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Chapter 1
Topological groups

Topological groups have the algebraic structure of a group and the topologi-
cal structure of a topological space and they are linked by the requirement that
multiplication and inversion are continuous functions. Most infinite groups we
encounter in any areas of mathematics are topological groups such as the group
of n × n invertible matrices, the additive and multiplicative groups of the fields
R and C and their subgroups such as for instance the multipicative group S1 of
complex numbers of absolute value 1.

In this course we shall introduce the relevant concepts in order to be able to
discuss topological groups and we shall develop their basic theory.

The prerequisites for the course are Linear Algebra I and II, Introduction to
Algebra, Analysis I and II; it would help to have had Introduction to Complex
Variables but that is not absolutly necessary, and it would be indeed helpful to
have had Introduction to Topology.

Homogeneous topological spaces

We shall shortly repeat in a formal fashion the definition of a topological group
given in the introductory comments. One might ask the following elementary
question:

Given a topologial space X, can we find a group multiplication and inversion
on X such that we obtain a topological group?

We know the answer is “yes” for the open half-line ]0,∞[ in the euclidean
space R, because ordinary multiplication of real numbers makes this space into a
topological group. The answer is “no” for the closed half-line [0,∞[. But why?
The unit ball Bn def= {x ∈ Rn : ‖x‖ ≤ 1}, n > 0, in euclidean n space cannot
be a topological group as we shall see presently. The surface Sn def= {x ∈ Rn+1 :
‖x‖ = 1} of the n + 1-ball Bn+1, n ≥ 0 is called the n-sphere. Can it be made
into a topological group? We know that the answer is “yes” for n = 1 because the
multiplication of complex numbers of absolute value 1 makes S1 into a topological
groups. What is the situation for n > 1? For instance, can S2 be given the
structure of a topological group? [This is not an easy question. See, for instance
K.H.Hofmann and S.A.Morris, The Structure of Compact Groups, Berlin, 1998,
Corollary 9.59(iv), p.486.]

We cannot hope to find necessary and sufficient conditions in general. But even
necessary conditions would be a welcome help towards answering the question.
One such condition, as we shall see as first order of business is the property of
homogeneity.
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Definition 1.1. A topological space X is called homogeneous if for (x, y) ∈ X×X
there is a homeomorphism f :X → X such that f(x) = y.

Recall that a group G is said to act on a set X if there is a function (g, x) 7→
g·x:G × X such that 1·x = x for all x and g·(h·x) = (gh)·x for all g, h ∈ G and
x ∈ X. A group always acts upon itself by each of the following operations:

(i) g·x = gx (left multiplication),
(ii) g·x = xg−1, (right multiplication),
(iii) g·x = gxg−1, (conjugation).
We say that G acts transitively, if the action has only one orbit, i.e. X = G·x

for some (and then any) x ∈ X.1 The action of a group on itself by multiplication
is transitive.

Now we can say that X is homogeneous if the group of all homeomorphisms of
X operates transitively on X.

Proposition 1.2. Let G be a group acting on a topological space X such that the
function x 7→ g·x:X → X is continuous for each g ∈ G. If G acts transitively,
then X is homogeneous.

The full homeomorphism group of a space X acts on the space by evaluation
(f, x) 7→ f(x) such that x 7→ f(x) is continuous.

Lemma 1.3. Assume that every point x of a space X has a neighborhood U such
that for each u ∈ U there is a homeomorphism f of X such that f(x) = u.

Then each orbit of the homeomorphism group G of X is open. In particular, if
X is connected, then X is homogeneous.

Proof . Assume x ∈ G·y. Let U be as in the statement of the Lemma, and consider
u ∈ U . Then there is an f ∈ G such that x = f(y) = f ·y and a g ∈ G such that
u = g·x. Then u = (g ◦ f)·y ∈ G·y and thus G·y is open.

The orbits thus form a partition of X into open equivalence classes. In such
a case each equivalence class, being the complement of the union of all other
equivalence classes is also closed. If X is connected X is the only orbit of the
action. ut

For the followiong Lemma recall that the vector space Rn with the euclidean
norm given by ‖x‖2 =

∑n
m=1 x2

m for x ∈ Rn is a normed vector space.

Lemma 1.4. (i) In a normed vector space E, the closed unit ball B = {x ∈ E :
‖x‖ ≤ 1} with center 0 and boundary D = {x ∈ E : ‖x‖ = 1} has the property
that for each u in the interior of B there is a homeomorphism fu of B such that
fu(0) = u and fu leaves every point d ∈ D fixed.

1

German readers: This a good example of the semantic difference of “some” and “any” for

which there is, technically, only one German word. Im gegenwärtigen Fall ist ,,. . . für ein (und

daher jedes) x ∈ X“ eine brauchbare Übersetzung.
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(ii) Let X be a topological space and B a closed subspace homeomorphic to a
closed unit ball of a finite dimensional normed vector space such that the interior
U of B is mapped onto the interior of the unit ball. Then for (x, y) ∈ U ×U there
is a homeomorphism f of X such that f(x) = y.

Proof . (i) For 0 ≤ s and 0 ≤ t < 1, set σ(s) = (1+s2)−1/2 and τ(t) = (1− t2)−1/2

and define

(1) ϕ:B \D → E, ϕ(x) = τ(‖x‖)·x.

Then y ∈ E implies ϕ−1(y) = σ(‖y‖)(y) and ‖x‖ = σ(‖ϕ(x)‖). Now let u ∈ B \D.
Define Tu:E → E by Tu(x) = x + ϕ(u). Finally, define fu:B → B by

fu(x) =
{

ϕ−1Tuϕ(x) if ‖x‖ < 1,
x if ‖x‖ = 1.

Then

f−1
u (x) =

{
ϕ−1T−1

u ϕ(x) if ‖x‖ < 1,
x if ‖x‖ = 1.

So fu and f−1
u = f−u are inverses of each other, are continuous on B \D, and fix

the boundary D of B pointwise; moreover fu(0) = u. It remains to show that fu

and f−1
u are continuous in each point d of D; obviously it suffices to prove this for

fu. Since fu(x) = x for x ∈ D, we must show that ‖d − x‖ → 0, ‖x‖ < 1 implies
‖d−fu(x)‖ → 0. We now assume ‖d−x‖ → 0. Then ‖x‖ → 1 and ‖d−‖x‖−1·x‖ ≤
‖d−x‖+(1−‖x‖−1)‖x‖ → 0. Since ‖d−fu(x)‖ ≤ ‖d−‖x‖−1·x‖+‖‖x‖−1·x−fu(x)‖
it suffices to verify ‖‖x‖−1·x− fu(x)‖ → 0. Now Tuϕ(x) = ϕ(x) + ϕ(u), and so

fu(x) = ϕ−1
(
ϕ(x) + ϕ(u)

)
= α(x)·

(
ϕ(x)− ϕ(u)

)
where α(x) = (1 + ‖ϕ(x) + ϕ(u)‖2)−1/2 = ‖ϕ(x)‖−1·β(x) with

(2) β(x)→ 1 for ϕ(x)→∞.

This gives us

(3) fu(x) = β(x)‖ϕ(x)‖−1ϕ(x)− β(x)ϕ(x)−1·ϕ(u).

We note

(4) ν(x) def= β(x)ϕ(x)−1·ϕ(u)→ 0 for ‖x‖ → 1.

From (1) we get ‖ϕ(x)‖−1·ϕ(x) = (τ(‖x‖)·‖x‖)−1τ(‖x‖)·x = ‖x‖−1·x. Thus

‖‖x‖−1·x− fu(x)‖ =
(
1− β(x)

)
‖x‖−1·x + ν(x)→ 0

for x → d by (2), (3) and (4). This is what we had to show. We notice that if x

and y are two points in the open unit ball then f
def= fy ◦ f−1

x is a homeomorphism
of B fixing the boundary pointwise and satisfying f(x) = y.

(ii) By (i) above, given (x, y) ∈ U × U there is a bijection of X which agrees
with the identity map on the closed subset X \ U and is a homeomorphism on
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U such that x = f(y) It is now an exercise to verify that that f and f−1 are
continuous functions X → X. ut

Exercise E1.1. Check and verify the details of the preceding proof. ut

Definition 1.5. A topological manifold is a topological space each point of which
has an open neighborhood which is homeomorphic to Rn for some n. ut

An open ball of a finite dimensional normed real vector space is homeomorphic
to Rn.

Exercise E1.2. Show that
(i) every open subset of Rn is a topological manifold.
(ii) Every sphere Sn = {(x1, . . . , xn+1) ∈ Rn+1 : x2

1 + · · · + x2
n+1 = 1} is a

compact regular topological manifold.
(iii) Every finite product of regular topological manifolds is a regular topological

manifold. ut

In particular, a torus S1×S1 is a topological manifold. Note that every discrete
space is a regular topological manifold.

Proposition 1.6. A connected Hausdorff topological manifold is homogeneous.

Proof . Let f : Rn → X be a homeomorphism onto an open neighborhood of
x

def= f(0) in the manifold X. Equip Rn with the euclidean norm and set U =
{v ∈ Rn : ‖v‖ < 1} and B = {v ∈ Rn : ‖v‖ ≤ 1}. Since f is a homeomorphism,
f(U) is open in f(Rn) and thus is a neighborhood of x. Hence f(B) is a compact
neighborhood of x that is homeomorphic to a closed euclidean unit ball. Since X
is Hausdorff, f(B) is closed in X.

Now we apply Lemma 1.4 and Lemma 1.3 and conclude that the connectedness
of X implies that X is homogeneous. ut

Attention: There are some delicate points that illustrate the necessity of re-
stricting our attention to Hausdorff manifolds. Consider the following
Example. Let X ⊆ R2 be the set R × {0} ∪ {(0, 1)} and define a topology
on X by taking as basic sets the intervals ]a, b[×{0} on the x-axis and the basic
neighborhoods )]− ε, 0[×{0})∪ {(0, 1)} ∪ (]0, ε[×{0}) of (0, 1), ε > 0. This defines
T1-manifold which is not Hausdorf and not regular. The sets [ε, ε] × {0} are
compact nonclosed neighborhoods of (0, 0); the closure also contains (0, 1). Any
homeomorphism of X either fixes each of the two points (0, 0) (0, 1) or interchanges
them. Thus X is not homogeneous. It is instructive to follow the proof of 1.6 and
to locate the point where in breaks down in this example. ut

Now we turn to the class of homogeneous topological spaces which is of partic-
ular interest to us. The core definition is as follows:



1. Topological groups 5

Definition 1.7. (i) A topological group G is a group endowed with a topology
such that multiplication (x, y) 7→ xy:G×G→ G and inversion are continuous.

(ii) If G is a topological group and X a topological space, then a topological
group action of G on X is a continuous action (g, x) 7→ g·x : G×X → X. We also
say, that G acts topologically on X. ut

Since inversion x 7→ x−1 in a group is an involution (i.e. satisfies (x−1)−1 = x),
in a topological group G, it is clearly a homeomorphism of G onto itself.

Exercise E1.3. (i) Show that a group G with a topology is a topological group if
and only if the following function is continuous: (x, y) 7→ xy−1:G×G→ G.

(ii) Show that for any subgroup H of a topological group G, the group G acts
topologically on the quotient space G/H

def= {gH : g ∈ G} with the quotient topol-
ogy under the well defined action (g, g′H) 7→ gg′H. (Recall the definition of the
quotient topology on the quotient space X/R of a space modulo an equivalence
relation R on X: Let q:X → X/R denote the quotient maps given by q(x) = R(x).
Then a set V of X/R is open if and only if q−1 is open in X.) Show that this
action is transitive. Conclude that G/H is a homogeneous space.

(iii) Show that the quotient space G/H is a Hausdorff space if and only if H
is a closed subgroup.

[Hint. G/H is Hausdorff iff two different cosets have disjoint saturated neighbor-
hoods. (A subset S ⊆ G is saturated w.r.t. H iff SH = S.) If G/H is a Hausdorff
space, it is a T1-space so {H} is a closed subset of G/H and so H is a closed
subset of G. We prove the converse. Since G acts transitively on G/H on the
left, we may consider the two cosets H and gH for g /∈ H and we have to produce
disjoint saturated open sets containing H and gH, respectively. Since H is closed,
there is a neighborhood W of g with H ∩ W = ∅. Then H ∩ WH = ∅, since
h1 = wh2 implies h1h

−1
2 = w ∈ H ∩H. As x 7→ xg is continuous we find an open

neighborhood U of 1 such that Ug ⊆W . Since (x, y) 7→ xy is continuous at (1, 1)
there is an identity neighborhood V such that V −1V ⊆ U . Then V −1V gH ⊆WH
and so H ∩ V −1V gH = ∅. Then V H ∩ V gH = ∅. Both sets V H and V gH are
saturated, open as the unions

⋂
h∈H V h and

⋂
h∈H V gh, respectively, and the first

one contains H = 1H and the second gH = 1gH.] ut

Proposition 1.8. (i) The space underlying a topological group is homogeneous.
(ii) Every quotient space G/H of a topological group modulo a subgroup H is a

homogeneous space. ut

Exercise E1.4. Show that neither the closed half line [0,∞[ nor the compact
unit interval I = [0, 1] can be the underlying spaces of a topological group, or even
the quotient space of a topological group modulo a subgroup.

Examples 1.9. (i) Every group is a topological group when equipped with the
discrete topology.
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(ii) Every group is a topological group when equipped with the indiscrete topol-
ogy.

(iii) R is a topological group with respect to addition. Also, R \ {0} is a
topological group with respect to multiplication.

(iv) More generally, the additive group of Rn is a commutative topological
group.

(v) Also more generally: Let K denote one of the fields R, C or the division
ring H of quaternions with the absolute value | · | in each case. Let Sn, n = 0, 1, 3
denote the set {x ∈ K : |x| = 1} and R< = {x ∈ R : 0 < x}. Then R< and K \ {0}
are topological groups under multiplication. The function

x 7→
(
|x|, x

|x|

)
: K \ {0} → R< × Sn

is an isomorphism of groups and a homeomorphism of topological spaces.
(vi) The groups GL(n, K), K ∈ {R, C} of invertible real or complex matrices

are topological groups. ut

Proposition 1.10. (i) If H is a subgroup of a topological group G, then H is a
topological group in the induced topology.

(ii) If {Gj : j ∈ J} is a family of topological groups, then G
def=

∏
j∈J Gj is a

topological group.
(iii) If N is a normal subgroup of a topological group G, then the quotient group

G/N is a topological group with respect to the quotient topology. ut

Proposition 1.11. The closure of a subgroup is a subgroup, the closure of a
normal subgroup is a normal subgroup. ut

Morphisms of topological groups

Definition 1.12. A morphism of topological groups f :G → H is a continuous
homomorphism between topological groups.

Proposition 1.13. (a) A homomorphism of groups f :G→ H between topological
groups is a morphism if and only if it is continuous at 1.
(b) The following conditions are equivalent:

(i) f is open.
(ii) For each U ∈ U(1) the image f(U) has a nonempty interior.
(iii) There is a basis B of identity neighborhoods U such that f(U) has a non-

empty interior.
(iv) there is a basis of identity neighborhoods U of G such that f(U) is an

identity neighborhood of H.
(v) For all U ∈ UG(1) we have f(U) ∈ UH(1).
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(c) For any normal subgroup N of G the quotient morphism q:G → G/N is con-
tinuous and open. ut

[Hint for (iii)⇒(iv): Let U1 ∈ UG(1). We must find a U ∈ UG(1) such that U ⊆ U1

and f(U) ∈ UH(1). Firstly, find V1 ∈ UG(1) such that V1V
−1
1 ⊆ U1. Then let

V2 ∈ UG(1), V2 ⊆ intV1 be such that int f(V2) 6= ∅ by (iv).
Now we find a v2 ∈ V2 such that f(v2) ∈ int f(V2) ⊆ int f(int V1). Finally set

U = int V1v
−1
2 . Then 1 = v2v

−1
2 ∈ intV1v

−1
2 , and so U is an open neighborhood of

1. Moreover, U ⊆ V1V
−1
1 ⊆ U1 and 1 = f(v2)f(v2)−1 ∈

(
int f(int V1)

)
f(v2)−1 =

int
(
f(int V1)f(v2)−1

)
= int f

(
(int V1)v−1

2 ) = int f(U).]

Recall that for a filter basis B on a set 〈B〉 denotes the filter generated by B (i.e.
the set of all supersets of sets from B) andnote that f is continuous at 1 iff UH(1) ⊆
〈f(UG(1))〉; conversely, condition (b)(v) may be rewritten as 〈f(UG(1))〉 ⊆ UH(1).
Thus an algebraic homomorphism f :G → H between topological groups is an
open morphism of topological groups iff

〈f(UG(1))〉 = UH(1).

Proposition 1.14. (Canonical decomposition) A morphism of topological groups
f :G→ H with kernel N = ker f decomposes canonically in the form

G
f−−−−−−−−−→ H

q

y xj

G/N −−−−−−−−−→
f ′

f(G),

where q:G→ N is the quotient morphism given by q(g) = gN , j: f(G)→ H is the
inclusion morphism, and f ′:G/N → f(G) is the bijective morphism of toplogical
groups given by f ′(gN) = f(g).

The morphism is open if and only if f(G) is open in H and f ′ is an isomor-
phism of topological groups, i.e. is continuous and open. The morphism f ′ is an
isomorphism of topological groups if and only if f is open onto its image, that is,
if and only if f(U) is open in f(H) for each open subset U of G. ut

Let G = Rd the additive group of real numbers with its discrete topology, let
H = R, the additive group of real numbers with the natural topology and let
f :G → H be the identity map. Then f is a bijective morphism of topological
groups which is not an isomorphism, and f ′ may be identified with f in a natural
way.

Another interesting application of the canonical decomposition of a function
arises from the (topological) action of a (topological) group G on a (topological)
space.

