
Ordinary and Partial Differential
Equation Routines in C, C++,

Fortran, Java®, Maple®, and MATLAB®

Copyright © 2004 by Chapman & Hall/CRC(C) 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

CHAPMAN & HALL/CRC
A CRC Press Company

Boca Raton London New York Washington, D.C.

Ordinary and Partial Differential
Equation Routines in C, C++,

Fortran, Java®, Maple®, and MATLAB®

H.J. Lee and W.E. Schiesser

Copyright © 2004 by Chapman & Hall/CRC(C) 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Java is a registered trademark of Sun Microsystems, Inc.

Maple is a registered trademark of Waterloo Maple, Inc.

MATLAB is a registered trademark of The MathWorks, Inc. For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
Tel.: 508-647-7000
Fax: 508-647-7001
e-mail: info@mathworks.com
Web: www.mathworks.com http://www.mathworks.com/

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2004 by Chapman & Hall/CRC

No claim to original U.S. Government works
International Standard Book Number 1-58488-423-1

Library of Congress Card Number 2003055809
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Lee, H. J. (Hyun Jin)
Ordinary and partial differential equation routines in C, C++, Fortran, Java, Maple, and

 MATLAB / H.J. Lee and W.E. Schiesser.
p. cm.

Includes bibliographical references and index.
ISBN 1-58488-423-1 (alk. paper)
 1. Differential equations—Data processing. 2. Differential equations, Partial—Data

 processing. I. Schiesser, W. E. II. Title.

 QA371.5.D37L44 2003
 515

¢.

352

¢

0285—dc22 2003055809

C231 disclaimer.fm Page 1 Friday, October 17, 2003 9:28 AM

Copyright © 2004 by Chapman & Hall/CRC(C) 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

www.crcpress.com
www.mathworks.com

Preface

Initial value ordinary differential equations (ODEs) and partial differential
equations (PDEs) are among the most widely used forms of mathematics in
science and engineering. However, insights from ODE/PDE-based models
are realized only when solutions to the equations are produced with accept-
able accuracy and with reasonable effort.

Most ODE/PDE models are complicated enough (e.g., sets of simultane-
ous nonlinear equations) to preclude analytical methods of solution; instead,
numerical methods must be used, which is the central topic of this book.

The calculation of a numerical solution usually requires that well-
established numerical integration algorithms are implemented in quality li-
brary routines. The library routines in turn can be coded (programmed) in a
variety of programming languages. Typically, for a scientist or engineer with
an ODE/PDE- based mathematical model, finding routines written in a famil-
iar language can be a demanding requirement, and perhaps even impossible
(if such routines do not exist).

The purpose of this book, therefore, is to provide a set of ODE/PDE in-
tegration routines written in six widely accepted and used languages. Our
intention is to facilitate ODE/PDE-based analysis by using the library rou-
tines to compute reliable numerical solutions to the ODE/PDE system of
interest.

However, the integration of ODE/PDEs is a large subject, and to keep this
discussion to reasonable length, we have limited the selection of algorithms
and the associated routines. Specifically, we concentrate on explicit (nonstiff)
Runge Kutta (RK) embedded pairs. Within this setting, we have provided
integrators that are both fixed step and variable step; the latter accept a user-
specified error tolerance and attempt to compute a solution to this required
accuracy. The discussion of ODE integration includes truncation error moni-
toring and control, h and p refinement, stability and stiffness, and explicit and
implicit algorithms. Extensions to stiff systems are also discussed and illus-
trated through an ODE application; however, a detailed presentation of stiff
(implicit) algorithms and associated software in six languages was judged
impractical for a book of reasonable length.

Further, we have illustrated the application of the ODE integration routines
to PDEs through the method of lines (MOL). Briefly, the spatial (boundary
value) derivatives of the PDEs are approximated algebraically, typically by
finite differences (FDs); the resulting system of initial-value ODEs is then
solved numerically by one of the ODE routines.

Copyright © 2004 by Chapman & Hall/CRC(C) 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Thus, we have attempted to provide the reader with a set of computational
tools for the convenient solution of ODE/PDE models when programming
in any of the six languages. The discussion is introductory with limited math-
ematical details. Rather, we rely on numerical results to illustrate some basic
mathematical properties, and we avoid detailed mathematical analysis (e.g.,
theorems and proofs), which may not really provide much assistance in the
actual calculation of numerical solutions to ODE/PDE problems.

Instead, we have attempted to provide useful computational tools in the
form of software. The use of the software is illustrated through a small number
of ODE/PDE applications; in each case, the complete code is first presented,
and then its components are discussed in detail, with particular reference
to the concepts of integration, e.g., stability, error monitoring, and control.
Since the algorithms and the associated software have limitations (as do all
algorithms and software), we have tried to point out these limitations, and
make suggestions for additional methods that could be effective.

Also, we have intentionally avoided using features specific to a particular
language, e.g., sparse utilities, object-oriented programming. Rather, we have
emphasized the commonality of the programming in the six languages, and
thereby illustrate how scientific computation can be done in any of the lan-
guages. Of course, language-specific features can be added to the source code
that is provided.

We hope this format will allow the reader to understand the basic elements
of ODE/PDE integration, and then proceed expeditiously to a numerical solu-
tion of the ODE/PDE system of interest. The applications discussed in detail,
two in ODEs and two in PDEs, can be used as a starting point (i.e., as tem-
plates) for the development of a spectrum of new applications.

We welcome comments and questions about how we might be of assis-
tance (directed to wes1@lehigh.edu). Information for acquiring (gratis) all the
source code in this book is available from http://www.lehigh.edu/˜ wes1/
wes1.html. Additional information about the book and software is available
from the CRC Press Web site, http://www.crcpress.com.

Dr. Fred Chapman provided expert assistance with the Maple program-
ming. We note with sadness the passing of Jaeson Lee, father of H. J. Lee,
during the completion of H. J. Lee’s graduate studies at Lehigh University.

H. J. Lee
W. E. Schiesser

Bethlehem, PA

Copyright © 2004 by Chapman & Hall/CRC(C) 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

www.lehigh.edu
www.lehigh.edu
www.crcpress.com

Contents

1 Some Basics of ODE Integration
1.1 General Initial Value ODE Problem
1.2 Origin of ODE Integrators in the Taylor Series
1.3 The Runge Kutta Method
1.4 Accuracy of RK Methods
1.5 Embedded RK Algorithms
1.6 Library ODE Integrators
1.7 Stability of RK Methods

2 Solution of a 1x1 ODE System
2.1 Programming in MATLAB
2.2 Programming in C
2.3 Programming in C++
2.4 Programming in Fortran
2.5 Programming in Java
2.6 Programming in Maple

3 Solution of a 2x2 ODE System
3.1 Programming in MATLAB
3.2 Programming in C
3.3 Programming in C++
3.4 Programming in Fortran
3.5 Programming in Java
3.6 Programming in Maple

4 Solution of a Linear PDE
4.1 Programming in MATLAB
4.2 Programming in C
4.3 Programming in C++
4.4 Programming in Fortran
4.5 Programming in Java
4.6 Programming in Maple

5 Solution of a Nonlinear PDE
5.1 Programming in MATLAB
5.2 Programming in C
5.3 Programming in C++
5.4 Programming in Fortran

Copyright © 2004 by Chapman & Hall/CRC(C) 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

5.5 Programming in Java
5.6 Programming in Maple

Appendix A Embedded Runge Kutta Pairs

Appendix B Integrals from ODEs

Appendix C Stiff ODE Integration
C.1 The BDF Formulas Applied to the 2x2 ODE System
C.2 MATLAB Program for the Solution of the

2x2 ODE System
C.3 MATLAB Program for the Solution of the 2x2 ODE System

Using ode23s and ode15s

Appendix D Alternative Forms of ODEs

Appendix E Spatial p Refinement

Appendix F Testing ODE/PDE Codes

Copyright © 2004 by Chapman & Hall/CRC(C) 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

1
Some Basics of ODE Integration

The central topic of this book is the programming and use of a set of li-
brary routines for the numerical solution (integration) of systems of initial
value ordinary differential equations (ODEs). We start by reviewing some
of the basic concepts of ODEs, including methods of integration, that are
the mathematical foundation for an understanding of the ODE integration
routines.

1.1 General Initial Value ODE Problem

The general problem for a single initial-value ODE is simply stated as

dy
dt

= f (y, t), y(t0) = y0 (1.1)(1.2)

where
y = dependent variable
t = independent variable

f (y, t) = derivative function
t0 = initial value of the independent variable
y0 = initial value of the dependent variable

Equations 1.1 and 1.2 will be termed a 1x1 problem (one equation in one un-
known). The solution of this 1x1 problem is the dependent variable as a function
of the independent variable, y(t) (this function when substituted into Equations
1.1 and 1.2 satisfies these equations). This solution may be a mathematical
function, termed an analytical solution.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

To illustrate these ideas, we consider the 1x1 problem, from Braun1 (which
will be discussed subsequently in more detail)

dy
dt

= λe−αt y, y(t0) = y0 (1.3)(1.4)

where λ and α are positive constants.
Equation 1.3 is termed a first-order, linear, ordinary differential equation with

variable coefficients. These terms are explained below.

Term Explanation

Differential equation Equation 1.3 has a derivative dy/dt = f (y, t) = λe−αt y
Ordinary Equation 1.3 has only one independent variable, t, so that

the derivative dy/dt is a total or ordinary derivative
First-order The highest-order derivative is first order (dy/dt is

first order)
Linear y and its derivative dy/dt are to the first power; thus,

Equation 1.3 is also termed first degree (do not confuse
order and degree)

Variable coefficient The coefficient e−αt is a function of the independent
variable, t (if it were a function of the dependent
variable, y, Equation 1.3 would be nonlinear or not
first degree)

The analytical solution to Equations 1.3 and 1.4 is from Braun:1

y(t) = y0 exp
(

λ

α
(1 − exp(−αt))

)
, y(0) = y0 (1.5)

where exp(x) = ex. Equation 1.5 is easily verified as the solution to Equations
1.3 and 1.4 by substitution in these equations:

Terms in Substitution of Equation 1.5
Equations 1.3 and 1.4 in Equations 1.3 and 1.4

dy
dt

y0 exp

(
λ

α
(1 − exp(−αt))

)(
λ

α

)
(−exp(−αt))(−α)

= λy0 exp

(
λ

α
(1 − exp(−αt))

)
(exp(−αt))

−λe−αt y −λe−αt y0 exp

(
λ

α
(1 − exp(−αt))

)

= =
0 0

y(0) y0 exp

(
λ

α
(1 − exp(−α(0)))

)
= y0(e0) = y0

thus confirming Equation 1.5 satisfies Equations 1.3 and 1.4.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

As an example of a nxn problem (n ODEs in n unknowns), we will also
subsequently consider in detail the 2x2 system

dy1

dt
= a11 y1 + a12 y2 y1(0) = y10

dy2

dt
= a21 y1 + a22 y2 y2(0) = y20

(1.6)

The solution to Equations 1.6 is again the dependent variables, y1, y2, as a
function of the independent variable, t. Since Equations 1.6 are linear, constant
coefficient ODEs, their solution is easily derived, e.g., by assuming exponential
functions in t or by the Laplace transform. If we assume exponential functions

y1(t) = c1eλt

y2(t) = c2eλt
(1.7)

where c1, c2, and λ are constants to be determined, substitution of Equations
1.7 in Equations 1.6 gives

c1λeλt = a11c1eλt + a12c2eλt

c2λeλt = a21c1eλt + a22c2eλt

Cancellation of eλt gives a system of algebraic equations (this is the reason
assuming exponential solutions works in the case of linear, constant coefficient
ODEs)

c1λ = a11c1 + a12c2

c2λ = a21c1 + a22c2

or
(a11 − λ)c1 + a12c2 = 0

a21c1 + (a22 − λ)c2 = 0
(1.8)

Equations 1.8 are the 2x2 case of the linear algebraic eigenvalue problem

(A − λI)c = 0 (1.9)

where

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

an1 an2 · · · ann

I =

1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

c =

c1
c2
...

cn

0 =

0
0
...

0

n = 2 for Equations 1.8, and we use a bold faced symbol for a matrix or a
vector.

The preceding matrices and vectors are

A nxn coefficient matrix
I nxn identity matrix
c nx1 solution vector
0 nx1 zero vector

The reader should confirm that the matrices and vectors in Equation 1.9 have
the correct dimensions for all of the indicated operations (e.g., matrix addi-
tions, matrix-vector multiples).

Note that Equation 1.9 is a linear, homogeneous algebraic system (homoge-
neous means that the right-hand side (RHS) is the zero vector). Thus, Equation
1.9, or its 2x2 counterpart, Equations 1.8, will have nontrivial solutions (c �= 0)
if and only if (iff) the determinant of the coefficient matrix is zero, i.e.,

|A − λI| = 0 (1.10)

Equation 1.10 is the characteristic equation for Equation 1.9 (note that it is a
scalar equation). The values of λ that satisfy Equation 1.10 are the eigenvalues
of Equation 1.9. For the 2x2 problem of Equations 1.8, Equation 1.10 is

∣∣∣∣ a11 − λ a12
a21 a22 − λ

∣∣∣∣ = 0

or

(a11 − λ)(a22 − λ) − a21a12 = 0 (1.11)

Equation 1.11 is the characteristic equation or characteristic polynomial for
Equations 1.8; note that since Equations 1.8 are a 2x2 linear homogeneous
algebraic system, the characteristic equation (Equation 1.11) is a second-order

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

polynomial. Similarly, since Equation 1.9 is a nxn linear homogeneous alge-
braic system, its characteristic equation is a nth-order polynomial.

Equation 1.11 can be factored by the quadratic formula

λ2 − (a11 + a22)λ + a11a22 − a21a12 = 0

λ1, λ2 = (a11 + a22) ±
√

(a11 + a22)2 − 4(a11a22 − a21a12)

2
(1.12)

Thus, as expected, the 2x2 system of Equations 1.8 has two eigenvalues.
In general, the nxn algebraic system, Equation 1.9, will have n eigenval-
ues, λ1, λ2, . . . , λn (which may be real or complex conjugates, distinct or
repeated).

Since Equations 1.6 are linear constant coefficient ODEs, their general so-
lution will be a linear combination of exponential functions, one for each
eigenvalue

y1 = c11eλ1t + c12eλ2t

y2 = c21eλ1t + c22eλ2t
(1.13)

Equations 1.13 have four constants which occur in pairs, one pair for each
eigenvalue. Thus, the pair [c11 c21]T is the eigenvector for eigenvalue λ1 while
[c12 c22]T is the eigenvector for eigenvalue λ2. In general, the nxn system of
Equation 1.9 will have a nx1 eigenvector for each of its n eigenvalues. Note
that the naming convention for any constant in an eigenvector, ci j , is the
ith constant for the j th eigenvalue. We can restate the two eigenvectors for
Equation 1.13 (or Equations 1.8) as

[
c11
c21

]
λ1

,
[

c12
c22

]
λ2

(1.14)

Finally, the four constants in eigenvectors (Equations 1.14) are related
through the initial conditions of Equations 1.6 and either of Equations 1.8

y10 = c11eλ10 + c12eλ20

y20 = c21eλ10 + c22eλ20
(1.15)

To simplify the analysis somewhat, we consider the special case a11 = a22 =
−a, a21 = a12 = b, where a and b are constants. Then from Equation 1.12,

λ1, λ2 = −2a ±
√

(2a)2 − 4(a2 − b2)

2
= −a ± b = −(a − b), −(a + b) (1.16)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

From the first of Equations 1.8 for λ = λ1

(a11 − λ1)c11 + a12c21 = 0

or

(−a + (a − b))c11 + bc21 = 0

c11 = c21

Similarly, for λ = λ2

(a11 − λ2)c12 + a12c22 = 0

or

(−a + (a + b))c12 + bc22 = 0

c12 = −c22

Substitution of these results in Equations 1.15 gives

y10 = c11 − c22

y20 = c11 + c22

or

c11 = y10 + y20

2
= c21

c22 = y20 − y10

2
= −c12

Finally, the solution from Equations 1.13 is

y1 = y10 + y20

2
eλ1t − y20 − y10

2
eλ2t

y2 = y10 + y20

2
eλ1t + y20 − y10

2
eλ2t

(1.17)

Equations 1.17 can easily be checked by substitution in Equations 1.6 (with
a11 = a22 = −a, a21 = a12 = b) and application of the initial conditions at
t = 0:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

dy1

dt
λ1

y10 + y20

2
eλ1t − λ2

y20 − y10

2
eλ2t

= −(a − b)
y10 + y20

2
eλ1t + (a + b)

y20 − y10

2
eλ2t

+ay1 +a
(y10 + y20

2
eλ1t − y20 − y10

2
eλ2t

)

−by2 −b
(y10 + y20

2
eλ1t + y20 − y10

2
eλ2t

)
= =
0 0

dy2

dt
λ1

y10 + y20

2
eλ1t + λ2

y20 − y10

2
eλ2t

= −(a − b)
y10 + y20

2
eλ1t − (a + b)

y20 − y10

2
eλ2t

+ay2 +a
(y10 + y20

2
eλ1t + y20 − y10

2
eλ2t

)

−by1 −b
(y10 + y20

2
eλ1t − y20 − y10

2
eλ2t

)
= =
0 0

For the initial conditions of Equations 1.6

y10 = y10 + y20

2
eλ10 − y20 − y10

2
eλ20 = y10

y20 = y10 + y20

2
eλ10 + y20 − y10

2
eλ20 = y20

as required.
The ODE problems of Equations 1.3, 1.4, and 1.6 along with their analytical

solutions, Equations 1.5 and 1.17, will be used subsequently to demonstrate
the use of the ODE integration routines and to evaluate the computed solu-
tions. Since these problems are quite modest (1x1 and 2x2, respectively), we
will also subsequently consider two problems with substantially more ODEs.
At the same time, these ODE systems will be considered as approximations
to partial differential equations (PDEs); in other words, we will use systems
of ODEs for the solution of PDEs.

1.2 Origin of ODE Integrators in the Taylor Series

In contrast to the analytical solutions presented previously (Equations 1.5 and
1.17), the numerical solutions we will compute are ordered pairs of numbers.
For example, in the case of Equation 1.3, we start from the pair (t0, y0) (the
initial condition of Equation 1.3) and proceed to compute paired values (ti , yi)

where i = 1, 2, . . . is an index indicating a position or point along the solution.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

y(t): Exact solution
yi(t): Numerical solution

1t0t
y0 = y(t0)

dy0 / dt

h

t

y(t)
yi(t)

y(t)

y1

y(t1)

yi+1 = yi + (dyi / dt)h
Stepping formula for the Euler method:

ei+1: Truncation error

e1

FIGURE 1.1
Stepping along the solution with Euler’s method.

The numerical integration is then a step-by-step algorithm going from the
solution point (ti , yi) to the point (ti+1, yi+1).

This stepping procedure is illustrated in Figure 1.1 and can be represented
mathematically by a Taylor series:

yi+1 = yi + dyi

dt
h + d2 yi

dt2

h2

2!
+ · · · (1.18)

where h = ti+1 − ti . We can truncate this series after the linear term in h

yi+1 ≈ yi + dyi

dt
h (1.19)

and use this approximation to step along the solution from y0 to y1 (with
i = 0), then from y1 to y2 (with i = 1), etc. This is the famous Euler’s method.

This stepping procedure is illustrated in Figure 1.1 (with i = 0). Note that
Equation 1.19 is equivalent to projecting along a tangent line from i to i +1. In
other words, we are representing the solution, y(t), by a linear approximation.
As indicated in Figure 1.1, an error, εi , will occur, which in the case of Figure
1.1 appears to be excessive. However, this apparently large error is only for
purposes of illustration in Figure 1.1. By taking a small enough step, h, the
error can, at least in principle, be reduced to any acceptable level. To see this,
consider the difference between the exact solution, y(ti+1), and the approxi-
mate solution, yi+1, if h is halved in Figure 1.1 (note how the vertical difference
corresponding to εi is reduced). In fact, a major part of this book is devoted to
controlling the error, εi , to an acceptable level by varying h. εi is termed the
truncation error, which is a logical name since it results from truncating a

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Taylor series (Equation 1.18), in this case, to Equation 1.19. In other words, εi

is the truncation error for Euler’s method, Equation 1.19.
We could logically argue that the truncation error could be reduced (for a

given h) by including more terms in the Taylor, e.g., the second derivative
term (d2 yi/dt2)(h2/2!). Although this is technically true, there is a practical
problem. For the general ODE, Equation 1.1, we have only the first derivative
available

dyi

dt
= f (yi , ti)

The question then in using the second derivative term of the Taylor series
is “How do we obtain the second derivative, d2 yi/dt2?”. One answer would
be to differentiate the ODE, i.e.,

d2 y
dt2 = d

dt

(
dy
dt

)
= d f (y, t)

dt
= ∂ f

∂y
dy
dt

+ ∂ f
∂t

= ∂ f
∂y

f + ∂ f
∂t

(1.20)

Then we can substitute Equation 1.20 in Equation 1.18:

yi+1 = yi + fi h +
(

∂ f
∂y

f + ∂ f
∂t

)
i

h2

2!
(1.21)

where again subscript “i” means evaluated at point i .
As an example of the application of Equation 1.21, consider the model ODE

dy
dt

= f (y, t) = λy (1.22)

where λ is a constant. Then

fi = λyi(
∂ f
∂y

f + ∂ f
∂t

)
i
= λ (λyi)

(note: ∂ f /∂t = 0 since f = λy does not depend on t) and substitution in
Equation 1.21 gives

yi+1 = yi + λyi h + λ (λyi)
h2

2!
= yi (1 + λh + (λh)2/2!)

yi (1+λh+(λh)2/2!) is the Taylor series of yi eλh up to and including the h2 term,
but yi eλh is the analytical solution to Equation 1.22 with the initial condition
y(ti) = yi for the integration step, h = ti+1 − ti . Thus, as stated previously,
Equation 1.21 fits the Taylor series of the analytical solution to Equation 1.22
up to and including the (d2 yi/dt2)(h2/2!) term.

Of course, we could, in principle, continue this process of including ad-
ditional terms in the Taylor series, e.g., using the derivative of the second

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

derivative to arrive at the third derivative, etc. Clearly, however, the method
quickly becomes cumbersome (and this is for only one ODE, Equation 1.1).
Application of this Taylor series method to systems of ODEs involves a lot of
differentiation. (Would we want to apply it to a system of 100 or 1000 ODEs?
We think not.)

Ideally, we would like to have a higher-order ODE integration method
(higher than the first-order Euler method) without having to take derivatives
of the ODEs. Although this may seem like an impossibility, it can in fact be
done by the Runge Kutta (RK) method. In other words, the RK method can be
used to fit the numerical ODE solution exactly to an arbitrary number of terms
in the underlying Taylor series without having to differentiate the ODE. We will
investigate the RK method, which is the basis for the ODE integration routines
described in this book.

The other important characteristic of a numerical integration algorithm (in
addition to not having to differentiate the ODE) is a way of estimating the
truncation error, ε, so that the integration step, h, can be adjusted to achieve a
solution with a prescribed accuracy. This may also seem like an impossibility
since it would appear that in order to compute ε we need to know the exact
(analytical) solution. But if the exact solution is known, there would be no need
to calculate the numerical solution. The answer to this apparent contradiction
is the fact that we will calculate an estimate of the truncation error (and not the
exact truncation error which would imply that we know the exact solution). To
see how this might be done, consider computing a truncation error estimate
for the Euler method. Again, we return to the Taylor series (which is the
mathematical tool for most of the numerical analysis of ODE integration).
Now we will expand the first derivative dy/dt

dyi+1

dt
= dyi

dt
+ d2 yi

dt2

h
1!

+ · · · (1.23)

d2 yi/dt2 is the second derivative we require in Equation 1.18. If the Taylor
series in Equation 1.23 is truncated after the h term, we can solve for this
second derivative

d2 yi

dt2 =
dyi+1

dt
− dyi

dt
h

(1.24)

Equation 1.24 seems logical, i.e., the second derivative is a finite difference
(FD) approximation of the first derivative. Note that Equation 1.24 has the im-
portant property that we can compute the second derivative without having
to differentiate the ODE; rather, all we have to do is use the ODE twice, at
grid points i and i + 1. Thus, the previous differentiation of Equation 1.20 is
avoided. However, note also that Equation 1.24 gives only an approximation
for the second derivative since it results from truncating the Taylor series of
Equation 1.23. Fortunately, the approximation of Equation 1.24 will generally

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

become increasingly accurate with decreasing h since the higher terms in h in
Equation 1.23 (after the point of truncation) will become increasingly smaller.

Substituting Equation 1.24 in Equation 1.18 (truncated after the h2 term)
gives

yi+1 = yi + dyi

dt
h + d2 yi

dt2

h2

2!

= yi + dyi

dt
h +

dyi+1

dt
− dyi

dt
h

h2

2!

= yi + dyi

dt
h +

(
dyi+1

dt
− dyi

dt

)
h
2!

= yi +
(

dyi+1

dt
+ dyi

dt

)
h
2!

(1.25)

Equation 1.25 is the well-known modified Euler method or extended Euler
method. We would logically expect that for a given h, Equation 1.25 will give
a more accurate numerical solution for the ODE than Equation 1.19. We will
later demonstrate that this is so in terms of some ODE examples, and we will
state more precisely how the truncation errors of Equations 1.19 and 1.25 vary
with h.

Note that Equation 1.25 uses the derivative dy/dt averaged at points i and
i +1, as illustrated in Figure 1.2. Thus, whereas the derivative at i in Figure 1.1

y(t): Exact solution
yi(t): Numerical solution

y0 = y(t0)
0t

dy0 / dt

y1
p

1t

h

e1
p

t

y(t)
y(t)

dy1
p / dt

yi(t)
y1

c

e1
c

y(t1)

yi
p
+1 = yi + (dyi / dt)h

Stepping formulas:

hyi
c
+1 = yi +

2

(dyi / dt) + (dyi
p
+1 / dt)

εi
p
+1,εi

c
+1: Truncation errors

FIGURE 1.2
Modified Euler method.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

is too large and causes the large overshoot of the numerical solution above
the exact solution (and thus, a relatively large value of εi), the averaging of
the derivatives at i and i + 1 in Figure 1.2 reduces this overshoot (and the
truncation error is reduced from ε

p
i to εc

i).
Equation 1.25 can be rearranged into a more useful form. If we assume

that the truncation error of Euler’s method, εi , is due mainly to the second
derivative term (d2 yi/dt2)(h2/2!) of Equation 1.18 (which will be the case if
the higher-order terms in Equation 1.18 are negligibly small), then

εi = d2 yi

dt2

h2

2!
=

dyi+1

dt
− dyi

dt
h

h2

2!
=

(
dyi+1

dt
− dyi

dt

)
h
2!

and Equation 1.25 can be written as a two-step algorithm:

yp
i+1 = yi + dyi

dt
h (1.26a)

εi =
(

dyp
i+1

dt
− dyi

dt

)
h
2!

(1.26b)

yc
i+1 = yi + dyi

dt
h + εi = yp

i+1 + εi (1.26c)

With a little algebra, we can easily show that yi+1 of Equation 1.25 and yp
i+1

of Equation 1.26c are the same. While Equation 1.25 and Equations 1.26c are
mathematically equivalent, Equations 1.26 have an advantage when used in
a computer program. Specifically, an algorithm that automatically adjusts h
to achieve a prescribed accuracy, tol, can be programmed in the following
steps:

1. Compute yp
i+1 by the Euler method, Equation 1.26a. The superscript p

in this case denotes a predicted value.
2. Compute the estimated error, εi , from Equation 1.26b. Note that

dyp
i+1/dt = f (yp

i+1, ti+1), where ti+1 = ti + h.
3. Pose the question is εi < tol? If no, reduce h and return to 1. If yes,

continue to 4.
4. Add εi from 3 to yp

i+1 to obtain yc
i+1 according to Equation 1.26c. The

superscript c denotes a corrected value.
5. Increment i, advance ti to ti+1 by adding h, go to 1. to take the next step

along the solution.

The algorithm of Equations 1.26 is termed a predictor-corrector method, which
we will subsequently discuss in terms of a computer program.

To conclude this introductory discussion of integration algorithms, we in-
troduce the RK notation. If we define k1 and k2 (termed Runge Kutta constants

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

although they are not constant, but rather, vary along the solution) as

k1 = f (yi , ti)h (1.27a)

k2 = f (yi + k1, ti + h)h (1.27b)

the Euler method of Equation 1.19 can be written as (keep in mind dy/dt =
f (y, t))

yi+1 = yi + k1 (1.28)

and the modified Euler method of Equation 1.25 can be written

yi+1 = yi + k1 + k2

2
(1.29)

(the reader should confirm that Equation 1.25 and Equation 1.29 are the same).
Also, the modified Euler method written in terms of an explicit error esti-

mate, Equations 1.26, can be conveniently written in RK notation:

yp
i+1 = yi + k1 (1.30a)

εi = (k2 − k1)

2
(1.30b)

yc
i+1 = yi + k1 + (k2 − k1)

2
= yi + (k1 + k2)

2
(1.30c)

However, the RK method is much more than just a convenient system of
notation. As stated earlier, it is a method for fitting the underlying Taylor series
of the ODE solution to any number of terms without having to differentiate
the ODE (it requires only the first derivative in dy/dt = f (y, t) as we observe
in Equations 1.29 and 1.30). We next explore this important feature of the RK
method, which is the mathematical foundation of the ODE integrators to be
discussed subsequently.

1.3 The Runge Kutta Method

The RK method consists of a series of algorithms of increasing order. There
is only one first order RK method, the Euler method, which fits the underlying
Taylor series of the solution up to and including the first derivative term, as
indicated by Equation 1.19.

The second-order RK method is actually a family of second-order methods;
a particular member of this family is selected by choosing an arbitrary con-
stant in the general second-order RK formulas. The origin of these formulas is

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

illustrated by the following development (based on the idea that the second-
order RK method fits the Taylor series up to and including the second deriva-
tive term, (d2 yi/dt2)(h2/2!)).

We start the analysis with a general RK stepping formula of the form

yi+1 = yi + c1k1 + c2k2 (1.31a)

where k1 and k2 are RK “constants” of the form

k1 = f (yi , ti)h (1.31b)

k2 = f (yi + a2k1(yi , ti), ti + a2h)h = f (yi + a2 f (yi , ti)h, ti + a2h)h (1.31c)

and c1, c2 and a2 are constants to be determined.
If k2 from Equation 1.31c is expanded in a Taylor series in two variables,

k2 = f (yi + a2 f (yi , ti)h, ti + a2h)h

= [
f (yi , ti) + fy(yi , ti)a2 f (yi , ti)h + ft(yi , ti)a2h

]
h + O(h3) (1.32)

Substituting Equations 1.31b and 1.32 in Equation 1.31a gives

yi+1 = yi + c1 f (yi , ti)h + c2[f (yi , ti) + fy(yi , ti)a2 f (yi , ti)h

+ ft(yi , ti)a2h]h + O(h3)

= yi + (c1 + c2) f (yi , ti)h + c2[fy(yi , ti)a2 f (yi , ti)

+ ft(yi , ti)a2]h2 + O(h3) (1.33)

Note that Equation 1.33 is a polynomial in increasing powers of h; i.e., it has
the form of a Taylor series. Thus, if we expand yi+1 in a Taylor series around
yi , we will obtain a polynomial of the same form, i.e., in increasing powers
of h

yi+1 = yi + dyi

dt
h + d2 yi

dt2

h2

2!
+ O(h3)

= yi + f (yi , ti)h + d f (yi , ti)
dt

h2

2!
+ O(h3) (1.34)

where we have used dyi/dt = f (yi , ti), i.e., the ODE we wish to integrate nu-
merically. To match Equations 1.33 and 1.34, term-by-term (with like powers
of h), we need to have [d f (yi , ti)/dt](h2/2!) in Equation 1.34 in the form of
fy(yi , ti)a2 f (yi , ti) + ft(yi , ti)a2 in Equation 1.33.

If chain-rule differentiation is applied to d f (yi , ti)/dt

d f (yi , ti)
dt

= fy(yi , ti)
dyi

dt
+ ft(yi , ti) = fy(yi , ti) f (yi , ti) + ft(yi , ti) (1.35)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Substitution of Equation 1.35 in Equation 1.34 gives

yi+1 = yi + f (yi , ti)h + [
fy(yi , ti) f (yi , ti) + ft(yi , ti)

] h2

2!
+ O(h3) (1.36)

We can now equate coefficients of like powers of h in Equations 1.33 and 1.36

Power of h Equation 1.33 Equation 1.36

h0 yi yi

h1 (c1 + c2) f (yi , ti) f (yi , ti)

h2 c2

[
fy(yi , ti)a2 f (yi , ti) + ft(yi , ti)a2

] [
fy(yi , ti) f (yi , ti) + ft(yi , ti)

] 1
2!

Thus, we conclude
c1 + c2 = 1

c2a2 = 1/2
(1.37)

This is a system of two equations in three unknowns or constants (c1, c2, a2);
thus, one constant can be selected arbitrarily (there are actually an infinite
number of second-order RK methods, depending on the arbitrary choice of
one of the constants in Equations 1.37). Here is one choice:

Choose c2 = 1/2
Other constants c1 = 1/2

a2 = 1
(1.38)

and the resulting second-order RK method is

yi+1 = yi + c1k1 + c2k2 = yi + k1 + k2

2
k1 = f (yi , ti)h

k2 = f (yi + a2k1(yi , ti), ti + a2h)h = f (yi + f (yi , ti)h, ti + h)h

which is the modified Euler method, Equations 1.27, 1.28, and 1.29.
For the choice

Choose c2 = 1
Other constants c1 = 0

a2 = 1/2
(1.39)

the resulting second-order RK method is

yi+1 = yi + c1k1 + c2k2 = yi + k2 (1.40a)

k1 = f (yi , ti)h (1.40b)

k2 = f (yi + a2k1(yi , ti), ti + a2h)h

= f (yi + (1/2) f (yi , ti)h, ti + (1/2)h)h

= f (yi + (1/2)k1, ti + (1/2)h)h (1.40c)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

y(t): Exact solution

yi(t): Numerical solution

t0

y0 = y(t0)

dy0 / dt
y1

c

t1

t

y(t)
y(t) dyp

1/2 / dt

yi(t)

yp
1/2

ε1
c

2
h

2
h

t1/2

y(t1)

yi
p
+1/2 = yi + (dyi / dt)h / 2

Stepping formulas:

yi
c
+1 = yi + (dyi

p
+1/2 / dt)h

εi
c
+1: Truncation error

FIGURE 1.3
Midpoint method.

which is the midpoint method illustrated in Figure 1.3. As the name suggests, an
Euler step is used to compute a predicted value of the solution at the midpoint
between points i and i + 1 according to Equation 1.40c. The corresponding
midpoint derivative (k2 of Equation 1.40c) is then used to advance the solution
from i to i + 1 (according to Equation 1.40a).

