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Preface 

The term "harmonic analysis" is a flexible one that has been used to 
denote a lot of different things. In this book I take it to mean those 
parts of analysis in which the action of a locally compact group plays 
an essential role: more specifically, the theory of unitary representations 
of locally compact groups, and the analysis of functions on such groups 
and their homogeneous spaces. 

The purpose of this book is to give an exposition of the fundamental 
ideas and theorems of that portion of harmonic analysis that can be 
developed with minimal assumptions on the nature of the group with 
which one is working. This theory was mostly developed in the period 
from 1927 (the date of the Peter-Weyl theorem) through the 1960's. 
Since that time, research in harmonic analysis has proceeded in other 
directions, mostly on a more concrete level, so one may ask what' is the 
excuse for a new book on the abstract theory at this time. 

Well, in the first place, I submit that the material presented here 
is beautiful. I fell in love with it as a student, and this book is the 
fulfillment of a long-held promise to myself to return to it. In the second 
place, the abstract theory is still an indispensable foundation for the 
study of concrete cases; it shows what the general picture should look 
like and provides a number of results that are useful again and again. 
Moreover, the intervening years have produced few if any books with 
the scope of the present one. One can find expositions of various bits 
and pieces of this subject in a lot of places, and there are a few lengthy 
treatises in which one can perhaps learn more about certain aspects 
of it than one wants to know. But I have taken to heart the dictum 
propounded by R. F. Streater and A. S. Wightman in the preface of 
their book PCT, Spin, Statistics, and All That, that a book containing 
only Memorable Results is a Good Thing. The result, I hope, is a 
book that presents a rather large amount of important and interesting 
material in a concise and readable form. 

The prerequisites for this book consist mostly of a familiarity with 
real analysis and elementary functional analysis. I use Folland [39] and 
Rudin [108] as standard references for this material; definitions and the-

v 
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oremt, ia these books are used freely here, often without any specific 
refereat:e: Rudin [108] also contains most of the material in Chapter 1, 
but the latter is included here because some of the concepts in it -
especially projection-valued measures and the Gelfand transform - are 
an essential part of the fabric of ideas in later sections, and because I 
wished to include certain aspects of the spectral theorem that Rudin 
omits. 

Chapters 2--6 are the core of the book. Chapter 2 develops the basic 
tools for doing analysis on groups and homogeneous spaces: invariant 
measures and the convolution product. Chapter 3 presents the rudi­
ments of unitary representation theory, up through the Gelfand-Raikov 
existence theorem for irreducible unitary representations. In particular, 
it ,~roduces the connection between representations and functions of 
posi*ive type (or positive definite functions, as they are often called), 
an amazingly fruitful idea which also plays an important role in later 
cb,apters. Chapters 4 and 5 are devoted to analysis on Abelian and 
'cOmpact groups. Here the Fourier transform takes center stage, first 
as' a straightforward generalization of the classical Fourier transform to 
loceJly compact Abelian groups, and then in the more representation­
t~eoretic form that is appropriate to the non-Abelian case. Chapter 6 
presents the theory of induced representations, including a complete 
proof of the Mackey imprimitivity theorem (something which is remark­
ably scarce in the expository literature) following the ideas of Blattner. 
In ~l these chapters, a number of specific examples are included to il­
lustrate the general theory; they are interwoven with the rest of the text 
in Chapters 2-4 but are mostly collected in separate sections at the end 
in Chapters 5 and 6. 

Chapter 7, on the theory of noncom pact, non-Abelian groups, is of a 
somewhat different nature than the earlier chapters. To a considerable 
extent it is more like a survey article than a portion of a book, for many 
of the main results are stated without proof (but with references). To 
have given a complete treatment of the material in this chapter would 
have required the enlargement the book to an unwieldy size, involv­
ing a lengthy digression into the theory of von Neumann algebras and 
representations of C* algebras. (Indeed, many of the results are most 
naturally stated in this context, their application to groups coming via 
the group C* algebra.) The books of Dixmier [28]' [29] already provide 
an excellent exposition of this theory, which I saw no reason to duplicate. 
Rather, I thought that many readers would appreciate a fairly detailed 
sketch of the Big Picture for noncompact, non-Abelian groups with the 
technical arguments omitted, especially since most of these results pro­
vide a background for the study of concrete cases rather than a set of 
working tools. 

The bibliography contains three kinds of items: original sources for 
the major results in the book, references for results stated without proof, 
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and expository works to which readers can refer for more information 
on various topics. It makes no pretense of completeness. More extensive 
bibliographies can be found in Dixmier [29], Fell and Doran [37], [38], 
and Mackey [84], [86]. 

Chapters 2-5 are the embodiment of a course I gave at the University 
of Washington in the spring quarter of 1993. (The material of Chapter 1 
was covered in a preceding course.) I wrote Chapters 6 and 7 while 
visiting the University of Colorado at Boulder for the fall semester of 
1993, where I had the inestimable benefit of conversations with Arlan 
Ramsay and Larry Baggett. In addition, Baggett let me borrow some 
old handwritten notes by J. M. G. Fell, which were just what I needed 
to sort out many of the ideas in Chapter 6. 

Many of the ideas in this book are an outgrowth of the study of the 
classical Fourier transform on the real line, 

Indeed, R is a locally compact group; the functions e2"'ix~ out of which:F 
is fashioned are its irreducible representations; and :F gives the Gelfand 
transform on Ll (R), the spectral resolution of the algebra of translation­
invariant operators on L2(R), and the decomposition of the regular rep­
resentation of R into its irreducible components. When I first thought of 
writing a book like this, I envisaged it as an essay on the group-theoretic 
aspects of the Fourier transform. The scope of book as it finally turned 
out is a bit different, but the spirit of Fourier is still all-pervasive. 

Some Matters of Notation and Terminology 
The notation and terminology in this book agrees, for the most part, 

with that in Folland [39]. Here are a few specific items that are worthy 
of attention. 

T denotes the multiplicative group of complex numbers of modulus 
• one. 

XE denotes the characteristic function or indicator function of the set 
E. If 11' is a finite-dimensional unitary representation, X". denotes its 
character. These two uses of the letter X will cause no confusion. 

In a topological space, a neIghborhood of a point x or a set E is a set 
whose interior contains x or E. Thus, neighborhoods need not be open 
sets. 

If X is a locally compact Hausdorff space, C(X), Co(X), and Cc(X) 
denote the spaces of continuous (complex-valued) functions on X, con­
tinuous functions vanishing at infinity, and continuous functions of com­
pact support, respectively. (Of course, these spaces coincide when X 
is compact.) A Radon measure on X is a Borel measure that is finite 
on compact sets, outer regular on all Borel sets, and inner regular on 
open sets. (Outer and inner regularity on a set mean that the set can be 
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approximated in measure from the outside or inside by open or compact 
sets, r~pectively. a-finite Radon measures are regular, that is, both 
outer and inner regular on all Borel sets.) 

The uniform norm is denoted by IllIsup. (In [39] it is denoted by II 111/" 
but I found that this led to an unsightly overuse of the letter u in some 
situations. ) 

If X and Yare Banach spaces, the space of all bounded linear map­
pings from X to Y is denoted by £(X,Y), and the space of all bounded 
linear mappings from X to itself is denoted by £(X). 

In §§2.2-2.4, left and right Haar measures on a locally compact group 
G are denoted by >. and p. However, in §2.5 and for the remainder of 
the book, G is assumed to be equipped with a fixed left Haar measure, 
which is never given a name, and the symbols>. and p are freed for other 
purposes. The Haar measure of E eGis denoted by lEI, the Lebesgue 
spaces of the Haar measure are denoted by lJ'( G) or simply LP, and the 
Haar integral of f E Ll(G) is denoted by J for J f{x) dx. 
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1 
Banach Algebras and Spectral Theory 

This chapter contains a brief exposition of that part of Banach algebra 
theory that will be needed in the rest of this book, including the spectral 
theorem for commutative C* algebras. Although these topics are not 
part of harmonic analysis as such, the Gelfand transform and the spectral 
theorem are embodiments of ideas that are also central to harmonic 
analysis: the conversion of operators into more transparent forms and 
the decomposition of operators into simpler pieces. 

1.1 Banach Algebras: Basic Concepts 

A Banach algebra is an algebra A over the field of complex numbers 
equipped with a norm with respect to which it is a Banach space and 
which satisfies Ilxyll ::; IIxlillyll for all x, y in A. A is called unital if it 
possesses a unit element or multiplicative identity, which we denote by 
e. 

An involution on an algebra A is an anti-automorphism of A of order 
2, that is, a map x -+ x* from A to A that satisfies 

(1.1) (x + y)* x* + y*, (Ax)" Xx*, (xy)* "" y*x*, x** = x 

for all x, yEA and A E C. An algebra equipped with an involution is 
called a *-algebra. A Banach *-algebra that satisfies 

(1.2) IIx*xll IIxll2 for all x 

is called a C* algebra. 
We do not require an involution to satisfy IIx*1I "" IIxll, although this 

holds for most of the examples we shall meet here. In particular it is 
true for C* algebras: the estimate IIxll 2 = IIx*xll ::; IIx*lIllxll implies that 
Ilxll ::; IIx*lI, and then IIx*1I ::;lIx**1I = IIxll· 

1 
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If A and B are Banach algebras, a (Banach algebra) homomor­
phism from A to B is a bounded linear map ¢ : A -+ B such that 
¢(xy) ¢(x)¢(y) for all x, yEA. If A and Bare *-algebras, a *­
homomorphism from A to B is a homomorphism ¢ such that ¢(x*) = 
¢(x)* for all x E A. 

If S is a subset of the Banach algebra A, we say that A is generated 
by S if the linear combinations of products of elements of S are dense 
in A. 

We now describe four examples of Banach algebras. These examples 
barely begin to indicate how many different sorts of interesting Banach 
algebras there are, but they and their generalizations are the ones that 
will be important for us later. 

Example 1. Let X be a compact Hausdorff space. The space C(X) 
of continuous complex-valued functions on X is a unital Banach algebra 
with the usual pointwise algebra operations and the uniform norm. The 
map f -+ ] is an involution that makes C(X) into a C* algebra. Simi­
larly, if X is a noncompact, locally compact Hausdorff space, Co(X) is 
a non unital C* algebra. 

If S is a set of functions in C(X) (or Co (X)) that separate points and 
have no common zeros, the Stone-Weierstrass theorem says that C(X) 
(or Co(X)) is generated by S U {f : f E S}. 

Example 2. Let 'H be a Hilbert space. The set C('H) of all bounded 
linear operators on 'H is a unital Banach algebra, with the operator 
norm, and the map T -+ T* (T* being the adjoint of T) is an involution 
that makes C('H) into a C* algebra. Here is the verification of (1.2); On 
the one hand, we have IIT*TII :::; IIT*IIIITIl IIT112. On the other, for 
any unit vector U E 'H, IIT*TII ? (T*Tu, u) (Tu, Tu) IITuIl2; taking 
the supremum over all such u we get IIT*TII ? IITI12. Any subalgebra 
of C('H) that is closed in the operator norm and closed under taking 
adjoints is also a C* algebra. 

Example 3. Let 11 = 11(Z) be the space of all sequences a = (an)'.:'oo 
such that Iiall L:: lanl < 00. 11 is a unital Banach algebra if we define 
multiplication to be convolution: 

00 

a * b = c, where en L akbn-k. 
-00 

The unit element is 0, defined by 00 = 1 and On = 0 for n -I O. The 
standard involution on 11 is defined by 

11 is not a C* algebra with this involution; we leave it as an exercise for 
the reader to find a counterexample to (1.2). 
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For k E Z, let 6k E II be defined by (6k)n = 1 if n = k, (6k)n 0 
otherwise. (In particular, 60 6.) It is easily verified that 6j * 6k 

6j +k. Hence 6- 1 is the convolution inverse of 61, and (by induction) 
6k 

::::; 61 * ... * 61 and 6- k 6- 1 * ... * 6- 1 (k factors) for k 2:: 1. 
Moreover, for any a (an) E P we clearly have a = E~oo ak6k. Thus 
II is generated by 61 and its inverse 6 -1. 

Example 4. The space L1(R) is a Banach algebra when multiplication 
is defined to be convolution, 

(f * g)(x) J f(y)g(x - y) dy, 

and as in Example 3 we can define an involution on it by J*(x) :::::: 
Ll(R) is not unital, nor is it a C* algebra. 

For the remainder of this section we assume that A is a unital Banach 
algebra. In this case we can consider the elements of A possessing two­
sided inverses, which we call invertible elements. 

(1.3) Lemma. If IIxll < 1 then e - x is invertible, and 
00 

(e X)-l = Lxn. 
o 

Proof: The usual proof that the geometric series E: tn converges to 
1/(1 - t) for It I < 1 works equally well in any unital Banach 
algebra. I 

(1.4) Theorem. Let A be a unital Banach algebra. (a) If 1>'1 > IIxll 
then >.e x is invertible, and its inverse is E: >.-n-lxn. (b) If x is 
invertible and lIyll < IIx-11i 1 then x - y is invertible, and its inverse 
is X-I E:(yx-1)n. (c) If x is invertible and lIyll ~ ~IIX-lll 1 then 
lI(x y)-l x-III ~ 2I1x-11l2I1yll. (d) The set of invertible elements of 
A is open, and the map x --+ X-I is continuous on it. 

Proof: Since >.e x >.( e - >.-1 x), (a) follows immediately from 
Lemma (1.3). So does (b), in view of the facts that x y (e yx-1)x 
and lIyx- 1

11 ~ lIyllllx- 1 11 < 1. (c) follows from (b), since 
00 00 

lI(x-y) 1 x-III Ilx-1L(YX-1)nll ~ IIx-1IlL(lIyllllx-llit 
1 1 

00 

~ IIx-1
11
211yll L 2- n 

= 2I1x- 1
1l
2I1yll· 

o 

Finally, (d) is a direct consequence of (b) and (c). I 

If x E A, the spectrum of x is 

u(x) {..\ E C : >.e - x is not invertible}. 
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cr(x) is a closed subset of the disc {A ; IAI ~ Ilxll} by Theorem (1.4a,d). 
For A .;: cr(x), the resolvent of x is the operator 

(We generally omit the subscript x when no confusion will arise.) R(A) 
is continuous in A by Theorem (lAd). We shall now show that R(A) is 
an analytic A-valued function on the open set C\cr(x). By this we mean 
that the complex derivative R'(A) exists (and is continuous); this implies 
in particular that ¢ 0 R(A) is an ordinary C-valued analytic function of 
A for any bounded linear functional ¢ E A*. 

(1.5) Lemma. R(A) is an analytic function of A E C\cr(x). 

Proof: If A,J-L';: cr(x), we have 

(J-L - A)e = (J-Le - x) - (Ae - x) 
= (Ae - X)R(A)(J-Le - x) - (Ae - x)R(J-L)(J-Le - x) 
= (Ae - X)[R(A) - R(J-L)](J-Le - x). 

Multiplying both sides on the left by R(A) and on the right by R(J-L), we 
see that 

(J-L - A)R(A)R(J-L) = R(A) - R(J-L), 

and hence 

R(J-L) - R(A) = -R(A)R(J-L). 
J-L-A 

Letting J-L ---+ A, we see that R'(A) exists and equals -R(A)2. 

(1.6) Proposition. cr(x) is nonempty for every x E A. 

Proof: If cr(x) were empty, R(A) would be an entire function of A. 
As A ---+ 00, IIR(A)II = IAI-111(e-A-1x)-III---+ 0 since (e-A-1x)-1 ---+ e. 
By Liouville's theorem (applied to ¢ 0 R(A), for an arbitrary ¢ E A*), 
R(A) would be identically zero, which is absurd. I 

(1. 7) The Gelfand-Mazur Theorem. If A is a Banach algebra in 
which every nonzero element is invertible, then A ~ C. 

Proof: If x .;: Ce then Ae - x I- 0 for all A E C and hence Ae - x is 
invertible for all A E C. But then cr(x) = 0, which is impossible. Hence 
A= Ceo I 

If x E A, the spectral radius of x is 

p(x) = SUp{IAI : A E cr(x)}. 

We have p(x) ~ Ilxll by Theorem (1.4a). In fact, we can be more precise. 
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(1.8) Theorem. p(x) = limn-+oo Ilxnll l/n. 
Proof: We have >.ne - xn = (>.e - x) I:~-l >.jxn- I - j , from which 

it follows that if >.ne - xn is invertible then so is >.e - x. In other 
words, if >. E cr(x) then >.n E cr(xn), so 1>'ln ~ Ilxnll. It follows that 
p(x) ~ lim inf Ilxnll l/n. 

On the other hand, if ¢ E A*, ¢ 0 R(>.) is analytic for 1>'1 > p(x), and 
by Theorem (1.4a) its Laurent series about infinity is I:~ >. -n -1 ¢( xn). 
By standard complex variable theory, this series converges for 1>'1 > p(x), 
so for any such>. we have I>' -n-l¢(xn)1 ~ C'" for all n. The uniform 
boundedness principle then implies the existence of a C > 0 such that 
I>'I-nllxnll ~ C for all n, and hence Ilxnll l/n ~ cl/nl>'l. Letting n ---+ 00, 

we obtain lim sup Ilxnll l /n ~ p(x). I 

We conclude with a couple of elementary observations about inverses 
and spectra in Banach *-algebras. 

(1.9) Proposition. Let A be a unital Banach *-algebra. 

a. e = e*. 
b. If x is invertible, then so is x*, and (x*) -1 = (x- l )*. 

c. cr(x*) = cr(x) for any x E A. 

Proof: The relation (xy)* = y*x* shows that e* is another mul­
tiplicative identity and hence that e* = ej it then also shows that 
(X*)-l = (x- l )*. If x E A, (>.e - x)* =);e - x* by (a), and so (c) 
follows from (b). I 

1.2 Gelfand Theory 

In this section we study the spectrum (also called the maximal ideal 
space or structure space) of a commutative unital Banach algebra, a 
powerful tool that was first systematically exploited by Gelfand and his 
collaborators. 

Let A be a commutative unital Banach algebra. By a multiplicative 
functional on A we shall mean a nonzero homomorphism from A to C. 
The set of all mUltiplicative functionals on A is called the spectrum 
of A; we denote it by cr(A). (The relationship between this "spectrum" 
and the spectrum of an element defined in §1.1 will be explained, in 
Proposition (1.15) below.) 

(1.10) Proposition. Suppose h E cr(A). 

a. h(e) = 1. 

b. If x is invertible in A then h(x) :f. O. 
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c. Ih(x)1 ~ Ilxll for all x E A. 

Proof: (a): Pick x E A with h(x) I- 0; then h(e)h(x) = h(ex) 
h(x), so h(e) = 1. (b): If x is invertible, h(x-I)h(x) = h(x-Ix) = 

h(e) = 1. (c): If IAI > Ilxll then Ae - x is invertible by Theorem (1.4a), 
so A - h(x) = h(Ae - x) I- 0 by (b). I 

(c) says that cr(A) is a subset of the closed unit ball B of A*. We 
make cr(A) into a topological space by imposing its weak* topology as 
a subset of A*, that is, the topology of pointwise convergence on A- In 
view of (a), for an algebra homomorphism h : A ---+ C the conditions 
hI- 0 and h(e) = 1 are equivalent, so 

cr(A) = {h E B : h(e) = 1 and h(xy) = h(x)h(y) for all x, YEA}. 

The conditions h(e) = 1 and h(xy) = h(x)h(y) are clearly preserved 
under pointwise limits, so cr(A) is a closed subset of B in the weak* 
topology. By Alaoglu's theorem, then, cr(A) is a compact Hausdorff 
space. 

Multiplicative functionals are intimately connected with maximal ide­
als. We recall the terminology: if A is any algebra, a left (right) ideal 
of A is a subalgebra I of A such that xy E I whenever x E A and y E I 
(x E I and YEA). I is proper if I I- A- If A is unital, I is proper 
if and only if e .;: I, for if e E I then x = xe = ex E I for all x E A­
If A is commutative, we can speak simply of ideals rather than left or 
right ideals; in this case, a maximal ideal is a proper ideal that is not 
contained in any larger proper ideal. 

(1.11) Proposition. Let A be a commutative unital Banach algebra, 
and let I c A be a proper ideal. 

a. I contains no invertible elements. 

b. I (the closure of I) is a proper ideal. 

c. I is contained in a maximal ideal. 

d. If I is maximal then I is closed. 

Proof: (a): If x E I is invertible then e = X-IX E I, so I = A- (b): 
If I is proper, it is contained in the set of noninvertible elements of A, 
which is closed by Theorem (lAd); hence e .;: I, and it is easy to check 
that I is an ideal. '(c): This is a routine application of Zorn's lemma; 
the union of an increasing family of proper ideals is proper since it does 
not contain e. Finally, (d) follows from (b). I 

(1.12) Theorem. Let A be a commutative .unital Banach algebra. The 
map h ---+ ker(h) is a one-to-one correspondence between cr(A) and the 
set of maximal ideals in A. 

Proof: If h E cr(A), ker(h) is an ideal which is proper since h(e) = 
1 I- 0 and is maximal since it has codimension 1. If ker(g) = ker( h) 
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then 9 := h, for if x E A we have x = h(x)e + y where y E ker(h), so 
g(x) = h(x)g(e) + g(y) := h(x). Thus h ---+ ker(h) is an injection from 
O'(A) to the set of maximal ideals. 

On the other hand, suppose M is a maximal ideal, and let 7r ; A ---+ 

AI M be the quotient mapping. AI M inherits an algebra structure 
from A, and it is a Banach space with the quotient norm Ilx + Mil = 
inf{llx + mil: m EM}. (Here we need Proposition (1.11d).) It is 
an easy exercise to check that AIM is in fact a Banach algebra. It 
has no nontrivial ideals, for if I c AIM is an ideal then 7r -1 (I) is 
an ideal in A such that M C 7r- 1(I) C Ai hence 7r- 1(I) = M or A 
and I = {OJ or AIM. But then every nonzero element of AIM is 
invertible, for otherwise the ideal it generates would be nontrivial. By 
the Gelfand-Mazur theorem, AIM is isomorphic to C, and if we denote 
the isomorphism by ¢ then ¢ 0 7r is a multiplicative functional on A 
whose kernel is M. I 

If x E A, we define the function x on O'(A) by 

x(h) := h(x). 

x is continuous on O'(A) since the topology on O'(A) is the topology of 
pointwise convergence on A. The map x ---+ x from A to C(O'(A)) is 
called the Gelfand transform on A. We denote it by r or r A when 
necessary for clarity; 

rx:= r AX = X. 

(1.13) Theorem. Suppose A is a commutative unital Banach algebra 
and x E A. 

a. The Gelfand transform is a homomorphism from A to C(O'(A)), 
and e is the constant function 1. 

b. x is invertible if and only if x never vanishes. 

c. range(x) = O'(x). 

d. Ilxll sup = p(x) ~ Ilxll. 

Proof: (a) is obvious - for example, (xynh) = h(xy) := h(x)h(y) = 
x(h)y(h), and e =.1 by Proposition (UOa). For (b), we observe that 
x is not invertible ¢=> the ideal generated by x is proper ¢=> 

(by Proposition (1.11c)) x is contained in a maximal ideal ¢=> (by 
Theorem (1.12)) h(x) = 0 for some h E O'(A) ¢=> x has a zero. (c) 
follows from (b), for A E O'(x) ¢=> Ae - x is not invertible ¢=> 

A - x(h) = 0 for some h E O'(A). Finally, (d) follows immediately from 
(c). I 

If A is a *-algebra, one can ask whether the Gelfand transform takes 
the involution on A to the canonical involution (namely complex conju-
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gation) on C(O"(A)), that is, whether 

(x E A). 

This does not always happen (see the remarks following Corollary (1.18) 
for an example); when it does, A is called symmetric. 

(1.14) Proposition. Suppose A is a commutative Banach *-algebra. 

a. A is symmetric if and only if x is real-valued whenever x = x*. 

b. If A is a C* algebra, A is symmetric. 

c. If A is symmetric, r(A) is dense in C(O"(A)). 

Proof; (a) If A is symmetric and x = x* then x = £, so x is real. To 
prove the converse, given x E A, let u = (x + x*)j2 and v = (x - x*)j2i. 
Then u = u* and v = v*, so that u and v are real; also x = u + iv and 
x* = u - iv so? = u - iv = x. , 

(b) Suppose A is a C* algebra, x = x* E A, and h E O"(A), and 
suppose x( h) = h( x) = 0:' + i(3 with 0:', (3 real. For t E R, consider 
z = x + ite. We have h(z) = 0:' + i«(3 + t) and z*z = x2 + t2e, so by 
Proposition (1.10c), 

0:'2 + «(3 + t)2 = Ih(z)12 ~ IIzl12 = Ilz*zll ~ IIx211 + t2. 

Hence 0:'2 + (32 + 2(3t ~ IIx211 for all t E R, which forces (3 = O. Hence x 
is real, so A is symmetric by (a). 

(c) If A is symmetric, f(A) is closed under complex conjugation. It 
contains the constants since e = 1, and it separates points on O"(A) 
(trivially!). Hence f(A) is dense in C(O"(A)) by the Stone-Weierstrass 
~oorem. I 

The motivation for calling O"(A) the "spectrum" of A comes from the 
following result. 

(1.15) Proposition. If Xo E A, Xo is a homeomorphism from O"(A) to 
O"(xo) in each of the following cases; 

i. A is generated by Xo and e, or 

ii. Xo is invertible and A is generated by Xo and xC; 1, or 

iii . .A is symmetric and A is generated by xo, xo, and e. 

Proof; Xo maps O"(A) onto O"(xo) by Theorem (1.13c). Since O"(A) 
and O"(xo) are both compact Hausdorff spaces, it suffices to prove that Xo 
is injective. But in each of the three cases, any h E O"(A) is completely 
determined by its action on Xo since h(XC;I) = h(XO)-1 in case (ii) and 
h(xo) = h(xo) in case (iii). Thus if xo(h l ) = xo(h2) then hI = h2. I 

We now identify the spectrum and Gelfand transform for the two ex­
amples of commutative unital Banach algebras discussed in §1.1, namely 
C(X) and ll. 
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(1.16) Theorem. Let X be a compact Hausdorff space. For each x E 
X, define hx : C(X) -+ C by hx(l) = I(x). Then the map x -+ hx 
is a homeomorphism from X to a(C(X)). If we identify x E X with 
hx E a(C(X)), the Gelfand transform on C(X) becomes the identity 
map. 

Proof: It is clear that each hx is a multiplicative functional on C(X), 
and hx :f. hy for x :f. y since the continuous functions separate points 
on X. If Xa -+ x then I(xa ) -+ I(x) for each IE C(X), and this says 
that hx -+ hx in the weak* topology. In short, x -+ hx is a continuous 
injectio~ of X into a(C(X)). Since these spaces are compact Hausdorff, 
it remains only to show that every multiplicative functional on C(X) is 
of the form hx for some x EX. 

By Theorem (1.12), it is equivalent to show that every maximal ideal 
in C(X) is of the form Mx = {f : I(x) = O} for some x E X, and this 
amounts to showing 'that every proper ideal Ie C(X) is contained in 
some Mx. Suppose to the contrary that for eac~ x E X there exists 
Ix E I such that Ix(x) :f. O. The open sets {y : l;l(y) :f. O} then cover 
X, so by passing to a finite subcover we obtain II, ... , In E I that have 
no common zero. Let 9 L:~ Ih12

• Then 9 = L:fjh E I and 9 is 
invertible in C(X) since 9 > 0 everywhere. By Proposition (LIla), this 
contradicts the assumption that I is proper. Thus I C Mx for some x. 

Finally, since j( hx) = hx (I) = I (x), if we identify hx with x we have 

!= I· I 

(1.17) Theorem. aW) can be identified with the unit circle T in such 
a way that the Gelfand transform on [1 becomes 

00 

a( eili
) = L aneinli 

. 

-00 

Proof: Let fjk and fj fjo be as in the discussion of [1 in §1.1. Then 
II is generated by fjl and its inverse fj-I, so by Proposition (1.15), a(l1) 
is homeomorphic to a(fjl). We claim that a(fjI) = T. 

Indeed, let us try to invert )..fj - fjI for)" E C. If a E II we have 
[(,,\{) - fjI) * aln )..an an-I> so ()..fj - fjI) * a = fj if and only if 
)..ao a_I 1 and )..an an-I for n :f. O. Solving these equations 
recursively, we obtain 

The condition L: Ian I < 00 forces ao = 0 if 1)..1 :5 1 and a-I 0 if 
1)..1 :;::: 1. Subject to these conditions there is a unique solution if 1)..1 :f. 1, 
namely a L:~ )..n-Ifj-n if 1)..1 < 1 and a L:~ )..-n-Ifjn if 1)..1> 1, 
but there is no solution if 1)..1 = 1. Thus a(fjI) T. 
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By Proposition (1.15), then, for each eiO E T there is a unique ho E 

O'W) such that ho (P) = eiO . But then ho is given by 

00 ,00 00 

ho(a) = hO(Lan8n,) = Lanh(8lt = LaneinO , 
-00 -00 -00 

so if we identify ho with eiO we have 
00 

a(eiO ) = ho(a) = L aneinO . 
-00 

As an immediate corollary, we obtain a famous theorem of Wiener 
concerning absolutely convergent Fourier series. 

(1.18) Corollary. If f( eiO ) = L aneinO with L Ian I < 00, and f never 
vanishes, then 1/ f(e iO ) = L bneinO with L Ibnl < 00. 

Proof; We are given f = a with a E [I. If f never vanishes, then a is 
invertible in [1 by Theorem (1.13b). Let b be its inverse; then 1/ f = b. I 

We observe that the algebras C(X) and [I are both symmetric. For 
C(X) this is immediate from Theorem (1.16), and for [1 we have 

~(eiO) = La_neinO = Lane-inO = a(eiO). 

(This is why we chose the involution on [1 as we did. If we define, for 
example, (a*)n = an, [1 becomes a nonsymmetric *-algebra.) 

We now return to a general commutative unital Banach algebra A. 
A is called semisimple if the Gelfand transform on A is injective, that 
is, if the intersection of all the maximal ideals of A is {a}. For example, 
Theorems (1.16) and (1.17) show that C(X) and [I are semisimple. On 

the other hand, the algebra of 2 x 2 complex matrices of the form (~!) is 
not: one easily verifies that it has precisely one nontrivial ideal, namely 
those matrices with a = O. 

A condition stronger than semisimplicity is for the Gelfand transform 
to be an isometry. It is easy to see when this happens: 

(1.19) Proposition. Let A be a commutative unital Banach algebra. 

a. If x E A, Ilxllsup = Ilxll if and only if IIx2k II = IIxl12k for all k ~ 1. 

b. r A is an isometry if and only if IIx211 = IIxl1 2 for all x E A. 

Proof: If Ilxll sup = Ilxll then 

IIx2k II ~ IIxl12k = Ilxll;~p = IIx2k Iisup ~ IIx2k II, 

so IIx2k II = Ilx11 2\ Conversely if IIx2k II = IIxl12k for all k then Ilxll sup = 
limllx2klll/2k = Ilxll by Theorems (1.8) and (1.13d). This proves (a), 
and (b) follows since if IIx211 = IIxl1 2 for all x then IIx2k II = IIxl12k for all 
x and k (by induction on k). I 
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We now come to the most fundamental result of Gelfand theory. 

(1.20) The Gelfand-Naimark Theorem. If A is a commutative uni­
tal C* algebra, r A is an isometric *-isomorphism from A to C(O'(A)). 

Proof: If x E A, let y = x·x. Then y = y., so 

IIy2k II = II(y2k-1 r y2k-1 11 = Il y2k-1 112. 

It follows by induction that IIy2k II = Ilyl12k, so 11Y'llsup = Ilyll by Proposi­
tion (1.19a). But then 

IIxl12 = Ilyll = 11Y'llsup = IIIxI211sup = 11X11;up, 
so r A is an isometry. In particular, r A is injective and has closed range. 
But by Proposition (1.14b,c), r A respects the involutions and has dense 
range. Combining these results, we are done. I 

We conclude this section with an application of the Gelfand theory to 
the study of spectra in general (noncommutative) C* algebras. 

Suppose A is a unital Banach algebra and l3 C A is a closed subalgebra 
containing e. If y E l3 and y is invertible in A, in general y-I will not 
lie in l3. Hence, if x E l3, one must distinguish between the spectrum 
of x with respect to A and the spectrum of x with respect to l3; we 
denote these spectra by O'A (x) and 0' s (x). If Ae - x is invertible in l3 
it is invertible in A, so it is always true that 0' A (x) CO's (x), and we 
are interested in knowing when equality holds. We give one result along 
these lines for general Banach algebras and then a strOnger one for C* 
algebras. 

(1.21) Lemma. Suppose A is a unital Banach algebra and Xo E A is a 
boundary point of the set of invertible elements of A. If Xn is invertible 
for each nand Xn ---+ Xo as n ---+ 00 then Ilx;; 111 ---+ 00. 

Proof; If Ilx;; 111 -;.. 00, by passing to a subsequence we can assume 
that Ilx;; 111 ~ C < 00 for all n. For n sufficiently large we have Ilxn -
xoll ~ C-I. But then Xo = Xn - (xn - xo) is invertible by Theorem 
(l.4b), which is impossible since the set of invertible elements is open. I 

(1.22) Proposition. Suppose A is a unital Banach algebra and l3 is a 
closed subalgebra containing e. If x E l3 and O's(x) is nowhere dense in 
C, then O'A(X) = O's(x). 

Proof: If AO E O's(x) , there is a sequence An E C\O's(x) that con­
verges to Ao. By Lemma (1.21), II(Ane - x)-III ---+ 00. It follows that 
Aoe - x is not invertible in A (otherwise II (Ane - x) -111 ---+ II (Aoe - x) -111), 
so AO E O'A(X). I 

(1.23) Proposition. Suppose A is a unital C* algebra and l3 C A is a 
C* subalgebra containing e. 
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a. If x E 13 and x is invertible in A then x-I E 13. 

b. Ifx E 13 then o"A(x) O's(x). 

Proof: Given x E 13, let y = x"x, and let C be the closed subalgebra 
of A generated by y and ej thus C C 13 C A. Since x is invertible in A, 
so is y, so 0 fj. O'A(Y). On the other hand, C is a commutative C* algebra 
since y = y*, and O'c(y) C R by Proposition (Ll4a,b) and Theorem 
(1.13c), so O'c(y) = O'A(Y) by Proposition (1.22). Thus 0 fj. O'c(Y), so y is 
invertible in C and hence in 13. But then X-I = y-I x" E 13. This proves 
(a), and (b) follows by applying (a) to Ae x. I 

(1.24) Proposition. Let A be a unital C* algebra. 

a. If x E A and xx" = x"x then p(x) IIxli. 

b. If 13 is a Banach *-algebra and ¢ : 13 -+ A is a *-homomorphism, 
then II¢II S l. 

Proof: (a) Let C be the closed subalgebra of A generated by x, x", 
and e. Then C is a commutative C* algebra, so by Theorem (1.13d) and 
the Gelfand-Naimark theorem, p(x) = Ilrcxllsup = IIxll. 

(b) ¢ is a bounded linear map, say II¢II = C < 00, so for any y E 13, 

1I¢(y*y)nll S ClI(y"ytll S Clly"ylln S Cllyll2n. 

But then by (a) (applied to x = ¢(y*y), which satisfies x* x) and 
Theorem (1.8), 

11¢(y)112 = 1I¢(Y*y)1I = lim 1I¢(y*y)nlll/n S limCI/nllyll2 IIYIl2. I 

1.3 Nonunital Banach Algebras 

Let A be a nonunital Banach algebra. The results in the preceding 
sections that deal with inverses and spectra have no meaning in this 
situation, but a large part of the Gelfand theory still works. 

The starting point is the fact that a nonunital algebra A can always 
be embedded in a unital algebra. Namely, let A be the algebra whose 
underlying vector space is A x C and whose multiplication is given by 

(x, a)(y, b) (xy + ay + bx, ab). 

It is easily verified that A is an algebra with unit (0,1), and that the 
norm 

(1.25) II(x,a)11 = II xii + lal 

makes it into a Banach algebra. Moreover, A x {O} is a closed two-sided 
ideal in A (a maximal one, since it has codimension one). We shall 



Banach Algebras and Spectral Theory 13 

identify A with A x {O} and thus think of A as a maximal ideal in A. 
The restriction of the norm (1.25) to A then coincides with the original 
norm on A. 

If A is a_ *-algebra, the involution on A extends uniquely to an invo­
lution on A: 

(1.26) (x, a)* (x·, a). 

In concrete instances, A can often be realized in a more natural way. 
Here are two examples. 

Example 1. Let A = L1(R). The map f -;. ILf, where dlLf(x) = 
f(x) dx, embeds £l(R) into the space M(R) of finite Borel measures on 
R, which is also a Banach algebra with convolution defined by 

J f d(1L * 1/) J J f(x + y) dlL(X) dl/(Y)· 

M(R) has a unit, namely the point mass at 0 or Dirac measure 6. V (R) 
is isomorphic to the subalgebra of M(R~anned by Ll(R) and 6, and 
the norm (1.25) is the restriction to V (R) of the usual norm IIILII = 
IILI(R) on M(R). 

Example 2. If A = Co(X) where X is a noncompact, locally compact 
Hausdorff space, then A is isomorphic to the algebra obtained by ad­
joining the constant functions to A, or equivalently to the algebra C(X) 
where X is the one-point compactification of X. However, in this case 
the norm (1.25) is not the uniform norm on C(X). 

Example 2 illustrates a general problem: if A is a C* algebra, A is 
not a C* algebra with the norm (1.25). However, we can remedy this by 
choosing a different norm. 

(1.27) Proposition. If A is a nonunital C* algebra, there is a unique 
norm on A that makes A into a C* algebra with involution (1.26). This 
norm agrees with the original norm on A. 

Proof: Since A is an ideal in A, each (x, a) E A acts on A by left 
multiplication: (x,a)(y,O) = (xy + ay,O). We define lI(x,a)1I to be the 
norm of this bounded operator on A: 

(1.28) II(x,a)lI=sup{lIxy+ayll:yEA,lIyll:$;l}. 

This clearly defines a seminorm on A that satisfies 

lI(x,a)(y,b)lI:$; lI(x,a)lIlI(y,b)ll. 

To see that it is a norm, suppose (x, a) is a nonzero element of A sat­
isfying lI(x,a)1I = 0, so that xy + ay = 0 for all yEA. Clearly x must 
be nonzero, and then a must be nonzero since xy :f. 0 for y x·, so 
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z = -a-Ix is a left unit for A. But then z* is a right unit for A, so 
z = zz* = z* is a unit for A, contrary to assumption. 

Since Ilxyll::; Ilxllllyll with equality ify = x*, we have II(x,O)11 = Ilxll, 
so the new and old norms agree on A. In particular, since A is complete, 
it is closed in A, so the linear functional (x, a) --+ a (which is essentially 
the quotient map from A to AI A) is continuous. It follows that A is 
complete: if {(Xn, an)} is a Cauchy sequence, so is {an} and hence so 
is {xn}; and then lim(xn, an) = (limxn, lim an). Thus A is a Banach 
algebra with the norm (1.28). 

To see that A is a C* algebra, suppose (x, a) =I (0,0) E .A. For any t > ° there exists yEA with Ilyll = 1 such that Ilxy + ayll ;::: (1- t)ll(x, a)ll. 
But then, since Ilzll = II(z, 0)11 for z E A and (xy + ay, 0) = (x, a)(y, 0), 

(1-t)211(x,a)11 2 ::; Ilxy+ayl12 = II(xy+ay)*(xy+ay)11 

= II(xy + ay, O)*(xy + ay, 0)11 

= II(y*,O)(x,a)*(x,a)(y,O)11 

::; IlyI1211(x,a)*(x,a)11 = II(x,a)*(x,a)ll· 

Since t is arbitrary, II(x, a)112 ::; II(x, a)*(x, a)ll. It follows that 
II(x,a)11 2 ::; II(x,a)*IIII(x,a)11 and hence that II(x,a)11 ::; II(x,a)*11 for 
all x,a. But then II(x,a)*11 ::; II(x,a)**11 = II(x,a)ll, and so II(x,a)11 2 ::; 
II(x,a)*(x,a)11 ::; II(x,a)11 2. Thus A is a C* algebra. 

The uniqueness of the norm follows from the fact that in a unital C* 
algebra, the norm of any element ~ equals IIC~III/2 and the norm of C~ 
is its spectral radius (Proposition (1.24a)). I 

Now suppose A is a nonunital commutative Banach algebra. As in the 
unital case, we define the spectrum o-(A) to be the set of multiplicative 
functionals on A, i.e., the set of nonzero homomorphisms from A into C. 
(The common term "maximal ideal space" for O"(A) is not appropriate 
here, as Proposition (1.11) and Theorem (1.12) are no longer validJ 
_ Every h E O"(A) has an extension to a multiplicative functional h on 
A, namely 

(1.29) h(x,a) = h(x) + a. 

This extension is unique since h(O, 1) must be 1 by Proposition (1.lOa). 
Conversely, if H E 0" (A) , then either H is the functional Ho whose 
associated maximal ideal is A, namely Ho(x, a) = a, or HIA E o-(A). 
Moreover, Ho is the extension 0 of the zero functional given by (1.29). 

In short, there is a natural one-to-one correspondence between o-(A) U 

{a} and o-(A). In particular, by Proposition (1.10c) , every h E o-(A) 
satisfies 

Ih(x)1 = Ih(x,O)1 ::; II(x,O)11 = Ilxll· 
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(This is true whether we use the norm (1.25) or the norm (1.28) in the 
case of a C* algebra.) Thus O"(A) U {a} is a weak* closed subset of the 
closed unit ball in A*, and as such is a compact Hausdorff space. If {a} 
is an isolated point, then O"(A) is also compact. If not and this is the 
more common case - then O"(A) is a locally compact Hausdorff space 
whose one-point compactification is O"(A) U {O}, or equivalently 0"(.4). 

The Gelfand transform on A is defined as before, r Ax(h) = x(h) = 
h(x), and it is related to the Gelfand transform on.4 by 

x(h) = h(x) = h(x, 0) = (x,Onh). 

In other words, if we identify 0"(.4) with O"(A) U {a}, X r AX is just 
the restriction of (x, Or = r A(x, 0) to O"(A). Moreover, the value of 
(x, Or at the extra point Ho = 0 in 0"(.4) is obviously 0. This means 
that when O"(A) is noncompact, x vanishes at infinity for every x E A. 
Thus, if we agree that Co(O"(A)) = C(O"(A)) when O"(A) is compact, we 
can summarize our results as follows. 

(1.30) Theorem. Let A be a nonunital commutative Banach algebra. 
O"(A) is a locally compact subset of the closed unit ball of A* in the wea.k* 
topology. If O"(A) is noncompact, its wea.k* closure in A* is O"(A) U {O}. 
The Gelfand transform on A is an algebra homomorphism from A to 
Co(O"(A)), and 

(x E A). 

Proof: We have proved everything but the formula for IIxllsup. But 
the discussion above shows that IWlIsup = II(x,O)1lsup; lI(x,O)1lsup is the 
spectral radius of (x, 0) in .4 by Theorem (1.13d); and the latter equals 
lim IIxnll 1/n by Theorem (1.8) since II(x,O)1I IIxll. I 

Example 1 (continued). Let A = L1(R). The Fourier transform 

1(~) = J e-21fiex f(x) dx 

satisfies V * g r = 19, so for each ~ E R the evaluation functional 
hf,(f) = f(~) belongs to O"(Ll(R)). It is not hard to show that these are 
all the multiplicative functionals on Ll(R); we shall give the proof in 
§4.1 (see Theorems (4.2) and (4.5a)). Hence we can identify O"(Ll(R)) 
with R by the map he -+ ~, and when this is done, the Gelfand transform 
is the Fourier transform. 

Example 2 (continued). Let A = Co(X) where X is a noncompact, 
locally compact Hausdorff space. Then, as we have observed, .4 ~ C(X) 
where X is the one-point compactification of X. Combining Theorem 
(1.16) with the discussion leading to Theorem (1.30), it is easy to see 
that O"(Co(X)) ~ X if we identify x E X with the evaluation functional 
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hx(f) = f(x), and then the Gelfand transform is the identity map on 
Co(X). 

Finally, we have a nonunital version of the Gelfand-Naimark theorem. 

(1.31) Theorem. If A is a non unital commutative C* algebra, r A is 
an isometric *-isomorphism from A to Co(a(A)). 

Proof: This is simply a matter of combining our previous results. 
We make A into a C* algebra accordinl1. to Propo~ition (1.27). Then 
rX is an isometric *-isomorphism from A to C(a(A)). A is a maximal 

ideal in A whose associated functional is ° defined by (1.29), and the 
corresponding maximal ideal in C(a(A)) is {f :J(Ol O}. In view of 
the correspondence (1.29) between a(A) and a(A)\{O} and the relation 
£(h) = (x, Onh), the result follows. I 

1.4 The Spectral Theorem 

In this section we use Gelfand theory to derive the spectral theorem for 
commutative C* algebras of operators on a Hilbert space. 

The finite-dimensional spectral theorem, in its simplest form, says 
that if T is a self-adjoint operator on a finite-dimensional Hilbert space 
H, there is an orthonormal basis for H consisting of eigenvectors for T. 
In this form the theorem is false in infinite dimensions, where self-adjoint 
operators need not have any eigenvectors at all. (For example, consider 
Tf(x) = xf(x) on L2(0, 1).) However, there are ways of reformulating 
the theorem that do generalize. 

Formulation I. Let :E be the spectrum of T, and for A E :E let P).. be 
the orthogonal projection onto the eigenspace for A. Then 

(1.32) 

The first equation says that the ranges of the projections P).. are mutu­
ally orthogonal; the second says that they span H, and the third gives 
the spectral decomposition of T. This can be generalized to infinite 
dimensions by replacing the sums in a suitable way by integrals. 

Formulation II. Let n = dim H, and let us regard en as the set of 
complex-valued functions on {I, ... , n}. An orthonormal eigenbasis for 
T determines a unitary map U : H -> en and a function ¢ E en 
- namely, ¢(j) is the eigenvalue for the jth eigenvector such that 
UTU-l'I/J = ¢'I/J for 'I/J E en, where ¢'I/J is the pointwise product of the 
functions ¢ and 'I/J. This can be generalized to infinite dimensions by 
replacing en by L2(O,j.L) for a suitable measure space (O,j.L). 
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A more sophisticated version of the finite-dimensional spectral theo­
rem says that if T is a family of commuting self-adjoint operators on 1i 
(dim 1i < (0), there is an orthonormal basis for 1i that is an eigenbasis 
for every T E T. Both the formulations above work in this more general 
situation. In the first one, S is taken to be a list of the simultaneous 
eigenspaces for the operators in T, the P),'s are the projections onto 
these spaces, and for each T E T one has a function IPT on S such that 
T = E),EE IPT('x)P),. In the second, there is a unitary U : 1i ----; en and, 
for each T E T, a function ¢T E en such that UTU-1t/J = ¢Tt/J. (The 
functions IPT and ¢T are of course closely related.) 

If T is as above, the algebra of operators it generates is a commutative 
C* algebra, and the simultaneous eigenbasis for the members of T will 
also be an eigenbasis for every element of this algebra. Hence one might 
as well consider commutative C* algebras to begin with, and this is the 
context in which we shall develop the theorem in infinite dimensions. 
Here is the notation we shall be using: 

i. 1i is a Hilbert space. 

ii. A is a commutative C* subalgebra of £(1i) containing I. 

iii. E = O'(A) is the spectrum of A. 
iv. For TEA, T E C(E) is the Gelfand transform of T. 

v. For I E C(E), Tf E A is the inverse Gelfand transform of I. By 
the Gelfand-Naimark theorem, this is well defined, and we have 
IITfl1 == 1l/llsup. 

vi. B(E) is the space of bounded Borel measurable functions on E. 
Like C(E), B(E) is a commutative C* algebra under the pointwise 
algebra operations, complex conjugation, and the uniform norm. 

vii. If Un} is a sequence of complex-valued functions on a set S, we 
say that In ----; I p.b. (for "pointwise and boundedly"), or that 
I is the p.b. limit of In, if In(s) ----; I(s) for every s E Sand 
sup{l/n(s)1 : s E S, n;::: I} < 00. 

The key to all our results is the following construction. If u, v E 1i, 
the map 1----; (Tfu, v) is a bounded linear functional on C(E); in fact, 

Hence by the lliesz representation theorem, there is a unique regular 
complex Borel measure JLu,v on E such that 
(1.33) 

/ I dJLu,v (f E C(E), u, v E 1i), 

The map (u, v) ----; JLu,v is a "measure-valued inner product" in the fol­
lowing sense. 
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(1.34) Proposition. (u, v) ---+ /Lu,v is a sesquilinear map from 1i x 1i 
to M(E). Moreover, /Lv,u = llu,v' and /Lu,u is a positive measure for all 
u. 

Proof; Sesquilinearity is obvious. Since the Gelfand transform takes 
adjoints into complex conjugates, we have Tj = Ty for all I E C(E), so 

I I d~v,u = (Tfv, u) = (v, Tju) = (Tju, v) = 17 d/Lu,v = I I clJiu,v· 

Hence /Lv,u = Jiu,v. Finally, if u E 1i and I ;::: 0 E C(E), let 9 be the 
positive square root of f. Then 9 E C(E) and T;Tg = Ti = Tg2 = T f , 
so 

I I d/Lu,u = I (Tfu, u) = (T;Tgu, u) = IITgul1 2 
;::: o. 

Hence /Lu,u ;::: o. 
The map I ---+ Tf gives a representation of the algebra C(E) as 

bounded operators on 1i. We now use (1.33) to extend this representa­
tion to the larger algebra B(E). Namely, if I E B(E), we have 

II Id/Lu,vl ~ 1I/IIsupll/Lu,vll ~ 1l/llsupllullllvll· 

Hence there is a unique Tf E £(1i) such that 

(1.35) (Tfu,v) = Iid/Lu,v (u,v E 1i), IITfl1 ~ 1l/llsup· 

This definition of Tf agrees with the previous one when I E C(E). 

(1.36) Theorem. The map I ---+ T f is a *-homomorphism from B(E) 
to £(1i). It has the following additional properties; (a) If S E £(1i) 
commutes with every TEA, then S commutes with Tf for every I E 

B(E). (b) If In E B(E) and In ---+ I p.b., then Tfn ---+ T f in the weak 
operator topology. 

Proof; Clearly I ---+ T f is linear. By Proposition (1.34), if IE B(E), 

(Tyu, v) = 17 d/Lu,v = I I d/Lv,u = (TfV, u) = (u, Tfv) = (Tju, v), 

so Ty = Tj. To see that T fg = TfTg, we start with the fact that this 
relation is valid when I, 9 E C(E). In this case we have 

I Igd/Lu,v = (TfTgu, v) = I I d/LTgu,v. 

This being true for all IE C(E), d/LTgu,v = gd/Lu,v for 9 E C(E). Hence, 
for any I E B(E), 

I Igd/Lu,v = I Id/LTgu,v = I(TfTgU,V) = (Tgu,Tjv) = I gd/Lu,Tjv. 
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This being true for all 9 E C(E), I d/.Lu.v = d/.Lu,Tjv. But then, for any 
9 E B(E), 

(TfTgu, v) = (Tgu, Tjv) J 9d/.Lu.Tjv = J Igd/.Lu.v = (Tfgu, v), 

so TfTg = Tfg. 
If S commutes with Tf for every I E C(E), we have 

J I d/.Lu.s*v = (Tfu, S"v) (STfu, v) = (TfSu, v) = J I d/.LSu,v, 

so /.Lu.S*v = /.Lsu,v· Hence, for any I E B(E), 

(TfSU,V) J Id/.Lsu.v = J Id/.Lu,s*v = (Tfu,S*v) = (STfu,v). 

This proves (a). Finally, if In -+ I p.b., then J In d/.Lu,v -+ J I d/.Lu,v 
by the dominated convergence theorem. In other words, (Tfn U, v) -+ 

(TfU, v) for all u, v, so (b) is proved. I 

We shall obtain a stronger form of assertion (b) in Proposition (1.48) 
below. 

If E c E is a Borel set, let XE be the characteristic function of E and 

(1.37) 

(1.38) Theorem. The correspondence E -+ P(E) defined by (1.37) 
has the following properties. 

a. Each P(E) is an orthogonal projection. 

b. P(0) 0 and P(E) = I. 

c. P(E n F) P{E)P(F). 

d. If E 1, E2, ... are disjoint then P{U Ej) = E P( E j ), where the sum 
converges in the strong operator topology. 

Proof: Since X1E XE XE' we have p(E)2 = P(E) = P(E)*. 
The first equation says that P(E) is a projection, and the second one 
implies that its range is orthogonal to its nullspace. This proves (a)j (b) 
is obvious, and (c) follows from the fact that XEnF XEXF. (d) is true 
when the sequence E., E2, ... is finite since XU" E. E7 XEj' For the 

1 3 

infinite case, let us write Fn = U~ E j and F = U~ Ej • Then XF" -+ XF 
p.b., so by Theorem (1.36c), 

n 00 

L P(Ej ) = P(Fn} -+ P( F) = P (U Ej) weakly. 
1 1 

But also F is the disjoint union of Fn and F\Fn, so P{F) = P(Fn) + 
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P(F\Fn). Hence, for any u E 1i, since P(F\Fn) is an orthogonal pro­
jection we have 

II [P(F) - P(Fn)]uI1 2 = IIP(F\Fn)uI1 2 = (P(F\Fn)u, P(F\Fn)u) 
= (P(F\Fn)u, u) = ([P(F) - P(Fn)]u, u) ~ O. 

Thus the series actually converges strongly, and we are done. 

(1.39) Corollary. If E and F are disjoint, the ranges of P(E) and 
P(F) are mutually orthogonal. 

Proof: For any u and v, (P(E)u, P(F)v) = (P(F)P(E)u, v) = 
(P(E n F)u, v) = (P(0)u, v) = O. I 

The situation described in Theorem (1.38) can be formulated in an 
abstract setting. Namely, suppose fl is a set equipped with a O'-algebra 
M, and 1i is a Hilbert space. An 1:i-projection-v~ued measure (or 
just a projection-valued measure if 1i is understood) on (fl, M) is 
a map P : M ~ .c(1i) that satisfies properties (a-d) of Theorem (1.38) 
(with E replaced by fl). If P is an 1i-projection-valued measure on 
(fl, M) and u, v E 1i, the map 

(1.40) Pu,v(E) = (P(E)u, v) 

is an ordinary complex measure. The correspondence (u, v) ~ Pu,v is a 
"measure-valued inner product" as in Proposition (1.34), and 

(1.41 ) 

If fl is a locally compact Hausdorff space and M is the O'-algebra of 
Borel sets, a projection-valued measure P on (fl, M) is called regular 
if each of the measures Pu,v is regular. 

Let B(fl) = B(fl, M) be the space of bounded M-measurable func­
tions on fl. If f E B(fl), one can define the integral of f with respect to 
a projection-valued measure P as follows. If v E 1i, by (1.41) we have 

If f dPv,vl ::; IlfllsupllPv,vll = Ilfllsupllvl12. 

Thus, by polarization (see Appendix 1), ifu,v E 1i and Ilull = Ilvll = 1, 

If f dPu,vl ::; :!-llfllsup[llu + vl1 2 + Ilu - vl12 + Ilu + ivl12 + Ilu - iv112] 

::; 41lfllsup· 
(As we shall see shortly, the factor of 4 on the right is superfluous.) By 
homogeneity, it then follows that 

If fdPu,vl ::; 411flisupilullllvil (u, v E 1i). 
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Hence there is a bounded operator T on 1-l such that (Tu, v) = I I dPu,v 
for all u, v E 1-l. We denote T by I I dP: 

(1.42) ((/ I dP) u, v) = / I dPu,v' 

If I is a simple function, say I L:~ CjXEj' then 

/ I dPu,v = L cjPu,v(Ej ) = L Cj {P(Ej)u,v) (L cjP(Ej)u, v), 

so that I I dP cjP(Ej ) as one would expect. Moreover, since every 
I E B(n) is a uniform limit of a sequence Un} simple functions, and 
since II I I dP - I In dPIl ~ 4111 - Inllsup, we can obtain I I dP as a limit 
(in the norm topology) of "Riemann sums" just as we do for ordinary 
integrals. 

(1.43) Theorem. If P is an 1-l-projection-valued measure on (st, M), 
the map I --> I I dP is a *-homomorphism from B(st) to £(1-l). 

Proof: The map I --> I I dP is clearly linear, and we have seen 
that II I I dP11 ~ 411/11sup. If I L:~ CjXEj and 9 L:~ dkXFk , then 
Ig == L:j,k CjdkXE;nFk' so 

/ IgdP = L CkdkP(Ej n Fk) == L cjdkP(Ej)P(Fk) 

= / IdP / gdP. 

By passing to uniform limits, we see that IlgdP = (J I dP)(J gdP) 
for all I,g E B(st). Similarly, I] dP (J I dP)'". I 

It now follows from Proposition (1.24b) that II I I dP11 ~ II/lIsup. It 
is also easy to see this directly: if T I I dP then T*T = I 1/12 dP, so 
by (1.41), 

Let us now return to the case where (st, M) is the spectrum E of the 
algebra A equipped with its Borel o--algebra and P is given by (1.37). 
Then 

Pu,v(E) (P(E)u, v) / XE dJi-u,v = Ji-u,v(E) 

for any E, so Pu,v Ji-u,v' In particular, P is regular. Moreover, it 
follows from (1.35) and (1.42) that I I dP = TJ for all I E B(E). We 
have now arrived at the promised generalization of (1.32): 
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(1.44) Spectral Theorem I. Let A be a commutative C* subalgebra 
of L(J-l) containing I, and let L: be its spectrum. There is a unique 
regular projection-valued measure P on L: such that T = f f dP for all 
TEA, and Tf f 1 dP for all 1 E B(L:). Moreover, if S E L(J-l), the 
following are equivalent: 

i. S commutes with every TEA. 

U. S commutes with P(E) for every Borel set EeL:. 

iii. S commutes with f 1 dP for every 1 E B(L:). 

Proof: We have proved everything except the uniqueness and the 
final assertion. Uniqueness holds because of the uniqueness in the Riesz 
representation: the operators in A determine the measures P,u,v = Pu,v 

through (1.33), and the measures Pu,v determine P through (1.40). As 
for the final assertion, (iii) clearly implies (i) and (ii), and we proved 
that (i) implies (iii) in Theorem (1.35). (ii) implies (iii) by Theorem 
(1.43) since every 1 E B(L:) is a uniform limit of simple functions, and 
the norm limit of operators that commute with S also commutes with 
S. I 

We now give the generalization of the second reformulation of the 
finite-dimensional spectral theorem. Here, too, the crucial ingredient is 
the measures P,u,v defined by (1.33). But first, a couple of lemmas. 

(1.45) Lemma. Suppose A c L(J-l) is a C* algebra, and X C J-l is a 
closed subspace such that T(X) c X for all TEA. Then T(X.L) c X.L 
for all TEA. 

Proof: If u E X.L, V E X, and TEA, then (Tu,v) 
since A is closed under adjoints; hence Tu E X.L. 

(u, T*v) = 0 
I 

(1.46) Lemma. Suppose (0, p,) is a semi-finite measure space and <I> E 
Loo(p,). 1fT E L(L2(p,)) is defined by TI <1>1, then IITII 11<1>1100' 

Proof: Since 1<1>11 ~ 11<1>11001/1 a.e., it is clear that 11<1>/112 =:; 11<1>110011/112, 
so IITII ~ 11<1>1100' On the other hand, given E > 0, let E = {w : 1<I>(w)1 > 
11<1>1100 - E}. Then p,(E) > 0, so there exists FeE with 0 < p,(F) < 00. 

But then XF E L2(p,) and 

f l<I>xFI2 dp, ~ (11<1>1100 - E)2 p,(F) (11<1>1100 E)2I1xFII~, 

so liT II ;::: 11<1>1100 E. I 

(1.47) Spectral Theorem II. Let A be a commutative C* subaigebra 
of L(J-l) containing I. There is a semi-finite measure space (0, M, p,), a 
unitary map U : J-l -+ L2(p,), and an isometric *-homomorphism T -+ <l>T 
from A into Loo(p,) such that UTU- 1¢ <l>T¢ for all ¢ E L2(p,) and 
TEA. 0 can be taken as the disjoint union of copies of the spectrum 
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E of A in such a way that J.L is finite on each copy and ¢T = f on each 
copy. 

Proof; First suppose there exists v E H such that Av = {Tv : T E 

A} is dense in H, and let J.L = J.Lv,v as in (1.33). Then, for any TEA, 

IITvl12 = (T*Tv, v) = J 11'12 dJ.L. 

In particular, if Tv = Sv then l' - § = 0 J.L-a.e., so Tv ---+ l' is a well­
defined linear isometry from Av into L2(J.L), and it extends uniquely to 
a linear isometry U : H ---+ L2(J.L). The range of U is necessarily closed, 
and it includes C(E), which is dense in L2(J.L) since J.L is regular, so U is 
unitary. If'l/J E C(E) and TEA then 

UTU-l'l/J = UTT",v = (TT",f= 1''l/J, 

and it follows that UTU-1'l/J = 1''l/J for all 'l/J E L2(J.L). 
For the general case, let {Vi hEI be a maximal collection of nonzero 

vectors in H such that the subspaces Hi = AVi are mutually orthogonal; 
such a set exists by Zorn's lemma. Then each Hi is invariant under 
every TEA; hence so is ffiiEI Hi' It follows from Lemma (1.45) that 
ffiiEI Hi = H, for otherwise one could add any v ~ ffi Hi to the set 
{vd. For each i E I let Ei be a copy of E and let J.Li be the measure 
J.Lvi,vi on Ei ; let n be the disjoint union of the Ei ; let M be the O'-algebra 
of sets E c n such that En Ei is Borel in Ei for every i; and define J.L on 
M by J.L(E) = LiEI J.Li(E n Ei). Since each J.Li is finite, J.L is semi-finite, 
and L2(J.L) ~ ffiiEI L2(J.Li). Define Ui : Hi ---+ L2(J.Li) as in the preceding 
paragraph, and let U = ffi Ui : H ---+ L2(J.L). Then, if TEA, UTU- l 

is multiplication by ¢T where ¢T = l' on each Ei . Since the Gelfand 
transform is a *-homomorphism, and since IITII = IIUTU-111 = II¢Tlloo 
by Lemma (1.46), we are done. I 

We remark that if H is separable, there can only be countably many 
summands Hi, so the measure J.L is O'-finite. In fact, J.L can be taken to be 
finite: simply multiply the Vi by small scalars so that LiEI Ilvil12 < 00. 

In comparison to Spectral Theorem I, Spectral Theorem II has the 
disadvantage that the measure space (n, J.L) and the unitary map U, un­
like the projection-valued measure P, are not canonically determined by 
A. However, it is frequently more useful, because important properties 
of operators are often quite transparent when the operators are multipli­
cation by bounded functions on an L2 space. As an example, we obtain 
a significant improvement on Theorem (1.36b). 

(1.48) Proposition. If Un} C B(E) and In ---+ I p.b., then Tfn ---+ Tf 
in the strong operator topology. 

Proof; With notation as in the proof of Spectral Theorem II, it is 
an easy exercise (left to the reader) to check that for any I E B(E), 
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UTfU-l1/J == ¢f1/J where ¢f = Ion each L:i. If In -" I p.b., clearly 
¢f" -" ¢f p.b. But then it is obvious from the dominated convergence 
theorem that II¢f" 1/J ¢f1/J1i2 -" ° for any 1/J E L2(p,). Taking 1/J = Uv, 
this means that IITf" v = Tfvli -" ° for every v E ?-to I 

Let us now reduce all this general theory to the case of a single self­
adjoint operator, or more generally a single normal operator. (Recall 
that T E £(?-t) is normal if TT* T*T.) If T is normal, let AT be the 
C* algebra generated by T, T*, and I. Then AT is commutative, and 
by Proposition (1.15c) we can identify a(AT) with a(T) c C in such a 
way that the Gelfand transform of T is the function t(A) = A on a-(T). 
Once we have done this, Spectral Theorem I gives a projection-valued 
measure PT on a(T) such that 

T J AdPT(A). 

If p(A) = EJ,k=l CjkAF'l is a polynomial in A and X (or equivalently a 
polynomial in ReA and ImA), since the correspondence I -" J I dPT 

is a *-homomorphism we have JpdPT ECjkTjT*k. In other words, 
J p dP is obtained by formally substituting T and T* for A and X in p. 
It is therefore natural to define the operator I(T) for any IE B(a(T)) 
by 

(1.49) I(T) J I dPT, 

and we obtain in this way a Borel functional calculus for the operator 
T. Its main properties are summarized in Theorem (1.51) below. 

In view of Spectral Theorem II, it is important to see what these 
constructions yield when ?-t = L2(n, J1) and T is multiplication by ¢ E 
L=(n,J1). In the first place, the spectrum of T is the "essential range" 
of ¢, namely, the set of A E C for which {w : I¢(w) - AI < t} has 
positive measure for every t > 0, or equivalently the set of A for which 
(¢-A)-l ~ L=. From this it is easy to see that ¢(w) E a(T) for a.e. w, so 
by modifying ¢ qn a nullset we can always assume that range ( ¢) C a-(T). 
Clearly Tn is multiplication by ¢n and T* is multiplication by 4), so 
p(T) is multiplication by p 0 ¢ for any polynomial p in A and X. One is 
therefore led to guess that I(T) will be multiplication by 10 ¢ for every 
IE B(a(T))j in particular, the projections PT(E) will be multiplication 
by X</>-l(E)' It is not too hard to prove this directly from the definitions, 
but we shall give a somewhat slicker proof in the following theorem. 

(1.50) Lemma. Let K be a compact subset ofRn, and let B be the 
smallest algebra of functions on K that contains all polynomials and is 
closed under p.b. limits. Then B B(K), the algebra of bounded Borel 
functions on K. 
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Proof: 8 contains C{K) by the Stone-Weierstrass theorem, and then 
by taking p.b. limits one can easily see that it contains the characteristic 
function of every open set, Let M = {E c K : XE E 8}. Then M is 
closed under complements since XK\E = 1 XE; it is closed under finite 
intersections since XEnP = XEXP; and it is then closed under countable 
intersections since Xn"" E. is the p. b. limit of Xn" E.' Hence M is a 

1 j 1 j 

a-algebra, and it contains the open sets, so it contains all Borel sets. 
But then 8 contains all simple Borel functions and hence (by taking 
p.b. limits once again) all bounded Borel functions. Since B{K) is an 
algebra that is closed under p. b. limits, we are done. I 

(1.51) Theorem. Suppose T E £(J-l) is normal. There is a unique *­
homomorphism f -+ f{T) from B{a{T)) to £(J-l) such that (1) f{T) = T 
when f(A) A, and (2) fn{T) -+ f{T) in the strong operator topology 
whenever fn -+ f p.b. The correspondence f -+ f(T) has the following 
additional properties: 

a. If A is any commutative C* algebra containing T, f is the Gelfand 
transform ofT with respect to A, and PA is the associated projec­
tion-valued measure on a{A), then f{T) J f 0 f dPA. 

b. If J-l = L2(J.L) and T is multiplication by ¢ E L=(J.L) (with 
range(¢) C a(T)), then f(T) is multiplication by f 0 ¢ for every 
f E B(a(T)). 

c. If S E £(J-l) commutes with T and T*, then S commutes with 
f(T) for every f E B(a(T)). 

Proof: To prove existence, of a *-homomorphism f -+ f(T) satis­
fying (1) and (2), we define f(T) by (1.49); the desired properties fol­
low from Theorem (1.36) (?r (1.43)) and Proposition (1.48). To prove 
uniqueness, suppose f -+ f(T) is another such correspondence, and let 
8 = {f : f{T) J(T)}. Then 8 contains all polynomials in A and A, or 
equivalently all polynomials in Re A and Im A, since the correspondences 
are *-homeomorphism. Also, 8 is clearly closed under sums, products, 
and p.b. limits. Hence 8 = B(a(T)) by Lemma (1.50). 

Properties (a) and (b) follow from the uniqueness, since f -+ J f 0 

f dP A and f -+ (mult. by f 0 ¢) have all the asserted ·properties. (This 
follows from Spectral Theorem I and Proposition (1.48) in the case (a), 
and by simple direct arguments in the case (b).) Finally, (c) is true by 
Theorem (1.36), since if S commutes with T and T*, it clearly commutes 
with every operator in the C* algebra they generate. I 

Let us observe that the finite-dimensional spectral theorem is an easy 
corollary of Spectral Theorem 1. Indeed, if A is a commutative C* al­
gebra of operators on J-l and dim J-l < 00, then a(A) is a set of cardi­
nality dimA < 00, say a(A) = {al, ... ,an}. The ranges of the pro­
jections P( {aj}), 1 ~ j ~ n, are mutually orthogonal subspaces of J-l 
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whose direct sum is 11, and they are eigenspaces for every TEA, viz., 
TP({o'j}) T(<1j)P({<1j}) for allj. 

We conclude by showing that for compact operators, the spectral 
theorem becomes a direct generalization of the finite-dimensional case. 

(1.52) Theorem. IfT is a compact normal operator on 11, there is an 
orthonormal basis for 11 consisting of eigenvectors for T. 

Proof: Let Eo {O} and En = {A E <7(T) : n- 1 siAl < (n - I)-I} 
for n ;::: 1, and let 11n be the range of the projection P(En) XE .. (T). 
The spaces 11n are mutually orthogonal and invariant under T, and 
11 = ffi~ 11n. 110 is already an eigenspace for T (with eigenvalue 0), 
so it suffices to show that each 11n (n ;::: 1) has an orthonormal basis 
consisting of eigenvectors for T. Now, TI11n is an invertible operator 
on 11n. (Use Spectral Theorem II: T is unitarily equivalent to multipli­
cation by a function ¢ on a space L2(Sl, /1,). The subspace of L2(Sl, J.L) 
corresponding to 11n is L2(Sln,J.L) where Sln = {w: ¢(w) E En}, and IN 
is bounded by n on this set.) But TI11n is also compact, so the iden­
tity operator on 11n is compact and hence dim 11n < 00. The proof is 
therefore concluded by applying the finite-dimensional spectral theorem 
to TI11n. I 

1.5 Spectral Theory of *-Representations 

The object of this section is to derive a version of the spectral theorem 
that applies to *-homomorphisms from a Banach *-algebra A into the 
algebra of bounded operators on a Hilbert space. For this purpose, we 
shall wish to apply the spectral theorem to C* subalgebras of £(11) that 
do not contain I, and there is one minor pitfall to be avoided. Namely, 
suppose 111 and 112 are Hilbert spaces and A is a C* subalgebra of 
£(11 1) containing II, the identity operator on 111. For TEA, define 
T' E £(111 tD 112) by T'(Xl,X2) = (TXl,O). Then A' = {T' : T E 
A} is a C* subalgebra of £(111 tD 112) which has a unit (namely Ii, 
the orthogonal projection onto 11d but does not contain the identity 
operator on 111 tD 112! 

To avoid this situation, we define a C* sub algebra A of £(11) to be 
nondegenerate if there is no nonzero v E 11 such that Tv 0 for 
all TEA. In this case, if A contains a unit E, E is an orthogonal 
projection (E2 E* E) and every v in the nullspace of E satisfies 
Tv T Ev 0 for all TEA; it follows that E = I. In other words, if 
A does not contain I then A is nonunital. 

Suppose now that A is a nondegenerate commutative C~ subalgebra 
of £(11) that does not contain I. The unital augmentation A of A, given 
abstractly by Proposition (1.27), is realized concretely as .A = A tD CI. 
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Then, as explained in §1.3, we can identify a(..4) with a(A)U{O}, and we 
now do so. The spectral theorem associates to A a regular projection­
valued measure P on a(..4.). IfT E A we have T(O) = 0, so TP( {OJ) = 0, 
and hence every v in the range of P( {O}) satisfies Tv = 0 for all TEA. 
Since A is nondegenerate, it follows that P( {O}) = 0, so we can think 
of P as a projection-valued measure on a(A). As such it is clearly still 
regular, so we have the following extension of Spectral Theorem I: 

(1.53) Theorem. The Spectral Theorem (1.44) remains valid if the 
assumption that I E A is replaced by the assumption that A is non de­
generate. 

Now let A be an abstract Banach *-algebra. A *-representation of 
A on a Hilbert space 11. is a *-homomorphism ¢ from A to £(11.). In this 
case the norm-closure 8 of ¢(A) in £(11.) is a C* subalgebra of £(11.), 
and we say that ¢ is nondegenerate if 8 is nondegenerate, i.e., if there 
is no v E 11. such that ¢(x)v = 0 for all x E A. 

Suppose now that A is commutative, and that ¢ is a nondegenerate 
*-representation of A on 11.. We first consider the case where A has a 
unit e. Then ¢(e) is a unit for 8 = ¢(A), so the nondegeneracy implies 
that ¢(e) = I. ¢ induces a continuous map ¢* : a(8) -+ a(A), namely 
¢* h h 0 ¢. If ¢* hi ¢* h2 then hi and h2 agree on ¢(A) and hence 
everywhere, so ¢* is an injection. Since a(8) is a compact Hausdorff 
space, ¢* is a homeomorphism onto its range, which is a compact sub­
set of a(A). Moreover, the spectral theorem associates to 8 a unique 
regular projection-valued measure Po on a(8) such that T = IT dPo 
for all T E 8. The map ¢* can be used to pull Po back to a projection­
valued measure P on a(A), namely P(E) = Po(¢*-l(E)), and in view 
of the properties of ¢* stated above it is easy to check that P is reg­
ular. Moreover, the Gelfand transforms on A and 8 are related by 
(¢(x)nh) x(¢*h), so we have ¢(x) = Ix(¢*h)dPo(h) JxdP for 
all x E A. 

Much the same thing works if A is nonunitaL It may still happen 
that I E 8, in which case the preceding discussion goes through with no 
change. If not, ¢ can be extended to a nondegenerate *-representation of 
the unital augmentation A of A in the obvious way, ¢(x, a) = ¢(x) + aI, 
and the norm closure of ¢(A) is 8 = 8 ED C/. As above, we have the 
map ¢* h h 0 ¢ from a(8) to a(A), which extends continuously to a 
map from a(8) ~ a(8) U {OJ to a(A) ~ a(A) U {OJ by setting ¢*(O) O. 
¢* is a homeomorphism from a(B) onto a compact subset of a(A), and 
hence is a homeomorphism from a(8) onto a closed subset of a(A). 
By Theorem (1.53) there is a unique regular projection-valued measure 
Po on a(8) such that T = IT dPo for all T E 8, and just as above, 
this induces a regular projection-valued measure P on a(A) such that 
¢(x) = I x dP for all x E A. In short, we have: 
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(1.54) Theorem. Let A be a commutative Banach *-algebra, and let 
¢ be a nondegenerate *-representation of A on 1l. There is a unique 
regular projection-valued measure P on a(A) such that ¢(x) = J x dP 
for all x E A. IfT E £(1l), T commutes with ¢(x) for every x E A if 
and only ifT commutes with P(E) for every Borel E C a(A). 