If a group G acts on X and on Y , then a function f :X → Y is called equivariant
or a morphism of actions if (∀g ∈ G, x ∈ X) f(g·x) = g·f(x). Recall that for any
subgroup H of a group G there is a natural action of G on the quotient space
G/H = {gH : g ∈ G}, namely, the one given by g·(xH) = gxH.
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Now let G be a topological group acting topologically on a space X, then for
each x ∈ X there is an equivariant continuous bijection fx:G/Gx → Gx given
unambiguously by fx(gGx) = gx and the continuous function g 7→ gx:G → Gx
decomposes into the composition incl ◦ fx ◦ q of the continuous open quotient map
q = (g 7→ gGx):G→ G/Gx, the function fx, and the inclusion map Gx→ X. We
have a commutative diagram of equivariant functions

G
g 7→gx−−−−−−−−−→ X

q

y xincl

G/Gx −−−−−−−−−→
fx

Gx.

If G/Gx happens to be compact Hausdorff, then fx is an equivariant homeo-
morphism, that is, an isomorphism of actions. Thus the quotient space G/Gx

models the orbit G·x.

A noteworthy observation is the following (Frattini argument):
If H is a subgroup of G acting transitively on X and containing the isotropy

subgroup Gx then H = G.

Exercise E1.5. Prove the following
Proposition. (a) Let A and B be an abelian groups. Define Hom(A,B) to
be the set of all homomorphisms f :A → B. Then BA is an abelian group under
componentwise group operations and Hom(A,B) is a subgroup of BA.
(b) If B is a Hausdorff topological abelian group then BA is a Hausdorff topological
group with respect to the product topology and Hom(A,B) is a closed subgroup of
BA.
(c) The character group of a discrete abelian group A is defined as

Â
def= Hom(A, R/Z).

Then Â is a closed subgroup of (R/Z)A and thus is a compact abelian Hausdorff
topological group.

The filter of identity neighborhoods: First applications

As we shall see shortly, the filter U = U(1) of all identity neighborhoods is a very
useful tool in topological group theory. We shall begin to use it now.

Lemma 1.15. (i) (The First Closure Lemma) Let A be a subset of a topological
group. Then A =

⋂
U∈U AU =

⋂
U∈U AU .

(ii) (The Second Closure Lemma) If A is a closed and K a compact subset of
a topological group, then AK is a closed subset.

Proof . (i) If U ∈ U and x ∈ A, then xU−1 is a neighborhood of x, and thus
there is an a ∈ A ∩ xU−1. Write a = xu−1 for some u ∈ U . Accordingly,
x = au ∈ AU ⊆ AU .
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Conversely, assume that x ∈
⋂

U∈U AU . First we claim that x ∈
⋂

U∈U AU ;
indeed let U ∈ U. Find a U ′ ∈ U such that U ′U ′ ⊆ U by the continuity of
multiplication at (1, 1). Now x ∈ AU ′ ⊆ AU ′U ′ ⊆ AU by the preceding paragraph,
and thus the claim is proved. Now let V by a neighborhood of x. We claim
that A ∩ V 6= ∅, thus showing x ∈ A. Now U

def= V −1x ∈ U is an identity
neighborhood, and thus x ∈ AU , say x = au with a ∈ A and u ∈ U . Then
a = xu−1 ∈ xU−1 = xx−1V = V and so a ∈ A ∩ V as asserted.

(ii) Let g ∈ AK. We must show g ∈ AK. Now (∀U ∈ U(1)) gU ∩AK 6= ∅, and
we can express this as K∩A−1gU 6= ∅ Now C def= {K∩A−1gU : U ∈ U(1)} is a filter
basis of closed subsets of K, and since K is compact,

⋂
C 6= ∅. 1 Let k be a point

in this interection. Then k ∈
⋂

U∈U(1) A−1gU = A−1g by (i) above. But x 7→ xg

is a autohomeomorphism of G, whence A−1g = A−1g. But x 7→ x−1 : G → G is
likewise an autohomeomorphism of G. Thus A−1 = A

−1
= A−1 as A is closed.

Thus there is an a ∈ A such that k = a−1g and hence g = ak ∈ AK. Therefore
AK is closed. ut

Notice we did not use any separation axioms for G nor did we use that K
is closed (which it need not be in a non-Hausdorff space). The following is a
degenerate example which one should nevertheless keep in mind: Let G be a
nonsingleton group and equip it with the indiscrete topology. Then K = {1} is a
compact subset which is not closed. The only nonempty closed subset A of G is
G. Then KA = G is closed.

Corollary 1.16. (i) {1} =
⋂

U, and

(ii) {1} is a closed normal subgroup contained in every open and in every closed
set meeting {1}.

(iii) {1} (hence any singleton subset) is dense in G if an only if G has the trivial
topology {∅, G}.

(iv) For every compact subset K of G the set {1}K is the closure of K.
(v) For every identity neighborhood U in G there is a closed identity neighbor-

hood C such that C ⊆ U . Every neighborhood filter U(g) has a basis of closed
neighborhoods of g.

Proof . (i) follows from the First Closure Lemma,
(ii) firstly, closures of normal subgroups are normal subgroups. Secondly, let

U be open and U ∩ {1} 6= ∅. Then 1 ∈ U . Thus {1} ⊆ U by part (i). If A is a
closed subset and A ∩N 6= ∅, then N 6⊆ (G \A) and thus N ∩ (G \A) = ∅ by the
preceding, and thus N ⊆ A.

(iii) Let U be nonempty and open in G. If {1} is dense, then G = {1} ⊆ U by
(ii).

1

Recall that the Heine Borel covering property for open sets is equivalent to saying that each

filter basis of closed sets has a nonempty intersection.
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(iv) The set {1}K is closed by 1.15(ii), and thus K ⊆ {1}K. But {1}K ⊆
{1}K = K by the continuity of the multiplication. Thus {1}K = K.

(v) If U ∈ U, then by the continuity of multiplication there is a V ∈ U such that
V V ⊆ U . Set C = V . By the First Closure Lemma, C = V ⊆ V V ⊆ U . Thus U(1)
has a basis of closed sets, and since G is homogeneous, every neighborhoodfilter
has a basis of closed neighborhoods.

ut

Separation Axioms in topological groups

Theorem 1.17. In a topological group G, every neighborhood filter of a point has
a basis of closed neighborhoods, and the following conditions are equivalent:

(i) G is a T0–space.
(ii) {1} is closed.
(iii) G is a T1–space.
(iv) G is a regular Hausdorff space, i.e. a T3–space.

Proof . A T0–space in which every point has a neighborhood basis of closed
neighborhoods is a T3–space (see Lecture Notes “Introduction to Topology”, 1.38).
Thus (i) implies (iv), and (T3)⇒(T2)⇒(T1). ut

There are also pedestrian proofs of the individual implications: (i)⇒(ii): Let
x 6= 1. By (i) there is an open set U containing exactly one of 1 or x. if 1 ∈ U then
x /∈ U . Now 1 ∈ U−1 and thus x ∈ U−1x; thus U−1x is an open neighborhood of
x which does not contain 1, for if it did, then 1 = u−1x for some u ∈ U , and then
x = u ∈ U . Thus every element x 6= 1 has an open neighborhood missing 1, and
thus (ii) is proved.

(ii)⇒(iii): This follows from the homogeneity of G.
(iii)⇒(iv): Assume x 6= y in G. Then 1 6= xy−1. By (iii), G \ {xy−1} ∈ U, and

by continuity of (g, h) 7→ g−1h there is a V ∈ U such that V −1V ⊆ G \ {xy−1}. If
g = V x ∩ V y, then g = vx = wy with v, w ∈ V , whence xy−1 = v−1w ∈ V −1V ⊆
G \ {xy−1}, a contradiction. Thus V x and V y are two disjoint neighborhoods of
x and y, respectively.

(iv)⇒(i): Trivial.

Corollary 1.18. A quotient group of a topological group G modulo a normal
subgroup N is a Hausdorff group if and only if N is closed. ut

(See also Exercise E1.3.)

Corollary 1.19. For every topological group G, the factor group G/{1} is a
regular Hausdorff group and for each continuous homomorphism f :G → H into
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a Hausdorff group there is a unique morphism f ′:G/{1} → H such that f = f ′q
with the quotient morphism q:G→ G/{1}. ut

Proposition 1.20. Let G be a topological group, and U an open subset. Set
N = {1}. Then UN = U . Every open set is the union of its N -cosets.

Proof . By 1.16, N is contained in every open set U meeting N . Let x ∈ UN . Then
x = un with u ∈ U and n ∈ N . Then n = u−1x ∈ U−1x. Thus 1 ∈ N ⊆ U−1x
and therefore 1 ∈ U−1x, i.e., x ∈ U . ut

Corollary 1.21. Let
(
G, O(G)

)
be any topological group and let q:G → G/{1}

be the quotient morphism of G onto the Hausdorff topological group(
G/{1},O(G/{1})

)
.

Then U 7→ q−1(U):O(G/{1})→ O(G) is a
⋂
−

⋃
-preserving bijection. ut

There is an obvious converse to all of this:
Assume that f :G → T is a surjective morphisms of groups and that T is a

Hausdorff topological group. Then {f−1(U) : U is open in T} is a group topology
on G such that {1} = ker f .

All group topologies on G arise in this fashion from a group homomorphism
into a Hausdorff group such that ker f = {1}.

The Identity Component

Definition 1.22. For a topological group G let G0 denote the connected compo-
nent of the identity, short the identity component. Similarly let Ga denote the arc
component of the identity, the identity arc component. ut

Definition 1.23. A subgroup H of a topological group G is called characteristic if
it is invariant under all automorphisms of G, i.e., all continuous and continuously
inversible group homomorphisms. It is called fully characteristic if it is invariant
under all (continuous!) endomorphisms. ut

Every fully characteristic subgroup is characteristic. The inner automorphisms
x 7→ gxg−1:G → G are continuous and continuously invertible. Hence every
characteristic subgroup is invariant under all inner automorphisms, i.e. is normal.
The subgroup {1} is an example of a fully characteristic subgroup.

Proposition 1.24. The identity component G0 and the identity arc component
Ga of any topological group G are fully characteristic subgroups of G. The identity
component G0 is closed. The factor group G/G0 is a totally disconnected Hausdorff
topological group—irrespective of whether G itself is Hausdorff or not. ut
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Exercise E1.6.A. Prove the following assertions.
(i) A subgroup H of a topological group is open iff it contains a nonempty open
subset.

(ii) If H is an open subgroup of a topological group G, then H is closed and
G0 ⊆ H. The quotient space G/H = {gH : g ∈ G} is discrete.
(iii) If G contains a connected subset with nonempty interior, then G0 is open and
G/G0 is discrete.
(iv) If G is a locally connected topological group and f :G→ H is an open morphism
of topological groups, then the identity component G0 of G is mapped onto the
identity component of H.

Notice that the hypothesis of (iii) is satisfied if G is locally connected iff U(1)
has a basis of connected neighborhoods.

Proposition 1.25. Let G be a topological group and let OC(G) be the set of open
and closed subsets of G. Then the following conclusions hold:

(i) U ∈ OC(G) implies UG0 = G0U = U .
(ii) Let q:G → G/G0 denote the quotient homomorphism. Then U 7→ q−1U :
OC(G/G0)→ OC(G) is a bijection.

Proof . (i) If U = ∅, nothing is to be proved. If u ∈ U then uG0 is a connected set
and U ∩ uG0 is nonempty open closed in uG0. Then uG0 ⊆ U ..

(ii) In view of (i) we note that V 7→ q(V ) : OC(G)→ ′CG/G0 is a well-defined
function inverting U 7→ q−1(U). ut

This allows us to give an alternative proof of the assertion that G/G0 is to-
tally disconnected. (See 1.24.) Let q:G → G/G0 be the quotient morphism
H = q−1

(
(G/G0)0

)
. Show H = G0. Consider q|H : H → (G/G0)0. Without

loss of generality assume that G/G0 is connected; show G is connected. Now
OC(G/G0) = {∅, G/G0}. Then by (ii), OC(G) = {∅, G}. ut

We notice that Proposition 1.25 is just a special case of a more general one
which has essentially the same proof:

Proposition 1.26. Let X be a topological space and let OC(X) be the set of open
and closed subsets of X. Let R denote the equivalence relation of connectivity on
X. Then the following conclusions hold:

(i) U ∈ OC(X) implies U =
⋃

u∈U R(u).
(ii) Let q:X → X/R denote the quotient map. Then U 7→ q−1U : OC(X/R)→
OC(X) is a bijection.

(iii) X/R is a totally disconnected T1 space. ut

Exercise E1.8. (a) Prove the following
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Lemma. Assume that G is a topological group and OC(G) is the set of all open
closed subsets. Then G1

def=
⋂
{U ∈ OC(G) : 1 ∈ U} is a characteristic subgroup.

[Hint. Each homeomorphism of G permutes OC. Hence G1 is invariant under all
homeomorphisms of G fixing 1, in particular under x 7→ x−1 and all automor-
phisms. For a proof of G1G1 ⊆ G1, let g ∈ G1; we must show gG1 ⊆ G1. It
suffices to show gG1 ⊆ U , that is, G1 ⊆ g−1U for any U ∈ OC(G) containing 1.
Argue that it suffices to show that g−1U is open-closed and contains 1. ut

This requires no compactness nor separation.
One can define, by transfinite induction, for each ordinal α a characteristic

subgroup Gα as follows:
Assume that Gα has been defined for all ordinals α < β. Then we set

Gβ =
{

(Gα)1 if β = α + 1,⋂
α<β Gα if β is a limit ordinal.

(b) Show that G0 ⊆ Gα for all α.

[Hint. Show that G0 ⊆ G1 and then use transfinite induction.]
(c) Show the following

Proposition. There is an ordinal γ such that Gγ = G0.

[Hint. For cardinality reasons, there is an ordinal γ such that (Gγ)1 = Gγ . This
means that the only nonempty open closed subset of Gγ is Gγ . That is, Gγ is
connected and thus Gγ ⊆ G0.] ut

A group which is connected but not arcwise connected

Exercise 1.6.B. (i) Assume that we have a sequence ϕn:Gn+1 → Gn, n ∈ N of
morphisms of compact groups:

G1
ϕ1← G2

ϕ2← G3
ϕ3← G4

ϕ4← · · ·

Then the limit of this sequence as G = limn∈N Gn ⊆
∏

n∈N Gn is simply given by
{(gn)n∈N ∈

∏
n∈N Gn | (∀n ∈ N) ϕn(gn+1) = gn}.

Then G is a compact topological group.

(ii) Choose a natural number p and keep it fixed, for instance p = 2.
Set Gn = T for all n ∈ N and define ϕn(g) = p·g for all n ∈ N and g ∈ T. (It

is customary, however, to write p in place of ϕp):

T p← T p← T p← T p← · · ·

The projective limit of this system is called the p-adic solenoid Tp. ut

If p = 2 then T2 is also called the dyadic solenoid.
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(iii) Set Gn = Z(pn) = Z/pnZ. Define
ϕn: Z(pn+1)→ Z(pn) by ϕn(z + pn+1Z) = z + pnZ:

Z(p)
ϕ1← Z(p2)

ϕ2← Z(p3)
ϕ3← Z(p4)

ϕ4← · · ·

The projective limit of this system is called the group Zp of p-adic integers.
Let us discuss these examples in the following exercises:
(iv) Observe that the bonding maps ϕ1, ϕ2, . . . are morphisms of rings. Prove

that Zp is a compact ring with continuous multiplication so that all limit maps
fn: Zp → Z/pnZ are morphisms of rings.

(v) Define η: Z→ Zp by η(z) = (z + pnZ)n∈N. Show that this is a well defined
injective morphism of rings.

(vi) Prove the following statement: For an arbitrary element

g = (zn + pnZ)n∈N ∈ Zp,

the sequence
(
η(zn)

)
n∈N converges to g in Zp. Conclude that η has a dense image.

(vii) Show that Zp is totally disconnected.
(viii) Show that the limit map fm: Zp → Z/pmZ has kernel {(zn + pnZ)n∈N |

zm ≡ 0 (mod pm)}. Show that it is pmZp = η(pmZ). Prove that the subgroups
pmZp are open and closed and form a basis for the filter of neighborhoods of 0.

(ix) Show that the limit of the system

(
1
p
·Z/Z)

p← (
1
p2
·Z/Z)

p← (
1
p3
·Z/Z)

p← (
1
p4

Z/Z)
p← · · ·

is a group Z′p isomorphic to Zp, and that Z′p ⊆ Tp. Show that Z′p is the kernel of
the map ϕ: Tp → T, ϕ

(
(rn + Z)n∈N

)
= pr1 + Z. [Note that (rn + Z)n∈N ∈ ker ϕ iff

r1 + Z ∈ 1
pZ/Z, r2 + Z ∈ 1

p2 Z/Z, . . . and this means (rn + Z)n∈N ∈ Z′p.]
(x) Show that Zp is torsion-free; that is, it has no elements of finite order.

[Remark that for any element y ∈ Z/pn+mZ if x = ϕn(y) ∈ Z/pnZ satisfies
k·x = 0 for a smallest natural number k, then kpm·y = 0 and kpm|k′ whenever
k′·y = 0.]

(xi) Define π: Z′p × R → Tp by π
(
(zn + Z)n∈N, r)

)
= (zn + p−nr + Z)n∈N.

Show that π is surjective and that the kernel of π is {
(
(p−nz + Z)n∈N,−z

)
and
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that this subgroup is isomorphic to Z. Show that Z′p × R has an open zero-
neighborhood U = Z′p×]− 1

4 , 1
4 [ which is mapped homeomorphically onto an open

zero neighborhood π(U) = ϕ−1
1 (] − 1/4, 1/4[) of Tp, where ϕ1: Tp → T is the

projection onto the first component. So Z′p × R and Zp are locally isomorphic.
The identity component of Z′p × R is {0} × R. Its image under π is not equal to
the identity component of Tp which is Tp itself.

The arc component (Tp)a is π({0} × R).
The group Tp is compact, connected, commutative; it has uncountably many

arc components, that is, cosets modulo (Tp)a. ut

Invariant neighborhoods

The following is a slight generalisation of the Second Closure Lemma 1.15(ii).

Lemma 1.27. Assume that G is a topological group acting (continuously) on a
topological space X. Let K be a compact subset of G and A a closed subset of X.
Then K·A is closed in X.