Another choice of the constants in Equation 1.37 is (Iserles,2 p. 84)

Choose c2 = 3/4
Other constants c1 = 1/4

a2 = 2/3
(1.41)

and therefore

yi+1 = yi + (1/4)k1 + (3/4)k2 (1.42a)

k1 = f (yi , ti)h (1.42b)

k2 = f (yi + (2/3)k1, ti + (2/3)h)h (1.42c)

The third-order RK formulas are derived in the same way, but the par-
tial differentiation is more complicated. Thus, we just state the beginning

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

equations and the final result (Iserles,2 p. 40). The third order stepping for-
mula is

yi+1 = yi + c1k1 + c2k2 + c3k3 (1.43a)

The RK constants are

k1 = f (yi , ti)h (1.43b)

k2 = f (yi + a2k1, ti + a2h)h (1.43c)

k3 = f (yi + b3k1 + (a3 − b3)k2, ti + a3h)h (1.43d)

Four algebraic equations define the six constants c1, c2, c3, a2, a3, b3 (ob-
tained by matching the stepping formula, Equation 1.43a, with the Taylor
series up to and including the term (d3 yi/dt3)(h3/3!)

c1 + c2 + c3 = 1 (1.43e)

c2a2 + c3a3 = 1/2 (1.43f)

c2a2
2 + c3a2

3 = 1/3 (1.43g)

c3(a3 − b3)a2 = 1/6 (1.43h)

To illustrate the use of Equations 1.43e to 1.43h, we can take c2 = c3 = 3
8 ,

and from Equation 1.43e, c1 = 1 − 3
8 − 3

8 = 2
8 . From Equation 1.43f

(3/8)a2 + (3/8)a3 = 1/2

or a2 = 4
3 − a3. From Equation 1.43g,

(3/8)(4/3 − a3)
2 + (3/8)a2

3 = 1/3

or a3 = 2
3 (by the quadratic formula). Thus, a2 = 4

3 − 2
3 = 2

3 , and from Equation
1.43h,

(3/8)(2/3 − b3)2/3 = 1/6

or b3 = 0.
This particular third-order Nystrom method (Iserles,2 p. 40) is therefore

yi+1 = yi + (2/8)k1 + (3/8)k2 + (3/8)k3 (1.44a)

k1 = f (yi , ti)h (1.44b)

k2 = f (yi + (2/3)k1, ti + (2/3)h)h (1.44c)

k3 = f (yi + (2/3)k2, ti + (2/3)h)h (1.44d)

We next consider some MATLAB code which implements the Euler method
of Equation 1.28, the modified Euler method of Equations 1.30, the second-
order RK of Equations 1.42, and the third-order RK of Equations 1.44.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

The objective is to investigate the accuracy of these RK methods in computing
solutions to an ODE test problem.

1.4 Accuracy of RK Methods

We start with the numerical solution of a single ODE, Equation 1.3, subject
to initial condition Equation 1.4, by the Euler and modified Euler methods,
Equation 1.28 and Equations 1.30. The analytical solution, Equation 1.5, can
be used to calculate the exact errors in the numerical solutions.

Equation 1.3 models the growth of tumors, and this important application
is first described in the words of Braun1 (the dependent variable in Equation
1.3 is changed from “y” to “V” corresponding to Braun’s notation where V
denotes tumor volume).

It has been observed experimentally that “free living” dividing cells,
such as bacteria cells, grow at a rate proportional to the volume of the
dividing cells at that moment. Let V(t) denote the volume of the dividing
cells at time t. Then,

dV
dt

= λV (1.45)

for some positive constant λ. The solution of Equation 1.45 is

V(t) = V0eλ(t−t0) (1.46)

where V0 is the volume of dividing cells at the initial time t0. Thus, free
living dividing cells grow exponentially with time. One important conse-
quence of Equation 1.46 is that the volume of the cells keeps doubling
every time interval of length ln 2/λ.

On the other hand, solid tumors do not grow exponentially with time.
As the tumor becomes larger, the doubling time of the total tumor vol-
ume continuously increases. Various researchers have shown that the data
for many solid tumors is fitted remarkably well, over almost a 1000-fold
increase in tumor volume, by the equation (previously Equation 1.5)

V(t) = V0 exp

(
λ

α
(1 − exp(−αt))

)
(1.47)

where exp(x) = ex , and λ and α are positive constants.
Equation 1.47 is usually referred to as a Gompertzjan relation. It says

that the tumor grows more and more slowly with the passage of time,
and that it ultimately approaches the limiting volume V0eλ/α . Medical
researchers have long been concerned with explaining this deviation from
simple exponential growth. A great deal of insight into this problem can be
gained by finding a differential equation satisfied by V(t). Differentiating

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Equation 1.47 gives

dV
dt

= V0λ exp(−αt) exp

(
λ

α
(1 − exp(−αt))

)

= λe−αt V (1.48)

(formerly Equation 1.3).
Two conflicting theories have been advanced for the dynamics of tumor

growth. They correspond to the two arrangements

dV
dt

= (λe−αt)V (1.48a)

dV
dt

= λ(e−αt)V (1.48b)

of differential Equation 1.48. According to the first theory, the retarding
effect of tumor growth is due to an increase in the mean generation time
of the cells, without a change in the proportion of reproducing cells. As
time goes on, the reproducing cells mature, or age, and thus divide more
slowly. This theory corresponds to the bracketing of Equation 1.48a.

The bracketing of Equation 1.48b suggests the mean generation time
of the dividing cells remains constant, and the retardation of growth is
due to a loss in reproductive cells in the tumor. One possible explana-
tion for this is that a necrotic region develops in the center of the tumor.
This necrosis appears at a critical size for a particular type of tumor, and
thereafter, the necrotic “core” increases rapidly as the total tumor mass
increases. According to this theory, a necrotic core develops because in
many tumors the supply of blood, and thus of oxygen and nutrients, is al-
most completely confined to the surface of the tumor and a short distance
beneath it. As the tumor grows, the supply of oxygen to the central core
by diffusion becomes more and more difficult, resulting in the formation
of a necrotic core.

We can note the following interesting ideas about this problem:

• Equation 1.48 is a linear, variable coefficient ODE; it can also be consid-
ered to have a variable eigenvalue.

• The application of mathematical analysis to tumor dynamics apparently
started with a “solution” to an ODE, i.e., Equation 1.47.

• To gain improved insight into tumor dynamics, the question was posed
“Is there an ODE corresponding to Equation 1.47?”

• Once an ODE was found (Equation 1.48), it helped explain why the
solution, Equation 1.47, represents tumor dynamics so well.

• This is a reversal of the usual process of starting with a differential equa-
tion model, then using the solution to explain the performance of the
problem system.

A MATLAB program that implements the solution of Equation 1.48 using
the Euler and modified Euler methods, Equations 1.28 and 1.30, follows:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Program 1.1
% Tumor model of eqs. (1.47), (1.48)
%
% Model parameters

V0=1.0;
lambda=1.0;
alpha=1.0;

%
% Step through cases

for ncase=1:4
%
% Integration step

if(ncase==1)h=1.0 ;nsteps=1 ;end
if(ncase==2)h=0.1 ;nsteps=10 ;end
if(ncase==3)h=0.01 ;nsteps=100 ;end
if(ncase==4)h=0.001;nsteps=1000;end

%
% Variables for ODE integration

tf=10.0;
t=0.0;

%
% Initial condition

V1=V0;
V2=V0;

%
% Print heading

fprintf('\n\nh = %6.3f\n',h);
fprintf(...
' t Ve V1 errV1 estV1

V2 errV2\n')
%
% Continue integration

while t<0.999*tf
%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

V1b=V1;
V2b=V2;
tb=t;

%
% RK constant k1

k11=lambda*exp(-alpha*t)*V1*h;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

k12=lambda*exp(-alpha*t)*V2*h;
%
% RK constant k2

V1=V1b+k11;
V2=V2b+k12;
t=tb+h;
k22=lambda*exp(-alpha*t)*V2*h;

%
% RK step

V2=V2b+(k12+k22)/2.0;
t=tb+h;

end
%
% Print solutions and errors

Ve=V0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
errV1=V1-Ve;
errV2=V2-Ve;
estV1=V2-V1;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f%15.10f\n',...

t,Ve,V1,errV1,estV1,V2,errV2);
%
% Continue integration

end
%
% Next case

end

Program 1.1
MATLAB program for the integration of Equation 1.48 by the modified Euler
method of Equations 1.28 and 1.30

We can note the following points about Program 1.1:

• The initial condition and the parameters of Equation 1.48 are first defined
(note that % defines a comment in MATLAB):

%
% Model parameters

V0=1.0;
lambda=1.0;
alpha=1.0;

• The program then steps through four cases corresponding to the inte-
gration steps h = 1.0, 0.1, 0.01, 0.001:

%
% Step through cases

for ncase=1:4

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Integration step

if(ncase==1)h=1.0 ;nsteps=1 ;end
if(ncase==2)h=0.1 ;nsteps=10 ;end
if(ncase==3)h=0.01 ;nsteps=100 ;end
if(ncase==4)h=0.001;nsteps=1000;end

For each h, the corresponding number of integration steps is nsteps.
Thus, the product (h)(nsteps) = 1 unit in t for each output from the
program; i.e., the output from the program is at t = 0, 1, 2, . . . , 10.

• For each case, the initial and final values of t are defined, i.e., t = 0, t f =
10, and the initial condition, V(0) = V0 is set to start the solution:

%
% Variables for ODE integration

tf=10.0;
t=0.0;

%
% Initial condition

V1=V0;
V2=V0;

Two initial conditions are set, one for the Euler solution, computed as
V1, and one for the modified Euler solution, V2 (subsequently, we will
program the solution vector, in this case [V1 V2]T , as a one-dimensional
(1D) array).

• A heading indicating the integration step, h, and the two numerical
solutions is then displayed. “. . . ” indicates a line is to be continued on
the next line. (Note: . . . does not work in a character string delineated by
single quotes, so the character string in the second fprintf statement has
been placed on two lines in order to fit within the available page width;
to execute this program, the character string should be returned to one
line.)

%
% Print heading

fprintf('\n\nh = %6.3f\n',h);
fprintf(...
' t Ve V1 errV1 estV1

V2 errV2\n')

• A while loop then computes the solution until the final time, t f , is reached:

%
% Continue integration

while t<0.999*tf

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Of course, at the beginning of the execution, t = 0 so the while loop
continues.

• nsteps Euler and modified Euler steps are then taken:

%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

V1b=V1;
V2b=V2;
tb=t;

At each point along the solution (point i), the solution is stored for sub-
sequent use in the numerical integration.

• The first RK constant, k1, is then computed for each dependent variable
in [V1 V2)]T according to Equation 1.27a:

%
% RK constant k1

k11=lambda*exp(-alpha*t)*V1*h;
k12=lambda*exp(-alpha*t)*V2*h;

Note that we have used the RHS of the ODE, Equation 1.48, in computing
k1. k11 is k1 for V1, and k12 is k1 for V2. Subsequently, the RK constants
will be programmed as 1D arrays, e.g., [k1(1) k1(2)]T .

• The solution is then advanced from the base point according to Equation
1.28:

%
% RK constant k2

V1=V1b+k11;
V2=V2b+k12;
t=tb+h;
k22=lambda*exp(-alpha*t)*V2*h;

The second RK constant, k2 for V2, is then computed according to Equa-
tion 1.27b. At the same time, the independent variable, t, is advanced.

• The modified Euler solution, V2, is then computed according to Equation
1.29:

%
% RK step

V2=V2b+(k12+k22)/2.0;
t=tb+h;

end

The advance of the independent variable, t, was done previously and is
therefore redundant; it is done again just to emphasize the advance in t

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

for the modified Euler method. The end statement ends the loop of nsteps
steps, starting with

for i=1:nsteps

• The exact solution, Ve, is computed from Equation 1.47. The exact error
in the Euler solution, errV1, and in the modified Euler solution, errV2,
are then computed. Finally, the difference in the two solutions, estV1 =
V2− V1, is computed as an estimate of the error in V1. The independent
variable, t, the two dependent variables, V1, V2, and the three errors,
errV1, errV2, estV1, are then displayed.

%
% Print solutions and errors

Ve=V0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
errV1=V1-Ve;
errV2=V2-Ve;
estV1=V2-V1;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f

%15.10f\n',...t,Ve,V1,errV1,estV1,V2,errV2);

The output from the fprintf statement is considered subsequently.
• The while loop is then terminated, followed by the end of the for loop

that sets ncase:

%
% Continue integration

end
%
% Next case

end

We now consider the output from this program listed below (reformatted
slightly to fit on a printed page):

h = 1.000

Euler method

t Ve V1 errV1 estV1
1.0 1.8816 2.0000 0.1184036125 -0.1321205588
2.0 2.3742 2.7358 0.3615489626 -0.3514091013
3.0 2.5863 3.1060 0.5197432882 -0.4929227741
4.0 2.6689 3.2606 0.5916944683 -0.5573912375
5.0 2.7000 3.3204 0.6203353910 -0.5830821148
6.0 2.7116 3.3427 0.6311833526 -0.5928173392
7.0 2.7158 3.3510 0.6352171850 -0.5964380611
8.0 2.7174 3.3541 0.6367070277 -0.5977754184

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

9.0 2.7179 3.3552 0.6372559081 -0.5982681335
10.0 2.7182 3.3556 0.6374579380 -0.5984494919

modified Euler method

t Ve V2 errV2
1.0 1.8816 1.8679 -0.0137169464
2.0 2.3742 2.3843 0.0101398613
3.0 2.5863 2.6131 0.0268205142
4.0 2.6689 2.7033 0.0343032307
5.0 2.7000 2.7373 0.0372532762
6.0 2.7116 2.7499 0.0383660134
7.0 2.7158 2.7546 0.0387791239
8.0 2.7174 2.7563 0.0389316092
9.0 2.7179 2.7569 0.0389877746
10.0 2.7182 2.7572 0.0390084461

h = 0.100

Euler method

t Ve V1 errV1 estV1
1.0 1.8816 1.8994 0.0178364041 -0.0178773733
2.0 2.3742 2.4175 0.0433341041 -0.0430037365
3.0 2.5863 2.6438 0.0575343031 -0.0569959440
4.0 2.6689 2.7325 0.0635808894 -0.0629558472
5.0 2.7000 2.7660 0.0659265619 -0.0652682467
6.0 2.7116 2.7784 0.0668064211 -0.0661356782
7.0 2.7158 2.7829 0.0671324218 -0.0664570816
8.0 2.7174 2.7846 0.0672526658 -0.0665756310
9.0 2.7179 2.7852 0.0672969439 -0.0666192852
10.0 2.7182 2.7855 0.0673132386 -0.0666353503

modified Euler method

t Ve V2 errV2
1.0 1.8816 1.8816 -0.0000409693
2.0 2.3742 2.3745 0.0003303677
3.0 2.5863 2.5868 0.0005383591
4.0 2.6689 2.6696 0.0006250422
5.0 2.7000 2.7007 0.0006583152
6.0 2.7116 2.7122 0.0006707429

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

7.0 2.7158 2.7165 0.0006753402
8.0 2.7174 2.7180 0.0006770348
9.0 2.7179 2.7186 0.0006776587

10.0 2.7182 2.7188 0.0006778883

h = 0.010

Euler method

t Ve V1 errV1 estV1
1.0 1.8816 1.8835 0.0018696826 -0.0018697473
2.0 2.3742 2.3786 0.0044269942 -0.0044231149
3.0 2.5863 2.5921 0.0058291952 -0.0058231620
4.0 2.6689 2.6754 0.0064227494 -0.0064158254
5.0 2.7000 2.7067 0.0066525021 -0.0066452372
6.0 2.7116 2.7183 0.0067386119 -0.0067312197
7.0 2.7158 2.7226 0.0067705073 -0.0067630680
8.0 2.7174 2.7242 0.0067822704 -0.0067748139
9.0 2.7179 2.7247 0.0067866019 -0.0067791389

10.0 2.7182 2.7249 0.0067881959 -0.0067807306

modified Euler method

t Ve V2 errV2
1.0 1.8816 1.8816 -0.0000000647
2.0 2.3742 2.3742 0.0000038793
3.0 2.5863 2.5863 0.0000060332
4.0 2.6689 2.6690 0.0000069239
5.0 2.7000 2.7000 0.0000072649
6.0 2.7116 2.7116 0.0000073922
7.0 2.7158 2.7158 0.0000074392
8.0 2.7174 2.7174 0.0000074566
9.0 2.7179 2.7180 0.0000074629

10.0 2.7182 2.7182 0.0000074653

h = 0.001

Euler method

t Ve V1 errV1 estV1
1.0 1.8816 1.8818 0.0001878608 -0.0001878611
2.0 2.3742 2.3747 0.0004436596 -0.0004436202

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

3.0 2.5863 2.5868 0.0005836997 -0.0005836386
4.0 2.6689 2.6696 0.0006429444 -0.0006428744
5.0 2.7000 2.7007 0.0006658719 -0.0006657985
6.0 2.7116 2.7122 0.0006744643 -0.0006743896
7.0 2.7158 2.7165 0.0006776469 -0.0006775717
8.0 2.7174 2.7180 0.0006788206 -0.0006787453
9.0 2.7179 2.7186 0.0006792528 -0.0006791774
10.0 2.7182 2.7188 0.0006794118 -0.0006793364

modified Euler method

t Ve V2 errV2
1.0 1.8816 1.8816 -0.0000000003
2.0 2.3742 2.3742 0.0000000394
3.0 2.5863 2.5863 0.0000000610
4.0 2.6689 2.6689 0.0000000700
5.0 2.7000 2.7000 0.0000000734
6.0 2.7116 2.7116 0.0000000747
7.0 2.7158 2.7158 0.0000000751
8.0 2.7174 2.7174 0.0000000753
9.0 2.7179 2.7179 0.0000000754
10.0 2.7182 2.7182 0.0000000754

We can note the following points about this output:

• Considering first the output for the Euler method at t = 1:

h Ve V1 errV1 estV1 V1 + estV1

1 1.8816 2.0000 0.1184036125 −0.1321205588 1.8679
0.1 1.8816 1.8994 0.0178364041 −0.0178773733 1.8815
0.01 1.8816 1.8835 0.0018696826 −0.0018697473 1.8816
0.001 1.8816 1.8818 0.0001878608 −0.0001878611 1.8816

We can note the following points for this output:
— The exact error, errV1, decreases linearly with integration step, h.

For example, when h is decreased from 0.01 to 0.001, errV1 decreases
from 0.0018696826 to 0.0001878608. Roughly speaking, as the decimal
point in h moves one place, the decimal point in errV1 moves one
place. However, this is true only when h becomes small (so that
higher-order terms in the underlying Taylor series become negligibly
small).

— Thus, the error in the Euler method is proportional to h

errV1 = Ch1

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

where C is a constant. The Euler method is therefore termed first order
in h or first order correct or of order h, which is usually designated as

errV1 = O(h)

where “O” denotes “of order.”
— The estimated error, estV1 is also first order in h (note again, that as h

is decreased by a factor of 1/10, estV1 decreases by a factor of 1/10).
Furthermore, the estimated error, estV1, approaches the exact error,
errV1 for small h. This is an important point since the estimated error
can be computed without knowing the exact solution; in other words, we
can estimate the error in the numerical solution without knowing the exact
solution. The estimated error, estV1 = V2− V1 is the same as εi given
by Equation 1.26b and discussed in words following Equations 1.26.

— If the estimated error, estV1, is added as a correction to the numeri-
cal solution, V1, the corrected solution (in the last column) is much
closer to the exact solution, Ve. Thus, the estimated error can not only
be used to judge the accuracy of the numerical solution, and thereby
used to decrease h if necessary to meet a specified error tolerance
(see again Equation 1.26b and the subsequent discussion), but the
estimated error can be used as a correction for the numerical solution
to obtain a more accurate solution. We will make use of these impor-
tant features of the estimated error in the subsequent routines that
automatically adjust the step, h, to achieve a specified accuracy.

• Considering next the output for the modified Euler method at t = 1:

h Ve V2 errV2

1 1.8816 1.8679 −0.0137169464
0.1 1.8816 1.8816 −0.0000409693
0.01 1.8816 1.8816 −0.0000000647
0.001 1.8816 1.8816 −0.0000000003

We can note the following points for this output:
— The exact error for the modified Euler method, errV2, is substantially

smaller than the error for the Euler method, errV1 and estV1. This is
to be expected since the modified Euler method includes the second
derivative term in the Taylor series, (d2 y/dt2)(h2/2!), while the Euler
method includes only the first derivative term, (dy/dt)(h/1!).

— In other words, the exact error, errV2, decreases much faster with h
than does errV1. The order of this decrease is difficult to assess from
the solution at t = 1. For example, when h is decreased from 0.1 to
0.01, the number of zeros after the decimal point increases from four
(−0.000040969) to seven (−0.0000000647) (or roughly, a decrease of
1/1000). But when h decreases from 0.01 to 0.001, the number of zeros

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

after the decimal point only increases from seven (−0.0000000647) to
nine (−0.0000000003) (or roughly, a decrease of 1/100). Thus, is the
order of the modified Euler method O(h2) or O(h3)?

• We come to a somewhat different conclusion if we consider the modified
Euler solution at t = 10:

h Ve V2 errV2

1 2.7182 2.7572 0.0390084461
0.1 2.7182 2.7188 0.0006778883
0.01 2.7182 2.7182 0.0000074653
0.001 2.7182 2.7182 0.0000000754

We can note the following points for this output:
— The error, errV2, now appears to be second order. For example, when h

is reduced from 0.1 to 0.01, the error decreases from 0.0006778883 to
0.0000074653, a decrease of approximately 1/100. Similarly, when h
is reduced from 0.01 to 0.001, the error decreases from 0.0000074653
to 0.0000000754, again a decrease of approximately 1/100. Thus, we
can conclude that at least for this numerical output at t = 10, the
modified Euler method appears to be second order correct, i.e.,

errV2 = O(h2)

We shall generally find this to be the case (the modified Euler method
is second order), although, clearly, there can be exceptions (i.e., the
output at t = 1).

• Finally, we can come to some additional conclusions when comparing
the output for the Euler and modified Euler methods:
— Generally, for both methods, the accuracy of the numerical solutions

can be improved by decreasing h. This process is termed h refinement,
and is an important procedure in ODE library integration routines,
i.e., decreasing h to improve the solution accuracy.

— An error in the numerical solution, in this case estV1, can be estimated
by subtracting the solutions from two methods of different orders,
i.e., estV1 = V2− V1. This estimated error can then be used to adjust
h to achieve a solution of prescribed accuracy (see Equations 1.26).
This procedure of subtracting solutions of different order is termed
p refinement since generally the order of the approximations is stated
in terms of a variable “p”, i.e.,

error = O(h p)

In the present case, p = 1 for the Euler method (it is first order
correct), and p = 2 for the modified Euler method (it is second order
correct). Thus, by using the p refinement of increasing p from 1 to 2,

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

we can estimate the error in the numerical solution (without having
to know the exact solution), and thereby make some adjustments in
h to achieve a specified accuracy.

— The integration errors we have been considering are called truncation
errors since they result from truncation of the underlying Taylor series
(after (dy/dt)(h/1!) and (d2 y/dt2)(h2/2!) for the Euler and modified
Euler methods, respectively).

— The preceding analysis and conclusions are based on a sufficiently
small value of h that the higher-order terms (in h) in the Taylor series
(after the point of truncation) are negligibly small.

— We have not produced a rigorous proof of O(h) and O(h2) for the Eu-
ler method and modified Euler method. Rather, all of the preceding
analysis was through the use of a single, linear ODE, Equation 1.48.
Thus, we cannot conclude that these order conditions are generally
true (for any system of ODEs). Fortunately, they have been observed
to be approximately correct for many ODE systems, both linear and
nonlinear.

— Higher-order RK algorithms that fit more of the terms of the underly-
ing Taylor series are available (consider the third-order RK method
of Equations 1.44). The preceding error analysis can be applied to
them in the same way, and we will now consider again the results
for the numerical solution of Equation 1.48. In other words, we can
consider h and p refinement for higher-order RK methods.

— The higher order of the modified Euler method, O(h2), relative to
the Euler method, O(h), was achieved through additional compu-
tation. Specifically, in the preceding MATLAB program, the Euler
method required only one derivative evaluation (use of Equation 1.48)
for each step along the solution, while the modified Euler method re-
quired two derivative evaluations for each step along the solution. In
other words, we pay a “computational price” of additional derivative
evaluations when using higher-order methods (that fit more of the
underlying Taylor series). However, this additional computation is
usually well worth doing (consider the substantially more accurate
solution of Equation 1.48 when using the modified Euler method
relative to the Euler method, and how much more quickly the er-
ror dropped off with decreasing h, i.e., O(h2) vs. O(h)). Generally,
an increase in the order of the method of one (e.g., O(h) to O(h2))
requires one additional derivative evaluation for order up to and in-
cluding four; beyond fourth order, increasing the order of accuracy
by one will require more than one additional derivative evaluation
(we shall observe this for a fifth-order RK method to be discussed
subsequently).

— In all of the preceding discussion, we have assumed that the solution
to an ODE system can be represented by a Taylor series (or a truncated

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Taylor series), which is basically a polynomial in h. Of course, this
does not have to be the case, but we are assuming that in using
numerical ODE integration algorithms, for sufficiently small h, the
Taylor series approximation of the solution is sufficiently accurate
for the given ODE application.

— The RK method is particularly attractive since it can be formulated
for increasing orders (more terms in the Taylor series) without having
to differentiate the differential equation to produce the higher-order
derivatives required in the Taylor series. Thus, all we have to do
in the programming of an ODE system is numerically evaluate the
derivatives defined by the ODEs.

— As we shall see in subsequent examples, the RK method can be ap-
plied to the nxn problem (n ODEs in n unknowns) as easily as we
applied it to the 1x1 problem of Equation 1.48. Thus, it is a general
procedure for the solution of systems of ODEs of virtually any order
(nxn) and complexity (which is why it is so widely used). In other
words, the RK algorithms (as well as other well-established integra-
tion algorithms) are a powerful tool in the use of ODEs in science
and engineering; we shall see that the same is also true for PDEs.

We now conclude this section by considering the errors in the numerical
solution of Equation 1.48 with a (2, 3) RK pair (i.e., O(h2) and O(h3) in analogy
with the (1, 2) pair of the Euler and modified Euler methods), and then a (4, 5)

pair (O(h4) and O(h5)). This error analysis will establish that the expected
order conditions are realized and also will provide two higher RK pairs that
we can then put into library ODE integration routines.

The (2, 3) pair we considered previously (Equations 1.42 and 1.44) is coded
in the following program. Here we have switched back from the dependent
variable V used previously in Equation 1.48 to the more commonly used y in
Equation 1.3. Also, y2 is the solution of Equation 1.3 using the second-order
RK of Equations 1.42 while y3 is the solution using the third-order RK of
Equations 1.44.

%
% Program 1.2
% Tumor model of eqs. (1.47), (1.48)
% (or eqs. (1.3), (1.4), (1.5))
%
% Model parameters

y0=1.0;
lambda=1.0;
alpha=1.0;

%
% Step through cases

for ncase=1:4

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Integration step

if(ncase==1)h=1.0 ;nsteps=1 ;end
if(ncase==2)h=0.1 ;nsteps=10 ;end
if(ncase==3)h=0.01 ;nsteps=100 ;end
if(ncase==4)h=0.001;nsteps=1000;end

%
% Variables for ODE integration

tf=10.0;
t=0.0;

%
% Initial condition

y2=y0;
y3=y0;

%
% Print heading

fprintf('\n\nh = %6.3f\n',h);
fprintf(...
' t ye y2 erry2 esty2

y3 erry3\n')
%
% Continue integration

while t<0.999*tf
%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

y2b=y2;
y3b=y3;
tb=t;

%
% RK constant k1

k12=lambda*exp(-alpha*t)*y2*h;
k13=lambda*exp(-alpha*t)*y3*h;

%
% RK constant k2

y2=y2b+(2.0/3.0)*k12;
y3=y3b+(2.0/3.0)*k13;
t=tb +(2.0/3.0)*h;

k22=lambda*exp(-alpha*t)*y2*h;
k23=lambda*exp(-alpha*t)*y3*h;

%
% RK integration K3

y3=y3b+(2.0/3.0)*k23;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

t=tb +(2.0/3.0)*h;
k33=lambda*exp(-alpha*t)*y3*h;

%
% RK step

y2=y2b+(1.0/4.0)*k12+(3.0/4.0)*k22;
y3=y3b+(1.0/4.0)*k13+(3.0/8.0)*k23+(3.0/8.0)*k33;
t=tb+h;

end
%
% Print solutions and errors

ye=y0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
erry2=y2-ye;
erry3=y3-ye;
esty2=y3-y2;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f%15.10f\n',...

t,ye,y2,erry2,esty2,y3,erry3);
%
% Continue integration

end
%
% Next case

end

Program 1.2
Program for the integration of Equation 1.48 by the RK (2, 3) pair of Equations
1.42 and 1.44

Program 1.2 closely parallels Program 1.1. The only essential difference is
the coding of the RK (2, 3) pair of Equations 1.42 and 1.44 in place of the RK
(1, 2) pair of Equations 1.28 and 1.29. We can note the following points about
Program 1.2:

• Initial condition (Equation 1.4) is again set for y2 and y3 to start the
numerical solutions:

%
% Initial condition

y2=y0;
y3=y0;

• The integration proceeds with the outer while loop (that eventually
reaches the final time, t f), and an inner for loop that takes nsteps RK
steps for each output. For each pass through the inner loop, the solution
is stored at the base point for subsequent use in the RK formulas:

%
% Continue integration

while t<0.999*tf

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

y2b=y2;
y3b=y3;
tb=t;

• The RK constant k1 is computed for each dependent variable by using
Equation 1.3 (k12 for the k1 of y2 and k13 for the k1 of y3):

%
% RK constant k1

k12=lambda*exp(-alpha*t)*y2*h;
k13=lambda*exp(-alpha*t)*y3*h;

• The solution is then advanced from the base point using a 2
3 weighting

applied to k1 and h (in accordance with Equations 1.42 and 1.44):

%
% RK constant k2

y2=y2b+(2.0/3.0)*k12;
y3=y3b+(2.0/3.0)*k13;
t=tb +(2.0/3.0)*h;
k22=lambda*exp(-alpha*t)*y2*h;
k23=lambda*exp(-alpha*t)*y3*h;

This advance of the dependent and independent variables sets the stage
for the calculation of k2 (again, using Equation 1.3).

• k3 is computed for y3 (it is not required for y2):

%
% RK integration K3

y3=y3b+(2.0/3.0)*k23;
t=tb +(2.0/3.0)*h;
k33=lambda*exp(-alpha*t)*y3*h;

• All the required RK constants have now been computed, and the solu-
tions can be advanced to the next point using the stepping formulas:

%
% RK step

y2=y2b+(1.0/4.0)*k12+(3.0/4.0)*k22;
y3=y3b+(1.0/4.0)*k13+(3.0/8.0)*k23+(3.0/8.0)*k33;
t=tb+h;

end

Note that the stepping formula for y2 does not include k3. The end state-
ment concludes the for loop that is executed nsteps times.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• The solutions, y2 and y3, and associated errors are then displayed:

%
% Print solutions and errors

ye=y0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
erry2=y2-ye;
erry3=y3-ye;
esty2=y3-y2;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f

%15.10f\n',...t,ye,y2,erry2,esty2,y3,erry3);

• Finally, the while loop is concluded, followed by the for loop that sets the
values of h, and the initial and final values of t:

%
% Continue integration

end
%
% Next case

end

• Note that Equation 1.3 was used twice to compute k1 and k2 for y2 (two
derivative evaluations), and Equation 1.3 was used three times to com-
pute k1, k2, and k3 for y3 (three derivative evaluations). This again illus-
trates the additional computation required, in this case, the calculation
of k3, to achieve higher-order results (O(h3) rather than O(h2)). This
improved accuracy is evident in the following output from Program 1.2.

