identical with 7,. 0 

33.7 Theorem. Let 7 be a linear compact topology on an A-module 
E ,  and let C ( 7 )  be the set of all linear topologies on E having the same 
closed submodules as 7. Each member of C ( 7 )  is linearly compact. A 1  
members of C ( 7 )  have the same associated Leptin topology, which is the 
weakest topology belonging to C ( 7 ) .  Every Hausdorff linear topology on E 
weaker than some member of C ( 7 )  belongs to C ( 7 ) .  

Proof. The zero submodule of E is closed for each member of C ( 7 ) ,  
so each member of C ( 7 )  is Hausdorff. Since a Hausdorff linear topology is 
linearly compact if and only if every closed linear filter base has a nonempty 
intersection, all members of C ( 7 )  are linearly compact as 7 is. 

By 33.4, Z E C ( 7 ) .  Let S be a Hausdorff linear topology on E weaker 
than some member of C ( 7 ) ,  and let V be the filter base of submodules of E 
open for S. Each V E V is also closed for S by 4.8, hence for the member 
of C ( 7 )  stronger than S, and therefore also for 7. As S is Hausdorff, 
nvE,,V = (0). Consequently by 33.5, V converges to zero for 7,) that is, 
7, is weaker than S. Thus C ( 7 )  contains a member stronger than S and 
a member weaker than S, so S E C ( 7 ) .  In particular, for any S E C ( 7 ) ,  
S, E C ( 7 )  by 33.4, so 7, is weaker than S,. Interchanging S and 7, we 
conclude that 7, = S,. 0 

33.8 Corollary. The minimal members in the class of all linearly com- 
pact topologies on an A-module E ,  ordered by inclusion, are precisely the 
linearly compact Leptin topologies. 

33.9 Corollary. Let 7 be a linearly compact topology on an A-module 
E ,  and let M be a closed submodule of E .  The Leptin topology ( 7 ~ ) ,  
associated to the topology 7 M  induced on M by 7 is the topology ( 7 , ) M  

induced on M by 7,. 

Proof. By 33.4, e ( 7 ~ )  = C ( ( ~ ) M ) .  If F is a filter base of closed sub- 
modules of M such that nFEF F = (0), then F converges to zero for 7, by 
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33.5 and hence for (7* )~ .  By 33.6, therefore ( 7 * ) ~  is a Leptin topology on 
M belonging to e ( 7 ~ ) .  Consequently by 33.7, (I*)M = (7,),. 0 

33.10 Theorem. If u is a continuous homomorphism from a linearly 
compact A-module E to a linearly compact A-module F, then u is also con- 
tinuous when E and F are furnished with their associated Leptin topologies. 

Proof. Replacing F with u(E)  if necessary, we may by 33.9 assume that 
u is surjective. To establish the result in this case, it suffices to show that 
if S is the shelter of a submodule V of T, then u-'(S) is the shelter of 
u-l(V).  First, u-'(V) C u-l(S) ,  for if u-'(V) = u-l(S) ,  then 

v = u(u-l(V)) = u(u-l(S))  = s, 
a contradiction. Let N be a submodule of E strictly containing u-'(V). 
Then N = N+u-l(O) as u-'(O) C u-'(V) C N. Consequently, V c u ( N ) ,  
for if V = u ( N ) ,  then 

u - y v )  = u - l ( u ( N ) )  = N + d ( 0 )  = N ,  

d ( S )  G u- ' (u(N))  = N + .-yo) = N .  0 

a contradiction. Hence S u ( N ) ,  so 

33.11 Theorem. Let A be a linearly compact ring, and let E be a 
linearly compact A-module. The Leptin topology of A is also a ring topol- 
ogy, and the Leptin topology of E makes E a topological module over A, 
furnished with its Leptin topology. 

Proof. Let 7 be the topology of A. Since 7, is a linear topology, to  show 
that it is a ring topology we need only show that for each c E A, R, : z + z c  
is continuous for 7,. But R, is an endomorphism of the A-module A that 
is continuous for 7. Consequently, R, is continuous for 7* by 33.10. The 
second assertion is similarly established. 0 

The following discussion of simple and semisimple modules will yield a 
new criterion for a linearly compact module to be strictly linearly compact. 

33.12 Definition. A simple module is a nonzero module whose only 
proper submodule is the zero module. A semisimple module is one that is 
generated by the union of its simple submodules. 

For example, the simple submodules of a vector space are precisely its 
one-dimensional subspaces, so a vector space is a semisimple module. If 
( E x ) x € L  is a family of simple A-modules, then Ex is clearly semisim- 
ple. If A is a ring, the simple submodules of the A-module A are precisely 
the minimal left ideals of the ring A. 
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33.13 Theorem. H A  is a semisimple artinian ring, then A is a semisim- 
ple A-module. 

The assertion follows from (2) of 25.21 and 27.14. 

33.14 Theorem. Let E be an A-module that is generated by a family 
( M J x E h  of simple submodules. If F is a submodule of E, there exists a 
subset J of L such that E is the direct sum of F and (Mx)xE J .  In particular, 
E is the direct sum of a subfamily of (Mx) ,+c~ .  

Proof. Let C = (C C L : the submodule F + EXEC M A  is the direct 
sum of F and ( M x ) x E c } .  Trivially, 8 E C. To show that C, ordered by 
inclusion, is inductive, let D be the union of a totally ordered subset of C. 
I f ~ + ' & ~ s x  = 0 where z E F and xx E Mx for all X E D and ZX = 0 for 
all but finitely many X E D, then there is a member C of the totally odered 
subset such that ZA = 0 for all X E D \ C, whence x = 0 and zx = 0 for a l l  
X E D since F + Exec MA is the direct sum of F and (Mx)xEc. Thus by 
Zorn's Lemma there is a maximal subset J of L such that F + CxEJ M A  is 
the direct sum of F and ( M X ) X € J .  For each p E L, M p  is a submodule of 
F + CxEJ MA,  for otherwise (3' + CxEJ M A )  n M p  = (0) as M p  is simple, 
whence 

F +  c M A  

x E J U t P 1  

would be the direct sum of F and ( M ~ ) x E J U ( ~ ) ,  a contradiction of the 
maximality of J. 0 

33.15 Corollary. If F is a submodule of a semisimple module E, then 
EIF and F are semisimple modules. 

Proof. By 33.14, the quotient module of any submodule of E is semisim- 
ple, and F has a supplement H. As F is isomorphic t o  E / H ,  F is also 
semisimple. 0 

33.16 Theorem. I f A  is a ring with identity such that the A-module A 
is semisimple, then every unitary A-module E is semisimple. 

Proof. Let S be a set of generators for the A-module E (for example, let 
S = E), and for each s E S let A, be the A-module A. Then f : (A,),,, -+ 
CaES Ass is an epimorphism from A, to E, so E is semisimple by the 
remark following 33.12 and 33.15. 0 

33.17 Theorem. An A-module E is artinian if and only if E is linearly 
compact for the discrete topology and for every proper submodule U of E, 
EIU contains a simple submodule. 
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Proof. The condition is necessary by 28.14, 27.3, and the fact that any 
nonzero artinian module F contains a simple submodule, namely, a sub- 
module minimal in the set of all nonzero submodules, ordered by inclusion. 

Sufficiency: Let (Ni);llbe a decreasing sequence of proper submodules, 
and let N = nz)=, N;.  The hypotheses for E imply the same hypotheses for 
E / N ,  so replacing E by E / N  if necessary, we may assume that nzl N; = 
(0). Let M be the submodule of E generated by the union of all the simple 
submodules. As M is also Linearly compact for the discrete topology, M 
is the direct sum of finitely many simple submodules by 33.14 and 28.21. 
Consequently, M is artinian by 27.6. Therefore by 28.14, M is discrete for 
the topology induced by D*, the Leptin topology associated to  the discrete 
topology 27, so there is a submodule S of E that is open for D* such that 
S n M = (0). Consequently, S contains no simple submodules. 

Suppose that S # (0). By Zorn’s Lemma there is a submodule U of E 
that is maximal among all the submodules of E whose intersection with 
S is (0). As S # (0), U # E ,  so by hypothesis there is a submodule T 
of E containing U such that T/U is a simple submodule of E / U .  Then 
T n S # (0) by the maximality of U .  As S n U = (0), the restriction 4s to S 
of the canonical epimorphism from E to  E / U  is an isomorphism from S to 
( S + U ) / U ,  so 4s(TflS) is a nonzero submodule of T/U and hence is T / U .  
Thus T n S is a simple submodule of S ,  in contradiction to the conclusion 
of the preceding paragraph. 

Therefore S = (0), so D* is the discrete topology. As nEo=, Ni = (0), 
(Ni)j>l converges to zero for D* by 33.5. Consequently, for some q 1 1, 
Np = (0). 0 

33.18 Corollary. A linear topology 7 on an A-module E is strictly 
linearly compact if and only if 7 is linearly compact and for every proper 
open submodule U of E ,  E / U  contains a simple submodule. 

The assertion follows readily from (2) of 28.15 and 33.17. 

33.19 Theorem. A linearly compact module E over a strictly linearly 
compact ring A is strictly linearly compact. 

Proof. By 33.18 it suffices to show that if U is a proper open submodule 
of E ,  then E / U  contains a simple submodule. If E / U  is a trivial A-module, 
then E / U  is a discrete, strongly linearly compact module, hence is artinian 
by 30.10, and in particular contains a simple submodule. In the contrary 
case there exists x E E such that A.(x + U )  is not the zero submodule of 
E/U. Let L = {a  E A : ax E U}, a proper open left ideal of A.  Then 
a -+ a.(x + U )  is an epimorphism from the A-module A to A.(z + U) with 
kernel L .  By (2) of 28.15, A / &  is an artinian A-module, so A.(z + U) is 
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also; in particular, A.(z + V )  contains a simple submodule, so E / U  does 
also. 0 

33.20 Definition. Let A be a topological ring, and let < A  be the smallest 
ordinal number whose corresponding cardinal number is the smallest of 
those strictly greater than that of the set of all subsets of A. Let J be a 
closed ideal of A. We define Jx recursively for each ordinal number X such 
that 1 5 X < 6~ as follows: J1 = J ;  if J ,  is defined for all a < X and if 
X = p + 1 (that is, if X has an immediate predecessor p ) ,  we define J X  to be 
J p J ,  but if X has no immediate predecessor, we define Jx  to be n,,, J,. 

Clearly ( J,),<tA is a decreasing family of closed ideals, so as the cardi- 
nality of all ordinals < € A  exceeds that of the set of all subsets of A, there 
exists y < t~ such that J7+1 = J7 ,  and it follows readily that Jx = J-, for 
all X E [y, < A ) ;  the smallest such ordinal y we shall call the transfinite index 
of J .  If y is the transfinite index of J ,  we shall also denote J7 by J ,  and 
say that J is transfinitely nilpotent if J ,  = (0). 

An inductive argument establishes that for each integer n 2 1, J ,  = J n .  
Indeed, if Jk = J k ,  then JkJ  C Jk+l as {z E A : z J  c Jk+I}  is closed, so 

- 

- 
- - - 

again 

33.21 Theorem. The radical R of a strictly linearly compact ring A is 
transfinitely nilpo tent. 

Proof. Let y be the transfinite index of R. It suffices to show that for 
any open left ideal J of A, R, c J .  Let L = {z E A : R,z C J } .  As R, is 
an ideal, L is a left ideal. As L 2 J ,  L is open. 

Suppose that L # A. Then AIL is a nonzero artinian A-module by 
28.15, so there is a left ideal L' of A containing L such that L'/L is a 
simple A-module. Clearly {z E L'/L : A.z = (0)) is a submodule of L' /L  
and hence is either L'/L or (0). In the former case, A.(L'/L) = (0)) so in 
particular, R.(L'/L) = (0). In the latter case, for any nonzero z E L'/L,  
A.z is a nonzero submodule of L' /L  and hence A.z = L'/L.  Therefore if 
for each a E A, ii is the endomorphism of the abelian group L'/L defined by 
&(z) = a.z for all z E L'/L,  a + ii is an epimorphism from A to a primitive 
ring of endomorphisms of L'/L. Its kernel is therefore a primitive ideal and 
hence contains R, so R.(L'/L) = (0). Therefore in both cases, RL' C L. 
Consequently, 

~ R L I  c R,L = R,L 5 J ,  

so 
R, L' = %+I L' = R , L '  C - J 
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since J is closed. Therefore L' E L, a contradiction. Consequently, - L = A, 
that is, R,A J, so &R E R,A C J, whence R, = %+I = 

33.22 Theorem. H A  is a bounded, strictly linearly compact ring with 
radical R, then the filter base (R"),>l - converges to zero, and in particular, 

E J .  0 

n=l 

Proof. Let J be an open ideal. By 28.15, A / J  is an artinian A-module 
and hence an artinian ring. Let b, be the canonical epimorphism from A to 
A/J, and let S be the radical of A / J .  By 26.15, 4(R)  E S, so for all n 2 1, 
4(Rn) C S". By 27.15 S is nilpotent, so for some m 2 1, R" C J for all 
n 2 m. Thus by 12.16, (R"),>l - converges to zero and, in particular, its 
adherence n;=, R" is (0). 0 

33.23 Theorem. If R is the radical of a linearly compact ring A, then 
AIR, is strictly linearly compact for its Leptin topology. 

Proof. We shall show by transfinite induction that for all X E [1,&), 
A/Rx is strictly linearly compact for its Leptin topology. Since the sub- 
modules of the A-module A/Rx and the left ideals of the ring A/Rx coin- 
cide, the Leptin topologies of the topological A-module A/Rx and of the 
topological ring A/Rx coincide, and hence the assertion that the topological 
ring A/Rx is strictly linearly compact for its Leptin topology is equivalent 
t o  the corresponding assertion about the topological A-module A/Rx . 

If X = 1, then A/Rx = A/R and hence A/Rx is a strictly linearly com- 
pact ring by 29.12 and 29.8. Assume that the A-module AIR, is strictly 
linearly compact for its Leptin topology. To show the corresponding as- 
sertion for the A-module A/R,+l, it suffices by 28.16 to show that, for the 
subspace and quotient topologies determined by the Leptin topology of that 
module, R/R,+1 and (A/Rp+1)/(R/R,+1) are strictly linearly compact A- 
modules. Since R,R G R,+1, we may regard R/R,+1 as a module over 
AIR,. Neither the Leptin topology of a linearly topologized module nor 
the property of strict linear compactness depends on the topology of the 
underlying scalar ring, so by 33.11, our assumption, and 33.19, the Leptin 
topology of the (AIR,)-module R/R,+1 is strictly linearly compact. Since 
the submodules of the (AIR,)-module R/R,+1 and those of the A-module 
R/R,+1 coincide, the Leptin topologies of the (AIR,)-module R/R,+1 and 
of the A-module R/R,+1 coincide, and therefore the Leptin topology of 
the A-module R/R,+1 is strictly linearly compact. By 33.9, however, that 
topology is the subspace topology induced by the Leptin topology of the 
A-module A/R,+1. 
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Furnished with the quotient topologies determined by the given topology 
of A, the topological A-module (A/Rp+1)/(R/R,+1) is topologically isomor- 
phic to the topological A-module AIR, which is strictly linearly compact 
as noted above. The topology of (A/Rp+1)/(R/R,+1) is therefore mini- 
mal by 28.13 and hence coincides with the weaker quotient topology on 
(A/R,+l)/(R/R,+l) induced by the Leptin topology of A/R,+1. Thus the 
Leptin topology of the A-module A/R,+1 is strictly linearly compact. 

Finally, assume that X has no immediate predecessor and that the Leptin 
topologies of the A-modules AIR, are strictly linearly compact for all p < 
A. The function A from the A-module A to the A-module n,.,,(A/R,), 
defined by 

Abc> = (z + &),<A 

for all z E A, is a continuous homomorphism, where each AIR, is given 
its Leptin topology. By 28.3 and 28.6, A(A) is closed and hence, by 28.16 
and 28.17, strictly linearly compact. The kernel of A is n,,, R,, which by 
definition is Rx, and hence A induces a continuous isomorphism from the A- 
module A/Rx to the strictly linearly compact A-module A(A). Therefore 
there is a strictly linearly compact A-module topology on A/Rx weaker 
than its quotient topology. By 28.13 and 33.7, that topology is the Leptin 
topology of A/Rx.  a 

33.24 Theorem. If A is a linearly compact ring, the Leptin topology of 
A is strictly linearly compact if and only if the radical R of A is transfinitely 
nilpo ten t . 

The assertion follows from 33.21 and 33.23. 

33.25 Theorem. If A is a linearly compact commutative ring with rad- 
ical R, then the Leptin topology of A is strictly linearly compact if and only 
i fnr==,  R" = (0). 

Proof. The condition is necessary by 33.22 and sufficient by 33.24. 0 

For an example where the equivalent conditions of Theorem 33.25 fail to 
hold, let A be the valuation ring of a proper, nondiscrete, real valuation z, 

satisfying the properties of 28.9 (a proof that such valuations exist is given in 
Topological Fields, Theorem 31.24). The maximal ideal M of A is its radical 
as A is local ring, and M 2  = M since, if ~ ( z )  > 0, there exists y E A such 
that v(z)  > v(y) > 0 as u is not discrete, so z = ( z y - ' ) ~  E M 2 .  Therefore 
M ,  = M, so the Leptin topology of A is not strictly linearly compact. Since 
the ideals of A are totally ordered by inclusion, the valuation topology of 
A is the weakest Hausdorff ideal topology on A and hence is the Leptin 
topology of A. 
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Exercises 

33.1 (Prufer [1923a]) Let G be an abelian group in which the zero sub- 
group is sheltered. (a) No subgroup of G is the direct sum of two proper 
subgroups. (b) G is p-primary for some prime p. (c) If a,  b E G ,  either 
Z.a C Z.b or Z.b Z.a. [Apply to the subgroup generated by a and b the 
theorem that a finitely generated abelian p-primary group is the direct sum 
of cyclic p-primary subgroups.] (d) The subgroups of G are totally ordered 
by inclusion. (e) G is either a cyclic p-primary group or a basic divisible 
p-primary group. [If G is not a noetherian Z-module, show that it contains 
a basic divisible p-primary subgroup, and apply 30.2.1 

33.2 (Prufer [1923a,b]) Let G be an abelian group. (a) A proper subgroup 
H of G is sheltered if and only if G/H is either a cyclic p-primary group 
or a basic divisible p-primary group for some prime p .  [Use Exercise 33.1.1 
(b) If N is a proper subgroup of G, then the Z-module GIN is artinian if 
and only if N is the intersection of finitely many sheltered subgroups. [Use 
(a) and 33.2.1 (c) The completion of G for the Leptin topology associated 
to  the discrete topology on G is a strictly linearly compact Z-module. 

33.3 Let E be a nonzero A-module. The only Hausdorff linear topology 
on E is the discrete topology if and only if there exist sheltered submodules 
U1, , . . , U, of E such that U1 n . . . n U, = (0). [Necessity: Apply 33.2 to 
the zero submodule.] 

33.4 Let E be a nonzero A-module. Then E is artinian if and only if 
every proper submodule of E is the intersection of finitely many sheltered 
modules. 

33.5 Let A be a commutative ring with identity. A proper ideal U of A is 
sheltered and S is its shelter if U is a sheltered submodule of the A-module 
A with shelter S. The only Hausdorff ideal topology on A is the discrete 
topology if and only if there exist sheltered ideals U,, . . . , U, of A such 
that U1 n . . . n U, = (0). [Use Exercise 33.3.1 

33.6 Let A be a commutative ring with identity. For any ideal J of A, 
the annihilator of J, denoted by Ann(J) (or AnnA(J)) is the ideal {x E A : 
Jx = (0)}, and for any ideals I and J of A,  we denote by (I : J) the ideal 
{z E A : XJ C I}. Assume that the zero ideal of A is sheltered, let S be 
the shelter of (0), and let M = Ann(S). (a) M is a maximal ideal. [Show 
that AIM is a field by observing that if a $ M, then Aas = S for some 
s E S. (b) M is the set of all zero-divisors in A. (c) S = Ann(M) and is a 
principal ideal. [Regard Ann(M) as a vector space over AIM, and observe 
it has a smallest nonzero subspace.] 

33.7 Let A be a noetherian commutative ring with identity in which the 
zero ideal is sheltered, and let M be the annihilator of the shelter of (0). 
(a) nr=l M n  = (0). [Use 20.13.1 (b) M is a nilpotent ideal. [Use Exercise 
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33.5.1 (c) M is the only maximal ideal of A. [Use 26.14.1 (d) A is artinian. 
[Use 27.17.1 

33.8 Let A be a commutative ring with identity having sheltered ideals 
U1, . . . , U, such that 

n n ui = (01, ui p n uj 
i=l  j#i 

for each i E [1,n]. For each i E [l ,n],  let Si be the shelter of Ui, let 
Mi = (Ui : Si), and let K ( i )  = { j  E [1,n] : Mj = Mi}. (a) Each Mi is a 
maximal ideal of A. [Apply Exercise 33.6 to AIUj.1 (b) For each i E [l ,n],  

Ann(M;) = ( sj)n( uj).  
j€K(i) jW(i) 

[For inclusion, observe that Mi + Mj = A if j $! K(i ) . ]  (c) For each i E 
[l ,n],  Ann(Mi) # (0). [Use (b) and observe that U; + nj f i  Uj 2 Si.] (d) 
For each i E [l,n], Ann(M;) is finitely generated. [Use (b) to establish 
a monomorphism from Ann(&) to &EK(il(Sj/Uj), and apply Exercise 
33.61. (f) M I ,  . . . , M, 
are the only maximal ideals having a nonzero annihilator. [Use (e) and 
Exercise 24.4.1 (g) If b # 0,  then Ab n Si # (0) for each i E [l,n]. (h) If 
a # 0, then Aa n (nYXl S;) # (0). [Use (g) repeatedly.] (i) If a E n:'l S;, 
then AanAnn(Mj) # (0) for some j E [1,n]. [Proceed by contradiction, to 
arrive at a nonzero element of n:.-=, U;.] (j) If a # 0, AanAnn(Mj) # (0) 
for some j E [l,n]. [Use (b), (h), and (i).] 

33.9 Let A be a commutative ring with identity satisfying the following 
properties: 

1" A has only finitely many maximal ideals, M I ,  . . . , Mn whose annihi- 
lators are nonzero. 

2" The annihilator of each maximal ideal of A is a finitely generated ideal. 
3" Each nonzero principal ideal of A has a nonzero intersection with the 

Let 7 be a nondiscrete ideal topology on A ,  and let V be a fundamental 
system of neighborhoods of zero for 7 consisting of open ideals. (a) If 
Ann(Mi) is considered a vector space over the field A / M i ,  then there exists 
VO E V such that if di  = dim(VonAnn(Mi)) for each i E [l ,n],  then di 5 
dim(VnAnn(Mi)) for all V E U. (b) For some i E [l ,n],  di > 0. ( c )  7 is 
not Hausdorff. 

33.10 (Hochster [1968])A commutative ring with identity admits no non- 
discrete, Hausdorff ideal topology if and only if 1" - 3" of Exercise 33.9 hold. 
[Use Exercises 33.5, 33.8, and 33.9.1 

(e) U:=, Mi is the set of all zero-divisors of A. 

annhilator of some maximal ideal. 
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33.11 (Hochster [1968])I€ A is a commutative noetherian ring with iden- 
tity, then A admits no nondiscrete, Hausdorff ideal topology if and only if A 
is artinian. [Necessity: With the terminology of Exercise 33.8, observe that 
every maximal ideal contains Ui for some i E [l,n] [use 24.101 and hence is 
Mi [use Exercise 33.7(d)]. Finally, apply 20.13 and 27.16.1 

33.14 (Kurke [1967], Warner [1971], Anh [1981b]) Let 7 be a linearly 
compact topology on an A-module E, where A is given the discrete topology. 
(a) The set U of aJl closed submodules U of E such that E / U  is linearly 
compact for the discrete topology is a filter base. (b) U is a fundamental 
system of neighborhoods of zero for a linearly compact topology 7* on E 
that is stronger than 7. [Use 7.21 and 28.15.1 (c) I* is the strongest of all 
the linearly compact topologies on E that are stronger than 7. 

33.15 If 7 and S are linearly compact topologies on an A-module E, then 
7 and S have the same closed submodules if and only if 7* 

33.16 A linearly compact topology 7 on an A-module E is maximal if 
7 = 7* (Exercise 33.14). If 7 is a maximal linearly compact topology on 
E and if M is a closed submodule of E, then the induced topology on E / M  
is maximal. 

33.17 If 7 is the topology of the valuation ring A of a complete, discrete 
valuation of a field, then 7* is the discrete topology. [Use the remark after 
28.9 and 18.2.1 

33.18 Let Z, be the compact ring of p-adic integers, for each Ic 2 1 let 
E k  be the discrete Z,-module Z,/pkZz,, and let E = nT=, E k .  Let A!f be 
the range of the monomorphism A ,  defined by 

S C_ 7*. 

from Z p  to E ;  thus M is a compact submodule of E. Then ( 7 * ) M ,  the 
topology induced on M by 7*, is not discrete. [Observe by using Exercise 
33.15 that if V is a submodule open for 7*, then 

and conclude that for a suitable m 2 1, pm.A(l) E M n V. (b) Let 7~ 
be the topology induced on A4 by 7. Then ( 7 ~ ) *  is the discrete topology. 
[Use Exercise 33.17.1 (c) Conclude that ( 7 * ) ~  is linearly compact but not 
maximal. 

33.19 Let 7 be a linearly compact topology on an A-module E. The 
following statements are equivalent: 
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1" 7 is maximal. 
2" For every closed submodule M of E ,  if E / M  is linearly compact for 

3" If u is an open epimorphism from E to a linearly compact A-module 

4' Every continuous epimorphism from a linearly compact A module D 

5" If u is a homomorphism from E to a linearly compact A-module F 

the discrete topology, then M is open. 

F and if the kernel of u is closed, then u is a topological epimorphism. 

to E is a topological epimorphism. 

whose graph is closed, then u is continuous. 

33.20 If E and F are linearly compact A-modules with topologies 7 and 
S respectively, and if u is a continuous homomorphism from E to F, then u 
is also continuous when E and F are furnished with topologies 7* and S' 
respectively. [Use 5" of Exercise 33.19.1 

33.21 If E is a linearly compact module whose topology is maximal and if 
E is the direct sum of closed submodules M and N ,  then E is the topological 
direct sum of M and N ,  and the topologies induced on M and N are 
maximal. 

33.22 If 7 is a linearly compact ring topology on a ring A, then T* is 
also a ring topology. 

33.23 If (Ax)xEL is a family of linearly compact rings with identity whose 
topologies are maximal, then the Cartesian product topology on HAEL Ax 
is maximal. [Use 24.12.1 

33.24 (Kurke [1967]) Let A be a commutative ring with identity, and let 
E be a linearly compact, unitary A-module. Then E is strictly linearly 
compact if and only if for each proper open submodule U of E and each 
z E E there is a sequence ( M i ) l ~ j < ~  of maximal ideals of A such that 
M I  . . . Max E U. [Necessity: Consider A / J  where J is the kernel of u --t 
uz + U from A to E/U. Sufficiency: Establish the criterion of 33.18.1 

34 Lifting Idempotents 

If A is a complete, equicharacteristic, local ring with maximal ideal (or 
radical) M ,  then by 21.8 and 21.14, A contains an isomorphic copy of its 
residue field AIM,  that is, the entire field AIM may be "lifted" to  A .  
Here we shall determine conditions on a topological ring A with radical R 
under which idempotents of AIR and, more generally, orthogonal families 
of idempotents may be lifted to A. From these results we may derive some 
import ant structure theorems. 

We first note that if e is an idempotent of a topological ring A,  the epi- 
morphism f from the additive group A to the additive group eAe, defined 
by f (z )  = eze, is a topological epimorphism, since if U is a neighborhood of 
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zero in A, U n eAe 5 eUe. Thus if 24 is a fundamental system of neighbor- 
hoods of zero in A, eUe is a fundamental system of neighborhoods of zero 
in eAe. 

Here, if A is a ring with radical R and if z E A, we shall often denote 
the element z + R of AIR by 5. 
34.1 Theorem. Let A be a linearly compact ring with radical R, and 

let 4 be the canonicd epimorphism from A to AIR. If E is a nonzero 
idempotent of AIR and if L is a closed left ideal of A containing R such 
that E E $(L) ,  there is an idempotent e E L such that F = E, and for any 
such e, the restriction 4e of 4 to eAe is a topological epimorphism from eAe 
to E(A/R)E whose kernel is the radical eRe of eAe. 

Proof. Let E be the set of all ordered pairs ( f ,  J) such that f E A, J is 
a closed left ideal of A contained in R, f + J L ,  Jf C J, 'j = E ,  and 
f 2  - f E J. Iff is an element of L such that 7 = E ,  then (f ,  R) E E by 29.12, 
so & # 8. We define an ordering on E by declaring ( e , I )  5 (f ,  J )  if and 
only if e + I ?  f +  J ,  or equivalently, if and only if I 2  J and e + I =  f+I. 
To show that the ordered set (&, 5 )  is inductive, let C be a totally ordered 
subset of E ,  and let 3 = { I  : (f ,  I) E C for some f E A}. As A is linearly 
compact, n{f + I : (f ,  I) E C} # 0 and hence is a coset f o  +I0 of 1 0 ,  where 
I0 = n,,,I. For any (f,I) E C, I~fo 2 I . ( f + I )  2 I f + I c  I ,  and 

Therefore Iofo E 10 and fl - fo E 10. Thus ( f 0 , I o )  E E ,  and clearly 

By Zorn's Lemma, therefore, E has a maximal element ( e , I ) ,  and we 
need only show that e2 = e. Let a = e2 - e ,  and let f = e - 2ea + a. As a 
and e commute, 

f 2  - f = e2 + 4e2a2 + a2 - 4e2a + 2ea - 4ea2 - e + 2ea - a 

= -4(e2 - e )u  + 4(e2 - e)a2 + a2 + e2 - e - a 

= -4a2 + 4a3 + a2 = 4a3 - 3u2. 

fi E ( f+I )*( f+I )  c f2+fI+I f+12  G f + I = f o + I .  

( f o ,  1 0 )  = SUP c. 

Let J = Z.a2 + Aa2 ,  the left ideal generated by a2. Since e2 - e = a ,  
- f C I ,  and f 2  - f E J C 9. Also Jf = fJ c J, so jf C_ 1. Clearly 
f = E = E .  Thus ( f , %) E E . As a E I ,  f + I = e + I .  Hence ( f , 7) 2 ( e  , I ) ,  
so (f, 9) = ( e ,  I ) .  Thus a = e2 - e E I = 1. Let U be an open left ideal. By 
3.3, a E J + U, so there exist an integer n and an element z of A such that 
a - (n.u2 + z a 2 )  E U. As a E R, n.a + za E R and hence n.a + z a  has an 
adverse b by 26.9. Therefore 

0 = 0 a = [a 0 (n.a + z a ) ] a  = [b  + n.a + z a  - b(n.a + za)]a 

= b[u - n.a2 - za2] + n.a2 + xu2. 
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Thus 
n.u2 + xu2 = -b[u - (n.u2 + xu”] E u 

u = (u - (n.u2 + xu2)) + (n.2 + xu2) E u. 

and consequently 

Therefore u belongs to every open left ideal; hence u = 0, so e2 = e. 
If f is the topological epimorphism from the additive group A to additive 

group eAe defined by f(x)  = exe and if f i s  the corresponding function from 
AIR to €(AIR)€, then f o  $ = $e o f ,  so $e is a topological epimorphism by 
5.3. The kernel R n eAe of $= is eRe, the radical of eAe by 26.17. 0 

34.2 Corollary. Let A be a commutative linearly compact ring with 
radical R. If E is a nonzero idempotent of AIR, there is a unique idempotent 
e E A such that F = E. 

Proof. If e and f are nonzero idempotents of A such that i5 = 7, then 
e-ef and f-ef are idempotents of A belonging to R as F - 3  = b = f - e f ,  
so e = ef = f since no nonzero idempotent is advertible (page 83). 0 

An orthogonal family of idempotents in a ring A is a family (ex)XEL of 
nonzero idempotents such that exe, = 0 whenever X and p are distinct 
elements of L. 

34.3 Theorem. Let A be a linearly compact ring with identity whose 
associated Leptin topology is strictly linearly compact, and let R be the 
radical of A. If (ex)xEL is a family of idempotents of E such that ( E x ) x E ~  is 
a summable orthogonal family of idempotents of AIR whose sum is 7, then 
the function $ from the A-module A to the A-module nxEL Aex, defined 

- -  

bY 
$(x) = ( 4 X E L  

is a continuous isomorphism. 16 furthermore, A is strictly linearly compact, 
then $ is a topological isomorphism. 

Proof. Clearly 4 is a homomorphism from the A-module A t o  the A- 
module nxGL Aex. To show that $ is a monomorphism, it therefore suffices 
to  show that if x E A and if xex = 0 for all X E L,  then x = 0. By 29.12, 
R is closed. Let y be the transfinite index of R. To show that x = 0, it 
suffices by 33.21 t o  show that x E R, for all ordinals p 5 y. First, 

- 
?E = z(Z E x )  = c = 0, 

X€L X€L 

by 10.16, so x E R = R1. Assume that x E R, for all ordinals u < p, 
and assume first that p has an immediate predecessor u.  Then R, = R,R, 

- 
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so in particular R,R C R,, and thus we may regard R,/R,  as a unitary 
right topological module over AIR where scalar multiplication is defined by 
( z  + R,).(a + R)  = za + R, for a l l  z E R, and all a E A.  Then 

Thus z E R,. If p has no immediate predecessor, then x E n,,, R,  = R,. 
Therefore x E R,  = (0). 

To show that 4 is surjective, we first show that by induction on n that 
for any nonempty finite subset F of L and any p E F ,  there exists t E A 
such that ze, = e, and zex = 0 for a l l  X E F \ { p } .  If F has one element 
e,, we may let 2, = e,. Assume the assertion is true for all subsets of L 
having k - 1 elements. Let F be a subset of L having k elements, and let 
X1 E F .  Let F - { X 1 }  = (X2, . . . , Xk}. By our inductive hypothesis, for each 
i E [l, k - 11 there exists zxi E A such that zxiexi = ex, and zx,ex, = 0 for 
all j E 11, k - 11 \ {i}. Then for each i E [l, k - 11, exbexi E R as F x k E x i  = 0. 
Consequently, 1 - Cfr: exkex;zxi is invertible by 26.11. We define z by 

- 

If j E [l, k - 11, 

k - 1  

so 

%ex, = zx,ex, = ex, 

and, if j E [2, k - 11, 
zexj = zx,exj = 0. 

Finally, 

k-1  k -1  

i = l  i=l 

k-1  k -1  

i= l  i=l 

= %Alexk - zxIexkexk = 0. 
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Since 4 is continuous, 4(A) is closed in n x E L A e x  by 28.3 and 28.6. To 
show that 4 is surjective, therefore, we need only show that 4(A) is dense, 
and for that, it suffices to show that for any finite sequence XI, . . . , X I ,  of 
distinct elements of L and for any elements ax,, . . . , axk of A, there exists 
z E A such that zexj  = axjexj for all j E [l, k]. We have just proved that 
for each i E [l, k] there exists zxi E A such that zxiexi = exi and zxiexj = 0 
for all j E [ l , k ]  such that j # i. Let 

Then for each j E [l, k], 

If A is strictly linear compact, then 4 is a topological isomorphism by 
28.10. 

34.4 Theorem. Let A be a strictly linearly compact ring with identity 
1, and let R be the radical of A.  If ( E X ) X E L  is a summable orthogonal family 
of idempotents of AIR [whose sum is i], there is a summable orthogonal 
family of idempotents ( e x ) x E L  in A [whose sum is 11 such that E x  = E X  for 
a l lXEL.  

- 
Proof. We first assume that CxELex = 1. By 34.1 and the Axiom of 

Choice, there is a family ( fx)xEL of idempotents in A such that Tx = EX for 
all X E L. By 34.3, the function 4 from the topological A-module A to the 
topological A-module nxEL Afx, defined by 4(z) = ( z f x ) x E L  for all z E A, 
is a topological isomorphism. For each p E L,  let in, be the canonical 
injection from Af, into n x E L A f x ,  and let e p  = q5-'(in,(fP)). 

For each p E L,  

2 so e, = e,. If v E L ,  

so 
eufu = f v  and e,fx = 0 
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for all X # v. Consequently, if v # A, 

so e,eA = 0. Also, 

Since (inx(fx))xE~ is clearly summable in nxEL A f x ,  ( e x ) x E L  is summable 
in A.  Let e = C X E L e x .  Then ii! = CXEL€~ = 1. Let (Y E L,  let eb, = 
1 - e + e e , ,  and let ek = ex for all X E L\{a}. Then za = 1 - E + E a  = E,, 

and 
C e i  = 1. 

- 
- 

X€L 

In general, if ( E ~ ) ~ E L  is a summable orthogonal family of idempotents in 
AIR with sum E # f ,  the family ( E X ) X ~ L ~ { ~ ) ,  where e ,  = 1 - e ,  is a sum- 
mable orthogonal family of idempotents whose sum is 1. Upon applying the 
preceding paragraphs to this orthogonal family of idempotents, we obtain 
the desired conclusion by 10.7. 0 

34.5 Theorem. Let A be a strictly linearly compact ring, and let R be 
the radical of A .  If ( E X ) X € L  is a summable orthogonal family ofidempotents 
of AIR, there is a summable orthogonal family of idempotents ( e x ) x E L  in 
A such that EL;X = EX for d X E L .  

Proof. By 29.12, 29.4, and 26.16, AIR is a linearly compact, semisimple 
ring and hence by 29.8 has an identity E. By 34.1 there is an idempotent 
e in A such that Z = E. Let q5e be the restriction to eAe of the canonical 
epimorphism from A to A / R ,  and let c $ ~ A ~  be the canonical epimorphism 
from eAe t o  eAe/eRe. By 34.1, there is a topological isomorphism x from 
eAe/eRe to A I R  such that x 0 4 e A e  = 4,. 

Let ( E X ) X ~ L  be a summable orthogonal family of idempotents of AIR. 
Then (x- ' (Ex))A€L is a summable orthogonal family of idempotents of 
eAe/eRe. By 26.17, eRe is the radical of eAe, a strictly linearly compact 
ring by 29.15. Therefore by 34.4, there is a summable orthogonal family 
( e A ) x E L  of idempotents in eAe such that &Re(eX) = x - ' ( E x )  for all X E L.  
Finally, €or each X E L ,  
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34.6 Theorem. Let A be a strictly linearly compact commutative ring. 
(1) Either A is a radical ring, or there is a nonzero idempotent e E A such 
that A is the topological direct sum of the strictly linearly compact ring 
with identity Ae and the strictly linearly compact radical ring J, where 
J = { y  - y e  : y E A } .  (2) If A has an identity, A is topologically isomorphic 
to the Cartesian product of a family of strictly linearly compact local rings. 

Proof. Let R be the radical of A. (1) As in the proof of 34.5, there is an 
idempotent e in A such that F is the identity element of AIR. Then Ae is a 
strictly linearly compact ring by 29.3 as x + x e  is a continuous epimorphism 
from A to Ae, and e is the identity of Ae. By 32.12, A is the topological 
direct sum of Ae and the ideal J, where J = {y - y e  : y E A } .  By 29.4, 
J is strictly linearly compact as it is topologically isomorphic to A/Ae.  If 
4 is the canonical epimorphism from A to AIR, then J is contained in the 
kernel of 4, that is, J 

(2) By 29.10, AIR has a summable orthogonal family (EX)X€L of idem- 
potents such that (A/R)cx is a field for each X € L and CXELex = 1. By 
34.4, the unique family ( e x ) x E L  of idempotents of A such that E x  = ex for 
all X E L is a summable orthogonal family of idempotents whose sum is 1. 
By 34.3, the function 4 from A to n x E L A e x ,  defined by 4 ( x )  = ( x e x ) x E L  
for all 2 E A,  is a topological isomorphism from the A-module A to the 
A-module n x E L A e x .  Since A is commutative, 4 is a ring isomorphism. 
For each X E L, Aex/Rex is isomorphic to the field (A/R)ex by 34.1, and 
therefore as Rex is the radical of Aex by 26.17, Aex is a local ring, which is 
strictly linearly compact by 29.15. 0 

R,  so J is a radical ring by 26.18. 

34.7 Theorem. If A is a semisimple linearly compact ring, A is bounded 
if and only if every orthogonal family of idempotents of A is summable. 

Proof. By 12.16, A is bounded (if and) only if its topology is an ideal 
topology. Necessity: By 29.9 we may assume that A is the Cartesian product 
of a family (A, ) ,€M of discrete rings, each the ring of all  linear operators 
on a finite-dimensional vector space E,. Let ( e x ) x E L  be an orthogonal 
family of idempotents, and for each X E L,  let ex = ( e x , , ) , E M .  For each 
p E M ,  the nonzero members of (ex,,)XEL clearly form an orthogonal family 
of idempotents in A,, so as E, is finite-dimensional and EXEL ex,,(E,) is 
the direct sum of (ex,,(E,))XEL, ex,, = 0 for all but finitely many X E L. 
Thus ( eX , , )AEL is summable in A,  for each p E M ,  so ( e x ) x E L  is summable 
in A by 10.10. 

Sufficiency: By 29.7 and 29.9, we need only show that if E is an infinite- 
dimensional discrete vector space, there exists an orthogonal family of idem- 
potents in the ring A of all linear operators on E that is not summable for 
the topology of pointwise convergence. Let V be a subspace of E having a 
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denumerable basis (bi)iyo, and let W be a supplement of V in E. For each 
n 2 1, let en be the linear operator on E satisfying 

and e,(z) = 0 for all z C W .  Clearly (en)n>l is an orthogonal family of 
idempotents, but (en),21 is not summable for the topology of pointwise 
convergence by 10.5, since no en belongs to the neighborhood {u E A : 
u(b0)  = 0) of zero. 0 

34.8 Theorem. If A is a bounded, strictly linearly compact ring, every 
Orthogonal family of idempotents in A is summable. 

Proof. Let R be the radical of A,  and let (ex)AEL be an orthogonal family 
of idempotents of A.  As A is complete by 28.5, it suffices by 10.5 and 12.16 
to show that  for any open (and hence closed) ideal V of A, ex E V for all but 
finitely many X E L. Now (?2x)xE~  is an orthogonal family of idempotents 
in AIR (Ex # 0, since the radical of a ring contains no nonzero idempotent) 
and hence is summable by 34.7, so if q5 is the canonical epimorphism from 
A to AIR, Ex E q5(V) and hence ex E V + R for all but finitely many X E L .  
Therefore it suffices to show that if e is an idempotent in V+R,  then e E V. 
Assume that e E V + R", and let e = w + r where w E V, T E R". Then 

Consequently, 
00 00 

e E  n ( v + R n ) = v + n R n = v  
n=l n=l  

by 28.19 and 33.22. 0 

Let A be the ring of all linear operators on a K-module E. The natural 
way of defining a scalar multiplication on K x A,  when K is commutative, 
that makes A a K-module and, indeed, a K-algebra, is no longer available 
if K is not commutative, simply because if u E A and if X is a scalar not 
in the center of K ,  the function z --f Xu(z) need not be a linear operator. 
If, however, E has a basis B, then we may define a scalar multiplication, 
dependent upon B, that makes A a K-module by declaring, for each u E A 
and each scalar A,  X u  to be the unique linear operator on E taking b into 
Au(b)  for each b E B. Then for any scalar a,  (Xu)(&) = a(Xu)(b) = 
(aX)u(b). (In contrast, if a is invertible, then for the scalar multiplication 
determined by the basis aB,  (Au)(ab) = Xu(ab) = (Xa)u(b).) If B is finite, 
the linear operators (ebc)(b,c)EBxB corresponding to the elementary matrices 
determined by B (ebc is the unique linear operator satisfying ebc(c) = b and 
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e b c ( a )  = 0 for all a E B \ { c } )  form a basis of the K-module A,  and 
C b E t 3 e b b  = I E ,  the identity h e a r  operator on E .  By use of this scalar 
multiplication, we may find copies of the ring opposite K in A, since for 
each b E B,  the function &, from K to A,  defined by & ( A )  = e b b ( X I E ) e b b ,  

is an anti-isomorphism from K to the subring e b b A e b b .  Indeed, for any 
Y E K, ebb and VIE are easily seen to  commute, so if A, p E K, $(X)q5(p) = 

Xb # 0, so 4 b  is an anti-monomorphism; and finally, for any u E A ,  if u(b) = 

34.9 Theorem. Let A be a strictly linearly compact ring with identity, 
and let R be its radical. If AIR is isomorphic to  the ring of all linear 
operators on an n-dimensional vector space over a division ring K, then 
A is topologically isomorphic to the topological ring EndL(E) of all linear 
operators on an n-dimensional, strictly linearly compact module E over a 
strictly linearly compact ring with identity L, both of which are subrings of 
A, where EndL(E) has the topology of pointwise convergence and, if S is 
the radical of L, LIS is isomorphic to K. 

Proof. Let ( ~ ~ j ) ~ ~ , ~ ~ ~ ~ ~ , ~ ~ ~ [ ~ , ~ ~  be the basis of AIR corresponding to the 
elementary matrices determined by a given basis of the underlying vector 
space. By 34.4 there is an orthogonal sequence ( e i i ) i E f l , n ]  of idempotents in 
A such that x:=l e i i  = 1 and ??ii = eii for a l l  i E [l ,n].  For each j E [2,n], 
let f j l  and f l j  E A be such that Tlj = e l j  and T j l  = e j 1 ,  and define e l j  by 

e b b ( X I E ) ( p I E ) e b b  = e b b ( p X ) I E e b b  = d(pX)- If # 0, then [ e b b ( X I E ) e b b ] ( b )  = 

z c E ~  XbcC,  then e b b u e b b  = e b b ( X b b I E ) e b b ,  so 4 b  is an anti-isomorphism. 

Define rj by 
rj  = f j l e l j  - e j j .  

Then by (1)) 

and as F j l E l j  = E j j ,  ~j E R,  and thus 1 + ~j is invertible by 26.9. By (2), 
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Then 

Therefore, as 

and as R contains no nonzero idempotents, 

(6) e l l  = eljejl  

For i E [2, n] and j E [l, n] we define e j j  by 

eijejk = ejleljejlelk = ei lqlelk = eilelk = e i k ,  

and if T # s, e i je rs  = eilelje,lels = eileljejje,,e,lels = 0 by (1) and (4). 
With scalar multiplication the restriction to Ae11 x ellAell  of multi- 

plication on A x A, Aell is a topological right module over ellAe11. Let 
B = {ell ,  e21, . . . , enl}. Then B is a basis: Indeed, for any z E Aell, 

(7) 

and if c;==, ejl[ellajell]  = 0, then for each i E [1,n] 

n n 
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Let E = Aell and L = ellAe11. By 29.15 and 28.18, as E = Cj”=, ejlL, 
E is a strictly linearly compact module over the strictly linearly compact 
ring L. For each a E A,  let ii be the endomorphism of E defined by &(z) = 
az, and let 4 : a t ii. Then ii is a linear operator on the right L-module E 
since for any z, y E A, ii(z.ellye11) = azellyell = ii(z).ellyell.  Clearly 4 
is a homomorphism from A to EndL ( E )  . If ii = 0, then for each j E [ 1,721, 
0 = ii(ejj) = aejj, so 0 = Cj,l aejj = a. Furthermore, 4 is surjective, for 
if i, j E [l,n], e^ji(eil) = ejl and, if k # i, tji(ek1) = 0, so A contains the 
linear operators corresponding to  the elementary matrices determined by 
the basis B. Therefore 4 is an isomorphism from A to EndL(E). 

We furnish EndL(E) with the topology of pointwise convergence. Given 
b E E and a neighborhood V of zero in E ,  there exists an open left ideal W 
of zero in A such that W n Aell C Well C V ,  and there exists an open left 
ideal U of zero in A such that for any a E U ,  ejjabell E W for all j E [I, n]. 
Then for any a E U ,  ab E Aell = E ,  so by (7), 

n 

n n 

j=1 j=1 

Therefore q5 is a continuous isomorphism from A to A, furnished with the 
topology of pointwise convergence. Thus by 29.3, 4 is a topological isomor- 
phism. 

By 34.1, el lAell/ellRell  is isomorphic to q l (A/R)~11 and hence to K .  
But by 26.17, ellRe11 is the radical S of L = ellAe11. Therefore L / S  is 
isomorphic to K .  0 

34.10 Corollary. If A is a bounded, strictly linearly compact ring with 
identity whose radical is a primitive ideal, then A is topologically isomorphic 
to the ring of all linear operators, furnished with the topology of pointwise 
convergence, on a finite-dimensional, strictly linear compact module E over 
a strictly linearly compact ring L with identity whose radical is a regular 
maximal left ideal, where both E and L are subrings of A. 