Proof . Let y ∈ K·A. Then for every U ∈ U(y) we have U ∩K·A 6= ∅, and thus
KU = {g ∈ K : (∃a ∈ A) g·a ∈ U} 6= ∅. The collection {KU : U ∈ U(y)} is a filter
basis on the compact space K and thus we find a h ∈

⋂
U∈U(y) K ∩KU . Thus for

any j
def= (U, V ) ∈ U(y)× U(h) the set Fj

def= KU ∩ V is not empty and contained
in V . For g ∈ Fj there is a b ∈ A such that g·b ∈ U . Thus b ∈ g−1·U . Hence the
set of all A ∩ F−1

j ·U ⊆ A ∩ V −1·U , as j = (U, V ) ranges through U(y) × U(h) is

a filter basis converging to a
def= h−1·y by the continuity of the action. Since A is

closed we have a ∈ A. Thus y = h·a ∈ K·A. ut

Exercise E1.7. Derive the Second Closure Lemma 1.15(ii) from Lemma 1.26. If
K is a compact subset and A is a closed subset of a topological group, then KA
and AK are closed subsets. ut

Lemma 1.28. Assume that G is a topological group acting (continuously) on a
topological space X such that G·x = {x}. Then for any open set U containing x

and every compact subset K of G, the set V
def=

⋂
g∈K g·U is open. Thus if G itself

is a compact group, then x has arbitrarily small invariant neighborhoods.

Proof . Let A
def= X \ U . Then A is closed and K·A =

⋃
g∈K g·A =

⋃
g∈K g·(X \

U) =
⋃

g∈K(X \ g·U) = X \
⋂

g∈K g·U = X \ V . Since K·A is closed by 1.26, its
complement V is open. ut

An alternative proof exists which does not use 1.26 but
Wallace’s Lemma. Let A and B be compact subspaces of spaces X and Y ,
respectively, and assume that U is an open subset of X×Y containing A×B. Then
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there are open subsets V and W of X and Y containing A and B, respectively,
such that V ×W ⊆ U .

For a proof see e.g. Introduction to Topology, Summer 2005, Lemma 3.21.
The proof uses only the definitions of compactness and the product topology of a
product space of two factors.

Now for a proof of Lemma 1.28. Let α:G×X → X be the continuous function
given by α(g, y) = g−1·y. Then α−1(U) is an open neighborhood of K × {x} ⊆
G × X. Then by Wallace’s Lemma there are open neighborhoods V of K in G
and W of x in X such that V −1·W = α(V ×W ) ⊆ U , and thus W ⊆

⋂
g∈V g·U ⊆⋂

g∈K g·U . ut

Actually, this proof shows even a bit more: The neighborhood V of K can
replace K!

Yet another proof is given on page 9 of K. H. Hofmann and S. A. Morris, The
Structure of Compact Groups, De Gruyter, Berlin, 1998.

Now, proceeding towards the next theorem let us observe the following: If U
is a compact open neighborhood of the identity in a topological group G, and if
A = G \ U , then there is a V ∈ U(1) such that U ∩AV = ∅. For if this fails, then
the filter basis of all U ∩AV , V ∈ U(1) has an element u ∈ U in its intersection.
Then u ∈ U ∩

⋂
V ∈U(1) AV . By the First Closure Lemma 1.15(i),⋂

V ∈U(1)

AV = A.

Since U is clopwn, both U and its complement A are closed. So u ∈ U ∩ A =
U ∩A = ∅, a contraduction.

Proposition 1.29. Assume that U is a compact open identity neighborhood in a
topological group. Then there is a compact open subgroup H contained in U , in
fact UH = U .

Proof . Again set A = G \ U . Find a symmetric identity neighborhood V = V −1

such that U ∩AV = ∅. Then UV ∩A = ∅, i.e. UV ⊆ U . By induction, UV n ⊆ U
where V n = V · · ·V︸ ︷︷ ︸

n times

. Set H =
⋃∞

n=1 V n. Then H is an open subgroup and

UH = U . ut

Since we can also choose V so that V UV = U , we may assume that H ⊆ HU =
UH = U .

In the following we invoke a theorem on connectivity in compact spaces. We
first present the theorem and its proof for compact metric spaces; then we formu-
late the general version and its proof. This may facilitate the understanding of
the proof in the general case.
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Theorem C metric. Let (X, d) by a compact metric space. Then every compo-
nent has a neighborhood basis of clopen subsets.

Proof . For each ε > 0 we define Rε to be the set of all pairs (x, y) such that there
is a finite sequence x0 = x, x1, . . . , xn = y such that d(xj−1, xj) < ε; we shall call
such a sequence an ε–chain.

Then Rε is reflexive, symmetric, and transitive. Hence Rε is an equivalence
relation. Write Uε(x) = {u ∈ X : d(x, u) < ε}. Then for each x′ in the equivalence
class Rε(x) of x, the set Uε(x′) is a neighborhood of x′ which is contained in Rε(x).
Hence the relation Rε is open and therefore closed as the complement of all other
equivalence classes. Let S be the intersection of the clopen equivalence relations Rε

as ε ranges through the positive real numbers. Clearly S is an equivalence relation
and is closed in X ×X. Then every pair of elements in S is Rε-equivalent for all
ε > 0. Set C = S(x) and let R denote the equivalence relation of connectivity.
The component R(x) of x is contained in C. We aim to show that C is connected.
Then C = R(x) for all x ∈ C. Thus S = R. So R(x) =

⋂
ε>0 Rε(x) and then,

by the Filter Basis Lemma, the sets Rε(x) form a basis of the neighborhoods of
C = R(x). This will complete the proof.

Now suppose that C is not connected. Then C = C1∪̇C2 with the disjoint
nonempty closed subsets of C. Then by the compactness of the space C1×C2, the
continuous function d|(C1 × C2) having values in ]0,∞[ has a positive minimum
ε > 0.

Now let Uε/3(Cj) = {x ∈ X : (∃c ∈ Cj) d(c, x) < ε/3}, j = 1, 2, and set
D = X \

(
Uε/3(C1) ∪ Uε/3(C2)

)
. Let 0 < r < ε/3. If x ∈ C1 and c2 ∈ C2, then

(x, c2) ∈ Rr since C ∈ Rr(x). Now consider an r–chain x = x0, x1, . . . , xn = c2:
There is a smallest k ∈ {1, . . . , n} such that xk /∈ Uε/3(C1). There is a c1 ∈ C1

such that d(c1, xk−1) < ε/3. We claim that xk /∈ Uε/3(C2). Indeed suppose
that xk ∈ Uε/3(C2). Then there is a c2 ∈ C2 such that d(xk, c2) < ε/3. Then
d(c1, xk−1) < ε/3, d(xk−1, xk) < ε/3, d(xk, c2) < ε/3 and thus d(c1, c2) < ε/3 +
ε/3 + ε/3 = ε = min d(C1 × C2), a contradiction. Thus there is a k such that
xk ∈ D. Thus Rr(x) ∩ D 6= ∅. So the sets Rr(x) ∩ D form a filter basis on the
compact space D. Let y be in its intersection. Then y ∈

⋂
r>0 Rr(x) = C and

y ∈ D, whence d ∈ C ∩D = ∅: a contradiction. This shows that C is connected
as asserted and completes the proof. ut

Theorem C. Let X by a compact Hausdorff space. Then every component has a
neighborhood basis of clopen subsets.

Proof . Let U be a neighborhood of the diagonal ∆ in X × X. By replacing U
by {(u, v) : (u, v), (v, u) ∈ U} if necessary, we may assume that U is symmetric.
We define RU to be the set of all pairs (x, y) such that there is a finite sequence
x0 = x, x1, . . . , xn = y such that (xj−1, xj) ∈ U ; we shall call such a sequence a U–
chain. Then RU is reflexive, symmetric, and transitive. Hence RU is an equivalence
relation. Write U(x) = {u ∈ X : (x, u) ∈ U}. Then U(x) is a neighborhood of x.
Since U(x′) ⊆ RU (x) for each x′ ∈ RU (x), the relation RU is open and therefore
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closed as the complement of all other equivalence classes. Let S be the intersection
of the clopen equivalence relations RU as U ranges through the filter basis Us(∆) of
symmetric neighborhoods of ∆. Then S is an equivalence relation and S is closed
in X ×X. Then every pair of elements in C is RU -equivalent for all U ∈ Us(∆).
Let R denote the connectivity relation on X. Set C = S(x). The component R(x)
of x is contained in C. We aim to show that C is connected. Then C = R(x) for
all x and thus R = S. So R(x) =

⋂
U∈Us(∆) RU (x), and then, by the Filter Basis

Lemma, the sets RU (x) form a basis of the neighborhoods of C = R(x). This will
complete the proof.

Now suppose that C is not connected. Then C = C1∪̇C2 with the disjoint
nonempty closed subsets of C. We claim that there is an open symmetric neigh-
borhood U ∈ U(∆) of the diagonal ∆ in X ×X such that the set U(C1) ∩ C2 is
empty. [It suffices to show that every open neighborhood W of a compact subset
K of X contains one of the form U(K). Proof by contradiction: If not, then for all
open neighborhoods U of the diagonal in X×X, U(K)∩(X \W ) is not empty and
the collection of sets U(K)∩ (X \W ) is a filter basis on the compact space X \W .
Let z be in the intersection of the closures of the sets in this filterbasis. Since X
is Hausdorff, the diagonal is closed in X ×X and by the Normality Lemma is the
intersection of its closed neighborhoods. Thus z in the intersection of all U(K) for
all closed U and this is K. Thus z ∈ K \W = ∅, a contradiction!]

Recall that for two subsets A,B ⊆ X×X we set A◦B = {x, z) ∈ X×X : (∃y ∈
X) (x, y) ∈ A and (y, z) ∈ B}. Now assume that W is an open neighborhood of
the diagonal such that W ◦W ◦W ⊆ U and set D = X \

(
W (C1)∪W (C2)

)
. Now

let V ∈ U(∆), V ⊆ W . By replacing V by {(u, v) : (u, v), (v, u) ∈ V } if necessary,
we may assume that V is symmetric.

If x ∈ C1 and c2 ∈ C2, then (x, c2) ∈ RV since C ∈ RV (x). Now any V –chain
x = x0, x1, . . . , xn = c2 has at least one element in D. Thus RV (x) ∩D 6= ∅ and
so the sets RV (x) ∩D form a filter basis on the compact space D. Let y be in its
intersection. Then y ∈

⋂
V ∈Us(∆) RV (x) = C and y ∈ D, whence y ∈ C ∩D = ∅:

a contradiction. This shows that C is connected as asserted and completes the
proof. ut

Example C. There is a locally compact space X containing a point x whose
connected component R(x) which is not the intersection C of all open closed
neighborhoods of x.

Proof . Consider the compact space Y
def= [−1, 1] × ({0} ∪ {1/n : n ∈ N}). Set

X = Y \{(0, 0)}. Then X is a locally compact space in which the component R(x)
of x = (1, 0) is ]0, 1]×{0} while the intersection C of all open closed neighborhoods
of (1, 0) is ([−1, 1] \ {(0, 0)})× {0}. ut

The example shows in particular a locally compact space in which not every
component has a basis of clopen neighborhoods.
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Theorem 1.30. Let G be a locally compact totally disconnected group. Then for
any identity neighborhood U there is a compact open subgroup H contained in U .
If G is compact there is a compact open normal subgroup N with N ⊆ U .

Proof . Let K be a compact neighborhood of 1. Then K is totally disconnected
because any component of K is a connected subset of G. By Theorem C, the filter
U(1) of identity neighborhoods has a basis of clopen neighborhoods U of K, and
since K contains an open subset W of G all sufficiently small clopen subsets U are
contained in W and thus are open in G and closed, hence compact in K. Thus
they are compact hence closed in G (since G is Hausdorff). By 1.29, every such
clopen identity neighborhood U contains an open subgroup H such that UH = U .
If G is compact then by 1.28, N

def=
⋂

g∈G gHg−1 is open. Also, N is invariant
under all inner automorphisms. ut

One also expresses this fact by saying that a locally compact totally discon-
nected group G has arbitrarily small compact open subgroups and that a totally
disconnected compact group has arbitrarily small compact open normal subgroups
N . For each of these, the factor group is finite and discrete. Thus we might say
that G is approximated by the finite subgroups G/N . Therefore compact totally
disconnected groups are also called profinite groups. They occur in the Galois
theory of infinite field extensions.

Exercise E1.9. (i) Let {Gj : j ∈ J} be a family of finite groups and form the
totally disconnected compact group G =

∏
j∈J Gj . Identify a neighborhood basis

of 1 consisting of open normal subgroups.
(ii) Let G be a compact totally disconnected group and N the set of open

normal subgroups. Then the function f :G →
∏

N∈N G/N , f(g) = (gN)N∈N is
an injective morphism and homeomorphism onto its image.

(iii) Prove the following conclusion:
Theorem. For a topological group G the following statements are equivalent.

(1) G is isomorphic to a closed subgroup of a product of finite groups.
(ii) G is compact totally disconnected. ut

We resume an example which we discussed in Exercise 1.6.B.

Example 1.31. Let p be a natural number, p ≥ 2, for instance a prime number.
In the compact totally disconnected group P

def=
∏

n∈N Z/pnZ consider the closed
subgroup Zp of all N -tuples (zn + pnZ)n∈N such that zn+1 − zn ∈ pnZ.

Then Zp is a compact totally disconnected abelian group with a basis of identity
neighborhoods {pnZp : n ∈ N}. The subgroup of all (z + pn)n∈N, z ∈ Z is
algebraically isomorphic to Z and is dense in Zp. Thus Zp is a “compactification”
of Z. Elements are close to zero if they are divisible by large powers of p.

The group Zp is called the group of p-adic integers.
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The additive group P is a ring under componentwise multiplication. The sub-
group Zp is closed under multiplication. Thus Zp is in fact a compact ring with a
continuous multiplication, containing Z as a dense subring.

The underlying topological space of Zp is homeomorphic to the Cantor set.

There is an interesting application of connectivity.

Theorem 1.32. Let G be a connected topological group and N a totally discon-
nected normal subgroup. Then N is central, that is,

(∀g ∈ G, n ∈ N) gn = ng.

Proof . Let n ∈ N . The continuous function g 7→ gng−1n−1:G → N maps
a connected space into a totally disconnected space, and the image contains 1.
Then this function is constant and takes the value 1. ut

The center Z(G) of a group is the set {z ∈ G : (∀g ∈ G) gz = zg}.

Exercise E1.10. Prove the following results:
(i) The center of a Hausdorff topological group is closed.
[Hint. Define Z(g,G) = {z ∈ G : zg = gz}. Define cg:G → G by cg(z) =
zgz−1g−1. Then Z(g,G) = c−1

g (1) and Z(G) =
⋂

g∈G Z(g,G).]

(ii) Let X be an arbitrary set and T ∼= (R/Z)X a torus which is contained as a
normal subgroup in a connected topological group G. Then T is central, that is,
all of its elements commute with all elements of G.
[Hint. Consider in T the subgroup S of all elements of finite order. Every auto-
morphism of T maps S into itself, and thus S is normal in G. But S is contained
in (Q/Z)X and this is a totally disconnected subgroup. Hence S is totally discon-
nected. By 1.32, S is central, that is S ⊆ Z(G). Also, S is dense in T . Conclude
that T is central.] ut

Chapter 2
The neighborhood filter of the identity

We have seen above that many properties of topological groups may be ex-
pressed in terms of the filter U = U(1) of neighborhoods of the identity.

We recall that a topology O on a set may be described by a function x 7→ U(x)
which associates with each point a filter of subsets of X such that the following
conditions are satisfied:
(U1)

(
∀x ∈ X, U ∈ U(x)

)
x ∈ U .

(U2)
(
∀x ∈ X, U ∈ U(x)

)(
∃V ∈ U(x)

)
(∀v ∈ V ) U ∈ U(v).
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Condition (U2) can be expressed in equivalent form as follows:
(U) (∀x ∈ X, U ∈ U(x))(∃V )x ∈ V ⊆ U and (∀v ∈ V ) V ∈ U(v).

Notice that in (U2) the last statement is U ∈ U(v) while in (U) it reads V ∈
U(v).

The relation between the validity of (U1) and (U2), equivalently, of (U), and
the existence of O is as follows:

Theorem 2.1. Let X be a nonempty set such that for each point x ∈ X there is
a filter U(x) of subsets of X, then the following conditions are equivalent:

(i) There is a unique topology O on X such that U(x) is the neighborhood filter
of x for each ∈ X.

(ii) For each x ∈ X the filter U(x) satisfies the conditions (U1) and (U2).
(iii) For each x ∈ X the filter U(x) satisfies the condition (U) If conditions (ii)

or (iii) are satisfied, then a set U ⊆ X is a member of O iff (∀u ∈ U) U ∈ U(u).
ut

[For a proof see e.g. the Lecture Notes of “Introduction to Topology,” Summer
2005, Theorem 1.15.]

Notice that when the conditions of Theorem 2.1 are satisfied, then for each
subset S ⊆ X, the set {s ∈ S : S ∈ U(s)} is the interior of S, that is, the largest
O-open subset contained in S.

If G is a group then the single filter U suffices to characterize a group topology
of G; and we want to discuss this now.

Proposition 2.2. Let U be a filter on a group such that the following conditions
are satisfied:
(V1) (∀U ∈ U) 1 ∈ U ,
(V2) (∀U ∈ U)(∃V ∈ U) V 2 def= V V ⊆ U . Then there is a unique topology O on

G such that the neighborhood filter of g ∈ G is gU = {gU : U ∈ U}.
Moreover, with respect to this topology, all left translations x 7→ gx are

homeomorphisms of G; in particular, G is homogeneous. Also, multiplication is
continuous at (1, 1).

Proof . We verify conditiond (U1) and (U2) for the filters U(g) = gU, and then
invoke Theorem 2.1 for the existence and uniquelness of O = {U ⊆ X : (∀u ∈
U)U ∈ gU}.