The output from Program 1.2 is listed below (again, with some minor for-
matting to fit on a printed page):

h = 1.000

Second order RK

t ye y2 erry2 esty2
1.0 1.8816 1.8918 0.0101750113 -0.0185221389
2.0 2.3742 2.3995 0.0252529307 -0.0352289432
3.0 2.5863 2.6170 0.0307095187 -0.0408693758
4.0 2.6689 2.7014 0.0324302424 -0.0425724266
5.0 2.7000 2.7330 0.0330043494 -0.0431262652
6.0 2.7116 2.7448 0.0332064307 -0.0433188969
7.0 2.7158 2.7491 0.0332794779 -0.0433881911
8.0 2.7174 2.7507 0.0333061722 -0.0434134670
9.0 2.7179 2.7513 0.0333159682 -0.0434227360
10.0 2.7182 2.7515 0.0333195687 -0.0434261419

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Third order RK

t ye y3 erry3
1.0 1.8816 1.8732 -0.0083471276
2.0 2.3742 2.3642 -0.0099760125
3.0 2.5863 2.5761 -0.0101598572
4.0 2.6689 2.6588 -0.0101421842
5.0 2.7000 2.6899 -0.0101219158
6.0 2.7116 2.7014 -0.0101124662
7.0 2.7158 2.7057 -0.0101087132
8.0 2.7174 2.7073 -0.0101072948
9.0 2.7179 2.7078 -0.0101067678

10.0 2.7182 2.7081 -0.0101065733

h = 0.100

Second order RK

t ye y2 erry2 esty2
1.0 1.8816 1.8819 0.0003179977 -0.0003270335
2.0 2.3742 2.3748 0.0005660244 -0.0005762943
3.0 2.5863 2.5869 0.0006477190 -0.0006581264
4.0 2.6689 2.6696 0.0006733478 -0.0006837363
5.0 2.7000 2.7007 0.0006819708 -0.0006923405
6.0 2.7116 2.7122 0.0006850226 -0.0006953838
7.0 2.7158 2.7165 0.0006861284 -0.0006964862
8.0 2.7174 2.7181 0.0006865329 -0.0006968894
9.0 2.7179 2.7186 0.0006866814 -0.0006970374

10.0 2.7182 2.7188 0.0006867360 -0.0006970918

Third order RK

t ye y3 erry3
1.0 1.8816 1.8816 -0.0000090358
2.0 2.3742 2.3742 -0.0000102699
3.0 2.5863 2.5862 -0.0000104074
4.0 2.6689 2.6689 -0.0000103885
5.0 2.7000 2.7000 -0.0000103698
6.0 2.7116 2.7115 -0.0000103611
7.0 2.7158 2.7158 -0.0000103577
8.0 2.7174 2.7174 -0.0000103564
9.0 2.7179 2.7179 -0.0000103560

10.0 2.7182 2.7181 -0.0000103558

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

h = 0.010

Second Order RK

t ye y2 erry2 esty2
1.0 1.8816 1.8816 0.0000035779 -0.0000035865
2.0 2.3742 2.3742 0.0000062016 -0.0000062112
3.0 2.5863 2.5863 0.0000070634 -0.0000070731
4.0 2.6689 2.6690 0.0000073355 -0.0000073451
5.0 2.7000 2.7000 0.0000074275 -0.0000074371
6.0 2.7116 2.7116 0.0000074601 -0.0000074697
7.0 2.7158 2.7158 0.0000074720 -0.0000074815
8.0 2.7174 2.7174 0.0000074763 -0.0000074859
9.0 2.7179 2.7180 0.0000074779 -0.0000074875
10.0 2.7182 2.7182 0.0000074785 -0.0000074880

Third order RK

t ye y3 erry3
1.0 1.8816 1.8816 -0.0000000085
2.0 2.3742 2.3742 -0.0000000096
3.0 2.5863 2.5863 -0.0000000096
4.0 2.6689 2.6689 -0.0000000096
5.0 2.7000 2.7000 -0.0000000096
6.0 2.7116 2.7116 -0.0000000096
7.0 2.7158 2.7158 -0.0000000095
8.0 2.7174 2.7174 -0.0000000095
9.0 2.7179 2.7179 -0.0000000095
10.0 2.7182 2.7182 -0.0000000095

h = 0.001

Second order RK

t ye y2 erry2 esty2
1.0 1.8816 1.8816 0.0000000362 -0.0000000362
2.0 2.3742 2.3742 0.0000000626 -0.0000000626
3.0 2.5863 2.5863 0.0000000713 -0.0000000713
4.0 2.6689 2.6689 0.0000000740 -0.0000000740
5.0 2.7000 2.7000 0.0000000749 -0.0000000749
6.0 2.7116 2.7116 0.0000000752 -0.0000000753
7.0 2.7158 2.7158 0.0000000754 -0.0000000754
8.0 2.7174 2.7174 0.0000000754 -0.0000000754

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

9.0 2.7179 2.7179 0.0000000754 -0.0000000754
10.0 2.7182 2.7182 0.0000000754 -0.0000000754

Third order RK

t ye y3 erry3
1.0 1.8816 1.8816 0.0000000000
2.0 2.3742 2.3742 0.0000000000
3.0 2.5863 2.5863 0.0000000000
4.0 2.6689 2.6689 0.0000000000
5.0 2.7000 2.7000 0.0000000000
6.0 2.7116 2.7116 0.0000000000
7.0 2.7158 2.7158 0.0000000000
8.0 2.7174 2.7174 0.0000000000
9.0 2.7179 2.7179 0.0000000000

10.0 2.7182 2.7182 0.0000000000

This output closely parallels the previous output for the (1, 2) RK pair. Here
are some details.

• Considering the output for the second-order RK at t = 1:

h ye y2 erry2 esty2

1 1.8816 1.8918 0.0101750113 −0.0185221389
0.1 1.8816 1.8819 0.0003179977 −0.0003270335
0.01 1.8816 1.8816 0.0000035779 −0.0000035865
0.001 1.8816 1.8816 0.0000000362 −0.0000000362

— The O(h2) behavior of erry2 is clear, i.e., for h = 0.1, 0.01, 0.001 the
corresponding values of erry2 are

0.0003179977, 0.0000035779, 0.0000000362

so that for each reduction in h by 1/10, erry2 is reduced by a factor
of 1/100 (two more zeros are added after the decimal point).

— The same is true for the estimated error, erty2 (computed as the
difference y3 − y2), i.e., for h = 0.1, 0.01, 0.001 the corresponding
values of esty2 are

−0.0003270335, −0.0000035865, −0.0000000362

so that two more zeros are added after the decimal point for each
1/10 reduction in h.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

— The estimated error, esty2 is in close agreement with the exact error,
err y2, for small h.

— Thus, adding esty2 as a correction to y2 will bring the corrected y2
into closer agreement with the exact solution, ye. In other words,
esty2 can be used to determine whether h is small enough to achieve
a prescribed accuracy, and once an acceptable h is thereby selected,
esty2 can be added to y2 to improve the numerical solution (all with-
out knowledge of the exact solution).

• The corresponding output for the third order RK at t = 1 is

h ye y3 erry3

1 1.8816 1.8732 −0.0083471276
0.1 1.8816 1.8816 −0.0000090358
0.01 1.8816 1.8816 −0.0000000085
0.001 1.8816 1.8816 0.0000000000

— Again, the third order behavior is clear. For h = 1, 0.1, 0.01, 0.001,
the corresponding exact errors are

−0.0083471276, −0.0000090358, −0.0000000085, 0.0000000000

so a 1/10 reduction in h results in a 1/1000 reduction in erry3.
— In fact, since for most scientific and engineering applications of ODEs,

five figure accuracy of the numerical solutions is usually adequate,
the last two values of erry3 (for h = 0.01, 0.001) can be considered
excessively small (these errors are much less than five significant fig-
ures compared to the exact solution ye = 1.8816). In other words, h =
0.01, 0.001 are excessively small. This is an important point. While
MATLAB produced all of the numerical output (for h = 1, 0.1, 0.01,
0.001) in the order of a second or two for this modest 1x1 problem,
for large systems of ODEs, using an execessively small h will merely
result in long computer run times with no significant improvement
in the accuracy of the solution. Thus, library routines for integrat-
ing ODEs increase h as well as decrease it to produce solutions close to
the specified error tolerance (and not far below the specified error
because of excessively small h). We shall subsequently consider this
feature of reducing and increasing h to stay close to the specified
error tolerance in the library routines.

— Stated in another way, the preceding solutions for h = 1, 0.1, 0.01,
0.001 for the interval 0 ≤ t ≤ t f (= 10) required 10/1, 10/0.1, 10/0.01,
10/0.001 steps, respectively. 10/0.1 = 100 steps were adequate
(because of the accuracy of the third-order RK), while 10/0.01 = 1000

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

and 10/0.001 = 10000 steps produced excessive accuracy. However,
10/1 = 10 steps were inadequate as might be expected.

• In conclusion, the effectiveness of higher order algorithms, e.g., the third-
order RK, in reducing the error in the numerical solution of ODEs is
clearly evident from this example.

To conclude this section, we consider a widely used RK (4, 5) pair, the
Runge Kutta Fehlberg (RKF) method (Iserles,2 p. 84):

k1 = f (yi , ti)h (1.49a)

k2 = f (yi + k1/4, ti + h/4)h (1.49b)

k3 = f (yi + (3/32)k1 + (9/32)k2, ti + (3/8)h)h (1.49c)

k4 = f (yi + (1932/2197)k1 − (7200/2197)k2 + (7296/2197)k3,

ti + (12/13)h)h (1.49d)

k5 = f (yi + (439/216)k1 − 8k2 + (3680/513)k3 − (845/4104)k4,

ti + h)h (1.49e)

k6 = f (yi − (8/27)k1 + 2k2 − (3544/2565)k3 + (1859/4104)k4

−(11/40)k5, ti + (1/2)h)h (1.49f)

A O(h4) stepping formula is then

y4,i+1 = yi + (25/216)k1 + (1408/2565)k3 + (2197/4104)k4 − (1/5)k5 (1.49g)

and a O(h5) stepping formula is (with the same k terms)

y5,i+1 = yi + (16/315)k1 + (6656/12825)k3 + (28561/56430)k4

−(9/50)k5 + (2/55)k6 (1.49h)

An error estimate can then be obtained by subtracting Equation 1.49g from
Equation 1.49h:

εi = yi+1,5 − yi+1,4 (1.49i)

Note that six derivative evaluations are required (k1 through k6), even though
the final result from Equation 1.49h is only O(h5) (the number of derivative
evaluations will, in general, be equal to or greater than the order of the final
stepping formula).

The stepping formulas of Equations 1.49h and 1.49g match the Taylor series
up to and including the terms (d4 yi/dt4)(h4/4!) and (d5 yi/dt5)(h5/5!), respec-
tively, as demonstrated by the following Program 1.3.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Program 1.3
% Tumor model of eqs. (1.47), (1.48)
% (or eqs. (1.3), (1.4), (1.5))
%
% Model parameters

V0=1.0;
lambda=1.0;
alpha=1.0;

%
% Step through cases

for ncase=1:4
%
% Integration step

if(ncase==1)h=1.0 ;nsteps=1 ;end
if(ncase==2)h=0.1 ;nsteps=10 ;end
if(ncase==3)h=0.01 ;nsteps=100 ;end
if(ncase==4)h=0.001;nsteps=1000;end

%
% Variables for ODE integration

tf=10.0;
t=0.0;

%
% Initial condition

V4=V0;
V5=V0;

%
% Print heading

fprintf('\n\nh = %6.3f\n',h);
fprintf(...
' t Ve V4 errV4 estV4

V5 errV5\n')
%
% Continue integration

while t<0.999*tf
%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

V4b=V4;
V5b=V5;
tb=t;

%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% RK constant k1
k14=lambda*exp(-alpha*t)*V4*h;
k15=lambda*exp(-alpha*t)*V5*h;

%
% RK constant k2

V4=V4b+0.25*k14;
V5=V5b+0.25*k15;
t= tb+0.25*h;

k24=lambda*exp(-alpha*t)*V4*h;
k25=lambda*exp(-alpha*t)*V5*h;

%
% RK constant k3

V4=V4b+(3.0/32.0)*k14...
+(9.0/32.0)*k24;

V5=V5b+(3.0/32.0)*k15...
+(9.0/32.0)*k25;

t= tb+(3.0/8.0)*h;
k34=lambda*exp(-alpha*t)*V4*h;
k35=lambda*exp(-alpha*t)*V5*h;

%
% RK constant k4

V4=V4b+(1932.0/2197.0)*k14...
-(7200.0/2197.0)*k24...
+(7296.0/2197.0)*k34;

V5=V5b+(1932.0/2197.0)*k15...
-(7200.0/2197.0)*k25...
+(7296.0/2197.0)*k35;

t= tb+(12.0/13.0)*h;
k44=lambda*exp(-alpha*t)*V4*h;
k45=lambda*exp(-alpha*t)*V5*h;

%
% RK constant k5

V4=V4b+(439.0/ 216.0)*k14...
-(8.0)*k24...
+(3680.0/ 513.0)*k34...
-(845.0/4104.0)*k44;

V5=V5b+(439.0/ 216.0)*k15...
-(8.0)*k25...
+(3680.0/ 513.0)*k35...
-(845.0/4104.0)*k45;

t= tb+h;
k54=lambda*exp(-alpha*t)*V4*h;
k55=lambda*exp(-alpha*t)*V5*h;

%
% RK constant k6

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

V4=V4b-(8.0/ 27.0)*k14...
+(2.0)*k24...
-(3544.0/2565.0)*k34...
+(1859.0/4104.0)*k44...
-(11.0/ 40.0)*k54;

V5=V5b-(8.0/ 27.0)*k15...
+(2.0)*k25...
-(3544.0/2565.0)*k35...
+(1859.0/4104.0)*k45...
-(11.0/ 40.0)*k55;

t =tb+0.5*h;
k65=lambda*exp(-alpha*t)*V5*h;

%
% RK step

V4=V4b+(25.0/ 216.0)*k14...
+(1408.0/2565.0)*k34...
+(2197.0/4104.0)*k44...
-(1.0/ 5.0)*k54;

V5=V5b+(16.0/ 135.0)*k15...
+(6656.0/12825.0)*k35...
+(28561.0/56430.0)*k45...
-(9.0/ 50.0)*k55...
+(2.0/ 55.0)*k65;

t =tb+h;
end

%
% Print solutions and errors

Ve=V0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
errV4=V4-Ve;
errV5=V5-Ve;
estV4=V5-V4;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f%15.10f\n',...

t,Ve,V4,errV4,estV4,V5,errV5);
%
% Continue integration

end
%
% Next case

end

Program 1.3
Program for the integration of Equation 1.48 by the RKF45 method of
Equations 1.49

Program 1.3 closely parallels Programs 1.1 and 1.2. Therefore, we consider
only the essential difference, the evaluation of the RK constants, k1 to k6:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Store solution at base point

y4b=y4;
y5b=y5;
tb=t;

%
% RK constant k1

k14=lambda*exp(-alpha*t)*y4*h;
k15=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k2

y4=y4b+0.25*k14;
y5=y5b+0.25*k15;
t= tb+0.25*h;

k24=lambda*exp(-alpha*t)*y4*h;
k25=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k3

y4=y4b+(3.0/32.0)*k14...
+(9.0/32.0)*k24;

y5=y5b+(3.0/32.0)*k15...
+(9.0/32.0)*k25;

t= tb+(3.0/8.0)*h;
k34=lambda*exp(-alpha*t)*y4*h;
k35=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k4

y4=y4b+(1932.0/2197.0)*k14...
-(7200.0/2197.0)*k24...
+(7296.0/2197.0)*k34;

y5=y5b+(1932.0/2197.0)*k15...
-(7200.0/2197.0)*k25...
+(7296.0/2197.0)*k35;

t= tb+(12.0/13.0)*h;
k44=lambda*exp(-alpha*t)*y4*h;
k45=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k5

y4=y4b+(439.0/ 216.0)*k14...
-(8.0)*k24...
+(3680.0/ 513.0)*k34...
-(845.0/4104.0)*k44;

y5=y5b+(439.0/ 216.0)*k15...
-(8.0)*k25...
+(3680.0/ 513.0)*k35...

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

-(845.0/4104.0)*k45;
t= tb+h;
k54=lambda*exp(-alpha*t)*y4*h;
k55=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k6

y4=y4b-(8.0/ 27.0)*k14...
+(2.0)*k24...
-(3544.0/2565.0)*k34...
+(1859.0/4104.0)*k44...
-(11.0/ 40.0)*k54;

y5=y5b-(8.0/ 27.0)*k15...
+(2.0)*k25...
-(3544.0/2565.0)*k35...
+(1859.0/4104.0)*k45...
-(11.0/ 40.0)*k55;

t =tb+0.5*h;
k65=lambda*exp(-alpha*t)*y5*h;

%
% RK step

y4=y4b+(25.0/ 216.0)*k14...
+(1408.0/2565.0)*k34...
+(2197.0/4104.0)*k44...
-(1.0/ 5.0)*k54;

y5=y5b+(16.0/ 135.0)*k15...
+(6656.0/12825.0)*k35...
+(28561.0/56430.0)*k45...
-(9.0/ 50.0)*k55...
+(2.0/ 55.0)*k65;

t =tb+h;
end

Not much explanation is required for this code since it follows directly from
Equations 1.49a to 1.49i. We can note the following points:

• Clearly there is a substantial degree of repetitive coding that could be
streamlined through the use of 1D arrays (particularly in the calculation
of k1 to k6).

• The O(h4) and O(h5) solutions are computed independently, and we will
next observe that they can be combined.

• The code is a mixture of problem-specific coding, i.e., using Equations 1.3
and 1.4, and general coding, i.e., Equations 1.49a to 1.49i. The separation
of the code into problem-specific and general coding would facilitate the
application of the (4, 5) pair to other problems; we will see how this can
be done; i.e., we are headed toward the development of general library
routines.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

The output from Program 1.3 is listed below (again, reformatted slightly to
fit on a printed page):

h = 1.000

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8814 -0.0001703991 0.0000660329
2.0 2.3742 2.3740 -0.0002465843 0.0001027923
3.0 2.5863 2.5860 -0.0002711657 0.0001138050
4.0 2.6689 2.6687 -0.0002799191 0.0001183957
5.0 2.7000 2.6997 -0.0002831506 0.0001202510
6.0 2.7116 2.7113 -0.0002843446 0.0001209619
7.0 2.7158 2.7155 -0.0002847848 0.0001212276
8.0 2.7174 2.7171 -0.0002849469 0.0001213259
9.0 2.7179 2.7177 -0.0002850065 0.0001213621

10.0 2.7182 2.7179 -0.0002850285 0.0001213755

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8815 -0.0001043662
2.0 2.3742 2.3741 -0.0001437920
3.0 2.5863 2.5861 -0.0001573607
4.0 2.6689 2.6688 -0.0001615234
5.0 2.7000 2.6999 -0.0001628996
6.0 2.7116 2.7114 -0.0001633827
7.0 2.7158 2.7156 -0.0001635572
8.0 2.7174 2.7172 -0.0001636210
9.0 2.7179 2.7178 -0.0001636444

10.0 2.7182 2.7180 -0.0001636530

h = 0.100

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8816 -0.0000000138 0.0000000135
2.0 2.3742 2.3742 -0.0000000198 0.0000000192
3.0 2.5863 2.5863 -0.0000000218 0.0000000212
4.0 2.6689 2.6689 -0.0000000226 0.0000000220

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

5.0 2.7000 2.7000 -0.0000000229 0.0000000223
6.0 2.7116 2.7116 -0.0000000230 0.0000000224
7.0 2.7158 2.7158 -0.0000000231 0.0000000224
8.0 2.7174 2.7174 -0.0000000231 0.0000000225
9.0 2.7179 2.7179 -0.0000000231 0.0000000225
10.0 2.7182 2.7182 -0.0000000231 0.0000000225

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8816 -0.0000000003
2.0 2.3742 2.3742 -0.0000000005
3.0 2.5863 2.5863 -0.0000000006
4.0 2.6689 2.6689 -0.0000000006
5.0 2.7000 2.7000 -0.0000000006
6.0 2.7116 2.7116 -0.0000000006
7.0 2.7158 2.7158 -0.0000000006
8.0 2.7174 2.7174 -0.0000000006
9.0 2.7179 2.7179 -0.0000000006
10.0 2.7182 2.7182 -0.0000000006

h = 0.010

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8816 0.0000000000 0.0000000000
2.0 2.3742 2.3742 0.0000000000 0.0000000000
3.0 2.5863 2.5863 0.0000000000 0.0000000000
4.0 2.6689 2.6689 0.0000000000 0.0000000000
5.0 2.7000 2.7000 0.0000000000 0.0000000000
6.0 2.7116 2.7116 0.0000000000 0.0000000000
7.0 2.7158 2.7158 0.0000000000 0.0000000000
8.0 2.7174 2.7174 0.0000000000 0.0000000000
9.0 2.7179 2.7179 0.0000000000 0.0000000000
10.0 2.7182 2.7182 0.0000000000 0.0000000000

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8816 0.0000000000
2.0 2.3742 2.3742 0.0000000000

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

3.0 2.5863 2.5863 0.0000000000
4.0 2.6689 2.6689 0.0000000000
5.0 2.7000 2.7000 0.0000000000
6.0 2.7116 2.7116 0.0000000000
7.0 2.7158 2.7158 0.0000000000
8.0 2.7174 2.7174 0.0000000000
9.0 2.7179 2.7179 0.0000000000

10.0 2.7182 2.7182 0.0000000000

h = 0.001

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8816 0.0000000000 0.0000000000
2.0 2.3742 2.3742 0.0000000000 0.0000000000
3.0 2.5863 2.5863 0.0000000000 0.0000000000
4.0 2.6689 2.6689 0.0000000000 0.0000000000
5.0 2.7000 2.7000 0.0000000000 0.0000000000
6.0 2.7116 2.7116 0.0000000000 0.0000000000
7.0 2.7158 2.7158 0.0000000000 0.0000000000
8.0 2.7174 2.7174 0.0000000000 0.0000000000
9.0 2.7179 2.7179 0.0000000000 0.0000000000

10.0 2.7182 2.7182 0.0000000000 0.0000000000

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8816 0.0000000000
2.0 2.3742 2.3742 0.0000000000
3.0 2.5863 2.5863 0.0000000000
4.0 2.6689 2.6689 0.0000000000
5.0 2.7000 2.7000 0.0000000000
6.0 2.7116 2.7116 0.0000000000
7.0 2.7158 2.7158 0.0000000000
8.0 2.7174 2.7174 0.0000000000
9.0 2.7179 2.7179 0.0000000000

10.0 2.7182 2.7182 0.0000000000

This output is relatively easy to discuss since there are a lot of zeros! Specif-
ically,

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• At t = 1, with h = 1, which corresponds to a total of 10/1 = 10 steps, the
O(h5) method computed a solution accurate to at least four figures!

1.0 1.8816 1.8815 −0.0001043662

With 100 steps (h = 0.1) the error is only −0.0000000003 at t = 1

1.0 1.8816 1.8816 −0.0000000003

• The O(h4) behavior of the fourth order method is evident (at least to a
degree). At t = 1,

h ye y4 erry4 esty4

1 1.8816 1.8814 −0.0001703991 0.0000660329
0.1 1.8816 1.8816 −0.0000000138 0.0000000135
0.01 1.8816 1.8816 0.0000000000 0.0000000000
0.001 1.8816 1.8816 0.0000000000 0.0000000000

Approximately four zeros are added to the exact and estimated errors
when h is reduced from 1 to 0.1. When four more zeros (between h = 0.1
and h = 0.01) are added, the error drops below 0.0000000000 corre-
sponding to the %15.10 f format of the fprintf statement in Program 1.3.
Clearly, we can conclude that h = 0.01, 0.001 are excessively small for
most practical applications in science and engineering.

• The O(h5) behavior of the fifth-order method is evident (also, to a de-
gree). At t = 1,

h ye y5 erry5

1 1.8816 1.8815 −0.0001043662
0.1 1.8816 1.8816 −0.0000000003
0.01 1.8816 1.8816 0.0000000000
0.001 1.8816 1.8816 0.0000000000

At least five zeros are added to the exact error when h is reduced from 1
to 0.1. When five more zeros (between h = 0.1 and h = 0.01) are added,
the error drops far below 0.0000000000 (presumably) corresponding to
the %15.10 f format of the fprintf statement in Program 1.3. Again, we
can conclude that h = 0.01, 0.001 are excessively small for most practical
applications, and a library routine would be far more efficient if it limited
the reduction in h to somewhere in the range 0.1 ≤ h ≤ 1 rather than
allow h to drop much below 0.1.

• We can conclude the additional effort to compute the RK constants k1 to
k6 is probably worthwhile since far larger steps (h) can be used to achieve

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

a solution of a given accuracy than when using lower-order methods (the
(1, 2) pair or even the (2, 3) pair).

Finally, we can consider why the various RK algorithms have the orders
we have observed (beyond just observing that the higher-order methods fit
more of the terms in the underlying Taylor series). For example, why is the
first-order RK (Euler’s method) O(h)?

The first-order RK method includes the (dy/dt)(h/1!) term in the Taylor se-
ries, but excludes through truncation of the Taylor series the term (d2 y/dt2)×
(h2/2!) and higher-order terms. If the second order term is considered, the
principal source of the integration error for the Euler method, which is true
for small h for which the higher-order terms are negligible, then it would seem
that the Euler method is second order (because of the h2 in (d2 y/dt2)(h2/2!)).

However, this second derivative term is the local or one step error, that is,
the error incurred by taking just one step along the solution of length h. But in
computing a numerical solution using, for example, Programs 1.1 to 1.3, many
steps are taken, and we are primarily interested in the total or global error after
many steps (this is the error that we actually observe in the numerical solution
to an ODE system, and which we want to control at some acceptable level).

We can analyze the relationship between the local error and the global error
in the following way. If we assume that the error in using the Euler method
is due to just the second derivative term:

εi = d2 yi

dt2

h2

2!

then the local or one step error is O(h2). If we integrate over a series of steps
of length h from t = a to t = b using n steps, that is

n = b − a
h

we can then estimate the total or global error as

global error = (one step error)(number of steps)

or

global error = d2 yi

dt2

h2

2!

(
b − a

h

)
= d2 yi

dt2

(
b − a

2!

)
h

so that the global error is O(h) as we observed. Note that this is an approximate
analysis based on two assumptions:

1. All of the local error is contained in just the one term (d2 yi/dt2)(h2/2!).
2. The derivative d2 yi/dt2 is essentially constant over the interval a ≤

t ≤ b (or we can use some appropriate average value of this second
derivative).

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

A more rigorous analysis to show that the Euler method is O(h) globally
is rather involved. Also, generally for the higher-order methods, the global
error will be one order in h lower than the one step error, so, for example, the
previous (4, 5) pair is O(h5)− O(h6) locally, but O(h4)− O(h5) globally (again,
this can be established in a nonrigorous way for a general interval t = a to
t = b as we did for the Euler method).

We now consider the streamlining of the programming as mentioned pre-
viously for the (4, 5) pair.

1.5 Embedded RK Algorithms

We first note the interesting property of the RKF (4, 5) pair that the RK con-
stants k1 to k5 given by Equations 1.49a to 1.49e are the same for both the O(h4)

and O(h5) stepping formulas of Equations 1.49g and 1.49h (k6 is required for
only the O(h5) method of Equation 1.49h). Thus, we can consider the O(h4)

method of Equation 1.49g to be embedded in the O(h5) method of Equation
1.49h. This has an important implication: k1 to k5 need be calculated only once for
both methods (rather than for each method as in Program 1.3). With this idea
in mind, the only difference between the two methods is the calculation of k6
for the O(h5) method of Equation 1.49g, and the selection of a base point for the
next step (either the O(h4) or the O(h5) base point—we will select the latter).

This same feature appears in the (1, 2) pair of Equations 1.28 and 1.29; the
Euler method is embedded in the modified Euler method, with the common
k1 of Equation 1.27a. Similarly, for the (2, 3) pair, the second-order method
of Equation 1.42a is embedded in the third-order method of Equation 1.44a,
with the common k1 of Equation 1.42b (or Equation 1.44b) and the common
k2 of Equation 1.42c (or Equation 1.44c).

The embedding of the (1, 2) pair is illustrated by the following Program
1.4, which is a small revision of Program 1.1:

% Program 1.4
% Tumor model of eqs. (1.47), (1.48)
% (or eqs. (1.3), (1.4), (1.5))
%
% Model parameters

y0=1.0;
lambda=1.0;
alpha=1.0;

%
% Step through cases

for ncase=1:4
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Integration step
if(ncase==1)h=1.0 ;nsteps=1 ;end
if(ncase==2)h=0.1 ;nsteps=10 ;end
if(ncase==3)h=0.01 ;nsteps=100 ;end
if(ncase==4)h=0.001;nsteps=1000;end

%
% Variables for ODE integration

tf=10.0;
t=0.0;

%
% Initial condition

y2=y0;
%
% Print heading

fprintf('\n\nh = %6.3f\n',h);
fprintf(...
' t ye y1 erry1 esty1

y2 erry2\n')
%
% Continue integration

while t<0.999*tf
%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

yb=y2;
tb=t;

%
% RK constant k1

k1=lambda*exp(-alpha*tb)*y2*h;
%
% RK constant k2

y2=yb+k1;
t=tb+h;
k2=lambda*exp(-alpha*t)*y2*h;

%
% RK step

y1=yb+k1;
y2=yb+(k1+k2)/2.0;
esty1=y2-y1;

end
%
% Print solutions and errors

ye=y0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

erry1=y1-ye;
erry2=y2-ye;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f%15.10f\n',...

t,ye,y1,erry1,esty1,y2,erry2);
%
% Continue integration

end
%
% Next case

end

Program 1.4
Program for the integration of Equation 1.48 by the embedded ((1, 2) pair)
modified Euler method of Equations 1.28 and 1.29

We can note the following points about Program 1.4:

• The essential differences between Programs 1.1 and 1.2 are in the way
that the RK constants are computed and used. In particular, while keep-
ing in mind that y1 is the O(h) (Euler method) and y2 is the O(h2)

(modified Euler method), the base point is selected as the running value
of y2:

%
% Store solution at base point

yb=y2;
tb=t;

where the initial value of y2 was set previously as an initial condition.
• k1 and k2 are then calculated (according to Equations 1.27a and 1.27b):

%
% RK constant k1

k1=lambda*exp(-alpha*tb)*y2*h;
%
% RK constant k2

y2=yb+k1;
t=tb+h;
k2=lambda*exp(-alpha*t)*y2*h;

• The first- and second-order stepping formulas are then used (according
to Equations 1.28 and 1.29):

%
% RK step

y1=yb+k1;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

y2=yb+(k1+k2)/2.0;
esty1=y2-y1;

end

Note in this code that:
— The estimated error in y1, esty1, is computed by p refinement (sub-

traction of the O(h) solution from the O(h2) solution).
— The same value of k1 is used for both the first- and second-order

stepping formulas (making use of the embedding of the (2, 3) pair,
i.e., the first-order method is embedded in the second-order method)

— The end statement terminates the for loop of nsteps of length h.

Otherwise the programming is essentially the same as in Program 1.1. The
output from Program 1.4 is listed below (formatted to fit on a page):

h = 1.000

First order method

t ye y1 erry1 esty1
1.0 1.8816 2.0000 0.1184036125 -0.1321205588
2.0 2.3742 2.5550 0.1808239664 -0.1706841052
3.0 2.5863 2.7070 0.1207761366 -0.0939556225
4.0 2.6689 2.7432 0.0742305143 -0.0399272836
5.0 2.7000 2.7528 0.0527351769 -0.0154819007
6.0 2.7116 2.7557 0.0441724614 -0.0058064480
7.0 2.7158 2.7567 0.0409303986 -0.0021512746
8.0 2.7174 2.7571 0.0397250855 -0.0007934762
9.0 2.7179 2.7572 0.0392799583 -0.0002921837

10.0 2.7182 2.7573 0.0391159724 -0.0001075263

Second order method

t ye y2 erry2
1.0 1.8816 1.8679 -0.0137169464
2.0 2.3742 2.3843 0.0101398613
3.0 2.5863 2.6131 0.0268205142
4.0 2.6689 2.7033 0.0343032307
5.0 2.7000 2.7373 0.0372532762
6.0 2.7116 2.7499 0.0383660134
7.0 2.7158 2.7546 0.0387791239
8.0 2.7174 2.7563 0.0389316092
9.0 2.7179 2.7569 0.0389877746

10.0 2.7182 2.7572 0.0390084461

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

h = 0.100

First order method

t ye y1 erry1 esty1
1.0 1.8816 1.8837 0.0021070298 -0.0021479991
2.0 2.3742 2.3760 0.0017594212 -0.0014290535
3.0 2.5863 2.5874 0.0011768161 -0.0006384570
4.0 2.6689 2.6698 0.0008767242 -0.0002516819
5.0 2.7000 2.7008 0.0007532605 -0.0000949453
6.0 2.7116 2.7123 0.0007059944 -0.0000352515
7.0 2.7158 2.7165 0.0006883524 -0.0000130123
8.0 2.7174 2.7181 0.0006818277 -0.0000047929
9.0 2.7179 2.7186 0.0006794227 -0.0000017640
10.0 2.7182 2.7188 0.0006785373 -0.0000006491

Second order method

t ye y2 erry2
1.0 1.8816 1.8816 -0.0000409693
2.0 2.3742 2.3745 0.0003303677
3.0 2.5863 2.5868 0.0005383591
4.0 2.6689 2.6696 0.0006250422
5.0 2.7000 2.7007 0.0006583152
6.0 2.7116 2.7122 0.0006707429
7.0 2.7158 2.7165 0.0006753402
8.0 2.7174 2.7180 0.0006770348
9.0 2.7179 2.7186 0.0006776587
10.0 2.7182 2.7188 0.0006778883

h = 0.010

First order method

t ye y1 erry1 esty1
1.0 1.8816 1.8816 0.0000217778 -0.0000218425
2.0 2.3742 2.3742 0.0000178106 -0.0000139313
3.0 2.5863 2.5863 0.0000121768 -0.0000061436
4.0 2.6689 2.6690 0.0000093347 -0.0000024108
5.0 2.7000 2.7000 0.0000081729 -0.0000009079
6.0 2.7116 2.7116 0.0000077291 -0.0000003369
7.0 2.7158 2.7158 0.0000075636 -0.0000001243
8.0 2.7174 2.7174 0.0000075024 -0.0000000458

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

9.0 2.7179 2.7180 0.0000074798 -0.0000000169
10.0 2.7182 2.7182 0.0000074715 -0.0000000062

Second order method

t ye y2 erry2
1.0 1.8816 1.8816 -0.0000000647
2.0 2.3742 2.3742 0.0000038793
3.0 2.5863 2.5863 0.0000060332
4.0 2.6689 2.6690 0.0000069239
5.0 2.7000 2.7000 0.0000072649
6.0 2.7116 2.7116 0.0000073922
7.0 2.7158 2.7158 0.0000074392
8.0 2.7174 2.7174 0.0000074566
9.0 2.7179 2.7180 0.0000074629

10.0 2.7182 2.7182 0.0000074653

h = 0.001

First order method

t ye y1 erry1 esty1
1.0 1.8816 1.8816 0.0000002185 -0.0000002187
2.0 2.3742 2.3742 0.0000001784 -0.0000001390
3.0 2.5863 2.5863 0.0000001222 -0.0000000612
4.0 2.6689 2.6689 0.0000000940 -0.0000000240
5.0 2.7000 2.7000 0.0000000824 -0.0000000090
6.0 2.7116 2.7116 0.0000000780 -0.0000000034
7.0 2.7158 2.7158 0.0000000764 -0.0000000012
8.0 2.7174 2.7174 0.0000000758 -0.0000000005
9.0 2.7179 2.7179 0.0000000756 -0.0000000002

10.0 2.7182 2.7182 0.0000000755 -0.0000000001

Second order method

t ye y2 erry2
1.0 1.8816 1.8816 -0.0000000003
2.0 2.3742 2.3742 0.0000000394
3.0 2.5863 2.5863 0.0000000610
4.0 2.6689 2.6689 0.0000000700
5.0 2.7000 2.7000 0.0000000734
6.0 2.7116 2.7116 0.0000000747

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

7.0 2.7158 2.7158 0.0000000751
8.0 2.7174 2.7174 0.0000000753
9.0 2.7179 2.7179 0.0000000754
10.0 2.7182 2.7182 0.0000000754

We can note the following points about this output:

• The first-order method appears to be higher than O(h). For example, at
t = 1, the output is

h ye y1 erry1 esty1

1 1.8816 2.0000 0.1184036125 −0.1321205588
0.1 1.8816 1.8837 0.0021070298 −0.0021479991
0.01 1.8816 1.8816 0.0000217778 −0.0000218425
0.001 1.8816 1.8816 0.0000002185 −0.0000002187

In fact, the first-order method appears to be second order correct! For ex-
ample, reducing h from 0.1 to 0.01 reduces the exact error from
0.0021070298 to 0.0000217778 (two zeros are added after the decimal
point). The reason for this is that the second-order solution, y2, is used
as the base point for the next step along the solution, i.e.,

%
% Store solution at base point

yb=y2;
tb=t;

To state this in other words, y1 is corrected by esty1 before going on to
the next point. For example, at t = 1 for h = 0.1,

y1 + y1est = 1.8837 − 0.0021479991 = 1.8816 = y2

This is an important point discussed previously as Step 4 in the algorithm
after Equation 1.26c. In other words, in a library ODE integrator, which
automatically adjusts the step h, the estimated error esty1 will generally
be computed to determine if the step h is small enough to satisfy a
specified error tolerance. When h becomes small enough to meet the
error criterion, the estimated error can be added as a correction before
taking the next step along the solution. In this case (the (1, 2) pair), this
in effect increases the accuracy of the solution from O(h) to O(h2) as we
observed in the preceding output from Program 1.4.