Proof. Let R be the radical of A .  By 29.9 and 25.11, AIR is isomorphic 
to the discrete ring of all linear operators on a finite-dimensional vector 
space over a division ring. The conclusion therefore follows from 34.9. 0 

Each basis B of a vector space E determines in a natural way an or- 
thogonal family of idempotents in the ring A of all linear operators on E ,  
namely, the family (eb)bEB where for each b E B ,  eb is the unique linear 
operator satisfying eb(b)  = b and eb(c) = 0 for a l l  c E B \ ( b } .  If E is given 
the discrete topology and A the topology of pointwise convergence, (eb)bcB 

is clearly a summable orthogonal family of idempotents whose sum is the 
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identity linear operator 1,y. Consequently, if L is a closed left ideal of A, 
L = Ae for some idempotent e .  Indeed, let C = { b  E B : Aeb n L # (0)). 
If b E C ,  then L 2 Aeb since Aeb is a minimal left ideal, and in particular, 
eb E L.  By 29.1, 28.5, and 10.7, (eb)bcC has a sum e ,  so as is closed 
and contains the sum of each finite subfamily of ( eb )bEC,  e E L and thus 
Ae C_ L. But for each x E L, 

z = x C eb = C zeb = z e b  = x C eb = xe, 

so L = Ae. Analogously, if L is a closed right ideal of A ,  there is an 
idempotent e such that L = eA. 

A nonzero semisimple linearly compact ring A also has a naturally as- 
sociated summable orthogonal family of idempotents: By 29.7, there is a 
topological isomorphism 4 from A to  the Cartesian product of linearly com- 
pact primitive rings ( A x ) x c ~ ,  each the ring of all linear operators on a 
discrete vector space, furnished with the topology of pointwise convergence; 
if, for each X E L ,  ex = 4-'(1~), where 1 x  is the identity linear operator of 
Ax, then ( e x ) x E L  is clearly a summable orthogonal family of idempotents 
in the center of A whose sum is the identity of A such that Aex = Ax for 
all  X E L (moreover, it follows readily from Exercise 29,9(b) that the set 
{ ex  : X E L )  of idempotents constructed in this way is independent of par- 
ticular topological isomorphism 4 chosen). Consequently, if L is a closed 
left ideal of A ,  L = Af for some idempotent f .  Indeed, for any idempotent 
e in the center of A ,  Le = L n Ae and hence Le is closed by 26.28. Let 
M = { A  E L : Lex # 0 ) .  Then for each X E M ,  Lex is a nonzero closed 
left ideal of Aex and thus by the preceding there is a nonzero idempotent 
fx E Aex such that Lex = Axfx = Afx (as e v f x  = 0 for all Y # A). Argu- 
ing as before, we conclude that ( f x ) x E ~  is a summable orthogonal family of 
idempotents, and L = A f  where f is its sum. Analogously, if L is a closed 
right ideal of A,  there is an idempotent f E A such that L = f A .  Thus we 
have proved: 

34.11 Theorem. If L is a closed left [right] ideal of a semisimple linearly 
compact ring A ,  there is an idempotent e E A such that L = Ae [L = eA] .  

To illustrate the usefulness of our theorems concerning infinite orthogonal 
families of idempotents, we shall investigate bounded, linearly compact rings 
whose closed ideals are all strictly linearly compact rings. 

34.12 Theorem. Let R be a radical ring. The following assertions are 

1' R is a strictly linearly compact ring for the discrete topology. 

equivalen t : 
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2" R is a nilpotent artinian ring. 
3" R is a strongly linearly compact ring for the discrete topology. 

Proof. 1" implies 2" by (2) of 28.15 and 33.22. By 30.11, 3" implies 
lo. To show that 2" implies 3", we proceed by induction on the index of 
nilpotency of R. Assume that all nilpotent artinian rings of index < n are 
strongly linearly compact for the discrete topology, where n 2 2, and let 
R be an artinian ring satisfying R" = (0). Then is an artinian 
ring by 27.4 whose index of nilpotency is < n and hence is a strongly 
linearly compact ring and thus a strongly linearly compact R-module for 
the discrete topology, which is the topology induced on R/R"-l by the 
discrete topology on R. Since R"-l is a trivial (closed) submodule of the 
discrete, linearly compact R-module R, R"-l is a strongly linearly compact 
R-module. Therefore R is a strongly linearly compact R-module for the 
discrete topology by 28.16. 0 

34.13 Theorem. A bounded, strictly linearly compact radical ring R 
is strongly Linearly compact. In particular, a commutative, strictly linearly 
compact radical ring is strongly linearly compact. 

Proof. The filter base U of open ideals of R is a fundamental system of 
neighborhoods of zero by (1) of 12.16. For each U E: U, R / U  is a discrete, 
strictly linearly compact, radical ring by 29.4 and 26.16, so R/U is a strongly 
linearly compact ring and hence a strongly linearly compact R-module by 
34.12. As R is complete, therefore, R is a strongly linearly compact R- 
module and thus a strongly linearly compact ring by (1) of 28.16. 0 

34.14 Lemma. Let A be a primitive linearly compact ring, R a strongly 
linearly compact A-module. If e is an idempotent of A such that Ae is a 
minimal left ideal, then either e.R = (0) or A is finite. 

Proof. By 29.11 we may regard A as the ring of all linear operators on a 
discrete vector space E over a discrete division ring K ,  furnished with the 
topology of pointwise convergence. Assume that e.R # (0). Then there 
exists T E: R such that e.r # 0. Let f be the function from Ae to R defined 
by f (z)  = x.r  for all z E Ae. Then f is a continuous homomorphism from 
the A-module Ae to the A-module R; its kernel is a left ideal of A properly 
contained in Ae and hence is { 0 } ,  so f is a continuous monomorphism. By 
29.1, A is strictly linearly compact, so Ae is a strictly linearly compact A- 
module by 26.28 and 28.16. Consequently, f is a topological isomorphism 
from Ae to Ae.r, a strongly linearly compact A-submodule of R by 28.3. As 
A is linearly topologized and Hausdorff, the induced topology on Ae is the 
discrete topology. Therefore Ae.r is a discrete, strongly linearly compact 
A-module such that either every element of Ae.r has infinite additive order 
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or every element has order p for some prime p .  Consequently, by 30.10, Ae.r 
is finite, whence Ae is also. As e is a projection of E on a one-dimensional 
subspace of E ,  both the dimension of E and the cardinality of K are finite, 
so A is finite. 0 

34.15 Corollary. If A is a strongly linearly compact semisimple ring, 

Proof. We may assume that A # (0). By 29.7, we may regard A as 
the Cartesian product of a family (Ax)x ,=~  of primitive linearly compact 
rings. Each Ax is strongly linearly compact by 28.3 applied to the canonical 
projection from A to Ax. As Ax is isomorphic to  the ring of all linear 
operators on a vector space, it contains an idempotent ex such that Aex 
is a minimal left ideal of Ax. We may regard Ax as a topological module 
over itself. Since e E eAx, Ax is finite by 34.14. Thus A is compact by 
Tikhonov’s theorem. 0 

then A is compact. 

34.16 Theorem. I f A  is a linearly compact ring with identity whose 
radical R is a nonzero strongly linearly compact ring and if AIR is a prim- 
itive ring, then AIR is finite. 

Proof. By 29.12, 28.16, and 29.11, we may regard AIR as the ring of 
all linear operators on a discrete, nonzero vector space E over a discrete 
division ring K ,  furnished with the topology of pointwise convergence. 

Case 1: R2 = (0) .  We may regard R as a unitary topological (AIR)- 
module under the well defined scalar multiplication (u + R).b = ub for all 
a E A,  b E R.  As R is closed by 29.12, R is L strongly linearly compact 
A-module by 28.16 and hence is a strongly linearly compact (AIR)-module. 
By the discussion following 34.10, AIR contains a summable, orthogonal 
family ( eb )bEB of idempotents in AIR whose sum is 1 such that for each 
b E B, (A/R)eb is a minimal left ideal of AIR. Therefore as R is a unitary 
(AIR)-module, eb.R # (0) for some b E B .  By 34.14, AIR is finite. 

Case 2: R2 # (0). If R2 = R, then, with the notation of the paragraph 
preceding 33.21, R2 = R1, and by transfinite induction, R, = R1 where 
y is the transfinite index of R. But R is a strictly linearly compact ring 
by 30.11, so R, = (0) by 33.21. Therefore 5 is properly contained in R, 
so A/% has the nonzero radical R/% by 26.16. Clearly (R/%)2 = {0}, 
and ( A / p ) / ( R / % )  is topologically isomorphic to AIR by 5.13. By 28.16, 
R/$ is a strongly linearly compact R-module and hence a strongly linearly 
compact ring. Therefore the conclusion follows by Case 1. 0 

34.17 Theorem. If A is a linearly compact ring whose radical R is a 
strongly linearly compact ring, and if the ideals of A contained in R and 
open for its induced topology form a fundamental system of neighborhoods 
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of zero for the topology of R, then A is strictly linearly compact and is 
the topological direct sum of subrings B and C, described as follows: B 
is topologically isomorphic to the Cartesian product of a family (B,),€M 
of topological rings where each B, is the ring of ad linear operators on a 
discrete vector space over an infinite division ring K,, furnished with the 
topology of pointwise convergence; C is a strictly linearly compact ring 
containing R such that C/R is topologically isomorphic to the Cartesian 
product of a family ( C v ) v E ~  of topological rings where each C, is the ring of 
all linear operators on a discrete vector space over a finite field K,, furnished 
with the topology of pointwise convergence; and AIR is the topological 
direct sum of a ring topologically isomorphic to B and C/R.  

Proof. By 30.11, R is a strictly linearly compact ring and a fortiori a 
strictly linearly compact A-module. Moreover, AIR is a strictly linearly 
compact ring by 29.13 and hence is a strictly Linearly compact A-module. 
Thus by (2) of 28.6, the A-module A, i.e., the ring A, is strictly linearly 
compact. We may assume that A # R, since otherwise the subrings (0) 
and R satisfy the conclusions of the theorem. 

By the discussion following 34.10, AIR has a summable orthogonal family 
( E X ) X € L  of idempotents in its center such that CxEL.~x is the identity 1 of 
AIR and for each X E L,  E ~ ( A / R ) E ~  is topologically isomorphic to the ring 
of all linear operators on a discrete vector space over a division ring Kx 
(unique to within isomorphism by 25.7), furnished with the topology of 
pointwise convergence. Let M = (A E L : Kx is infinite}, N = L \ M. 
By 34.7, ( E X ) X € M  has a sum E. By 34.1 there is an idempotent e E A such 
that E = E. By 29.15, eAe is a strictly linearly compact ring. By 34.4 there 
is a summable orthogonal family (ex)xEM of idempotents in eAe such that 
i5;x = E X  for all X E M and CXEMex = e. 

As x --$ e,xe,  is a continuous, Z-linear function from 
R to e,Re,, e,Re, is a linearly compact Z-module by 28.3 and hence a 
strongly linearly compact ring by 29.15. By 34.1, e,Ae,/e,Re, is topologi- 
cally isomorphic to E,(A/R)E,, and e,Re, is the radical of e,Ae, by 26.17. 
Therefore by 34.16, e,Re, = (0). Thus e,Ae, is topologically isomorphic 
to E,(d/R)e, and hence to the ring of all linear operators on a discrete 
K,-vector space, furnished with the topology of pointwise convergence. 

Since e = CXELex, to show that eR = {0}, it suffices to show that for 
each p E M ,  e,R = (0). By the discussion following 34.10, e,Ae, contains 
a summable orthogonal family ( e b ) b € B  of idempotents whose sum is e ,  such 
that (e,Ae,)eb is a minimal left ideal of e,Ae, for all b E B. As R is 
Z-linearly compact and A-linearly topologized, R is a fortiori a strongly 
linearly compact e,Ae,-module. By 34.14, ebR = (0) for all b E B. Hence 
e,R = (0). 

Let p E M. 
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Similarly, to show that Re = (01, it suffices to show that for each p E M ,  
Re, = (0). Assume that Re, # {0}, let a E R be such that uep # 0 .  Then 
there exists c E B such that ue, # 0; let K, = ecAec, a division ring 
anti-isomorphic to K, by 25.7 and 25.18. Our hypothesis concerning the 
topology of R insures that the right A-module R is linearly topologized, and 
a fortiori the right K,-module R is linearly topologized. Furnished with the 
discrete topology, K, is clearly a strictly linearly compact right K,-module. 
Let f be the function from K, to R defined by f(z) = az for all z E K,. 
As f ( e , )  # 0 ,  clearly f is a continuous momomorphism from the right K,- 
module K, to the right K,-module R. As K, is strictly linearly compact, 
f is a topological isomorphism from K, to aK,. Therefore by 28.3 and 
28.6, aK, is a discrete, closed additive subgroup of R,  and consequently is 
a discrete Z-linearly compact module. By 30.10, aK, is finite since it is 
isomorphic to the additive group of a division ring, in contradiction to the 
fact that K, is infinite. Thus Re, = (0). 

= 0. 
Thus 

- 
If X and p are distinct members of M ,  then exe, E R since 

exe, = eexe, = 0.  

For any z E eAe and any p E M ,  e,z - z e ,  E R since E, is a central 
idempotent of AIR, and therefore 

epz - zep = e(e,z - z e p )  = 0 .  

Thus (e,),,=M is an orthogonal family of idempotents in the center of eAe 
whose sum is e .  By 29.15, eAe is a strictly linearly ring. Consequently, 
4 : z --t ( z e , ) , E M ,  which is a homomorphism from the ring eAe to the 
Cartesian product of the rings (e,Ae,) ,EM, is a topological isomorphism by 
34.3. Moreover, eAe is aa ideal of A ,  since if a, b E A ,  aeb - abe E R as E 

is in the center of AIR, so eaeb - eabe = e(aeb - abe) = 0 ,  and similarly 
beae = ebae. Thus by 32.12, if B = eAe, B,  = e,Ae, for each p E M ,  
and C = {y - y e  : y E A } ,  then B has the desired description and A is 
the topological direct sum of B and C. Clearly $(C) ( A / R ) ( l  - E ) ,  so 
as AIR is the direct sum of ( A / R ) E  and ( A / R ) ( l  - E )  and as A = B + C ,  
4(C) = ( A / R ) ( l  - E ) .  Moreover, 1 - E is the sum of ( E , ) , ~ N .  Thus if C, = 
(A/R)e, ,  C, is topologically isomorphic to the ring of all linear operators 
on a discrete vector space over a finite field, furnished with the topology of 
pointwise convergence. As Re = { 0 } ,  R C C, and hence R is the radical 
of C by 26.18. Consequently, the restriction q5c of $ to C is a continuous 
epimorphism from C to C/R; moreover, as C is topologically isomorphic 
to  the A/eAe,  C is strictly linearly compact by 29.4, and hence q5c is a 
topological epimorphism. Thus C has the desired description. 0 
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34.18 Theorem. Let A be a bounded, linearly compact ring with rad- 
ical R. The following statements are equivalent: 

1" R is strictly linearly compact ring. 
2" A is the topological direct sum of a semisimple linearly compact ring 

B that has no nonzero compact ideals and a strongly linearly compact ring 
C. 

3' Every closed ideal of A is a strictly linearly compact ring. 

Proof. By 12.11 and 12.15, every subring of A or AIR is bounded, and 
by 12.16, the open ideals of A form a fundamental system of neighborhoods 
of zero. Consequently, by 29.9, AIR is topologically isomorphic to the 
Cartesian product of discrete rings, each the ring of all linear operators on 
a finite-dimensiond vector space over a division ring. 

Assume 1". By 34.13, R is a strongly linearly compact ring. Thus by 
34.17 and 29.9, A is the topological direct sum of subrings B and C, de- 
scribed as follows: B is topologically isomorphic to the Cartesian product of 
a family (B,),€M of topological rings, where each B, is the discrete ring 
of all linear operators on a finite-dimensional vector space over an infinite 
division ring K,; and C is a strictly linearly compact ring containing R such 
that C/R is topologically isomorphic to the Cartesian product of a family of 
rings, each the discrete ring of all linear operators on a finite-dimensional 
vector space over a finite field. Thus C/R is is compact and a fortiori a 
strongly linearly compact C-module. As R is a strongly linearly compact 
ring, it is a fortiori a strongly linearly compact C-module. Thus C is a 
strongly linearly compact ring by 28.16. 

Let J be a nonzero, closed ideal of n P E M B , ,  and let MJ = {A  E M : 

prx(J) # (0)}, where prx is the canonical projection from n P E M B ,  to 
Bx. For each A E M J ,  prx(J) = Bx since Bx has no proper, nonzero 
ideals. By 28.6, J is a linearly compact B-module, so its projection J' on 
nPEMJ B, is linearly compact and hence closed; by 24.12, B, E 
J', so J' = nPEMJ B, and hence is a strictly linearly compact ring by 
29.5. Consequently, J is not compact, for otherwise, for each p E M J ,  B, 
would be compact and discrete, hence finite, and thus K p  would be finite, 
a contradiction. Thus 2' holds. 

Assume 2') and let J be a closed ideal of A.  To show that J is a strictly 
linearly compact ring, it suffices to show that each of its intersections with 
B and C is a strictly linearly compact ring by 28.17. We have just seen that 
J fl B is a strictly compact ring. Moreover, J fl C is a closed Z-submodule 
of C, hence is a linearly compact Z-module, thus a strictly linearly compact 
Z-module by 30.11, and a fortiori a strictly linearly compact ring. Thus 3" 
holds, and clearly 3" implies lo. 0 
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Actually, if the conditions of the theorem hold, then every closed left 
or right ideal of A is a strictly linearly compact ring (Exercises 34.15 and 
34.18). 

34.19 Corollary. If A is an artinian ring whose radical R is an artinian 
ring, then A is the direct sum of finitely many infinite simple artinian rings 
and a ring containing R whose additive subgroups satisfy the descending 
chain condition, and every ideal of A is an artinian ring. 

Proof. Furnished with the discrete topology, a ring is a bounded, strictly 
linearly compact ring if and only if it is axtinian by (2) of 28.14. Thus the 
assertion follows from 34.18. 0 

To apply these results to compact rings, we need a preliminary theorem: 

34.20 Theorem. The radical R of a compact ring A is closed, and either 
A = R or AIR is a compact, t o t d y  disconnected, semisimple ring. 

Proof. By 32.2 and 26.14, R contains the connected component C of 
zero. Consequently by 26.16, the radical of A / C  is R / C .  By 5.16, 32.5, 
and 29.12, R/C is closed in A / C .  If q5 is the canonical epimorphism from 
A to  A / C ,  R = q5-'(R/C) and hence is closed. Thus A / R  is Hausdorff and 
hence is compact. By (3) of 5.17, AIR is totally disconnected. By 26.16, 
AIR is semisimple. 0 

34.21 Theorem. If R is the radical of a compact, totally disconnected 
ring A, then the filter base (F),>l - converges to zero, and in particular, 

n=l  

Proof. The assertion follows from 32.5 and 33.22. 0 

34.22 Theorem. Let R be the radical of a t o t d y  disconnected compact 
ring A [with identity]. (1) If E is a nonzero idempotent of AIR and if L is 
a closed left ideal of A containing R whose image in AIR contains E )  there 
is an idempotent e in L such that i? = e .  (2) Every orthogonal family of 
idempotents in A or AIR is summable. (3) If ( e x ) x E ~  is an orthogonal 
family of idempotents of AIR [whose sum is TI, there is in A an orthogonal 
family of idempotents (ex)xEL [whose sum is 11 such that EA = E X  for all 
X E L,  (4) If A # R,  A has a summable, orthogonal family ( e A ) x E L  of 
idempotents such that if e = C X E L e ~ ,  then E is the identity of A / R ,  and 
for each p E L, the radical e,Re, of e,Aep is open in e,Ae,. 

Proof. The assertions follow from 32.5, 34.1, 34.8, 34.4, 34.5, and 32.6. 0 
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34.23 Theorem. Let A be a compact, totally disconnected, commuta- 
tive ring. (1) Either A is a radical ring, or there is a nonzero idempotent e 
such that A is the topological direct sum of  the compact ring with identity 
Ae and the compact radical ring J ,  where J = {y - ye : y E A } .  (2) I f  A 
has an identity, A is topologically isomorphic to  the Cartesian product of a 
family o f  compact local rings. 

Proof. The assertions follow readily from 32.5 and 34.6. 0 

34.24 Theorem. H A  is a compact ring with identity whose radical is 
a primitive ideal, then A is topologicdy isomorphic to the ring of  all linear 
operators, furnished with the topology of  pointwise convergence, on a finite- 
dimensional compact module E over a compact ring L with identity whose 
radical is a regular maximal left ideal, where both E and L are subrings of  
A .  

The assertion follows from 32.5 and 34.10. 

Exercises 

34.1 If A is a linearly compact ring with identity 1 and radical R,  then 
AIR is a division ring if and only if 1 is the only nonzero idempotent in A. 

34.2 If A is a linearly compact ring with radical R and without proper 
zero-divisors, either A has an identity element and AIR is a division ring, 
or A is a radical ring. 

34.3 (a) If a ring A has no nonzero nilpotents, then every idempotent of 
A belongs to its center. [Show that ez = e z e  = ze.] (b) A locally compact 
ring that has no nonzero topological nilpotents is totally disconnected. 

34.4 A metacornpact ring is a bounded, strictly linearly compact ring, and 
a locally metacornpact ring is a topological ring that has an open metacom- 
pact subring. For example, a commutative topological ring is metacompact 
if and only if it is strictly linearly compact, and a compact ring is meta- 
compact if and only if it is totally disconnected. Let R be the radical of 
a metacompact ring A.  Either R is open, or zero is a cluster point of an 
orthogonal family of idempotents. [Use 34.5.1 

34.5 (Lucke [1968]) (a) A topological ring is a metacompact ring that has 
no nonzero topological nilpotents if and only if it is topologically isomorphic 
to the Cartesian product of discrete division rings. [Use 33.22.1 (b) A nondis- 
Crete topological ring A is a locdy  metacompact ring that has no nonzero 
topological nilpotents if and only if A is the topological direct sum of a 
discrete ring that has no nonzero nilpotents and a ring that is topologically 
isomorphic to the local direct sum of discrete rings that have no nonzero 
nilpotents with respect to  division subrings. [If B is a metacornpact open 
subring of A ,  use Exercise 34.4 to show that there is a summable orthogonal 
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family ( e A ) x E L  of idempotents whose sum is the identity element e of B, 
and use Exercise 34.3 in considering the function z ---t ( z e x ) A E L  from Ae to 
n x E L A e x .  (c) A nondiscrete topological ring A is a locally compact ring 
having no nonzero topological nilpotents if and only if A is the topological 
direct sum of a discrete ring that has no nonzero nilpotents and a ring that 
is topologically isomorphic to the local direct sum of discrete rings that have 
no nonzero nilpotents with respect to finite fields. 

34.6 (Lucke [1968], Blair [1976]) A topological ring A is a Jacobson ring 
if for each 2 E A, z is a cluster point of {zn : n 2 2). (a) A discrete ring is 
a Jacobson ring if and only if for each z E A there exists n ( z )  2 2 such that 
z:n(r) = z. (For example, a field is a (discrete) Jacobson ring if and only if 
each of its nonzero elements is a root of unity. A theorem of Jacobson asserts 
that a discrete Jacobson ring is commutative.) (b) A Hausdorff Jacobson 
ring has no nonzero topological nilpotents. (c) A nondiscrete topological 
ring A is a locally metacompact Jacobson ring if and only if A is the topo- 
logical direct sum of a discrete Jacobson ring and a ring that is topologically 
isomorphic to the local direct sum of a family of discrete Jacobson rings rel- 
ative to Jacobson fields. [Use Jacobson's theorem and Exercise 34.5.1 (c) 
In particular, infer from Jacobson's theorem that a locally metacompact 
Jacobson ring is commutative. (d) A nondiscrete topological ring A is a 
locally compact Jacobson ring if and only A is the topological direct sum 
of a discrete Jacobson ring and a ring that is topologically isomorphic to 
the local direct sum of a family of discrete Jacobson rings relative to finite 
subfields. 

34.7 A topological ring A is locally metacompact if and only if A is the 
topological direct sum of subrings A1 and A2, where A1 is the topologically 
isomorphic to the local direct sum of locally metacompact rings ( A x ) x E ~  
with centers (Cx)xE~ relative to metacompact open subrings ( B x ) x ~ L  such 
that for each X E L,  Bx n Cx is a local ring whose identity element is that 
of Ax, and where A2 is a locally metacompact ring that has a metacompact 
open subring B2 such that B2 nC2 is a metacompact radical ring, where C2 
is the center of B2. [Use 34.6.1 

34.8 A ring is a boolean ring if each of its elements is an idempotent. (a) 
The following statements about a topological ring A are equivalent: 

1" A is a linearly compact boolean ring. 
2" A is topologically isomorphic to the Cartesian product of fields, each 

3" A is a compact boolean ring. 
having two elements. 

(b) A nondiscrete topological ring A is a locally compact boolean ring if and 
only if A is the topological direct sum of a discrete boolean ring and a ring 
that is topologically isomorphic to the local direct sum of a family (AX)XEL 
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of discrete boolean rings with identity relative to subfields ( B x ) x ~ L ,  where 
each Bx is field of two elements that contains the identity element of Ax. 

34.9 Let A be a metacompact ring, and let R be the radical of A. The 
following statements are equivalent: 

1" A is metrizable and R is open. 
2" A is ultranormable. 
3" A is normable. 
In particular, if A is a totally disconnected, compact ring, 1" - 3" are 

equivalent. [Use 33.22 and Exercise 14.5.1 
34.10 (Lipkina [1964b], [1966]) If A is a metacompact ring without proper 

zero-divisors, then 1" - 3" of Exercise 34.9 are equivalent. In particular, if 
A is a compact ring with identity, 1" - 3" of Exercise 34.9 are equivalent. 
[Use Exercises 34.2 and 34.9.1 

34.11 (0fsti [1965]) Let A be a commutative, locally compact, metacom- 
pact ring with identity. (a) If A is a local ring, then A is either compact 
or discrete. [Let M be the maximal ideal of A. Show that if I and J are 
compact open ideals such that J C I ,  then card(A/M) 5 card(J/I). Show 
that for any open ideal J, A / J  is finite by considering, for each n 2 1, 
(M" + J) / (M"+'  + J )  as an AIM-vector space and using 28.15.1 (b) A is 
the topological direct sum of a compact ring and a discrete artinian ring. 
[Use 34.6.1 

34.12 (Cude [1970]) Let A be a metacompact ring with identity. If A 
has prime characteristic p and if AIR is a finite field, where R is the rad- 
ical of A, then A contains a unique subfield K mapped onto AIR by the 
canonical epimorphism from A to AIR. [If E generates the multiplicative 
group (A/R)* of order p m  - 1, observe that upm' - a E R for all T 2 1, and 
conclude that ( a P m k ) k 2 1  is a Cauchy sequence.] 

34.13 (Widiger [1979]) Let A be a strictly linearly compact ring with 
radical R. (a) The following conditions are equivalent: 

1" A has a left identity. 
2" For all a E A, a E Aa. 
3" R = AR. 
[To establish that 3" implies lo, show that there is an idempotent e 

such that the additive group A is the direct sum of eA and a right ideal 
J contained in R. Observe that the additive group R is the direct sum of 
eR and J, and use 3" to show that R is also the direct sum of eR and JR. 
Apply 33.21.1 (b) If OF==, R" = (0}, the following conditions are equivalent: 

- 

1" A has a right identity. 
2" For all a E A, a E aA. 
3" R = RA. 
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(c) (Kaplansky (1947bl) A metacornpact ring A has an identity if and only 
if a E A a n a A  f o r d  a E A. 

34.14 Let A be the ring of all  linear operators on a discrete vector space E 
over a division ring K ,  furnished with the topology of pointwise convergence. 
If A has a minimal left ideal Ae that is a linearly compact ring, then E is one- 
dimensional if K is infinite, and E is finite otherwise. [Construct a closed 
additive subgroup H such that H e  = H and eH = (0) whose additive 
subgroup is isomorphic to that of K if K is infinite, and to  the additive 
subgroup e-' (0) otherwise.] 

34.15 (Widiger [1972]) Let A be a linearly compact ring with radical R. 
(a) If R is metacompact, the following statements are equivalent: 

1' Every closed left ideal of A is a linearly compact ring. 
2' A is the topological direct sum of a subring B,  topologically isomorphic 

to the Cartesian product of a family of discrete, infinite division rings, and 
a strongly linearly compact subring C .  

If these conditions hold, each closed left ideal of A is a strictly linearly 
compact ring. [Use 34.18 and Exercise 34.14.1 (b) If A is bounded, the 
following statement is equivalent to 1' and 2' of (a): Every closed left ideal 
of A is a strictly linearly compact ring. 

34.16 (KertCsz and Widiger [1969]) Let A be an artinian ring, R its 
radical. Every left ideal of A is an artinian ring if and only if A is the direct 
sum of an ideal isomorphic to the Cartesian product of finitely many infinite 
division rings and an ideal whose additive groups satisfy the descending 
chain condition. [Apply Exercise 34.15.1 

34.17 (Kertdsz and Widiger [1969]) Let A be an artinian ring with radical 
R. The following statements are equivalent: 

1' R is an artinian ring. 
2' A is the direct sum of finitely many rings, each isomorphic to the ring 

of all linear operators on a finite-dimensional vector space over an infinite 
division ring, and an ideal that is a Z-artinian module. 

3' Every ideal of A is an artinian ring. 

[Apply 34.18.1 
34.18 If A is a bounded, linearly compact ring satisfying the equivalent 

conditions of 34.18, then every closed right ideal of A is a strictly linearly 
compact ring. [Use 34.11 and Exercise 29.10.1 In particular, if A is an 
artinian ring satisfying the equivalent conditions of Exercise 34.17, then 
every right ideal of A is an artinian ring. 

34.19 (Dinh Van Huynh [1973]) If A is a strictly linearly compact ring, 
then every idempotent of A is in its center if and only if A is the topological 
direct sum of rings B and C ,  where B is topologically isomorphic to the 
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Cartesian product of of a family ( A x ) x ~ L  of strictly linearly compact rings 
such that for each X E L, Ax/Rx is a division ring, where Rx is the radical 
of Ax, and B is a strictly linearly compact radical ring. 

35 Locally Compact Rings 

We present here some theorems concerning locally compact rings whose 
proofs depend either on the Pontrsgin-van Kampen theory of locally com- 
pact commutative groups or on theorems of 534 concerning the lifting of 
idemp o tents. 

35.1 Theorem. (Pontrsgin-van Kampen) Let G be a locally compact 
abelian group. There is a unique natural number n such that G is the 
topological direct sum of a subgroup topologically isomorphic to W" and a 
subgroup that, for its induced topology, contains a compact open subgroup. 

35.2 Theorem. Let A be a locally compact ring, let C be the connected 
component of zero, and let T be the union of all the compact additive 
subgroups of A. Then C and T are closed ideals of A, CT = TC = (0), 
C+T is an open ideal, C/(TnC)  is a finite-dimensional topological algebra 
over R, and T/(T n C) is totally disconnected. If, moreover, C/(T n C) 
has an identity element, then A is the topological direct sum of a finite- 
dimensional topological W-algebra B with identity and a locally compact 
subring D such that D n C = T f l  C and the connected component of zero 
in D is compact. 

Proof. By 35.1, the topological additive group A is the topological direct 
sum of a subgroup N topologically isomorphic to W" for some n E N and 
a subgroup K that contains a compact open subgroup L. Clearly T is an 
additive subgroup, since the sum of two compact subgroups of A is again 
a compact subgroup. Since A / K  is topologically isomorphic to R" by 15.4, 
and thus contains no nonzero compact subgroups, the image of T under the 
canonical epimorphism from A to A / K  is the zero subgroup, so T C K. 
Since L 2 T, T is an open and hence closed subgroup of K, so as A is the 
topological direct sum cf N and K ,  T is closed in A by 15.4. Also, T is an 
ideal, for if S is a compact additive subgroup containing t ,  then Sa and US 
are compact additive subgroups containing ta and at respectively. By 32.2, 
Ca = (0) = aC for all a E T ,  so CT = TC = (0). Since T is open in K 
and since A is the topological direct sum of N and K ,  N + T is open in A, 
whence as C + T 2 N + T ,  C + T is also open in A. 

The connected component Co of zero in K is clearly contained in L n C 
and hence in T n C, so T / ( T  n C) is totally disconnected by (3) of 5.17. 
Moreover, as A is the topological direct sum of N and K ,  

C = N + Co C N + (T n C) C C, 
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so the additive topological group C is the topological direct sum of sub- 
groups N and T n C. In particular, by 15.4 the additive group C/(T  n C) 
is topologically isomorphic to N. Thus there is a topological isomorphism 
4 from R” to C/(T  n C), so C/(T n C) becomes a topological vector space 
over R under the scalar multiplication defined by T.Z = T . ~ - ’ ( Z )  for all 
T E R and all z E C/(T  n C). As C/(T  n C) is a topological ring, for any 
a, b E C/(T n C) the functions T --+ r.(ab), T + ( ~ . a ) b ,  and T + a(r.b) are 
all continuous from R to C/(T  n C); since they agree on Z and hence on 
Q, they therefore coincide, so ~ . ( a b )  = (r.a)b = a(r.6) for all T E R, and all 
a, b E C/(T  n C). Consequently, C/(T  n C) is a topological R-algebra. 

Suppose, finally, that C/(T  n C) has an identity element f + (T n C). In 
particular, f 2  - f E T n C, so as f E C and f 2  - f E T, f ( f 2  - f )  = 0, 
whence f 3  = f 2 ,  and consequently f 4  = f3 = f 2 .  Let e = f 2 .  Then e 
is an idempotent and e + (T n C) is the identity element of C/(T  n C). 
Consequently, e belongs to the center of C, since for any z E C, ex - ze E 
T n C, so eze - ze = (ez - ze)e E TC = (0) and hence e(ze) = ze, and 
similarly (ez)e = ex. Therefore, as C is an ideal, so is Ce, and consequently 
Ae = Ce. Let B = Ae, and let D = {z E A : z e  = 0). By 32.12, A is the 
topological direct sum of ideals B and D .  Ifz E TnC,  then ze  E TC = (0), 
so z E D n C. Conversely, if z E D n C, then xe = 0, so z E T n C as 
e + (T n C) is the identity of C/(T  n C). 

Since B = Ae = Ce, by 32.12 C is the topological direct sum of B 
and {z E C : ze = 0)) and the latter is D n C and therefore T n C by 
the preceding paragraph. Thus by 15.4, B is topologically isomorphic to 
C/(T  n C) and hence t o  N ;  therefore B is an n-dimensional R-algebra. By 
15.4, D is closed and hence locally compact, so by 35.1 there is a unique 
m E N such that the additive group D is the topological direct sum of a 
subgroup topologically isomorphic to R” and a subgroup M that, for its 
induced topology, contains a compact open subgroup. Then the additive 
group A would be the topological direct sum of a subgroup topologically 
isomorphic to Rnfm and M, so m = 0 by 35.1, whence D = M. Thus D 
contains a compact open subgroup, and hence its connected component of 
zero is compact. 

35.3 Theorem. If A is a locally compact ring that has no nonzero 
nilpotent ideals [that is semisimple], then A is the topological direct sum 
of its connected component C and a locally compact, totally disconnected 
ring D that has no nonzero nilpotent ideals [that is semisimple], and if 
C # (0), C is the topological direct sum of finitely many ideals, each the 
ring of all linear operators on a finite-dimensional topological vector space 
over either R, C, or W, furnished with its unique topology as a Hausdorff 
finite-dimensional algebra over R. 
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Proof. Assume that C # (0), and let T be the union of all the compact 
additived subgroups of A.  By 35.2, T is a closed ideal, and (C n T ) 2  C 
CT = (0), so C n T  = (0) by hypothesis [by 26.141. Thus by 35.2, C is a 
finite-dimensional topological algebra over R. In particular, C is an artinian 
R-algebra. Let R be the radical of A.  Then R n C is the radical of C by 
26.18. Consequently, R f l  C is nilpotent by 27.15 and hence is the zero 
ideal by hypothesis [by 26.141. Thus C is a semisimple, finite-dimensional 
algebra over R and hence has an identity element by 27.14. By 32.12, A is 
the topological direct sum of C and an ideal B ,  and B is necessarily totally 
disconnected as B nC = (0). As every ideal of B is an ideal of A [By 26.181, 
B has no nonzero nilpotent ideals [B is semisimple]. 

By 27.14 and 27.12, C is the direct sum of (Ci)lsiln where each Ci is a 
primitive ring that is an artinian R-algebra and has an identity element e i .  

Each member of the associated family ( p ; ) l s i l n  of projections is continu- 
ous, since pi(x) = xe; for all z e C .  Thus C is the topological direct sum of 
(Cj)lsisn by 15.2. By 26.25 we may regard each Ci as a dense R-algebra of 
linear operators on a vector space Ei over a division ring Ki containing R in 
its center. Therefore, as C finite-dimensional over R, so is Ci; consequently, 
Ej is finite-dimensional over Kj and Ki is finite-dimensional over W. There- 
fore Ki is either W, @, or W, and as Ei is finite-dimensional, Ci is the ring of 
all linear operators on E;, and its topology is the unique topology making 
it a Hausdorff finite-dimensional algebra over R. 0 

35.4 Theorem. If A is a connected, locaUy compact ring, then A con- 
tains a connected, compact ideal K such that AK = K A  = (0) and A / K  is 
a finite-dimensional topological R-algebra. 

Proof. By 35.1, the topological additive group A is the topological di- 
rect sum of a subgroup N topologically isomorphic to R" for some n 2 0 
and a subgroup K that ,  for its induced topology, contains a compact open 
subgroup L. By 15.4, K is topologically isomorphic to A / N  and hence is 
connected. Therefore L = K.  As in the proof of 35.2, the union T of all 
compact additive subgroups is an ideal contained in K and hence is K as 
K is compact. The conclusion follows from 35.2. 0 

35.5 Corollary. If A is a connected, locally compact ring such that 
zero is the only element c satisfying cA = Ac = {0}, then A is a finite- 
dimensional topological R-algebra. 

35.6 Corollary. A connected, locally compact ring A is advertibly open. 

Proof. As K 2  = {0}, K is an advertible ideal since for each x E K ,  -x is 
the adverse of x. By 35.4, A / K  is a finite-dimensional topological R-algebra 
and hence is a complete normed algebra by 15.11 and 16.7. Therefore A / K  
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is advertibly open by 11.12. Consequently, A is advertibly open by (2) of 
26.26. 0 

35.7 Theorem. Let A be a totally disconnected, locally compact ring. 
(1) Either A is advertibly open, or there is a nonzero idempotent e E A 
such that eAe is advertibly open. (2) If e is a nonzero idempotent in A such 
that eAe is advertibly open, then any proper left ideal I of A containing 
{z - z e  : z E A} is contained in a closed regular maximal ideal of A. 

Proof. (1) By 4.21, A contains an open, compact subring B. If B is a 
radical ring, then A is advertibly open by 26.9. Otherwise, let R be the 
radical of B .  By (4) of 34.22, there is an idempotent e of B such that eRe 
is open in eBe and hence in eAe, so eAe is advertibly open by 26.17 and 
26.9. 

(2) I is contained in a left regular maximal ideal M by 26.3. Thus M 
is either closed or dense in A. If M were dense, then as q5 : z -+ eze 
is continuous from A to eAe, there would exist z E M such that e - z E 
q5-'(U>, where U is the set of advertible elements of eAe. Then as e(e-z)e = 
e - eze, e - eze has an adverse y. Thus 

0 = y o (e - eze) = y + e - eze - ye + yeze 

= e + (y - ye) - e z  + (ez  - eze) + yez - (yez - yeze) E e + M ,  

so e E M and hence M = A, a contradiction. Thus M is closed, 0 

35.8 Theorem. H A  is a locally compact ring that is not a radical ring, 
then A contains a closed, regular maximal left ideal. 

Proof. Let C be the connected component of zero. If A/C is a radical 
ring, then A/C is advertibly open by 26.9, so A is advertibly open by 35.6 
and (2) of 26.26, and hence A contains a closed regular maximal left ideal 
by 26.27. In the contrary case, as A/C is totally disconnected by 5.6, A/C 
contains a closed, regular maximal left ideal M by 35.7. Thus $ z ' ( M )  is a 
closed, regular maximal ideal of A, where #JC is the canonical epimorphism 
from A to A/C. 0 

35.9 Theorem. The radical R of a locally compact ring A is closed. 

Proof. Assume that R C x. Then ?E is a locally compact ring whose 
radical is R by 26.18. Consequently, by 35.8, contains a closed, regular 
maximal ideal M .  By 26.7, R 5 M C R, a contradiction since M is closed 
and R dense in x. 0 
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35.10 Theorem. The radical R is a locally compact ring A is either A 
or the intersection of the closed regular maximal left ideals of A.  

Proof. Assume A # R. By 35.9, AIR is Hausdorff and hence a locally 
compact ring. The assertion is therefore equivalent to the statement that 
the intersection of the closed regular maximal left ideals of AIR is (0). 
Consequently, we shall assume that A is semisimple. By 35.3, A is the 
topological direct sum of a locally compact connected ring C and a totally 
disconnected, semisimple locally compact ring. By 35.6, C is advertibly 
open. Consequently, every left regular maximal ideal of C is closed by 26.27. 
Therefore it suffices to consider the case where A is a totally disconnected, 
semisimple, locally compact ring. 

Let MO be the intersection of the closed regular maximal left ideals of A. 
By 4.21, A has a compact open subring B with radical S. If B = S, then 
A is advertibly open by 26.8, and hence every regular maximal left ideal of 
A is closed by 26.27, so Mo = (0). In the contrary case, by (4) of 34.22, B 
contains a summable orthogonal family (ex)xEL of idempotents such that 
if e = CXELex ,  E is the identity of B / S  and for each p E L ,  e,Ae, is 
advertibly open. 

We shall first show that if c E Mo and if p 6 L ,  then ce, is left advertible. 
Let 

I = {x - xe, : z E A} + A(e, - e,c). 

Clearly I is a left ideal of A.  If I were proper, then e, $ I, and 1 would be 
contained in a closed regular maximal left ideal M by 35.7; consequently, 
c E M ,  hence e,c E M ,  and therefore as e, - e,c = e,(e, - e,c) E I ,  
e, E M and so M = A, a contradiction. Thus I = A, so there exist 
x E A and b E A such that e, = z - xe, + b(e, - e,c). Let a = e, - b. 
Then e, = x - xe, + e, - ae, - e,c + ae,c. Multiplying both sides of that 
equality on the right by e,, we obtain e, = e, - ae, - e,ce, + ae,ce,, so 
ae,oe,ce, = 0. Thus e,(ce,) is left advertible, so by 11.5, as ce, = (ce,)e,, 
ce, is left advertible. Consequently, the left ideal Moe, consists of left 
advertible elements of A and hence is (0) by 26.13. 

Consequently, for any c E Mo, ce = CXELcex = 0 by 10.16 and the 
preceding, so Moe = (0). 

Next, we show that if M is a regular maximal left ideal containing Ae, 
then M is closed. Let f E A be such that x-xf E M for all x E A. Assume 
that M is not closed; then M is dense, and hence there exists x E B such 
that f - x E M .  As ii! is the identity of B / S ,  x - xe E S, so by 26.9, 
there exists s E S such that s o (z - xe) = 0. As M 2 Ae, xe E M ,  so 
f - x + xe E M ,  and hence sf - sx + sxe E M .  Also, s - sf E M ,  so 
s - sz + sze E M ;  but s - sx + sxe = s - s(z - xe) = -(x - xe). Thus as 
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xe E M ,  x E M ,  so as f -x E M ,  f E M and hence M = A,  a contradiction. 
Thus M is closed. 

If A has no identity, let A1 be the ring obtained by adjoining an identity 
to A.  Let c E M o ,  and let K = A e + A ( l  - ( c - e ) ) ,  a left regular ideal of A .  
If K were proper, K would be contained in a left regular maximal ideal M 
by 26.3, and M would be closed by the preceding and hence would contain 
c and also c -  ec and so would be A, a contradiction. Hence K = A, so there 
exist a, b E A such that ae + b(1 - c + ec) = ec - e - c.  Multiplying each 
term of that equality on the right by 1 - e and using the equality ce = 0, 
we conclude that b(1- e )  o (1 - e )c  = 0, and hence (1 - e)c  is left advertible 
in A. By 11.5, c(1 - e )  is left advertible in A l .  But as ce = 0, c ( l  - e )  = c.  
Thus each c E MO is right advertible in A1 and hence in A,  as A is an ideal 
of A1. Consequently by 26.13, MO = (0). 

35.11 Theorem. If A is a totally disconnected, bounded, locally com- 
pact commutative ring with radical R, then either R is open, or A is the 
topological direct sum of a compact ring with identity and a locally compact 
ring having an open radical. 

Proof. Assume that R is not open. By (1) of 12.16, A contains a compact 
open ideal B. Then R n B ,  the radical of B by 26.18, is a proper ideal of B .  
By 29.13, 32.7, and 34.22, there is a nonzero idempotent e E B such that if 
K = {y - ye : y E B}, K is a radical ring. By 32.12, A is the topological 
direct sum of the compact ring Ae, which is identical with B e  as B is an 
ideal of A,  and the ideal D, where D = {y - ye : y E A } .  The topological 
isomorphism 2 3 (ze, z - ze)  from A to Ae x D takes B into Ae x K ,  and 
hence induces a topological isomorphism from the discrete space A / B  to 
D / K .  If S is the radical of D, S 2 K by 26.18 as K is a radical ring. The 
canonical epimorphism x + K -+ x + S from D / K  to D / S  is a topological 
epimorphism, and therefore D / S  is also discrete. Thus S is open in D.  

Theorem 34.1 yields further information about l ocdy  compact primitive 
rings: 

35.12 Theorem. A topological ring A is a locally compact primitive 
ring whose additive group is torsionfree if and only if it is topologically iso- 
morphic to the ring of all linear operators on a finite-dimensional Hausdorff 
vector space over a nondiscrete locally compact division ring of character- 
istic zero. 

Proof. The condition is clearly sufficient. Necessity: By 35.3 and 25.15, 
A is either connected or totally disconnected, and if A is connected, the as- 
sertion holds. Consequently, we shall assume that A is totally disconnected. 

Case 1: A is advertibly open, and there is a prime p such that for each 
a E A,  limn--toopn.u = 0 .  By (2) of 26.5 there is a regular maximal left 
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ideal M of A such that P ( M )  = (0). Consequently by (1) of 26.5, A is 
isomorphic to a dense ring A of linear operators on the right vector space 
AIM over the division ring D ( M ) / M ,  where scalar multiplication is given 
by ( x+D) . (d+M)  = xd+M for all x E A ,  d E D ( M ) .  Furnished with their 
topologies induced by that of A ,  M is closed by 26.27, so AIM is locally 
compact; as D ( M )  = { d  E A : Md E M }  and as M is closed, D ( M )  is also 
closed and hence locally compact, so D ( M ) / M  is locally compact. More- 
over, the scalar multiplication of the right (D(M)/M)-vector space AIM is 
continuous since multiplication is continuous on A x A and the canonical 
epimorphisms from A and D ( M )  to  AIM and D ( M ) / M  respectively are 
topological epimorphisms. Since A is torsionfree, the scalar division ring 
D ( M ) / M  has characteristic zero. Furthermore, limn+w pn.S = 0 for every 
6 E D ( M ) / M .  Consequently, D ( M ) / M  is not discrete. Therefore AIM is 
finite-dimensional over D ( M ) / M  by 16.2, 18.17, and 13.8, so the conclusion 
holds. 

Case 2: There is a prime p such that for each a E A ,  lim,,,p .a = 0. 
By Case 1, we may assume that A is not advertibly open, so by 35.7 there 
is a nonzero idempotent e E A such that eAe is advertibly open. By 25.15, 
eAe is a primitive ring. As eAe is closed by 26.28, eAe is locally compact. 
Consequently, by Case 1, eAe is isomorphic to the ring of all linear operators 
on a finite-dimensional vector space, and hence has a minimal left ideal. As 
eAe is primitive and hence has no nonzero nilpotent ideals by 26.14, there 
is an idempotent el in eAe such that (eAe)el is a minimal left ideal by 
25.17, and hence, by (1) of 25.18, el(eAe)el is a division ring. As el  E eAe, 
ele = el = ee l ,  so elAe1 is a division ring, and hence Ael is a minimal left 
ideal of A by 26.14 and (1) of 25.18. Therefore the conclusion follows from 
32.13. 