So we let x ∈ G and U ∈ U(x) = xU. Then x−1U ∈ U. Thus by (V2)
there is a W ∈ U such that W 2 ⊆ x−1U . Let V = xW and v ∈ V . Then
x = x1 ∈ xW ⊆ x(x−1U) = U , and so (U1) holds. Also, v = xw with w ∈ W .
Then vW = xwW ⊆ x(x−1U) = U and since vW ∈ vU = U(v) we have U ∈ U(v).
Therefore (U2) holds, and so 2.1 applies.

The functions x 7→ gx permute the filters hU = U(h), h ∈ G and thus are
homeomorphisms w.r.t. O. It is clear from (V2) that multiplication is continuous
at (1, 1). ut
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Condition 2.2(V2) is equivalent to
(V2′) (∀U ∈ U)(∃V,W ∈ U) V W ⊆ U .
If we define U2 = {S ⊆ X : (∃V,W ∈ U) V W ⊆ S}, then condition 2.2(V2) can be
expressed in the form
(ii′′) U = U2.

Let us call the unique topology introduced on G in Proposition 2.2 the left
canonical topology.

Theorem 2.3. For a group G and a filter U on G satisfying the conditions (V1)
and (V2) of Proposition 2.2. Then the following conditions are equivalent:

(i) The left canonical topology makes G into a topological group.
(ii) In addition to 2.2(V1,V2) the following conditions hold:

(V3) (∀U ∈ U)(∃V ∈ U) V −1 ⊆ U .
(V4) (∀g ∈ G)(∀U ∈ U)(∃V ∈ U) gV g−1 ⊆ U .
If these conditions are satisfied, then for all g ∈ G one has gU = Ug = U(g).

Proof . Condition (V4) says that U ⊆ gUg−1 for all g ∈ G. This holds for g−1 in
place of g and thus U ⊆ g−1Ug and so gUg−1 ⊆ U. Hence U = gUg−1 and so

(∗) gU = Ug.

Now let (g, h) ∈ G × G and show that multiplication is continuous at (g, h). If
U ∈ U find W ∈ U such that W 2 ⊆ U and then find V ∈ U so that V ⊆ hWh−1.
Then (gV )(hW ) ⊆ ghWh−1hW = ghW 2 ⊆ ghU , and this shows continuity of
multiplication at (g, h). Remains to show the continuity of x 7→ x−1 at g, say. But
by (∗) we have (gU)−1 = U−1g−1 = Ug−1 = g−1U since U−1 = U by (V3). ut

Thus, by Theorem 2.3, in a topological group, the left canonical and the right
canonical topologies agree.

For a function f , for a filter basis B, we define the filter basis f(B) to be
the set {f(B) : B ∈ B}. Then Conditions (ii) and (iii) in Theorem 2.3 may be
reformulated, in an equivalent way, as follows:
(V2′) U−1 = U
(V3′) (∀g ∈ G) gUg−1 = U.

We observe that (V1) is a consequence of (V2) and (V3): Let U ∈ U; then by
(V2) there is a V ∈ U such that V V ⊆ U . By (V3), V −1 ∈ U. Since U is a filter,
W

def= V ∩ V −1 is an element of U and thus W 6= ∅. Let w ∈W . Then

1 = ww−1 ∈WW−1 ⊆ V V ⊆ U.

This proves (V1).

Summary. Given a group G, we have a bijection between the set of all group
topologies on G and the set of all filters U satisfying the conditions (V2),(V3), and
(V4).
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Exercise E2.1. Prove the following
Proposition. Let G and H be topological groups with their filters UG and UH

of identity neighborhoods, respectively. Then a morphism f :G → H is both con-
tinuous and open iff f(UG) = UH . ut

Groups Generated by Local Groups

This section deals with generating groups from local data in topological groups.
Dealing with local topological groups is always messy. It is unfortunate that each
author has a definition different from all other ones. The situation is a little better
in the case of the idea of a local group within a given group. It is this situation
we are dealing with here. In fact we shall consider a group G and a subset K
supporting a topology τK satisfying the following conditions, to be augmented as
we proceed:

(i) 1 ∈ K.
(ii) (∀x, y ∈ K, V ∈ τK) xy ∈ V⇒(∃U ∈ τK) y ∈ U and xU ⊆ V .
(iii) The set D

def= {(x, y) ∈ K × K | xy ∈ K} is a neighborhood of (1,1) in
K ×K, and multiplication (x, y) 7→ xy : D → K is continuous at (1,1).

(iv) K−1 = K.
(v) Inversion x 7→ x−1:K → K is continuous at 1.
(vi) (∀y ∈ K, V ∈ τK) y ∈ V⇒(∃U ∈ τK) 1 ∈ U and Uy ⊆ V .

We define a subset of the set of subsets of G as follows:

τG = {W ⊆ G | (∀w ∈W )(∃U ∈ τK) 1 ∈ U and wU ⊆W}.

It follows immediately from the definition that τG is a topology on G and that it
is invariant under all left translations, i.e. that all left translations Lg, Lg(x) = gx
are τG-homeomorphisms. If we apply (ii) with y = 1 and consider the definition
of τG we obtain at once that every V ∈ τK is a member of τG:

(τ) τK ⊆ τG.

In particular, K ∈ τG (i.e. K is open in G) and τG|K = τK (i.e. the topology of G
induces the given one on K).

Lemma 2.4. Assume that G is a group and that K ⊆ G satisfies conditions
(i), . . . , (vi). Then there is a unique maximal τG-open subgroup H of G such that
(H, τG|H) is a topological group. In particular the connected component G0 of 1
in G is topological, and if K is connected, then G0 is the subgroup 〈K〉 generated
by K.

Proof . Since τK ⊆ τG multiplication and inversion of G are continuous at (1,1)
and 1, respectively, by (iii) and (v).

As a first step we shall construct H. Let U denote the neighborhood filter of
the identity in (G, τG). The group G acts on the set of all filters F on G via
(g,F) 7→ gFg−1 = {gFg−1 | F ∈ F}. We set H = {g ∈ G | g Ug−1 = U}, the
stabilizer of U for this action. Then H is a subgroup. By (iii) there is an identity
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neighborhood U ∈ τG such that UU ⊆ K. By (iii) once more we find an identity
neighborhood V ∈ τG such that V V ⊆ U and by (v) we find a W ∈ τG ∩ U such
that W ∪W−1 ⊆ V . As a consequence we have WWW−1 ⊆ K. Thus the function
y 7→ yw−1:W → K is defined and by (vi) it is continuous at 1. As a consequence,
the function x 7→ wxw−1:W → K is defined for all w ∈W and is continuous at 1,
since all left translations are continuous. As a consequence, w Uw−1 = U . Thus
W ⊆ H. Therefore H contains all hW , h ∈ H and thus is open. By definition, all
inner automorphisms Ih of H, Ih(x) = hxh−1 are continuous. Then H is a group in
which left translations and all inner automorphisms are continuous, multiplication
is continuous at (1,1) and inversion is continuous at 1. We claim that a group
with these properties is topological: We note that the right translations Rg =
Ig−1Lg are continuous and that inversion ι, ι(x) = x−1 is continuous at each g
because ι is continuous at 1 and ι = Rg−1 ◦ ι ◦ Lg−1 . Finally, multiplication µ,
µ(x, y) = xy is continuous at each (g, h) because µ is continuous at (1,1) and
Rh ◦ Lg ◦ µ ◦ (Lg−1 ×Rh−1) = µ.

As a second step we show that H is the largest open topological subgroup of
G. Let A be a subgroup of G which is τG-open and is topological with respect to
τG|A. Since A is open, the neighborhood filter UA of the identity in A generates
U . If a ∈ A, since (A, τG|A) is topological, aUAa−1 = UA, and thus aUa−1 = U .
Then a ∈ H by the definition of H. Therefore A ⊆ H.

Thirdly we observe that G0 ⊆ H. Since H is open, this will be shown if we
prove that every open subgroup U of G is also closed and thus must contain the
identity component. Now each left translations Lg of (G, τG) is continuous and
thus, having the inverse Lg−1 , is a homeomorphism. Hence gU is open for all
g ∈ G. Thus U = G \

⋂
g/∈U gU is closed.

Finally assume that K is connected. Then K contains 1 by (i) and is con-
nected as a subspace of (G, τG) since τG|K = τK . Hence K ⊆ G0 and thus
〈K〉 ⊆ G0. From τK ⊆ τG we know that K is open in (G, τG). Hence Kn =⋃

k1,...,kn−1∈K k1 · · · kn−1K is open. Since K−1 = K we have 〈K〉 =
⋃

n∈N Kn and
so this group is open. Then 〈K〉 contains G0 as we have seen in the previous
paragraph. Hence G0 = 〈K〉 ⊆ H. ut

We summarize the essence of this discussion in the following theorem.

Theorem 2.5. (Groups Generated by Local Subgroups) Let K be a symmetric
subset (K = K−1) of a group G containing 1. Assume that K is a connected
topological space such that

(i) x, y, xy ∈ K, with xy ∈ V for an open subset V of K imply the existence of
open neighborhoods Ux and Uy of x and y such that xUy ∪ Uxy ⊆ V ,

(ii) {(x, y) ∈ K ×K | x, y, xy ∈ K} is a neighborhood of (1,1) in K ×K, and
multiplication is continuous at (1,1),

(iii) inversion is continuous at 1.
Then there is a unique topology on the subgroup 〈K〉 generated by K which induces
on K the given topology and makes 〈K〉 a topological group such that K is an open
identity neighborhood of 〈K〉. ut
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Recall that in these circumstances, 〈K〉 is contained in the unique largest open
subgroup H of (G, τG) which is a topological group (H, τG|H).

Corollary 2.6. (Generating Subgroups of Topological Groups) Let G be a topo-
logical group and K a symmetric connected subspace containing the identity such
that the following condition is satisfied:

(∗) x, y, xy ∈ K, with xy ∈ V for an open subset V of K imply the existence of
open neighborhoods Ux and Uy of x and y such that xUy ∪ Uxy ⊆ V . Also,
{(x, y) ∈ K ×K : xy ∈ K} is a neighborhood of (1, 1) in K ×K.

Then there is a topological group A and an injective morphism of topological groups
f :A→ G such that for some open symmetric identity neighborhood V of A we have

(i) A = 〈V 〉,
(ii) f(V ) = K and f |V :V → K is a homeomorphism.
Hypothesis (∗) is satisfied if there is an open symmetric identity neighborhood

U in G and K is a connected symmetric subset of U containing the identity such
that

KK ∩ U ⊆ K.

Proof . The hypotheses of 2.5 are quite clearly satisfied. Hence the subgroup 〈K〉
has a unique topology τ making it into a topological group H and inducing on
K the same topology as does that of G such that V

def= (K, τ |K) is open and
generates H. The inclusion map f :H → G then satisfies the requirements.

The last claim of the corollary is straightforward. ut

Notation. A subset K of a topological group G is called a local subgroup of G if
it is symmetric and there is a symmetric open identity neighborhood U of G such
that

KK ∩ U ⊆ K.

Exercise E2.2. Provide all details of the proof of Corollary 2.6: Check carefully
that all hypotheses of Theorem 2.5 are satisfied. In particular, verify that a local
subgroup K of G satisfies (∗).

One could reformulate Corollary 2.6 by saying that
a connected local subgroup K of a topological group generates a subgroup 〈K〉 which
has in addition to the induced group topology one that in general is finer such that
both induce on K the same topology and such that K is open for the finer one.

Metrizability of Topological Groups

A metric d on a group G is called left invariant if d(gx, gy) = d(x, y) for all
g, x, y ∈ G.

We may cast the presence of a left invariant metric into different guises involving
functions.
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Lemma 2.7. For any Hausdorff topological group G the following statements are
equivalent.

(i) There exists a left invariant metric d on G defining the topology of G.
(ii) There exists a continuous function ‖·‖:G→ R+ = [0,∞[ such that

(1) ‖x‖ = 0 if and only if x = 1.
(2) ‖x−1‖ = ‖x‖ for all x ∈ G.
(3) ‖xy‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ G.
(4) For each identity neighborhood U there is an n ∈ N such that ‖g‖ <

1
n implies g ∈ U .

(iii) There exists a function p:G→ [0, 1] such that
(1) p(1) = 0 and for each identity neighborhood U there is an n ∈ N

such that p(g) < 1
n implies g ∈ U .

(2) For all n ∈ N there is an identity neighborhood U such that for all
g ∈ G and u ∈ U the relation p(gu) ≤ p(g) + 1

n holds.

If these conditions are satisfied, then ‖·‖ may be chosen to arise from d, p from
‖·‖, and d from p, as follows.

‖x‖ = d(x, 1),
p(x) = min{‖x‖, 1},

d(x, y) = sup{|p(gy)− p(gx)| : g ∈ G}.

Proof . (i)⇒(ii). Set ‖x‖ def= d(x, 1). Then (ii)(1) follows from the positive definite-
ness of the metric. Further ‖x−1‖ = d(x−1, 1) = d(xx−1, x) = d(1, x) = d(x, 1) =
|x| by left invariance and symmetry. Thus (ii)(2) holds. Finally, |xy| = d(xy, 1) =
d(y, x−1) ≤ d(y, 1)+ d(1, x−1) = d(y, 1)+ d(x−1, 1) = ‖y‖+ ‖x−1‖ = ‖x‖+ ‖y‖ by
left invariance, triangle inequality, and (ii)(2). This shows (ii)(3) holds and (ii)(4)
is trivial.

(ii)⇒(iii). Set p(x) = min{‖x‖, 1} for all x ∈ G. Then p(1) = 0 is clear. By
(ii)(4), for every identity neighborhood U there is an n ∈ N such that ‖g‖ < 1

n
implies g ∈ U . This is (iii)(1). Next (ii)(3) and the continuity of ‖·‖ give (iii)(2).

(iii)⇒(i). Set d(x, y) def= sup{|p(gy) − p(gx)| : g ∈ G}. Since p is bounded,
there is no problem with the existence of the least upper bound. Then d(x, y) ≥ 0
and d(x, y) = 0 iff (∀g ∈ G) p(gy) = p(gx), and this holds only if 0 = p(1) =
p(y−1y) = p(y−1x) for all xy ∈ G. By (iii)(1), this implies y−1x = 1; since G is
Hausdorff, this implies x = y, since then 1 is the only element contained in each
identity neighborhood. Conversely, if x = y then trivially d(x, y) = 0. Hence d is
definite. The symmetry of d is immediate from the definition.

Also d(gx, gy) = sup{|p(hgx) − p(hgy)| : h ∈ G} = d(x, y). Thus d is left
invariant.

Finally |p(gx)−p(gz)| ≤ |p(gx)−p(gy)|+ |p(gy)−p(gz)| ≤ d(x, y)+d(y, z) for
all g ∈ G whence d(x, z) ≤ d(x, y)+d(y, z). Thus d is indeed a left invariant metric.
It remains to show that d defines the topology. Because of left invariance, it suffices
to show that the sequence of sets Un

def= {x ∈ G | d(x, 1) < 1
n} for n = 1, 2, . . .
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forms a basis for the filter of identity neighborhoods. First we show that all Un

are identity neighborhoods. Assume that n is given. By(iii)(2) there is an identity
neighborhood U = U−1 such that for all g ∈ G we have p(gu) ≤ p(g) + 1

2n and
p(g) = p(guu−1) ≤ p(gu) + 1

2n for all g whence |p(gu)− p(g)| ≤ 1
2n for all g ∈ G,

u ∈ U and thus d(u, 1) ≤ 1
2n < 1

n . Thus U ⊆ Un. Now let an open identity
neighborhood U be given. Then by (iii)(1) we find an n ∈ N such that x /∈ U
implies 1

n ≤ p(x) = |p(1x)− p(1)| ≤ sup{|p(gx)− p(g)| : g ∈ G} = d(x, 1). ut

Lemma 2.8. Assume that d, ‖·‖, and p are linked as in Lemma 2.7 and that Γ is
a set of automorphisms of the topological group G. Then the following conditions
are equivalent:

(4) ‖γ(x)‖ = ‖x‖ for all x ∈ G, γ ∈ Γ,
(4′) p

(
γ(x)

)
= p(x) for all x ∈ G, γ ∈ Γ,

(4′′) d
(
γ(x), γ(y)

)
= d(x, y) for all x ∈ G, γ ∈ Γ.

If Γ is the group of inner automorphisms, then these conditions are also equivalent
to
(4′′′) d(xg, yg) = d(x, y) for all g, x, y ∈ G.

Proof . The proofs of (4)⇒(4′)⇒(4′′)⇒(4) are straightforward from the definitions.
Assume now that Γ is the group of inner automorphisms. We note that

d(xg, yg) = d(g−1xg, g−1yg) by left invariance. Thus invariance of the metric
under right translations and invariance under inner automorphisms are equivalent
for any left invariant metric. ut

Condition (4′′′) is equivalent to the additional right invariance of d. A metric
which is both left and right invariant is called biinvariant.

In conjunction with Lemma 2.7, a left invariant metric defining a topology can
also be translated into terms of certain families of identity neighborhoods.

Lemma 2.9. For any topological group G, the following condition is also equiva-
lent to the conditions (i). (ii) and (iii) of Lemma 2.7.

(iv) There is a function r 7→ U(r): ]0,∞[ → P(G) into the set of subsets of G
containing 1 such that the following conditions are satisfied:

(A) (∀r > 1) U(r) = G.
(B) (∀0 < s)

⋃
r<s U(r) = U(s).

(C) For each identity neighborhood U there is an n ∈ N such that U( 1
n ) ⊆ U .

(D) For each n ∈ N there is an identity neighborhood U such that U(r)U ⊆
U(r + 1

n ) holds.
Moreover, the two concepts p of 2.7(iii) and U(·) are related by

p(g) = inf{r ∈ ]0, 1] | g ∈ U(r)} and U(r) = {g ∈ G | p(g) < r}.
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Proof . 2.7(iii)⇒(iv) For 0 < r define U(r) def= {g ∈ G | p(g) < r}. Let r > 1.
Then for all g ∈ G we have p(g) ≤ 1 < r and so g ∈ U(r). Now (A) follows from
the fact that p(g) ≤ 1 for all g ∈ G.