• This error correction could be programmed in a slightly dfifferent, but
equivalent, way (see Equations 1.30):

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% RK step

y1=yb+k1;
esty1=(k2-k1)/2.0;
y2=y1+esty1;

end

Clearly, adding the estimated error as a correction (y2 = y1 + esty1) be-
fore taking the next step along the solution (as explained in the algorithm
after Equation 1.26c) was worth doing (the first-order method becomes
effectively second order).

• The exact error in y2 from Program 1.4, erry2, at t = 1 appears to be
greater than O(h2):

h ye y2 erry2

1 1.8816 1.8679 −0.0137169464
0.1 1.8816 1.8816 −0.0000409693
0.01 1.8816 1.8816 −0.0000000647
0.001 1.8816 1.8816 −0.0000000003

However, generally, this error is O(h2). For example, at t = 2, the exact
error in y2 is

h erry2

1 0.0101398613
0.1 0.0003303677
0.01 0.0000038793
0.001 0.0000000394

(so that two zeros are added after the decimal point for each 1/10 reduc-
tion in h, as expected).

• The estimated error, esty1 appears to converge to the exact error, erry1,
for small h:

h erry1 esty1

1 0.1184036125 −0.1321205588
0.1 0.0021070298 −0.0021479991
0.01 0.0000217778 −0.0000218425
0.001 0.0000002185 −0.0000002187

This convergence again illustrates the important point that the estimated
error accurately estimates the exact error for small h (and thus adding it
as a correction to the O(h) solution gives a substantially better solution).

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

We next investigate the embedding of the (2, 3) pair of Equations 1.42 and
1.44. The following Program 1.5, which is analogous to Program 1.4, illustrates
how this embedding can be used.

% Program 1.5
% Tumor model of eqs. (1.47), (1.48)
% (or eqs. (1.3), (1.4), (1.5))
%
% Model parameters

y0=1.0;
lambda=1.0;
alpha=1.0;

%
% Step through cases

for ncase=1:4
%
% Integration step

if(ncase==1)h=1.0 ;nsteps=1 ;end
if(ncase==2)h=0.1 ;nsteps=10 ;end
if(ncase==3)h=0.01 ;nsteps=100 ;end
if(ncase==4)h=0.001;nsteps=1000;end

%
% Variables for ODE integration

tf=10.0;
t=0.0;

%
% Initial condition

y3=y0;
%
% Print heading

fprintf('\n\nh = %6.3f\n',h);
fprintf(...
' t ye y2 erry2 esty2

y3 erry3\n')
%
% Continue integration

while t<0.999*tf
%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

yb=y3;
tb=t;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% RK constant k1

k1=lambda*exp(-alpha*t)*y3*h;
%
% RK constant k2

y3=yb+(2.0/3.0)*k1;
t=tb+(2.0/3.0)*h;

k2=lambda*exp(-alpha*t)*y3*h;
%
% RK integration K3

y3=yb+(2.0/3.0)*k2;
t=tb+(2.0/3.0)*h;

k3=lambda*exp(-alpha*t)*y3*h;
%
% RK step

y2=yb+(1.0/4.0)*k1+(3.0/4.0)*k2;
y3=yb+(1.0/4.0)*k1+(3.0/8.0)*k2+(3.0/8.0)*k3;
esty2=y3-y2;
t=tb+h;

end
%
% Print solutions and errors

ye=y0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
erry2=y2-ye;
erry3=y3-ye;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f%15.10f\n',...

t,ye,y2,erry2,esty2,y3,erry3);
%
% Continue integration

end
%
% Next case

end

Program 1.5
Program for the integration of Equation 1.48 by the (2, 3) pair of Equations
1.42 and 1.44

Program 1.5 closely parallels Program 1.4. As expected, k1 and k2 are used
for both the second- and third-order stepping formulas (k3 is required for only
the third-order stepping formula):

%
% RK step

y2=yb+(1.0/4.0)*k1+(3.0/4.0)*k2;
y3=yb+(1.0/4.0)*k1+(3.0/8.0)*k2+(3.0/8.0)*k3;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

esty2=y3-y2;
t=tb+h;

end

The output from Program 1.5 is listed below:

h = 1.000

Second order method

t ye y2 erry2 esty2
1.0 1.8816 1.8918 0.0101750113 -0.0185221389
2.0 2.3742 2.3760 0.0017600371 -0.0117360496
3.0 2.5863 2.5785 -0.0077128645 -0.0024469927
4.0 2.6689 2.6592 -0.0097573439 -0.0003848403
5.0 2.7000 2.6900 -0.0100669280 -0.0000549878
6.0 2.7116 2.7014 -0.0101048752 -0.0000075909
7.0 2.7158 2.7057 -0.0101076784 -0.0000010348
8.0 2.7174 2.7073 -0.0101071543 -0.0000001404
9.0 2.7179 2.7078 -0.0101067488 -0.0000000190
10.0 2.7182 2.7081 -0.0101065707 -0.0000000026

Third order method

t ye y3 erry3
1.0 1.8816 1.8732 -0.0083471276
2.0 2.3742 2.3642 -0.0099760125
3.0 2.5863 2.5761 -0.0101598572
4.0 2.6689 2.6588 -0.0101421842
5.0 2.7000 2.6899 -0.0101219158
6.0 2.7116 2.7014 -0.0101124662
7.0 2.7158 2.7057 -0.0101087132
8.0 2.7174 2.7073 -0.0101072948
9.0 2.7179 2.7078 -0.0101067678
10.0 2.7182 2.7081 -0.0101065733

h = 0.100

Second order method

t ye y2 erry2 esty2
1.0 1.8816 1.8816 0.0000183521 -0.0000273880
2.0 2.3742 2.3742 -0.0000035143 -0.0000067556

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

3.0 2.5863 2.5863 -0.0000092951 -0.0000011124
4.0 2.6689 2.6689 -0.0000102271 -0.0000001614
5.0 2.7000 2.7000 -0.0000103474 -0.0000000224
6.0 2.7116 2.7115 -0.0000103581 -0.0000000031
7.0 2.7158 2.7158 -0.0000103573 -0.0000000004
8.0 2.7174 2.7174 -0.0000103564 -0.0000000001
9.0 2.7179 2.7179 -0.0000103560 0.0000000000

10.0 2.7182 2.7181 -0.0000103558 0.0000000000

Third order method

t ye y3 erry3
1.0 1.8816 1.8816 -0.0000090358
2.0 2.3742 2.3742 -0.0000102699
3.0 2.5863 2.5862 -0.0000104074
4.0 2.6689 2.6689 -0.0000103885
5.0 2.7000 2.7000 -0.0000103698
6.0 2.7116 2.7115 -0.0000103611
7.0 2.7158 2.7158 -0.0000103577
8.0 2.7174 2.7174 -0.0000103564
9.0 2.7179 2.7179 -0.0000103560

10.0 2.7182 2.7181 -0.0000103558

h = 0.010

Second order method

t ye y2 erry2 esty2
1.0 1.8816 1.8816 0.0000000183 -0.0000000269
2.0 2.3742 2.3742 -0.0000000033 -0.0000000063
3.0 2.5863 2.5863 -0.0000000086 -0.0000000010
4.0 2.6689 2.6689 -0.0000000094 -0.0000000001
5.0 2.7000 2.7000 -0.0000000095 0.0000000000
6.0 2.7116 2.7116 -0.0000000095 0.0000000000
7.0 2.7158 2.7158 -0.0000000095 0.0000000000
8.0 2.7174 2.7174 -0.0000000095 0.0000000000
9.0 2.7179 2.7179 -0.0000000095 0.0000000000

10.0 2.7182 2.7182 -0.0000000095 0.0000000000

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Third order method

t ye y3 erry3
1.0 1.8816 1.8816 -0.0000000085
2.0 2.3742 2.3742 -0.0000000096
3.0 2.5863 2.5863 -0.0000000096
4.0 2.6689 2.6689 -0.0000000096
5.0 2.7000 2.7000 -0.0000000096
6.0 2.7116 2.7116 -0.0000000096
7.0 2.7158 2.7158 -0.0000000095
8.0 2.7174 2.7174 -0.0000000095
9.0 2.7179 2.7179 -0.0000000095
10.0 2.7182 2.7182 -0.0000000095

h = 0.001

Second order method

t ye y2 erry2 esty2
1.0 1.8816 1.8816 0.0000000000 0.0000000000
2.0 2.3742 2.3742 0.0000000000 0.0000000000
3.0 2.5863 2.5863 0.0000000000 0.0000000000
4.0 2.6689 2.6689 0.0000000000 0.0000000000
5.0 2.7000 2.7000 0.0000000000 0.0000000000
6.0 2.7116 2.7116 0.0000000000 0.0000000000
7.0 2.7158 2.7158 0.0000000000 0.0000000000
8.0 2.7174 2.7174 0.0000000000 0.0000000000
9.0 2.7179 2.7179 0.0000000000 0.0000000000
10.0 2.7182 2.7182 0.0000000000 0.0000000000

Third order method

t ye y3 erry3
1.0 1.8816 1.8816 0.0000000000
2.0 2.3742 2.3742 0.0000000000
3.0 2.5863 2.5863 0.0000000000
4.0 2.6689 2.6689 0.0000000000
5.0 2.7000 2.7000 0.0000000000
6.0 2.7116 2.7116 0.0000000000
7.0 2.7158 2.7158 0.0000000000
8.0 2.7174 2.7174 0.0000000000
9.0 2.7179 2.7179 0.0000000000
10.0 2.7182 2.7182 0.0000000000

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

We can note the following points about this output:

• The corrected y2 appears to be O(h3), e.g., for t = 1,

h ye y2 erry2 esty2

1 1.8816 1.8918 0.0101750113 −0.0185221389
0.1 1.8816 1.8816 0.0000183521 −0.0000273880
0.01 1.8816 1.8816 0.0000000183 −0.0000000269
0.001 1.8816 1.8816 0.0000000000 0.0000000000

Note that when h is reduced from 0.1 to 0.01, erry2 is reduced from
0.0000183521 to 0.0000000183 so that three zeros were added after the
decimal point. This is expected since y2 is corrected by esty2 before
taking the next step along the solution, thereby giving an O(h3) result
(y3 is used as the base point value for the next step).

• esty2 is not as reliable an estimate of the true error, erry2 as we would
like. For some points along the solution, it underestimates the exact error
in y2, and at other points, it overestimates the exact error. For example,
when h = 0.01,

h = 0.010

Second order method

t ye y2 erry2 esty2
1.0 1.8816 1.8816 0.0000000183 -0.0000000269
2.0 2.3742 2.3742 -0.0000000033 -0.0000000063
3.0 2.5863 2.5863 -0.0000000086 -0.0000000010
4.0 2.6689 2.6689 -0.0000000094 -0.0000000001
5.0 2.7000 2.7000 -0.0000000095 0.0000000000
6.0 2.7116 2.7116 -0.0000000095 0.0000000000
7.0 2.7158 2.7158 -0.0000000095 0.0000000000
8.0 2.7174 2.7174 -0.0000000095 0.0000000000
9.0 2.7179 2.7179 -0.0000000095 0.0000000000
10.0 2.7182 2.7182 -0.0000000095 0.0000000000

An overestimate of the exact error is conservative in adjusting h, but an
underestimate will possibly produce an h that is too large to actually limit
the exact error to a specified value or tolerance. Certainly we would like
to have a reliable (quantitatively correct) estimate of the true error so that
we can reliably adjust h. Another way to interpret this result (estimate of
limited accuracy) is to observe that the higher-order solution y3 also has
some error and therefore the estimated error is not a perfect correction
(it does not give a higher-order solution without error).

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Finally, we investigate the embedding of the (4, 5) pair of Equations 1.49.
The following Program 1.6, which is analogous to Programs 1.4 and 1.5, illus-
trates how this embedding can be used.

%
% Program 1.6
% Tumor model of eqs. (1.47), (1.48)
% (or eqs. (1.3), (1.4), (1.5))
%
% Model parameters

y0=1.0;
lambda=1.0;
alpha=1.0;

%
% Step through cases

for ncase=1:4
%
% Integration step

if(ncase==1)h=1.0 ;nsteps=1 ;end
if(ncase==2)h=0.1 ;nsteps=10 ;end
if(ncase==3)h=0.01 ;nsteps=100 ;end
if(ncase==4)h=0.001;nsteps=1000;end

%
% Variables for ODE integration

tf=10.0;
t=0.0;

%
% Initial condition

y5=y0;
%
% Print heading

fprintf('\n\nh = %6.3f\n',h);
fprintf(...
' t ye y4 erry4 esty4 y5 erry5\n')

%
% Continue integration

while t<0.999*tf
%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

yb=y5;
tb=t;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% RK constant k1

k1=lambda*exp(-alpha*t)*y5*h;
%
% RK constant k2

y5=yb+0.25*k1;
t=tb+0.25*h;

k2=lambda*exp(-alpha*t)*y5*h;
%
% RK constant k3

y5=yb+(3.0/32.0)*k1...
+(9.0/32.0)*k2;

t=tb+(3.0/8.0)*h;
k3=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k4

y5=yb+(1932.0/2197.0)*k1...
-(7200.0/2197.0)*k2...
+(7296.0/2197.0)*k3;

t=tb+(12.0/13.0)*h;
k4=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k5

y5=yb+(439.0/ 216.0)*k1...
-(8.0)*k2...
+(3680.0/ 513.0)*k3...
-(845.0/4104.0)*k4;

t=tb+h;
k5=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k6

y5=yb-(8.0/ 27.0)*k1...
+(2.0)*k2...
-(3544.0/2565.0)*k3...
+(1859.0/4104.0)*k4...
-(11.0/ 40.0)*k5;

t=tb+0.5*h;
k6=lambda*exp(-alpha*t)*y5*h;

%
% RK step

y4=yb+(25.0/ 216.0)*k1...
+(1408.0/2565.0)*k3...
+(2197.0/4104.0)*k4...
-(1.0/ 5.0)*k5;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

y5=yb+(16.0/ 135.0)*k1...
+(6656.0/12825.0)*k3...
+(28561.0/56430.0)*k4...
-(9.0/ 50.0)*k5...
+(2.0/ 55.0)*k6;

esty4=y5-y4;
t=tb+h;

end
%
% Print solutions and errors

ye=y0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
erry4=y4-ye;
erry5=y5-ye;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f%15.10f\n',...

t,ye,y4,erry4,esty4,y5,erry5);
%
% Continue integration

end
%
% Next case

end

Program 1.6
Program for the integration of Equation 1.48 by the RKF45 pair of Equations
1.49

Program 1.6 closely parallels Programs 1.4 and 1.5. As expected, k1 to k5 are
used for both the fourth- and fifth-order stepping formulas (k6 is required for
only the fifth-order stepping formula)

%
% RK step

y4=yb+(25.0/ 216.0)*k1...
+(1408.0/2565.0)*k3...
+(2197.0/4104.0)*k4...
-(1.0/ 5.0)*k5;

y5=yb+(16.0/ 135.0)*k1...
+(6656.0/12825.0)*k3...
+(28561.0/56430.0)*k4...
-(9.0/ 50.0)*k5...
+(2.0/ 55.0)*k6;

esty4=y5-y4;
t=tb+h;

end

Note also that k2 is not used in either stepping formula (but it is required to
calculate k3 to k6).

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

The output from Program 1.6 is listed below:

h = 1.000

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8814 -0.0001703991 0.0000660329
2.0 2.3742 2.3740 -0.0001632647 0.0000194727
3.0 2.5863 2.5861 -0.0001591927 0.0000018321
4.0 2.6689 2.6688 -0.0001624755 0.0000009521
5.0 2.7000 2.6999 -0.0001633761 0.0000004765
6.0 2.7116 2.7114 -0.0001635804 0.0000001976
7.0 2.7158 2.7156 -0.0001636333 0.0000000760
8.0 2.7174 2.7172 -0.0001636494 0.0000000284
9.0 2.7179 2.7178 -0.0001636549 0.0000000105

10.0 2.7182 2.7180 -0.0001636569 0.0000000039

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8815 -0.0001043662
2.0 2.3742 2.3741 -0.0001437920
3.0 2.5863 2.5861 -0.0001573607
4.0 2.6689 2.6688 -0.0001615234
5.0 2.7000 2.6999 -0.0001628996
6.0 2.7116 2.7114 -0.0001633827
7.0 2.7158 2.7156 -0.0001635572
8.0 2.7174 2.7172 -0.0001636210
9.0 2.7179 2.7178 -0.0001636444

10.0 2.7182 2.7180 -0.0001636530

h = 0.100

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8816 -0.0000000009 0.0000000006
2.0 2.3742 2.3742 -0.0000000006 0.0000000000
3.0 2.5863 2.5863 -0.0000000006 0.0000000000
4.0 2.6689 2.6689 -0.0000000006 0.0000000000
5.0 2.7000 2.7000 -0.0000000006 0.0000000000
6.0 2.7116 2.7116 -0.0000000006 0.0000000000

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

7.0 2.7158 2.7158 -0.0000000006 0.0000000000
8.0 2.7174 2.7174 -0.0000000006 0.0000000000
9.0 2.7179 2.7179 -0.0000000006 0.0000000000
10.0 2.7182 2.7182 -0.0000000006 0.0000000000

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8816 -0.0000000003
2.0 2.3742 2.3742 -0.0000000005
3.0 2.5863 2.5863 -0.0000000006
4.0 2.6689 2.6689 -0.0000000006
5.0 2.7000 2.7000 -0.0000000006
6.0 2.7116 2.7116 -0.0000000006
7.0 2.7158 2.7158 -0.0000000006
8.0 2.7174 2.7174 -0.0000000006
9.0 2.7179 2.7179 -0.0000000006
10.0 2.7182 2.7182 -0.0000000006

h = 0.010

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8816 -0.0000000009 0.0000000006
2.0 2.3742 2.3742 -0.0000000006 0.0000000000
3.0 2.5863 2.5863 -0.0000000006 0.0000000000
4.0 2.6689 2.6689 -0.0000000006 0.0000000000
5.0 2.7000 2.7000 -0.0000000006 0.0000000000
6.0 2.7116 2.7116 -0.0000000006 0.0000000000
7.0 2.7158 2.7158 -0.0000000006 0.0000000000
8.0 2.7174 2.7174 -0.0000000006 0.0000000000
9.0 2.7179 2.7179 -0.0000000006 0.0000000000
10.0 2.7182 2.7182 -0.0000000006 0.0000000000

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8816 -0.0000000003
2.0 2.3742 2.3742 -0.0000000005
3.0 2.5863 2.5863 -0.0000000006
4.0 2.6689 2.6689 -0.0000000006

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

5.0 2.7000 2.7000 -0.0000000006
6.0 2.7116 2.7116 -0.0000000006
7.0 2.7158 2.7158 -0.0000000006
8.0 2.7174 2.7174 -0.0000000006
9.0 2.7179 2.7179 -0.0000000006

10.0 2.7182 2.7182 -0.0000000006

h = 0.001

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8816 0.0000000000 0.0000000000
2.0 2.3742 2.3742 0.0000000000 0.0000000000
3.0 2.5863 2.5863 0.0000000000 0.0000000000
4.0 2.6689 2.6689 0.0000000000 0.0000000000
5.0 2.7000 2.7000 0.0000000000 0.0000000000
6.0 2.7116 2.7116 0.0000000000 0.0000000000
7.0 2.7158 2.7158 0.0000000000 0.0000000000
8.0 2.7174 2.7174 0.0000000000 0.0000000000
9.0 2.7179 2.7179 0.0000000000 0.0000000000

10.0 2.7182 2.7182 0.0000000000 0.0000000000

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8816 0.0000000000
2.0 2.3742 2.3742 0.0000000000
3.0 2.5863 2.5863 0.0000000000
4.0 2.6689 2.6689 0.0000000000
5.0 2.7000 2.7000 0.0000000000
6.0 2.7116 2.7116 0.0000000000
7.0 2.7158 2.7158 0.0000000000
8.0 2.7174 2.7174 0.0000000000
9.0 2.7179 2.7179 0.0000000000

10.0 2.7182 2.7182 0.0000000000

We can note the following points about this output:

• For h = 1, esty4 is not a reliable estimate of the exact error, erry4. How-
ever, the solution for h = 1 results from only a total of ten steps in the
interval 0 ≤ t ≤ 10, so we might expect that the estimated error esty4
will not be very accurate. Also, even with just ten steps, the (4, 5) pair
produced a solution that is accurate to about five figures.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• For h = 0.1, the solution is so accurate that the exact and estimated errors
appear in only the tenth decimal place (the final decimal place provided
by the %15.10f format of the fprintf statement).

• h = 0.01 and 0.001 appear to be excessively small.

We conclude this section with a (2, 4) embedded pair, i.e., an O(h2) method
embedded in an O(h4) method. The fourth-order method (the original RK
method reported by Runge and Kutta in the 1890s) is

k1 = f (yi , ti)h (1.50a)

k2 = f (yi + k1/2, ti + h/2)h (1.50b)

k3 = f (yi + k2/2, ti + h/2)h (1.50c)

k4 = f (yi + k3, ti + h)h (1.50d)

with the stepping formula

y4,i+1 = yi + (1/6)(k1 + 2k2 + 2k3 + k4) (1.50e)

As we discussed previously, Equation 1.50e fits the Taylor series up to and
including the fourth-order derivative term, (d4 y/dt4)(h4/4!); i.e., the resulting
numerical solution is O(h4).

The second-order midpoint RK method of Equations 1.40 has the same
k1 and k2 and therefore is embedded in the fourth-order method. An error
estimate for this second-order method can be obtained by subtracting the
second-order stepping formula from the fourth-order stepping formula of
Equation 1.50e:

εi = y4,i+1 − y2,i+1 = yi + (1/6)(k1 + 2k2 + 2k3 + k4) − (yi + k2)

= (1/6)(k1 − 4k2 + 2k3 + k4) (1.51)

Note how the k1 and k2 terms combine in arriving at Equation 1.51 since they
are the same for both algorithms, i.e., Equations 1.40 and 1.50. εi of Equation
1.51 can now be used to automatically adjust the integration step, h, which is
the basis of the programming in a set of routines to be discussed in subsequent
chapters.

Note also that since this error estimate was achieved by subtracting the
stepping formula for a second-order method (Equation 1.40a), from the step-
ping formula for a fourth-order method (Equation 1.50e), the error estimate
actually represents two terms in the Taylor series, i.e., (d3 y/dt3)(h3/3!) and
(d4 y/dt4)(h4/4!); i.e., εi from Equation 1.51 is a two term error estimate, and
therefore we might expect that it will be more accurate than the one term
error estimates of the preceding (1, 2), (2, 3), and (4, 5) pairs. Experience has
indicated this is the case. In fact, some additional embedded RK pairs are
listed in Appendix A, which have three term error estimates.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

The principal conclusions from this discussion of embedded methods are
as follows:

• The RK constants generally can be computed once for both the lower-
order and the higher-order methods of an embedded pair. In other
words, the common RK constants are the basis for embedded pairs.

• Correction of the lower-order solution using the estimated error (the dif-
ference between the higher- and lower-order methods) gives a substan-
tially improved lower-order solution. In other words, the higher-order
solution is used as the base point for the next step along the solution.

1.6 Library ODE Integrators

We have discussed several RK pairs ((1, 2), (2, 3), (2, 4), (4, 5)) that can be used
in library routines. Because each pair produces an estimate of the truncation
error, these four methods can be used to automatically adjust h to achieve a
specified error tolerance. Furthermore, although the preceding programming
of the four pairs has been for a 1x1 problem (Equations 1.3 and 1.4 with the
analytical solution (Equation 1.5)), they can be applied directly to the nxn
problem by using vectors for the RK constants and the stepping formulas.
Thus, we now have everything we need for general-purpose ODE integration
routines, which are discussed in subsequent chapters.

To illustrate what we might accomplish, we consider briefly the ODE li-
brary routines in MATLAB (of the programming languages considered in
the subsequent discussion, only Maple and MATLAB have built-in ODE util-
ities). MATLAB includes utilities for stiff and nonstiff ODEs (stiffness and
stability are discussed briefly in the next section). However, we consider here
only the nonstiff MATLAB integrators, ode23 and ode45, which is consistent
with the four RK pairs discussed previously since they are only for nonstiff
problems (they are explicit integrators). The development of stiff (implicit) in-
tegrators is considerably more involved than in the preceding development,
so we merely consider in the next section why they might be required for a
particular problem, Equations 1.6 to 1.17.

Program 1.7 calls the two MATLAB nonstiff solvers, ode23 and ode45, for
solution of Equations 1.3 and 1.4, with the evaluation of the exact solution,
Equation 1.5, to assess the accuracy of the numerical solution.

%
% Program 1.7
% Tumor model of eqs. (1.47), (1.48)
% (or eqs. (1.3), (1.4), (1.5))
%
% Global variables

global lambda alpha ncall;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Model parameters

lambda=1.0;
alpha=1.0;

%
% Select method

for mf=1:2
%
% Error tolerances

reltol=1.0e-02;
abstol=1.0e-02;
for ncase=1:4

reltol=1.0e-02*reltol;
abstol=1.0e-02*abstol;

%
% Initialize counter for derivative evaluations

ncall=0;
%
% Variables for ODE integration

t0=0.0;
tf=10.0;
tout=[t0:1.0:tf]';
nout=11;

%
% Initial condition

y0=1.0;
%
% Call ODE integrator

options=odeset('RelTol',reltol,'AbsTol',abstol);
if(mf==1)[t,y]=ode23('ode1p7',tout,y0,options); end
if(mf==2)[t,y]=ode45('ode1p7',tout,y0,options); end

%
% Display solution and error

fprintf('\n\n mf = %1d\n case = %1d\n reltol = %6.2e
\n abstol = %6.2e\n\n',...
mf,ncase,reltol,abstol);

fprintf(' t ye y erry\n');
for i=1:nout

ye(i)=y0*exp((lambda/alpha)*(1.0-exp(-alpha*t(i))));
erry(i)=ye(i)-y(i);
fprintf('%5.1f%9.4f%9.4f%15.10f\n',t(i),ye(i),y(i),

erry(i));
end
fprintf('\n ncall = %5d\n',ncall);

%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Next case
end

%
% Next method

end
%
% Plot last solution

plot(t,y);
xlabel('t')
ylabel('y(t)')
title(' Program 1.7, dy/dt = \lambda*exp(-\alpha*t)*y)')
print pro1p7.ps

Program 1.7
Program for the integration of Equation 1.48 by the library integrators ode23
and ode45

We can note the following points about Program 1.7:

• Three global variables are defined, which can then be shared between
Program 1.7 and a function, ode1p7.m, called by Program 1.7 to define
ODE (Equation 1.3). In other words, alpha, lambda, and ncall are used in
function ode1p7.m, but their values are initialized in Program 1.7:

%
% Global variables

global lambda alpha ncall;

• lambda and alpha are then set numerically (and, again, these values will
be available in ode1p7.m because they are global variables):

%
% Model parameters

lambda=1.0;
alpha=1.0;

ncall is initialized numerically later in the code.
• A method flag, mf , is set to one of two values: mf = 1 calls ode23 and

mf = 2 calls ode45:

%
% Select method

for mf=1:2

• For each value of mf , four solutions are computed, with relative and
absolute error tolerances of 10−4, 10−6, 10−8, and 10−10. ode23 and ode45
then attempt to adjust h to meet these tolerances:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Error tolerances

reltol=1.0e-02;
abstol=1.0e-02;
for ncase=1:4

reltol=1.0e-02*reltol;
abstol=1.0e-02*abstol;

• At the beginning of each case (ncase = 1 to 4), a counter, ncall, is initial-
ized that is then incremented each time the function ode1p7.m is called.
This procedure gives the total number of calls to ode1p7.m and thus the
number of derivative evaluations for each solution.

%
% Initialize counter for derivative evaluations

ncall=0;

Again, note that ncall is a global variable so its value is returned to
Program 1.7.

• The variables that define the interval in the independent variable, t,
and when the solution is displayed are then initialized. tout is a vector
containing t = 0, 1, . . . , 10 (a total of 11 output values of t):

%
% Variables for ODE integration

t0=0.0;
tf=10.0;
tout=[t0:1.0:tf]';
nout=11;

• Initial condition (Equation 1.4) is set to start the solution:

%
% Initial condition

y0=1.0;

• The solution to Equation 1.3 is computed by ode12 or ode45, depending
on the value of mf :

%
% Call ODE integrator

options=odeset('RelTol',reltol,'AbsTol',abstol);
if(mf==1)[t,y]=ode23('ode1p7',tout,y0,options); end
if(mf==2)[t,y]=ode45('ode1p7',tout,y0,options); end

Function option is first called to set the relative and absolute error toler-
ances. Function ode1p7.m defines ODE (Equation 1.3) by receiving the
global variables alpha and lambda, and the current values of t and y to
evaluate the right-hand side (RHS) of Equation 1.3:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

function yt=ode1p7(t,y)
%
% Set global variables

global lambda alpha ncall;
%
% ODE

yt(1)=lambda*exp(-alpha*t)*y(1);
%
% Increment counter for derivative evaluations

ncall=ncall+1;

Note that y is an input column vector (with one element, y(1), for the
1x1 ODE problem of Equation 1.3), and yt is an output column vector
(with one element, yt(1)). t is an input scaler. Also, ncall is incremented
by 1 each time ode1p7.m is called, which then provides the total number
of calls (derivative evaluations) reported in the output.

• The parameters and numerical solution are then displayed by a series
of fprintf statements, including the exact solution and the error in the
solution:

%
% Display solution and error

fprintf('\n\n mf = %1d\n case = %1d\n
reltol = %6.2e\n abstol = %6.2e\n\n',...
mf,ncase,reltol,abstol);

fprintf(' t ye y erry\n');
for i=1:nout

ye(i)=y0*exp((lambda/alpha)
*(1.0-exp(-alpha*t(i))));

erry(i)=ye(i)-y(i);
fprintf('%5.1f%9.4f%9.4f%15.10f\n',t(i),ye(i),

y(i),erry(i));
end
fprintf('\n ncall = %5d\n',ncall);

The first line of the first fprintf statement has been put on two lines to fit
on the printed page, but would have to be returned to one line (since the
line break . . . cannot be used in the character string delimited by ′).

• After the four cases are completed for each of the two methods (a total
of (4)(2) = 8 solutions), the final (eighth) solution is plotted via the plot
and related statements and then saved via print pro1p7.ps. The resulting
Postscript file is Figure 1.4; this plot is rather bumpy because only 11
output values of t (in vector tout) are used. Of course, this number could
easily be increased.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

0 1 2 3 4 5 6 7 8 9 10
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

t

y(
t)

 Program 1.7, dy/dt = λ*exp(–α*t)*y)

FIGURE 1.4
Solution of Equations 1.3, 1.4, 1.5, from Program 1.7, mf = 2, ncase = 4.

%
% Next case

end
%
% Next method

end
%
% Plot last solution

plot(t,y);
xlabel('t')
ylabel('y(t)')
title('Program 1.7,

dy/dt = \lambda*exp(-\alpha*t)*y)')
print pro1p7.ps

Note in the title statement that Greek letters can be included in the label
in Figure 1.4 by using the codes \lambda and \alpha.