To prove the theorem, let A be a locally compact, totally disconnected, 
primitive ring such that the additive group A is torsionfree. As in the 
final paragraph of the proof of 32.13, A contains a nonzero, closed ideal 
J such that lirnndoopn.x = 0 for all z E J. Then J is locally compact 
and a primitive ring by 25.15. By Case 2, J is isomorphic to the ring of 
all linear operators on a finite-dimensional, locally compact vector space 
over a nondiscrete, locally compact division ring, and hence has an identity 
element e. By 32.12, A is the direct sum of J and another ideal I, so by 
25.15, J = A .  

n 

35.13 Theorem. Let A be a simple, nondiscrete topological ring with 
identity. For any neighborhood U o f  zero and any a E A ,  if  aUa = {0} ,  then 
a = 0. 

Proof. Assume that aUa = (0) but that a # 0. As A is simple, there 
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exist 2 1 ,  . . . , 2, E A and 91, . . , , yn  E A such that 
n 

i = l  

There is a neighborhood V of zero such that Vzj C U for all i E [l ,n].  
Consequently, for each ZI E V ,  

n 

a v  = C(avzia)yi = 0. 
i = l  

There is a neighborhood 
Consequently, if w E W, 

w = l . w  

W of zero such that yiW C V for all i E [l,n]. 

n n 

i = l  i = l  

in contradiction to the hypothesis that A is not discrete. 0 

35.14 Theorem. I f A  is a simple, totally disconnected, l o c d y  compact 
ring with identity, there is a compact, open subring S of A such that the 
filter base ( S n ) , > 1  - converges to zero. 

Proof. We may assume that A is not discrete. By 4.21, A contains a 
compact open subring B that does not contain 1. Let R be the radical of 
B. By 34.20, R is compact; hence if R is open, R is the desired subring 
S by 34.21. Therefore we shall assume that R is not open, so B is not a 
radical ring, and consequently B / R  is a a ring with identity E by 32.7. By 
(1) of 34.22 there is an idempotent e E B such that E = e .  Thus b - be E R 
for all b E B, and 1 - e # 0. By 35.13, there exists c E B such that 
(1 - e)c(l - e) # 0, so as A is simple, there exist 21, . .. , z ,  E A and 
y1, . . . , gn E A such that 

n 

i = l  

By 4.21 there is a compact open subring S of B such that Szj U Y j S  E B 
for all i E [l,n]. To show that S2 E R,  let s, t E S, and for each i E [l,n], 
let z; = szi - szie, an element of R as szj E B. Then 

n 

i=l 
n 

= C szje(1- e )c ( l -  e)yit + zj(1- e>c( l -  e)yit E z i ~  2 R, 
i = l  

as (1-e)c(l-e) = c-ec-ce+ece E B. Consequently, as (Rn)n>l  converges 
to zero, so does ( S n ) n > l .  - 0 

- 
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35.15 Corollary. A simple, totally disconnected, locally compact ring 

Proof. Each element of S is a topological nilpotent and hence, by 11.16, 

35.16 Theorem. Let A be a simple, locally compact ring with identity. 
The following statements are equivalent: 

1" The left ideal generated by each neighborhood of zero is A.  
2" A has no proper open left ideals. 
3" A is topologically isomorphic to the ring of all linear operators on a 

finite-dimensional Hausdorff vector space over a nondiscrete locally compact 
division ring. 

with identity is advertibly open. 

is advertible. 0 

Proof. By 4.9, 1" and 2" are equivalent. Assume 3". Then A is a Haus- 
dorff, finite-dimensional algebra over the center F of the underlying scalar 
division ring, and the topology of F is given by a proper, complete absolute 
value by 18.17. If L were a proper open left ideal, AIL would be a nonzero 
discrete vector space over F ,  in contradiction to 13.8. Thus 2' holds. 

Assume 1". By 35.3, A is either connected or totally disconnected, and 
3' holds if A is connected. Therefore, we shall assume that A is totally 
disconnected. 

We shall first show that if U and V are compact open subrings of A and 
if F is a closed subset such that V F  C_ U ,  then F is compact. By lo, there 
exist a l ,  . . . , a ,  E A and v1, . . . , vn E V such that 

n 

1 = c a i v i .  
i=l 

- 
For each i E [l, n] ,  viF is a closed and hence compact subset of compact U .  
For each x E F ,  

n n 

i=l i=l 

a compact set. Hence as F is closed, F is compact. 
By 35.14, A has a compact, open subring S such that the filter base 

(Sn)n>l converges to zero. The filter base U of compact open subrings of 
A conTained in S is a fundamental system of neighborhoods of A by 4.21. 
For each U E U, let 

(U : S) = { a  E A : Sa c U } .  

Let U E U. As U is closed, clearly (U : S) is closed. As S(U : S) 5 U ,  
(U : S) is compact by the preceding paragraph. If J is a nonzero left ideal 
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of A such that J n S 5 U, then (U : S )  \ S # 8: Indeed, there exists 
y E J \ S; otherwise, J would be contained in S, therefore each element of 
J would be a topological nilpotent and hence advertible by 11.16; thus by 
26.14, J would be a subset of the radical of A, the zero ideal by hypothesis, 
a contradiction. Let So = A.  There is a largest k E N such that S k y  $ S, 
since there is a neighborhood V of zero such that Vy C S and there exists 
m 2 1 such that S" E V for all n 2 m. Let t E Sk be such that ty 4 S; as 

Sty C_ J n S"'y C_ J n S E U, 

t y  E (U : S) \ s. 
There exists W E U such that for every nonzero left ideal I of A,  I f l  S p 

W .  Indeed, suppose the contrary. Then for each U E U, there would 
exist a nonzero left ideal Iu of A such that Iu n S 2 U; by the preceding, 
therefore, (U : S) \S would be nonempty. As S is open and (U : S) compact, 
{(U : S) \ S : U E U} would be a filter base of nonempty compact subsets 
of A,  so there would exist 

Thus 

and a $! S ,  so a # 0 and aSa = {0}, in contradiction to 35.13. 
By the preceding and 4.20, there is an open ideal D of S such that for 

every nonzero left ideal I, I n  S $ D .  We shall show that every nonzero 
closed left ideal J contains a minimal closed left ideal, that is, a left ideal 
maximal in the set of ad nonzero closed left ideals, ordered by 2. Let Z be a 
totally ordered subset of the set 3 of all nonzero closed left ideals contained 
in J ,  and let 10 = n,,,I. Then {I f l  (S \ D) : I E Z} is a filter base of 
nonempty closed subsets of compact S ,  and hence there exists 

Thus c is a nonzero element of 10, so I0 is the supremum of Z for the 
ordering 2. By Zorn's Lemma, therefore, each nonzero closed left ideal J 
of A contains a closed minimal left ideal. 

Consequently, by 35.15 and 26.29, every nonzero closed left ideal of A 
contains a minimal left ideal. Therefore 3' holds by 32.16. 0 
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Exercises 

35.1 Let A be the Cartesian product of R, furnished with the discrete 
topology, and W, furnished with its usual topology, let addition be defined 
componentwise on A and multiplication by (2, y)(z, w) = (0,zz). Show that 
A is a locally compact ring such that the connected component C of zero is 
the smallest nonzero closed ideal of A.  In particular, A is not the topological 
direct sum of C and another ideal. 

35.2 (Kaplansky [1947c]) If A is a totally disconnected, locally compact 
ring, either A is advertibly open, or zero is a cluster point of an orthogonal 
family of idempotents. [Use Exercise 34.3.1 

35.3 (Kaplansky [1947c]) A locally compact ring A is advertibly open 
under any of the following conditions: (1) The set of left [right] advertible 
elements is a neighborhood of zero. (2) A has no proper zero-divisors. (3) 
A satisfies the minimum condition on closed left ideals. [In the totally 
disconnected case, use Exercise 35.2; in general, use 26.26.1 

35.4 An idempotent of a ring A is central if it belongs to  the center of 
A .  Let E be the set of central idempotents of A.  (a) If e, f E E and if 
Ae = A f ,  then e = f .  (b) The relation 5 on E satisfying e 5 f if and 
only if Ae E A f  is an ordering on E.  A minimal central idempotent is a 
minimal member of E \ (0) for the induced ordering. (c) If e ,  f E E ,  then 
e 5 f if and only if e f  = e. (d) Any set of minimal central idempotents is 
orthogonal. 

35.6 A ring A is biregular if for each x E A there is a central idempotent 
e E A such that z and e generate the same ideal. (a) If 2 E A and if e 

is a central idempotent of A,  then z and e generate the same ideal of A 
if and only if 2 = z e  and there exist a l ,  . . . , an, bl, . . . , bn E A such that 
e = xi-l - akzbs.  (b) A biregular ring is semisimple. (c) If A is the ring of 
all linear operators on a vector space E ,  then A is biregular if and only if E 
is finite-dimensional. [Use 25.21.1 (d) An epimorphic image of a biregular 
ring is biregular. (e) A simple ring is biregular if and only if it  has an 
identity element. (f) A biregular ring with identity whose center is a local 
ring is simple. (g) If J is an ideal of a biregular ring A,  then the ring J 
is biregular. (h) The Cartesian product of finitely many biregular rings is 
biregular . 

35.7 A subring B of a biregular ring A is a strictly biregular subring if for 
each z E B there is a central idempotent e of A belonging to B such that 
the ideals of B generated by 2 and e are identical (and hence the ideals of 
A generated by z and e are identical). (a) If a biregular ring A is the local 
direct sum of (Ax)x€L relative to subrings ( B x ) x € L ,  then Ax is biregular 
for a.ll A E L,  and Bx is a strictly biregular subring of Ax for all but finitely 
many A E L. [Let M = {A E L : Bx is not a strictly biregular subring 
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of Ax),  and for each X E M ,  let zx E Bx be such that there is no central 
idempotent of Ax belonging to Bx that generates the same ideal of Bx as 
xx,  and let x p  = 0 if p E L \ M.]  (b) If a ring A is the local direct sum 
of biregular rings ( A x ) x E ~  relative to strictly biregular subrings ( B X ) X E L  
and if each Bx is isomorphic to the ring of all linear operators on an nA- 
dimensional vector space, then A is biregular if and only if { n x  : X E L }  is 
bounded. [Observe that if u is a linear operator of rank 1, CEl ajubi is a 
linear operator of rank at most m.] 

35.8. A topological ring A is locally without central idempotents if there 
is a neighborhood of zero that contains no nonzero central idempotents. A 
topological ring A is a totally disconnected, locally compact, biregular ring if 
and only if A is the topological direct sum of a locally compact biregular ring 
that is locally without central idempotents and a ring that is topologically 
isomorphic to the local direct sum of a family (Ax)xEL of discrete, biregular 
rings with identity relative to subrings ( B x ) x ~ L ,  where for each X E L ,  Bx 
contains the identity of Ax and is isomorphic to the (finite) ring of all linear 
operators on an nx-dimensional vector space over a finite field, and where 
{nx : X E I;) is bounded. [Use 32.6 and Exercises 35.7, 34.7, and 35.6.1 

35.9 A topological ring A is a compact biregular ring if and only if A is 
topologically isomorphic to n x E L A x ,  where for some N > 0, each Ax is 
the discrete ring of all linear operators on a vector space of dimension not 
exceeding N over a finite field. [Use Exercises 35.6(b) and 35.7(b).] 

35.10 (SkornGkov [1962]) Let A be a locally compact, totally discon- 
nected biregular ring. (a) Let B be a compact open subring of A. If (ek)k>l 
is a sequence of orthogonal central idempotents and if X k  E Aek f l  B for 
all k 2 1, then (Xk)k>l is summable. [Recall that in a compact space, 
a sequence that has aGnique adherent point converges to that point. To 
show that zero is the only adherent point c of (Zk)k>l ,  let e be the central 
idempotent generating the same ideal as c, first show that cek = 0 for all 
k 2 1, then show that xke = 0 for all k 2 1.1 (b) A central idempotent of a 
topological ring is discrete or nondiscrete according as the ideal it generates 
is discrete or nondiscrete. If e is a central idempotent of a topological ring, 
then e is discrete if and only if there is a neighborhood U of zero such that 
eU = (0). (c) If A is locally without central idempotents, then any orthogo- 
nal family of nondiscrete central idempotents in A is finite. [In the contrary 
case, apply (a); if s = Cj"_, - xj and if e is the central idempotent generating 
the same ideal as s, first show that sek = xk for all k 2 1, then show that 
for d sufficiently large n, een E B.] (d) If all the central idempotents of A 
are discrete, then A is discrete. [In the contrary case, let B be a compact 
open subring of A,  and show that there are sequences (xk)k>l and (ek)k>l - 
of nonzero elements satisfying the hypotheses of (a); for this, if x l ,  . . . , Xn 
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and e l ,  . . . , , en  are chosen, let 
n 

zn+1 = Y - yek 
k = l  

where y E B \ A(e1 + . - + en) and is sufficiently small. Apply (a), and 
observe that if e is as in (c), then z ,e  = 0 for all but finitely many n 2 1.1 

35.11 (Skornhkov [1977]) A nondiscrete central idempotent e of a topo- 
logical ring is topologically minimal if there do not exist orthogonal, nondis- 
Crete central idempotents el and e2 such that e = el + ez. A topological 
ring A is conditionally simple if there is a discrete ideal H such that A / H  
is a simple ring. Let A be a locally compact, totally disconnected, biregular 
ring that is locally without central idempotents. (a) If e is a nondisdcrete 
central idempotent of A, there is a topologically minimal central idempotent 
el such that el 5 e. [Use Exercise 35.1O(c).] (b) A is the topological direct 
sum of a discrete biregular ring and finitely many locally compact biregu- 
lar rings, each having an identity element that is a topologically minimal 
central idempotent. [Use (a) and Exercise 35.10(c), (d).] (c) If A has an 
identity element that is a topologically minimal central idempotent, then 
A is conditionally simple. [If A has a minimal central idempotent e that 
is nondiscrete, let H = A(l  - e ) ;  in the contrary case, let H be the ideal 
generated by all the discrete central idempotents of A, use Exercises 35.5(g) 
and 35.10(b), (d) to  show that H is discrete, and show that A = Ae + H 
whenever e is a nondiscrete central idempotent.] 

35.12 (SkornGkov [1977]) A topological ring A is a locally compact bireg- 
ular ring if and only if A is the topological direct sum of subrings Ao, A1 , 
A2, and A3, described as follows: (a) A0 is a finite-dimensional semisimple 
algebra over IR; (b) there is an integer N > 0 such that A1 is topologically 
isomorphic to the local direct sum of a family (Ax)x€L of discrete biregular 
rings with identity relative to  subrings ( B x ) x € L ,  where for each X E L ,  the 
identity element of Ax is the only nonzero central idempotent of Ax be- 
longing to Bx, and Bx is isomorphic to  the ring of all linear operators on a 
vector space of dimension not exceeding N over a finite field; (c) A2 is the 
topological direct sum of finitely many locally compact, totally disconected, 
nondiscrete, biregular, conditionally simple rings with identity; (d) A3 is a 
discrete biregular ring. [Use 35.5 and Exercises 35.7-8, 10-11.1 

35.13 A ring is strongly regular if for each a E A there exists z E A such 
that u2z = a. (a) A strongly regular ring has no nonzero nilpotents. (b) A 
strongly regular ring is semisimple. [Use 26.11.1 (c) An epimorphic image 
of a strongly regular ring is strongly regular. (d) The Cartesian product of 
strongly regular rings is strongly regular. (e) A primitive strongly regular 
ring is a division ring. 
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35.14 A topological ring A is a compact, strongly regular ring if and only 
if A is topologically isomorphic to the Cartesian product of finite fields. 

35.15 Let A be a strongly regular ring. (a) If a,  z E A satisfy a2z  = a ,  
then ax is a central idempotent. [Use Exercises 35.13(b), (e) to show that a2 
is an idempotent; then use Exercises 35.13(a) and 34.3.1 (b) In particular, 
A is biregular. (c) If a 2 z  = a and e = a z ,  then e = anzn for all n 2 1. 

35.16 (a) If a ring A is the local direct sum of rings ( A x ) x € L  relative to 
subrings ( B x ) x ~ L ,  then A is strongly regular if and only if Ax is strongly 
regular for all X E L and Bx is strongly regular for all but finitely many 
X E L. [Argue as in Exercise 35,7(a).] (b) A topological ring A is totally 
disconnected, locally compact, and strongly regular if and only if A is the 
topological direct sum of a locally compact, strongly regular ring that is 
locally without central idempotents (Exercise 35.8) and a ring that is topo- 
logically isomorphic to the local direct sum of a family ( A x ) x € L  of discrete, 
strongly regular rings with identity relative to subrings ( B x ) x ~ L ,  where for 
each X E L ,  Bx contains the identity element of Ax and is a finite field. [Use 
Exercise 35.13(e) in arguing as in Exercise 35.8.1 

35.17 (Skornkkov [1977]) Let M be a discrete maximal ideal of a nondis- 
Crete, locally compact, totally disconnected, strongly regular ring A with 
identity. (a) AIM is a nondiscrete locally compact division ring. [Use Ex- 
ercise 35.13(e).] (b) There is a topological nilpotent w € A \ M .  [Show 
that there is a compact open subring V such that the restriction to V of 
the canonical epimorphism 4 from A to A / M  is injective and therefore a 
homeomorphism from V to 4(V) ,  and use 18.17.1 (c) Let e = wz,  where 
w2x = w. Then A is the topological direct sum of Ae and M .  [To show that 
Ae + M = A ,  use (a) and Exercise 35.15. If h E Ae n M ,  let d = hy where 
h2y = h,  observe that d = d e ,  and use Exercises 35.15(c) and 35.10(b) to  
show that d = 0.1 

35.18 (Kaplansky [1949b]) A topological ring A is locally compact and 
strongly regular if and only if A is the topological direct sum of A1 , A2, and 
A3, described as follows: A1 is the direct sum of finitely many nondiscrete 
locally compact division rings; A2 is topologically isomorphic to the local 
direct sum of a family ( A x ) x € L  of discrete, strongly regular rings with iden- 
tity relative to finite subfields (Bx )x€L ,  where for each X E L ,  Bx contains 
the identity of Ax; and A3 is a discrete strongly regular ring. [Use Exercises 
35.12, 35.16(b), and 35.17.1 

36 The Radical Topology 

If A is a ring with radical R, the radical topology of A is the topology for 
which the powers (R"),>l of R form a fundamental system of neighborhoods 
of zero. Thus, the r a d i d  topology is Hausdorff if and only if n,"==, R" = 
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{ O h  
Here we shall show that much of the theory of artinian rings has a natural 

extension to the theory of rings that are linearly compact for the discrete 
topology and Hausdorff for the radical topology. But first, we need more 
information about artinian rings. The artinian rings are precisely the rings 
strictly linearly compact for the discrete topology, which is a bounded topol- 
ogy, by (2) of 28.14. 

We shall call a ring or ideal a torsion [torsionfree, divisible, primary] ring 
or ideal if its underlying additive group is a torsion [torsionfree, divisible, 
primary] group. 

36.1 Theorem. If L is a left ideal of an artinian ring A,  then the additive 
group L is the direct sum of a divisible left ideal and a subgroup M satisfying 
m.M = (0) for some m 2 1. 

Proof. For each q E Z, q.L is a left ideal. Consequently, there is an 
integer m > 0 such that m.L is minimal in the set {q.L : q > 0) of left 
ideals of A,  ordered by inclusion. For any nonzero integer n, nm.L 2 m.L 
and hence n.(m.L) = nm.L = m.L. Therefore m.L is a divisible left ideal. 
By 30.2 there is an additive subgroup M of L such that the additive group 
L is the direct sum of m.L and M .  Then M is isomorphic to  the additive 
group L/m.L ,  and hence m.M = (0). 0 

36.2 Theorem. If A is a nonzero, torsionfree artinian ring, then every 
left ideal of A is a divisible left ideal, and A has a left identity. 

Proof. Every left ideal of A is a divisible left ideal by 36.1, since A con- 
tains no nonzero torsion subgroups. 

A nilpotent artinian ring is a discrete, linearly compact Z-module by 
34.12 and hence is a torsion ring by 30.10. Therefore the radical R of A is 
a proper ideal by 27.15, and hence AIR has an identity element by 26.16 
and 27.14. By 34.1 there is an idempotent e E A such that e + R is the 
identity of AIR, and hence 2 - e x  E R for each 2 E A.  To show that e is 
a left identity of A ,  let a E A,  and let b = a - ea. We have just seen that 
the left ideal J b  generated by b is then divisible, so there exists c E Jb such 
that 2.c = b. Let n E Z and d E A be such that c = n.b+ db. Then 

(2n - 1).c = -db = 4 2 . c )  = (-2.d)c. 

By the preceding, A is divisible, so there exists h E A such that (2n - 
l).h = -2.d. Thus (2n - l).c = (2n - l).hc, so as A is torsionfree, c = hc, 
and hence b = hb. Consequently, ehb = eb  = e(a  - ea) = 0. Therefore 
( h  - eh)b = hb = b, so by iteration ( h  - eh)'b = b for all k 2 1. As 
h - eh E R, a nilpotent ideal by 27.15, we conclude that b = 0 and hence 
a=ea.  
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The torsion subgroup T of the additive group of  a ring A is an ideal, 
since if a,  t E A and n.t = 0, then n.at = a(n.t) = 0 and similarly n.ta = 0. 
Moreover, A/T is a torsionfree ring, for if n.(a + T) = T where n > 0, then 
n.a E T, so mn.a = m.(n.a) = 0 for some m > 0, whence a E T .  Also 
the largest divisible subgroup D of the additive group A is an ideal, since 
if a E A, d E D and n > 0, there exists b E D such that n.b = d ,  whence 
n.ab = a(n.b) = ad and similarly n.ba = da.  We shall call D the largest 
divisible ideal of A. 

If S is a subset of a ring A, the left [right] annihilator of S is the set of 
all z E A such that ZS = (0) [Sz = ( O ) ] ,  and the annihilator of S is the set 
of all 8 E A such that zS = Sz = (0). The [left, right] annihilator of a set 
in a topological ring is clearly closed. 

36.3 Theorem. If D is the largest divisible ideal and T the torsion ideal 
of an artinian ring A,  then D is contained in the annihilator of T ,  and DnT 
is contained in the annihilator of A. 

Proof. If d E D and t E T ,  then there exists n > 0 such that n.t = 0 
and there exists h E D such that n.h = d, so d t  = (n.h)t = h(n.t) = 0 and 
similarly t d  = 0. By 36.1 applied to  A, D + T = A, so 

( D n T ) A  = ( D n T ) ( D + T )  G T D + D T =  (0) 

and similarly A(D n T) = (0) .  0 

36.4 Theorem. Let T be the torsion ideal and D the largest divisible 
There is a unique ideal S of  A such that 

D. Moreover, the ring A is the 
ideal of an artinian ring A. 
S + T = A, S has a left identity, and S 
direct sum of S and T ,  and S is a divisible ideal. 

Proof. By 36.1 applied to A, A contains a divisible subgroup Do such 
that A/Do is a torsion group. Since Do is contained in the largest divisible 
subgroup D, AID is an epimorphic image of A/& and hence is a torsion 
group. By 30.2, D has a supplement TO; as To is isomorphic to AID, To 
is a torsion subgroup. Now D n T is a divisible ideal, since if m.d = 0 
where rn > 0 and if b E D satisfies n.b = d ,  then nm.b = 0, so b E D n T .  
Consequently, by 30.2, the additive group D is the direct sum of an additive 
group B and DnT. Clearly T = (DnT)+To. Therefore the additive group 
A is the direct sum of B and T.  As B G D, BT = T B  = (0) by 36.3. As 
A/T is a torsionfree artinian ring by 27.4, it has a left identity element by 
36.2. Thus, B contains an element f such that z - f z  E T for all z E A. 

Let S = fB. As D is an ideal, S C D. To show that S is a subring, let 
b, c E  B ,  andlet  b f c = d + t  where d E B,  t E 2'. Then fbfc= f d + f t  = 
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f d E S a s B T = { O } .  T o s h o w t h a t S + T = A , l e t a E A , a n d l e t a = b + t  
where b E B and t E T. Then a - fa E T and ft = 0, so 

a = f a +  ( U - f a )  = f ( b + t ) + ( a - f a )  = f b +  (.-fa) E S + T .  

Consequently, 

S A  = S ( S  + T )  C S S  + f B T  C S,  

A S = ( S + T ) S C S S + T f B c S + T B = S  

as T is an ideal, so S is an ideal. Moreover, S n T = { 0 } ,  for if b E B 
and f b  E T, then b - f b  E T, whence b E T ,  and thus b E B n T = (0). 
Therefore the ring A is the direct sum of the ideals S and T .  Consequently, 
the ring S is isomorphic to A / T  and hence is torsionfree. Thus by 36.2, S 
has a left identity element e and is a divisible ideal. 

Let S' be an ideal such that S' + T = A,  S' has a left identity e', 
and S' C D. Let s E S, and let s = s' + t where s' E S' and t E T .  
Then t = s - s' E D, so t E D n T, whence et E DT = (0). Therefore 
s = es = es' + et = es' E S'. Thus S 

We shall call the unique ideal S of A simply the ideal supplement of T .  

S', and similarly S' C S. 0 

Thus the ideal supplement of T is a divisible, torsionfree ideal. 

36.5 Theorem. I f  g is an epimorphism from an artinian ring A to an 
artinian ring A', if T and T' are respectively the torsion ideals of A and A' 
and if S and S' are their ideal supplements, then g(S)  = S' and g(T) = TI. 

Proof. Let D and D' be respectively the largest divisible subgroups of A 
and A'. Clearly g(T) & T' and g ( D )  C D' so 

g ( S )  + T' 2 g(S)  + g(T)  = g(S  + T )  = g(A)  = A' 

and g ( S )  C D'. Also, if e is the left identity of S, g ( e )  is the left identity of 
g ( S ) .  Hence by 36.4, g(S)  = S'. As S' + g(T)  = A', g(T) C TI, and as A' 
is the direct sum of S' and T', we conclude that g(T) = T'.  0 

The subgroup [ideal] T of all elements of a Hausdorff commutative group 
[ring] A contained in some compact additive subgroup of A is closed if A is 
locally compact by 35.2, but need not be closed in general. For example, in 
the group Q( &)/Z, T is the dense subgroup Q/Z , the subgroup of al l  ele- 
ments of finite order, since a countable compact group is discrete by Baire's 
theorem and hence finite. Much can be established about T ,  however, if A 
is complete and the open additive subgroups form a fundamental system of 
neighborhoods of zero: 
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36.6 Theorem. If c is an element of a complete, Hausdorff, commuta- 
tive group A whose open subgroups form a fundamental system of neigh- 
borhoods of zero, then the closure [c] of Z.c, the cyclic group generated by 
c, is either an infinite discrete group or a compact group. The set T of all 
elements c such that [c] is compact is a closed subgroup of A. If A is the 
additive group of a topological ring, then T is an ideal. 

Proof. If Z.c is an infinite discrete group, then it is closed by 4.13 and 
hence is [c]. 

Assume that Z.c is not discrete, and let U be the filter base of all open 
subgroups. Then for each U E U, U n Z.c is a nonzero subgroup of Z.c 
and hence Z.c/(Z.cn U) is finite. By 5.2, the canonical homomorphism g 
from Z.c to hmuEu(Z.c/(Z.cn V ) )  is a topological isomorphism from Z.c to 
a dense subgroup. Consequently by 8.4, [c] is topologically isomorphic to 
@u€U(Z.c/(Z.cn U)), which is compact by 5.20 and Tikhonov’s theorem. 

As mentioned in the proof of 35.2, T is a subgroup and, if A is a ring, 
an ideal. Let b E p, and let U E 2.4. Then there exists c E T such that 
c - b E U, and there exists n > 0 such that n.c E U .  As U is a subgroup, 
n.(c - b) E U and therefore n.b = n.c - n.(c - b) E U .  Thus Z.b is not an 
infinite discrete group, and hence b E T. 0 

36.7 Definition. Let A be a complete, Hausdore abelian group [ring] 
whose open [additive] subgroups form a fundamental system of neighbor- 
hoods of zero. The topological torsion subgroup [ideal] of A is the 
group [ideal] T of all elements c E A such that [c] is compact, and A is 
a topological torsion group [ring] if A = T. For each prime p, the 
topological p-primary component of T is the set Tp of alI elements c E A 
such that 

lim pn.c = 0, 
n+oo 

and A is a topological p-primary group [ring] if A = Tp. 

Clearly Tp is indeed a subset of T and is a subgroup [an ideal] of A. To 
describe the relation between the topological torsion group [ideal] and its 
primary components, we need the following definition: 

36.8 Definition. Let (AX)AE& be a family of subgroups [subrings] of 
a Hausdorff, abelian topological group [ring] A, and let U be the filter of 
neighborhoods of zero. We define ( S x e ~ A x  to be the subgroup [subring] of nxEL Ax consisting of all (ZX)XEL such that for every U E U, xx E U for 
afl but  finitely many X E L.  The uniform topology on B x e ~ A x  is that 
for which ( 6 x E ~ A x  n n x E L ( U  n Ax) : U E U} is a fundamental system of 
neighborhoods of zero. 
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It is easy to verify that the indicated fundamental system of neighbor- 
hoods of zero satisfies the conditions (TGB l), (TBG 2) [and (TRN l), 
(TRN Z)] on pages 20-21. If A = Ax = W for all X E L,  then 6 x E ~ A x  
is simply the group [ring] of all real-valued functions on L that “vanish at 
infinity,” furnished with the uniform topology. 

For each p E L ,  the restriction Q, to  6 x E ~ A x  of the canonical pro- 
jection p r ,  from n x E L A x  to A,  is a topological epimorphism. Indeed, 
clearly in,(A,) B x E ~ A x  where in, is the canonical injection from A, 
to n x E L A x ,  so a,(BxE~Ax) = A,. The uniform topology on 6 , ~ e ~ A x  is 
stronger than that induced by the Cartesian product topology on nxEL Ax, 
so (T, is continuous. Therefore the identity 

for each U E U establishes that up is a topological epimorphism. 
It is easy to see that if, for each A E L,  Bx is a subgroup [subring] of Ax, 

then BxELBx is a topological subgroup [subring] of 6 x E ~ A x ,  that is, the 
uniform topology on 6;~&3~ is the topology induced on B ~ E L B ~  by the 
uniform topology of 6 x E ~ A x .  

If A is a complete, Hausdorff, abelian group for which the open subgroups 
form a fundamental system of neighborhoods of zero, then by 10.5, B x c ~ A x  
is the set of summable families ( z x ) x E ~  such that zx E Ax for all X E L. 

36.9 Theorem. Let A be a complete, Hausdorff, abelian group [ring] for 
which the open [additive] subgroups form a fundamental system of neigh- 
borhoods of zero. Let T be the topological torsion subgroup [ideal] of A ,  let 
P be the set o f  prime integers, and for each p E P let Tp be the topologicd 
p-primary component of T .  The function S from GPEpTp to T ,  defined by 

is a topological isomorphism. 

Proof. Let U be the filter base of open additive subgroups of the ideal 
T .  Let ( C ~ ) ~ ~ P  E BpEpTp. As UpEPTp T ,  and as T is a subgroup, xpEF cp E T for any finite subset F of P; hence as T is closed, xpEp cp E T .  
Thus the range of S is indeed contained in T .  Clearly S is an additive 
homomorphism. 

Let c E T .  As [c] is compact, for each U E U the image ([c] + U ) / U  of [c] 
under the canonical epimorphism from T to T / U  is a finite group, and hence 
for each prime p there exists cP,u E T such that cp,u + U is the p-primary 
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component of ( [c]  + U ) / U .  Then cp,u E U for all but finitely many U E U, 
and 

c + u = c cp,u + u. 
P € P  

If U, V E U are such that V 2 U ,  the restriction to ( [c]  + V ) / V  of the 
canonical epimorphism 4 V , v  from T/V to T/U is an epimorphism taking 
the pth component of c + V to the p-th component of c + U for each p E P; 
in short, cp,v  +U = cp,u + U, that is, cp,v +V U. 
Thus for each p E P, {cp,u + U : U E U} is a Cauchy filter base of closed 
sets (as cp,u + U is a U-small subset) and hence converges to an element 
cp E T .  For each U E U, cp E cp,u + U and hence cp - cp,u E U .  For each 
U E U, as cp,u + U belongs to the pth component of ( [ c ]  + U ) / U ,  there exists 
n 2 1 such that p".cp,u E U .  Consequently, 

cp,u + U whenever V 

(2) p".cp = p".(cp - cp,u) +p".c,,u E u, 
n so pm.cp E U for all m 2 n as U is a subgroup. Hence limn-roop .cp = 0, 

that is, c p  E Tp.  For each U E U, the set Pu of primes such that cp,u @ U is 
finite, and c - cpEptr cp,u E U .  Consequently, by (1) and (2))  for any finite 
subset J of P containing Pu, 

c - c cp = c - c cp,u + Z ( c p , u  - C P )  E u + u = u. 
P € 3  P€ J P€ J 

Therefore ( C ~ ) ~ E P  is summable, and its sum is c. Thus by 10.5, (cp)  E 
CjpCpTp. Consequently, S is an additive epimorphism. 

Let ( C ~ ) ~ E P  E Cjp€pTp, and let c = C p E P c p .  Then for each U E 24, 
cp + U is clearly the pth component of c + U in the torsion group T/U. 
Therefore, if c = 0, then for each U E U, cp E U for all p E P by 30.5, and 
consequently cp = 0 for all p E P. Thus S is injective and hence an additive 
isomorphism. 

E U' ,  then cp E U for 
all p E P and hence CpEP cp E U as U is a closed subgroup. Conversely, 
let c E U, and let c = CPEp cp.  As c + U is the zero element of T/U, each 
each of its components cp + U is also the zero element by 30.5, and hence 
( C ~ ) ~ € P  E U'. Thus S(U')  = U, so S is an additive topological isomorphism. 

Finally, assume that A is a topological ring. If p and q are distinct 
primes, then T,T, = (0). Indeed, if a E Tp and if b E T,, then for any 
n 2 1 there exist integers r ,  and s, such that y,pn + s,q" = 1 and hence 
ab = Tn.(pn.a)b + sn.a(qn,b). AS each U E U is an additive group, 

Let U E U, and let U' = nP,,(UnTp). If 
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Consequently, ab = 0. Therefore by 10.16, for any ( U ~ ) ~ € P ,  ( b p ) p E p  E 
%€PTP,  c aP c b P  = c UPbP.  

P E P  P € P  PEP 

Thus S is a topological isomorphism from the topological ring GpEpTp to 
T .  

The discrete case of Theorem 36.9 yields the ring extension of Theorem 
30.5: 

36.10 Corollary. A torsion ring T is the direct sum of its primary 
components ( Tp)pE p . 

Proof, Indeed, if T is given the discrete topology, for any prime p the 
topological p-primary component of T is its p-primary component, and 
6 p E p T p  is the discrete ring BPEp Tp. 0 

36.11 Theorem. Let (Ax)x€L be a family of subgroups [subrings] of a 
Hausdorff, abelian topological group [ring] A. (1) If for each p E L, A ,  is 
complete, then 6 x E ~ A x  is complete. (2) If for each p E L, A, is a [strictly] 
linearly compact module or ring, then 6 x E ~ A x  is [strictly] linearly compact 
if and only if 6 x E ~ A x  = nXEL Ax, or equivalently, for each neighborhood 
U of zero in A, Ax C U for all but finitely many A E L. 

Proof. For each p E L ,  let pr ,  be the canonical projection from 6 x E ~ A x  
to  A,, let U be a fundamental system of symmetric neighborhoods of zero, 
and for each U E U, let 6 = B x E ~ A x  n n x e L ( A x  n U ) .  A subset F of 
~ , x € . L A x  is 6-small if and only if for all p E L,  p r , ( F )  is (A ,  n U)-small. 

(1) Let 3 be a Cauchy filter base on 6 x E ~ A x .  Then for each p E L ,  
p r , ( 3 )  is a Cauchy filter base on A, and hence converges to some a, E A,. 
To show that ( U , ) ~ ~ L  E 6 x E ~ A x ,  let U E U, let V E U be such that 
V + V C U ,  and let F E 3 be v-small. For each 
p E L,  a, E pr,(F) c pr , (F)  + V ,  so there exists ( c x ) x E ~  E F such that 
up  E c, + V ,  and consequently 

Let ( b x ) x E L  E F .  

a,  - b, = (a, - c,) + (c, - b,) E V + V U. 

Therefore as b, E U for all but finitely many p E L ,  a ,  E U for all 
but finitely many p E L. Thus ( u , ) , ~ L  E 6 x E ~ A x .  Moreover, for any 
( s x ) x ~ ~  E F and any p E L,  z, - a ,  = (z,- b , )+(b , -a , )  E V + V  5 U ,  
so ( s x ) x E ~  E (ax) + 6; thus F E ( a x ) x E ~  + 6. Consequently, 3 converges 

(2) We may assume that each U E U is an additive subgroup. If U E U, 
( 6 x E ~ A ~ ) / 6  is isomorphic to the discrete module $xEL(Ax/(Ax 17 U ) ) ,  

to (Q)AEL. 



338 LINEAR COMPACTNESS IN RINGS WITH RADICAL 

and thus by 28.21 and 28.7 [27.6] is linearly compact [artinian] if and only 
if for all  but finitely many X E L, Ax/(Ax f l  U) = (0)) that is, Ax C U. 
Consequently by (1) and 28.15, the assertion holds. 0 

For each prime p ,  the additive group Q, is an example of a divisible, 
topological torsion group that is torsionfree, and its quotient group Q,/Z,, 
also denoted by Z(p"), is a basic divisible p-primary group, as noted on 
page 253. By (3) of 18.10, the closed, nonzero, proper subgroups of Q, are 
the groups pnZ, where n E Z. The topological automorphism 2 -+ pnz 
of the additive group Qp induces a topological isomorphism from Q p / Z ,  to  
QP/pnZp for each n E Z. Thus, for each n E Z, QP/pnZpis a basic p-primary 
group. Consequently, the Z-module Q, is a strictly linearly compact Z- 
module. The absence of subgroups topologically isomorphic to Q, or Q,/Z, 
in the additive group of a linearly compact ring, furnished with its radical 
topology, is both necessary and sufficient for several attractive statements. 
Consequently, we shall say that an additive subgroup of a topological ring is 
pathological if it is topologically isomorphic either to the additive topological 
group Q, or to a basic divisible p-primary group for some prime p. One 
reason for calling these topological groups pathological is apparent from the 
following theorem: 

36.12 Theorem. Let A is a bounded, strictly linearly compact ring. If 
D is the largest divisible ideal of A and T its topological torsion ideal, then 
D n T is contained in the annihilator of A .  In particular, a pathological 
subgroup of A is contained in its annihilator. 

Proof. Let U be an open ideal of A. Then A / U  is an artinian ring, and 
the image of D n T under the canonical epimorphism from A to A / U  is a 
divisible, torsion ideal. Thus by 36.3, A ( D  n T )  G U and (D n T)A 2 U. 
Therefore A(D n T) = (0) = (D n T ) A .  0 

The following theorem gives a useful characterization of pathological 

36.13 Theorem. Let p be a prime, and let E be a complete, HausdorfF, 
nonzero abelian group whose open subgroups form a fundamental system 
of neighborhoods of zero. If E contains a dense subgroup H generated 
by a family ( a i ) i e ~  of elements satisfying p.ai+l = ai for all i E Z and 
limi.+oo a_;  = 0, then E is topologically isomorphic either to the additive 
group Qp or a basic divisible p-primary group. 

Proof. Let A, = Ui20 p T Z ,  the additive subgroup of Q, generated by 
{P-~ : i E N}. It is easy to verify that there is a unique epimorphism g from 
A, to H satisfying g(p-*) = ai for all i E Z and that g is continuous. Its 
continuous extension from Q, to E is a topological epimorphism since Q, 

groups: 
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is a strictly linearly compact Z-module. Thus E is topologically isomorphic 
either to 0, or to the basic divisible p-primary group Qp/pnZp for some 
n E Z .  

The following two lemmas enable us to infer the existence of a patho- 
logical group in a topological ring from the existence of one in a quotient 
ring: 

36.14 Lemma. Let 4 be an epimorphism from an axtinian ring A to 
an artinian ring A’, let p be a prime, and let s E N. If ( a i ) j E z  is a family 
of elements of A’ satisfying p.af+l = a3 for all j E Z and, for some r 5 0, 
a: # 0 but = 0, then there is a family (aj)jEz of elements of A 
satisfying p.aj+l = a j  for all j E Z, a, # 0 but uq-l = 0 for some q 5 T ,  

and 4(aj) = a> for d j 5 s. 

Proof. Let T and T‘ be the torsion ideals of A and A’ respectively, Tp 
and Ti their p-primary components. By 36.5, $(T) = T‘ and hence by 
30.5, +(T,) = TL. The additive group Tp is the direct sum of its largest 
divisible subgroup Dp and a subgroup Bp satisfying m.B, = (0) for some 
m 2 1. If a E Tp and 
if p”.a = 0 where n 2 L, then pk is the greatest common divisor of m 
and pn, so there exist integers T and s such that rpn + srn = pk, whence 
pk.u = r.(pn.a) + s.(m.a) = 0. Thus pk.Bp = (0). Let d E D, and b E B, 
be such that 4(b + d )  = a;+,. Let a,  = pt.d. As a,  E D,, there exists a 
sequence (aj)j>, in D, such that p.aj+l = a j  for all j 2 s. Let aj  = p”-j.u, 
for all j < s. Clearly (aj)jEz has the desired properties. 

Let pk be the largest power of p dividing rn. 

36.15 Lemma. Let A be a bounded, metrizable, strictly linearly com- 
pact ring, and let U be an open ideal of A. If c + U is a nonzero element of 
a pathological subgroup of AIU, then A contains a pathological subgroup 
whose image in A/U contains c + U .  

Proof. By 12.16 there is a decreasing sequence (Un)n>o of open ideals 
that forms a fundamental system of neighborhoods of zero such that Uo = U .  
By hypothesis, for some prime p there is a family (ao,j)jEz in A such that 
p.ao,j+l- ao,j E UO for all j E Z, a0,o 4: Uo, but a0,-1 E U , ,  and c = a@,,. for 
some T 2 0. An inductive application of 36.14 to the canonical epimorphism 
from A/Ui to AIUi-1 yields, for each i > 0, a family (u; , j ) jEz such that 
p.ai,j+l - ai,j E Ui for all j E Z, ai . - ui-1,j E Ui-1 for all j 5 i + T ,  

and ui,q(i) E Ui for some q ( i )  5 0. Given j E Z, the sequence (ai,j)i>o - is 
easily seen to be a Cauchy sequence and hence converges to some b j  E A. 
Clearly p.bj+l = b j  for all j E Z, and as a,,, - ao,, E Uo for all s 2 0, 
b, - c = b, - ao,, E U as U is closed. An easy argument establishes that 
limbioo b - k  = limk-+m pk.bo = 0, so the proof is complete by 36.13. 

*? 



340 LINEAR COMPACTNESS IN RINGS WITH RADICAL 

The following theorem generalizes the statement that a semisimple lin- 
early compact ring is strictly linearly compact. 

36.16 Theorem. Let A be a topological ring with radical R. (1) A is 
linearly compact and the filter base (Rn),>l - converges to zero if and only if 
A is strictly linearly compact and n,"==, R" = (0). (2) If the radical topology 
of A is linearly compact, then it is strictly linearly compact. 

-- 
Proof. (1) We shall first establish that for each n 2 1, R"/R"+l is a 

strictly linearly compact A-module. Since {y E A : Ry C R"+l} is closed 
and contains R", it contains R". Thus as R s  C Rn+l, we may regard 
R"/R"+l as a module over AIR that has the same submodules as the 
A-module Rn/Rn+l. By (1) of 28.16, is a linearly compact A- 
module, so again by (1) of 28.16, R"/R"+1 is a linearly compact A-module 
and hence a linearly compact (AIR)-module. By 29.13, AIR is a strictly 
linearly compact ring. Therefore by 33.19, Rn/Rn+l is a strictly linearly 
compact AIR-module and hence a strictly linearly compact A-module. 

An inductive argument now establishes that A/R" is a strictly linearly 
compact A-module for all m 2 1. Indeed, if A/R" is a strictly linearly 
compact A-module, then (A/R"+l)/(R"/R"+l) is a strictly linearly com- 
pact A-module as it is topologically isomorphic to A/R" by 5.13, so as the 
A-module R"/R"+l is strictly linearly compact, the A-module is 
strictly linearly compact by (2) of 28.16. 

Necessity: Let U be an open left ideal of A .  By hypothesis, there exists 
n 2 1 such that R" U as U is closed. As q5 : x +R" + 

x + U is a continuous A-linear transformation from AIR" onto A/U, A/U is 
a discrete, strictly linearly compact A-module by the preceding and 28.11. 
Therefore A/U is an artinian A-module by (2) of 28.14. Consequently, A is 
strictly linearly compact by (2) of 28.15. 

Sufficiency: By 33.8 and 28.13, a strictly linearly compact topology is 
a Leptin topology. Therefore by 33.5, as nr=l R" = (0), the filter base 
(R"),>1 - converges to zero. Clearly (2) follows from (1). 0 

These considerations yield a generalization of Corollary 34.15: 

36.17 Theorem. Let A be a topological ring. 

-- 
-- 

__-  

-- 

- -- 

-- - 

U and hence R" 

- 

(1) If A is compact 
and totally disconnected, then A is a bounded, strongly linearly compact 
ring that has no pathological subgroups. (2) If A is metrizable, then A is 
compact and totally disconnected if and only if A is a bounded, strongly 
linearly compact ring that has no pathological subgroups. (3) If A has an 
identity, then A is compact if and only if A is a bounded and strongly 
linearly compact . 



36 THE RADICAL TOPOLOGY 341 

Proof. A compact ring with identity is totally disconnected by 32.3, and 
a totally disconnected compact ring is ideally topologized by 4.20 and hence 
strongly linearly compact. A compact ring is also bounded by 12.3. By 12.6, 
a bounded linearly compact ring is ideally topologized. (1) A pathological 
subgroup is complete (indeed, locally compact) but not compact and hence 
is not contained in a compact group. 

(2) and (3): Sufficiency: Let U be a proper open ideal. Then A/U is a 
discrete, strongly linearly compact A-module by 28.16, hence is a strictly 
linearly compact A-module by 30.11, and therefore is a strictly linearly com- 
pact ring. By the condition of (2) and 36.15, A/U contains no pathological 
subgroups and therefore is finite by 36.10; by the hypothesis of (3) and 
36.12, the same conclusion holds. If U is the filter base of all open ideals, 
A is topologically isomorphic to &v,=u(A/U) by 8.5, and therefore, A is 
compact by Tikhonov's theorem. 0 

The following three theorems prepare for the proof of Theorem 36.21, 
which characterizes those rings linearly compact for the radical topology 
that lack pathological subgroups. 

36.18 Theorem. Let E be an A-module, J an ideal of A. If F is a 
submodule o f  E that is  closed for the J-topology of E and if E = F + J E ,  
then E = F .  

J F  + Jk+'E 5 F + JL+lE, so Proof. If E = F + J k E ,  then J E  
E = F + J E  = F + Jk+'E. Thus 

m 

E =  r ) ( F + J n E ) = F  
n=l 

by 3.3, as F is closed. 0 

36.19 Theorem. If F is a unitary module over a semisimple artinian 
ring A and if F is linearly compact for the discrete topology, then F is 
fini tely generated. 

Proof. By 33.13 and 33.16, F is a semisimple A-module and hence, by 
33.14, is the direct sum of a family ( M x ) x , = ~  of simple submodules. Thus 
F is isomorphic to e x E L M x .  By 28.21, L is finite. For each A E L, let z x  
be a nonzero element of LA.  Then A = C X E L A z ~ .  0 

36.20 Theorem. If a topological ring A, furnished with the radicd 
topology, is the topological direct sum of ideals B and C, then the induced 
topologies on B and C are their radical topologies. 

Proof. We shall prove, for example, that the topology induced on B is its 
radical topology. The radicals of B and C are RnB and RnC respectively by 
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26.18. Thus by 26.21, R = (RnB)+(RnC), and consequently (R+C)/C = 
((R n B )  + C)/C.  The restriction 4 of the canonical epimorphism from A 
to  A/C to  B is a topological isomorphism. Consequently, the radical of 
A/C is ((R n B )  + C)/C. Thus (R + C) /C  is the radical of A/C. As 
((R+ C)/C)n  = (Rn + C) /C  for all n 2 1, the quotient topology of A/C 
is its radical topology. As B is topologically isomorphic to A/C, therefore, 
the topology induced on B is its radical topology. 0 

We note next that if I and J are ideals of a ring A that are finitely 
generated left ideals, then IJ is a finitely generated left ideal. Indeed, if 
I = Czl (Zai  + Aai) and J = Cj"=l(Zbj + Abj), then 

n n n n 

j = 1  j=1 j=1 j=1 

n m n  

Our principal result concerning the absence of pathological groups is the 
following: 

36.21 Theorem. Let A be a ring linearly compact for its radical topol- 
ogy, and let R be the radical of A. The following statements are equivalent: 

1' A contains no pathological subgroups. 
2' The annihilator of A is compact. 
3' A contains an idempotent e whose right annihilator is compact and 

4' R is a finitely generated left ideal. 