In particular, suppose that A Co(S) where S is a locally compact 
Hausdorff space. Then a(A) is naturally homeomorphic to S in such a 
way that the Gelfand transform on A becomes the identity map. We 
then have: 

(1.55) Corollary. Let S be a locally compact Hausdorff space, and let 
¢ be a nondegenerate *-representation of Co(S) on 1l. There is a unique 
regular projection-valued measure P on S such that ¢(f) J f dP for 
all f E Co(S). IfT E £(1l), T commutes with ¢(f) for every f E Co(S) 
if and only ifT commutes with P(E) for every Borel E C S. 

1.6 Notes and References 

For more extensive treatments of Banach algebras and spectral theory, 
we refer the reader to Rudin [108], Reed and Simon [102], Dixmier [29], 
Rickart [104], Loomis [75], and Dunford and Schwartz [31]. The latter 
book is a good source for historical references. 

Banach algebras are sometimes called normed rings in the literature, 
and C* algebras are sometimes called B* algebras. (The latter two 
names originally referred to distinct concepts, which were eventually 
proved to be essentially identical. The distinction between them has not 
been found to be worth preserving, and the name "C*" has won out. 
See Rickart [104, p.248].) 

The Gelfand-Naimark theorem is the definitive structure theorem for 
commutative C* algebras. There is also a structure theorem for general 
C* algebras: 

(1.56) Theorem. Every C* algebra is isometrically *-isomorphic to 
a C* subalgebra of the algebra of bounded operators on some Hilbert 
space. 

The proof of this theorem - the so-called Gelfand-Naimark-Segal 
construction - can be found in Rudin [108]. It consists of showing that 
every C* algebra A has a large supply of positive functionals (functionals 
¢ E A* such that ¢(x*x) "2:: 0 for all x), and then using the positive 
functionals to construct *-representations of A in much the same way 
that we shall use functions of positive type to construct representations 
of a group in §3.3. 
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If A is a C* algebra of operators on a Hilbert space Ji, let A' denote 
its com mutant or centralizer: 

A' = {S E £(Ji) : ST = TS for all TEA}. 

A' is clearly a C* algebra that is closed not merely in the norm topology 
but in the weak operator topology. The com mutant of A', (A')', is thus a 
weakly closed C* algebra that contains A. In fact, we have the following 
fundamental result. 

(1.57) The von Neumann Density Theorem. If A is a C* subalge­
bra of £(Ji), the closures of A in the weak and strong operator topologies 
both coincide with (A')'. 

The proof can be found in Dixmier [28, Section I.3.4]. According to 
this theorem, for a C* algebra A in £(Ji) the conditions of being strongly 
closed, being weakly closed, and satisfying (A')' = A are equivalent; a 
C* algebra satisfying them is called a von Neumann algebra. 

Suppose now that A is a commutative C* algebra in £(Ji). In the 
notation of §I.4, the final assertion of the spectral theorem (1.44) says 
that the operators Tf = J f dP, f E B(E), all belong to (A')'. When Ji 
is separable, (A')' consists precisely of these operators. This is a classical 
result of von Neumann and F. Riesz when A is generated by a single self­
adjoint operator; see Riesz-Nagy [106, §I29]. The general case follows 
from Propositions 1 and 4(iii) in Chapter I.7 of Dixmier [28]. (When Ji 
is not separable, this result fails. Consider, for example, the algebra A 
generated by the operator T¢(x) = x¢(x) acting on L2([0, 1], JL) where 
JL is counting measure. Then E = a-(T) = [0,1] and Tf¢ = f¢ for 
f E B(E), but (A')' consists of the operators ¢ --> f¢ where f is an 
arbitrary bounded function on [0,1].) 

Halmos [54] defines a Borel projection-valued measure P on a locally 
compact Hausdorff space n to be regular if, for any Borel set E c n, 
P(E) is the projection onto the closed linear span of the ranges of P(K) 
as K varies over compact subsets of E. It is a fairly simple exercise 
to see that this condition holds if and only if the measures Pv,v are all 
inner regular, i.e., Pv,v(E) = sUPKCCE Pv,v(K). But inner and outer 
regularity are equivalent for finite measures, and the complex measures 
Pu,v are obtained from the Pv,v by polarization, so Halmos's definition 
of regularity for projection-valued measures is equivalent to ours. 

Despite the non-uniqueness of n, JL, and U in the spectral theorem 
(1.47), there is a canonical form for these objects, given by the theory of 
spectral multiplicity. See Halmos [54] or Nelson [96]; the latter treatment 
is particularly elegant. 

In Theorem (1.5Ic), the hypothesis that S commutes with T and T* 
can be replaced by the weaker hypothesis that S merely commutes with 
T. This is the Fuglede commutativity theorem; two quite different but 
equally entertaining proofs can be found in Rudin [108] and Halmos [55]. 





2 
Locally Compact Groups 

This chapter contains the basic theory of the objects on which harmonic 
analysis is performed, namely the locally compact topological groups and 
their homogeneous spaces. The fundamental features, without which 
little else is possible, are the existence and uniqueness of a translation­
invariant measure A on any locally compact group and the endowment 
of £1 (A) with the structure of a Banach *-algebra. 

2.1 Topological Groups 

A topological group is a group G equipped with a topology with 
respect to which the group operations are continuous; that is, (x, y) ---+ 

xy is continuous from G x G to G and x ---+ X-I is continuous from G to 
G. 

If G is a topological group, we shall denote the unit element of G by 
1. If A c G and x E G, we define 

Ax = {yx : YEA}, xA = {xy : YEA}, A-I = {y-I : YEA}, 

and if also BeG, we define 

AB = {xy : x E A, y E B}. 

(Note: we shall refrain from writing A2 for AA, as A2 might equally 
denote {x2 : x E A}, which is in general a proper subset of AA.) We 
say that A is symmetric if A = A -I. It is a useful observation that 
A n B = 0 if and only if 1 ~ A-I B. 

The following proposition lists several basic properties of topological 
groups that we shall use, often without comment, in the sequel. 

31 
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(2.1) Proposition. Let G be a topological group. 

a. The topology of G is invariant under translations and inversion; 
that is, if U is open then so are xU, Ux, and U- I for any x E G. 
Moreover, if U is open then so are AU and U A for any A c G. 

b. For every neighborhood U of 1 there is a symmetric neighborhood 
V of 1 such that VV cU. 

c. If H is a subgroup ofG, so is H. 

d. Every open subgroup of G is closed. 

e. If A and B are compact sets in G, so is AB. 

Proof: (a) The first assertion is equivalent to the separate continuity 
of the map (x, y) ---+ xy and the continuity of the map x ---+ X-I. The 
second one follows since AU = UXEA xU and U A = UXEA U x. 

(b) continuity of (x,y) ---+ xy at 1 means that for every neighborhood 
U of 1 there are neighborhoods WI, W 2 of 1 with WI W 2 cU. The 
desired set V can be taken to be WI n W 2 n WI-

I n W2-
I . 

(c) If x,y E H there are nets {xex }, {y;3} in H converging to x,y. 
Then x ex Y;3 ---+ xy and X;;I ---+ X-I, so xy and X-I are in H. 

(d) If H is open, so are all its cosets xH; its complement G\H is the 
union of all these cosets except H itself; hence G\ H is open and H is 
closed. 

(e) AB is the image of the compact set A x B under the continuous 
map (x, y) ---+ xy, hence is compact. I 

Suppose H is a subgroup of the topological group G. Let G / H be the 
space of left cosets of H, and let q : G ---+ G / H be the canonical quotient 
map. We impose the quotient topology on G / H; that is, U c G / H is 
open if and only if q-I (U) is open jn G. q maps open sets in G to open 
sets in G / H, for if V is open in'C then q-I (q(V)) = V H is also open 
by Proposition (2.1a); hence q(V) is open. 

(2.2) Proposition. Suppose, H is a subgroup of the topological group 
G. 

a. If H is dosed, G / H is Hausdorff. 

b. If G is locally compact, so is G / H. 

c. If H is normal, G / H is a topological group. 

Proof: (a) SupposeX' = q(x), y = q(y) are distinct points ofG/H. If 
H is closed, xHy-I is a closed set that does not contain 1, so by Proposi­
tion (2.1 b) there is a symmetric neighborhood U of 1 with uunxH y-I = 
0. Since U = U- 1 and H = HH, 1 tj. UxH(Uy)-I = (UxH)(UyH)-I, 
so (UxH) n (UyH) = 0. Thus q(Ux) and q(Uy) are disjoint neighbor­
hoods of X' and y. 

(b) If U is a compact neighborhood of 1 in G, q(Ux) is a compact 
neighborhood of q(x) in G/H. 
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(c) If x, Y E G and U is a neighborhood ofq(xy) in GxH, by continuity 
of multiplication in G at (x, y) implies that there are neighborhoods V, W 
of x, y such that VW c q-l(U). Then q(V) and q(W) are neighborhoods 
of q( x) and q(y) such that q(V)q(W) C U, so multiplication is continuous 
on G I H. Similarly, inversion is continuous. I 

~3) Corollary. If G is Tl then G is Hausdorff. If G is not Tl then 
{I} is a closed normal subgroup, and GI{l} is a Hausdorff topological 
group. 

Proof: The first assertion follows by taking H = {I} in Proposition 
(2.2a). m is a subgroup by Proposition (2.1c); it is clearly the smallest 
closed subgroup of G. It is therefore normal, for otherwise one would 
obtain a smaller closed subgroup by intersecting it with one of its conju­
gates. The second assertion therefore follows from Proposition (2.2a,c) 
by taking H = m. I 

In view of Corollary (2.3), it is essentially no restriction to assume that 
a topological group is Hausdorff (simply work with G 1m instead of G), 
and we do so henceforth. In particular, by a locally compact group 
we shall mean a topological group whose topology is locally compact 
and Hausdorff. 

(2.4) Proposition. If G is a locally compact group, G has a subgroup 
H that is open, closed, and a-compact. 

Proof: Let U be a symmetric compact neighborhood of 1. Let Un = 

UU··· U (n factors), and let H = U~ Un. Then H is a group (namely 
the group generated by U); it is open since Un + 1 is a neighborhood of 
Un for all n, and hence closed by Proposition (2.1d). Moreover, each Un 
is compact by Proposition (2.1e); hence H is a-compact. I 

With the notation of Proposition (2.4), G is the disjoint union of the 
cosets of H, each of which is closed and open in G and homeomorphic 
to H. Hence, from a topological point of view, G is just a disjoint union 
of copies of a a-compact space. In particular, if G is connected then G 
is a-compact. 

If f is a function on the topological group G and y E G, we define the 
left and right translates of f through y by 

(2.5) Ryf(x) = f(xy). 

The reason for using y-l in Ly and y in Ry is to make the maps y -+ Ly 
and y -+ Ry group homomorphisms: 

We say that f is left (resp. right) uniformly continuous if IILyf -
fllsup -+ 0 (resp. IIRuf - fllsup -+ 0) as y -+ 1. 
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(2.6) Proposition. If f E Cc ( G) then f is left and right uniformly 
continuous. 

Proof: We give the proof for Elyf; the argument for Lyf is similar. 
Given f E Cc(G) and f > 0, let K = supp f. For every x E K there 
is a neighborhood Ux of 1 such that If(xy) - f(x)1 < ~f for y E Ux, 
and there is a symmetric neighbor hood Vx of 1 such that Vx Vx c U x. 
The sets xVx (x E K) cover K, so there exist Xl, ... Xn E K such that 
K c U~ XjVXj • Let V = n~ VXj ; we claim that IIRyf - fllsup < f for 
y E V. 

If X E K then there is some j for which xjlx E VXj ' so that xy = 
Xj(xjIX)Y E xjUxj" But then 

If(xy) - f(x)1 ~ If(xy) - f(xj)1 + If(xj) - f(x)1 < ~f + ~f = f. 

Similarly, if xy E K then If(xy) - f(x)1 < f. But if x and xy are not in 
K then f(x) = f(xy) = 0, so we are done. I 

The locally compact groups that arise most frequently in practice 
are the (finite-dimensional) Lie groups. Examples include the additive 
group Rn and all closed subgroups of the group GL(n, R) of the group 
of invertible linear transformations of Rn. The group T of complex 
numbers of modulus one, 

T = {z E C : Izl = I}, 

will playa particularly important role for us. It is isomorphic to R/Z, 
and we shall usually not distinguish between these two groups. Likewise, 
we shall generally identify (R/Zt with the n-dimensional torus Tn. 

" In addition, there are a few classes of non-Lie groups that are of 
~ considerable importance. One such class is the class of compact groups 
obtained by taking infinite products of compact Lie groups or finite 
groups. For example, the product of a countable number of copies of 
the 2-element group Z2 turns up in several contexts. In probability 
theory, it is the sample space for the simplest sort of stochastic process, 
an infinite sequence of coin tosses. In Fourier analysis, it is the basis for 
the theory of Walsh functions on the unit interval, as we shall see later. 

The other important class of examples is the local fields and the matrix 
groups associated to them. Here we shall work out the basic example, 
the field Qp of p-adic numbers. 

Fix a prime p. By the unique factorization theorem, any nonzero 
rational number'r can be written uniquely as r = pmq where m E Z 
and q is a rational number whose numerator and denominator are not 
divisible by p. We define the p-adic norm of r, denoted by Irlp, to be 
p-m, and we set 10lp = o. The p-adic norm clearly satisfies 

(2.7) 
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It follows that the p-adic distance function dp(rl,r2) Irl - r21p is a 
metric on Q with respect to which the arithmetic operations are con­
tinuous. These operations therefore extend to the completion of Q with 
respect to the metric dp , yielding a field that ·is called the field of p-adic 
numbers and is denoted by Qp. Qp can be described more concretely 
as follows. 

(2.8) Proposition. If m E Z and Cj E {O, 1, ... , p - I} for j ~ m, the 
series 2::: Cjpi converges in Qp. Moreover, every p-adic number is the 
sum of such a series. 

Proof; The first assertion is easy: the partial sums of the series 
2::: Cjpi are Cauchy, because I 2::~ cjpilp :S p-M -+ 0 as M -+ 00. 

To prove the second one, we observe that the series 2::: Cjpi looks just 
like the decimal expansion of a positive real number in base p except 
that there are only finitely many digits to the right of the decimal point 
and perhaps infinitely many to the left. (If the sum is finite, it is the 
base-p decimal expansion of a rational number.) The usual algorithms 
one learns in grade school for adding, multiplying, and dividing positive 
real numbers in decimal form work equally well here, with the obvi­
ous modifications. In the present situation, however, subtraction is also 
possible: if Cm i:- 0, 

(Xl (Xl 

m m+l 

It follows that the set of series 2::: Cjpi forms a field. To see that it is 
all of Qp, we need only show that it is complete. 

Suppose then that Xn = 2:: Cjnpi and {xn} is Cauchy. Then for each 
k there exists N such that IXn, - xn2 1p < p-k if nl, n2 > N. But since 
I 2:: Cjpi Ip = p-m, where m is the smallest integer for which em i:- 0, this 
can only happen if Cjnl = Cjn2 for j :S k. Thus the sequences {Cjn} are 
eventually constant in n for each j. In other words, Cj = limn-+(Xl Cjn 
exists for every j, and then limxn = 2::Cjpi. I 

For r ~ 0 and x E Qp, consider the closed ball 

B(r,x) = {y E Qp: Ix - Ylp:S r}. 

Since the norm I . Ip takes on only the values pk, k E Z, and 0, for 
any r > 0 there is some f > 0 for which the condition Ix - yip :S r is 
equivalent to Ix - yip < r + f. Hence the balls B(r, x), r > 0, are both 
open and closed. (It follows that Qp is totally disconnected but has no 
isolated points: it is a Cantor set.) Moreover, by (2.7), if Ix - yip :S r 
and Iy - zip :S r then Ix - yip :S r, so any point of a ball is a "center" of 
that ball, and if two balls intersect then one is contain,ed in the other. 

By (2.7) again, B(r,O) is an additive subgroup of Qp for any r ~ 0, 
and for r :S 1 it is a subring. B(I,O) is called the ring of p-adic integers 
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and is denoted by Zp; it is the completion of the ordinary integers in the 
p-adic metric. pZp = B(p-I, 0) is a subgroup of Zp, and the quotient 
is the cyclic group Zp of order p. In particular, Zp is the disjoint union 
of p cosets of pZp, i.e., of p balls of radius I. It follows easily that 
if m > nEZ, every ball B(pm, x) is the disjoint union of pm-n balls 
of radius pn. In particular, these balls are totally bounded, so since 
they are closed in the complete space Qp, they are compact. We have 
therefore proved that Qp is a locally compact group under addition, and 
Qp \ {O} is a locally compact group under multiplication. 

2.2 Haar Measure 

Let G be a locally compact group. We recall that Cc(G) is the space of 
compactly supported continuous functions on G, and we set 

C:(G) = {f E Cc(G) : f ~ 0 and f to}. 

Since the positive and negative parts of a real continuous function are 
continuous, the linear span of C:(G) is Cc(G). 

A left (resp. right) Haar measure on G is a nonzero Radon measure 
ji, on G that satisfies ji,(xE) = ji,(E) (resp. ji,(Ex) ji,(E)) for every Borel 
set E c G and every x E G. 

(2.9) Proposition. Let ji, be a Radon measure on the locally compact 
group G, and let ji(E) = ji,(E- 1). 

a. ji, is a left Haar measure if and only jf ji is a right Haar measure. 

b. ji, is a left Haar measure if and only if I Lyf dji, I f dji, for every 
f E ct(G) and every y E G. 

Proof: (a) is obvious. As for (b), for any Radon measure ji, one has 
I Lyf dji, = I f dji,y for all f where ji,y(E) = ji,(yE), as one sees by 
approximating f by simple functions. Thus if ji, is a Haar measure then 
I Lyf dji, = If dji" and if the latter condition holds for all f E ct(G) 
and hence all f E Cc(G), one has ji, = ji,y by the uniqueness in the Riesz 
representation theorem. I 

In view of Proposition (2.9a), it is of little importance whether one 
chooses to study left or right Haar measure. The more common choice, 
to which we shall adhere, is the left one. The first order of business is to 
establish the existence and uniqueness of Haar measure. The following 
existence theorem is of fundamental theoretical importance; however, 
one must admit that for most specific groups that arise in practice one 
can construct Haar measure in a simpler and more explicit fashion. We 
shall discuss a number of classes of examples later in this section. 
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(2.10) Theorem. Every locally compact group G possesses a left Haar 
measure >.. 

Proof: Taking our cue from (2.9b), we shall construct>. as a lin­
ear functional on Cc(G). The idea is as follows. Imagine a function 
¢ E Cd(G) that is bounded by 1, equals 1 on a small open set, and 
is supported in a very slightly larger open set U. If 1 E Cd (G) is 
sufficiently slowly varying so that it is essentially constant on the left 
translates of U, 1 can be well approximated by a linear combination of 
left' translates of ¢: I ~ cjLxj ¢. If >. were a left Haar measure on 
G, we would then have J 1 d>. ~ (2:: Cj) J ¢ d>.. This approximation will 
get better and better as the support of ¢ shrinks to a point, and if we 
introduce a normalization to cancel out the factor of J ¢ d>' on the right 
we will obtain J 1 d>' as a limit of the sums 2:: Cj. (Think of the case 
G = R: ¢ is essentially the characteristic function of a small interval, 
I ~ 2:: cjLxj ¢ is essentially an approximation of I by step functions, 
and (2:: Cj) J ¢ d>' is essentially a Riemann sum for J I d>..) 

We now make this precise. If I, ¢ E Cd (G), we define (f : ¢) to 
be the infimum of all finite sums 2::~ Cj such that I :$ 2::~ cjLxj ¢ for 
some XI, ... , Xn E G. (This makes sense because the support of 1 can 
be covered by some finite number N of left translates of the set where 
¢ > ~1I¢llsup, and it follows that (f : ¢) ::;: 2NII1I1sup/II¢lIsup.) The 
quantity (f : ¢) has the following properties: 

(2.11) (f : ¢) = (Ly1 : ¢) for any y E G. 

(2.12) (II + 12 : ¢) ::;: (II : '¢) + (12 : ¢). 

(2.13) (cl : ¢) = c(f : ¢) for any c > O. 

(2.14)(f1 : ¢) ::;: (12 : ¢) whenever II ::;: h· 

(2.15) (f : ¢) ;::: 1I1I1sup/II¢lIsup. 

(2.16) (f: ¢):$ (f: tP)(tP: ¢) for any tP E C;;(G). 

All of these are obvious with a moment's thought except perhaps the 
last one, which follows from the observation that if 1 :$ 2::i CiLxi tP and 
tP ::;: 2:: j bjLyj ¢ then 1 ::;: 2::i,j CibjLx'Yi¢' 

We now make a normalization by fixing an 10 E Cd (G) and defining 

1 (f) = (f: ¢) 
'" (fo : ¢) 

By (2.11-14), for each ¢ the functional I", is left-invariant, subadditive, 
homogeneous of degree 1, and monotone. Moreover, by (2.16), it satisfies 

(2.17) (fo : f)-I::;: I",(f) ::;: (f : 10)' 

If only I", were additive rather than subadditive, it would be the restric-
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tion to C;;(G) of a left-invariant positive linear functional on Cc(G) and 
we would be in business. But this is not far from being the case: 

(2.18) Lemma. Ifh,h E C;;(G) andf > 0, there is a neighborhood V 
oEl in G such that lq,(Jd+lq,(h) $ lq,(h + h)+f wheneversupp(¢) c 
V. 

Proof: Fix 9 E C;;(G) such that 9 Ion supp(h + h) and let 6 be 
a positive number (to be determined later). Let h h + 12 + 6g and 
hi = hlh (i = 1,2), with the understanding that hi 0 wherever h = O. 
Then hi E C:(G), so by Proposition (2.6) .there is a neighborhood Vof 
1 in G such that Ihi(x) hi(Y)1 < 6 for i 1,2 and y-Ix E V. Suppose 
¢ E C;;(G) and supp(¢) C V. If h $ ,,£cj Lxi 4> then 

h(x) = h(x)hi(x) ::::: L Cj¢(xi 1X)hi(x) ::::: L Cj¢(xi 1X)[hi(xj) + 6], 

because Ihi(x)-hi(xj)1 < 6 whenever xilX E supp(¢). Since hI +h2 ::::: 1, 
this gives 

(h : ¢)+(h: ¢)::::: LCj[h l (xj,+6]+ LCj[h2(Xj) +6] ::::: LCj[1+26]. 

Taking the infimum of all such sums "£ Cj, by (2.12) and (2.13) we obtain 

lq,(Jd + lq,(h) ::::: (1 + 26)1q,(h) ::::: (1 + 26) [1q,(J1 + h) + 61q,(g)]. 

By (2.17), then, we can reach the desired conclusion by taking 6 small 
enough so that 

26(h + 12 : 10) + 6(1 + 26)(g : 10) < f. I 

Now we can complete the proof of Theorem (2.10). For each I E 
C;;(G) let XI denote the interval [(Jo : f)-I, (J : 10)], and let X be 
the Cartesian product of all the Xl's. X is a compact Hausdorff space 
consisting of all functions from C:(G) into (0,00) whose value at I lies in 
X,; hence, by (2.17), lq, E X for all ¢ E C:(G). For each neighborhood 
Vof1 in G, let K(V) be the closure inX of {Iq,: supp(¢) C V}. The sets 
K(V) have the finite intersection property, since n~ K(Vj) ::) K(n~ Vj), 
so compactness implies that there is a point 1 E X that lies in every 
K(V). This means that every neighborhood of 1 in X contains lq,'s 
with supp(¢) arbitrarily small. In other words, for any neighborhood V 
of 1, any f > 0, and any h, ... , In E C;;(G) there exists ¢ E C:(G) 
with supp(¢) c V and 11(Jj) - lq,(h)1 < f for all j. Hence, by (2.11-
13) and Lemma (2.18), 1 commutes with left translations, addition, and 
multiplication by positive scalars. 

Any IE Cc(G) can be written as I g-h with g, hE C;;(G). If also 
I g' - h', we have g+ h' = h+g', hence l(g) + l(h') = l(h) + l(g'). It 
follows that the formula 1 (J) = 1 (g) - 1 (h) gives a well-defined extension 
of 1 to Cc(G), and this extension is a nonzero positive linear functional 
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on Cc(G). The desired measure.>. is then the one associated to I by the 
Riesz representation theorem. I 

Before proceeding to the uniqueness theorem, we point out a couple of 
important properties of all Haar measures that are true by construction 
for the ones prod uced in the preceding proof. 

(2.19) Proposition. If'>' is a left Haar meas~re on G, then '>'(U) > 0 
for every nonempty open set U, and J f d'>' > 0 for every f E C: ( G). 

Proof: Suppose U is open and nonempty, and '>'(U) = O. Then 
.>.(xU) = 0 for all x, and since any compact set K can be covered by 
finitely many translates of U, we have .>.(K) = 0 for every compact set 
K. But then '>'(G) = 0 by inner regularity, contradicting the condition 
.>. i:- O. Next, given f E C:(G), let U = {x : f(x) > ~llfllsup}, Then 
J f d'>' > ~llfllsup'>'(U) > O. I 

(2.20) Theorem. If'>' and J.l are left Haar measures on G, there exists 
c E (0,00) such that J.l = c.>.. 

Proof: In view of Proposition (2.19), the assertion that J.l = c.>. is 
equivalent to the assertion that the ratio J f d.>./ J f dJ.l is the same for 
all f E C:(G). Suppose then that f,g E C:(G). Fix a symmetric 
compact neighborhood Vo of 1 and set 

A = (supp f)Vo U Vo(supp f), B = (suppg)Vo U Vo(suppg). 

Then A and B are compact, and for y E Vo, f(xy) - f(yx) and g(xy) -
g(yx) are supported in A and B respectively, as functions of x. 

Given f > 0, by Proposition (2.6) there is a symmetric neighborhood 
V C Vo of 1 such that If(xy) - f(yx)1 < f and Ig(xy) - g(yx)1 < f for all 
x when y E V. Pick h E C:(G) with h(x) = h(x- 1) and supp(h) C V. 
Then 

J hd'>' J f dJ.l = J J h(y)f(x) d.>.(x) dJ.l(Y) 

= J J h(y)f(yx) d'>'(x) dJ.l(Y), 

and since h(x) = h(x-1), 

J hd'>' J f dJ.l = J J h(x)f(y) d.>.(x) dJ.l(Y) 

= J J h(y-1x)f(y) d'>'(x) dJ.l(Y) 

= J J h(x-1y)f(y) dJ.l(Y) d'>'(x: 

= J J h(y)f(xy) dJ.l(Y) d.>.(x) 
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= II h(y)f(xy) d>'(x) df.l(y). 

(Fubini's theorem is applicable since all the integrals are effectively over 
sets that are compact and hence of finite measure.) Therefore, 

II hd>' I f df.l- I hdf.l I f d>'1 = III h(y)[f(xy) 

In the same way, 

- f(yx)] d>.(x) df.l(Y) I 

:::; f>.(A) I h df.l. 

II hd>' I gdf.l- I hdf.l I gd>.1 :::; f>'(B) I hdf.l. 

Dividing these inequalities by J h df.l J f df.l and J h df.l J 9 df.l, respec­
tively, and adding them, we obtain 

Since f is arbitrary, the ratio of the integrals with respect to >. and f.l is 
the same for· f and g, which is what we needed to show. I 

The remainder of this section is devoted to some more explicit con­
structions of Haar measure for various important classes of groups. 

First, if G is a Lie group, Haar measure can be obtained by a simple 
differential-geometric construction. Namely, start by picking an inner 
product on the tangent space at 1; transport it to the tangent space 
at every other point by left translation, obtaining a left-invariant Rie­
mannian metric; and then take the associated Riemannian volume ele­
ment. Alternatively, start by picking a nonzero n-covector at 1 (where 
n = dim G); transport it to every other point by left translation, obtain­
ing a left-invariant differential n-form w; then Haar measure is defined 
by the functional f --+ J fw. Either way, one sees that Haar measure on 
a Lie group is given by a smooth density times Lebesgue measure in any 
local coordinates, and the construction via differential forms leads to a 
calculation of this density as a Jacobian determinant. Here is a simple 
result along these lines that covers many cases of interest. 

(2.21) Proposition. Suppose the underlying manifold ofG is an open 
subset of RN and left translations are given by affine maps: xy = 
A(x)y + b(x), where A(x) is a linear transformation of RN and b(x) E 

RN. Then I detA(x)I- 1 dx is a left Haar measure on G, where dx de­
notes Lebesgue measure on RN. (Similarly for right translations and 
right Haar measure.) 
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The proof is an exercise in using the change-of-variable formula for 
multiple integrals, which we leave to the reader. The following examples, 
whose verification we also leave to the reader, are applications of this 
proposition. 

1. dx/lxl is a Haar measure on the multiplicative group R\{O}. 

2. dxdy/(x2 + y2) is a Haar measure on the multiplicative group 
C\{O}, with coordinates z = x + iy. 

3. Lebesgue measure ni<j daij is a left and right Haar measure on 
the group of n x n real matrices (Ctij) such that aij = 0 for i > j 
and aii = 1 for 1 :S i :S n. 

4. I det TI-n dT is a left and right Haar measure on the group 
GL(n, R) of invertible linear transformations of Rn, where dT is 
Lebesgue measure on the vector space of all real n x n matrices. (To 
see that the determinant of the map S --+ T S on matrix space is 
(det Tt, observe that it maps the matrix with columns Xl,"" Xn 

to the matrix with columns TX1,' .. , TXn, so it is the direct sum 
of n copies of T acting on R n .) 

5. The ax+b group G is the group of all affine transformations 
x --+ ax + b of R with a > 0 and bE R. On,c, da db/a2 is a left 
Haar measure and dadb/a is a right Haar measure. 

If G 1 , ..• , Gn are locally compact groups with left Haar measures 
AI, ... , An, then left Haar measure on G = n~ G j is obviously the Radon 
product of AI, ... , An, that is, the Radon measure on G associated to 
the linear functional 

When the Gi's are a-compact, this is an extension of the ordinary prod­
uct Al x ... x An, and when the Gi's are second countable, it is equal 
to this product. (See Folland [39, §7.4], and also the next section. The 
technicalities implicit here are that if the Gi's are not second countable, 
the Borel a-algebras on the factors do not generate the whole Borel 
a-algebra on the product; and if the Gi's are not a-compact, outer reg­
ularity is incompatible with the usual definition of product.) 

In the case of compact groups one can also allow infinitely many 
factors, provided that one normalizes the Haar measures to have total 
mass 1. Indeed, suppose {Get}etEA is a family of compact groups, and 
let Aet be the Haar measure on Get such that Aet(Get ) = 1. (As we 
shall shortly see, left and right Haar measures are the same on compact 
groups.) Let G = netEA Get, and let CF(G) be the space of continuous 
functions on G that depend on only finitely many coordinates. If f E 
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CF (G) depends only on xc>p ••• , xC>n' we set 

This is well-defined: it does not depend on the order of the coordinates, 
and it is unaffected if we add in some extra coordinates on which f 
does not depend. 1 is thus a left-invariant positive linear functional on 
CF(G) such that 11(1)1::; Ilfllsup and 1(1) = 1. It follows easily from the 
Stone-Weierstrass theorem that CF(G) is dense in C(G), so 1 extends 
uniquely to a left-invariant positive linear functional on C( G), and the 
associated Radon measure on G is its Haar measure. 

An example of particular interest is the group (Z2)W, the product of 
an infinite sequence of copies of the integers mod 2, where Haar measure 
on each factor assigns measure ~ to each of the two points 0 and 1. The 
elements of (Z2)W are sequences (al,a2, ... ) where each aj is 0 or 1. 
Consider the map <p : (Z2)W -+ [0,1] that assigns to such a sequence 
the real number L aj2-i whose base-2 decimal expansion is 0.ala2·.·. 
This map is neither continuous nor a group homomorphism. However, 
it is almost bijective - if x E [0,1]' <p- l ({ x}) is one point unless x = 
j2- k with 0 < j < 2k, in which case it is two points. Moreover, <p is 
measurable and maps Haar measure J.l on G to Lebesgue measure ), on 
[0,1]. One can see this by the following steps: 

i. If 1 = [j2- k, (j + 1 )2-k] where 0 ::; j < 2k, <p- I (I) is a set of the 
form rr~ Ei, where Ei = Z2 for i > k and Ei is {O} or {I} for 
i ::; k. Clearly ),(I) = J.l(cp-I(I)) = 2-k. 

ii. The finite disjoint unions of half-open intervals [j2- k, (j + 1)2-k) 
form an algebra Al that generates the Borel a-algebra on [0,1), and 
the finite disjoint unions of sets E as in (i) form an algebra A2 that 
generates the Borel a-algebra on (Z2)w. If A E Al then the union 
of <p-I(A) and some finite set is in A2 , and )'(A) = J.l(<p-I(A)). 

iii. It now follows that <p-I(B) is a Borel set for any Borel B C [0,1] 
and that )'(B) = J.l(<p-I(B)). (Cf. Folland [39, Theorem 1.14].) 

Finally, we show how to construct Haar measure ), on the p-adic 
numbers. With notation as in §2.1, we fix the normalization of ), by 
declaring that )'(Zp) = 1. Then the measure of any ball B(l, x) of 
radius 1 must be 1. If m > 0, a ball of radius pm is a disjoint union 
of pm balls of radius 1, and a ball of radius 1 is the disjoint union of 
pm balls of radius p-m. It follows that ),(B(pk,x)) = pk for any k E Z, 
x E Qp. Any open set is a countable disjoint union of such balls, so its 
measure is the sum of their measures. Finally, the measure of any Borel 
set E is determined by outer regularity, so we end up with a formula 
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like that for Lebesgue measure on the line: 

2.3 Interlude: Some Technicalities 

In order not to artificially restrict the generality of our investigations, 
we have not assumed that our locally compact groups G are a-compact. 
In the non-a-compact case, Haar measure is not a-finite, a fact which 
results in certain technical complications in the measure theory. The 
purpose of this section is to point these out and to explain why they are 
not serious. The reader who is content to add a standing assumption that 
all groups under consideration are a-compact can omit this material. 

Let G be a non-a-compact locally compact group, with left Haar 
measure A. By Proposition (2.4), G has a subgroup H that is open, 
closed, and a-compact. Let Y be a subset of G that contains exactly 
one element of each left coset of H, so that G is the disjoint union of 
the sets yH, y E Y. A moment's thought shows that the restriction of 
A to the Borel subsets of H is a left Haar measure on H. Moreover, this 
restriction determines A completely, but not in quite the obvious way. 
In the first place, it determines A on the Borel subsets of each coset yH, 
since A(yE) A(E). One might then think that for any Borel E C G 
one would have A(E) LYEY A(E n yH). But in fact, what happens is 
the following. 

(2.22) Proposition. Suppose E eGis a Borel set. If E c Ur' yjH 
for some countable set {Yj} C Y, then A(E) = L':" A(E n yjH). If 
En yH f:. 0 for uncountably many y, then A(E) = 00. 

Proof: The first assertion is true simply by countable additivity. To 
prove the second one, by outer regularity it suffices to assu'me that E 
is open. In this case, by Proposition (2.19), A(E n yH) > 0 whenever 
En yH f:. 0. If this happens for uncountably many y, for some € > 0 
there are uncountably many y for which A(E n yH) > €, and it follows 
that A(E) 00. I 

Here is a useful example to keep in mind: let G R x Rd, where 
Rd is R with the discrete topology. Here we can take H R x {O} 
and Y {O} x~. To obtain Haar measure A on G, simply take 
Lebesgue measure on each horizontal line Rx {y} and add them together 
according to Proposition (2.22). In particular, observe that Y is closed 
and that A(Y) = 00 although the intersection of Y with any coset of 



44 A Course in Abstract Harmonic Analysis 

H, or with any compact set, has measure o. (This is also true for 
Y in the general situation above, as long as G is not discrete.) This 
shows that), is not inner regular on Y. It also shows that), is not 
quite the product of the Haar measures on R and Rd. Indeed, the 
latter are Lebesgue measure J.l and counting measure v, and one has 
(J.l x v)(Y) = J.l( {O} )v(R) = 0·00 = 0 - unless one modifies the usual 
convention that 0 . 00 = 0 to say that J.l(E)v(F) = 00 when E i:- 0 and 
F is non-a-finite. 

There are three fundamental theorems of measure theory that break 
down for general non-a-finite measures: Fubini's theorem, the Radon­
Nikodym theorem, and the duality of LI and LCO. We shall need to deal 
with each of these, and the rest of this section is devoted to explaining 
how. 

We shall need Fubini's theorem to reverse the order of integration 
in double integrals fe fe f(x, y) d)'(x) d)'(y). There is no problem in 
doing this as long as f vanishes outside a a-compact set E c G x 
G. Indeed, in this case the projections EI and E2 of E onto the first 
and second factors are also a-compact, and E C EI X E2 . We can 
therefore replace G x G by the a-finite space El x E2 , to which the 
Fubini theorem for Radon products (Folland [39, Theorem (7.27)]) is 
applicable. Moreover, this hypothesis on f is almost always satisfied 
when f is built up out of functions on G that belong to LP(),) for some 
p < 00, for such functions vanish outside some a-compact set U~ Yj H 
by Proposition (2.22). For example, in dealing with convolutions one 
is concerned with functions of the form f(x, y) = g(x)h(x-1y). If 9 
vanishes outside A and h vanishes outside B then f vanishes outside 
A x AB, and AB is a-compact whenever A and Bare. 

We shall therefore use Fubini's theorem without comment in the se­
quel whenever the conditions of the preceding paragraph are satisfied, 
leaving their verification to the mistrustful reader. (We have already 
encountered this situation once, in the proof of Theorem (2.20).) 

As for the Radon-Nikodym theorem: Radon measures - or rather 
their CaratModory extensions, which are complete and saturated -
enjoy a property called "decomposability" which implies a version of 
the Radon-Nikodym theorem that is adequate for virtually all purposes. 
(See Hewitt-Ross [62, Theorem (12.17)], or Folland [39, Exercises 1.22 
and 3.15]. For Haar measures, decomposability is an easy consequence 
of Propositions (2.4) and (2.22).) However, all we shall really need to 
consider are the following more restricted situations. 

The first one is that of two Radon measures J.l and v on a locally 
compact Hausdorff space X such that v « J.l and v is a-finite. By 
inner regularity there is a a-compact set E such that v(X\E) = O. But 
the restriction of J.l to subsets of E is a-finite, so there is a measurable 
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I: E ~ [0,00) such that dv = I dj.t on E. If we set I = 0 on,X\E, we 
then have dv = I dj.t everywhere. 

The second situation is that of two Radon measures j.t and v on a 
locally compact Hausdorff space X that are equivalent, that is, mu­
tually absolutely continuous. In the cases we are interested in, we will 
not need to invoke the Radon-Nikodym theorem, but will be able to 
produce a continuous I : X ~ (0,00) such that I </J dv = I </J I dj.t for all 
</J E Cc(X), and the following proposition completes the picture. 

(2.23) Proposition. Suppose j.t and v are Radon measures on X, and 
there is a continuous I: X ~ (0,00) such that I </Jdv = I </JI dj.t for all 
</J E Cc(X). Then v(E) = IE I dj.t for all Borel sets E eX. 

Proof; Let"i/( E) = IE I dj.t; then "i/ is a Borel measure on X. To 
show that "i/ = v, it will suffice to show that "i/ is outer regular and that 
"i/(U) = v(U) for all open sets U. 

Suppose E is a Borel set with "i/(E) < 00, and £ > O. For j E Z, 
let \Ij = {x : 2j- 2 < </J(x) < 2j}. The open sets \Ij cover X, so we 
can write E = U~OO Ej where Ej C Vj. Since j.t is outer regular and 
j.t(Ej ) < 22- j IE I dj.t = 22-

j"i/(Ej) < 00, for each j we can find an open 
J 

Ui C \Ij such that Ui ::) Ej and j.t(Uj\Ej ) < £2-2Iil . Then "i/(Uj\Ej ) < 
2j j.t(Uj\Ej ) < £2- lil , so U U~ooUj is an open set containing E such 
that "i/(U\E) < 3£. Hence "i/ is outer regular. 

Next, if U is open, let <P {</J E Cc(X) : 0 $ </J $ 1, supp(</J) c U}. 
Then v(U) sUP<1?I</Jdv sUP<1?I</JIdj.t. But sUP<1?</JI = xuI, so by 
the monotone convergence theorem for nets of lower semi-continuous 
functions (Folland [39, Proposition (7.12)]), sUP<1? I </JI dj.t I Xu I dj.t = 
v(U). I 

If j.t and v satisfy the conditions of Proposition (2.23), we shall say 
that they are strongly equivalent. Lest the reader should suspect 
that our arguments here are more complicated than necessary, we point 
out that Proposition (2.23) is no longer true if we allow I to assume 
the value O. For example, if ), is Haar measure on the group R x Rd 
discussed above, and I(x, y) lxi, then the measure v(E) = IE I d)' 
is not a Radon measure. Indeed, if Y = {O} X Rd then v(Y) = 0 but 
v(U) = 00 for any open U ::) Y, by the argument in Proposition (2.22). 

Finally, we consider the duality of L1(j.t) and LOO(j.t). When j.t is not ([­
finite it is generally false that L 00 (j.t) L 1 (j.t)" with the usual definition 
of Loo, but when j.t is a Radon measure on a locally compact Hausdorff 
space X the result can be salvaged by modifying the definition of LOO . 
Here's how. A set E C X is locally Borel if En F is Borel whenever 
F is Borel and j.t(F) < 00. A locally Borel set E is locally null if 
j.t(E n F) = 0 whenever F is Borel and j.t(F) < 00. An assertion about 
points in X is true locally almost everywhere if it is true except on 
a locally null set. A function I : X ~ C is locally measurable if 
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I-I (A) is locally Borel for every Borel set A c C. We now (re-)define 
Loo(JL) to be the set of all locally measurable functions that are bounded 
except on a locally null set, modulo functions that are zero locally a.e. 
Loo(JL) is a Banach space with norm . 

11/1100 inf{c: I/(x)15 c locally a.e.}. 

We then have Loo(JL) £l (JL)*. In more detail, if I E Loo(JL) and 
9 E LI(JL) then Ig is measurable since {x : g(x) =F O} is a-finite, and it 
is then integrable since {x : I/(x)1 > 1l/1I00} n {x: g(x) =F O} is null. So 
9 - J IgdJL is a well-defined linear functional on L1(JL), and its norm 
is easily seen to be 11/1100' That every element of LI (JL)* arises in this 
way follows in general from the decomposability of the Caratheodory 
extension of JL. (See Hewitt-Ross [62, Theorem (12.18)], or Folland [39, 
Exercises 6.23-26].) 

In the case of Haar measure A on a locally compact group G (the 
one we shall be mainly concerned with), this can be established quite 
simply by the following argument, whose details we leave to the reader. 
In view of Propositions (2.4) and (2.22), and with the notation used 
there, it is easy to see that E eGis locally Borel {=} En yH is 
Borel for every y E Yj E is locally null {=} A(E n yH) = 0 for 
every y E Yj and I : G - C is locally measurable {=} IlyH is 
measurable for every y E Y. If 4> E Ll(G, A)* then 4>ILI(yH, A) is given 
by a bounded measurable function lyon yH since A is a-finite on yH. 
Define I : G - C by I = lyon yH. Then I is locally measurable, 
11/1100 sUPYEY II/ylloo = 114>11, and 4>(g) = Jig for every 9 E Ll(A). 

Henceforth Loo(JL) will always denote the space defined above. Of 
course, this coincides with the usual Loo(JL) when JL is a-finite. 

2.4 The Modular Function 

Let G be a locally compact group with left Haar measure A. We wish 
to investigate the extent to which A fails to be right-invariant. If, for 
x E G, we define Ax(E) = A(Ex), then Ax is again a left Haar measure, 
by the associative law: y(Ex) = (yE)x. By the uniqueness theorem 
(2.20), there is a number Ll(x) > 0 such that Ax Ll(X)A, and Ll(x) is 
independent of the original choice of A. The function Ll : G - (0,00) 
thus defined is called the modular function of G. In what follows, we 
denote by Rx the multiplicative group of positive real numbers. 

(2.24) Proposition. Ll is a continuous homomorphism from G to Rx . 
Moreover, for any IE £l (A), 

(2.25) 
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Proof: For any x, y E G and E c G, 

6.(xy) .. (E) = )"(Exy) = 6.(y) .. (Ex) = 6.(y)6.(x)"(E), 

so 6. is a homomorphism from' G to Rx. Moreover, since XE(XY) 
XEy-J (x), we have 
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J XE(XY) d)"(x) = )"(Ey-l) = 6.(y-l) .. (E) = 6.(y-l) J XE(X) d)"(x). 

This proves (2.25) for f = XE, and the general case follows by approx­
imating f by simple functions. Finally, since y --+ Ryf is continuous 
from G to Cc(G) (Proposition (2.6)), y --+ J Ruf d).. is continuous from 
G to C, so the continuity of 6. follows from (2.25). I 

If we set Yo = y-l in (2.25) and make the substitution x --+ xYo, we 
obtain 

6. (Yo) J f(x) d)"(x) = J f(xyol) d)"(x) = J f(x)d)"(xyo) , 

which yields the following convenient abbreviated form of (2.25): 

(2.26) d)"(xyo) = 6.(yo) d)"(x). 

G is called unimodular if 6. == 1, that is, if left Haar measure is also 
right Haar measure. Unimodularity is a useful property that makes life 
simpler in a number of respects. Obviously Abelian groups and discrete 
groups are unimodular, but many others are too. Here are some classes 
of examples. 

(2.27) Proposition. If K is any compact subgroup ofG then 6.IK == 1. 

Proof: 6.(K) is a compact subgroup of R x , hence equal to {I}. I 

(2.28) Corollary. If G is compact, then G is unimodular. 

Let [G, Gj denote the smallest closed subgroup of G containing all el­
ements of the form [x, yj = xyx-1y-l. [G, Gj is called the commutator 
subgroup of Gj it is normal since z[x, yjz-l = [zxz- 1, zyz-lj. 

(2.29) Proposition. If G/[G~ Gj is compa~t, then G is unimodular. 

Proof: Since Rx is Abelian we have 6.([x, y]) = [6.(x),6.(y)j = 1, 
so 6. must annihilate [G, Gj and hence factor through G/[G, Gj. It then 
follows as in Proposition (2.27) that 6.(G) = {I}. I 

As a consequence of Proposition (2.29), one can see that every con­
nected semi-simple Lie group G is unimodular. Indeed, the Lie algebra 
g of such a group is a direct sum of simple algebras, and it follows easily 
that [g, gj = g. But [g, gj is the Lie algebra of [G, G], so G = [G, Gj since 
G is connected. . 
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More generally, one has the following result, whose proof may be found 
in Helgason [60]. (See Lemma 1.2 of Chapter 10 of [60], together with 
Proposition (2.31) below.) 

(2.30) Proposition. If G is a connected Lie group and Ad denotes the 
adjoint action ofG on its Lie algebra, then ~(x) = detAd(x- 1). 

It follows easily from Proposition (2.30) that every connected nilpo­
tent Lie group is unimodular. Thus, Lie groups that are close to being 
Abelian (i.e., nilpotent) or far from being Abelian (i.e., semi-simple) 
are unimodular. The simplest example of a non-unimodular group is 
the ax + b group, which is solvable but not nilpotent; see the list of 
examples following Proposition (2.21). 

To each left Haar measure ), is associated the right Haar measure p 
defined by p(E) = ),(E- 1). The modular function can be used to relate 
), to p: 

(2.31) Proposition. ), and p are strongly equivalent, and 

dp(x) = ~(X-l) d),(x). 

Proof: By (2.25), if f E Cc(G), 

J Ryf(X)~(X-l)d)'(x) = ~(y) J f(xy)~«xy)-l)d)'(x) 
= J f(X)~(X-l)d)'(x). 

Thus the functional f --+ J f(x )~(X-l) d)'(x) is right-invariant, so its 
associated Radon measure is a right Haar measure and hence equals 
cp for some c > O. By Proposition (2.23), cdp(x) = ~(X-l) d)'(x) , so 
we need only show that c = 1. If c i:- 1, we can pick a symmetric 
neighborhood U of 1 in G such that I~(x-l) -11 :S !Ic - 11 on U. But 
then )'(U) = p(U), so 

Ie - 11),(U) = lep(U) - )'(U)I = li[~(X-l) - 1] d)'(x) I :S ~Ic - 11),(U), 

a contradiction. I 

The formula dp(x) = ~(X-l) d)'(x) can be restated in the following 
ways, convenient for making substitutions in integrals: 

(2.32) dp(x- 1
) = ~(x) dp(x). 

When G is not unimodular, the function ~ is unbounded, so the 
spaces P(),) and P(p) (1 :S p < 00) are not the same. There are two 
ways of passing from one to the other. Namely, let us define 

Mpf(x) = ~(X)l/P f(x). 
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Then J --+ J and J --+ MpJ are isometric isomorphisms from P()..) to 
P(p), because d)..(x) = dp(x- 1) = 6.(x) dp(x). By composing these 
maps, we get an interesting isometric linear isomorphism of P()..) onto 
itself: 

2.5 Convolutions 

From now on we shall assume that each locally compact group G is 
equipped with a fixed left Haar measure)... We shall generally write dx 
for d)"(x), I J for I J d)", lEI for )"(E), and LP or P(G) for P()..). 

Let G be a locally compact group, and let M(G) be the space of com­
plex Radon measures on G. We define the convolution of two measures 
J,l, v E M(G) as follows. The map I(¢) = II ¢(xy) dJ,l(x) dv(y) is clearly 
a linear functional on Co(G) satisfying II(¢)I ~ 11¢llsupllJ,lllllvll. Hence 
it is given by a measure J,l * v E M(G) with 11J,l * vii ~ 11J,lllllvll, called 
the convolution of J,l and v: . 

(2.34) / ¢d(J,l * v) = // ¢(xy) dJ,l(x) dv(y). 

(The order of integration in the double integral is immaterial. What 
matters is that the variables of integration for J,l and v are the first and 
second factors, respectively, of the product that forms the argument of 
¢.) 

Convolution is associative: if J,l,v, a E M(G) and ¢ E Cc(G), 

/ ¢d[J,l * (v * a)] = /1 ¢(xy) dJ,l(x) d(v * a)(y) 

= I I I ¢(xyz) dJ,l(x) dv(y) da(z) 

= // ¢(yz)d(J,l*v)(y)da(z) = / ¢d[(J,l*v)*a]. 

Moreover, convolution is commutative if and only if G is Abelian. In­
deed, if G is Abelian we have ¢(xy) = ¢(yx), whence it follows from 
(2.34) that J,l * v = v * J,l. On the other hand, if bx E M(G) denotes the 
point mass at x E G, we have 

. 
in other words, bx*by = bxy . Thus bx*by = by*bx if and only if xy = yx. 
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The estimate II/L*VIl ~ 1IJ.tllllvll implies that convolution makes M(G) 
into a Banach algebra, called the measure algebra of G. M(G) has a 
multiplicative identity, namely the point mass 8 81 at 1: 

I ifJd(8*J.t) = II ifJ(xy)d8(x)dJ.t(y) = I ifJ(y)dJ.t(y) I ifJdJ.t, 

and similarly J.t * 8 = J.t. M(G) also has a canonical involution J.t - J.t* 
defined by 

(2.35) J.t*(E) = J.t(E-l), or I ifJdJ.t* I ifJ(x-I)cJ;l(x) 

This is indeed an involution, because 

I ifJd(J.t*v)* = I ifJ(x-1)d(J.t*v) = II ifJ((xy)-I)cJ;l(x)dii(y) 

= II ifJ(y-IX-I)cJ;l(x)dii(y) II ifJ(yx)dJ.t*(x)dv*(y) 

= I ifJd(v* * J.t*), 

so that (J.t * v)* = v* * J.t*. 
In many respects, the algebra M(G) is too big and complicated to 

work with easily, and it is preferable to restrict attention to the space 
LI(G), which is a subspace of M(G) if we identify the function I with 
the measure I(x) dx. If I, 9 E LI, the convolution of I and 9 is the 
function defined by 

1* g(x) = I I(y)g(y-I X) dy. 

An application of Fubini's theorem shows that the integral is absolutely 
convergent for almost every x and that III * gill ~ II/lIdlgll1, for 

II I/(y)g(y-Ix)1 dxdy = II I/(y)g(x)1 dxdy 11/11 dig II I 

by the left invariance of the measure dx. This definition of convolution 
agrees with the preceding one when we identify I E LI with the measure 
I(x) dx, because 

If ifJ(yx)/(y)g(x)dxdy = II ifJ(x)/(y)g(y-IX)dxdy 

= lifJ(X)(J*g)(x)dx. 

The integral defining I * g(x) can be expressed in several different 
forms: 
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(2.36) 

f*g(x) f f(y)g(y-1x)dy 

f f(xy)g(y-l) dy 

f f(y-l)g(YX)~(y-l)dy 
f f(Xy-l)g(y)~(y-l)dy 
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The equality of the integrals follows from the substitutions x -+ yx 
and x -+ X-I, according to (2.32). To remember how to arrange the 
variables x and y in them, it may be useful to keep the following two 
rules in mind. (i) The variable y of integration occurs as y in one factor 
and as y-l in the other. (ii) The two occurrences of the variable of 
integration are adjacent to each other, not separated by the variable x 
at which the convolution is evaluated. When G is unimodular, the factor 
of ~(y-l) disappears, in which case these two rules always suffice to give 
the right answer. 

The involution on M(G), restricted to Ll(G), is defined by the relation 
f*(x)dx f(x-1)d(x- 1), so by (2.32) it is given by 

(2.37) 

(Cf. (2.33).) With the convolution product (2.36) and the involution 
(2.37), Ll (G) becomes a Banach *-algebra, called the £1 group algebra 
of G. (This algebra coincides with the algebraists' "group algebra" when 
G is a finite group.) 

Observe that 

(2.38) 

These equalities can be interpreted in two senses: either pointwise, in 
which case they are restatements of the first two equalities in (2.36), or 
in the sense of vector-valued integrals, where the expressions on the right 
are considered as integrals of LV -valued functions of y: see Appendix 3. 
Thus, f * 9 is a generalized linear combination of left translates of g, or 
of right translates of f. Since left translations commute with right trans­
lations (this is the associative law), it follows easily that convolutions 
have the following behavior under translations: 

Convolution can be extended from V to other LV spaces. Specifically, 
we have the following results: 
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(2.39) Proposition. Suppose 1 :S p:S 00, fELl, and 9 E £P. 

a. The integrals in (2.36) converge absolutely for almost every x, and 
we have f * 9 E LP and Ilf * gllp :S Ilflllllgll p· 

b. If G is unimodular, the same conclusions hold with f * 9 replaced 

by 9 * f· 
c. IfG is not unimodular, we still have g* J. E LP when f has compact 

support. 

d. When p = 00, f * 9 is continuous, and under the conditions of (b) 
or (c), so is 9 * f· 

Proof: To prove (a), we apply Minkowski's inequality for integrals 
to the first integral in (2.36), obtaining 

since the LP norm is left-invariant. (The a.e. convergence of the integral 
for f * 9 is implicit in this.) If G is unimodular, we apply Minkowski's 
inequality to the fourth integral in (2.36) with f and 9 switched, 

which proves (b). If K = supp f is compact, a similar argument works 
in the non-unimodular case: 

Ilg * flip = III Ry-lg(·)f(y)~(y-I) dyll
p 

:S I IIRy-lgllplf(y)I~(y-l) dy 

= Ilgllp Ix If(y)I~(y)(l/P)-1 dy:S Cllgllpllflll, 

where C = SUPK ~(y)(I/p)-I. Finally, if p = 00 and f E Cc(G), it is 
clear from (2.36) and the left and right uniform continuity of f that f * 9 
and g*f are continuous. But Cc(G) is dense in LI, and if fn -+ f in LI 
then f n * 9 -+ f * 9 uniformly. Hence f * 9 is continuous for any f ELI; 
similarly for 9 * f in cases (b) and (c). I 

(2.40) Proposition. Suppose G is unimodular. If f E £P(G) and 
9 E Lq(G) where 1 < p,q < 00 and p-I + q-l = 1, then f * 9 E Co(G) 
and Ilf * gllsup :S Ilfllpllgllq· 

Proof: The fact that If * g(x) I :S Ilfllpllgllq for all x E G follows 
from Holder's inequality and the invariance of Haar integrals under 
translations and inversions. If f,g E Cc(G), it is easy to check that 
f * 9 E Cc(G). But Cc(G) is dense in £P(G), and if fn -+ fin LP and 
gn -+ 9 E Lq then fn * gn -+ f * 9 and gn * fn -+ 9 * f uniformly; the 
result follows. L! 



Locally Compact Groups 53 

When G is discrete, the function 8 defined by 8(x) = 1 if x = 1, 8(x) = 

o otherwise, satisfies f * 8 = 8 * f = f for any f. When G is not discrete 
there is no function with this property. There is a measure, of course 
- the point mass at the origin - but in many situations one needs to 
remain in the realm of functions, so one uses an "approximate identity" 
instead. The construction of these is given in Proposition (2.42), but 
first we need to establish the continuity of translations on LP. 

(2.41) Proposition. If 1 :S p < 00 and f E LP then IILyf - flip and 
IIRyf - flip tend to zero as y -+ 1. 

Proof: Fix a compact neighborhood V of 1. First, if 9 E Cc(G), let 
K = (suppg)V U V(suppg). Then 1< is compact, and Lyg and Ryg are 
supported in K when y E V. Hence, IILyg-gllp :S IKII/PIILyg-gII CXl -+ 0 
as y -+ 1 by Proposition (2.6), and likewise IIRyg - gllp -+ o. 

Now suppose f E £P. We have IILyfilp = II flip and IIRyfll p = 
~(y)-l/Pllfllp :S Gllfllp for y E V. Given f > 0 we can choose 9 E Cc(G) 
such that Ilf - gllp :S f, and then 

IIRyf- flip :S IIRy(f-g)llp+IIRyg-gllp+llg- flip :S (C+l)f+IIRyg-gllp, 

and the last term tends to zero as y -+ 1 j similarly for Ly f. I 

(2.42) Proposition. Let U be a neighborhood base at 1 in G. For 
each U E U, let 'l/Ju be a function such that suPP'l/Ju is compact and 
contained in U, 'l/Ju ~ 0, 'l/JU(X-l) = 'l/Ju(x), and J'l/Ju = 1. Then 
Ilf * 'l/Ju - flip -+ 0 as U -+ {I} if 1 :S p < 00 and f E £P, or ifp = 00 

and f is right uniformly continuous. Moreover, II'l/Ju * f - flip -+ 0 as 
U -:-+ {I} if 1 :S p < 00 and f E LP, or if p = 00 and f is left uniformly 
continuous. 

Proof: Since 'l/JU(X-l) = 'l/Ju(x) and J'l/Ju = 1, we have 

f * 'l/Ju(y) - f(y) = j f(yx)'l/Ju(x- 1
) dx - f(y) j 'l/Ju(x) dx 

= j[Rxf(Y) - f(y)]'l/Ju(x) dx, 

so by Minkowski's inequality for integrals, 

Ilf * 'l/Ju - flip :S j IIRxf - fllp'l/Ju(x) dx :S sup IIRxf - flip· 
xEU 

Hence Ilf * 'l/Ju - flip -+ 0 by Proposition (2.41), or by the right uniform 
continuity of f if p = 00. The second assertion follows in the same way, 
since 

'l/Ju * f(y) - f(y) = j[Lxf(Y) - f(y)]'l/Ju(x) dx. 
r' 
I 
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A family {tPu} of functions as in Proposition (2.42) is called an ap­
proximate identity. Approximate identities exist in great abundance. 
For example, we could take the sets U to be compact and symmetric and 
then take tPu 101- L~U, or we could take the tPu's to be continuous. 
Sometimes we shall informally say, "Let 9 be an approximate identity"; 
what we mean is, "Let 9 = tPu and let U -+ {I}." 

As a first application of approximate identities, we derive an impor­
tant characterization of the closed ideals in Ll (G). 

(2.43) Theorem. Let I be a closed subspace of £l(G). Then I is a 
left ideal if and only if it is closed under left translations, and I is a 
right ideal if and only if it is closed under right translations. 

Proof: Suppose I is a left ideal. If I E I, x E G, and {tPu} is an 
approximate identity, we have Lx(tPu * f) (LxtPu) * I E I and hence 
LxI limLx(tPu*f) E I. On the other hand, suppose I if:l closed under 
left translations. If I E I and 9 E £1, we have 9 * I = J g(y)Lyl dy 
by (2.38), so 9 * I is in the closed linear span of the functions Lyl (see 
Appendix 3) and hence in I. I 

Finally, we mention a couple of other extensions of the notion of con­
volution. First, if f..t E M(G) and IE V(G) one can define the function 
f..t* I by 

f..t * I(x) = J l(y-1x) df..t(y). 

The argument used to prove Proposition (2.39a) shows that f..t * I E LP 
and that 1If..t * Ilip ~ 1If..tllll/llp· When G is unimodular or when p = 1 
one can define I * f..t similarly. In particular, £1 (G) is a two-sided ideal' 
in M(G). 

Second, suppose G is unimodular. We have LP*L1 C V and LP*LP' C 
Loo where rI is the conjugate exponent to p, by Propositions (2.39) 
and (2.40). An application of the Rlesz-Thorin interpolation theorem 
then shows that LP * Lq c Lr and that III * gllr ~ II/lIplIgllq whenever 
p-l + q-l r- 1 + 1. 

2.6 Homogeneous Spaces 

Let G be a locally compact group and S a locally compact Hausdorff 
space. A (left) action of G on S is a continuous map (x, s) -+ xs from 
G x S to S such that (i) s -+ xs is a homeomorphism of S for each 
x E G, and (ii) x(ys) = (xy)s for all x, y E G and s E S. A space S 
equipped with an action of G is called a G-space. A G-space is called 
transitiv~ if for every s, t E S there exists x E G such that xs = t. 
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The standard examples of transitive G-spaces are the quotient spaces 
G/H (where H is a closed subgroup of G), on which G acts by left 
multiplication. In fact, these are close to being the only examples. If S 
is a transitive G-space, pick So E S, define ¢ : G --+ S by ¢(x) XSo, 
and let H {x E G : XSo so}. Then H is a closed subgroup of G 
and ¢ is a continuous surjection of G onto S that is constant on the left 
cosets of H. Hence ¢ induces a continuous bijection q} : G/ H --+ S such 
that q} 0 q ¢, where q : G ~ G/H is the natural quotient map. The 
only additional thing needed to identify S with G / H is the continuity 
of q}-1. This is not always the case - for example, consider G = R 
with the discrete topology, acting by translations on R with the usual 
topology. But it is valid if G is a-compact. 

(2.44) Proposition. With notation as above, if G is a-compact then 
q} is a homeomorphism. 

Proof: It suffices to show that ¢ maps open sets in G to open sets 
in S. Suppose U is open in G and Xo E U; pick a compact symmetric 
neighborhood V of 1 such that xoVV c U. Since G is a-compact, there 
is a countable set {yn} C G such that the sets Yn V cover G. Then 
S U~ ¢(Yn V). The sets ¢(Yn V) are all homeomorphic to ¢(V) since 
S --+ YnS is a homeomorphism of S, and they are compact and hence 
closed. By the Baire category theorem for locally compact Hausdorff 
spaces (Folland [39, Exercise 5.32]), ¢(V) must have an interior point, 
say ¢(xt) (Xl E V). But then ¢(xo) is an interior point of ¢(xoxl1V), 
and xoxllV C xoVV C U, so ¢(xo) is an interior point of ¢(U). Thus 
¢(U) is open. I 

We shall use the term homogeneous space to mean a transitive G-
space S that is isomorphic to a quotie~t space G / H that is, one for 
which the map q} described above is a homeomorphism and we shall 
generally identify S with G / H. This identification depends on the choice 
of a base point So E S. If we choose a different base point S6 XOSo, the 
only effect is to replace H with H' xoH xi) 1; and the map x --+ xoxxi) 1 

induces a G-equivariant homeomorphism between G / Hand G / H'. 
Henceforth we consider homogeneous spaces G/ H, where G is an ar­

bitrary locally compact group and H is an arbitrary closed subgroup. 
The question we wish to address is whether there is a G-invariant Radon 
measure on G/H, that is, a Radon measure J..L such that J..L(xE) = J..L(E) 
for every x E G. The answer is not always affirmative. For example, the 
real line R is a homogeneous space of tl:te group of affine transformations 
x --+ ax + b of R. The only measure on R (up to scalar multiples) that is 
invariant under translations x --+ x + b is Lebesgue measure, but it is not 
invariant under the dilations x --+ ax. However, we shall obtain a neces­
sary and sufficient condition for the existence of an invariant measure, 
and a good substitute result for the cases where the condition fails. 
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In what follows, G is a locally compact group with left Haar measure 
dx, H is a closed subgroup of G with left Haar measure d~, q : G ---- G / H 
is the canonical quotient map q(x) = xH, and !:l.c and !:l.H are the 
modular functions of G and H. We define a map P : Cc(G) ---- Cc(G / H) 
by 

(2.45) P f(xH) = 1 f(x~) d~. 
If 

This is well-defined by the left-invariance of dh: if y = X"l with "I E H 
then J f(y~) ~ = J f(x~)~. Pf is obviously continuous, and 
supp(PJ) c q(suppJ). Moreover, if ¢ E C(G/H) we have 

P[(¢ 0 q) . fl = ¢. Pf. 

We now show that P maps Cc(G) onto Cc(G/H), obtaining along the 
way a couple of lemmas that will be needed later. 

(2.46) Lemma. If E c G / H is compact, there exists a compact KeG 
with q(K) = E. 

Proof: Pick an open neighborhood V of 1 in G with compact clo­
sure. Since q is an open map, the sets q(xV) (x E G) are an open 
cover of E, so there is a finite subcover q(Xj V) (j = 1, ... , n). Let 
K = q-l(E) n U~XjV. Since q-l(E) is closed, K is compact, and 
q(K) = E. I 

(2.47) Lemma. If F c G/ H is compact, there exists f ~ 0 in Cc(G) 
such that Pf = 1 on F. 

Proof; Let E be a compact neighborhood of F in G/H, and use 
Lemma (2.46) to obtain a compact KeG such that q(K) = E. Choose 
nonnegative 9 E Cc ( G) with 9 > 0 on K and ¢ E Cc ( G / H) supported 
in E such that ¢ = 1 on F, and set 

¢oq 
f=-p g, 

goq 

with the understanding that the fraction is zero wherever the numerator 
is zero. f is continuous since Pg > 0 on supp ¢, its support is contained 
in suppg, and Pf = (¢/Pg)Pg = ¢. I 

(2.48) Proposition. If ¢ E Cc(G/ H), there exists f E Cc(G) such 
that P f = ¢ and q(supp f) = supp ¢, and also such that f ~ 0 if ¢ ~ O. 

Proof: If ¢ E Cc(G/H), by Lemma (2.47) there exists 9 ~ 0 in Cc(G) 
such-that Pg = Ion supp¢. Let f = (¢oq)g. We have Pf = ¢(Pg) = ¢, 
arid the other properties of f are obvious. I 

We are now in a position to settle the question of the existence and 
uniqueness of invariant measures on G/H. 
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(2.49) Theorem. Suppose G is a locally compact group and H is a 
closed subgroup. There is a G-invariant Radon measure JL on G / H if 
and only if ~cIH = ~H. In this case, JL is unique up to a constant 
factor, and if this factor is suitably chosen we have 
(2.50) 

r f(x)dx= r PfdJL= r r f(x~)~dJL(xH) (JECc(G)). 
lc lC/H lC/H lH 

Proof: Suppose a G-invariant measure JL exists. Then f ---- J P f dJL 
is a nonzero left invariant positive linear functional on Cc(G), so 
J P f dJL = c J f(x) dx for some c > 0 by the uniqueness of Haar measure 
on G. In view of Proposition (2.48), this formula completely determines 
JL, so JL is unique up to the arbitrary constant factor in Haar measure. 
Replacing JL by c- l JL, we may assume c = 1, so that (2.50) holds. This 
being the case, if", E Hand f E Cc ( G) we have 

~c(",) fcf(x)dX = fcf(x",-I)dX 

= r r f(X~",-I)~dJL(xH) 
lC/H1H 

= ~H("') r r f(x~) d~ dJL(xH) 
lC/H1H 

= ~H("') J f(x) dx, 

so that ~c(",) = ~H("')' 
Conversely, suppose ~cIH = ~H' We claim that if f E Cc(G) and 

Pf = 0 then J f(x) dx = O. Indeed, by Lemma (2.47) there exists 
¢ E Cc(G) such that P¢ = 1 on q(supp J). We have 

so 

0= Pf(xH) = J f(x~) d~ = J f(XCI)~H(CI) d~ 
= J f(XCI)~C(CI)d~, 

0= fci ¢(X)f(XCI)~C(CI)d~dx 

= ifc ¢(X)f(XCI)~C(CI)dxd~ 

= ifc¢(x~)f(X)dXd~ 

= fc P¢(xH)f(x) dx = fc f(x) dx. 
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This means that if P f Pg then Ie f Ie g. It then follows from 
Proposition (2.48) that the map P f -+ Ie f is a well-defined G-invariant 
positive linear functional on Cc( G / H). The associated Radon measure 
is then the desired measure tt. I 

(2.51) Corollary. If H is compact, G/H admits a G-invariant Radon 
measure. 

Proof: By Proposition (2.27), LlelH LlH L I 

When no G-invariant measure exists, a weaker but still useful result 
is available. Suppose tt is a Radon measure on G/ H. For:i E G we 
define the translate ttx of tt by 

tt is said to be quasi-invariant if the measures ttx are all equivalent (Le., 
mutually absolutely continuous), and we shall call tt strongly quasi­
invariant if there is a continuous function A : G x (G / H) -+ (a, (0) such 
that dttx(p) A(x,p)dtt(p) for all x E G and pEG/H. Thus, strong 
quasi-invariance means not only that the measures ttx are all strongly 
equivalent but that the Radon-Nikodym derivative (dttx/ dtt )(p) is jointly 
continuous in x and p. 

If G and H are Lie groups, so that G / H is a smooth manifold on which 
G acts by diffeomorphisms, the construction of strongly quasi-invariant 
measures is easy, and the derivatives dttx/ dtt can be taken to be smooth. 
Indeed, the Riemannian volume density associated to any Riemannian 
metric on G/H will do the job; if G/H is orientable, so will the volume 
density given by any nonvanishing smooth n-form (n dim (G / H». 

We shall now prove that strongly quasi-invariant measures exist on 
?n arbitrary homogeneous space and show how to construct all of them 
by modifying the proof of Theorem (2.49). The ideas in this proof will 
be needed again in Chapter 6, even for the case of Lie groups. First, we 
need a couple of technical lemmas. 

(2.52) Lemma. Let V be a symmetric open neighborhood of 1 in G 
with compact closure. There exists a set A c G such that: (1) for every 
x E G there exists a E A such that xH n Va =f. 0; (ii) if KeG is 
compact, there are only finitely many a E A such that K H n Va =f. 0. 

Proof: By Zorn's lemma there is a maximal set A c G such that if 
a, bE A then a¢. VbH. (The condition a ¢. VbH is symmetric in a and 
b since V = V- 1 and H = H- 1 .) For any x E G, xH intersects some 
Va, for otherwise x ¢. VaH for all a, contradicting maximality. Also, if 
KeG is compact and K H n Va =f. 0 for infinitely many a, there exist 
al, a2,'" E A (all distinct) and hb h2, ... E H such that ajh j E V K for 
all j. Since V K is compact, the sequence ajhj has a cluster point z. Pick 
a symmetric neighbor hood W of 1 such that WW c V. Then there exist 
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two distinct integers j and k such that ajhj E W z and akhk E W z, and 
hence ajhj E Vakhk· But then aj E VakH, contradicting the definition 
of A. I 

(2.53) Lemma. There exists a continuous f : G -> [0, (0) such that: 
OJ {y : fey) > O} n xH =f. 0 for all x E Gj (li) (supp f) n K H is compact 
for every compact KeG. 

Proof: Pick 9 E c;t(G) with g(x) g(x- 1) and g(l) > 0, let V 
{x : g(x) > O}, choose A c G as in Lemma (2.52) for this V, and set 
f(x) = EaEA g(xa- 1

). By (ii) of Lemma (2.52), for x in any compact 
set there are only finitely many nonzero terms in this sum, so f is well­
defined and continuous. Moreover, since supp I c Ua Va, for 
any compact KeG (supp f) n K H is contained in a finite union of 
Va's, which is compact. Finally, by (i) of Lemma (2.52), {y : fey) > 
O} = Ua Va intersects every coset xH. I 

A rho-function for the pair (G, H) is a continuous function p: G -> 

(0, (0) such that 

(2.54) Proposition. For any locally compact group G and any closed 
subgroup H, (G, H) admits a rho-function. 

Proof: Let I be as in Lemma (2.53), and set 

The properties of I easily imply that the integral converges for each x 
and defines a positive continuous function on G. Moreover, 

In conjunction with Proposition (2.54), the two theorems below give 
the existence of strongly quasi-invariant measures on G / H and a char­
acterization of all of them. 

(2.55) Lemma. If I E Cc(G) and PI 0 then J Ip = 0 for any 
rho-function p. 

Proof: This argument is much the same as in Theorem (2.49). We 
have 



60 A Course in Abstract Harmonic Analysis 

for all x E G. By Lemma (2.47) there exists ¢ ;:: 0 in Cc(G) such that 
P¢ 1 on q(supp f), and then 

o iip(x)¢(X)f(XC1)D.H(Cl)d~dx 

i i p(x~)¢(x~)f(X)D.H(Cl)D.G(~) dxd~ 

= i i p(x)¢(x~)f(x) d~ dx 

i f(x)p(x)P¢(q(x)) dx 

= i f(x)p(x) dx. 

(The purpose of ¢ is to make the integrals absolutely convergent.) I 

(2.56) Theorem. Given any rho-function p for the pair (G, H), there 
is a strongly quasi-invariant measure J1. on G / H such that 

(2.57) 1 PfdJ1.=l f(x)p(x)dx 
GIH G 

J1. also satisfies 

dJ1.x (yH) = p(xy) 
dJ1. p(y) 

(x,y E G). 

Proof: By Proposition (2.48) and Lemma (2.55), the map Pf -+ 

J f p is a well-defined positive linear functional on Cc( G / H), so it defines 
a Radon measure J1. on G/H. Next, the functional equation for rho­
functions implies that the quotient p(xy)/ p(y) depends only on the coset 
yH, so it defines a continuous function.>. : G x (G/H) -+ (0,00) by 
.>.( x, q(y)) p( xy) / p(y). Since the map P commutes with the left action 
of G, for any x E G and f E Cc(G) we have 

1 Pf(p)dJ1.x(p) = 1 Pf(x- 1p)dJ1.(p) 1 f(x-ly)p(y)dy 
GIH GIH G 

= i f(y)p(xy) dy = i f(y).>.(x, q(y))p(y) dy 

1 Pf(p)'>'(x,p) dJ1.(p) , 
GIH 

since P[f.>.(x,q(·))] (Pf).>.(x,·). This proves the strong quasi-
. invariance and gives the desired formula for dJ1.x/dJ1.. I 

(2.58) Proposition. If J1. is a quasi-invariant measure on G/H, then 
J1.(U) > 0 for every nonempty open set U. 
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Proof; Same as in Proposition (2.19). I 

(2.59) Theorem. Every strongly quasi-invariant measure on G / H 
arises from a rho-function as in (2.57), and all such measures are strongly 
equivalent. 