• Finally, we should note that routine ode23 is based on a RK (2, 3) pair,3

and ode45 is based on a RKF (4, 5) pair.3 The error estimates in these two
RK methods are used to adjust h to achieve the error tolerances specified
in the call to function options. Some detailed coding for this type of error
monitoring and control is given in the routines discussed in subsequent
chapters.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

The output from Program 1.7 is listed below:

mf = 1
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 -0.0000020034
2.0 2.3742 2.3743 -0.0000638807
3.0 2.5863 2.5864 -0.0000933201
4.0 2.6689 2.6691 -0.0001103656
5.0 2.7000 2.7002 -0.0001284242
6.0 2.7116 2.7117 -0.0001434300
7.0 2.7158 2.7160 -0.0001552112
8.0 2.7174 2.7175 -0.0001581733
9.0 2.7179 2.7181 -0.0001592608

10.0 2.7182 2.7183 -0.0001592537

ncall = 73

mf = 1
case = 2
reltol = 1.00e-006
abstol = 1.00e-006

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 -0.0000003221
2.0 2.3742 2.3742 -0.0000012721
3.0 2.5863 2.5863 -0.0000016231
4.0 2.6689 2.6689 -0.0000018847
5.0 2.7000 2.7000 -0.0000021190
6.0 2.7116 2.7116 -0.0000023452
7.0 2.7158 2.7158 -0.0000025176
8.0 2.7174 2.7174 -0.0000026866
9.0 2.7179 2.7179 -0.0000028883

10.0 2.7182 2.7182 -0.0000029806

ncall = 268

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

mf = 1
case = 3
reltol = 1.00e-008
abstol = 1.00e-008

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 -0.0000000072
2.0 2.3742 2.3742 -0.0000000188
3.0 2.5863 2.5863 -0.0000000229
4.0 2.6689 2.6689 -0.0000000260
5.0 2.7000 2.7000 -0.0000000285
6.0 2.7116 2.7116 -0.0000000309
7.0 2.7158 2.7158 -0.0000000331
8.0 2.7174 2.7174 -0.0000000354
9.0 2.7179 2.7179 -0.0000000374
10.0 2.7182 2.7182 -0.0000000394

ncall = 1180

mf = 1
case = 4
reltol = 1.00e-010
abstol = 1.00e-010

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 -0.0000000001
2.0 2.3742 2.3742 -0.0000000003
3.0 2.5863 2.5863 -0.0000000003
4.0 2.6689 2.6689 -0.0000000003
5.0 2.7000 2.7000 -0.0000000004
6.0 2.7116 2.7116 -0.0000000004
7.0 2.7158 2.7158 -0.0000000004
8.0 2.7174 2.7174 -0.0000000004
9.0 2.7179 2.7179 -0.0000000005
10.0 2.7182 2.7182 -0.0000000005

ncall = 5392

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

mf = 2
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8815 0.0000785756
2.0 2.3742 2.3742 0.0000230677
3.0 2.5863 2.5862 0.0000132883
4.0 2.6689 2.6689 0.0000149230
5.0 2.7000 2.7000 0.0000165095
6.0 2.7116 2.7115 0.0000172423
7.0 2.7158 2.7158 0.0000175329
8.0 2.7174 2.7174 0.0000176427
9.0 2.7179 2.7179 0.0000176835

10.0 2.7182 2.7181 0.0000177068

ncall = 73

mf = 2
case = 2
reltol = 1.00e-006
abstol = 1.00e-006

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 0.0000010053
2.0 2.3742 2.3742 0.0000010986
3.0 2.5863 2.5863 0.0000011560
4.0 2.6689 2.6689 0.0000010643
5.0 2.7000 2.7000 0.0000010083
6.0 2.7116 2.7116 0.0000009776
7.0 2.7158 2.7158 0.0000009652
8.0 2.7174 2.7174 0.0000009604
9.0 2.7179 2.7179 0.0000009586

10.0 2.7182 2.7182 0.0000009579

ncall = 85

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

mf = 2
case = 3
reltol = 1.00e-008
abstol = 1.00e-008

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 0.0000000237
2.0 2.3742 2.3742 0.0000000012
3.0 2.5863 2.5863 0.0000000128
4.0 2.6689 2.6689 0.0000000112
5.0 2.7000 2.7000 0.0000000428
6.0 2.7116 2.7116 0.0000000092
7.0 2.7158 2.7158 0.0000000014
8.0 2.7174 2.7174 -0.0000000231
9.0 2.7179 2.7179 -0.0000000081
10.0 2.7182 2.7182 0.0000000077

ncall = 163

mf = 2
case = 4
reltol = 1.00e-010
abstol = 1.00e-010

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 0.0000000001
2.0 2.3742 2.3742 -0.0000000001
3.0 2.5863 2.5863 -0.0000000001
4.0 2.6689 2.6689 0.0000000003
5.0 2.7000 2.7000 0.0000000004
6.0 2.7116 2.7116 -0.0000000004
7.0 2.7158 2.7158 0.0000000003
8.0 2.7174 2.7174 0.0000000002
9.0 2.7179 2.7179 -0.0000000003
10.0 2.7182 2.7182 0.0000000001

ncall = 385

We can note the following points about this output:

• Generally the output indicates that the relative error tolerances specified
in the call to function options have been met. For example, for the first
solution:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

mf = 1
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 -0.0000020034
2.0 2.3742 2.3743 -0.0000638807
3.0 2.5863 2.5864 -0.0000933201
4.0 2.6689 2.6691 -0.0001103656
5.0 2.7000 2.7002 -0.0001284242
6.0 2.7116 2.7117 -0.0001434300
7.0 2.7158 2.7160 -0.0001552112
8.0 2.7174 2.7175 -0.0001581733
9.0 2.7179 2.7181 -0.0001592608
10.0 2.7182 2.7183 -0.0001592537

ncall = 73

• An error tolerance reltol = 1.00e–004 means that four figures of accuracy
should be achieved in the numerical solution. In all cases, the numerical
solution met this tolerance, e.g.,

2.0 2.3742 2.3743 − 0.0000638807

indicates an error of −0.000064 or at least four figures in 2.3742. Similarly,
absrel = 1.00e–004 indicates an absolute accuracy of 0.0001, and this was
nearly achieved, e.g.,

10.0 2.7182 2.7183 − 0.0001592537

or an absolute error of −0.00016. The same general conclusions apply to
the other seven solutions. For example, with reltol = 1.00e–010, absrel =
1.00e–010, the solution was accurate to nearly ten figures for both mf = 1
and 2.

• The apparent computational effort, as measured by the number of deriva-
tive evaluations (calls to function ode1p7.m) differed substantially be-
tween ode23 and ode45.

mf = 1
case = 4
reltol = 1.00e-010
abstol = 1.00e-010

ncall = 5392

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

mf = 2
case = 4
reltol = 1.00e-010
abstol = 1.00e-010

ncall = 385

Thus, the calls to ode45 were less than 1/10 those to ode23. This result
illustrates the relative efficiency of the higher-order method ((4, 5) is
more efficient than (2, 3)). Note that this is true even though the (2, 3)

pair requires the evaluation of k1, k2, and k3 while the (4, 5) pair requires
the evaluation ot k1, k2, k3, k4, k5, and k6, i.e., each ki evaluation adds one
derivative evaluation.

• For a general-purpose (library) ODE integrator, the coding for the prob-
lem and for the numerical integration algorithm should be separated. In
this way, the coding for a new problem can be written, then combined
with the coding for the algorithm (so that the algorithm coding remains
unchanged). This is illustrated in Program 1.7 in which the problem
ODE is defined in a function, in this case named ode1p7.m, and the algo-
rithms are contained in ode23 and ode45, which remain unchanged from
one problem to the next. We shall use this division between problem-
specific and general coding in the library routines to be considered subse-
quently. Note that this division was not used in Programs 1.1 to 1.6; in this
sense, Programs 1.3 and 1.6 are the worst examples in that the ODE RHS
(of Equation 1.3) was coded repeatedly (each time a ki was computed)
rather than coding it just once as in function ode1p7.m called by Program
1.7. While this repetitive coding of the ODE in Programs 1.1 to 1.6 was
not too cumbersome, we can imagine what it would be like, for exam-
ple, for a 1000x1000 ODE system, with all 1000 ODEs programmed for
each ki !

We should also consider briefly the choice of error tolerances (the indiscrim-
inate choice of error tolerances is probably the single most common reason
for the failure of numerical library routines such as ode23 and ode45). In this
case, there was only one dependent variable, y(t) defined by Equations 1.3
and 1.4. Further, since the range of values of y was approximately 1 ≤ y ≤ 3,
the choice of the same value for the relative and absolute tolerances was rea-
sonable (as suggested by the preceding discussion of the tolerances and the
resulting accuracy of the solutions).

However, the selection of a single tolerance for both the relative and ab-
solute errors, or even the same absolute error tolerance for a problem with
more than one dependent variable, is not always appropriate. For example,
if we are interested in solving a 2x2 problem, with y1 having a typical value
of 1000 (perhaps a temperature) and y2 having a typical value of 0.01 (per-
haps a concentration), we might select an absolute error tolerance of 0.1 for y1
(1 part in 10, 000), but this would be entirely too large for y2 (10 parts in 1!), and

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

would result in a meaningless numerical solution for y2, and most likely for y1
as well since the ODEs for y1 and y2 would most certainly be connected, i.e.,

dy1

dt
= f1(y1, y2, t)

dy2

dt
= f2(y1, y2, t)

On the other hand, if we select an error tolerance of 0.000001 for y2 (1 part in
10,000), this would be excessively small for y1 (1 part in 1,000,000,000), and
would probably result in an excessively long computer run as the method
tried to adjust h to meet this overly stringent error tolerance.

The solution to this situation might appear to be to select a relative error
tolerance such as 0.0001 (0.01% accuracy). However, a relative error is mean-
ingful only if the corresponding dependent variables are not zero anywhere
along the solution (but the absolute error criterion would not fail at such
points). Thus, some care might also have to be given to the selection of a
relative error. In general, the specification of both a relative tolerance and an
absolute tolerance might avoid problems with error monitoring and control
(automatic selection of h), but, again, different absolute tolerances might have
to be selected for different dependent variables, and even different relative
tolerances might also have to be selected for different dependent variables (de-
pending on the sensitivity of the solution accuracy to the choice of the relative
tolerance). In general, the library ODE integration routines to be considered
subsequently will permit the selection of different relative and absolute tol-
erances for each dependent variable (but, again, appropriate values have to
be selected for each dependent variable, and indiscriminate choices without
much thought can lead to integrator failures, i.e., the failure to compute a
solution with acceptable accuracy, or to even compute any solution).

Parenthetically, function options will accept a vector for abstol and thus de-
fine an absolute error tolerance for each dependent variable (for the reason
explained with the preceding illustration of y1 and y2 having typical values
of 1000 and 0.01). However, reltol defined by a call to options will accept only
a scalar, so the same relative error tolerance is applied to all of the dependent
variables.

To conclude this section, we include Program 1.8 for the 2x2 problem of
Equations 1.6, 1.16, and 1.17, primarily to illustrate how ode23 and ode45 are
used for a problem with more than one ODE. Program 1.8 is listed below:

%
% Program 1.8
% 2 x 2 system of eqs. (1.6), (1.16), (1.17)
%
% Global variables

global a b;
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Model parameters
a=5.5;
b=4.5;

%
% Select method

for mf=1:2
%
% Error tolerances

reltol=1.0e-02;
abstol=1.0e-02;
for ncase=1:4

reltol=1.0e-02*reltol;
abstol=1.0e-02*abstol;

%
% Variables for ODE integration

t0=0.0;
tf=10.0;
tout=[t0:1.0:tf]';
nout=11;

%
% Initial condition

y10=0.0;
y20=2.0;
y0=[y10 y20]';

%
% Call ODE integrator

options=odeset('RelTol',reltol,'AbsTol',abstol);
if(mf==1)[t,y]=ode23('ode1p8',tout,y0,options); end
if(mf==2)[t,y]=ode45('ode1p8',tout,y0,options); end

%
% Display solution and error

fprintf('\n\n mf = %1d\n case = %1d\n
reltol = %6.2e\n abstol = %6.2e\n\n',...
mf,ncase,reltol,abstol);

fprintf(' t y1e y1 erry1\n
y2e y2 erry2\n');

for i=1:nout
lambda1=-(a-b);
lambda2=-(a+b);
exp1=exp(lambda1*t(i));
exp2=exp(lambda2*t(i));
y1e=(y10+y20)/2.0*exp1-(y20-y10)/2.0*exp2;
y2e=(y10+y20)/2.0*exp1+(y20-y10)/2.0*exp2;
erry1=y1e-y(i,1);
erry2=y2e-y(i,2);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

fprintf('%5.1f%9.4f%9.4f%15.10f\n
%9.4f%9.4f%15.10f\n\n',...
t(i),y1e,y(i,1),erry1,y2e,y(i,2),erry2);

end
%
% Next case

end
%
% Next method

end
%
% Plot last solution

plot(t,y);
xlabel('t')
ylabel('y1(t),y2(t)')
title(' Program 1.8, 2 x 2 Linear System')
gtext('y1(t)');
gtext('y2(t)');
print pro1p8.ps

Program 1.8
Program for the integration of Equations 1.6, 1.16, and 1.17 by the library
integrators ode23 and ode45

We can note the following points about Program 1.8:

• The constants a and b in Equations 1.6, 1.16, and 1.17 are declared as
global, then assigned numerical values:

%
% Global variables

global a b;
%
% Model parameters

a=5.5;
b=4.5;

• As in Program 1.7, two methods are used (mf = 1 for ode23 and mf = 2
for ode45). For each of these methods, a set of four error tolerances is
used (again, these tolerances are appropriate for y1 and y2 since these
variables range over (approximately) 0 ≤ y1, y2 ≤ 2).

%
% Select method

for mf=1:2
%
% Error tolerances

reltol=1.0e-02;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

abstol=1.0e-02;
for ncase=1:4

reltol=1.0e-02*reltol;
abstol=1.0e-02*abstol;

• The variables controlling the integration are the same as in Program 1.7:

%
% Variables for ODE integration

t0=0.0;
tf=10.0;
tout=[t0:1.0:tf]';
nout=11;

Thus, the t scales for Programs 1.7 and 1.8 are the same, 0 ≤ t ≤ 10, but
clearly the t scale is problem dependent, and thus a final value of t = t f
must generally be selected for each new initial value problem. In other
words, we must select t f to be large enough to encompass the entire
solution, but not too large so that the essential details of the solution
are confined to a small interval in t (generally at the beginning of the
solution). The selection of an appropriate t scale is particularly important
for stiff ODEs, as we shall observe in the next section on stability.

• The initial condition is now set as a vector (with two components):

%
% Initial condition

y10=0.0;
y20=2.0;
y0=[y10 y20]';

Note that the last statement converts a row vector to a column vector
(through the transpose operator, ’) since an initial condition column vec-
tor is required by ode23 and ode45.

• ode23 and ode45 are called in the same way as in Program 1.7:

%
% Call ODE integrator

options=odeset('RelTol',reltol,'AbsTol',abstol);
if(mf==1)[t,y]=ode23('ode1p8',tout,y0,options); end
if(mf==2)[t,y]=ode45('ode1p8',tout,y0,options); end

The only difference is that function ode1p8 is used to define the ODEs,
Equations 1.6 and 1.16.

function yt=ode1p8(t,y)
%
% Set global variables

global a b;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% ODEs

yt(1)=-a*y(1)+b*y(2);
yt(2)= b*y(1)-a*y(2);
yt=yt';

We can note the following points about ode1p8.m:
— A vector of derivatives, yt, with two elements is computed according

to the ODEs, Equations 1.6 and 1.16. In other words, the dependent
variable vector, y, is an input to ode1p8.m (generated by the integra-
tor, ode23 or ode45), and the derivative vector, yt, is the output from
ode1p8.m.

— Note also that this output derivative vector must be a column vector
(required by ode23 and ode45), so a transpose is taken at the end of
ode1p8.m.

• The numerical and exact solutions for y1 and y2 are then displayed (again,
the character strings are put on two lines so that they fit on a printed
page).

%
% Display solution and error

fprintf('\n\n mf = %1d\n case = %1d\n
reltol = %6.2e\n abstol = %6.2e\n\n',...
mf,ncase,reltol,abstol);

fprintf(' t y1e y1 erry1\n
y2e y2 erry2\n');

for i=1:nout
lambda1=-(a-b);
lambda2=-(a+b);
exp1=exp(lambda1*t(i));
exp2=exp(lambda2*t(i));
y1e=(y10+y20)/2.0*exp1-(y20-y10)/2.0*exp2;
y2e=(y10+y20)/2.0*exp1+(y20-y10)/2.0*exp2;
erry1=y1e-y(i,1);
erry2=y2e-y(i,2);
fprintf('%5.1f%9.4f%9.4f%15.10f\n

%9.4f%9.4f%15.10f\n\n',...
t(i),y1e,y(i,1),erry1,y2e,y(i,2),erry2);

end

In computing the exact solutions, the two eigenvalues λ1 and λ2 of
Equations 1.16 are first computed (lambda1 and lambda2). The expo-
nentials in Equations 1.17 corresponding to these eigenvalues are then
computed (exp1 and exp2). Finally, the exact analytical solutions,

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Equations 1.17, are programmed (y1e and y2e), and then the correspond-
ing truncation errors, erry1 and erry2, are computed.

• Note also that ode23 and ode45 actually return a matrix as the solution, y,
consisting of nout rows (for the nout values of t), and two columns (for
the two dependent variables, y1 and y2). This matrix is then used in the
output lines:

erry1=y1e-y(i,1);
erry2=y2e-y(i,2);
fprintf('%5.1f%9.4f%9.4f%15.10f\n

%9.4f%9.4f%15.10f\n\n',...
t(i),y1e,y(i,1),erry1,y2e,y(i,2),erry2);

where i is set by the for statement

for i=1:nout

• After the two for loops (which set mf and ncase) are finished, the solution
is plotted (corresponding to mf = 2 and ncase = 4):

%
% Next case

end
%
% Next method

end
%
% Plot last solution

plot(t,y);
xlabel('t')
ylabel('y1(t),y2(t)')
title(' Program 1.8, 2 x 2 Linear System')
gtext('y1(t)');
gtext('y2(t)');
print pro1p8.ps

Note that function plot is able to accept the matrix y directly since it
checks for the correct number of rows in t (a column vector with nout
rows). The resulting plot is then written to the Postscript file pro1p8.ps
for storage.

The output from Program 1.8 is abbreviated below (to avoid excessive
printed output) for mf = 1 and 2, ncase = 1 and 4:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

mf = 1
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

t y1e y1 erry1
y2e y2 erry2

0.0 0.0000 0.0000 0.0000000000
2.0000 2.0000 0.0000000000

1.0 0.3678 0.3679 -0.0000179424
0.3679 0.3679 0.0000643053

2.0 0.1353 0.1353 0.0000767180
0.1353 0.1353 0.0000769485

3.0 0.0498 0.0497 0.0001011036
0.0498 0.0497 0.0001052134

4.0 0.0183 0.0182 0.0000911283
0.0183 0.0182 0.0000835132

5.0 0.0067 0.0068 -0.0000336414
0.0067 0.0066 0.0001147145

6.0 0.0025 0.0026 -0.0001634482
0.0025 0.0023 0.0001981412

7.0 0.0009 0.0010 -0.0001346866
0.0009 0.0008 0.0001489110

8.0 0.0003 0.0004 -0.0001107129
0.0003 0.0002 0.0001164729

9.0 0.0001 0.0002 -0.0001063790
0.0001 0.0000 0.0001086973

10.0 0.0000 0.0001 -0.0000217537
0.0000 0.0000 0.0000226717

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

mf = 1
case = 4
reltol = 1.00e-010
abstol = 1.00e-010

t y1e y1 erry1
y2e y2 erry2

0.0 0.0000 0.0000 0.0000000000
2.0000 2.0000 0.0000000000

1.0 0.3678 0.3678 0.0000000000
0.3679 0.3679 0.0000000000

2.0 0.1353 0.1353 0.0000000001
0.1353 0.1353 0.0000000001

3.0 0.0498 0.0498 0.0000000001
0.0498 0.0498 0.0000000001

4.0 0.0183 0.0183 0.0000000001
0.0183 0.0183 0.0000000001

5.0 0.0067 0.0067 0.0000000001
0.0067 0.0067 0.0000000001

6.0 0.0025 0.0025 0.0000000001
0.0025 0.0025 0.0000000001

7.0 0.0009 0.0009 0.0000000001
0.0009 0.0009 0.0000000001

8.0 0.0003 0.0003 0.0000000001
0.0003 0.0003 0.0000000001

9.0 0.0001 0.0001 0.0000000001
0.0001 0.0001 0.0000000001

10.0 0.0000 0.0000 0.0000000001
0.0000 0.0000 0.0000000001

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

mf = 2
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

t y1e y1 erry1
y2e y2 erry2

0.0 0.0000 0.0000 0.0000000000
2.0000 2.0000 0.0000000000

1.0 0.3678 0.3678 -0.0000030880
0.3679 0.3679 0.0000032018

2.0 0.1353 0.1353 0.0000102110
0.1353 0.1353 -0.0000087609

3.0 0.0498 0.0498 0.0000169871
0.0498 0.0498 -0.0000174932

4.0 0.0183 0.0183 0.0000136219
0.0183 0.0183 -0.0000139397

5.0 0.0067 0.0068 -0.0000481707
0.0067 0.0067 0.0000480671

6.0 0.0025 0.0025 0.0000142956
0.0025 0.0025 -0.0000143637

7.0 0.0009 0.0009 -0.0000255897
0.0009 0.0009 0.0000255619

8.0 0.0003 0.0003 0.0000202537
0.0003 0.0004 -0.0000202664

9.0 0.0001 0.0001 0.0000139694
0.0001 0.0001 -0.0000139749

10.0 0.0000 0.0000 0.0000145650
0.0000 0.0001 -0.0000145673

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

mf = 2
case = 4
reltol = 1.00e-010
abstol = 1.00e-010

t y1e y1 erry1
y2e y2 erry2

0.0 0.0000 0.0000 0.0000000000
2.0000 2.0000 0.0000000000

1.0 0.3678 0.3678 0.0000000000
0.3679 0.3679 0.0000000000

2.0 0.1353 0.1353 0.0000000000
0.1353 0.1353 0.0000000000

3.0 0.0498 0.0498 0.0000000000
0.0498 0.0498 0.0000000000

4.0 0.0183 0.0183 0.0000000000
0.0183 0.0183 0.0000000000

5.0 0.0067 0.0067 0.0000000000
0.0067 0.0067 0.0000000000

6.0 0.0025 0.0025 0.0000000000
0.0025 0.0025 0.0000000000

7.0 0.0009 0.0009 0.0000000000
0.0009 0.0009 0.0000000000

8.0 0.0003 0.0003 0.0000000000
0.0003 0.0003 0.0000000000

9.0 0.0001 0.0001 0.0000000000
0.0001 0.0001 0.0000000000

10.0 0.0000 0.0000 0.0000000000
0.0000 0.0000 0.0000000000

Generally we can conclude that the error monitoring and control (auto-
matic h adjustment) worked as expected for both ode23 and ode45. The plot
for mf = 2, ncase = 4 appears in Figure 1.5. We can note in Figure 1.5 the initial
conditions y1(0) = 0, y2(0) = 2 of Equations 1.6; as the solution evolves, the

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

y1
(t

),
y2

(t
)

Program 1.8, 2 x 2 Linear System

y1(t)

y2(t)

FIGURE 1.5
Solution of Equations 1.6, 1.16, from Program 1.8, mf = 2, ncase = 4.

two components, y1(t), y2(t) come together at approximately t = 1, then fol-
low a common path. This is consistent with the analytical solution, Equation
1.17. At t = 1 the exponential eλ2t = e−(a+b)t = e−(5.5+4.5)t = e−10t decays to
insignificance in both y1(t) and y2(t); the two solutions then decay according
to the exponential eλ1t = e−(a−b)t = e−(5.5−4.5)t = e−t, and we need to compute
to t = 10 for this exponential to fully decay.

This is a common feature of the solution to simultaneous linear ODEs. In
particular:

• There is an initial interval, e.g., 0 ≤ t ≤ 1, in which all of the expo-
nentials (for all of the ODE eigenvalues) are significant. However, the
exponentials with the largest eigenvalues, in this case λ2 = −10 decay
rapidly.

• If the eigenvalues are complex, then the magnitudes of their real parts
determine how long this initial transient or boundary layer persists (and,
of course, the real parts should all be negative for the ODE system to be
stable; if any of the eigenvalues have positive real parts, the correspond-
ing exponentials will grow with increasing t).

• Once this initial transient is past, the solutions decay according to
the smallest eigenvalues, in this case λ1 = −1, which defines the to-
tal t scale of the solution to be approximately 0 ≤ t ≤ 10 (as reflected in
Figure 1.5).

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• If the eigenvalues are widely separated (a stiff system), the initial transient
determined by the largest eigenvalues will be very short (and thus will
require many small integration steps for an accurate solution in this
interval). However, the total length or scale of the solution in t will be
determined by the smallest eigenvalues, but small steps will still have to
be taken throughout the entire solution to maintain stability with a nonstiff
(explicit) integrator such as the ones we have considered so far. It is
this combination of small h to cover a large interval in t that makes stiff
ODE systems relatively difficult to solve numerically with a nonstiff
integrator.

We now consider some of the stability properties of ODE integrators for stiff
and nonstiff ODEs. In other words, in addition to the previous consideration
of accuracy, typically in the form of the order conditions, e.g., O(h p), p =
1, 2, 3, 4, 5, we must also consider a second important limitation of numerical
integration algorithms, their stability, which is discussed in the next, and final,
section of this chapter.

1.7 Stability of RK Methods

So far, we have assumed that h will somehow be selected (either manually as
in Programs 1.1 to 1.6, or automatically as in Programs 1.7 and 1.8) so as to
achieve a numerical ODE solution of acceptable accuracy. Thus accuracy, at
least so far in this discussion, has determined h. However, there are situations
for which h must be reduced to a level that ensures a stable numerical solution,
and this restriction on h will occur at a smaller value of h than that determined
by accuracy. The class of problems for which stability limits h is termed stiff.

We start the discussion of stability by considering the model ODE (Equation
1.22) dy/dt = λy, y(0) = y0, where we have chosen real(λ), < 0 so that the
solution

y(t) = y0eλt (1.52)

is stable (decays exponentially with t). If we apply the Euler method, Equation
1.19 or 1.28, to this system, starting at the initial condition y(0) = y0,

y1 = y0 + dy0

dt
h = y0 + (λy0)h = y0(1 + λh)

For the next step from y1 to y2

y2 = y1 + dy1

dt
h = y1 + (λy1)h = y1(1 + λh) = y0(1 + λh)(1 + λh) = y0(1 + λh)2

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

In general, after n steps to go from y0 to yn

yn = y0(1 + λh)n (1.53)

We can consider how this Euler solution (Equation 1.53) compares with the
exact solution, Equation 1.52:

λh = −2 n yn

1 y1 = y0(1 − 2) = −y0
2 y2 = y1(1 − 2) = −y0(−1) = y0
3 y3 = y2(1 − 2) = y0(−1) = −y0, etc.

λh = −3 n yn

1 y1 = y0(1 − 3) = −2y0
2 y2 = y1(1 − 3) = −2y0(−2) = 4y0
3 y3 = y2(1 − 3) = 4y0(−2) = −8y0, etc.

λh = −0.5 n yn

1 y1 = y0(1 − 0.5) = 0.5y0
2 y2 = y1(1 − 0.5) = 0.5y0(0.5) = 0.25y0
3 y3 = y2(1 − 0.5) = 0.25y0(0.5) = 0.125y0, etc.

When |λh| = 2 (i.e., λh = −2), the solution oscillates between y0 and −y0
(when it should decay according to Equation 1.52). When |λh| > 2 (i.e., λh =
−3), the solution grows in amplitude from y0 to −2y0 to 4y0, etc. (the solution
is unstable). However, when |λh| < 2 (i.e., λh = −0.5), the solution decays
(and is therefore stable). Thus, |λh| = 2 is the stability limit of the Euler method
when applied to this model problem (Equation 1.22).

Also, since the eigenvalues of ODEs can, in general, be complex, the stability
criterion |λh| = 2 defines a circle in the complex plane with center at (−1, i0)

and unit radius as illustrated in Figure 1.6. Note, in particular, the stability
interval −2 ≤ λh ≤ 0 along the negative real axis when λ is real and negative
(corresponding to a stable solution from Equation 1.52), and h is positive (the
case we have considered, although the previous integration methods are valid
for negative h corresponding to integration in the direction of decreasing t).

We can establish the stability region of Figure 1.6 for the Euler method (the
interior of the circle is the stable region) by plotting a series of points in the
complex plane corresponding to a series of values of λh. Consider the step-
ping formula for the Euler method from point yi to point yi+1, Equation 1.19. If
the numerical solution from this stepping formulas is to be stable, we require

∣∣∣∣ yi+1

yi

∣∣∣∣ ≤ 1

In other words, the absolute value of the solution at i + 1 should be less than
or equal to the absolute value at i as, for example, in the exponential decay
of Equation 1.52 (the ratio |yi+1/yi | is generally called the amplification factor
or stability function, and it should be less than one for a stable solution).

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Re(λh)

Im(λh)

 –2 + i0,θ = π 0 + i0,θ = 0

 –1 + i1,θ = π/2

 –1 –i1,θ = 3π/2

,θ = π/4
2

1

2

1
(–1) + i, θ = 3π/4

2

11
(–1) + i –

,θ = 5π/4
2

1

2

2

1
(–1) – i – ,θ = 7π/4

2

1

2

1
(–1) –i

stable region

Interior of
circle is

Exterior of
circle is

unstable region

Circle of unit radius
centered at –1 + i0

 –1 + i0

FIGURE 1.6
The stability region of the Euler method.

For the Euler method applied to the model ODE dy/dt = λy, y(0) = y0
(Equation 1.22)

yi+1 = yi + dyi

dt
h = yi + (λyi)h = yi (1 + λh)

or
yi+1

yi
= 1 + (λh)

For this ratio to have an absolute value of 1, even for complex λ, we require

1 + (λh) = eiθ

eiθ is a complex variable with unit magnitude, i.e.,
∣∣eiθ

∣∣ = 1. Since eiθ =
cos θ + i sin θ (the Euler identity),

1 + Re(λh) + i Im(λh) = cos θ + i sin θ

so that

Re(λh) = cos θ − 1

Im(λh) = sin θ

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

We can determine the values of Re(λh) and Im(λh) for a selected sets of
values of θ

θ eiθ λh

0 1 + i0 0 + i0
π/4 1/

√
2 + i(1/

√
2) (1/

√
2 − 1) + i(1/

√
2)

π/2 0 + i1 −1 + i1
3π/4 −1/

√
2 + i(1/

√
2) (−1/

√
2 − 1) + i(1/

√
2)

π −1 + 0i −2 + i0
5π/4 −1/

√
2 − i(1/

√
2) (−1/

√
2 − 1) − i(1/

√
2)

3π/2 0 − i1 −1 − i1
7π/4 1/

√
2 − i(1/

√
2) (1/

√
2 − 1) − i(1/

√
2)

2π 1 + i0 0 + i0

If Re(λh) is plotted vs. Im(λh), the resulting figure is a circle, centered
at (−1, i0) with unit radius (see Figure 1.6). If h is chosen so that the com-
plex point λh falls outside the circle, the numerical solution will be unstable
(since |yi+1/yi | > 1). Thus, a stability limit is placed on h for the explicit Euler
method.

Usually, the accuracy requirement will set the step h to a value smaller
than for |λh| = 2, as discussed previously. However, there is an exception to
this conclusion. Consider the 2x2 system of Equations 1.6 and the analytical
solution, Equation 1.17, for the special case y1(0) = 0, y2(0) = 2

y1(t) = eλ1t − eλ2t (1.54a)

y2(t) = eλ1t + eλ2t (1.54b)

for which the eigenvalues are λ1 = −(a −b), λ2 = −(a +b) as noted previously
(recall again how Equations 1.54 appear numerically in Figure 1.5 for a =
5.5, b = 4.5 and λ1 = −1, λ2 = −10).

We now consider some additional particular values for a and b

Values of a, b Values of λ1,λ2
|λ2|
|λ1|

and Description

Case 1

a = 50.5 λ2 = −100
|λ2|
|λ1| = 100

b = 49.5 λ1 = −1 nonstiff

Case 2

a = 500.5 λ2 = −1000
|λ2|
|λ1| = 1000

b = 499.5 λ1 = −1 moderately stiff

Case 3

a = 500, 000.5 λ2 = −1, 000, 000
|λ2|
|λ1| = 1, 000, 000

b = 499, 999.5 λ1 = −1 stiff

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Consider the maximum Euler step for the stiff case. If λ2 = −1, 000, 000, the
maximum stable step is given by |λh| = 2 or h = 2/1, 000, 000 = 0.000002.
However, to compute a complete solution, we require a final t given approx-
imately by λ1t ≈ −10 (or t = 10 so that exp(λ1t) = exp(−10) has decayed
to insignificance compared to the initial condition y2(0) = 2). Thus, we must
take 10/0.000002 = 5 × 106 steps! If this does not seem like a large number of
steps, consider a = 500, 000, 000.5, b = 499, 999, 999.5 for which the ratio

|largest eigenvalue|
|smallest eigenvalue| = |λmax|

|λmin| = |λ2|
|λ1| = 109

and 5×109 steps would be required to compute a complete solution (physical
problems in which this stiffness ratio = |λmax|/|λmin| = 1012 to 1015 are not
unusual).

As an incidental point, note that the calculation of λ1 requires a subtraction,
λ1 = −(a − b). If a and b are nearly equal, e.g., a = 500, 000.5, b = 499, 999.5,
then this subtraction might be done with substantial error. For example, if
the machine precision (often termed the machine epsilon or unit roundoff) is 10−7

(one part in 107) corresponding to 32-bit arithmetic, this stiff ODE system
could not be integrated numerically since the calculation of (a − b) requires
a precision better than more than one part in 107. Although this is a heuris-
tic argument, generally the conclusion is correct, i.e., stiff systems require a
precision that is substantially better than set by |λmax|/|λmin| (1, 000, 000 in
the preceding example). As an example of available precision, the machine
epsilon for MATLAB and Java is approximately 10−15 so that an ODE sys-
tem with a stiffness ratio approaching 1015 can be accommodated with these
systems.

Thus, if we require the solution to a system of stiff ODEs, we should not use
the Euler method (because of the stability limit |λh| = 2). We might consider
a higher-order method, e.g., the modified Euler method of Equation 1.29, the
classical fourth-order RK method of Equations 1.50, but if we do a similar
stability analysis, we arrive at a stability limit that is not much greater than
for the Euler method. For example, consider application of the fourth-order
RK of Equations 1.50 to the model ODE (Equation 1.22) dy/dt = λy, y(0) = y0,
where we have chosen real(λ) < 0 so that the solution, Equation 1.52 (or yi eλh

for one step h as noted after Equation 1.22), is stable. The RK constants for the
model problem are

k1 = f (yi , ti)h = λyi h

k2 = f (yi + k1/2, ti + h/2)h = λ(yi + λhyi/2)h

k3 = f (yi + k2/2, ti + h/2)h = λ[yi + λ(yi + λhyi/2)h/2]h

k4 = f (yi + k3, ti + h)h = λ{yi + λ[yi + λ(yi + λhyi/2)h/2]h}h

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

and the stepping formula is

yi+1 = yi + (1/6)(k1 + 2k2 + 2k3 + k4)

= yi + (1/6)[λhyi + 2λ(yi + λhyi/2)h + 2λ[yi + λ(yi + λhyi/2)h/2]h

+λ{yi + λ[yi + λ(yi + λhyi/2)h/2]h}h]

= yi {1 + (1/6)[(1 + 2 + 2 + 1)(λh) + (1/6)(1 + 1 + 1)(λh)2

+(1/6)(1/2 + 1/2)(λh)3 + (1/6)(1/4)(λh)4]}
= yi (1 + (λh)/1! + (λh)2/2! + (λh)3/3! + (λh)4/4!) (1.55a)

Since the exact solution to the model problem is y = y0eλt for the distance
t = h, the solution changes from yi to yi+1 according to the exact solution

yi+1 = yi eλh = yi (1+ (λh)/1!+ (λh)2/2!+ (λh)3/3!+ (λh)4/4!+· · ·) (1.55b)

Thus, the RK stepping formula fits the Taylor series solution of the ex-
act solution up to and including the (λh)4 term (up to and including the
(d4 yi/dt4)(h4/4!) term), as expected (compare Equations 1.55). Also, although
the exact solution, Equation 1.55b, is stable for λ < 0, the approximate so-
lution, Equation 1.55a, is not necessarily stable (because of the truncation).
In fact, we can chose h large enough to make the solution of Equation 1.55a
unstable.