If these conditions hold, then for each k 2 1, AIRk is both an artinian 
and a noetherian A-module (and hence an artinian and a noetherian ring); 
if, in addition, AIR is finite, then the radical topology is compact. 

contained in R. 

Proof. If A # R, then as R is open, AIR is a nonzero, semisimple artinian 
ring R by 36.16 and 28.15, and consequently AIR has an identity element 
by 27.14. For each n 2 1, R"/R"+l is an (AIR)-module; we let Mn+1 and 
Nn+l be respectively the unitary and trivial submodules of the AIR-module 
R"/R"+l. If A = R, then R"/R"+l is a trivial (AIR)-module, so we let 
Mn+l be the zero submodule of R"/R"+l and Nn+l = Rn/Rn+l. Clearly 
R"/R"+l is the direct sum of its submodules Mn+l and Nn+1. 

First we shall show that if 1' holds, then N,+1 is finite. Indeed, N,+1 is a 
discrete, trivial module and hence is discrete and strongly linearly compact. 
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By 36.15, N,+1 contains no pathological subgroups, so by 30.10, N,+l is 
finite. 

To show that 1' implies 4", let M and N be the left ideals of A containing 
R2 such that M / R 2  = M2 and N / R 2  = N2. Either M / R 2  is the zero module 
or M/R2 is a discrete, linearly compact, unitary (AIR)-module and hence 
is finitely generated by 36.19. By the preceding paragraph, N / R 2  is finite. 
Thus there exist 2 1 ,  . . . , xn E M such that M = A q  + . . . + Ax, + R2,  
there exist 91, . . . , ym E N such that N = Z.91 + . . . + Z.y,, and there 
exists q > 0 such that q.y E R2 for all y E N .  Consequently, there exist 
z1, , . . , z p  E R such that q.yi E Rz1 + . . . + Rz, for all i E [I, m]. Let 

a closed left ideal by 28.18. Let 

Clearly I /  J is a surjective image of Zn/ (Zg)m and hence is finite. Thus I is 
the union of finitely many cosets of J ,  each of which is closed, and therefore 
I is closed. Furthermore, R = M + N + R2 = I + R2.  Therefore R = I by 
36.18 and hence R is a finitely generated left ideal. 

To show that 4" implies lo, suppose that A contains a pathological sub- 
group G. By 36.12, G is contained in the annihilator of A and hence in 
R by 26.14. Let n be the largest integer such that G 2 R". The image 
G' of G in R"/RnS1 is then a basic primary subgroup. As R is a finitely 
generated left ideal, a 3  powers of R are finitely generated left ideals, and 
hence R"/R"+l is a finitely generated (AIR)-module. As N,+1 is a direct 
summand of the (AIR)-module Rn/Rn+l, N,+1 is also finitely generated. 
As G is contained in the annihilator of A, G' E N,+1. As N,+1 is discrete 
and strongly linearly compact, Nn+l is a torsion module by 30.10. Hence 
as Nn+l is finitely generated, there exists rn > 0 such that m.N,+1 = (0). 
Consequently, Nn+l contains no basic divisible group, a contradiction. 

Next, we shall show that 1' and 4' imply the final statements. For 
any k 2 1, AIRk is an artinian A-module and hence an artinian ring by 
36.16 and 28.15. Since Mn+l is a direct summand of the (AIR)-module 
R"/R"+l, Mn+l is also finitely generated. By 29.14, either A = R or AIR is 
a noetherian ring. In either case, (R"/R"+')/M,+1 is isomorphic to N,+1, 
a finite (AIR)-module and hence a noetherian AIR-module. If A = R, 
then Mn+l = (0)) so R"/R"+' is a noetherian A-module. Otherwise, by 
29.14, AIR is a noetherian ring with identity, so Mn+l is a noetherian A- 
module by 20.8, and consequently R"/R"+' is a noetherian (AIR)-module 
by 20.3. By 27.9 applied to E = A/Rk and its submodules ( R " / R ' " ) o ~ ~ ~ ~ ~ ,  
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we conclude that AIRk is a noetherian A-module and hence a noetherian 
ring. 

Suppose further that AIR is finite. Then M,+1 is also finite, so R"/R"+' 
is finite. An inductive argument now establishes that AIRk is finite for all 
k 2 1, for if AIR" is finite, then as (A/R"+l)/(R"/R"+l) is isomorphic 
to AIRn and as R"/R"+l is finite, is also finite. The canoni- 
cal mapping g from A to b ,> l (A/R") ,  defined by g(z) = (z + Rn)"21, 
is a topological isomorphism by 8.5. By 5.20 and Tikhonov's theorem, 

Clearly 3" implies 2", and 2" implies 1" by 36.12 as a pathological group 
is complete and noncompact. 

Assume 1". To prove 3", we may, by the preceding, assume that A # R. 
By 29.8 and 34.1, A has an idempotent e such that e + R is the identity 
of AIR. Consequently the right annihilator H of e is contained in R. We 
shall show by induction that for each i 2 1, the right annihilator Hi of 
e + Ri in AIRi is finite. Clearly H1 = (0). Suppose that H, is finite, 
and let let 4 be the additive homomorphism from H,+1 to AIR" defined 
by #(. + Rn+l) = z + R" for all z E Clearly #(&+I) H ,  and 
hence $(Hn+l )  is finite. The kernel of 4, Hn+l n (R"/R"+'>, is simply 
the trivial submodule Nn+l of the (AIR)-module R"/Rn+'. Indeed, if 
z + Rn+l E Nn+l, then in particular, 

(AIR") is compact. 

so 2 + Rn+l E H,+1. Conversely, if z + Rn+' E H,+1, then (1) holds, so 
for any a E A and any z E R", 

(u + R)(z + R"+l) = az  + Rn+' = uez + (u - ae). + Rn+' = Rn+l, 

since aez E Rn+' by (1) and (a  - ae)z E RR" = Rn+'. We saw above 
that N,+1 is finite. Therefore, as the range and kernel of # axe finite, so 
is its domain &+I. Clearly H is closed. Thus g ( H )  is a closed subset of (n? a = 1  H i )  n W,>l (AIR") and hence is compact, so H is compact. 0 

Our next theorems extend Theorems 36.2-36.5: 

36.22 Theorem. If A is a nonzero ring that is linearly compact and 
topologically torsionfree for its radical topology, then A has a left identity. 

Proof. A satisfies 1" of 36.21 as each element of a pathological subgroup 
has finite order. By 3" of 36.21, A contains an idempotent e whose right 
annihilator is compact and therefore (0). Hence e is a left identity. 0 
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36.23 Theorem. Let A be linearly compact for the radical topology, let 
T be its topological torsion ideal. There is a closed ideal S of A satisfying 
the following properties: 

1" A is the topological direct sum of S and T .  
2" S is a divisible ideal. 
3" S is topologically torsionfree. 
4" S has a left identity. 

If L is a left ideal of A,  then L = ( L  n S) + ( L  n 2'). Findy,  S is the only 
ideal supplement of T.  

Proof. For each n 2 1, let 4, be the canonical epimorphism from A to 
AIR", an artinian A-module and hence an artinian ring by (2) of 36.16 and 
(2) of 28.15. For each m 2 n, let q5n,m be the canonical epimorphism from 
A/R" to AIRn. Thus q5,,m o 4" = 4, for aJl m 2 n. For each n 2 1, let 
S, be the ideal supplement of the torsion ideal T, of AIR", and let 

n=l  

Thus S is a closed ideal of A. By 36.5, 4k,n(Sn) = sk and $k,,(T,) = T k  

whenever k 5 n. We shall show that &(S) = S, for all n 2 1. Let 
s, + R" E S,. By 36.5, applied to &,+I there exists s,+1 E A such that 
s,+1 + Rn+' E S,+l and s,+1 - s, E R". Similarly, by induction, there 
is a sequence (sk)k>, - in A such that for all k 2 n, s k + l  +Itk+'  E Sk+l 

and S k + l  - s k  E R ~ .  Consequently, { s k  + R~ : n 2 k} is a Cauchy filter 
base of closed sets and hence converges to some s E A.  For each k 2 n, 

&,,(S,) = Sk, so s E g5L1(Sk);  thus s E S. In particular, &(s )  = s, +R". 
An entirely similar argument shows that &(T)  = T, for all n 2 1. Thus 
& ( S + T )  = S, +T, = A/R,, so A = S+T+R" for all n 2 1. As S and 
T are closed in A, S + T is closed by (3) of 28.6, and therefore A = S + T 
by 3.3. 

To show that S is topologically torsionfree, let s be a nonzero element of 
S. Let n 2 1 be such that s 4 R". As & ( s )  E S,, ;Z.&(S)  is infinite and 
discrete. Consequently i2.s is also. In particular, S n T = (0)) so A is the 
topological direct sum of the ideals S and T by 36.16 and 28.22. 

By 36.20, the topology induced on S is its radical topology. Consequently 
by 36.22, S has a left identity element e. 

To show that S is divisible, let s E S and let Q > 0. As S, is divisible and 
torsionfree, there is a unique t ,  + Rn E S, such that q . ( t n  + R") = s + R", 
and we may assume that t ,  E S as (P,(S) = S,. If m 2 n, then q.t, -q.t, = 

s E sk + R'" E Sk, so s E $il(sk); if k E [ l ,n  - 11, $k(s) = 4 k , n ( 4 n ( S ) )  E 
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(q.t, - s) - (q.t, - s) E R", so by uniqueness, t ,  + R" = t ,  + R". Thus 
{t ,  + R" : n 2 1) is a Cauchy filter base of closed sets and hence converges 
to  some t E A. Thus t E t ,  + Rn S + R" for all n 2 1, so t E S by 3.3 as 
S is closed. Furthermore, q.t E q . ( t ,  + R") = s + R", hence q.t - s E R" 
for all n 2 1, and therefore q.t = s. Thus S is divisible. 

Let L be a left ideal, and let z E L .  Then ex E S n  L. Let z - ez = s +t 
where s E S and t E T .  Then 0 = e(z - ez)  = es + et = s + et.  As T 
is an ideal, et E T and therefore s = et = 0. Thus z - e z  = t E T ,  so 
z = e z  + (z - ez) E (L n S) + ( L  n T ) .  In particular, if S' is an ideal 
supplement of T ,  then 5'' = S' n S + S' n T = S' n S. Hence S' S, so 
S ' = S a s S ' + T = A .  0 

Consequently, we shall call S the ideal topological supplement of T .  Thus 
the ideal topological supplement of T is a divisible, topologically torsionfree 
ideal. 

In the following discussion, for any strongly linearly compact module H 
we define D(H) by 

m 

D ( H )  = n n.H. 
n = l  

Since z 3 n.2 is a continuous homomorphism, n.H is closed by 28.3 and 
28.6, and therefore D ( H )  is closed; for the same reason, n . D ( H )  is also 
closed. Clearly D ( H )  contains the largest divisible subgroup of H ,  and if 
H is the additive group of an ideal of a topological ring, D(H) is an ideal. 

36.24 Theorem. If H is a strongly linearly compact module, then D(H) 
is closed, H/D(H) is compact, and D ( H )  is the largest divisible subgroup 
of H .  

Proof. We have already seen that D ( H )  is closed. Let K = H/D(H), 
a strongly linearly compact module by 28.6. Then D ( K )  = (0). Indeed, 
let z + D ( H )  E D ( K )  and let n 2 1. Then there exists y E H such that 
z - n.y E D(H), and thus there exists z E H such that z - n.y = n.z; 
consequently, z = n.(y + z )  E n.H.  Therefore z E D ( H ) .  

Let Y be the filter base of all open subgroups of K ,  and let U be the 
collection of all U E Y such that K/U is finite. Then U is a filter base, 
for if U and V are subgroups such that K/U and K/V are finite, then 
z + (z + U, z + V )  is a homomorphism from K to K/U x K/V with kernel 
U n V ,  so K/(U f l  V )  is isomorphic t o  a subgroup of K/U x K/V and hence 
is finite. For any V E V and any n 2 1, n.K + V E U .  Indeed, by 30.10, 
K/V is the direct sum of a divisible subgroup D v  and a finite subgroup 
Fv .  Then for any n 2 1, DV = n.Dv C n.(K/V),  so (K /V) /n . (K /V)  is an 
epimorphic image of 3'" and hence is finite. As n.(K/V) = (n.K + V ) / V  
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and as (K/V) / ( (n .K + V ) / V )  is isomorphic to K/(n.K + V ) ,  the latter is 
finite, so n.K + V E U. Consequently, 

by 3.3, as each n.K is closed. By 30.11, K is a strictly linearly compact Z- 
module. Its topology is therefore minimal among all Hausdorff Z-linear 
topologies by 28.13, so 2.4 is a fundamental system of neighborhoods of 
zero. Consequently, as K is complete, K is topologically isomorphic to 
&~ucu(K/U), a closed and hence compact subset of nuEu(K/U)  by 8.5 
and 5.20. 

To complete the proof, we need only show that D ( H )  is divisible. Let 
W be the filter base of all open subgroups of H ,  and let W E W. By 30.10, 
there exist B ,  F E W such that B and F both contain W ,  B/W is divisible, 
F / W  is finite, and H / W  is the direct sum of B/W and F / W .  Consequently, 
as H / B  is isomorphic to ( H / W ) / ( B / W )  and hence to F / W ,  H / B  is finite, 
and thus there exists m 2 1 such that m.H E B. Consequently, if a E 
H \ B, then no h E H would satisfy m.h = a; thus D(H) 2 B ,  whence 
D ( H )  + W C B. Now ( D ( H )  + W ) / D ( H )  is an open subgroup of compact 
H / D ( H ) ,  so (H/D(H))/((D(H) + W ) / D ( H )  is compact and discrete and 
hence finite. Thus H / ( D ( H )  + W )  is finite, so its subset B / ( D ( H )  + W )  is 
also finite. As B / ( D ( H )  + W )  is an epimorphic image of the divisible group 
B / W ,  B / ( D ( H )  + W )  is divisible. The only finite divisible group is the 
zero group, however, so D ( H )  + W = B. For any n 2 1, n.(B/W) = B/W,  
so n.B + W = B. Thus 

n.D(H)  +W = n . ( D ( H )  + W )  +W = n.B +W = B = D ( H ) + W .  

As n.D(H)  and D ( H )  are closed, therefore, 

by 3.3. Thus D ( H )  is a divisible group and so is the largest divisible sub- 
group of H .  * 

36.25 Theorem. Let A be a ring Linearly compact for i ts  radical topol- 
ogy, let D be the largest divisible ideal, let T be i ts  topological torsion ideal, 
let P be the set of primes and ( T p ) p E p  the topological p-primary compo- 
nents of T, and let H be the annihilator of A .  (1) D is closed, H C T, 
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and H / ( D  n T )  is compact. (2) ePEpTp = n p E p T p ,  that is, for every 
neighborhood U of zero, Tp 2 U for all but finitely manyp E P .  

Proof. Let S be the ideal supplement of T .  (1) H n S  = (0) by 4' of 36.23, 
so by the final assertion of that theorem, H = (H f l  S) + ( H  n T )  = H f l  T ,  
and hence H C T .  As H is a closed, trivial A-module, H is strongly 
linearly compact, so by 36.24, D(H) is closed and the largest divisible ideal 
of H ,  and H/D(H) is compact. Also by 36.23, D = S + ( D  n T ) ,  and 
thus D is the direct sum of S and D n T .  Consequently D n T is an 
epimorphic image of D and hence is a divisible group. As D n T C H by 
36.12, therefore, DnT C D ( H ) ,  the largest divisible subgroup of H .  But as 
D(H) is a divisible group, D ( H )  C D and thus D(H) C D nT. Therefore 
D n T = D ( H )  and hence D n T is closed. Consequently as D = S + (D f l  T )  , 
D is closed, and H / ( D  n T )  = H / D ( H ) ,  a compact ring. 

(2) Since T has a topological direct summand, T is a linearly compact 
ring, and hence each Tp is also linearly compact by 29.3 and the remark 
following 36.8. Consequently, 6pEpTp = npEp Tp by 36.11. 0 

36.26 Theorem. Let A be a ring with radical R, and let T be the 
topological torsion ideal of A for the radical topology. Then A is linearly 
compact for the radical topology and contains no pathological subgroups 
i f  and only i f  the radical topology is Hausdorff and complete, AIR is an 
artinian ring, R is a finitely generated left ideal, and A /T  is a ring with left 
identity. 

Proof. The condition is necessary by 36.21, 36.23, and (2) of 28.15. Suf- 
ficiency: It suffices by (2) of 28.15 to show that for each n 2 1, AIR" is an 
artinian A-module. By 27.14, either AIR is the zero ring or AIR is a ring 
with identity. Assume that A/R" is an artinian A-module. To show that 

is artinian, it suffices, by 27.3, to show that R"/R"+' is an artinian 
A-module, or equivalently, an artinian AIR-module. As R is finitely gen- 
erated, all the powers of R are finitely generated left ideals, and therefore 
R"/R"+l is a finitely generated AIR-module. Therefore as R"/R"+' is the 
direct sum of its unitary submodule M and its trivial submodule N ,  each of 
them is finitely generated. If A = R, M = (0); otherwise, by 27.8, M is an 
artinian (AIR)-module. Let e E A be such that ex-x  E T for all 2 E A. For 
any x+Rn+l E N ,  ex E Rn+', so if x1 = x-eez, zl+Rn+' = z+Rn+', and 
21 E T .  Thus the closure [XI] of 2 Z . q  is compact, so its image in R"/R"+' 
is compact and discrete and therefore finite. Thus each member of N is 
contained in a finite subgroup, so as N is finitely generated and trivial, N 
is finite and hence artinian. 0 

For the radical topology on a ring with identity A to be linearly compact, 
it suffices that there exist a linearly compact topology such that n,,, R" = 

- 
- 
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(0) and that 3 be open, where R is the radical of A: 

36.27 Theorem. Let A be a linearly compact ring with identity such 
that on,, R" = {0}, where R is the radical of A. The following statements 
are equiydent: 

- 

1" The topology of A is stronger than the radical topology. 
20 R2 is open. 
3" AIR is an artinian ring, and R is a finitely generated left ideal. 

I f  these statements hold, then the radical topology of A is a linearly compact 
topology. 

Proof. Clearly 1" implies 2". Assume 2". Since R is closed by 29.12, 
R2 C R and hence R is open. Therefore AIR is an artinian A-module 
and hence an artinian ring by 29.14. Moreover, R I P  is a discrete, linearly 
compact, unitary module over A/R and hence is finitely generated by 36.19. 
Thus there is a finitely generated left ideal M of A such that R = M + 3. 
As A has an identity element, M is closed by 28.18. If N is a left ideal such 
that R = M + z, then R = M + m. Indeed, 

- 

R~ = RM + RP c M + R N ,  

a closed left ideal by (3) of 28.6, so 3 E M +m, and thus R = M +F = 
M + m. By induction, therefore, R = M + Rn for all n 2 1. Thus 

00 00 

R =  n ( M + R " ) = M +  n F =  M 
n=l n=l 

by (2) of 28.20. Therefore R is a finitely generated left ideal, and 3" holds. 
Assume 3". By 27.10, A/R" is an artinian A-module for all n 2 1. 

Moreover each R" is finitely generated and hence closed by 28.18. Therefore 
A/Rn is a linearly comLiact, artinian A-module and hence its topology is 
discrete by 28.14. Thus R" is open for all n 1 1, so the topology of A is 
stronger than the radical topology. 

The hypothesis implies that the radical topology is Hausdorff. Hence 1" 
implies that the radical topology is linearly compact by 28.4. 0 

If the radical topology of a ring A is linearly compact, it is strictly linearly 
compact by 36.16 and hence minimal in the set of all linearly compact 
topologies on A. When is it the weakest of all linearly compact topologies 
on A? For rings with identity, if the radical topology is linearly compact, 
then it is indeed the weakest of all linearly compact topologies: 
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36.28 Theorem. Let A be a ring with identity, and let R be its radical. 
The radical topology of A is linearly compact if and only if it is Hausdorff 
and complete, AIR is an artinian ring, and R is a finitely generated left ideal. 
If the radical topology is linearly compact, then every linearly compact 
topology on A is stronger than the radical topology. 

Proof. The first assertion follows from 36.26. Assume that the radical 
topology on A is linearly compact. Then R" = {0}, AIR is artinian, 
and R is a finitely generated left ideal. Consequently, for d n 2 1, Rn is 
a finitely generated left ideal and hence is closed for any linearly compact 
topology 7 on A by 28.18, as A has an identity. Therefore 7 is stronger 
than the radical topology by 36.27. 0 

A natural problem is to  describe those rings that are linearly compact for 
the discrete topology. Our considerations here are limited to the case where 
the radical topology is Hausdorff, a condition implying that the Leptin 
topology associated to the discrete topology is strictly linearly compact by 
33.24 and equivalent to that statement for commutative rings by 33.25. 

36.29 Theorem. Let A be a ring, R its radical. The following state- 

1" A is linearly compact for the discrete topology, and r)n>l Rn = (0). 
2" A admits a bounded, strictly linearly compact topology for which 

3" The radical topology is a linearly compact topology for which every 

ments are equivalent: 

every left ideal is closed. 

left ideal of A is closed. 

If these conditions hold, then every Hausdorff linear topology on A is linearly 
compact, and the radical topology is the weakest Hausdorff linear topology 
on A.  

Proof. 1" and 3" are equivalent by 28.4 and 28.19, and clearly 3" implies 
2". Finally, 2" implies 1" by 33.22 and 28.19. 

If the conditions hold, then every Hausdorff linear topology on A is lin- 
early compact by 28.4, and there is a weakest Hausdorff linear topology by 
33.7. By 36.16, the radical topology is strictly linearly compact and hence, 
by 28.13, minimal in the set of all linear Hausdorff topologies. Therefore it 
is the weakest Hausdorff linear topology on A. 0 

More interesting chacterizations may be made of those rings that, in 
addition, contain no basic primary subgroups. To obtain them, we need 
some preliminary results: 

36.30 Theorem. A linearly compact A-module E is a Baire space. 
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Proof. Let (G,),?l be a sequence of open dense subsets of E; we shall 
show that n,,, G ,  is dense, that is, that (n,,, G,) n P # 0 for any 
nonempty open subset P. We may assume t h a t P  = a + M where M is 
an open submodule of E .  We shall construct a sequence of points (b,),?o 
and a decreasing sequence (M,),>o - of open submodules such that bo = a, 
Mo = M, and 

n-1 

bn + Mn c n [ ( b k  + Mk) n Gk+l] 
k=O 

for d n 2 1. Indeed, assume that b k  and satisfy those conditions for 
all k 5 n. As Gn+l is dense, there exists b,+l E (b, + M,) n Gn+l; as that 
set is open, there exists an open submodule M,+1 such that 

n 

b,+l + Mn+l E (bn + Mn) n Gn+l = n [ ( b k  + Mk) n Gk+l]. 
k=O 

Thus ( b ,  + M,),>o is a decreasing sequence of open and hence closed cosets 
of submodules, soas  E is linearly compact, there exists b E &>o(bk + Mk).  

36.31 Theorem. Let A be a ring with radical R such that r)n>l R" = 
{0},  R is a finitely generated left ideal, and AIR is an artinian riig. If A 
admits a linearly compact topology for which every left ideal of A is closed, 
then A is a noetherian ring. 

Proof. By 28.19 and 36.29, the radical topology is a linearly compact 
topology for which every left ideal is closed, so we may replace, if necessary, 
the given topology by the radical topology. Let (M,),?l be an increasing 
sequence of left ideals, and let M be their union. Then M is a closed 
and hence linearly compact A-module, so M is a Baire space by 36.30. 
As each M, is also closed, there exists T 2 1 such that M, is open in M 
by 4.9. As the topology is the radical topology, there exists t >_ 1 such 
that Rt n M C M,. As M / ( R t  r l  M) is isomorphic to the A-submodule 
(M + Rt)/Rt of AIR', a noetherian A-module by 36.21, M / ( R t  fl M )  is 
a noetherian A-module by 20.3. As M / M ,  is isomorphic t o  the A-module 
( M / ( R t n M ) / ( M , / ( R t n M ) ) ,  M / M ,  is also a noetherian A-module by 20.3. 
Consequently there exists q 2 T such that Mq/M,  = M/M,, and therefore 
M q = M . o  

36.32 Theorem. If A is a linearly compact noetherian ring, then every 
left ideal of A is closed (or equivalently, for each c E A, there exists m 2 1 
such that m.c E Ac). 

Proof. By (3) of 28.6, it suffices to show that for any c E A, the left 
ideal Ac + Z.c generated by c is closed. By 28.18, Ac is closed, so by 

- 
Consequently, b E (n,,, G,) n P .  0 - 



352 LINEAR COMPACTNESS IN RINGS WITH RADICAL 

28.16, Ac + Z.c/Ac is a linearly compact A-module. It is, however, a trivial 
A-module, for as A(Ac + Z.c) C Ac, A(Ac + Z.c) Ac. Consequently, 
Ac + Z.c/Ac is strongly linearly compact and also, by 20.3, a noetherian 
Z-module. 

If Ac + Z.c/Ac were not discrete, it would be uncountable by 36.30, and 
hence would contain a strictly increasing sequence of additive subgroups, 
in contradiction to the fact that it is a noetherian Z-module. Thus it is 
discrete, so (Ac + Z.c)/Ac is a discrete, strongly linearly compact module. 
If Ac n Z .c = {0}, then (Ac + Z .c) /Ac would be isomorphic to  the Z-module 
Z,  in contradiction to 30.10. Therefore (Ac + Z.c)/Ac is isomorphic to the 
Z-module Z/Z.m (i.e., m.c E Ac) for some m 2 1, and consequently is 
finite. Thus Ac + Z.c is the union of finitely many cosets of Ac and hence 
is closed. 0 

36.33 Theorem. Let A be a ring, R its radical. The following state- 

1" A is linearly compact for the discrete topology, n,,, R" = {0}, and 
A contains no basic divisible primary subgroup. 

2" A admits a bounded, strictly linearly compact topology for which every 
left ideal is closed, and A contains no basic divisible primary subgroup. 

3" Furnished with the radical topology, A is linearly compact, A contains 
no pathological subgroups, and every left ideal of A is closed, 

4" AIR is artinian, R is a finitely generated left ideal, the radical topology 
is Hausdorff and complete, A/T has a left identity where T is the topological 
torsion ideal for the radical topology, and every left ideal of A is closed. 

5" A is noetherian and linearly compact for the radical topology. 
6" A is noetherian and admits a bounded, strictly linearly compact topol- 

ments are equivalent: 

- 

ogy. -~ 

7" A is noetherian, and A admits a linearly compact topology for which 
n,,, = (0). 

80 A is noetherian, AIR is artinian, the radical topology is Hausdorff 
and complete, and for each c E A,  there exists m 2 1 such that m.c E Ac. 

If these conditions hold, then the radical topology is the weakest Hausdorff 
linear topology on A, and for that topology A has only finitely many nonzero 
topological primary components; if, in addition, AIR is finite, then the 
radical topology is compact. 

Proof. By 36.29, 1" and 2" are equivalent. Assume 1". To establish 3", 
we need only show, by 36.29, that  A, furnished with the radical topology 
(for which every left ideal is closed), contains no subgroup G topologically 
isomorphic to the additive group Qp for some prime p .  By 36.12, G would 
be contained in the annihilator of A, and hence every additive subgroup of 
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G would be a (closed) left ideal and hence a linearly compact Z-module. 
In particular, G would contain a subgroup 2 algebraically isomorphic to Z 
that is a linearly compact Z-module. Consequently, 2 would be discrete by 
36.30. But 2 is not a discrete, linearly compact Z-module by 30.10, since 
it is not an artinian Z-module. 

By 28.19, 3" implies lo. By 36.26, 3" and 4" are equivalent. Thus 1"- 
4" are all equivalent, and by 36.31, they imply 5". By 36.16, 5" implies 
6'; by 33.22, 6" implies 7'; and by 36.9, each of them implies that A has 
only finitely many nonzero topological primary components for the radical 

Assume 7". By 36.32 and 28.19, A is linearly compact for the discrete 
topology and n,,, R" = { 0 } ,  so by 28.4 A is linearly compact for the radical 
topology. Suppose that A contained a basic divisible primary subgroup G. 
By 36.12, G is contained in the annihilator of A. Therefore G is a trivial 
noetherian A-module by 20.3, and thus is a noetherian Z-module. But by 
definition, G is the union of a strictly increasing sequence of subgroups, a 
contradiction. Thus A contains no basic divisible primary subgroup, and 
hence 1 " holds. 

By 36.32, 4" and 5' imply 8'. Assume 8". To show 5", it suffices by 
28.15 to  show that for each k 2 1, AIRk is an artinian A-module. For 
this, it suffices by our hypothesis, 27.3, and induction to show that for 
each n 2 1, R"/R"+I is an artinian A-module, or equivalently, an ar- 
tinian (AIR)-module. Since A is noetherian, R"/R"+' is a noetherian 
(AIR)-module and hence its unitary submodule Mn+l is finitely gener- 
ated. If A = R, Mn+l is the zero submodule and hence is artinian; oth- 
erwise, Mn+l is artinian by 27.8. Let c1, . . . , cq E R" be be such that 
c1+ Rn+', . . . , cq + Rn+' are generators of the AIR-module R"/R"+'. By 
hypothesis, there exists m 2 1 such that m.cj E Acj for all j E ( l ,q] .  There- 
fore ( T I , .  . . , T ~ )  + rl .cl+.  . .+r,.cq+Mn+l is an additive epimorphismfrom 
ZQ to (R"/R"+')/M,+l whose kernel contains (mZ)* ,  so (R"/R"+'>/Mn+l 
is finite as iZq/(mZ)>Q has mq elements. Thus (R"/R"+l)/Mn+l is an ar- 
tinian AIR-module, so R"/R"+l is also an artinian (AIR)-module by 27.3. 
Finally, if these conditions hold and AIR is finite, the radical topology is 
compact by 36.21. 0 

The commutative rings with identity that satisfy the equivalent condi- 
tions of 36.33 have a simple description: they are precisely the complete 
semilocal noetherian rings of $24. Moreover, they may be described by a 
property implied by those of 36.33, but not equivalent to them for the class 
of rings with identity (Exercise 36.4). 

36.34 Theorem. If A is a commutative ring with identity whose radical 
R is finitely generated and whose radical topology is linearly compact, then 

topology. 
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A,  furnished with that topology, is the topological direct sum of finitely 
many complete local noetherian rings. 

Proof. AIR is a discrete, semisimple, linearly compact ring and hence is 
isomorphic to the Cartesian product of finitely many fields by 29.10. There- 
fore A has only finitely many maximal ideals, i.e., A is a semilocal ring. By 
(2) of 36.16 and (2) of 34.6, A is topologically isomorphic to the Cartesian 
product of a family ( A x ) x ~ L  of strictly linearly compact local rings. There- 
fore as A is semilocal, L is finite, and thus A is the topological direct sum of 
finitely many strictly linearly compact local rings A l ,  . . . ) A,. By 26.21, R 
is the direct sum of the maximal ideals MI, . . . , M,, where each Mi is the 
maximal ideal of A;;  thus each Mi is also finitely generated. Moreover, the 
topology induced on each Ai is its radical (or natural) topology by 36.20. 
As A is complete by 28.5, so is each Ai by 7.8. Thus each Ai is noetherian 
by (2) of 24.17. 0 

36.35 Corollary. If A is a commutative ring with identity, the following 
statement is equivalent to those of Theorem 36.33: 

9" A is linearly compact for the radical topology, and R is a finitely 
generated ideal. 

Moreover, the commutative rings with identity satisfying 8" are precisely 
the complete semilocal noetherian rings. 

Proof. Clearly 5" of 36.33 implies 9'. Assume 9'. Then A is strictly 
linearly compact by 36.16, so by 36.34 A is a semilocal ring that is Hausdorff 
and complete for its radical topology. By (1) of 24.16, AIR has only finitely 
many ideals; hence A I R  is artinian. Therefore by 36.28, the radical topology 
is linearly compact, so 5' of 36.33 and the final assertion hold. 0 

To describe the class of commutative rings (including those not having 
an identity) that satisfy the conditions of 36.29, we begin with a preliminary 
result: 

36.36 Theorem. If A is a compact noetherian ring, then A is totally 
disconnected, and its annihilator H is finite. 

Proof. Every additive subgroup of H is an ideal. If H were uncountable, 
then there would exist a strictly increasing sequence (Gn),21 of subgroups 
of H ,  a contradiction. If H were countably infinite, then as H is compact 
and hence a Baire space, H would be discrete, in contradiction to our hy- 
pothesis that A is compact. Thus H is finite. Consequently, the connected 
component C of zero is finite by 32.3, and thus is the zero ideal. 0 
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36.37 Theorem. A commutative topological ring A is a strictly linearly 
compact noetherian ring if and only if A is the topological direct sum of 
finitely many complete local noetherian rings and a commutative, compact, 
noetherian, radical ring J. 

Proof. Necessity: By (1) of 34.6, A is the topological direct sum of strictly 
linearly compact rings B and J, where B is either the zero ring or a strictly 
linearly compact ring with identity, and J is a strictly linearly compact radi- 
cal ring. Both B and J are noetherian rings by 20.4, as they are isomorphic 
respectively to A / J  and A / B .  By 36.34 B is the topological direct sum 
of finitely many complete local noetherian rings. By the final assertion of 
36.33, the given topology of A is the radical topology, since a strictly linearly 
compact topology is minimal by 28.13. Therefore the topologies induced on 
B and J are their radical topologies by 36.20. Also J satisfies 6' of 36.33. 
Thus by the concluding statements of that theorem, J is compact as it is a 
radical ring. 

Sufficiency: By 36.36, J is t o t d y  disconnected and hence, by 32.5, a 
strictly linearly compact ring. Consequently, A is strictly linearly compact 
by 29.5. 0 

Any finite, nilpotent ring is a noetherian radical ring; a nondiscrete ex- 
ample of a compact, noetherian radical ring is the maximal ideal (or, more 
generally, any proper nonzero ideal) of the ring Z p  of p-adic integers (Exer- 
cise 36.3). 

36.38 Theorem. Let A is a commutative noetherian ring. (1) The rad- 
ical topology of A is Hausdorff. (2) A ring topology 7 on A is a linearly 
compact topology if and only if it is an ideal topology stronger than the rad- 
ical topology and the radical topology is linearly compact. (3) If the radical 
topology is linearly compact, then A,  furnished with the radical topology, is 
the topological direct sum of finitely many complete local noetherian rings 
and a commutative, compact, noetherian, radical ring. 

Proof. (1) If A has an identity, the radical topology is Hausdorff by 24.14. 
In the contrary case, let A1 be the (commutative) ring obtained by adjoining 
an identity element to  A.  Thus A is an ideal of A l ,  and A/A1 is isomorphic 
to the commutative noetherian ring Z. Both A and A1/A are noetherian Al- 
modules since they are noetherian rings, so by 20.3, A1 is a noetherian Al-  
module, that is, a noetherian ring. Consequently by 24.14, n,,, Ry = (0)) 
where R1 is the radical of A1. But by 26.19, R1 is the radical Gf A. (2) and 
(3) are immediate consequences of 36.33 and 36.37. 0 

36.39 Theorem. Let A be a compact ring with identity. The following 
statements are equivalent: 
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1" The topology of A is the radical topology. 
20 R2 is open. 
3" AIR is finite, and R is a finitely generated left ideal. 

Proof. By 32.3, A is totally disconnected and hence, by 32.5, a bounded, 
strictly linearly compact ring. By 34.21, n,,,R" = (0). Since a com- 
pact topology is a minimal Hausdorff topologyrl" and 2" are equivalent by 
36.27. Also 1" implies that AIR is compact and discrete, and hence finite. 
Therefore 1" and 3" are equivalent by 36.27. 0 

36.40 Theorem. If A is a noetherian ring with radical R, then A is 
compact if and only if the radical topology of A is Hausdorff and complete, 
the topology of A is the radical topology, AIR is finite, and for each c E A 
there exists m 2 1 such that m.c E Ac. 

Proof. Necessity: By 36.36 and 32.5, A satisfies 6" of 36.33, so by that 
theorem, as a compact topology is a minimal Hausdorff topology, we need 
only verify that AIR is finite. But as R is open and A compact, AIR is a 
compact, discrete ring and hence is finite. 

Sufficiency: A satisfies 8" of 36.33. Consequently by the final statement 
of 36.33, A is compact. 0 

36.41 Theorem. A commutative topological ring A is a compact noe- 
therian ring if and only if A is the topological direct sum of finitely many 
compact local noetherian rings and a commutative, compact, noetherian 
radical ring. 

Proof. The assertion is an immediate consequence of 36.37. 0 

By 36.40, a complete local noetherian ring A with maximal ideal M is 
compact if and only if the residue field AIM is finite. 

Exercises 

36.1 Which of the properties listed in 4" and 8" of 36.33 fail to hold if 
(a) A is the trivial ring whose additive group is Z? (b) A is the trival ring 
whose additive group is Z(p") ,  where p is a prime? (c) A = Z[[X]]? 

36.2 If A is a linearly compact ring with identity, and if A satisfies the 
Ascending Chain Condition on closed left ideals (if ( J , ) , L ~  is an increasing 
sequence of closed left ideals, then there exists m 2 1 such that J ,  = J,,, 
for all n 2 m),  then A is noetherian. 

36.3 Let A be the valuation ring of a complete, discrete valuation 21 of a 
field whose value group is Z, and let M be its maximal ideal. (a) M is a 
radical ring with no proper zero-divisors. (b) The following statements are 
equivalent : 
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1" M is compact. 
2" AIM is finite. 
3" M is a noetherian ring. 
4" M is a linearly compact ring. 

[Use 18.7. To show that 2" implies 3", show that if I is a nonzero ideal of M 
and if n = inf{v(z) : z E I}, then M,+1 C I, and observe that M"/M"+' 
is finite. If 3" holds, to show 2", first show that AIM is a finitely generated 
Z-module, and conclude that the characteristic of AIM is a prime. To show 
that 4" implies 2", use 34.13, and observe that M/Mz is a vector space over 
AIM.]  (c) In particular, if M is the maximal ideal of the ring of Z, of p-adic 
integers, where p is a prime, then M has the properties of (a) and (b). 

36.4 (Warner [1971]) Let S be the semigroup consisting of all n-tuples 
where n E N (8 is considered the 0-tuple) whose entries are either 0 or 1, 
with multiplication defined by juxtaposition: 

Let 5 be the well ordering of S satisfying ( a l ,  . . . ,a,) < ( b l , .  . . , b,) if and 
only if either n < m or n = m and, for some j E [l ,n],  a; = b; for all i < j ,  
aj = 0, and bj  = 1. Thus 0 is the identity element of S and also is the 
smallest element of S, and if s 5 s' and t 5 t', the st 5 s't'. Let K be a 
finite field, let K,  = K for all s E S, and let A = n s E S K S ,  where addition 
is defined componentwise and multiplication is defined by 

(a) A is a ring, and the radical R of A consists of all (u , ) ,~s  such that a0 = 0. 
(b) If each K, is given the discrete topology and A the Cartesian product 
topology, then A is a compact ring with identity, and the topology of A is 
the radical topology. (c) Let s k  E S be the ( I c  + 2)-tuple whose first and 
last entries are 0 and whose remaining entries are 1, and let ek = ( S S . , k ) S E ~ ,  
where a,.,, is 1 or 0 according as s = sk or s # Sk. Show that the left ideal 
generated by { e k  : k 2 1) is not finitely generated. (d) Conclude that A 
satisfies 9" of 36.35 but not the conditions of 36.33. 

36.5 Let A be a ring, R its radical, T is torsion ideal. Then A is an 
artinian ring that contains no basic, divisible primary subgroups if and only 
if R is a nilpotent, finitely generated left ideal, A I R  is artinian, and A / T  is 
a ring with left identity. [Use 36.26.1 

36.6 Let A be an artinian ring, R its radical. The following statements 
are equivalent: 
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1' A contains no basic, divisible, primary subgroup. 
2' The annihilator of A is finite. 
3' A contains an idempotent e whose right annihilator is finite and con- 

4' R is a finitely generated left ideal. 
5' A is noetherian. 

tained in R. 

[Use 36.21.1 In particular: (Szele and Fuchs [1955]) A contains no basic, 
divisible, primary subgroup if and only if A is noetherian; (Szele and Fuchs 
[1955]) If the annihilator of A is {0}, then A is noetherian; (Hopkins [1938]) 
If A has a left identity, then A is noetherian. 

36.7 (Kovdcs [1954]) If A is an infinite ring such that every proper left 
ideal of A is finite, then either A is a division ring or A is a trivial ring 
whose additive group is a p-primary group for some prime p. [Use Exercise 
34.17, 30.10, and 36.3.1 

36.8 (a) A commutative, strictly linearly compact ring with identity is a 
semilocal ring if and only if it is advertibly open. (b) If A is a commutative 
topological ring with identity, then A is an advertibly open, strictly linear 
compact ring whose radical is finitely generated if and only if A is a complete 
semilocal noetherian ring whose topology is its natural topology. 



CHAPTER IX 

COMPLETE LOCAL NOETHERIAN RINGS 

In this chapter we refine the description of complete local noetherian 
rings given in Theorem 23.6 for those that either are equicharacteristic or 
are nonequicharacteristic but in which p.1 is not a zero-divisor, where p is 
the characteristic of the residue field. Most of this chapter will be devoted 
to topics in commutative algebra. The Principal Ideal Theorem, a corner- 
stone of commutative algebra, is the subject of $37. In $38 we introduce 
Krull dimension and discuss regular local rings. In $39 the description is 
given with special attention to complete regular local rings. In $40 we show 
that complete local noetherian domains have the Japanese property, a fact 
needed in Chapter 10. 

In this chapter, by a “noetherian ring” is meant a “commutative noe- 
therian ring with identity.” 

37 The Principal Ideal Theorem 

We begin with some results on modules that are both noetherian and 
artinian. 

37.1 Definition. Let E be a module. A Jordan-Holder sequence of 
submodules of  E is a finite, strictly decreasing sequence (Mo.)o<i<, such that 
MO = E ,  M, = (0)) and for each i E [l,n], Mi-l/Mi is a sFmile module. 
The length of a strictly decreasing sequence of submodules is defined to 
be +OD i f  the sequence is infinite, otherwise n where n + 1 is the number 
of terms in the sequence. E has finite length i f  E has a Jordan-Holder 
sequence. 

37.2 Theorem. A module E has finite length if and only i f  E is noe- 
therian and artinian. 

Proof. Necessity: A simple module is clearly noetherian and artinian, so 
the assertion follows from 27.9. Sufficiency: The set of submodules of finite 
length is nonempty, since it contains the zero submodule and hence contains 
a maximal member N, as E is noetherian. Suppose that N # E. The set 
of submodules of E properly containing N is then nonempty and hence 
contains a minimal member M, as E is artinian. By the minimality of M ,  

359 
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M / N  is a simple module. Therefore as N has a Jordan-Holder sequence, so 
does M, a contradiction of the maximality of N .  Thus N = E. 0 

37.3 Corollary. If M is a submodule of a module E ,  then E has finite 
length if and only if M and E / M  have finite length. 

Proof. The assertion follows from 37.2, 20.3, and 27.3. 0 

37.4 Theorem. If a module E has a Jordan-Holder sequence, then the 
length of any strictly decreasing sequence of submodules of E is a t  most 
that of the Jordan-Holder sequence. 

Proof, Let S = {n E W : for every submodule M of E that has a Jordan- 
Holder-sequence of length n, every strictly decreasing sequence of submod- 
ules of M has length at most n}. Clearly 0 E S, since the zero submodule is 
the only submodule of E having a Jordan-Holder sequence of length 0. Also, 
1 E S, for simple submodules of E are the only ones having a Jordan-Holder 
sequence of length 1. Assume that T 2 2 and that S contains all natural 
numbers < r ,  where T does not exceed the length of the Jordan-Holder se- 
quence of E .  Let F be a submodule of E that has a Jordan-Holder sequence 
( M i ) o s i l r  of length r .  By 37.2, a strictly decreasing sequence of submod- 
ules of F is finite; let (Nj),-,ljla be such a sequence, where by adding terms 
if necessary, we may assume that No = F and N ,  = (0). Clearly M I  has a 
Jordan-Holder sequence of length T - 1, so any strictly decreasing sequence 
of submodules of MI has length at  most r - 1. In particular, if N1 2 M I ,  
then (Nj)lijla is a strictly decreasing sequence of submodules of M I ,  so 
s - 1 5 r - 1 and hence s 5 T .  

MI. As F/M1 is simple and 
as N1 # F ,  N1 does not properly contain MI, so by our assumption N1 2 
MI and thus M I  n N1 C M I .  By 37.3, M I  f l  N1 has a Jordan-Holder 
sequence of length, say, t .  Adjoining MI at the beginning of the sequence, 
we obtain a strictly decreasing sequence of submodules of MI of length t + 1, 
so t + 1 5 T - 1 and therefore t 5 r - 2. Since N1 $ MI and since F/M1 
is simple, M I  + N1 = F, so Nl/ (MI  n N1) is simple as it is isomorphic to 
(MI  + N l ) / M l  = F/M1. Consequently, adjoining Nl at the beginning of a 
Jordan-Holder sequence for MI n N1, we obtain a Jordan-Holder sequence 
for N1 of length t + 1 I r - 1. As T - 1 E S, therefore, and as (Nj)l<j<a is 
a strictly decreasing sequence of submodules of N1, s - 1 5 r - 1 and thus 
s 5 T .  Consequently, by induction S contains q ,  the length of the given 
Jordan-Holder sequence of E ,  so the conclusion holds. 0 

37.5 Corollary. Any two Jordan-Holder sequences of a module have 

Consequently, we may define the length of a module of finite length to 

Consequently, we may assume that N1 

the same length. 
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be the length of all its Jordan-Holder sequences. The following theorem is 
easy to prove: 

37.6 Theorem. Let E be a module of finite length. If M is a submodule 
of E, then 

length(E) = length(M) + length(E/M). 

If M is a proper submodule of E ,  then length(M) < length(E). If E is the 
direct sum of submodules M and N, then 

length(E) = length(M) + length(N). 

To begin our investigation of complete local noetherian rings, we gather 
some equivalent conditions for a commutative ring with identity to be ar- 
tinian: 

37.7 Theorem. Let A be a commutative ring with identity. The fol- 
lowing statements are equivalent: 

1" A is artinian. 
2" A is the direct sum of finitely many local noetherian rings whose 

3" A is a semilocal noetherian ring whose radical is nilpotent. 
4" A is a semilocal ring whose radical is finitely generated and nilpotent. 
5" A is a semilocal ring whose maximal ideals are finitely generated and 

maximal ideals are nilpotent. 

nilpo t en t . 

Proof. By 27.17, 1" and 2" are equivalent. Each of 2"-5" implies that 
the radical topology on A is discrete and hence complete, and that is also 
implied by 1" by 27.15. Therefore by 24.17, 3" and 4" are equivalent. The 
equivalence of 1" and 9" of 36.33 and 36.35 establish the equivalence of 4" 
and lo, for the existence of an identity element prevents the existence of 
a basic divisible primary subgroup by 36.3, and an artinian ring is linearly 
compact for the discrete topology by 28.14. Clearly 2"-4" imply 5". By (2) 
of 24.17, 5" implies 2". 0 

An ideal P of a commutative ring with identity is prime if and only if 
for any two ideals I and J of A,  if IJ 2 P ,  then either I 2 P or J C P. 
Indeed, the special case where I and J are principal ideals is the definition 
of a prime ideal. Conversely, suppose that IJ E P but neither I nor J is 
contained in P .  Then there exist a E I and b E J such that neither a nor b 
belongs to P ,  yet ab E IJ C P .  Thus P is not prime. 

To obtain another criterion for a commutative ring with identity to be 
noetherian, we need the following theorem: 
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37.8 Theorem. If A is a commutative noetherian ring with identity, 
every proper ideal of A either is a prime ideal or contains a product of 
nonzero prime ideals. 