Proof; Suppose JL is strongly quasi-invariant, so that (dJLx/dJL)(p) = 

>.( x, p) where>. is positive and continuous on G x (G / H). For x, y E G, 
since JLxy = (JLx)y, the chain rule for Radon-Nikodym derivatives implies 
that 

>.(xy,p) = >.(x, yp)>.(y,p) 

for locally a.e. p. But both sides are continuous in p, so the set where 
they disagree is open, and it follows from Proposition (2.58) that (2.60) 
is valid everywhere. 

If f E Cc(G) and y E G, we have 

since 

1 r f(y-IX~)>'(x~,H)-ld~dJL(xH) 
G/HJH 

= 1 r f(x~)>'(yx~,H)-I>.(y,xH) d~dJL(xH) 
G/HJH 

= 1 r f(x~)>'(x~, H)-l d~ dJL(xH), 
G/HJH 

>'(yx~,H) = >.(y,x~H)>'(x~,H) = >.(y,xH)>'(x~,H) 

by (2.60). Hence f ---- fG/H fH f(x~)>'(x~, H)-l d~ dJL(xH) is a left­
invariant positive linear functional on Cc ( G), so there is a constant c > 0 
such that 

(2.61) 1 r f(x~)>'(x~, H)-l d~ dJL(xH) = cl f(x) dx. 
G/HJH G 

Let p(x) = c>.(x,H). Replacing f by f>'CH) in (2.61), we see that 

1 r f(x~) d~ dJL(xH) = 1 f(x)p(x) dx, 
G/H JH G 

so that (2.57) holds. Moreover, if", E H, 

fc f(x)p(x",) dx = ~G(",)-l J f(X",-I)p(X) dx 

= ~G(",)-ll r f(X~",-I)d~dJL(xH) 
G/HJH 

= ~G(",)-I~H("')l r f(x~)d~dJL(xH) 
G/HJH 
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~C('I1)-l ~H('I1) l I(x)p(x) dx. 

This being so for all I, we have p(X'l1) = ~C('I1)-l~H('I1)p(X). Since pis 
continuous and positive, it is a rho-function. 

Finally, suppose f.l and f.l' are strongly quasi-invariant measures with 
associated rho-functions p and p'. By the functional equation for rho­
functions, the quotient p'(y)/p(y) depends only on the coset of y and 
hence defines a positive continuous function ~ on G / H. For I E Gc ( G) 
we have P(fp'/p) (PI)~, so 

r Pldtl = rip' = r I(p'/p)p 
lCIH lc lc 

Hence df.l' / df.l ~. 

r (Pf)~df.l. 
lCIH 

I 

Theorem (2.59) implies that all quasi-invariant measures on G / H 
have the same null sets. Moreover, every set of finite measure for a 
quasi-invariant measure must be contained in a a-compact set (cf. the 
discussion of Haar measures in §2.3, which extends easily to this situa­
tion). It follows that all quasi-invariant measures on G/ H have the same 
locally null sets, and that a set in G / H is locally null if and only if its 
intersection with any compact set is null. We conclude this section by 
proving that the locally null sets in G / H are precisely the images under 
q of the locally null sets in G. For this purpose we choose a strongly 
quasi-invariant measure f.l on G / H with associated rho-function p, which 
will be fixed for the remainder of this discussion. 

First we observe that the definition (2.45) of PI makes sense when I 
is any Borel measurable function from G to [0,00] and yields a function 
PI: G/H -+ [0,00]. 

(2.62) Lemma. Suppose I : G -+ [0,00] is lower semi-continuous. 
Then PI is lower semi-continuous, and formula (2.57) holds for I. 

Proof: If X is a locally compact Hausdorff space, let us call a family 
<I> of functions from X to [0,00] directed if for every ~, 'If; E :F there is a 
X E :F with X ::.:: max(~, 'If;). We then have the following facts (Folland 
[39, Propositions (7.11) and (7.12)]); A function I : X -+ [0,00] is 
lower semi-continuous if and only if I = sUP</>E<f? ~ (pointwise) for some 
directed family <I> C Cc ( G), and in this case, f I dv SUP</>E<f? f ~ dv for 
any Radon measure v on X. 

Now suppose I ; G -+ [0,00] is lower semi-continuous, and let <I> be 
a directed family in Cc(G) such that I SUP</>E<f?~' For each x E G we 
have 

PI(xH) r I(xf,) df, = sup r ~(xf,) df, sup P~(xH). 
lH ~<f?lH ~<f? 
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But {P¢: ¢ E q>} is also directed since P(ma:x(¢,1f;)) ?: ma:x(P¢,P1f;), 
and {¢p : ¢ E q>} is directed with sUP¢E<l> ¢p f p, so P f is lower 
semi-continuous and we have 

r Pfd/-i=sup r P¢d/-i=sup r ¢(x)p(x)dx= r f(x)p(x)dx. 
Ja/H ¢E<l>Ja/H ¢E<l>Ja Ja 

I 

(2.63) Lemma. For every compact KeG there is a constant CK > 0 
such that lUI::; CK/-i(q(U)) for every open U c K. 

Proof: Pick f ?: 0 in Cc( G) with f = 1 on K, and let 

CK = [inf{p(x); x E suppJ}fl, 

Since q-l(q(U)) :::J U, we have 

lUI fa f(x)xu(x) dx ::; CK fa f(x)xq(u) (q(x))p(x) dx. 

But f(Xq(u) 0 q) is lower semi-continuous since U is open, so by Lemma 
(2.62), 

lUI -:; CK r Pf· Xq(U) d/-i -:; CK/-i(q(U)). 
Ja/H 

I 

(2.64) Theorem. A set E c G/H is locally null (with respect to any 
quasi-invariant measure /-i) if and only ifq-I(E) is locally null in G (with 
respect to Haar measure). 

Proof; Suppose E is locally null in G / Hand K is compact in G; 
we wish to show that IK n q-I(E)1 = O. Choose an open set V :::J K 
with compact closure. Since q(K) n E is null, for any (; > 0 there is 
an open set W in G/H such that W :::J q(K) n E and /-i(W) < (;/CV' 
where Cv is as in Lemma (2.63). Let U = Vnq-l(W). Then U is open, 
U :::J K n q-l(E), and by Lemma (2,63), lUI -:; CV/-i(W) < c. Since (; is 
arbitrary, IK n q-l(E)1 = O. 

Conversely, suppose q-l(E) is locally null in G and K is compact in 
G/H; we wish to show that /-iCE n K) = O. By Lemma (2.47) we can 
choose f ?: 0 in Cc(G) such that Pf = 1 on K. Let A q-l(E n K) n 
(supp J); then IAI = 0, so for any c > 0 there is an open set U :::J A 
such that lUI < c/llfpllsup. Then fXup is lower semi-continuous, so by 
Lemma (2.62), 

r P(fxu)d/-i = r f(x)Xu(x)p(x)dx < (;. 
Ja/H Ja 

But by the construction of U we have fxu ?: f(XEnK oq), so P(fxu) ?: 
P f· XEnK XEnK. It follows that /-i(EnK) < c, and since (; is arbitrary, 
/-i(EnK) O. I 

" 
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2.7 Notes and References 

The theory of topological groups was developed in the 1930's. For second 
countable groups, the existence of Haar measure was first proved by Haar 
[53] and the uniqueness was first proved by von Neumann [126]. The 
first systematic treatment of analysis on locally compact groups using 
Haar measure was given by Weil [128], who showed that the countability 
assumptions were unnecessary. Weil also proved a theorem to the effect 
that essentially the only measurable groups possessing an invariant mea­
sure are the locally compact groups; see [128] for the precise statement. 
Our proofs of the existence and uniqueness of Haar measure follow Weil 
[128] and Loomis [75], respectively. H. Cartan [20] devised an argument 
that yields existence and uniqueness simultaneously and avoids the use 
of the axiom of choice, which enters our existence proof in the form of 
Tychonoff's theorem. 

For more detailed information about topological groups and Haar 
measure, as well as extensive historical references, the reader may consult 
Hewitt and Ross [62]. Further examples of formulas for Haar measure 
on specific groups or classes of groups may be found in Helgason [60], 
Hewitt and Ross [62]' and Bourbaki [15]. For more about the p-adic 
numbers and other local fields, see Koblitz [71] and Taibleson [116]. 

The existence of quasi-invariant measures on homogeneous spaces 
G/ H (with merely measurable rho-functions) was first proved by Mackey 
[80] under the assumption that G is second countable. Bruhat [19] and 
Loomis [76] showed how to obtain strongly quasi-invariant measures with 
no countability hypotheses. Our insistence on strongly quasi-invariant 
measures is motivated by our development of the theory of induced rep­
resentations in Chapter 6. 

Formula (2.57), rewritten as 

(2.65) r f(x)p(x) dx = r r f(x~) d~ dJL(xH), lc lC/H1H 
is clearly a sort of Fubini theorem relating Haar measure ~ on H, the 
quasi-invariant measure JL on G / H, and the weighted Haar measure 
p(x) dx on G. We have proved this formula for f E Cc(G) (Theo­
rem (2.56)) and for f nonnegative and lower semi-continuous (Lemma 
(2.62)). Although we shall have no need of further results here, it is 
evidently of interest to know if (2.65) remains valid for more general 
measurable functions f. The answer is affirmative for any f E £1 (G) 
and for any f ~ 0 that vanishes outside a a-finite set; the details can be 
found in Reiter [103] and Bourbaki [15]. 

When G is second countable, these assertions actually do reduce to 
Fubini's theorem. Indeed, in this case there is a Borel set Y c G that 
meets each coset of H in exactly one point. (See Mackey [80, Lemma 
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(1.1)], or Baggett and Ramsay [4, Lemma 7]. In connection with the 
latter, note that every second countable locally compact Hausdorff space 
is Polish.) qlY is then is a measurable bijection from Y to G / H, the 
map (y,~) ---- y~ is a measurable bijection from Y x H to G. In short, G 
can be identified as a measurable space with G/ H x H, and when this 
identification is made, (2.65) says that the measure p(x) dx on G is the 
product of the measure JL on G / Hand Haar measure on H. 





3 
Basic Representation Theory 

In this chapter we present the basic concepts in the theory of unitary 
representations of locally compact groups and derive a few fundamental 
results: Schur's lemma, the correspondence between unitary representa­
tions of G and *-representations of £1 (G), and the Gelfand-Raikov exis­
tence theorem for irreducible representations. The main tool in proving 
the latter theorem is the connection between cyclic representations and 
functions o~ positive type, an extremely fertile idea that will playa role 
in a number of places later in the book. 

3.1 Unitary Representations 

Let G be a locally compact group. A unitary representation of G is 
a homomorphism 7r from G into the group U(1t",) of unitary operators 
on some nonzero Hilbert space 1t", that is continuous with respect to 
the strong operator topology - that is, a map 7r: G ---- U (1t",) that 
satisfies 7r(xy) = 7r(x)7r(Y) and 7r(X-I) = 7r(x)-l = 7r(x)*, and for which 
x ---- 7r(x)u is continuous from G to 1t", for any U E 1t",. 1t", is called the 
representation space of 7r, and its dimension is called the dimension 
or degree of 7r. 

More generally, one can consider nonunitary representations of G, 
that is, continuous homomorphisms from G to the group of invertible 
continuous linear operators on some topological vector space. However, 
in this book we shall consider only unitary representations. Accordingly, 
although we shall sometimes add the word "unitary" for emphasis, when 
we say "representation" we shall always mean "unitary representation" 
unless the contrary is explicitly stated. 

We do not require a representation 7r to be continuous in the norm 
topology of £(1t",); norm continuity is too restrictive a condition to be 
of much interest. However, it is worth noting that strong continuity is 

67 
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implied by the apparently less restrictive condition of weak continuity, 
namely, that x -+ (11"( X )u, v) should be continuous from G to C for each 
u, v E 1i1f • This is because the weak and strong operator topologies 
coincide on U(1i1f ). Indeed, if {Ta} is a net of unitary operators that 
converges weakly to T, then for any u E 1i1f , 

II(Ta - T)u112 = IITaul12 2 Re(Tau, Tu) + IITul12 

= 211ull2 2 Re(Tau,Tu). 

The last term converges to 211Tul12 211u112, so II(Ta - T)ull -+ O. 
Unitary representations are likely to be found whenever the group G 

acts on a locally compact Hausdorff &pace S. In this case G also acts on 
functions on S, by 

[1I"(x)fl(s) f(x- 1s). 

If S has a G-invariant Radon measure tL, then 11" defines a unitary repre­
sentation on L2(tL). (The continuity of 11" results from the argument that 
proves Proposition (2.41).) More generally, suppose G acts on S, and S 
admits a strongly quasi-invariant measure tL; that is, a Radon measure 
tL such that dtL( xs) = ¢( x, s) dtL( s) for some positive continuous function 
¢. Then one can modify 11" to obtain a unitary representation of G on 
L2(tL), as follows: 

[i(x)fl(s) = ¢(x,x- 1 S)-1/2 f(x- 1 s). 

This is easily seen to be unitary: 

J ¢(x,x- 1 s)-llf(x-1s)12 dtL(s) J ¢(x, s)-llf(s)12 dtL(xs) 

= J If(s)1 2 dtL(s). 

We have i(xy) = 7f(x)7f(y) because the chain rule for Radon-Nikodym 
derivatives gives ¢(xy,s) = ¢(x,ys)¢(y,s), and the continuity of 11" fol­
lows as above. 

The most basic example of these constructions arises from the action 
of G on itself by left or right translations. Left translations yield the 
left regular representation 1I"L of G on L2(G); this is nothing but the 
representation 

defined by (2.5). The right translation operators Rx likewise define a 
unitary representation 1I"R on L2(G,p) where p is right Haar measure on 
G, or they can be made into.a unitary representation 7fR on L2( G) (with 
left Haar measure) by the device described above: 
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[rrR(x)f](y) Rxf(y) f(yx), 

[?TR(X)!l(y) ::::: ll.(x) 1/2 Rxf(y) ll.(x) 1/2 f(yx). 

rrR and ?TR are both called the right regular representation of G. 
Any unitary representation rr of G on 1t1r determines another repre­

sentation 1f on the dual space 1t~ of 1t1r , namely 1f(x) = rr(x- l ), where 
the prime denotes the transpose. This may seem a little confusing, as 
one normally considers a Hilbert space to be identical to its dual; but 
the identification of 1t1r with 1t~ is antilinear, and if we do not make 
it we are led to consider the transpose rather than the adjoint of an 
operator. Thus, if we choose an orthonormal basis for 1t1r , so that rr(x) 
is represented by a matrix M(x) ,.then the matrix for 1f(x) is the inverse 
transpose of M(x), and since rr is unitary this is nothing but the com­
plex conjugate of M(x). 11' is called the contragredient of rr. In some 
cases - for example, when there is a basis for 1t1r with respect to which 
the matrices M(x) are all real 11' is equivalent to rr in a sense to be 
described shortly, but in general it is not. 

We now introduce some standard terminology associated to unitary 
representations. If rrl and rr2 are unitary representations of G, an inter­
twining operator for rrl and rr2 is a bounded linear map T : 1t1rl --+ 

1t1r2 such that Trrl (x) ::::: rr2(x)T for all x E G. The set of all such op­
erators is denoted by C(rrl,rr2). rrl and rr2 are (unitarily) equivalent 
if C(rrl, rr2) contains a unitary operator U, so that rr2(x) = Urrl (x)U- l . 
We shall not consider any other equivalence relation among representa­
tions here, so we shall generally omit the adverb "unitarily." 

Example: The right regular representations rrR and ?TR on L2(G, p) 
and L 2 ( G, >..) are equivalent, and f --+ ll. 1 /2 f is an intertwining operator. 
Moreover, rrR is equivalent to the left regular representation rrL, and 
U f (x) = f (x - 1) is an intertwining operator. 

We shall write C(rr) for C(rr,rr). This is the space of bounded oper­
ators on 1t1r that commute with rr(x) for every x E G; it is called the 
commutant or centralizer of rr. C(rr) is obviously an algebra that 
is closed under weak limits; it is also closed under taking adjoints, for 
if T E C(rr) then T*rr(x) = [rr(x-l)T]* [Trr(x- 1)]" = rr(x}T*. In 
short, C(rr) is a weakly closed C* algebra of operators on 1t1r , that is, a 
von Neumann algebra. 

Suppose M is a closed subspace of 1t1r . M is called an invariant 
subspace for rr if rr(x)M C M for all x E G. If M is invariant and 
=I- {OJ, the restriction of rr to M, 

rrM(x) rr(x)IM, 

defines a representation of G on M, called a subrepresentation of rr. 
We shall consistently use the notation rrM for the subrepresentation of 
rr on M. If rr admits an invariant subspace that is nontrivial (Le., =I- {OJ 
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or 1t",) then 1r is called reducible, otherwise 1r is irreducible. 
If {1r i liEf is a family of unitary representations, their direct sum 

EEhi is the representation 1r on 1t EB1t"'i defined by 1r(x)(2:: Vi) = 

2::1ri(X)Vi (Vi E 1t"'i)' (See Appendix 1 for more about direct sums of 
Hilbert spaces.) In this case the 1t"'i's, as subspaces of 1t, are invariant 
under 1r, and each 1ri is a subrepresentation of 1r. In fact, subrepresen­
tations always arise as summands in direct sums: 

(3.1) Proposition. If M is invariant under 1r, then so is MJ.. 

Proof: If u E M and V E MJ., (1r(x)v, u) 
1r(x)v E MJ.. 

(V,1r(X-l)U) = 0, so 
I 

(3.2) Corollary. If 1r has a nontrivial invariant subspace M, then 1r is 
the direct sum of 1rM and 1rMl. . 

We remark that this result is false for non-unitary representations. 
For example, 1r(t) = (~ ~) defines a representation of Ron C 2 , and the 
only nontrivial invariant subspace is the one spanned by (1,0). 

If 1r is a unitary representation of G and u E 1t"" the closed linear 
span Mu of {1r(x)u : x E G} in 1t", is called the cyclic subspace 
generated by u. Clearly Mu is invariant under 1r. If Mu 1t"" u is 
called a cyclic vector for 1r. 1r is called a cyclic representation if it 
has a cyclic vector. 

(3.3) Proposition. Every unitary representation is a direct sum of 
cyclic representations. 

Proof: Let 1r be a representation on 1t",. By Zorn's lemma, there is 
a maximal collection {Ma}aEA of mutually orthogonal cyclic subspaces 
of 1t",. If there were a nonzero u E 1t", orthogonal to all the Ma's, the 
cyclic subspace generated by u would also be orthogonal to the MQ's by 
Proposition (3.1), contradicting maximality. Hence 1t", EBMQ, and 
1r = EB1rM",. I 

We now give some results relating operators in C(1r) to reducibility 
properties of 1r. The first of these is very simple, but the next is one of 
the fundamental theorems of the subject. 

(3.4) Proposition. Let M be a closed subspace of 1t", and let P be 
the orthogonal projection onto M. Then M is invariant under 1r if and 
only if P E C(1r). 

Proof: If P E C(1r) and v E M, then 1r(x)v 1r(x)Pv P1r(x)v E 
M, so M is invariant. Conversely, if M is invariant we have 1r(x)Pv 
1r(x)v = P1r(x)v for V EM and 1r(x)Pv 0 = P1r(x)v for v E MJ. (by 
Proposition (3.1)). Hence 1r(x)P P1r(x). I 
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(3.5) Schur's Lemma. 

a. A unitary representation 7r of G is irreducible if and only if C( 7r) 
contains only scalar multiples of the identity. 

b. Suppose 7r1 and 7r2 are irreducible unitary representations of G. If 
7r1 and 7r2 are equivalent then C( 7r1, 7r2) is one-dimensional; other­
wise, C(7rI,7r2) = {a}. 

Proof: (a) If 7r is reducible, C(7r) contains nontrivial projections, by 
Proposition (3.4). Conversely, suppose T E C(7r) and T =I- cI.· Then 
A = !(T + T*) and B = -t(T - T*) are in C(7r), and at least one 
of them - say, A - is not a multiple of I. A is self-adjoint, so every 
operator that commutes with A, and in particular every 7r(x), commutes 
with all the projections XE(A), E C R (Theorem (1.51c)). Thus C(7r) 
contains nontrivial projections, and so 7r is reducible by Proposition (3.4) 
again. 

(b) If T E C( 7r1, 7r2) then T* E C (7r2, 7rd because 

T*7r2(X) = [7r2(X-I)Tj* = [T7rI(X-I)]* = 7r1(x)T*. 

It follows that T*T E C(7rd and TT* E C(7r2)' so T*T = cI and 
TT* = cI. Hence, either T = 0 or c- I /2T is unitary. This shows that 
C(7rI,7r2) = {a} precisely when 7r1 and 7r2 are inequivalent, and that 
C( 7r1, 7r2) consists of scalar multiples of unitary operators. If TI , T2 E 

C(7rI, 7r2) then T2-
ITI = T2TI E C(7rd, so TilTI = cI and TI = CT2, so 

dimC(7rI,7r2) = 1. I 

(3.6) Corollary. IfG is Abelian, then every irreducible representation 
of G is one-dimensional. 

Proof: If 7r is a representation of G, the operators 7r(x) all commute 
with one another and so belong to C(7r). If 7r is irreducible, we there­
fore have 7r(x) = cxI for each x E G. But then everyone-dimensional 
subspace of 1t", is invariant, so dim 1t", = 1. I 

The irreducible unitary representations of a locally compact group G 
are the basic building blocks of the harmonic analysis associated to G. 
Actually, this assertion is a bit premature at this point, for it may not be 
obvious that a given group G has any irreducible representations except 
the trivial one-dimensional representation 7ro(x) == I. But, in fact, G 
always has enough irreducible representations to separate points: this 
is the Gelfand-Raikov theorem, the final major result of this chapter. 
Once one has this assurance, the basic questions of harmonic analysis 
on G are the following. 

i. Describe all the irreducible unitary representations of G, up to 
equivalence. 



72 A Course in Abstract Harmonic Analysi~ 

ii. Determine how arbitrary unitary representations of G can be built 
out of irreducible ones. 

iii. Given a specific unitary representation of G such as the regular 
representation, show concretely how to build it out of irreducible 
ones. 

The answer to question (i) will, of course, depend strongly on the 
nature of G. We shall discuss a number of examples in later chapters, 
and in Chapter 6 we shall develop a general technique that can be used 
to classify the irreducible representations of many groups. 

As to question (ii), one might hope that every representation would 
be a direct sum of irreducible subrepresentations. This is the case if 
G is compact, as we shall see in §5.1, but not otherwise. For example, 
consider the regular representation of Ron £2(R), [7r(x)f](t) = f(t-x). 
This representation has no irreducible subrepresentations. If there were 
one, the space on which it acts would be one-dimensional by Corollary 
(3.6), hence of the form {cf : c E C} for some f =I- 0 E £2. But then 
for each x E R we would have f(t - x) = cxf(t) for some Cx E C of 
modulus 1, so If(t)1 would be constant. This is impossible for f E £2 
unless f = o. 

Instead, the Fourier inversion formula exhibits 7r as a direct integral 
of irreducible representations. Namely, for each ~ E R, 7r€(x) = e- 27ri€x 
(acting by scalar multiplication on C) is an irreducible representation 
of R. If f E £2(R), we have f(t) = J e27ri€t i(~) d~ (with the integral 
suitably interpreted) where i is the Fourier transform of f, and hence 

There is a general theory of direct integrals of Hilbert spaces, includ­
ing direct sums as special cases, that allows one construct direct integrals 
of unitary representations in the abstract setting. It can then be shown 
that every unitary representation is a direct integral of irreducible ones. 
There remains the question of uniqueness of direct integral decomposi­
tions, which is more delicate than one might suspect at first. We shall 
address these issues for Abelian groups in §4.4 and for compact groups 
in §5.1, and we shall sketch the results for non-compact, non-Abelian 
groups in §7.4. 

Our concern with question (iii) will be largely limited to the regular 
representation. Its answer in this case, for a given group G, is called 
the "Plancherel theorem" for G. We shall prove the Plancherel theorem 
for Abelian groups in §4.2 and for compact groups (where it is part of 
the Peter-Weyl theorem) in §5.2, and we shall discuss the Plancherel 
theorem for non-compact, non-Abelian groups in §7.5. 
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3.2 Representations of a group and its group algebra 

If G is a locally compact group, we recall from §2.5 that £1 (G) is 
a Banach *-algebra under the convolution product and the involution 
f*(x) = ~(x-l)f(x-l), where ~ is the modular function of G. In this 
section we show that there is a one-to-one correspondence between the 
unitary representations of G and the nondegenerate *-representations of 
LI(G). 

Any unitary representation 7r of G determines a representation of 
£1 ( G), still denoted by 7r, in the following way. If f E £1 ( G), we define 
the bounded operator 7r(J) on 1t", by 

7r(J) = I f(x)7r(x) dx. 

We interpret this operator-valued integral in the weak sense, as explained 
in Appendix 3. That is, for any u E 1t", we define 7r(J)u by specifying 
its inner product with an arbitrary v E 1t"" and the latter is given by 

(3.7) (7r(J)u, v) = I f(x) {7r(x)u, v) dx. 

Since (7r(x)u, v) is a bounded continuous function of x E G, the integral 
on the right is the ordinary integral of a function in £1 (G). It is obvious 
from this formula that (7r(J)u, v) depends linearly on u and antilinearly 
on v and that 1{7r(J)u,v)1 ~ Ilflllllullllvll, so 7r(J) is indeed a bounded 
linear operator on 1t", with norm 117r(J)11 ~ IlfllI. 

Example. Let 7rL be the left regular representation of G, 7rL(X) = Lx. 
By (2.38), 7rL(J) is convolution with f on the left: 

(3.8) [7rL(J)g] = I f(y)Lygdy = f * g. 

(3.9) Theorem. Let 7r be a unitary representation of G. The map f ----
7r(J) is a nondegenerate *-representation of £1 (G) on 1t",. Moreover, for 
x E G and f E £1 (G), 

(3.10) 

Proof: The correspondence f ---- 7r(J) is obviously linear. Formally, 
we have 

7r(J*g) = II f(y)g(y- 1x)7r(x)dydx= II f(y)g(x)7r(yx)dxdy 

= II f(y)g(x)7r(Y)7r(x) dxdy = 7r(J)7r(g), 

7r(f*) = I ~(x-l)f(x-I)7r(x)dx= I f(X)7r(X-I)dx 
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= j[f(X)7r(X)]*dX = 7r(J)*, 

7r(x)7r(J) = j f(Y)7r(x)7r(Y) dy = j f(Y)7r(xy) dy 

= j f(X-IY)7r(Y) dy = 7r(Lxf), 

7r(J)7r(x) = j f(Y)7r(Y)7r(x) dy = j f(Y)7r(Yx) dy 

= ~(X-I) j f(yx- I )7r(Y) dy = ~(X-I )7r(Rx-1f). 

Each of these calculations is justified by applying the operators to u E 

1t", and taking the inner product with v E 1t", as in (3.7). In a cou­
ple of places we use the fact that integration of vector-valued functions 
commutes with application of bounded linear maps (see Appendix 3) to 
bring an operator 7r(x) into or out of an integral; details are left to the 
reader. 

This shows that 7r is a *-homomorphism and proves (3.9). To see that 
7r is nondegenerate, suppose u =I- 0 E 1t",. Pick a compact neighborhood 
Vof1 in Gsuch that 117r(x)u-ull < Ilull for x E V, and set f = IVI-Ixv. 
Then 

117r(J)u - ull = ,~,lli[7r(X)U - u] dxll < Ilull, 

and in particular 7r(J)u =I- o. I 

(3.11) Theorem. Suppose 7r is a nondegenerate *-representation of 
L I (G) on the Hilbert space 1t. Then 7r arises from a uniq ue unitary 
representation of G on 1t according to (3.7). 

Proof: The idea is that 7r(x) should be the limit of 7r(J) as f ap­
proaches the o-function at x. Thus, let {'l/Ju} be an approximate identity 
in £1, as in Proposition (2.42). If fELl, we have 'l/Ju * f ---- f in £1, 
so (Lx'I/Ju) * f = Lx('l/Ju * f) ---- Lxf in £1 for any x E G, and hence 
7r (Lx 'l/Ju )7r(J)v ---- 7r(Lxf)v for all v E 1t. 

Let V be the (finite) linear span of {7r(J)v : f E £1, v E 1t}. Then V 
is a dense subspace of 1t, for if u 1.. V then 0 = (u,7r(J)v) = (7r(J*)u, v) 
for all v and f, whence u = 0 since 7r is nondegenerate. The preceding 
calculations show that the operators 7r(Lx'I/Ju) converge strongly on V 
to an operator 7T=(x) : V ---- V such that 7T=(x)7r(J)v = 7r(Lxf)v. 7T=(x) is 
well-defined because 

L 7r(fi)Vj = 0 ===? L 7r(Lxfi)Vj = lim L 7r(Lx'I/Ju )7r(Jj)Vj = O. 

Moreover, the operators 7r(Lx'I/Ju) satisfy 117r(Lx'I/Ju) II ::; IILx'I/Julll = 1, 
by Proposition (1.24b). Therefore, the operator 7T=(x) extends uniquely 
to 1t in such a way that 117T=(x)II ::; 1 and 7T=(x)7r(J) = 7r(Lxf). 
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We claim that if is a unitary representation of G. First, 

if(xY)7r(J) = 7r(LxyJ) = 7r(LxLyJ) = if(x)7r(LyJ) = if(x)if(Y)7r(J), 

so if(xy) = if(x)if(y) on V and hence on 1t. Next, if(l) = I, so if is a 
homomorphism from G to the group of invertible operators on 1t. Since 

Ilull = Ilif(x- 1)if(x)ull ~ Ilif(x)ull ~ Ilull (u E 1t), 

if(x) is an isometry and hence a unitary operator. Finally, if Xa ---- x in 
G then Lxuf ---- Lxf in Ll for any fELl, so if(xa)7r(J) = 7r(Lx",J) ----
7r(Lxf) = if(x)7r(J) strongly. Thus if(xa) ---- if(x) strongly on V, and 
since Ilif(xa)11 = 1 for all Q, a simple f/3-argument shows that if(xa) ---­
if(x) strongly on 1t, so if is continuous. 

It remains to show that 7r(J) = if(J) for f E £I, where if(J) arises 
from if by (3.7). But if f,g E £I we have f*g = J f(y)Lygdy by (2.38), 
where we interpret the integral as the integral of an £I-valued function 
of y. Since 7r is a bounded linear map from £I to £(1t), it commutes 
with integration (see Appendix 3), so 

7r(J)7r(g) = 7r(J * g) = J f(Y)7r(Lyg) dy = J f(y)if(Y)7r(g) dy 

= [J f(Y)if(Y)dY] 7r(g) = if(J)7r(g). 

Thus if(J) = 7r(J) on V and hence on 1t. 
Finally, suppose 1? is another unitary representation of G such that 

1?(J) = 7r(J) for f E £I (G). It follows from (3.7) that (1?(x)u, v) = 
(if(x)u,v) for all x E G and all u,v E 1t, and hence 1?(x) = if(x) for all 
x E G. I 

Let 7r be a unitary representation of G. If G is discrete, the associated 
representation of £I (G) includes the representation of G itself, since 
7r(x) = 7r(ox) where Ox is the function whose value at x is 1 and whose 
value elsewhere is O. On the other hand, if G is not discrete and 7r is 
infinite-dimensional, the families 

are quite different. (For one thing, the operators 7r(J) are rarely invert­
ible.) In fact, the C* algebras generated by these two families frequently 
have trivial intersection. However, they are related: 

(3.12) Theorem. Let 7r be a unitary representation of G. 

a. The C* algebras generated by 7r(G) and 7r(Ll(G)) have the same 
closure in the strong and weak operator topologies. 

b. T E £(Hrr) belongs to C(7r) if and only ifT7r(J) = 7r(J)T for every 
f E £I(G). 
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c. A closed subspace M of 1t1r is invariant under 7r if and only if 
7r(f)M eM for every f E Ll(G). 

Proof: (a) First, we claim that if 9 E Cc(G), 7r(g) is the strong limit 
of Riemann sums EE = Eg(Xj)7r(xj}IEjl, where E {Ej } denotes 
a finite partition of suppg and Xj E Ej . Indeed, given € > 0 and 
Ul,· .. ,Un E 1t1r , by using the uniform continuity of the maps x ---. 
g(x}7r(x)um it is easy to find a partition E {Ej } of supp 9 such that 
IIg(x)7r(x)um - g(Y}7r(y)um ll < f for m 1, ... , n when x and y lie in 
the same E j , so that IIEEUrn 7r(g )um II < €I supp gl for m 1, ... ,n. 
Thus every strong neighborhood of 7r(g) contains sums EE. 

Now, if f E Ll(G), f is the Ll limit of functions in Cc(G), so 7r(f) 
is the norm limit of operators 7r(g) with 9 E Cc(G). These in turn 
are strong limits of Riemann sums, and these sums are in the algebra 
generated by 7r(G). On the other hand, the proof of Theorem (3.11) 
shows that 7r( x) is the strong limit of 7r (Lx 1/Ju) as U ---. {I}. Hence the 
algebras generated by 7r(G) and 7r(Ll(G)) have the same strong closure, 
and a fortiori the same weak closure. 

(b) If T E C(7r) then T clearly commutes with every element of the 
weak closure of the algebra generated by 7r(G), and in particular with 
every 7r(f); and vice versa. 

(c) This follows from (b) together with Proposition (3.4) (and its 
analogue for representations of V(G), which has the same proof). I 

3.3 Functions of Positive Type 

A function of positive type on a locally compact group G is a function 
¢ E Loo( G) that defines a positive linear functional on the Banach *­
algebra LI( G), i.e., that satisfies 

We have 

1 (1* * f)¢ ::::: 0 for all f E Ll(G). 

1(1**J)¢= 11 f:l.(y-l)f(y-l)f(y-1x)¢(x)dydx 

= 11 f(y)f(yx)¢(x) dy dx, 

so reversing the order of integration and substituting y-1x for x shows 
that ¢ is of positive type if and only if 

(3.13) 
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We shall prove below (Corollary (3.21)) that any function of positive type 
agrees locally a.e. with a continuous function, and from that point on all 
functions of positive type will be implicitly assumed to be continuous. 
We shall set 

P = peG) = the set of all continuous functions of positive type on G. 

(3.14) Proposition. If ¢ is of positive type then so is ¢. 

Proof: By examination of (3.13) one sees that fU* * J)¢ is the com­
plex conjugate of f[(J)* * Jl¢. The last integral is nonnegative for all 
JELl, hence so is the first. I 

There is a beautiful connection between functions of positive type and 
unitary representations. The first ingredient is the following result. 

\ 
(3.15) Proposition. If1r is a unitary representation ofG and U E h,,,, 
let ¢(x) = {1r(x)u, u}. Then ¢ E P. 

Proof: ¢ is clearly continuous. Also, ¢(y-1X) = (1r(y-l)1r(X)U,u) = 
(1r(x)u,1r(Y)u), so if JELl, 

II J(x)J(y)¢(y-1x ) dxdy II (J(x)1r(x)u, J(Y)1r(Y)u) dxdy 

= 111rU)uII2 2: O. 

(3.16) Corollary. If J E L2( G), let lex) = J(x- 1 ); then J * 1 E P. 

Proof: Let 1r be the left regular representation: then 

(1r(x)J,1) I J(x- 1y)J(y) dy = J * l(x). 

Hence J * 1 E P in view of Proposition (3.14). 

I 

We now show that every nonzero function of positive type arises from 
a unitary representation as in Proposition (3.15). To begin with, if ¢ #- 0 
is of positive type, it defines a positive semi-definite Hermitian form on 
£leG) by 

(3.17) U,g)4> l(g**J)¢= II J(x)g(y)¢{y-lx)dxdy, 

which clearly satisfies 

(3.18) 

Let N = {J E L1 : (J,f)4> O}. By the Schwarz inequality (cf. Ap­
pendix 1), J EN if and only if (J,g)4> = 0 for all g ELI. The form 
{-, '}4> therefore induces an inner product on the quotient space Ll IN, 
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still denoted by (-, .)",. We denote the Hilbert space completion of Ll IN 
by 'It"" and we denote the image of f E Ll in Ll IN c 'It", by 1. By 
(3.18), 

Now, if f,g E Ll and x E G, 

(Lxf, Lxg)", II f(x- 1y)g(x lZ)¢(y-lZ)dydz 

II f(y)g(z)¢«xy)-I(XZ)) dydz (J,g)",. 

In particular, Lx(N) eN, so the operators Lx yield a unitary represen­
tation 7r '" of G on 'It", that is determined by 

(3.19) 

In view of (3.8), it is easily verified that the corresponding representation 
of Ll(G) on 'ltn is given by 7r",(J)!j (J * gr. 

(3.20) Theorem. Given a function ¢ of positive type on G, let 'It", be 
the Hilbert space determined as above by the Hermitian form (3.17), 
let f -+ 1 be the canonical map from Ll(G) to 'ltn' and let 7r", be the 
unitary representation of G on 'ltn defined by (3.19). There is a cyclic 
vector dor 7r", such that 7r",(J)e 1 for all f E Ll and ¢(x) == (7r",(x)e, e) 
locally a.e. 

Proof: Let {'l/Ju} be an approximate identity. Then {'l/Ju} is again 
an approximate identity, so for any f ELI, (1,;ju)", J('l/Ju * j)¢ -+ 

J f¢· Also, lI;jull'H<I> ~ 11¢1I~211'I/Julh 11¢11~2. I~ follows easily that 
lim (v, 'l/Ju) '" exists for all v E 'It"" and hence that 'l/Ju converges weakly 
in 1t", to an element e such that (1, e}", J f¢ for all f ELI. 

If f,g ELI and y E G, we have 

and hence 

(7r",(y-l)g, e)", 

I g(yx)¢(x) dx 

(Ly-lgr,e}", 

I g(x)¢(y- 1x) dx, 

(g, 1)", == I (g, 7r",(y)e)",f(y) dy (g,7r,p(J)e),p. 

It follows that 1 7r",(J)e for all f ELI. It also follows that if 
(g,7r",(y)e) = ° for all ytheng O,sothelinearspanof{7r",(y)e:yE G} 
is dense in 'It", and e is a cyclic vector. Moreover, 
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j{f,7r",(Y)f)f{y)dy lim j{:;Pu,7r",{Y)f)",7(Y)dY = lim(:;pu,jg)", 

(f,1)", f)", = j ¢(y)f(y) dy 

for every f E L1, and hence 

¢(y) locally a.e. I 

(3.21) Corollary. Every function of positive type agrees locally a.e. 
with a continuous function. 

(3.22) Corollary. If¢ E 'P then 1I¢1I00 = ¢(1) and ¢(X-1) = ¢(x). 

Proof; We have ¢(x) (7r(x)u,u) for some 7r and u, so 1¢(x)1 = 

~)u,u)1 s lIuII2 ¢(1) and ¢(X-1) {7r(X-l)u,u} = (u,7r(x)u) = 
¢(x). I 

Proposition (3.15) and Theorem (3.20) establish a correspondence be­
tween cyclic representations and functions of positive type. (The repre­
sentation 7r in Proposition (3.15) is not assumed cyclic, but (7r(x)u, u) 
clearly depends only on the subrepresentation of 7r on the cyclic subspace 
generated by u.) The picture is completed by the following uniqueness 
theorem. 

(3.23) Proposition. Suppose 7r and p are cyclic representations of G 
with cyclic vectors u and v. If {7r(x)u,u} = {p(x)v,v} for all x E G, 
then 7r and p are unitarily equivalent; more precisely, there is a unitary 
T E C(7r, p) such that Tu v. 

Proof: For any x, y E G we have 

(7r(X)u,7r(y)u) (7r(y- 1x)u,u) (p(y-1 X)V,V) = (p(x)v,p(y)v). 

It follows that if we define Ti7r(x)u] = p(x)v, then T extends by linearity 
to an isometry from the span of {7r{x)u: x E G} to the span of {p(x)v ; 
x E G}, and it then extends by continuity to a unitary map from 1t1f 
to 1tp' Since p(y)T[7r{x)u] p(yx)v T[7r{Y)7r(x)u] we have p(y)T = 
T7r(y),soTEC(7r,p). I 

(3.24) Corollary. If 7r is a cyclic representation of G with cyclic vector 
u and ¢(x) (7r(x)u, u), then 7r is unitarily equivalent to the represen­
tation 7r", defined by (3.19). 

Remark. The proof of Proposition (3.23) shows that if 7r and p 
are arbitrary unitary representations of G, U E 1t1f , V E 1tp , and 
(7r(x)u,u) (p(x)v,v) for all x, there exists T E C(7r,p) such that 
Tu = v. Namely, if M is the cyclic subspace generated by u, the proof 
yields an isometric T E C (7rM , p), and one can extend T from M to 1t1f 
by setting T 0 on M.L . 
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The set P of continuous functions of positive type is a convex cone. 
We single out some subsets of P for special attention: 

P 1 ={¢EP:II¢lloo I} {¢EP:¢(l)=l}, 

Po {¢ E P: 1I¢lIoo ::; I} {¢ E P: 0::; ¢(1) ::; I}. 

(The equalities on the right follow from Corollary (3.22).) PI and Po 
are bounded convex sets, and we set 

e (Pj ) = the set of extreme points of Pj , (j=1,2). 

The extreme points of PI are of particular interest for the following 
reason. 

(3.25) Theorem. If ¢ E PI, then ¢ E e (PI) if and only if the repre­
sentation 11'", of Theorem (3.20) is irreducible. 

Proof: Suppose 11'", is reducible, say 1t", = M EB Ml. where M is 
nontrivial and invariant under 11'",. Let € E 1t", be as in Theorem (3.20). 
Since € is a cyclic vector for 11'"" it cannot belong to M or Ml., so 
€ U + v with U E M, v E Ml., and u =f 0 =f v. But then 

¢(x) (7r(x)€, €)", = (11'", (x)u, u) + (11'", (x)v, v) = CI'l/lI(X) + c2'1/12(x) 

where '1/11, '1/12 E PI, Cl = IIull2 and C2 Ilv11 2, and Cl + C2 ¢(O) l. 
Thus ¢ is not extreme. 

On the other hand, suppose 11'", is irreducible, but that ¢ '1/1 + '1/1' 
with '1/1,'1/1' E P. Then for any f,g ELI, with the notations of (3.17-19), 
we have 

and hence 

1/2( )1/2 1/2 1/2 1(f,g)t{;1 ::; (j,!)t{; g,g t{; ::; (f,!)", (g,g)", . 

Thus the map (f,g) -t (j,g)t{; induces a bounded Hermitian form on 1t"" 
so there is a bounded self-adjoint operator T on 1t", such that (j, g)t{; 
(T i, 9) '" for all f, gEL 1 . (Recall that i is the image of f in 1t",.) By 
(3.19), if x E G and f,g ELI we have 

(T7r",(x)i, 9)", = (T(L:eff,g}", (Lxf,g)t{; = (f,Lx-lg)t{; 

= (Ti, (Lx-Ign", (T1,7r",(x- I )9)", = (7r",(x)Tl,9)",. 

Therefore, T E C(7r",), so by Schur's lemma, T = cI and (j,g)t{; = 
c(f, g)", for all f, g. In view of (3.17), this implies that '1/1 = c¢ and hence 
'1/1' (1 - c)¢, so ¢ is extreme. I 
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The condition f (f* * f)4> 2: 0 on 4> is clearly preserved under weak* 
limits, so Po is a weak* closed subset of the closed unit ball in Loo. By 
Alaoglu's theorem, Po is weak* compact, and then by the Krein-Milman 
theorem (see Rudin [108]), Po is the weak* closure of the convex hull 
of its extreme points. PI is in general not weak* closed (unless G is 
discrete, in which case 4> -+ 4>(I) is a bounded linear functional on LOO}. 
Nonetheless, the conclusion of the Krein-Milman theorem holds for it 
too. 

(3.26) Lemma. £(Po) £(Pd U {a}. 

Proof: Suppose 4>1,4>2 E Po, Ct, C2 2: 0, and Cl + C2 = L If CI4>l + 
c24>2 = 0 then CI4>1 (1) +c24>2(I) = 0, which implies that 4>1 (0) 4>2(0) 
o and hence 4>1 4>2 0 by Corollary (3.22). Thus 0 is extreme. On the 
other hand, if Cl 4>1 + C24>2 = 4> where 4> E PI then CI 4>1 (I) + c24>2 (I) = 1, 
which implies that 4>1(I} = 4>2(I} = 1 and hence 4>1,4>2 E Pl' Thus if 4> is 
extreme in PI it is extreme in Po. Finally, no element 4> of Po \(PI U {O}) 
is extreme, since it is interior to the line segment joining 0 to 4>/4>(0). I 

(3.27) Theorem. The convex hull of £(Pt} is weak* dense in Pl' 

Proof: Suppose 4>0 E Pl. By Lemma (3.26) and the preceding 
remarks, 4> is the weak* limit of a net of functions 4>Q of the form 
cl'l/JI + ... + Cn'l/Jn + Cn+l 0 , where 'l/JI,"" 'l/Jn E £(Pt}, Cl, ... , cn+! 2: 0, 
and L: Cj L Since 114>01100 = 1, II4>Qlloo ~ 1, and {J E £00 : 1111100 ~ 
1 - f} is weak* closed, we must have lim4>Q(O) = lim I14>Qlloo L But 
then, if we set 4>~ 4>Q/4>Q(O), we have 

L 

Thus 4>~ is in the convex hull of £(Pd and 4>0 = lim 4>~. 

Our next goal is to establish the remarkable fact that the weak* topol­
ogy that PI inherits as a subset of LOO coincides with the topology of 
uniform convergence on compact subsets of G, or for short, the topol­
ogy of compact convergence on G. In this topology, a neighborhood 
base at the function 4>0 is provided by the sets 

N(4)O;f,K) {4>: 14>(x) - 4>o(x)1 < f for x E K}, 

where f ranges over positive numbers and K ranges over compact sets in 
G. The coincidence of these two topologies on PI is the more remarkable 
when one observes that they are, in general, not the same on Po. For 
example, the functions 4>e(x) = eiex belong to PI(R). They converge 
to 0 in the weak* topology as ~ -+ 00 (this is a restatement of the 
Riemann-Lebesgue lemma), but they have no limit in the topology of 
compact convergence on R (or in the weak* topology restricted to Pd. 
The proof is based on the following general lemma. 
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(3.28) Lemma. Suppose X is a Banach space and B is a norm-bounded 
subset of X*. On B, the weak'" topology coincides with the topology of 
compact convergence on X. 

Proof: The weak'" topology is the topology of pointwise convergence 
on X, so it is no stronger than the topology of compact convergence. 
On the other hand, if >'0 E B, E > 0, and K c X is compact, let 
C = sup{II>.11 : >. E B} and 0 f/3C. Then there exist 6, ... ,en E K 
such that the balls B(o,ej) cover K. If>' E Band e E K then lIe-ejll < 0 
for some j, so that 

2f 
1>.(e)->'o(e)1 < 1>.(e-ej)I+I{>'->'o){ej)I+I>'o(ej-e)1 < 3 +1(>'->'o)(ej)l, 

so the weak'" neighborhood n~{>. : 1(>' - >'o){ej) I < f/3} of >'0 is con­
tained in the neighborhood N(>.o; f, K) for the topology of compact con­
vergence. I 

(3.29) Lemma. Suppose ¢o E PI and f E LI(G). For every f > ° and 
every compact KeG there is a weak'" neighborhood 4) of ¢o in PI such 
that If'" ¢(x) f '" ¢o(x) I < f for all ¢ E 4) and x E K. 

Proof: By Corollary (3.22) we have f'" ¢(x) = f f(xy)¢(y-l) dy = 
f(Lx-ij)if). Since x -f Lx-if is continuous from G to Ll (Proposition 
(2.41)), {LX-if: x E K} is compact in Ll, and we can apply Lemma 
(3.28). I 

(3.30) Lemma. If ¢ E PI, I¢(x) - ¢(y)12 :5 2 - 2Re¢(yx- I). 

Proof: By Theorem (3.20) we have ¢(x) = (1l"(x)u, u) for some uni­
tary representation 1l" and some unit vector u E 1t7r , so 

I¢(x) - ¢(y)12 1{[1l"(x) -1l"(Y)]u, u)1
2 = I(u, [1l"(x- l

) 1l"(y-I)]u)1
2 

:5 1I1l"(x- l )u - 1l"(y-1 )u11 2 = 2 - 2 Re{1l"(x-1 )u, 1l"(y-1 )u) 

2 - 2 Re{1l"(yx- 1 )u, u) = 2 2 Re ¢(yx- l ). 

(3.31) TheoreIl). On Pt. the weak'" topology coincides with the topol­
ogy of co~pact convergence on G. 

Proof: If f E LI(G) and f > 0, there is a compact KeG such that 
fC\K If I < ff. If ¢,¢o E PI and I¢ - ¢ol < f/2l1flll on K then 

If (I¢ f¢o) I :5 .[ Ifll¢ - ¢ol + Ic\)fll¢ ¢ol < ~f + ~f == f, 

so compact convergence on G implies weak'" convergence. 
Conversely, suppose ¢o E PI, f > 0, and KeG is compact. We wish 

to find a weak'" neighborhood 4) of ¢o in PI such that I¢ ¢ol < f on 
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K when ¢ E cI>. First, if", > 0 there is a compact neighborhood V of 1 
in G such that I¢o(x) - 1.1 < ", for x E V. Let 

cI>1 is a weak* neighborhood of ¢o since Xv ELI. If ¢ E cI>1 then 

(3.32) Ii (1 - ¢)I s Ii (1 - ¢o)1 + Ii (¢o - ¢)I < 2",1V1· 

Also, if ¢ E cI>1 and x E G, we ha~e 

IXv*¢(x)-IVI¢(x)1 = li[¢(y-Ix)-¢(x)] dyl s i 1¢(y-IX)-¢(x)1 dy. 

By Lemma (3.30), the Schwarz inequality, and (3.32), this is bounded 
by 

i[2 - 2 Re¢(y)p/2 dy S (i[2 - 2Re¢(y)] dy r/2
1VI I/ 2 < 21V1J17· 

By Lemma (3.29), there is a weak* neighborhood cI>2 of ¢o in PI such 
that Ixv * ¢(x) - Xv * ¢o(x)1 < ",IVI for ¢ E cI>2 and x E K. Hence, if 
¢ E cI>1 n cI>2 and x E K, I¢(x) - ¢o(x)1 is bounded by 

I~I [11V1¢(x) - Xv * ¢(x)1 + Ixv * (¢-¢o)(x)1 + 

Ixv * ¢o(x) - IVI¢o(x) I] 

1 
< WI (21V1J17 + IVI", + 21V1J17) = ", + 4J17. 

Therefore, if we choose", so that", + 4J17 < to and take cI> = cI>1 n cI>2, we 
are done. I 

We are almost ready to prove our final major theorem. First, we need 
one more simple result that will also be useful in the next chapter. 

(3.33) Proposition. The linear span ofCc(G)nP(G) includes all func­
tions of the form I * 9 with 1,9 E Cc( G). It is dense in Cc( G) in the 
uniform norm, and dense in £P(G) (1 S p < 00) in the LP norm. 

Proof; _By Corollary (3.16), Cc(q)np(G) includes all functions of the 
form I * I with I E Cc(G), where I(x) = l(x- 1 ). By polarization (see 
Appendix 1), it includes all functions of the form Idt with I,h E Cc(G) 
and hence all functions of the form 1*9 with 1,9 E Cc ( G) (take h = 9). 
{J * 9: 1,9 E Cc(G)} is dense in Cc(G) in the uniform norm or the LP 
norm because 9 can be taken to be an approximate identity, and Cc(G) 
is itself dense in LP. I 
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(3.34) The Gelfand-Raikov Theorem. If G is any locally compact 
group, the irreducible unitary representations of G separate points on 
G. That is, if x and y are distinct points of G, there is an irreducible 
representation 7r such that 7r(x) =f 7r(y), 

Proof; If x =f y there exists f E Cc(G) such that f(x) =f f(y), 
and by Proposition (3.33) we can take f to be a linear combination of 
functions of positive type. By Theorems (3.27) and (3.31), there is a 
linear combination 9 of extreme points of PI that approximates f on 
the compact set {x,y} closely enough so that g(x) =f g(y). Hence there 
must be an extreme point ¢ of PI such that ¢(x) =f ¢(y). The associated 
representation 7rq, of Theorem (3.20) is irreducible by Theorem (3.25), 
and it satisfies 

(7rq,(X)f, f) = ¢(x) =f ¢(y) = (7rq,(Y)f, f), 

whence 7rq,(x) =f 7rq,(y). 

We shall give a simpler proof of the Gelfand-Raikov theorem for the 
case of compact groups in §5.2; see Theorem (5.11) and the remarks 
preceding it. 

It should be noted that when G is neither compact nor Abelian, the 
irreducible representations of G may be infinite-dimensional, and the 
finite-dimensional ones usually do not separate points on G. We shall see 
some examples of this phenomenon - the ax + b group, the Heisenberg 
groups, and SL(2,R) - in §6.7 and §7.6. 

We conclude this section by discussing a commonly-used variant of 
the notion of functions of positive type. A function ¢ : G ~ C is called 
positive definite if 

n 

L CiCj¢(xjIXi) ~ 0 for all Cl,"" en E C and Xl, ... ,xn E G. 
i,j=1 

(Here n is an arbitrary positive integer.) When n = 2, XI = x, and 
X2 = 1, this condition says that the matrix 

is positive semi-definite. Therefore 

and 

¢(x) ) 
¢(1) 

¢(1)2 - ¢(x)¢(x-l)~ 0 

which implies that 1¢(x)1 ~ ¢(1) for all x. In particular, positive definite 
functions are bounded. 
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Positive definite functions need not be continuous: for example, 
¢(x) = 1 when x = 1, ¢(x) 0 otherwise. They need not even be 
measurable: if G = Rand 'I/J is any automorphism of R as a vector 
space over Q then ei1/l is positive definite. However, the continuous pos­
itive definite functions are nothing but the functions of positive type. 

(3.35) Proposition. If ¢ is a bounded continuous function on G, the 
following are equivalent: 

1. ¢ is of positive type. 

ii. ¢ is positive definite. 

iii. JU* * f)¢ ~ 0 for all f E Cc(G). 

Proof: (i) =} (ii); Let {'l/Ju} be an approximate identity. Given 
CI,··· ,Cn E C and Xl,··' ,Xn E G, let fu :L~ cjLxj'I/Ju. Then 

.f: CiCj II 'l/Ju(xi l Y)'l/Ju(xj I Z)¢(Z-l y)dydz. 
',J=1 

Since ¢ is continuous, the sum on the right approaches :L qCj¢(xj lXi) 
as U -> {I}, so the latter sum is nonnegative. 

(ii) =} (iii): If f E Cc(G), the function F(x, y) f(x)f(y)¢(y-lx) 
is in Cc(G x G), hence is uniformly continuous. Let K supp f, so 
that supp F c K x K. Given f > 0, we can cover K x K by finitely 
many open sets of the form U X U such that the variation of F on each 
such set is less than f. By discarding the overlaps, we can obtain a 
partition of K into disjoint sets E1, ••• , En and points Xj E Ej such 
that IF(x,y) - F(Xi,Xj)1 < f when (x,y) E Ei x Ej . But then 

IU* * 1)¢ = II F(x,y)dxdy tt It,xEj F(x,y)dxdy 

(3.36) L F(Xi' Xj )IEiIlEjl + R 

where 

i,j 

Lf(xdIEilf(Xj)IEjl¢(XjlXi) + R, 
itj 

IRI = Itt ItixE,IF(X,y) F(Xi,Xj)]dXdyl < f1K12. 

The last sum in (3.36) is nonnegative, and f is arbitrary, so J U* * 1)¢ ~ 
O. 

(iii) =} (i): If fELl there is a sequence {fn} C Cc(G) such that 
fn -> fin £1. Then f~*fn -> !**fin £1, so JU**1)¢ = lim JU~*fn)¢ 
~ o. I 
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3.4 Notes and References 

The theory of representations of finite groups was developed by Frobe­
nius, Schur, Burnside, and others beginning in the 1890's. Represen­
tations of arbitrary compact groups, and finite-dimensional (possibly 
nonunitary) representations of the classical matrix groups, were studied 
by Weyl and others beginning in the 1920's; see Peter and Weyl [98] 
and Weyl [129]. The theory of (possibly infinite-dimensional) unitary 
representations of locally compact groups was initiated in the 1940's, 
although a few special cases had been known earlier. At that time, vari­
ous researchers began looking at both abstract representation theory for 
general groups and concrete representation theory for specific groups, 
particularly those arising in quantum mechanics. 

Other treatises in which various aspects of the theory of unitary repre­
sentations are developed include Dixmier [29], Fell and Doran [37], [38], 
Hewitt and Ross [62], [63], Kirillov [68], and Mackey [86]; see also the 
survey article of Mackey [84]. Discussions of the connections between 
representation theory and other parts of mathematics and physics can 
be found in Mackey [87], [88]. 

The material in §3.3 was first developed in the fundamental paper of 
Gelfand a~t;rRaikov [46]. 

The term "positive definite function" is frequently used synonymously 
with "function of positive type." I find it objectionable because functions 
of positive type are generally not positive themselves, and the positive 
linear functionals they define are generally not positive definite. I have 
therefore adapted the usual term in French, fonction de type positif, as 
the standard terminology for this book. 



4 
Analysis on Locally Compact Abelian 
Groups 

The central idea of this chapter is the Fourier transform on locally com­
pact Abelian groups, which provides a single theory that includes Fourier 
series and integrals on R n, Walsh expansions, finite (or discrete) Fourier 
transforms, and many other things as special cases. The fundamental 
results about Fourier analysis on locally compact Abelian groups are 
developed in §§4.1-3. The rest of the chapter is devoteej..to three sepa­
rate topics - classification of unitary representations (§4.4), !the circle of 
ideas centering on Wiener's general Tauberian theorem (§§4.5-6), and 
the Bohr compactification (§4.7) -that can be read independently of 
one another. 

Throughout this chapter, G will denote a locally compact Abelian 
group. Here left and right translations are the same thing, so we have 
our choice of notation: 

Lyf(x) = f(y-1x) = f(xy-l), Ryf(x) = Ly-lf(x) = f(xy) = f(yx). 

Also, G is unimodular and convolution is commutative: 

f*g(x)=g*f(x)= J f(xy-l)g(y)dy= J f(y)g(y-1x)dy. 

We shall continue to write the group operation as multiplication. One 
must keep in mind that in many of the common Abelian groups, such 
as Rand Z, the group law is addition; the notation must be adjusted 
accordingly. 

4.1 The Dual Group 

Let G be a locally compact Abelian group. By Corollary (3.6), the ir­
reducible representations of G are all one-dimensional. Thus, for each 
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such representation 7r we can take 1t", = C, and then 7r(x)(z) = ~(x)z 
(z E C) where ~ is a continuous homomorphism of G into the circle group 
T. Such homomorphisms are called (unitarx) characters of G, and the 
set of all characters of G is denoted by G. Since ~(x) = {7r(x)l, 1), 
Proposition (3.15) shows that 8 is contained in PI (G), the set of func­
tions of positive type on G of norm 1. In fact, by Theorem (3.25), 8 
is the set of extreme points of PI (G). For reasons of symmetry (which 
will become more cogent in §4.3) we shall use the notation 

According to Theorem (3.9), each ~ E 8 determines a nondegenerate 
*-representation of LI (G) on C by 

(4.1) 

Here we identify £(C) with C; with this identification, such a represen­
tation is a multiplicative functional on £1 (G) as defined in §1.2. Con­
versely, every multiplicative functional cI> is given by integration against 
a character. This is not quite an instance of Theorem (3.11), because we 
do not assume that cI>(J*) = cI>(J); rather, we have the following simple 
argument. 

first, cI> E (LI)* is given by integration against some ¢ E £<)0. Pick 
fELl with cI>(J) =f O. Then for any 9 E £1, 

cI>(J) 1 ¢(y)g(y) dy = cI>(J)cI>(g) = cI>(J * g) 

= 11 ¢(x)f(xy-I)g(y)dydx 

= 1 cI>(Lyf)g(y) dy, 

so that ¢(y) = cI>(Lyf)/cI>(J) locally a.e. We can redefine ¢(y) to be 
cI>(LyJ)/cI>(J) for every y, and then ¢ is continuous. Moreover, 

¢(xy)cI>(J) = cI>(LxyJ) = cI>(LxLyJ) = ¢(x)¢(y)cI>(J), 

so ¢(xy) = ¢(x)¢(y). Finally, ¢(xn) = ¢(x)n for every n, and ¢ is 
bounded, which necessitates 1¢(x)1 = 1, that is, ¢ : G ~ T. 

In short, we have: 

(4.2) Theorem. 8 can be identified with the spectrum of LI (G) via 
(4.1). 

8 is clearly an Abelian group under pointwise multiplication; its iden­
tity element is the constant function 1, and 
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We shall give 8 the topology of compact convergence on G, under which 
the group operations are obviously continuous. By Theorem (3.31), this 
topology coincides with the weak* topology that 8 inherits as a subset 
of LOO. But 8u{O} is the set of all homomorphisms from Ll to C, which 
is a subset of the closed unit ball of LOO (by Proposition (1.lOc)) and is 
clearly weak* closed, and hence is weak* compact by Alaoglu's theorem. 
Therefore, 8 is locally compact. In short, 8 is a locally compact Abelian 
group, called the dual group of G. 

When G is compact or discrete, we can say more about the structure 
of 8. First, if G is compact, 8 C LOO(G) c LP(G) for all p ~ 1, and we 
have: 

(4.3) Proposition. If G is compact and Haar measure is normalized 
so that IGI = 1, then 8 is an orthonormal set in L2(G). 

Proof: If ~ E 8 then 1~12 1, so clearly 11~1I2 1. If ~ =1= TJ there is 
an Xo E G such that (xO,~TJ-l) =1= 1, and we then have 

J {rj = J(x'~TJ-l}dX (xO,~TJ-l) J(X01X'~TJ-l}dX 

(xo,~TJ-l) J(X'~TJ-l}dX (xO,~TJ-l) J {rj, 

which implies that J (rj O. I 

(4.4) Proposition. IfG is discrete then 8 is compact. lfG is compact 
then 8 is discrete. 

Proof: If G is discrete then Ll(G) has a unit namely, the functio;! 
{j that equals 1 at the identity and 0 elsewhere. Hence its spectrum G 
is compact. 

If G is compact then the constant function 1 is in L1, so {j E too : 
I J II > ~} is a weak* open set. By Proposition (4.3), for ~ E G we have 
J ~ = 1 if ~ = 1, J ~ = 0 if ~ =1= 1. Thus {I} is an open set in 8, and 8 
is discrete. I 

The remainder of this section is devoted to the calculation of 8 for 
various groups G, We begin with some simple examples. 

(4.5) Theorem. 

a. R ~ R, with the pairing (x,~) e211'it;x. 

b. T ~ Z, with the pairing (a, n) an, 

c. Z ~ T, with the pairing (n, a) an. 

d. If Zk is the additive group of integers mod k, then Zk Zk, with 
the pairing (m, n) e21fimn/k. 
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Proof: (a) If ¢ E Ii we have ¢(O) = 1, so there exists a > 0 such 
that foa ¢(t) dt =f O. Setting A = foa ¢(t) dt, we have 

fa la
+
x 

A¢(x) = 10 ¢(x + t) dt = x ¢(t) dt, 

so ¢ is differentiable and 

¢'(x) = A-I[¢(a + x) - ¢(x)] = c¢(x) where c = A-I[¢(a) -1]. 

It follows that ¢(t) = eCt, and since I¢I = 1, c = 27ri~ for some ~ E R. 
(b) Since T ~ R/Z via the identification of x E R/Z with a = e27fix E 

T, the characters of T are just the characters of R that are trivial on 
Z. The result therefore follows from (a). 

(c) If ¢ E Z then a = ¢(1) E T, and ¢(n) = ¢(l)n = an. 
(d) The characters of Zk are the characters of Z that are trivial on 

kZ, hence are of the form ¢(n) = an where a is a kth root of 1. I 

We can generate more examples from these by taking products. 

(4.6) Proposition. If G1 , ... , Gn are locally compact Abelian groups, 
then 

(G1 X ... x Gnr~ G1 X ... x Gn. 

Proof: Each ~ = (~I"" '~n) E IT7 Gj defines a character on IT7 Gj 

by 

Moreover, every character X on IT7 G j is of this form, where ~j is defined 
by 

(Xj,~j) = (1, ... , 1,xj, 1, ... ,1), X). 

(4.7) Corollary. (Rnr~ Rn, (Tnr~ zn, (znr~ Tn, and G ~ G 
for any finite Abelian group G. 

Proposition (4.6) can be extended to infinite products of compact 
groups. If {HO:}O:EA is any family of groups, we define EBo:EA Ho: to be 
the set of all (hO:)O:EA E ITo:EA Ho: such that ho: = 1 for all but finitely 
manya. 

(4.8) Proposition.!f G = IT~EA Go: where each Go: is a compact 
Abelian group, then G ~ EBo:EA Go:. 

Proof: As in the proof of Proposition (4.6), it is easy to see that 
every (~o:) E EBGo: defines a character ~ on G by (x,~) = IT(xo:,~o:) 
(the product being finite), and that each ~ E G determines an element 
(~o:) of IT Go: where ~o: is the restriction of ~ to the ath factor. We need 
only show that in this situation, ~o: = 1 for all but finitely many a. 
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There is a neighbor hood V of 1 in G such that I (x, ~) -11 < 1 for x E V. 
By definition of the product topology, V includes a set na Va where 
Va Ga for all but finitely many o. If Va Ga then ~(V) ::) ~a(Ga). 
~a(Ga) is therefore a subgroup of T contained in {o E T: 10 -11 < I}, 
and it therefore equals {l}j hence ~a 1. I 

Example. Let G (Zz)W, the product of countably many copies 
of the 2-element group Zz, as discussed in §2.2. For each n there is 
a unique character ~n on G that is nontrivial only on the nth factor, 
namely {(aj)f'~n) (_I)a n

• The characters on G are then the finite 
products of the ~n 's, together with the trivial character 1. 

If we identify G with [0, 1 J as in §2.2, ~n becomes the nth 
Rademacher function r n , which takes on the values 1 and -1 al­
ternately on the intervals [0,2- n), [2-n,2·2-n), ... , [1-Tn,I). The 
finite products of the Rademacher functions are called Walsh func­
tions. There is a standard way of well-ordering the Walsh functions, as 
follows. If n is a nonnegative integer, let bk," . ,b1 be the digits in its 
binary expansion (Le., n bk ... b1 in base 2); then the nth Walsh func­
tion is Wn r~l .. . r:k

• From Proposition (4.3), or by direct inspection, 
{wn}~ is an orthonormal set in LZ(O, 1). It is actually an orthonormal 
basis. This will follow from the Plancherel theorem in the next section, 
but it is also an elementary exercise to verify it directly. (Hint: show 
that the linear span of {Wk}r-1 is the set of all step functions on [0,1] 
that are constant on the intervals [0,2-n), ., ., [1-2-n , 1).) 

For our final example, we compute the dual of the p-adic numbers 
Qp. We begin by writing down one character ~l of Qp explicitly. Let us 
recall from Proposition (2.8) that each p-adic number x can be written 
uniquely as I:~oo Cjpl where Cj E {O, 1, ... ,p-l} and Cj = ° for j « 0; 
moreover~ x E Zp if and only if Cj 0 for j < 0. We define 

1 

exp ( 21f'i L Cjpl). 

-00 -00 

More simply, we can write (x, ~l) e Z7rix , where it is understood that 
the terms with j 2: 0 in the series x I: Cjpl contribute nothing because 
eZ7riCjp' 1. From this it is clear that (X+Y'~l) (x,€I){Y'~1) (recall 
that Qp is a group under addition, not multiplication!) and that 6 is 
constant on cosets of the open subgroup Zp and hence continuous. In 
short, ~l is a character whose kernel is Zp. Next, for Y E Qp we define 
~y by 

(x, ~y) (xy, ~l)' 

~y is also a character, and its kernel is {x : Ixl ~ lyl- 1}. Our claim is 
that every character on Qp is of the form ~Y' 
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(4.9) Lemma. If ~ E Qp, there is an integer k such that ~ 1 on 
B(p-k, 0). 

Proof: Since ~ is continuous, there is an integer k such that ~ maps 
B(p-k,O) into {z E T: Iz -11 < I}. But B(p-k,O) is a subgroup of Qp, 
so its image under ~ is a subgroup of T; hence it equals {I}. I 

Any ~ E Qp is completely determined by its values on the numbers 
pi, j E Z, and by Lemma (4.9), if ~ =f 1 there is an integer jo such that 
(pi , ~) 1 for j ?: jo, but (pio - I ,~) =f 1. Let us analyze the case jo = 0. 

(4.10) Lemma. Suppose ~ E Qp, (1,~) = 1, and (p-I,~) =f 1. There 
is a sequence {ci}(f with CO E {I, ... , P -I} and Cj E {O, ... , pI} for 
j?: 1 such that (P-k,~) =exp(21riI:;ck-jP-j) fork 1,2,3, .... 

Proof: Let Wk {p-k, ~); then 

w~+i (p-k-I ,~)p = {p. p-k-I ,~) = (p-k,~) Wk. 

Now WI =f 1 wo, so WI = exp(21ricop-l) for some CO E {1, ... ,p-
I}. Proceeding by induction, suppose Wk = exp[21ri I:; Ck_iP-i]. Since 
Wk+1 is a pth root of Wk, there exists Ck E {O, ... ,p-l} such that 

k 

exp [21ri L: Ck-iP-j-l] exp[21rickP-I] 
I 

k+i 

exp[L: Ck+l_jp-i]. 
I 

I 

(4.11) Lemma. If ~ E Qp, (1\~) = 1, and (p-I,~) =f 1, there exists 
y E Qp with Iyl 1 such that ~ = ~Y' 

Proof: Let {Cj} be as in Lemma (4.10) and set y I:~ Cjpi. Then 
Iyl 1 since Co =f 0, and for k ?: 1, 

k -I 

{p-k\~) = exp [21ri L: Ck-jP-j] = exp[21ri L: cj+kv1] 
1 -k 

00 

= (L:CHkv1, 6) = {p-kY'~l) {p-k,~y). 
-k 

It follows that {x,~) = {x, ~y) for every x. I 

(4.12) Theorem. The map y --4 ~y from Qp to Qp is an isomorphism 
of topological groups. 

Proof: The map y --4 ~y is clearly an injective group homomorphism. 
Suppose ~ E Qp- If ~ = 1 then ~ = ~o. If ~ =f 1, by Lemma (4.9) there is 
a smallest integer j such that (pi,~) = 1. Then the character ", defined 
by {x,,,,) (pix,~) satisfies the conditions of Lemma (4.11), so ", = ~z 
for some z with Izl = 1. But then ~ = ~y where y = p-jz. 



Analysis on Locally Compact Abelian Groups 93 

The map y ~ ~y is therefore a group isomorphism. To see that it is 
a homeomorphism, observe that the sets 

(j ~ 1, k E Z) 

are a neighborhood base at 1 for Qp. But the image of the set {x: Ixl ~ 
pk} under 6 is {I} if k ~ 0 and is the group of pkth roots of 1 if k > 0, 
and hence is contained in {z : Iz 11 < rl} if and only if k ~ O. It 
follows that ~y E N(j,k) if and only if Iyl ~ p-k, and we are done. 

4.2 The Fourier Transform 

Henceforth it will be convenient to employ a slightly different identifi­
cation of 0 with the spectrum of £1 (G) than the one given by (4.1). 
Namely, we shall associate to ~ EO the functional 

I ~ ~(f) c 1(f) = / (x,~}/(x) dx. 

The Gelfand transform on Ll(G) then becomes the map from Ll(G) to 
C (0) defined by 

FI(~) i(~) / (x,~}/(x) dx. 

This map is the Fourier transform on G. (We denote the Fourier 
transform as an operator by F, but we usually denote the Fourier trans­
form of IE Ll(G) by i rather than Fl.) 

(4.13) Proposition. The Fourier transform is a norm-decreasing *­
homomorphism from Ll(G) to Co(O) [or C(O) if 0 is compact}. Its 
range is a dense subspace ofCo(O). 

Proof: That F is a norm-decreasing *-homomorphism is simple to 
check directly (cf. the proof of Theorem (3.9)). That its range lies in 
Co( 0) is an instance of a general property of Gelfand transforms (Theo­
rem (1.30)). That its range is dense follows from the Stone-Weierstrass 
theorem as in the proof of Proposition (1.14c), since the fact that F is 
a *-homomorphism means that Ll(G) is symmetric. I 

Two points are worth emphasizing here. First, the fact that F(Ll) C 
Co( 0) is the abstract form of the Riemann-Lebesgue lemma of classical 
Fourier analysis. Second, the fact that F is a *-homomorphism rather 
than just a homomorphism is equivalent to the fact that Ll is a sym­
metric algebra. 
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The other basic operational properties of the Fourier transform are as 
follows: 

(4.14)(Ly f)10 I (x,f,)f(y-1 X ) dx = I (yx,f,)f(x) dx = (y,f,)j(f,), 

(4.15) (1]f)1f,) I (x,f,)(x, 1])f(x) dx = j(1]-If,) == L1/f(f,). 

The Fourier transform can be extended to complex Radon measures 
on G: if J.L E M(G), its Fourier transform (sometimes called the Fourier­
Stieltjes transform) is the bounded continuous function Ji on G defined 
by 

Ji(f,) I (x, f,) dJ.L(x). 

The formula (J.L * lIf JW is still valid in this context: 

(J.L*1I)1f,) II (xy,f,) dJ.L(x) dll(Y) = II (x,f,}(y,f,)dJ.L(x)dll(Y) 

Ji(f,)V(O· 

(The formula I ¢ d(J.L * 1I) II ¢( xy) dJ.L( x) dll(Y) that we have used here 
is true by definition of J.L * 1I for ¢E Co(G); it remains true for any 
bounded continuous ¢ since J.L and 1I can be approximated in norm by 
compactly supported measures.) Thus, G can be regarded as part of the 
spectrum of the Banach al~ebra M(G), and Ji is the restriction of the 
Gelfand transform of J.L to G. . 

Of more interest to us than the Fourier transform on M (G) is a similar 
construction for measures on G. Namely, if J.L E M( G) we define the 
bounded continuous function ¢p. on G by 

(4.16) 

(4.17) Proposition. The map J.L -> ¢p. is a norm-decreasing linear 
injection from M( G) to the space of bounded continuous functions on 
G (with the uniform norm). 

Proof: The only nontrivial point is the injectivity. If ¢p. 0 then 

for any f E Ll(G). But this implies that J.L == 0 since :F(£1) is dense in 
~(G). I 

If J.L E M( G) is positive, then ¢p. is a generalized linear combination of 
characters with positive coefficients, and hence is a function of positive 
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type on G. Indeed, if f E £1 (G), 

f f f(x)f(y)¢,Ay-1x) dxdy = fff f(x)f(y)(y,~)(x,~) d/i(~) dxdy 

= f 11wI2 d/i(~) ? O. 

The converse of this is one of the fundamental results of the theory. 

(4.18) Bochner's Theorem. If ¢ E P(G), tbere is a unique positive 
/i E M(G) such tbat ¢ ¢p. as in (4.16). 

The uniqueness of /i was established in Proposition (4.17). There are 
two nice proofs of the existence, one using the Krein-Milman theorem 
and one using Gelfand theory. We shall give them both. 