Again, if the numerical solution is to remain stable, we require |yi+1/yi | ≤ 1.
Thus, for the limiting value |yi+1/yi | = 1

∣∣1 + (λh)/1! + (λh)2/2! + (λh)3/3! + (λh)4/4!
∣∣ = 1 (1.55c)

and we can consider what values of λh will satisfy Equation 1.55c. Clearly
real(λh) < 0. If λh = −2.785,

1 + (−2.785)/1! + (−2.785)2/2! + (−2.785)3/3! + (−2.785)4/4! = 1

1 − 2.785 + 3.878 − 3.600 + 2.507 = 0.9996 ≈ 1

Thus, in place of the stability criterion for the Euler method, |λh| = 2, we
have for the fourth-order RK method along the negative real axis |λh| = 2.785.
In other words, the stability is not improved very much by going to a higher-
order RK (or, in general, an explicit) method. For example, for the stiff case
a = 500, 000.5, b = 499, 999.5 considered previously, for which the maximum
stable step for the Euler method was h = 0.000002, the maximum stable step
is now h = 0.000002785, and the required number of steps for a complete so-
lution is reduced from 10/0.000002 = 5.0×106 to 10/0.000002785 = 3.59×106

(not a very significant reduction, particularly when we recall that the classi-
cal fourth-order RK of Equations 1.50 requires four derivative evaluations for
step h while the Euler method requires only one derivative evaluation).

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

We could also repeat the previous calculations for the Euler method to de-
termine the stability region for the fourth-order RK method that is analogous
to the circle in Figure 1.6, that is, by finding the values of λh that satisfy

1 + (λh)/1! + (λh)2/2! + (λh)3/3! + (λh)4/4! = eiθ (1.55d)

This calculation is a little more involved than for the Euler method, so we
merely state that the resulting stability diagram is in Schiesser,4 p. 157; Fortran
and MATLAB program to calculate the boundary of the stability region is
available from the authors (W.E.S.).

In summary, any explicit method will have a stability limit similar to the
Euler method. So we might logically pose the question, “How do we efficiently
compute the solution to a stiff ODE system?” The answer is that we must use
an implicit algorithm (which generally will have a much larger stability region
than an explicit method). Another way we can understand the stability limit of
the explicit Euler method, Equation 1.19 (in addition to the preceding analysis
which led to |λh| = 2), is to recall the projection along a straight line in Figure
1.1. Specifically, if any eigenvalue of an ODE system is large, the solution
changes rapidly (with respect to t), and the projection will therefore be highly
inaccurate in going from yi to yi+1 unless h is very small. One way to avoid
this required use of a small h is to evaluate the derivative dy/dt at i + 1 rather
than at i , i.e., to use the implicit Euler method

yi+1 = yi + dyi+1

dt
h (1.56)

To show that using Equation 1.56 will be effective for stiff ODEs, we can
repeat the preceding stability analysis for the ODE dy/dt = λy, y(0) = y0,
where we have again chosen real(λ) < 0 so that the exact solution y(t) = y0eλt

is stable (decays exponentially with t). If we apply the implicit Euler method,
Equation 1.56, to this system,

y1 = y0 + dy1

dt
h = y0 + (λy1)h or y1/y0 = 1

1 − λh

For the next step

y2 = y1 + dy2

dt
h = y1 + (λy2)h or

y2

y1
= 1

1 − λh

Then for two steps

y2

y0
= y2

y1

y1

y0
=

(
1

1 − λh

) (
1

1 − λh

)
=

(
1

1 − λh

)2

In general, after n steps

yn = y0

(
1

1 − λh

)n

(1.57)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

We can again consider how this Euler solution (Equation 1.57) compares
with the exact solution, y(t) = y0eλt. A few specific values of the numerical
solution are computed as before

λh = −2 n yn

1 y1 = y0/(1 + 2) = y0/3
2 y2 = y1/(1 + 2) = y0(1/3)2

3 y3 = y2/(1 + 2) = y0(1/3)3 etc.

Note that the solution decays in contrast to the explicit Euler method. This
decay will occur no matter how large h is (in fact, the decay is faster with
increasing h), so the implicit Euler method has no limit on λh with respect
to stability, i.e., the implicit Euler method is unconditionally stable. The step h is
therefore only limited by accuracy.

However, there is generally a price to be paid for the enhanced stability of
implicit methods. If the model equation is

dy
dt

= f (y, t)

and f (y, t) is nonlinear, then application of the implicit Euler method,
Equation 1.56, gives

yi+1 = yi + dyi+1

dt
h = yi + f (yi+1, ti+1)h

Note that the solution at the advanced point, yi+1, now appears on both sides
of the stepping formula, and we therefore must solve a nonlinear equation to
compute yi+1. Thus, the price we pay in general when using implicit methods
is the solution of systems of nonlinear (algebraic) equations. For stiff ODEs, the
additional effort of solving systems of nonlinear equations is usually well
worthwhile since much larger integration steps are possible because of the
improved stability characteristics of implicit methods (for example, for the
previous stiff problem with λ1 = −1, λ2 = −1, 000, 000, rather than 5 × 106

required steps for the explicit Euler method, probably a few hundred steps
would be sufficient with the implicit Euler method to achieve reasonable ac-
curacy since stability is not an issue; thus orders-of-magnitude reductions in
the number of integration steps can be achieved by using an implicit integra-
tor). Conversely, using a stiff (implicit) integrator on a nonstiff problem will
waste computer time since the solution of nonlinear equations is unnecessary
(as we observed in Programs 1.1 to 1.6).

We concluded the implicit Euler method is unconditionally stable, but it
also has low accuracy (it is first order). Thus, we seek integration algorithms
that have good stability and good accuracy. A widely used implicit method for
stiff ODEs that has good combined stability and accuracy is based on the
backward differentiation formulas (BDFs), which have the following general

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

form (References 5 and 6, pp. 183–184). The BDF stepping formula is

α0 yi+1 + α1 yi + · · · + αν yi−ν+1 = h f (yi+1ti+1) (1.58)

for dy/dt = f (y, t), where ν is the order of the method (that defines the coef-
ficients in a particular row of the following table of coefficients)

ν α0 α1 α2 α3 α4 α5 α6

1 1 −1
2 3/2 −2 1/2
3 11/6 −3 3/2 −1/3
4 25/12 −4 3 −4/3 1/4
5 137/60 −5 −10/3 5/4 −1/5
6 147/60 −6 15/2 −20/3 15/4 −6/5 1/6

Note that the solution at the advanced point, yi+1, appears on both sides
of the stepping formula, Equation 1.58, so that in general the calculation of
yi+1 requires the solution of a nonlinear equation (if f (y, t) from the ODE
is nonlinear), or systems of nonlinear algebraic equations for the nxn ODE
problem.

The first-order BDF method (ν = 1) is just the implicit Euler method,
Equation 1.56; note the weighting coefficients α0 = 1, α1 = −1) from the
preceding table for which Equation 1.58 can be written as

α0 yi+1 + α1 yi = h f (yi+1ti+1)

or

(1)yi+1 + (−1)yi = h f (yi+1ti+1)

which is the implicit Euler method, Equation 1.56.
As we noted previously, the implicit Euler method is stable over the entire

left half of the complex plane. However, it has limited accuracy; recall from
Figure 1.1 that the Euler method is based on a first-order polynomial (linear
approximation to the ODE solution), which is the case for both the explicit and
implicit Euler methods (both are O(h)). For ν = 2, . . . , 6, the BDF methods
are based on second- to sixth-order polynomial approximations of the ODE
solution, which accounts for their good accuracy.

The BDF methods are implemented in the MATLAB routines ode23s and
ode15s (presumably the “s” in these names denotes “stiff”). State-of-the-art
implementations of the BDFs are available in the routines LSODE, LSODES,
and DASSL (References 4, 7, pp. 55–64, and 8) that vary both ν and h auto-
matically (termed variable order-variable step implementations).

The stability properties of the BDFs are summarized by their stability dia-
grams, which are presented in Reference 4, p. 163 (Fortran and MATLAB pro-
grams for calculating the stability boundaries are available from the authors

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

(W.E.S.)). In particular, for ν = 1, the unstable region is within a circle centered
at (1, i0) with unit radius. This follows from Equation 1.57 in the same way
that we established the stability domain for the explicit Euler method from
Equation 1.53. Specifically,

• If λh = (1, i0) (real 1), there will be a division by zero in Equation 1.57.
This demonstrates why the circle of instability for the implicit Euler
method is centered at (1, 0i).

• As we move away from (1, 0i), the instability remains until we reach the
boundary of the circle where the implicit Euler method switches from
unstable to stable (the amplification factor from Equation 1.57,

∣∣∣∣ yi+1

yi

∣∣∣∣ =
∣∣∣∣ 1
1 − λh

∣∣∣∣
switches from >1 to <1).

• Since we are discussing the right half of the complex plane, for which λ

has a positive real part, the exact solution to the ODE is unstable (grows
exponentially with increasing t). This is an unusual situation in most ap-
plications of ODEs (e.g., unstable physical systems); in other words, the
left half of the complex plane (where the real parts of all the ODE eigen-
values are negative) is usually of primary interest in applications. For
the left half plane, the implicit Euler method is unconditionally stable.

• For the BDF order ν > 2, the BDF methods have a region along the imag-
inary axis in the left half plane for which these methods are unstable.

• This region of instability in the left half plane becomes larger with in-
creasing ν.

In summary, the entire left half of the complex plane is unconditionally
stable for ν ≤ 2, but a portion of the left half plane along the imaginary axis is
unstable for ν ≥ 3, and this unstable region increases in size with increasing
ν. Thus, stiff ODEs with complex eigenvalues that fall close to the imagi-
nary axis may cause long computer runs due to the limited stability along
the imaginary axis (for this case, limiting ν to 2 can often increase the com-
putational efficiency substantially, even though the order is relatively low).
All of the BDFs for ν ≤ 6 are unconditionally stable along the negative real
axis. These properties are readily observed in the BDF stability diagrams cited
previously.4

We should also note that the BDF stepping formula, Equation 1.58, requires
a series of values prior to yi+1, i.e., yi , yi−1, . . . , yi−ν+1. At the beginning of the
solution, when only one value is available, the initial condition y0, we cannot
use Equation 1.58 unless we start with the first-order method corresponding
to ν = 1. This will permit the calculation of y1 and now we have two past
values to calculate y2, etc. Thus, we must build up the required past values
starting with the ν = 1 method (the implicit Euler method). In other words,
the BDFs for ν > 1 are not self-starting.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

On the other hand, the RK methods are self-starting since their stepping for-
mulas involve just yi to calculate yi+1. Thus, we can use RK methods to cal-
culate the first several values required by the BDF methods. However, for
stiff problems, this requires the use of implicit RK methods (which we have not
considered in the preceding discussion). Implicit RK methods are available,
and have been implemented in a quality code, RADAU5.9

Finally, an extensive library of quality public domain scientific software
is available from the Internet.10 This library includes the source code for an
extensive set of ODE integrators, including LSODE, LSODES, and DASSL.
Since stiff ODE systems are an important class of initial value ODE prob-
lems, additional discussion of stiff integrators is given in Appendix C. In
particular,

• The 2x2 system of Equations 1.6 for the stiff case a = 500, 000.5, b =
499, 999.5 is integrated by a fixed-step prototype BDF integrator for ν = 1
(implicit Euler method) using MATLAB. This prototype illustrates the
solution of the nonlinear equations required by an implicit integrator
using Newton’s method. MATLAB programs for ν = 2, 3 are available
from the authors (W.E.S.).

• The same 2x2 problem is integrated using ode23s and ode45s to demon-
strate both the stability and accuracy of these integrators. These pro-
grams can easily be modified for application to other stiff ODE problems.

This completes the introduction to ODE integrators, principally for the
explicit RK integrator pairs (1, 2), (2, 3), (2, 4), and (4, 5) that are implemented
in the routines to be discussed in the remainder of this book. We start with the
solution of the 1x1 ODE system of Equations 1.3, 1.4, and 1.5 using integrators
that vary h to achieve a prescribed accuracy, that is, variable step explicit RK
integrators.

References

1. Braun, M., Differential Equations and Their Applications, 4th ed., Springer-Verlag,
New York, 1993, 52–53.

2. Iserles, A., A First Course in the Numerical Analysis of Differential Equations,
Cambridge University Press, Cambridge, U.K., 1996.

3. Shampine, L.F., I. Gladwell, and S. Thompson, Solving ODEs with MATLAB,
Cambridge University Press, New York, 2003.

4. Schiesser, W.E., The Numerical Method of Lines: Integration of Partial Differential Equa-
tions, Academic Press, San Diego, CA, 1991.

5. Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, Englewood Cliffs, NJ, 1971.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

6. Shampine, L.F., Numerical Solution of Ordinary Differential Equations,
Chapman & Hall, New York, 1994.

7. Hindmarsh, A.C., ODEPACK, A systematized collection of ODE solvers, in Scientific
Computing, R.S. Stepleman et al., Eds., North-Holland, Amsterdam, 1983, 55–64.

8. Brenan, K.E., S.L. Campbell, and L.R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, SIAM, Philadelphia, 1996.

9. Hairer, E., and G. Wanner, Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991.

10. The Netlib index is available from http://www.netlib.org/index.html.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

www.netlib.org

2
Solution of a 1 x 1 ODE System

In this and subsequent chapters, we consider the programming of (a) the
two ODE problems discussed in Chapter 1 and (b) two PDE problems. We
start in this chapter with the 1x1 ODE problem of Equations 1.3 and 1.4,
with the analytical solution of Equation 1.5. For each problem, we discuss the
programming in C, C++, Fortran, Java, Maple, and MATLAB (these program-
ming languages are listed here in alphabetical order, but they generally will
be considered in a different order in the subsequent discussion).

The intention in providing the solutions of the four test problems is to give
the reader enough detail that the programming of other ODE/PDE problems
should be facilitated, possibly by using the programs presented as starting
points, i.e., templates that can be used for new problems. Also, the program-
ming of a common problem in all six languages should facilitate the conver-
sion from one language to another (through a comparison of the correspond-
ing coding).

2.1 Programming in MATLAB

A main program for the numerical integration of Equation 1.3 subject to initial
condition Equation 1.4 is listed below:

%
% Main program ode1x1 computes the numerical
% solution to the 1 x 1 ODE system by one of
% six integrators
%
% Set integration parameters

[neqn,nout,nsteps,int,t0,tf,abserr,relerr]=intpar;
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Initial condition vector
[u0]=inital(neqn,t0);

%
% Output interval

tp=tf-t0;
%
% Compute solution at nout output points

for j=1:nout
%
% Print current solution

[out]=fprint(int,neqn,t0,u0);
%
% Fixed step modified Euler integrator

if int == 1
[u]=euler2a(neqn,t0,tf,u0,nsteps);

end
%
% Variable step modified Euler integrator

if int == 2
[u]=euler2b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end
%
% Fixed step classical fourth order RK integrator

if int == 3
[u]=rkc4a(neqn,t0,tf,u0,nsteps);

end
%
% Variable step classical fourth order RK integrator

if int == 4
[u]=rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end
%
% Fixed step RK Fehlberg (RKF45) integrator

if int == 5
[u]=rkf45a(neqn,t0,tf,u0,nsteps);

end
%
% Variable step RK Fehlberg (RKF45) integrator

if int == 6
[u]=rkf45b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end
%
% Advance solution

t0=tf;
tf=tf+tp;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

u0=u;
%
% Next output

end
%
% End of ode1x1

Program 2.1.1
MATLAB main program for the numerical integration of Equation 1.3 subject
to initial condition Equation 1.4

We can note the following points about the preceding program:

• Function intpar is called to set the parameters that control the numerical
integration of Equation 1.3.

%
% Set integration parameters

[neqn,nout,nsteps,int,t0,tf,abserr,relerr]=intpar;

intpar will be subsequently listed and discussed.
• Function inital is then called to set initial condition Equation 1.4

%
% Initial condition vector

[u0]=inital(neqn,t0);

neqn, the number of first-order ODEs, in this case, 1 for Equation 1.3, was
set by the call to intpar and is an input to inital; similarly, the initial value
of the independent variable, t0 was set to 0 (zero) by the call to intpar.
inital is listed below:

function [u0]=inital(neqn,t)
%
% Function inital sets the initial condition vector
% for the 1 x 1 ODE problem
%

u0(1)=1.0;
%
% End of inital

Program 2.1.2
Function inital for initial condition Equation 1.4

Note that the initial condition of Equation 1.4 is 1.0. Also, the initial value
of the dependent variable is actually in a 1D array or a column vector u0, with
a subscript 1. Note that the array is automatically defined by MATLAB, and
does not have to be sized in a declarative statement.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• The interval in the independent variable, tp for the output of the numer-
ical solution is the difference between the final value of the independent
variable, t f , set to 1.0 in intpar and the initial value of the independent
variable, t0 = 0.0.

%
% Output interval

tp=tf-t0;

• The numerical solution is then computed and displayed at nout output
points, with nout set in intpar to 6:

%
% Compute solution at nout output points

for j=1:nout
%
% Print current solution

[out]=fprint(int,neqn,t0,u0);

At the beginning of each pass through this for loop, function fprint is
called to display (output) the solution. For the first pass through the
loop (j = 1), the initial conditions set in inital are displayed. Function
fprint is subsequently listed and displayed.

• Within the for loop, one of six integrators is called using int, which is set
in intpar. The values of int and the corresponding integrators are listed
below:

int Integration algorithm
Discussion in Chapter 1
MATLAB function

1 Fixed step modified Euler
Equations 1.26, 1.27, 1.28, 1.29, 1.30
euler2a

2 Variable step modified Euler
Discussion after Equations 1.26
euler2b

3 Fixed step classical fourth-order RK
Equations 1.50, 1.51, Section 1.5
rkc4a

4 Variable step classical fourth-order RK
Equations 1.50, 1.51, discussion after Equations 1.26
rkc4b

5 Fixed step Runge Kutta Fehlberg 45
Equations 1.49, Section 1.5
rk f 45a

6 Variable step Runge Kutta Fehlberg 45
Equations 1.49, discussion after Equations 1.26
rk f 45b

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

The calls to these six integrators, determined by the value of int, are listed
below:

%
% Fixed step modified Euler integrator

if int == 1
[u]=euler2a(neqn,t0,tf,u0,nsteps);

end
%
% Variable step modified Euler integrator

if int == 2
[u]=euler2b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end
%
% Fixed step classical fourth order RK integrator

if int == 3
[u]=rkc4a(neqn,t0,tf,u0,nsteps);

end
%
% Variable step classical fourth order RK integrator

if int == 4
[u]=rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end
%
% Fixed step RK Fehlberg (RKF45) integrator

if int == 5
[u]=rkf45a(neqn,t0,tf,u0,nsteps);

end
%
% Variable step RK Fehlberg (RKF45) integrator

if int == 6
[u]=rkf45b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end

Each of these ODE integrators are listed and discussed subsequently.
• After an interval tp is covered by the numerical integration from one of

the six integrators, the solution is used as the starting point (in effect, a
new initial condition), for the next interval, tp. Note that although u0 and
u are 1D arrays (vectors), MATLAB automatically handles the individual
elements of these arrays, i.e., indexing of the elements of these arrays is
not required.

%
% Advance solution

t0=tf;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

tf=tf+tp;
u0=u;

%
% Next output

end
%
% Complete solution computed

The end statement terminates the for loop (i.e., serves as the final state-
ment in the loop to initiate the next pass through the loop). When all nout
passes through the loop have been completed, the execution of ode1x1
is complete (in this case, a total of six passes since nout = 6).

The setting of the integration control parameters in intpar has been covered
to some extent in the preceding discussion. The remaining parameters that
are set are indicated in the following listing of intpar:

function [neqn,nout,nsteps,int,t0,tf,abserr,relerr]=intpar
%
% Function intpar sets the parameters to control the
% integration of the 1 x 1 ODE system
%
% Number of first order ODEs

neqn=1;
%
% Number of output points

nout=6;
%
% Maximum number of steps in the interval t0 to tf

nsteps=100;
%
% Integrator

int=1;
%
% Initial, final values of independent variable

t0=0.0;
tf=1.0;

%
% Error tolerances

abserr=1.0e-05;
relerr=1.0e-05;

%
% End of intpar

Program 2.1.3
Function intpar called in Program 2.1.1 to set the integration parameters

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

The code in intpar that was not previously discussed is as follows:

• The maximum number of steps that an integrator will take over the
interval t0 ≤ t ≤ tf:

%
% Maximum number of steps in the interval t0 to tf

nsteps=100;

• Selection of integrator 1 (euler2a):

%
% Integrator

int=1;

• Specification of the integration error tolerances:

%
% Error tolerances

abserr=1.0e-05;
relerr=1.0e-05;

All of these parameters are used to control the numerical integration of
Equation 1.3 by serving as inputs to one of the six integrators (euler2a in
this case since int = 1).

Function fprint is listed below:

function [out]=fprint(ncase,neqn,t,u)
%
% Function fprint displays the numerical and
% exact solutions to the 1 x 1 ODE problem
%
% Return current value of independent variable
% (MATLAB requires at least one return argument)

out=t;
%
% Problem parameters

u0=1.0;
alpha=1.0;
lambda=1.0;

%
% Print a heading for the solution at t = 0

if(t<=0.0)
%
% Label for ODE integrator
%
% Fixed step modified Euler

if(ncase==1)
fprintf('\n\n euler2a integrator\n\n');

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Variable step modified Euler

elseif(ncase==2)
fprintf('\n\n euler2b integrator\n\n');

%
% Fixed step classical fourth order RK

elseif(ncase==3)
fprintf('\n\n rkc4a integrator\n\n');

%
% Variable step classical fourth order RK

elseif(ncase==4)
fprintf('\n\n rkc4b integrator\n\n');

%
% Fixed step RK Fehlberg 45

elseif(ncase==5)
fprintf('\n\n rkf45a integrator\n\n');

%
% Variable step RK Fehlberg 45

elseif(ncase==6)
fprintf('\n\n rkf45b integrator\n\n');

end
%
% Heading

fprintf(' t u1 u1e u1-u1e\n');
%
% End of t = 0 heading

end
%
% Numerical and analytical solution output
%
% Analytical solution

ue(1)=u0*exp(lambda/alpha*(1.0-exp(-alpha*t)));
%
% Difference between exact and numerical solutions

diff=u-ue;
%
% Display the numerical and exact solutions, and their
% difference

fprintf('%10.2f %10.5f %10.5f %10.5f\n',t,u,ue(1),
diff);

%
% End of fprint

Program 2.1.4
Function fprint called by Program 2.1.1 to display the numerical and analytical
solutions to Equations 1.3 and 1.4

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

We can note the following points about fprint:

• The parameters for the analytical solution, Equation 1.5, are first set:

%
% Problem parameters

u0=1.0;
alpha=1.0;
lambda=1.0;

• A heading for the output is then displayed at t = 0:

%
% Print a heading for the solution at t = 0

if(t<=0.0)
%
% Label for ODE integrator
%
% Fixed step modified Euler

if(ncase==1)
fprintf('\n\n euler2a integrator\n\n');

%
% Variable step modified Euler

elseif(ncase==2)
fprintf('\n\n euler2b integrator\n\n');

%
% Fixed step classical fourth order RK

elseif(ncase==3)
fprintf('\n\n rkc4a integrator\n\n');

%
% Variable step classical fourth order RK

elseif(ncase==4)
fprintf('\n\n rkc4b integrator\n\n');

%
% Fixed step RK Fehlberg 45

elseif(ncase==5)
fprintf('\n\n rkf45a integrator\n\n');

%
% Variable step RK Fehlberg 45

elseif(ncase==6)
fprintf('\n\n rkf45b integrator\n\n');

end
%
% Heading

fprintf(' t u1 u1e u1-u1e\n');

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% End of t = 0 heading

end

Basically, this heading displays the particular integrator used (through
the value of int) and identifies the tabular numerical output.

• The analytical solution, Equation 1.5, and the difference between the
numerical and analytical solutions are then computed:

%
% Numerical and analytical solution output
%
% Analytical solution

ue(1)=u0*exp(lambda/alpha*(1.0-exp(-alpha*t)));
%
% Difference between exact and numerical solutions

diff=u-ue;

• Finally, these numerical results are displayed:

%
% Display the numerical and exact solutions, and
% their difference

fprintf('%10.2f %10.5f %10.5f %10.5f \n',
t,u,ue(1),diff);

Function derv for Equation 1.3 is listed below in Program 2.1.7. The output
from this code is listed below:

euler2a integrator

t u1 u1e u1-u1e
0.00 1.00000 1.00000 0.00000
1.00 1.88160 1.88160 0.00000
2.00 2.37421 2.37421 0.00000
3.00 2.58627 2.58626 0.00001
4.00 2.66895 2.66895 0.00001
5.00 2.70004 2.70003 0.00001

We note that the integrator euler2a computed a solution accurate to about
0.00001 using nsteps = 100 steps or an integration step of h = 1/100 within
each output interval (corresponding to nout = 6 or t = 0, 1, . . . , 5). Note that
in this case the error tolerances set in intpar, i.e., abserr = 1.0e–05, relerr = 1.0e–
05 were not used since a fixed step integration is performed in euler2a .

If the variable step modified Euler method of euler2b is used (int = 2 set in
intpar), the following output is produced:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

euler2b integrator
t u1 u1e u1-u1e

0.00 1.00000 1.00000 0.00000
1.00 1.88159 1.88160 -0.00001
2.00 2.37421 2.37421 0.00000
3.00 2.58626 2.58626 0.00000
4.00 2.66895 2.66895 0.00000
5.00 2.70003 2.70003 0.00001

Note that the error criteria are satisfied by the variable step modified Euler
integrator.

Similar results can be produced by using int = 3, 4, 5, 6 in intpar. For ex-
ample, with int = 6, the following output from rkf45b results:

rkf45b integrator

t u1 u1e u1-u1e
0.00 1.00000 1.00000 0.00000
1.00 1.88159 1.88160 0.00000
2.00 2.37421 2.37421 0.00000
3.00 2.58626 2.58626 -0.00001
4.00 2.66894 2.66895 -0.00001
5.00 2.70002 2.70003 -0.00001

Again, the error tolerances specified in intpar are satisfied.
We now consider the coding in each of the six integrators. euler2a is listed

below

function [u]=euler2a(neqn,t0,tf,u0,nsteps)
%
% Function euler2a computes an ODE solution by a fixed step
% modified Euler method for a series of points along the
% solution by repeatedly calling function sseuler for a
% single modified Euler step.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% tf final value of independent variable
%
% u0 initial condition vector of length neqn
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% nsteps number of modified Euler steps
%
% u ODE solution vector of length neqn after
% nsteps steps
%
% Integration step

h=(tf-t0)/nsteps;
%
% nsteps modified Euler steps

for i=1:nsteps
%
% Modified Euler step

[t,u,e]=sseuler(neqn,t0,u0,h);
%
% Reset base point values for next modified Euler step

u0=u;
t0=t;

%
% Next modified Euler step

end
%
% End of euler2a

Program 2.1.5
Integrator euler2a

We can note the following points about euler2a

• The integration step, h, is set using parameters t0, tf, nsteps set in intpar:

%
% Integration step

h=(tf-t0)/nsteps;

• nsteps modified Euler steps of length h are taken within the for loop by
calling function sseuler (single step modified Euler):

%
% nsteps modified Euler steps

for i=1:nsteps
%
% Modified Euler step

[t,u,e]=sseuler(neqn,t0,u0,h);

• The solution from sseuler becomes the initial point for the next modified
Euler step:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Reset base point values for next modified Euler step

u0=u;
t0=t;

Again, note the use of the MATLAB feature for the arrays u, u0 (no
subscripting is required).

• The for loop is then terminated, and after nsteps = 100 passes, the modi-
fied Euler integration over the interval t0 ≤ t ≤ t f is complete. A return
to the main program ode1x1 of Program 2.1.1 then initiates the next in-
terval in the for loop for j = 1 : nout.

%
% Next modified Euler step

end
%
% nsteps modified Euler steps completed

Function sseuler is an implementation of the modified Euler method dis-
cussed in Chapter 1.

function [t,u,e] = sseuler(neqn,t0,u0,h)
%
% Function sseuler computes an ODE solution by the modified
% Euler method for one step along the solution (by calls to
% derv to define the ODE derivative vector). It also
% estimates the truncation error of the solution, and
% applies this estimate as a correction to the solution
% vector.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% u0 initial condition vector of length neqn
%
% h integration step
%
% t independent variable
%
% u ODE solution vector of length neqn after
% one modified Euler step
%
% e estimate of truncation error of the solu-
% tion vector

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Derivative vector at initial (base) point

[ut0]=derv(neqn,t0,u0);
%
% First order (Euler) step

u=u0+ut0*h;
t=t0+h;

%
% Derivative at advance point

[ut]=derv(neqn,t,u);
%
% Truncation error estimate

e=(ut-ut0)*h/2.0;
%
% Second order (modified Euler) solution vector

u=u+e;
%
% End of sseuler

Program 2.1.6
Integrator sseuler for a single modified Euler step

We can note the following points about sseuler:

• The derivative vector at the base point is computed by a call to function
derv:

%
% Derivative vector at initial (base) point

[ut0]=derv(neqn,t0,u0);

derv, which sets the RHS of Equation 1.3, is listed below:

function [ut]=derv(neqn,t,u)
%
% Function derv computes the derivative vector
% of the 1 x 1 ODE problem
%
% Problem parameters

alpha=1.0;
lambda=1.0;

%
% Derivative vector

ut(1)=lambda*exp(-alpha*t)*u(1);
%
% End of derv

Program 2.1.7
Function derv for the RHS of Equation 1.3

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• Once the derivative at the base point is returned from derv, it is used in
a Euler step:

%
% First order (Euler) step

u=u0+ut0*h;
t=t0+h;

This code is just an implementation of Equation 1.26a, where, again,
we have used the array features of MATLAB in working with u, u0, ut0
(which are all one-element arrays or vectors since we are considering a
1x1 ODE system).

• After the solution is computed at the advanced point, the derivative
vector is computed at the advanced point by a second call to derv:

%
% Derivative at advance point

[ut]=derv(neqn,t,u);

Note that the second-order modified Euler method requires two deriva-
tives evaluations (calls to derv). In general, higher-order integration al-
gorithms require additional derivative evaluations (this is the compu-
tational “price” that is paid for the improved accuracy of higher-order
algorithms); also the order of the method, for example, second order for
the modified Euler method, and the number of derivative evaluations,
in this case two calls to derv do not necessarily have to be the same num-
ber; generally, the number of derivative evaluations will be equal to or
greater than the order of the algorithm.

• The derivative vectors at the base point and the advanced point are then
used to estimate the integration (truncation) error according to Equation
1.26b:

%
% Truncation error estimate

e=(ut-ut0)*h/2.0;

This error can be used in a variable step method to determine if the
integration error is within the specified error tolerance; in the present
case of euler2a , the estimated error is not used for this purpose since
euler2a implements a fixed step modified Euler method with h set at the
value discussed previously (and passed to sseuler through an argument).

• Finally, the estimated error is used to correct the first-order Euler solu-
tion to produce the second-order modified Euler solution according to
Equation 1.26c:

%
% Second order (modified Euler) solution vector

u=u+e;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

To complete the discussion of this 1x1 problem, fprint is called by euler2a
as discussed previously to display the solution at the initial point t = t0
and at subsequent output points (at intervals of t f = 1.0 as set in ode1x1 or
t = 0, 1, 2, . . . , 5).

We have observed by taking nout = 100 fixed Euler steps, the numerical
solution agreed with the analytical solution to an accuracy equal to the error
tolerance. This agreement happened, however, by taking nout large enough
to achieve the required accuracy. Generally, for ODE problems for which
we do not have an analytical solution (usually the case—if we knew the
analytical solution, we would not have to compute a numerical solution),
we would like the ODE integration algorithm to set the step size h to pro-
duce a numerical solution that meets the specified error tolerance. While this
may seem impossible (it suggests we know the error, and therefore must
have an analytical solution), as we discussed in Chapter 1, we can in fact
implement a variable step algorithm that automatically adjusts the integra-
tion step to (one hopes) meet the error tolerance. The details for the mod-
ified Euler method are discussed in the five-step algorithm discussed after
Equation 1.26c. We now consider the code for implementing this algorithm
in euler2b:

function [u]=euler2b(neqn,t0,tf,u0,nsteps,abserr,relerr)
%
% Function euler2b computes an ODE solution by a variable
% step modified Euler method for a series of points along
% the solution by repeatedly calling function sseuler for
% a single modified Euler step. The truncation error is
% estimated along the solution to adjust the integration
% step according to a specified error tolerance.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% tf final value of independent variable
%
% u0 initial condition vector of length neqn
%
% nsteps maximum number of modified Euler steps
%
% abserr absolute error tolerance
%
% relerr relative error tolerance
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% u ODE solution vector of length eqn after
% nsteps steps
%
% Initial integration step

h=(tf-t0)/8.0;
%
% Minimum allowable step

hmin=(tf-t0)/nsteps;
%
% Start integration

t=t0;
%
% While independent variable is less than the final
% value, continue the integration

while t <= tf*0.999
%
% If the next step along the solution will go past
% the final value of the independent variable, set
% the step to the remaining distance to the final
% value

if t+h > tf h=tf-t; end
%
% Single modified Euler step

[t,u,e]=sseuler(neqn,t0,u0,h);
%
% Flag for the end of the integration

nfin1=1;
%
% Check if any of the ODEs have violated the error
% criteria

for i=1:neqn
if abs(e(i)) > abs(u(i))*relerr+abserr

%
% Error violation, so integration is not complete.
% Reduce integration step because of error violation
% and repeat integration from the base point

h=h/2.0; nfin1=0; break;
end

end
%
% If the current step is less than the minimum
% allowable step, set the step to the minimum
% allowable value and continue integration from
% new base point

if h < hmin h=hmin; nfin1=1; end

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% If there is no error violation, continue the
% integration from new base point

if nfin1 == 1 u0=u; t0=t;
%
% Test if integration step can be increased

for i=1:neqn
if abs(e(i)) > (abs(u(i))*relerr+abserr)/4.0

%
% Integration step cannot be increased

nfin1=0; break;
end

end
%
% Increase integration step

if nfin1 == 1 h=h*2.0; end
%
% Continue for no error violation (nfin1=1)

end
%
% Continue while

end
%
% End of euler2b

Program 2.1.8
Integrator euler2b

euler2b shares several features with euler2a . However, it also has additional
coding to implement variable stepping in the modified Euler method. We
consider now the details of this additional coding:

• The initial integration step, h, is now set (arbitrarily) to 1
8 of the total

output interval tf − t0. Note that this initial integration interval is larger
than the constant value set in euler2a (h = (tf − t0)/nout, nout = 100)
because we anticipate that euler2b will generally reduce h only when
the error tolerance has been exceeded; in other words, there will be a
variable value of h, and we anticipate its value will not be reduced to
h = (tf − t0)/nout, nout = 100 in order to meet the error tolerance.