Proof. If not, the set A of proper ideals that neither are prime nor con- 
tain a product of nonzero prime ideals contains a maximal member M .  In 
particular, M is not prime, so there exist ideals I, J such that I M ,  
J $ M ,  and IJ C M. Both M + I and M + J properly contain M ,  and 
( M  + I ) ( M  + J )  2 M + IJ = M .  Moreover, M + I and M + J are proper 
ideals; for example, if M + I = A ,  then 

( M + I ) ( M +  J) = A ( M +  J) = M +  J g M ,  

a contradiction. Consequently, M + I and M + J are nonzero proper ideals 
of A that do not belong to A as they properly contain M ,  so each contains 
a product of nonzero prime ideals, whence A4 does also, a contradiction. 0 

37.9 Theorem. If A is a commutative ring with identity, then A is 
artinian if and only i f  A is noetherian and each prime ideal of A is maximal. 

Proof. Necessity: By 37.7 we need only establish that a prime ideal P 
of an artinian ring A is maximal. For this, it suffices by 27.4 to show that 
an artinian integral domain D is a field. Let x be a nonzero element of D. 
Then (Dxn),>l - is a decreasing sequence of ideals, so there exists q 2 1 such 
that zQ = dz*+' for some d E A, whence 1 = dx. 

Sufficiency: By 37.8 applied to the zero ideal and our hypothesis, either 
the zero ideal is maximal, or there exist distinct maximal ideals M I ,  . . . , M ,  
such that if N = MI Mz . . . M,,  then N Q  = (0) for some q 2 1. If (0) is 
a maximal ideal, then A is a field and hence is artinian, so we need only 
consider the second possibility. First, if M is any maximal ideal, then as 
M is prime and contains N Q ,  M contains some Mk and hence M = Mk. 
Thus A is semilocal. By 24.11, N = M I  n . . . f l  M,, the radical of A ,  so the 
radical of A is nilpotent. Therefore by 37.7, A is artinian. 0 

37.10 Definition. Let A be a commutative ring with identity. A mini- 
mal prime ideal of A is a prime ideal properly containing no other prime 
ideal. If J is a proper ideal o f  A ,  a minimal prime ideal over J is a 
prime ideal P containing J such that there are no prime ideals containing 
J that are properly contained in P .  

For example, the zero ideal is the only minimal prime ideal of an integral 
domain. Clearly P is a minimal prime ideal over J if and only if P 2 J and 
P/ J is a minimal prime ideal of A/ J. 
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37.11 Theorem. If A is a commutative ring with identity, every prime 
ideal P of A contains a minimal prime ideal. 

Proof. The set P of all prime ideals contained in P is nonempty, as 
P E P. Ordered by 2, P is inductive, for if C is a chain in P, clearly nQEc Q is a prime ideal. Thus by Zorn's Lemma, P contains a member PO 
maximal for 2, that is, Po is minimal among all prime ideals contained in 
P .  Consequently, Po is a minimal prime ideal. 0 

37.12 Corollary. I f  A is a commutative ring with identity and if J is 
a proper ideal of A ,  then every prime ideal of A containing J contains a 
minimal prime ideal over J ,  and in particular, there exist minimal prime 
ideals over J .  

Proof. Applying 37.11 to A / J  yields the first assertion, and the second 

In commutative algebra, the importance of considering the subrings S-'A 
of the total quotient ring of a commutative ring with identity A,  where S 
is a multiplicative subset of cancellable elements of A ,  arises from the fact 
that the ordered set of prime ideals of S-'A is, in a natural way, isomorphic 
to the ordered set of prime ideals of A not meeting S :  

37.13 Theorem. Let A be a commutative ring with identity, and let S 
be a multiplicative set of cancellable elements of A .  If J is an ideal of S-IA, 
then J = (S-'A)(J n A ) .  Moreover, Q -+ (S-'A)Q is an order-preserving 
bijection from the set of all prime ideals of A not meeting S to the set of 
all prime ideals of S-lA, and its inverse is N -+ N n A.  

Proof. Clearly J 2 (S- lA)(  J n  A ) ,  If x E J, then sz  E A for some s E S, 
SO sx E J n A,  and thus x = s - ~ ( s x )  E (S- lA)(J  n A ) .  

Let Q be a prime ideal of A not meeting S. Then (S-lA)Q is a proper 
ideal of S-'A, for if 1 E (S-'A)Q, then for some s E S, s = s . 1 E 
Q, a contradiction. To show that (S-lA)Q is a prime ideal of S-lA, let 
z ,  w E S-'A be such that zw E (S-'A)Q. There exist T ,  s, t E S such 
that T Z  E A,  sw E A,  and t z w  E Q ,  whence t ( r z ) ( s w )  = rs ( t zw)  E Q. As 
t $ Q ,  either T Z  E Q or sw E Q ,  that is, either z = T - ~ ( T z )  E (S-'A)Q or 
w = s-1 (sw) E (Sv1A)Q. Also, if N is a prime ideal of S-lA, clearly N n  A 
is a prime ideal of A.  

Therefore we need only show that if Q is a prime ideal of A not meeting 
S ,  then (S- 'A)QnA = Q ,  since we have already seen that for any ideal J of 
S-lA, J = (S- lA)(J  n A ) .  Clearly Q (S-'A)Q n A.  If x E (S-'A)Q n A ,  
then sx  E Q for some s E S, so x E Q as s $! Q .  0 

Let P be a prime ideal of an integral domain A. Then A \ P is a multi- 
plicative set; the integral domain ( A  \ P)- 'A  is usually denoted by AP and 

follows from it since J is contained in a maximal ideal. 0 
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is called the localization of A at P, for by 37.13, Ap is a local ring whose 
maximal ideal is ApP.  

37.14 Theorem. Let A be a commutative ring with identity. If S is a 
multiplicative subset of A and if J is an ideal of A such that J n S = 0, 
then there is a prime ideal containing J such that P fl S = 8. 

Proof. The set J’ of all ideals I of A such that I 1 J and I n  S = 0 
is nonempty and is clearly inductive for inclusion. Consequently by Zorn’s 
Lemma, J contains a maximal member P. Suppose that there exist a, b E 
A \ P such that ab E P. By the maximality of P ,  neither P + Aa nor P + Ab 
would belong to J ,  so there would exist 2, y E P and c, d E A such that 
z + ca E S and y + db  E S. Therefore (z + ca)(y + db)  E S, but 

(Z + C U ) ( ~  + db)  E P + Aab = P, 

a contradiction. Thus P is a prime ideal. 0 

37.15 Definition. Let A be a commutative ring with identity, J an 
ideal of A. The radical of J, denoted by rad(J), is defined by 

rad(J)  = (2 E A : zn E J for some n 2 1); 

J is a radical ideal if J =  rad(J). 

Clearly rad( J )  is an ideal, for if zn, ym E J, then (z + y)n+m E J by the 
Binomial Theorem, and E J for any a E A. Moreover, rad(rad(J)) = 
radfJ) ,  so the radical of any ideal is a radical ided. For example, rad((0)) 
is the ideal of all nilpotent elements of A. 

37.16 Theorem. Let A be a commutative ring with identity. If J is a 
proper ideal of A, then rad( J) is the intersection of all the prime ideals of 
A containing J and hence of all the minimal prime ideals over J. 

Proof. If P is a prime ideal of A containing J and if z E rad(J) ,  then 
zn E J C P for some n 2 1, so z E P. Conversely, let z E A\rad(J),  and 
let S = {zn : n E N}, a multiplicative subset of A.  Then J n S = 0, so 
by 37.14 there is a prime ideal P of A containing J such that P n S = 0, 
whence z E A \ P. Thus rad(J)  is the intersection of all the prime ideals of 
A containing J. The final assertion is therefore a consequence of 37.12. 0 

37.17 Theorem. A proper radical ideal of a noetherian ring A is the 
intersection of finitely many prime ideals. 

Proof. In the contrary case, the set J’ of all proper radical ideals that are 
not the intersections of finitely many prime ideals is nonempty and hence 
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has a maximal member J .  Clearly J itself is not a prime ideal, so there 
exist b, c E A \ J such that bc E J .  Then rad(J  + Ab) and rad(J  + Ac) 
are radical ideals not belonging to 3, so each is the intersection of finitely 
many prime ideals. Therefore we shall obtain a contradiction by showing 
that 

rad( J + Ab) f l  rad(J + Ac) = J.  

Let z E rad( J + Ab) n rad(J + Ac). Then there exist n, m E N such that 
zn E J + A b  and zm E J + A c ,  so 

zn+m E ( J + A b ) ( J + A c )  C J + A b c =  J, 

whence z E J .  0 

37.18 Theorem. If P is a prime ideal of a commutative ring A with 
identity and if J1, . . . , J, are ideals of A such that P 2 n;=, J k ,  then 
P 2 Ji for some i E [1,n]. 

Proof. In the contrary case, there would exist 2 k  E J k  \ P for each k E 
[l,n]. But then 

n 

z 1 2 2 * . * 2 n  E (n J k ) \ p  
k=l 

since P is a prime ideal, a contradiction. 0 

37.19 Theorem. If J is a proper ideal of a noetherian ring A, there are 
only finitely many minimal prime ideals over J. 
Proof. There are finitely many prime ideals QI, . . . , Qn whose intersec- 

tion is the intersection of all the prime ideals of A containing J by 37.16 and 
37.17. By 37.12 there exist minimal prime ideals P I ,  . . . , P, over J such 
that Pi s Q; for all i E [l,n], so ny=l Qi = ny=l Pi. Let P be a minimal 
prime ideal over J. Then 

P Z n Q i = f i P  i. 

By 37.18, P 1 Pk for some k E [l,n], so P = P k  as P is minimal over J .  a 

37.20 Theorem. If M is the maximal ideal of a local noetherian ring 
A and if J is a proper ideal of A,  then M is a minimal prime ideal over J 
if and only if J _> M t  for some t 2 1. 

Proof. Necessity: A /  J is a local noetherian ring by 20.4 whose only prime 
ideal is the maximal ideal M / J .  By 37.9 and 27.15, ( M / J ) t  = (0) for some 
t 2 1, that is, M t  2 J .  Sufficiency: If P is a prime ideal containing J ,  then 
P contains M t  for some t 2 1, and hence P = M .  0 

n 

i=l  i= 1 
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37.21 Theorem. Let A be a noetherian integral domain. If S is a 
multiplicative subset of A,  then S-lA is noetherian. 

Proof. Let J be an ideal of S-lA. By 37.13, J = (S-lA)(J f l  A ) ,  and by 
hypothesis there exist 2 1 ,  . . . , x, E J n A  such that J n A  = A q + .  . .+Ax,. 
Consequently, J = (S-lA)xl + . . . + (S-lA)x,. Thus S-lA is noetherian. 0 

37.22 Theorem. Let A be a noetherian ring. The set 2 of zero-divisors 
of A is the union of finitely many prime ideals, and every minimal prime 
ideal of A is contained in 2. 

Proof. For each c E A,  let Ann(c) be the annihilator of c ,  and let A = 
{Ann(c) : c E A * } .  Clearly 2 = U B E A  B. Let st0 be the set of all maximal 
members of A, ordered by inclusion. As A is noetherian, each member of 
A is contained in a member of A, so 2 = UBEAo B. To show that 2 is a 
union of prime ideals, therefore, it suffices to show that each member of A-J 
is a prime ideal. 

Let J = Ann(c) E A, and let a ,  b E A be such that ab E J but b $! 
J .  Then bc # 0. Clearly Ann(bc) 2 Ann(c), so by the maximality of J ,  
Ann(bc) = Ann(c). As a E Ann(bc), therefore, a E Ann(c) = J. 

Let C = { c  E A* : Ann(c) E A}, and let I be the ideal generated by C. 
As A is noetherian, there exist c1, . . . , c, E C such that I = Acl +. . .+Ac,. 
To show that Jto = {Ann(c;) : 1 5 i 5 n}, let c E C. Then there exist 
2 1 ,  . . . , 2, E A such that c = ~ 1 ~ 1  + . . . + z~c,, SO 

n 

Ann(c;) C Ann(c), 
i = l  

and thus Ann(cl)Ann(cz) . . . Ann(c,) 5 Ann(c). By the preceding, Ann(c) 
is a prime ideal, so Ann(ck) C_ Ann(c) for some Ic E [1,n], and therefore 
Ann(c) = Ann(ck) by the maximality of Ann(Ck). Thus is finite. 

Finally, we wish to show that if Q is a minimal prime ideal of A, then 
Q C 2. Let S = {ab E A : a E A \ Q ,  b E A \ 2). Clearly S is a 
multiplicative subset of A, so by 37.14 there is a prime ideal P such that 
P n S = (0). Now P C_ 2 n Q, for if z is a nonzero element of P, then 
z 4 S but I = 1 . z  = z .  1, so as 1 $! Q and 1 4  2, z E 2nQ. Thus by the 
minimality of Q ,  Q = P E 2. 0 

37.23 Lemma. Let A be an integral domain, and let u, y E A*. (1) 
The A-modules (Au+ Ay)/Au and (Au2 + Auy)/Au2 are isomorphic. (2) If 
au2 E Ay implies that au E Ay for all a E A, then the A-modules Au/Au2 
and (Au2 + Ay)/(Au2 + Auy) are isomorphic. 

Proof. The function z -+ ux is an A-linear isomorphism from Au + Ay to 
A u 2 + A u ~  and takes Au to Au2, so (1) holds. (2) Clearly the functions f and 
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g from A to Au/Au2 and to ( Au2 + Ay ) / ( Au2 + Auy ) respectively, defined by 
f (z )  = zu+Au2 and g(x) = xy+Au2 +Auy, are A-epimorphisms. Thus to 
establish (2), it suffices to show that they have the same kernel. The kernel 
of f is clearly Au. If x E Au, then zy E Auy, so g(z) = 0. Conversely, 
suppose that g(z) = 0, that is, that zy = au2 + buy where a, b E A. Then 
au2 E Ay, so by hypothesis au = cy for some c E A, whence q = cuy + buy, 
therefore z = (c+  b)u E Au, and finally f(z) = 0. 0 

37.24 Theorem. (Principal Ideal Theorem) If A is a local noetherian 
ring and if the maximal ideal M of A is a minimal prime ideal over Ax for 
some E A, then every prime ideal of A other than M is a minimal prime 
ideal. 

Proof. In the contrary case there would exist prime ideals P and Q such 
that M 3 P 3 Q. Then A/Q would be a local integral domain with max- 
imal ideal M/Q, a minimal prime ideal over the principal ideal generated 
by z + Q, and P /Q  would be a nonzero, nonmaximal prime ideal. Re- 
placing A by A/Q if necessary, we may therefore assume that A is a local 
noetherian domain whose maximal ideal M is a minimal prime ideal over 
Az and that A contains a nonzero, nonmaximal prime ideal P. To obtain 
a contradiction, let y be a nonzero element of P, and for each k 2 1, let 
J k  = { a  E A : uzh E Ay}. As ( J k ) k > l  is an increasing sequence of ideals 
of A, there exists n 2 1 such that J k - -  J ,  for a l l  k 2 n. Then E Ay 
implies that azn E Ay. Let u = zn; then au2 E Ay implies that au E Ay. 

Clearly M is a minimal prime ideal over both Au and Au2. Therefore 
A/Au2 is a noetherian ring having precisely one prime ideal, so A/Au2 is an 
artinian ring by 37.9. Therefore every finitely generated, unitary (A/Au2)- 
module has finite length by 27.8, 20.8, and 37.2. Thus, as (Au+Ay)/Au2 and 
(Au2 +Ay)/Au2 are finitely generated, unitary (A/Au2)-modules, they have 
finite length. As [(Au+Ay)/Au2]/[Au/Au2] is isomorphic to (Au+Ay)/Au, 
we conclude from 37.6 that 

length[(Au + Ay)/Au2] = length[Au/Au2] + length[(Au + Ay)/Au]. 

Similarly, 

length[(Au2 + Ay)/Au2] = length[(Au2 + Auy)/Au2] + 
+ length[(Au2 + Ay)/Au2 + Auy)]. 

By 37.23, 

length[(Au + Ay)/Au] = length[(Au2 + Auy)/Au2], 

length[Au/Au2] = length[(Au2 + Ay)/(Au2 + Auy)]. 
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Therefore 
length[(Au + Ay)/Au2] = length[(Au2 + Ay)/Au2], 

so again by 37.6, (Au + Ay)/Au2 = (Au2 + Ay)/Au2. Thus Au + Ay = 
Au2 + Ay, so u = cu2 + dy for some c, d E A. Since M is a minimal prime 
ideal over Au, u E M ,  and therefore 1 - cu is a unit of A. Consequently 
as dy = (1 - cu)u, we conclude that u E Ay E P, a contradiction of our 
assumption that M is a minimal prime ideal over Au. 0 

Exercises 

37.1 Let A be an integral domain. An element p of A is a principal prime 
if p # 0 and Ap is a prime ideal. (a) If p E A*, then p is a principal prime 
if and only if for all a, b E A, if plab, then either pla or pJb.  (b) If p is a 
principal prime and if plal . . .a , ,  then for some i E [l ,n],  plai.  (c) Ifp and 
q are principal primes and if pJq, then qJp,  that is, p and q are associates. 
(d) If every noninvertible element of A* is a product of principal primes, 
then A is a unique factorization domain, that is, the hypothesis holds and 
for any finite sequences ( p i ) l l i ~ ,  and (qj)lljSm of principal primes, if n;=l pi = nj”=, q j ,  then rn = n and there is a permutation CT of [I, n] such 
that for each i E [l ,n],  pi and q0(i) are associates. [Use (b) and (c) and 
induction on n.1 

37.2 Let A be an integral domain. The set S consisting of all invertible 
elements of A and all products of finite sequences of principal primes is a 
multiplicative set such that for all a, b f A, if a& E S, then a E S and b E S. 
[Proceed by induction on the number of principal primes whose product is 
ab.] 

37.3 Let A be an integral domain. (a) If A is a unique factorization 
domain, then every nonzero prime ideal of A contains a principal prime. 
(b) Conversely, if every nonzero prime ideal of A contains a principal prime, 
then A is a unique factorization domain. [With S defined as in Exercise 
37.2, show that if c E A* \ S, then Ac n S = (0)) and apply 37.14.1 

37.4 If A is a principal ideal domain, then A[[X]] is a unique factorization 
domain, and the principal primes of A[[X]] are the associates of X and the 
principal primes of A. [Apply (b) of Exercise 37.3. If P is a prime ideal not 
containing X, show that P n A = Ap where p is a prime of A, and that P is 
the principal ideal of A[[X]] generated by p. For this, argue as in the proof 
of 23.2.1 

38 Krull Dimension and Regular Local Rings 

38.1 Definition. The height of a prime ideal P of a noetherian ring 
A, denoted by ht(P),  is the supremum of the lengths of all the strictly 
decreasing sequences ( P ~ ) I J < ~ < ~  - -  of prime ideals of A such that Po = P.  
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For example, the height of a minimal prime ideal of A is zero, a special 

38.2 Theorem. If A is a noetherian ring and if J is a proper ideal of A 
generated by n elements, then for any prime ideal P of A that is minimal 
over J ,  ht(P)  5 n. 

Proof. We s h d  proceed by induction on n, the assertion being true by 
the definition of a minimal prime ideal if n = 0, that is, if J = (0). Assume, 
therefore, that n 2 1 and that the assertion holds for any prime ideal in a 
noetherian ring that is minimal over an ideal generated by n - 1 elements. 
We shall obtain a contradiction from the supposition that P is a prime ideal 
that is minimal over an ideal J generated by n elements, and that there is 
a strictly decreasing sequence (Pk)O<k<m - -  of prime ideals of length m > n, 
where Po = P. 

We make several reductions: First, by replacing A with A/P, ,  J with 
(J+P,)/P,, and each Pk with Pk/P,, we may assume that A is an integral 
domain. Second, by replacing the integral domain A by A p ,  J by A p  J, and 
each Ph by ApPk, we may assume, by 37.13 and 37.21, that A is a local 
noetherian domain whose maximal ideal is P. Third, we may assume that 
there are no prime ideals strictly between P and P I ;  indeed, in the contrary 
case, there is an ideal Pi maximal in the set of all prime ideals N such that 
P II N 3 PI; replacing (Pk)O<k<m by (PL)o<k<m+l where P; = Po and 
PL+l = Pk for d k E [l, m], we-obtain a sequence of length m+ 1 > n such 
that there are no prime ideals strictly between P and Pi. Consequently, we 
assume that A is a local noetherian domain whose maximal ideal is P and 
that there are no prime ideals strictly between P and PI .  

Let S be a set of n elements generating J .  Since P is a minimal prime 
ideal over J ,  J sf PI, so there exists a1 E S not belonging to PI; let 
a2, . . . , a, be the remaining members of S. Then Aal + PI contains PI 
properly, so P is a minimal prime ideal over Aal + P I .  By 37.20, Aal +Pi 2 
Pt 2 J t  for some t 2 1. In particular, for each k E [2,n] there exists cg E A 
and bk E Pi such that a: = ckal + b k .  Let I = Ab2 + . . . + Ab,. Since 
m > n, ht(P1) > n - 1, so by our inductive hypothesis applied to I ,  PI is 
not a minimal prime ideal over I .  Consequently, by 37.12, there exists a 
prime ideal Q of A such that PI 3 Q 2 I .  Since 

case of the following theorem: 

P 2 Aai + Q  2 Aal + 1 2  Aal + Aai + .  . . + Aaft 2 Jnt  

and since P is a minimal prime ideal over J ,  P is the only prime ideal of 
A containing Aal + Q. Let the image under the canonical epimorphism 
from A to A / Q  of an element 2 be denoted by z* and that of an ideal H 
by H * .  Then in A / Q ,  P* is a minimal prime ideal over (A/Q)a; ,  but, as 
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P 3 PI 3 Q, P* 3 P; 3 { 0 } ,  in contradiction to 37.24, since (0) is the 
only minimal prime ideal of AIQ. 

Thus, if P is a prime ideal in a noetherian ring A, ht(P) is finite, since 
ht(P)  5 n where P is generated by n elements. If Q is a prime ideal properly 
contained in P ,  clearly ht(P)  2 1 + ht(Q), that is, ht(P)  > ht(Q). 

38.3 Theorem. Let PI ,  . . . , Pn be ideals of  a commutative ring A with 
identity, all but at most two of  which are prime ideals. If B is a subring of 
A such that 

n 

then B 5 Pk for some k E [l, n] . 
Proof. We first consider the case n = 2. Here, neither ideal need be 

prime. If B C PI U PZ but B $ PI and B p Pz, then there would exist 
z E B\P1 and y E B\P2, whence z E P2 and y E PI as B C PI UPZ; but 
then z+y E B C PI U P 2 ,  whereas z+y 4 PI as y E PI and 2 $! PI, and 
z + y $! Pz as z E P2 and y $! Pz, a contradiction. 

Assume next that n 2 3 and that the assertion holds for n - 1 ideals. If 
B n Pj C_ Ukfj Pk for some j E (1,n], then 

so by our inductive hypothesis, B G Pk for some k E [l,n]. In the contrary 
case, for each j E [l, n] there exists xj E ( B  n Pj) \ Ukfj P k ,  and as n 2 3 ,  
P,. is prime for some T E [l, n]. Let z = z, + y,., where 

Then y,. $! Pr as Pr is prime, so z 4 P, as 2, E P,.; also, for any i # r ,  
yr E Pi, SO z $! Pi as z, $! Pi. Hence 

a contradiction. 0 

We need an extension of 38.2: 
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38.4 Theorem. Let A be a noetherian ring, and let P be a prime ideal 
of A .  If J is an ideal of A generated by n elements that is contained in P,  
then P/ J is a prime ideal of A/  J, and 

ht(P) 5 n + ht(P/J).  

Proof. We proceed by induction on ht(P/J),  the assertion holding if 
ht(P/J) = 0 by 38.2. Let k > 0, assume that the inequality holds whenever 
J is an ideal of A generated by n elements and contained in P such that 
h t (P /J )  < k, and let I be an ideal generated by m elements and contained 
in P such that ht(P/I)  = k. By 37.19, there are finitely many prime 
ideals Q1, . . . , Qr minimal over I ,  and P is not among them as k > 0. If 
P UI='=, Qi, then P C Qj for some j E [l, T ]  by 38.3, so P = Qj by the 
minimality of Qj, a contradiction. Therefore there exists 

T 

i=l 

Let J = I + Ac, an ideal generated by m + 1 elements. If (Pk)O<k<, 
is a strictly decreasing sequence of prime ideals such that Po = P and 
P, 2 J 3 I ,  then P, 2 Qt for some t E [ l , ~ ]  by 37.12, whence P, 2 Qt 2 I 
as c f P, \ Qt. Thus ht(P/J) + 1 5 ht(P/I). Consequently, ht(P/J) < k, 
so by our inductive hypothesis, 

ht(P) 5 (m + 1) + ht(P/J) 5 m + 1 + (ht(P/I) - 1) = m + ht(P/I). 0 

38.5 Definition. Let A be a noetherian ring. The height of a proper 
ideal J of A,  denoted by ht( J), is the minimum of the heights of the minimal 
prime ideals over J. 

By 38.2, if J is a proper ideal generated by n elements, h t ( J )  5 n. If I 
is an ideal contained in J ,  then h t ( J )  2 ht(1). Indeed, if P is any minimal 
prime ideal over J, then P contains a minimal prime ideal Q over I by 
37.12, so ht(P) 2 ht(Q) 2 ht(I) ,  and therefore h t ( J )  2 ht(1). 

38.6 Definition. The Krull dimension, or simply the dimension of 
a local noetherian ring A,  denoted by dim(A), is the height of its maximal 
ideal. 

For example, by 37.9 the local noetherian rings of dimension zero are 
precisely the local artinian rings, that is, by 37.7, the local noetherian rings 
whose maximal ideal is nilpotent. 

If A is a local noetherian ring of dimension d ,  the height of each nonmax- 
imal prime ideal of A is strictly less than d ,  so the maximal ideal M of A is 
a minimal prime ideal over a proper ideal J if and only if ht( J) = d .  
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38.7 Theorem. Let A be a local noetherian ring of dimension d whose 
maximal ideal M is generated by n elements. If J is a proper ideal of A 
such that h t ( J )  2 s, where 0 5 s 5 d, there is a sequence u1, . . . , u n  of 
elements of A generating M such that M is a minimal prime ideal over 
J + A u , + ~  + . . . + Aud. 

Proof. It suffices to prove by induction that for each i E [ s , d ]  there is 
a sequence u1, , , . , u, of elements of A generating M such that h t ( J  + 
Au,+1 + . . . + Aui) 2 i, for applying this result to i = d yields an ideal of 
height d ,  over which M is therefore a minimal prime ideal. 

The statement is trivially true if i = s. Assume that it is true if s 5 i < d ,  
and let ui, . . . , u, be generators of M such that ht(J+Au,+l+. . . + A z L ~ )  2 i. 
If h t ( J  + Au,+1 + . . . + Aui) 2 i + 1, then also 

h t ( J  + Au,+1 + . . . + Au; + Aui+l) 2 i + 1, 

so the same sequence of generators serves for i + 1. By 37.12 and 37.19, the 
set P of minimal prime ideals over J + Au,+1 + . . . + Aui is nonempty and 
finite, and as noted above, M 4 P. Let PI E P; as .PI # M ,  there exists 
m E [1,n] such that u, f PI. Let P2, . . . , Ph be the remaining members of 
P not containing u,, and let Pk+l, . . . , Ph be the members of P containing 
urn. For each j E [k + 1, h] there exists m(j)  E [l, n] such that u,(i) 4 Pi, 
since Pj # P ,  whence m(j)  # m. By 37.13 there exists 

for each j E [k + 1, h]. Let 
h 

u:, = u, + c CjU,(j). 

j=k+l  

As m(j)  # m for all j E [k + l ,h ] ,  

U ,  E Aul + . . . + A u , - ~ +  Auk + Au,+~ + . . . + AIL,. 

Therefore 211, . . . , u,-1, uk, u,+1,, . . . , u, generate M .  Clearly u:, be- 
longs to no member of P; therefore each minimal prime ideal over J + 
Au,+1 + . . + Aui + Auk does not belong to  P and hence strictly contains 
some member of P by 37.12. Consequently, 

h t ( J  + Au,+l + . . . + Aui + A&) 2 i + 1. 

If m # i + 1, interchanging ui+l and uh in the sequence u1, . . . , um-1) uh, 
um+1~ . . . , u, yields the desired sequence of generators of M for i + 1. 0 

From 38.2 and 38.7 applied to the zero ideal, we obtain: 
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38.8 Theorem. Let A be a local noetherian ring of dimension d ,  and 
let M be its maximal ideal. There is an ideal J generated by d elements 
such that M is a minimal prime ideal over J, and any set of generators of 
an ideal over which M is a minimal prime ideal contains at least d elements. 

If A is a local noetherian ring with maximal ideal M, then MIM2 is a 
finitely generated (AIM)-vector space. 

38.9 Definition. Let A be a local noetherian ring, M its maximal ideal. 
The vector dimension of A, denoted by vdim(A), is the dimension of the 
(AIM)-vector space M/M2. 

38.10 Theorem. Let A be a local noetherian ring, M its maximal ideal. 
Then 21, .. ., x, generate M if and only if the M2-cosets of 21, , . . , x, 
generate the (AIM)-vector space M/M2. In particular, there is a set of 
generators of M containing vdim(A) elements, and every set of generators 
of M contains a t  least vdim(A) elements. 

Proof. The condition is clearly necessary. Sufficiency: Let 

F =  AX^ + . . . + Az,. 
Then F is closed in M for the M-topology of the A-module M by 24.14, 
and by hypothesis, M = F + M2. Consequently by 36.18, M = F. 0 

By 38.8 and 38.10, dim(A) 5 vdim(A). 

38.11 Definition. A commutative ring with identity A is a regular 

By 38.10, a local noetherian ring A of dimension d is a regular local ring 

To characterize regular local rings of dimension 1, we need the following 

38.12 Theorem. If A is a local noetherian ring that is not an integral 
domain, and if the principal ideal Ac is a prime ideal, then Ac is a minimal 
prime ideal. 

Proof. In the contrary case, there is a prime ideal Q properly contained 
in Ac. Let a E Q. Then a = xc for some z E A. Suppose that a = ycn for 
some y E A. Then yc" E Q but cn f Q, so y E Q C Ac. Therefore y = zc 
for some z E A, and thus a = zcn+l. Consequently, by induction, 

local ring if A is a local noetherian ring such that dim(A) = vdim(A). 

if and only if there are d elements generating its maximal ideal. 

theorem: 

00 00 

a E n AP E M" = (0) 
n=l  n=l 

by 20.16, where M is the maximal ideal of A. Hence Q = (01, so A is an 
integral domain, a contradiction. 0 
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38.13 Theorem. Let A be a local ring. (1) A is a regular local ring 
of dimension 0 if and only if A is a field. (2) A is a regular local ring of 
dimension 1 if and only if A is the valuation ring of a discrete valuation of 
a field. 

Proof. (1) Any field is clearly a regular local ring of dimension zero. 
Conversely, if A is a regular local ring of dimension zero with maximal ideal 
M, then M / M 2  = {0}, so M = M2 and hence M = n,,, - M" = (0) by 
20.16, that is, A is a field. 

(2) A discrete valuation ring A is a regular local ring of dimension 1, for 
its maximal ideal M is a nonzero principal ideal, whence vdim(A) = 1, and 
dim(A) = 1 since by 18.2, M and (0) are its only prime ideals. 

Conversely, let A be a regular local ring of dimension 1. The maximal 
ideal M of A is then a principal ideal. By 38.12, A is an integral domain, for 
otherwise M would be a minimal prime ideal, so the dimension of A would 
be zero. By 20.17, A is the valuation ring of a discrete valuation. 0 

38.14 Theorem. Let A be a local noetherian ring with maximal ideal 
M. If c E M \ M2, then vdim(A/Ac) = vdim(A) - 1. 

Proof. We denote the image under the canonical epimorphism from A 
to A/Ac of an element 2 of A by 2*. Let r = vdim(A/Ac), and let 
91, . . ., yI. E M be such that the (M/Ac)2-cosets of y;,  . . . , y: generate 
the (A/Ac)/(M/Ac))-vector space (M/Ac)/(M/Ac)~. Then 

M/Ac = (A/Ac)y; + . . . + (A/Ac)$ 
by 38.10, so 

M = AC + Ayl + . . . + Ay,. 
Consequently, the M2-cosets of c, y1, . . . , y r  generate M / M 2 ,  so we need 
only show that if 

r 

tc + C tiyi  E M 2 ,  
i=l  

where t ,  t l ,  . . . , t, E A, then t ,  t l ,  . . . , t ,  all belong to M. Since c* = 0, 
r 

x t r y i  E ( M 2  + Ac)/Ac = (M/Ac)~ ,  

whence each t: E M/Ac by the definition of T ,  and therefore each ti E M. 
Consequently, 

i = l  

r 

i=l 

so t c  E M 2 ,  and therefore t E M since otherwise t would be invertible, 
whence c E M 2 ,  a contradiction. 0 
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38.15 Theorem. If A is a regular local ring of dimension d with maximal 
ideal M and if c E M \ M 2 ,  then A/Ac is a regular local ring of dimension 
d-1. 

Proof. We have 

d - 1 = vdim(A) - 1 = vdim(A/Ac) 2 dim(A/Ac) 
= ht(M/Ac) 2 ht(M) - 1 = d - 1, 

the equalities and inequalities holding respectively by hypothesis, 38.14, the 
remark preceding 38.11, the definition of dim(A/Ac), 38.4, and the definition 
of dim(A). Thus vdim(A/Ac) = dim(A/Ac) = d - 1. 0 

38.16 Theorem. A regular local ring is an integral domain. 

Proof. We proceed by induction on the dimension d of a regular local 
ring, the assertion holding if d is either 0 or 1 by 38.13 and the discussion 
preceding it. Let d > 0, assume that every regular local ring of dimension 
< d is aa integral domain, and let A be a regular local ring of dimension 
d, M its maximal ideal. For any x E M \ M2, A/Ax is also a regular local 
ring of dimension d - 1 by 38.15, so A/Ax is an integral domain by our 
inductive hypothesis, that is, Ax is a prime ideal. Suppose that A were not 
an integral domain, and let PI, . . . , P, be its minimal prime ideals (which 
are finite in number by 37.19). By 38.12, for each 2 E M \ M2, Ax is a 
minimal prime ideal, so 

8 

M \ M 2  c UPi, 
i=l 

whence 
8 

M 2 M 2  U(U Pi). 

Since d > 0, M 2  C M; therefore by 38.3, M C Pi for some i E [l,s], so M 
is a minimal prime ideal and thus d = 0, a contradiction. Hence A is an 
integral domain.. 

I 

i= l  

38.17 Theorem. If A is a regular local ring of dimension d, then A[[X]] 
is a regular local ring of dimension d + 1. 

Proof. For each ideal J of A, let 

00 

J' = {x C k X k  : cg E J ,  Ck E A for d k 2 1). 
k=O 
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Thus J' is an ideal of A[[X]] satisfying J ' n A  = J. Clearly if M is a maximal 
ideal of A, M' is the maximal ideal of A[[X]], and if P is a prime ideal of 
A, P' is a prime ideal of A[[X]]. Consequently, if ( P k ) ~ < k < d  - -  is a sequence 
of prime ideals of A such that 

then 
M' = Pi 3 P; 3 . . . 3 PA = ( X )  3 (0) 

is a sequence of ideals of A[[X]] of length d + 1. Thus dim(A[[X]]) 2 d + 1. 
I f q ,  . . . ) Z d  generate M ,  clearly $1, . . . , Xd, X generate the maximal ideal 
M' of A[[X]]. Thus vdim(A[[X]]) 5 d + 1. Consequently, as dim(A[[X]]) _< 
vdim(A[[X]]), we conclude that dim(A[[X]]) = vdim(A[[X]]) = d + 1. 0 

38.18 Corollary. If K is a field, K[[X1). . . , Xd]] is a regular local ring 
of dimension d .  If C is a discrete valuation ring, C[[X,, . . . , Xd-l]] is a 
regular local ring of dimension d.  

Proof. The assertion follows by induction from 38.17 and 38.13. 0 

Exercises 

38.1 Let A be a topological ring with identity, Q(A) its total quotient 
ring, each of whose elements is of the form b / c  where b E A and c is a can- 
cellable element belonging to the center of A. The topological quotient ring 
of A, denoted by Qtop(A), is the subring S-'A of Q(A) where S is the 
multiplicative set of all cancellable elements c of A belonging to its center 
such that 2 4 cz is an open mapping from A to A. If B is a subring of 
Q(A) containing A, then the neighborhoods of zero in A form a fundamen- 
tal system of neighborhoods of zero for a ring topology on B if and only if 

38.2 Let A be a local noetherian ring, furnished with its natural topology. 
(a) Q(A) = A if and only if dim(A) = 0. (b) The following statements are 
equivalent : 

B G Qtop ( A )  * 

1' A c &top(A). 

2' Q(A) = Qtop(A) # A. 
3' dim(A) = 1. 

[Use 37.20, 37.22, and 37.24.1 
38.3 Let A be a semilocal noetherian ring that is the direct sum of finitely 

many local noetherian rings A1, . . . , A,, furnished with its natural topology, 
and let R be the radical of A. The following statements are equivalent: 
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1" Each maximal ideal of A has height 5 1, and R contains a cancellable 

2" Qt,,(A) = Q(A), and Qtop(A) has no proper open ideal. 
3" Qtop (A) contains an invertible topological nilpotent. 
4" dim(Ai) = 1 for each i E [l,n]. 

element. 

39 Complete Regular Local Rings 

Here we shall show that a complete local noetherian ring A that is either 
an equicharacteristic local ring or a nonequicharacteristic local ring in which 
p.1 is not a zero-divisor, where p is the characteristic of its residue field, is a 
finitely generated module over a subring A0 that is a power series ring over 
a Cohen ring. To do so, we need information concerning integral extensions 
of a ring. In this section, by a subring of a ring with identity is meant either 
the zero subring or a subring containing the identity, and all modules are 
assumed to be unitary. 

39.1 Definition. Let A be a subring of a commutativering with identity 
B. An element x of B is integral over A if x is a root of a monic polynomial 
in A[X]. 

Thus 2 is integral over A if and only if there exist ao, . . . , a,-l E A such 
that x n  + an-lxn-l + . . . + alx + a0 = 0. 

B, and let x E B. The following statements are equivalent: 
39.2 Theorem. Let A be a subring of a commutative ring with identity 

1' x is integral over A. 
2" A[x] is a finitely generated A-module. 
3' x belongs to a subring C of B that is a finitely generated A-module. 
4" There is a finitely generated submodule M of the A-module B such 

Proof. To show that 1" implies 2', assume that 

that x M  2 M and for any y E A [ x ] ,  yM = (0) only if y = 0. 

2, + an-lxn--l +. . .+  alx+ao = o ,  
where ag, a1 ) . . . , a,-l E A, and for each q 2 0 let Mq be the A-submodule 
generated by 1, 2, . . . , xn+q-'. For each q 2 0, 

xn+q = -an-lxR+q-l - . , . - aoxq E Mq,  

so Mq+l = M q .  Consequently, Mq = MO for all q 2 0 by induction. As 

00 

421 = u M?, 
q=o 
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therefore, A[x] = Mo, a finitely generated A-module. Clearly 2" implies 3 O ,  
and 3" implies 4" as we may take M = C, which contains 1. 

Finally, assume 4", and let M = Aul + . . . + Au,. For each i E 11, n] 
there exist ail, . . . , ain E A such that 

Thus for each i E [l, n],  

n 

C(Uij - 6ijX)Uj = 0, 

where 6ij = 1 if i = j ,  &j = 0 if i # j. Consequently, if 

N =  

then 

N .  [ y ' ]  = [!I. 
U n  

Multiplying this equation on the left by the adjoint of N and recalling 
that (adj N ) N  = (det N)In where det N is the determinant of N and In 
is the identity matrix of order n, we conclude that (det N)ui = 0 for all  
i E [l,n]. Thus (det N)u = 0 for all u f M ,  so by hypothesis, det N = 0. 
Consequently, 2 is a root of the monic polynial (-l)ndet(aij -6ijX), whose 
coefficients belong to A. 0 

39.3 Theorem. Let A be a subring of a commutative ring with iden- 
tity B .  If 21, ..., x, are elements of B that are integral over A, then 
A [ s l , .  . . ,2,] is a finitely generated A-module. 

Proof. For each k E [l,n], let Aa = A[xl, ... ,za]. By 39.2, A1 is a 
finitely generated A-module. If k > 1, XI, is clearly integral over Ak-1, 
and thus Arc, which is A ~ - I [ X ~ ] ,  is a finitely generated Ak-1-module. An 
inductive argument therefore establishes that AI, is a finitely generated A- 
module for all  k E [1,n]. 0 
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39.4 Theorem. If A is a subring of a commutative ring with identity 
B, then the elements of B integral over A form a subring of B. 

Proof. If z and y are integral over A, then -z, z + y, and zy all belong 
to A[z, y], a finitely generated A-module by 39.3. Consequently, as A[z, y] 
is a subring of B, -2, z + y, and zy are integral over A by 39.2. 0 

39.5 Definition. Let A be a subring of a commutative ring with identity 
B. The integral closure of A in B is the subring A' of B consisting of all 
elements of B integral over A; A is integrally closed in B if A' = A. B is 
integral over A if A' = B. 

39.6 Theorem. Let A and B be subrings of a commutative ring with 
identity C such that A E B. If z E C is integral over B and if B is integral 
over A, then z is integral over A. 

Proof. There exist bo, . . . , bn-l E B such that zn + bn-lzn-' + . . . + bo = 
0, so z is integral over A[bo,. . . , b,-l]. Consequently, A[bo,. , . , bn-l, z] is a 
ring that is a finitely generated A[bo,. . . , b,-l]-module; but A[bo,. . . , b,-l] 
is a finitely generated A-module by 39.3; hence A[bo, . . . , bn-l, z] is a finitely 
generated A-module, so z is integral over A by 39.2. 0 

39.7 Corollary. If A is a subring of a commutative ring with identity 
B, the integral closure of A in B is an integrally closed subring of B. 

39.8 Theorem. Let B be a commutative ring with identity that is in- 
tegral over a subring A. If P is a prime ideal of A and Q' an ideal of B such 
that Q' n A P ,  then there is a prime ideal P' of B such that P' n A = P 
and Q' C PI. 

Proof. Let 3 be the set of all ideals J' of B such that J' n A 5 P and 
Q' C J'.  Then Q' E 3, so ,7 # 8. Ordered by inclusion, 3 is clearly 
inductive and therefore contains a maximal member P'. Clearly P' 2 Q'. 
We shall show that P' n A = P and that P' is a prime ideal of B. 

Suppose that there exists z E P \ P'. Then (P' + Bz) n A p P by the 
maximality of P', so there exist p E P' and b E B such that p + bx E A \ P; 
let y = p+bz .  As bis integral over A, there exist ao, , , . , a,-l E A such that 
bn+an-lb"-l+...+ao = 0, whence (bz)"+a,-lz(bz)"-'+ ...+ aoz" = 0. 
As y 3 ba: (mod P'),  y"+a,-lzy"-l+. . .+agzn belongs to P' and thus to 
P' n A C P, since z, y E A. Therefore as z E P ,  a prime ideal, we conclude 
that yn E P and hence y E P ,  a contradiction, Thus P' n A = P. 

To show that P' is prime, let J i  and J; be ideals of B containing P' such 
that J I J ;  5 P'. Let J1 = JI n A, J2 = J; n A. Then J1 Jz P ,  so, as 
P is prime, either J1 or J2 is contained in P, say J1. But then J i  E 3 as 
JI 2 P' 2 Q', so by the maximality of PI, JI = PI. Thus P' is a prime 
ideal of B. 0 
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Applying 39.8 to the case Q = {0}, we obtain: 
39.9 Corollary. Let B be a commutative ring with identity that is 

integral over a subring A .  If P is a prime ideal of A ,  there is a prime ideal 
P' of B such that P' n A = P .  

39.10 Theorem. Let B be a commutative ring with identity that is 
integral over a subring A .  If P and Q are prime ideals of B such that 

Proof. Let x E Q \ P .  As x is integral over A ,  there exists a monic 
polynomial X" + an-1Xn--l + . . . +a0 E A [ X ]  of lowest possible degree such 
that xn + an-lxn-l + . . . + a0 E P. As 

P c Q, then P n A c Q n A .  

x(x"-1+ an-1xrr-2 + . . . + u1) E --a0 (mod P ) ,  
and x @ P, we conclude that a0 $! P ,  for otherwise xn-' + an-1xn-2 + 
. . . + a1 E P ,  in contradiction to the definition of n. Thus a0 @ P n A ,  but 

39.11 Theorem. Let B be a commutative ring with identity that is 
integral over a subring A ,  and let P be a prime ideal of B. Then P is a 
maximal ideal of B if and only if P n A is a maximal ideal of A .  

Proof. As P n A is a proper ideal of A ,  it is contained in a maximal 
ideal M .  By 39.8 there is a prime ideal M' of B such that M i  2 P and 
M' n A = M .  Consequently, if P is maximal, then M' = P ,  so M = P n A,  
that is, P n A is maximal. 

Similarly, P is contained in a maximal ideal M' of B. Consequently, 
M i  n A is a proper ideal of A containing P n A ,  so if P n A is maximal, then 
M' n A = P n A ,  whence M i  = P by 39.10, that is, P is maximal. 0 

39.12 Theorem. Let f be an epimorphism from a local noetherian ring 
A to a local noetherian ring B. (1) If A and B are furnished with their 
natural topologies, f is a topological epimorphism. (2) If A is a complete 
local noetherian ring, so is B. (3) If A is an integral domain and if dim(A) 
= dim(B) , then f is an isomorphism. 

Proof. Let M be the maximal ideal of A.  Then f ( M )  is the maximal 
ideal of B. (1) Since f ( M " )  = f(M)" and M" C f - ' ( f ( M ) " ) ,  f is a 
toopological epimorphism. (2) Let K be the kernel o f f .  Since f induces 
a topological isomorphism from A / K  t o  B by (l), B is complete by 7.14. 
(3) Assume that K # (0)) let d =dim(B), and let (Pk)O<k<d be a strictly 
decreasing sequence of prime ideals of B. Then as f- '(Pd) 5 K 3 (0), 

and therefore dim(A) 1 d + 1 as (0) and each f - l (Pk )  are prime ideals of 
A ,  a contradiction. Thus K = (0)) so f is an isomorphism. 0 

a0 E A n Q since xn + an-lzn-l +. . . + a0 E P C_ Q and 2 E Q. 0 

f-'(Po) 3 a * .  3 f - l (Pd)  3 (O), 
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39.13 Theorem. Let A be a commutative ring with identity, and let 
A0 be a semilocal subring of A containing the identity of A such that A is 
a finitely generated Ao-module. (1) A is a semilocal ring, and its natural 
topologies as a ring or Ao-module are identical. (2) If A0 is a noetherian 
ring, then A is a semilocal noetherian ring and the natural topology of A 
induces on A0 its natural topology; if, further, A0 is open for a ring topology 
7 on A inducing on A0 its natural topology, then 7 is the natural topology 
of A. (3) If A and A0 are both local noetherian rings, then dim(A) = 
dim(A0). (4) If A0 is a complete semilocal noetherian ring, then A is a 
semilocal noetherian ring that is complete for its natural topology, which 
induces on A0 its natural topology. 

Proof. Let MI, . . . , Ms be the maximal ideals of Ao, and let Ro be the 
radical of Ao. By 24.11, 

For each i E [l,s], A/MiA is a finitely generated (Ao/M;)-vector space 
and hence is an artinian (Ao/M;)-algebra with identity by 27.8. Therefore 
A/M;A is an artinian ring, so there are only finitely many maximal ideals 
N ~ J ,  . . . , Nils(;) of A containing MiA by 27.17. Let 

44 
R; = n Nj,j = Nj,lNi,2 . . . N;,s(j)  

j=1  

by 24.11. As R;/M;A is the radical of A/M;A,  there exists t ( i )  2 1 such 
that Rj(i) MjA by 27.15. By 39.11, the radical R of A is the intersection 
of the ideals N;, j ,  where i E [1,s] and for each such i, j E [l,s(i)]. Thus by 
24.11, R = R1 . . .R,, so if t = sup{t(i) : i E [l,s]}, 

and furthermore, 
s S 

R = n R~ 2 n  mi^ 2 R ~ A .  
i = l  i=l 

Therefore the natural topology of the semilocal ring A and the natural 
topology of the Ao-module A are the same, since for any n 2 1, Rnt C 
(&A)" E R". 