First proof: It suffices to assume that ¢ E Po, i.e., ¢(l) ::; 1. Let 
Mo be the set of positive measures /i E MtG) such that /i(G) ::; 1; Mo 
is compact in the weak* topology of M(G). If {/io} is a net in Mo 
converging to /i in this topology, for any fELl we have 

f f(x )¢p." (x) dx 

-+ f l(Cl)d/i(~) 
ff f(x){x,~)d/io(~)dx = f f(Cl)d/io(~) 
ff f(x){x,~)d/i(~)dx = f f(x)¢p.(x)dx. 

Thus ¢P.u -+ ¢p. in the weak* topology of Po c Loo. In other words, the 
map /i -+ ¢p. is continuous from Mo to Po, and its range is therefore a 
compact convex subset of P~. But the range contains every character 
~ E G (take /i to be the point mass at ~) as well as 0 (take /i = 0), 
and these are the extreme points of Po by Theorem (3.25) and Lemma 
(3.26). By the Krein-Milman theorem, then, the range is all of Po. I 

Second proof: Without loss of generality, we shall assume ¢(1) 1. 
Applying the Schwarz inequality to the positive Hermitian form (f, g)", 
J ¢(g* * f), we have 

If ¢(g* * f)r ::; f ¢(f* * f) f ¢(g* * g) 

Take 9 tPu, an approximate identity. Then tPi; * f -+ f in L1, so 
J ¢( tPi; * f) -+ J ¢f· Also, tPi; * tPu is again an approximate identity (if 
supp tPu c U then suPPtPir*tPu C U-1U, and J(tPi;*tPu) = I J tPul 2 1 
by Fubini's theorem), so J ¢( tPi; * tPu) -+ ¢(1) = 1. Thus, 

The function h r * f satisfies h* = h, so if we set h(2) = h * h, 
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h(3) = h*h*h, etc., and apply this estimate successively to I, h, h(2), ... , 
we get 

:-:; IIh(2")lIr
n

-
1

, 

since 1I¢lIoo = ¢(1) 1. But by Theorems (1.8) and (1.13) or Theorem 
(1.30), 

lim IIh(2")lIrn

-

1 
Irhll~2 IIlil211~2 = Ililioo. 

Thus the map I ~ J ¢I induces a linear functional j ~ J ¢I on F(£1), 
and since F(Ll) is dense in Co(G), it extends to a linear functional on 
Co( G) of norm :-:; 1. By the Riesz representation theorem, there is a 
[L E M(G) with II[LII :-:; 1 such that 

I ¢I I jd[L II I(x){x, f,-l} d[L(f,) dx. 

But this means that ¢(x) J(x,f,}dp,(f,) where dp,(f,) d[L(C 1
). Fi-

nally, 1 = ¢(1) p,(G):-:; 1Ip,11 :-:; 1, so that 1Ip,1I = p,(G) and hence 
p, ;::: O. I 

We now introduce some function spaces on G that will be useful below: 
i' 

8(G) = {¢/L : p, E M(G)}, 8 P 8 P(G) = 8(G) n LP(G) (p < (0), 

where ¢/L is defined by (4.16). By Bochner's theorem, 

8(G) the linear span of P(G). 

Proposition (3.33) therefore says that 8( G) contains all functions of the 
form I * 9 with I, 9 E Cc ( G) and that 8 P is dense in £P for all p < 00. 

Our next step is to establish the Fourier inversion formula for functions 
in 8 1. 

(4.192 Lemm~: If K~C G is compact, there exists IE Cc(G) nP such 
that I ;::: 0 on G and I > 0 on K. 

Proof: Pick h E Cc(G) with h(l) J h = 1 and set 9 = h* *h. Then 
9 = Ih12 ; in particular, g;::: 0 and g(l) 1, so there is a neighborhood 
V of 1 in G such that 9 > 0 on V. K can be covered by finitely 
t;:any translates of V, say K C lJ~ f,jVj. Let I =~ (L~ f,j)g. Then 
I(f,) = L~ g(f,j lf,) by (4.15), so I > 0 on K and I ;::: 0 everywhere. 
Also, 9 E P by Corollary (3.16), and it follows that I E P (in fact, 
J I(a* * a) = L~ J g[(f,ja)* * f,ja)] ;::: 0 for any a ELI). I 
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The correspondence J.t -+ ¢I-£ is a bijection from M(G) to B(G). In 
the next two arguments we shall denote its inverse by ¢ -+ J.t4>' That is, 
if ¢ E B(G), J.t4> is the measure such that ¢I-£<I> ¢. 

(4.20) Lemma. If f, 9 E B1 then i dJ.tg 9 dJ.t f. 

Proof: If h E £1 (G) we have 

j hdJ.tf = j j(x- 1
, ~}h(x) dxdJ.tf(~) = j h(x)f(x- 1

) dx = h * f(l). 

Replacing h by h * 9 or h by h * f and f by 9 in this calculation, we 
obtain 

jh9dJ.tf (h*g)*f(l) (h*f)*g(1) == jhidJ.tg. 

Since F( L I) is dense in Co (G) it follows that 9 dJ.t f = i dJ.tg. 

(4.21) Fourier Inversion Theorem I. If f E B1 then 1 E LI(G), 
and if Haar measure ~ on G is suitably normalized relative to the given 
HaM measure dx on G, we have dJ.tf(~) = i(~) d~j that is, 

f(x) j(x,~)i(~)d~. 
Proof: We are j;oing to manufacture a positive linear functional on 

Cc(G). If'ljJ E Cc(G), by Lemma (4.19) there exists f E LI(G) nP such 
that 1> 0 on supp'ljJ. Let 

I('ljJ) = j ldJ.tf' 

If 9 is another such function, by Lemma (4.20) we have 

j ldJ.tf j Jg9dJ.tf = j Jg1 dJ.tg = j ~ dJ.tg, 

so I('ljJ) depends only on 'ljJ and not on the choice of f. From this it 
is easy to check that I('ljJ) depends linearly on 'ljJ, and it is clear that 
I('ljJ) 2:: 0 for 'ljJ 2:: 0 since 12:: 0 and J.tf 2:: o. Moreover, if 9 E BI then 
by Lemma (4.20), 

(4.22) I(g'ljJ) j 19dJ.tf j'ljJdJ.tg. 

There clearly exist 'ljJ and 9 so that J 'ljJ dJ.tg i= 0, so I t= o. 
I is therefore a nontrivial positive linear functional on Cc(G). More­

over, if'fJ E G, 
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so dJ.if(T/f;,) = dJ.irif(E;,)· Also, (fifnO !(T/E;,) by (4.15), so if we pick f 
so that 1> 0 on supp 1/J U supp £1/1/J, 

1(£ 1/J) = J 1/J(~-IE;,) dJ.i (f;,) = J !(f;,) d (T/E;,) 
1/ f(E;,) f f(T/E;,) J.if 

J 1/J(f;,) 
= (fifnf;,) dJ.iT;f(f;,) 

= 1(1/J). 

Thus 1 is translation-invariant. It follows that 1( 1/J) = J 1/J(E;,) dE;, where 
dE;, is a Haar measure on G. Finally, if f E 8 1 and 1/J E Cc(G), by (4.22) 
we have 

J 1/J(E;,)1W dE;, 1(1/J1) = J 1/JdJ.if, 

so that !(E;,) dE;, = dJ.if(E;,)· It follows that 1 E £1(G) and that f(x) 
J (x, E;,)1(E;,) df;,. 

We shall show in the next section that the Fourier inversion formula 
remains valid if the condition f E 8 1 is replaced by f E £1 and 1 E £1. 
For the moment, we have the following simple corollary. 

(4.23) Corollary. Iff E £I(G) n'P then 1~ o. 
Proof: !(E;,) dE;, = dJ.if(E;,), and J.if :? 0 by Bochner's theorem. I 

When a Haar measure dx on G is given, the Haar measure dE;, on G 
that makes Theorem (4.21) true is called the dual measure of dx. If 
the dual of dx is dE;" the dual of cdx is c- I dE;,. (Replacing dx by cdx has 
the effect of replacing 1 by c!; hence one must replace dE;, by c- I dE;, in 
the inversion formula to compensate.) Henceforth, we always take the 
Haar measure on G to be the dual of the given Haar measure on G. 

When doing Fourier analysis on specific groups, it is important to 
know precisely the normalization of the dual Haar measure, and this is 
usually accomplished by computing the Fourier transform of a specific 
function. 

Example 1. If we identify :fi with R by the pairing (x, f;,) = e21rif;x, 

then Lebesgue measure is self-dual. This can be seen by considering 
g(x) e-u2

. We have g(E;,) J e-21rif;x-1rX
2 

dx; differentiation un­
der the integral followed by integration by parts shows that (g)'(f;,) 
-21l'E;,g(E;,), and g(O) = J 9 L Solving the differential equation shows 
that 9 g, and since 9 is even, this means that g(x) = J e21rif;x- 1re dE;,. 
Hence the inversion formula holds with dx and dE;, both equal to Lebesgue 
measure, thus: 

i(E;,) = J f(x)e- 21rit;x dx, 
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If we identified Ii with R via (x,~) = ei€x, as is frequently done, the 
dual of Lebesgue measure dx would be d~/27r. With this pairing,. the 
self-dual normalization of Lebesgue measure is dx /..j'Fff. 

Example 2. If we identify Qp with Qp as in Theorem (4.12), the Haar 
measure on Qp such that IZpl = 1 is self-dual. To see this, let! be the 
characteristic function of Zp. The restriction of any character ~y on Qp 
to the compact group Zp is a character on Zp. Hence, if IZpl = 1 and 
we identify ~y with y, by Proposition (4.3) f(y) = fz ~y equals 1 if ~y 
is trivial on Zp and 0 otherwise. But by the constrti'ction of ~y, ~y is 
trivial on Zp if and only if y E Zp. Hence! is its own Fourier transform, 
and this implies that the Haar measure chosen above is self-dual. 

We also have the following general result. 

(4.24) Proposition. If G is comyact and Haar measure is chosen so 
that IGI = 1, the dual measure on G is counting measure. IfG is discrete 
and Haar measure is chosen to be counting measure, the dual measure 
on (; is the one such that 1(;1 = 1. 

Proof: If G is compact, let 9 == 1. Then 9 = X{l} by Proposition 
(4.3), so g(x) = L:€Ea(x,~)g(~), which proves the first assertion. Sim­

ilarly, if G is discrete, let 9 = X{l}' Then 9 == 1, and g(x) = J (x,~) d~ 
when d~ is chosen so that 1(;1 = 1. (This is another application of 
Proposition (4.3), as ~ ~ (x,~) is a character on (; for each x E G.) I 

Example 3. The groups T and Z are dual to each other; the natural 
dual measures on them are normalized Lebesgue measure dB /27r on T 
and counting measure on Z. The Fourier inversion theorem for functions 
on Treads: 

f(n) = {27r !(B)e- in9 dB, 
10 27r 

00 

-00 

Example 4. If G is a finite cyclic group Zk, the dual of counting 
measure is counting measure divided by k (the measure such that IZkl = 
1), and the Fourier inversion theorem reads: 

k 

f(m) = L!(n)e-27rimn/k, 
o 

The factor 1/ k can be relocated from the second sum to the first one if 
one wishes. 

We now come to the fundamental theorem in the L2 theory of the 
Fourier transform. 

(4.25) The Plancherel Theorem. The Fourier transform on £1 (Gln 
L2(G) extends uniquely to a unitary isomorphism from L2(G) to L2(G). 
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Proof: If fELl n L2 then f * r E Ll n P by Corollary (3.16), and 
(f*rf= 11I2, so by Theorem (4.21), 

f If(xW dx = f * r(l) f (f * rn~) d~ f 11(~)12 df 

Thus f -+ 1 is an isometry in the L2 norm, so it extends uniquely to an 
isometry from L2(G) into L2(G). To show that it is surjective, suppose 
1/J E L2(G) is orthogonal to all 1 with f E Ll(G) n L2(G). Then by 
(4.14), 

0= f 1/J(Lxff= f(x,~)1/J(01(~)d~ 

for all fELl n L2 and all x E G. But 1/J! E £1(G) since 1/J,1 E L2(G), 
so 1/J(~)f(~) d~ E M(G). It then follows from Proposition (4.17) that 

1/J! = 0 a.e. for all fELl n L2, and Lemma (4.19) then implies that 
1/J = 0 a.e. I 

(4.26) Corollary. IfG is compact and IGI 1, G is an orthonormal 
basis for L2(G). 

Proof: We have seen in Proposition (4.3) that G is an orthonormal 
set. If f E L2 is orthogonal to every ~ E G then 0 J R 1(~) for all 
~, so f = 0 by the Plancherel theorem. I 

The Fourier transform has now been defined on Ll(G) + L2(G). If 
1"5. P "5. 2 then LP C Ll + L2, so we can define 1 for f E P(G), and we 
have: 

(4.27) The Hausdorff-Young inequality. Suppose 1 "5. P "5. 2 and 
p-l + q-l = 1. Iff E LP(G) then 1 E Lq(G) and 11111q "5. Ilfllp" 

Proo£- This follows by the Riesz-Thorin interpolation theorem from 
the estimates 1I1IICXl "5. IIflh and 111112 = Ilflb (See Folland [391 for the 
Riesz-Thorin theorem. The hypothesis there that the measure spaces 
are semifinite is inessential when the intermediate exponents Pt and qt 
are finite, as is the case here.) I 

4.3 The Pontrjagin Duality Theorem 

The elements of G are characters on G, but we can equally well regard 
elements of G as characters on G. More precisely, each x E G defines a 
character ~(x) on G by 

(4.28) 
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(J? is clearly a group homomorphism from G to G. It is a fundamental 
fact that (J? is actually an isomorphism, so that every locally compact 
Abelian group is "reflexive." Before proving this, we need a couple of 
technical lemmas. 

(4.29) Lemma. If¢,;jJ E Cc(G) then ¢ * 7.fJ == h where h E BI(G). In 
particular, F(BI) is dense in P( G) for p < 00. 

Proof: Let 

f(x) = I(x,e)¢(e)df" g(x) = l{x,e)7.fJ(e) de, 

h(x) I(x,e)(¢ * 7.fJ)(e) de· 

Then f,g, hE B(G) since ¢, ;jJ,¢*7.fJ E £1(G). Also, if k E LI(G)nLZ(G), 

II if I = 111(x,e)¢(e)k(x) dXdf,1 II ¢k/ :S Ii¢lizlikliz = 1i¢llzllkllz 

by the Plancherel theorem. This implies that f E LZ(G), and likewise 
g E LZ(G). Next, 

h(x) I I (x, e)¢(f,,-I );jJ(ry) dry de 

I I (x, ery)¢(e)7.fJ(ry) de dry = f(x)g(x}, 

so h E £1 (G). Thus h E BI, so by Theorem (4.21), h(x} = J (x, e)'h(e) de. 
On comparing this with the definition of h and using Proposition (4.17), 
we see that h ::: ¢ * ;jJ. I 

(4.30) Lemma. Suppose G is a locally compact group and H is a 
subgroup. If H is locally compact in the relative topology then H is 
closed. 

Proof: If H is locally compact, there is an open neighborhood U of 
1 in G such that the closure in H of U n H - call it K - is compact 
in H. But then K is also compact and hence closed in G, so K is the 
closure in G of U n H. 

Now suppose x E Pick a net {xa} in H that converges to x, and 
pick a symmetric neighborhood V of 1 in G such that VV C U. Then 
x-I E H since is a subgroup, so Vx- I n H i= 0. Pick y E Vx- I n H. 
Xa is eventually in xV, so yXa is eventually in (Vx- I )(xV) = VV C U. 
Moreover, yXa E H, and yXa -+ yx, so yx EKe H. But then x 
y-l(yX) E H, so H is closed. 

( 4.31) The Pontrjagin Duality Theorem. The map (J? : G -+ G 
defined by (4.28) is an isomorphism of topological groups. 



102 A Course in Abstract Harmonic Analysis 

Proof: In the first place, if <1>(XI) = <1>(X2) then (X1'~) = (X2'~) for 
all ~ EO. This implies that Xl X2 since characters separate points on 
G (the Gelfand-Raikov theorem), so <1> is injective. 

Next, suppose X E G and {Xo}oEA is a net in G, and consider the 
following assertions: 

(i) Xo -> X in G. 

(ii) f(xo) -> f(x) for every f E BI(G). 

(iii) J(xo,~)l(~)d~ -> J{x,~)l(~)d{ for every f E B1(G). 

(iv) <1>(xo) -> <1>(x) in O. 

(i) implies (ii) trivially. On the other hand, if Xo r x, there is a neigh­
borhood U of X and a cofinal B C A such that x" tt. U for (3 E B, and 
by Proposition (3.33) there is an f E BI with supp feU and f(x) f- O. 
Thus f(xo) r f(x), so (ii) implies (i). (iii) is just a restatement of (ii) in 
view of Theorem (4.21). Finally, (iii) ;:;ays that J <1>(xo)l-> J <1>(x)l for 

all f E F( B1 ). Since the topology of 0 is the weak* topology of £00 ( 0), 
11<1>(xa)lIoo 1 for all 0:, and F(Bl) is dense in £1(0) by Lemma (4.29), 
it follows easily that (iii) is equivalent to (iv). In short, (i) is equivalent 
to (iv), which means that <1> is a homeomorphism of G onto <1>(G). 

It now follows that <1>( G) is locally compact, and hence, bX Lemma 

(4.30), that <1>(G) is closed in O. Suppos~ there exists x E 0 \ <1>(G). 

Pick a symmetric neighborhood V of 1 in 0 such ~hat x VV n <1>( G) = 0 
arid pick nonnegative (and nonzero) ¢, tP E Cc ( 0) with supp ¢ c x V 
and suPPtP C V. Then ¢ * tP f- 0, supp(¢ * tP) n <1>(G) = 0, and by 
Lemma (4.29), ¢ * tP h where h E Bl(O). But then 

o h(<1>(x- I» J(~,<1>(X)}h(~)d~ = J{X,~)h(~)d~ 

for all X E G. By Proposition (4.17), this implies tha..! h == 0 and hence 

Ii ¢ * tP 0, a contradiction. Conclusion: <1>( G) O. I 

Henceforth we shall identify 0 with G and omit writing <1>. Accord­
ingly, we may write either (x,~) or (~, x) for the pairing between G and 
O. The Pontrjagin duality theorem has several important corollaries: 

(4.32) Fourier Inversion Theorem II. Iff E £1(G) arid 1 E £1(0) 
then f(x) (!r<x- 1) for a.e. Xi that is, 

f(x) = J(x,~)l(~)d~ fora.e. x. 

If f is continuous, these relations hold for every x. 
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Proof: Since 

f(f,) = j (x,E,)f(x)dx = j(x-l,E,)f(X)dX j(x,E,)f(x-l)dX, 

we have i E Bl(O) and dj.tfx) = f(x-l)dx. By Theorem (4.21), then, 

f(x- 1) = (iJlx) a.e. (if is automatically continuous, so if f is also 
continuous we have f(x- 1 ) = (inx) for every x. I 

(4.33) Fourier Uniqueness Theorem. If j.t,V E M(G) and Ji = v 
then j.t = v. In particular, if f, 9 E L1(G) and i g then f g. 

Proof- By Proposition (4.17) (with G and 0 interchanged), j.t is com-
pletely determined by the function ¢,..(E,) Ji(E,-I). I 

(4.34) Corollary. M(G) and Ll(G) are semisimple Banach algebras. 

(4.35) Proposition. If 0 is compact then G is discrete. If 0 is discrete 
then G is compact. 

Proof: Combine Proposition (4.4) with Pontrjagin duality. 

(4.36) Proposition. If f,g E L2(G) then (fgf i * g. 

Proof;.. First supposeJ, 9 E L2( G) n F[Bl (01], so th~ we can write 
f(x) = ¢(x-1) and 9 = 1/I(x-1) with ¢,1/1 E L2(G) n Bl (G). Then, as in 
the proof of Lemma (4.29), 

(4.37) (¢*1/Inx-1) = jj(x,E,)¢(E,rJ- l )1/I(rJ)drJ dE, f(x)g(x). 

Theorem (4.21) applies to ¢ and 1/1, so ¢ i and 1/1 g. Moreover, 
¢ * 1/1 E Ll * Ll eLI and fg E L2. L2 = L1, so Theorem (4.32) applies 
to ¢ * 1/1. Combining this with (4.37) yields 

i * g(E,) = ¢ * 1/I(E,) = (¢ * 1/I)::::(C l
) (fgnE,)· 

Finally, we remove the assumption that f,g E F[B1(0)]. If f,g E L2(G), 
by Lemma (4.29) there are sequences Un}, {gn} in L2(G) n F[B1(0)] 
that converge to f and 9 in L2. Then fngn -. fg in Ll, so (fngnf-. 
(f 9 f uniformly; also in * gn -. i * 9 uniformly, so the desired result 
follows. I 

The Pontrjagin duality theorem leads to a neat duality between sub­
groups and quotient groups of a locally compact Abelian group. If H is 
a closed subgroup of G, we define 

H1. = {E, EO: (x,E,) = 1 for all x E H}. 

H 1. is clearly a closed subgroup of O. 
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(4.38) Proposition. (H 1.)1. = H for any closed subgroup H of G. 

Proof: Obviously H C (H1.)1.. To prove the reverse inclusion, let 
q : G ~ G/H be the canonical projection. If Xo ~ H, by the Gelfand­
Raikov theorem there is a character "I on the group G / H such that 
TJ(q(xo» =f 1. Then "1 0 q E H1. and ("10 q)(xo) =f 1, so Xo ~ (H1.)1.. I 

(4.39) Theorem. Suppose H is a closed subgroup of G. Define cI> : 
(G/Hf ~ H1. and \II: G/H1. ~ il by 

cI>(TJ) = "1 0 q, \II(~H1.) = ~IH, 
where q : G ~ G / H is the. canonical projection. Then cI> and \II are 
isomorphisms of topological groups. 

Proof: cI> is obviously a group isomorphism from (G/Hfto H1.. If 
"10/ ~ "I in (G / Hf and KeG is compact, then "10/ ~ "I uniformly 
on q(K), so "10/ 0 q ~ "1 0 q uniformly on K; hence "10/ 0 q ~ "10 q in 
G. Conversely, if "10/ 0 q ~ "I 0 q in G and F C G / H is compact, by 
Lemma (2.45) there exists a compact KeG with q(K) = F; we have 
"10/ 0 q ~ "1 0 q uniformly on K, hence "10/ ~ "I uniformly on F, so "10/ ~ "I 
in (G / Hf. Therefore cI> is a homeomorphism. 

Replacing G by G and H by H 1., by Proposition (4.38) we have 
(G/H1.f';;f. (H1.)1. = H. More specifically, if x E H, the corresponding 
element "I of (G / H 1. f is given by 

( 4.40) 

Pontrjagin duality then gives an isomorphism G/H1. ';;f. (G/H1.):::::';;f. il, 
which in view of (4.40) is the restriction map \II. I 

The surjectivity of \II yields a sort of Hahn-Banach theorem for locally 
compact Abelian groups: 

(4.41) Corollary. If H is a closed subgroup of G, every character on 
H extends to a character of G. 

Example. Consider the p-adic numbers Qp and the p-adic integers Zp­
If we identify Qp with Qp by the correspondence y f-> ~y of Theorem 
(4.12), it is easily verified that Z; = Zp. By Theorem (4.39), then, 
Zp is isomorphic to Qp/Zp. Moreover, the kernel of the character ~l is 
exactly Zp, so Qp/Zp is isomorphic as a group to the range of ~ 1, namely 
the union Up of the groups of pkth roots of unity, k ~ 1. Finally, Zp is 
discrete since Zp is compact (Proposition (4.4», so Zp is isomorphic to 
the group Up with the discrete topology. 

We conclude this section by giving a general form of the Poisson sum­
mation formula. If H is a closed subgroup of G, the (suitably normal­
ized) Haar measure on G / H is obviously the invariant measure on G / H 
called for in Theorem (2.49). Hence the Fubini-type formula (2.50) holds 
for functions in Cc(G), with dJ.L(xH) = d(xH) = Haar measure on G/H. 
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(4.42) Theorem. Suppose H is a closed subgroup ofG. Iff E Cc(G), 
define FE Cc(GjH) by F(xH) = fH f(xy) dy. Then F = llH1., where 
we identify (GjHfwith H1.. IfalsollH1. E £l(H1.), then (with Haar 
measures on H and H1. suitably normalized) 

( 4.43) { f(xy)dy = ( f(~)(x,~)d~. 
J H JHJ. 

Proof: If ~ E H1. we have (xy,~) = (x,~) for any y E H, so 

F(~) = 1 (f(xy)(xy, ~) dy d(xH) = 1 f(x)(x, ~) dx = !(~). 
G/HJH G 

Hence, if llH1. E L1(H1.) we can apply the inversion theorem (4.32) to 
Ftoget (4.43). I 

Remark. The hypothesis that f E Cc( G) can be weakened. Indeed, 
if f E Ll(G) then F is well defined a.e. and belongs to £1 (GjH); we 
have F = llH1., and if llH1. E Ll(H1.) then (4.43) holds a.e. (See the 
remarks concerning formula (2.57), which generalizes (2.50), in §2.7.) 

The classical Poisson summation formula is the case G = R, H = Z. 
In this case H 1. = Z when we identify Ii with R via (x,~) = e27fi€x, and 
(4.43) becomes 

00 00 

L:f(x + n) = L:!(n)e27finx. 
-00 -00 

4.4 Representations of Locally Compact Abelian Groups 

In this section we show how to express an arbitrary unitary represen­
tation of a locally compact Abelian group G in terms of irreducible 
representations, i.e., characters. The key to this result is the identifica­
tion of G with the spectrum of L1 (G), and for our present purposes it 
will be more convenient to return to the original identification (4.1) of 
~ E G with the functional f ~ ~(J) = !(C 1) rather than f ~ !(~). 
The precise theorem is as follows. 

( 4.44) Theorem. Let 7r be a unitary representation of the locally com­
pact Abelian group G. There is a unique regular 1t7f -projection-vaiued 
measure P on G such that ' 
( 4.45) 

7r(x) = J (x,~) dP(~) (x E G), 7r(J) = J ~(J) dP(~) (J E L1(G», 

where ~(J) is given by (4.1). Moreover, an operator T E £(1t7f) be10nlfs 
to C(7r) if and only ifT commutes with P(E) for every Borel set E c G. 
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Proof: By Theorem (1.54) and Theorem (4.2), there is a unique reg­
ular projection-valued measure P on C such that 7r(J) is given by (4.45) 
for all f E Ll(G). Moreover, the assertion about commuting operators 
follows from Theorems (1.54) and (3.12b), so it remains only to show 
that the formula for 7r(x) in (4.45) is valid. 

The proof of Theorem (3.11) shows that,7r(x) is the strong limit of 
7r( Lx tPu) where {tPu} is an approximate id~ntity. By a slight modifica­
tion of (4.14), 

7r(LxtPu) = J ~(LxtPu)dP(~) = J{x,~}~(tPu)dP(O, 
so it suffices to show that the integrals on the right converge weakly 
to I {x,~} dP(~). If G is first countable, so that the net {tPu} can be 
taken to be a sequence, this is an easy consequence of the dominated 
convergence theorem since I~( tPu ) I ~ 1 and ~(tPu) -> 1 for each ~. For 
the general case we need a slightly more involved argument. 

(4.46) Lemma. If {t/Ju} is an approximate identity, then {f;u -> 1 
uniformly on compact subsets ofC as U -> {I}. 

Proof: Suppose K c C is compact. In view of Pontrjagin duality, 
the topology on G is the topology of uniform convergence of the functions 
~ -> {x,~} on compact subsets of C, so if € > 0, the set 

v = {x E G: I{x,~) 11 < € for ~ E K} 

is a neighborhood of 1 in G. But then, if U c V and ~ E K, 

I;;;u(~) -11 = Ii ({x,~) l)tPu(x) dxl < e. I 

Now we can complete the proof of Theorem (4.44). If u, v E 1t1f and 
e > 0, JLu,v(E) = {P(E)u, v} is a finite Radon measure on C, so there is 
a compact K C C such that IJLu,vl(C \ K) < e. Moreover, 

([7r(L;l:tPu) J{x,~} dP(~)] u, v) k(x'~}(;;;U(Cl) - 1) dJLu,v(~). 
We write the integral on the right as IK + Ia K' By Lemma (4.46), the 
integral over K is at most e if U is sufficient)y small, and the integral 
over C \ K is at most 2€ since I{f;u 11 ~ 2. Hence 

(7r(x)u, v) = lim{7r(Lx tPu )u, v} J (x,~) dJLu,v(~), 

which means that 7r(x) = I {x,~} dP(~). I 

Let us examine the meaning of Theorem (4.44) a bit. First suppose 
the measure P is discrete, that is, P( E) I::eE E P( {~}) for any Borel 
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E c C. Let A {~ : P( {O) i OJ, and for ~ E A let HE; be the range 
of P({~}). Then 1-£1f = EB(EA H(, each 1-£( is invariant under 'IT, and 
the sub representation of 'IT on 1-£( is just ~ times the identity, a direct 
sum of copies of the irreducible representation ~. Thus the formula 
'IT(x)::::: E(EA(x,~)P({~}) of Theorem (4.44) exhibits 'IT as a direct sum 
of irreducible representations. If P is not discrete, Theorem (4.44) can be 
thought of as exhibiting 1-£1f as a direct integral of "infinitesimal pieces," 
the ranges of the projections dP(~), on which 'IT acts as a sum of copies 
of the character~. We shall make the connection of this result with the 
general theory of direct integrals in §7.4. 

Example. Let 'IT be the left regular representation of G on £2(G) , 
'IT(x)f = Lxf. Then 

F-l(Lxf)(~) J(Y,~)f(X-lY)dY = J(XY,~)f(Y)dY = (X,~)F-lf(~). 

Comparing this with (4.45), we see that F-1[P(E)f] must be XEF-1f, 
so that 

P( E) = F( multiplication by XE )F- 1 
• 

When G R, Theorem (4.44) is equivalent to the classical theorem 
of Stone on the structure of one-parameter unitary groups (see Rudin 
[108]). Stone's theorem, in its usual formulation, says that if 'IT is a 
unitary representation of R on 1-£, there is a self-adjoint operator A on 
H (usually unbounded) such that 'IT(x) ::::: e21fixA. If P is the projection­
valued measure on R associated to A, so that A J ~ dP(~), this says 
that 'IT(x) J e21fix

E; dP(~), which is Theorem (4.44). Conversely, if P 
is the projection-valued measure of Theorem (4.44) then 'IT ( x) = e21fixA 
where A J ~ dP(~). 

4.5 Closed Ideals in Ll(G) 

Supposeo4 is a commutative Banach algebra with spectrum 0"(04). The 
Gelfand transform provides a natural correspondence between closed 
subsets of 0"(.4) and closed ideals ino4. Namely, if X c .A is a closed 
ideal, let 

v(X) = {h E 0"(04) : j(h) ~ 0 for all f EX}. 

Then v(I) is a closed subset of 0"(04), called the hull of X. On the other 
hand, if N c 0"(04) is closed, let 

£(N) = {f E .A: f 0 on N}. 
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Then i(N) is a closed ideal in A, called the kernel of N. We clearly 
have 

(4.47) i( v (I) ) -:J X, v(i(N)) -:J N 

for any X and N, so the obvious question is: when are these inclusions 
equalities? In other words, to what extent are v and t inverses of each 
other? 

The simplest case is that of a commutative C* algebra. In this case, 
by the Gelfand-Naimark theorem we may assume that A = Co(X) and 
a(A) = X, where X is a locally compact Hausdorff space, and the 
Gelfand transform is then the identity map. Here the situation is as 
nice as possible: the maps v and I- are mutually inverse bijections. 

(4.48) Theorem. Let X be a locally compact Hausdorff space. Then 
t(v(X) = X for every closed ideal X C Co(X), and v(L(N» = N for 
every closed set N eX. 

Proof: If N C X is closed and x ~ N, by Urysohn's lemma there 
exists f E t(N) such that f(x) 1; hence v(i(N» N. Moreover, if X 
is a closed ideal in Co(X) and x and yare distinct points of X \ v(X), 
there exist f E X such that f(x) i: 0 and 9 E Co(X) such that g(x) = 1 
and 9 = 0 on v(X)U{y} (by Urysohn again). Then fg E X and (fg)(x) i: 
o = (fg)(y), so X separates points on X \ v(X). But if N is any closed 
subset of X, X \N is a locally compact Hausdorff space and (by a simple 
argument that we leave to the reader) 

Co(X \ N) {JI(X \ N) : f E i(N)}. 

Hence the Stone-Weierstrass theorem on X \ N, with N = v(I), implies 
that X = i(V(X). I 

The remainder of this section is devoted to the study of the corre­
spondences v and i for the algebra LI(GJ where G is a locally compact 
Abelian group. We identify a(LI) with G as in §4.2 so that the Gelfand 
transform becomes the Fourier transform. The simple part of the theory 
is that v is a left inverse for i. 

(4.49) Lemma. If K c 8 is compact and W is a neighborhood of K, 
there is a neighborhood U of 1 such that UK c W. 

Proof: For each x E K there is a neighborhood Ux of 1 such that 
UxUxx C W. Since K is compact there exist Xl,'" ,xn such that the 
sets Ux,Xi cover K. Let U n7 UXi ' If x E K then x E UxiXi for some 
i, and hence Ux C UUxiXi C W. In short, UK c W. I 

(4.50) Lemma. If KeG is compact and W c 8 is a neighborhood 
of K, there exists f E LI(G) such that j = 1 on K and suppj C W. 

Proof: By Lemma (4.49) there is a compact symmetric neighbor­
hood U of 1 in 8 such that UUK C W. Then XU,XUK E L2(8). 
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Let 9, h be the inverse Fourier transforms of Xu, Xu K (as given by the 
Plancherel theorem), and let I 1U1-19h. Then I E V and 1 = 9*h by 
Proposition (4.36); thus f(e) lUI I fu XUK(1]- le) d1] has the desired 
properties. I 

(4.51) Theorem. If NeG is closed, then v(i(N)) = N. 

Proof: If e fj. N, take K {O and W G \ N in Lemma (4.50) to 
obtain IE i(N) such that f(e) :f:. O. I 

When G is compact, the other half of the correspondence is easily 
analyzed. First, a simple lemma that will also be useful elsewhere. 

(4.52) Lemma. If IE LI(G) and e E G (c LOO(G)) then I*e = f(eK 

Proof: For any x E G, 

I*e(x) J I(y)(y-Ix,e}dy = (x,e) J I(y}{y,e)dy = f(e){x,e). I 

(4.53) Theorem. If G is compact, then i(V(I)) = I for every closed 
ideal I C LI(G). 

Proof: Since G is compact, we have G C L OO C L2 eLI. Suppose 
IE i(v(I»). Then 1* e 1(e)e by Lemma (4.52), and either f(e) = 0 
or e fj. v(I). In the first case, 1* e = 0; in the second case, there exists 
9 E I such that gee) 1, so that e 9 * e E I by Lemma (4.52) again. 
In either case we have I *e E I, and hence 1*9 E I for any 9 in the linear 
span of G. The latter is dense in L 2 by Corollary (4.26), so I * 9 E I for 
all 9 E L2 since I is closed. Finally, we can take 9 to be an approximate 
identity to conclude that I E I. I 

When Gis noncompact, the question of whether i(v(I)) = I is much 
more delicate. We now exhibit a simple example to show that the answer 
can be negative. 

(4.54) Theorem. Let G Rn with n ~ 3, and let S be the unit 
sphere in Rn. There is a closed ideal I in LI(Rn) such that v(I) == S 
but I #- i(S). 

Proof: First we observe that if I and xd (= the function whose 
value at x is xd(x)) are in LI(Rn) then 

-27ri(xI!ne) = J( _27rixle-21ri('X)/(x) dx 

(4.55) J 
8e-21ri(.x 81 

86 I(x) dx = 86 (e)· 

Hence 81; 8e I exists and is continuous. 
Let I be the set of all I E V such that xI! E L1 and ils 

(81/86) IS 0, and let I be the closure of I in L1. Since (Lylne) 
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e-27riyt; fu;,), I is translation-invariant, so I is a closed ideal by Theo­
rem (2.43). Moreover, {f: I E I} contains all ¢ E C~(Rn) such that 
(supp¢) n S = 0, so v(I) = S. To show that I:f:. £(S), we shall exhibit 
a bounded linear functional on Ll that annihilates I but not £(S). 

(4.56) Lemma. Let j.L denote surface measure on S. Then 1J1(x) I ::; 
C(l + Ixl)-l for some C > O. 

Proof: Given x :f:. 0 ERn, let r Ixl and x' = r-lx. If { E S, let 
() arccos(x' . {) be the angle between x and {. Then 

J1(x) J e-27rix·t;dj.L({) Cn 17r e-27rircos9 sinn- 2 BdB, 

where en is the area of the unit (n - 2)-sphere. (We are writing the 
integral for J1(x) in spherical coordinates with x, as the "north pole" 
and () as the polar angle. The portion of S where () (}o is an (n - 2)­
sphere ofradius sin(}o, and its area is cn sinn- 2 Bo.) Integration by parts 
shows that J1(x) equals 

;7rc; [e-27rirCOSOsinn-3(}1~ (n-3) 17re-27rirCOSOsinn-4(}coS(}d(}]. 

(Note that this only works when n 2:: 3.) The quantity in square brackets 
remains bounded as r Ixl -> 00, so the result follows. I 

Returning to the proof of Theorem (4.54), let ¢(x) = -27rixlJ1(X). 
By Lemma (4.56), ¢ E Loo. If IE Ll and xd E L1, by (4.55) we have 

J ¢ I -27rt J J Xl e-
27rix .t; I(x) dj.L({) dx -27ri J (xd)l{) dj.L({) 

= J !£ ({) dj.L({). 

From this we deduce two things. On the one hand, J ¢I = 0 if I E I 
and hence if I E I. On the other hand, if I is the inverse Fourier 
transform 2f a function in C,:, LRn) that equals {l (I{12 - 1) when I{I ::; 2, 
we have I == 0 on Sand 81/86 1{12 1 + 2{r = 2{r on S, so 
J ¢I J2{r dj.L({) > O. Hence I E /-(S) but I t/:. I. I 

We now aim toward some positive results in the noncompact case. 
Before proceeding to the main results, we need some approximation 
lemmas. The proof of the first one contains most of the hard technical 
work in this chain of arguments; once it is accomplished, the others are 
rather straightforward. 

(4.57) Lemma. Suppose I E Ll(G), {o E G, f({o) == 0, and f > O. 
There exists h E Ll(G) such that 11. 1 near {o and III * hill < f. 

Proof: Without loss of generality, we assume {o 1. (If not, replace 
~ by {ol and {oh.) Let 6 f/(3 + 311/Ih). 
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First, choose a compact Fe G such that IcY" If I < 8. Second, choose 

a compact symmetric neighborhood V of 1 in G such that I(x,~) -11 < 8 
when x E F and ~ E VV. Third, choose an open W J V such that 
IW \ VI < WI. By Lemma (4.49) there is a compact neighborhood K of 
1 in G such that K c V and KV C W, so that IKVI < 2WI. Let ¢ and 
'Ij; be the inverse Fourier transforms (in the L2 sense) of Xv and XKV, 
and let h = WI-I¢'Ij;. We claim that h does the job. 

To begin with, by Holder's inequality and the Plancherel theorem, 

Ilhlll :5 WI- I II¢11211'1j;112 = WI-lWII/2IKVII/2 < h. 

Next, by Proposition (4.36), h(~) = WI-Ixv * XKv(~)' which equals 1 
when ~ E K since V is symmetric. Finally, we estimate Ilf * hili. Since 
If = [(1) = 0, 

f * h(x) = J f(y)[h(y-I X ) - h(x)] dy = J f(y)[Lyh - h](x) dy, 

so 

Ilf * hll l :5 r If(y)IIILyh - hili dy + 1 If(y)IIILyh - hili dy. k ~F 

The second term on the right is bounded by 211hlll IC\F If I < 38, and 
the first is bounded by IIflll SUPF IILyh - hill, so it suffices to show that 
IILyh - hili < 38 for y E F. But 

WI(Lyh - h) = (Ly¢) (Ly'lj; - 'Ij;) + (Ly¢ - ¢)'Ij;. 

If y E F, the Plancherel theorem gives 

Likewise, IILy'lj; - 'lj;11~ < 82 1KVI, so by Holder's inequality, 

WIIILyh - hill :5 2WI I/2IKVI 1
/
2 < 38WI, 

and we are done. 

(4.58) Lemma. Suppose f E Ll(G), ~o E 8, [(~o) = 0, and f > O. 
There exists u E Ll(G) such that u = 0 near ~o and Ilf - f * ulll < f. 

Proof: By means of an approximate identity we can find 'Ij; ELI 
such that Ilf - f * 'lj;11I < !f. Then (f * 'lj;n~o) = [(~o)~(~o) = 0, so 
we can apply Lemma (4.57) with f and f replaced by f * 'Ij; and !f to 
obtain hELl such that h = 1 near ~o and Ilf * 'Ij; * hill < !f. Then 
u = 'Ij; - 'Ij; * h does the job. I 
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(4.59) Lemma. Suppose I E Ll(g), €o E G, t;!ld e > O. There exists 
v E Ll(G) such that IIvlh < e and I(€) +v(€) I(€o) in a neighborhood 
of€o. 

Proof: By Lemma (4.50) there exists 9 E L1 such that fi(€) = f(€o) 
in a neighborhood of €o. Apply Lemma (4.57) to 9 I to obtain hELl 
such that h 1 near €o and lI(g - f) * hilI < e. Then v (g f) * h 
does the job. I 

(4.60) Lemma. Suppose I E Ll(G) ande > O. Thereexistsw E Ll(G) 
such that suppw is compact and III - I * will < e. 

Proof: By means of an approximate identity we can find "" ~ 0 such 
that 11""111 1 and III 1* ""111 < ~e. Let ¢ = ..fi!j; then 1I$lb~ 1I¢1I2 
1. Multiplying ¢ by the characteristic function of a large compact set, 
we can obtain B E L2 such that suppO is compact, IIBII2 ::; 1, and 
II¢ - BI12 < e/411/111' Let w (P. Then w = 0* 0 by Proposition (4.36), 
so suppw (suppO)(suppO) is compact, and by Holder's inequality, 

III - I * will::; III 1* ""Ih + II/lIdl"" - will 
< ~e + 11/111 [II¢(¢ - 0)111 + II(¢ - B)BIII] 

1 II 2e 
< ze + Ilh 411/111 = e. 

I 

Now suppose I is an ideal in L1(G). If IE Ll(G) and €o E G, we say 
that I is locally in I at €o if there exists 9 E I such that 1 fi in a 
neighborhood of €o. 

(4.61) Lemma. Suppose I is an ideal in Ll(G) and IE L1(G). If 1 
has compact support and I is locaIIy in I at every € E G, then I E I. 

Proof: For each € E G, choose gf" E I such that 1 9 on an open 
set Uf. containing €. By passing to a finite subcover of supp 1, we obtain 
open sets UI, ... ,Un in G and gl, . .. , gn in I such that 1 9j on Uj and 
supp 1 C U~ Uj • Next, each € E Ujnsupp 1has a compact neighborhood 
contained in Uj ; by passing to a finite subcover of supp 1 again, we obtain 
compact sets K 1, .. . , Kn such that K j C Uj and supp 1 C U~ K j . By 

. 1 ~ 
Lemma (4.50), there eXist hl, ... ,hn E L (G) such that hj Ion K j 

and supp hj C Uj • Then rr~ (1 - hj ) = 0 on supp 1, so 

n 

1 l[l-IJ(l-h j )]. 

1 

If we multiply out the product inside the square brackets, each term of 
the resulting sum (except the 1 's, which cancel) is a product of h/s, 
Le., the Fourier trarIsform of a convolution of h/s. Collecting terms, we 
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see that f ~]:;,f * 1!J where Hj E £1 and supp Hj C Uj • But then 
(f * Hj t = f Hj = gj Hj = (gj * Hj t, so f * Hj = gj * hj E I, and hence 
fE~ I 

(4.62) Lemma. If I is a closed ideal in LI(G) and ~o ~ lI(I) , then 
every f E LI(G) is locally in I at ~o. 

Proof: Pick 9 E I such that g(~o) = 1. By Lemma (4.59), there 
exists v E £1 such that IIvlll < ~ and v + 9 = 1 in a neighborhood of ~o. 
Let Vn = v * ... * v (n factors); then IIvnlloo ~ IIvnl11 < Tn. Hence, if 
fELl, the series f + .L:'f f * Vn converges in £1 to a function h such 
that 

But 1 - v = 9 near eo, so 1 h(l v) 
h * 9 E I, f is locally in I at eo-

hg (h * gt near ~o. Since 
I 

We have now proved the most fundamental result of this subject: 

(4.63) Wiener's Theorem. If I is a closed ideal in LI(G) and lI(I) = 
0, then I = LI(G). 

Proof: {f E LI : supp 1 is compact} is dense in LI by Lemma (4.60) 
and is contained in I by Lemmas (4.61) and (4.62). I 

We shall discuss Wiener's theorem in greater detail below. Right now, 
we take the extra step needed to obtain a substantially more general 
result. If f E LI(G), we set 

1I(f) {~ E G : l(e) = o}. 

The assertion that i(lI(I» I, for I a closed ideal in L1(G), is then 
equivalent to the assertion that f E I whenever 1I(f) ~ lI(I). We also 
recall that a perfect set in a topological space is a closed set with no 
isolated points, and we denote the topological boundary of a set S by 
8S. 

(4.64) Lemma. Suppose I is a closed ideal in £l(G), f E LI(G), and 
1I(f) ~ lI(I). Let D(f) be the set of all e E G such that f is not locally 
in I at e. Then D(f) is perfect. 

Proof: The complement of D(f) is open by definition, so we must 
show that D(f) has no isolated points. Suppose ~o E D(f) has a compact 
neighborhood W that contains no point of D(f) except eo itself. By 
Lemma (4.50), there exists h E LI(G) such that Ii = 1 near eo and 
supph C W. By Lemma (4.62), eo E 1I(I) C 1I(f), so J(eo) = o. By 
Lemma (4.58), there is a sequence {Un} C L1 such that Un = 0 near 
eo and IIf f * unlh --+ O. Now, h * f * Un is locally in I at every 
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~ E W \ {~o} since f is, and it is locally in I at ~o and at every ~ ~ W 
since its Fourier transform vanishes in a nei[hborhood ottJtese points. 
Hence h * f * Un is locally in I at every ~ E G, and supp(hffin) C W is 
compact, so h * f * Un E I by Lemma (4.61). Since I is closed, h * f E I. 
But I hi near ~o, so f is locally in I at ~o, contrary to the assumption 
that ~o E D(f); I 

(4.65) Lemma. If E and F are subsets of a topological space and 
E C F, then EnoF = oEnoF. 

Proof: The interior of E is contained in the interior of F, hence does 
not intersect of. I 

(4.66) Theorem. Suppose I is a closed ideal in Ll(G), f E Ll(G), 
and v(f) :> v(I). If ov(I) n ov(f) contains no nonempty perfect set, 
then f E I. 

Proot First suppose I has compact support, and let D(f) be as 
in Lemma (4.64). By Lemma (4.62), D(f) C v{I) c v(f), and D(f) 
contains no interior point of v(f) since I agrees locally with 0 near such 
a point. Thus, by Lemma (4.65), 

D(f) C v(I) n ov(f) ov(I) n ov(f). 

By Lemma (4.64), D(f) is empty, so by Lemma (4.61), f E I. 
If I does not have compact support, by Lemma (4.60) there is a 

sequence {wn } in L1 such that SUPPWn is compact and f * Wn -+ f in 
L1. Let fn f * W n. Then v(fn) :> v(f) :> v(I), so by Lemma (4.65) 
again, 

v{I) n ov(fn) = v{I) n v(f) n ov(fn) = v(I) n ov(f) n ov(fn) 

v{I) n ov(f) n v(fn) v{I) n ov(f) = ov(I) n ov(f). 

The preceding argument then shows that fn E I, and hence f = Hmfn E 
I. I 

(4.67) Corollary. If ov(I) does not contain any nonempty perfect set, 
then t( v(I)) I. 

The obvious situation in which this condition holds is when v(I) is 
discrete. It also holds when v(I) is open, a common occurrence when a 
is totally disconnected - for example, when G = Qp or when a is an 
infinite product of finite groups. 

(4.68) Corollary. Iff E Ll and 1= 0 on a neighborhood ofv{I) then 
fEI. 

If N is a closed subset of G, t{N) is clearly the largest closed ideal I 
such that v{I) N. There is also a smallest such ideal, and in view of 
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Corollary (4.68) it is 

io(N) = closure of {f E LI : i = 0 on a neighborhood of N}. 

By Corollary (4.67), these two ideals coincide if aN contains no 
nonempty perfect set. 

We conclude this section by discussing some of the ramifications of 
Wiener's theorem (4.63). The first remark to be made is that Wiener's 
theorem is a deep result only for noncompact, nondiscrete groups. In­
deed, for the compact case we gave a simple proof of a more general result 
in Theorem (4.53). On the other hand, if G is discrete then LI (G) has 
a unit, so every proper ideal is contained in a maximal ideal, and the 
latter are all of the form {f : i(~o) = O} for some ~o E G; this imme­
diately implies Wiener's theorem. Conversely, Wiener's theorem can be 
restated as an analogue of this result for nondiscrete groups: 

(4.69) Corollary. Every proper closed ideal in LI(G) is contained in 
one of the maximal ideals i( {~o} ), ~o E G. 

When G is nondiscrete, this assertion loses its validity if the word 
"closed" is omitted. For example, the set of all fELl such that supp i 
is compact is a proper ideal not contained in any i( {~o} ). 

Wiener's theorem is frequently used in the following form: 

(4.70) Corollary. Suppose fELl (GJ The closed linear span of the 
translates of f is L 1 (G) if and only if f never vanishes. 

Proof: By Theorem (2.43), the closed linear span of the translates of 
f is the closed ideal generated by f. If f(~o) = 0, this ideal is contained 
in i({~O}); if f(~) -=I- 0 for all~, it equals LI by Wiener's theorem. I 

There is a corresponding result for L2, but its proof is almost trivial: 

(4.71) Proposition. Suppose f E L2(G). The closed linear span of 
the translates of f is L2(G) if and only if i -=I- 0 almost everywhere. 

Proof: Let M be the closed subspace of L2 spanned by the translates 
of f. Then 9 ..1 M if and only if J(Lxf)g = 0 for all x E G. By the 
Plancherel theorem and (4.14), this happens precisely when 

for all x, and by the Fourier uniqueness theorem (4.33) this is equivalent 
to f 9 = 0 a.e. Thus there is a nonzero 9 E MJ. if and only if i = 0 on 
a set of positive measure. I 

Wiener's principal motivation for proving Theorem (4.63) was to ob­
tain part (a) of the following theorem (part (b) was added by Pitt). 
Some terminology: suppose ¢ is a bounded function on G. We say that 
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¢(x) -+ a as x -+ 00 if for every € > 0 there is a compact set KeG 
such that I¢(x) al < € for x f/:. K. We say that ¢ is slowly oscillating 
if for every € > 0 there is a compact KeG and a neighborhood V of 1 
in G such that I¢(x) ¢(y-Ix)1 < € whenever y E V and x f/:. K. (For 
example, if ¢ is uniformly continuous on G then ¢ is slowly oscillating, 
and one can take K 0.) 

(4.72) The Wiener-Pitt Tauberian Theorem. Suppose 
¢ E L=(G), f E LI(G), J f 1, 1 never vanishes, and ¢ * f(x) -+ a as 
x -+ 00. Then: 

a. ¢ * g(x) -+ a J 9 as x -+ 00 for every 9 E £1. 
b. If ¢ is slowly oscillating, ¢(x) -+ a as x -+ 00. 

Proof: The set £. of all 9 E LI satisfying ¢ * g(x) -+ a J 9 as x -+ 00 

is clearly a linear subspace of LI. £. is closed because if gn -+ 9 in LI 
then ¢ * gn -+ ¢ * 9 uniformly and J gn -+ J g. £. is translation-invariant 
because ¢*(Lyg) = Ly(¢*g), and limx-+= Ly(¢*g)(x) = a J 9 = a J Lyg 
whenever limx_= ¢ * g(x) a J g. £. contains f by assumption, and 
hence £. LI by Corollary (4.70). Thus (a) is proved. 

If ¢ is slowly oscillating and € > 0, choose K and V so that I¢(x) 
¢(y-Ix)1 < € when x f/:. K and y E V. Assuming, as we may, that V has 
finite measure, let 9 = IVI- I Xv. If x E K then 

¢(x) ¢*g(x) = I~I i[¢(x) ¢(y-Ix)]dy, 

so I¢(x) - ¢ * g(x)1 < € for x f/:. K. Since ¢ * g(x) -+ a as x -+ 00 and € 

is arbitrary, it follows that ¢(x) -+ a as x -+ 00. I 

When G = R, the condition "x -+ 00" can be replaced by "x -+ +00" 
(or "x -+ -00") in the Wiener-Pitt theorem. Moreover, the condition 
of slow oscillation in part (b) can be replaced by slow oscillation at +00 
(or -(0), viz., that for every € > 0 there exist A > 0 and 8 > 0 such 
that I¢(x) - ¢(x - y)1 < € whenever Ix - yl < 8 and x > A (or x < -A). 

4.6 Spectral Synthesis 

The theory of closed ideals in £1 (alias closed translation-invariant sub­
spaces, in view of Theorem (2.43)) has a dual formulation as a theory 
of weak * closed translation-invariant subspaces of L=. We recall that if 
M is a subspace of a Banach space X, its annihilator 

Mol = {.;- E X· : .; = 0 on M} 
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is a weak* closed subspace of X*; reciprocally, if N is a subspace of X* , 
its annihilator 

1. N = {x EX: ~(x) = 0 for ~ EN} 

is a norm-closed subspace of X. It is an easy consequence of the Hahn­
Banach theorem that 1.(M1.) is the (norm) closure of M, while (1.N) 1. 

is the weak* closure of N. Hence the correspondences M -+ M 1. and 
N -+ 1.N are mutually inverse bijections between norm-closed subspaces 
of X and weak* closed subspaces of X*. 

Now, when X = LI(G), if Me LI is translation-invariant then so is 
M1., and if N c Loo is translation-invariant then so is 1.N, because 

J (Lyf)¢ = J f(y-1x)¢(x) dx = J f(x)¢(yx) dx = J f(L y-l¢). 

Moreover, these integrals are equal to j * ¢(y) or f * ¢(y-I) where 
j(x) = f(x- I ). For this reason it will be convenient to modify the 
correspondence M -+ M 1. by composing it with the map f -+ j. Thus, 
if I and .:1 are translation-invariant subspaces of L 1 and L 00 respectively, 
we define 

I1. = {¢ E L 00 : ¢ E I1.} = {¢ E L 00 : f * ¢ = 0 for f E I}, 

1..:1 = {J E LI : j E 1..:1} = {J E LI : f * ¢ = 0 for ¢ E .:1}. 

We then have 1.(I1.) = I when I is norm-closed, and (1..:1)1. = .:1 when 
.:1 is weak* closed, so I -+ I1. and .:1 -+ 1..:1 are mutually inverse cor­
respondences between closed ideals in LI and weak* closed translation­
invariant subspaces of Loo. We shall call the latter spaces co-ideals for 
short. 

If M is any subspace of Loo, we define the spectrum of M to be the 
set of characters in M: 

a(M) = M nc. 
(4.73) Proposition. If I is a closed ideal in LI, then a(I1.) = v(I). 

Proof: If ~ E C, ~ E v(I1.) if and only if ~ * f = 0 for all f E I. But 
by Lemma (4.52), ~ * f = 0 if and only if [(~) = O. I 

On the other hand, if N is a closed subset of C, let 

T( N) = the weak* cl~sed linear s}?an of 1Y in L.r:v. 

T(N) is a co-ideal since each translate of a character is a scalar multiple 
of that eharacter, and we have: 

(4.74) Proposition. If N is a'closed set in C, then 1.(T(N)) = i(N). 

Proof: As in the preceding proof, we have f E 1. ( T( N)) precisely 
when [(~) = 0 for all ~ E N. '. I 
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A co-ideal .:1 in Loo is said to admit spectral synthesis if .:1 = 
7(0'(.:1)). By Propositions (4.73) and (4.74), this happens if and only 
if I = i(v(I)) where I = 1..:1. Theorem (4.54) shows that not all co­
ideals admit spectral synthesis, but Theorem (4.66) immediately yields 
the following positive results. 

(4.75) Proposition. Let.:1 be a co-ideal in Loo. 

a. If 00'(.:1) contains no nonempty perfect set, then.:1 admits spectral 
synthesis. 

b. If 0'(.:1) = {~I' ... , ~n}, then .:1 is the linear span of ~I'" . , ~n' 
c. If.:1 -::J {O} then 0'(.:1) -::J 0. 

Proof: (a) is a reformulation of Corollary (4.67). (b) is a consequence 
of (a), and (c) is a reformulation of Wiener's theorem (4.63). I 

The motivation for the study of spectral synthesis is the desire to 
develop a theory of Fourier analysis for Loo functions. When G = Rn, 
this desire is largely satisfied by the theory of distributions, which allows 
one to define the Fourier transform of an Loo function as a tempered 
distribution from which one can recover the function by a generalized 
form of the Fourier inversion formula, but spectral synthesis offers a 
somewhat different point of view that does not depend on a differentiable 
structure. Its aim is to "synthesize" LOO functions as weak* limits of 
linear combinations of characters. Specifically, if ¢ E Loo, let .:1", be 
the co-ideal generated by ¢, that is, the weak* closed linear span of the 
translates of ¢. Then .:1", admits spectral synthesis if and only if ¢ can 
be synthesized from the characters in .:1",. We define the spectrum of 
¢ to be the set of these characters: 

o'(¢) = 0'(.:1",) = .:1", n C. 

o'(¢) may be regarded as the "support of the Fourier transform of ¢" 
even though the Fourier transform is not defined on all of Loo, as the 
following propositions show. 

(4.76) Proposition. If ¢ E Loo n LI, then 0'( ¢) = supp ¢. 

Proof: First we observe that f E 1..:1", if and only if f * ¢ = O. By 
Proposition (4.73), then, ~ E o'(¢) if and only if [(~) = 0 for all fELl 
such that f * ¢ = O. But (f * ¢f = f¢, so by the Fourier uniqueness 
theorem (4.33), f * ¢ = 0 precisely when i = 0 on supp¢. It is then 
immediate that supp¢ C o'(¢), and the reverse inclusion also holds in 
view of Lemma (4.50). I 

(4.77) Proposition. Suppose ¢ E 8(G), so that ¢(x) = J(x,~)d/-L(~) 
for some /-L E M (0). Then 0'( ¢) = supp /-L, and .:1", admits spectral' 
synthesis. 
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Proof: We have 

so by Proposition (4.17), f * ¢ = 0 precisely when j = 0 on sUpPJ-L. 
As in the preceding proof, ~ E a( ¢) if and only if f (~) = 0 for all f 
such that f * ¢ = 0, and it follows that a(¢) = sUpPJ-L. This proves the 
first assertion and shows that f E 1..:1", if and only if i = 0 on a( ¢), so 
1..:1", = i(a(¢)). But also 1. 7(a(¢)) = i(a(¢)) by Proposition (4.74), so 
.:1", = 7(a(¢)) = 7(a(.:1",)). I 

4.7 The Bohr Compactification 

In this section G will denote a noncompact locally compact Abelian 
group. C is then nondiscrete by Proposition (4.35), and we denote by 
Cd the group C equipped with the discrete topology. By Proposition 
(4.4), the dual group of Cd is a compact group, called the Bohr com­
pactification of G and denoted by bG. 

By Pontrjagin duality, G can be regarded as the set of group homo­
morphisms from C to T that are continuous in the usual topology on C, 
while bG is the set of all group homomorphisms from C to T. Thus G 
is naturally embedded as a subgroup of bG. As such, G is dense in bG, 
for if G is the closure of Gin bG, G1. C Cd is the set of characters on 
G that are trivial on G, namely {I}; hence G = bG by Theorem (4.39) 
and Pontrjagin duality. 

The embedding of G into bG is continuous, for the topology on G is 
the topology of compact convergence on C while the topology on bG 
is the topology of pointwise convergence on C, which is weaker. The 
embedding is not a homeomorphism onto its range, however: if it were, 
G would be closed in bG by Lemma (4.30) and hence compact. (Thus 
bG is not a "compactification" of G in the usual sense of the word.) 

The correspondence G -+ bG is a functor from the category of locally 
compact Abelian groups to the category of compact Abelian groups, and 
it has the following universality property. 

(4.78) Proposition. If K is a compact group and p: G -+ K is a con­
tinuous homomorphism, then p extends to a continuous homomorphism 
from bG to K. 

Proof: The closure of p( G) in K is Abelian since p( G) is, so we may 
assume that K = p( G) is Abelian. p induces a continuous homomor­
phism p* : R -+ C by p*(TJ) = TJ 0 p. Since K is compact, R is discrete, 
so p* is actually continuous from R to Cd. Dualizing again gives a con-
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tinuous homomorphism p : bG --+ R = K whose restriction to G is easily 
seen to be p. I 

The Bohr compactification is so named because of its connection with 
the theory of almost periodic functions, which was developed by Harald 
Bohr. A complete discussion of this matter is beyond our present scope, 
but we shall explain the principal link. 

A bounded continuous function! on G is called uniformly almost 
periodic if the set of translates of !, {Rx! : x E G}, is totally bounded 
in the uniform metric. The justification for the name is as follows. The 
almost periodicity of! means that for any f > 0 there exist XI, ... ,Xn E 

G with the following property: for each X E G there is an x j such that 
IIRx! - RxJllsup < f, and hence IIRx-:-1x! - !llsup < f. If K is any 

J 

compact set in G we can choose x such that xjlx ~ K for 1 ~ j ~ n; 
hence there exist "arbitrarily large" elements z of G (namely z = xjlx 
for suitable x and j) which are "almost periods" of ! in the sense that 
IIRz! - !llsup < f. 

(4.79) Theorem. If ! is a bounded continuous function on G, the 
following are equivalent: 

i. ! is the restriction to G of a continuous function on bG. 

ii. ! is the uniform limit of linear combinations of characters on G. 

iii. ! is uniformly almost periodic. 

Proof: (i) implies (ii) because the linear combinations of characters 
on bG are unifomly dense in C (bG), by the Stone-Weierstrass theorem. 
Conversely, every character on G extends continuously to bG by Propo­
sition (4.78), and it follows that (ii) implies (i). 

To see that (i) implies (iii), suppose! = ¢IG where ¢ E C(bG). Since 
x --+ Rx¢ is continuous from bG to C(bG), the set {Rx¢ : x E bG} 
is compact in C(bG). Moreover, the restriction map ¢ --+ ¢IG is an 
isometry in the uniform metric since G is dense in bG. It follows that 
{(Rx¢)IG : x E bG} is a compact set containing {Rx! : x E G}, so the 
latter is totally bounded. 

To complete the proof, we need a lemma. 

(4.80) Lemma. Suppose K is a compact metric space. Then the group 
Iso(K) of isometric bijections of K is compact in the uniform metric. 

Proof: The uniform limit of isometries is clearly an isometry (in par­
ticular, an injection), and the uniform limit of surjections is a surjection 
because its range must be both dense and compact. Hence Iso(K) is a 
closed subset of the metric space C(K, K) of continuous maps of K to 
itself. Moreover, Iso(K) is an equicontinuous family simply because its 
members are isometries. That Iso(K) is compact therefore follows from 
the ArzeHt-Ascoli theorem. (See Folland [39]; the statement and proof 
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given there pertain to complex-valued functions, but they work equally 
well for functions with values in a compact metric space.) I 

Returning to the proof of Theorem (4.79), suppose f is uniformly 
almost periodic, and let K be the uniform closure of {R,xf : x E G}; thus 
K is a compact metric space. We claim that f is uniformly continuous. 
If not, there is a net {xQ } in G converging to 1 such that Rxuf does not 
converge to f uniformly. Since K is compact, by passing to a subnet 
we can assume that Rxj ---+ 9 uniformly, where 9 i:- f. But this is 
impossible since Rxu f ---+ f pointwise. 

Now, Iso(K) is a compact group by Lemma (4.80). The map x ---+ Rx 
is clearly a group homomorphism from G to lso(K), and the uniform 
continuity of f easily implies that it is continuous. By Proposition (4.78), 
it extends to a continuous homomorphism (still denoted x ---+ Rx) from 
bG to Iso( K). But then the continuous extension of f to bG is given by 
¢(x) = Rxf(l), x E bG. I 

4.8 Notes and References 

The theory of the Fourier transform on locally compact Abelian groups 
is a generalization of classical Fourier analysis on Rand T, which of 
course has a very long history. The abstract theory was first worked out 
by Weil [128]. §§4.1-3 are largely based on the elegant development of 
the theory by Cartan and Godement [21]. 

Bochner's theorem was first proved for G = T by Herglotz [61], and 
then for G R by Bochner [13] in a paper that established the im­
portance of functions of positive type (or positive definite functions) in 
harmonic analysis. The general case is due to Weil [128]. The Pontrjagin 
duality theorem was proved by Pontrjagin [99] in the case of compact 
second countable groups and by van Kampen [120] in the general case. 

More extensive treatments of analysis on general locally compact 
Abelian groups can be found in Rudin [107], Reiter [103], and Hewitt 
and Ross [62], [63]. We shall also give a few references for the deeper 
and more detailed theory that is available on specific groups: Dym and 
McKean [32], Folland [42], Korner [72], Stein and Weiss [115], and Zyg­
mund [134] for the classical theory on R n and Tn; Golubov, Efimov, and 
Skvartsov [51] for Walsh functions; Taibleson [116] for Fourier analysis 
on the p-adic numbers and other local fields. 

One topic we have not covered is the structure theory of locally com­
pact Abelian groups, which may be found in Hewitt and Ross [62] and 
Rudin [107]. We mention only the main result: 

(4.81) Theorem. Every locally compact Abelian group has an open 
subgroup of the form Rn x G where G is a compact group. 
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Another topic we have omitted is the Fourier analysis of the measure 
algebra M(G). When G is discrete, of course, M(G) = LI (G). In other 
cases, the full spectrum of M (G) is rather mysterious. In particular, 
o is not dense in a(M(G)), and the formula (J.1'*n~) = /i(~), which is 
easily seen to be true for ~ E 0, is not valid on all of a(M(G)). In other 
words, M (G) is not a symmetric Banach algebra. See Rudin [107] for 
this and other results concerning M (G). 

Theorem (4.44) was proved independently by Naimark [95], Ambrose 
[1], and Godement [49]. 

The correspondence between closed ideals in a commutative Banach 
algebra A and closed subsets of a(A) is an analogue of the correspon­
dence between ideals in a polynomial ring and affine algebraic varieties 
that lies at the heart of algebraic geometry. Namely, each ideal in the 
ring k[X I, ... ,Xn ] (k a field) determines the variety V C kn on which 
the elements of the ideal vanish, and each such variety determines the 
ideal of polynomials that vanish on it. In this context, the fundamental 
theorem that elucidates how these relations fit together is the Hilbert 
Nullstellensatz. 

Theorem (4.54) is due to Schwartz [109]. More generally, Malliavin 
[89] has proved that for every noncompact locally compact Abelian group 
G there is a closed ideal Ie LI(G) such that i(v(I)) -=I- I. (The proof 
can also be found in Rudin [107].) 

Theorem (4.63) was proved by Wiener [130] for the case G = R. Its 
generalization to arbitrary locally compact Abelian groups and to ideals 
with nonempty hulls (Theorem (4.66)) is the result of the combined 
efforts of several people; detailed references may be found in Reiter [103] 
and Rudin [107]. These books, as well as Hewitt and Ross [63], contain 
much additional information on spectral synthesis, ideals in convolution 
algebras, and related topics. 

When G = R, there is a rather amazing result that interpolates be­
tween Corollary (4.70) and Proposition (4.71), due to Beurling [10]: 

(4.82) Theorem. Suppose f E LI(R) n L2 (R). If v(f) has Hausdorff 
dimension a, where 0 < a < 1, then the linear span of the translates of 
f is dense in V(R) for p > 2/(2 - a). 

"Tauberian theorem" is a generic name for a theorem in which one 
assumes conditions on certain averages of a function and deduces corre­
sponding conditions on other averages of the function or on the function 
itself. In the Wiener-Pitt theorem, ¢ * f is a weighted average of trans­
lates of ¢, and one is concerned with the behavior of such averages at 
infinity. (The original theorem of Tauber is a criterion for convergence 
of a numerical series 2::~ C{ if the averages an = n- I (SI + .,. + sn) of 
the partial sums Sk = 2::7 Cj converge to S as n -+ 00 and if jhl -+ 0 as 
j -+ 00, then 2:: Cj converges to s.) For more about Tauberian theorems 
and their applications, see Wiener [130], [131]' and Rudin [108]. 
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A nice treatment of the classical theory of almost periodic functions on 
R can be found in Besicovitch [9]. The theory can be extended to non­
Abelian groups, and there is an analogue of the Bohr compactification 
for an arbitrary locally compact groups G - namely, a compact group 
bG with the universal mapping property of Proposition (4.78) - and 
an analogue of Theorem (4.79). (However, in general the canonical map 
G -+ bG is not an injection, and indeed bG may be trivial.) This theory 
was initiated by von Neumann [125]; its elements are outlined in Weil 
[128] and Loomis [75], and an exhaustive treatment can be found in 
Maak [77]. 





5 
Analysis on Compact Groups 

In this chapter we present the basic theory of representations of compact 
groups and Fourier analysis on such groups, and we present as concrete 
examples the lowest-dimensional non-Abelian connected compact Lie 
groups: SU(2), SO(3), and U(2). 

Throughout this chapter, G will denote a compact group. Haar mea­
sure on G is both left and right invariant (Corollary (2.28)), and we 
always normalize it so that IGI = 1. 

5.1 Representations of Compact Groups 

We begin by establishing some basic facts about unitary representations 
of compact groups, the key to which is the following lemma. We re­
call from §3.1 that C (7r, p) is the space of intertwining operators of the 
representations 7r and p, and that C(7r) = C(7r, 7r). 

(5.1) Lemma. Suppose 7r is a unitary representation of the compact 
group G. Fix a unit vector U E 1t1f , and define the operator T on 1t1f by 

Tv = j (v, 7r(x )u)7r(x)u dx. 

Then T is positive, nonzero, and compact, and T E C(7r). 

(Observe that v -+ (v,7r(x)u)7r(x)u is the orthogonal projection of 
v onto the line through 7r(x)u; T is the average over G of all these 
projections. ) 

Proof: For any v E 1t1f we have 

(Tv,v) = j(v,7r(X)U)(7r(x)u,V)dX = j I(v, 7r(X)U) 12 dx ~ 0, 

so T is positive. Moreover, if we take v = u, l(u,7r(x)u)12 is strictly 
positive on a neighborhood of 1, so (Tu, u) > 0 and hence T -:j:. O. 

125 
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Since G is compact, x -+ 7r(x)u is uniformly continuous. Hence, given 
e > 0, we can find a partition of G into disjoint sets E1 , ••. , En and 
points Xj E Ej such that 117r(x)u - 7r(xj)ull < !e for x E Ej . Then 

II (v, 7r(x )u}7r(x)u - (v, 7r(Xj )u}7r(Xj )ulI 

~ II (v, [7r(x) 7r(Xj)]u}7r(x)ulI + II (v, 7r(Xj}U) [7r(x) 7r(xj)]ulI 

< ellvll 

for x E Ej , so if we set 

we have IITv TfVIl < ellvll for all v. But the range of Tf is the linear 
span of {7r(xj)u}f, so Tf has finite rank. T is therefore compact, being 
the norm limit of operators of finite rank. 

Finally, T E C(7r) because 

7r(y)Tv !(v,7r(X)U}7r(YX)UdX = !(v,7r(y- 1x)u}7r(X)UdX 

!(7r(y)v,7r(X)U)7r(X)UdX = T7r(Y)v. 

I 

(5.2) Theorem. IfG is compact, then every irreducible representation 
of G is finite-dimensional, and every unitary representation of G is a 
direct sum of irreducible representations. 

Proof: Suppose 7r is irreducible, and let T be as in Lemma (5.1). By 
Schur's lemma, T cI with c ::/= o. So the identity operator on 1t7f is 
compact, and hence dim 1t7f < 00. 

Now let 7r be an arbitrary unitary representation of G, and again let 
T be as in Lemma (5.1). Since T is compact, nonzero, and self-adjoint, 
by Theorem (1.52) it has a nonzero eigenvalue>. whose eigenspace M 
is necessarily finite-dimensional. Since T E C (7r), M is invariant un­
der 7r; hence 7r lias a finite-dimensional subrepresentation. But an 
easy inductive argument using Proposition (3.1) shows that every finite­
dimensional representation is a direct sum of irreducible representations. 
so 7r has an irreducible subrepresentation. 

By Zorn's lemma there is a maximal family {MoJ of mutually orthog­
onal irreducible invariant subspaces for 7r. If N is the orthogonal comple­
ment of ED Mw then N is invariant, and 7rN has an irreducible subspace 
by the above argument, contradicting maximality unless N {O}. Thus 
1t7f = ED Mo. I 
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We denote by a the set of unitary equivalence classes of irreducible 
unitary representations of G. We denote the equivalence class of 1T' by 
[1T']. Thus, "[1T'] E a" will be a convenient shorthand for the statement "1T' 
is an irreducible unitary representation of G." This definition of a is in 
essential agreement with our earlier one in the case when G is Abelian, 
since a character of an Abelian group is nothing but a representation of 
the group on C. 

The decomposition of a unitary representation p of G into irreducible 
subrepresentations is in general not unique. (For example, let p be the 
trivial representation of G on a Hilbert space 'Ii of dimension > 1. Then 
any orthonormal basis of 'Ii gives a decomposition of 'Ii into irreducible 
[one-dimensional] invariant subspaces.) However, the decomposition of p 
into subspaces corresponding to different irreducible equivalence classes 
is uniquely determined. Namely, for each [1T'] E a, let M1f be the closed 
linear span of all irreducible subspaces of 'lip on which p is equivalent to 
1T'. Then M1f is invariant, and we have: 

(5.3) Proposition. M1f .1 M1f1 if [1T'] ::j: [1T"]. IE N is any irreducible 
subspace of M1f then p"" is equivalent to 1T'. 

Proof: Suppose C,1f and c'1f1 are irreducible subspaces on which p is 
equivalent to 1T' and 1T" respectively, and let P be the orthogonal pro­
jection onto C,1f, Then PIC,1f1 E C(pc .. , ,pc .. ), so PIC,1f1 0 by Schur's 
lemma (3.6). It follows that c'1f .1 c'1f1 and hence that M1f .1 M",I. 

If N is an irreducible subspace of M 1f , by definition of M", there 
is an irreducible space C, C M", such that pc is equivalent to 1T' and 
P(N) ::j: {O}, where P is the orthogonal projection onto c'. Again, 
PIN E C(tJ'f, pC), so P"" and pC are equivalent by Schur's lemma since 
PIN ::j: O. Hence P"" ~ pC ~ 1T'. I 

In view of Theorem (5.2), it follows that 'lip = EB[1fIECM",. It also 
follows that M", can be decomposed as EBOEA c'o where pC,. is equivalent 
to 1T' for each 0:. The latter decomposition is not unique if M1f is not 
irreducible, but the following proposition shows that the cardinality of 
A is the same for all such decompositions (a result which is also an easy 
consequence of the finite dimensionality of 1T'). This cardinality is called 
the multiplicity of [1T'] in p and is denoted by mUlt(1T', p). 