Proof of (B). Let g ∈
⋃

r<s U(r). Then there is an r < s such that g ∈ U(r)
and then by definition p(g) < r. Then p(g) < s, i.e. g ∈ U(s). Now let, conversely,
g ∈ U(s). Then p(g) < s by definition. Set t = p(g)+s

2 . Then p(g) < t < s, and
thus g ∈ U(t) ⊆

⋃
r<s U(r).

Proof of (C). For a given U choose n as in 2.7(iii)(1). Then g ∈ U( 1
n ) implies

p(g) < 1
n and thus g ∈ U .

Proof of (D). By 2.7(iii)(2) for a given n ∈ N we find an identity neighborhood
such that p(gu) < p(g) + 1

n for all g ∈ G and u ∈ U . So for a g ∈ U(r) and u ∈ U
we have p(gu) < tg,u < p(g) + 1

n < r + 1
n so that gu ∈

⋃
s<r+ 1

n
U(s) = U(r + 1

n ).

Finally, p is retrieved from U(·) via p(g) = inf{r ∈]0, 1] | g ∈ U(r)}; indeed
let the right side be denoted by m. If g ∈ U(r), then by definition p(g) < r, and
so p(g) is a lower bound for the set {r | g ∈ U(r)}. Hence p(g) ≤ m. Now let
p(g) < r. Then g ∈ U(r) and thus m ≤ r. It follows that m ≤ p(g) and p(g) = m
is proved.

(iv)⇒2.7(iii) For g ∈ G define p(g) = inf{r ∈ ]0, 1] | g ∈ U(r)}. This definition
is possible by (A). Clearly, 0 ≤ p(g) ≤ 1. Since 1 ∈ U(r) for all r > 0 by hypothesis
on U(·), we have p(1) = 0.

Proof of (C)⇒(iii)(1). Let U be given. Find n so that U( 1
n ) ⊆ U . If p(g) < 1

n ,
then g ∈ U( 1

n ) ⊆ U . Proof of (D)⇒(iii)(2). Let n ∈ N. Then by (D) there is an
identity neighborhood U such that U(r)U ⊆ U(r + 1

n ). Now let g ∈ G and u ∈ U .
Take any r with g ∈ U(r). Then gu ∈ U(r)U ⊆ U(r + 1

n ) and thus p(gu) < r + 1
n .

We conclude p(gu) ≤ p(g) + 1
n .

Finally, U(·) is retrieved from p via U(r) = {g ∈ G | p(g) < r}. Indeed, let
g ∈ U(r), then by (B) there is an s < r with g ∈ U(s). Then p(g) ≤ s < r; thus
the left hand side is contained in the right hand side. Conversely, assume that
p(g) < r. Since p(g) = inf{s | g ∈ U(s)}, there is an s with p(g) ≤ s < r such that
g ∈ U(s). Then, a fortiori, g ∈ U(r). So both sides are equal. ut

Lemma 2.10. The metric d corresponding to the p in Lemma 2.9 is biinvariant
if and only if gU(r)g−1 = U(r) for all g ∈ G and all r ∈ [0, 1]. More generally,
d is invariant under the members of a set Γ of automorphisms of G if and only if
all sets U(r) are invariant under the automorphisms from Γ.

Proof . This is immediate from 2.8 and the connection between r 7→ U(r) and p
in 2.9. ut

The function U(·) now permits an access to metrizability theorems on a purely
algebraic level. A subset D of a set X endowed with a partial order ≤ is called a
directed set if it is not empty and each nonempty finite subset of D has an upper
bound in D.
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Definition 2.11. A semigroup with a conditionally complete order is a semigroup
S together with a partial order ≤ such that the following conditions are satisfied:

(i) (∀s, t, x) s ≤ t⇒ sx ≤ tx, and xs ≤ xt.
(ii) (∀s, t) s ≤ st.
(iii) Every directed subset of S has a least upper bound. Further S has a

(semigroup) zero which is the largest element of S. ut

The set of identity neighborhoods of a topological group G is a semigroup with
the conditionally complete order ⊆.

Lemma 2.12. Let S be a semigroup with a conditionally complete order. Assume
that there is a sequence of elements un, n = 1, 2 . . . in S satisfying the following
condition: (√) u2

n+1 ≤ un.
Then there is a function F : ]0,∞]→ S such that

(I) (∀r > 1) F (r) = max S.
(II) (∀0 < s) supr<s F (r) = F (s).

(III) (∀n ∈ N) F ( 1
2n ) ≤ un, and

(IV) (∀r > 0, n ∈ N) F (r)un+1 ≤ F (r + 1
2n ).

Moreover, F takes its values in the smallest subsemigroup containing

{u1, u2, . . . ;maxS}

which is closed under the formation of directed suprema.

Proof . (a) Note that un+1 ≤ u2
n+1 ≤ un by 2.11(ii) and (√). Thus

(#) (∀m, n ∈ N, m ≤ n) un ≤ um.

We shall first define a function f : J → S on the set J of dyadic rationals r = m/2n,
m, n ∈ N with values in the subsemigroup T

def= 〈u1, u2, . . . ;maxS〉. Once and for
all we set f(r) = max S ∈ T for all 1 ≤ r ∈ J . To get started in earnest, we set
f(1/2) = u1 ∈ T . The next step is to define f(r) for r ∈ { 1

4 , 3
4}; note that f( 2

4 ) =
u1 is already defined. We set f( 1

4 ) = u2 ∈ T and f( 3
4 ) = f(1/2)u2 = u1u2 ∈ T .

This indicates our strategy of producing a recursive definition. We set

Jn =
{ m

2n
| m = 1, . . . , 2n

}
, n = 0, 1, 2, . . .

and note J0 = {1} ⊆ J1 = { 1
2 , 1} ⊆ J2 = { 1

4 , 2
4 , 3

4} ⊆ J3 ⊆ · · · and J = (J ∩
[1,∞[) ∪

⋃
n∈N Jn. Assume that f is defined on Jn with f(Jn) ⊆ T in such a way

that f( 1
2m ) = um for m = 1, . . . , n and that

(†n) (∀r ∈ Jn) f(r)un ≤ f(r +
1
2n

)

holds. We note that f(r) ≤ f(r)um by 2.11(ii) and that therefore (†n) implies
that f is monotone on Jn, that is

(##) (∀r, s ∈ J, r ≤ s) f(r) ≤ f(s).
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We must define f(r), r = m/2n+1. If m is even, then r ∈ Jn and f(r) ∈ T
is defined. If r = 1

2n+1 , we set f(r) = un+1 ∈ T ; if r ∈ Jn we set f(r + 1
2n+1 ) =

f(r)un+1 ∈ TT ⊆ T . We must show that (†n+1) holds.
Case 1. r ∈ Jn. Then f(r)un+1 = f(r + 1

2n+1 ) by definition.
Case 2. r ∈ Jn+1 \ Jn. Then r = r0 + 1

2n+1 with r0 ∈ {0} ∪ Jn. Now

f(r)un+1 =
{

un+1un+1 ≤ un if r0 = 0
f(r0)un+1un+1 ≤ f(r0)un if r0 > 0

}
≤ f(r0 + 1/2n)

=f(r0 +
1

2n+1
+

1
2n+1

) = f
(
r + (1/2n+1)

)
by definition of f on Jn+1 and 2.11(i), by (√), and by induction hypothesis (†n).

The induction is complete, and we have defined f : J → S by recursion in
such a fashion that (##)) and (†n) are satisfied. Now we extend f to a function
F : ]0,∞[→ S by F (r) = max S for r > 1 and

F (r) = sup
s∈J, s<r

f(s) for 0 < r ≤ 1.

This least upper bound exists by 2.11(iii). If T denotes the smallest subsemigroup
of S containing T and being closed under the formation of directed sups, then
im F ⊆ T .

Clearly (I) is satisfied. Proof of (II). We compute

sup
0<s<r

F (s) = sup
0<s<r

(
sup

u∈J, u<s
f(u)

)
= sup
{(u,s)|u∈J, u<s<r}

f(u) = sup
u∈J, u<r

f(r) = F (r)

since J is order dense in ]0, 1].
Proof of (III): We have F (1/2n) = supr∈J, r< 1

2n
f(r) ≤ un since r < 1

2n implies
f(r) ≤ f( 1

2n ) by (##), and f( 1
2n ) = un by the construction of f .

Proof of (IV). Fix an n ∈ N and consider an r ∈ ]0, 1]. If 1 − (1/2n+1) ≤ r,
then F (r + (1/2n)) = max S ≥ F (r)un+1. So assume that r < 1 − (1/2n+1) and
let s be the first element of Jn+1 such that r ≤ s. Then (##) and the definition
of F implies
(α) F (r) = supq∈J, q<r f(q) ≤ f(s),
and since the element s+(1/2n+1) =

(
s− (1/2n+1)

)
+(1/2n) < r+(1/2n) belongs

to J , we have
(β) f

(
s + (1/2n+1)

)
≤ F

(
r + (1/2n)

)
.

From (†n+1) we get
(γ) f(s)un+1 ≤ f

(
s + (1/2n+1)

)
.

Now (α), (β), and (γ) and 2.11(i) together imply
F (r)un+1 ≤ f(s)un+1 ≤ F

(
r + (1/2n)

)
,

and this is what we had to show. The proof of the lemma is now complete. ut

Theorem 2.13 (Characterisation of Left Invariant Metrizability). (a) For a topo-
logical group G, the following conditions are equivalent:

(1) The topology of G is defined by a left invariant metric.
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(2) The filter of identity neighborhoods (equivalently, that of any point in G)
has a countable basis.
(b) Also, the following conditions are equivalent:

(3) The topology of G is defined by a biinvariant metric.
(4) The filter of identity neighborhoods has a countable basis each member of

which is invariant under inner automorphisms.
(c) For a locally compact group G conditions (1) and (2) are equivalent to

the following condition.
(5) There is a countable family of identity neighborhoods intersecting in {1}.

Proof . Clearly, (1)⇒(2) and (3)⇒(4).
We assume (2) and show (1). In order to prove (4)⇒(3) at the same time we

consider a set Γ of automorphisms of the topological group G, e.g. Γ = {id}, or
the group of all inner automorphisms. Let On, n ∈ N be a family of Γ-invariant
identity neighborhoods which form a basis for the filter of identity neighborhoods.
We define recursively a new basis Un by setting U1 = O1. Assume that U1, . . . , Un

is defined so that all Um are Γ-invariant and satisfy U2
m ⊆ Um−1 ∩ Om−1, m =

2, 3, . . . , n. There is an identity neighborhood V such that V V ⊆ Un ∩On. Since
the Om form a basis for the identity neighborhoods there is an index j(n) ≥ n
such that Oj(n) ∈ V . Set Un+1 = Oj(n). The recursion is complete and yields a
basis of Γ-invariant identity neighborhoods Un with (Un+1)2 ⊆ Un.

Now we let S denote the semigroup of all Γ-invariant identity neighborhoods un-
der multiplication of subsets of G. Containment ⊆ endows S with a conditionally
complete order (see 2.10). Then Lemma 2.12 applied with un = Un yields a func-
tion r 7→ U(r): ]0,∞[→ P(G) such that Conditions 2.12(I)–(IV) are satisfied with
U in place of F . We claim that (A)–(D) from 2.9 are satisfied. We have (A)⇔(I)
and (B)⇔(II). In order to prove (C) let U be any identity neighborhood. Since the
Uk form a basis for the identity neighborhoods we find an m such that Um ⊆ U . We
set n = 2m and see that U(1/n) = U(1/2m) ⊆ Um ⊆ U by (III). In order to verify
(D) we let n be given. Pick an m ∈ N such that n ≤ 2m. Then set U = Um+1.
Then for each t > 0 we have U(t)U = U(t)Um+1 ⊆ U

(
t + (1/2m)

)
≤ U

(
t + (1/n)

)
by (IV) and the monotonicity of s 7→ U(s), secured by (II). Thus s 7→ U(s) satisfies
conditions (A)–(D) of 2.9. Then Lemmas 2.7, 8, 10 show that G has a Γ-invariant
metric defining its topology.

It is obvious that (1) implies (5). We now assume that G is locally compact
and prove that (5) implies (1). Assume {1} =

⋂
n∈N Un for a family of identity

neighborhoods Un. We may assume that Un is compact for all n and that Un+1 ⊆
Un. Let U be an open identity neighborhood in G. Claim: There is an N such
that UN ⊆ U . Suppose not, then {Un \U : n ∈ N} is a filter basis of compact sets.
Its nonempty intersection is contained in {1} on the one hand and in G\U on the
other. This contradiction proves the claim. ut

We remark that the preceding theorem allows us to conclude that a topological
group with a metrizable identity neighborhood is left invariantly metrizable. This
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is the case if some identity neighborhood is homeomorphic to an open ball in some
Banach space.

We notice that in Theorem 2.13 we have proved a little more:

Corollary 2.14. Assume that G is a topological group and Γ a set of automor-
phisms. If G has a countable basis of Γ-invariant identity neighborhoods, then the
topology of G is defined by a left-invariant metric satisfying d

(
γ(x), γ(y)

)
= d(x, y)

for all automorphisms from the group 〈Γ〉 generated by Γ. ut

Corollary 2.15. The topology of every compact group with a countable basis of
identity neighborhoods is defined by a biinvariant metric.

Proof . By Corollary 1.28, every compact group has a basis of identity neighbor-
hoods which are invariant under inner automorphisms. The assertion then follows
from 2.14 with the group of all inner automorphisms Γ. ut

Exercise E2.3. (i) The semigroup of all subsets of a topological group G con-
taining the identity of G contains various subsemigroups which are conditionally
complete in the containment order. Examples:

(a) The semigroup of all normal subgroups.
(b) The semigroup of all open closed normal subgroups.
Note that all elements in these semigroups are idempotent. What are the conse-
quences for the metric constructed according to Theorem 2.13 from a countable
basis Un for the filter of identity neighborhoods consisting of open normal sub-
groups?

(ii) Show that, for a metric group G there is a family r 7→ U(r): ]0,∞[ →
P(G) which, in addition to the conditions (A)–(D) of Lemma 2.9 also satisfies the
following condition:

(E) (∀0 < s, t) U(s)U(t) ≤ U(s + t).

[Hint for (ii). Consider p(x) = min{‖x‖, 1} for a function ‖·‖ satisfying the condi-
tions 2.7(ii)(1)–(4) and define U(r) = {g ∈ G | p(g) < r}.] ut

Regarding Exercise E2.3(ii) it is not known whether a semigroup theoretical
proof exists to construct a function F such as in Lemma 2.12 with the additional
property that F (s)F (t) ≤ F (s+t). In the presence of certain additional conditions
such a proof was given in K. H. Hofmann, A general invariant metrization theorem
for compact spaces, Fundamenta Math. 68 (1970), 281–296.

Exercise E2.4. Recall that a pseudometric satisfies all axioms of a metric with
the possible exception of the postulate that d(x, y) = 0 implies x = y. Use the
tools at our disposal in order to prove the following result.

In a topological group G let {On : n ∈ N} be any filter basis of identity neighbor-
hoods. Then there is a sequence of identity neighborhoods Un satisfying (Un+1)2 ⊆
Un and a continuous left invariant pseudometric d such that for any n the identity
neighborhood Un contains some open d-ball around the identity. ut
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Notice that in a group with a left invariant pseudometric the set of elements
with distance 0 from the identity is a subgroup. Exercise E2.4 shows that the
topology of a topological group (Hausdorff or not) can be defined by a family of
pseudometrics.

For the structure of locally compact groups it is relevant that compactly gen-
erated locally compact groups can be approximated by locally compact separa-
blew metric groups in the following sense. (The Kakutani–Kodaira–Montgomery–
Zippin–Theorem.)

Theorem 2.16. Assume that G is a topological group with a compact symmetric
identity neighborhood K which satisfies G = 〈K〉 =

⋃
n∈N Kn. If a sequence

(Wn)n∈N of identity neighborhoods is given, then there is a closed compact normal
subgroup N ⊆

⋂
n∈N Wn such that G/N is separable metric locally compact.

Proof . Exercise. ut

Exercise E2.5. Prove Theorem 2.16.
[Hint. Construct a sequence of compact symmetric identity neighborhoods
(Vn)n∈N such that

(i) V 2
n+1 ⊆ Vn ∩Wn.

(ii) (∀g ∈ K) gVng−1 ⊆ Vn−1.

Set N =
⋂

n∈N Vn and show that N is a compact normal subgroup.
Prove the following general

Lemma a. If G is a locally compact group and N a closed normal subgroup,
then G/N is locally compact.

Show that if G and N are as in the theorem then G/N has a countable
basis for the filter of its identity neighborhoods.

For a proof prove the following topological
Lemma b. Let F be a filter basis of closed sets containing a compact set and
let

⋂
F ⊆ U for an open set U , then there is an F ∈ F such that F ⊆ U .

Show further that G/N is locally compact and a countable union of compact
subsets KnN/N . By the Metrizabilty Theorem 2.13, first countable groups are
metric, so G/N is metric. Note that all KnN/N are compact metric hence have a
countable basis for their topology. So they are separable spaces. So their union is
separable.]

The methods we have discussed actually yield more: The general process
leading to Theorem 2.13 in fact allows us to prove the following theorem.

Theorem 2.17. Let G be a topological group and U an open neighborhood of 1.
Then there is a continuous function f :G→ [0, 1] which takes the value 0 in 1 and
the value 1 in all points outside U .
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Proof . Exercise ut

Exercise E2.6. Prove Theorem 2.17.

Definition 2.18. A topological space is called completely regular if for each point
x and each neighborhood U of x there is a continuous function on the space with
values in [0, 1] taking the value 0 in x and the value 1 outside U . A space is a
T3 1

2
-space if it is a completely regular Hausdorff space.