Assume further that A0 is noetherian. By 20.8, A is a noetherian Ao- 
module and a fortiori is a noetherian ring. By 24.3 and (1)) the topology 
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induced on A0 by the natural topology of A is the natural topology of Ao. 
Suppose that A0 is open for a ring topology 7 on A that induces on A0 its 
natural topology, and for each ideal Jo of Ao, let 

(A0 : Jo) = {X E A : JOZ E Ao}, 

an Ao-submodule of A. Then 
00 

A = U (A0 : R,") 

since A0 is open and (Rt)nzl is a fundamental system of neighborhoods of 
zero for 7. Thus as A is a noetherian A*-module, A = (A0 : R:) for some 
q 2 1, that is, R:A 2 Ao. Hence for each k 2 1, 

$(q+k) c - @(9+W c - ( R O A ) ~ ' ~  = Rq+kA 0 = RkRqA 0 0  

n=l  

RiAo = Ri. 

Therefore 7 is the natural topology of the semilocal noetherian ring A. 
(3) By 39.10, dim(A0) 2 dim(A). If (Pk)O<k<d is a strictly decreasing 

sequence of prime ideals of Ao, then by 39.9 there is a prime ideal PA of A 
such that P$Ao = Pd, and by 39.8, there is a (strictly) decreasing sequence 
(PL)O<kSd of prime ideals of A such that Pi fl A0 = Pk for all k E [O,d]. 
Thus dim(A) 2 dim(A0). 

(4) By 39.11, Ni,j n A0 = Mi for all i E [l,s], j E [l,s(i)]. Therefore 
R n  A, = Ro. Hence Rg = ( R ~ A o ) ~  R"nA0, so the topology induced on 
A0 by the natural topology of A, which is Hausdorff by (4) of 24.16, is weaker 
than the natural topology of Ao. Consequently, the two topologies are the 
same by 36.35 and 36.33. In particular, A is a topological Ao-module when 
both A and A0 are furnished with their natural topologies. Consequently, 
as A is a finitely generated Ao-module, A is complete by 36.35 and 28.5. 0 

In the following discussion, we shall use the notational abbreviations for 
elements of a power series ring or an epimorphic image thereof, introduced 
on pages 195-6. Thus if y1, . . . , ym is a sequence of elements of a ring A 
indexed by [l,m] and if n = (721,. . . ,nm) E P, then y ~ l y ~ z . .  .ykm is 
abbreviated to yn. 

39.14 Lemma. Let A be a complete equicharacteristic local noetherian 
ring, let d = dim(A), let K be a Cohen subfield of A, and let XI, . . . , x d  

generate an ideal J over which the maximal ideal M of A is a minimal 
prime ideal. For any family of elements of K indexed by Nd, the 

from K [ [ X 1 , .  . . ,&I] to A, defined by 
family (CnZ;'  . . . l d  n d  )(nl,... , n d ) E ~  is summable in A, and the function So 
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is an isomorphism from K [ [ X I , .  . . , Xd]] to a subring A0 of A, A is a finitely 
generated Ao-module, and the natural topology of A induces on A0 its 
natural topology. 

Proof. By 23.5 and 23.6, A0 is a complete local noetherian ring and hence 
a linearly compact ring by 36.35. Since X I ,  . . . , Xd generate the maximal 
ideal of K[[X1, .  . . , Xd]]  by 23.4, z1, . . . , zd generate the maximal ideal Mo 
of Ao, and thus 

MoA = Ax1 + . . . +  AX^. 

Let J = Azl + . . . + Azd. By 37.20 there exists t 2 1 such that M t  C J. 
Let y1, . . . , ym generate M. By 23.5, if z E A, there is a family ( c , ) , ~ N ~  

of elements in K such that 

by 10.8 (where, if T = ( T I , .  . . ,T,) ,  I T [  = T I  + . . . + T,). Let 

Since y' E J whenever I T [  2 t ,  

as J is a closed ideal by 24.14. Thus as K is contained in Ao, 

For any n 2 1, J" = (MoA)" = MtA, and therefore, as Mt C J C M ,  
Mtn C M t A  C M", so the Mo-topology of the Ao-module A is the natural 
topology of A. Thus A is a topological Ao-module when each is furnished 
with its natural topology. As A0 is a linearly compact ring, F is a closed 
submodule of the Ao-module A by 28.18. Therefore by 36.18, A = F, that 
is, A is a finitely generated Ao-module, Consequently by 39.13, dim(A0) = 
dim(A) = d and the topology induced on A0 by the natural topology of A 
is the natural topology of Ao. Furthermore, by (3) of 39.12, 38.18, and (b) 
of 23.4, So is an isomorphism. 0 
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39.15 Lemma. Let A be a complete nonequicharacteristic local noe- 
therian ring of characteristic zero whose residue field has prime characteris- 
tic p, let d = dim(A), let C be a Cohen subring of A, and let 21, . . . , x d - 1 ,  

p.1 generate an ideal J over which the maximal ideal M of A is a mini- 
mal prime ideal. For any family ( C , ) , ~ @ - I  of elements of C indexed by 
Nd-', the family (cnx:;2' . . . z I : ~ ' ) ( ~ ,  ,.,., n d - l ) E ~ - i  is summable in A, and 
the function So from C[[X, ,  . . . , X d - l ] ]  to A, defined by 

is an isomorphism from C [ [ X 1 , ,  . . , X d - l ] ]  to a subring A0 of A, A is a 
finitely generated Ao-module, and the natural topology of A induces on A0 
its natural topology. 

The proof is exactly like that of 39.14. 

39.16 Theorem. Let A be a complete equicharacteristic local noether- 
ian ring of dimension d,  and let k be the residue field of A. (1) A is a 
regular local ring if and only if A is isomorphic to k[ [X1 ,  . . . , & I ] .  ( 2 )  A 
contains a complete equicharacteristic regular local ring A0 such that A is a 
finitely generated Ao-module and the topology induced on A0 by the natural 
topology of A is the natural topology of Ao. 

Proof. By 21.8 and 21.14, we may identify k with a Cohen subfield K of 
A. Let M be the maximal ideal of A. (1) The condition is sufficient by 38.18. 
Necessity: M is generated by d elements 21, . . . , Z d ,  so the homomorphism 
S of 23.5 is an epimorphism. Consequently, in the terminology of 39.14, 
A = Ao, which is isomorphic to K [ [ X 1 , .  . . , X d ] ] .  ( 2 )  By 38.8, M is a 

The conclusion therefore follows from 39.14. 0 

minimal prime ideal over an ideal J generated by d elements x l ,  . . . , X d .  

39.17 Definition. A nonequicharacteristic local ring A is unramified 
ifp.1 @ M 2 ,  where M is its maximal ideal, p the characteristic ofits residue 
field, and A is ramified if p.1 E M 2 .  

39.18 Theorem. Let A be a complete, nonequicharacteric, local noe- 
therian ring of characteristic zero and dimension d, and let p be the charac- 
teristic of its residue field. (1) A is an unramified regular local ring if and 
only if A is isomorphic to C [ [ X , , .  . . , X d - l ] ]  where C is the Cohen ring of 
characteristic zero whose residue field is isomorphic to that of A. (2) If p.1 
is not a zero-divisor of A and if the maximal ideal M of A is generated by 
n elements, then A contains a complete unramified regular local ring A0 
such that A is a finitely generated Ao-module, A0 contains a Cohen subring 
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C of A, the topology induced on A0 by the natural topology of A is the 
natural topology of Ao, there exist generators u1, . . . , u, of M such that 
p.1, u2, . . . , , Ud generate the maximal ideal MO of Ao, and M = MoA. 

Proof. By 21.20 we may identify C with a Cohen subring of A. (1) 
The condition is sufficient by 38.18. Necessity: As p.1 E M \ M2 and as 
vdim(d) = d ,  there exist 21, . . . , zd E M whose M2-cosets generate the 
(AIM)-vector space M/M2 such that Zd = p.1. Consequently, 21, . . . , Zd 
generate M by 38.10. We first observe that the homomorphism S of 23.5 
from C[[X,,. . . , Xd-l]] to A determined by the sequence 21, . . . , 2d-1 is 
an epimorphism. Indeed, if z E A, by 23.5 applied to the generators 
21, .. ., q - 1 ,  zd = p.1 of M there is a family (c,,") of elements of C in- 
dexed by Nd-l x N such that (cr ,a2r(p.1)S)( , , , )E~-l  xM is summable and 

z = c c,,szr(p.1)8. 

For each T E Nd-', ( ~ , , ~ ( p . l ) ~ ) ~ ~ O  is summable by 10.5 as ~,.,~(p, 1)" E M n  
whenever s 2 n; let 

00 

s=O 

For each T E Nd'l, 

by 10.16. Hence by 10.8, 

Consequently, in the terminology of 39.15, A = Ao, which is isomorphic to 
c[[xl,... ,Xd-l]]. 

(2) By 37.22 and 37.12, ht(p.A) 2 1 (and hence ht(p.A) = 1 by 38.2). 
By 38.7 there exist generators u1, . . . , u, of M such that p.1, u2, . . . , Ud 
generate an ideal J over which M is a minimal prime ideal. Let zi = ui+l 
for each i E [l, d - 11, Zd = p.1. By 39.15, the conclusion follows. 0 

From (2) of 39.18 and 38.16, a complete nonequicharacteristic regular 
local ring is finitely generated over a complete nonequicharacteristic un- 
ramified regular local ring, but a more precise description, analogous to 
that given in 22.7 of complete discrete valuations whose valuation rings are 
nonequicharacteris tic, is available. 
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39.19 Definition. H A  is a commutative ring with identity and if A0 is 
a local subdomain of A ,  A is an Eisenstein extension of A0 if there exists 
u E A such that A = Ao[u] and u is a root of an Eisenstein polynomial over 

39.20 Theorem. If A is a complete nonequicharacteristic regular local 
ring, A is an Eisenstein extension of a subring A0 that is a complete un- 
ramified regular local ring, and the topology induced on A0 by the natural 
topology of A is the natural topology of Ao. 

Proof. Let d = dim(A).  By 38.16, p.1 is not a zero divisor. By the 
remark following 38.11 and by (2) of 39.18, and with the terminology of 
that theorem, there are generators u1, . . . , ud of the maximal ideal M of 
A such that p.1, u2, . . . , ud generate the maximal ideal MO of Ao, and 
there exists t 2 1 lsuch that M t  MoA. Thus there is a smallest natural 
number s such that uf E MoA. To show that A = Ao[ul],  let z E A .  By 
23.5 applied to the sequence u1, X I  = u2, . . . , z d - 1  = ud, there is a family 

-40. 

( C k , r ) ( k , r ) E M x M d - l  such that 

Now c 
k > a , r E @ - I  

since u; E MoA and MoA is closed by 24.14. Thus by 10.8 and 10.16, 

As A is a topological Ao-module and as A0 is linearly compact by 36.35, 
C",: Aou? is closed by 28.18. Therefore 

8 - 1  

A = C A o u :  
k=O 

by 36.18. In particular, there exist ao, . .., a,-l E A0 such that up = 
C ~ ~ ~ a k u ~ ,  so f(q) = 0 where 

5 - 1  

k=O 
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Suppose there exist integers i E [0, s - 11 such that ai 4 
the smallest such i. Then 

387 

Mo, and let h be 

a-h-1 a - 1  h-1 
U:(U;-h  - ah+kul) k = U ;  - sku: = 0,ku; E MoA. 

k=O k=h k=O 

a -h  - 
ah+kuk E M but ah $! Mo and hence ah $! M ,  U 1  

a-h-1 
AS U ; - h  - C k = l  

c;:;-' Uh+kut $! M and hence is a unit of A ,  so u: E MoA, a contradiction 
of the definition of s. Therefore aj E MO for a l l  i E [0 ,  s - 11. 

Let Q = Au2 + . . . + Aud. The maximal ideal M/Q of A/Q is then 
generated by u1 + Q, so ht((M/Q) 5 1 by 38.2. If ht(M/Q) = 0, M would 
be a minimal prime ideal over A,  an ideal generated by d - 1 elements, in 
contradiction to 38.8. Thus ht(M/Q) = 1, so as M/Q is a principal ideal, 
A / Q  is a regular local ring. In particular, A / Q  is an integral domain by 
38.16, so Q is a prime ideal of A.  Suppose that a0 E M i .  Then as each 
aj E Mo, we conclude that 

8-1  

U ;  = E MOM ( p . A  + A u ~  + , . . + Aud)M p .M + Q. 
k=O 

Thus there exists b E M such that uI - p.b E Q. As b E M = Aul + Q, 
there exists c E A such that b - cu1 E Q. Hence 

u~(u;- '  - p . ~ )  = U: - p.cu1 = (u? - p.b) + p . ( b  - c.1) E Q. 

Now u1 $! Q since otherwise Q would be M ,  whereas ht(M/Q) = 1. There- 
fore as Q is a prime ideal, u:-' - p.c  € &, whence ui-' € p . A  + Q = MoA, 
a contradiction of the definition of s. Thus a0 4 M t ,  so f is an Eisenstein 
polynomial 0 

To complete the description of complete nonequicharacteristic regular 
local rings, we need to establish the converse of 39.20: An Eisenstein ex- 
tension of a complete unramified regular local ring is a complete regular 
local ring. To do so,  and to establish another property of complete local 
noetherian domains needed in Chapter 10, we wish to show that if C is a 
field or principal ideal domain, C [ [ X ] ]  is integrally closed. 

39.21 Definition. An integral domain is integrally closed if it is in- 
tegrally closed in its quotient field. 

An integral domain A may be integrally closed without A [ [ X ] ]  being in- 
tegrally closed. consequently, we shall consider another property of integral 
domains that implies integral closure such that if A has it, then A [ [ X ] ]  has 
it. 
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39.22 Definition. Let A be an integral domain, K its quotient field. 
An element x of K is almost integral over A if there exists d E A* such 
that dx" E A for all n E N. A is completely integrally closed if every 
element of K that is almost integral over A belongs to A. 

39.23 Theorem. Let A be an integral domain, K its quotient field, 
z E K. (1) If z is integral over A, then x is almost integral over A. (2) If 
A is noetherian, then x is integral over K if and only if x is almost integral 
over K .  (3) H A  is completely integrally closed, then A is integrally closed. 
(4) If A is noetherian, A is completely integrally closed if and only if A is 
integrally closed. ( 5 )  H A  is a unique factorization domain (in particular, if 
A is a principal ideal domain), then A is completely integrally closed. 

Proof. (1) By 39.2, there exist c1, . . , , c, E K such that A[z] = Acl + 
. . . + Ac,; let ci = a&;' where ai E A, bi E A* for all i E [l,m], and let 
d = blbz .. . b,. Then dA[x] E Aal + . . . + Aa, C A, so dx" E A for aU 
n E N. 

(2) Sufficiency: Let d E A* be such that dx" E A for all n E N. Then 
A[z] E Ad-'. As A is noetherian, so is the finitely generated A-module 
Ad-', so its submodule A[x] is also a finitely generated A-module. By 39.2, 
therefore, 2 is integral over A. 

( 5 )  Suppose that d E A* and that dx" E A for all n E N but that x f A. 
Then there exist an irreducible element p of A and elements a, b E A* such 
that x = a / p b  where p does not divide a.  Let d = p"c where p does not 
divide c.  Then 

dxm+l = (ca"+l)/(pb"+l) 

where p does not divide cam+', so dxrn+l 4 A, a contradiction. 0 

39.24 Theorem. If A is a completely integrally closed integral domain, 
so is A[ [XI] .  

Proof. Let K be the quotient field of A. Then the field K ( ( X ) )  contains 
the quotient field L of A[[X]]. Let f E L be almost integral over A[[X]]. 
Then f is almost integral over K [ [ X ] ] ,  a principal ideal domain by 18.2, 
since it is the valuation ring of the discrete valuation ord on K ( ( X ) ) ,  as 
noted on page 148. Therefore f E K [ [ X ] ]  by ( 5 )  of 39.23. Let g E A[[X]] 
be such that g # 0 and gf" E A[[X]] for a l l  n E M, and let 

m M 

where for each k E N, ak E K and b k  E A. If a], A for some k 2 0, let i 
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be the smallest such integer, and let 

i-1 

k=O 

Clearly g ( f  - f1)" E A [ [ X ] ]  for all n E N. Let j be the smallest of the 
integers k such that b k  # 0. The coefficient of Xj+mi  in g ( f  - f1)" is then 
bjay for all m E N. Consequently, bja? E A for all m E N, so ai E A by 
hypothesis, a contradiction. Therefore f E A[[X]]. 0 

39.25 Corollary. If A is a completely integrally closed integral domain, 
then A[[X1,. . . , X,]] is completely integrally closed for each n 2 1.  

39.26 Corollary. Complete equicharacteristic regular local rings and 
complete nonequicharacteristic unramified regular local rings are completely 
integrally closed. 

Proof. The assertion follows from 39.16, 39.18, (5) of 39.23, and 39.25.. 

39.27 Theorem. Let A be an integrally closed integral domain, and let 
K be its quotient field. (1) If g and h are monic polynomials over K such 
that g h  E A[X], then both g and h belong to A[X]. (2) Iff is a monic 
irreducible polynomial in A[X], then f is a prime polynomial in K [ X ] .  (3) 
If u is a root of a monic irreducible polynomial f E A[X], then A[u] is an 
integral domain. 

Proof. (1) Let f = g h ,  and let L be a splitting field of f over K. Then 
there exist al, . . ., a,, bl, . . . ,  b ,  E L such that 

n m 

i=l j = 1  

For all i E [l,m], f(ai) = g ( a i ) h ( a j )  = 0,  so ai is integral over A. The 
coefficients of g are sums of products of the ai's and hence are integral over 
A by 39.4. Therefore as the coefficients of g also belong to K, g E A[X] 
since A is integrally closed. Similarly, h E A[X]. 

(2) Let f = g h  where g and h are monic polynomials over K. By (l), g 
and h belong to A[X]. Consequently, as f is irreducible in A[X], either g 
or h is the constant polynomial 1, so f is a prime polynomial in K [ X ] .  

(3) A[u] C K[u], a field since f is a prime polynomial over K by (2).  0 

39.28 Theorem. An Eisenstein polynomial f over a local noetherian 
domain A is irreducible in A[X]. 

Proof. In the contrary case, f = g h  where g and h are not units of A[X]. 
Since the leading coefficients of g and h are units of A (as f is monic), we 
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may assume that g and h are monic polynomials whose respective degrees, 
T and s, are strictly less than the degree n of f .  Let M be the maximal ideal 
of A, and for any polynomial q E A[X], let ij be the image of q in (A/M)[X] 
under the epimorphism from A[X] to (A/M)[X] induced by the canonical 
epimorphism from A to AIM. As f is an Eisenstein polynomial, 3; = X". 
Consequently, ?j = X" and h = X s  as X is a prime in the principal ideal 
domain (A/M)[X]. Thus d the nonleading coefficients of g and h belong 
to M. In particular, as T > 0 and s > 0, the constant coefficients of g and 
h belong to M ,  Consequently, the constant coefficient of f belongs to M2, 
a contradiction. 0 

39.29 Theorem. If A0 is a complete, nonequicharacteristic, unramified 
regular local ring of dimension d and if A = Ao[u] where u is a root of an 
Eisenstein polynomial f over Ao, then A is a complete regular local ring of 
dimension d whose residue field is canonically isomorphic to that of Ao. 

Proof. Since A is a finitely generated Ao-module, A is a semilocal noe- 
therian ring that is complete for its natural topology by (4) of 39.13. By 
39.28, 39.26, and (3) of 39.27, A is an integral domain. Therefore A is a 
complete local noetherian domain. By 39.13, dim(A) = d. Consequently, to 
show that A is regular, it suffices to show that vdim(A) 2 d by the remark 
following 38.10. 

Let M and MO be the maximal ideals of A and A0 respectively, and let 

f = X" + an-lxn--l + . . . + a1X + ao. 

By 39.11, M n do = Mo, and therefore M 2 MoA. As a0 E MO \ M t ,  there 
exist 2 2 ,  . . . , 2 d  E MO such that the Mi-cosets of ao, 2 2 ,  . . . , z d  generate 
the (Ao/Mo)-vector space Mo/M;. Consequently, ao, 2 2 ,  . . . , 2 d  generate 
Mo by 38.10. AS 

u E M ,  and ao E Au. We s h d  show that u, 2 2 ,  . . . , zd generate M. Let c E 
M. There exist CO,  . . . , c,-1 € A0 such that c = co + clu + . . . + c,-lun-l. 
Consequently, 

c0 E M n = M~ = ~~a~ + ~~2~ + . . . + ~ ~ 2 , .  

Therefore as a0 E Au, c E Au + A22 + . . . + Ax,. The final assertion results 
from the fact that c co (mod M). 0 
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Exercises 

39.1 (I. S. Cohen [1945]) If A is a regular local ring of dimension d and 
if 2 1 ,  . . . , xd generate the maximal ideal of A, then for each k E [1,d], 
A / ( A q  + . . . + A Z k )  is a regular local ring of dimension d - k, and hence 
Azl + . . , + Azk is a prime ideal of A. [Use 38.14 and 38.15 and induction.] 

39.2 (I. S. Cohen [1945]) Let p be an odd prime and let A0 = Z,[[X]],  the 
ring of power series in one variable over the p-adic integers. Let A = AO[U], 
where u is a root of the Eisenstein polynomial Y 2  - X 2  - p .  (a) A is a regular 
local ring whose maximal ideal M is generated by X and u. (b) M is also 
generated by X - u and X + u. (c) A does not contain a discrete valuation 
ring B such that A is isomorphic to B[[Y]]. [Use Exercise 39.1 t o  show that 
X - u and X + u are principal primes, and apply Exercise 37.5.1 

40 The Japanese Property 

Here we shall show that a complete local noetherian domain is Japanese 
in the following sense: 

40.1 Definition. An integral domain A is Japanese if for every finite- 
dimensional extension field L of the quotient field K of A, the integral 
closure of A in L is a finitely generated A-module. 

Actually, if A is any noetherian, integrally closed integral domain, its in- 
tegral closure in any separable finite-dimensional extension L of its quotient 
field K is a finitely generated A-module. This, in turn, depends ultimately 
on the fact that the trace linear form (or functional) on the K-vector space 
L is not the zero linear form, a fact from field theory whose proof, for 
completeness, is given below: 

be fields. The set of all monomorphisms 
from L to R is linearly independent in the a-vector space RL of all functions 
from L to R. 

Proof. We proceed by induction. Assume that any n distinct monomor- 
phisms are linearly independent, let 0 1 ,  . . . , on+1 be n+l distinct monomor- 
phisms, and let XI, . . . , X~+I E R satisfy c;:: = 0. AS on+l # u1, 

there exists a E L such that an+l(a) # ol(a). For each 2 f L, 

40.2 Theorem. Let L and 

n+l n+l 

k=l k=l 

and also 
n+l n+l 
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Subtracting, we obtain 
n 

0 = Ak[bk(a) - On+l(a)]ak(z) 

k = l  

for all z E L ,  so by our inductive hypothesis, Xk[bk(a) - C T ~ + ~ ( U ) ]  = 0 
for all k E [l,n], and in particular, A1 = 0 as u l (a )  # on+1(a). Thus 
C;if A h a h  = 0, so by our inductive hypothesis, Xz = . . . = Xn+l = 0. 

40.3 Definition. Let L be a finite-dimensional separable extension of 
a field K ,  and let a1, . . . , an be the K-monomorphisms from L into an 
algebraic closure s2 of L. For each a E A, the trace of a over K is the 
element n L / K ( a )  defined by 

n 

k=l 

By the definition of separability, K is the k e d  field of {a, . . . , an}, so 
TrL /K(a )  E K for all a E L .  Moreover, if K is the quotient field of a 
subdomain A and if a is integral over A,  then so is T ~ L / K ( u ) .  Indeed, if f is 
a monk polynomial over A such that f ( a )  = 0, then f (bk ( a ) )  = crk (f (4)) = 
Q(0) = 0 for all Ic E [1,n], so " r L / ~ ( a )  is integral over A by 39.4. In 
particular, if A is integrally closed, TI-L/K(u) E A for all a E A .  

I f K  has characteristic zero and if [L : K ]  = n, then DL/K(~) = n.1 # 0. 
More generally: 

40.4 Theorem. If L is a finite-dimensional separable extension of a field 
K, there exists a E L such that T r , , ~ ( a )  # 0. 

Proof. Let { a l ,  . . . , a,) be a basis of L over K ,  and let 01,  . . . , a, 
be the K-monomorphisms from L into an algebraic closure 0 of L. If 
(21,. . . , 2,) E nn satisfies 

n c zjaj (a; )  = 0 
j=1 

for all i E [l, n], then clearly 
n 

x z j a j  = 0, 
j=1 

- so z1 = . . . - zn  = 0 by 40.2. Therefore if ( 2 1 , .  . . ,z,) = (1,1,. . . , l), (1) 
is incorrect for some i E [l,n], that is, ' I ~ L , K ( u ~ )  # 0. 0 
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40.5 Theorem. Let A be an integral domain, K its quotient field, L a 
finite-dimensional extension field of K, and let A' be the integral closure of 
A in L .  (1) L is the quotient field of A'. (2) JfA is integrally closed and if L 
is a separable extension of K, there is a basis {bl ,  . . . , bn} of the K-vector 
space L such that A' C cE=l Abk. 

Proof. If X" + a,-lX"-l + . . . + alX + a0 is the minimal polynomial 
of z E L over K ,  there exists s E A* such that sak E A for aU Ic E [0, rn - 11, 
and the equality 

(sz)" + sa,-1 (s2)m-l  + . . . + sm--lq (sz) + S"UO = 0 

establishes that sx E A'. In particular, L is the quotient field of A'. Con- 
sequently, there is a basis { a l ,  . . . , an} of the K-vector space L consisting 
of elements of A'. 

For each y E L,  y' : z -+ T r ~ / ~ ( x y )  is a linear form on the K-vector 
space L. Moreover, T : y ---t y' is a linear transformation from L to the 
K-vector space L* of all linear forms on L. If y # 0, then y' # 0, for by 
40.4 there exists c E L such that T~L/K(c)  # 0, so ~'(cy- ')  # 0. Therefore 
T is injective and hence is an isomorphism from L to L* as both are n- 
dimensional over K .  Consequently, there is a basis { b l ,  . . . , b,}  of L such 
that for each j E [l,n], b:(aj) = 1 and bi(ai) = 0 if i # j .  

Let x E A', and let z = Cy==lXjbj where X j  E K for all j E [l,n]. For 
each i E [l,n], 

n n 

By 39.4, a j x  E A', so T r L / K ( a j z )  E A'n K, which is A by hypothesis. Thus 

n n 

j=1 j=1 

40.6 Corollary. If A is an integrally closed noetherian integral domain 
m d  if A' is the integral closure of A in a finite-dimensional separable ex- 
tension L, of its quotient field K, then A' is a finitely generated A-module. 

Proof. By 40.5 and 20.8, A' is a submodule of a noetherian A-module 
and hence is itself finitely generated by 20.3. 0 
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40.7 Theorem. (1) An integrally closed, noetherian integral domain of 
characteristic zero is Japanese. (2) If A is a noetherian integral domain 
of prime characteristic p ,  then A is Japanese if and only if for each purely 
inseparable finite-dimensional extension field E of the quotient field K of 
A, the integral closure of A in E is a finitely generated A-module. 

Proof. (1) follows from 40.6 and the fact that a field of characteristic 
zero is perfect, that is, each of its finite-dimensional extension fields is a 
separable extension. 

(2) Sufficiency: Let L be a finite-dimensional extension field of K ,  and 
let N be the smallest normal extension of K containing L that is contained 
in an algebraic closure SZ of L (if L = K[cl , .  . . , cn] and if fj is the min- 
imal polynomial of cj  over K for each j E [1,n], N is the splitting field 
of fifi ...fn in S l  over L ) .  Then [ N  : K ]  = [N  : L][L : K ]  < 00. Let 
E be the fixed field of the group of all K-automorphisms of N .  Then N 
is a separable extension of E and E is a purely inseparable extension of 
K .  Let B be the integral closure of A in E. By 39.7, B is an integrally 
closed subring of E and hence, by (1) of 40.5, is an integrally closed integral 
domain. By hypothesis, B is a finitely generated A-module. Consequently, 
B is a noetherian A-module and a fortiori a noetherian integral domain by 
20.8. Let C be the integral closure of B in N .  By 40.6, C is a finitely gener- 
ated B-module, therefore a finitely generated A-module, and consequently 
a noetherian A-module by 20.8. By 39.6, the integral closure A' of A in L 
is the A-submodule C n L of C. Thus A' is a noetherian A-module by 20.3 
and, in particular, is a finitely generated A-module. 0 

40.8 Theorem. If A is an integrally closed, complete local noether- 
ian domain and if A contains a principal prime ideal P such that A I P  is 
Japanese, then A is Japanese. 

Proof. By 40.7 we may assume that A has prime characteristic p ,  and we 
need only prove that if E is a purely inseparable finite-dimensional extension 
field of the quotient field K of A, then the integral closure B of A in E is 
a finitely generated A-module. As [E : K ]  < +00, there exists n 2 1 such 
that zPn E K for all z E E. Let Q = pn. Then B = {z E E : zq E A}, for if 
z E B, then zq E B n K = A as A is integrally closed, and if xQ E A, then 
z is integral over A and hence belongs to B. 

Let c E A be such that P = Ac. If c does not have a qth root in E ,  
let EO = E[a] where a is a root of X q  - c. Then $4 E K for all z E Eo 
as (z E Eo : xq E K }  is a subfield of Eo containing E and a. Moreover, 
[Eo : K ]  = [Eo : E][E : K ]  < +co. If the integral closure Bo of A in Eo is 
a finitely generated A-module, then it is a noetherian A-module by 20.8, so 
its submodule B is also finitely generated. Thus, by replacing E with Eo, if 
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necessary, we may assume that E contains an element a such that aQ = c. 
By 39.9 there is a prime ideal Q of B such that Q f l  A = P. Then 

Ba = Q = {x E E : x Q  E P } .  Indeed, aQ = c E P C Q,  so Ba E Q. If 
2 E Q, then zQ E Q n A = P. Finally, if zQ E P ,  then as P = Ac = AaQ, 
( z / a ) Q  E A, and therefore z / a  E B, that is, x E Ba. 

Since Q n A = P ,  we may regard B/Q as a module over A/P. We 
shall show next that  B/Q is a finitely generated (A/P)-module. Let A p  
and BQ be the localizations of A and B at P and Q respectively. The 
maximal ideal A p P  of Ap is Apc since A p P  = ApAc = A p c ,  and similarly 
the maximal ideal of BQ is BQU. Moreover, BQ fl K = Ap. Indeed, if 
z E BQ n K ,  then there exists s E B \ Q such that sz E B; then SQ E A \ P 
and sQz E B n K = A as A is integrally closed, so z E Ap. Consequently 
by 37.21 and 20.17, BQ is the valuation ring of a discrete valuation w of L 
whose restriction v to K is a valuation with valuation ring Ap.  Let 4,,, 
be the canonical monomorphism, defined on page 156, from the residue 
field k, = Ap/ApP of TI t o  the residue field k ,  = BQ/BQQ of w. Let 
$, : z + P --t z + A p P  and +, : z + Q -+ z + BQQ be the canonical 
monomorphisms from A / P  to k, and from B/Q to k ,  respectively, and let 
i : z + P -+ z + Q be the canonical injection from A / P  to B/Q. Clearly 

#w,v 0 $v = $, 0 i. 

Let B' = $,(B/Q) and A' = +w(i(A/P)).  Since B is integral over A, 
clearly B/Q is integral over i(A/P),  and therefore B' is integral over A'. 
Also, k, and 4 , , v ( k v )  are the quotient fields of B' and A' respectively. 
Moreover, 

[kw : 4 w , v ( k v > l  = f(w/.> I [E  : KI 

by 19.8. By hypothesis, A / P  is Japanese, so A' is also. Therefore the 
integral closure C' of A' in k, is a finitely generated A'-module. As A is 
noetherian, so is A / P  by 20.4; hence A' is also noetherian, and therefore C' 
is a noetherian A'-module by 20.8. Consequently, the A'-submodule B' of 
C' is noetherian, so B/Q is a noetherian module over i ( A / P ) ,  that is, B/Q 
is a noetherian (A/P)-module. 

As Q = B a ,  for any k 2 1, Qk = Bak.  For any n 2 1, A n  QQ" = P", 
and in particular, A n QQ = P. Indeed, if z E A n Qq", then 2 = bag" for 
some b E B, so z = bc"; consequently, b = Z C - ~  E K ,  so b E K f l  B = A, 
and therefore 2 = bc" E P". Thus the Q-topology of B induces on A the P- 
topology. Moreover, the Q-topology of B is Hausdorff, for if x E n,,, Q", 
then 

z Q E  n Q n q n A =  n P " = ( O )  

- 

00 03 

n=l n=l 
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by 20.16, so also z = 0. Since, by the preceding, A n QQ = P ,  for each 
k E [ L q l ,  

P = A n Q Q  C A n Q k  C A n Q  = P. 

Thus A n Qk = P ,  so we may regard B/Qk  as a module over A/P. If k f 
[l, q - 11, t + tak + Qk+' is an A-module epimorphism from B to Qk/Qk+' 
whose kernel is Q. Therefore the (A/P)-module Qk/Qk+l is a noetherian 
(A/P)-module by 20.3. By 27.10 applied to the (A/P)-submodules Qn/Qk 
of B/Qk,  where n E [0, k - 13, B/Qk is a noetherian (A/P)-module for 
all  k 2 1. In particular, B/QQ is a noetherian (A/P)-module and hence 
a noetherian A-module, so as QQ = BaQ = Bc = PB, there is a finitely 
generated submodule F of the A-module B such that B = F + PB. 

By the preceding, B,  furnished with the Q-topology, is a linearly topolo- 
gized, Hausdorff topological module over A, furnished with the P-topology. 
By hypothesis, 36.35, and 36.38, A is linearly compact for the P-topology. 
Therefore F is closed in B by 28.18. Consequently, B = F and hence B is 
a finitely generated A-module by 36.18. 0 

40.9 Theorem. A complete local noetherian integral domain is Japan- 
ese. 

Proof. A field is certainly Japanese, and a complete discrete valuation 
ring of characteristic zero is also Japanese by 20.17, (5) and (3) of 39.23, 
and (1) of 40.7. Let C be a field or a complete discrete valuation ring of 
characteristic zero, and for each n E N, let B, = C[[X1, . . . , X,]]. We have 
just observed that Bo is Japanese, and an inductive argument establishes 
that B, is Japanese for all n E N. Indeed, assume that B,-l is Japanese. 
By 23.4, B, is a complete local noetherian integral domain, and by 39.25 
and (3) and (5) of 39.23, B, is integrally closed. Consequently, as X ,  is 
a prime of B, and as B/B,X, is isomorphic to B,-l, B, is Japanese by 
40.8. Therefore by (1) of 39.16 and (1) of 39.18, a complete regular local 
ring that is either equicharacteristic or unramified is Japanese. 

Let A be a complete local noetherian integral domain. By (2) of 39.16 and 
(2) of 39.18 and the preceding, A contains a Japanese subdomain A0 and 
elements c1, . . . , c, such that A = A o q +  . . . + Aoc,. Let K and KO be the 
quotient fields of A and A0 respectively. Each ci is integral over A0 by 39.2 
and hence is algebraic over K O ,  so KO [cl, . . . , c,] is a finite-dimensional field 
extension of KO. Clearly K = Ko[cl , .  . . , c,]. If L is a finite-dimensional 
field extension of K ,  A and A0 have the same integral closure C in L by 
39.6, so as [L  : KO] = [L  : K ] [ K  : KO] < +oo, C is a finitely generated 
Ao-module and a fortiori a finitely generated A-module. 0 
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Exercises 

40.1 If ( A x ) x ~ L  is a family of subrings of a commutative ring with identity 
B that are integrally closed in B ,  then nxEL Ax is integrally closed in B .  

40.2 If A is the valuation ring of a real valuation of a field K ,  then A is 
integrally closed in K.  

40.3 (Nagata [1962]) Let K be a field of prime characteristic p such that 
[K : KP] = +oo, where KP is the range of the monomorphism x -+ x p  from 
K to K (for example, let K = Fp(X1,  X z ,  . . . ) where Fp is the prime field 
of p elements, for then KP = F p ( X f ,  X:, . . . )). Let B = K [ [ X ] ] ,  and let A 
be the union of all the subrings F [ [ X ] ]  of K [ [ X ] ]  where F is a subfield of K 
containing KP and [F : KP] < fm. (a) A is a discrete valuation ring whose 
maximal ideal is A X ,  [Observe that AX C B X  in establishing 5" of 20.17.1 
Let Q be the quotient field of A in K ( ( X ) ) .  (b) There exists c E B \ A, 
and for any such c,  [Q(c) : Q] = p and Q(c)  is the quotient field of A[c]. 
(c) Let D be the integral closure of A[c] in Q(c) .  Then D is the integral 
closure of A in Q(c) ,  and D = B n Q ( c ) .  [Apply Exercises 40.1 and 40.2 
to B.] (d) B X  n D = D X ,  and consequently D is a discrete valuation ring 
whose maximal ideal is D X .  [Observe that B in integral over A and that 
if gX E D, then g E &(.).I (e) D = K + D X ,  and hence D = A + D X .  
[Use (d).] (f) D is not a finitely generated A-module, and hence A is not 
Japanese. [In the contrary case, apply 36.18 and 24.14 to the A-module D.] 



CHAPTER X 

LOCALLY CENTRALLY LINEARLY COMPACT RINGS 

Topological rings formed from finite-dimensional algebras over discretely 
valued fields are the subject of this chapter. In $41, complete discretely 
valued fields are characterized as those nondiscrete topological fields having 
an open, strictly linearly compact subring, and complete discretely valued 
division rings finite-dimensional over their centers are similarly character- 
ized as those nondiscrete topological division rings that are locally centrally 
linearly compact, that is, that have a linearly topologized open subring that 
is a strictly linearly compact module over its center. An immediate con- 
sequence is Jacobson’s theorem that the topology of a nondiscrete, totally 
disconnected, locally compact division ring is given by a discrete valuation. 

In $42 topological rings with identity that are indecomposable finite- 
dimensional algebras over complete, discretely valued fields are character- 
ized as locally centrally linearly compact rings of zero or prime characteristic 
whose centers are local rings having no proper open ideals, and in $43 locally 
centrally linearly compact rings,whose centers have no proper open ideals 
are described, and applications of these results to locally compact rings are 
given. 

41 Complete Discretely Valued Fields and Division Rings 

Basic to our characterization of complete, discretely valued division rings 
finite-dimensional over their centers are the following definitions: 

41.1 Definition. A topological ring is locally strictly linearly com- 
pact if it contains an open, strictly linearly compact subring. A topological 
ring is centrally linearly compact if it is a linearly topologized ring that 
is a strictly linearly compact module over its center. A topological ring 
is locally centrally linearly compact if i t  contains an open, centrally 
linearly compact su bring. 

For example, a totally disconnected, locally compact ring is locally cen- 
trally linearly compact by 4.21 and the remark following Definition 28.10. 

398 
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41.2 Theorem. I f f  is a continuous epimorphism from a centrally lin- 
early compact ring B to  a Hausdore linearly topologized ring B’, then B’ 
is cen t rdy  linearly compact . 

Proof. Let C and C’ be the centers of B and B’. Since the kernel of f is 
an ideal, B’ becomes a C-module under the well defined scalar multiplication 

for all c E C, b E B.  Under this definition, f is C-linear, so B’ is a strictly 
linear compact C-module by 28.11. Since f(C) E C‘, every C’-submodule 
of B’ is a C-submodule, so B’ is a fortiori a strictly linearly compact C’- 
module. 0 

41.3 Theorem. The Cartesian product B of a family ( B x ) x E ~  ofcen-  
trally linearly compact rings is centrally linearly compact. 

Proof. For each p E L let C, be the center of B,. Then center C of B 
is then the Cartesian product of (Cx)xE~.  Each Bp becomes a C-module 
under the scalar multiplication defined by 

for all ( c x ) x E ~  E C and all b E B,. As the C,-submodules and the C- 
submodules of B, coincide, B, is a strictly linearly compact C-module. 
Consequently by 28.17, B is a strictly linearly compact C-module. 0 

41.4 Theorem. Let A be a nondiscrete, locally centrally linearly com- 
pact ring with identity 1. I f  either A is a division ring or the center C of 
A is a topological ring having n o  proper open ideals, then there is an open, 
centrally linearly compact subring B of  A that contains 1. 

Proof. By hypothesis, A contains an open, centrally linearly compact 
subring B’. Let B be the subring of A generated by B’ and 1. For each left 
ideal J of B’, let ( J  : J )  = { b  E A : bJ C J ) .  Then for each left ideal J of 

B C ( J  : J )  

and hence J is also a left ideal of B,  for (J : J )  is a subring of A that 
contains B’ and 1 and hence B. Thus every open left ideal of B‘ is also an 
open left ideal of B ,  so B is linearly topologized. 

We next show that B is a strictly linearly compact module over the 
center, Cp, of B’. Case 1: A is a division ring. Since A is nondiscrete, B’ 
contains a nonzero element b. Then B = Bbb-’ E BB‘b-I, so B C B’b-l, 
for as we have just seen, B’ is a left ideal of B. Since z + zb-I is a 

B’ , 
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topological isomorphism from the Cgl-rnodde B’ to the CBf-module B‘b-’ , 
B’b-l is a strictly linearly compact Cp-submodule. As B is an open and 
thus closed submodule of the Cp-module B’b-l, therefore, B is a strictly 
linearly compact CBI-module by 28.16. 

Case 2: C has no proper open ideals. The ideal of C generated by B‘ n C 
is thus C, that is, (B‘ n C)C = C. In particular, there exist 21, . . ., z, E 
B’ n C and c1, . . . , c, E C such that 1 = zlcl  + . . . + z,c,. Let B” = 
B’cl + . . . + B’c,. As we saw above, B E (B’ : B’), so 

b = ( b z 1 ) q  + . . . + (bz,)cn E B” 

for each b E B. In particular, B‘ C B”, so B” is a linearly topologized 
Cp-module. By 28.18 B” is a strictly linearly compact Cp-module. As B 
is an open and thus closed submodule of B”, therefore, B is also a strictly 
linearly compact Cp-module. 

Now C ~ I  is contained in the center CB of B,  for {z E A : z c  = 
cz for all c E Cp} is a subring of A containing B’ and 1 and hence B. 
Therefore B is a fortiori a strictly linearly compact CB-module. 0 

The valuation ring V of a complete discretely valued field is a complete 
local noetherian ring by 20.17, and hence its natural topology is linearly 
compact by 36.35 and thus strictly linearly compact by 36.16. Consequently, 
a complete discretely valued field is locally strictly linearly compact. To 
establish the converse, we need the following description of discrete valuation 
rings: 

41.5 Theorem. An integral domain A is a discrete valuation ring if 
and only if A is an integrally closed, local noetherian domain such that 
dim(A) = 1. 

Proof. Necessity: As A is a local principal ideal domain by 18.2, A is 
integrally closed by (3) and (5) of 39.23. Moreover, dim(A) = 1 by (2) of 
38.13. 

Sufficiency: Let K be the quotient field of A, and let M be its maximal 
ideal. By 20.16, n,,, M” = (0). By 38.8 there exists c E A* such that M 
is a minimal prime ideal over Ac. Thus M t  E Ac for some t 2 1 by 37.20. 
Therefore there is a smallest natural number T such that M‘ C Ac, and 
T >_ 1 since c E M .  Consequently, there exists b E Adr-’ \ Ac, so M b  2 Ac 
but b @ Ac. Thus M(b/c) C A,  so M ( b / c )  is an ideal of A. IfM(b/c) 2 M ,  
then b/c would be integral over A by 39.2, so b/c would belong to  A by 
hypothesis, and therefore b E Ac, a contradiction. Thus M(b/c )  = A,  so 
M = A(c/b) ,  and in particular, c/b E M .  Therefore M is a principal ideal, 
so A is a discrete valuation ring by 20.17. 0 
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41.6 Theorem. A field K ,  furnished with a ring topology, is complete 
and discretely valued if and only if it is nondiscrete and locally strictly lin- 
early compact. Moreover, if B is an open, strictly linearly compact subring 
of K containing 1, then the valuation ring V of of the valuation defining its 
topology is a finitely generated B-module. 

Proof. We have just seen that the condition is necessary. Sufficiency: By 
41.4, K contain an open, strictly linearly compact subring B that contains 
1. As y ---f yz is a homeomorphism from K to K for each z E K*,  Bz is 
open for every z E K * ,  and hence every nonzero ideal of B is open and thus 
closed. Let R be the radical of B. By 33.22, r)n,lRn = (0)) so by 36.34, 
B is the direct sum of finitely many complete locd  noetherian subrings. As 
B has no proper zero-divisors, therefore, B is a complete local noetherian 
integral domain. By 28.13 and 36.38, the topology induced on B by that of 
K is its natural topology. 

As K is not discrete and as the maximal ideal M of B is open, M contains 
a nonzero element c. Consequently, dim(B) > 0 by 37.22. As the topology 
of B is its natural topology, limn+m cn = 0. As Bc is open, Bc 2 M t  for 
some t 2 1, so M is a minimal prime ideal over Bc by 37.20. Consequently, 
dim(B) = 1 by 37.24. The quotient field of B is K ,  for if z E K ,  then 
lim,+,cna: = 0, so c"z E B for some m 2 1, and thus z is the quotient 
C - ~ ( C " Z )  of elements of B.  By 40.9, the integral closure V of B in K is 
a finitely generated B-module. By (2) and (4) of 39.13, V is a semilocal 
noetherian ring complete for its natural topology, which is the topology it 
inherits from K .  By 24.19, V is a complete local noetherian integral domain. 
Moreover, dim(V) = 1 by (3) of 39.13. Therefore V is the valuation ring 
of a discrete valuation z1 of K by 39.7 and 41.5. Since V 2 B ,  V is open. 
Therefore the given topology of K is that defined by z1. Moreover, K is 
complete by 7.6. 0 

Before establishing a generalization of 41 -6, we need several preliminary 
results. 

41.7 Theorem. A Hausdorff, finite-dimensional algebra A with identity 
over a complete, discretely valued field K is a locally centrally linearly 
compact ring. 

Proof. Let z1 be a valuation with value group Z that defines the topology 
of K ,  let V be the valuation ring of z1, and for each m 2 0, let V, = {A E 
K : .(A) 2 m}. Let {e l ,  . . . , e,} be a basis of the K-vector space A such 
that el = 1, and let 

n 

eiej  = C c v i j k e k  

k=l 
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for all i, j E [2,n], k E [ l ,n] .  Let X E K' be such that .(A) 2 0 and 

Let g1 = 1,  gj = Xej for all j E [2,n], and let 

for all rn 2 0. Easy calulations establish that B is a subring of A and that 
B, is an ideal of B for all m 2 0. Since 

n 

k = l  

is a topological isomorphism from the K-vector space K" to A by 15.10 and 
13.8, B is an open subring of A and (B,),>o is a fundamental system of 
neighborhoods of zero. As we noted above, V i s  strictly linearly compact, so 
by 28.18, B is a strictly linearly compact V-module and a fortiori a centrally 
linearly compact ring, as we may identify V with V.1, a subring of the center 
o f B .  

41.8 Theorem. If B is an open subring of a topological ring A with 
identity and if either A has an invertible topological nilpotent or the center 
C of A is a topological ring having no proper open ideals, then the center 
of B is B n C. 

Proof. Clearly B n C is contained in the center CB of B. To show that 
CB 

Case 1: A has an invertible topological nilpotent b. As 
B n C, let c E CB and a E A;  we wish to show that ca = ac. 

lim b" = 0 = lim ab", 
It+- n+oo 

there exists m > 0 such that b" € B and abm € B. Hence 

(ca)b" = c(ab") = (ab")c = a(b"c) = a(cbrn) = (ac)b". 

Thus ca = ac. 
Case 2: C has no proper open ideals. Let V = {z E A : .a E B}.  As B is 

open, V is a neighborhood of zero in A.  Let W = {z E C : z(ca - ac) = 0). 
Then V n C C_ W ,  for if 2 E V n C, then 

z(ca) = (xc). = (C.). = c(za)  = (za). 

since z E C ,  c E Cg, and za E B. Thus W is an open ideal of C, so W = C 
by hypothesis. Therefore 1 E W ,  so ca = ac. 
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41.9 Theorem. Let K be a Hausdorff division ring, let B be an open 
subring of K containing 1, and let R be the radical of B. If B is strictly 
linearly compact, then B is a noetherian ring, B/R is a division ring, the 
induced topology of B is its R-topology, and R is the set of all topological 
nilpotents of B. 