(5.4) Proposition. mult(1T',p) dimC(1T',p). 

(The proof will make clear what this means when the mUltiplicity is 
infinite.) 

Proof: . Let M", EBoEA c'0I as above. For each 0: let TO'. : 'Ii", -t c'o 
be a unitary equivalence. Fix a unit vector u E 'Ii", and let VOl = Tou. 
Then {Vo}OEA is an orthonormal set in M 1f ; let V be the closed subspace 
it spans. We shall prove the proposition by showing that the map T -t 

Tu is a linear isomorphism from C(1T',p) to v. 
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Every nonzero T E C(7r,p} is an injection by Schur's lemma, so the 
map T --+ Tu is injective. Moreover, the range of T is a subspace 
of 1tp on which p is equivalent to 7r, and hence is contained in M1\"' 
Thus we may write Tu = L u'" with u'" E L",. If P'" is the orthogonal 
projection onto L"" then P",T E C(7r, pL..,) and so P",T = c",T", by Schur's 
lemma. It follows that u'" = P",Tu = c",v'" , so that Tu E V. Finally, 
if v = L C"'V'" E V, the sum T = L c",T", converges strongly in C(7r, p) 
since L Ica l2 < 00 and the ranges of the T",'s are mutually orthogonal, 
and we have v = Tu. I 

We remark that the definition of M1\" and Propositions (5.3) and (5.4) 
do not depend on the compactness of G. However, if G is noncompact 
it is usually false that 1tp = ED M1\"' 

It is worth noting that if p is a possibly nonunitary representation 
of the compact group G on a finite-dimensional space V, that is, any 
continuous homomorphism from G to the group of invertible operators 
on V, then there is an inner product on V with respect to which p is 
unitary. Namely, start with any inner product ( , )0 on V and define a 
new inner product by 

(u, v) = j (p(x)u, p(x)v)o dx. 

Then ( , ) is a p-invariant inner product, for 

(p(y)u,p(y)v) = j(p(xy)u, p(xy)v)o dx = j(p(x)u,p(x)V)odX = (u,v). 

Hence the theory of unitary representations of G essentially includes the 
theory of all finite-dimensional representations of G, unitary or not. 

5.2 The Peter-Weyl Theorem 

When G is Abelian, G is a set of continuous functions on G. The cor­
responding set of functions in the non-Abelian case is the set of matrix 
elements of the irreducible representations of G. If 7r is any unitary 
representation of G, the functions 

¢u,v(x) = (7r(x)u,v) (u, v E 1t1\") 

are called matrix elements of 7r. If u and v are members of an or­
thonormal basis {ej} for 1t1\"' ¢u, v (x) is indeed one of the entries of the 
matrix for 7r(x) with respect to that basis, namely 

(5.5) 
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We denote the linear span of the matrix elements of 7r by £". £" is a 
subspace of C(G), and hence also of LP(G) for all p. 

(5.6) Proposition. £" depends only on the unitary equivalence class 
of 7r. It is invariant under left and right translations and is a two-sided 
ideal in Ll(G). Ifdim1t" = n < 00 then dim£" ::; n2. 

Proof: If T is a unitary equivalence of 7r and 7r', so that 7r' (x) = 
T7r(x)T- 1 , then (7r(x)u,v) = (7r'(x)Tu,Tv); this proves the first asser­
tion. We have 

and likewise ¢u,v(xy) = ¢,,(y)u,v(x), That £" is a two-sided ideal now 
follows from Theorem (2.43); alternatively, it is easy to check directly 
that f * ¢u,v = ¢u,,,(])v and ¢u,v * f = ¢,,(])u,v where j(x) = f(x- 1

). 

Finally, if dim 1t" = n, £" is clearly spanned by the n2 functions 7rij 

given by (5.5). I 

(5.7) Proposition. If 7r = 7rl EB··· EB trn then £" = L~ £"j' (The sum 
need not be direct.) 

Proof: Clearly £"j C £" for all j (take u, v E 1t"j C 1t,,). On 
the other hand, if U = L Uj and v = L Vj with Uj, Vj E 1t"i' then 
(7r(X)Uj,Vk) = 0 for j -:j:. k and hence ¢u,v = L¢uj,vj E L£"j' I 

The matrix elements of irreducible representations can be used to 
make an orthonormal basis for L2(G). The first main step in proving 
this is the following. Here and in the sequel we shall set 

and we denote the trace of a matrix A by tr A. 

(5.8) The Schur Orthogonality Relations. Let 7r and 7r' be irre­
ducible unitary representations of G, and consider £" and £,,1 as sub­
spaces of L2(G). 

a. If [7r] -:j:. [7r'] then £" ..1 £,,1. 

b. If {ej} is any orthonormal basis for 1t" and 7rij is given by (5.5), 
then {v'(I; 7rij : i, j = 1, ... , d,,} is an orthonormal basis for £". 

Proof: If A is any linear map from 1t" to 1t"/, let 

Then 

A7r(Y) = J 7r'(x- 1 )A7r(xy)dx = J 7r'(yx- 1)A7r(x)dx = 7r'(y)A, 
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so A E C(1I,1I'). Given v E 'H,7f and v' E 'H,7f" let us define A by 
Au = {u, v)v'. Then for any u E 'H,7f and u' E 'H,7f" 

(Au,u') = j{A1I(x)u,1I'(X)U')dX 

j (1I(x)u, v){v', 1I(x)u') dx 

j ¢u,v(x)¢u',v,(x)dx. 

We now apply Schur's lemma. If [11] ::f. [11'] then A 0, so E7f .1 E7f, and 
(a) is proved. If 11' 11 then A cI, so if we take u = ei, u' = ei', 
v = ej, and v' ej' we get 

j 1Iij(X)1Ii'j' (x) dx c(ei' eil) cOu', 

But 

cd7f tr A = j tr[1I(x-l)A1I(x)] dx = tr A, 

and since Au (u, ej)ej' we have tr A = Ojj' Hence 

j 1Iij(X)1Ii1j'(x)dx L OWOjjl, 

so {.,fd;; 1Iij} is an orthonormal set. Since dim E7f ~ d; by Proposition 
(5.6), it is a basis. I 

We observed in Proposition (5.5) that E7f is invariant under the left 
and right regular representations Land R. (We retain our usual notation 
Lx and Rx for left and right translation by x.) The question then arises: 
what are the irreducible subrepresentations of Land R in El£? The 
answer is simple and elegant. We recall that 1f denotes the contragredient 
of the representation 11, whose matrix elements 1fij are the complex 
conjugates of those of 11. 

(5.9) Theorem. Suppose 11 is irreducible, and let 1Iij be given by (5.5). 
For i = 1, ... , d7f let n i be the linear span of 1Iil' ... ,1Iid" (the ith row 
of the matrix (1Iij)) and let Ci be the linear span of 1Ili,'" ,1Id"i (the 
ith column). Then n i (resp. Ci ) is invariant under the right (resp. left) 
regular representation, and Rn; (resp. LCi) is equivalent to 11 (resp. 1f). 

The equivalence is given by 

Proof: In terms of the basis {ej} for 'H,7f, 11 is given by 

1I(x) (I:>jej) = L 1Ikj(X)Cjek. 
j kj 
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Moreover, 1I"(Yx) 1I"(Y)1I"(x), so 1I"ij(YX) = Lk 1I"ik(Y)1I"kj(X). In other 
words, Rx 1l"ij Lk 1I"kj(X)1I"ik, so 

Rx (L::>j1l"ij) = L 1I"jdX)Cj1l"ik. 
j jk 

Comparison of the two displayed lines proves the desired result for right 
translations. In the same way, for left translations we see that 

L 1I"jdx- 1 )Cj1l"ki, 
jk 

and since 11" is unitary, 1I"jdX-1) = 1rkj(X); the result follows. 

Now let 

[ the linear span of U [1f' 

[1flEa 

That is, [ consists of finite linear combinations of matrix elements of 
irreducible representations. By Proposition (5.7), [ is also the linear 
span of the [1f as 11" ranges over all finite-dimensional representations of 
G. [ can be considered as the space of "trigonometric polynomials" on 
G. 

(5.10) Proposition. [ is an algebra. 

ProoF: If suffices to show that if [11"], [11"'] E G and 1I"ij, 1I"k! are as 
in (5.5) then 1I"ij1l"k! is a matrix element of some finite-dimensional rep­
resentation of G. The appropriate representation is the (inner) tensor 
product of 11" and 11"'. Rather than refer to the general theory of tensor 
products in §7.3, we present the construction ad hoc. Via the choice of 
bases for 1i1f and 1i1f , implicit in the definition of 1I"ij and 1I"k!' we identify 
1i1f and 1i~ with en and en' where n = d1f , n' = d1f ,. We consider e nn' 

as the space of n x n' matrices over e, and we define the representation 
11" 0 11"' on enn' by 

(11" 0 1I"')(x)T = 1I"(x)T1i"(x- 1). 

The matrices ejk E enn' whose (j, k)th entry is 1 and whose other entries 
are 0 are an orthonormal basis of enn' , and a simple calculation (using 
the fact that 1rk! (x - 1) 1I":k (X)) gives 

{(11" 0 11"') (x)ejl , eik) = 1I"ij(X)1I"kl(X), 

We come now to the main technical lemma in the Peter-Weyl the­
ory of representations of compact groups. This lemma is an immediate 
consequence of the preceding results together with the Gelfand-Raikov 
and Stone-Weierstrass theorems. However, it antedates these theorems 
by about fifteen years, and the original argument of Peter and Weyl 
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is interesting and elegant. It also gives an independent proof of the 
Gelfand-Raikov theorem for the case of compact groups. Accordingly, 
we shall give both proofs. 

(5.11) Theorem. £ is dense in C(G) in the uniform norm, and dense 
in LP(G) in the LP norm for p < 00. 

First proof: It is enough to show that £ is dense in C(G). But £ is 
an algebra (Proposition (5.10» that separates points (by the Gelfand­
Raikov theorem), is closed under complex conjugation (because each 
representation has a contragredient), and contains constants (because of 
the trivial representation of G on C). The result therefore follows from 
the Stone-Weierstrass theorem. 

Second proof: Given a function 'IjJ E C(G) that is real and symmetric 
('IjJ(X-l) = 'IjJ(x)), let T..pf = 'IjJ*f for f E L2. The conditions on 'IjJ imply 
that T..p is self-adjoint on L2. Moreover, by Proposition (2.40), T maps 
L2 into C(G), IIT..pflisup :::; IIfIl211'IjJ11z, and 

IILx(T..pf) - T..pfllsup II (Lx'IjJ - 'IjJ) * fllsup :::; IIf1l211Lx'IjJ - 'ljJ1I2. 

Thus, if B is a bounded set in L2, {T..pf : fEB} is uniformly bounded 
and equicontinuous, so it follows from the ArzeHt-Ascoli theorem that 
T..p is compact as a map from L2 to C(G) and a fortiori as an operator 
on L2. Hence, by Theorem (1.52), 

M" = {f : T..pf = a/}. 

Each eigenspace M" is invariant under right translations since Rx('IjJ* 
f) 'IjJ*Rxf. Moreover, if a =I- 0, dimM" < 00. Let fI, ... ,fn 
be an orthonormal basis for M" and let Pjk(X) = (Rx/k,/j). Then 
/k(Yx) = L:j pjk(x)fj(Y), so /k(x) = L:.i fj(l)pjk(X). But this means 
that Ma C £p where P is the right regular representation on M". In 
short, Ma C £ for each a =I- o. 

If f E L2 then f L:" f 0: with f" E M", the series converging 
in L2. Then T..pf L:"#oaf,,, the series converging uniformly since 
T is bounded from L2 to C(G). By the result just proved, it follows 
that £ n Range(T..p) is uniformly dense in Range(T..p). But the union of 
the ranges of T..p as 'IjJ runs through an approximate identity is dense in 
C(G), so the proof is complete. I 

If we combine Theorem (5.ll) with the Schur orthogonality relations, 
we see that L2(G) is the orthogonal direct sum of the spaces £1f as [1l"] 
ranges over G, and that we obtain an orthonormal basis for L2(G) by 
fixing an element 1l" of each irreducible equivalence class [1l"] and taking 
the matrix elements corresponding to an orthonormal basis of 1t1f • The 
necessity of choosing a particular 1l" E [1l"] is a minor annoyance; it serves 
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mainly to avoid certain abuses of language in the results that follow. We 
henceforth assume that such a choice has been made once and for all. 

We can now summarize all our main results in a single theorem. 

(5.12) The Peter-Weyl Theorem. 
£. is uniformly dense in C(G), L2(G) 

(5.5), 

Let G be a compact group. Then 
EB[1f]EC£'1f' and if 1rij is given by 

{.jd;1rij:i,j 1, ... ,d1f, [1rjEa} 

is an orthonormal basis for L2(G). Each [1rj E a occurs in the right and 
left regular representations of G with multiplicity d1f' More precisely, for 
i 1, ... , d1f the subspace of £.1f (resp. £'1f) spanned by the ith row (resp. 
the ith column) of the matrix (1rij) (resp. (1fij») is invariant under the 
right (resp. left) regular representation, and the latter representation is 
equivalent to 1r there. 

As an application, we give a representation-theoretic characterization 
of compact Lie groups. The proof naturally requires some Lie theory, 
for which we refer to Helgason [60j. 

(5.13) Theorem. Let G be a compact group. Then G is a Lie group 
if and only if G has a faithful finite-dimensional representation. 

Proof: If 1r is a faithful representation of G on C n
, then G is iso­

morphic to the compact subgroup 1r( G) of the Lie group U (n). But any 
closed subgroup of a Lie group is a Lie group. 

On the other hand, if G is a Lie group, there is an open neighborhood 
U of 1 in G that contains no subgroups except {1}. (Take U = exp(~V), 
where V is any bounded open neighborhood of 0 in the Lie algebra on 
which the exponential map is a diffeomorphism. If x 1- 1 E U then 
xn E exp(V \ ~ V) C G \ U for some positive integer n, so no subgroup 
containing x is contained in U.) If [1r] E a, let K1f be the kernel of 
1r. Then nl1f]ECK1f = {1} by the Gelfand-Raikov theorem or Theorem 
(5.11), so r l[1f]d;(K1f \ U) = 0. By compactness of G \ U, there exist 
1rl,." ,1rn such that n~(K1fj \ U) 0, or n~ K 1fj C U. By the choice 
of U, n~ K 1rj = {1}, which means that 1rl EB· .. EB 1rn is faithfuL I 

5.3 Fourier Analysis on Compact Groups 

According to the Peter-Weyl theorem, if f E L2(G) we have 

(5.14) 
d .. 

f = L L Cfj1rij, 
[1f]EC i ,j=l 

cfj = d1r J f(X) 1rij(x)dx. 
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The drawback to this decomposition of £2 is that it depends on choosing 
an orthonormal basis for each 'H". However, it is possible to reformulate 
(5.14) in a way that does not involve such choices. Namely, if f E £l(G), 
[11"] E C, and 11" is the chosen representative of the class [11"] (see the 
remarks preceding Theorem (5.12)), we define the Fourier transform 
of f at 11" to be the operator 

on 'H". This agrees with our earlier definition in the Abelian case, where 
'H" = C for all [11"] E C. If we choose an orthonormal basis for 1i" so 
that 1I"(x) is represented by the matrix (1I"ij(X)), then 1(11") is given by 
the matrix 

~ J - 1 f(1I")ij = f(X)1I"ji(X) dx = d" cji 

where cji is as in (5.14). But then 

i,j i,j 

(where tr denotes the trace of a matrix), so (5.14) becomes a Fourier 
inversion formula, 

(5.15) f(x) = L d" tr[i(1I")1I"(x)]. 

["lEG 

(This must be taken with a grain of salt, as the series usually does not 
converge pointwise; it converges in the £2 norm if f E £2. We shall say 
more about this below.) Moreover, the Parseval equation 

becomes 

(5.16) Ilfll~ = L d" tr[i(1I")* 1(11")]. 

["lEG 

The Fourier transform as defined above is more cumbersome to use 
than the Abelian Fourier transform because its values are operators on 
a whole family of Hilbert spaces. Nonetheless, it has a number of prop­
erties analogous to those of the Abelian Fourier transform. We observe 
that 1(11") = 1I"Cl) *; it is then easy to verify the following variant of 
Theorem (3.9): 
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(5.17) 

(5.18) 

(af+bg)1rr) ahrr) + bg(rr) , 

(f * g)1 rr) g(rr)/(rr) , 

(r)1rr) /(rr)". 
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We can express (5.14) in yet another way. If rr is a finite-dimensional 
unitary representation of G, the character X1r of rr is the function 

X1r(x) = trrr(x). 

Note that this depends only on the equivalence class of rr, since similar 
matrices have the same trace; hence we could (and perhaps should) write 
X[1r] instead of X1r' We have 

tr[/( rr)rr(x)] = J f(y) tr[rr(y-l )rr(x)] dy 

J f(y)trrr(y-1x)dy f*X1r(x), 

so (5.15) becomes 

(5.19) f L d1r f * X1r' 
[1r]EG 

In particular, d1r f * X1r is the orthogonal projection of f onto e1r . 
If we apply (5.19) and the remark following it to the case where f is 

itself an irreducible character, we obtain the following useful convolution 
formulas: if [rr], [rr'] E G, then 

(5.20) 

A function f on G is called a central function or class function 
if f is constant on conjugacy classes, that is, if f(yxy-l) f(x) for all 
x, y E G, or equivalently (by substituting xy for x) f(xy) = f(yx) for all 
x, y E G. (In the case of LP functions, these relations are to hold almost 
everywhere.) For example, the character of any finite-dimensional rep­
resentation is central, because tr[rr(x)rr(y)] tr[rr(y)rr(x)]. We denote 
the set of central functions in a function space by prefixing the letter Z 
to the name of the space: 

ZLP(G) = the set of central functions in LP(G), 

ZC(G) = the set of central functions in C(G). 

(5.21) Proposition. The spaces P(G) and C(G) are Banach algebras 
under convolution, and ZLP(G) and ZC(G) are their respective centers. 
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Proof: We have III * gllv ~ 11/11t Ilgllv ~ 1I/livllgliv by Proposition 
(2.39a) and the fact that IGI 1, and likewise with the LV norm replaced 
by the uniform norm. This shows that LV(G) and C(G) are Banach 
algebras. Next, suppose I E LV. Then I * 9 9 * I if and only if 

I I (xy)g(y-l)dY 1 g(y)/(y-1x)dy I I (yx)g(y-l)dY 

for almost every x. This holds for every 9 E LV precisely when I(xy) = 
I(yx) for almost every x and y. Similarly for IE C(G). I 

Central functions play a crucial role in analysis on compact groups 
Here are a few of the basic results concerning them. 

(5.22) Lemma. If I E ZLl(G) and [1r] E 0, then d1rf * X1r = 
(J IX1r)X1r' 

Proof: We have 

f(1r)1r(x) = 1 I(Y)1r(y- 1x) dy 1 l(xy-l)1r(Y) dy 

II(y-1X)1r(y)dy 1 I(Y)1r(xy-l)dy = 1r(x)[(1r). 

Hence, by Schur's lemma, [(1r) c1rI. Taking the trace, we obtain 

d1r c1r trf(1r) I /(y) tr 1r(Y)*dY I I (Y)X1r(Y)dY, 

so by the calculation leading to (5.19), 

d1r1 * X1r = d1r tr[!(1r)1r] d1r c1r tr1r [1 fX.1r] X1r' I 

(5.23) Proposition. {x1r : [1r] E O} is an orthonormal basis for 
ZL2(G). 

Proof: We have already observed that the X1r'S are central. They are 
also orthonormal by the Schur orthogonality relations, since X1r = L 1rii· 
They are a basis because if I E ZL2(G), by (5.19) and Lemma (5.22) 
we have 1= LU,X1r)X1r' I 

If I E L2(G), the "Fourier series" (5.15) or (5.19) for I converges 
to I in the L2 norm. As we know from the classical theory of Fourier 
series (the case G T; see Zygmund [134]), it usually does not converge 
uniformly when f is continuous, or in the £l norm when I E £l, or 
unconditionally in the £P norm when I E LV and p # 2. However, as in 
the classical case, there are "summability methods" that enable one to 
recover I from its Fourier series in these topologies. We now describe 
one such, for which we need a lemma. 
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(5.24) Lemma. The neighborhoods oEl in G that are invariant under 
conjugations constitute a neighborhood base at 1. 

Proof: Let U be any neighborhood of 1, and let V be a symmetric 
neighbor hood of 1 such that VVV CU. Choose Xl,' .. ,Xn E G such 
that G = U~ VXj, and let W = n~ xjlVXj. If X E G then x E VXj for 
some j, so xWx- l C VXjWXjlV C VVV C U. Hence UXEG xWx- l is 
a neighborhood of 1 that is invariant under conjugations and contained 
in U. I 

If fELl and 9 E L2, then d1!'(f * g) * X1!' converges in £2 to f * 9 
(Proposition (2.39a)), and d1!'g * X1!' converges in L2 to g. Now, if if> 
is any finite subset of G, we have 

[L d1f (f * g) * X1f] * [ L d1fg * X1f] 
[1f]E<I> [1f]E<I> 

L d1!'d1!',(f * 9 * g) * (X1f * X1f') 
[1!'], [1f'] E<I> 

= L d1f (f * 9 * g) * X1f' 
[1!']E<I> 

where we have used the fact that characters are central, Proposition 
(5.21), and (5.20). By Proposition (2.40), it follows that the series 
L d1f (f * 9 * g) * X 1f converges uniformly to f * 9 * g. 

This is the key to the summability method. For each neighborhood 
U of 1 in G, let us take 9 IV I 1 Xv where V is a central neighborhood 
of 1 such that VV C U such a V exists by Lemma (5.24) - and let 
l/Ju = 9 * g. Then {l/Ju} is an approximate identity consisting of central 
functions. Also, by Lemma (5.22), l/Ju * X1!' cU(1r)X1!' for some scalar 
Cu ( 1r). Therefore 

f * l/Ju = L cU(1r)d1ff * X1f' 
[1f]EG 

where the series on the right converges uniformly by the result of the 
preceding paragraph, and f is the limit of f * l/Ju as U -+ {I} in the LP 
or uniform norm whenever f E V(G) (p < 00) or f E G(G). 

We have L[1flEG Icu(1r)12 lIl/Jull~ < 00, and cU(1r) -+ 1 as U -+ {I} 
since l/Ju * X1f -+ X1f' The constants cU(1r) can thus be regarded as 
"summability factors" whose introduction into the Fourier series of f 
causes the series to converge uniformly; f is then obtained as the limit 
in the appropriate norm as these factors tend to 1 in a suitable way. 
As an immediate application of this construction, we have the following 
result. 

(5.25) Proposition. The linear span of {X1f : [1r] E G} is dense in 
ZC(G) and also in ZLP(G) for 1 :::: p < 00. 
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Proof: If f is central, the partial sums of the series L Cu (11" )d1r f * X1f 
are linear combinations of characters by Lemma (5.22). They converge 
uniformly and hence in LP (p < (0) to f * tPu, and f * tPu -+ f in the 
appropriate norm as U -+ {I}. I 

The spaces ZLP(G) and ZC(G) are commutative Banach algebras 
under convolution, so one naturally wishes to know their spectra. In 
fact, we have the following analogue of Theorem (4.2). 

(5.26) Theorem. Let A be any of the convolution algebras ZLP(G) 
(1 ~ p < (0) or ZC(G). For f E A and [1I"J E G, let h1f(f) d1r J fx1r . 
Then the map J1I"J -+ h1f is a bijection from G to a(A) which is a home­
omorphism if G is given the discrete topology. 

Proof: Each h1f is clearly a bounded linear functional on A. More­
over, by (5.20), Proposition (5.21), and Lemma (5.22), 

h1f (f * g)x1f = d;f * 9 * X1f d~f * 9 * X1r * X1f 

= d~f * X1f * 9 * X1r = d1fh1f (f)h1f (g)X1f * X1r 

= ~(f)h1r(g)X1f' 

so h1f is multiplicative, i.e., h1f E a(A). Next, if h E a(A), (5.20) shows 
that 

It follows that h(X1f) must be either d;l or 0, and that there can only be 
one [1I"J, say [1I"0J, for which h(X1r) =F O. But then h agrees with h1fo on the 
linear span of the characters, so h h1ro by Proposition (5.25). Finally, 
the topology on a(A) is discrete because {h1r} = {h E a(A) : h(X1r) =F O} 
is open for every 11". I 

We conclude this section with an amusing application of our general 
theory to the theory of finite groups. 

(p.27) Proposition. Let G be a finite group. Then the cardinality of 
G is the number of conjugacy classes in G, and L[1f]Ead; is the order 
ofG. 

Proof: In view of Proposition (5.23), {x1f : [1I"J E G} and the set of 
characteristic functions of the conjugacy classes in G are both bases for 
the space of central functions on G; this proves the first assertion. The 
second one is true since L[1f)Ead; is the dimension of L2(G) by the 
Peter-Weyl theorem. I 
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5.4 Examples 

In this section we describe the irreducible representations and the de­
composition of L2 for the group SU(2), then use the results to obtain 
the irreducible representations of the closely related groups SO(3) and 
U(2). 

1. SU(2). We recall that U(n) is the group of unitary transfor­
mations of en, alias the group of n x n complex matrices T such that 
T*T = I, and that SU(n) is the subgroup of U(n) consisting of the 
matrices whose determinant is 1. The jth column of a matrix T is the 
image under T of the jth standard basis vector for en, so T E U (n) if 
and only if the columns of T are an orthonormal set. 

When n = 2, we therefore have 

T = (: ~) E U(2) *=* lal2+lbl2 = Ic12+ld12 1 and ac+bd = 0. 

Thus ( a, b) must be a unit vector and (c, d) ei9 ( -b, a) for some () E R. 
But then detT = ei9 (lal 2 + IW) = ei9 , so T E SU(2) precisely when 
ei9 = 1. In short, if we set 

(5.28) 

we have 

SU(2) = {Ua,b: a,b E e, lal2 + Ibl2 = I}. 

We observe that 

ua~t = U:,b = Uo.,-b, 

and that the action of Ua,b on e 2 is given by 

(: a) (~) - (::~!:), or Ua,b(z,w)=(az-bw,bz+aw). 

The correspondence Ua,b ...... (a, b) = Ua,b(l,O) identifies SU(2) as a set 
with the unit sphere S3 C e 2 in such a way that the identity element is 
identified with the "north pole" (1,0). 

We single out the following three one-parameter subgroups of SU(2) 
for special attention: 

F((}) (e~9 e~i(J ) , 

G(¢;) = (C?S¢; -Sin¢;) H(¢) = (~~s¢ isin ¢) . 
sm¢; cos¢; , zsm¢ cos¢ 

(5.29) 

Geometrically, these are three mutually orthogonal great circles in the 

sphere that intersect at ± ( ~ ~) . 
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(5.30) Proposition. Each T E SU(2) is conjugate to precisely one 
matrix F«()) as in (5.29) with 0:$ () :$ 7r. 

Proof: Every unitary matrix T is normal, so by the spectral theorem 
there exists V E U(2) such that VTV-l = (~3) where a and (3 are 

the eigenvalues of T. If T E SU(2) then (3 a, so VTV- 1 = F«()) for 
some () E [-7r,7rj. By replacing V with (detV)-1/2V we can assume 
that V E SU(2), and since F( -()) H( ~7r)F«())H( -~7r) we can obtain 
() E [O,7rj. Finally, if ()t.()2 E [O,7rj then F«()t) and F«()2) have different 
eigenvalues, and hence are not conjugate, unless ()l ()2. I 

(5.31) Corollary. If 9 is a continuous function on SU(2), let gO«()) = 
g( F( ())). Then g -+ gO is an isomorphism from the algebra of continuous 
central functions on SU(2) (with pointwise multiplication) to e([O, 7r]). 

Proposition (5.30) has the following geometrical interpretation. The 
angle between the vectors (a, b) and (1,0) in C2 is arccos(Rea). It is an 
easy exercise, which we leave to the reader, to show that if Uc,dUa,bU;:': = 
Ua.,(3 then Rea Rea. Thus the set {F«(J) : 0 :$ (J :$ 7r} is a meridian 
joining the north and south poles, and the conjugacy classes are the 
surfaces of constant latitude. 

Next, we describe a family of unitary representations of SU(2). Let 
P be the space of all polynomials P(z, w) = Cjkzjwk in two complex 
variables, and let Pm C P be the space of homogeneous polynomials of 
degree m: 

k 

"Tl {p P( ) '" j k-j C} rm= : z,w L....-CjZW ,cl,··.,Cm,E . 

° 
We define an inner product on P by regarding it as a subset of L2(O'), 
where a is surface measure on the unit sphere S3 normalized so that 
O'(S3) = 1: 

(P, Q) r PQ dO'. 183 

(P is not complete with respect to this inner product, but each Pm is, 
being finite-dimensional.) 

We shall show that the monomials zi wk form an orthogonal set in P. 
In the following calculations, we employ the polar coordinate notation 

(z,w) Z rZI, where r IZI = [lzl2 + IW12f/2 and ZI E S3. 

We also denote Lebesgue measure on C2 by d4 Z and Lebesgue measure 
on C by d2z or cPw. Thus, 

d4Z d2zd2w = cr3 drdO'(ZI). 

Here C is the Euclidean surface measure of S3; as the following argument 
shows, it equals 27r2• 
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(5.32) Lemma. If 1 : C 2 
-7 C satisfies l(aZ) am I(Z) for a > 0, 

then 

(1(ZI)da(Z')= 1 (1(Z)e-IZI2d4Z. 
ls3 1r2r(~m + 2) 1c2 

Proof: We integrate in polar coordinates: 

C [':>0 ( I(r ZI)e- r\3 da(ZI) dr 
10 ls3 

== C roo rm+3e-r2 dr ( I(Z') da(ZI) 
10 ls3 

= ~r(!m + 2) fs3 I(Z') da(ZI). 

If we take 1 = 1, we see that 

!3. = { e- 1Z12 d4 Z = [100 

2 1c2 -00 

which completes the proof. 

(5.33) Lemma. If p, q, r, s are nonnegative integers, 

j 1'-;:;q r-s d ( ) {O if q :f p or s :f r, 
z z w w a z,w = p!r!j(p+r+ I)! ifq p and s = r. 

Proof: By Lemma (5.32), 

j z1'Z'lwrws da(z, w) 

= 1 jZ1'Z'le-IZI2 d2zjwrwse-lwl2 d2w. 
1r2r(~(p+q+r+s) + 2) 

We do the latter integrals in polar coordinates too; 

j z1'-ZQe-lzI2 d2z = 100 127r ei (1'-q)6r1'+q+l e-r2 drdO 

{ 
0 if p:f q, 

= 21r' 4r(p+ 1) = 1rp! if q p, 

I 

and similarly for the integral in w. The result follows. I 

(5.34) Proposition. The spaces Pm are mutually orthogonal in L2(a), 
and 

{ (m+1)!. . . } 
~_---'-:-zJwm-J ; 0 < J < m 
'I( _ ')1 - -J. m J. 

is an orthonormal basis for Pm. 

Proof: This is an immediate consequence of Lemma (5.33). I 
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SU(2) acts on P via its natural action on C 2 , yielding a representation 
7r: 

(5.35) [7r(Ua ,b)P](Z,W) = P(U;;,t(z,w)) = P(az + bw, -bz + aw). 

Clearly Pm is invariant under 7r; we denote the subrepresentation of 
7r on Pm by 7rm . Then 7rm is a unitary representation of SU(2) on Pm 
with respect to the inner product in £2«(1), since (1 is rotation-invariant. 
(In the physics literature, 7rm is normally labeled by !m instead of m, 
because of its connection with particles of spin !m.) We shall show that 
7rm is irreducible. 

(5.36) Lemma. SupposeM is a 7r-invariant subspace of Pm. IfP EM 
then z(8Pj8w) and w(8Pj8z) are in M. 

Proof: If G(¢) is as in (5.29), then ¢-l [7r(G(¢))P-P] lies in M for 
all ¢ '" O. As ¢ ---+ 0, its coefficients approach those of 

hence the latter polynomial also belongs to M because Pm has finite 
dimension and so M is closed in it. But 

d~7r(G(¢))PI<t>=o = d~P(zcOs¢+wsin¢, -zsin¢+wcos¢)I<t>=o 

8P 8P 
=W--Z-. 

8z 8w 

Similarly, with H('l/J) as in (5.29), 

8P 8P 1 d 
w 8z + z 8w = i d'l/J 7r(H('l/J))P I ",=0 EM. 

Adding and subtracting these, we obtain the desired result. 

(5.37) Theorem. 7rm is irreducible for each m ~ O. 

I 

Proof: Suppose M is an invariant subspace of Pm and P '" 0 E M. 
Let P(z,w) = 2:;;'CjZjWm- j and let J be the largest index such that 
Cj '" O. Then 

( w :z) j P(z, w) = cjJ!wm. 

By Lemma (5.36) we see that wm E M, and then applying z(8j8w) 
successively we obtain zwm - 1 E M, z2wm-2 E M, ... , zm E M. 
~~M=~. I 

Let Xm be the character of 7rm , and let X?nUJ) = Xm(F(O)) as in 
Corollary (5.31). Since the orthogonal basis vectors zjwm- j for Pm are 
eigenvectors for 7r m (F( 0)), 

7rm(F(O))(z jwm- j ) = ei(2j-m)8zjwm-j, 
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we have 

m i(m+2)8 e- im8 
X~ (0) = I: ei (2j-m)8 = _e_--::::-:-::-__ _ 

o 1 

ei(m+I)/J _ e- i (m+l)9 

ei8 e- i8 
sin(m + 1)0 

sinO 
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From this we can show that the 11"m'S form a complete list of irreducible 
representations of SU(2). 

(5.39) Theorem. [SU(2)f= {[11"mJ : m ~ O}. 

Proof: First, the 11" m 's are all inequivalent because they have different 
dimensions (and different characters). Next, we observe that by (5.38), 

X&(O) = 1, X~(O) 2cosO, 

o (0) _ 0 (0) = sin(m + 1)0 sin(m 1)0 
Xm Xm -2 . Il smu 

2 cosmO for m ~ 2. 

Hence the linear span of {X~Hi' is the linear span of {cosmO}OO, which 
is uniformly dense in C([o, 11"]). By Corollary (5.31), the linear span of 
{Xm}OO is uniformly dense in the space of continuous central functions 
on SU(2); in particular, the only such function that is orthogonal to all 
Xm is the zero function. By Proposition (5.23), then, the Xm's exhaust 
all the irreducible characters. I 

We remark that by (5.38) and Corollary (5.31), the characters Xm are 
all real-valued. It follows that 11"m is equivalent to its contragredient 1rm 
for every m, and in view of Theorem (5.2), the same is true of every 
unitary representation of SU(2). 

Let us compute the matrix elements of 11" m with respect to the basis 
given in Proposition (5.32), namely 

( ) _ .1 (m + I)! j m-j 
eJ z,w - V j!(m j)!z w . 

For notational convenience we set 

where Ua,b is given by (5.28). We then have 

(m + I)! - k k 
k!(m_k)!(az+bw) (-bz+aw)m- = [11"m(a,b)ekJ(z,w) 

(m + I)! jk( b) j m-j 
j!(m _ j)!11"m a, z w . 

j j 
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Thus, 

(5.40) L 
j 

k!(m - k)!·k .. - k k 
.'( _ .),7r;'(a,b)zJ wm-J = (az+bw) (-bz+aw)m- . 

J. m J. 

To solve this for 7rt!; (a, b) one can simply multiply out the right side and 
equate the coefficients of zjwm - j on the two sides. Another method is to 
set z = e27rit and w = 1; then the sum on the left is a Fourier series, and 
one can compute 7rt/:(a, b) by the usual formula for Fourier coefficients: 

7rt/:(a, b) = 

When k = 0 we have 

L 
j 

m! jO j m-j _ m 
.'( _ .),7rm(a,b)z W - (-bz+aw) 

J. m J. 

_" (-l)jm! d m-j j m-j 
- L.- .'( _ .),u-a z w , 

j J. m J. 

so 

m! . . 1 
.'( .),bla

m
- J = Vm+1 ej (-b,a). 

J. m-J. m+1 
7rt:!(a, b) = (-l)j 

Thus the functions {7rt:! : 0 ~ j ~ m} span Pm, the space that gave us 
7r m originally. (The Peter-Weyl theorem predicts that we should get 1i'm 
instead of 7rm , but we have observed above that these representations are 
equivalent. The factor Jm + 1 is the factor Jd7rrn needed to normal­
ize the matrix elements according to the Schur orthogonality relations.) 
Similarly, the functions 7rt,.m, 0 ~ j ~ m, span the complex conjugate 
space Pm. 

We can also say something interesting about the linear span of {7rt!; : 
o ~ j ~ m} for general k. First, if we use (5.40) to define 7rt!;(a, b) for 
all a, b E C 2 , it is clear that 7rt!; (a, b) is a polynomial in the variables 
a, b, a, b that is homogeneous of degree m - k in (a, b) and homogenous 
of degree k in (a, b); we say that it has bidegree (m - k, k). Second, 
as a function on C 2 , 7rt/: is harmonic: it satisfies Laplace's equation 
L:!=l (a27rt/: lax;'.) = 0, where a = Xl + iX2 and b = X3 + iX4. Indeed, it 
suffices to observe that the right side of (5.40) is harmonic as a function 
of (a, b) for all (z, w), since then the coefficient of each zjwn - j must also 
be harmonic. This easy to check as it stands, and it becomes even more 
so if one writes the Laplacian in complex coordinates: 
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In short, when we identify SU(2) with the unit sphere in C 3 , the 
Peter-Weyl decomposition £2 = EB~ £1fm is the usual decomposition of 
functions on the sphere into spherical harmonics (see, e.g., Stein and 
Weiss [115]), and the further decomposition 

£1fm = EB 'H.p,q, 

p+q",-,m 

'H.p,q = linear span of {~~q : 0 ~ j ~ p + q}, 

yields a refinement in which the spherical harmonics are grouped ac­
cording to their bidegree. 

2. 80(3). SU(2) is almost identical to the group SO(3) of rotations 
of R3. To see this, consider the infinitesimal generators of the one­
parameter subgroups of (5.29): 

P'(O) = (~ _~), G'(O) = (~ ~1), H'(O) (~~) . 

(Up to a factor of i, these are the "Pauli spin matrices" of quantum 
physics.) The real linear span of P'(O), G'(O), and H'(O) is the space 
5u(2) of all 2 x 2 skew-Hermitian matrices whose trace is zero, the Lie 
algebra of SU(2). We identify 5u(2) with R3 as follows: 

(t,u,v) +-+ X(t,u,v) tP'(O)+uG'(O)+vH'(O) = ( it. -U:iV). 
u + ~v -~t 

SU(2) acts on itself by conjugation, and this induces a representation 
of SU(2) on 5u(2) called the adjoint representation: 

Ad(U)X = U XU-I. 

Indeed, a tedious but simple calculation shows that Ad(Ua,b)X(t, u, v) = 
X(t',u',v'), where 

t' (lal2 -lbI2)t + 2(Imab)u 2(Reab)v, 

u' + iv' 2iabt - (iP +b2 )u + i(a;2 -b2 )v. 

This looks complicated, but we can see two things. First, if Ad(Ua,b) 
I, by examining the formula for u' + iv' we see that a2 + b2 1 and 
a2 - b2 1, which forces b = 0 and a2 = 1. Hence the kernel of the 
adjoint representation is ±I. Second, the action of the one-parameter 
subgroups of (5.29) is very nice: 

Ad(P(8))X(t,u, v) X(t, ucos28 + v sin 28, -usin28 + v cos 28), 

Ad(G(¢))X(t, u, v) = X(t cos 2¢ - v sin 2¢, u, tsin2¢ + v cos 2¢), 

Ad(H(~))X(t, u, v) = X(t cos2~ + usin 2~, -tsin 2~ + ucos2~, v). 
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In other words, when we identify su(2) with R3, Ad(F(O)), Ad(G(¢)), 
and Ad(H('IjJ)) are rotations through angles 20, 2¢, and 2'IjJ about the t, 
u, and v axes respectively. 

(5.41) Theorem. Ad[8U(2)] = 80(3), and hence 80(3) ~ 8U(2)/ 
(±I). 

Proof: In view of the preceding remarks, it suffices to show that 
80(3) is generated by rotations about the coordinate axes. In fact, it 
is generated by rotations about any two coordinate axes, say the u and 
v axes. To see this, observe first that if T E 80(3) then the eigenvalues 
of T have absolute value 1, the nonreal ones occur in conjugate pairs, 
and their product is 1. A moment's reflection shows that 1 must be an 
eigenvalue, so T has a fixed vector x and is therefore a rotation through 
some angle 0 about the x axis. Now use the following algorithm to 
construct T from rotations about the u and v axes: 

1. If x is in the tv plane, go to step 2; else perform a rotation about 
the v axis to move x into the tv plane. 

2. If x is on the v axis, go to step 3; else perform a rotation about 
the u axis to move x onto the v axis. 

3. Perform a rotation through the angle 0 about the v axis. 

4. Undo steps 2 and 1 to restore x to its original position. I 

From this we immediately see that the representations of 80(3) are 
just the representations of 8U(2) that are trivial on ±I. In particular, 
7rm( -I) = (_I)m I, and hence: 

(5.42) Corollary. [80(3)]~ 
Pk(Ad(U)) = 7r2k(U), 

0,1,2, ... }, where 

In §6.2 we shall identify the irreducible decompositions of the natural 
representations of 80(3) on functions and differential forms on the unit 
sphere S2 C R3. 

3. U(2}. The center Z of U(2) consists of the scalar multiples of 
the identity, 

Z = {ei8 I: 0 E R}, 

since U(2) acts irreducibly on C 2 . U(2) is almost the product of the 
subgroups Z and 8U(2), via the map 

(e i8 I, U) -+ ei8 U. 

This map is onto, for if V E U(2) we choose 0 so that det V = e2i8 and 
take T = e- i8 V. Its kernel is ±(I, I) since Z n 8U(2) {±/}. Hence, 

U(2) ~ [Z x 8U(2)]j(±1) ~ [T x 8U(2)]/(±I). 
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From this we can easily determine the irreducible representations of 
U(2). Suppose P is such a representation. On Z, P must act as scalar 
multiples of / by Schur's lemma, and hence (since T ~ Z) p(ei(J /) = 
ein(J / for some n E Z. By the same token, if M is a subspace of 'lip that 
is invariant under pISU(2), it is invariant under all of p. Hence pISU(2) 
is an irreducible representation of SU(2), so it is equivalent to 7rm for 
some m :;::: O. In short, if T E SU(2), 

(5.43) 

Moreover, since -/ can be expressed either as ei
?1" / or as eiO ( -I), we 

must have (_l)n / = 7rm ( -I) (_l)m/, so m and n must have the same 
parity. Conversely, if this is the case, (5.43) gives a well-defined repre­
sentation of U(2). Different m or n give inequivalent representations, 
since their restrictions to Z or SU(2) are inequivalent. In summary: 

(5.44) Theorem. [U(2)]~= {[Pm,n] : m :;::: 0, nEZ, m == n (mod 2)}, 
where 

(0 E R, T E SU(2)). 

Another description of Pm,n is as follows. If we define 

'(J 
p2k,o(e~ T) 7r2k(T), 

then 

We conclude by giving the decomposition of the natural representa­
tion ,\ of U(2) on £2 of the unit sphere in C2, namely [..\(V)f](z, w) = 
f(V-l(z, w)). In fact, this is nothing but the decomposition £2(S3) = 

EB:,'q",O 'lip,q that we obtained at the end of §5.4. We simply observe 
that if P is any homogeneous polynomial of bidegree (p, q) then 

[..\(ei(JI)P](z,w) = P(e-i(Jz,e-i(Jw) ei(q-p)(JP(z,w). 

It then follows that 'lip,q is U(2)-invariant and that ..\1ip ", is equivalent 
to Pq+p,q_p' Thus'\ is equivalent to EB:,'q",O Pq+p,q_p, each summand 
occurring with multiplicity one. 

5.5 Notes and References 

The theory in §5.2 was first developed in the classic paper of Peter and 
Weyl [98]. That paper deals with compact Lie groups, but everything 
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in it applies without change to general compact groups once one has the 
existence of Haar measure. An extensive treatment of various topics in 
Fourier aI)alysis on general compact groups can be found in Hewitt and 
Ross [63]. 

There is an analogue of the Pontrjagin duality theorem for non­
Abelian compact groups, which we now describe. Suppose G is a com­
pact group. Let V be the smallest set of Hilbert spaces containing en for 
all positive integers n and closed under formation of finite direct sums, 
tensor products (see §7.3), and duals, and let R be the set of all unitary 
representations of G on spaces in V. (We do not identify isomorphic 
spaces in V, nor do we identify equivalent representations in R. R is, in 
essence, the set of all finite-dimensional representations of G; the pur­
pose of V is to make this a genuine set.) Let r be the set of all maps 1 
that assign to each 7r ERa unitary operator 1(7r) on 'H7f , such that the 
following properties hold for all 7r, 7r1, 7r2 E R: 

i. If U : 'H7f1 ---+ 'H7f2 is a unitary equivalence of 7r1 and 7r2, then 
1( 7r2) = U 1( 7r1 )U-I . 

ii. 1(7r1 EB 7r2) = 1(7r1) EB 1(7r2). 
iii. 1(7r1 18) 7r2) = 1(7r1) 18) 1(7r2), where 7r1 18) 7r2 is the inner tensor 

product of 7r1 and 7r2 (see §7.3). 

iv. 1(*) is the inverse transpose of 1(7r), acting on 'H;. 

Each x E G defines a 1x E r by 1x(7r) = 7r(x). Define a multiplication 
on r by ("(n2)(7r) = 11 (7rh2(7r), and impose on r the weakest topology 
that makes the maps 1 ---+ ("(7r)u,v) (7r E R, u,v E 'H7f ) continuous. 
Then: 

(5.45) The Tannaka Duality Theorem. r is a compact group, and 
the map x ---+ 1x is an isomorphism from G to r. 

For the proof, as well as another formulation of the theorem due to 
Krein, we refer the reader to Hewitt and Ross [63]. 

There is much more one can say about the representation theory and 
Fourier analysis of compact connected Lie groups, because these groups 
and their irreducible representations are known quite explicitly. To begin 
with, the simply connected compact Lie groups are the finite products 
of groups from the following list: 

i. the double covers -of the rotation groups SO(n) (n ~ 3), usually 
called Spin(n); 

ii. the special unitary groups SU(n) (n ~ 2); 

iii. the quaternionic unitary groups Sp(n) (n ~ 1); 

iv. the five exceptional compact groups Eij, E7 , Es, F4 • and G2. 
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The most general connected compact Lie group is then isomorphic to 
(G x Tn)/z, where G is simply connected, n ~ 0 (in particular, the 
factor Tn may be missing), and Z is a finite subgroup of the center 
of G x Tn. Since the centers of all the groups in the above list are 
all known explicitly (and are all of order ~ 4 except for SU(n)), one 
has a rather complete picture of the connected compact Lie groups. 
See Helgason [60]. Moreover \ the theory of highest weights provides a 
concrete description of G when G is a compact connected Lie group. See 
Brocker and tom Dieck [17] and Knapp [70]. See also Boerner [14J and 
Weyl [129] for more information about the representations of the classical 
matrix groups, including their connections with Young diagrams and the 
representations of permutation groups. 

The theory of Fourier series on compact connected Lie groups has 
many connections with classical Fourier analysis and special functions. 
See Stanton and Tomas [114] and the references given there for studies 
of convergence and summability of Fourier series on compact Lie groups, 
and Coifman and Weiss [22] for an extensive discussion of analysis on 
SU(2). 





6 
Induced Representations 

The inducing construction is a way of manufacturing a unitary repre­
sentation of a locally compact group G out of a unitary representation 
of a closed subgroup H. Geometrically speaking, these induced repre­
sentations are the unitary representations of G arising from the action 
of G on functions or sections of homogeneous vector bundles on the 
homogeneous space G / H. 

Unless G / H is a finite set, the representations of G induced from H 
are always infinite-dimensional. In particular, when G is compact or 
Abelian, they are highly reducible. On the other hand, induced rep­
resentations are the single most important source of irreducible repre­
sentations of noncompact, non-Abelian groups. Indeed, for many such 
groups, theinducing construction (with certain generalizations and mod­
ifications) suffices to provide a list of irreducible representations that is 
complete up to unitary equivalence. One way in which this happens is 
via the "Mackey machine," a body of techniques for analyzing represen­
tations of a group G in terms of the representations of a normal subgroup 
N and the representations of various subgroups of G / N. However, in­
duced representations are also important for groups that have few if any 
normal subgroups, like the semisimple Lie gro'ups. 

In §6.1 we explain the construction of induced representations. §6.2 is 
devoted to the Frobenius reciprocity theorem for compact groups, which 
provides a powerful tool for finding the irreducible decomposition of an 
induced representation of a compact group. In §§6.3-5 we develop the 
notion of pseudo measures of positive type (a generalization of functions 
of positive type) and use it to prove the theorem on induction in stages 
and the imprimitivity theorem, which is the deepest result of the chap­
ter and forms the basis for the Mackey machine. In §6.6 we work out 
the simplest case of the Mackey machine, that of regular semi-direct 
products, and in §6.7 we present some concrete examples. 

151 
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6.1 The Inducing Construction 

Let G be a locally compact group, H a closed subgroup, q : G ---+ G / H 
the canonical quotient map, and a a unitary representation of H on 'Hu. 
We denote the norm and inner product on 'Hu by Ilullu and (u, v)u, and 
we denote by C( G, 'Hu) the space of continuous functions from G to 'Hu. 
lf f E C( G, 'Hu ), we shall frequently wish to apply the operators a(~) 
to the values f(x), and to avoid clutter we shall usually write a(~)f(x) 
instead of the more precise a(~)[f(x)]. 

The main ingredient in the inducing construction is the following 
space of vector-valued functions: 

Fo = {J E C(G, 'Hu): q(supp f) is compact and 

f(x~) = a(C1)f(x) for x E G, ~ E H}. 

Here is how to produce functions in Fo: 

(6.1) Proposition. If a : G ---+ 'Hu is continuous with compact support, 
then the function 

belongs to Fo and is uniformly continuous on G. Moreover, everyele­
ment of Fo is of the form fa for some a E Cc(G, 'Hu). 

Proof: Clearly q(suppfo) C q(suppa), and 

fo(x~) = f a(1J)a(x~1J)d1J = f a(C l 1J)a(x1J)d1J = a(C1)fo(x). lH lH ' 
Hence, to prove the first assertion it remains to show that fa is uniformly 
continuous. Fix a compact neighborhood N of 1 in G, let K be a compact 
subset ofG such that q(K) = q(suppa) (Lemma (2.46)), and let J = 
K-1N(suppa)nH, a compact subset of H. Given f > 0, let Nf C N be 
a neighborhood of 1 such that Ila(x) - a(y)llu < f whenever xy-l E Nf • 

Then for x E K and xy-l E Nf, 

Ilfo(x) - fo(y)llu = Iii a(1J) [a(x1J) - a(Y1J)] d1Jllu :::; fIJI· 

Thus fa is uniformly continuous on K and hence uniformly continuous 
on KH because fo(x~) = a(C1)f(x) for ~ E H. Since fa = 0 outside 
KH, fa is uniformly continuous on G. 

On the other hand, if f E Fo, by Lemma (2.47) there exists 'l/J E Cc(G) 
such that fH 'l/J(X1J) d1J = 1 for x E supp f· Let a = 'l/J f; then 
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fo(x) = iH 'l/J(X1J)(1(1J)f(x1J) d1J = iH 'l/J(x1J)f(x) d1J = f(x), 

so f = fa. 
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G acts on Fo by left translation, f --+ Lxf, so we obtain a unitary 
representation of G if we can impose an inner product on Fo with re­
spect to which these translations are isometries. When G j H admits an 
invariant measure /L (necessarily unique up to scalar multiples, by Theo­
rem (2.49)), this is easy. If f,g E Fo, (f(x),g(x))u depends only on the 
coset q(x) of x since (1 is unitary, so it defines a function in Cc(GjH) 
which can be integrated with respect to /L, and we set 

(f, g) = f (f(x), g(x))u d/L(xH). 
lC/H 

This is an inner product on Fo (it is positive definite by Proposition 
(2.58)), and it is preserved by left translations since /L is invariant. 
Hence, if we denote by F the Hilbert space completion of Fo, the trans­
lation operators Lx extend to unitary operators on F. It follows easily 
from Proposition (6.1) that x --+ Lxf is continuous from G to F for each 
f E Fo; and then since the operators Lx are uniformly bounded, they 
are strongly continuous on all of F. Hence they define a unitary repre­
sentation of G, called the representation induced by (1 and denoted 
by ind~((1). 

For example, let (1 be the trivial representation of H on C. Then Fo 
consists of functions on G that are constant on cosets of H, so Fo can 
be naturally identified with Cc(GjH). The same identification makes 
F into L2(GjH), and ind~((1) is then just the natural representation 
of G on L2 (G j H) by left translations. In the general case, a similar 
interpretation of the elements of F as objects living on G j H rather 
than G is available; we shall explain it at the end of this section. 

When G j H has no G-invariant measure, there are two ways one can 
modify the preceding construction to obtain a unitary representation of 
G: one can replace the invariant measure /L above by a quasi-invariant 
measure in defining the Hilbert space F and modify the action of G to 
make it unitary, or one can modify the construction of F by adding a 
"twist" to Fo. We shall present both of these ways, as they each have 
advantages. The first is a little more straightforward, but the second 
has the pleasant feature of not relying on the choice of a quasi-invariant 
measure, and it is the one we shall use in the rest of the chapter. 

Here is the first construction. Let /L be a strongly quasi-invariant 
measure on GjH. For f,g E Fo, we define 

(6.2) (f,g)/1o = f (f(x),g(x))u d/L(xH). 
lC/H 

As above, this is an inner product on Fo, so by completing Fo with 
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respect to it we obtain a Hilbert space:Fw Let p be the rho-function 
associated to j1., and let 

.\(x,yH) 
p(xy) 
p(y) 

dj1.x (yH) 
dj1. 

(x,y E G) 

(cf. Theorems (2.56) and (2.59)). We define operators IIJL(x) on:Fo for 
xE G by 

Then 

(IIJL(x)/,IIJL(x)g)JL = j .\(x-l,yH)(f(x-1y),g(x- 1Y))u dj1.(yH) 

jU(y),g(Y))u dj1.(yH) = U,g)JL' 

so IIJL(x) extends to an isometry of :FJL which is actually unitary since 
IIJL(:Fo) = :Fo. It follows from Proposition (6.1), as in the case of an 
invariant measure, that IIJL(x) is strongly continuous in x on :Fo and 
hence on :FJL, so IIJL is a unitary representation of G. 

IIJL depends on the choice of j1., but its unitary equivalence class does 
not. If j1.' is another strongly quasi-invariant measure, and p and p' 
are the rho-functions associated to j1. and j1.', then dj1.' = ¢ dj1. where 
JXH) p'(X)/p(x), by Theorem (2.59) and its proof. The map I -+ 

pi / p I is a bijection of :Fo (here we are using the fact that pi and pare 
continuous!); it extends to a unitary isomorphism from :Fv to :FJL since 
J ¢1/12 dj1. J 1112 dv, and we have 

[IIJL (x)( J pi / P f)](y) p/~~;y) l(x-1y) = [Jp'/pIIJL,(x)/j(y). 

Hence I -+ J pi / p I is a unitary equivalence of IIJL, and rIw Any of the 
representations IIJL may be called the representation of G induced by 
the representation a of H and denoted by ind~(a). 

Remark 1. Our construction of :FJL as the completion of a space of 
continuous functions finesses most technical problems associated with 
the study of measurable vector-valued functions, but it is occasionally 
important to note that :FJL can be identified with a space of ?-lu-valued 
functions on G, in which two functions are identified if they are equal 
locally a.e. Namely, if I E :FJL , pick a sequence {fn}OO in :Fo such 
that II/n - III < C2-m for some C,e > O. Then E;.'" II/n - In-III < 
2CE;."'2- m < 00, hence E;.'" Il/n(x) - In-l(X)lIu < 00 for every x 
except those in a set of the form q-l (E) where j1.( E) = o. But then the 
series lo(x) + E;."'[/n(x) - In-I(X)] converges in ?-lu to an element I(x) 
for all x 1:. q-l(E). (If it converges for some xo, it does so for all x in 
the coset xoH.) Moreover, I(x) is independent of the choice of sequence 
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Un}, since any two such sequences can be combined to yield a third one; 
and q-l(E) is locally null by Theorem (2.64). Hence we can identify f 
with the locally a.e.-defined function x ---+ f(x), and the formula (6.2) 
for the inner product continues to hold for such functions. Moreover, if 
¢ E Cc(G), the integral J ¢(x)f(x) dx makes sense: it can be defined as 
limJ ¢(x)fn(x) dx with fn as above. 

Remark 2. Suppose there is a Borel cross-section for G / H in G, i.e., 
a Borel set MeG that meets each coset of H in exactly one point. 
(This is always the case if G is second countable; see §2. 7.) Then each 
x E G can be written uniquely as x = XMXH with XM E M and XH E 

H; each f E Fo is completely determined by its restriction 1 = flM; 
and a quasi-invariant measure J.L on G / H yields a measure ji on M by 
ji(E) = J.L(q(E)). The map f ---+ 1 gives a unitary identification of FJL 
with the space of 'li,,-valued functions on M that are square-integrable 
with respect to ji, and under this identification the representation rIJL 
turns into 

This gives another realization of induced representations that is often 
useful. 

We now give the second, "intrinsic" construction of the induced repre­
sentation, which starts with a modification of the space Fo. Namely, let 
fD be the space of continuous functions f : G ---+ 'li" such that q(supp f) 
is compact and 

(6.3) (x E G, ~ E H), 

where !::l.c and !::l.H are the modular functions of G and H. 

(6.4) Proposition. Ifo:: G ---+ 'li" is continuous with compact support, 
then the function 

(6.5) 
!::l.c (1J) 
!::l.H(1J) a(1J)o:(x1J) d1J 

belongs to Fo and is uniformly continuous on G. Moreover, everyele­
ment of Fo is of the form fa for some 0: E Cc(G, 'li,,). 

Proof: Essentially identical to the proof of Proposition (6.1). I 

We recall the canonical map P : Cc ( G) ---+ Cc ( G / H) defined in §2.6: 

P¢(xH) = L ¢(x~) df 

If f E fD, then x ---+ Ilf(x)ll; satisfies all the requirements for a rho­
function on G except that it may not be strictly positive. Positivity 
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is not needed, however, in the proof of Lemma (2.55), so that lemma 
together with Proposition (2.48) implies that 

P¢ ~ l ¢(x)lIf(x)lI! dx 

is a well-defined positive linear functional on Cc(G/ H). Hence there is 
a Radon measure ILf on G/ H such that J P¢dILf = J ¢lIfll; for all ¢ E 

Cc(G). Since J ¢lIfll; = 0 if supp ¢ n supp f = 0, supp ILf is contained 
in q(supp 1) and hence is compact. In particular, ILf(G/ H) < 00. 

lt now follows by polarization (see Appendix 1) that if f,g E :Pl, 
there is a complex Radon measure IL f,g on G / H such that 

f P¢dILf,g = f ¢(x)(f(x),g(x))u dx 
latH la 

namely ILf,g = l(IL/+g - ILl-g + iIL/+ig - iILf-ig)' We define 

(f,g) = ILf,g(G/H). 

It is an easy exercise to verify that (f, g) ~ (f, g) is an inner product 
on :Plj we denote by F the Hilbert space completion of :Pl. For future 
reference we note that the norm of f E :Pl may be computed as follows: 
by Lemma (2.47) there exists ¢ E Cc(G) such that P¢ = 1 on q(supp 1); 
then 

(6.6) IIfll2 = l ¢(x)lIf(x)lI! dx. 

For x E G we define the operator II(x) on :Pl by 

[II(x)f](y) = f(x-1y). 

Then II(x) is bijective on :Pl, and since the map P commutes with left 
translations, 

f P¢(P) dILrr(x)f(P) = f IIf(x-1y)II!¢(y) dy 
latH la 

= lllf(Y)II!Lx-1¢(Y) dy 

= l P(Lx-I¢) dILf = l P¢(xp) dILf(P)· 

Thus ILrr(x)f is the translate of ILf by x, so 

IIII(x)fI12 = ILrr(x)f(G/H) = ILf(X-1(G/H)) ILf(G/H) = IIf1l2. 
In short, II(x) is an isometry, so it extends to a unitary operator on 
F. The resulting unitary representation of G on F is the intrinsic 
version of the induced representation ind~(a'. (Note that if G / H 
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has an invariant measure p" then by Theorem (2.49), :P> = Fo and 
dp,f(xH) = 11/(x)ll; dp,(xH) , so the present definitions of F and the 
induced representation coincide with the ones given earlier.) 

To complete the picture, we show that II is unitarily equivalent to the 
representation III-' defined in terms of a strongly quasi-invariant measure 
p,. Let p be the rho-function associated to p,. Then I ~ JP I maps Fo 
onto :P>; we claim that this map extends to a unitary map from FI-' to 
F that intertwines III-' and II. 

Suppose I E Fo. By Lemma (2.47), we can choose W E Cc(G) such 
that PW 1 on a neighborhood of q(supp I), and we can then choose 
¢ E Cc ( G I H) such that ¢ 1 on q(supp I) and PW = 1 on supp ¢. Let 

<I> (x) 
¢(q(x) )w(x) 

Pw(q(x)) . 

Then <I> E Cc(G), P<I> = ¢, and P[<I>II/(')II;] = 11/011; (the quantity on 
the right being regarded as a function on G I H). Hence, 

II/II},. 1 II/(x)lI; dp,(xH) 
G/H 

fa <I>(x)ll/(x)lI;p(x) dx 

1 ¢dp,..;pf = IIJP/II}, 
G/H 

since ¢ 1 on supp p,..;p f. Hence I ~ JP I extends to a unitary map 
from FI-' to F. Finally, 

[II(x)(JPI)](y) = Jp(x-1y)/(x-1y) 

= J p(y) p(x-1y) l(x-1y) 
p(y) 

= J p(y)[III-'(x)/](Y), 

so I ~ JP I intertwines III-' and II. 

In view of the remark following the construction of III-" the space F 
(defined as the completion of :P» can be identified with a space of 1iu -

valued functions on G, in which two functions are identified if they are 
equal locally a.e. - namely, F = {JP I : I E FI-'} and the integral 
J ¢(x)/(x)dx is well defined for ¢ E Cc(G) and I E:F. 

For later use, we now derive some facts about a useful subset of :P>, 
namely the set of functions I Q obtained by taking Q' to be of the form 
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a(x) = ¢(X)V (¢ E Cc(G), v E riu) in (6.5). That is, if ¢ E Cc(G) and 
v E riu , we define 

(6.7) 
.6.c (1J) 
.6.

H
(1J) ¢(x1J)a(1J)v d1J 

(6.8) Proposition. Let V be a dense subspace ofriu. 

a. {!¢,v(xo) : ¢ E Cc(G), v E V} is dense in riu for all Xo E G. 

b. The linear span of {!¢,v : ¢ E Cc(G), v E V} is dense in F. 

Proof: By the Tietze extension theorem, there is a family {'l/Ju} in 
Cc(G) such that NuIH} is an approximate identity on H. If we set 
¢u(x) = 'l/Ju(xr;Ix), then, it is easily verified that f¢u,v(xo) --+ v as 
U --+ {I}. This proves (a). 

To deal with (b), we first observe that for any compact KeG there 
is a constant CK > 0 such that sUPxEC Ilfo(x)llu ~ CK sUPxEC Ila(x)llu 
for all a E Cc(G, riu) supported in K, where fa is given by (6.5). In­
deed, if x E K the integral over H. in (6.5) can be replaced by the 
integral over the compact set H n (K- I K), which yields Ilfo(x)llu ~ 
CK SUPyEC Ila(y)llu for x E K. But then the same estimate holds for 
x E KH since fo(x~) = a(~-I)fo(x), and fo(x) = 0 for x ¢. KH. 

Now, to prove (b) it suffices to show that any f E ;::0 can be approxi­
mated by linear combinations of f¢,v 's, and by Proposition (6.4) and the 
above remarks it is enough to show that any a E Cc( G, riu) can be uni­
formly approximated by functions of the form (3(x) = 2::7 ¢j(x)Vj where 
Vj E V and ¢j E Cc(G) is supported in a fixed compact neighborhood N 
of supp a for each j. But this is easy: given f > 0, a standard partition 
of unity argument shows that there exist continuous ¢I, ... ,¢n E Cc( G) 
supported in N such that 0 ~ 2::7 ¢j ~ 1, 2::7 ¢j = 1 on supp a, and 
Ila(x) - a(y)llu < ~f for X,y E SUPP¢j. For each j, pick Xj E SUPP¢j 
and pick Vj E V such that Ila(xj) - Vjllu < ~L If (3(x) = 2::7 ¢j(x)Vj, 
then 

s~p Ila(x) - (3(x)llu = s~p III>j(x) [a(x) - VjlL < s~p L¢j(X)f = f, 

so we are done. I 

For future reference we record the following simple but important 
observations, whose proof we leave as an exercise for the reader. 

(6.9) Proposition. If a and a' are equivalent representations of H, 
then ind~(a) and ind~(a') are equivalent representations of G. If {ad 
is any family of representations of H, then ind~(EB ai) is equivalent to 
EBind~(ai)' 

We conclude this section by giving a more geometric interpretation of 
the space Fo. This interpretation will not play much of a role here, but 
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it is of great importance in applications because it is the way in which 
many induced representations arise naturally in practice. 

Define an equivalence relation on G x 'Jig by 

(x,u) '" (xe,cr(.;-l)u) for all e E H, 

and let V be the set of equivalence classes. The projection (x, u) ---+ x of 
G x 'Jig onto G induces a projection p : V ---+ G I H. For each x E G I H, 
let Vx- = p-l ( {x}) be the fiber over x. Each Vx- has a natural structure 
as a Hilbert space isomorphic to 'Jig. Namely, if we fix x E q-l(x), the 
map taking u E 'Jig to the equivalence class of (x, u) is a bijection from 
'Jig to Vx-, by means of which we can transfer the Hilbert space structure 
of 'Jig to Vx-. If we choose a different x, say x' xe, we get the same 
Hilbert space structure on Vx- since cr(e) is unitary. Moreover, if f E Fo 
we have (x, f(x)) '" (xe, f(xe)) for all e E H, so f can be regarded 
as a map from G I H to V whose value at any x E G I H, namely the 
equivalence class of (x,f(x)) for x E q-l(x), lies in the fiber over X. 

Therefore, V is a vector bundle over G I Hand Fo can be regarded 
as the space of compactly supported continuous sections of V. JWe are 
glossing over one technicality, the question of local triviality, because it 
plays no role here; but see §6.8.) Conversely, suppose V is a homoge­
neous Hermitian vector bundle over GI H: this means that the fibers 
are Hilbert spaces and that the action of G on G I H lifts to an action 
of G as bundle automorphisms of V that are unitary on the fibers. The 
latter action, restricted to H, preserves the fiber Vo over the identity 
coset and defines a unitary representation cr of H on Vo. The preced­
ing calculations, done in reverse, shows that the continuous sections of 
V can be identified with continuous mappings f : G ---+ Vo such that 
f(xe) = cr(';- 1 )f(x), and hence that the set of compactly supported 
ones can be identified with the space Fo. Finally, if J.L is a strongly 
quasi-invariant measure on GIH, FJl can be identified with the space of 
sections of V that are square-integrable with respect to J.L. 

Replacing Fo by ;:0 amounts to taking the tensor product of V 
with the bundle of "half-densities" on G I H, that is, the line bundle 
associated to the one-dimensional (non-unitary) representation p(e) = 
.j!:J.C(e)/!:J.H(e) of H. When GIH admits an invariant measure, this 
is the trivial line bundle; otherwise, it precisely compensates for the 
absence of an invariant measure. 

In short: representations ofG induced from H are the representations 
of G on sections of homogeneous Hermitian vector bundles over G I H. 
For example, if G is a Lie group and H is a compact subgroup, then H 
acts linearly on the tangent space Vo to the identity coset in G I H, and 
since H is compact there is an inner product on Vo that is H -invariant. 
This inner product can be transported to all the other tangent spaces 
by the action of G, thereby making the tangent bundle of G, or rather 
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its complexification, into a homogeneous Hermitian vector bundle. The 
invariant inner product defines a unitary representation 0' of H on the 
complexification of Vo, and ind~ (0') is the natural representation of G 
on the complex vector fields on G I H. 

6.2 The Frobenius Reciprocity Theorem 

Suppose G is a locally compact group and H is a closed subgroup. Any 
unitary representation of G can be restricted to H, and any unitary 
representation of H can be induced up to G. There is a remarkable 
relationship between these procedures, which for compact groups is em­
bodied in the following theorem. 

(6.10) The Frobenius Reciprocity Theorem. Let G be a compact 
group, H a closed subgroup, 1f an irreducible unitary representation of 
G, and 0' an irreducible unitary representation of H. Then 

C(1f, ind~(O')) ~ C(1fIH, 0') and mult(1f, ind~(O')) = mult(O',1fIH). 

Proof: It suffices to prove the first assertion, as the second one then 
follows from Proposition (5.4) and the fact that the map S -+ S* is an 

. antilinear isomorphism from C( 1fIH, 0') to C(O',1fIH). 
Let II = ind~ (0'). Since G I H admits an invariant measure (because 

/.).c = /.).H = 1) and dO' dim 1i0' is finite (Theorem (5.2)), the simplest 
construction of II will work. Namely, let L2(G,1i0') be the space of 
square-integrable 1iO'-valued functions on G. The space :F on which 
II acts is the subspace of L2(G,1i0') consisting of those 1 such that 
I(xf,) O'(f,-I)/(x) for x E G and f, E H, and II is a subrepresentation 
of the left regular representation of G on L2(G, 1i0'). Moreover, the latter 
is just the direct sum of dO' copies of the left regular representation of 
G on L2(G). If T E C(1f,II), then, the range of T lies in the direct sum 
of dO' copies of by the Peter-Weyl theorem, and the elements of &1f 
are all continuous. Hence, if 1 is in the range of T it makes sense to 
evaluate 1 pointwise. 

Let E : C(G,1iO') -+ 1i0' be evaluation at 1: EI = 1(1). We claim 
that the map T -+ ET is an isomorphism from C(1f,II) to C(1fIH,O'). 
First, if T E C(1f, II), v E 1ir:, and f, E H, 

O'(f,)ETv O'(f,)[Tv(l)] = Tv(C 1
) = [II(f,)Tv](l) 

= T[1f(f,)v](l) ET1f(f,)v, 

so ET E C(1fIH, 0'). Next, if ET = 0, then for any x E G and v E 1ir:, 

o [T1r(x- 1)v](1) = [II(x- 1)Tv](1) = Tv(x), 
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so T = 0. Thus T --+ ET is injective, and it remains to show that it is 
surjective. If S E C(1rIH,O"), define T : 1i", --+ L2(G,1iu) by Tv(x) = 
S[1r(X-l)V]. We claim that T E C(1r, II) and S = ET. Indeed, if x E G 
and ~ E H, 

Tv(x~) = S[1r(C 1)1r(X-l)V] = 0"(C 1)S[1r(X-l)V] = 0"(C1)Tv(x), 

so Tv E F. Moreover, 

[II(y)Tv](x) = Tv(y-1x) = S[1r(X-l)1r(y)V] = T[1r(Y)v](x), 

so T E C(1r, II). Finally, ETv = Tv(I) = Sv, so S = ET. I 

The Frobenius Reciprocity Theorem, in connection with Proposition 
(6.9), furnishes a powerful tool for determining the irreducible compo­
nents of an induced representation of a compact group. Here are a few 
simple examples. 

Example 1. If 0" is the trivial representation of the trivial subgroup 
H = {I}, then ind~(O") is the ordinary left regular representation of 
G. If [1r] E 8, mUlt(O",1rIH) clearly equals d"" so Frobenius reciprocity 
recaptures part of the Peter-Weyl theorem: each [1r] E 8 occurs in the 
regular representation with multiplicity equal to its dimension. 

Example 2. Take G to be SO(3), H the subgroup that leaves the 
point (1,0,0) fixed, and 0" the trivial representation of H on C. Then 
G / H can be identified with the unit sphere S2 C R 3 , and ind ~ (0") is 
the natural representation of SO(3) on L2(S2) by rotations. To analyze 
this situation, let us replace SO(3) by its double cover SU(2} The cal­
culations preceding Theorem (5.41) show that the subgroup H of SU(2) 
corresponding to H is the group {F(B) : B E R} given by (5.29). More­
over, with the notation of §5.4, 1rm(F(B))(zi wm-i) = ei (m- 2i)Ozi wm-i, 
so the characters of ii ~ T that occur in 1rmiH are ei (m-2i )O, ° :S j :S m. 
Thus, the trivial representation occurs in 1rmiH with multiplicity 1 if m 
is even and does not occur if m is odd. Frobenius reciprocity therefore 
tells us that the natural representation of SU(2) on L2(S2) is the di­
rect sum of subrepresentations equivalent to 1r2k, k = 0,1,2, ... , each 
occurring with multiplicity one. By Corollary (5.42), this means that 
each irreducible representation Pk of SO(3) occurs in its representation 
on L2(S2) with multiplicity one. The subspaces 1ik of L2(S2) on which 
these representations occur are the spaces of spherical harmonics of de­
gree k on S2. (See, for example, Stein and Weiss [115].) 

Example 3. Let G and H be as in Example 2. H acts on the tangent 
plane to S2 at the point (1,0,0) (essentially the yz-plane in xyz-space) 
by rotations, 

(6.11) (y, z) --+ (y cos B - z sin B, y sin B + zcos B). 

Let 0" be the unitary representation of H on C 2 defined by (6.11); then, 
as explained at the end of §6.I, the induced representation ind~(O") is 
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the natural representation of SO(3) on the complex vector fields on 
S2. (J is reducible: the invariant subspaces of (6.11) are the spans of 
(I,±i), with eigenvalues e'fi6. Hence, by Proposition (6.9), ind~((J) is 
the direct sum of the representations induced bI the characters e±i6 of 
H. Since passing from H to its double cover H in SU(2) amounts to 
replacing () by 2(), the same considerations as in Example 2 show that 
each irreducible representation Pk of SO(3) as in Corollary (5.42) occurs 
with multiplicity 2 in ind~ ((J) once for the character ei6 of H, and 
once for e- i6 - except for the trivial representation Po, which does not 
occur at all. 