In view of the homogeneity of a topological group, Theorem 2.17 shows
that every topological group is completely regular. This holds in fact without
any separation property. For a topological group the separation axioms Tn, n =
0, 1, 2, 3, 3 1

2 all coincide.
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Chapter 3
Open Mapping Theorems

Let us recall from Proposition 1.13, that for a morphism f :G → H of
topological groups the following conditions are equivalent:

(i) f is open.
(ii) For each U ∈ U(1) the image f(U) has a nonempty interior.
(iii) There is a basis B of identity neighborhoods U such that f(U) has a non-

empty interior.
(iv) There is a basis of identity neighborhoods U of G such that f(U) is an

identity neighborhood of H.
(v) For all U ∈ UG(1) we have f(U) ∈ UH(1).

The relevance of the information concerning the openness of morphisms was
illustrated in the Canonical Decomposition Theorem 1.14 of morphisms:
A morphism of topological groups f :G → H with kernel N = ker f decomposes
canonically in the form

G
f−−−−−−−−−→ H

q

y xj

G/N −−−−−−−−−→
f ′

f(G),

where q:G→ N is the quotient morphism given by q(g) = gN , j: f(G)→ H is the
inclusion morphism, and f ′:G/N → f(G) is the bijective morphism of toplogical
groups given by f ′(gN) = f(g).

The morphism is open if and only if f(G) is open in H and f ′ is an iso-
morphism of topological groups, i.e. is continuous and open.

In topological group theory and functional analysis there is a class of the-
orems in which sufficient conditions are formulated for a surjective morphism of
topological groups to be open automatically, that is, to be equivalent to a quotiemt
morphisms. Such theorems are called “Open Mapping Theorems”. We shall dis-
cuss one of them now because it deals with metric groups.

We need to discuss the concept of completeness of a topological group; we
shall use this concept here only in the case of metrizable groups.

Definition 3.1. (i) A filter F in a topological space X converges to a point x ∈ X
if U(x) ⊆ F for the neighborhood filter U(x) of x. Equivalently, this says that for
each neighborhood U of x there is a member F ∈ F such that F ⊆ U .

(ii) We say that a filter F in a topological group is a Cauchy filter if for
each U ∈ U = U(1) there is an F ∈ F such that FF−1 ⊆ U .

(iii) We say that a topological group is complete if every Cauchy filter
converges. ut
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Exercise E3.1. Formulate corresponding concepts for filter bases: What is
a convergent filter basis in a topological space; what is a Cauchy filter basis in a
topological group? ut

This concept of completeness is more familiar for metric spaces; indeed a
metric space X is said to be complete if every Cauchy sequence converges.

A filter F in a metric space is said to be a Cauchy filter if for every ε there
is an F ∈ F such that the diameter sup{d(x, y) : x, y ∈ F} of F is less than ε.

From the Characterisation Theorem for Left Invariant Metrizability 2.13 we
know that a topological group has a (left invariant) metric defining the topology
iff it satisfies the First Axiom of Countability, that is, if the filter of identity
neighborhoods has a countable basis.

Exercise E3.2. Let X be a metric space. For a sequence (xn)n∈N let F be the
filter generated by the filter basis

{
{xm|m ≥ n} : n ∈ N

}
. Show that the sequence

converges to x in the sense of metric spaces iff the filter F converges to x. Show
that the sequence is a Cauchy sequence if and only if F is a Cauchy filter.

Let G be a first countable topological group. Choose a left invariant metric
defining the topology. Show that a filter C is a Cauchy filter in the sense of
topological groups iff it is a Cauchy filter in the sense of metric space.

Show that a first countable group is complete in the sense of metric spaces
iff it is complete in the sense of topological groups ut

We summarize: a first countable topological group is complete if every
Cauchy sequence converges.

We shall now prove a new characterisation of of openness of a morphism in
the case of complete metrizable groups.

Theorem 3.2. For a morphism f :G → H of (not necessarily Hausdorff) topo-
logical groups consider the following conditions:

(1) f is open.
(2) (∀U ∈ UG) Interior f(U) 6= ∅.
(3) (∀U ∈ UG) f(U) ∈ UH

(4)
(
∀U ∈ O(G)

)(
∃U ′ ∈ O(H)

)
f(U) ⊆ U ′ ⊆ f(U).

(5) (∀U ∈ O(G)) f(U) ⊆ Interior f(U).
Then (2), (3), (4) and (5) are equivalent and are implied by (1). If G is a

first countable complete topological group and H is Hausdorff, then they are all
equivalent.

Proof . From 1.13 we know that the openness of f is equivalent to (∀U ∈
UG) f(U) ∈ UH and thus (1) implies (2).

(2) ⇒ (3): Let U ∈ UG. Find V ∈ UG such that V V −1 ⊆ U . By (2),
there is a v ∈ Interior f(V ); hence 1 = vv−1 ∈ Interior f(V )(Interior f(V ))−1 ⊆
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f(V ) f(V )
−1
⊆ f(V )f(V )−1 (in view of the the continuity of multiplication and

inversion) = f(V V −1) ⊆ f(U). This entails f(U) ∈ UH .
(3) ⇒ (4): Let U ∈ O(G). For each u ∈ U u−1U ∈ UG ∩ O. By (3) we

know that W (u) = Interior f(u−1U) is an open neighborhood of 1 in H and thus
f(u)W (u) = f(u) Interior f(u−1U) = Interior f(u)f(u−1U) = Interior f(U) is an
open neighborhood of f(u) in H. If we set U ′ = Interior f(U), then f(U) ⊆ U ′ ⊆
f(U).

(4) ⇒ (5) ⇒(2) ist trivial.
This was not much harder than the proof of 1.13. We need the additional

hypotheses for a proof of (2)⇒(1).
We shall invoke a sequence of lemmas.
The first is a simple consequence of the First Closure Lemma 1.15.

Lemma A. If X is a subset of a topological group G and if U ∈ U, then X ⊆
XU ∩ UX. ut

Lemma B. (∀U ∈ U)(∃V = V −1 ∈ U) V V ⊆ U .

Proof . There is a W ∈ U such that WWW ⊆ U . By Lemma A we have WW ⊆
WWW . Thus WW ⊆ U . Now we set V = W ∩W−1; then V ∈ U and V −1 =
W−1 ∩ (W−1)−1 = V , and V ⊆W implies V V ⊆ U . ut

Lemma C. Let G be a topological group satisfying the First Axiom of Countability.
Then there exists a basis B = {Un : n = 1, 2, . . .} of U with the following properties:

(i) Un = U−1
n (i.e. Un is symmetric),

(ii) UnUn ⊆ Un−1 für n = 2, 3, . . .

Proof . We construct Un recursively: Let {Vn : n ∈ N} be a basis of U. We
set U1 = V1. Assume that U1, . . . , Um have been constructed such that Uk ⊆
Vk. By Lemma B there existists a symmetric neighborhood Un+1 ∈ U such that
Un+1Un+1 ⊆ Un ∩ Vn+1. Then we have Un+1 ⊆ Vn+1 and Un+1Un+1 ⊆ Un. Thus
the construction of the Un is secured, the properties (i) and (ii) are satisfied and
Un ⊆ Vn implies that the set B = {Un : n = 1, 2, . . .} is a basis of U. ut

Lemma D. If {Un : n ∈ N} is the basis of Lemma C, then

UmUm+1 . . . Um+k ⊆ UmUm, m = 1, 2, . . . .

Proof . Proof by induction with respect to k: By Um+1 ⊆ Um the assertiion is
true for k = 1. If it is proved for k, then Um+1 . . . Um+k+1 ⊆ Um+1Um+1 by the
induction hypothesis, and Um+1Um+1 ⊆ Um by C(ii). Therefore

UmUm+1 . . . Um+k+1 ⊆ UmUm+1Um+1 ⊆ UmUm,

and this had to be shown. ut
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Lemma E. If xk = g0 . . . gk such that gj ∈ Um+j, j = 0, . . . , k, then (xk)k=1,... is
a Cauchy sequence in UmUm. If G is complete, then x = lim xk ∈ Um−1, m ≥ 2.

Proof . We notice

x−1
k xk+p = g−1

k · · · g
−1
0 g0 · · · gkgk+1 · · · gk+p

= gk+1 · · · gk+p ∈ Um+k+1Um+k+1 ⊆ Um+k

according to Lemmas D and C(ii). This shows that (xn)n∈N is a Cauchy sequence.
If the limit exists, as is the case if G is complete, then x = lim xk ∈ UmUm ⊆ Um−1

by Lemmas D and C(ii). ut

Lemma F. Assume that condition (4) of Theorem 3.2 is satisfied and let U ′
n be

chosen for Un as in (4). Then U ′
n ⊆ f(Un−1)—provided that G is complete and

H is Hausdorff.

Proof . Let h ∈ U ′
n ⊆ H. We shall construct recursively elements

(αp) gp ∈ Un+p, p = 0, . . .

such that the definition

(∗) xp = g0 · · · gp ∈ UnUn

(see Lemma D) entails the relation

(βp) h−1f(xp) ∈ U ′
n+p+1.

The construction is as follows: Since h ∈ U ′
n ⊆ f(Un) by (4), every neighborhood

of h in H meets f(Un). Thus there is an element g0 ∈ Un such that f(g0) ∈ hU ′
n+1

since hU ′
n+1 is a neighborhood of h; indeed on account of 1 ∈ f(Un+1) ⊆ U ′

n+1

(by (4)), the element h = h·1 is in the open set hU ′
n+1. Now let g0, . . . , gp be

constructed as announced. Then h−1f(xp) ∈ U ′
n+p+1 where xp = g0 · · · gp, and

U ′
n+p+1 ⊆ f(Un+p+1) by (4). Then every neighborhood of h−1f(xp) in H meets

f(Un+p+1) = f(U−1
n+p+1) (see Condition C(i)); therefore there exists a

(αp+1) gp+1 ∈ Un+p+1

such that f(gp+1)−1 = f(g−1
p+1) ∈ (U ′

n+p+2)
−1h−1f(xp), and thus

(βp+1) h−1f(xp+1) = h−1f(xp)f(gp+1) ∈ U ′
n+p+2.

Thus the construction is secured in the fashion asserted. Since gj ∈ Un+j we
know that (xp)p∈N0 is a Cauchy sequence in UnUn by Lemma E and (∗); by the
completeness of G it has a limit x = lim xp ∈ UnUn ⊆ Un−1. On the other
hand, since f(xq) ∈ hU ′

n+q+1 ⊆ hU ′
n+p+1 ⊆ hf(Un+p+1) for all p ≥ q, we know

f(x) ∈ hf(Un+p+1) for all p. If now W is an arbitrary neighborhood of 1 in H,
then choose W1 ∈ UH so that W1W1 ⊆ W . By the continuity of f there is a p
so that f(Un+p+1) ⊆ W1, since the Uq form a basis of UG. Now by Lemma A we
have f(Un+p+1) ⊆ W1W1 ⊆ W . Then f(x) ∈ hW for all W ∈ UH . From the
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assumption that H is Hausdorff it follows that f(x) = h. This shows h = f(x) ∈
f(Un−1). ut

Now we conclude that proof of Theorem 3.2.

Proof of (4)⇒ (1): Since G is complete and H is Hausdorff, Lemma F applies and
shows that f(Un) has a nonempty interior for all n. Since the Un form a basis of
UG, Proposition 1.13 shows that f is open. ut

In order to produce an Open Mapping Theorem from this result we resort
to a definition.

Definition 3.3.a. (i) A topological space X will be called inexhaustible if for
every countable family of closed sets An ⊆ X the relation X =

⋃
n∈N An implies

that there is one n ∈ N such that intAn 6= ∅. In other words, X is not a countable
union of nowhere dense closed subsets.

(ii) A space is called a Baire space if every countable union of closed sets
with empy interior has an empty interior. ut

Obviously, a Baire space is inexhaustible, and the class of Baire spaces
indeed provides the tangible examples of inexhaustible spaces. This is due to the
following theorem, which is proved in introductory topology courses. [N.Bourbaki,
Topologie générale, Chap. 9, $5, n0 3, Théorème 1.]

The Baire Category Theorem 3.3.b. Each of the following conditions suf-
fices for a space X to be a Baire space

(i) X is a locally compact Hausdorff space
(ii) Each point of x has a closed neighborhood which is a complete metric space

with respect to a a metric defining the topology.

Proof . Let Wn, n = 1, 2, . . . be a sequence of dense open subsets of X. We
claim that D =

⋂∞
n=1 Wn is dense. For a proof let V 6= ∅ open; we must show

V ∩D 6= emptyset. We define recursively nonempty open subsets V1 = V, V2, . . ..
In case (ii), there is no harm in assuming that V is completely metrisable. If
Vn is defined, since Wn is dense, there is a point in Wn ∩ Vn 6= ∅. This point
has a compact, respectively completely metrisable neighborhood Vn+1 such that
Vn+1 ⊆ Vn ∩Wn. In the first case we chose Vn+1 so that Vn+1 is compact, in the
second case so that the radius of Vn+1 is smaller than 1

n+1 .
In Case (i), there is a point x ∈

⋂∞
n=1 Vn+1 ⊆

⋂∞
n=1 Vn ⊆

⋂∞
n=1(V ∩Wn) =

V ∩D.
In Case (ii) we note that {Vn : n ∈ N} is a Cauchy filter in V which has a

limit x in V , contained in every V n. Hence x ∈ V ∩D. ut

Condition (ii) is satisfied for every complete metric space. Recall that a
space is separable if it has a countable dense subset. If a space satisfies the second
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axiom of countability, that is, its topology has a countable basis, then it is separable
and satisfies the first axiom of countability, but the converse fails in general.

Exercise E3.3. Prove the following proposition
In a topological group G the following two conditions are equivalent:

(i) G satisfies the Second Axiom of Countability.
(ii) G satisfies the First Axiom of Countability and is separable.

[Hint. For a proof of (ii)⇒(i) let D be a countably dense subset and {Un : n ∈ N}
a countable basis of U. Show that {dUn : d ∈ D,n ∈ N} is a countable basis of the
topology O(G).]

Theorem 3.4. (Open Mapping Theorem A) Let f :G → H be a surjective mor-
phism of topological groups and assume that

(i) G is first countable, separable, and complete,
(ii) H is inexhaustible and Hausdorff.

Then f is open.

Proof . By Theorem 3.2 we have to show that for each U ∈ UG the set Interior f(U)
is not empty. Let U ∈ UG and let D be a countable dense subset of G. Then
G = D ⊆ DU by the First Closure Lemma 1.15(i). Thus, as f is surjective,
H = f(G) =

⋃
d∈D f(d)f(U) ⊆

⋃
d∈D f(d)f(U). Since D is countable and H is

inexhaustible, there is a d ∈ D such that Interior f(d)f(U) = f(u) Interior f(U) is
not empty and thus Interior f(U) 6= ∅. ut

A space is called Polish if is is completely metrizable and second countable.
It is not too hard to see that the product space ZN is a totally disconnected

and indeed zero dimensional Polish topological group. In particular, ZN is a Baire
space. It is harder to see that ZN and the space R \ Q of irrational numbers in
its natural topology is homeomorphic to ZN. Thus there are fairly natural Polis
(hence Baire) spaces which appear in unexpected guises.

Corollary 3.5. A surjective morphism between two Polish topological groups is
open.

Proof . By the Baire Category Theorem a Polish space is a Baire space and thus
is inexhaustible. Thus the Open Mapping Theorem A proves the Corollary. ut

A space X is called sigma-compact or σ-compact if is is a countable union
of compact subspaces.

Theorem 3.6. (Open Mapping Theorem B) Let f :G → H be a surjective mor-
phism of topological groups and assume that

(i) G is locally compact and σ-compact.
(ii) H is inexhaustible and Hausdorff.

Then f is open.
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Proof . If G is σ-compact so is G/ ker f , and f is open iff the natural bijective
morphism F :G/ ker f → H of 1.14 is open. It is therefore no restriction of gen-
erality to assume that f is bijective as we do now; we have to show that f−1 is
continuous. Since G is σ-compact there is a countable family of compact subsets
Kn ⊆ G such that G =

⋃
n∈N Kn. Then H =

⋃
n∈N f(Kn) and eachf(Kn) is

compact; since H is Hausdorff, each f(Kn) is closed in H, and since H is inex-
haustible, there is an n ∈ N and an h ∈ H such that h ∈ V

def= Interior f(Kn).
Then U

def= f−1(V ) is a nonempty open subset of G contained in Kn. Since H is
Hausdorff and f is bijective continuous and bijective, G is Hausdorff. Hence Kn

is compact Hausdorff and thus f |Kn : Kn → f(Kn) is a homeomorphism. Then
f |U : U → V is a homeomorphism. Hence f−1|V : V → U is continuous and
therefore f−1 is continuous on the open identity neighborhood h−1V of H. Then
f−1 is continuous by 1.13(a). ut

Corollary 3.8. (Open Mapping Theorem for Locally Compact Groups) A sur-
jective morphism f :G → H of locally compact topological groups is open if G is
σ-compact.

Proof . By the Baire Category Theorem a locally compact group H is inex-
haustible. Then Theorem 3.7 yields the assertion. ut

The identity map Rd → R from the discrete additive group of real numbers
to the same group with its natural topology is a bijective morphism between first
countable locally compact groups which fails to be open.

Exercise E3.4. Prove the following proposition
In a topological group, each of the following conditions implies the next.

(i) G is locally compact and connected.
(ii) G is compactly generated.
(iii) G is σ-compact.

[Hint. (i)⇒(ii) Let U be a compact identity neighborhood. Then 〈U〉 is an open,
hence closed subgroup.

(ii)⇒(iii) If C is a compact subset with 〈C〉 = G, then K = C ∪ C−1 is a
symmetric compact subset such that G =

⋃
n∈N Kn and each Kn is compact.]

The discrete group (Z/2Z)(N) is countable hence σ-compact but is not
finitely generated and thus not compactly generated. The discrete group Z is
cyclic, hence compactly generated but is not connected.

Theorem 3.9. (Open Mapping Theorem C) Let f :G → H be a surjective mor-
phism of Hausdorff topological groups and assume that

(i) G is the additive group of a first countable complete topological vector space.
(ii) All maps pn:H → H, n ∈ N, pn(h) = hn, are homeomorphisms, and H is

inexhaustible.
Then f is open.
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Proof . By Theorem 3.2 it suffices to show that for each U ∈ UG the set f(U) has
inner points in H.