%
% Initial integration step

h=(tf-t0)/8.0;
%
% Minimum allowable step

hmin=(tf-t0)/nsteps;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Start integration

t=t0;

However, since euler2b is a library integrator that may be applied to
a spectrum of problems with different characteristics, we should also
provide a safeguard against having h reduced to excessively small values
as it is adjusted in an attempt to satisfy the error tolerance. Therefore, we
also define a minimum allowable integration step, hmin, which is given
the same value as in euler2a ; this value is arbitrarily selected, and some
other value could be used, especially if h is reduced to hmin frequently,
in which case a smaller value of hmin would probably be used. Then
the independent variable is set to the initial value, t = t0, to start the
integration.

• The numerical integration continues until the independent variable t
reaches the final value, tf. This advancement of the solution is controlled
by the while statement:

%
% While independent variable is less than the final
% value, continue the integration

while t <= tf*0.999
%
% If the next step along the solution will go past
% the final value of the independent variable, set
% the step to the remaining distance to the final
% value

if t+h > tf h=tf-t; end

Also, if the remaining distance for t to reach tf is less than the current
step h, the step is reduced to tf − t. This ensures that the final step taken
by euler2b will be exactly to the next output point.

• euler2b then takes a modified Euler step as discussed previously by a call
to sseuler:

%
% Single modified Euler step

[t,u,e]=sseuler(neqn,t0,u0,h);
%
% Flag for the end of the integration

nfin1=1;

Since this step might take the solution to the final value t = tf, a flag is
set indicating that the solution may be complete, nfin1 = 1.

• The estimated error e returned by sseuler is then used to test if any of the
dependent variables violated the error criterion:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Check if any of the ODEs have violated the error
% criteria

for i=1:neqn
if abs(e(i)) > abs(u(i))*relerr+abserr

%
% Error violation, so integration is not complete.
% Reduce integration step because of error
% violation and repeat integration from the
% base point

h=h/2.0; nfin1=0; break;
end
end

Note in the error test that both the absolute and relative error tolerances,
abserr and relerr, are used. If an error violation is detected, the integration
step is halved and the flag indicating the end of the integration nfin1 is
set to zero (the integration is not complete since it will be repeated with
one half the previous integration step to improve the accuracy of the
solution). Note that if any of the dependent variables violate the error
criterion, the integration step is halved, i.e., the for loop is exited through
the break. Conversely, if all of the dependent variables meet the error
criterion, nfin1 remains at 1 indicating that so far, so good.

• If the preceding integration step reduction (halving) has reduced the in-
tegration step to or below the minimum allowable value, the integration
step is set to the mimimum allowable value, and the integration then
proceeds using this minimum value.

%
% If the current step is less than the minimum
% allowable step, set the step to the minimum
% allowable value and continue integration from
% new base point

if h < hmin h=hmin; nfin1=1; end

The idea here is that the integrator has done the best it can (reduced h to
hmin), and it therefore might as well continue. Of course, at this point an
error message could be printed signaling that another solution should
probably be computed with a smaller value for hmin for comparison
with the current solution. This point illustrates an important advantage
of having access to the source code for the integrator; additional coding
and features can be added such as an error message warning the user of
a possible error violation.

• If at this point nfin1 = 1, the integration can proceed by resetting the
base solution values equal to the current solution values:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% If there is no error violation, continue the
% integration from new base point

if nfin1 == 1 u0=u; t0=t;

• Also, before the next step is taken along the solution, there is the possi-
bility that the integration step could be increased. Thus, a test is made to
determine if the estimated error for each dependent variable is less than
1
4 of the error tolerance. If so, the integration step is doubled before the
next step along the solution is taken:

%
% Test if integration step can be increased

for i=1:neqn
if abs(e(i)) > (abs(u(i))*relerr+abserr)/4.0

%
% Integration step cannot be increased

nfin1=0; break;
end

end
%
% Increase integration step

if nfin1 == 1 h=h*2.0; end
%
% Continue for no error violation (nfin1=1)

end
%
% Continue while

end

Note that if all of the dependent variables have estimated errors less than
1
4 of the error tolerance, the integration step is doubled. In other words,
if any of the dependent variables have an estimated error exceeding
1
4 of the error tolerance, the integration step is not doubled. Also, the
factor of 1

4 comes from the second-order characteristic of the modified
Euler method, i.e., if error = ch2, then doubling h will increase error by a
factor of four (which would bring the error just up to the specified error
tolerance if the estimated error is 1

4 of the error tolerance). If nfin1 = 1, the
integration step is doubled, and the integration proceeds; if nfin1 = 0,
the integration proceeds without doubling of the step. In either case,
stepping continues until t reaches t f according to the original while.

As noted previously, changes and new features can be added to this basic
integrator. These could include:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• Selection of an initial integration step according to an established algo-
rithm

• Change in the minimum allowable step, hmin
• Application of absolute and relative error tolerances to each dependent

variable (so that these error tolerances can be specified for each depen-
dent variable)

• A more sophisticated algorithm for increasing the integration step (rather
than just doubling)

All of these features have been used in various library integrators. However,
we have used only basic methods to facilitate understanding the variable
stepping in euler2b. As we observed in the numerical output for the 1x1 ODE
problem, these methods worked quite well (the error tolerance was main-
tained), and we have found that generally this is the case.

Also, we see that it is possible to adjust the integration step automatically
to achieve a prescribed accuracy in the numerical solution without knowing
the analytical (exact) solution. This is possible because we are using an error
estimate to adjust the integration step rather than the exact error (which gener-
ally is unknown). Later we study in a little more detail how h varies for this
1x1 ODE system.

This procedure of using an error estimate can be applied to an nxn ODE
system. Furthermore, it can be used with a higher-order ODE integrator. To
illustrate how this can be done, we now consider the following:

1. A fixed step classical fourth-order Runge Kutta (RK) integrator, rkc4a ,
as defined by Equations 1.50 and 1.51.

2. A variable step classical fourth-order RK integrator, rkc4b, as defined
by Equations 1.50 and 1.51.

rkc4a and rkc4b closely parallel euler2a and euler2b, respectively. Therefore,
in the following discussion, we emphasize only the small differences (gener-
ally additional code to increase the order from second to fourth).

rkc4a (called by setting int = 3 in function intpar of Program 2.1.3) is listed
first:

function [u]=rkc4a(neqn,t0,tf,u0,nsteps)
%
% Function rkc4a computes an ODE solution by a fixed step
% classical fourth order RK method for a series of points
% along the solution by repeatedly calling function ssrkc4
% for a single classical fourth order RK step.
%
% Argument list
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% tf final value of independent variable
%
% u0 initial condition vector of length neqn
%
% nsteps number of rkc4 steps
%
% u ODE solution vector of length neqn after
% nsteps steps
%
% Integration step

h=(tf-t0)/nsteps;
%
% nsteps rkc4 steps

for i=1:nsteps
%
% rkc4 step

[t,u,e]=ssrkc4(neqn,t0,u0,h);
%
% Reset base point values for next rkc4 step

u0=u;
t0=t;

%
% Next rkc4 step

end
%
% End of rkc4a

Program 2.1.9
Integrator rkc4a

We see that rkc4a is essentially identical to euler2a ; the only difference is
a call to ssrkc4 (for a single step classical fourth-order RK step) in place of
sseuler.

ssrkc4 is listed below:

function [t,u,e] = ssrkc4(neqn,t0,u0,h)
%
% Function ssrkc4 computes an ODE solution by the classical
% fourth order RK method for one step along the solution
% (by calls to derv to define the ODE derivative vector).
% It also estimates the truncation error of the solution,

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% and applies this estimate as a correction to the solution
% vector.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% u0 initial condition vector of length neqn
%
% h integration step
%
% t independent variable
%
% u ODE solution vector of length neqn after
% one rkc4 step
%
% e estimate of truncation error of the solu-
% tion vector
%
% Derivative vector at initial (base) point

[ut0]=derv(neqn,t0,u0);
%
% k1, advance of dependent variable vector and
% independent variable for calculation of k2

k1=h*ut0;
u=u0+0.5*k1;
t=t0+0.5*h;

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k2, advance of dependent variable vector and
% independent variable for calculation of k3

k2=h*ut;
u=u0+0.5*k2;
t=t0+0.5*h;

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k3, advance of dependent variable vector and
% independent variable for calculation of k4

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

k3=h*ut;
u=u0+k3;
t=t0+h;

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k4

k4=h*ut;
%
% Second order step

sum2=u0+k2;
%
% Fourth order step

sum4=u0+(1.0/6.0)*(k1+2.0*k2+2.0*k3+k4);
t=t0+h;

%
% Truncation error estimate

e=sum4-sum2;
%
% Fourth order solution vector (from (2,4) RK pair);
% two ways to the same result are listed
% u=sum2+e;

u=sum4;
%
% End of ssrkc4

Program 2.1.10
Integrator ssrkc4 for a classical fourth-order RK step

ssrkc4 is similar in structure to sseuler; the only essential difference is the
coding of the classical fourth-order RK algorithm, defined by Equations 1.50
and 1.51, in place of the modified Euler method of Equations 1.26.

To explain this difference a little further,

• The integration starts with an evaluation of the derivative vector at the
base point (as in euler2a):

%
% Derivative vector at initial (base) point

[ut0]=derv(neqn,t0,u0);

• From the derivative vector at the base point, the first RK “constant,” k1,
can be calculated according to Equation 1.50a:

%
% k1, advance of dependent variable vector and
% independent variable for calculation of k2

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

k1=h*ut0;
u=u0+0.5*k1;
t=t0+0.5*h;

Note that at the same time, the dependent variable vector, u, is advanced
in preparation for the calculation of k2. Note also that the RK constants
are vectors with a dimension equal to the number of first-order ODEs,
one in this case (for the 1x1 ODE problem).

• The derivative vector is then computed at the new value of u by a call to
derv, and k2 is calculated according to Equation 1.50b; u is then advanced
in preparation for the calculation of k3:

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k2, advance of dependent variable vector and
% independent variable for calculation of k3

k2=h*ut;
u=u0+0.5*k2;
t=t0+0.5*h;

• The derivative vector is again computed at the new value of u by a call to
derv, and k3 is calculated according to Equation 1.50c; u is then advanced
in preparation for the calculation of k4:

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k3, advance of dependent variable vector and
% independent variable for calculation of k4

k3=h*ut;
u=u0+k3;
t=t0+h;

• The derivative vector is again updated and k4 is calculated according to
Equation 1.50d:

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k4

k4=h*ut;

• The second- and fourth-order solutions are computed according to
Equations 1.40 and 1.50e, respectively:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Second order step

sum2=u0+k2;
%
% Fourth order step

sum4=u0+(1.0/6.0)*(k1+2.0*k2+2.0*k3+k4);
t=t0+h;

• The integration error is estimated as the difference between the second-
and fourth-order numerical solution, according to Equation 1.51:

%
% Truncation error estimate

e=sum4-sum2;

• The solution vector u is then returned as the fourth-order result:

%
% Fourth order solution vector (from (2,4) RK pair);
% two ways to the same result are listed
% u=sum2+e;

u=sum4;

The output from rkc4a (which calls ssrkc4) is not listed here to conserve some
space. However, it is similar to the output from euler2a , and can easily be
produced by setting int = 3 in function (intpar).

rkc4b, the variable step version of the classical fourth-order RK method of
Equations 1.50 and 1.51, is listed below:

function [u]=rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr)
%
% Function rkc4b computes an ODE solution by a variable
% step classical fourth order RK method for a series of
% points along the solution by repeatedly calling function
% ssrkc4 for a single classical fourth order RK step. The
% truncation error is estimated along the solution to
% adjust the integration step according to a specified
% error tolerance.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% tf final value of independent variable
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% u0 initial condition vector of length neqn
%
% nsteps maximum number of rkc4 steps
%
% abserr absolute error tolerance
%
% relerr relative error tolerance
%
% u ODE solution vector of length neqn after
% nsteps steps
%
% Initial integration step

h=(tf-t0)/2.0;
%
% Minimum allowable step

hmin=(tf-t0)/nsteps;
%
% Start integration

t=t0;
%
% While independent variable is less than the final
% value, continue the integration

while t <= tf*0.999
%
% If the next step along the solution will go past
% the final value of the independent variable, set the
% step to the remaining distance to the final value

if t+h > tf h=tf-t; end
%
% Single rkc4 step

[t,u,e]=ssrkc4(neqn,t0,u0,h);
%
% Flag for the end of the integration

nfin1=1;
%
% Check if any of the ODEs have violated the error
% criteria

for i=1:neqn
if abs(e(i)) > abs(u(i))*relerr+abserr

%
% Error violation, so integration is not complete.
% Reduce integration step because of error violation
% and repeat integration from the base point

h=h/2.0; nfin1=0; break;
end

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

end
%
% If the current step is less than the minimum
% allowable step, set the step to the minimum
% allowable value and continue integration from
% new base point

if h < hmin h=hmin; nfin1=1; end
%
% If there is no error violation, continue the
% integration from new base point

if nfin1 == 1 u0=u; t0=t;
%
% Test if integration step can be increased

for i=1:neqn
if abs(e(i)) > (abs(u(i))*relerr+abserr)/16.0

%
% Integration step cannot be increased

nfin1=0; break;
end

end
%
% Increase integration step

if nfin1 == 1 h=h*2.0; end
%
% Continue for no error violation (nfin1=1)

end
%
% Continue while

end
%
% End of rkc4b

Program 2.1.11
Integrator rkc4b

rkc4b is basically identical to euler2b. The only essential difference is the call
to ssrkc4 in place of sseuler. Also, the test for integration step doubling is

if abs(e(i)) > (abs(u(i))*relerr+abserr)/16.0

i.e., there is a division by 16 rather than by 4 as in sseuler since the classical
RK method is fourth order (rather than second order).

To complete the picture, we include listings of the following:

• rkf45a (analogous to euler2a and rkc4a) as Program 2.1.12
• rkf45b (analogous to euler2b and rkc4b) as Program 2.1.13
• ssrkf45 (analogous to sseuler and ssrkc4) as Program 2.1.14

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

function [u]=rkf45a(neqn,t0,tf,u0,nsteps)
%
% Function rkf45a computes an ODE solution by the fixed
% step RK Fehlberg 45 method for a series of points along
% the solution by repeatedly calling function ssrkf45 for
% a single RK Fehlberg 45 step.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% tf final value of independent variable
%
% u0 initial condition vector of length neqn
%
% nsteps number of rkf45 steps
%
% u ODE solution vector of length neqn after
% nsteps steps
%
% Integration step

h=(tf-t0)/nsteps;
%
% nsteps rkf45 steps

for i=1:nsteps
%
% rkf45 step

[t,u,e]=ssrkf45(neqn,t0,u0,h);
%
% Reset base point values for next rkc4 step

u0=u;
t0=t;

%
% Next rkf45 step

end
%
% End of rkf45a

Program 2.1.12
Integrator rkf45a

rkf45a is called by setting int = 5 in function intpar. The output is essentially
the same as from euler2a and rkc4a , and therefore is not listed here.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

function [u]=rkf45b(neqn,t0,tf,u0,nsteps,abserr,relerr)
%
% Function rkf45b computes an ODE solution by the variable
% step RK Fehlberg 45 method for a series of points along
% the solution by repeatedly calling function ssrkf45 for
% a single RK Fehlberg 45 step. The truncation error is
% estimated along the solution to adjust the integration
% step according to a specified error tolerance.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% tf final value of independent variable
%
% u0 initial condition vector of length neqn
%
% nsteps maximum number of rkf45 steps
%
% abserr absolute error tolerance
%
% relerr relative error tolerance
%
% u ODE solution vector of length neqn after
% nsteps steps
%
% Initial integration step

h=(tf-t0)/2.0;
%
% Minimum allowable step

hmin=(tf-t0)/nsteps;
%
% Start integration

t=t0;
%
% While independent variable is less than the final
% value, continue the integration

while t <= tf*0.999
%
% If the next step along the solution will go past
% the final value of the independent variable, set the
% step to the remaining distance to the final value

if t+h > tf h=tf-t; end

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Single rkf45 step

[t,u,e]=ssrkf45(neqn,t0,u0,h);
%
% Flag for the end of the integration

nfin1=1;

%
% Check if any of the ODEs have violated the error
% criteria

for i=1:neqn
if abs(e(i)) > abs(u(i))*relerr+abserr

%
% Error violation, so integration is not complete.
% Reduce integration step because of error violation
% and repeat integration from the base point

h=h/2.0; nfin1=0; break;
end

end
%
% If the current step is less than the minimum
% allowable step, set the step to the minimum
% allowable value and continue integration from
% new base point

if h < hmin h=hmin; nfin1=1; end
%
% If there is no error violation, continue the
% integration from new base point

if nfin1 == 1 u0=u; t0=t;
%
% Test if integration step can be increased

for i=1:neqn
if abs(e(i)) > (abs(u(i))*relerr+abserr)/32.0

%
% Integration step cannot be increased

nfin1=0; break;
end

end
%
% Increase integration step

if nfin1 == 1 h=h*2.0; end
%
% Continue for no error violation (nfin1=1)

end
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Continue while
end

%
% End of rkf45b

Program 2.1.13
Integrator rkf45b

rkf45b is basically identical to rkc4b. The only essential difference is the call
to ssrkf45 in place of ssrkc4. Also, the test for integration step doubling is

if abs(e(i)) > (abs(u(i))*relerr+abserr)/32.0

i.e., there is a division by 32 rather than by 16 as in ssrkc4 since the RKF45
method is fifth order (rather than fourth order).

rkf45b is called by setting int = 6 in function intpar. The output (listed
previously) is essentially the same as from euler2b and rkc4b.

function [t,u,e] = ssrkf45(neqn,t0,u0,h)
%
% Function ssrkf45 computes an ODE solution by the RK
% Fehlberg 45 method for one step along the solution (by
% calls to derv to define the ODE derivative vector). It
% also estimates the truncation error of the solution,
% and applies this estimate as a correction to the solution
% vector.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% u0 initial condition vector of length neqn
%
% h integration step
%
% t independent variable
%
% u ODE solution vector of length neqn after
% one rkf45 step
%
% e estimate of truncation error of the solu-
% tion vector
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Derivative vector at initial (base) point
[ut0]=derv(neqn,t0,u0);

%
% k1, advance of dependent variable vector and
% independent variable for calculation of k2

k1=h*ut0;
u=u0+0.25*k1;
t=t0+0.25*h;

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k2, advance of dependent variable vector and
% independent variable for calculation of k3

k2=h*ut;
u=u0+(3.0/32.0)*k1...

+(9.0/32.0)*k2;
t=t0+(3.0/8.0)*h;

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k3, advance of dependent variable vector and
% independent variable for calculation of k4

k3=h*ut;
u=u0+(1932.0/2197.0)*k1...

-(7200.0/2197.0)*k2...
+(7296.0/2197.0)*k3;

t=t0+(12.00/13.0)*h;
%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k4, advance of dependent variable vector and
% independent variable for calculation of k5

k4=h*ut;
u=u0+(439.0/ 216.0)*k1...

-(8.0)*k2...
+(3680.0/ 513.0)*k3...
-(845.0/4104.0)*k4;

t=t0+h;
%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% k5, advance of dependent variable vector and
% independent variable for calculation of k6

k5=h*ut;
u=u0-(8.0/ 27.0)*k1...

+(2.0)*k2...
-(3544.0/2565.0)*k3...
+(1859.0/4104.0)*k4...
-(11.0/ 40.0)*k5;

t=t0+0.5*h;
%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k6

k6=h*ut;
%
% Fourth order step

sum4=u0+(25.0/ 216.0)*k1...
+(1408.0/2565.0)*k3...
+(2197.0/4104.0)*k4...
-(1.0/ 5.0)*k5;

%
% Fifth order step

sum5=u0+(16.0/ 135.0)*k1...
+(6656.0/12825.0)*k3...
+(28561.0/56430.0)*k4...
-(9.0/ 50.0)*k5...
+(2.0/ 55.0)*k6;

t=t0+h;
%
% Truncation error estimate

e=sum5-sum4;
%
% Fifth order solution vector (from (4,5) RK pair);
% two ways to the same result are listed
% u=sum4+e;

u=sum5;
%
% End of ssrkf45

Program 2.1.14
Integrator ssrkf45 for a RKF45 step

The only essential difference for ssrkf45 is the coding of the ODE integration
method, i.e.,

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• sseuler2—single step modified Euler method ((1, 2) pair)
• ssrk4c—single step classical fourth-order RK method ((2, 4) pair)
• ssrkf45—single step RKF 45 method ((4, 5) pair)

Another possibility would be to write a function analogous to ssrkf45 using
the (2, 3) pair discussed previously. The only requirement would be to use the
(2, 3) formulas in place of those for the (4, 5) pair; all the other coding in the
preceding functions would remain essentially the same. The writing of a (2, 3)

integrator is therefore left as an excerise for the reader.
We also have observed in the previous routines an organizing principle that

we will use consistently throughout the remainder of this book:

• A set of library routines, which are general purpose and should therefore
not be changed from one ODE application to the next. Specifically, the
following routines can be applied generally to an ODE problem and
should therefore not be modified:

Routine Names Purpose

ode1x1 Main program
euler2a, euler2b, sseuler (1,2) RK pair

rkc4a, rkc4b, ssrkc4 (2,4) RK pair
rkf45a, rkf45b, ssrkf45 (4,5) RK pair

• A set of routines that apply specifically to the ODE problem at hand:

Routine Names Purpose

inital Set initial conditions
derv Compute ODE RHS vector

fprint Display ODE solution

While these routines pertain to a specific ODE application, in this case the
1x1 ODE problem, they can serve as templates for other ODE applications.
In other words, they can be easily modified for the solution of other
ODEs. For example, they could be modified from the 1x1 problem of
Equations 1.3 and 1.4 to the 2x2 problem of Equations 1.6, 1.16, and 1.17.

• One routine, intpar falls somewhere between the two preceding sets. It is
general purpose in the sense that it sets the parameters that control the
operation of the general-purpose ODE integration routines; e.g., it sets
the error tolerances. On the other hand, the specific values of the param-
eters depend on the properties of the particular ODE problem; e.g., the
number of integration steps, nsteps, may have to be adjusted. Thus, some
trial and error generally will be required when coding intpar for a new
ODE application. This is particularly the case with the error tolerances as

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

discussed in Chapter 1; in fact, probably the single most common cause
of library integrator failures is the specification of inappropriate error
tolerances.

To summarize this organizing principle, the general-purpose (library) rou-
tines and the problem-specific routines should be separated as much as possible
in the development of new ODE applications. This separation cannot be achieved
completely because of the need to tune the integrator parameters, i.e., in intpar.

This basically completes the discussion of the ODE integrators in MATLAB.
In a subsequent section, we revisit some of the preceding routines to which
some output statements are added to indicate what is occurring within them,
particularly with regard to error monitoring and step size adjustment (in
euler2b, rkc4b, and rkf45b). The purpose of this additional output is to (a)
observe if the integrators operate internally as we would expect, and (b)
present a method for debugging when approaching a new ODE problem.
We now proceed to the programming of the preceding integrators in other
languages.

2.2 Programming in C

Because the operation of the (1, 2), (2, 4), and (4, 5) integrators has been dis-
cussed in detail in Section 2.1, we now proceed with the analogous program-
ming in C, but without the same detailed explanation. In other words, we
consider the listing of the routines to be essentially self-explanatory (also, we
will not consider the details of the differences in syntax between MATLAB
and C). Our expectation is that the C code will be largely self-explanatory
when compared with the preceding MATLAB code. In fact, we have tried
to make the two sets of routines closely resemble each other to facilitate the
understanding of one set in terms of the other.

Also, we have used alphabetical ordering of the languages in the following
discussion to demonstrate that we do not endorse one language over another.
The one exception is the preceding use of MATLAB, which we selected first
because of its simplicity in handling vectors (without subscripting). How-
ever, this does not mean we favor MATLAB, and in fact, we also have some
reservations about this and other “automatic features” possibly leading to un-
intended errors and consequences. In other words, subscripting within do and
for loops provides an unambiguous indication of how vectors (and matrices)
are coded and manipulated with very little additional coding (efficiency may
also be a consideration, especially with MATLAB, which tends to be more
efficient without subscripting).

Thus, we feel that all of the languages are about comparable in utility for
the numerical integration of ODE/PDE systems. A main concern is therefore

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

to provide code that follows a common theme and format to demonstrate
that all of the languages are about equal in terms of their utility in studying
differential systems.

To start, we list a main program analogous to Program 2.1.1:

/*

Numerical solution to the 1 x 1 ODE system by six
integrators

*/

/* Include headers */
#include <stdio.h>
#include <math.h>
#include "ode1x1.h"
#include "euler.h"
#include "rk.h"

/* Main program */
void main()
{

/* Type variables */
double u0[SIZE],u[SIZE];
double tp;
int i, j, ncase;

/* Open a file for output */
if((fid=fopen("ode1x1c.out","w+"))==NULL)

{ printf("\nError opening output file\n"); }

/* Step through six integrators */
for(ncase=1;ncase<=6;ncase++)

{
/* ODE integration parameters */
intpar();

/* Initial condition */
inital(u0,t0);

/* Output interval */
tp=tf-t0;

/* Step through nout grid points */
for(j=1;j<=nout;j++)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

{
/* Print current solution */
fprint(ncase,t0,u0);

/* Select ODE integrator */
switch(ncase)

{
/* Fixed step modified Euler integrator */
case 1:
euler2a(n,t0,tf,u,u0,nsteps);
break;

/* Variable step modified Euler integrator */
case 2:
euler2b(n,t0,tf,u,u0,nsteps,abserr,relerr);
break;

/* Fixed step classical fourth order
RK integrator */
case 3:
rkc4a(n,t0,tf,u,u0,nsteps);
break;

/* Variable step classical fourth order
RK integrator */
case 4:
rkc4b(n,t0,tf,u,u0,nsteps,abserr,relerr);
break;

/* Fixed step RK Fehlberg (RKF45)
integrator */
case 5:
rkf45a(n,t0,tf,u,u0,nsteps);
break;

/* Variable step RK Fehlberg (RKF45)
integrator */
case 6:
rkf45b(n,t0,tf,u,u0,nsteps,abserr,relerr);
break;

}

/* Advance solution */
t0=tf;
tf=tf+tp;
for(i=1;i<=n;i++)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

{
u0[i]=u[i];

}

/* Next output */
}

/* Next integrator */
}

/* Complete solution computed. Close the output file */
fclose(fid);

/* End of main */
}

Program 2.2.1
C main program for the numerical integration of Equation 1.3 subject to initial
condition Equation 1.4

We can note the following points about this program:

• Comments in C are generally enclosed within the delimiters /* */ (which
seems safe since the arithmetic operators * and / generally will not be
adjacent when writing C code).

• The main program starts with the declaration of some header files:

/* Include headers */
#include <stdio.h>
#include <math.h>
#include "ode1x1.h"
#include "euler.h"
#include "rk.h"

In addition to the standard header files for C (stdio.h and math.h), we have
included three header files, ode1x1.h, euler.h and rk.h for the numerical
integration of the 1x1 ODE (Equation 1.3) using the (1, 2), (2, 4), and
(4, 5) pairs.

• Instead of executing each of the six ODE integrators individually by
changing int through the values int = 1, 2, . . . , 6, we call all six integra-
tors in a loop:

/* Step through six integrators */
for(ncase=1;ncase<=6;ncase++)

Otherwise, the coding in Program 2.2.1 closely parallels that in Program 2.1.1.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Header file ode1x1.h is listed below:

/*

Definition of functions intpar, inital, derv, fprint
for the 1 x 1 ODE system

*/

/* Include headers */
#include <stdio.h>
#include <math.h>

/* Maximum number of ODEs */
#define SIZE 500

/* Type variables as extern (global) */
extern int n, nout, nsteps;
extern double t0, tf, abserr, relerr;
extern FILE *fid;

/* Integration parameters */
void intpar();

/* Initial condition */
void inital(double u0[], double t);

/* Derivative vector */
void derv(double ut[], double t, double u[]);

/* Output */
void fprint(int ncase, double t, double u[]);

Program 2.2.2
Header file ode1x1.h included in Program 2.2.1

All of the routines defined in ode1x1.h have already been discussed in detail
in Section 2.1. We can note the following details:

• The maximum number of ODES has been set (arbitrarily) at 500:

/* Maximum number of ODEs */
#define SIZE 500

This absolute sizing can be increased to any desired value (although it
is more than adequate since we are integrating one ODE).

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• Several global variables are defined that can be shared between routines:

/* Type variables as extern (global) */
extern int neqn, nout, nsteps;
extern double t0, tf, abserr, relerr;
extern FILE *fid;

A file ID (pointer) is also declared as a global variable for writing an
external output file.

• Routines intpar, inital, derv, and fprint are declared. They have the same
function as those of the same name in Section 2.1. All these routines are
listed subsequently.

Otherwise, the coding in Programs 2.2.1 and 2.2.2 follows directly from their
counterparts in Section 2.1.

intpar is listed below:

#include "ode1x1.h"

/* Type global variables */

int neqn, nout, nsteps;

double t0, tf, abserr, relerr;

/* Define file ID */
FILE *fid;

void intpar()

/* Function intpar sets the parameters to control the
integration of the 1 x 1 ODE system */
{

/* Number of ODEs */
neqn=1;

/* Number of output points */
nout=6;

/* Maximum number of steps in the interval t0 to tf */
nsteps=100;

/* Initial, final values of independent variable */
t0=0.0;
tf=1.0;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Error tolerances */
abserr=pow(10,-5);
relerr=pow(10,-5);

/* End of intpar */
}

Program 2.2.3
Routine intpar called in Program 2.2.1 to set the integration parameters

intpar is essentially identical to its counterpart in Program 2.1.3.
inital, derv and fprint are listed below:

void inital(double u0[],double t0)

/* Function inital sets the initial condition vector for
the 1 x 1 ODE problem */
{

/* Initial condition */
u0[1]=1.0;

/* End of inital */
}

void derv(double ut[], double t, double u[])

/* Function derv computes the derivative vector of the
1 x 1 ODE problem */
{

/* Type variables */
double alpha, lambda;

/* Problem parameters */
alpha=1.0;
lambda=1.0;

/* Derivative vector */
ut[1]=lambda*exp(-alpha*t)*u[1];

/* End of derv */
}

void fprint(int ncase, double t, double u[])

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Function fprint displays the numerical and exact
solutions to the 1 x 1 ODE problem */
{

/* Type variables */
double ue[2], diff[2];
double u0, alpha, lambda;

/* Problem parameters */
u0=1.0;
alpha=1.0;
lambda=1.0;

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
fprintf(fid,"\n\n int = %3d\n",ncase);

/* Label for ODE integrator */
switch(ncase)

{
case 1: /* Fixed step modified Euler */
fprintf(fid,"\n euler2a integrator\n");
break;

case 2: /* Variable step modified Euler */
fprintf(fid,"\n euler2b integrator\n");
break;

case 3: /* Fixed step classical fourth order RK */
fprintf(fid,"\n rkc4a integrator\n");
break;

case 4: /* Variable step classical fourth order
RK */
fprintf(fid,"\n rkc4b integrator\n");
break;

case 5: /* Fixed step RK Fehlberg 45 */
fprintf(fid,"\n rkf45a integrator\n");
break;

case 6: /* Variable step RK Fehlberg 45 */
fprintf(fid,"\n rkf45b integrator\n");
break;

}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Heading */
fprintf(fid,"\n t u1(num) u1(ex) diff1\n\n");

/* End of t = 0 heading */
}

/* Analytical solution vector */
ue[1]=u0*exp(lambda/alpha*(1.0-exp(-alpha*t)));

/* Difference between exact and numerical solution
vectors */
diff[1]=u[1]-ue[1];

/* Display the numerical and exact solutions, and their
difference */

fprintf(fid,"%10.2f %10.5f %10.5f %13.4e\n",
t,u[1],ue[1],diff[1]);

/* End of fprint */
}

Program 2.2.4
inital, derv and fprint called in the solution of Equations 1.3 and 1.4

These routines should be self-explanatory, particularly when compared with
their MATLAB counterparts in Section 2.1.