We can identify the irreducible subspaces as follows. First, the Eu­
clidean metric allows us to identify vector fields on S2 with differential 
I-forms. The exterior derivative d maps functions to I-forms and com­
mutes with the action of SO(3), so by Schur's lemma it is either zero or 
an isomorphism on each irreducible subspace. The only functions f such 
that df = 0 are the constants, corresponding to the trivial representa­
tion Po. Hence, for k > 0, the image d(?-lkJ of the spherical harmonics of 
degree k under d is a space of I-forms on which SO(3) acts by Pk. More­
over, if W is the 2-form on S2 giving the Euclidean element of area, the 
map f -> fw is a bijection from functions to 2-forms that commutes with 
the action of SO(2), so the space of 2-forms decomposes as EB~ ?-lkW. 
The co-differential d* maps 2-forms to I-forms and commutes with the 
action of SO(3), and its kernel is ?-low, so for each k > 0, d*(?-lkW) is 
another space of I-forms on which SO(3) acts by Pk. The spaces d(?-lk) 
and d*(?-lkW) are mutually orthogonal since d2 = 0, so the irreducible 
decomposition of the space of I-forms is EB~ [d(?-lk) ffi d*(?-lkW)]. 

Similar considerations, together with a knowledge of the representa­
tions of SOC n), enable one to write down the decomposition of the spaces 
of differential forms on the unit sphere in Rn under the natural action 
of SO(n), for any n; see Folland [41.J. 

6.3 Pseudomeasures and Induction in Stages 

In §3.3 we explored the relationship between functions of positive type 
on a group G and unitary representations of G. We now present a 
generalization of these ideas which is useful for the theory of induced 
representations. 

Let X be a locally compact Hausdorff space. If K is a compact subset 
of X, let CK(X) be the space of continuous functions on X supported 
in K; this is a Banach space under the uniform norm. The space Cc(X), 
being the union of these Banach spaces, inherits a natural inductive limit 
topology. The definition and properties of this topology can be found 



Induced Representations 163 

in Bourbaki [16, §II.4.4]. (See also Rudin [108], where the similar space 
C~(Rn) is discussed.) All we need to know about it are the following 
facts concerning continuity of maps, in which X and Y denote locally 
compact Hausdorff spaces and the topology on the spaces C K (X) is that 
of the uniform norm. 

i. A linear functional on Cc(X) is continuous if and only if its restric­
tion to CK(X) is continuous for each compact K eX. 

ii. A linear map T : Cc(X) -+ Cc(Y) is continuous if for every com­
pact Fe X there is a compact KeY such that T maps Cp(X) 
boundedly into CK(Y). 

iii. A bilinear map B : Cc(X) x Cc(X) -+ Cc(Y) is continuous if for 
every compact F, F' c X there is a compact KeY such that B 
maps Cp(X) x Cp/(X) boundedly into CK(Y). 

iv. A map ¢ : X -+ Cc(Y) is continuous if for every compact F C X 
there is a compact KeY such that ¢ maps F continuously into 
CK(Y). 

We shall call a continuous linear functional on Cc(X) a pseudo mea­
sure. (There seems to be no standard name for these functionals in the 
literature except among the disciples of Bourbaki, who call them simply 
"measures.") For example, every positive Radon measure JL on X de­
fines a pseudomeasure by JLU) f f dJL, and the Riesz representation 
theorem says that every positive pseudomeasure arises in this fashion. 
More generally, if A is a positive Radon measure and ¢ is a locally A­
integrable complex function, JLU) f f¢dA is a pseudomeasure. A 
similar but slightly more complicated description is also available for 
general pseudomeasures, as follows. 

Suppose that for each compact K C X we are given a complex Radon 
measure JLK on K such that if K' c K, JLK' is the restriction of JLK to 
the Borel subsets of K'. Such a collection {JLK} defines a pseudomea­
sure JL by JLU) = f f dJLK for all f E CK(X). Conversely, if JL is a 
pseudomeasure and K is a compact set in X, choose a compact neigh­
borhood V of K. The restriction of JL to Cv(X) can be extended via the 
Hahn-Banach theorem to a continuous linear functional on C(V), which 
is given by a complex Radon measure on V. Let JLK be the restriction 
of this measure to the Borel subsets of K. It is easily verified that JLK 
is independent of the choice of V and the Hahn-Banach extension, and 
it is then immediate that JLK' is the restriction of JLK to subsets of K' 
when K' C K and that JLU) f f dJLK for all f E CK(X). 

In short, pseudomeasures can be handled much like measures~ and 
such results as Fubini's theorem can be applied, as long as one only 
integrates functions of compact support. We shall use the notations 
JLU) and f f dJL indifferently for the action of a pseudomeasure JL on a 
function f E Cc(X). 
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Now let G be a locally compact group. By (ii) and (iii) is easily 
checked that the involution f --+ f* (where f*(x) = ~(x-l)f(x-l)) 
and convolution (f,g) --+ f * 9 are continuous operations on Cc(G), so 
they make Cc ( G) into a topological *-algebra. A pseudomeasure J.L is 
said to be of positive type if it is positive with respect to this algebra 
structure, that is, if 

J.L(f* * f) ~ 0 for all f E Cc(G). 

For example, if ¢ E LOO
( G) is a function of positive type and A is left 

Haar measure, then J.L(f) = J f¢dA is a pseudomeasure of positive type. 
(These are the pseudomeasures of positive type that extend continu­
ously to Ll(G).) Another example is provided by the point mass at the 
identity of G. 

The construction that led from functions of positive type to unitary 
representations in §3.3 works equally well for pseudomeasures. Namely, 
suppose J.L is a pseudo measure of positive type. Then 

(j, g) I' = J.L(g* * f) 

is a positive semi-definite Hermitian form on Cc(G). Upon factoring out 
the nullspace U E Cc(G) : J.L(f* * f) = O} one obtains an inner product 
space that can be completed to form a Hilbert space Hw Since 

(6.12) = J f(x- 1 z)f(x- 1 zy) dz = J f(z)f(zy) dz 

= J f*(Z-1 )f(z-ly) dz = f* * f(y), 

the map f --+ Lxf induces a unitary operator 1l"J«x) on Hw One clearly 
has 1l"J«x)1l"J«Y) = 1l"J«xy), and x --+ 1l"J«x) is strongly continuous because 
x --+ Lxf is continuous from G to Cc(G) and J.L is continuous on Cc(G). 
Hence 1l"J< is a unitary representation of G on Hw 

When J.L comes from a function of positive type as described above, 
this construction coincides with the one in §3.3. (The reader may verify 
that £1 (G) could be replaced by Cc(G) there without changing anything 
essential.) However, functions of positive type yield only cyclic represen­
tations, as Proposition (3.20) shows, whereas pseudomeasures can yield 
more general representations. For example, let J.L be the point mass at 
the identity; then 

so HI' = L2(G) and 1l"J< is just the left regular representation of G. By 
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Proposition (4.71), this representation is not cyclic when G is Abelian 
and [} is not CT-compact. 

The reason for the suitability of pseudo measures in the theory of in­
duced representations is that one can easily relate pseudomeasures on a 
closed subgroup to pseudomeasures on the whole group. Namely, if H 
is a closed subgroup of G, any pseudo measure J.L on H defines a pseu­
domeasure Ii on G by Ii(f) = J.L(fIH). We shall call Ii the injection of 
J.L into G. With this in mind, we come to the main result of this section. 

(6.13) Theorem. Suppose G is a locally compact group and H is a 
closed subgroup, with modular functions !::l.c and !::l.H. Let J.L be a pseu­
domeasure of positive type on H, let CT J1. be the associated unitary rep­
resentation of H, and let v be the injection of J!::l.C/!::l.H J.L into G, i.e., 
the pseudomeasure on G defined by 

v(f) = 1 !::l.c(~) 
!::l.H(~/(~) dJ.L(~). 

Then v is of positive type, and the associated unitary representation 7r v 

ofG is unitarily equivalent to the induced representation II = ind~(CTJ1.). 

Proof: If f E Cc( G), define a continuous map U f : G --+ Cc(H) by 

[U f(x)l(~) = 

and (by Lemma (2.47» choose h E Cc(G) such that fH h(y1]) d1] = 1 for 
y E (supp f)H. We then have 

J"ff - !::l.c(~) 
= } } h(y1])f(y)f(y~) !::l.H(~) d1]dydJ.L(~). 

Substituting Y1]-1 for y and then 1]-1 for 1], we obtain 

v(f* * f) = 111 h(Y)f(Y1])f(Y1]~) ~~~~~ 
!::l.c (1]) 
!::l.H(1]) d1]dydJ.L(~) 

= 11 h(y) [(Uf(y»* * Uf(y)](~)dydJ.L(~) 

= 1 h(Y)J.L[(Uf(y»* * Uf(y)] dy. 
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This shows immediately that the positivity of JL implies the positivity 
of v. Moreover, if we regard Uf(y) E Cc(H) as an element of the 
Hilbert space 1iJL for the representation aJL, then: (i) its norm is given 
by IIU f(y) II; = JL [(iT f(y»* * U f(y)]; (ii) U f is an element of the Hilbert 
space :F for the intrinsic version of the induced representation II; (iii) in 
view of (6.6) and the fact that (supp U f)H (supp f)H, we have 

v(f* * f) = J h(y)J:t[(U f(y»* * U f(y)] dy = IIU fll}· 

In other words, U defines an isometry from the Hilbert space 1iy for 7r y 

into the Hilbert space:F. Also, we clearly have 

U[7ry (x)f](y) = J ~~ f(x-1y(.») [II(x)U f](y), 

so U intertwines 7r y and II. 
It therefore remains to show that U is surjective, and it is enough to 

show that the range of U is dense. Given ¢ E Cc ( G) and v E Cc(H), 
define f E Cc(G) by 

f(x) = fa 
Then 

[U f(x)](~) = 

= fa ~~~~~¢(X17)V(17-1~)d17' 
But this is [f<p,v(x)](~) in the notation of (6.7), with a 
of U is dense by Proposition (6.8). 

a/.', so the range 
I 

As an immediate corollary of Theorem (6.13), we obtain the theorem 
on "induction in stages," one of the fundamental results of the subject. 

(6.14) Theorem. Suppose H is a closed subgroup ofG, K is a closed 
subgroup of H, and a is a unitary representation of K. Then the repre­
sentations ind~(a) and ind~(indX(a») are unitarily equivalent. 

Proof: First suppose that a arises from a pseudomeasure JL of pos­
itive type on K. Let v be the injection of J!::l.H I!::l.K JL into H. The 
desired result follows immediately from Theorem (6.13) and the obvi­
ous fact that the injections of J!::l.a I !::l.K JL and J!::l.a I!::l.H v into G are 
equal. 

Now, any representation of K is a direct sum of cyclic representations 
by Proposition (3.3), and every cyclic representation is equivalent to 
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one that arises from a pseudo measure (in fact, a function) of positive 
type by Corollary (3.24). An application of Proposition (6.9) therefore 
completes the proof. I 

6.4 Systems of Imprimitivity 

Let G be a locally compact group. A system of imprimitivity on G 
is an ordered triple E = (1r, S, P) consisting of: 

11. a unitary representation 1r of G on a Hilbert space '}-[,,,, 

12. a G-space S, and 

13. a regular 1i.,,-projection-valued measure P on S such that 

(6.15) 1r(X)P(E)1r(X)-1 = P(xE) for all x E G and E c S. 

(Recall that we have defined a G-space to be a locally compact Haus­
dorff space equipped with a continuous left G-action. One can increase 
the generality here a bit by taking S to be a measurable space on which 
G acts measurably. However, we shall have no reason to consider exten­
sions of this sort.) 

The definition we have just given is standard, but there is another 
equivalent one that is often technically easier to work with. The projec­
tion-valued measure P determines a nondegenerate *-representation M 
of the C* algebra Co(S) on 1i.", namely M(¢) = J ¢dP. Since (6.15) 
can be re-expressed as 

(6.16) 1r(x) dP(s) 1r(X)-1 = dP(xs), 

we clearly have 

(6.17) 

Conversely, suppose M is a nondegenerate *-representation of Co(S) on 
1i", satisfying (6.17). By Corollary (1.55), M determines a regular 1i",­
projection-valued measure P on S such that M(¢) = J ¢ dP for all ¢ E 

Co(S). This P satisfies (6.15). Indeed, if x E G, E --+ 1r(x)P(E)1r(X)-1 
is the projection-valued measure associated to the *-representation ¢ --+ 

1r(x)M(¢)1r(X)-I, whereas E --+ P(xE) is the projection-valued measure 
associated to the *-representation ¢ --+ M(Lx ¢). Since these represen­
tations are equal, (6.15) follows from the uniqueness of the projection­
valued measure in Corollary (1.55). 

In short, a system of imprimitivity can be thought of as an ordered 
triple (1r, S, M) where 1r and S are as in (11) and (12), and 
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13'. M is a nondegenerate *~representation of Co(S) on 1-l7r satisfying 
(6.17). 

We shall employ whichever of these definitions seems more convenient, 
and we shall simply use the notational distinction between the letters 
P and M to indicate which one we are using. (This practice, while 
potentially hazardous, will cause no confusion for us.) 

A representation 11" is called imprimitive if it belongs to a nontrivial 
system of imprimitivity, that is, one in which S is not a single point; 
otherwise 11" is primitive. 

Every reducible representation is imprimitive. Indeed, let A be a 
commutative C* subalgebra of C(1I") (e.g., the algebra generated by a 
self-adjoint element of C(1I")), and let S be the spectrum of A. If M : 
Co(S) -+ A is the inverse of the Gelfand transform on A, we have 
M(¢) E C(1I") for all ¢ E Co(S), i.e., 1I"(x)M(¢)1I"(X) 1 =:; M(¢) for all 
x E G. (11", S, M) is therefore a system of imprimitivity if we endow S 
with the trivial G-action (xs s for all x and s). 

More interestingly, every induced representation is imprimitive. Let 
H be a closed subgroup of G and let q : G -+ G / H be the quotient map. 
If a is a representation of H, the Hilbert space F for <P =:; ind~(a) is 
the completion of the space fO of continuous 1-l,,-valued functions on G 
satisfying (6.3) and such that q(suppf) is compact. If ¢ E Co(G/H) 
and f E fO, it is obvious that (¢ 0 q)f E fO and that II(¢ 0 q)fllF ~ 
1I¢lIsupllfIiF. Hence, if we set 

M(¢)f (¢ 0 q)f, 

M is a *-representation of Co(G/ H) on F that is clearly nondegenerate, 
and 

1I"(x)M(¢)1I"(x) If(y) M(¢)1I"(X)-lf(x- 1y) 

¢(q(x-1y))f(y) 

M(Lx¢)f(y)· 

Thus (<p, G / H, M) is a system of imprimitivity, called the canonical 
system of imprimitivity associated to <P. 

It is clear what the associated projection-valued measure for this sys­
tem of imprimitivity is: it is given by P(E)f (XE 0 q)f. From our 
definition of F as the completion of fO, however, it is not immediately 
obvious that multiplication by XE 0 q preserves F. (It certainly doesn't 
preserve fO in general!) Our use of the representation M rather than 
the projection-valued measure P neatly finesses this technical problem. 

Various notions associated to unitary representations have analogues 
for systems of imprimitivity. For example, two systems of imprimitivity 
(11", S, M) and (11"', S, M') (with the same S) are (unitarily) equiva­
lent if there is a unitary U : 1-l7r -+ 1-l7r, such that U1I"(x) 1I"'(x)U 
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for all x E G and U M(¢) = M'(¢)U for all ¢ E Co(S). (This con­
dition on M, M' is equivalent to the following condition on the asso­
ciated projection-valued measures: U P(E) = P'(E)U for all E c S.) 
If E = (7r, S, M) (or (7r, S, P)) is a system of imprimitivity, a closed 
subspace M of 1i", is called invariant under E if it is invariant under 
all the operators 7r(x) and M(¢) (or, equivalently, under all the oper­
ators 7r(x) and P(E)). Also, if {(7ri, S, Mi)}iEI is a family of systems 
of imprimitivity, all with the same S, their direct sum is the system 
(7r,S,M) where 7r(x) = ffi7ri(X) and M(¢) = ffiMi(¢), acting on the 
Hilbert space ffi 1i"'i' Reciprocally, if (7r, S, M) is a system of imprimi­
tivity and 1i", is the orthogonal sum of invariant closed subspaces M i , 

we can regard (7r, S, M) as the direct sum of the systems (7r i, s, M i ), 

where 7ri(X) = 7r(x)IMi and Mi(¢) = M(¢)IM i. 
Just as unitary representations of G give rise to representations of the 

group algebra U(G), systems of imprimitivity (7r,S,P) on G give rise 
to representations of an algebra L(S x G) which we now describe. Let S 
be any G-space. As a vector space, L(S x G) is simply Cc(S x G). The 
product is a type of convolution, 

and the involution is given by 

where ~ is the modular function of G. When L(S x G) is equipped 
with the usual inductive limit topology of Cc(S x G), the operations 
(I, g) ---+ f * 9 and f ---+ f* are easily seen to be continuous and to satisfy 
all the usual algebraic properties, so that L( S x G) is a topological *­
algebra. (The interested reader may also verify that the completion of 
L( S x G) with respect to the norm 

Ilfll = 1 suplf(s,x)ldx 
G sES 

is a Banach *-algebra. We shall have no need to consider this larger 
algebra, although it provides a more exact analogue of the group algebra 
U(G).) 

Suppose now that E = (7r, S, M) is a system of imprimitivity on G. If 
f E L(SxG), M[fC,x)] is a bounded operator on 1i", which is compactly 
supported and continuous in the norm topology as a function of x. If 
v E 1i"" then, M[f(-,x)]7r(x)v is a continuous, compactly supported 
1i",-valued function of x, and we can integrate it to obtain a vector 

Tdf)v = L M[f(·,x)]7r(x)vdx. 
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If the projection of supp f C S x G onto G is contained in a compact 
set K, we have 

IITE(f)vll ~ IKI sup IIM[fC,x)]llllvll ~ IKlllfllsupllvll· 
xEG 

Hence TE is a continuous linear map from L(S x G) into £(1i",). 
In terms of the projection-valued measure P associated to M, we have 

M[f(·, x)] = J f(s, x) dP(s), and hence 

(6.18) TE(f) = L M[f(·,x)]1r(x)dx = Lisf(S,X) dP(s)1r(x) dx. 

In view of (6.16), however, we also have 

M[f(·,x)] = J f(xs,x)dP(xs) = 1r(x) J f(xs,x)dP(s)1r(X)-1 

and hence 

(6.19) TE(f)v = L 1r(x) is f(xs,x) dP(s) dx. 

(The use of the projection-valued measure P rather than M in (6.18) 
and (6.19) is mainly a convenience for keeping track of the variables.) 

(6.20) Theorem. TE is a nondegenerate *-representation of L(S x G) 
on 1i",. 

Proof: First, by (6.19), we have 

Tdf*) = L 1r(x) is f(s,x-1)t:.(X- 1) dP(s) dx 

= L 1r(x-1) isf(s,x) dP(s) dx 

= L 1r(x)*M[f(·,x)]*dx = TE(f)*. 

Next, to show that TE(f*g) = TE(f)TE(g) we will need to apply Fubini's 
theorem to the operator-valued integral defining TE(f * g). To justify 
this, one can reduce to the scalar case by considering the scalar integral 
defining (TE(f * g)u, v) for u, v E 1i",; we leave the details to the reader. 
We have 

TE(f * g) = Lis L f(s, y)g(y-l s, y-1x) dydP(s) 1r(X) dx. 

Moving the y-integral to the outside and then substituting yx for x and 
ys for s, we obtain 

. TE(f*g) = LLisf(YS,y)g(s,x) dP(ys)1r(Yx) dxdy. 
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Now an application of (6.16) yields 

Tdf*g) = i 7r(y) iisf(YS,y)g(s,x) dP(s) 7r(x) dxdy, 

so by the multiplicativity of the spectral functional calculus and (6.19), 

Tr;(f * g) = i 7r(y) i [is f(ys, y) dP(s)] 

[is g(s, x) dP(s)] 7r(x) dx dy 

= [i 7r(y) isf(YS,Y)dP(S)dY]Tdg) 

= Tr;(f)Tr;(g). 

Finally, if vi 0 E 1i"" we can choose 9 E Cc(G) such that 7r(g)v i 0, 
and we can then choose h E Cc(S) such that M(h)7r(g)v i o. Let 
f(s,x) = g(x)h(s); then Tr;(f)v = M(h)7r(g)v i 0, so Tr; is nondegen­
erate. I 

If S is a G-space, a pseudomeasure J.L on S x G is said to be of positive 
type if it is positive as a linear functional on the algebra L(S x G), that 
is, if J.L(f* * f) ~ 0 for all f E L(S x G). 

For example, suppose E is a system of imprimitivity and Tr; is the 
associated representation of L(S x G) defined by (6.18). Then for any 
v E 1i", the pseudomeasure J.L defined by 

(6.21) 

is of positive type, for 

Conversely, any pseudomeasure J.L of positive type on S x G gives rise 
to a system of imprimitivity in much the same way that a pseudo measure 
of positive type on G gives rise to a unitary representation. First, the 
sesquilinear form 

(f,g)/< = J.L(g* * f) 

on L(S x G) is positive semidefinite, so by factoring out its nullspace 
and completing the resulting inner product space, we obtain a Hilbert 
space 1iw Next, for x E G we define the operator 7r(x) on L(S x G) by 

(6.22) 

A calculation entirely similar to (6.12) shows that 

[7r(x)f]* * [7r(x)fl = r * f, 
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so 1l"(x) induces an isometry 1l"J.L(x) on 1iw We clearly have 1l"J.L(x-1) 
1l"J.L(X)-l, and the obvious continuity of the map x ---> 1l"(x)f from G to 
L(S x G) easily implies the strong continuity of 1l"J.L(x) in x. In short, 1l"J.L 
is a unitary representation of G on 1iJ.L. 

Next, if ¢ E Co(S), we define an operator M(¢) on L(S x G) by 

(6.23) M(¢)f(s,y) = ¢(s)f(s,y). 

(6.24) Proposition. For ¢ E Co(S), the operator M(¢) on L(S x G) 
induces a bounded operator MJ.L(¢) on 1iJ.L satisfying (6.17). MJ.L is a 
nondegenerate *-representation of Co(S) on 1iw 

Proof We obviously have M(¢'I/J) = M(¢)M('I/J). Also, 

(6.25) 

and 

g* * [M(¢)f](s,x) == J g(y-1s,y-l)tJ.(y-l)¢(y-1s) 

f(y-1s, y-1x) dy 

== [M(¢)g]* * f(s,x) 

1l"(x)M(¢)1l"(x-1)f(s,y) = M(¢)1l"(x- 1)f(x-1s,x-1y) 

== ¢(x- 1 s)f(s, y). 

From these relations it will follow that MJ.L(¢'I/J) MJ.L(¢)MJ.L('I/J) and 
MJ.L(¢)* MJ.L(¢) and that (6.17) holds, and nondegeneracy is obvious, 
so it remains to prove the boundedness. If f E L(S x G), by (6.25) we 
have 

so by induction, 

But 

so 

IIM(I¢1 2n )fll! = f f f(ys, y)I¢(ysW,,+1 f(ys, yx) dy dJl.(s, x) 
lsxG1G 

:::; II¢II;:;I f f If(ys,y)f(ys,yx)ldydlJl.l(s,x) 
lSXG1G 

Cfll¢II;:;I, 

IIM(¢)fllJ.L :::; crn II¢IIsupllfll~-2-", 
and letting n --> 00 we obtain IIM(¢)fllJ.L :::; II¢IIsupllfllJ.L' I 
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In short, starting with a pseudo measure JL of positive type on S x G, 
we have constructed a system of imprimitivity (nJ.f.) S, Mp.), which we 
shall call the system derived from JL. 

To complete the circle, we have the following theorem, an analogue of 
Corollary (3.24). A system of imprimitivity E = (n, S, M) will be called 
cyclic if there is a vector v E 'H", such that {TE(f)v : f E L(S x G)} 
is dense in 'H"" where is defined by (6.18), in which case v is called 
a cyclic vector for E. (This is in a slightly different spirit than our 
definition of cyclicity for unitary representations of G; it corresponds to 
cyclicity of the associated representation of LI (G). However, it is an 
easy exercise to show that the latter two notions are equivalent.) 

(6.26) Theorem. Suppose E (n, S, M) is a cyclic system of imprim­
itivity, with cyclic vector v. Let TE be the associated representation of 
L(S x G) defined by (6.18), let JL be the pseudomeasure of positive type 
on Sx G defined by JL(f) = (TE(f)v,v), and let Ep. = (np., S,Mp.) be the 
system ofimprimitivity derived from JL. Then E and Ep. are equivalent. 

Proof; If f E L(S x G) we have 

IlfliZ JL(f* * f) = (TE(J* * f)v, v) = IITE(f)vIl2
, 

so the map f ---. TE(f)v induces- an isometry from 'Hp. into 'H",. Since v 
is a cyclic vector, the range of U is dense in 'H"" so U is actually unitary. 
By (6.19), we have 

TE{np.{x)f) fa n{y) Is f(x-1ys, x-1y) dP(s) dy 

fa n{xy) Is f(ys, y) dP(s) dy = n(x)Tr;(f) , 

from which it follows that U intertwines np' and n. Moreover, if ¢ E 
Co(S), 

TE[Mp.(¢)f] fa M[¢f(-, x)]n(x) dx 

= fa M(¢)M[f(·,x)]n(x)dx = M(¢)TE(f), 

and hence UMp.(¢) M(¢)U for ¢ E Co(S). I 

We therefore have a natural correspondence between cyclic systems 
of imprimitivity (n, S, M) on G and pseudomeasures of positive type on 
S x G. These results apply to arbitrary systems of imprimitivity via the 
following result, an analogue of Proposition (3.3). 

(6.27) Proposition. Every system of imprimitivity E (n, S, M) is a 
direct sum of cyclic systems of imprimitivity. 



174 A Course in Abstract Harmonic Analysis 

Proof: Since TE(!)* TE(!*)' the orthogonal complement of a sub-
space of H1T that is invariant under all the operators TE(!) , f E L(S x G) 
is likewise invariant. A routine application of Zorn's lemma then shows 
that there is a maximal collection {Vi} of unit vectors in H1T such that 
the closures Mi of the spaces {TE(!)Vi : f E L(S x G)} are mutually 
orthogonal. We then have H1T ffi Mi by maximality, and it remains 
to show that each of the spaces Mi is invariant under all the operators 
1f(x) and M(¢). But by (6.19), 

1f(X)TE(!) fa 1f(xy) Is f(ys, y) dP(s) dy 

= fa 1f(Y) Is f(x-1ys, x-1y) dP(s) dy 

= Tdfx), 

where fx(s,y) f(x-1s,x-1y), so Mi is invariant under 1f(x). More-
over, if ¢ E Co(S), 

M(¢)TE(!) = fa M(¢)M[f(·,x)]1f(x)dx TE(¢f) 

(where (¢f)(s,x) = ¢(s)f(s,x)), so Mi is invariant under every 
M(¢). I 

6.5 The Imprimitivity Theorem 

A system of imprimitivity (1f, S, M) on G is called transitive if S is a 
homogeneous space of G, that is, if S G I H for some closed subgroup 
H of G. For example, the canonical system of imprimitivity associated 
with any induced representation is transitive. The principal object of 
this section is to prove that every transitive system of imprimitivity is of 
this form, and moreover to give a useful characterization of the operators 
that commute with the operators in a transitive system of imprimitivity. 
Since we shall need the latter result to prove uniqueness in the former 
one, we present it first. 

Let E == (1f,S,M) (or (1f,S,P)) be a system of imprimitivity. The 
commutant of E is the set C(E) of all T E C(H 1T ) that commute with all 
the operators 1f(x) and M(¢) (or equivalently, with all1f(x) and P(E)). 
Just as with unitary representations, a closed subspace M is invariant 
under E if and only if the orthogonal projection onto M belongs to C(E) 
(see Proposition (3.4)). 

Suppose H is a closed subgroup of G and (J is a unitary representation 
of H. Let II = indi}((J) be the intrinsic version of the representation 
induced from (J, and let E == (II, G I H, M) be the canonical system of 
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imprimitivity associated to II. As usual, we denote the Hilbert space 
on which II acts by F and the space of continuous H.,.-valued functions 
of which it is the completion by:;:O, and we denote the quotient map 
G -t G / H by q. If T E C(O"), define the operator Ton :;:0 by 

[Tf](x) = T[f(x)]. 

T maps FO into itself since T commutes with every 0"(';), and T extends 
to a bounded operator on F such that IITII :::; IITII since [Tf(x)lI", :::; 
IITllllf(x)ll", for all x E G. Moreover, it is obvious that T commutes 
with left translations and with multiplication by functions in Co(8); in 
other words, T E C(I:). Our first main result is the following. 

(6.28) Theorem. With notation as above, the map T -t T is an iso­
metric *-isomorphism from C(O") to C(I:). 

Proof: It is trivial to verify that (8Tr = ST and that (T·r = (T)*, 
and we have already observed that IITII :::; IITII. We next show that 
IITII ~ IITII, so that T -t T is an isometry. 

Given € > 0, we can choose a unit vector v E H", such that IITvll", ~ 
(1 €) IITII. By Proposition (6.8a), there is an f E :;:0 such that 
IIf(l)ll.,. < 1 and Ilf(l) - vII", < €. Let U be an open neighborhood 
of 1 in G such that IIf(x)ll", < 1 and IIf(x) f(l)l1", < € for x E U. Pick 
'l/J i ° in Cc(G/ H) such that supp'l/J c q(U), and let g(x) 'l/J(q(x))f(x). 

If x is such that g(x) i 0, there exist y E U and e E H with x = yeo 
We have Ilf(Y) - vii", < 2€, so 

IITf(y)ll", ~ IITvll.,. -IITllllf(y) vII.,. 

> (1 - 3€)IITII > (1 3€)IITllllf(y)II"" 

and hence IITg(y)lI.,. > (1 - 3€)IITlIllg(y)II",. But then, by (6.3), 

IITg(x)lI.,. = llH(e) 
llc (e) lI~g(Y)II", 

> llH (e) (1 3e)IITlllIg(y)ll", 
llc (e) 

= (1 - 3€)IITlIlIg(x)II",. 

It follows that IITg(x)lI.,. > (1 - 3€)IITlllIg(x)lI", for all x E G and hence 
that IIT911". > (1-3€)IITlIllglI".. Since € is arbitrary, we have IITII ~ IITII. 

Now comes the hard part: proving that every operator in C(I:) is of 
the form For this we shall need two lemmas, in which - for the 
first and only time - we need the fact that elements f of F can be 
realized as measurable functions such that the integral J ¢(x)f(x) dx is 
well-defined for ¢ E Cc(G). (See the paragraphs preceding (6.3) and 
(6.7) in §6.1.) 
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(6.29) Lemma. If N is a closed subspace of F that is invariant under 
E, :Pl n N is dense in N. 

Proof: Let Nu} be an approximate identity in Cc(G), and for I E 

N, consider 'l,bu*f. If we write 'l,bu* I(x) = J 'l,bu(xy)/(y-l) dy, we easily 
see that 'l,bu * I is continuous. On the other hand, since IT(Y)/(x) = 
I(y-I X), we can write 'l,bu * I = J 'l,bu(y)IT(y)1 dy, interpreted as a F­
valued integral (see Appendix 3), whence 'l,bu * lEN since IT(Y)I E N 
for all y. Moreover, the usual arguments show that 'l,bu * I -; I as 
U -; {I}. Thus if lEN and f > 0 there is a continuous 9 E N 
such that IIg - III < f. But also there exists ¢ E Cc( G / H) such that 
IIM(¢)g - gil < f (take ¢ 1 on a sufficiently large compact set), and 
M(¢)g E :Pl. I 

(6.30) Lemma. If M is a closed subspace of1-lq , let 

M = closure in F of {J E :Pl : I(x) E M for all x E G}. 

Then the correspondence M -; M is a bijection between the set of 
17-invariant closed subspaces of 1-lq and the set of E-invariant closed 
subspaces of F. 

Proof: It is clear that M is invariant under translations and multi­
plication by functi~s in Co(G/ H), i.e., invariant under E. In fact, when 
M is 17-invariant, M is just the Hilbert space for the ind uced representa­
tion ind~(17M). If MI and M2 are distinct closed 17-invariant subspaces 
of 1-lq , there is a vector v in one but not the other, say v E MI \M2. 
By Proposition (6.8a) (with 0' replaced by 17M !), there is a continuous 
IE MI with 11/(1) vll q arbitrarily small, and hence I(x) ~ M2 for x 
in some neighborhood of 1. Then IE MI \M2' so the map M -; M is 
an injection. 

On the other hand, suppose N is a E-invariant closed subspace of F. 
If lEN and ¢ E Cc(G), let 

vJ,</> = J ¢(x-I)/(x-l)dx, 

and let M be the closed linear span of {vf,<P : lEN, ¢ E Cc(G)} in 
1-lq • For any ~ E H we have 

17(~)VJ,</> J ¢(X-I)17(~)/(x-l)dx 
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where ¢'(x) = ..; 6.H(f,)/6.C (e) ¢(xf,) , so Mis o--invariant. 
We claim that N M. On the one hand, if IE fOnN and wE M..L, 

we have 

o (V/,r/>'w) J ¢(x-1)(J(x-1),w)dx 

for all ¢ E Cc(G). This implies that (J(x), w) = 0 for all x E G and 
wE M..L, so I E M. By Lemma (6.29), then, N c M. On the other 
hand, if lEN and ¢, 'I/J E Cc(G), we can form an element 9/,r/>,1/J of M 
by the prescription (6.7): 

9/,r/>,1/J(x) = L 
By Proposition (6.8b) (with 0- replaced by o-M), such functions are dense 
in M, so to prove that MeN it suffices to show that 9/,r/>,1/J EN. But 

9/,r/>,1/J(x) = L L ~~~~~ 'I/J(xf,)¢(y-l)o-(f,)/(y-l) dydf, 

L L 'I/J(xf,)¢(y-l)/(y-lf,-l) dydf, 

L L 'I/J(xf,)¢(y-1xf,)/(y-1x) dydf,. 

In other words, if we set h(q(x),y) = fH'I/J(xf,)¢(y-1xf,)df" we have 

9/,r/>,1/J(x) L h(q(x),y)/(y-1x)dy = [Tdh)/](x), 

where TE is defined by (6.18). Since lEN and N is E-invariant, 
TEl E N, and we are done. I 

Now we can complete the proof of Theorem (6.28). If M is a closed 
o--invariant subspace of 1-i(J' and P is the orthogonal projection onto M, 
clearly P is the orthogonal projection onto M in the notation of Lemma 
(6.30). That lemma therefore shows that every orthogonal projection in 
C(E) is of the form P for some projection P E C(o-). Moreover, every 
self-adjoint element of C(E) is the norm limit of linear combinations of 
such projections, by the spectral theorem, and C (0- f is norm-closed since 
T -+ T is an isometry, so every self-adjoint element of C(E) belongs to 
C(o-r. Finally, every T E C(E) is a linear combination of self-adjoint 
elements (T A + iB where A = ~(T + T*) and B = :ft(T - T*)), so 
C(E) c C(o-f. I 

Now we come to the second major result of this section, and indeed 
the centerpiece of this whole chapter: 
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(6.31) The Imprimitivity Theorem. Suppose G is a locally compact 
group, H is a closed subgroup, and S G I H. Let E = (tr, S, M) 
be a transitive system of imprimitivity on G. Then there is a unitary 
representation a of H such that E is equivalent to the canonical system 
of imprimitivity associated to ind~ (a). (In particular, tr is equivalent to 
ind~(a).) Moreover, a is uniquely determined up to eqUivalence by E. 

Proof Let us first establish the uniqueness of a. Let al and a2 be 
unitary representations of H, let IIj ind~(aj), let Ej = (IIj, S, Mj ) 

be the associated canonical system of imprimitivity on the Hilbert space 
:Fj , and suppose U : :Fl -t :F2 is a unitary equivalence of El and E2. 
Consider the direct sum E (III $II2, S, Ml $ M 2 ), the system induced 
from al $ a2. Define an operator V on :Fl $:F2 by V (ft , /2) (0, U ft ). 
Then V* (ft, /2) = (U* /2,0), so since U is unitary, V*V is the orthogonal 
projection onto :Fl while VV* is the orthogonal projection onto :F2. On 
the other hand, it is trivial to check that V E C(E), s~ by Theorem (9.28) 
there is an operator T E C(al $(2) such that V = T. Since T -t T is a 
*-isomorphism, T*T and TT* are the orthogonal projections onto 1iUl 
and 1iuz respectively. But this implies that To TI1iUl is a unitary 
isomorphism from 1iUl to 1iuz , and the fact that T E C(al $(2) implies 
that To intertwines al and a2. Thus al and a2 are equivalent. 

Before proceeding to the general proof of existence, we remark that 
a simple argument is available- when S G I H is discrete. In this case, 
the compact sets in G I H -are finite, so the (inner) regularity of the 
projection-valued measure P of E implies that P( {s}) i= 0 for some, and 
hence every, singleton set {s} C S. Let i denote the coset of the identity 
on GIH. Then tr(~)P({i})tr(~)-l P({~i}) = P({i}) for ~ E H, so the 
range M of P( {t}) is invariant under tr IH, and a (trIH)M is a unitary 
representation of H. Given v E 1i, define a function Iv : G -t M by 

Iv (x) P({L})tr(X)-lV = tr(X)-l P({x/'})v. 

Then, for e E H, 

and 

Iv (xe) tr(xe)-l P( {x~/'})v 

tr(e)-ltr(x)-l P( {x/'})v 

aW-llv(x), 

L: II Iv (x) 112 L: IIP( {xL})vIl2 = IIvl12 
ztEG/ H ztEG/ H 

since 1i1f is the direct sum of the ranges of the projections P( {XI,} ). 
It is now easy to see that v -t Iv is a unitary map from 1i1f to the 
Hilbert space:F for ind~(a) that defines an equivalence between E and 
the canonical system of imprimitivity for ind~(a). (Obviously, counting 
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measure is an invariant rp.easure on G I H, so there is no need to worry 
about modular functions.) Equivalently, if one wishes to think of the 
elements of :F as sections of a vector bundle over G / H, the bundle in 
question is the one whose fiber over each s E G / H is the range of P( { s} ). 

When G I H is not discrete, P( {t}) will normally be zero, so we must 
work harder to construct the representation (}'. Here is the strategy: 
In the first place, since every system of imprimitivity is a direct sum 
of cyclic ones (Proposition (6.27)), and inducing commutes with direct 
sums (Proposition (6.9)), it suffices to assume that E is cyclic. But then, 
by Theorem (6.26), we may assume that E is the system of imprimitivity 
derived from a pseudomeasure J.L of positive type on S x G (where S = 
G/H). We then proceed as follows. 

(i) We shall define a positive semidefinite Hermitian form (-,.) A on 
Cc(G) and thence obtain a Hilbert space HA by factoring out the 
nullspace and completing the resulting inner product space. We 
shall also define an action of H on Cc ( G) that will turn into a 
unitary representation (}' of H on H A• 

(ii) The Hilbert space for ind~((}') is fashioned out of continuous func­
tions on G with values in H A, and thus ultimately out of contin­
uous functions on G with values in Cc( G). On the other hand, 
the Hilbert space for the system of imprimitivity derived from J.L is 
fashioned out of the space L(S x G). We shall therefore construct 
a unitary equivalence between the two out of a linear map U from 
L(S x G) to C(G, Cc(G)). 

It turns out that we need the map U in (ii) to prove the positivity of 
the Hermitian form in (i), so the argument is a bit convoluted. But let 
us begin. 

Suppose then that J.L is a pseudomeasure of positive type on S x G, 
where S G/H. If F E Cc(G x G), define FE L(S x G) by 

It is easily verified that the map F --+ F is continuous from Cc(G x G) 
to L(S x G) Cc(S x G) (see the remarks at the beginning of §6.3), so 
we can use it to pull the pseudomeasure J.L back to G x G. We denote 
the resulting pseudomeasure on G x G by 'x: 

'x(F) = J.L(F). 

We now define a sesquilinear form on Cc( G) by 
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(f,g/>. >.(j®g) f f(x)g(y) d>.(x, y) Jexe 

This is the form described in (i); now we need the map U : L(S x G) -t 

C(G, Cc(G)) of (ii). It is given by 

[Uf(x)](y) = f(q(X),xy-l). 

Again, it is easy to check that U f is indeed continuous from G to Cc ( G). 

(6.32) Lemma. Suppose f E L(S x G) and ¢ is a nonnegative function 
in Cc(G). Define ¢' E Cc(S) by ¢/(q(X)) = fH ¢(xe) de, and define 
9 E L(S x G) by g(s,x) ¢/(S)I/2f(s,x). Then 

fa ¢(x) {Uf(x), Uf(x))>. dx = J-L(g* *g). 

Proof: By definition of (" . h, 

(Uf(x), Uf(x))>. 

= I I[U f(x)J(z-lye)[U f(x)](ye)~e(ye)-l de dJ-L(q(y), z) 

== II f(q(x),xC1y-lz)f(q(x),xe-1y-l) 

Therefore, 

x ~e(ye)-lde dJ-L(q(y), z). 

I ¢(x){U f(x), U f(x)>. dx 

II I ¢(x)f(q(x),xC1y-l 

x De(ye)-l dxde dJ-L(q(y), z) 

I I I ¢(xe)f(q(x),xy-l z)f(q(x),xy-l) 

x De(y)-l dxde dJ-L(q(y), z) 

II ¢/(q(x))f(q(x),xy-lz)f(q(x),xy-l) 

X De(y)-l dxdJ-L(q(y),z) 

Since g*(q(y),yx- 1) = g(q(x),xy-l)~e(xy-l), this equals 

II g(q(x), xy-l z)g*(q(y), yx- 1 )~e(x-l) dx dJ-L(q(y), z) 
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= 11 g*(s, w)g(w- 1 s, w-1 z) dw dJt(s, z) 

= Jt(g* * g), 

by the substitution w = yx- 1
• 
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(6.33) Corollary. The form (., .),\ is positive semidefinite on Cc(G). 

Proof: Since Jt is of positive type, the lemma shows that 

i ¢(x)(Uf(x),Uf(x)),xdx ~ 0 

for all nonnegative ¢ E Cc(G). Since (Uf(x),Uf(x)),\ is continuous in 
x, this implies that (Uf(x),Uf(x)),\ ~ 0 for all f E L(S x G) and all 
x E G. But it is an easy exercise to see that, for any x, f -+ U f(x) 
maps L(S x G) onto Cc(G), and the result follows. I 

In view of Corollary (6.33), we obtain a Hilbert space 1£,\ from Cc(G) 
by passing to a quotient and completing it with respect to (" .),x, as 
promised. Next, for € E H we define a map a(€) : Cc(G) -+ Cc(G) by 

[a(€)f](x) 

We have 

(a(€)f,a(€)g),\ == 11 ~:~~; f(x-1Yfl€)9(Yfle) 

D.a(Yfl)-l dfldJA(q(y),x) 

= 11 f(X-1Yfl)9(Yfl)D.a(Yfl)-1 dfldJt(q(y),x) 

== (f,g),\, 

so a(e) is an isometry with respect to (-, .),x. Moreover, it is clear that 
a(€fl) = a(e)a(fl), a(x- I ) a(x) I, and x -+ a(x)f is continuous from 
G to Cc ( G) for each f E Cc( G). It follows easily that the operators a(e) 
yield a unitary representation (still denoted by a) of H on 1£,\. 

Now we can complete the proof of the imprimitivity theorem. We 
observe that if f E L( S x G), 

[U f(xe)](y) 

= f(q(xe),x€y-I) = f(q(x),x(YC1)-I) 

D.H(€) [ -I ()]) == [Uf(x)](YC I ) D.a(e) a(€ )Uf x (y, 

so if we think of U f(x) as being an element of 1£,\, we see that U f 
is an element of the Hilbert space :F for the induced representation 
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II = ind~(o} Moreover, if f E L(S x G), let V be a compact set in 
S such that supp f C V x G, and choose ¢ ~ 0 in Cc(G) such that 
JH¢(x~)d~ = 1 for x E q-l(V) (Lemma (2.47)). Then suppUf C 
q-l(V), and 9 = f in the notation of Lemma (6.32). Hence, by that 
lemma and (6.6), 

IIU fll} = J ¢(x)(U f(x), U f(x))>. dx = JL(f* * f), 

so U defines an isometry from the Hilbert space 1iJ1. (on which the system 
of imprimitivity (7rJ1., S, MJ1.) derived from JL lives) to :F. It satisfies 

[U[7rJ1.(x)f](y)](z) = [7rJ1.(x)f](q(y),yz-l) 

= f(q(x-1y),X-1yz-l) 

= [U f(x-1y)](z) = [[II(x)U f](y)](z) 

and for ¢ E Co(S), 

[U[MJ1.(¢)f](y)](z) = ¢(q(y))f(q(y), yz-l) = [[M(¢)U f](Y)](z), 

where M is the representation of Co(S) in the canonical system of im­
primitivity associated to II. In other words, U intertwines the two sys­
tems of imprimitivity. 

It remains only to show that U maps 1iJ1. onto F, and it is enough to 
show that its range is dense. Given ¢, 'Ij; E Cc(G), define 9 E L(S x G) 
by 

Then 

[Ug(x)](y) = g(q(x),xy-l) = 1 ¢(x~)'Ij;(y~) d~ 
( ~G(~) 

= iH ~H(~/(x~)[O"(~)'Ij;](y)df 

But this says that U 9 = f </>,1/1 in the notation of (6.7), so the desired 
result follows from Proposition (6.8b). I 

6.6 Introduction to the Mackey Machine 

The imprimitivity theorem is the foundation of a method, due to Mackey, 
for analyzing the representations of a group G in terms of the represen­
tations of a closed normal subgroup N and various subgroups of GIN. 
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An exposition of this general theory is beyond the scope of this book, 
and we shall restrict ourselves to some special cases where things work 
out rather simply. Namely, we shall assume that N is Abelian and sat­
isfies a regularity condition to be explained below, and we shall obtain 
definitive results only in the case where G is the semi-direct product of 
N and another closed subgroup H. We shall sketch the more general 
picture in §6.8. 

Suppose then that G is a locally compact group and N is a nontrivial 
closed Abelian normal subgroup of G. G acts on N by conjugation, and 
this induces an action of G on the dual group N, (x, v) --+ xv, defined 
by 

(6.34) (n,xv) = (x-1nx, v) (x E G, v E N, n EN). 

For each v E N, we denote by Gy the stabilizer of v, 

Gy = {x E G : xv = v}, 

which is a closed subgroup of G, and we denote by Oy the orbit of v: 

Oy = {xv: x E G}. 

The action of G on N is never transitive (for one thing, 0 1 = {I}), and 
the structure of the orj>its can be very complicated. We shall say that 
G acts regularly on N if the following two conditions are satisfied. 

Rl. The orbit space is countably separated, that is, there is a count­
abl~ family {Ej} of G-invariant Borel sets in N such that each orbit 
in N is the intersection of all the Ej's that contain it. 

R2. For each v E N, the natural map xGy --+ xv from G/Gy to Oy is 
a homeomorphism. 

When G is cr-compact, (R2) is equivalent to 

R2'. Each orbit in N is relatively open in its closure. 

Indeed, it is an easy exercise to see that (R2') holds if and only if each 
orbit is locally compact in the relative topology, and this is equivalent 
to (R2) by Proposition (2.44). 

Remark. When G is second countable, (R1) and (R2) are actually 
equivalent, and they are both implied by 

R3. There is a Borel set in N that intersects each orbit in exactly one 
point. 

The former assertion was proved by Glimm [48] and the latter one by 
Mackey [82, Theorem 5.2]. We shall not prove them here, for in most 
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cases it is easy to see directly whether (R1) and (R2) (or (R2')) hold. In 
§6.7 we shall work out several examples, including one where (R1) and 
(R2) fail. 

Now suppose 7r is a unitary representation of G. By Theorem (4.44), 
there is a unique regular projection-valued measure P on N such that 

7r(n) = j(n,V)dP(V) for n EN. 

(6.35) Proposition. (7r, N, P) is a system of imprimitivity. If 7r is 
irreducible, then P is ergodic in the sense that if E c N is a G-invariant 
Borel set then P(E) is either 0 or I. 

Proof: If x E G, E -+ 7r(x)P(E)7r(X)-1 is the projection-valued 
measure associated with the representation n -+ 7r(x)7r(n)7r(x-l) of N, 
whereas by (6.34), E -+ P(xE) is the projection-valued measure asso­
ciated to the representation n -+ 7r (xnx - 1 ). These representations are 
equal; hence so are the measures, by the uniqueness in Theorem (4.44). 

If 7r is irreducible and E c N is G-invariant, then 7r(x)P(E)7r(X)-1 = 
P(E) for all x E G, so P(E) E C(7r). By Schur's lemma, P(E) = 0 
or I. I 

(6.36) Proposition. If 7r is irreducible and G acts regularly on N, 
there is an orbit 0 C N such that P(O) = I. 

Proof: Let {Ej}l" be a countable separating family for the orbit 
space, as in condition (R1). If 0 is an orbit, we have 0 = njEJ Ej for 
some J C Z+, so P(O) is the projection onto the intersection of the 
ranges of the P(Ej ), j E J. Each P(Ej ) is either 0 or I by Proposition 
(6.35); hence either P(Ej ) = I for all j E J, in which case P(O) = I, 
or P(Ej ) = 0 for some j E J, in which case P(O) = O. Therefore, 
if P( 0) = 0 for every orbit 0, for each 0 there is a j (0) such that 
o c Ej(o) and P(Ej(o)) = O. But then N = Uo Ej(o), so P(N) = 0, 
an absurdity. Hence P(O) = I for some O. I 

Suppose the conditions of Proposition (6.36) hold. The orbit 0 such 
that P(O) = I is of course unique, since P(N\ 0) = O. Fix an element v 
of O. By the regularity condition (R2), 0 can be identified with the ho­
mogeneous space G/Gy • The projection-valued measure P can therefore 
be regarded as living on G/Gy rather than on N, and (7r, G/Gy , P) is 
then a transitive system of imprimitivity. Consequently, by the imprim­
itivity theorem, there is a representation 0" of Gy , necessarily irreducible 
since 7r is, such that (7r, G / Gy , P) is unitarily equivalent to the canonical 
system of imprimitivity associated to indgJO"). 

(6.37) Proposition. O"(n) = (n, v)I for all n E N. 

Proof: We can assume that (7r, G/Gy , P) actually equals the canon­
ical system of imprimitivity for indgJO"), acting on the usual space :F. 
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When we transfer P from N to GIGI/, the formula 7r(n) == J (n,·) dP 
for n E N becomes 7r(n) J(n,xv)dP(q(x)), where q : G ---> GIGI/ 
is the quotient map. Now, from the definition of the canonical system 
of imprimitivity, for ¢ E Co(GIGI/) and f E PJ we have (J ¢dP)f = 
M(¢)f == (¢oq)f. The formula (J ¢dP)f = (¢oq)f continues to hold 
for any bounded continuous function ¢ on GIGI/, as one sees by unrav­
eling the definitions in the spectral functional calculus, and in particular 
it holds for ¢(q(x)) = (n, xv). Hence, for f E PJ, 

[7r(n)f](x) (n, xv) f(x) (x-1nx, v)f(x). 

On the other hand, we observe that since N is normal in G and in Gv , 

the spaces GIN and GI/IN both possess G-invariant measures, namely~ 
their respective Haar measures. Hence, by Theorem (2.49), ~GIN = 
~G" IN == ~N (= 1, since N is Abelian). Taking this into account, if 
n E Nand f E PJ we have 

[7r(n)f](x) f(n-Ix) '7 f(x(x-1n-Ix)) 

(1(x- 1nx)f(x). 

Comparing the last two displayed equations, we see that dx-1nx)f(x) = 
(x-1nx,v)f(x). In particular, (1(n)f(l) = (n,v)f(I). But {J(I) : f E 
PJ} is dense in 'HO' by Proposition (6.8a), so the result follows. I 

We summarize our results so far in a theorem. 

(6.38) Theorem. Suppose G acts regularly on N. If 7r is an irreducible 
unitary representation of G, there exist v E N and an irreducible repre­
sentation (1 of GI/ with (1(n) = (n, v)I for n E N such that 7r is unitarily 
equivalent to indg" «(1). 

In Theorem (6.38), the orbit 01/ is uniquely determined by 7r, but 
the choice of v in this orbit is arbitrary. If v' is another element of this 
orbit, say v' xv, the groups GI/ and GI/' are isomorphic - in fact, 
GI/' == xGvx-l. Moreover, the correspondence (1 +-> (1', where (1'(Y) = 
(1(x- Iyx), is a bijection between the representations of GI/ and those 
of GI/" and the map U f(YJ f(X-Iyx) defines a unitary equivalence 
between indg «(1) and indGI «(1'). Hence the non-uniqueness of v is of 
no essential significance. " 

Now we prove the converse of Theorem (6.38): 

(6.39) Theorem. Suppose G acts regularly on N. If v E N and (1 is 
an irreducible representation of GI/ such that (1(n) = (n, v)I for n E N, 
then 7r == indg" (0") is irreducible. If (1' is another such representation 
of GI/ such that indg.,((1) and indg" «(1') are unitarily equivalent, then (1 
and (1' are unitarily equivalent. 

Proof: Let E (7r, GIG 1/, P) be the canonical system of imprimi-
tivity associated with 7r. We identify GIGI/ with 01/ and regard P as 
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a projection-valued measure on N by setting P(E) P(E nO,,) for 
E C N. (It is an easy exercise to check that this transferred P is still 
regular.) For n EN and f E ;:0 we have 

1T(n)f(x) = f(n-1x) = f(xx-1n-1x) = 0-(x-1nx)f(x) 

(x-1nx,v)f(x) = (n,xv)f(x), 

from which it follows as in the proof of Proposition (6.37) that 1T(n) = 
fiV(n,.) dP. Thus P is the projection-valued measure associated to 1TIN 
by Theorem (4.44). 

This implies both assertions of the theorem. First, if T E C(1T), T 
commutes with every P(E) by Theorem (6.44), and hence T E C(E). 
But by Theorem (6.28) and Schur's lemma, C(E) 9:! C(o-) = C/. Thus 
C( 1T) C/ and 1T is irreducible. Second, any unitary equivalence be­
tween 1T and 1T' = indg" (0-') is actually a unitary equivalence between 
their canonical systems of imprimitivity, so if such an equivalence ex­
ists then 0- and 0-' are equivalent by the uniqueness in the imprimitivity 
theorem. I 

These results are not yet satisfactory, because G" may be rather large 
and its representations not much easier to analyze than those of G itself. 
In fact, it can happen that G" = G, in which case the preceding results 
are vacuous except for the fact that 1TIN v /. In particular, this 
happens when v = 1; but in that case we actually can reduce the analysis 
to a smaller group, namely GIN. Indeed, if the orbit associated to 1T 
in Proposition (6.36) is {I}, it simply means that 1T is trivial on Nand 
so factors through GIN. In many cases something similar happens even 
when v =f. 1. 

(6.40) Proposition. Suppose that v E N can be extended to a rep­
resentation of G", i.e., that there exists a continuous homomorphism 
v: G" -+ T such that vlN = v. If p is any irreducible representation of 
G"IN, the formula o-(y) = v(y)p(yN) defines an irreducible representa­
tion of G" on 1-tp such that o-(n) = (n, v)/ for n E N. Moreover, every 
such representation of G" arises in this way. 

Proof: The first assertion is obvious. If 0- is any irreducible represen­
tation of G" such that o-(n) = (n, v)/ for n E N, let o-'(y) = v(y)-lo-(y). 
Then 0-' is an irreducible representation of G" that is trivial on N, so 
o-/(y) p(yN) where p is an irreducible representation of G"IN, and 
o-(y) v(y)p(yN). I 

The most important case where the phenomenon in Proposition (6.40) 
is guaranteed to occur is that in which G is the semi-direct product of N 
and another closed subgroup H. We recall that, in general, a topological 
group G is the semi-direct product of two closed subgroups Nand 
H if N is normal in G and the map (n, h) -+ nh from N x H to G 
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is a homeomorphism; in this case we write G = Nt>< H. Thus, when 
G = N t>< H every element of G can be written uniquely as nh with 
n E Nand hE H, and when this is done the group law takes the form 

(6.41) 

Returning to our situation in which N is Abelian, for v E N we define 
the little group H y associated to v to be 

Hy = GynH. 

Since Gy J N, we then have Gy = Nt>< Hy and Hy ~ Gy/N. The 
character v always extends to a homomorphism v : Gy ---+ T by the 
formula v(nh) = v(n) = (n, v). Indeed, by (6.41), 

v«nlhd(n2h2» = (nl(h1n2hi1),v) = (nl,v)(h1n2hi1,v), 

The prescription of Proposition (6.40) then takes the following form. 
If v E Nand p is an irreducible representation of H y , we obtain an 
irreducible representation of Gy , which we denote by vp, by setting 

(vp)(nh) = (n, v)p(h), 

and every irreducible representation 0' of Gy such that O'(n) = (n, v)I 
for n E N is of this form. Moreover, since (vp)IHy = p, vp is equivalent 
to Vp' if and only if p is equivalent to p'. 

Therefore, if we combine Theorems (6.38) and (6.39), Proposition 
(6.40), and the remarks following Theorem (6.38), we see that we have 
completely classified the irreducible representations of G = Nt>< H in 
terms of the irreducible representations of N (Le., the characters v E N) 
and the irreducible representations of their little groups H y : 

(6.42) Theorem. Suppose G = Nt>< H, where N is Abelian and G 
acts regularly on N. If v E Nand p is an irreducible representation of 
H y , then indg

v 
(vp) is an irreducible representation of G, and every irre­

ducible representation of G is equivalent to one of this form. Moreover, 
indgjvp) and indg

v
' (v' p') are equivalent if and only if v and v' belong 

to the same orbit, say v' = xv, and h ---+ p(h) and h ---+ p'(X-lhx) are 
equivalent representations of H y • 
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6.7 Examples 

In this section we present several examples, or classes of examples, to 
illustrate the general theory of the preceding sections. 

1. The ax + b group. Let G be the ax + b group, whose underlying 
manifold is (0,00) x R and whose group law is 

(a, b)(a', b') = (aa',b + ab'). 

We have G NtKH where N = {(I, b) : bE R} and H = {(a, 0) : a > O}. 
We identify N with R via the correspondence (1, b) +-+ b, and then 
identify it with R via the pairing (b, (3) = e 27ri{3b. Simple calculations 
show that 

(a,b)-l(l,b')(a,b) = (l,b'la), 

and hence that the action of G on it is given by 

(a, b){J = {Jla. 

There are only three orbits: (0,00), (-00,0), and {O}, so it is trivial to 
verify that G acts regularly on it. 

The irreducible representations of G are therefore described by The­
orem (6.42). The ones associated to the orbit {O} are the characters of 
GIN ~ H lifted to G: 

(A E R). 

To analyze the orbit (0,00), we fix the base point 1 E (0,00). The little 
group HI is trivial, so up to equivalence there is only one irreducible 
representation 1r+ associated to (0,00), the one obtained by inducing 
the character (b, I) = e 27rib from N up to G. Likewise, there is one 
representation 1r- associated to the orbit (-00,0), the one obtained by 
inducing the character (b, -1) = e-27rib from N up to G. 

Let us take a closer look at 1r+. The homogeneous space GIG I 
GIN ~ H admits a G-invariant measure, namely the Haar measure 
dala on H. The Hilbert space :F for 1r+ therefore consists of functions 
I : G -+ C such that 

(6.43) I(a, b + ab') = I«a, b)(l, b'» = e-
27rib

' I(a, b), 

with norm 

11/112 = {'XJ I/(a,b)1 2 da. 
Jo a 

If we take b ° in (6.43) and then write bla in place of b', we see that 
I(a, b) e-27rib/a I(a, 0). Functions in:F are thus completely determined 
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by their values on H, and if we set 

fo(t) = f(t,O), 

the correspondence f ---+ fo is a unitary map from F to L2((0, 00), dt/t) 
whose inverse is given by f(a,b) = e-27rib/afo(a). Now, the representa­
tion 11"+ is given on F by 

and we have 

[11"+ (a, b)f]( c, d) = e-27rid/c[1I"+ (a, b )flo( c), 

f(a-1c, a-I(d - b)) = e27ri(b-d)/c fo(a-1c). 

Hence, if we conjugate 11"+ by the map f ---+ fo, we obtain an equivalent 
representation:;r+ on L2((0,00),dt/t), namely 

:;r+(a, b)fo(t) = e27rib/t fo(a-1t). 

We now make one final change of variables: 

The map fo ---+ 9 transforms L2((0, 00), dt/t) into L2((0, 00), ds) and 
:;r+ (a, b) into 

[11"+ (a, b)g](s) = al/2e27ribsg(as) (g E L2((0, 00), ds)). 

A similar analysis shows that 11"- is equivalent to the representation 
11" _ of G given by the same formula as 11"+, but acting on L2 (( -00,0), ds): 

[11"- (a, b)g](s) = al/2e27ribsg(as) (g E L2(( -00,0), ds)). 

The interest of these representations is that their direct sum 1i' = 11"+ $11" _ 
is given by [1i'(a, b)g](s) = al/2e27ribsg(as) on L2(R, ds), and conjugation 
by the Fourier transform F on R yields the representation 11" (a , b) 
F1i'( a, b )F- 1 that is given by 

1I"(a, b)f(x) = al/2 f(a-I(x - b)). 

This is just the representation of G on L2(R) associated to the natural 
action of G on R. (x ---+ a -I (x - b) is of course the inverse of the 
transformation x ---+ ax + b.) 

As an exercise, the r~der may perform a similar analysis for the 
extended ax + b group G in which a is allowed to be either positive 
or negative. The result is that there are twice as many one-dimensional 
representations of G, (a, b) ---+ lal iA and (a, b) ---+ (sgn a) lalioX, but that the 
two infinite-dimensional representations 11"± of G coalesce into a single 
irreducible representation of G which may be realized as the natural 
action of G on L2 (R). 
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2. The Euclidean groups. Let E(n) be the group of rigid motions 
ofRn, that is, the group generated by translations and rotations. E(n) 
is the semi-direct product of the group of translations and the group of 
rotations, E(n) Rn t>< 80(n), with group law given by 

(b,T)(b',T') (b+Tb', TT). 

Here N ~ Rn and, as usual, we identify N with R n by the pairing 
(b, fJ) =; e21fi{3·b. It is then an easy exercise to see that the action of G 
on N is given by (b, T)fJ TfJ, so the orbits are the spheres centered at 
the origin, 

(r ~ 0). 

It follows easily that G acts regularly on N, so Theorem (6.42) applies. 
(For the countable separation property, one can take the G-invariant 
sets to be the annuli {fJ : s < IfJl < t} with sand t rational.) As 
a base point on the orbit CYr we can take the point rl (r,O, ... ,0); 
then the little group H r1 is SO(n - 1) (considered as the subgroup of 
80(n) that leaves the first coordinate fixed), except when r 0, in 
which case it is 80(n). Hence the irreducible representations of E(n) 
are (i) the irreducible representations of 80(n) lifted to E(n}, and (ii) 
the representations induced from products of nontrivial characters of Rn 
and irreducible representations of 80(n -1). In short, one can describe 
all the irreducible representations of the Euclidean groups in terms of 
the irreducible representations of the rotation groups 80(k). We have 
determined the latter for k 1 (80(1) {I}), k =; 2 (80(2) ~ T), 
and k = 3 (see §5.5), and of course they are also well-known for higher 
values of k (see, e.g., Boerner [14]). 

3. The Poincare Group. Let us denote coordinates on R4 by 
(XO,XI!X2,X3). The set of linear transformations of R4 that leave in­
variant the Lorentz (pseudo-) inner product 

or equivalently the set of 4 x 4 real matrices T such that T* LT L 
where L is the diagonal matrix with diagonal entries (1, -1, -I), 
is denoted by 0(3,1) and called the (4-dimensional) Lorentz group. 
0(3, 1) admits two nontrivial homomorphisms into the 2-element group 
{±1}, namely T -+ detT and T -+ sgnToo (where Too is the (0,0) entry 
of the matrix T). The intersection of the kernels of these homomor­
phisms, which is also the connected component of the identity in 0(3, I), 
is called the restricted Lorentz group and is denoted by 800 (3,1). 

The (4-dimensional, restricted) Poincare group P is the group 
formed from translations and restricted Lorentz transformations in the 
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same way as the Euclidean group E4 is formed from translations and 
rotations: 

(b, T)(b', T') = (b + Tb', TT'). 

As in the case of the Euclidean group, the normal subgroup N is R4, 
but this time it is convenient to identify N with R 4 by using the Lorentz 
inner product rather than the Euclidean one: (b, (J) = e21riL(b,{3). With 
this convention, the action of G on N is given by (b, T){J = T{J as before. 

We sketch the analysis of the orbits in N, leaving the verifications to 
the reader. The level sets 

M>. = {{J : L({J, (J) = >.} (>. E R) 

of the Lorentz form are G-invariant, but they are not all orbits. Instead, 
the situation is as follows. For>. < 0, M>. is a hyperboloid of one sheet, 
and it is an orbit. For>. > 0, M>. is a hyperboloid of two sheets, each of 
which is an orbit. For>. = 0, Mo is a cone; the origin {o} and the two 
connected half-cones in Mo \ {o} are each orbits. In short, the orbits are 

o~ = {{J E M>. : ±{Jo > o} (>. ~ 0), {o}. 

From this it is an easy exercise to see that G acts regularly on N. 
As a representative point in the orbit 0>. with>' < ° we may take 

(0,0,0,1>'1 1/2), and the corresponding little group is 500 (2,1), the 3-
dimensional restricted Lorentz group acting on (xo, XI, x2)-space. As 
a representative point in O~ with>' > ° we may take (±>.1/2,0,0,0), 
and the corresponding little group is 50(3), acting on (XI, X2, x3)-space. 
And, of course, the little group for the orbit {O} is 500 (3,1). 

The situation for the orbits O~ is a little less transparent. Let us take 
(J = (1,1,0,0) as a representative point in ot and use it as an element 
of the following basis for R4: 

n = (1, -1,0,0), (J = (1,1,0,0), "( = (0,0,1,0), fj = (0,0,0,1). 

Let H{3 be the little group of (J, the subgroup of 500 (3, 1) that fixes {J. 

(6.44) Lemma. The only element of H{3 that fixes "( and fj is the 
identity. There is no element of H{3 that fixes "( and sends fj to -fj. 

Proof: If T E H{3 fixes"( and fj, let Tn = an + b{J + c"( + dfj. Then 

c= -L(Tn,"() = -L(Tn,T"() = -L(n,"() =0, 

and likewise d = 0. But then 

4ab = (a + b)2 - (a - b)2 = L(Tn, Tn) = L(n, n) = 0, 
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so a 0 or b = O. We cannot have a 0 because T- i fixes /3. Hence 
b 0, and then 

2a = L(Ta, (3) = L(Ta, T(3) L( a, (3) 2, 

so a 1. The same reasoning shows that if TI 1 and T6 = -6 
then Ta = a, and of course T/3 = /3; but then detT = -1, which is 
impossible. I 

(6.45) Proposition. Hf} is isomorphic to the Euclidean group E(2). 

Proof: Clearly the group K of rotations of the (X2, xa)-plane (leaving 
the (xo, X I)-plane fixed) is contained in Hf}. Also, the reader may verify 
that for s, t E R the transformations Tat defined by 

Tsta = a - (s2 + t2)/3 - 2s1 2t6, Tat/3 

= /3, Tatl = 1 + s/3, Tato = 6 + t/3 

belong to Hf} and that the map (s, t) ---+ Tst is a homomorphism from 
the Abelian group R2 into Hf}. Thus N = {Tst : s, t E R} is a subgroup 
of Hf}. 

Now, if T E Hf} then T preserves the Lorentz-orthogonal complement 
of /3, namely the linear span M of /3, I, and 6, so we must have 

T6 = t/3 + CI + d6 

for some a, b, c, d, s, t E R. By composing T on the right with T( -8)( -t) 

we obtain a T' E H f} such that 

T'6 = Cf + do. 

T' must preserve the Euclidean inner product on the (x2,x3)-plane (the 
span of 1 and 6), so its restriction to this plane belongs to 0(2). In 
fact, it belongs to 80(2), for otherwise we could compose T' on the 
left by an element of K to obtain Til E H f} such that Till = 1 and 
T"6 and this is impossible by Lemma (6.44). Hence T' agrees 
on M with an element T'" of K; but then TIIIT'-i = I by Lemma 
(6.44), so T' E K. In short, every T E Hf} can be written uniquely as 
T = T'Tst with T' E K and s, t E R. It is now easy to verify that 
Hf} = N~ K ~ R2~ 80(2) = E(2). I 

In view of Theorem (6.42), the irreducible representations of the Poin­
care group can be described in terms of the irreducible representations 
of 80(3), E(2), 800 (2,1), and 800 (3,1). We have catalogued the irre­
ducible representations of 80(3) in §5.4, and the irreducible represen­
tations of E(2) are obtained by another application of Theorem (6.42) 
as described above: they are the representations induced from nontriv­
ial characters of the subgroup R2, together with the characters of the 
quotient group E(2)jR2 ~ 80(2) lifted to E(2). 
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The groups SOo(2,1) and SOo(3,1) have no nontrivial closed nor­
mal subgroups, so the Mackey machine cannot be applied to them, but 
the classification of their irreducible representations is well understood 
because of their intimate relation with SL(2, R) and SL(2, C). To be 
precise, consider the linear isomorphism M from R4 to the space 'It of 
2 x 2 Hermitian matrices given by 

M(x) ( 
Xo +:Z:l X2 iX3). 
X2 + ~X3 Xo Xl 

(This is closely connected with the identification of R3 with skew­
Hermitian matrices that we used in §5.4.) If A E SL(2, C) and HE 'It 
then AHA'" E 'It, so the map p(A)x M-I[AM(x)A*] defines a linear 
action of S L( 2, C) on R 4 . It is not hard to verify that the kernel of p is 
±1 and that the image of SL(2, C) under p is precisely SOo(3, 1). (Use 
the fact that L(x,x) detM(x).) Moreover, if we identify SOo(2,1) 
with the subgroup of SOo(3, 1) leaving the point (0,0,0,1) fixed, the 
inverse image of SOo(2, 1) under p is precisely SL(2, R). (Use the fact 
that if J = (01 ~) then J = iM(O, 0, 0,1) and AJ AT J for all 
A E SL(2, C).) Hence 

SOo(3, 1) 9! SL(2, C)/(±1), SOo(2, 1) 9! SL(2,R)/(±1), 

and the representations of SOo(3, 1) and SOo(2,1) are essentially the 
representations of SL(2, C) and SL(2, R) that are trivial on -I. We 
shall describe the irreducible representations of SL(2, R) in §7.6, and 
the corresponding description for SL(2, C) can be found in Knapp [70]. 

The Poincare group is the group of transformations of space-time that 
arises in special relativity, and its representations are of importance in 
relativistic quantum mechanics. In particular, the representation derived 
from the orbit ot and the representation Pk of the little group SO(3) 
(cf. Corollary (5.42)) is connected with the description of particles of 
mass m = J).. and spin k. (For particles of half-integer spin one must 
pass to the double cover of the Poincare group, isomorphic to R4 IX 

SL(2, C) as indicated above, where the corresponding little group is 
SU(2).) Likewise, the representation derived from the orbit ot and the 
character (b, To) -+ eikO of the little group E(2) (where To is rotation 
through the angle 6) has to do with particles of mass zero and spin k. 
For more details, see Simms [113] or Varadarajan [121]. 

4. The Heisenberg Groups. For n .?: 1, the Heisenberg group 
Hn is the group whose underlying space is R n x R n x R and whose 
group law is 

(6.46) (x,~, t)(xl ,€" tl) (x + Xl, ~ + ~/, t + t l + ~(x . e' ~ . Xl)). 
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With the notation X = (x,~,t), it is easily verified that the sets 

Nl = {X : x = O}, N2 = {X : ~ = O}, 

Kl = {X : ~ = 0, t = O}, K2 = {X : x = 0, t = O} 

are Abelian subgroups of Hn such that 

Theorem (6.42) can therefore be applied to determine the irreducible rep­
resentations of Hn. We leave this as an exercise for the reader; instead, 
we shall give a different argument based directly on the imprimitivity 
theorem that yields a stronger result. 

For each nonzero real number h there is a representation Ph of Hn on 
L2(Rn) defined by 

[ph(X,~, t)f](y) = e211"iht+1I"ihe·xe-211"ihe·y f(y - x). 

(These differ from the representations called Ph in Folland [40] but are 
equivalent to them via the map U f(y) = Ihll/2 f( -hy). They are equiv­
alent to representations of Hn induced from one-dimensional representa­
tions of the subgroup N 1 , as the reader may verify; cf. the second remark 
preceding (6.3).) Let 

Ph(x) = Ph(X, 0, 0), 

Then Ph and Ph are representations of Rn on L2(Rn), and since 

(6.47) (x, 0, O)(O,~, 0) = (x,~, !x . ~) = (0,0, x . ~)(O,~, O)(x, 0, 0), 

we have 

(6.48) 

These are the integrated form of the canonical commutation relations 
of quantum mechanics, in which h is Planck's constant; hence the name 
"Heisenberg group." (See Folland [40] or Mackey [87] for more details.) 
The crucial point is that the relations (6.48) essentially determine the 
representation Ph uniquely. 

(6.49) The Stone-von Neumann Theorem. 

a. Suppose 7r' and 7r" are unitary representations ofRn on a Hilbert 
space 1i that satisfy 

(6.50) 

for some h -=f:. O. Then there is a unitary isomorphism from 1i to a 
direct sum of copies of L2(Rn) such that U7r'(X)U-l = Ph(x) and 
U7r"(~)U-l = Ph(~) on each copy. 
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b. If rr is a unitary representation of Hn such that rr(O, 0, t) e27riht I 
where h 1= 0, then rr is unitarily equivalent to a direct sum of copies 
of Ph. 

Proof: We first observe that assertions (a) and (b) are equivalent. 
Indeed, if rr is a representation of Hn such that rr(O, 0, t) e27riht I, then 
the representations rr'(x) = rr(x, 0, 0) and rr/l(~) = rr(O,~, 0) of Rn satisfy 
(6.50), because of (6.47). Conversely, if rr' and rr" are representations of 
Rn satisfYing (6.50), it is easy to check that 

rr(x, ~, t) e27riht-7rih$'{rr' (x )rr" (~) = e27riht+7rih$'{rr" (~)rr' (x) 

is a representation of Hn , and it satisfies rr(O, 0, t) = e27riht I. 
Moreover, it suffices to consider h = 1. In (a) one simply replaces 

the representation rr" by the representation ~ --; rr" (~/ h), and in (b) 
one replaces rr by rr 0 0', where the automorphism 0' of Hn is given by 
O'(x,~, t) (x, ~/h, t/h). 

Suppose then that rr' and rr" satisfY (6.50) with h 1. By Theorem 
(4.44), there is a unique regular projection-valued measure on Rn such 
that rr"(O f e-27ri{.y dP(y) for ~ ERn. Then, for each x ERn, 
the projection-valued measures associated to the representations ~ --; 
rr'(x)rr"(Orrl(x)-1 and ~ --; e27ri$'{rr"(~) are E --; rr'(x)P(E)rr'(x) I and 
E --; P(x + E) (since f e27ri{·($-Y) dP(y) = f e-27ri{-y dP(x + y». But 
these two representations are equal, so rr'(x)P(E)rr'(x) I P(x+E). In 
other words, (rr',Rn,p) is a transitive system of imprimitivity on Rn. 
By the imprimitivity theorem, it is equivalent to the system induced 
by a representation of the trivial subgroup {O} on some Hilbert space, 
necessarily a direct sum of copies of the (unique) representation 7 of 
{O} on C. But indTh} (7) is just the left regular representation of Rn, 
namely pL and the associated projection-valued measure is P1'(E) = 
multiplication by XE, so that 

. J C 27ri{.y dP1'(Y) multiplication by e-27ri{-y = pr(~)· 

This proves (a) for the case h == 1 and hence establishes the theorem. I 

Remark. This argument also shows that the representations Ph are 
irreducible. Indeed, it is easy to check that C(pd C(p'l)nC(pn, In the 
notation established above, we have C (P'I) n C (pin = C (p~ , R n, P1' ), and 
by Theorem (6.28) this is isomorphic to C(7) = CI. So PI is irreducible, 
and hence so is every Ph. This irreducibility can also be established by 
more elementary means, as can the Stone-von Neumann theorem itself; 
cf. Folland [40, Proposition (1.43) and Theorem (1.50)J. 