Thus let U ∈ UG. Since G is the additive group of a topological vector
space, for each g ∈ G there is a natural number n such that 1

n ·g ∈ U . Hence G =
U ∪2·U ∪3·U ∪· · ·. Since f is surjective, H = f(G) = f(U)∪f(2·U)∪f(3·U)∪· · ·.
Now f(n·U) = pn

(
f(U)

)
⊆ pn

(
f(U)

)
. Since pn is a closed function by (ii), the set

pn

(
f(U)

)
is closed. since H is inexhaustible, there is an n such that pn

(
f(U)

)
has

inner points. Since pn:H → H is a homeomorphism, f(U) has inner points. ut

If H is the additive group of a topological vector space, then (ii) is auto-
matically satisfied and we get a much acclaimed theorem of functional analysis

Corollary 3.10. (Open Mapping Theorem for Linear Operators) If G and H are
topological vector spaces and f :G→ H is a continuous surjective linear map, then
it is auomatically open if G is first countable and complete and H is inexhaustible.

ut

In particular, a surjective bounded linear operator between completely
metrizable topological vector spaces is open.

Such vector spaces are called Frechet spaces. In particular, every Banach
space is a Frechet space, and thus a bounded surjective operator between Banach
spaces is open.

It may serve a useful purpose to give a brief overview of various countability
conditions.

Let X = (X,O) be a topological space.

Terminology Property
(1) First Axiom of Countability Each neighborhood filter has

a countable basis
(2) Second Axiom of Countability The topology O has

a countable basis
(S) separable X has a countable dense

subset {x1, x2, . . .}
(K) σ-compakt X is a countable union

K1 ∪K2 ∪ · · ·
of compact subsets

We observe the following implications:

(2)⇒ [(1) and (S)], [(1) and (S)] 6⇒ (2)

[(1) and (S) and X is a topological group ]⇒ (2)

X metric ⇒ (1), [X is metric and (S)]⇒ (2)

[X is a topological group and (K)]⇒ [(1)⇔ (2)].
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[X is metric complete and (2)]⇔[X is Polish]

[X is metric complete]⇒[X is a Baire space]

[X is locally compact]⇒[X is a Baire space]

[X is a Baire space]⇒[X is inexhaustible]

Closed Graph Theorems
There is a class of theorems coming along with the open mapping theorems,

namely, the so called closed graph theorems.

Definition 3.11. Let f :X → Y be a function between topological spaces. The
graph of f is the subspace Gr(f) = {(x, f(x)):x ∈ X} of the product X × Y . The
graph inherits the subspace topology from the product topology.

If X and Y are groups, then the graph is easily seen to be a subgroup if
and only if f is a morphism of groups. ut

Remark 3.11. (i) There is a bijective function

p: Gr(f)→ X given by p
(
x, f(x)

)
= x

(i.e., the restriction of the projection X ×Y → X to Gr(f)). The inverse function
of p is f0:X → Gr(f) given by f0(x) = (x, f(x)).

(ii) As a restriction of the continuous projection, p is always continuous.
Its inverse function f is continuous.

(iii) If prY :X × Y → Y denotes the second projection, then

f = (prY |Gr(f)) ◦ f0

is continuous if and only if f0 is continuous. ut

As a consequence of 3.11 we know that for continuous functions f , the
graph of f is homeomorphic to X.

We collect some of these insights in the following remark

Remark 3.12. For a function f :X → Y between topological spaces the following
statements are equivalent:

(1) f ist continuous.
(2) The continuous map p: Gr(f)→ X, p

(
x, f(x)

)
= x is open. ut

From an earlier exercise we review the following remark

Remark 3.13. If f :X → Y is a continuous function between topological spaces
and if Y is aHausdorff space, then the graph Gr(f) of f is closed in X × Y .

Proof . We must show that the complement (X × Y ) \Gr(f) is open. Let (x, y) 6∈
Gr(f), i.e., y 6= f(x). Then there exist open disjoint neighborhoods Uy of y and Vx

of f(x) since Y satisfies T2. Because f is continuous, there is an open neighborhood
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Ux of x such that f(Ux) ⊆ Vx. As a consequence, f(Ux) ∩ Uy = ∅. We claim that
(Ux × Uy) ∩ Gr(f) 6= ∅. If not, there is an (x′, y′) ∈ (Ux × Uy) ∩ Gr(f). Then
(x′, y′) ∈ Gr(f) implies y′ = f(x′) and so x′ ∈ Ux and f(x′) = y′ ∈ Uy. This
is impossible because of f(Ux) ∩ Uy = ∅. Thus we have an open neighborhood
Ux × Uy of (x, y) ∈ X × Y that does not meet Gr(f). This proves the claim. ut

This suggests the reverse question when, conversely, the closedness of the
Graphen Gr(f) implies the continuity of f . In the exercises we proved the following
example of such a theorem:

Proposition 3.14. Let f :X → Y be a function of a topological space X into a
compact Hausdorff space Y . Then the following tw statements are equivalent

(1) f is continuous.
(2) Gr(f) is closed.

Proof . (1)⇒ (2) was shown in 3.13.
(2) ⇒ (1). Let x ∈ X and V an open neighborhood of f(x). We have to

find an open neighborhood U of x such that f(U) ⊆ V . Suppose such a U does
not exist. Then {U \ V :U ∈ U(x)} is a filter basis in the compact space Y \ V .
Hence there is a

y ∈
⋂

U∈U(x)

f(U) \ V.

Since y /∈ V this would imply y 6= f(x), i.e., (x, y) /∈ Gr(f). On the other side let
U ×W be an arbitrary basic neighborhood of (x, y) in X × Y . Then y ∈ f(U)
implies W ∩ f(U) 6= ∅, since W is an open neighborhood of y. Now let w ∈
W ∩f(U); then w = f(u) ∈W , where u ∈ U . So (u, w) ∈ (U×W )∩Gr(f). Hence
(x, y) ∈ Gr(f). By (2), the graph is closed, and so (x, y) ∈ Gr(f), contradicting
(x, y) 6∈ Gr(f) which we showed above. ut

Now we come to a closed graph theorem that is attached to the Open
Mapping Theorems we discussed.

Theorem 3.15. Closed Graph Theorem For a morphism f :G→ H of topological
groups we assume at least one of the following hypotheses:

(I) G and H are locally compact and σ-compact.
(II) G and H are Polish.

(III) G and H are complete Hausdorff topological vektor spaces satisfying the
First Axiom of Countability.

Then the following conditions are equivalent:
(1) f is continuous.
(2) Gr(f) is closed.

Proof . In all cases, G and H are Hausdorff spaces. Then G×H and so Gr(f) are
Hausdorff spaces. We have to show that (2) implies (1).
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(I) If G and H are locally compact, then G × H is locally compact. If
Gr(f) is closed, then Gr(f) is locally compact as well. The same is true for
σ-compactness. Then p: Gr(f) → G is a surjective momorphism of topological
groups between locally compact groups with a σ-compact domain. Then by the
Open Mapping Theorem 3.8 for Locally Compact Groups, p is open, and so f is
continuous by 3.12.

(II) If G und H re Polish, then this is the case for G×H and for Gr(f) by
(2). Then p is open by the Open Mapping Theorem 3.5 for Polish Spaces. Again
f is continuous by 3.12.

(III) If G and H are topological vector spaces, then G×H is a topological
vector spac. Since f is a morphism of topological groups betwseen reall topological
vektor spaces, f is linear, and then Gr(f) is a vector subspace. By (III), the
hypotheses of the Open Mapping Theorem 3.10 for Linear Operators are satisfied,
and so p is open. Consequencetly f is continuous, and the Theorem is proved. ut

The Second Isomorphism Theorem

If H is a closed subgroup and N a closed normal subgroup of a topological
group G, then there is a natural bijective continuous morphism β:H/(H ∩N)→
G/N , β

(
h(H ∩N)

)
= hN . Whenever β is an isomorphism of topological groups

one refers to this statement as the Second Isomorphism Theorem of Group The-
ory. Unfortunately, in general, the Second Isomorphism Theorem is not guaran-
teed for topological groups without additional hypotheses. However, if an Open
Mapping Theorem applies to β, the Second Isomorphy Theorem follows. Let
f :H → HN/N , f(h) = hN . The canonical decomposition theorem yields the
commuting diagram

H
f−−−−−−−−−→ HN/N

quot

y yid

H/(H ∩N) −−−−−−−−−→
β

HN/N,

and it suffices to have an Open Mapping Theorem for f . We assume all groups to
be Hausdorff.

Theorem 3.16. (The Second Isomorphism Theorem for Pro-Lie groups) The
following conditions are sufficient for the natural morphism

h(H ∩N) 7→ hN : H/(H ∩N)→ HN/N

to be an isomorphism of topological groups:

(i) H is locally compact and σ-compact and HN is inexhaustible.
(ii) H and HN/N are Polish.
(iii) H/(H ∩N) is compact.

Proof . (i) If HN is inexhaustible, then so is HN/N ; ideed let HN be the union
of a countable set of closed substs An, then NH is the union of the closed sets



46 4. The Fundamental Theorem on Compact Groups

q−1
n (An) where qn:HN → HN/N is the quotient map. So for one n there is a

nonempty open set U of HN contained in q−1(An) and so q(U) is a nonempty
open subset of An as q is an open map. Now the Open Mapping Theorem 3.6 for
Locally Compact Groups applies.

(ii) This follows via the Open Mapping Theorem 3.5 for Polish groups.
(iii) Is clear since bijective continuous functions from a compact space to a

Hausdorff space is always a closed map and thus is a homeomorphism. ut

Chapter 4
The Fundamental Theorem on Compact Groups

For the moment, let G denote a compact Hausdorff space. Let K denote R or C.
An element µ of the topological dual E′ of the Banach space E = C(G, K) or is
a (K-valued) integral or measure on G. (It is not uncommon in our context to
use the words “integral” and “measure” synonymously; the eventual justification
is, as is usual in the case of such an equivocation, a theorem; here it is the Riesz
Representation Theorem of measure theory.) The number µ(f) is also written
〈µ, f〉 or indeed

∫
f dµ =

∫
G

f(g) dµ(g). It is not our task here to develop or
review measure theory in full. What we need is the uniqueness and existence of
one and only one particular measure on a compact group G which is familiar from
the elementary theory of Fourier series as Lebesgue measure on the circle group
T = R/Z. The formulation of the existence (and uniqueness theorem) is easily
understood. We shall be satisfied by indicating a proof through a sequence of
exercises.

Definition 4.1. Let G denote a compact group. For any function f :G → K
define gf(x) = f(xg). A measure µ is called invariant if µ(gf) = µ(f) for all g ∈ G
and f ∈ E = C(G, K). It is called a Haar measure if it is invariant and positive,
that is, satisfies µ(f) ≥ 0 for all f ≥ 0. The measure µ is called normalized if
µ(1) = 1 where 1 also indicates the constant function with value 1. ut

Example 4.2. If p: R → T denotes the morphism given by p(t) = t + Z and
C1(R, K) denotes the Banach space of all continuous functions f : R → K with
period 1, then f 7→ f ◦ p:C(T, K) → C1(R, K) is an isomorphism of Banach
spaces. The measure γ on T defined by γ(f) =

∫ 1

0
(f ◦ p)(x) dx with the ordinary

Riemann integral on [0, 1] is a normalized Haar measure on T. ut

Exercise E4.1. Verify the assertion of Example 4.2. Give a normalized Haar
measure on S1. For n ∈ Z define en: T → C by en(t + Z) = e2πint. Compute
γ(ejek) for j, k ∈ Z. ut
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We now state the Existence and Uniqueness Theorem on Haar Measure.
We shall outline one of its numerous proofs in E4.1.

Theorem 4.3. (The Existence and Uniqueness Theorem of Haar measure). For
each compact group G there is one and only one normalized Haar measure. ut

Exercise E4.2. Use the preceding theorem to show that any Haar measure γ
also satisfies the following conditions:

(i)
∫

G
f(gt) dγ(t) = γ(f) for all g ∈ G and f ∈ C(G, K).

(ii)
∫

G
f(t−1) dγ(t) = γ(f) for all f ∈ C(G, K). ut

Definition 4.4. We shall use the notation γ ∈ C(G, K)′ for the unique normalized
Haar measure, and we shall also write γ(f) =

∫
G

f(g) dg. ut

Consequences of Haar Measure

Theorem 4.5. (Weyl’s Trick). Let G be a compact group and E a G-module
which is, at the same time, a Hilbert space. Then there is a scalar product relative
to which all operators π(g) are unitary.

Specifically, if (• | •) is the given scalar product on E, then

(1) 〈x | y〉 =
∫

G

(gx | gy) dg

defines a scalar product such that

(2) M−2(x | x) ≤ 〈x | x〉 ≤M2(x | x)

with

(3) M = sup{
√

(gx | gx) | g ∈ G, (x | x) ≤ 1},

and that

(4) 〈gx | gy〉 = 〈x | y〉 for all x, y ∈ E, g ∈ G.

Proof . For each x, y ∈ E the integral on the right side of (1) is well-defined,
is linear in x and conjugate linear in y. Since Haar measure is positive, the
information (gx | gx) ≥ 0 yields 〈x | x〉 ≥ 0. The positive number M in (3) is well-
defined since π(G) is compact in Hom(E,E). Then 〈x | x〉 ≤

∫
G

M2(x | x) dg =
M2(x | x) since γ is positive and normalized. Also, (x | x) = (g−1gx | g−1gx) ≤
M2(gx | gx), whence 〈x | x〉 ≥

∫
G

M−2(x | x) dg = M−2(x | x). This proves (2)
and thus also the fact that 〈• | •〉 is positive definite, that is, a scalar product.
Finally, let h ∈ G; then 〈hx | hy〉 =

∫
G

(ghx | ghy) dg =
∫

G
(gx | gy) dg = 〈x | y〉

by the invariance of γ. ut
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The idea of the construction is that for each g ∈ G we obtain a scalar
product (x, y) 7→ (gx | gy). The invariant scalar product is the “average” or
“expectation” of this family with respect to the probability measure γ.

Definition 4.6. If G is a topological group, then a Hilbert G-module is a Hilbert
space E and a G-module such that all operators π(g) are unitary, that is, such
that

(gx | gy) = (x | y) for all x, y ∈ E, g ∈ G. ut

The following Lemma will show that in every Hilbert G-module of a locally
compact group the action(g, x) 7→ gx:G× E → E is continuous.

Lemma 4.7. Assume that E is a G-module for a topological group G and that
π:G→ Lp(E) is the associated representation (see 2.2(ii)). If E is a Baire space,
then for every compact subspace K of G the set π(K) ⊆ Hom(E,E) is equicon-
tinuous at 0, that is, for any neighborhood V of 0 in E there is a neighborhood U
of 0 such that KU ⊆ V .

As a consequence, if G is locally compact, the function

(g, x) 7→ gx:G× E → E

is continuous.

Proof . First step: Given V we find a closed 0-neighborhood W with W −W ⊆ V
and [0, 1]·W ⊆ W . Notice that also the interior, Interior W , of W is star-shaped,
that is, satisfies [0, 1]· InteriorW = InteriorW . Next we consider

C =
⋂

g∈K

g−1W.

Since K is compact, Kx is compact for any x ∈ E and thus, as Kx ⊆ E =⋃
n∈N n· InteriorW and the n·W form an ascending family, we find an n ∈ N with

K · x ⊆ n·W , that is, with x ∈
⋂

g∈K n·g−1W . Hence for each x ∈ E there is a
natural number n such that x ∈ n·C. Therefore

E =
⋃
n∈N

n·C,

where all sets n·C are closed. But E is a Baire space, and so for some n ∈ N, the
set n·C has interior points, and since x 7→ n·x is a homeomorphism of E, the set C
itself has an interior point c. Now for each g ∈ K we find g(C− c) ⊆W −W ⊆ V .
But U = C − c is a neighborhood of 0, as KU ⊆ V , our first claim is proved.

Second step: For a proof of the continuity of the function α =
(
(g, x) 7→ gx

)
:

G × E → E, it suffices to show the continuity of α at the point (1, 0). To see
this it suffices to note that for fixed h ∈ G and fixed y ∈ E the d ifference
α(g, x) − α(h, y) = gx − hy = h

(
h−1g(x − y) + (h−1gy − y)

)
= π(h)

(
α(h−1g,

x − y) + (h−1gy − y)
)

falls into any given neighborhood of 0 as soon as h−1g is
close enough to 1 and the difference x − y is close enough to zero, because α is



4. The Fundamental Theorem on Compact Groups 49

continuous at (1, 0), because π(h) is continuous and because k 7→ ky:G → E is
continuous by by the definition of the topology of pointwise convergence.

Third step: We now assume that G is locally compact and show that α
is continuous at (1, 0). For this purpose it suffices to know that for a compact
neighborhood K of 1 in G the set π(K) ⊆ Hom(E,E) is equicontinuous; for then
any neighborhood V of 0 yields a neighborhood U of 0 in E with α(K × U) =
π(K)(U) ⊆ V . This completes the proof of the second claim. ut

According to the above theorem, if G is a compact group, and E is a G-
module which is at the same time a Banach space, the compact group G acts on
E; that is, (g, x) 7→ gx : G× E → E is continuous.

Example 4.8. Let G be a compact group. Set E = C(G, K); then E is a
Banach space with respect to the sup-norm given by ‖f‖ = supt∈G |f(t)|. We
define gf = π(g)(f) by gf(t) = f(tg). Then π:G → Lp(E) is a faithful (that is,
injective) representation, and G acts on E.