Proof. As B is open and as y 4 z y  is a homeomorphism from K to K 
for each z E K*, Bx is open for every x E K * ,  and hence every nonzero 
left ideal of B is open. Let S = n,,, R". Assume that S # (0). Then S is 
open, so B / S  is an artinian B-modde by 28.15 and hence is an artinian ring. 
Consequently, its radical, which is R/S by 26.16, is nilpotent by 27.15. Thus 
there exists n 2 1 such that R" C S. Therefore (0) # R" = R"+l = . . . , in 
contradiction to 33.21. Therefore nn,l R" = (0). 

Since every nonzero left ideal of B is open and hence closed, B is linearly 
compact for the discrete topology by 28.19, so by 36.29 B is linearly compact 
for the radical topology, the weakest Hausdorff linear topology on B. By 
28.13, therefore, the given topology of B is the radical topology. As B 
contains an identity element, B contains no pathological subgroups by 36.12. 
Consequently by 36.33, B is a noetherian ring and B/R is artinian ring. By 
34.1, every idempotent of B / R  is the R-coset of an idempotent of B. But as 
K is a division ring, B has no idempotents except 0 and 1. Thus by 26.16, 
B/R is an artinian semisimple ring whose only idempotents are 0 and 1, so 
B / R  is a division ring by 27.14. In particular, if z E B \ R, then z +R is not 
a nilpotent of B/R, so as B/R is discrete, z is not a topological nilpotent 
of B. Thus R is the set of topological nilpotents of B. 0 

41.10 Theorem. A division ring K furnished with a ring topology is 
complete, discretely valued, and finite-dimensional over its center C if and 
only if K is nondiscrete and locally centrally linearly compact, in which case 
the topology of C is also given by a complete, discrete valuation. 

Proof. Necessity: As K is discretely valued, there exists a E K* such 
that limn--rooan = 0. Consequently, as [K : C] < +cm, C[a] is a finite- 
dimensional field extension of C whose topology is not discrete and thus is 
given by a discrete valuation. By 18.6, the topology of C is also given by a 
discrete valuation, and as C is closed in K ,  C is complete. By 41.7, K is a 
locally centrally linearly compact ring. 

Sufficiency: By 41.4, there is an open, centrally linearly compact subring 
B of K that contains 1. As B is linearly topologized and is strictly linearly 
compact over its center Cg, B is a strictly linearly compact ring. Let R be 
the radical of B. By 41.9, R is the set of topological nilpotents of B, and 
the (nondiscrete) topology of B is the radical topology. Thus B contains 
a nonzero topological nilpotent a.  Let KO be the closed subfield generated 
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by C and a ,  let Bo = B r l  KO, and let Ro be the radical of Bo. As a E Bo, 
the induced topology of Bo is not discrete. Since the open left ideals of B 
form a fundamental system of neighborhoods of zero for B ,  the open ideals 
of Bo form a fundamental system of neighborhoods of zero for Bo. By 41.8, 
the center CB of B is B n C. Thus CE, C KO n B = Bo, so Bo is a closed 
CB-submodule of B, hence is a strictly linearly compact CB-module by 
28.16, and a fortiori is a strictly linearly compact ring. By 41.6, therefore, 
the induced topology of KO is defined by a complete discrete valuation. By 
41.9, the topology of Bo is its Ro-topology, Bo/Ro is a field, and Ro is the 
set of topological nilpotents of Bo. Thus Ro = R n Bo. 

As CE, E Bo, B is also a strictly linearly compact Bo-module. The 
topology of the Bo-module B is its Ro-topology. Indeed, as K is a division 
ring, every nonzero right ideal of B is open, and in particular, as an is a 
nonzero element of Rg, RgB is open for all n 2 1. On the other hand, 
RZB 5: R" for all n 2 1. 

As the topology of B is the R-topology, B / R  is a discrete, strictly linearly 
compact Bo-module by 28.16 and hence, as Ro = Bo nR, a discrete, strictly 
linearly compact Bo/Ro-vector space. By (2) of 28.14, B/R is an artinian 
vector space and hence is finite-dimensional. Therefore there is a finitely 
generated Bo-submodule F of B such that B = F + R, or equivalently, 
B = F + RB as B has an identity. As F is finitely generated, F is closed 
by 28.18. Therefore by 36.18, B = F .  

Let B = Boq+ . . . + Boz,. Then K = K o q +  . . . + Koz,, for if t E K ,  
there exists t >_ 1 such that ata E B;  thus there exist b l ,  . , . , b, E Bo such 
that atz  = blzl + . . . + bnz,, so 

2 = (a-%1)z1 + . . . + (a-tb,)z" E KOZl + . . . + Koz,. 

Let KA be the division ring of K consisting of all elements of K commuting 
with each element of KO. By 18.15, dirncKh 5 dimK,K 5 n. But as 
KO is commutative, K& contains KO,  so dimcKo 5 n. As the topology of 
KO is given by a complete discrete valuation and as C is closed, therefore, 
the topology of C is also given by a complete discrete valuation by 18.6. 
Furthermore, 

[K : C] 5 [K : K O ] [ K O  : C] 5 n2, 

so the topology of K is the only Hausdorff topology making K a topological 
vector space over C by 15.10 and 13.8, and that topology is defined by a 
discrete valuation by 17.13. 0 

As noted after Definition 41.1, a totally disconnected, locally compact 
ring is locally centrally linearly compact. Therefore from 41.10 we recover 
Jacobson's theorem for nondiscrete, totally disconnected, locally compact 
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division rings, from which the structure of such division rings is readily 
ascertained: The topology of the center C of a nondiscrete, totally discon- 
nected, locally compact division ring K is given by a complete, discrete 
valuation, and K is finite-dimensional over C (Theorems 18.11 and 18.16). 

Exercises 

41.1 We extend the definition of a prime ideal to arbitrary rings: An ideal 
P of a ring with identity A is prime if P is a proper ideal and for all ideals 
I ,  J of A, if I J  C P, then either I C P or J P. Extend Theorem 37.8 
as follows: If A is a ring such that every nonempty set of ideals, ordered 
by inclusion, contains a maximal member, then every proper ideal of A is 
either a prime ideal or contains a product of prime ideals. 

41.2 Let A be a linearly compact ring whose radical R satisfies n,,, R" = 
{0} such that every ideal is closed for the radical topology. (aJ Every 
nonempty set of ideals of A, ordered by inclusion, contains a maximal mem- 
ber. [Modify the proof of 36.31.1 (b) I f R  is the radical of A,  AIR is artinian. 

41.3 Let A be a ring, R its radical. (a) If A is strictly linearly compact 
and every nonzero ideal of A is open, then the topology of A is the radical 
topology. (b) (Anh [1977a]) If A is strictly linearly 
compact and has an identity, then every nonzero ideal of A is open if and 
only if n,,, R" = { 0 } ,  AIR is artinian, R is a finitely generated left ideal, 
and everynonzero prime ideal of A is a maximal ideal. [Use 36.27 and 
Exercises 41.1 and 41.2.1 (c) (Warner [1961]) If A is compact, then every 
ideal is open if and only if every ideal of A is closed and every nonzero 
proper prime ideal of A is a regular maximal ideal. 

41.4 Let A be a nondiscrete, strictly linearly compact commutative ring 
with identity such that the ideals of A are totally ordered by inclusion. (a) 
Every nonzero ideal is open. (b) The topology of A is the radical topology. 
[Use Exercise 41.3.1 (c) Every ideal is a principal ideal. [Use 36.33.1 (d) R 
is a maximal ideal. [Consider AIR.] (e) Every element of A\R is invertible. 
[Use 11.16.1 (f) A is an integral domain. [Use (a) and (b).] (g) The quotient 
field K of A, topologized by declaring the neighborhoods of zero in A a 
fundamental system of neighborhoods of zero, is a topological ring. (h) Let 
c E A be such that Ac = R, and let w : K --$ Z U {+w} be defined by 

[Argue as in 41.9.1 

w(z) = n E Z if z E Ac" \ Ac"", 

w(0) = +w. 

Then w is a complete, discrete valuation of K whose valuation ring is A, 
and the topology on A defined by w is its given topology. (i) Conversely, the 
valuation ring of a complete, discrete valuation of a field K is a nondiscrete, 
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strictly linearly compact ring with identity whose ideals are totally ordered 
by inclusion. 

42 Finite-dimensional Algebras 

Here we shall characterize finite-dimensional, indecomposable Hausdorff 
algebras with identity over complete, discretely valued fields. 

42.1 Theorem. If A is a topological integral domain that has no proper 
open ideals and contains an open subring B that is a complete local noe- 
therian domain whose induced topology is its natural topology, then A is a 
field whose topology is given by a discrete valuation. 

Proof. Let K be the quotient field of A. To show that K is also the 
quotient field of B ,  it suffices to show that each a E A is a quotient of 
elements of B .  By hypothesis, the maximal ideal of B contains a nonzero 
element t ;  as limn-,oo t" = 0 = limn+= at", there exists m 2 1 such that 
tm and atm belong to B ,  so a = ( ~ t ~ ) t - ~  is a quotient of elements of B .  

By 40.9, the integral closure C' of B in K is a finitely generated B- 
module and hence a noetherian B-module by 20.8. Therefore the integral 
closure C of B in A is a submodule of the noetherian B-module C' and 
hence is itself a finitely generated B-module. Consequently by 39.4 and 
39.13, C is a complete semilocal noetherian ring whose induced topology is 
its natural topology. By 24.19, C is the direct sum of finitely many complete 
local noetherian rings, so as A has no proper zero-divisors, C is actually a 
complete local noetherian domain. 

Thus C C A since A has no proper open ideals. For each ideal J of C, 
let (C : J )  = {z E A : z J  C}, and let M be the maximal ideal of of C. 
As C is open and as (M"),>l is a fundamental system of neighborhoods 
of zero, A = U,,I(C : M n r  If I and J are ideals of C such that C = 
(C : I )  = (C : 4, then C = (C : I J ) .  Indeed, if x E A and z I J  c C, 
then for any y E I ,  z y J  C C, so zy E (C : J )  = C; thus zI C C, so 
2 E (C : I) = C. Therefore if C = (C : M ) ,  then C = (C : M " )  for all 
n 2 1, so C = u,,l(C : M")  = A, a contradiction. Consequently, there 
exists a E (C : MI\  C. Thus aM G C. If aM C M ,  then a would be 
integral over C by 39.2 and hence a E C, a contradiction. Thus as aM is an 
ideal of the local ring C, aM = C. Consequently, M # (0), and there exists 
b E M such that ab = 1. As b is invertible, z --f zb is a homeomorphism 
from A to A ,  so there exists n 2 1 such that M" c Cb M .  Therefore by 
37.20 and 37.24, dim(C) = 1, that is, M and (0) are the only prime ideals 
of c. 

Let x be a nonzero element of M .  Then M is the only prime ideal of C 
containing Cx, so by 37.20 there exists t 1 1 such that M t  & Cz, whence 
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Mn+t M n x  for all n 2 1. Consequently, z ---t zz is an open mapping 
from A to A. In particular, Az is open, so as A has no proper open ideals, 
Az = A, that is, z is invertible in A. Thus every element of C* is invertible 
in A. Finally, if y E A*, then yb" E C* for some n 2 1 as Ernndoo b" = 0, 
so yb" is invertible in A, whence y is also. Therefore A is a field. 0 

42.2 Theorem. Let A be a commutative topological ring with identity 
1 that contains no proper open ideal. If A contains an open semilocal 
subring B such that 1 E B and B is strictly linearly compact for its induced 
topology, then B is a complete semilocal noetherian ring furnished with its 
natural topology, A is an artinian ring all of whose ideals are closed, and A 
contains an invertible topological nilpotent. 

Proof. (a) The radical R of B is open. Indeed, R is closed by 29.12, so 
the topology induced on B / R  is a Hausdorff ideal topology. By (1) of 24.16, 
B/R is artinian, so the induced topology is discrete by (1) of 28.14, that is, 
R is open. 

(b) R is a finitely generated ideal. By (a), the ideal AR of A generated by 
R is open and hence is A, so there exist a l ,  . . . , a, E A and b l ,  . . . , b,  E R 
such that Czl a&; = 1. Let J = Bbl + . . . + Bb,. Then J is open, for 
if I = {x E B : xa; E B for all i E [l,n]}, then I is an open ideal, and 
I 5 J since if z E I, then z = C z l ( x a i ) b i  E J. Consequently by (2) of 
28.15, B/  J is an artinian B-module and hence an artinian ring, so B/ J is a 
noetherian ring by 37.7 and hence a noetherian B-module. In particular, as 
R 2 J, R / J  is a finitely generated B-module, so there exist c1, . . . , c, E R 
such that R = Bcl + . . . + Bc, + J. Consequently, R is finitely generated 
as J is. 

( c )  B is a complete semilocal noetherian ring furnished with its natural 
topology. For all n 2 1, R" is a finitely generated ideal by (b) and hence 
is closed by 28.18. Moreover, the radical topology is stronger than the 
topology induced on B by 33.22. Consequently by 7.21, the radical topology 
is complete. Therefore B is a complete semilocal noetherian ring by 24.17. 
By 36.35 and 36.33, the radical topology is the weakest Hausdorff linear 
topology on B and hence is the topology induced on B. 

(d) A is a noetherian ring all of whose ideals are closed. Indeed, let J 
be an ideal of A. Then J n B is closed in B by (c), 36.35, and 36.33, so 
J is closed by 4.11. To show that J = A ( J  n B ) ,  let c E J. Since J n B 
is an open subset of J, A( J fl B )  is an open submodule of the topological 
A-module J. As R, : z + z c  is a continuous A-module homomorphism 
from A to J, therefore, RF1 (A(  J n B)) is an open ideal of A and hence is 
A. Therefore 1 E RT1(A(J n B ) ) ,  that is, c E A ( J  n B).  By (c) there exist 
cl, . . . , c,,, E J n B  such that J n B  = Bcl + . . . + Bc,, SO J = A ( J n  B )  = 
Acl + . . . + Ac,. Thus A is noetherian. 



408 LOCALLY CENTRALLY LINEARLY COMPACT RINGS 

(e) A is artinian. By (d) and 37.9, it suffices to show that each prime ideal 
P of A is maximal. By (d), P is closed, so A / P  is Hausdorff. Let (b be the 
canonical epimorphism from A to A / P .  Clearly A / P  has no proper open 
ideals, and as 4 is a topological epimorphism, 4 ( B )  is ideally topologized 
and hence is a strictly linearly compact ring by 29.3. By (c) applied to A / P  
and its subring (b(B), 4(B)  is a complete semilocal noetherian ring whose 
induced topology is its natural topology. Consequently, 4(B)  is the direct 
sum of complete local rings by 24.19, so (b(B) is a complete local domain 
as A / P  has no proper zero-divisors. By 42.1, A / P  is a field, that is, P is 
maximal. Thus A is artinian. 

(f) A contains an invertible topological nilpotent. By (e) and 27.17, A 
is semilocal. An inductive argument establishes that if the union of finitely 
many closed subsets of a topological space contains an interior point, then 
one of the sets contains an interior point. Let M I ,  . . . , M ,  be its maximal 
ideals, and let 

F 

G = A \ U Mi,  
i = l  

the set of invertible elements of A.  By (d), each Mi is closed, so G is 
open. Moreover, G is dense, for if UIZl Mi contained an interior point, 
some Mi would also, and thus Mi would be open by 4.9, a contradiction of 
our hypothesis. Therefore as R is open by (a), there exists b E G n R, and 
again by (c), limn+oo b" = 0. 0 

42.3 Theorem. If E is a Hausdorff topological vector space over a 
nondiscrete, complete, straight division ring K ,  then no proper subspace 
of E is open. 

Proof. If M were a proper open subspace, E / M  would be a nonzero 
discrete topological vector space over K ,  in contradiction to 13.1. 0 

42.4 Definition. A ring [algebra] is indecomposable if A is not the 
direct sum of two proper subrings [subalgebras]. 

42.5 Definition. A commutative algebra A over a field K is a Cohen 
algebra if A is local and if K is canonicdy isomorphic to its residue field, 
that is, if X + X.1+ M is an isomorphism from K to A I M ,  where M is the 
maximal ideal of A .  

42.6 Theorem. Let A be a commutative topological ring with identity. 
The following statements are equivalent: 

1' A is a locally strictly linearly compact local ring whose characteristic 
is either zero or a prime, and A has no proper open ideals. 
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2" A is a Hausdorff, finite-dimensional Cohen algebra over a complete, 

3" A is a Hausdorff, indecomposable, finite-dimensional algebra over a 
discretely valued field. 

complete, discretely valued field. 

Proof. Clearly 2" implies 3O, since a local ring contains no idempotents 
other than 0 and 1. Assume 3". Then A is an artinian ring as it is a finite- 
dimensional algebra with identity, so A is local by 37.7. By 42.3, A contains 
no proper open ideals. Consequently, 1" holds by 41.7. 

Assume l o .  By 41.4, A contains an open strictly linearly compact subring 
B that contains 1. By 34.6, B is topologically isomorphic to the Cartesian 
product of local rings. Consequently, as A is local and thus has no idempo- 
tents other than 0 and 1, B itself is a local ring. By 42.2, B is a complete 
local noetherian ring whose induced topology is its natural topology, and 
A is a local artinian ring all of whose ideals are closed. Thus by 27.15, the 
maximal ideal Q of A is nilpotent; let T 2 1 be such that Q' = {0}, and 
let q5 be the canonical epimorphism from A to A/Q. As Q is closed but 
not open, A/Q is Hausdorff but not discrete. Since B is local, open, and 
ideally topologized, so is q5(B); therefore by 29.3, +(B) is strictly linearly 
compact. Consequently by 41.6, the topology of A/Q is given by a complete 
discrete valuation 21, and the valuation ring V of 21 is a finitely generated 
4( B)-module . 

Let c1, , . . , cn E A be such that c1 = 1 and V = 4(B)[#(cl), . . . ,q5(cn)], 
and let B' = B[cl,.  . . ,c,].  Clearly 4(B') = V .  For each i E [1,n], q5(ci) is 
integral over 4(B)  by 39.2, so there is a monic polynomial f E B [ X ]  such 
that 4(f(ci)) = 0, that is, f(c;) E Q; thus f(ci)' = 0, and consequently 
ci is integral over B. By 39.3, B' is a finitely generated B-module. By 
39.13, B' is a complete semilocal noetherian ring whose induced topology 
is its natural topology. By 24.19, B' is the direct sum of finitely many 
complete local noetherian rings. Consequently as A is local and thus has 
no idempotents other than 0 and 1, B' is a complete local noetherian ring. 
Thus, by replacing B with B' if necessary, we may assume that +(B) = V .  

Let M be the maximal ideal of B. The restriction 4~ of q5 to B is an 
epimorphism from B to V and hence induces an isomorphism @B from the 
residue field B / M  of B to the residue field V / 4 ( M )  of V such that @B o u = 
p o C ~ B ,  where u and p are respectively the canonical epimorphisms from B 
to B / M  and from V to V/q5(M). Since Q is nilpotent, the characteristic of 
A/Q is zero if the characteristic of A is. Therefore B and V have the same 
characteristic. We shall show that A contains a subfield K such that the 
restriction to K of q5 is a topological isomorphism from K to A/Q. 

Case 1: V is equicharacteristic (and therefore B is also equicharacter- 
istic). By 21.20, B contains a subfield k mapped onto B / M  by c. Thus 
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@B o u maps k isomorphically onto the residue field V / 4 ( M )  of V ,  so as 
@B o u = p o 4 ~ ,  the restriction 4 k  of 4 to k is an isomorphism from k 
onto a Cohen subfield of V .  By 22.1, there is a topological isomorphism F 
from the ring k [ [ X ] ]  of formal power series over k, furnished with its natural 
topology, to  V that extends 4 k .  Let x E B be such that F(X) = 4(z). 
Then x E M ,  so by 23.5, 

k=O k=O 

is an epimorphism from k[[X]] to a k-subalgebra k[[x]] of B. The induced 
topology of k[[x]] is a Hausdorff ideal topology that is not discrete, since 
x is a topological nilpotent. Therefore as the ideals of k[[x]] are totally 
ordered by inclusion (as those of k[[X]] are), the nonzero ideals of k[[x]] form 
a fundamental system of neighborhoods of zero for the induced topology. 
Consequently, S is a topological epimorphism from k [ [ X ] ]  to  k[[x]]. As F, 
S, and the restriction q ! q z ] ~  of 4 to k[[x]] are continuous and since &.[Iz]] o s 
and F agree on k and at X ,  we conclude that & [ [ z l l  o S = F .  Therefore 
S is injective and hence is a topological isomorphism, so as F is also a 
topological isomorphism, f$k[[z]) is a topological isomorphism from k[[x]] to 
V. In particular, as (bk[[z]) is injective, k[[x]] n Q = (0)) so k[[x]] has a 
quotient field K in A.  Since $ ( k [ [ z ] ] )  = V, clearly + ( K )  = A / Q .  To show 
that the restriction of + to  K is a topological isomorphism from K t o  A / Q ,  
therefore, it suffices to show that k[[x]] is open in K. Since k[[x]] is a discrete 
valuation ring, k[[z]] is maximal in the set of proper subrings of K by 17.14. 
But B n K  is a proper subring of K containing k[[x]] since x is not invertible 
in B ;  therefore B f l  K = k[[x)], so k[[x]] is open in K .  

Case 2: V is not equicharacteristic, that is, A has characteristic zero and 
the residue field of B has prime characteristic p .  As 4~ is an epimorphism 
from B to V with kernel B n Q, dim(B/(B n Q)) = dim(V) = 1. As Q is 
nilpotent, every prime ideal of B contains B n Q, so 

dim(B) = dim(B/(B n Q)) = 1. 

As A is equicharacteristic, p.1 is invertible in A and hence is not a zero- 
divisor of B. Therefore by 39.18, B contains a Cohen ring Bo such that 
B is a finitely generated &-module and the topology induced on BO is its 
natural topology. As no nonzero element of Bo is nilpotent, Bo n Q = (0)) 
so Bo has a quotient field KO in A .  If B contained KO,  then KO would be 
integral over Bo and hence by 39.13, 0 = dim(&) = dim(&), that is, Bo 
would be a field, a contradiction. Thus B n KO is a proper subring of KO 
containing Bo. But as in Case 1, the discrete valuation ring Bo is maximal 
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in the set of proper subrings of KO by 17.14, so B n KO = Bo. Thus Bo 
is open for the topology induced on KO,  so the induced topology of KO is 
defined by a complete discrete valuation whose valuation ring is Bo. 

Let a l ,  , . . , a, E B be such that B = Bo[al, .  . . ,a,], and let LO = 
~ ( K o ) .  Then 

v = 4 ( B )  = 4(Bo)[4(a1), * * * , 4(an>l c Lo[q5(a1), * * * , 4(an>l. 

As each ai is integral over Bo, each q5(ui) is integral over ~ ( B o )  and hence 
is algebraic over LO. Consequently, Lo[4(al) ,  . . . , q5(an)] is a subfield of 
A / Q  containing V and thus is A / Q ,  and moreover, [A /Q : Lo] < +m. By 
21.10, a field K that  is maximal in the set of all subfields of A containing 
KO is a Cohen subfield of A,  that is, +(K)  = A / Q .  Consequently, there 
exist b l ,  . . , , b, E K such that Loq5(bl) + . . . + LoQ)(b,) = A / Q .  Therefore 
K = Kohl +. . . +Kob,, for if z E K ,  there exist t l ,  . . . , t ,  E KO such that 

m 
whence 

z - Ct;bi E K n Q = ( 0 ) .  
i= l  

Thus [K : KO] < +m. Therefore by 15.10 and 13.6, the induced topology 
on K is the only topology making K a Hausdorff KO-vector space, and that 
topology is complete and discretely valued by 16.8. Furthermore, as K is 
straight, its topology is minimal in the set of all Hausdorff ring topologies on 
K by 13.2, so as the restriction + K  of + to K is a continuous isomorphism 
from K to A / Q ,  q 5 ~  is a topological isomorphism. 

We have left to show that A is a finite-dimensional K-vector space. Let 
21, . . .  , x ,  E Q be such that Q = Ax1 + . . . + Ax,. By 23.5 (with the 
notation of the proof of that theorem), 

A = C Kx" 

since, as Q' = (0)) 2" = 0 whenever Is( 2 r .  Thus 2" holds. 0 

42.7 Theorem. Let A be a linearly compact ring with identity, let R be 
the radical of A,  and let E be a unitary A-module. If AIR is artinian and 
if E is linearly compact for the R-topology, then E is finitely generated. 

Proof. By hypothesis, EIRE is a discrete, linearly compact A-module, 
which we may regard as a module over AIR. By 26.16 and 36.19, EIRE is a 
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finitely generated (AIR)-module and hence a finitely generated A-module. 
Thus there is a finitely generated submodule M of E such that E = M+RE. 
By 28.18, M is closed, so by 36.18, E = M .  

A noncommutative generalization of 42.6 is based on the following theo- 
rem: 

42.8 Theorem. Let A be a locally centrally linearly compact ring with 
identity 1 whose center C is a topological ring having no proper open ideals, 
and let B be an open, centrally linearly compact subring of A containing 1. 
The center of B is B n C, and the following statements are equivalent: 

1" B rl C is semilocal. 
2" C is semilocal. 
3" A has only finitely many maximal ideals. 
4" Every C-submodule of A is closed. 
5" Every ideal of A is closed. 
6" C is an artinian ring, and A is a finitely generated C-module. 
7" A satisfies the Ascending Chain Condition on closed ideals. 
8" A satisfies the Descending Chain condition on closed ideals. 
9" C contains an invertible topological nilpotent. 

ff these statements hold, then BnC is a complete semilocal noetherian ring, 
and B is a noetherian ( B  n C)-module whose induced topology is its natural 

Proof. By 41.8, the center of B is BnC.  Thus B nC is a strictly linearly 
compact ring. By 34.6, B n C is topologically isomorphic to the Cartesian 
product of a family of linearly compact local rings and thus possesses an 
orthogonal family (ex)xEL of idempotents such that (B n C)ex is a linearly 
compact local ring for each X E L and C X E L e x  = 1. We shad first show 
that each of 2"-9" implies lo, that is, that L is finite. 

For each X E L, let M A  be a maximal ideal of Cex, [Aex], and let Nx = 
M A  + C(1- ex) [Nx = M A  + A ( l -  ex)]. Clearly C / N x  [A/Nx] is isomorphic 
to Cex/Mx [AeJMx] and, if X # p,  Nxe, = Ce, [Ae,] # M, = N,e,, 
whence Nx # N,. Thus each of 2" and 3" implies 1". The ideal generated 
by {ex : X E L} is dense in A since x X E L e x  = 1, and contains 1 if and 
only if L is finite. Thus 5" implies lo, and clearly 4" implies 5". Suppose 
that ( X i ) j > l  is a sequence of distinct members of L, and let fn = Cy=l ex, 
for each n 2 1. Then each fn is an idempotent of B n C, and consequently 
B f n  = Afn n B. By 28.18, Bfn  is closed in B; hence by 4.11, Afn is closed 
in A. Similarly A ( l  - fn) is closed. Thus (Afn)%>l - is a strictly increasing 
sequence of closed ideals of A, and ( A ( l  - f n ) ) n > l  is a strictly decreasing 
sequence of closed ideals. Consequently, each of 7" and 8" implies lo, and 
6" implies 7" by 27.8. 

topology. 
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To show that 9" implies lo, let b be an invertible topological nilpotent in 
C. Then b" E B for some m 2 1, and b" is also an invertible topological 
nilpotent. Replacing b by b" if necessary, we may thus assume that b E 
B i l  C. For each X E L ,  

lim (bex)" = lim V e x  = 0, 

so bex belongs to  the maximal ideal of ( B  n C)ex, and hence b-lex $ 
( B  n C)ex. Thus b-lex $! B for all X E L. But (b-lex)xEL is summable 
by 10.16, and therefore b-lex E B for all but finitely many X E L by 10.5. 
Thus L is finite. 

Assume lo. By 42.2, BnC is a complete semilocal noetherian ring whose 
induced topology is its natural topology, C is an artinian ring, and 9" holds. 
By 27.17,2" also holds. Let R be the radical of BnC. We shall show that the 
topology of the (B nC)-module B is its R-topology. As R" is open in B n C 
and as B is linearly topologized, B contains an open left ideal J such that 
J n B n C  R". As J n B n C  is open in C, ( J n B n C ) C  = C by hypothesis, 
and consequently there exist a l ,  . . . , a8 E J fl B f l  C and c1, . . . , cB E C 
such that q c l +  . . . + a,c, = 1. Let I = {Z E B : cjz E B for all i E [l, 4). 
then I is an open right ideal of B contained in R"B, for if 2 E I ,  then 

"+M n-+w 

z = al(clz) + . . . + u,(c,z) E ( J  n B n C)B c R"B. 

Therefore RnB is open. Also, if L is an open left ideal of B, then LnBnC 2 
Rk for some k 2 1 ,  so RkB = BRk G BL = L .  Therefore (R"B),>1 is a 
fundamental system of neighborhoods of zero. 

By (1) of 24.16, ( B  n C ) / R  is artinian. Hence by 42.7, B is a finitely 
generated ( B  n C)-module. Let B = ( B  n C)yl + . . . + ( B  n C)y, where 
yl, . . . , yn E B. As noted earlier, C contains an invertible topological 
nilpotent b. Thus for any t E A, there exists m 2 1 such that bmz E B,  so 
there exist c1, . . . , c, E B n C such that b"z = clyl + . . . + c,y,, whence 

- 

z = (b-mcl)yl + * * * + (b-"c")y, E Cy1 + . . . + cy,. 
Therefore A is a finite$. generated C-module, so 6", 7", and 8" hold. If J 
is a C-submodule of A ,  then B r l  J is a ( B  n C)-submodule of B;  B n J is 
closed in B by 24.14, so B is closed in A by 4.11. Thus 4' and 5" hold. 

Finally, a maximal ideal of A is a primitive ideal by 26.6 and hence 
contains the radical R of A by 26.8. Thus, to establish 3", it  suffices to show 
that AIR has only finitely many ideals. Since 6" holds, A is an artinian 
C-module and a fortiori an artinian ring. Therefore AIR is a semisimple 
artinian ring 26.16 and 27.4. By 27.14, AIR is isomorphic to the Cartesian 
product of finitely many rings with identity, each having no proper nonzero 
ideal. Thus AIR has only finitely many ideals by 24.12. 0 
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42.9 Theorem. Let A be a topological ring with identity. The following 
statements are equivalent: 

1" A is a locally centrally linearly compact ring whose characteristic is 
either zero or a prime, and the center of A is a local topological ring that 
has no proper open ideals. 

2" A is a Hausdorff finite-dimensional algebra over a complete, discretely 
valued field, and the center of A is a Cohen algebra. 

3" A is a Hausdorff, indecomposable, finite-dimensional algebra over a 
complete, discretely valued field. 

Proof. Assume 1". By 41.4, A contains an open, centrally linearly com- 
pact subring B such that 1 E B,  and by 41.8, the center of B is B n C, 
where C is the center of A .  Thus B f l  C is strictly linearly compact, so C is 
locally strictly linearly compact. By 42.6, C is a finite-dimensional Cohen 
algebra over a complete discretely valued field K .  By 42.8, A is a finitely 
generated C-module and hence a finite-dimensional algebra over K.  Thus 
2" holds, and clearly 2" implies 3". 

Assume 3'. Then C is also indecomposable, and A is a locally centrally 
linearly compact ring by 41.7. As C is a finite-dimensional algebra with 
identity, C is an artinian ring and hence is semilocal by 27.17. Thus as C 
is indecomposable, C is local by 37.7. Therefore 1" holds. 0 

43 Locally Centrally Linearly Compact Rings 

From our results in §42 we may easily characterize those topological rings 
with identity that are Cartesian products of finitely many finite-dimensional 
algebras over complete, discretely valued fields. We shall say that a ring 
is squarefree if the additive order of each of its nonzero elements is either 
infinite or a squarefree integer, that is, one not divisible by the square of a 
prime. 

Analogous to the remark preceding 34.1 is the following: If e is an idem- 
potent in a topological ring A ,  the epimorphism f from the additive group A 
to the additive group Ae [eA],  defined by f(z) = ze, [f(z) = e z ] ,  is a topo- 
logical epimorphism, since if U is a neighborhood of zero in A ,  U n Ae C Ue 
[U n eA & eU] .  

43.1 Theorem. Let A be a topological ring with identity. The following 
statements are equivalent: 

1' A is a locally centrally linearly compact ring whose center C is a 
topological ring that has no proper open ideals, and any one and hence all 
of the following equivalent conditions hold: 

(a) C is semilocal. 



43 LOCALLY CENTRALLY LINEARLY COMPACT RINGS 415 

(b) A has only finitely many maximal ideals. 
(c) Every C-submodule of A is closed. 
(d) Every ideal of A is closed. 
(e) C is an artinian ring, and A is a finitely generated C-module. 
(f) A satisfies the Ascending Chain Condition on closed ideals. 
(g) A satisfies the Descending chain Condition on closed ideals. 
2" A is a locally centrally linearly compact ring whose center contains an 

invertible top ologicd nilpo t en t . 
If A is squarefree, the following is equivalent to each of 1' and 2": 

3" A is topologically isomorphic to the Cartesian product of finitely many 
Hausdorff finite-dimensional algebras with identity over complete, discretely 
valued fields. 

Proof. If A is a locally centrally linearly compact ring whose center has 
no proper open ideals, then A contains an open, centrally linearly compact 
subring B such that 1 E B by 41.4, so (a)-(g) of 1" are equivalent by 42.8, 
and also 1' implies 2" by that theorem. If b is an invertible topological 
nilpotent of C and if J is an open ideal of C, then b" E J for some rn 2 1, 
so J = C since b" is invertible. Thus 2" implies 1' by 42.8. 

Assume that A = ny=l A ; ,  where each A; is a finite-dimensional Haus- 
dorff algebra with identity ei over a complete, discretely valued field K; ,  and 
let [ . . I ;  be an absolute value on Ki defining its topology. For each i E [l,n], 
let a; E Ki be such that 0 < la;]; < 1. Then ( a l e l , .  . . , amem) is an in- 
vertible topological nilpotent belonging to the center of A ,  and A is locally 
centrally linearly compact by 41.7 and 41.3. Thus 3" implies 2". 

Finally, assume that A is squarefree and that 1' holds. As C is ar- 
tinian, by 37.7 there exist orthogonal idempotents e l ,  . . . , e ,  in C such 
that Cy.l ei = 1 and each Ce; is a local artinian ring. By the preceding 
remark, z --t zei is a topological epimorphism from A to Ae; . Consequently, 
Ae; is locally strictly linearly compact by 41.2. Moreover, as z --t zei is 
a continuous epimorphism from C to Cei,  Ce;  has no proper open ideals. 
Clearly A is the topological direct sum of Ael ,  . . . , Ae,, and Cei is the 
center of Ae; for each i E [l,n]. As Cei is local and A squarefree, the char- 
acteristic of Aei is either zero or a prime by 21.2. Consequently, 3" holds 
by 42.9. 

Every locally centrally linearly compact ring with identity whose center 
has no proper open ideals arises in a natural way from the rings described 
in the preceding theorem: 

43.2 Theorem. Let A be a topological ring with identity. The following 
statements are equivalent: 
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1' A is a locally centrally linearly compact ring whose center C is a 
topological ring that has no proper open ideals. 

2' A is topologically isomorphic to the local direct sum of topological 
rings ( A x ) x € L  relative to open subrings ( B x ) x € L ,  where each Ax is a ring 
with identity, Bx is a centrally linearly compact ring that contains the iden- 
tity of Ax, and the center Cx of Ax is a semilocal topological ring that has 
no proper open ideals. 

Proof. Assume lo. By 41.4 there is an open, centrally linearly compact 
subring B of A that contains 1, and by 41.8, the center of B is B f l  C. 
Consequently, B n C is strictly linearly compact, and therefore by (2) of 
34.6, there is an orthogonal family ( e x ) x E L  of idempotents in B n C such 
that CXEL ex = 1 and (B n C)ex is a linearly compact local ring. 

As noted before 43.1, for each X E L, px : z + zex is a topological epi- 
morphism from A to Aex. Consequently, Bex is an open, centrally linearly 
compact subring of Aex by 41.2. The center of Aex is clearly Cex, which 
therefore has no proper open ideals since C does not. Consequently, by 
41.8, the center of Bex is Bex n C e x ,  which is (B f l  C)ex and therefore is a 
strictly linearly compact local ring. By 42.8, Cex is a semilocal ring. 

Let 9 : A + n x E L ( A e x )  be defined by @(z) = (xex)xEL for each x E 
A. By 34.3, the restriction @B of @ to B is a topological isomorphism 
from the B-module B to the B-module n x E L ( B e x ) .  Since each ex E C, 
@B is an isomorphism from the ring B to the ring n-+L(Bex). For each 
X E L, Bex itself is the largest subring of Aex in whch Bex is an ideal 
because Bex contains the identity ex of Aex. Thus the local direct sum D 
of (Aex)xEL relative to (Bex)x€L is the subring e X E L ( A e x )  + nxGL(Bex)  
of n x E L ( A e x ) .  If p E L and if z E Aep,  then @(z) = ( z x ) x G ~  where z,, = z 
and xx = 0 for all X # p. Therefore e x E L ( A e x )  @ ( A ) ,  and hence as 
n x E L ( B e x )  5 @(A), D E @ ( A ) .  Conversely, if z E A, then ( x e x ) x E L  is 
summable and x = C X E L z e ~  by 10.16, so z e x  E Bex for all but finitely 
many X E L by 10.4. Thus D = @ ( A ) .  As @ B  is a topological isomorphism 
from the open subring B of A to the open subring n x E L ( B e x )  of D, @ is a 
topological isomorphism from A to D. 

Assume 2'. Then nxEL Bx is open in the local direct sum D of ( A x ) x € L ,  
so D is l ocdy  centrally linearly compact by 41.3. The center C of D is 
clearly (nxEL Cx) n D. Let J be an open ideal of C. For each X E L, the 
projection of J on Cx is open in Cx and hence is Cx. Thus Cx 2 J 
by 24.12, so J = C as J is closed and exEL Cx is dense in C. Therefore 1' 
holds. 

In applying these theorems to locally compact rings, we wish to allow for 
a connected factor. For this, we need the following three lemmas: 
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43.3 Lemma. If E is a l o c d y  compact, connected, unitary left [right] 
topological module over a squarefree, locally centrally linearly compact ring 
A with identity whose center is a topological ring that contains no proper 
open ideals, then E = (0). 

Proof. We assume that E is a left A-module. By 43.2 and 43.1 there is 
an orthogonal family (ex)AEL of idempotents in the center of A whose sum 
is 1 such that each Aex is the direct sum of finitely many Hausdorff finite- 
dimensional algebras with identity over complete, discretely valued fields. 
Suppose that there is a nonzero element t E E .  Then 

by 10.16, so there exists cr E L such that e,.E # (0). Thus e,.E is a 
nonzero topological unitary module over Ae,. In view of the nature of Ae,, 
there are complete, discretely valued fields K1, . . . , Kn such that, if e j  is 
the identity element of Kj for each j E [l, n], then 

n 

( r e j ) . e ,  = 1.e, = e,, 
j = 1  

so for some i E [l ,n],  e i .E  = ei.(e,E) # (0). Thus e i .E  is a nonzero Haus- 
dorff vector space over Ki. Now e i .E is connected since it is a continuous 
image of E .  Moreover, e i . E  is clearly closed in E and hence is locally com- 
pact. Thus ei.E is a connected, locally compact vector space over Ki. By 
16.2 and 13.8, e i .E  is finite-dimensional and hence, by 15.9, is topologically 
isomorphic to K r  for some rn 2 1. But K;" is totally disconnected since 
K; is a discretely valued field. Thus E = (0). 0 

43.4 Lemma. Let A be a Hausdorff ring, C the connected component of 
zero. If A has a left [right] identity, if C is locally compact and not the zero 
ideal, and if A/C is a square-free, locally centrally linearly compact ring 
with identity whose center is a topological ring that has no proper open 
ideals, then C is a finite-dimensional Hausdorff algebra over R, the right 
[left] annihilator of C in C is { 0 ) ,  and C contains a nonzero idempotent. 

Proof. We shall assume that A has a left identity element e. Let q.5 be the 
canonical epimorphism from A to A/C. By 35.4, C contains a connected, 
compact ideal K such that CK = (0) and C / K  is a finite-dimensional 
topological IW-algebra. Since A/C is a ring with identity, its identity element 
is d(e). Therefore as CK = (0), K is a unitary topological module over A / C .  
By 43.3, K = (0); therefore C is a finite-dimensional Hausdorff algebra over 
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R. Let J = {c E C : Cc = (0)). Then J is a closed ideal of C and also 
a closed subspace of the R-algebra C and hence is connected. Therefore as 
C J  = {0}, J is a unitary topological (left) module over A / C ,  so J = (0) 
by 43.3. 

For each c E C, let R, be the linear operator on the R-vector space 
C defined by R,(z) = zc for all 2 E C. Since J = {0}, R : c + R, 
is an antimonomorphism from C into the R-algebra EndR(C) of all linear 
operators on C (that is, R is an additive monomorphism satisfying R,d = 
Rd o R, for all c ,  d E C). As C is a finite-dimensional algebra, its radical is 
nilpotent by 27.15, so C is not a radical ring as J = (0), and consequently C 
contains a nonnilpotent element u. The sequence (Cu"),>l of subspaces of 
C is decreasing, so for some rn 2 1, Cu" = Cum for all s 5 m. Let v = urn. 
Then Cv # (0) as v is not nilpotent, and Cv2 = Cv. Consequently, the 
restriction S of R, to Cv is an automorphism of the R-vector space Cv. 
Therefore the characteristic polynomial X" + . . . + cv1X + (YO of S has a 
nonzero constant term (YO. Let 

-1 n p =  - ( Y o  (w +...+a1 v). 

Then p E C, Rp(C)  C Cv, and by the Cayley-Hamilton theorem, R p ( z )  = 2 
for all z E Cu. Hence Rp is a projection on Cv, so as R is an antimonomor- 
phism, p is a nonzero idempotent in C. 0 

43.5 Lemma. Let A and A' be topological rings with identity elements 
1 and 1' respectively, and let 4 be a continuous homomorphism from A to 
A' such that $(1) = 1'. If C is a subring of A containing 1 such that the 
topological ring C contains no proper open ideals and if C' is a subring of 
A' containing +(C), then the topological ring C' has no proper open ideals. 

Proof. Let J' be an open ideal of C'. Then there is an open set U' in 
A' such that U' 17 C' = J' .  Moreover, #-l(U')  n C is an (open) ideal of C. 
Indeed, if z E C and y E 4-'(U') n C, then +(z) E 4(C) C' and 

so 

+(zy) = 4(.)$(y> E C'J' = J ' ,  

and therefore 
~ - l ( u ' n c ' ) n ~ ~ ~ - l ( ~ ' ) n c .  

Similarly, if 2, y E $-'(U') n C,  then z - y E $-l(U') n C. Consequently, 
4-'(U') n C = C by hypothesis. Therefore 1 E C C_ 4-'(U'), so 1' E 
U' n C' = J ' ,  and therefore J' = C'. 0 
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43.6 Theorem. Let A be a Hausdorff ring with identity such that the 
connected component C of zero is locally compact and either A = C or 
A/C is squarefree and locally centrally linearly compact. If the center of A 
has no proper open ideals, then C is a finite-dimensional Hausdorff algebra 
with identity over R, the center of A/C has no proper open ideals, and A is 
the topological direct sum of C and a ring topologically isomorphic to AIC. 

Proof. By 35.6, we may assume that A # C and C # (0). By 43.5, 
applied to the centers of A and of A/C, the center of A/C is a topological 
ring having no proper open ideals. Consequently, it suffices to prove that C 
has an identity element that is in the center of A. 

For each c E C, let L C ( z )  = cz for all z E C. By 43.4, C is a finite- 
dimensional topological algebra over R, and the left annihilator of C in C 
is (0). Therefore L : c -+ L, is a monomorphism from C to the R-algebra 
EndR(C) of all linear operators on C. Now 0 is an idempotent of C; let 
e be an idempotent of C such that L,(C) is maximal in the set of all the 
subspaces Lp(C), ordered by inclusion, where p is an idempotent of C. 

Suppose that (1 - e ) C  # (0). Let 4 be the canonical epimorphism from 
A to A / C  and let 4' be the restriction of 4 to (1 - e)A. As noted before 
43.1, the function T from the additive topological group A to the additive 
topological group (1 - e)A, defined by n ( z )  = (1 - e ) z  for all z E A, is 
a topological epimorphism. Since e E C, 4 = 4' 0 .rr; therefore as both 4 
and T are topological epimorphisms, 4' is a topological epimorphism from 
(1 - e)A to A/C by 5.3. The kernel of 4' is (1 - e ) A  n C, which is the ideal 
(1 - e)C of C. Therefore (1 - e)A/(1 - e)C is topologically isomorphic to 
A/C. Clearly (1 - e)C is closed in C and hence is locally compact; (1 - e)C 
is the continuous image of a connected set and hence is connected. As the 
connected component of zero in (1 - e)A is clearly contained in the subset 
(1 - e)A n C, therefore, (1 - e)C is the connected component of zero in 
(1 - e)A. By 43.4 applied to (1 - e)A, which has the left identity 1 - e ,  
(1 - e)C has a nonzero idempotent f. As f = (1 - e) f ,  ef = 0. Let 
M = L,(C), N = Lf(C), and let g = e + f .  Then L,(C) C M + N .  As 
ef = 0, L,(m - Lf(rn) )  = rn for each m E M ,  and L,(n) = n for each 
n E N ,  so L,(M + N )  2 M + N .  The restriction of L, to M + N is 
therefore an automorphism of the W-vector space M + N .  Applying the 
Cayley-Hamilton theorem as in the proof of 43.4, we conclude that there 
is an idempotent h E C such that Lh is a projection on M + N .  Since 
M n N  = (0) (as ef = 0) and since N # (0), we thus obtain a contradiction. 

Therefore (1 - e)C = (0), so L, is the identity linear operator on C, 
and consequently e is the identity element of C. Moreover, e is a central 
idempotent, for if z E A, then ez and ze belong to C, so ez = (ez)e = 
e(ze) = ze. Thus A is the topological direct sum of eA, which is C, and 
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(1 - e)A,  which is topologically isomorphic to A / C .  0 

tity, and let C be its center. The following statements are equivalent: 

hence all of the following equivalent conditions hold: 

43.7 Theorem. Let A be a squarefree locally compact ring with iden- 

1' C is a topological ring having no proper open ideals, and any one and 

(a) C is semilocal. 
(b) A has only finitely many maximal ideals. 
(c) Every C-module of A is closed. 
(d) Every ideal of A is closed. 
(e) C is an artinian ring, and A is a finitely generated C-module. 
(f)  A satisfies the Ascending Chain Condition on closed ideals. 
(g) A satisfies the Descending Chain Condition on closed ideals. 
2" C contains an invertible topological nilpotent. 
3" A is topologically isomorphic to the Cartesian product of finitely many 

Hausdorff finite-dimensional algebras with identity over nondiscrete l o c d y  
compact fields. 

Proof. Assume that C has no proper open ideals, and let A0 be the 
connected component of zero. Then A/Ao is a totally disconnected locally 
compact ring by 5.16 and hence is locally centrally linearly compact by 4.21 
and 4.20. By 43.6, A is the topological direct sum of A0 and a subring A1 
topologically isomorphic to A/Ao,  and A0 is a finite-dimensional Hausdorff 
algebra with identity over R. Let Co and C1 be the centers of A0 and A1 
respectively. Then C is the direct sum of CO and C1 and statements (a)-(g) 
all hold if C and A are replaced respectively by CO and Ao, because they 
are finite-dimensional R-algebras with identity. (The concluding part of the 
proof of 42.8 shows that every finite-dimensional algebra with identity over 
a field has only finitely many maximal ideals.) It readily follows that each of 
(a)-(g) is valid for Cl and A1 if and only if it is valid for C and A.  Thus the 
equivalence of (a)-(g) for C and A follows from the equivalence of (a)-(g) 
for C1 and A l ,  established in 42.8. 

As shown in the proof of 43.1, any finite-dimensional algebra with identity 
over a field topologized by a proper absolute value contains an invertible 
topological nilpotent. Consequently, 2" holds for C if and only if it holds 
for CI. The equivalence of 1"-3" therefore follows from 43.1 and 16.2. 0 

Exercises 

In these exercises, it is understood that a finite-dimensional vector space 
or algebra over a field, furnished with a complete absolute value, is topolo- 
gized with the unique Hausdorff topology that makes it a topological vector 
space or algebra over that field. 



EXERCISES 421 

43.1 The following statements are equivalent for a topological ring A with 
identity: 

1" A is a locally centrally linearly compact semisimple ring all of whose 
ideals are closed and whose center is a topological ring having no proper 
open ideals. 