(6.51) Corollary. Every irreducible representation of Hn is equivalent 
to one and only one of the following: 
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a. Ph (h=l=O), 
b. the representation 1Tb,{3 (b, {3 E Rn) on C defined by 1Tb,{3(X, t;, t) = 

eZ1fi(b.x+{3.~) . 

Proof: We observe that the center of Hn is Z = {(O, 0, t) : t E R}. If 
1T is irreducible, by Schur's lemma 1TIZ must act as scalar multiples of I, 
so 1T(0, 0, t) = eZ1fiht I for some hER. If h =1= 0 then 1T is equivalent to Ph 
by Theorem (6.49). If h = 0 then 1T factors through Hn/Z 9:! Rn x Rn 
and so is of the form 1Tb,{3. Of course the representations Ph and 1Tb,{3 are 
all inequivalent (the former are already inequivalent on Z). I 

5. The Mautner Group. The Mautner group M is the simplest 
example of a connected Lie group with a pathological representation 
theory. Its underlying set is CZ x R, and its group law is given by 

(z, w, t)(z', w', t') = (z + eitz', w + e21fitw', t + t') (z, w E C, t E R). 

From this it is easily checked that M is a semidirect product of C2 (the 
normal factor) and R. 

We identify (CZr with C 2 via the pairing 

(( ) (r )' e21fiRe(z(+ww). z,w, ",W I 

(This is the usual identification of (R4r with R4, written in complex 
coordinates.) A simple calculation then shows that the action of M on 
(CZr is given by 

(z, w, t)(,w) (eit (, eZ1fitw). 

The origin {(O, On and the circles {(O, w) : Iwl r} 'and {( (,0) : 1(1 r} 
(r > 0) are orbits. The tori 

Trs = {«,w) : 1(1 = r, Iwl = s} (r, s > 0) 

are invariant under M, but they are not orbits: the orbits in Trs are 
curves that wind around Trs without ever closing up, each of which is 
dense in Trs . (If we identify Trs with R2 /ZZ in the obvious way, the 
inverse image of the orbit through (re21fia , se21fib ) in R2 is the union of 
the lines with slope 21T and y-intercept of the form b a + j + 21Tk where 
j, k E Z; this set is dense in the plane.) 

Fr~m this it is clear that the regularity condition (R2) or (R2') fails. 
We can also see that (R1) fails, as follows. For simplicity we consider 
the torus Til, which is just the standard 2-torus TZ, and we denote 
normalized Haar measure on Tn by p,. 

(6.52) Lemma. If f E LZ(p,) is invariant under the action of M, then 
f is constant p,-a.e. 
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Proof: We expand f in a Fourier series: 

The invariance means that eit (m+2-rrn)cmn = Cmn for all t, and hence 
Cmn = 0 unless m n O. I 

If E is an M-invariant Borel set in Til, by applying Lemma (6.52) to 
XE we see that f-L( E) is either 0 or 1. If there were a countable separating 
family for the orbits (in C2 and a fortiori in Til), the argument that 
proves Proposition (6.36) would show that there is an orbit 0 C Til such 
that f-L( 0) = 1. But 0 intersects each circle ( = const. in a countable 
set, so Fubini's theorem implies that f-L(O) = O. Hence condition (RI) 
fails. 

Finally, it is easy to produce an irreducible representation 1r of M 
such that the projection-valued measure associated to 1rIC2 is not con­
centrated on an orbit. Indeed, let f-L be Haar measure on Til as above, 
and define the representation 1r on L 2 (f-L) by 

1r(z, w, t)f((, w) = e2-rriRe(z(+ww) f(e- it(, e-2-rritw). 

We leave it to the reader to check that 1r is indeed a representation and 
that the projection-valued measure associated to 1rIC2 is just P(E) = 
multiplication by XEnTII , so that P has the same nullsets as f-L and hence 
is not concentrated on an orbit. To see that 1r is irreducible, suppose 
T E C( 1r). Since T commutes with 1r(z, w, 0) for all Z and w, it commutes 
with multiplication by any 9 E C(TIl)' But then Tg = T(g· 1) = g. TI 
for 9 E C(Tll ), and it follows that T is multiplication by f Tl. But 
then, since T commutes with 1r(O,O,t) for t E R, Lemma (6.52) implies 
that f is constant f-L-a.e., and so T cI. 

6.8 Notes and References 

Induced representations of finite groups were first studied by Frobenius 
[43]. For general locally compact groups, the notion of.jp.duced repre­
sentation was formalized by Mackey [78], [80]; the "intrinsic version" we 
use in this chapter is due to Blattner [11]. ~It 

The Hilbert space F or F,. on which ind~(O') acts can be precisely 
identified as the space of all 1ia -valued functions on G that are (in 'a 
suitable sense) measurable and square-integrable and that satisfY the 
appropriate covariance equation with respect to H. We have omitted 
this point since we have no need for the result, but see Blattner [11] or 
Gaal [44]. 
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With regard to the realization of induced representations on sections 
of vector bundles: the usual definition of a vector bundle requires that 
the bundle be locally trivial, that is, that it be locally isomorphic to the 
product of the base space and the vector space on which the fibers are 
modelled. It is easy to see that this will happen for the homogeneous 
vector bundles over G / H on which induced representations live if the 
fibration of G itself over G / H is locally trivial, i.e., if the quotient map 
q : G --+ G/ H admits a local continuous right inverse near some (and 
hence any) point of G / H. When G is a Lie group, the cosets of H form a 
foliation of G, and one easily obtains a smooth local inverse to q near q(x) 
by considering a submanifold of G passing through x that is transverse 
to the cosets. However, the following example shows that local triviality 
of Gover G / H is false in general, even for separable compact groups. 
Let G = T W be the product of a countable number of circles, and let 
H = {±l}W be the subgroup consisting of points whose coordinates are 
all ±l. Since T/{±l} is isomorphic to T, G/H is isomorphic to G, and 
a continuous local inverse to the quotient map on an open set U c G 
is just a map from U to G that is a continuous branch of the square 
root function in each coordinate. But this is impossible, for any open 
set contains a set of the form I1~ Uj where each Uj is open in T and all 
but finitely many are equal to T, and there is no continuous square root 
function on all of T. (Nonetheless, see Appendix C of Fell and Doran 
[37], where it is proved that Banach bundles over locally compact spaces 
always have lots of continuous sections.) 

The Frobenius reciprocity theorem for compact groups is due to Weil 
[128, §23]. Mautner [92] and Mackey [81] have proved versions of the 
Frobenius Reciprocity Theorem for noncompact groups, but they are 
much more technical both to state and to prove since representations 
must generally be decomposed as direct integrals rather than direct 
sums of irreducible components. A condition on groups G and closed 
subgroups H known as "weak Frobenius reciprocity" was introduced by 
Fell [36] and subsequently studied by several authors; see Fell and Doran 
[38] and the references given there. 

The theorem on induction in stages and the imprimitivity theorem 
were first proved by Mackey [78], [83], [86] for second countable groups. 
Loomis [76] extended the imprimitivity theorem to arbitrary locally 
compact groups by a proof involving functions of positive type. The 
arguments we have presented here, and in particular the ideas of using 
pseudomeasures of positive type and the algebra L(S x G), are due to 
Blattner [12]. Our exposition also owes much to some unpublished notes 
of J. M. G. Fell; in particular, these are the source for our proof of The­
orem (6.28). Another proof of the imprimitivity theorem has been given 
by 0rsted [97]. 

Rieffel [105] proved a version of the imprimitivity theorem for repre­
sentations of C* algebras that implies the original theorem for groups as 
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a special case, and Fell and Doran [38] have generalized the imprimitivity 
theorem to representations of Banach *-algebraic bundles. 

The results of §6.6 appeared in Mackey [78], [86], and they were gener­
alized by Mackey [83] to groups G with a closed normal subgroup N that 
need not be Abelian or a factor in a semi-direct product. We shall now 
briefly sketch how the general theory works. (A further generalization 
can be found in Fell and Doran [38].) 

First, one can replace the hypothesis that N is Abelian by the much 
weaker hypothesis that N is type I (see §7.2). N is taken to be the 
set of equivalence classes of irreducible representations of N, suitably 
topologized (see §7.2). G acts on N just as in the Abelian case - the 
action of x E G on a representation v of N yields the representation 
(xv)(n) = v(x-1nx) - and one must assume that this action is regu­
lar just as in §6.6. There is an analogue of Theorem (4.44) that gives 
a decomposition of any representation of N as a direct integral of ir­
reducibles (see §7.4), so as in Proposition (6.35) one can associate to 
each representation 7r of G a system of imprimitivity (7r, N, P). If 7r 

is irreducible, the analogue of Proposition (6.36) holds, so as in Theo­
rems (6.38) and (6.39) one obtains a correspondence between irreducible 
representations 7r of G and irreducible representations 0' of the stability 
groups Gv (v E N) such that O'IN is a direct sum of copies of v. 

One now wishes to analyze these representations of G v in terms of 
representations of GvIN, and here is where the really new feature ap­
pears: one must consider not just ordinary representations of Gv IN but 
projective representations (also called ray representations or multi­
plier representations), that is, continuous homomorphisms from GvlN 
into the unitary group on a Hilbert space modulo the scalar multiples 
of the identity. This complicates the picture considerably. The compen­
sating virtue is that the whole theory of induced representations can be 
developed for projective representations, and it is then self-contained: 
one can analyze the projective representations of G in terms of those of 
N and those of subgroups of GIN. 

If G does not act regularly on N, Proposition (6.36) breaks down, 
and so does all of the subsequent analysis. One can salvage some of the 
results by means of the theory of "virtual groups" and their representa­
tions, which allows one to describe an irreducible representation of G as 
the representation induced from a representation of a suitable ''virtual 
subgroup" of G rather than the honest subgroup Gv . The notion of vir­
tual groups was introduced by Mackey (see his expository article [85]), 
and the resulting extension of the Mackey machine to the case where G 
does not act regularly on N was accomplished by Ramsay [101]. How­
ever, since the study of virtual groups and their representations tends 
to be intractably difficult, the non-regular situation remains poorly un­
derstood in general. 
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The irreducible representations of the ax + b group were first deter­
mined by Gelfand and Naimark [45], and those of the Poincare group by 
Wigner [132]. The first proof of the Stone-von Neumann theorem ap­
peared in von Neumann [124]; it is reproduced in Folland [40]. For more 
about representations of the Mautner group, see Baggett [3], Kirillov 
[68], and Cowling [24]. 



7 
Further Topics in Representation Theory 

This chapter is a survey of some general results about unitary representa­
tions of noncompact; non-Abelian groups, together with some discussion 
of concrete cases. The proofs of many of the theorems in this subject 
are lengthy and technical and involve ideas beyond the scope of this 
book. Hence, to a large extent we shall content ourselves with providing 
definitions and statements of the theorems, together with references to 
sources where a detailed treatment can be found. (In particular, the 
"notes and references" for this material are scattered throughout the 
chapter instead of being collected in a separate section at the end.) 

Our principal object of concern is the set of equivalence classes of 
irreducible unitary representations of a locally compact group G. This 
set is called the (unitary) dual space of G. As in Chapters 4 and 5, 
we denote it by G, and we denote the equivalence class of an irreducible 
representation 7r by [7r]. 

In this chapter most of the main results are subject to the hypoth­
esis that G is second countable. This has, in particular, the following 
consequences. First, there is a countable base for the topology of G con­
sisting of sets with compact closure. The linear combinations of their 
characteristic functions are dense in V' (G) for p < 00, and hence V' ( G) 
is separable. Second, G itself is separable, and it follows that if 7r is a 
cyclic representation of G, the Hilbert space 1t1f is separable. (In partic­
ular, 1t1f is separable whenever 7r is irreducible.) In view of Proposition 
(3.3), to understand the representations of G it is enough to consider 
those acting on separable Hilbert spaces. 

7.1 The Group C'" Algebra 

Let G be a locally compact group. In order to describe the structure of 
0, we need to digress to construct a modification of the group algebra 
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LI(G). If IE LI(G), we define 

11/11. = sup 117r(l) II· 
[1r]EG 

Clearly II . II. is a seminorm on LI (G) that satisfies 11/11. ::; 11/111. 
(7.1) Proposition. Let r( G) be the set of equivalence classes of unitary 
representations of G (irreducible or not); let PI be the set of normalized 
functions of positive type on G as in §3.3, and let £(Pd be the set of 
extreme points in PI. Then for any I ELI ( G), 

11/11: = sup 117r(l)112 = sup /(1. * f)¢ = sup /(1. * f)¢. 
[1r]Er(G) q,EPl q,Ef(Ptl 

Proof: Denote the four numbers whose equality is asserted, in the or­
der given above, by AI, . .. ,A4. Trivially, Al ::; A 2 . If 7r is a unitary rep­
resentation of G and u is a unit vector in 1i1r , let ¢(x) = (7r(x)u, u). Then 
¢ E PI and 117r(l)uI12 = J(I. * f)¢ (Proposition (3.15)), so A2 ::; A3 · 

That A3 ::; A4 follows from Theorem (3.27), for if ¢ E PI, J(I. * f)¢ 
is a limit of convex combinations of numbers of the form J(I. * f)'I/J 
with'I/J E £(PJ). Finally, if ¢ E £(PJ) then ¢(x) = (7r(x)u,u) for some 
irreducible representation 7r and some unit vector u E 1i1r by Propo­
sition (3.20) and Theorem (3.25), whence J(I. * f)¢ = 117r(l)uI12, so 
A4 ::; AI. I 

(7.2) Corollary. 1--+ 11/11. is a norm on LI(G). 

Proof: II· II. is obviously a seminorm on LI(G). If 11/11. = 0 then 
7r(l) = 0 for every unitary representation of G by Proposition (7.1). But 
if we take 7r to be the left regular representation, then 7r(l)g = I * g, 
and 1* 9 approximates I when 9 is an approximate identity; so I = O. I 

We obviously have 

III * gil. = sUP[1r]EG 117r(l)7r(g)11 ::; 11/11.llgll., 

IIrli. = sUP[1r]EG 117r(l)·11 = 11111., 

Ilr * III. = sUP [1r]EG 117r(l)·7r(l)II = sUP[1r]EG 117r(l)112 = 11111;· 

Hence the algebra operations and the involution on LI (G) extend con­
tinuously to the completion of LI (G) with respect to the norm 11·11. and 
make that completion into a C* algebra, called the group C* algebra 
of G and denoted by C· (G). We shall denote the elements of C* (G) by 
letters such as I even though they are not, in general, functions on G. 

Example. Suppose G is Abelian. Then 11/11. = Illllsup, so C·(G) is 
isometrically *-isomorphic to Co(G). 
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Any *-representation of LI(G) extends uniquely to a *-representation 
of C*(G), so by Theorems (3,9) and (3,11) there is a one-to-one cor­
respondence between unitary representations of G and nondegenerate 
*-representations of C*(G). If 11' is such a representation, its kernel 

ker(11') =' U E C*(G) : 11'(1) = O} 

is a closed two-sided ideal of C*(G), Ideals of the form ker(11') where 11' 
is irreducible are called primitive ideals of C*(G), as they are more 
or less the analogues of prime ideals in a commutative ring, The space 
of all primitive ideals of C* (G) is denoted by Prime G): 

Prim(G) {ker(11') : [11'] E G}, 

If U is a nonempty subset of Prim(G), we define U C Prim(G) by 

U =' {I E Prime G) : I"J n :r}, 
:reu 

We also set '0 =' 0, 

(7.3) Proposition. For any U, V C Prim(G), 

U"JU, U, UuV = UuV, 

Proof:_ It is obvious that U "J U and that n:rev:r = n:reu:r, 
so that U = U, Also, since U C U u V and V C U u V we have 

C U U V and V C U U V; hence U U V C U U V. To prove the reverse 
inclusion, suppose ker(11') ~ U V. Then there exist f E n:reu:r and 
g E n:rev:r such that 11'(1) ::j: 0 and 11'(g) ::j: 0, Pick a vector u E 1i7r 
such that 11'(l)u ::j: O. Since 11'(g) ::j: 0 and 11' is irreducible, there exists 
hE C*(G) such that 11'(g)11'(h)11'(f)u::j: O. But f * h * g E n:reuuv:r, so 
ker(11') 1J n:reuuv:r and hence ker(11') ~ Uu V, I 

It now follows from a theorem of Kuratowski (Kuratowski [74, §§4-5], 
Folland [39, Exercise 4.12]) that there is a unique topology on Prim(G) 
with respect to which U is the closure of U, for any U C Prim(G), 
This topology is called the hull-kernel topology or the Jacobson 
topology. We observe that if I and :r are distinct elements of Prime G) 
then either I rt :r or :r rt I, and hence either I ~ or :r ~ {I}. In 
other words, the hull-kernel topology is always To. However, it may not 
satisfy any stronger separation properties, as we shall see below. 

Many of the results described below about representations of G can 
be rephrased as results about nondegenerate *-representations ofC*(G), 
and as such can be generalized to nondegenerate *-representations of 
arbitrary C* algebras. Indeed, this is the natural way of attacking many 
problems in representation theory; see Dixmier [29]. 
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7.2 The Structure of the Dual Space 

Let G be a locally compact group. If Ti is an irreducible representation of 
G, the kernel ker(Ti) E Prim(G) clearly depends only on the equivalence 
class of Ti, and the map [Ti] -t ker( Ti) is a surjection from 8 onto Prim( GJ 
We can therefore 'pull back the hull-kernel topology on Prim( G) to G. 
That is, we make G into a topological space by declaring the open sets to 
be those ofthe form {[Ti] : ker(Ti) E U} where U is open in Prim(G). This 
topology is commonly called the Fell topology on 8; it was introduced 
in Fell [34]. To understand it more clearly, let us see what it means in 
some familiar cases. 

(7.4) Proposition. When G is Abelian, the Fell topology on 8 is the 
usual topology on G as defined in Chapter 4. When G is compact, the 
Fell topology on 8 is the discrete topology. 

Proof: Suppose G is Abelian. As we observed in §7.1, C*(G) is 
essentially Co(8); the primitive ideals of Co(8) are the maximal ideals 
U : f«(,o) O} for (,0 E 8; and the hull-kernel closure of a set U c 8 is 
just v(£(U)) in the notation of §4.5. It therefore follows from Theorem 
(4.48) that the ordinary closed sets in 8 are the hull-kernel closed sets. 

Now suppose G is compact. If [Ti] E 8, let X7r(x) trTi(x) be the 
character of Ti. It follows easily from the Schur orthogonality relations 
(5.8) that Ti(X7r) is (dim 1-!7r )-1 times the identity operator on 1-!7r, and 
that Ti'(X7r) ~ 0 if [Ti'] -:f:. [Ti]. Hence, X7r belongs to n[7r'J#[7r) ker( Ti') but 
not to ker(Ti). This means that [Ti] is not in the closure of G\ {[Ti]}, and 
hence that {[Ti]} is open. I 

When G is neither Abelian nor compact, 8 is usually non-Hausdorff. 
We shall see some examples below, but for the moment we give a heuris­
tic reason why this phenomenon is to be expected. It often happens 
that one can construct a family of representations Tit of G that depend 
continuously (in some suitable sense) on a real parameter t, such that Tit 
is irreducible for all t -:f:. 0 but Tio is reducible. In such a situation, all the 
irreducible components of Tio (or rather their equivalence classes) will 
be limits of [Tit] as t - 0; to put it another way, every neighborhood of 
any of those components will contain [Tit] for t sufficiently small. In any 
~ent, the components of Tio will correspond to non-Hausdorff points of 
G. 

Another description of the Fell topology on 8 is available. Namely, let 
[(PI) be the set of extreme points of the set of normalized functions of 
positive type on G. [(PI) is a subset of LOO(G) and as such is endowed 
with the weak* topology. On the other hand, for each tP E [(Pd one 
has the representation Tiq, given by (3.19), and the map tP -t [Tiq,] is a 
surjection from [(PI) to 8 by Corollary (3.24) and Theorem (3.25). It 
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can then be shown that the Fell topology on G is the one generated by 
the map ¢ ~ [7r4>]; that is, U eGis open if and only if its inverse image 
in £(PJ) is open. See Dixmier [29, §3.4]. 

Further information about the Fell topology can be found in Dixmier 
[29] and Fell and Doran [37]. 

Another aspect of the structure of G that is often more directly rele­
vant than its topology is its structure as a measurable space. Of course 
one can always consider the O"-algebra of Borel sets defined by the Fell 
topology, b~ for second countable groups there is another natural 0"­

algebra on G that is sometimes more suitable. To define it, we need 
some terminology. 

For each positive integer n let 1in be a fixed Hilbert space of dimension 
n, and let 1ioo be a fixed separable infinite-dimensional Hilbert space. 
(For example: take 1in = en for n < 00 and 1ioo = l2(Z).) For n = 
1,2, ... ,00 let Irrn( G) be the set of irreducible representations of G on 
1in (where we do not identify equivalent but distinct representations), 
and let Irr(G) be the union of all the Irrn(G). For each n we define the 
O"-algebra Bn on Irrn(G) to be the smallest O"-algebra with respect to 
which all the functions 

(7.5) 7r ~ (7r(x)u, v) (x E G, u, v E 1in ) 

are measurable, and we define the O"-algebra B on Irr( G) by requiring 
that E E B if and only if En Irrn(G) E Bn for all n. 

Now suppose G is second countable. The map 7r ~ [7r] from Irr(G) to 
G is then a surjection, and we can use it to define a quotient O"-algebra 
on G. Namely, the Mackey Borel structure on G (introduced in 
Mackey [82]' [86]) is the O"-algebra M on G consisting of all E c G such 
that {7r E Irr(G) : [7r] E E} E B. 

One could use the same procedure to define a topology on G. Namely, 
one imposes on Irrn(G) the weakest topology that makes all the functions 
(7.5) continuous, on Irr(G) the topology for which U C Irr(G) is open 
precisely when Un Irrn(G) is open for all n, and on G the quotient 
topology induced by the map 7r ~ [7r]. This topology is less natural than 
the Fell topology because it makes all the sets Gn = {[7r] : 7r E Irrn(G)} 
closed, whereas (as we suggested above) one may wish to regard certain 
lower-dimensional representations as limits of higher-dimensional ones. 
However, it can be shown (Dixmier [29, §3.5]) that these two topologies 
induce the same relative topology on Gn for every n. It follows easily 
that the Mackey Borel structure includes the family of Borel sets for 
the Fell topology, but in general it is strictly larger. In particular, the 
Mackey Borel structure distinguishes points - every singleton set in 
G belongs to M (Mackey [82], or Dixmier [29, §3.8]) - but the Fell 
Borel sets do so only when the map [7r] ~ ker(7r) from G to Prim(G) is 
injective. 
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It is of interest to know how well-behaved G is as a topological space 
or as a measl!!able space. On the topological side, the main questions 
are whether G satisfies one of the separation axioms To or T 1• On the 
measure-theoretic side, the principal conditions to be considered are the 
following. 

Let (X, M) be a measurable space, i.e., a set equipped with a a­
algebra. M is countably separated if there is a countable family 
{Ej}r in M such that each x E X satisfies {x} = n{j:xEE

j
} Ej . (X, M) 

(or just M) is standard if (X, M) is measurably isomorphic to a Borel 
subset of a complete separable metric space. (Two measurable spaces 
(X, M) and (Y,N) are measurably isomorphic if there is a bijection 
f : X -+ Y such that E E N if and only if f- I (E) EM.) Standardness 
easily implies countable separation, and it is an even stronger condition 
than might at first appear. By a remarkable theorem of Kuratowski [74, 
§37.1I], if (X, M) is standard there are only two possibilities: either X 
is countable and M is the a-algebra of all subsets of X, or X has the 
cardinality of the continuum and (X, M) is measurably isomorphic to 
the unit interval [0,1] with its a-algebra of Borel sets. 

It turns out also that the topological or measure-theoretic structure 
of 8 is closely related to certain types of behavior of the representations 
of G. Before coming to the main theorems, we therefore need some more 
terminology. 

A unitary representation 7r of G is primary if the center of C (7r) is 
trivial, i.e., consists of scalar multiples of I. (Primary representations 
are also known as factor representations.) By Schur's lemma, every 
irreducible representation is primary. More generally, if 7r is a direct 
sum of irreducible representations, 7r is primary if and only if all its 
irreducible subrepresentations are unitarily equivalent. (We shall prove 
this in the next section as Theorem (7.23).) The group G is said to be 
type I if every primary representation of G is a direct sum of copies of 
some irreducible representation. 

(The terminology here comes from the theory of von Neumann alge­
bras. If 7r is a representation of G, let A.". be the weak closure of the 
algebra generated by the operators 7r(x), x E G. The condition that 
7r is primary means precisely that A.". is a factor in the sense of von 
Neumann. Factors are classified as type I, type II, or type III, and the 
condition that 7r be a direct sum of copies of an irreducible represen­
tation is equivalent to A.". being a factor of type I. See Dixmier [29, 
§5.4]. ) 

Example 1. Every compact group is type I. This follows immediately 
from Theorem (5.2) and Theorem (7.23) below. 

Example 2. Every Abelian group is type I. Indeed, if 7r is a represen­
tation of an Abelian group G, then 7r(x) belongs to the center of C(7r) 
for every x E G. Hence, if 7r is primary we must have 7r(x) = (x, ~)I for 
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some e E G, and a choice of orthonormal basis for 11.11" then exhibits 7r 
as a direct sum of copies of the one-dimensional representation e. 

Example 3. The Heisenberg groups Hn discussed in §6.7 are type I. 
Indeed, the center Z of Hn is the set of elements of the form (0,0, t), 
so if 7r is a primary representation of Hn, the operators 7r(O,O,t) must 
be scalar multiples of the identity, so that 7r(0, 0, t) e211"iht I for some 
hER. If h =1= 0, the Stone-von Neumann theorem says that 7r is a 
multiple of the irreducible representation Ph' If h = 0, 7r factors through 
Hn/Z ~ R2n and hence (as in Example 2 above) must be a multiple of 
one of the representations 7rb,/3 of Corollary (6.51). 

One more set of definitions. A C* algebra A is said to be CCR if 
whenever 7r is an irreducible *-representation of A, 7r(J) is a compact op­
erator for every f E A. ("CCR" stands for "completely continuous rep­
resentations," "completely continuous operator" being a once-common 
synonym for "compact operator." CCR algebras are also sometimes 
called liminaire or liminal, the former being a French synonym for 
"CCR" invented by Dixmier.) A C* algebra A is said to be GCR (or 
post liminaire or postliminal) if every nonzero quotient C* algebra of 
A possesses a nonzero two-sided ideal that is CCR. (These notions are 
due to Kaplansky [65]; we refer to this paper or Dixmier [29] for a fuller 
explanation of the significance of the GCR condition.) 

The group G is called CCR (resp. GCR) if C*(G) is CCR 
(resp. GCR). Since Ll(G) is dense in C*(G), G is CCR if and only 
if 7r(J) is compact whenever 7r is irreducible and f E Ll(G). It is obvi­
ous that Abelian groups and compact groups are CCR, simply because 
their irreducible representations are all finite-dimensionaL 

Finally we are ready to state the main theorems that give the equiva­
lence of various "nice" conditions on the structure of 8 and the behavior 
of the representations of G. 

(7.6) Theorem. If G is a second countable locally compact group, the 
following are equivalent. 

i. G is type 1. 

ii. The Fell topology on G is To. 

iii. The map [7r]- ker(7r} from G to Prim(G) is injective. 

iv. The Mackey Borel structure on G is countably separated. 

v. The Mackey Borel structure on G is standard. 

vi. The Mackey Borel structure on G coincides with the (j-algebra of 
Borel sets for the Fell topology. 

vii. If [7r] E G, 7r[C*(G)] contains all compact operators on 11.11"' 

. viii. G is GCR. 
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(7.7) Theorem. A locally compact group G is CCR if and only if the 
Fell topology on G is TI . In particular, every CCR group is type 1. 

Theorems (7.6) and (7.7) are proved in a remarkable paper of Glimm 
[47]; some parts of them were proved independently by Dixmier and 
Kaplansky. The equivalence of (ii) and (iii) is obvious since Prim( G) is 
always To, and the implication (v) ===} (iv) is easy; the other implications 
are all more or less difficult. The proofs can also be found in Dixmier 
[29]. 

Measurable spaces that are not countably separated are pathological, 
and the equivalence of (i) and (iv) is strong evidence that the irreducible 
representations of non-type-I groups are essentially impossible to classify 
in any reasonable way. The situation is even worse than that: even if one 
knows the irreducible representations of a group G, only when G is type 
I is there a way to classify arbitrary representations (up to equivalence) 
in terms of irreducible ones. We shall explore this point further in §7.4. 

It remains to address the question of which groups are type I or CCR. 
The following general results are known; see also Theorem (7.10) below 
for the case of solvable Lie groups. 

(7,8) Theorem. 

a. Every connected semisimple Lie group is CCR. 

b. Every connected nilpotent Lie group is CCR. 

c. Every connected real algebraic group is type I. 

d. A discrete group is type I jf and only if it possesses an Abelian 
normal subgroup of finite index. 

(a) is due to Harish-Chandra [57]; see also Harish-Chandra [56] for a 
direct proof that such groups are type I. (b) is due to Dixmier [26] and 
Kirillov [67]; see also Corwin and Greenleaf [23]. (c) is due to Dixmier 
[25], and (d) is due to Thoma [119]. 

In view of (d), it is easy to display examples of discrete groups that are 
not type I; we shall examine one of them in §7.6. The simplest example 
of a connected Lie group that is not type I is the Mautner group M 
discussed in §6. 7, which is a five-dimensional solvable Lie group. See 
Baggett [3], Cowling [24J, and Kirillov [68, §19]. 

The determination of G for various specific types of groups G is an 
ongoing endeavor that has occupied the attention of many mathemati­
cians over the past forty years. We briefly describe the situation for 
connected noncompact, non-Abelian Lie groups. (For compact ones, see 
§5.5. The only connected Abelian Lie groups are products of RrI and 
Tm, n, m 2: 0.) 

For simply connected nilpotent Lie groups there is a beautiful and 
simple description of the dual space that we now give. First, a little 
background; see Helgason [60J for fuller explanations. Suppose G is a 
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Lie group with Lie algebra g. First, there is a natural linear action of 
G on 9 called the adjoint action: Ad(x)Y is the tangent vector to 
the curve t -+ x[exptY]x- 1 at t = O. This yields a linear action of G 
on the (real) dual space g* of 9 called the coadjoint action, given by 
Ad*(x) = [Ad(x- l )]*. Second, if A E gOO and IJ is a subalgebra of 9 such 
that A = 0 on [IJ, IJ], then AIIJ is an algebra homomorphism from IJ to 
R. If H is a Lie subgroup of G with Lie algebra IJ, we shall call a one­
dimensional representation (f of H such that (f( exp X) == e211'i'\(X) for 
X E IJ a lifting of A to H. If G is simply connected and nilpotent, there 
is a unique connected H whose Lie algebra is IJ, and every A E g* such 
that A([IJ, IJ]) = 0 has a unique lifting (f,\ to this H: namely, H == exp IJ 
and (f,\(expX) = e211'i'\(X). 

(7.9) Theorem. Let G be a simply connected nilpotent Lie group. 
Given A E g*, let IJ be a maximal subalgebra of 9 such tbat A = 0 on 
[IJ, IJ]' and let Hand (f,\ be as above. Tben ind~((f,\) is irreducible, and 
its equivalence class depends only on tbe orbit of A under tbe coadjoint 
action. Tbe mt;p ('),\ -+ [ind~((f,\)] is a bijection from tbe set of coad­
joint orbits to G wbicb is a bomeomorpbism witb respect to tbe natural 
quotient topology on tbe set of orbits aBd tbe Fell topology on G. 

This theorem is due to Kirillov [67] except for the fact that the map 
[ind~((f,\)] -+ ('),\ is continuous, which was proved by Brown [18]. See 
also Moore [94] and Corwin and Greenleaf [23] for expositions of the 
Kirillov theory. 

The analysis underlying Theorem (7.9) also applies, with certain mod­
ifications, to solvable Lie groups. Indeed, for a solvable group G such 
that the exponential map exp : 9 -+ G is a diffeomorphism (such groups 
are called exponential solvable groups), the construction in Theorem 
(7.9) carries over with almost no change - except that one must be a lit­
tle more careful in the choice of the subalgebra IJ - to give a one-to-one 
correspondence between G and the space of coadjoint orbits in goo. For 
more general solvable groups G the situation is considerably more com­
plicated, but suitable extensions of the Kirillov construction, involving 
an extensive use of the Mackey machine, yield necessary and sufficient 
conditions for G to be type I and a complete parametrization of its dual 
space when it is. In particular, we have the following complement to 
Theorem (7.8). 

(7.10) Theorem. A simply connected solvable Lie group G is type I 
if and only if tbe space of coadjoint orbits is countably separated and 
every A E g* bas a lifting to tbe group G,\ {x E G : Ad*(x)A = A}. 
Every exponential solvable group is type 1. 

This theorem, as well as the description of G alluded to above, is due 
to Takenouchi [117] and Bernat [8] in the exponential solvable case, and 
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to Auslander and Kostant [2] in the general case. See Moore [94] for a 
very readable survey of these results. 

The study of representations of connected semisimple Lie groups is an 
enormous undertaking that involves techniques far outside the scope of 
this book; we refer to Knapp [70] for a good exposition of (many parts 
of) the theory. The first major result was the determination of the dual 
space of SL(2,R) by Bargmann [7] in 1947; we shall describe his result 
in §7.6. The next three decades saw the discovery of large families of 
irreducible representations for general semisimple Lie groups (enough to 
decompose the regular representation; see §7.5), but the full dual space 
remained unknown except in a few cases. Only more recently has the 
dual space been determined for large classes of groups. It is now known 
for groups of real rank one (SO(n,I), SU(n,I), Sp(n,I), and F4,-20), 
the complex classical groups (SL(n, C), SO(n, C), and Sp(n, C)), and 
S L(n, F) where F is R, C, or the quaternions. (A few other special cases 
are also known.) These results are proved in Baldoni Silva and Barbasch 
[5], Barbasch [6], and Vogan [122]. (Vogan [122] considers GL(n, F) 
instead of S L( n, F), but this is a minor matter since these groups differ 
only in their centers. Cf. the comparison of the representations of SU (2) 
and U(2) in §5.4.) 

Finally, we mention that the correspondence between irreducible rep­
resentations and orbits of the coadjoint action, which works so beau­
tifully in the nilpotent case and to a large extent in the solvable case, 
has also been a very useful principle in the study of representations of 
other Lie groups. This principle was first elaborated by Kostant [73] 
in his theory of "geometric quantization," and it has reappeared with 
various modifications in much subsequent work. See Kirillov [68] for an 
exposition of this philosophy, and Vogan [123] for a nice account of its 
role in the representation theory of reductive groups. 

7.3 Tensor Products 

In this section we discuss tensor products of representations. The main 
results are a characterization of the type I primary representations of 
a group and a recipe for constructing the irreducible representations of 
a product group out of representations of the factors. Since the theory 
of tensor products of Hilbert spaces is not as readily accessible in the 
literature as it should be, we begin with a review of it. 

In the category of vector spaces over a fixed field, the tensor product of 
two vector spaces VI and V2 is usually defined abstrac,tly as a vector space 
VI ® V2 such that any bilinear map from VI x V2 to another vector space 
factors uniquely through VI ® V2. There are several ways of constructing 
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concrete models of VI 0 V2; one is as the space of linear maps of finite 
rank from V2* into VI' We wish to modify this construction to obtain a 
tensor product in the category of Hilbert spaces. 

Let HI and H2 be Hilbert spaces, and consider bounded linear maps 
from H2 into HI, or equivalently, bounded antilinear maps from H2 into 
HI. The terminology and basic theory of bounded linear maps applies 
also to antilinear maps, with obvious modifications. For example, the 
composition of two antilinear maps is linear, and the composition with 
a linear map with an antilinear one is antilinear. The operator norm of 
an antili.near map A is defined as in the linear case, 

IIAII = sup IIAxll· 
Iixll=1 

The adjoint of a bounded antilinear map is another such map, defined 
not by (A *u, v) = (u, Av) - which cannot be right since the left side is 
antilinear in both u and v whereas the right side is linear - but rather 
by 

(A*u,v) = (Av,u). 

Note that the map A ---+ A* is linear rather than antilinear. 
Suppose A is an antilinear map from ·1{2 to HI, and {uo,} and {VJ3} 

are orthonormal bases for HI and H2 respectively. Then by the Parseval 
identity, 

L IIAvJ3112 = L L I (AvJ3, u,,)1 2 

J3 J3 " 
(7.11) = L L I(A*u",vJ3)1 2 

= L IIA*u,,112. 
" J3 " 

This shows that L:J3IIAvJ3112 is independent of the choice of basis {VJ3}, 
for if {WJ3} is another orthonormal basis for H2 we also have 
L:J3IIAwJ3112 = L:" IIA*u,,112. We define the tensor product of HI 
and H2 to be the set HI 0H2 of all antilinear A : H2 ---+ HI such that 
L:J3IIAvJ3112 < 00 for some, and hence every, orthonormal basis {VJ3} for 
H2, and we set 

IIIAII12 = L IIAvJ3112. 
J3 

(7.12) Theorem. HI 0H2 is a Hilbert space with the norm 111·111 and 
associated inner product 

(A, B) = L(AvJ3, BVJ3), 
J3 

where {VJ3} is any orthonormal basis O[H2. 
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Proof: We first observe that if A, B E HI 0H2, 

by two applications of the Schwarz inequality. Thus the series 
L:(AvJ3, BVJ3) is absolutely convergent, and an application of the Parse­
val identity as in (7.11) then shows that L:(AvJ3, BVJ3) 
L:(A*u""B*u",) for any orthonormal bases {u",} and {VJ3} of HI and 
H2. Thus L:(AVJ3, BVJ3) is independent of the choice of basis {VJ3} and 
defines an inner product on HI 0H2 whose associated norm is III . III. 

It remains to prove completeness. If A E HI 0H2 and f > 0, choose 
{ v J3} to be an orthonormal basis for H2 of which one element Vo satisfies 
IIAvol1 > IIAII-€. It follows that IliA III > IIAII-f, and hence IliA III ~ IIAII· 
Therefore, if {An} is Cauchy in HI 0H2, it is Cauchy in the operator 
norm topology, and one only needs to show that its limit A in the latter 
topology is also its limit in the topology of HI 0H2. This we leave as 
an exercise for the reader. I 

If u E HI and v E H2, the map w --+ (v, w)u (w E H2) belongs to 
HI 0H2 ; we denote it by u 0 v: 

(U0V)(W) = (v,w)u. 

By picking an orthonormal basis for H2 of which v/llvil is a member, we 
see that 

Similarly, for any u, u' E HI and v, v' E H2, 

(7.13) (u 0 v, u' 0 v') = (u, u') (v, v') 

Next, if A is a bounded antilinear map of finite rank from HI to 
1-£2, let Ul ...... Un be an orthonormal basis for the range of A. Then 
Aw = L:~(Aw,uj)uj. For each j, w --+ (Aw,uj) is a bounded antilinear 
functional on H2, so there exists Vj E H2 such that (Aw,uj) = (Vj,w). 
But this says that A = L:~ uj0vj. In other words, the space of antilinear 
maps of finite rank from HI to H2 is contained in HI 0H2 and consists 
of the linear span of the elements u 0 v for u E HI and v E H2· 

(7.14) Proposition. If {u",}, {VJ3} are orthonormal bases for HI, H2. 
Then {u", 0 vJ3} is 8Jl orthonormal basis for HI 0H2· 

It follows from (7.13) that {u",0vJ3} is an orthonormal set in H 1 0H2. 
If A E HI 0H2 we have 
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(A, u'" 0 V(3) = L(Av(3" (u", 0 v(3)V(3') = (Av(3, u",), 
(3' 

so 

L I(A, u'" 0 v(3)12 = L I(Av(3,u",)1 2 = L IIAv(3112 = IIIAII12. 
",,(3 ",,(3 (3 

Thus the Parseval identity holds, so {u", 0 V(3} is a basis. 

We point out a couple of simple and useful isomorphisms. First, by 
(7.11), the map A -+ A* is a unitary isomorphism from 1-{1 01-{2 to 
1-{2 01-{1, and (u 0 v)* = v 0 u. Second, tensor products distribute 
across direct sums in the obvious way: 

We leave it as an exercise for the reader to make this precise. 
Another interpretation of the tensor product is available when the 

Hilbert spaces in question are £2 spaces. Suppose (X, J.L) and (Y, v) are 
a-finite measure spaces. If f E £2(J.L) and g, hE £2(v), we have 

(f 0 g)(h) = (g, h)f = J f(·)g(y)h(y) dv(y), 

so f 0 9 is the antilinear integral operator whose kernel is the function 

(7.15) (f 0 g)(x, y) = f(x)g(y) 

on X x Y. Similarly, the operator L:~ fj 0 gj has the kernel 
L:~ fj(x)gj(Y). We are therefore led to the following result. 

(7.16) Theorem. Suppose (X, J.L) and (Y, v) are a-finite measure 
spaces. The identification of f 0 9 E £2(J.L) 0 £2(v) with the function 
(7.15) extends uniquely to an isometric isomorphism of £2(J.L) 0 £2(v) 
with £2(J.L x v), whose inverse identifies F E £2(J.L X v) with the operator 
h -+ J F(·,y)h(y)dv(y). . 

Proof; By (7.13), 

n 2 n IIILfj09jlli = L (/j,ik)(gj,gk) 
I ~k=l 

Hence the stated identification extends by linearity and continuity to an 
isometric embedding of £2(J.L) 0 £2(v) into £2(J.L x v). To complete the 
proof, by Proposition (7.14) it is enough to show that if {f",} and {g(3} 
are orthonormal bases for £2(J.L) and £2(v) then {f", 0 g(3} is a basis for 
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L2(J-L X v). If F E L2(J-L x v), there is a set N c Y with v(N) = 0 and 
JIF(x,y)1 2dJ-L(x) < 00 for all y fj: N. For every a the function 

<Pa(Y) = (F(., Y).!a) J F(x, y)fa(x) dJ-L(x) 

is well-defined for Y fj: N, and 

J l<Pa(y)12 dv(y) S J IIF(., Y)II~ dv(y) IIFII~ < 00, 

so <Pa E L2(v). Moreover, 

(<Pa,g{3) = J J F(x,y)fa(x)g{3(Y) dJ-L(x) dv(y) = (F, fa ~ g(3). 

Now, F(·,y) = I:. <Pa(y)fa (where the series converges in L2(J-L» for all 
y fj: N, so by the Parseval idEmtities on L2(J-L) and L2(v), 

IIFII~ = J IIF(',y)ll~dv(y) J I~J<Pa(Y)12dv(y) 
a 

= L 1(<Pa, g{3W L I(F, <Pa ~ g(3)1 2
• 

a,{3 a,{3 

Thus the Parseval identity holds for the orthonormal set {Ja~g{3}, which 
is therefore a basis. I 

A similar but easier argument yields the following result, whose proof 
we leave to the reader: 

(7.17) Proposition. Let 11. be a Hilbert space and A a set. For each 
a E A let 11.a be a copy of 11., and define Da(f3) 1 for f3 a and 
Da(f3) = 0 for f3 E A\{a}. Then the map (Ja)aEA -7 I:. fa ~ Da is a 
unitary isomorphism from ffiaEA 11.a to 11. ~ l2(A). 

We now consider tensor products of operators. If S E £'(11.d, T E 
£,(11.2), and A E 11.1 ~ 11.2, define the antilinear operator (S ~ T)A from 
11.2 to 11.1 by 

(S ~ T)A SAT"'. 

We shall see shortly that (S ~ T)A belongs to 11.1 ~ 11.2, so that S ~ Tis 
a linear operator on 11.1 ~ 11.2, called the tensor product of Sand T. 
(Note that S ~ T depends linearly on T despite the occurrence of T* in 
the definition, for SA(cT)* = SA(cT"') cSAT* by the antilinearity of 
A.) 

(7.18) Theorem. Suppose S, S' E £'(11.d and T, T' E £,(11.2)' Then: 

a. S ~ T E £,(11.1 ~ 11.2), and liS ~ Til = IISIlIITII· 
b. (S Q9 T)(u ~ v) = Su ~ Tv for all u E 11.1, V E 11.2' 
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c. (S 0 T)(S' 0 T') (SS') 0 (TT'). 

d. (S0T)*:=:: S* 0T*. 

e. If Sand T are unitary, so is S 0 T. 

Proof: To prove (a), first consider the case when T I. If {v,,} is 
an orthonormal basis for 11.2 we have 2:: IISAv,,112 S IISI1 22:: IIAv,,1I2, so 
IISAII :s; IISIIIIIAIlI. Now, for T =f: I, by (7.11) and what we have just 
proved we have 

IIISAT*III :::: IIIT(SA)*III S II Til III (SA)* III IITIIIIISAIII:s; IISIIIITIIIIIAIII· 

Thus (S 0 T) E £(11.1 011(2) and liS 0 Til s IISIlIiTII. Next, if wE 11.2, 

(S0T)(u0V)(W) S(u0v)T*w:::: (v,T*w)Su 

(Tv,w)Su = (Su0Tv)w, 

which proves (b). If we choose u and v to be unit vectors such that 
IISul1 > IISII f and II Tv II > IITII - f, it follows that 

liS 0 Til ~ II(S 0 T)(u 0 v) II IISullllTvll > (IISII - f)(IITIl - f), 

so that liS 0 Til ~ IISIlIITII, which completes the proof of (a). 
(c) is obvious. To prove (d) we use once again the fact that A ~ A* 

is a unitary map from 11.1 0 11.2 to 11.2 0 11.1: if {uo;} and {v,,} are 
orthonormal bases for 11.1 and 11.2, 

((S0T)*A,B) = (A,(S0T)B) = (A,SBr) 

= :L(Av", SBT*v,,) :::: :L(S* Av", Brv,,) 

(S*A,Br) = (A*S,TB*) 

:L(A*Suo;,TB*uo;):::: :L(T*A*Suo;,B*uo;) 

= (T*A*S,B*) (S*AT,B):::: ((S* 0T*)A,B). 

Hence (S0T)*:::: S* 0T*. 
Finally, (e) follows from (c) and (d): if Sand T are unitary, 

(S 0 T)(S 0 T)* :::: SS .. 0 TT* :::: 101:::: I, 

and likewise (S 0 T)*(S 0 T) I. I 

The following theorem will be the basis for our representation­
theoretic results. 

(7.19) Theorem. Suppose 11.1 and 11.2 are Hilbert spaces, and S is 
a subset of £(11.1) such that the only bounded operators on 11.1 that 
commute with every S E S are scalar multiples of I. Then the bounded 



216 A Course in Abstract Harmonic Analysis 

operators on HI 0H2 that commute with 801 for every 8 E S are 
precisely those of the form 10 T where T E £(H2)' 

Proof: Clearly (801)(10 T) = 80 T = (I 0 T)(8 0 1) for any 
8 and T. On the other hand, suppose L E £(HI 0 H 2 ) commutes 
with every 801, 8 E S. Let {VJ3} be an orthonormal basis for H2. 
Then HI 0H2 = ffiJ3 (HI 0 vJ3) by Proposition (7.14), so if U E HI 
we have L(u 0 v",) = L.J3u"'J3 0 vJ3 for some u",J3 E HI. Moreover, 
L.J3llu"'J3I12 = IIL(u 0 v",)112 ::; IIL11211u112, so the map U ---+ u",J3 is a 
bounded linear operator on HI. Denote this operator by L"'J3; then if 
8E S, 

L L",J38u 0 vJ3 = L(8u 0 v",) = (80 I)L(u 0 v",) = L 8L",J3u 0 vJ3. 
19 19 

It follows that L"'J3 commutes with every 8 E S, so L",J3 = t",J31 for some 
t",J3 E C. We now have 

L(u 0 v",) = L t",J3u 0 vJ3 = u 0 L t",J3vJ3, 
19 19 

and more generally, 

L( u 0 L c"'V"') ;= u 0 L c",t"'J3vJ3' 
'" "',19 

Taking u to be a unit vector, we see that 

II L c",t"'J3vJ3II ::; II Lilli L c'" v", II, 
"',19 '" 

so the matrix (t"'J3) defines a bounded linear operator T on H2 such that 
L = 10T. I 

We return now to representation theory. Now suppose G I and G2 are 
locally compact groups, and 7r1 and 7r2 are representations of G I and 
G2 on HI and H2, respectively. By Theorem (7.18e), we can define a 
unitary representation 7r1 07r2 of G I x G2 on HI 0H2 by 

7r1 07r2 is called the Kronecker product or outer tensor product of 
7r1 and 7r2. When G I and G2 are the same group G, the inner tensor 
product of 7r1 and 7r2 is the representation of G obtained by restricting 
7r1 07r2 to the diagonal subgroup of G x G: 

This representation is also commonly denoted by 7r1 07r2. We have 
encountered inner tensor products at a couple of points in Chapter 5, 



Further Topics in Representation Theory 217 

but they will play no further role in this book, so we shall not trouble 
to invent a separate notation for them. 

(7.20) Theorem. 11'"1 011'"2 is irreducible if and only if 11'"1 and 11'"2 are 
both irreducible. 

Proof: If M C 1-i2 is an invariant subspace for 11'"2, one easily sees 
that 1-i10M is an invariant subspace for 11'"1011'"2; similarly for 11'"1. Hence 
11'"1 0 11'"2 is reducible if either factor is. On the other hand, suppose 11'"1 
and 11'"2 are irreducible and L E C(1I'"1 011'"2)' Restricting attention to 
the group GI x {I}, we see that L commutes with 11'"1 (x) 01 for every 
x E G1· By Schur's lemma and Theorem (7.19), therefore, L =: 10 T 
for some T E C(1-i2)' But the same reasoning applied to {I} x G2 shows 
that L =: S 0 I for some S E C(1-lI)' These conditions can only hold 
simultaneously if Sand T, and hence L, are multiples of the identity. 
Hence 11'"1 011'"2 is irreducible by Schur's lemma. I 

If 1-i I and 1-i2 are Hilbert spaces and 11'" is a representation of G on 1-i I, 
we denote by 11'" 0 I the representation of G on 1-i1 01-i2 given by 

(11'" 0 I)(x) = 1I'"(x) 0 I. 

(The Hilbert space 1-i2 on which the second factor I acts is understood 
from the context. This construction is really a special case of the tensor 
product of two representations, in which G I = G and G2 is the trivial 
group.) 

(7.21) Proposition. Let 1-i1 and 1-i2 be Hilbert spaces, and suppose 11'" 
and 11'"' are irreducible representations of G on 1-i1. 

a. If Me 1-i1 01-i2 is an irreducible subspace for 11'"01, then (1I'"0I)M 
is equivalent to 11'". 

b. If 11'" 0 I and 11'"' 0 I are equivalent, so are 11'" and 11'"'. 

Proof: For (a), choose Ao E M and Vo E 1-i2 such that Aovo f. 0, 
and define V : 1-i1 01-i2 -+ 1-i1 by V A =:: Avo. (Recall that A is an 
antilinear operator from 1-i2 to 1-id Then 

V(1I'"(x) 0 I)A = [(1I'"(x) 0 I)A] (vo) = 1I'"(x)A(vo) =: 1I'"(x)V A, 

so V intertwines 11'" 0 I and 11'". In particular, V 1M intertwines (11'" 0 I)M 
and 11'", and it is nonzero since V Ao f. O. Hence VIM is an equivalence 
by Schur's lemma. 

(b) is an easy consequence of (a). Pick a nonzero Vo E 1-i2 and let 
M = 1-i1 0 Vo. Clearly M is invariant under 11'" 0 I and (11'" 0 I)M is 
equivalent to 11'". If U is an equivalence of 11'" 0 I and 11'"' 0 I, UIM is an 
equivalence of (11'" 0 I)M and (11'"' 0 I)U(M). The former is equivalent to 
11'" and the latter, by part (a), is equivalent to 11'"'. I 
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(7.22) Corollary. Suppose 7rl, 7r~ and 7r2, 7r~ are irreducible representa­
tions of Gland G2 , respectively. Then 7rl 07r2 is unitarily equivalent to 
7r~ 0 7r~ if and only if 7rl and 7r2 are equivalent to 7r~ and 7r~, respectively. 

Proof: The "if" implication is obvious, and the "only if" implication 
follows easily from Proposition (7.21 b) by considering 7rl 0 I and 10 7r2 
as the restrictions of 7rl 07r2 to G 1 x {I} and {I} x G2 . I 

A choice of an orthonormal basis {v",} ",EA for 1-{2 gives an isomor­
phism of 1-{2 with l2(A). In view of Proposition (7.17), it is then easy 
to see that 7r 0 I is equivalent to a direct sum of copies of 7r, one for 
each Q: E A. Hence, the condition that the group G be type I may be 
rephrased as saying that every primary representation of G is equivalent 
to a representation of the form 7r 0 I where 7r is irreducible. In this con­
nection, we can now give the promised characterization of completely 
decomposable primary representations. 

(7.23) Theorem. Suppose {7r", : Q: E A} is a collection of irreducible 
representations of G. Then ffi"'EA 7r '" is primary if and only if the 7r '" 's 
are all equivalent. 

Proof: If each 7r '" is equivalent to some representation 7r then ffi 7r '" 
is equivalent to 7r 0 I acting on 1-{1f 0 l2(A). By Schur's lemma and 
Theorem (7.19), the map T -+ 10T is an isomorphism from .C(l2(A» 
to C(7r 0 I), and .C(l2(A» has trivial center, so 7r 0 I is primary. 

On the other hand, if the 7r",'S are not all equivalent, let E denote 
the set of their equivalence classes. If 1-{", is the space on which 7r '" 
acts, we then have ffi"'EA 1-{", = ffiO"EE MO" where MO" = ffi1f

u
EO" 1-{",. 

Let PO" be the orthogonal projection onto MO". Clearly PO" E C(ffi7r",). 
Moreover, if T E C(ffi7r",) and 7r", E 0", PT TI1-{", = 0 for all T =1= 0" E E 
by Proposition (7.21a) and Schur's lemma. It follows that T maps each 
subspace MO" into itself and hence that T PO" = PO"T for all 0". But this 
says that each PO" is in the center of C (ffi 7r "'), so ffi 7r '" is not primary. I 

It follows from Theorem (7.20) and Corollary (7.22) that the map 

(7.24) 

is a well-defined injection from G1 x G2 into (G1 x G2 f. If either G1 or 
G2 is type I, it is a bijection: 

(7.25) Theorem. If either G1 or G2 is type I, then every irreducible 
representation 7r of G I x G2 is equivalent to a representation of the 
form 7rl 0 7r2, and hence the map (7.24) is a bijection from G1 x G2 to 
(G1 x G2 f. 

Proof: Suppose G1 is type I (the argument is the same with G 1 and 
G2 switched). Let 7r 1(x) = 7r(X, 1) and 7r2(y) = 7r(l,y). 7r 1 and 7r2 are 
representations of G I and G2 on 1-{1f' and since (x, 1) (1, y) = (x, y) = 
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(l,y)(x,l), 1r2(y) E C(1rl) for every y E G2. Thus if T is in the center 
of C(1rl) then T E C(1r2) and hence T E C(1r). But then T c/ by 
Schur's lemma, so 1rl is primary. Therefore, after performing a unitary 
transformation we may assume that 11." = 11.1 ® 11.2 and 1rl 1rl ® I for 
some irreducible representation 1rl of G1• Then, by Schur's lemma and 
Theorem (7.19), 1r2(y) I ® 1r2(Y) for some 1r2(Y) E £(11.2). It is easily 
checked that 1r2 is a unitary representation of G2 (necessarily irreducible 
by Theorem (7.20)) and that 1r = 1rl ® 1r2' I 

When G1 and G2 are not type I, the conclusion of Theorem (7.25) 
may fail; see Mackey [86]. We shall present a concrete example of this 
phenomenon in §7.6. 

The Kronecker product and the inducing construction both give ways 
of manufacturing representations of a group G from representations of 
its subgroups. Ail ways of producing irreducible representations of G 
they apply in quite different situations; nonetheless, they are related. 
In fact, we have the following 'proposition, whose proof we leave as an 
instructive exercise for the reader. 

(7.26) Proposition. Let G = G1 X G2, and identify G1 with the sub­
group G 1 X {I} of G. If 1r is a representation of G 1, indg 1 (1r) is canon­
icallyequivalent to 1r ® A, where A is the left regular representation of 
G2 · 

7.4 Direct Integral Decompositions 

In this section we sketch the theory of direct integrals, to which we have 
alluded in a number of places. This theory is originally due to von Neu­
mann [127], and another version of it was developed by Godement [50]. 
Our treatment more or less follows Dixmier [28], to which we refer for a 
fuller discussion. The theory works well only under certain countability 
assumptions; accordingly, in this section (except for Theorem (7.36)) we 
consider only representations of second countable groups on separable 
Hilbert spaces. 

First we must define the direct integral of a family {11.a }aEA of Hilbert 
spaces with respect to a measure p, on the parameter space A. Roughly 
speaking, this space should consist offunctions 1 on A such that I(a) E 
11.a for each a and J 11/(a)llk dp,(a) < 00. If the 11.a 's are all copies of 
a fixed Hilbert space 11., there is no difficulty in this. From an abstract 
point of view there is no real harm in the assumption that 11.a = 11. for all 
a (cf. Proposition (7.29) below), but it is unnatural and inconvenient for 
concrete applications. On the other hand, if the 11.a 's are all different, it 
is not clear what one should mean by measurability of such functions I, 
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and there are certain pitfalls to be avoided. To come up with a workable 
definition will require a certain amount of toil, which we now undertake. 

Throughout this section, (A, M) will denote a measurable space, Le., 
a set equipped with a O'-algebra. A family {'H"'}"'EA of nonzero separable 
Hilbert spaces indexed by A will be called a field of Hilbert spaces over 
A, and an element of TI"'EA 'H", - that is, a map J on A such that 
J(a) E 'H", for each a - will be called a vector field on A. We denote 
the inner product and norm on 'H", by (-, .)", and 11·11",. A measurable 
field of Hilbert spaces over A is a field of Hilbert spaces {'H",} together 
with a countable set {ej}i of vector fields with the following properties: 

(i) the functions a --+ (ej(a), ek(a»)", are measurable for all j, k, 

(ii) the linear span of {ej(a)}i is dense in 'H", for each a. 

Before proceeding further, let us examine some examples. 

Example 1. Let 'H be a separable Hilbert space with orthonormal 
basis {ej}. If we set 'H", = 'H and ej(a) = ej for all a, we obtain a 
measurable field of Hilbert spaces over A, called a constant field. 

Example 2. Suppose A is discrete (Le., M consists of all subsets of 
A) and {'H",} is an arbitrary field of Hilbert spaces over A. For each a 
let d(a) = dim'H", and let {ej(a)}~("') be an orthonormal basis for 'H",. 
If we set ej(a) = 0 when j. > d(a), the vector fields ej make {'H",} into 
a measurable field. 

Example 3. Let A be a second countable manifold and V = {'H",} a 
vector bundle over A whose fibers 'H", are Hilbert spaces. By the local 
triviality of V, a partition of unity argument gives the existence of a 
countable family {ej} of continuous sections of V whose linear span is 
dense in the fiber over every point. V then becomes a measurable field 
of Hilbert spaces with respect to the Borel O'-algebra on A. 

Example 4. Let G be a second countable locally compact group, 
and let A = Po \ {O} be the set of functions ¢ of positive type on G 
with 0 < 11¢lloo :::; 1. Po is a compact Hausdorff space with the weak* 
topology, so A is a locally compact Hausdorff space. For each ¢ E A let 
'H¢ be the Hilbert space obtained by completing £I (G) with respect to 
the semi-inner product (I,g)¢ = J(g* * J)¢ as in §3.3. If J E Ll(G), 
let J(¢) be the image of J in 'H¢; then (J(¢),g(¢»)¢ = J(I* * g)¢ is a 
continuous function of ¢ for every J, 9 E £I (G). If {fj} is any countable 
dense subset of £l(G), the vector fields {];} then make {'H¢} into a 
measurable field of Hilbert spaces over A with respect to the Borel 0'­

algebra on A. 

The following proposition provides the crucial information about the 
structure of measurable fields of Hilbert spaces. 

(7.27) Proposition. Let {'H",l, {ej} be a measurable field of Hilbert 
spaces over A, with dim'H", = d(a) E [1,00]. Then {a E A: d(a) = m} 
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is measurable for m = 1,2, ... ,00. Moreover, there is a sequence {udr 
of vector fields with the following properties: 

i. for each a, {uk(ant(a) is an orthonormal basis for 11.a, and 
uk(a) = 0 for k > d(a) (if d(a) < (0); 

ii. for each k there is a measurable partition of A, A = U~l Ar, such 
that on each Ar, uk(a) is a finite linear combination ofthe ej(a) 's 
with coefficients depending measurably on a. 

Proof: First, define a sequence {h} of vector fields inductively as 
follows: h (a) is the first of the vectors el (a), e2(a), . .. that is nonzero; 
for j > 1, Ij(a) is the first of the vectors el(a), e2(a), ... that is not in 
the linear span of II (a), ... , Ij-l (a) if such a vector exists, and otherwise 
h(a) = O. Clearly {fJ(a)} and {ej(a)} have the same linear span for 
each a. 

Claim: Suppose k is a positive integer. There is a measurable partition 
{An~l of A such that for all j:5 k and alll, either h(a) = 0 for all 
a E Ar or h (a) = em(j) (a) =F 0 for all a E Ar where m(j) is independent 
ofa. 

We establish the claim by induction on k. For k = 1, let Nl == 
{a : el(a) =F O} and Al Nl \ ui- l N i • Clearly h(a) = el(a) for 
a E AJ. Since the ej ( a)'s span 11.a for each a we have Ul Ai = A. 
Also, ej(a) =:: 0 if and only if (ej(a),ej(a))a 0, and since these inner 
products are measurable in a, it follows that Al is measurable for aIll. 
Hence the claim is proved for k 1. 

Now suppose that k > 1 and that the sets Al have been constructed 
for j < k. It suffices to prove the claim with A replaced by B == At- l 

for an arbitrary integer l, as one then obtains the required partition of A 
by combining the resulting partitions of the At-l,s. Now, on B, either 
A-I = 0, in which case Ik 0 and we can take the trivial partition 
of B, or h = em(j) for j < k and h, ... , Ik-l are pointwise linearly 
independent. In the latter case, for each m the set Bm = {a E B : 
A(a) = em(a)} is given by 

Bm:= {a: D[em(l) (a), ... , em(k_l)(a), el(a)] 0 for l < m, 

D[em(l)(a), ... ,em(k-l) (a), em(a)] =F O}, 

where 

D[VI," .Vk] det({vi,Vj))tj""I' 

(We are using the fact that VI, ••. , Vk are linearly dependent if and only 
if D[vl, ... , Vk] 0.) It follows that the Bm's are measurable, and they 
together with Bo {a E B: A(a) = O} make up the required partition 
of B. The claim is established. 



222 A Course in Abstract Harmonic Analysis 

It follows immediately from the claim that {o: : h(o:) f O} is measur­
able for each k. Since 

{o: : d(o:) = m} {o:: Im(O:) f O} \ {o:: Im+I(O:) f O}, 

the first assertion of the proposition is proved. To prove the second one, 
simply apply the Gram-Schmidt process pointwise to the sequence {fA,} 
to obtain the sequence {Uk}. Then {ud has property (i) by construction. 
Moreover, on each A~, Uk is a linear combination of em( I), ... ,em(k) 
with coefficients that are continuous functions of the inner products 
(em(i) , em(j)} and hence are measurable, so (ii) holds too. I 

Given a measurable field of Hilbert spaces {Ho,}, {ej} on A, a vector 
field 1 on A will be called measurable if (1(0:), ej(O:))a is a measurable 
function on A for each j. 

(7.28) Proposition. Let {ud be as in Proposition (7.27). A vector 
field 1 on A is measurable if and only if (1(0:), Uk (O:)}a is a measur­
able function on A for each k. If 1 and 9 are measurable vector fields, 
(I(o:),g(O:)}a is a measurable function. 

Proof: If 1 is measurable, it follows from property (ii) of {Uk} that 
(I, Uk) is measurable for each k. On the other hand, by property (i) of 
{Uk} we have 

(I( 0:), ej (o:)} a = L (1(0:), Uk (O:))a (Uk( 0:), ej (O:))a· 
k . 

(Uk, ej) is measurable by (ii) again, so if (I, Uk) is measurable for all k, so 
is (I,ej). Likewise, if 1 and 9 are measurable, (I,g) = L.k(l,Uk)(Uk,g) 
is measurable. I 

Finally we are ready to define direct integrals. Suppose {Ha}, {ej} is 
a measurable field of Hilbert spaces over A, and suppose J.L is a measure 
on A. The direct integral of the spaces Ha with respect to J.L, denoted 
by 

j$ Ha dJ.L( 0:), 

is the space of measurable vector fields 1 on A such that 

11/112 j 11/(0:) II! dJ.L(O:) < 00. 

(The integrhnd is measurable by Proposition (7.28).) An easl modifica­
tion ofthe'usua.l proof that L2(Ji.) is complete shows that J Ha dJ.L(O:) 
i~ a ~ilbert space:with inner product 

(I,g) = r (I(o:),g(O:))a dJ.L(O:). 



Further Topics in Representation Theory 223 

Let us see how this works for the first three examples of measurable 
fields of Hilbert spaces discussed above. 

\1) In th.e case of a constant neld, 'Ho = 'H for all 0:, f~ 'Ho dJL(O:) is 
just the space of measurable functions from A to H that are square­
integrable with respect to J.1-. We denote this space by L2(A, J.1-, H). 

(2) If A is discrete and J.1- is counting measure on A, then J$ Ho dJ.1-(ex) 
is nothing but ffioEA Ho. 

(3) If the Ho's are the fibers of a vector bundle V, J$Ho dJ.1-(ex) is the 
space of sections of V that are square-integrable with respect to J.1-. 

We now make a few simple remarks about direct integrals. First, 
J$Ho dJ.1-( ex) really depends only on the equivalence class of J.1-. More 
precisely, if J.1-' is another measure on A such that J.1- and J.1-' are mutually 
absolutely continuous, it is easily verified that the map f ---+ f V dJ.1-/ dJ.1-' 
defines a unitary isomorphism from J$Ho dJ.1-(ex) to J$Ho dJ.1-'(ex). 

Second, if {AmH'° is a measurable partition of A, there is an obvious 
isomorphism 

Third, suppose dim Ho = d is independent of ex. Let {Uj} be as 
in Proposition (7.27); these vector fields furnish an orthonormal basis 
for Ho for each ex and hence an identification of Ho and Cd (where 
Coo = l2). Once this identification is made, the field {Ho} becomes 
a constant field, and by Proposition (7.28), the vector fields that are 
measurable with respect to the original measurable field become the 
vector fields that are measurable with respect to this constant field. In 
short, the choice of {Uj} yields an isomorphism between J$Ho dJ.1-( ex) 
and L2(A, J.1-, Cd). 

If we combine the last two remarks and Proposition (7.27), we obtain 
the following result. 

(7.29) Proposition. Let {Ho}, {ej} be a measurable field of Hilbert 
spaces over A, and let J.1- be a measure on A. For m = 1,2, ... ,00, let 
Am = {ex E A : dim Ho = m}. Then a choice of vector fields {Uj} as in 
Proposition (7.27) defines a unitary isomorphism 

J$ Ho dJ.1-(ex) ~ L2(Aoo, J.1-, l2) EEl EB L2(Am, J.1-, C m
). 

I 

At this point we can answer a question that must have been in the 
reader's mind, namely, the extent to which J$Ho dJ.1-(ex) depends on tlle 
choice of {ej} in the definition of measurable field of Eilbert spaces. Ev­
idently there is some dependence, for {ej} is used to specify the measUr­
able vector fields out of which J$Ho dJ.1-(ex) is made up. Indeed, suppose 

, . 
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{€k} is another sequence of vector fields that define a measurable field 
structure on fHo:}. 

On the one hand, if the inner products (ej(O'), €k(O'))o: are all mea­
surable functions of 0', the sets of {ej }-measurable vector fields and 
{€k }-measurable vector fields coincide, and hence so do the direct inte- . 
grals fashioned out of them. 'Ib see this, let {Uj} be as in Proposition 
(7.27). If f is {ej}-measurable, the inner products (f(O'),Uj(O')}o: and 
(€k(O'),Uj(O'))o: are measurable in 0'; hence so is 

(f(O') , €k(O')}O: = "l)f(O') , Uj(O')}o:(Uj(O'), €k(O')}o:, 
j 

so f is {€d-measurable. 
On the other hand, the inner products (ej(O') , €k(O'»)o: need not be 

measurable, and in this case the sets of {ej }-measurable vector fields 
and {€k }-measurable vector fields will be quite different. For exam­
ple, let E be a nonmeasurable set in A, let ¢ = XE XA\E, and let 
€j(O') = ¢(O')ej(O'). Then the pointwise inner products of the €/s are 
the same as those of the ej's since I¢I == 1, so {€j} defines a structure 
of measurable field on {Ho:} just as {ej} does - but not the same one. 
More generally, one can obtain a new structure of measurable field by 
replacing ej(O') by U(O')ej(O') where U(O') is a unitary operator on Ho: 
depending completely arbitrarily on 0'. 

However, Proposition (7.29) shows that up to an isomorphism that 
respects the direct integral structure (although not the identity of the 
individual vectors in the spaces Ho:), If£) Ho: dfL(O') does not depend on 
the choice of {ej}: the spaces L2(Am, fL, em) and P(Aoo, fL, l2) are quite 
canonical. Hence, we shall sometimes omit mentioning {ej} in referring 
to direct integrals of Hilbert spaces. 

We now consider direct integrals of operators. Let {Ho:}, {ej} be a 
measurable field of Hilbert spaces over A. A field of operators over A 
is an element T of TIo:EA C(Ho:); T is measurable if 0' - T(O')f(O') is 
a measurable vector field whenever f is a measurable vector field. 

(7.30) Proposition. Let T be a field of operators over A. Then T is 
measurable if and only if (T(O') ej (0') , ek(O')}o: is a measurable function 
on A for all j, k. 

Proof: "Only if" is obvious. If 

i; measurable for all j,k then T*(O')ek(O') is measurable for all k; but 
then if f is a measurable vector field, 
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is measurable for all k by Proposition (7.28), so T(a)f(a) is 
measurable. I 

Suppose fJ. is a measure on A and T is a measurable field of operators 
such that 

(7.31) IITlloo = ess sup IIT(a) II < 00. 
aEA 

Then IIT~a)f(a)lla :::; IITlloollf(a)lIa a.e., so T defines a bounded opera­
tor on J 1{a dfJ.( a) which we denote by tfl T( a) dfJ.( a), or by tIl T for 
short: 

[(Jtfl T(a) dfJ.(a») f] (a) = [(JtflT)f] (a) T(a)f(a). 

Jtfl T is called the direct integral of the field T. It has the obvious 
elementary algebraic properties: 

JtflT + JtflS = Jtfl(T + S), 

JtflT Jtfl S = JtflTS, (JtflT)* = JtflT*. 

(Note. If fJ. is not semi-finite - a case that could perfectly well be 
excluded from the beginning - the usual modification of the essential 
supremum is called for in (7.31): "IITlloo:::;"\" means that IIT(a)1I :::; ,.\ 
for all a except in a locally null set. We shall neglect this point in what 
follows; the reader may repair the resulting solecisms.) 

(7.33) Proposition. 1fT is an essentially bounded measurable field of 
operators, then II Jtfl Til = IITlloo. 

Proof: Obviously II Jtfl Til :::; IITlloo. If f E Jtfl1{a dfJ.(a) and ¢ E 
Loo (fJ.) , 

J 1¢(a)F'~IIT(a)f(a)lI~ dfJ.(a) = IIJtflT(¢f)1I 2 

:::; IIJtflT1I 211¢f1l 2 
= II JtflTIl 2 J 1¢(a)1 2 I1f(a)lI! dfJ.(a), 

from which it follows that 

(7.34) IIT(a)f(a)lIa :::; IIJtflTllllf(a)lIa a.e .. 

In fact, (7.34) holds for any measurable vector field f, as one sees by 
applying (7.34) with f(a) replaced by IIf(a) II;; 1 f(a}xE(a) where E is 
an arbitrary subset of A of finite measure. Now, by taking linear comb!­
nations of the e/s with coefficients in a countable dense subset of C w,"e 
can make a sequence {/j} of measurable vector fields such that {/j(a)} 
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is dense in 1-(j; for each 0:. On applying (7.34) to the Ii's, we see that 
IIT( 0:) II :::; II fEB Til for almost every 0:, i.e., IITlloo :::; II fEB Til· I 

(7.35) Corollary. If fEB T(o:) dJ.L(O:) = fEB 8(0:) dJ.L(O:) then T(o:) = 
8(0:) a.e. 

. EB . 
Proof: If f (T - 8) = 0 then liT - 81100 = o. 
A simple but important special case of direct integrals of operators 

arises when the operators T(o:) are all scalar multiples of the identity, 
T(o:) = ¢(o:)J with ¢ E Loo(J.L), in which case fEB T is just the operator 
1--+ ¢/· We call such operators on fEB1-{o; dJ.L(O:) diagonal operators. 

Now suppose that G is a locally compact group and that 7ro; is a 
unitary representation of G on 1-{o; for each 0: E A, such that 0: --+ 7r 0; (x) 
is a measurable field of operators for each x E G; we shall call {7r o;} o;E A 

a measurable field of representations of G. Since II7ro;(x) II == 1, we 
can form the direct integral 

7r(x) = fEB 7ro;(X) dJ.L(O:). 

7r is a unitary representation of G on fEB1-{o; dJ.L(O:). Indeed, that 7r(x) 
is unitary for each x and that 7r(xy) = 7r(x)7r(Y) follows from (7.32), 
and the strong continuity of 7r follows from the strong continuity of the 
7r 0; 's together with the dominated convergence theorem. 7r is called the 
direct integral of the representations 7r 0;' 

Example. Let A = Po \ {a} and {1-{¢}¢EA be as in the fourth example 
at the beginning of this section. For each ¢ E A let 7r ¢ be the canonical 
representation of G on 1-{¢. Then 

is a continuous function of ¢ for all I, 9 E £I (G), so {7r ¢} is a measurable 
field of representations, and we can form fEB 7r ¢ dJ.L( ¢) for any Radon 
measure J.L on A. 

We now consider the problem of expressing an arbitrary unitary repre­
sentation of a group G as a direct integral of irreducible representations. 
When G is compact, the problem is solved by Theorem (5.2), and when 
G is Abelian it is essentially solved by Theorem (4.44). Indeed, we have: 

(7.36) Theorem. Let G be a locally compact Abelian group, and let 7r 
be a unitary representation of G on 1-{. Then 7r is equivalent to a direct 
integral of irreducible representations. 