Proof . We note |f1(tg1) − f2(tg2)| ≤ |f1(tg1) − f1(tg2)| + |f1(tg2) − f2(tg2)| ≤
|f1(tg1) − f1(tg2)| + ‖f1 − f2‖. Since G is compact, f1 is uniformly continuous.
Hence the first summand is small if g1 and g2 are close. The second summand
is small if f1 and f2 are close in E. This shows that (g, f) 7→ gf :G × E → E
is continuous. It is straightforward to verify that this is a linear action. Finally
π(g) = idE is tantamount to f(tg) = f(t) for all t ∈ G and all f ∈ C(G, K). Since
the continuous functions separate the points, taking t = 1 we conclude g = 1. ut

In Example 4.8, under the special hypotheses present, we have verified the
conclusion of Lemma 4.7 directly.

By Weyl’s Trick 4.5, for compact G, it is never any true loss of generality
to assume for a G-module on a Hilbert space that E is a Hilbert module. Every
finite dimensional K-vector space is a Hilbert space (in many ways). Thus, in
particular, every representation of a compact group on a finite dimensional K-
vector space may be assumed to be unitary.

Hilbert modules are the crucial type of G-modules for compact groups G as
we shall see presently. For the moment, let us observe, that every compact group
G has at least one faithful Hilbert module.

Example 4.9. Let G be a compact group and H0 the vector space C(G, K)
equipped with the scalar product

(f1 | f2) = γ(f1f2) =
∫

G

f1(g)f2(g) dg.

Indeed the function (f1, f2) 7→ (f1 | f2) is linear in the first argument, conjugate
linear in the second, and (f | f) = γ(ff) ≥ 0 since γ is positive. Also, if f 6= 0,
then there is a g ∈ G with f(g) 6= 0. Then the open set U = {t ∈ G | (ff)(t) > 0}
contains g, hence is nonempty. The relation (f | f) = 0 would therefore imply
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that U does not meet the support of γ, which is G—an impossibility. Hence the
scalar product is positive definite and H0 is a pre-Hilbert space. Its completion is
a Hilbert space H, also called L2(G, K).

The translation operators π(g) given by π(g)(f) = gf are unitary since
(π(g)f | π(g)f) =

∫
G

f(tg)f(tg) dt =
∫

g
f(t)f(t) dt = (f | f) by invariance. Every

unitary operator on a pre-Hilbert space H0 extends uniquely to a unitary operator
on its completion H, and we may denote this extension with the same symbol π(g).

The space L(H) of bounded operators on the Hilbert spaceH is a C∗-algebra
and U(H) = U

(
L(H)

)
denotes its unitary group. Then π:G→ U(H) is a morphism

of groups. We claim that it is continuous with respect to the strong operator
topology, that is, g 7→ gf :G→ H is continuous for each f ∈ H. Let ε > 0 and let
f0 ∈ C(G, K) be such that ‖f −f0‖2 < ε where ‖f‖22 = (f | f). Then ‖gf −hf‖2 ≤
‖gf−gf0‖2+‖gf0−hf0‖2+‖hf0−hf‖2 = ‖gf0−hf0‖2+2‖f−f0‖2 < ‖gf0−hf0‖2+2ε in
view of the fact that π(g) is unitary. But ‖gf0−hf0‖2 ≤ ‖gf0−hf0‖∞ where ‖f0‖∞
is the sup-norm supg∈G |f0(g)| for a continuous function f0. By Example 4.8 the
function g 7→ gf is continuous with respect to the sup-norm; hence ‖gf0 −hf0‖∞
can be made less than ε for g close enough to h. For these g and h we then have
‖gf −hf‖2 < 3ε. This shows the desired continuity. Since π(g) = idH implies
π(g)|H0 = idH0 and this latter relation already implies g = 1 by Example 4.8,
the representation π is injective. Thus L2(G, K) is a faithful Hilbert module. It is
called the regular G-module and the unitary representation π:G → U

(
L2(G, K)

)
is called the regular representation. ut

For the record we write:

Remark 4.10. Every compact group possesses faithful unitary representations
and faithful Hilbert modules. ut

The Main Theorem on Hilbert Modules for
Compact Groups

We consider a Hilbert space H. A sesquilinear form is a function B:H×H → K
that is linear in the first and conjugate linear in the second argument, and that is
bounded in the sense that there is a constant M such that |B(x, y)| ≤M‖x‖·‖y‖
for all x, y ∈ H. If T is a bounded linear operator on H, then B(x, y) = (Tx | y)
defines a sesquilinear form with M = ‖T‖ in view of the Inequality of Cauchy and
Schwarz saying that |(x | y)| ≤ ‖x‖·‖y‖. (For our purposes we included continuity
in the definition of sesquilinearity.)

Lemma 4.11. If B is a sesquilinear form, then there exists a unique bounded
operator T of H such that ‖T‖ ≤M and that B(x, y) = (Tx | y).

Proof . Exercise. ut

Exercise E4.3. Prove Lemma 4.11.
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[Hint. Fix x ∈ H. The function y 7→ B(x, y) is a bounded conjugate linear form
on H. Hence there is a unique element Tx ∈ H such that B(x, y) = (Tx | y) by
the elementary Riesz Representation Theorem for Hilbert spaces. The function
T = (x 7→ Tx):H → H is linear. Use |B(x, y)| ≤M‖x‖·‖y‖ to deduce ‖T‖ ≤M .]ut

Lemma 4.12. Let G denote a compact group and T a bounded operator on
a Hilbert G-module E. Then there is a unique bounded operator T̃ on E with
‖T̃‖ ≤ ‖T‖ such that

(5) (T̃ x | y) =
∫

G

(Tgx | gy) dg =
∫

G

(π(g)−1Tπ(g)(x) | y) dg.

Proof . Since π is a unitary representation, π(g)∗ = π(g)−1 and so the last two
integrals in (5) are equal. The prescription B(x, y) =

∫
G

(Tgx | gy) dg defines a
function B which is linear in x and conjugate linear in y. Because

|(Tgx | gy)| ≤ ‖Tgx‖·‖gy‖ = ‖T‖·‖gx‖·‖gy‖ = ‖T‖·‖x‖·‖y‖

(as G acts unitarily onH!) we obtain the estimate |B(x, y)| ≤
∫

G
‖T‖·‖x‖·‖y‖ dg =

‖T‖·‖x‖·‖y‖. Hence B is a sesquilinear form, and so by Lemma 4.11, there is a
bounded operator T̃ with B(x, y) = (T̃ x | y) and ‖T̃‖ ≤ ‖T‖. ut

In any ring R, the commutant C(X) (or, in semigroup and group theory
equivalently called the centralizer Z(X, R)) of a subset X ⊆ R is the set of all
elements r ∈ R with xr = rx for all x ∈ X. Using integration of no more than
K-valued functions, we have created the operator

T̃ =
∫

G

π(g)−1Tπ(g) dg,

where the integral indicates an averaging over the conjugates π(g)−1Tπ(g) of T . It
is clear that the averaging self-map T 7→ T̃ of Hom(H,H) is linear and bounded.
Its significance is that its image is exactly the commutant C

(
π(G)

)
of π(G) in

Hom(H,H). Thus it is the set of all bounded operators S on H satisfying Sπ(g) =
π(g)S. This is tantamount to saying that S(gx) = g(Sx) for all g ∈ G and x ∈ H.
Such operators are also called G-module endomorphisms or intertwining operators.
In the present context the commutant is sometimes denoted also by HomG(H,H).

Lemma 4.13. The following statements are equivalent for an operator S of H:
(1) S ∈ HomG(H,H).
(2) S = S̃.
(3) There is an operator T such that S = T̃ .

Proof . (1)⇒(2) By definition, (S̃x | y) =
∫

G
(Sgx | gy) dg. By (1) we know

Sgx = gSx, and since H is a unitary G-module, (Sgx | gy) = (gSx | gy) =
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= (Sx | y). Since γ is normalized, we find (S̃x | y) = (Sx | y) for all x and y in H.
This means (2).

(2)⇒(3) Trivial.
(3)⇒(1) Let x and y be arbitrary in H and h ∈ G. Then

(Shx | y) = (T̃ hx | y) =
∫

G

(Tghx | gy) dg =
∫

G

(
Tghx | gh(h−1y)

)
dg

=
∫

G

(Tgx | gh−1y) dg = (T̃ x | h−1y) = (Sx | h−1y) = (hSx | y)

in view of the invariance of γ and the fact that π(g)−1 = π(g)∗. Hence Sπ(h) =
π(h)S for all h ∈ G and thus (1) is proved. ut

We see easily that HomG(H,H) is a closed C∗-subalgebra of L(H).
An orthogonal projection of H is an idempotent operator P satisfying P ∗ =

P , that is, (Px | y) = (x | Py) for all x, y ∈ H. The function P 7→ P (H) is a
bijection from the set of all orthogonal projections of H to the set of all closed
vector subspaces V of H. Indeed every closed vector subspace V has a unique
orthogonal complement V ⊥ and thus determines a unique orthogonal projection
of H with image V and kernel V ⊥.

Definition 4.14. If G is a topological group and E a G-module, then a vector
subspace V of E is called a submodule if GV ⊆ V . Equivalently, V is also called
an invariant subspace. ut

Lemma 4.15. For a closed vector subspace V of a Hilbert G-module H and the
orthogonal projection P with image V the following statements are equivalent:

(1) V is a G-submodule.
(2) P ∈ HomG(H,H).
(3) V ⊥ is a G-submodule.

Proof . (1)⇒(2) Let x ∈ H; then x = Px + (1− P )x and thus

(∗) gx = gPx + g(1− P )x

for all g ∈ G. But Px ∈ V and thus gPx ∈ V since V is invariant. Since the
operator π(g) is unitary, it preserves orthogonal complements, and thus g(1−P )x ∈
V ⊥. Then (∗) implies gPx = P (gx)

(
and g(1− P )x = (1− P )(gx)

)
.

(2)⇒(3) The kernel of a morphism of G-modules is readily seen to be
invariant. Since V ⊥ = kerP and P is a morphism of G-modules, clearly V ⊥ is
invariant.

(3)⇒(1) Assume that V ⊥ is invariant. We have seen in the preceding two
steps of the proof that the orthogonal complement W⊥ of any invariant closed
vector subspace W of H is invariant. Now we apply this to W = V ⊥. Hence
(V ⊥)⊥ is invariant. But (V ⊥)⊥ = V , and thus V is invariant. ut
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Lemma 4.16. If T is a hermitian (respectively, positive) operator on a Hilbert
G-module H, then so is T̃ .

Proof . For x, y ∈ H we have

(T̃ x | y) =
∫

G

(gTg−1x | y) dg =
∫

G

(Tg−1x | g−1y) dg.

If T = T ∗, then (Tg−1x | g−1y) = (T ∗g−1x | g−1y) = (g−1x | Tg−1y) =

(Tg−1y | g−1x) and thus (T̃ x | y) = (T̃ y | x). Hence T̃ is hermitian. If T is
positive, then T̃ is hermitian by what we just saw, and taking y = x and observing
(Tg−1x | g−1x) ≥ 0 we find that T̃ is positive, too. ut

Next we turn to the important class of compact operators. Recall that an
operator T :V → V on a Banach space is called compact if for every bounded
subset B of V the image TB is precompact. Equivalently, this says that TB is
compact, since V is complete.

Lemma 4.17. If T is a compact operator on a Hilbert G-module H, then T̃ is
also compact.

Proof . Let B denote the closed unit ball of H. We have to show that T̃B is
precompact. Since all π(g) are unitary, we have gB = B for each g ∈ G. Hence
A

def= TGB is compact since T is compact. Since the function (g, x) 7→ gx:G×H →
H is continuous by Lemma 4.7, the set GA is compact. The closed convex hull K of
GA is compact (see Exercise E2.5 below). Now let y ∈ H be such that Re(x | y) ≤ 1
for all x ∈ K. Then x ∈ B implies Re(T̃ x | y) =

∫
G

Re(gTg−1x | y) dg ≤
∫

G
dg = 1

since gTg−1x ∈ GTGB ⊆ GA ⊆ K for all g ∈ G. Hence T̃ x is contained in every
closed real half-space which contains K. From the Theorem of Hahn and Banach
we know that a closed convex set is the intersection of all closed real half-spaces
which contain it. Hence we conclude T̃ x ∈ K and thus T̃B ⊆ K. This shows that
T̃ is compact. ut

It is instructive at this point to be aware of the information used in the pre-
ceding proof: the joint continuity of the action proved in 4.7, the precompactness
of the convex hull of a precompact set in a Banach space (subsequent Exercise!),
the Hahn–Banach Theorem, and of course the compactness of G.

Exercise E4.4. Show that in a Banach space V , the closed convex hull K of a
precompact set P is compact.
[Hint. Since V is complete, it suffices to show that K is precompact. Thus let U
be any open ball around 0. Since P is precompact, there is a finite set F ⊆ P
such that P ⊆ F + U . The convex hull S of F is compact (as the image of a
finite simplex under an affine map). Hence there is a finite set F ′ ⊆ S such that
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S ⊆ F ′+U . Now the convex hull of P is contained in the convex set S +U, hence
in the set F ′+U +U, and its closure is contained in F ′+U +U +U = F ′+3U.]ut

We can summarize our findings immediately in the following lemma.

Lemma 4.18. On a nonzero Hilbert G-module H let x denote any nonzero vector
and T the orthogonal projection of H onto K·x. Then T̃ is a nonzero compact
positive operator in HomG(H,H).

Proof . This follows from the preceding lemmas in view of the fact that an orthogo-
nal projection onto a one-dimensional subspace K·x is a positive compact operator
and that (Tx | x) = ‖x‖2 > 0, whence (T̃ x | x) =

∫
G

(Tg−1x | g−1x) dg > 0. ut

Now we recall some elementary facts on compact positive operators. No-
tably, every compact positive nonzero operator T has a positive eigenvalue λ and
the eigenspace Hλ is finite dimensional.

Exercise E4.5. Let H be a Hilbert space and T a nonzero compact positive
operator. Show that there is a largest positive eigenvalue λ and that Hλ is finite
dimensional.
[Hint. Without loss of generality assume ‖T‖ = 1. Note ‖T‖ = sup{‖Tx‖ | ‖x‖ ≤
1} = sup{Re(Tx | y) | ‖x‖, ‖y‖ ≤ 1}. Since T is positive, 0 ≤ (T (x + y) | x + y) =
(Tx | x)− 2 Re(Tx | y) + (Ty | y), whence Re(Tx | y) ≤ 1

2

(
(Tx | x) + (Ty | y)

)
≤

max{(Tx | x), (Ty | y)}. It follows that ‖T‖ = sup{(Tx | x) | ‖x‖ = 1}. Now
there is a sequence xn ∈ H with 1− 1

n < (Txn | xn) ≤ 1 and ‖xn‖ = 1. Since T is
compact there is a subsequence yk = xn(k) such that z = limk∈N Tyk exists with
‖z‖ = 1. Now 0 ≤ ‖Tyn − yn‖2 = ‖Tyn‖2 − 2·(Tyn | yn) + ‖yn‖2 → 1− 2 + 1 = 0.
Hence z = lim yn and Tz = z.] ut

We now have all the tools for the core theorem on the unitary representa-
tions of compact groups.

Theorem 4.19. (The Fundamental Theorem on Unitary Modules) Every nonzero
Hilbert G-module for a compact group G contains a nonzero finite dimensional
submodule.

Proof . By Lemma 4.18 we find a nonzero compact positive operator T̃ which is
invariant by 4.13. But T̃ has a finite dimensional nonzero eigenspace Hλ for an
eigenvalue λ > 0 by Exercise E4.5 If T̃ x = λ·x, then T̃ gx = gT̃x = g(λ·x) = λ·gx.
Thus Hλ is the desired submodule. ut

Definition 4.20. A G-module E is called simple if it is nonzero and {0} and
E are the only invariant submodules. The corresponding representation of G is
called irreducible. ut
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Corollary 4.21. Every nonzero Hilbert G-module for a compact group G contains
a simple nonzero G-module.

Proof . By the Fundamental Theorem on Unitary Modules 4.20, we may assume
that the given module H is finite dimensional. Every descending chain of nonzero
submodules then is finite and thus has a smallest element. It follows that H has
a nonzero minimal submodule which is necessarily simple. ut

Corollary 4.22. Every nonzero Hilbert G-module for a compact group G is a
Hilbert space orthogonal sum of finite dimensional simple submodules.

Proof . Let E be a Hilbert G-module and consider, by virtue of Corollary 4.21
and Zorn’s Lemma, a maximal family F = {Ej | j ∈ J} of finite dimensional
submodules such that j 6= k in J implies Ej ⊥ Ek. Let H be the closed span of
this family (that is, its orthogonal sum). Then H is a G-module. If H 6= E, then
H⊥ is a nonzero G-module by Lemma 4.15 nonzero simple submodule K. Then
F ∪ {K} is an orthogonal family of finite dimensional simple submodules which
properly enlarges the maximal family F , and this is impossible. Thus E = H, and
this proves the corollary. ut

Definition 4.23. We say that a family {Ej | j ∈ J} of G-modules, respectively,
the family {πj | j ∈ J} of representations separates the points of G if for each
g ∈ G with g 6= 1 there is a j ∈ J such that πj(g) 6= idEj

, that is, there is an
x ∈ Ej such that gx 6= x. ut

Corollary 4.24. If G is a compact group, then the finite dimensional simple
modules separate the points.

Proof . By Example 4.9, there is a faithful Hilbert G-module E. By Corollary 4.22,
the module E is an orthogonal direct sum

⊕
j∈J Ej of simple finite dimensional

submodules Ej . If g ∈ G and g 6= 1, then there is an x ∈ E such that gx 6= x.
Writing x as an orthogonal sum

∑
j∈J xj with xj ∈ Ej we find at least one index

j ∈ J such that gxj 6= xj and this is what we had to show. ut

Corollary 4.25. The orthogonal and the unitary representations π:G → O(n),
respectively, π:G→ U(n) separate the points of any compact groupG.

Proof . By Weyl’s Trick 4.5, , for a compact group G, every finite dimensional real
representation is orthogonal and every complex finite dimensional representation
is unitary for a suitable scalar product. The assertion therefore is a consequence
of Corollary 4.24. ut

Corollary 4.26. Every compact group G is isomorphic to a closed subgroup of a
product

∏
j∈J O(nj) and of a product

∏
j∈J U(nj) of unitary groups. ut
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