2" A is a locally centrally linearly compact semisimple ring whose center 
is a semilocal topological ring having no proper open ideals. 

3" A is a locally centrally linearly compact semisimple ring whose center 
contains an invertible topological nilpotent. 

4" A is the topological direct sum of finitely many rings, each the ring 
of all linear operators on a finite-dimensional vector space over a complete, 
discretely valued field. 

43.2 The following statements are equivalent for a topological ring A with 
identity: 

1" A is a locally centrally linearly compact semisimple ring whose center 
is a topological ring having no proper open ideals. 

2' A is topologically isomorphic to the local direct sum of topological 
rings (Ax)xEL relative to open subrings ( B X ) X ~ L ,  where for each X E L ,  
Ax is the toopological direct sum of finitely many rings, each the ring of 
all linear operators on a finite-dimensional vector space over a complete, 
discretely valued field, and BA is centrally linearly compact. 

43.3 The following statements are equivalent for a topological ring A with 
identity: 

1' A is a locally compact semisimple ring all of whose ideals are closed 
and whose center is a topological ring that has no proper open ideals. 

2" A is a locally compact semisimple ring whose center is a semilocal 
topological ring that has no proper open ideals. 

3" A is a locally compact semisimple ring whose center contains an in- 
vertible topological nilpotent. 

4' A is the topological direct sum of finitely many rings, each the ring of 
all linear operators on a finite-dimensional vector space over a nondiscrete 
locally compact field. 

43.4 The following statements are equivalent for a topological ring A with 
identity: 

1" A is a locally compact semisimple ring whose center is a topological 
ring that has no proper open ideals. 

2" A is topologically isomorphic to A0 x A l ,  where A0 is the topological 
direct sum of finitely many rings, each the ring of all linear operators on a 



422 LOCALLY CENTRALLY LINEARLY COMPACT RINGS 

finite-dimensional vector space over R or @, and A1 is the local direct sum 
of topological rings (Ax)x€L relative to open, compact subrings ( B X ) X E L ,  
where for each X E L, Ax is the topological direct sum of finitely many rings, 
each the ring of all linear operators on a finite-dimensional vector space over 
a discretely valued, locally compact field. 

43.5 The following statements are equivalent for a commutative topolog- 
ical ring A with identity: 

proper open ideals, and every ideal of A is closed. 

has no proper open ideals. 

an invertible topological nilpotent. 

discretely valued field. 

1" A is a locally strictly linearly compact semisimple ring that has no 

2" A is a locally strictly linearly compact, semilocal, semisimple ring that 

3" A is a locally strictly linearly compact semisimple ring that contains 

4" A is topological direct sum of finitely many rings, each a complete, 

43.6 The following statements are equivalent for a commutative topolog- 

1' A is a locally strictly linearly compact semisimple ring that has no 
proper open ideals. 

2" A is topologically isomorphic to the local direct sum of topological ring 
( A x ) x E ~  relative to open subrings ( B x ) x E ~ ,  where for each X E L,  Ax is the 
topological direct sum of finitely many rings, each a complete, discretely 
valued field, and Bx is a strictly linearly compact subring. 

43.7 The following statements are equivalent for a commutative topolog- 

ical ring A with identity: 

ical ring A with identity: 

and every ideal of A is closed. 

open ideals. 

ical nilpotent. 

Crete locally compact field. 

1" A is a locally compact semisimple ring that has no proper open ideals, 

2" A is a locally compact, semilocal, semisimple ring that has no proper 

3" A is a locally compact semisimple ring that has an invertible topolog- 

4" A is the topological direct sum of finitely many rings, each a nondis- 

43.8 (Goldman and Sah "651) The following statements are equivalent 

1" A is a locally compact semisimple ring that has no proper open ideals. 
2" A is topologically isomorphic to A0 x A1, where A0 is topologically 

isomorphic t o  the Cartesian product of finitely many topological fields, each 

for a commutative topological ring A with identity: 
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either R or @, and A1 is the local direct sum of topological rings (Ax)x€L 
relative to compact open subrings ( B x ) x ~ L ,  where for each X E L,  Ax is the 
topological direct sum of finitely many subrings, each a discretely valued, 
locally compact field. 

43.9 Let V be the valuation ring of a locally compact field F whose 
topology is defined by a discrete valuation, let M be the maximal ideal of 
V ,  and let B = {(z,y) E V x V : z - y E M } .  Let L be an infinite set, 
and for each X E L ,  let Ax = F x F ,  BA = B. (a) Each Bx is a compact, 
open, subring containing the identity element of Ax. The local direct sum 
A of ( A x ) x € L  relative to ( B x ) x ~ L  is thus a locally compact ring. (b) A is 
not isomorphic to the local direct sum A' of a family of rings ( A L ) N E ~  with 
identity relative to subrings ( B L ) N E ~ ,  where each BI contains the identity 
of A; and is the direct sum of finitely many local rings. [Observe that there 
is a neighborhood of zero in A that contains no idempotent serving as the 
identity of a local subring.] (c) Which of the properties listed in 1' and 2' 
of Theorem 43.2 are unsatisfied by A and the Ax's? 



CHAPTER XI 

HISTORICAL NOTES 

We conclude with some historical remarks concerning the material pre- 
sented in the preceding chapters, with the exception of those topics covered 
in Topofogicd Fields. The use of topologies to facilitate the discussion of 
certain topics in commutative algebra is the subject of $44. A brief history 
of the development of the theory of locally and linearly compact rings is 
given in $45, and we conclude with a discussion of some topics not covered 
in the book: duality theory, embedding theory, and theorems concerning 
the existence of topologies on rings. This chapter is thus a continuation of 
the historical remarks constituting the final chapter of Topologicd Fields. 

44 Topologies on Commutative Rings 

Traditionally, a complete, discretely valued field of characteristic zero, the 
maximal ideal of whose valuation ring is generated by the prime number p, 
has been called a p-adic field. In our terminology, the valuation ring of a 
p-adic field is a Cohen ring of characteristic zero whose residue field has 
characteristic p, and consequently a p-adic field is simply the quotient field 
of such a Cohen ring. 

The structure theory of complete, discretely valued fields was first pre- 
sented by Hasse and Schmidt [1932]: (a) a complete, discretely valued field 
whose valuation ring is equicharacteristic is isomorphic to the field of power 
series in one variable over its residue field (22.1); (b) for any field k of prime 
characteristic p ,  there is a p-adic field whose residue field is isomorphic to k 
(22.8)) and any isomorphism from the residue field kl of a p-adic field Kl to 
the residue field k2 of a p-adic field Kz is induced by an isomorphism from 
K1 to K2 (or equivalently, by an isomorphism from the valuation ring of 
K1 to that of Kz) (22.11); (c) a complete, discretely valued field of charac- 
teristic zero whose residue field has prime characteristic p is an Eisenstein 
extension of a p-adic field (22.7). 

Hasse and Schmidt’s proof of (b) depended, however, on an unproved 
statement, subsequently shown to be incorrect by MacLane [1938a], affirm- 
ing that an extension k of a field ko of prime characteristic is the union 

424 
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of an increasing sequence of subfields each of which has a separating tran- 
scendence basis over ko. This statement mattered in Hasse and Schmidt’s 
proof of (b) only when k was imperfect, however, and thus their proof was 
valid whenever k was perfect. Later, Schmidt and MacLane [1941] refined 
the erroneous statement into two theorems, one of which affirmed that if k 
preserves p-independence over ko, that is, if each p-independent subset of 
ko is also p-independent in k (the notion of p-independence arises naturally 
from that of a p-basis, introduced by Teichmuller [1936a]), then k is the 
union of a transfinite sequence of subfields, each countably generated and 
preserving p-independence over its predecessor, if it has one. Suitably mod- 
ified by these theorems, Hasse and Schmidt’s original proof of (b) is then 
valid in general. 

Meanwhile, however, arguments of Teichmuller [1936b,c] amplified, gen- 
eralized, and simplified at certain points by MacLane [1938b], established 
the structure theorems in complete generality. Both Teichmuller and Witt 
[1936] observed that the ring of Witt vectors with coefficients in a perfect 
field k of prime characteristic is a Cohen ring whose residue field is isomor- 
phic to k, and using Teichmiiller’s theorem that established the existence of 
multiplicative representatives, both completed the proof of (b) for perfect k. 
Teichmiiller then essentially reduced the problem of proving (b) in general 
to this already established special case by showing that if L is the p-adic 
field whose residue field is the smallest perfect extension of k, L contains a 
unique p-adic subfield K with residue field k that contains the multiplica- 
tive representatives of a given p-basis of k. Eliciting a generalization of 
this theorem from Teichmiiller’s proof, MacLane used it to prove a theorem 
yielding explicitly the uniqueness part of (b) in complete generality. 

MacLane [1938b] also observed that a simple extension theorem estab- 
lished the existence of a p-adic field with prescribed residue field (22.8). 
Ostrowski [1932] had shown that a valuation 21 of a field K with residue 
field k could be extended to a valuation of a finite-dimensional extension 
field that has the same value group as 21 and a residue field k-isomorphic to 
a given finite-dimensional extension k’ of k (his proof, though stated only 
for real valuations, is valid in general). MacLane [1937] rediscovered this 
theorem and supplemented it with the analogue for a simple transcendental 
extension k’ of k to conclude that if 1’ is any extension of k, there is an 
extension of v to an extension field of K that has the same value group as v 
and a residue field k-isomorphic to k‘ (Topological Fields, Exercise 32.23). 

The proof given here of the uniqueness part of (b) (22.9-22.11), which uses 
the existence of Cohen subrings in a (not necessarily noetherian) Hausdorff, 
complete local ring (21.20), was derived by Wehrfritz [1979] from a proof 
given by Rees. 
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Krull [1938] initiated the study of local noetherian rings and, in particu- 
lar, developed the dimension theory of such rings. Krull [1928] had already 
given a description of the intersection of the powers of an ideal in a noether- 
ian ring. This description implied that the intersection of the powers of the 
maximal ideal of a local noetherian ring A was the zero ideal (20.16) and 
thus enabled K r d  to introduce a Hausdorff ring topology on A,  called here 
the natural topology of A ,  for which the powers of the maximal ideal form 
a fundamental system of neighborhoods of zero. Krull [1938] showed that 
every ideal of A is closed (20.16), that a finite set generating an ideal of A 
also generated its closure in Â  (24.6), and that Â  is again a local noetherian 
ring furnished with its natural topology (24.7). 

Krull [1938] also inferred from Hensel’s Lemma (see Topological Fields, 
32.11) that if the residue field k of a complete regular local ring A had char- 
acteristic zero, then A contained a subfield mapped isomorphically onto 
k by the canonical mapping, and consequently that A was isomorphic to  
the ring of formal power series in finitely many variables over k. This led 
him to  conjecture that the Hasse-Schmidt theorems for complete, discrete 
valuation rings were simply the one-dimensional special cases of theorems 
describing complete, regular local rings. Specifically, he conjectured that if 
the residue field k of a complete, regular local ring A of dimension n had 
prime characteristic p, then A was isomorphic to the power series ring in n 
variables over k if A had characteristic p, whereas if A had characteristic 
zero and p did not belong to the square of its maximal ideal, then A was 
isomorphic to the power series ring in n - 1 variables over a Cohen sub- 
ring. Krull also conjectured that every complete, local noetherian ring is an 
epimorphic image of a complete regular local ring (23.6). 

I. S. Cohen [1945] verified these conjectures in a fundamental paper by 
applying his theorem (21.20) that a complete, local noetherian ring contains 
what has historically been called a coefficient subfield or subring but, as in 
in Samuel [1953] or Godement [1956], is here called a Cohen subfield or 
subring. Cohen’s proof required consideration of local rings Hausdorff for 
their natural topologies whose maximal ideals are finitely generated, and in 
passing he proved that such a ring, if complete, is noetherian (23.6). Na- 
gata [1949] simplified Cohen’s proof in certain respects, but his proof of the 
existence of Cohen subrings in a local ring that is Hausdorff and complete 
for its natural topology (21.20) was seriously flawed. Correct proofs of this 
were given independently by Narita [1955a] , who used theorems concern- 
ing p-bases, and Geddes [1954, 19551, whose conceptually simpler proof is 
presented here (21.11-21.13, 21.17-21 . lo) .  

Chevdey [1943] introduced semilocal noetherian rings and proved that 
the natural topology of such a ring is Hausdorff ((4) of 24.16). He showed 
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that a complete, semilocal noetherian ring A is the direct sum of finitely 
many complete, local noetherian rings (24.17), and that if E is an A-module 
such that EIRE is finitely generated, where R is the radical of A,  then E is 
finitely generated (cf. 42.7). He also established that the natural topology 
of a complete, semilocal noetherian ring A is the weakest metrizable ideal 
topology on A (36.35 and 36.33). In a circuitous way, Chevalley showed that 
a semilocal noetherian ring A is a dense subring of a complete, semilocal 
noetherian ring A whose natural topology induces on A its natural topology 
(24.17). En route, he proved that the ring B [ [ X ] ]  of power series over a 
noetherian ring B is noetherian (23.2); the proof given here, which was 
presented by Kaplansky [1970], uses I. S. Cohen’s theorem [1949] that a 
commutative ring with identity is noetherian if each of its prime ideals is 
finitely generated (20.9). Chevalley [1943] also showed that the completion 
of a noetherian integral domain for the topology defined by a maximal ideal 
M is a local ring ((2) of 24.7), and that if B is a commutative ring finitely 
generated over a semilocal noetherian subdomain A, then B is a semilocal 
noetherian ring whose natural topology induces on A its natural topology 
(39.13). The discussion here of the completion of a semilocal noetherian 
ring (24.7) is similar to that given by Yoshida and Sakuma [1953]. 

Zariski [1945] broadened in a natural way Krull’s investigation of the 
topology determined by the maximal ideal of a local noetherian ring by 
introducing the J-topology on a commutative noetherian ring with identity 
A, where J is any ideal of A (24.1). His proof that the completion Â  of 
A for a Hausdorff J-topology is noetherian is given here ((1) of 24.7), and 
he also showed that the topology of Â  is its ?-topology, where ? is the 
closure of J in Â  (24.5). Using the primary decomposition of an ideal in 
a noetherian ring, Zariski verified that every ideal in Â  is closed (Exercise 
24.2) and concluded that the closure of an ideal F of A in Â  is A^F (24.6). 

Zariski [1945] also showed that every ideal of A is closed for the J -  
topology if and only if J is contained in the radical of A (24.14); such 
J-topologies have been called Zariski topologies (Samuel [1953], Zariski and 
Samuel [1960]). The term has been broadened here to mean any Haus- 
dorff ideal topology for which all ideals are closed, since that is an appro- 
priate context for much of Chevalley’s work [1943] on semilocal noether- 
ian rings and Zariski’s principal theorem for Zariski J-topologies (Exercise 
24.2). With only minor modifications, Zariski’s proof of that theorem estab- 
lishes the very general result that the continuous extension of the identity 
map of a group G to a homomorphism from the completion of G for a Haus- 
dorff group topology to the completion of G for a weaker Hausdorff group 
topology is a monomorphism, provided that there is a fundamental system 
of neighborhoods of the identity for the stronger topology that are closed 

h 
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for the weaker (7.20)) and consequently that if G is complete for the weaker, 
it is complete for the stronger (7.21). 

Using I. S. Cohen’s theorem that a complete local ring whose maxi- 
mal ideal is finitely generated is noetherian, Nagata [1950a] showed that 
a semilocal ring is noetherian if and only if its maximal ideal is finitely 
generated and its natural topology is a Zariski topology (24.18). 

The Artin-Rees Lemma, so-named by H. Cartan in lectures given in 
January 1954, asserts that if M is an ideal of a noetherian ring A and 
if F is a submodule of a finitely generated A-module E ,  then there exists k 
such that M n E  n F = M ” - k ( M k E  n 8’) for all n 2 k. The Lemma, which 
became generally known in 1953, was obtained independently by Artin, who 
did not publish a proof, and Rees, who did [1955b]. The proof of the “non- 
uniform” case given here (20.11)) presented by Kaplansky [1970], is due to 
Herstein. 

The dimension theory of local noetherian rings is the creation of Krull 
[1938]; the presentation here (5537-38) largely follows that of Kaplansky 
[1970]. The structure theory of complete local noetherian rings (39.16,39.18, 
39.20, 39.29) is due to I. S. Cohen [1945]. Nagata [1953b] and Mori [1955] 
independently proved that a complete local noetherian domain is Japanese 
(40.9). The proof given here is a special case of a proof of Tate [1962] 
contained in personal notes entitled “Rigid analytic spaces”; the proof was 
published by Grothendieck [1964], and the notes were published, first in 
Russian translation in 1969, then in English in 1971. 

45 Locally and Linearly Compact Rings 

Just as Hensel initiated the study of topological fields by constructing the 
p-adic number fields without, however, the use of topological concepts, so 
also Priifer [1924], also without their use, initiated the study of topological 
rings a quarter of a century later by identifying, in modern terminology, the 
completion .k of an algebraic number field K for the supremum of all the 
valuation topologies defined by the prime ideals of its ring of integers D with 
n,,,gp, where P is the set of all nonzero prime ideals of D and .kp is 
the completion of K for the valuation defined by P (see Topological Fields, 
28.16). Von Neumann [1925] recast Prufer’s theory in topological language 
(but not in the language of valuation theory). At  the time of Priifer’s and 
von Neumann’s investigation, the theory of real valuations was barely under 
way; their theorem, however, directly implied a significant special case of 
Ostrowski’s approximation theorem for real valuations [1932], which did not 
appear until 1935. 

Van Dantzig [1931a,b] first formally defined a topological ring and proved 
that, under certain conditions later shown always to  hold, a Hausdorff topo- 
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logical ring admitted a completion. Subsequently, he investigated the com- 
pletion of a ring for a Hausdorff ideal topology [1934a] and demonstrated 
certain decomposition theorems (subsumed in Exercise 28.8 of Topological 
Fields). 

Mining the structure theory of locally compact abelian groups for in- 
formation about the connected component of zero in a locally compact 
ring marked the next significant advance. Jacobson and Taussky [1935] 
applied the Pontrsgin-van Kampen theorem to show that a separable, lo- 
cally compact, connected ring lacking nonzero bilateral annihilators is a 
finite-dimensional topological algebra over the real numbers (35.5). In the 
same manner, Anzai [1943] obtained Jacobson and Taussky’s theorem and 
explicitly demonstrated that a compact ring lacking nonzero left or right 
annihilators is totally disconnected. Otobe [1944a,b] refined both results 
and, in particular, showed that the Jacobson-Taussky hypothesis of separa- 
bility was unneeded. Two theorems presented here subsume these results: 
the first (32.2), due to Kaplansky [1947c] and based on the existence of suf- 
ficiently many characters on a locally compact abelian group (32.1), asserts 
that the connected component of zero in a locally compact ring annihilates 
on the right [left] any left [right] bounded additive subgroup; the second 
(35.2), due to Braconnier [1946] and based on the Pontrfigin-van Kampen 
structure theorem for locally compact abelian groups (35.1), elicits the re- 
lation between the connected component of zero in a locally compact ring 
and the ideal that is the union of all compact additive subgroups. 

Major progress in the theory of compact and locally compact rings was 
made by Kaplansky in 1946-52. He determined [1946], for example, the 
structure of compact semisimple rings (32.6). Using it and a lifting theorem 
for idempotents (34.22), he showed [1946] that a compact commutative ring 
A is the Cartesian product of compact local rings and a compact radical 
ring (34.23). Kaplansky also showed [1946] that if A is a compact local ring 
such that R2 is open, then A is a local noetherian ring whose topology is 
its natural topology (a noncommutative generalization is given in 36.39, in 
view of 36.35). 

Throughout, Kaplansky’s work exhibits the utility of advertibly open 
rings in the general theory, as, for example, in his proof [1949b] that the 
radical of a locally compact ring is not only closed, but the intersection of the 
closed regular maximal right ideals (35.6-35 .lo). Kaplansky also described, 
first [1947c], bounded, locally compact, semisimple rings (32.10), and later 
[1952a], right bounded, locally compact, semisimple rings (cf. 32.9). 

The ring of all linear operators on a finite-dimensional vector space over 
a nondiscrete, locally compact field K ,  furnished with its unique Haus- 
dorff topology as a finite-dimensional algebra over the center of K ,  is a 
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locally compact simple ring, and a natural problem is to determine condi- 
tions insuring that a nondiscrete, locally compact primitive or simple ring 
A has this description.Using a theorem of Jacobson [1935] (32.11)) Kaplan- 
sky [1952a] proved that a torsionfree, locally compact, primitive ring had 
this description (32.13)) but exhibited [1947c] a locally compact primitive 
ring of prime characteristic that did not (Exercise 32.4). Kaplansky [1952a] 
showed that a simple locally compact ring A having a minimal left ideal 
admitted this description (32.16), and SkornGikov [1964] showed that if A 
had no proper open left ideals, then A had a minimal left ideal and hence 
was such a ring (35.16)) but that not all nondiscrete, locally compact sim- 
ple rings admitted this description (pp. 275-280). Kaplansky’s proof was 
based on a theorem, ascribed to Litoff, asserting that if A is a simple ring 
with a minimal left ideal, there is a division ring D such that each finite 
subset of A is contained in a subring of A isomorphic to the ring of dl lin- 
ear operators on a finite-dimensional vector space over D. The first avail- 
able proof of this theorem (Jacobson and Rickart [1950], Jacobson [1956]) 
depended on the duality theory of simple rings with minimal left ideals; 
Faith and Utumi [1962] have given a more elementary proof; Ph- Ngoc 
Anh [1982] has generalized the theorem. The proof of Kaplansky’s theorem 
given here (32.14-16), due to the author [1965], is considerably longer than 
Kaplansky’s, but is more elementary as it is based on standard topological 
considerations rather than Litoff’s theorem. Kaplansky’s structure theorem 
for locally compact strongly regular rings [1949b] (Exercise 35.18) was gen- 
eralized by Skorni’ikov’s description [1977] of all locally compact biregular 
rings (Exercises 35.7-12). 

Bairek theorem, asserting that locally compact and complete metric 
spaces are Baire spaces (9.4), was applied by Mazur and Orlicz [1948] to 
establish that scalar multiplication of a complete, metrizable vector space 
over R was jointly continuous if it was separately continuous in each vari- 
able. Their proof establishes, more generally, that  a separately continuous 
Z-bilinear function from the product of two Hausdorff commutative groups, 
one metrizable, the other a Baire space, to a third topological commuta- 
tive group is jointly continuous (9.5). This subsumes an earlier theorem of 
Arens [1946] that if multiplication is separately continuous in each variable 
for a complete, metrizable additive group topology on a ring A, then A is a 
topological ring (9.6). 

Otobe [1944c] first proved the continuity of inversion for a locally com- 
pact ring topology on a division ring (that is, that  a locally compact ring 
topology on a division ring is a division ring topology). Kaplansky [1946, 
1947~1 generalized Otobe’s theorem in several ways, but Ellis’s decisive re- 
sult [1956a,b] that a locally compact topology on a group for which the group 
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composition is separately continuous in each variable is a group topology 
(6.13) immediately implies the continuity of adversion in a locally com- 
pact, advertibly open ring (11.11). Similarly, the theorem that a complete, 
metrizable topology on a group for which translations are continuous is a 
group topology (6.13), together with the theorem that the topology of an 
open subset of a complete metric space is defined by a complete metric, im- 
plies the continuity of adversion in a complete, metrizable, advertibly open 
ring (11.9). 

Linear compactness had its origins in the work of Priifer, who, in purely 
algebraic language, introduced [1923a] what in modern terminology is the 
Leptin topology associated to  the discrete topology on an abelian group 
(ie., a Z-module) G, defined algebraically [1923b] the completion of G 
for this topology, showed that 6 is linearly compact (Exercises 33.1-2), and 
investigated its structure. Pietrkowski [1930] reformulated Priifer’s results 
in modern terminology. K r d  [1940a,b] discussed linearly compact modules 
over the ring of p-adic integers. 

Lefschetz [1942] introduced linear compactness in the context of vector 
spaces. He showed that a linearly compact vector space is the Cartesian 
product of discrete, one-dimensional spaces (Exercise 28.4)’ and established 
a duality theorem between linearly compact vector spaces and discrete vec- 
tor spaces that extended the ordinary duality for finite-dimensional vector 
spaces (an alternative presentation was provided by DieudonnC [1949a]). 

Results of further investigations into linear compactness were not pub- 
lished, however, until the 1950s. Lefschetz [1942], Dieudonn6 [1949a], and 
Zelinsky [1952] derived the basic elementary properties of linearly compact 
vector spaces and modules (28.3-7); in particular, Zelinsky extended Lef- 
schetz’s observation that a discrete linearly compact vector space is finite- 
dimensional by showing that a discrete linearly compact module cannot 
contain a direct sum of infinitely many nonzero submodules (cf. 28.21). 

Zelinsky and Leptin are primarily responsible for the progress made in the 
theory of linearly compact rings and modules during the 1950s. Extending 
theorems of Kaplansky [1946] (32.6 and 34.23), Zelinsky [1952] showed that 
an ideally topologized (or bounded), linearly compact, semisimple ring is 
the Cartesian product of matric rings over division rings (29.9), and [1949] 
that a strictly linearly compact commutative ring is the direct sum of a 
strictly linearly compact radical ring and the Cartesian product of strictly 
linearly compact local rings (34.6) (Dikranjan and Orsatti [1984a] gave the 
algebraic argument needed to extend the result to arbitrary linearly compact 
rings). Zelinsky [1952] also showed that a complete local noetherian ring is 
linearly compact for the discrete topology (cf. 36.35) and that a valuation 
is maximal if and only if its valuation ring is linearly compact (Topological 
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Fields, 31.21). 
Leptin's earliest work on linear compactness [1954a] concerned linearly 

compact abelian groups (Z-modules). He determined the structure of dis- 
cret, linearly compact abelian groups (30.10) and characterized the largest 
divisible subgroup of a linearly compact topological p-primary group (cf. 
36.24). His fundamental contributions to the general theory of linearly 
compact modules and rings begin with his demonstration [1954e] that of all 
the Hausdorff linear topologies on a module weaker than a linear compact 
topology 7, there is a weakest I*, called here the Leptin topology associ- 
ated to 7 (33.8)) characterized it (38.5-8)) and established the preservation, 
under the replacement of 7 by Z, of important properties (35.9-11). He 
also demonstrated the useful fact that, under a continuous homomorphism 
from one linearly compact module to another, the image of the adherence 
of a filter base of cosets of submodules is the adherence of the image of the 
filter base (28.20). Leptin also introduced strict linear compactness, gave 
criteria for a linear topology to be strictly linear compact (28.15, 33.18), 
established that a strictly linearly compact topology is a minimal Hausdorff 
linear topology (28.13)) and proved basic properties of permanence (28.11, 
28.16-17). 

Leptin also [1954e] established general properties of linearly compact 
rings (29.3-5, 29.15)) proved that the radical of a linearly compact ring 
is closed (29.12), and generalized Zelinsky's theorem for ideally topolo- 
gized, linearly compact semisimple rings by showing that a linearly compact 
semisimple ring is the Cartesian product of rings, each the ring of all linear 
operators on a discrete vector space, furnished with the topology of point- 
wise convergence (29.7). The Wedderburn-Artin theorem for semisimple 
artinian rings (27.14) is simply the discrete special case of this theorem. 

Leptin [1956] also showed that a linearly compact module over a strictly 
linearly compact ring is strictly linearly compact (33.19), a fact he needed in 
his demonstration that the Leptin topology associated to  a linearly compact 
ring topology is strictly linearly compact if and only if the radical of the 
ring is transfinitely nilpotent (33.24). For ideally topologized (or bounded) 
linearly compact rings, Leptin showed that the radical R is transfinitely 
nilpotent if and only if n,"==, R" = (0) (33.25). 

If A is a ring with radical R and if AIR is topologically isomorphic to 
the Cartesian product of a family ( A ' , ) X ~ L  of (semisimple) topological rings, 
any attempt to identify A with the Cartesian product of a family ( A x ) x ~ L  of 
rings such that for all X E L ,  Ax/Rx is topologically isomorphic to A', where 
Rx is the radical of Ax, leads to the problem of lifting an orthogonal family 
of idempotents from AIR to A. For linearly compact rings, lifting a single 
idempotent is always possible (34.1)) as shown by Zelinsky [1952] in the 
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commutative case and Leptin [1956] in general (the proof given here, due to 
Widiger [1987], incorporates ideas from both proofs). In the commutative 
case, lifting an idempotent can be done in only one way (34.2). Leptin also 
showed that any family ( e x ) x e L  of idempotents of A determining an or- 
thogonal family of idempotents in AIR with sum 1 effects a decomposition 
of the A-module A into the Cartesian product of the left ideals (AeA)AEL 
(34.3). Leptin erred in stating that if A is strictly linearly compact, any 
family of idempotents in A lifting an orthogonal family of idempotents in 
AIR is summable (see 34.7), but Widiger [1972, 19871 did establish that a 
summable, orthogonal family of idempotents in AIR may be lifted to a sum- 
mable, orthogonal family of idempotents in A (34.4-5). One consequence of 
these lifting theorems is that a strictly linearly compact ring with identity 
which modulo its radical is the ring of all n by n matrices over a division 
ring K is the ring of all n by n matrices over a strictly linear compact ring 
that modulo its radical is isomorphic to K (34.9). This was established by 
Kaplansky [1946] for compact rings (34.24) and by Leptin [1956] in general. 

A significant extension of Leptin’s structure theorem for linearly compact 
semisimple rings is Ryan’s structure theorem [1980] for semisimple linearly 
topologized rings possessing an open left ideal that is linearly compact for 
its induced topology (31.8). Crucial to her proof is Wiegandt’s theorem 
[1966a] that such a ring possesses a minimal left ideal (31.2); the proof given 
here is Ryan’s amplification of Wiegandt’s original argument. Among the 
consequences of Ryan’s theorem is Kaplansky’s earlier [1952a] description 
of right bounded, locally compact semisimple rings (cf. 32.9). 

Extending Kaplansky’s earlier theorem [1946] on compact local rings, Nu- 
makura [1955b, 19811, Jans [1957] and the author [1971b] have all obtained 
special cases of the theorem that the topology of a strictly linearly compact 
ring with identity and radical R is the radical topology if that topology is 
Hausdorff and the closure of R2 is open (36.27). 

A natural inquiry is to determine the nature of linearly compact rings 
whose closed ideals are also linearly compact rings. Widiger [1972] showed 
that if A is a bounded, linearly compact ring whose radical R is a strictly 
linearly compact ring, then necessaily every closed ideal of A is a strictly lin- 
early compact ring, and he gave a structure theorem for such rings (34.18). 
In particular, in such a ring, the radical is strongly linearly compact, that 
is, any filter base of closed additive subgroups has a nonzero intersection 
(34.13). This led Pham Ngoc Anh [1976c, 1977bl to investigate linearly com- 
pact rings whose radical is strongly linearly compact; he obtained [1977b] 
a structure theorem (modified in 34.17 by the addition of a hypothesis) ex- 
tending Widiger’s original result. A more restrictive condition is that every 
closed subring of the ring be linearly compact. Ursul, in a series of pa- 
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pers (the earliest in collaboration with Andrunakevich and Arnautov) has 
investigated these rings. 

Strictly linearly compact rings form a natural domain for extending theo- 
rems about artinian rings, simply because strictly linearly compact rings are 
projective limits of discrete artinian rings, and the discrete strictly linearly 
compact rings are precisely the artinian rings. Widiger's theorem mentioned 
above is an example of a theorem that was first obtained in the discrete case 
for artinian rings. The author [1976] undertook an investigation of a more 
restrictive class of rings, those linearly compact for the radical topology 
(such rings are necessarily strictly linearly compact (36.17)). In such rings 
the topological torsion ideal has a unique topological supplement (36.23) S, 
which is divisible and topologically torsionfree and has a left identity, a the- 
orem yielding in the discrete case the classical decomposition of an artinian 
ring into the direct sum of its torsion ideal and a unique ideal S, which is 
divisible and torsionfree and has a left identity (36.4). The consequences 
of the lack of divisible primary torsion groups in an axtinian ring (Exercise 
36.6) are mirrored in rings linearly compact for the radical topology that 
lack both divisible primary torsion groups and copies of the topological ad- 
ditive groups of the p-adic number fields (such groups are called pathological 
here) (36.26). 

The radical topology arises naturally in investigations into the nature of 
rings linearly compact for the discrete topology, for if the radical topology 
of such a ring A is Hausdorff, then it is the Leptin topology associated 
to the discrete topology and hence is the weakest Hausdorff linear topol- 
ogy on A (36.33). Zelinsky [1952] identified complete, semilocal noetherian 
rings (36.29) and valuation rings of maximal valuations (Topological Rings, 
31.21 and 31.12) as rings linearly compact for the discrete topology, and 
the theorem just mentioned extends Chevalley's theorem [1943] that the 
natural topology of a complete semilocal ring is its weakest metrizable ring 
topology. A description of rings with identity whose radical topology is 
HausdorfE for which the discrete topology is linearly compact was under- 
taken by the author [1971b], and the results have been extended here by 
replacing the hypothesis that an identity exists with the weaker hypothesis 
that the additive group lacks pathological subgroups (36.33). Such rings 
are always (left) noetherian, and one consequence (Exercise 36.6) of their 
description is Hopkins' classical theorem [1939] that an artinian ring with 
a left identity element is noetherian. Of the equivalent conditions of 36.33, 
Hinohara [1960] established, for rings with identity whose radical topology 
is Hausdorff, that 8" implies 4" and lo, Kurke [1967] established, for com- 
mutative rings with identity, the equivalence of 1") 2") 7", and 9") and Pham 
Ngoc Anh [1977a] established, for rings with identity, the equivalence of 2" 
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and 7’. The characterizations of linearly compact, commutative noetherian 
rings (36.37-38) and of compact, commutative noetherian rings (36.41) were 
given by the author [1967c, 196Oa] for rings with identity. 

Using Leptin’s theorem that the radical of a strictly linearly compact ring 
is transfinitely nilpotent, the author [1972] characterized topological fields 
whose topologies are given by a complete discrete valuation as nondiscrete 
locally strictly linearly compact fields (41.6). The proof of the extension 
of this result to division rings (41.10), which generalizes Jacobson’s earlier 
theorem [1935] that the topology of a totally disconnected locally compact 
division ring is given by a discrete valuation, depends on a theorem of Artin 
and Whaples [1942] (18.15), as did Kaplansky’s earlier proof [1947a] that 
the topology of a locally compact division ring is given by an absolute value. 

The author [1967a, 1968bl characterized finite products of finite-dimen- 
sional algebras with identity over nondiscrete locally compact fields (cf. 
43.7). Earlier, Goldman and Sah [1965] had obtained a structure theo- 
rem for commutative locally compact semisimple rings with identity having 
no proper open ideals (Exercise 43.8), and later [1968] completed a thor- 
ough invesitagion of locally compact semisimple rings with identity having 
no proper open left ideals. The structure theory presented here ($43) for 
squarefree locally centrally linearly compact rings whose centers have no 
proper open ideals and their extensions by a connected locally compact 
ideal is due to Lucke and the author [1972]. 

46 Category, Duality, and Existence Theorems 

The possibility of constructing duality theories for certain classes of topo- 
logical modules, especially linearly topologized modules, to  mirror the classi- 
cal Pontrfigin-van Kampen duality theory of commutative locally compact 
groups has attracted attention ever since topological rings and modules 
began to  be investigated. Duality theory is not presented here, since it 
became clear at least by 1958 that categorical concepts beyond the scope 
of this book were essential to it. From the beginning, linear compactness 
has played an essential role. The first theory presented was Lefschetz’s du- 
ality theory [1942] of linearly compact and discrete vector spaces) already 
mentioned. Kaplansky generalized this theory to a duality theory of lin- 
early compact and discrete modules over a complete discrete valuation ring 
[1952b] and demonstrated its utility by deriving from it certain theorems 
of Krull [1940b] and Vilenkin [1946a,b,c] concerning topological modules 
over the p-adic integers. Schoneborn [1953b, 19561 and Leptin [1954b,c,d, 
19561 also developed and extended somewhat Kaplansky’s duality theory. 
Their results were placed in a common framework by Fleischer [1959] and 
later subsumed, together with Matlis’s duality theorem [1958] concerning 
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noetherian and artinian modules over a complete local noetherian ring, by 
Macdonald [1962] in his duality theory of Hausdorff linearly topologized 
modules over a complete local noetherian ring A, furnished with its natural 
topology. If the injective envelope A* of the residue field of A (regarded 
as an A-module) is given the discrete topology and if, for every Hausdorff 
linearly topologized A-module M ,  M *  is the A-module of all continuous 
homomorphisms from M to A*, furnished with the linear topology having 
as a fundamental system of neighborhoods of zero the annihilators of the 
submodules of M that are linearly compact for the induced topology and 
Hausdorff for the natural topology, then the evaluation homomorphism e 
from M to  M** (defined by e(z)(y*) = y*(z) for all z E M ,  y* E M * )  is 
an open isomorphism and is, furthermore, a topological isomorphism if and 
only if a submodule U of M is open whenever every submodule of M/U is 
closed for the quotient topology and the natural topology of every finitely 
generated submodule of M / U  is discrete. In particular, this establishes a 
duality between linearly compact A-modules and linearly topologized Haus- 
dorff A-modules M for which a submodule U is open whenever the natural 
topology of every finitely generated submodule of M / U  is discrete. 

In clarifying work, Miiller [1970] observed that all duality theories for 
linearly topologized modules thus far constructed, when restricted to the 
class of discrete modules, were Morita dualities, and he showed that every 
Morita duality for rings (with identity) A and B (defined on full subcate- 
gories of (unitary) left A-modules and right B-modules that are closed under 
the formation of finite direct sums, submodules, and quotient modules and 
contain all finitely generated modules, and induced by a bimodule AUB 
having certain properties) may be extended to a duality for the categories 
A-top and top-B of all Hausdorff, linearly topologized left A- and right B- 
modules, Specifically, let AUB be given the discrete topology, and for each 
Hausdorff linearly topologized left A-module [right B-module] M ,  let M *  be 
the right B-module [left A-module] of all continuous homomorphisms from 
M t o  AUB,  furnished with the topology of pointwise convergence. Then the 
canonical evaluation homomorphism e from M to M** is an isomorphism 
carrying the topology of M to a topology stronger than but having the same 
closed submodules as that of M**. Conversely, Muller [1971] showed that if 
there is a duality between full subcategories of A-top and top-B, each con- 
taining all discrete modules, then A and B possess a Morita duality induced 
by a bimodule AUB such that for any M in either category, the dual module 
assigned to M by the given duality is the module M *  defined above. 

Earlier, Muller [1969] had shown that if A has a Morita duality induced 
by a bimodule AUB, then A and AUB are necessarily A-linearly compact 
modules for the discrete topology, and the reflexive A-modules are precisely 
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those that are linearly compact for the discrete topology. Miiller’s crite- 
rion for the existence of a Morita duality, that A be linearly compact for 
the discrete topology, strengthens Osofsky’s earlier condition [1965] that 
A/Rad(A) be artinian and that each idempotent in A/Rad(A) arise from 
an idempotent in A, in view of Leptin’s theorems (29.14, 34.1). Rings (with 
identity) linearly compact for the discrete topology and Hausdorff for the 
radical topology are necessarily noetherian (36.33), a fact yielding Miiller’s 
earlier [1968] theorem that a ring Hausdorff for the radical topology and 
having a Morita duality is necessarily noetherian. 

A commutative ring (with identity) linearly compact for the discrete 
topology is necessarily the direct sum of finitely many local rings (34.6 and 
28.21). The commutative rings (with identity) linearly compact for the 
discrete topology and Hausdorff for the radical topology are precisely the 
complete semilocal noetherian rings (36.35). As previously noted, Zelinsky 
[1952] showed that complete local noetherian rings and valuations rings of 
maximal valuations were linearly compact for the discrete topology. Other 
examples exist: Vtimos [1976] has given an example of a non-noetherian 
local ring having proper zero-divisors that is linearly compact for the discrete 
topology, and Wiseman [1982] has constructed an integral domain D linearly 
compact for the discrete topology whose quotient field, furnished with the 
discrete topology, is not a linearly compact D-module. A culminating result 
is Pham Ngoc Anh’s theorem [1989] that every commutative ring (with 
identity) that is linearly compact for the discrete topology has a Morita 
duality. 

Further developments in duality theory build largely on the papers just 
discussed. For example, Menini and Orsatti [1981], Pham Ngoc Anh [1981b], 
and Dikranjan and Orsatti [1984a], generalized Miiller’s construction by al- 
lowing A and B to be linearly compact rings that are not necessarily dis- 
crete. Other contributors to the theory since 1971 include Abrams, Aragona, 
Baccella, Bazzoni, Gregorio, Hutchinson, Jansen, Lorenxini, Mader, Mirki, 
Mazan, Onodera, Peters, Roselli, Sandomierski, Stohr, Stoyanov, Vimos, 
Woodcock, and Zelmanowitz. 

The use of categorical concepts in the investigation of linearly topologized 
rings and modules has proved fruitful not only in duality theory but else- 
where as well. New proofs of old theorems (such as the structure theorem 
for semisimple linearly compact rings with identity), new insights about old 
objects (such as the nature of a linearly compact module furnished with 
its Leptin topology), and new theorems not involving categorical concepts 
(see, for example, Menini [1983b] and Dikranjan and Orsatti [1984a]) have 
already been obtained. 

Categorical concepts have also been decisive in generalizing the notion of 
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the quotient field of an integral domain. A central construction in the mod- 
ern theory of rings of quotients depends on a certain type of filter of left (or 
right) ideals, called a Gabriel filter, which actually is a fundamental system 
of neighborhoods of zero for a linear ring topology, called a Gabriel topology 
(cf. Stenstrom [1975]) (Exercise 28.5). Thus topological rings play an acces- 
sory role in the algebraic theory of rings of quotients. A natural problem is 
that of determining conditions under which a subring of a generalized ring of 
quotients of a Hausdorff ring admits a Hausdorff ring topology inducing on 
A a topology weaker than or identical with its given topology. The earliest 
theorem, that if A is a Hausdorff integral domain for which multiplication 
by any nonzero element is an open mapping, then its quotient field admits 
a Hausdorff field topology inducing on A a topology weaker than its given 
topology (cf. 11.2)) is due to Gelbaum, Kalish, and Olmsted [1950]. In 
particular, for every Hausdorff ring topology on a field, there is a weaker 
Hausdorff field topology (11.3). Correl [1958] showed that if K is a topo- 
logical field whose completion is a locally compact ring, there is a weaker 
Hausdorff field topology on K the completion of which is a locally compact 
field (Exercise 26.7). Using the same argument, Mutylin [1967] showed that 
if the invertible elements in the completion of a field K for a metrizable ring 
topology form an open set, there is a weaker metrizable field topology on 
K whose completion is a field (Topological Fields, 14.14). Other contribu- 
tors to this problem include Anthony [1970], Arnautov [1978], Carini [1976, 
19781, Davison [1969], Eckstein [1973], Endo [1963, 19641, Facchini [1979], 
Gomez Pardo [1982], Halter-Koch [1971], Jebli [1974], R. L. Johnson [1967], 
Koh [1967b], Luedeman [1969a,b, 19781, A. 0. Nazarov [1982], Schiffels and 
Stenzel [1983], Vizitei [1978], and the author [1961, 1971al. 

Hinrichs’ construction [1963] of Hausdorff, additively generated ring to- 
pologies (that is, ring topologies for which no proper additive subgroup 
is open) on Z inspired research in two directions: First, Mutylin [1965] 
exhibited the plenitude of ring topologies on Q by constructing an additively 
generated ring topology that is not stronger than the usual archimedean 
topology, and in particular is not locally bounded. 

Second, motivated by Hinrichs’ work, Kiltinen answered affirmatively 
“671 the question: Does every infinite field admit a nondiscrete Hausdorff 
field topology? Only algebraic extensions of finite fields need be considered, 
for as noted by Nagata, Nakayama and Tuzuku [1953] and later by Kilti- 
nen [1967] and Mutylin [1968], every other infinite field admits a proper 
valuation. Kiltinen proved that every countable integral domain admits a 
nondiscrete Hausdorff ring topology; hence by the theorem of Gelbaum, 
Kalish, and Olmsted, every countable field and hence every infinite field 
admits a nondiscrete Hausdorff field topology. In a parallel development, 
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Arnautov [1968a] constructed Hausdorff additively generated ring topologies 
on Z, then [1969e] proved that every countable ring admits a nondiscrete 
Hausdorff ring topology. From this, Mutylin [1968] concluded that every 
infinite field admits a nondiscrete Hausdorff field topology. 

Extending further the techniques of Hinrichs and Kiltinen, Zobel [1972] 
defined a class of ring topologies on Q he called “direct”, some of which had 
unusual completions, such as an integral domain that is not a field (Topo- 
logical Fields, Exercises 13.2-13.14) and contains no nonzero topological 
nilpotents. Recently, Heckmanns [1989] constructed a much simpler exam- 
ple of Hausdorff topological field whose completion is an integral domain 
that is not a field. 

The results of Kiltinen and Arnautov made possible the determination of 
the number of field topologies on an infinite field K. The maximum num- 
ber of topologies on K is 22 . Podewski [1972a] showed that that is, 
in fact, the number of field topologies if K is denumerable, and Kiltinen 
[1972] showed that in general there are 22 field topologies on K, no 
two of which are topologically isomorphic, and none of which is the supre- 
mum of a family of locally bounded ring topologies. Independently, Heine 
[1971, 19721 established the analogous result for ring topologies on K. In 
another direction, Mutylin [1967] established the existence of at  least a con- 
tinuum of metrizable, non-locally bounded field topologies on Q for which 
the completion of Q is a topological field. 

A natural sequel to  Kiltinen’s and Arnautov’s work is the question: Does 
every infinite commutative ring admit a nondiscrete Hausdorff ring topol- 
ogy? Hochster [1968] gave criteria for a commutative ring with identity 
to admit a nondiscrete Hausdorff ideal topology and showed, in particu- 
lar, that  a commutative noetherian ring with identity admits a nondiscrete, 
Hausdorff ideal topology if and only if it is not artinian (Exercises 33.9- 
11). Hochster and Kiltinen [1969] showed that any infinite commutative 
ring with identity admitted a nondiscrete Hausdorff ring topology, and Ar- 
nautov [1969d] obtained the same answer for arbitrary infinite commutative 
rings, a result also independently obtained by Hagglund [1972]. All these 
solutions built on Kiltinen’s earlier theorem establishing the existence of 
nondiscrete Hausdorff field topologies on infinite fields. 

card(K) 

card(K) 
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ERRATA 

In addition to occasional typographical errors, which readers will readily 
recognize, four significant errors in Topological Fields have come to light 
since its publication in 1989. 

First, the proof of (3) of Theorem 24.13 on pages 229-230 of Topological 
Fields is incorrect and should be replaced by the proof of Theorem 15.14 on 
pages 118-119 of this book. 

Second, Ulrich Heckmanns has persuaded me that the proof of Theorem 
31.10 is incorrect. It should be replaced by the proof of Theorem 28.7 on 
page 234 of this book. 

Professor Sibylla Priess-Crampe of the University of Munich has kindly 
offered a correction of the statement “No examples of straight or even min- 
imally topologized division rings are currently known other than locally 
retrobounded division rings” on page 225, lines 2-3. In the statement, both 
occurrences of “division rings” should be replaced by “fields”. Indeed, let 
V be a valuation ring of a division ring K (that is, a subring of K such that 
for all z E K*,  either z E K or 2-l E K )  such that {Va : A E V * }  is not a 
fundamental system of neighborhoods of zero for a ring topology. Schroder 
[1987] and Hartmann [1987] independently showed that {aVb : a ,  b E V * }  
(or equivalently, {cVc : c E V * } ,  since (ab)V(ab) C aVb) is a fundamen- 
tal system of neighborhoods of zero for a Hausdorff division ring topology 
on K ,  and Hartmann showed that it was a minimal Hausdorff ring topol- 
ogy on K .  Mathiak [1989] and Liepold [1990] independently gave examples 
showing that the completion of such a topological division ring could have 
exactly two maximal ideals and thus not be a division ring. Such examples 
are therefore neither locally retrobounded by Theorem 13.9 nor straight by 
Theorem 13.4. They also show that the statement of Kowalsky’s theorem, 
the completion of a field for a minimal Hausdorff ring topology is a field 
(Exercise 24.13, page 235 of Topological Fields), no longer holds if “field” 
is replaced by “division ring”. 

Lastly, in the final preparation of the text of Topological Fields, the 
following entries intended for the bibliography were lost: 
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