Proof: By combining Theorem (4.44) and the Spectral Theorem 
0.47) (or the arguments leading to them), one sees that there is a mea­
sure space (n, J.L), where n is a disjoint unign of copies of 8, and a 
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unitary map U : H ---+ £2(J.L) such that U7r(x)U- 1 is multiplication by 
the function ~ ---+ (x,~) on each copy of G. In other words, each wEn 
determines a character ~w E 8 such that U7r(x)U- 1 f(w) = (x, ~w)f(w) 
f2r f E £2(J.L) , and the map w ---+ ~w (the identity map on each copy of 
G) is obviously measurable. But this says that U7r(-)U- 1 is the direct 
integral J$ ~w dJ.L( w) acting on J$ C dJ.L = £ 2 (J.L). I 

We now return to the general (noncompact, non-Abelian) case and 
present the main theorems on direct integral decompositions. We mo­
tivate the fundamental existence theorem with the following considera­
tions. If 7r = J$ 7ra dJ.L(a) , the diagonal operators f ---+ ¢f (¢ E £OO(J.L» 
all belong to C(7r). In particular, the operators f ---+ XEf, where E is 
a measurable subset of A, are projections whose ranges are invariant 
subspaces for 7r. The following theorem effectively asserts the converse, 
that for any projection-valued measure P with values in C(7r) there is 
a direct integral decomposition of 7r with respect to which the P( E) 's 
are precisely the projections that are diagonal. However, if one has a 
commuting family of projections in C(7r), the weakly closed subalgebra 
of operators they generate will be a commutative subalgebra of C(7r), 
and the theorem is phrased in terms of such subalgebras. 

(7.37) Theorem. Suppose G is a second countable locally compact 
group, 7r is a unitary representation of G on a separable Hilbert space 
H, and B is a weakly closed commutative C* subalgebra ofC(7r). Then 
there is a standard measure space (A,M,J.L), a measurable field {Ha} 
of Hilbert spaces on A, a measurable field {7r a} of representations of G, 
and a unitary map U : H ---+ J$Ha dJ.L(a) , such that: 

i. U7r(x)U- 1 = J$ 7ra(x) dJ.L(a) for x E G; 

ii. U7r(f)U- 1 = J$ 7ra (f) dJ.L(a) for f E £l(G); 

iii. UBU- 1 is the algebra of diagonal operators on J$Ha dJ.L(a). 

Theorem (7.37) is essentially due to von Neumann [127]; other proofs 
have been given by Godement [50], Segal [112], and Mackey [86]. The 
proofs of von Neumann and Mackey are highly measure-theoretic, while 
those of Godement and Segal are more functional-analytic. The com­
plete proof of Theorem (7.37) is too long to give here, but it is impossible 
to resist the opportunity to sketch the ideas of the Godement-Segal ar­
gument, as they involve a beautiful interplay of techniques developed 
earlier in this book. Here, then, is an outline of the proof d'apres Gode­
ment [50]. 

First, since H is separable, 7r is the direct sum of countably many 
cyclic representations, and it suffices to prove the theorem for each of 
these; hence we shall assume that 7r is cyclic. We may also assume that 
B contains I. Let z be a unit cyclic vector for 7r; let 6. be the spectrum 
of B; let J.Lu,v be the measure on 6. associated to u, v E H as in the 
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spectral theorem ((Tu,v) = fTdJ.1-u,v for T E B); and let J.1-o = J.1-z,z. 
Suppose S E £('H) commutes with every operator in B. If T is any 
positive operator in B we have 

J T dJ.1-sz,z = (TSz, z) = (ST I/2Z, TI/2z) ~ IISIIIITI/2zll 

= IISII J TdJ.1-o, 

It follows that J.1-sz,z is absolutely continuous with respect to J.1-o with 
Radon-Nikodym derivative 6s E Loo(J.1-o) satisfying 116s ll 00 ~ IISII. More­
over, since 6s·s dJ.1-o = dJ.1-sz,sz is a positive measure, we have 6s.s ~ 0 
for all S. 

By taking S = 1l'(x)*1l'(y) with X, Y E G and using the cyclicity of z, 
one easily sees that all the spectral measures J.1-u,v are absolutely contin­
uous with respect to J.1- and that supp(J.1-) = 6... Hence, for every S as 
above, the spectral functional calculus yields an operator Ts such that 
(Tsu, v) = f 6s dJ.1-u,v for u, v E 'H. (The point is that 6s is only defined 
J.1-o-a.e., but it is then defined J.1-u,v-a.e. for all u, v.( Ts commutes with 
every operator that commutes with B; since B is weakly closed, the von 
Neumann density theorem (1.57) implies that Ts is actually in B. But 
this means that after modification on a J.1-o-null set, 6s equals the con­
tinuous function Ts. In short, to each S E £('H) that commutes with 
B we have associated a unique continuous function 6s on 6.. such that 
116sllsup ~ IISII and 6s·s ~ O. 

Now take S = 1l'(J) for I E LI(G). For each h E 6.., the map I --+ 

6"(f)(h) is a linear functional on LI(G) such that 16"(f) (h)1 ~ 111111 and 
6,,(/" *f) (h) ~ 0, so it is given by integration against a function of positive 
type ¢h E Po. The map h --+ ¢h (call if cI» is continuous from 6.. to the 
closed unit ball of Loo(G) with the weak* topology, and the latter is 
second countable since LI(G) is separable. Let A = cI>(6..) \ {O}, and let 
J.1- be the push-forward of J.1-o to A, J.1-(E) = J.1-o(cI>-I(E)) for E a Borel 
subset of A. Then (A, J.1-) is a standard measure space since cI>(6..) is 
compact and metrizable. 

For ¢ E A, let 'He/> and 1l'e/> be the Hilbert space and representation of 
G canonically associated to ¢ as in §3.3. The correspondence 

1l'(J)z --+ I(¢) = image of I in 'He/> 

sets up a unitary map from 'H to f$ 'He/> dJ.1-(¢) that intertwines 1l' and 
£$ 1l' e/> dJ.1-( ¢). Finally, if T E B, let VT be the push-forward of the measure 
f dJ.1-o to A. One checks that IVT I ~ IITIIJ.1-, so that dVT = "IT dJ.1- for some 
"IT E Loo(J.1-); then UTU- I is the diagonal operator g --+ "ITg. I 

Particular choices of the algebra B in Theorem (7.37) will lead to 
particularly interesting decompositions of the representation 1l'. The 
following theorem gives the two most important cases. (The reader may 
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find it an instructive exercise to prove this theorem for the special case 
where 7r is a direct sum of irreducible representations; Theorem (7.23) 
and its proof may be useful.) 

(7.38) Theorem. Let G, 7r, B, A, J.L, and 7r0: be as in Theorem (7.37). 

a. If B is the center of C (7r), 7r 0: is primary for J.L-almost every Q:. 

b. 7r0: is irreducible for J.L-almost every Q: if and only if B is a maximal 
commutative *-subalgebra of C (7r). 

Part (a) is due (in essence) to von Neumann [127] and part (b) to 
Mautner [90]. Other proofs of part (b) have been given by Godement 
[50] and Segal [112]. Both parts of the theorem are proved in Mackey 
[86] and Dixmier [29]. 

Theorems (7.37) and (7.38b) yield the existence of an irreducible de­
composition of an arbitrary unitary representation of a second countable 
group. 

Remark. There is a temptation to try to give a simple proof of this 
result as follows. Let 7r be a representation of G; by Proposition (3.3) we 
may assume that 7r has a unit cyclic vector u. Let 'l/J(x) = (7r(x)u, u) be 
the associated function of positive type. By Choquet's theorem there is a 
measure J.L on £(PJ) such that 'l/J = J ¢ dJ.L(¢). We form the direct integral 
J$ 7r¢ dJ.L(¢) as in the example preceding Theorem (7.36); each 7r¢ is 
irreducible by Theorem (3.25). Moreover, the correspondence 7r(J)u --+ 

J is easily seen to define an isometry V from 'H1f into J$ 'H¢ dJ.L( ¢) 
that intertwines 7r and J$ 7r ¢ dJ.L( ¢). The trouble is that the measure 
J.L is not unique, and unless it is chosen carefully, the Hilbert space 
'Hp. = J$ 'H¢ dJ.L( ¢) will be too big, so that V is not surjective. (It 
can happen, for example, that dim 'H1f < 00 but dim 'Hp. = 00.) 

The next question is the extent to which direct integral decomposi­
tions are unique. The answer requires a little thought. We have already 
observed that the measure J.L can be replaced by an equivalent measure 
without changing anything, and in the preceding theorems there is no 
uniqueness in the measure space A, much less in the measure on it. 
Indeed, consider a simple example: let 7r be the trivial representation 
of G on an infinite-dimensional Hilbert space 'H (7r(x) = I for all x). 
We can think of 'H as l2 = J$ C dJ.L where J.L is counting measure on Z 
or as L2([0, 1]) = i$ Cd)" where).. is Lebesgue measure on [0,1]; thus 
7r = J$ 7ro dJ.L = J 7ro d)" where 7ro is the trivial representation of G on 
C, and J.L and ).. bear no resemblance to one another! 

To see what form a uniqueness theorem should take, let us consider the 
case where 7r is a direct sum of irreducibles, 7r = ffi7rj. Here the answer 
is clear: the equivalence classes of the 7rj's and the multiplicity with 
which each class occurs are uniquely determined by 7r. This suggests 
that we should consider direct integral decompositions whose parameter 
space is G. As one might suspect, this works well precisely when Gis 
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measure-theoretically "decent," that is, in view of Theorem (7.6), when 
G is type L 

Let us consider 0 as a measu!able !pace with the Mackey Borel struc­
ture. For n = 1,2, ... ,00, let Gn C G be the set of equivalence classes 
of n-dimensional irreducible representations of G. If one fixes an n­
dimensional Hilbert space 'Hn for each n, there is a canonical measurable 
field of Hilbert spaces {'Hp} EO over 0 such that 'Hp = 'Hn for pEOn, 

p ~ 

obtained by forming the appropriate constant field over each Gn and 
putting them together. 

(1.39) Lemma. Let A be a subset of 0 on which the Mackey Borel 
structure is standard. There is a measurable field of representations 
{ 1T p} over 0, acting on the canonical field of Hilbert spaces over 0, such 
that 1Tp E P for each pEA. 

This result is due to Mackey [82, Theorem 10.2]; another proof for 
the case where G is type I can be found in Dixmier [29, §4.6]. (The only 
point is the measurable selection of 1T pEP for p E Ai for p ~ A one can 
take 1Tp to be the trivial representation on 'Hp.) 

A measure P on 0 will be called standard if there is a set A cOon 
which the Mackey Borel structure is standard such that p(O\A) = O. In 
this case, we may form the direct integral J~ 1Tpdp(p) where 1Tp is as in 
Lemma (7.39). This representation depends, up to unitary equivalence, 
only on the equivalence class of p and not on the particular field {1T p}. 
If G is type I, by Theorem (7.6) we may take A 0 in Lemma (7.39), 
and every measure on 0 is standard. 

(1.40) Theorem. Suppose G is second countable and type I, and 1T 
is a unitary representation of G on a separable Hilbert space. Let 
{1Tp} eo be as in Lemma (7.39) with A = O. There exist finite mea-

p ~ 

sures PI, P2, •.. ,Poo on G, uniquely determined to within equivalence, 
such that 

i. pj 1. Pk for j -I k, 

ii. 1T is equivalent to PI EB 2P2 EB··· EB OOPOOI where Pn = J~ 1Tp dPn(P) 
and nPn denotes the direct sum of n copies of Pn. 

For the proof, see Dixmier [29, §8.6J, or Mackey [86, Theorems 1.21 
and 2.15]. 

When G is Abelian, Theorem (7.40) follows from Theorem (4.44) and 
the spectral mUltiplicity theory for commutative C* algebras (for which, 
see Halmos [54] or Nelson [96]), and it is valid (when properly rephrased) 
without any countability assumptions on G or 'H. 

It remains to ask what happens when G is not type L The answer is: 
terrible things. The uniqueness theorem (7.40) breaks down completely; 
more specifically, if ff is a primary representation of G that is not of the 
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form mr (in the notation of Theorem (7.40)) where 11" is irreducible, there 
is generally no uniqueness in its direct integral decomposition. Such a 
representation can have two decompositions, 

such that the 11"0; 's and the Pf3's are all irreducible and no 11"0; is equivalent 
to any pf3. In fact, one has the following theorem. 

(7.41) Theorem. HG is not type I, there exist mutually singular stan-
~ $ $ 

dard measures J.1- and von G such that J 1I"p dJ.1-(p) and J 1I"p dv(p) (de-
fined as in the remarks following Lemma (7.39}) are equivalent primary 
representations. 

This result is due to Dixmier [27]. We shall present a concrete example 
of this phenomenon in §7.6j others can be found in Mackey [79]' [86, 
§3.5]' and Kirillov [68, §19]. 

When G is not type I, one can do a little better by considering primary 
decompositions instead of irreducible decompositions. Indeed, Theorem 
(7.38a) shows that there is a natural decomposition of any representation 
as a direct integral of primary representations. The only non-canonical 
thing here is the measure space (A, J.1-) on which the integral is based 
(the various proofs of Theorem (7.37) give quite different A's), and this 
defect can be remedied. 

Some terminology: two representations 11" and p of G are called quasi­
equivalent if there is no subrepresentation 11"' of 11" such that C(1I"', p) = 
{O}, and no subrepresentation p' of p such that C(1I", p') = {O}. Unitary 
equivalence obviously implies quasi-equivalence, and the two notions co­
incide for irreducible representations. More generally, if 11" and pare 
direct sums of irreducible representations, 11" and p are quasi-equivalent 
if and only if exactly the same irreducible equivalence classes occur in 
these direct sums, perhaps with different multiplicities. 

Let e be the set of quasi-equivalence classes of primary representa­
tions of Gj e is called the quasi-dual of G. There is a natural map 
from 8 to e taking each equivalence class of irreducible representations 
to its quasi-equivalence class. When G is type I, every primary repre­
sentation is quasi-equivalent to the irreducible representation of which 
it is a multiple, so this map is a bijection. However, when G is not type 
I, e is larger than 8. 

e is endowed with a a-algebra just like the Mackey Borel structure on 
8 (~ee Ernest [3~ or Dixmier [29]), and one defines standard measures 
on G just as on G. The refined form of Theorems (7.37) and (7.38a) is 
then the following. 

(7.42) Theorem. Suppose G is second countable and 11" is a representa­
tion ofG on a separable Hilbert spac~. There is a standard measure J.1- on 
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G, a measurable field of Hilbert spaces {1ip} over G, and a measurable 
field of representations {-/l"p} on {1ip} such that 7rp E P for J.1--almost ev­
ery pEG; th~re is a unitary equivalence U between 7r and tB 7rp dJ.1-(p); 
and UC(7r)U- 1 is the algebra of diagonal operators on JtB 1ip dJ.1-(p). If 
J.1-' and {7r~} also have these properties, then J.1- is equivalent to J.1-' and 7rp 

is equivalent to 7r~ for J.1--almost every p. 

This result is due to Ernest [33]; the proof can also be found in Dixmier 
[29, §8.4]. The decomposition 7r ~ JtB 7rp dJ.1-(p) in this theorem is called 
the central decomposition of 7r. 

7.5 The Plancherel Theorem 

The subject of this section is, roughly speaking, the explicit decom­
position of the regular representation of a locally compact group G as 
a direct integral of irreducible representations. More precisely, let G 
be a unimodular locally compact group. (We shall consider the non­
unimodular case at the end of this section.) We have the right and left 
regular representations of G on L2(G), 

p(x)f(y) = Rxf(y) = f(yx), >..(x)f(y) = Lxf(y) = f(x-1y). 

Since RxLy = LyRx for all x, y E G (this is just the associative law), 
the representations p and >.. can be combined to give a representation T 

ofGxGonL2(G): -

T(X, y)f(z) = f(y-l zx). 

T is called the two-sided regular representation of G (although it 
is actually a representation of G x G). Assuming that G is second 
countable, we shall be interested in obtaining the decomposition of T 

into irreducible representations a and the corresponding decomposition 
of L2(G) as a direct integral JtB 1iu dJ.1-(a). When G is type I, this will 
yield the decomposition of Rand L into primary representations that are 
explicitly of the form 7r 0 I with 7r irreducible, and the isomorphism be­
tween L2( G) and JtB 1iu dJ.1-(a) will take the form of a "Fourier inversion 
theorem" and a "Parseval formula." This is the Plancherel theorem. 

To begin with, let us see how this works when G is Abelian or compact. 
In both these cases, we have already proved the essential results, and it 
is just a matter of interpreting them properly. 

When G is Abelian, the Fourier transform F is a unitary man from 
~ tB ;,(" 

L2(G) to L2(G) = Ja C~ (where d~ denotes Haar measure on G) such 
that Fp(x)F-lg(~) = (x,~)g(~) and F>"(x)F-lg(~) = (x, ~)g(~). In 
other words, when we regard elements ~ of 8 as representations of G, 
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we have F pF- 1 = J$ ~ dE and F >"F- 1 = J$ ~ ~, and hence F'T F- 1 = 
J$ E®~~. This gives the decomposition of p, >.., and 'T into irreducibles. 

When G is compact, we have the Peter-Weyl decomposition L2(G) 
ffi[".]ECe"., and Theorem (5.9) says precisely that the restriction of the 
two-sided regular representation to e". is equivalent to 'IT ® so 'T 9:! 

ffi[".]EC'IT ® 'if. We can be more explicit: if 1 E L2(G) and ['IT] E 8, the 

Fourier transform f( 'IT) as defined in §5.3 is a linear operator on the finite­
dimensional space 1{".. It can therefore be regarded as an antilinear map 
from the dual1{; 1{" of 1{". into 1{"., that is, an element of 1{". ® 1{". 
When this identification is made, (5.18) says that 

In other words, the map 1 -+ f('IT) intertwines 'T with 'IT®'if. The Fourier 
transform on G can therefore be regarded as the explicit realization of 
the unitary map U : L2(G) -+ ffi 1{". ® 1{" that turns 'T into ffi'IT ® 'if. 
(The normalization factors d". are incorporated into the norm on the 
space ffi 1{". ® 1{", which should be regarded as J$1{". ® 1{" dJ.L(['IT]) 
where J.L is d". times counting measure on 8.) The inverse of U is given 
by the inversion formula (5.15), and the unitarity of U is expressed by 
the Parseval formula (5.16). 

With this in mind, it is easy to conjecture the correct generalization 
to non-compact groups. Indeed, suppose G is second countable, uni­
modular, and type I. By Theorem (7.6) and Lemma (7.39), there is a 
measurable field of irreducible representations over 8 such that the rep­
resentation at the point p E 8 belongs to the equivalence class p. We 
shall assume that such a field has been fixed once and for all and identify 
the points of 8 with the representations in this field. If 1 ELI (G), then, 
we define the Fourier transform of 1 (as in the compact case) to be 
the measurable field of operators over 8 given by 

(7.43) 

The basic properties (5.17) and (5.18) of the Fourier transform remain 
valid in this general situation. We wish to think of f('IT) as an element 
of 1{". ® 1{". However, when 'IT is infinite-dimensional, 1{". ® 1{" can be 
identified not with the full space of bounded operators on 1{". but with 
the space of Hilbert-Schmidt operators (see Ap;:>endix 2). One of the 
things that must be proved, therefore, is that I('IT) is Hilbert-Schmidt 
for a suitably large class of f's and 'IT's. However, this turns out to be 
the case, and here is the resulting theorem. 

Let 

3 1 = LI(G) n L2(G), 3 2 = linear span of {f * g: I,g E 3 1
}. 
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The elements of :.r2 are finite linear combinations of convolutions of 
elements of :.r1• They are continuous functions since L2 * L2 C Co. :.r2 

will play the role here that the space Bl(G) played in §4.3, and indeed 
:.r2 C Bl (G) when G is Abelian. 

(1.44) The Plancherel Theorem. Suppose G is a second countable, 
unimodular, type I group. There is a measure f..L on 0, uniquely deter­
mined once the HaM measure on G is Jixed, with the following properties. 
The Fourier transform f -> 1 maps :.r 1 into Jm 'H.'/I" ® 'H.:rrdf..L(rr), and it 
extends to a unitary map from L2(G) onto pI! 'H.'/I" ® 'H.:rrdf..L(rr) that in­
tertwines the two-sided regular representation T with Jm rr ® 1f df..L( rr). 
For f, 9 E :.r1 one has the Parseval formula 

(7.45) f f(x)g(x) dx = f tr[l(rr)g(rr)*] df..L(rr) , 

and for hE :.r2 one has the Fourier inversion formula 

(7.46) h(x) = f tr[1?(x)h(rr)] df..L(rr) (x E G). 

This theorem is due (in a slightly different form) to Segal [111], [112] 
and Mautner [91]; the proof may be found in Dixmier [29, §18.8]. Let 
us amplify the statement a bit. 

First, the fact that the Fourier transform maps :.r1 into Jm 'H.'/I" ® 
'H.:rrdf..L(rr) means, in particular, that when f E :.r1 , l(rr) is Hilbert­
Schmidt for f..L-almost every rr and its Hilbert-Schmidt norm is square­
integrable on O. This being the case, if f, 9 E :.r1 then (f * 9 n rr) = 
g(rr)l(rr) is trace-class for f..L-almost every rr and its trace is integrable on 
O. (See Appendix 2.) It follows that the integral in (7.46) is well-defined 
for all hE :.r2 • 

Second, (7.45) (which is just a restatement of the fact that the Fourier 
transform is unitary) is formally equivalent to (7.46). Indeed, (7.45) 
follows from (7.46) by taking h = g* * f and x 1. On the other hand, 
(7.46) for x 1 follows at least formally from (7.45) by taking f = h 
and 9 = an approximate identity, and (7.46) for general x follows from 
(7.46) for x 1 by replacing h with Rxh. 

Third, if we restrict the two-sided regular representation T to the 
groups G x {I} and {I} x G, we obtain the decompositions of the right 
and left regular representations into type I primary representations, 

where the equivalences are given by the Fourier transform. (These are 
actually the central decompositions of p and ,\, as follows from Theorem 
(7.47) below.) In conjunction with Proposition (7.29), they immediately 
yield the canonical decompositions of p and>' into irreducibles as in 
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Theorem (7.40). Indeed, let an {11' E a: dim1-l.". = n}. Then the 
measures j.tn of Theorem (7.40) are given by j.tn(E) = j.t(E n an) in the 
case of p and j.tn (E) = j.t(Enan) in the case of A, where E = {1f : 11' E E}. 

The measure j.t in the Plancherel theorem is called the Plancherel 
measure on a. When G is Abelian, Plancherel measure is Haar mea­
sure, and when G is compact, it is given by jJ.(E) = L..".EE d.".. In both 
these cases, the support of the Plancherel measure is all of a; that is, 
there is no nonempty open U c a such that j.t(U) = O. It may come as 
something of a surprise that this is not the case in generaL Indeed, the 
condition that supp j.t = a is equivalent to the amenability of the group 
G, a condition which has many other characterizations; see Dixmier [29] 
and Greenleaf [52]. For connected Lie groups, amenability is equiva­
lent to having a solvable normal subgroup with compact quotient; in 
particular, noncompact semisimple groups are not amenable. 

The determination of the Plancherel measure for non-compact, non­
Abelian groups is a difficult problem. The Plancherel measure has been 
explicitly determined for all connected semisimple Lie groups by Harish­
Chandra [58], [59]; see also Knapp [70]. (This has been done in spite 
of the fact that the full dual space has not yet been determined for 
many semisimple groups! The "unknown" representations form a set of 
Plancherel measure zero.) For connected nilpotent Lie groups, one has 
a fair amount of information about the Plancherel measure in terms of 
the Kirillov theory, and it has been explicitly determined in some special 
cases; see Corwin and Greenleaf [23]. Kleppner and Lipsman [69] have 
shown how to study Plancherel measure in terms of the Mackey machine; 
in many cases they are able to compute the Plancherel measure of G 
in terms of the Plancherel measures of a normal subgroup N and the 
various little groups in G / N. 

Some further insight into the Plancherel theorem is afforded by the 
following theorem of Segal [110]. 

(7.47) Theorem. Let G be a unimodular locally compact group with 
regular representations p and A, and let R. and C be the weakly closed 
algebras in C(L2(G)) generated by {p(x) : x E G} and {A(X) : x E G}, 
respectively. 

a. R. C(A) and C = C(p). 

b. An operator T E C(L2(G)) commutes with every element ofC(p) 
if and only ifT E C(A), and vice versa. 

c. C(p) nC(A) is the common center ofC(p) and C(A). 

Sketch of proof; (b) follows from (a) and the von Neumann density 
theorem (1.57), and (c) is an immediate corollary of (b). Hence, since 
the situation is symmetric in p and A, it suffices to show that C C(p). 

On the one hand, since left translations commute with right transla.­
tions it is clear that A(X) E C(p) for all x E G and hence that C c C(p). 
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To prove the reverse inclusion, suppose T E C(p). If f,g E L1 n L2 we 
have 

A(f)g j f(y) [A(y)g] dy f * 9 j[P(Y)f]g(y-1)dY = p(g)f, 

where g(x) g(x- 1). The operator p(g) belongs to R by Theorem 
(3.12), so it commutes with T. Hence, 

TA(f)g T(f * g) Tp(g)f p(g)Tf = Tf * g. 

Suppose Tf ELl: we then have TA(f) = A(Tf), and hence TA(f) E C 
by Theorem (3.12) again. An additional approximation argument, for 
which we refer the reader to Segal [110], shows that the same conclusion 
holds without assuming T fELl. But A(f) --+ I strongly as f runs 
through an approximate identity, so T E C. I 

The Plancherel theorem admits various partial generalizations to 
groups that fail to be second countable, unimodular, or type I. We now 
discuss the most important of these. 

Suppose G is unimodular and second countable but not type L There 
is little hope of obtaining a canonical irreducible decomposition for the 
left or right regular representation, but - a pleasant surprise - there is 
such a decomposition for the two-sided regular representation. Indeed, 
let T = I$ Ta df,L(o) be the central decomposition of T as in Theorem 
(7.42). Since C(T) C(p) n C(A) is Abelian by Theorem (7.47), this 
is actually a decomposition into irreducible representations by Theo­
rem (7.38b). It follows easily that the representations Pa(x) = Ta(X, 1) 
and Aa(X) = Ta(l,x) of G are primary, and we have p = I$ pa df,L(o) , 
A = I$ Aa df,L(o). These are the central decompositions of p and A, by 
Theorem (7.47). The difference between this and the type I case is that 
Ta is usually not of the form tr ® 'if for an irreducible representation tr 
of G, and Pa and Aa are usually not multiples of irreducible representa­
tions. 

There is an analogue of the Parseval formula (7.45) here. Namely, one 
defines the operators l(Aa) and l(Pa) as in (7.43), and then 

j f(x)g(x)dx = j trpa [f(Pa)g(Pa)*] df,L(o) 

j trAa [l(Aa)g(Aa)*] df,L(o) , 

where trpa and trAa are the generalized traces associated to the von Neu­
mann algebras generated by the representations Pa and Aa. This result 
is due to Segal [111] and Mautner [91); we refer the reader to Dixmier 
[28], [29] for a proof and an explanation of the generalized traces. (An 
important part of the theorem is that the only von Neumann algebras 
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that arise in this situation are ones for which the appropriate traces ex­
ist; i.e., factors of type III do not occur.) The Plancherel formula for 
the Mautner group is worked out in a concrete fashion in Cowling [24]. 

One word of caution: for some groups the preceding results are essen­
tially vacuous because p and>' are primary to begin with, and hence (by 
Theorem (7.47)) T is irreducible. Examples include the rational ax + b 
group, (defined like the usual ax + b group but with a and b rational and 
with the discrete topology) and free groups on more than one generator. 
We shall discuss the latter example in §7.6; see Mackey [86, §3.5] for the 
former. 

We now turn to the case of nonunimodular groups. Suppose G is 
second countable and type I but not unimodular, and let Ll. be the 
modular function of G. The definitions of p and T must be modified to 
make them unitary, as follows: 

With this change, T is still unitarily equivalent to j$11' ® 1f dJ.l( 11') for a 
suitable measure J.l on 8, but the equivalence is not given by the Fourier 
transform (7.43). This can easily be seen hy observing the effect on the 
Parseval formula (7.45) when f and 9 are replaced by Rxf and Rx9. 
The left side changes by a factor of Ll.(X)-I; but since the trace is a 
unitary invariant and 

(Rxfn11') = J !(yx)11'(y-l)dy 

= J f(Y)11'(xy-l)Ll.(X)-1 dy 

= Ll.(X)-111'(X)!(11'), 

the right side changes by a factor of Ll.(x)-2. Hence (7.45) cannot be 
valid, Le., the Fourier transform (7.43) cannot be unitary. 

The solution to this problem is to modify the Fourier transform. First, 
as a matter of convenience and adherence to convention, we shall replace 
11'(X-l) by 11'(x) in (7.43), Le., we consider the operators 11'(1). This 
change has no effect on the difficulty just mentioned. (It could also 
be made in the unimodular case, where it would merely result in the 
relabeling of various things in the Plancherel theorem.) But suppose we 
can find, for each 11' E 8, a (probably unbounded) self-adjoint operator 
D1r on 1i1r with the property that 

(x E G). 
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If we then redefine the Fourier transform to be 

(7.48) 

we see that 

(RxffCrr) = J f(Y)7r(yx- 1)D",6.(X)-1 dy 

= J f(Y)7r(y)D",7r(x- 1)6.(X)-1/2 dy 

= 6.(X)-1/2 j(7r)7r(X)-I. 

Hence, if we use this jin (7.45), substitution of Rxf for f changes both 
sides by 6.(X)-I, so there is some hope that the formula is correct. 

How can one construct such operators D",? When 7r is induced from 
a subgroup H on which the modular function is trivial, this is easy. The 
Hilbert space 1i", is then a space of vector-valued functions on G, and 
one can set 

(7.49) 

(Since 6.(~) = 1 for ~ E H, D", does not affect the condition (6.3) in the 
definition of 1i",.) The domain of D", is the set of all f E 1i", such that 
D",f E 1i",. 

We now have the ingredients for a non-unimodular Plancherel theorem 
that works for all groups satisfying a couple of technical conditions. 

(7.50) Theorem. Suppose G is second countable. Let H = ker(6.), 
and suppose that H is type I and that G acts regular!! on jj (in the sense 
described in §6.6). There is a unique measure J.1- on G with the following 
properties. First, J.1--almost every 7r E 8 is induced from a representation 
of H. Second, if for all such 7r one defines D", by (7.49) , the map f --+ i 
defined by (7.48) gives a unitary isomorphism from L2(G) to J$1i", 0 

1i-;;rdJ.1-(7r) that intertwines T and J$ 7r01fdJ.1-(7r). In particular, although 
G need not be type I, J.1--almost all of the primary representations in the 
central decomposition of the regular representations are type 1. 

This theorem is due to Tatsuuma [118] (whose notation is a little 
different since he uses right Haar measure instead of left Haar measure). 
Tatsuuma also obtains a more general form of the theorem that applies 
when H is not type I. Another extension of the theorem, including a 
clarification of the role of its hypotheses, has been obtained by Duflo 
and Moore [30]. For more about the Plancherel theorem for solvable Lie 
groups, see Pukanszky [100] and Moore [94]. 
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7.6 Examples 

In this section we present four examples to illustrate the ideas of this 
chapter. 

1. The Heisenberg groups. The Heisenberg groups Hn defined in 
§6.7 are simply connected nilpotent Lie groups, so the Kirillov theory 
(Theorem (7.9)) applies to them. We can identify both Hn and its Lie 
algebra with Rn x Rn x R, with group multiplication given by (6.46) 
and Lie bracket given by 

[(x,~,t), (x',e,t')] (O,o,x'~' ~'X'). 

The exponential map is then merely the identity. A simple calculation 
shows that the adjoint action is given by 

[Ad(x,~,t)](y,1],S) (Y,1],s+x'1] ~.y) 

and hence that the coadjoint action is given by 

[Ad*(x,~,t)](b,/3,r) (b+rx,/3 r~,r). 

From this it is clear that the coadjoint orbits are the hyperplanes r h, 
where h is a nonzero real constant, and the singleton sets {(b, /3, O)}. 
Theorem (7.9) together with Corollary (6.51) therefore yields the fol­
lowing results. (See also Fell [35].) 

H n can be identified with the quotient of R n x R n x R by the coadjoint 
action. The hyperplane r = h corresponds to the representation Ph 
of Corollary (6.51), while the singleton {(b,/3,O)} corresponds to the 
representation 1fb,fj' Hn is Tl since the orbits are all closed, but it is not 
Hausdorff because the singleton orbits have no disjoint neighborhoods. 
See Figure 7.1. 

We now compute the Fourier transform on the Heisenberg group. The 
Euclidean Fourier transform enters into this calculation in a decisive way, 
and we shall denote the Euclidean Fourier transform of a function 1 on 
Rn x Rn x R with respect to its first, second, and third arguments by 
Fd, Fd, and F31 respectively: 

Fd(b,~,t) J e-21Tib.x 1(x,~, t) dx, etc. 

We shall also use the easily verified fact that Lebesgue measure is a left 
and right Haar measure on Hn. 

Suppose 1 E Ll(Hn) n L2(Hn). For the one-dimensional representa­
tions 1fb,fj, we have 
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FIGURE 7.1 
The dual space of Hn. 

For the representation Ph on L2(Rn), i(Ph) is the operator on L2(Rn) 
given by 

[!<Ph)¢](Y) = /// f(x,e,t)[Ph(-X,-e,-t)¢](y)dxde dt 

= / / / f(x, e, t)e-21fih[t-e·y-(e·x/2)]¢(y + x) dx de dt 

= / / / f(x y,e, t)e-21fih[t-e·(x+Y)/2]¢(x) dx de dt. 

That is, i(Ph) is the integral operator on L2(Rn) whose kernel is 

Kl (y,x) / / f(x y, e, t)e-21fih[t-e·(x+Y)/2] de dt 

(7.51) :F2:F3f(x - y, -4h(x + y), h). 

By a slight modification of Theorem (7.16) (see Appendix 2), the 
square of the Hilbert-Schmidt norm of this operator is 

IIlf(Ph) 1112 //IKl(y,x) 12 dy dX. 

The substitution u x y, v 
Parseval formula gives 

~h(x+ y) together with the Euclidean 

111!(Ph)1I12 / / 1:F2:F3f(u, v, h)12Ihl-n dudv 

Ihl-n // 1:F3 f(u,w,h)1 2dudw. 
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Therefore, by another application of Parseval, 

I 1I1!(Ph)11I2Ihln dh = I I I IF3f(u,w, h)12 dudwdh 

III If(u, w, t)12 dudwdt. 

241 

But this is the Parseval formula for the Heisenberg group! In other 
words, Plancherel measure JL on fin is given by 

and the Fourier transform on Hn is a unitary isomorphism from L2(Hn) 
to 

1$ 7-tp" ® 7-tp"l hln dh = 1$ L2(Rn) ® L2(Rn)*lhln dh. 

If we identify L2(Rn) ® L2(Rn)* with L2(Rn x Rn) (see Appendix 2), 
this space becomes 

$ . I L2(Rn x Rn)lhlndh = L2(Rn x R n x R, Ihlndydxdh), 

and the Fourier transform, regarded as a map from L2(Hn) to the latter 
space, is just the map 

of (7.51). 
These considerations also give a direct proof that Hn is CCR. Indeed, 

the preceding arguments show that f(Ph) = Ph(f)* is Hilbert-Schmidt 
for every h when f belongs (say) to the Schwartz class of rapidly decaying 
smooth functions; since these functions are dense in Ll and the norm 
limit of compact operators is compact, Ph (I) is compact for all fELl. 
(Of course, 'lrb,fJ(I) is compact for trivial reasons.) 

2. The ax + b group. The Lie algebra of the ax + b group G is R2 
with Lie bracket [(s, t), (S', t')] (0, st' - s't), and the exponential map 
is exp(s,t) = (e 8 ,s-le8 t). (The easy way to see this is to think of Gas 
the group of 2 x 2 matrices of the form (~~) and its Lie algebra as the 

algebra of 2 x 2 matrices of the form (~~).) A simple calculation shows 
that the adjoint action is given by 

[Ad(a,b)](s,t) = (s, at - bs), 

and hence the coadjoint action is given by 
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Thus the orbits of the coadjoint action are the half-plane T > 0, the half 
plane T < 0, and the singleton sets {(o-, O)}. 

G is an exponential solvable group, so the Kirillov picture applies to 
it: G can be identified with the quotient of R 2 by the coadjoint action. 
(See Fell [35] for a proof that this identification is a homeomorphism.) 
The half-planes T > 0 and T < 0 correspond to the representations 11'+ 

and 11'_ constructed in §6.7, and the singleton orbit {(o-, O)} corresponds 
to the one-dimensional representation lI'~(a, b) = aiu . G is To but not TI , 

for the orbits T > 0 and T < 0 are open but not closed. See Figure 7.2. 

• • • • • • • • • • • • • • • •• n~ 

FIGURE 7.2 
The dual space of the ax + b group. 

We now consider the Plancherel theorem for G. We recall from §2.2 
that left Haar measure on G is da db j a 2 and right Haar measure is 
dadbja, so we must use the nonunimodular version of the Plancherel 
theorem, Theorem (7.50). As in the case of the Heisenberg group, it 
turns out that the one-dimensional representations have Plancherel mea­
sure zero, so we concern ourselves only with the representations 11'+ and 
11' _, which (we recall) are the subrepresentations of 

on 'H+ = L2(0, 00) and 'H_ = L2( -00,0) respectively. 
According to the discussion preceding Theorem (7.50), we should look 

for operators D+ and D_ on 'H+ and 'H_ such that 

(Here a- I / 2 is the square root ofthe modular function on G.) In view of 
(7.49), one easily sees that the operators D±¢(s) = Isl l/2¢(S) will work. 
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We therefore define the modified Fourier transform according to (7.48): 

j(7r±) = 7r±U)D±. 

Explicitly, for ¢ E 'H+, 

[j(7r+)¢](s) = j<Xl (<Xl f(a,b)e21fibsal/2(at)I/2¢(at) da~b 
-<Xlk a 

so j( 7r +) is the integral operator on 'H+ with kernel 

SI/2j<Xl SI/2 
K+(s, t) = - f(S-l t , b)e21fibs db = -:F2!(S-lt, -s). 

t -<Xl t 

(Here, as above, :F2! is the Euclidean Fourier transform of f in its second 
argument.) Likewise, j( 7r _) is the integral operator on 'H _ with kernel 

Is1 1
/

2 
-I 

K_(s, t) = -ltl-:F2!(s t, -s). 

The Hilbert-Schmidt norms of j(7r±) (see Appendix 2) are therefore 

and 

111j(7r+)1112 = {<Xl (<Xl ~ 1:F2!(S-l t , -sW dtds 
10 10 t 

1
<Xl 1<Xl I'r' f( ) 12 da ds = .r2 a, -s -2-

o 0 a 

Therefore, 

~ 2 ~ 2 j<Xl (<Xl 2 da ds 
Illf(7r+)111 + Illf(7r-)111 = -<Xl 10 1:F2!(a, -s)1 ~' 

which, by the Euclidean Parseval formula, equals 

j
<Xl 1<Xl 2 da db 2 

If(a, b)1 -2 = IlfIIL2(G)' -<Xl 0 a 

In short, the map f --+ (j(7r+),j(7r_)) is an isometry from L2(G) into 

('H+ 0 'H~) EfJ ('H - 0 'H*-), 
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and an examination of these calculations shows without difficulty that 
it is actually unitary. Thus, Plancherel measure on 8 is just counting 
measure on the two-element set {7r + , 7r _ }. 

It is to be noted that the operators 7r ± (J) are, in general, not Hilbert­
Schmidt until they have been composed with the unbounded operators 
D±. This accords with the fact that G is not CCR. The latter assertion 
is true on general grounds (Theorem (7.7)) since 8 is not T1 , and it 
can also be seen in a more concrete fashion. Indeed, if f E Ll(G), the 
operators 7r ± (J) are compact if and only if J~oo f(a, b) db = 0 for almost 
every a. This is proved in Khalil [66], which also contains some other 
interesting results concerning the harmonic analysis of G. 

3. SL(2, R). 8L(2, R) is the group of 2 x 2 real matrices of deter­
minant one. Its representation theory has been well understood for a 
long time, but it would require far too much space to give a complete 
exposition of it here. We shall content ourselves with stating the re­
sults and giving some references. To begin with, we list some families of 
representations of 8L(2, R). 

(i) The trivial representation i, acting on C. 
(ii) The discrete series {6; : n 2 2}. For n 2 2, let 1f:;; be the space of 

holomorphic functions f on the upper half plane U = {z = x+iy : y > O} 
such that 

(7.52) IlfllfnJ = J i If(x + iy)12yn-2 dx dy < 00. 

The representation 6:;; of 8L(2, R) on 'H:; is defined by 

(7.53) + (a b) () _ ( ) -n (az - c ) 6n c d f z - -bz + d f -bz + d . 

Similarly, 'H;; is the space of antiholomorphic functions on the upper half 
plane satisfying (7.52), and the representation 6;; of 8L(2, R) on 'H;; is 
given by (7.53). The representations 6; are unitary and irreducible, 
and they have another important property: their matrix coefficients 
(6;(x)f,g) are square-integrable functions of x E 8L(2, R). It follows, 
as in the proof of Theorem (5.9), tha~ the representations 6; occur as 
discrete summands in the decomposition of the regular representation 
into irreducibles; hence the name "discrete series." 

(iii) The mock discrete series {6i, 6J}. Let 'Hi be the space of holo­
morphic functions on the upper half plane such that 

IlfllflJ = suPjoo If(x + iy)12 dx < 00, 
y>O -00 

and let 'Hi be the corresponding space of antiholomorphic functions. 
The representations 6t of 8L(2, R) on 'Ht are given by (7.53). The 
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matrix coefficients of cSt are not square-integrable, but these representa­
tions bear a number of family relationships to the discrete series; hence 
the name "mock discrete series." 

According to a well-known theorem of Paley and Wiener (see Dym 
and McKean [32, §3.4]) the Hilbert spaces 'Ht can be naturally identified 
with certain subs paces of L2(R), namely 

R:t = {J E L2(R) : i(~) = 0 for ~ < a}, 

iil = {J E L2(R) : i(~) = 0 for ~ > a}. 

The unitary map from 'Ht to iit simply takes a holomorphic or anti­
holomorphic function on the upper half plane to its boundary values on 
R, and the inverse map is given by the Fourier inversion formula: if f 
is in iii or iil , the corresponding F E 'Hi or 'Hl is given by 

When these identifications are made, the representations cSt are still 
given by (7.53), but with x E R replacing z E U. 

(iv) The principal series {11"~ : t E R}. These are the representations 
of 8L(2, R) induced from the one-dimensional representations of the 
upper triangular subgroup 

Anyone-dimensional representation of P must annihilate its commu­
tator subgroup, namely {Ma,b : a = I}, so it is easily seen that these 
representations are precisely 

(7.54) (t E R). 

The principal series are then defined by 

(7.55) + _. dSL(2,R) (c+) 
1I"it - In P "it \ 

- _. dSL(2,R) (C-) 
1I"it - In P "it . 

11"~ and 11";; are known as the sph~rical principal series and non-spherical 
principal series respectively. 

The Hilbert spaces for these representations consist of complex-valued 
functions on 8L(2, R) satisfying certain covariance conditions on the 
cosets of P, and such functions are determined by their values on 

since N intersects each coset in exactly one point. Since N ~ R, it is 
not hard to show that the map f --+ fiN sets up a unitary isomorphism 
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from these Hilbert spaces to L2(R), and that the resulting realization 
of the representations 11"~ on L2(R) is given by 

11"~ (: !) f(x) = m±(-bx + d)1 bx + dl-1-itf (::x ~cd) , 
where 

The principal series representations are all irreducible except for 11"0' 
which is the direct sum of the mock discrete series 8i and 81 (when all 
of these are realized on subspaces of L2(R)). Moreover, 1I"::it and 1I":it 
are equivalent respectively to 11"~ and 11"«, and otherwise these represen­
tations are all inequivalent. 

(v) The complementary series {Ks : 0 < s < I}. The Hilbert space 
for Ks is the set of all complex-valued functions f on R such that 

(7.56) Ilfllls ) = ~ J J f(x)f(y)lx yls-l dxdy < 00, 

and the action of 8L(2, R) is like that of the spherical principal series: 

l-bX+d l -
1- sf ( ax c). 

-bx+d 

(The significance of the factor s/2 in (7.56) will be explained below.) 

This completes our list of representations of 8L(2, R). These repre­
sentations are all irreducible and inequivalent except that ~ 11"~ and 
11"0 ~ 8i EB81 as mentioned in (iii), and every irreducible representation 
of 8L(2, R) is equivalent to one of them. Hence, we may parametrize 
the dual space [8L(2, R)f by identifying it with the following set of 
representations: 

(7.57) {t.}U{8; : n ~ 1}U{1I"~ : t ~ 0}U{1I"« : t > O}U{Ks : 0 < s < I}. 

These results are due to Bargmann [7], and an exposition of them can 
be found in a number of places, including Knapp [70] and Howe and Tan 
[64]. 

It remains to describe the Fell topology on [8L(2, R)f. This is more 
or less what one would expect from the preceding discussion, although 
there is a bit of a surprise at the end of the complementary series. The 
situation can be most easily understood by drawing a picture: see Fig­
ure 7.3. 

The meaning of Figure 7.3 is as follows. We identify [8L(2, R)rwith 
the set (7.57). If the five points 8t, 8~, and t. are omitted from (7.57), the 
resulting set can be embedded in the plane as a union of line segments 
and isolated points as indicated in Figure 7.3. The five exceptional 
points are non-Hausdorff points for the Fell topology. If p is 8i or 81, 



Further Topics in Representation Theory 247 
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FIGURE 7.3 
The dual space of SL(2, R). 

the sets {p} U {1I"i; : 0 < t < to} (to> 0) are a neighborhood base at p, 
and if p is 6t, 62 , or i, the sets {p} U {1I:8 : 80 < 8 < I} (0 < 80 < 1) are 
a neighborhood base at p. 

These facts seem to have first appeared explicitly in Milicic [93]. They 
follow from two pieces of information: first, an explicit knowledge of the 
characters of the representations in (7.57), which can be found in Knapp 
[70, §X.2], and two results of Fell ([34, Lemma 3.4 and Corollary 2 of 
Theorem 3.2]) which allow the topology to be read off from the behavior 
of the characters. 

A few remarks are in order about the way the different series are 
joined together. First, the fact that 1I"i; converges to both 6i and 6i as 
t ---+ 0 is to be expected since 11"0 = 6i EEl 6i. Second, the norm (7.56) 
on the space for 11:8 converges to the norm of L2(R) as 8 ---+ 0, so that 
11:8 ---+ 1I"t. This can easily be shown by using the Fourier transform (e.g., 
see Folland [42, Exercise 4 of §1O.2]) and is the reason for the factor of 
8/2 in (7.56). 

Third, one can replace it in (7.54) and (7.55) by an arbitrary complex 
number 8 + it to obtain a family of (generally nonunitary) representa­
tions 1I";+it of 8L(2, R), the so-called nonunitary principal series. The 
complementary series 11:8 is obtained from 11"; (0 < 8 < 1) by renorming 
the space on which it acts. On the other hand, 1I"i contains subrepre­
sentations equivalent (infinitesimally but not unitarily) to 6t and 62, 
and its quotient by their direct sum is the trivial representation i. This 
accounts for the fact that 11:8 converges to 6~ and i as 8 ---+ 1. (The 
other members of the discrete series, as well as the other irreducible 
[nonunitary] finite-dimensional representations of 8L(2, R), can also be 
obtained as subrepresentations and quotients of certain members of the 
nonunitary principal series; see Knapp [70].) 
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It should be emphasized that although the points o~ and ~ have no 
disjoint neighborhoods, they are attached to each other only through the 
complementary series: in the subset of [SL(2, R)f obtained by omitting 
the complementary series, these points are isolated. A similar statement 
holds for at. 

Finally, we describe the Plancherel measure J,L on [SL(2, R)r, where 
[SL(2, R)f is parametrized by (7.57). The Plancherel measure of the 
complementary and mock discrete series and the trivial representation 
is zero, and on the principal and discrete series it is given by 

t rrt 
dJ,L(rr~) = "2 tanh "2 dt, dJ,L(rrit) 

t rrt 
2 coth 2 dt, 

J,L( {a:}) = J,L( {a; } ) n 1. 

(Of course this is determined only up to a constant factor, depending 
on the normalization of Haar measure on SL(2,R).) For the proof, see 
Knapp [70]. 

Two significant features appear here that have not occurred in our 
other examples. First, the Plancherel measure has both a discrete and 
a continuous part. Second, the support of the Plancherel measure (the 
smallest closed set whose complement has measure zero) is not all of 
[SL(2, R)f: it is the union of the principal, discrete, and mock discrete 
series. 

4. The free group on two generators. Let G be the free group on 
two generators a and b (with the discrete topology, and with counting 
measure as Haar measure), and let>. be its left regular representation. 
We shall illustrate the bad phenomena that occur in non-type-I groups 
by showing that>. is primary and that it admits two completely different 
decompositions into irreducible representations. 

(7.58) Proposition. >. is primary. 

Proof: Suppose T belongs to the center of C(>.); thus T commutes 
with all left translations (since T E C(>.)) and all right translations 
(since the latter belong to C(>.)). Let a E L2(G) be the function such 
that 0(1) = 1 and o(x) = 0 for x ::f 1, and let ¢ To. If IE Ll nL2, we 
have TI T(f * 0) = 1* ¢ (since T commutes with left translations) 
and TI = T(o * I) = ¢ * I (since T commutes with right translations). 
Thus 1* ¢ = ¢ * I for all I, and this easily implies that ¢ is constant 
on conjugacy classes (cf. the proof of Proposition (5.21)). But every 
conjugacy class in G except {I} is infinite, so since ¢ E L2 we must have 
¢ = co. But then T = cI. I 

Next, to investigate the decomposition of >. into irreducible represen­
tations, let us consider the cyclic subgroup A of G generated by a. A is 
isomorphic to Z, so each eie E T defines a character of A, whose value at 
an is eine . Let rre be the representation of G induced by this character. 
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Thus, the Hilbert space 1i0 for 1r0 consists of complex-valued functions 
f on G such that f(xan) e-inOf(x), and its norm may be described 
as follows. Let 

o {xb: x E G} U {I}. 

Then 0 mee.ts each coset of A in precisely one point, so the norm on 1i0 
is given by 

For each z E 0, define 

ez(zan
) 

IIfll2 = L If(x)12. 
xEl1 . 

-inO e , 

then {ez : z E O} is an orthonormal basis for 1i0 • 

(7.59) Lemma. The operators 1ro(an) (n E Z) have a unique eigenvec­
tor up to scalar multiples, namely el, and the operators 1ro(bn) have no 
eigenvectors. 

Proof: Evidently [1ro(an)el](x) = el(a-nx) einOel(x). The action 
of A on G by left translations, x -+ anx, permutes the elements of 
0\ {I}, and this action of A on 0 \ {I} is faithful on every orbit of 
A. Hence the operators 1ro(an) act on {edJ. by permuting the basis 
vectors ez • and 1ro(an) is unitarily equivalent to a direct sum of copies 
(one for each orbit of A) of the shift operator {ad -+ {ak-n} on l2(Z). 
But the latter operator has no eigenvectors. (By Fourier analysis, it is 
unitarily equivalent to multiplication by einO on L2(T).) For the same 
reason, the operators 1ro(bn) have no eigenvectors, as they act on 1i0 by 
permutation of the basis vectors ez , z E O. I 

(7.60) Lemma. The representations 1r0 are irreducible and inequiva­
lent. 

Proof: Suppose T E C(1ro). By Lemma (7.59), el is an eigenvector for 
T,sayTel eel' ButthenifzE O,Tez T1ro(z-l)el 1ro(Z-I)Tel = 
eez • Thus T el, so 1r0 is irreducible by Schur's lemma. If 0 f:. 0' (mod 
21r), then 1r0 and 1ro' are inequivalent because 1ro(an) and 1rol(an) have 
different eigenvalues on their unique eigenvectors. I 

If f E Cc(G) (Le., f is a function of finite support on G), define 
10: G -+ C by 

00 

1o(x) = L f(xan)e inO. 
-00 

Then 

10 (xak) L f(xak+n)einO = Lf(xan)ei(n-k)O = e- ikO 1o(x), 
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and the projection of the support of Ie in G / A is finite, so 10 E 1ie. 
Moreover, by the Parseval formula for ordinary Fourier series, 

00 

1I11112(G) L II(x)1 2 = L L II(zanW 
xEG zEn-oo 

(7.61) "1 - 2 dO 1 - 2 dO L.. Ile(z)1 2 = Illelirto 2' 
~n T ff T ff 

From this we can easily see that the map I --+ 1 extends to a unitary 
isomorphism from L2(G) to Je.1 1iedp.(O), where p. is normalized Haar 
measure on T. In more detail: for zEn let {jz be the function on G 
whose value at z is 1 and whose value elsewhere is O. Then (6z)e is the 
basis element ez of 1ie, so the vector fields 6z determine the structure 
of a measurable family of Hilbert spaces on {1ie} , and we can form its 
direct integral Je.1 1ie dp.(O). The formula (7.61) shows that the map 
1--+ 1 is an isometry from L2(G) into this space; it is unitary since its 
inverse is given by 9 --+ g, where g(x) = J g(O,x)dp.(O). 

Moreover, since the action of G in the representations ,\ and ffe is 
given in all cases by left translation, the map I --+ 1 intertwines ,\ with 
Je.1 ffe dp.(O). Thus we have obtained a direct integral decomposition of 
,\ into irreducible representations. 

Now comes the crux of the matter: we can play the same game with 
a and b interchanged. That is, let B be the cyclic subgroup generated 
by b. By inducing the characters of B up to G, we obtain another 
family {pe} of irreducible, inequivalent representations of G such that 
,\ ~ Je.1 Pedp.(O). But no Pe is equivalent to any ffe', Indeed, by Lemma 
(7.59), the restriction of ffe' to A has a one-dimensional invariant sub­
space, whereas by the analog of Lemma (7.59) with a and b switched, 
the restriction of Pe to A does not. In short, we have proved: 

(7.62) Theorem. There exist irreducible representations ffe and Pe 
(0 E T) of G, no two of which are equivalent, such that 

where p. is normalized Haar measure on T. 

Theorem (7.62) and the arguments leading to it are due to Yoshizawa 
[133]. See also Mautner [90] for more about representations of discrete 
groups. 

Finally, we remark that these results also give a counterexample to 
Theorem (7.25) when the groups are not type L Indeed, let 7 be the two­
sided regular representation of G (actually a representation of G x G). 
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By Theorem (7.47) and Proposition (7.58), C(T) = C(>') n C(p) = el, 
so T is irreducible. If T were of the form 11"1 ® 11"2, the restriction of T to 
{I} x G would be I ® 11"2. But actually this restriction is >., which is not 
a multiple of an irreducible representation. 





Appendices 

Appendix 1. A Hilbert Space Miscellany 

Sesquilinear Forms 

Let V and X be complex vector spaces. A map T : V --> X is antilinear 
(or conjugate linear) if T( au + bv) = aTu + IiTv for all a, b E C and 
u, v E V. A map B : V x V --> X is sesquilinear if T(·, v) is linear for 
each v E V and T(u,·) is antilinear for each u E V. A sesquilinear map 
from V x V to C is called a sesquilinear form on V. Sesquilinear maps 
are completely determined by their values on the diagonal, as follows. 

(ALI) The Polarization Identity. Suppose B : V x V --> X is 
sesquilinear, and let Q(v) = B(v,v). Then for all u,v E V, 

B(u,v) = ~ [Q(u + v) - Q(u - v) + iQ(u + iv) - iQ(u - iv)]. 

Proof: Simply expand the expression on the right (Q( u+v) = Q( u) + 
Q(v) + B( u, v) + B(v, u), etc.) and collect terms. I 

A sesquilinear form B on V is called Hermitian if B(v,u) = B(u,v) 
for all u,v E V and positive if B(u,u) ~ 0 for all u E V. 

(A1.2) Corollary. A sesquilinear form B is Hermitian if and only if 
B(u,u) E R for all u. Every positive sesquilinear form is Hermitian. 

Proof: The first assertion follows easily from the polarization iden­
tity and the fact that Q(au) = laI 2Q(u) for a E C, so that (for example) 
Q(u - iv) = Q(i(u - iv)) = Q(v + iu). The second assertion follows 
immediately from the first one. I 

(A1.3) The Schwarz and Minkowski Inequalities. Let B be a 
positive sesquilinear form on V, and let Q(u) = B(u,u). Then 

IB(u, vW ~ Q(u)Q(v), Q(u + V)1/2 ~ Q(U)1/2 + Q(V)1/2. 

253 
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Proof: The usual proofs of these inequalities for inner products do 
not depend on definiteness, so they apply to all positive forms. I 

Direct Sums 

Let {Ha}aEA be a family of Hilbert spaces. The direct sum ffiaEA Ha 
is the set of all v = (Va)aEA in the Cartesian product naEA Ha such 
that I: IIva l1 2 < 00. (This condition implies, in particular, that Va = 0 
for all but countably many a.) ffiaEA Ha is a Hilbert space with inner 
product 

(u,V) = L(Ua,Va), 
aEA 

and the summands Ha are embedded in it as mutually orthogonal closed 
subspaces. 

If H is a Hilbert space and {Ma}aEA is a family of mutually orthog­
onal closed subspaces of H whose linear span is dense in H, H can be 
identified with ffiaEA Ma. When we speak of direct sums of subspaces 
of a Hilbert space, we always assume that the subspaces are mutually 
orthogonal unless the contrary is explicitly stated. 

Isometries and Unitary Maps 

Let HI and H2 be Hilbert spaces and T : HI ~ H2 a bounded linear 
map. The adjoint of T is the map T* : H2 ~ HI defined by (T*v, u) 
(v, Tu) for all u E HI and v E H2. T is an isometry if IITull lIuli for 
all u E HI. Since IITull 2 = (Tu, Tu) = (T*Tu, u) and lIull2 (u, u), the 
polarization identity implies that T is an isometry if and only if T*T is 
the identity operator on HI' Isometries are injective but not necessarily 
surjective; a bijective isometry is called a unitary map. If T is unitary 
then so is T-I, so T is unitary precisely T*T and TT* are the identity 
operators on HI and H2 respectively, i.e., when T* = T-I. 

T is called a partial isometry if IITull = lIuli whenever u ..L N(T). 
(Here and in what follows, Nand R denote nullspace and range.) Tis 
a partial isometry precisely when (T*Tu, u) = (u, u) for u ..L N(T) and 
. (T*Tu, u) 0 for u E N(T); by polarization, this means that T*T is 
the orthogonal projection onto N(T)l.. Since R(T)l. N(T*), it is an 
easy exercise to see that T* is also a partial isometry and that TT* is 
the orthogonal projection onto R(T). 
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Decompositions of Operators 

Suppose 1i is a Hilbert space and T E £(1i). T is called positive if 
(Tu, u) 2: 0 for all u E 1i. By the corollary of the polarization identity, 
every positive operator is self-adjoint, and it follows easily from the 
spectral theorem that a self-adjoint operator T is positive if and only 
if its spectrum O"(T) lies in [0,00). In this case, one can apply the 
spectral functional calculus to the function I(s) = .jS on O"(T) to obtain 
a positive operator whose square is T; we denote it by n. 

Now suppose T is an arbitrary bounded operator on 1i. T*T is always 
a positive operator, so we can define 

(A1.4) ITI = VT*T. 

Since IIITlul12 = (ITI2u, u) = (T*Tu, u) = IITuI1 2
, the correspondence 

ITlu -4 Tu extends uniquely to an isometry V from the closure 'R.(ITi) of 
the range of ITI to the closure of the range of T. But 'R.(ITi) = N(ITI).l 
since ITI is self-adjoint, and N(ITI) = N(T*T) = N(T). Hence, if we 
extend V linearly to all of 1i by setting V = 0 on N(T), V is a partial 
isometry such that T = VITI. The factorization T = VITI is called the 
polar decomposition of T. 

Since V*V is the orthogonal projection onto N(T).l = 'R.(ITI) , it 
follows easily that V*T = V*VITI = ITI. Thus: 

(A1.5) T=VITI, ITI = V*T. 

(A1.6) Proposition. Every bounded operator on a Hilbert space is a 
linear combination of two self-adjoint operators and a linear combination 
of four unitary operators. 

Proof: If T E £(1i), then A = (T + T*)j2 and B = (T - T*)j2i 
are self-adjoint and T = A + iB. This proves the first assertion; for 
the second, it is then enough to prove that every self-adjoint operator of 
norm ~ 1 is the sum oftwo unitary operators. But if S = S* and IISII ~ 1 
then O"(S) C [-1,1], so I _S2 is positive, and we have S = I+(S)+ I-(S) 
where I±(s) = ~(s ±i~). The operators I±(S) are unitary by the 
spectral functional calculus since the functions 1 ± (s) have absolute value 
1forsE[-1,:I.]. I 

Topologies on £(1i) 

If 1i is a Hilbert space, the set £(1i) of bounded linear operators on 1i 
carries three useful topologies: 

1. The norm topology is the topology induced by the operator norm 

IITII = sUPllull=l IITull· 
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2. The strong operator topology is the topology induced by the 
seminorms T -4 IITull, u E 1i. A net {T,,} in £(1i) converges to T 
strongly if and only if IIT"u - Tull -40 for every u E 1i. 

3. The weak operator topology is the topology induced by the 
seminorms T -4 I(Tu,v)l, u,v E 1i. A net {T,,} converges to T 
weakly if and only if (T"u, v) -4 (Tu, v) for every u, v E 1i. 

Thus, the norm topology is the topology of uniform convergence on 
bounded subsets of 1i, the strong operator topology is the topology 
of pointwise convergence on 1i, and the weak operator topology is the 
topology of weak pointwise convergence on 1i. 

Examples. Suppose {edi is an orthonormal basis for 1i. Define 
operators Tn and Sn on 1i for n ? 1 by 

Tn [~akek] = ~ akek, Sn [~akek] = ~ akek+n· 

The sequences {Tn} and {Sn} are not convergent in norm, and {Sn} 
is not even strongly convergent; indeed, if n < m, II(Tn - Tm)enll = 
Ilenll = 1 and II(Sn - Sm)elll = lien - emil = J2. However, {Tn} 
converges strongly to 0, for if u = L:akek, IITnul12 = L:~ lakl 2 -4 OJ 
and {Sn} converges weakly to 0, for if u = L: akek and v = L: bkek, 

Appendix 2. 'frace-Class and Hilbert-Schmidt Operators 

Let 1i be a Hilbert space, which for convenience we assume to be separa­
ble. Suppose T is a positive operator on 1i. We say that T is trace-class 
if T has an orthonormal eigenbasis {en} with eigenvalues {An} (where 
An ? 0), and L: An < 00. In this case we set tr(T) = L: An. Note that 
every trace-class positive operator is compact, for T is the norm limit of 
the finite-rank operators TNU = L:~ An (u, en)en. 

(A2.1) Proposition. IfT is positive and trace-class and {xn} is any 
orthonormal basis for 1i, then L:(Txn,xn) = tr(T). 

Proof: Let {ej} be an orthonormal eigenbasis for T with eigenvalues 
{Aj}. Since Xn = L:(xn,ej)ej and L:n l(xn,ej)j2 = IIejl12 = 1, we have 

L(Txn,xn) = LL(xn,ej)(Tej,xn) = LLAjl(xn,ej)j2 = LAj. 
n n j n j j 

Interchanging the sums is permissible since all terms are positive. I 
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(A2.2) Proposition. Suppose T is positive and trace-class, S E C(?-t) , 
and {xn} is an orthonormal basis for?-t. Then the sum E(STxn,xn) is 
absolutely convergent, and its value depends only on S and T, not on 
{xn }. 

Proof: Let {ej} be an orthonormal eigenbasis for T with eigenvalues 
{.Aj}. Then 

(STxn,xn) =: L(xn,ej)(STej,xn) L.Aj(xn,ej)(Sejlxn). 

Now, 

j j 

En L.Ajl(xn,ej)(Sej,xn)1 
j 

< ~,\j [~'(x",ej)'2r2[~'(Sej,xn)'2r2 

:::= L.AjliejllllSejll S; IISII L.Aj < 00. 

j j 

This implies that E(STxn, xn) is absolutely convergent and that 

L(STxn,xn) =: L L((xn, ej)STej,xn) 
n n j 

=: LL(STej,(ej,Xn)Xn) 
j n 

:::= L(STej,ej)' 
j 

I 
An operator T E C(?-t) is called trace-class if the positive operator 

ITI, defined by (Al.4), is trace-class. 

(A2.3) Proposition. Suppose T is trace-class. Then T is compact, 
and if {xn} is any orthonormal basis for?-t, the sum E(Txn, Xn) is 
absolutely convergent and independent of {xn }. 

Proof: Consider the polar decomposition T VITI as in Appendix 
1. T is compact since ITI is compact and V is bounded, and the other 
assertion follows from Proposition (A2.2), with T and S replaced by ITI 
and V. I 

If T is trace-class, we set 

tr(T) = L(Txn,xn), 

where {xn} is any orthonormal basis for?-t. This is well-defined by 
Proposition (A2.3). 
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(A2.4) Proposition. The set of trace-class operators is a two-sided *­
ideal in £(1i). Moreover, ifT is trace-class and S E £(1i) then tr(ST) = 
tr(TS). 

Proof: Clearly if T is trace-class, so is aT for any a E C. If S and T 
are trace-class, let S = VISI, T = WITI, and S+T XIS+TI be polar 
decompositions as in Appendix 1. Then IS+TI X*(S+T) by (A1.5). 
In particular, IS + TI is compact, so it has an orthonormal eigenbasis 
{en} by Theorem (1.52), and we have 

L(IS+Tlen,en) = L(X*(S+T)en,en) 

= L(X*VISlen,en) + L(X*WITlen,en). 

The sums on the right are absolutely convergent by Proposition (A2.2), 
so S + T is trace-class. Next, suppose T is trace-class and U is unitary. 
Then (UT)*(UT) :::: T*U*UT T*T, so IUTI ITI and hence UT is 
trace-class. Also (TU)*TU = U*T*TU = U-l(T*T)U, whence ITUI 
U-1ITIU: Thus ITUI has the same eigenvalues as ITI, so TU is trace­
class. Moreover, if {xn} is an orthonormal basis, 

since U is unitary and {U xn} is again an orthonormal basis. Since 
every S E £(1i) is a linear combination of four unitary operators by 
Proposition (A1.6), it follows that ST and TS are trace-class and that 
tr(ST) = tr(TS). Finally, if T is trace-class and T VITI is its polar 
decomposition, then T* = ITIV* is trace-class since ITI is. I 

An operator T E £(1i) is called Hilbert-Schmidt if T*T is trace­
class. Since T*T is positive and (T*Tu, u) = IITuIl2, it follows from 
Proposition (A2.1) that T is Hilbert-Schmidt if and only if L: IITxnll2 < 
00 for some, and hence any, orthonormal basis {xn }. In other words, 
the set of Hilbert-Schmidt operators on 1i is 1i ® 1i* as defined in §7.3. 

Every Hilbert-Schmidt operator is compact. This follows from the 
discussion of tensor products in §7.3, in particular Proposition (7.14), 
and can also be seen as follows. Observe that if {en} is an eigenbasis for 
T*T with eigenvalues An, it is also an eigenbasis for ITI with eigenvalues 
A. ITI is therefore the norm limit of operators of finite rank; hence 
ITI is compact, and so is T = VITI. 

(A2.5) Proposition. IfT is Hilbert-Schmidt, so is T*. If Sand Tare 
Hilbert-Schmidt, then ST is trace-class. 

Proof: If {xn} is an orthonormal basis for 1i, we have 

n n m 
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m n 

m 

This proves the first assertion. For the second, let ST = VISTI be the 
polar decomposition of ST. (ST)*(ST) is compact and so has an or­
thonormal eigenbasis {en} by Theorem (1.52). {en} is also an eigenbasis 
for ISTI, and by (A1.5) we have 

L(ISTlen, en) == L(V*STen, en) = L(Ten,S*Ven) 

[ ] 
1/2 [ ] 1/2 

~ LliTen ll 2 
LIIS*Ven Il 2 

But each en belongs either to the nullspace of V or its orthogonal comple­
ment, so the nonzero Ven's are an orthonormal set. Since S* and Tare 
Hilbert-Schmidt, it follows that L: IISVen ll2 < 00 and L: IITen l1 2 < 00, 

so ISTI is trace-class. I 

We now see that the inner product and norm on 1-{ ® 1-{* given in 
Theorem (7.12) can be expressed as 

(T, S) tr(S*T), II I Till = Jtr(T*T). 

IIITIIi is called the Hilbert-Schmidt norm of T. 
If 1-{ = L2(p.), the map f ~ 7 can be identified with the canoni­

cal antilinear isomorphism from 1-{ to 1-{*. Assuming p. is a-finite, the 
arguments leading to Theorem (7.16) then give a unitary isomorphism 
from 1-{ ® 1-{* to L2(p. x p.) in which f ® 9 E 1-{ ® 1-{* corresponds to the 
function (x, y) ~ f(x)g(y) in L2(p. x p.), and the function F E L2(p. x p.) 
corresponds to the Hilbert-Schmidt operator h ~ J F(·, y)h(y) dp.(y). 

Appendix 3. Vector-Valued Integrals 

There are several ways to develop a theory of integrals for functions 
with values in a topological vector space. We shall adopt the "weak" 
approach, in which one reduces everything to scalar functions by apply­
ing linear functionals. 

Let V be a locally convex topological vector space, and let V* be 
the space of continuous linear functionals on V. Also, let (X, p.) be a 
measure space. A function F : X ~ V is called weakly integrable if 
¢ 0 FELl (p.) for every ¢ E V*. In this case, ifthere is a vector v E V 
such that 

¢( v) = J ¢ 0 F dp. for all ¢ E V* 



260 A Course in Abstract Harmonic Analysis 

(such a v is necessarily unique since the continuous linear functionals 
separate points on V), v is called the integral of F, and we write v = 
JFdJ1.. 

Integrals commute with continuous linear maps, in the following sense. 
Suppose F : X -+ V is weakly integrable, J F dJ1. exists, and T is a 
continuous linear map from V to another locally convex space W. Since 
¢ 0 T belongs to V" for every ¢ E W,., it is clear that T 0 F is weakly 
integrable and that 

(¢ E W"), 

which means that J T 0 F dJ1. exists and 

The following existence theorem is proved in Rudin [108, Theorems 
3.27 and 3.29] (although stated there in a slightly different form): 

(A3.I) Theorem. Suppose V is a Fhkhet space and J1. is a Radon 
measure on the locally compact Hausdorff space X. If F : X -+ V is 
continuous and compactly supported, then J F dJ1. exists and belongs to 
the closed linear span of the range of F. Moreover, if V is a Banach 
space, 

(A3.2) 

Theorem (A3.1) is almost sufficient for our purposes, but the condition 
that F be in Cc(X, V) needs to be relaxed a bit. 

(A3.3) Theorem. Suppose V is a Banach space ana J1. is a Radon 
measure on the locally compact Hausdorff space X. If 9 is a (scalar­
valued) function in V(J1.) and H : X -+ V is bounded and continuous, 
then J gH dJ1. exists and belongs to the closed linear span of the range 
of H, and 

(A3.4) 

Proof: gH is weakly integrable, since ¢ 0 H is bounded and contin­
uous and hence ¢ 0 (gH) = g(¢ 0 H) E L1 (J1.) for any ¢ E V*. Moreover, 
since J1. is Radon, there is a sequence {gn} in Cc(X) that converges to 9 
in the L 1 norm. Then 
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as m, n -> 00, so by (A3.2), the sequence {f gnH df..L} is Cauchy in V. 
Denote its limit by Vj then for any ¢ E V", 

since 

I I¢ 0 (gn H ) ¢ 0 (gH)1 df..L s: C I Ign gl df..L -> O. 

In other words, J gH df..L exists and equals v. Moreover, since J gnH df..L 
belongs to the closed linear span of the range of H for each n, so does 
J gH df..L. Finally, since (A3.2) holds with F gnH, (A3.4) holds with 
9 replaced by gn, and it then holds for 9 by letting n -> 00. I 

When vector-valued integrals arise in the text, X will generally be 
a locally compact group G and f..L will be Haar measure on G. The 
following situations are the most important ones. 

1. Convolutions. Let V = L71(G), where 1 s: p < 00, and let Ly 
and Ry be the left and right translation operators defined by (2.5). If 
f E L71(G), the function y -+ Lyf is bounded (IiLyflip IIfllp) and 
continuous on G, by Proposition (2.41). Hence, for any 9 E £1(G) we 
can form the integral J g(y)Lyf dy E LP(G). By its definition, this 
integral satisfies 

I [I g(y)Lyf dY] (x)h(x) dx II g(y)f(y-1x)h(x) dxdy 

for every h E Lq(G), where q is the conjugate exponent to p. A simple 
application of Holder's inequality and the Fubini-Tonelli theorem shows 
that the order of integration can be reversed, and since h E Lq(G) is 
arbitrary, it follows that 

[I g(y)Lyf dY] (x) = I g(y)f(y-1x) dy = 9 * f(x). 

In other words, we have 

9 * f I g(y)Lyf dy, 

where the integral can be interpreted either as an LP-valued integral or 
pointwise (a. e.) as a scalar-valued integral: 

9 * f(x) I g(y)Lyf(x) dy. 

Moreover, if A denotes the modular function of G, by (2.25) and 
(2.32) the function y -> A(y)Ryf is bounded and continuous from G 
to LP(G) and the function y -> A(y-l)g(y-l) is in Ll(G). Hence we 
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can form the integral J g(y-I )Ryf dy, and the same arguments as above 
show that 

f * 9 = J g(y-I)Ryf dy, 

where the integral can be interpreted either as an LJ)(G)-valued integral 
or pointwise (a.e.) as a scalar-valued integral. 

2. Unitary Representations. Let 1r be a unitary representation of G. 
We wish to form the associated representation of L I (G), 

1r(f) J f(x)1r(x) dx 

(see §3.2). Since 1r is only assumed continuous with respect to the strong 
operator topology, and £(1i1f) is not a Banach space (or even a Fnkhet 
space) with respect to this topology unless dim 1i1f < 00, Theorems 
1 and 2 cannot be applied directly to define 1r(f). However, Theo­
rem 2 can be used to define 1r(f) pointwise: that is, for each u E 1i1f , 
X -> 1r{x)v is a bounded continuous function from G to 1i1f , so the in­
tegral J f(x)1r(x)udx exists for f E LI(G): it is the vector 1r(f)u E 1i1f 
determined by the relations 

(1r(f)u, v) J f(x)(1r(x)u, v) dx (v E 1i1f)' 

The map u -> 1r(f)u is easily seen to be linear, and by (A3.4), 

111r(f)ull S; J If(x)III1r(x)ull dx = lIuli J If(x)1 dx, 

so 1r(f) E £(1i1f ) and 111r(f) II S; Ilflll' 
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