The output from the six integrators called in Program 2.2.1 is listed below
(written to file ode1x1c.out in fprint):

int = 1

euler2a integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000e+00
1.00 1.88160 1.88160 -6.4665e-08
2.00 2.37421 2.37421 3.8793e-06
3.00 2.58627 2.58626 6.0332e-06
4.00 2.66895 2.66895 6.9239e-06
5.00 2.70004 2.70003 7.2649e-06

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

int = 2

euler2b integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000e+00
1.00 1.88159 1.88160 -6.2196e-06
2.00 2.37421 2.37421 -3.7783e-06
3.00 2.58626 2.58626 2.9325e-07
4.00 2.66895 2.66895 3.6651e-06
5.00 2.70003 2.70003 6.2494e-06

int = 3

rkc4a integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000e+00
1.00 1.88160 1.88160 -2.7188e-11
2.00 2.37421 2.37421 -3.2671e-11
3.00 2.58626 2.58626 -3.4825e-11
4.00 2.66895 2.66895 -3.5646e-11
5.00 2.70003 2.70003 -3.5952e-11

int = 4

rkc4b integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000e+00
1.00 1.88160 1.88160 -4.2632e-08
2.00 2.37421 2.37421 6.8773e-08
3.00 2.58626 2.58626 9.3031e-08
4.00 2.66895 2.66895 1.0305e-07
5.00 2.70003 2.70003 1.4624e-07

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

int = 5

rkf45a integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000e+00
1.00 1.88160 1.88160 6.6613e-16
2.00 2.37421 2.37421 2.6645e-15
3.00 2.58626 2.58626 1.3323e-15
4.00 2.66895 2.66895 1.3323e-15
5.00 2.70003 2.70003 -1.3323e-15

int = 6

rkf45b integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000e+00
1.00 1.88159 1.88160 -3.2870e-06
2.00 2.37421 2.37421 -4.6026e-06
3.00 2.58626 2.58626 -5.0371e-06
4.00 2.66894 2.66895 -5.1682e-06
5.00 2.70002 2.70003 -5.2117e-06

We can note the following details about this output:

• The error tolerances set in intpar

/* Error tolerances */
abserr=pow(10,-5);
relerr=pow(10,-5);

are satisfied by all of the integrators.
• The fixed step integrators, euler2a , rkc4a , and rkf 45a exceed the error

tolerances by orders of magnitude when using 100 integration steps in
each output interval as set in intpar:

/* Maximum number of steps in the interval t0 to tf */
nsteps=100;

In fact, rkc4a and rkf45a provide accuracies that might be considered
excessive. In the case of rkf45a , the errors are of the order of the machine
epsilon (unit roundoff, machine precision) for C.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

We now consider the six integrators by listing and briefly discussing the
source code (again, we are relying on the preceding discussion of the six
integrators in MATLAB to explain most of the details). euler2a is listed first:

/* Include headers */
#include "euler.h"
#include <stdio.h>

double euler2a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps)

/*
Function euler2a computes an ODE solution by the fixed
step modified Euler method for a series of points along
the solution by repeatedly calling function sseuler for
a single modified Euler step.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of modified Euler steps

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double e[SIZE];
double h,t;
int i,j;

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps modified Euler steps */
for(i=1;i<=nsteps;i++)

{
/* Single modified Euler step */
t=sseuler(neqn,t0,u0,h,u,e);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Reset base point values for next modified
Euler step */

for(j=1;j<=neqn;j++)
{

u0[j]=u[j];
}
t0=t;

/* End for */
}

return 0;

/* End of euler2a */
}

Program 2.2.5
Integrator euler2a

euler2a closely parallels the MATLAB routine of Program 2.1.5 and therefore
will not be discussed further.

euler2b is listed below:

double euler2b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps, double abserr,
double relerr)

/*
Function euler2b computes an ODE solution by the variable
step modified Euler method for a series of points along
the solution by repeatedly calling function sseuler for a
single modified Euler step. The truncation error is
estimated along the solution to adjust the integration
step according to a specified error tolerance.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of modified Euler steps

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double h, hmin, t;
int i, nfin1;
double e[SIZE];

/* Integration step */
h=(tf-t0)/8.0;

/* Minimum allowable step */
hmin=(tf-t0)/(float)(nsteps);

/* Start integration */
t=t0;

/* While independent variable is less than the final
value, continue the integration */
while (t <= tf*0.999)

{
/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */
if((t+h) > tf)

{
h=tf-t;

}
/* Single modified Euler step */
t=sseuler(neqn,t0,u0,h,u,e);

/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the
error */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > (fabs(u[i])*relerr+abserr))

{
/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

nfin1=0;
h=h/2.0;

/* If the current step is less than the
minimum allowable step, set the step to the
minimum allowable value and continue
integration from new base point */
if(h < hmin)

{
h=(float)hmin;
nfin1=1;

}
break;

}
}

/* If there is no error violation, continue the
integration from the new base point */
if(nfin1 == 1)

{
for(i=1;i<=neqn;i++)

{
u0[i]=u[i];

}
t0=t;

/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > ((fabs(u[i])*relerr

+abserr)/4.0))
{
/* Integration step cannot be increased */
nfin1=0;
break;

}
}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* End while */
}

return 0;

/* End of euler2b */
}

Program 2.2.6
Integrator euler2b

Again, euler2b closely parallels the MATLAB routine of Program 2.1.8 except
for differences in syntax between MATLAB and C and, therefore, will not be
discussed further.

sseuler is listed below:

double sseuler(int neqn, double t0, double u0[],
double h, double u[], double e[])

/*
Function sseuler computes an ODE solution by the modified
Euler method for one step along the solution (by calls to
derv to define the ODE derivative vector). It also
estimates the truncation error of the solution, and
applies this estimate as a correction to the solution
vector.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

u0 initial condition vector of length neqn

h integration step

t independent variable

u ODE solution vector of length neqn after
one modified Euler step

e estimate of truncation error of the solution
vector

*/

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

{
/* Type variables */
double ut0[SIZE], ut[SIZE];
double t;
int j;

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* First order (Euler) step */
for(j=1;j<=neqn;j++)

{
u[j]=u0[j]+ut0[j]*h;

}
t=t0+h;

/* Derivative at advance point */
derv(ut,t,u);

/* Second order (modified Euler) step */
for(j=1;j<=neqn;j++)

{
/* Truncation error estimate */
e[j]=(ut[j]-ut0[j])*h/2.0;

/* Second order (modified Euler) solution vector */
u[j]=u[j]+e[j];

}

return t;

/* End of sseuler */
}

Program 2.2.7
Integrator sseuler for a single modified Euler step

Again, sseuler is a direct analog of the MATLAB routine in Program 2.1.6.
The header file for euler2a , euler2b, and sseuler is as follows:

/*

Routines for the Euler ODE Integration

*/

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#include <math.h>

#define SIZE 500

double euler2a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps);

double euler2b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps, double abserr,
double relerr);

double sseuler(int neqn, double t0, double u0[], double h,
double u[], double e[]);

Program 2.2.8
Header file euler.h for euler2a , euler2b, and sseuler

rkc4a , rkc4b, and ssrkc4 are listed below without further comment (their
MATLAB counterparts are Programs 2.1.9, 2.1.10, and 2.1.11):

#include "rk.h"

double rkc4a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps)

/*
Function rkc4a computes an ODE solution by the fixed step
classical fourth order RK method for a series of points
along the solution by repeatedly calling function ssrkc4
for a single classical fourth order RK step.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of rkc4 steps

u ODE solution vector of length neqn after
nsteps steps

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

*/
{

/* Type variables */
int i, j;
double t, h, e[SIZE];

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps rkc4 steps */
for(i=1;i<=nsteps;i++)

{
/* Single rkc4 step */
t=ssrkc4(neqn,t0,u0,h,u,e);

/* Reset base point values for next rk4c step */
for(j=1;j<=neqn;j++)

{
u0[j]=u[j];

}
t0=t;

}

return 0;

/* End of rkc4a */
}

Program 2.2.9
Integrator rkc4a

double rkc4b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps,double abserr,
double relerr)

/*
Function rkc4b computes an ODE solution by a variable
step classical fourth order RK method for a series of
points along the solution by repeatedly calling function
ssrkc4 for a single classical fourth order RK step. The
truncation error is estimated along the solution to
adjust the integration step according to a specified
error tolerance.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps maximum number of rkc4 steps

abserr absolute error tolerance

relerr relative error tolerance

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double h, hmin, t, e[SIZE];
int nfin1, i;

/* Integration step */
h=(tf-t0)/2.0;

/* Minimum allowable step */
hmin=(tf-t0)/nsteps;

/* Start integration */
t=t0;

/* While independent variable is less than the final
value, continue the integration */
while(t <= (tf*0.999))

{
/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */
if((t+h) > tf)

{
h=tf-t;

}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Single rkc4 step */
t=ssrkc4(neqn,t0,u0,h,u,e);

/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the error
criterion */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > (fabs(u[i])*relerr+abserr))

{
/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */
nfin1=0;
h=h/2.0;

/* If the current step is less than the
minimum allowable step, set the step to the
minimum allowable value and continue
integration from new base point */
if(h < hmin)

{
h = hmin;
nfin1=1;

}
break;

}
}

/* If there is no error violation, continue the
integration from the new base point */
if(nfin1 == 1)

{
for(i=1;i<=neqn;i++)

{
u0[i]=u[i];

}
t0=t;

/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

{
if(fabs(e[i]) > ((fabs(u[i])*relerr

+abserr)/16.0))
{
/* Integration step cannot be increased */
nfin1=0;
break;
}

}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}

/* End while */
}

return 0;

/* End of rkc4b */
}

Program 2.2.10
Integrator rkc4b

double ssrkc4(int neqn, double t0, double u0[],
double h, double u[], double e[])

/*
Function ssrkc4 computes an ODE solution by the classical
fourth order RK method for one step along the solution
(by calls to derv to define the ODE derivative vector).
It also estimates the truncation error of the solution,
and applies this estimate as a correction to the solution
vector.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

u0 initial condition vector of length neqn

h integration step

t independent variable

u ODE solution vector of length neqn after
one rkc4 step

e estimate of truncation error of the solu-
tion vector

*/
{

/* Type variables */
double ut0[SIZE], ut[SIZE], u4[SIZE];
double t, k1[SIZE], k2[SIZE], k3[SIZE], k4[SIZE];
int j;

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* k1; stepping for k2 */
for(j=1;j<=neqn;j++)

{
k1[j]=h*ut0[j];
u[j]=u0[j]+0.5*k1[j];

}
t=t0+0.5*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k2; stepping for k3 */
for(j=1;j<=neqn;j++)

{
k2[j]=h*ut[j];
u[j]=u0[j]+0.5*k2[j];

}
t=t0+0.5*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k3; stepping for k4 */
for(j=1;j<=neqn;j++)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

{
k3[j]=h*ut[j];
u[j]=u0[j]+k3[j];

}
t=t0+h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k4; second and fourth order step; error estimate;
error correction */
for(j=1;j<=neqn;j++)

{
k4[j]=h*ut[j];
u[j]=u0[j]+k2[j];
u4[j]=u0[j]+(1.0/6.0)*(k1[j]+2.0*k2[j]+2.0*k3[j]

+k4[j]);
e[j]=u4[j]-u[j];
u[j]=u[j]+e[j];

}
t=t0+h;

return t;

/* End of ssrkc4 */
}

Program 2.2.11
Integrator ssrkc4 for a classical fourth-order RK step

rkf45a , rkf45b, and ssrkf45 are listed below without further comment (their
MATLAB counterparts are Programs 2.1.9, 2.1.10, and 2.1.11):

double rkf45a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps)

/*
Function rkf45a computes an ODE solution by the fixed
step RK Fehlberg 45 RK method for a series of points
along the solution by repeatedly calling function ssrkf45
for a single RK Fehlberg 45 step.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of rkf45 steps

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double t, h, e[SIZE];
int i,j;

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps rkf45 steps */
for(i=1;i<=nsteps;i++)

{
/* Single rkf45 step */
t=ssrkf45(neqn,t0,u0,h,u,e);

/* Reset base point values for next rkf45 step */
for(j=1;j<=neqn;j++)

{
u0[j]=u[j];

}
t0=t;

}

return 0;

/* End rkf45a */
}

Program 2.2.12
Integrator rkf45a

double rkf45b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps,double abserr,
double relerr)

/*
Function rkf45b computes an ODE solution by a variable
step classical RK Fehlberg 45 method for a series of

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

points along the solution by repeatedly calling function
ssrkf45 for a single RK Fehlberg 45 step. The truncation
error is estimated along the solution to adjust the
integration step according to a specified error
tolerance.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps maximum number of rkf45 steps

abserr absolute error tolerance

relerr relative error tolerance

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double h, hmin, t, e[SIZE];
int i, nfin1;

/* Integration step */
h=(tf-t0)/2.0;

/* Minimum allowable step */
hmin=(tf-t0)/nsteps;

/* Start integration */
t=t0;

/* While independent variable is less than the final
value, continue the integration */
while(t <= (tf*0.999))

{

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */
if((t+h) > tf)

{
h=tf-t;

}

/* Single rkf45 step */
t=ssrkf45(neqn,t0,u0,h,u,e);

/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the error
criterion */
for (i=1;i<=neqn;i++)

{
if(fabs(e[i]) > (fabs(u[i])*relerr+abserr))

{
/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */
nfin1=0;
h=h/2.0;

/* If the current step is less than the
minimum allowable step, set the step to the
minimum allowable value and continue
integration from new base point */
if(h < hmin)

{
h = hmin;
nfin1=1;

}
break;

}

}

/* If there is no error violation, continue the
integration from the new base point */
if(nfin1 == 1)

{

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

for(i=1;i<=neqn;i++)
{

u0[i]=u[i];
}
t0=t;

/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > ((fabs(u[i])*relerr+abserr)

/32.0))
{

/* Integration step cannot be
increased */
nfin1=0;
break;

}
}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}

/* End while */
}

return 0;

/* End of rkf45b */
}

Program 2.2.13
Integrator rkf45b

double ssrkf45(int neqn, double t0, double u0[], double h,
double u[], double e[])

/*
Function ssrkf45 computes an ODE solution by the RK
Fehlberg 45 method for one step along the solution (by

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

calls to derv to define the ODE derivative vector). It
also estimates the truncation error of the solution, and
applies this estimate as a correction to the solution
vector.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

u0 initial condition vector of length neqn

h integration step

t independent variable

u ODE solution vector of length neqn after
one rkf45 step

e estimate of truncation error of the solu-
tion vector

*/
{

/* Type variables */
double t, ut0[SIZE], ut[SIZE], u5[SIZE];
double k1[SIZE], k2[SIZE], k3[SIZE], k4[SIZE], k5[SIZE],
k6[SIZE];
int j;

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* k1; stepping for k2 */
for(j=1;j<=neqn;j++)

{
k1[j]=h*ut0[j];
u[j]=u0[j]+0.25*k1[j];

}
t=t0+0.25*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* k2; stepping for k3 */
for(j=1;j<=neqn;j++)

{
k2[j]=h*ut[j];
u[j]=u0[j]+(3.0/32.0)*k1[j]

+(9.0/32.0)*k2[j];
}
t=t0+(3.0/8.0)*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k3; stepping for k4 */
for(j=1;j<=neqn;j++)

{
k3[j]=h*ut[j];
u[j]=u0[j]+(1932.0/2197.0)*k1[j]

-(7200.0/2197.0)*k2[j]
+(7296.0/2197.0)*k3[j];

}
t=t0+(12.00/13.0)*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k4; stepping for k5 */
for(j=1;j<=neqn;j++)

{
k4[j]=h*ut[j];
u[j]=u0[j]+(439.0/ 216.0)*k1[j]

-(8.0)*k2[j]
+(3680.0/ 513.0)*k3[j]
-(845.0/4104.0)*k4[j];

}
t=t0+h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k5; stepping for k6 */
for(j=1;j<=neqn;j++)

{
k5[j]=h*ut[j];

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

u[j]=u0[j]-(8.0/ 27.0)*k1[j]
+(2.0)*k2[j]
-(3544.0/2565.0)*k3[j]
+(1859.0/4104.0)*k4[j]
-(11.0/ 40.0)*k5[j];

}
t=t0+0.5*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k6; fourth and fifth order step; error estimate; error
correction */
for(j=1;j<=neqn;j++)

{
k6[j]=h*ut[j];
u[j]=u0[j]+(25.0/ 216.0)*k1[j]

+(1408.0/2565.0)*k3[j]
+(2197.0/4104.0)*k4[j]
-(1.0/ 5.0)*k5[j];

u5[j]=u0[j]+(16.0/ 135.0)*k1[j]
+(6656.0/12825.0)*k3[j]
+(28561.0/56430.0)*k4[j]
-(9.0/ 50.0)*k5[j]
+(2.0/ 55.0)*k6[j];

e[j]=u5[j]-u[j];
u[j]= u[j]+e[j];

}
t=t0+h;

return t;

/* End of ssrkf45 */
}

Program 2.2.14
Integrator ssrkf45 for a RKF45 step

The header file for rkc4a , rkc4b, ssrkc4, rkf45a , rkf45b, and ssrkf45 is as follows:

/*

Routines for the RK Integration

*/

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#include <math.h>

#define SIZE 500

double rkc4a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps);

double rkc4b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps,double abserr,
double relerr);

double ssrkc4(int neqn, double t0, double u0[], double h,
double u[], double e[]);

double rkf45a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps);

double rkf45b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps, double abserr,
double relerr);

double ssrkf45(int neqn, double t0, double u0[], double h,
double u[], double e[]);

Program 2.2.15
Header file for rkc4a , rkc4b, ssrkc4, rkf45a , rkf45b, ssrkf45

This completes the discussion of the C solution of the 1x1 ODE problem of
Equations 1.3 to 1.5. We now proceed to the programming of this problem in
C++.

2.3 Programming in C++

We present the programming for the remaining languages according to the
organizational principle discussed previously; i.e., the general-purpose rou-
tines are listed first, followed by the application-specific routines, and then
possibly any routines that are somewhere in between. To conclude the discus-
sion of a specific language, we then list the output from the the entire group
of routines.

Thus, we start with the listing of the main program and ODE integrator
routines:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/*

Numerical solution to the 1 x 1 ODE system by six
integrators

*/

/* Include headers */
#include <math.h>
#include <stdlib.h>
#include <iostream.h>
#include <fstream.h>
#include "ode1x1.h"
#include "Euler.h"
#include "RK.h"

/* Main program */
void main()
{

/* Type variables */
double tp;
int i,j,ncase;

/* Derive objects */
DEF o1;
Euler e1;
RK rk;

/* Open a file for output */
ofstream fout("ode1x1cpp.out",ios::out);

/* Step through six integrators */
for(ncase=1;ncase<=6;ncase++)

{
/* ODE integration parameters */
o1.intpar();

/* Initial condition */
o1.inital();

/* Output interval */
tp=o1.tf-o1.t0;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Step through nout grid points */
for(j=1;j<=o1.nout;j++)

{
/* Print solution */
o1.fprint(fout,ncase,o1.neqn,o1.t0,o1.u0);

/* Select ODE integrator */
switch(ncase)

{
/* Fixed step modified Euler integrator */
case 1:
e1.euler2a(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps);
break;

/* Variable step modified Euler integrator */
case 2:
e1.euler2b(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps,o1.abserr,o1.relerr);
break;

/* Fixed step classical fourth order
RK integrator */
case 3:
rk.rkc4a(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps);
break;

/* Variable step classical fourth order
RK integrator */
case 4:
rk.rkc4b(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps,o1.abserr,o1.relerr);
break;

/* Fixed step RK Fehlberg (RKF45)
integrator */
case 5:
rk.rkf45a(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps);
break;

/* Variable step RK Fehlberg (RKF45)
integrator */

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

case 6:
rk.rkf45b(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps,o1.abserr,o1.relerr);
break;

}

/* Advance solution */
o1.t0=o1.tf;
o1.tf+=tp;
for(i=1;i<=o1.neqn;i++)

{
o1.u0[i]=o1.u[i];

}

/* Next output */
}

/* Next integrator */
}

/* Complete solution computed. Close output file */
fout<<endl;
fout.close();

/* End of main */
}

Program 2.3.1
C++ main program for the numerical integration of Equation 1.3 subject to
initial condition Equation 1.4

Note, again, as in Program 2.2.1, that all six integrators are called within a
single loop.

/* Step through six integrators */
for(ncase=1;ncase<=6;ncase++)

Also, an output file, ode1x1cpp.out is written by this main program.
The associated header files are as follows:

/*

Definition of functions intpar, inital, derv, fprint
for the 1 x 1 ODE system

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

*/

/* Include headers */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <fstream.h>
#include <iomanip.h>
#include "MOL.h"

/* Type variables as extern (global) */
extern FILE *fid;

class DEF:public MOL
{

public:

/* Integration parameters */
void intpar();

/* Initial condition */
void inital();

/* Derivative vector */
void derv(double ut[],double t,double u[]);

/* Output */
void fprint(int ncase, int neqn, double t, double u[]);

void fprint(ofstream &fout, int ncase, int neqn,
double t, double u[]);

};

/*

Define the common (global) variables for the
1 x 1 ODE problem

*/

/* Maximum (default) number of ODEs */
#define SIZE 500

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

class MOL
{

public:

/* Variables for ODE integration */

int neqn, nout, nsteps;

double t0, tf, abserr, relerr;

double u[SIZE], u0[SIZE], e[SIZE];

};

Program 2.3.2
Header files ode1x1.h and MOL .h used by Program 2.3.1

The ODE integration routines are listed below (ode1x1.h is copied to DE F .h
before execution):

#include "DEF.h"
#include "Euler.h"

double Euler::euler2a(int neqn, double t0, double tf,
double u[], double u0[], int nsteps)

/*
Function euler2a computes an ODE solution by the fixed
step modified Euler method for a series of points along
the solution by repeatedly calling function sseuler for
a single modified Euler step.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of modified Euler steps

u ODE solution vector of length neqn after
nsteps steps

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

*/

{
/* Type variables */
double e[SIZE];
double h,t;
int i,j;

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps modified Euler steps */
for(i=1;i<=nsteps;i++)

{
/* Single modified Euler step */
t=sseuler(neqn,t0,u0,h,u,e);

/* Reset base point values for next modified Euler
step */

for(j=1;j<=neqn;j++)
{

u0[j]=u[j];
}
t0=t;

/* End for */
}

return 0;

/* End of euler2a */
}

Program 2.3.3
Integrator euler2a

double Euler::euler2b(int neqn, double t0, double tf,
double u[], double u0[], int nsteps,
double abserr, double relerr)

/*
Function euler2b computes an ODE solution by the variable
step modified Euler method for a series of points along
the solution by repeatedly calling function sseuler for a
single modified Euler step. The truncation error is

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

estimated along the solution to adjust the integration
step according to a specified error tolerance.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of modified Euler steps

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double h, hmin,t;
int i, nfin1;
double e[SIZE];

/* Integration step */
h=(tf-t0)/8.0;

/* Minimum allowable step */
hmin=(tf-t0)/(float)(nsteps);

/* Start integration */
t=t0;

/* While independent variable is less than the final */
while(t <= tf*0.999)

{
/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */
if((t+h) > tf)

{
h=tf-t;

}
/* Single modified Euler step */
t=sseuler(neqn,t0,u0,h,u,e);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the error
criterion */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > (fabs(u[i])*relerr+abserr))

{
/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */
nfin1=0;
h=h/2.0;

/* If the current step is less than the
minimum allowable step, set the step to the
minimum allowable value and continue
integration from new base point */
if(h< hmin)

{
h = (float)hmin;
nfin1=1;

}
break;

}
}

/* If there is no error violation, continue the
integration from the new base point */
if(nfin1 == 1)

{
for(i=1;i<=neqn;i++)

{
u0[i]=u[i];

}
t0=t;

/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)

{

if(fabs(e[i]) > ((fabs(u[i])*relerr+abserr)/4.0))

{
/* Integration step cannot be increased */

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

nfin1=0;
break;

}
}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}

/* End while */
}

return 0;

/* End of euler2b */
}

Program 2.3.4
Integrator euler2b

double Euler::sseuler(int neqn, double t0, double u0[],
double h, double u[], double e[])

/*
Function sseuler computes an ODE solution by the modified
Euler method for one step along the solution (by calls to
derv to define the ODE derivative vector). It also
estimates the truncation error of the solution, and
applies this estimate as a correction to the solution
vector.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

u0 initial condition vector of length neqn

h integration step

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

t independent variable

u ODE solution vector of length neqn after
one modified Euler step

e estimate of truncation error of the solu-
tion vector

*/
{

/* Type variables */
double ut0[SIZE], ut[SIZE];
double t;
int j;

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* First order (Euler) step */
for(j=1;j<=neqn;j++)

{
u[j]=u0[j]+ut0[j]*h;

}
t=t0+h;

/* Derivative at advance point */
derv(ut,t,u);

/* Second order (modified Euler) step */
for(j=1;j<=neqn;j++)

{
/* Truncation error estimate */
e[j]=(ut[j]-ut0[j])*h/2.0;

/* Second order (modified Euler) solution vector */
u[j]=u[j]+e[j];

}

return t;

/* End of sseuler */
}

Program 2.3.5
Integrator sseuler for a single modified Euler step

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/*

Routines for the Euler ODE Integration

*/

class Euler:public DEF
{

public:

double euler2a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps);

double euler2b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps, double abserr,
double relerr);

double sseuler(int neqn, double t0, double u0[], double h,
double u[], double e[]);

};

Program 2.3.6
Header file euler.h for euler2a, euler2b, and sseuler

#include "DEF.h"
#include "RK.h"

double RK::rkc4a(int neqn, double t0, double tf,
double u[], double u0[], int nsteps)

/*
Function rkc4a computes an ODE solution by the fixed step
classical fourth order RK method for a series of points
along the solution by repeatedly calling function ssrkc4
for a single classical fourth order RK step.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

u0 initial condition vector of length neqn

nsteps number of rkc4 steps

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
int i, j;
double t, h, e[SIZE];

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps rkc4 steps */
for(i=1;i<=nsteps;i++)

{
/* Single rkc4 step */
t=ssrkc4(neqn,t0,u0,h,u,e);

/* Reset base point values for next rk4c step */
for(j=1;j<=neqn;j++)

{
u0[j]=u[j];

}
t0=t;

}

return 0;

/* End of rkc4a */
}

Program 2.3.7
Integrator rkc4a

double RK::rkc4b(int neqn, double t0, double tf,
double u[], double u0[], int nsteps,
double abserr, double relerr)

/*
Function rkc4b computes an ODE solution by a variable
step classical fourth order RK method for a series of
points along the solution by repeatedly calling function

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

ssrkc4 for a single classical fourth order RK step. The
truncation error is estimated along the solution to
adjust the integration step according to a specified
error tolerance.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps maximum number of rkc4 steps

abserr absolute error tolerance

relerr relative error tolerance

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double h, hmin, t, e[SIZE];
int nfin1, i;

/* Integration step */
h=(tf-t0)/2.0;

/* Minimum allowable step */
hmin=(tf-t0)/nsteps;

/* Start integration */
t=t0;

/* While independent variable is less than the final
value, continue the integration */
while(t <= (tf*0.999))

{
/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

if((t+h) > tf)
{

h=tf-t;
}

/* Single rkc4 step */
t=ssrkc4(neqn,t0,u0,h,u,e);

/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the error
criterion */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > (fabs(u[i])*relerr+abserr))

{
/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */
nfin1=0;
h=h/2.0;

/* If the current step is less than the
minimum allowable step, set the step to the
minimum allowable value and continue
integration from new base point */
if(h < hmin)

{
h=hmin;
nfin1=1;

}
break;

}
}

/* If there is no error violation, continue the
integration from the new base point */
if(nfin1 == 1)

{
for(i=1;i<=neqn;i++)

{
u0[i]=u[i];

}
t0=t;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > ((fabs(u[i])*relerr

+abserr)/16.0))
{

/* Integration step cannot be increased */
nfin1=0;
break;

}
}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}

/* End while */
}

return 0;

/* End of rkc4b */
}

Program 2.3.8
Integrator rkc4b

double RK::ssrkc4(int neqn, double t0, double u0[],
double h, double u[], double e[])

/*
Function ssrkc4 computes an ODE solution by the classical
fourth order RK method for one step along the solution
(by calls to derv to define the ODE derivative vector).
It also estimates the truncation error of the solution,
and applies this estimate as a correction to the solution
vector.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

u0 initial condition vector of length neqn

h integration step

t independent variable

u ODE solution vector of length neqn after
one rkc4 step

e estimate of truncation error of the solu-
tion vector

*/
{

/* Type variables */
double ut0[SIZE], ut[SIZE], u4[SIZE];
double t, k1[SIZE], k2[SIZE], k3[SIZE], k4[SIZE];
int j;

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* k1; stepping for k2 */
for(j=1;j<=neqn;j++)

{
k1[j]=h*ut0[j];
u[j]=u0[j]+0.5*k1[j];

}
t=t0+0.5*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k2; stepping for k3 */
for(j=1;j<=neqn;j++)

{
k2[j]=h*ut[j];
u[j]=u0[j]+0.5*k2[j];

}
t=t0+0.5*h;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k3; stepping for k4 */
for(j=1;j<=neqn;j++)

{
k3[j]=h*ut[j];
u[j]=u0[j]+k3[j];

}
t=t0+h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/*k4; second and fourth order step; error estimate; error
correction */
for(j=1;j<=neqn;j++)

{
k4[j]=h*ut[j];
u[j]=u0[j]+k2[j];
u4[j]=u0[j]+(1.0/6.0)*(k1[j]+2.0*k2[j]+2.0*k3[j]

+k4[j]);
e[j]=u4[j]-u[j];
u[j]=u[j]+e[j];

}
t=t0+h;

return t;

/* End of ssrkc4 */
}

Program 2.3.9
Integrator ssrkc4 for a classical fourth-order RK step

double RK::rkf45a(int neqn, double t0, double tf,
double u[], double u0[], int nsteps)

/*
Function rkf45a computes an ODE solution by the fixed
step RK Fehlberg 45 RK method for a series of points
along the solution by repeatedly calling function
ssrkf45 for a single RK Fehlberg 45 step.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of rkf45 steps

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double t, h, e[SIZE];
int i, j;

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps rkf45 steps */
for(i=1;i<=nsteps;i++)

{
/* Single rkf45 step */
t=ssrkf45(neqn,t0,u0,h,u,e);

/* Reset base point values for next rkf45 step */
for(j=1;j<=neqn;j++)

{
u0[j]=u[j];

}
t0=t;

/* End for */
}

return 0;

/* End of rkf45a */
}

Program 2.3.10
Integrator rkf45a

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

double RK::rkf45b(int neqn, double t0, double tf,
double u[],double u0[],int nsteps,
double abserr,double relerr)

/*
Function rkf45b computes an ODE solution by a variable
step classical RK Fehlberg 45 method for a series of
points along the solution by repeatedly calling
function ssrkf45 for a single RK Fehlberg 45 step. The
truncation error is estimated along the solution to
adjust the integration step according to a specified
error tolerance.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps maximum number of rkf45 steps

abserr absolute error tolerance

relerr relative error tolerance

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double h, hmin, t, e[SIZE];
int i, nfin1;

/* Integration step */
h=(tf-t0)/2.0;

/* Minimum allowable step */
hmin=(tf-t0)/nsteps;

/* Start integration */
t=t0;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* While independent variable is less than the final
value, continue the integration */
while(t <= (tf*0.999))

{
/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */
if((t+h) > tf)

{
h=tf-t;

}

/* Single rkf45 step */
t=ssrkc4(neqn,t0,u0,h,u,e);

/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the error
criterion */
for (i=1;i<=neqn;i++)

{
if(fabs(e[i]) > (fabs(u[i])*relerr+abserr))

{
/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */
nfin1=0;
h=h/2.0;

/* If the current step is less than the
minimum allowable step, set the step to the
minimum allowable value and continue
integration from new base point */
if(h < hmin)

{
h = hmin;
nfin1=1;

}
break;

}

}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* If there is no error violation, continue the
integration from the new base point */
if(nfin1 == 1)

{
for(i=1;i<=neqn;i++)

{
u0[i]=u[i];

}
t0=t;

/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > ((fabs(u[i])*relerr

+abserr)/32.0))
{
/* Integration step cannot be increased */
nfin1=0;
break;

}
}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}

/* End while */
}

return 0;

/* End of rkf45b */
}

Program 2.3.11
Integrator rkf45b

double RK::ssrkf45(int neqn, double t0, double u0[],
double h, double u[], double e[])

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/*
Function ssrkf45 computes an ODE solution by the RK
Fehlberg 45 method for one step along the solution
(by calls to derv to define the ODE derivative vector).
It also estimates the truncation error of the solution,
and applies this estimate as a correction to the
solution vector.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

u0 initial condition vector of length neqn

h integration step

t independent variable

u ODE solution vector of length neqn after
one rkf45 step

e estimate of truncation error of the solu-
tion vector

*/
{

/* Type variables */
double t, ut0[SIZE], ut[SIZE], u5[SIZE];
double k1[SIZE], k2[SIZE], k3[SIZE], k4[SIZE], k5[SIZE],

k6[SIZE];
int j;

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* k1; stepping for k2 */
for(j=1;j<=neqn;j++)

{
k1[j]=h*ut0[j];
u[j]=u0[j]+0.25*k1[j];

}
t=t0+0.25*h;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k2; stepping for k3 */
for(j=1;j<=neqn;j++)

{
k2[j]=h*ut[j];
u[j]=u0[j]+(3.0/32.0)*k1[j]

+(9.0/32.0)*k2[j];
}
t=t0+(3.0/8.0)*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k3; stepping for k4 */
for(j=1;j<=neqn;j++)

{
k3[j]=h*ut[j];
u[j]=u0[j]+(1932.0/2197.0)*k1[j]

-(7200.0/2197.0)*k2[j]
+(7296.0/2197.0)*k3[j];

}
t=t0+(12.00/13.0)*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k4; stepping for k5 */
for(j=1;j<=neqn;j++)

{
k4[j]=h*ut[j];
u[j]=u0[j]+(439.0/ 216.0)*k1[j]

-(8.0)*k2[j]
+(3680.0/ 513.0)*k3[j]
-(845.0/4104.0)*k4[j];

}
t=t0+h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k5; stepping for k6 */
for(j=1;j<=neqn;j++)

{

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

k5[j]=h*ut[j];
u[j]=u0[j]-(8.0/ 27.0)*k1[j]

+(2.0)*k2[j]
-(3544.0/2565.0)*k3[j]
+(1859.0/4104.0)*k4[j]
-(11.0/ 40.0)*k5[j];

}
t=t0+0.5*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k6; fourth and fifth order step; error estimate; error
correction */
for(j=1;j<=neqn;j++)

{
k6[j]=h*ut[j];
u[j]=u0[j]+(25.0/ 216.0)*k1[j]

+(1408.0/2565.0)*k3[j]
+(2197.0/4104.0)*k4[j]
-(1.0/ 5.0)*k5[j];

u5[j]=u0[j]+(16.0/ 135.0)*k1[j]
+(6656.0/12825.0)*k3[j]
+(28561.0/56430.0)*k4[j]
-(9.0/ 50.0)*k5[j]
+(2.0/ 55.0)*k6[j];

e[j]=u5[j]-u[j];
u[j]= u[j]+e[j];

}
t=t0+h;

return t;

/* End of ssrkf45 */
}

Program 2.3.12
Integrator ssrkf45 for an RKF45 step

/*

Routines for the RK Integration

*/

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

class RK:public DEF
{
public:

double rkc4a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps);

double rkc4b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps, double abserr,
double relerr);

double ssrkc4(int neqn, double t0, double u0[],
double h, double u[], double e[]);

double rkf45a(int neqn, double t0, double tf,
double u[], double u0[], int nsteps);

double rkf45b(int neqn, double t0, double tf,
double u[], double u0[], int nsteps,
double abserr, double relerr);

double ssrkf45(int neqn, double t0, double u0[],
double h, double u[], double e[]);

};

Program 2.3.13
Header file for rkc4a , rkc4b, ssrkc4, rkf45a , rkf45b, ssrk f 45

#include "DEF.h"
#include <iomanip.h>

/* Define file ID */
FILE *fid;

void DEF::intpar()

/* Function intpar sets the parameters to control the
integration of the 1 x 1 ODE system */
{

/* Number of ODEs */
neqn=1;

/* Number of output points */
nout=6;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Maximum number of steps in the interval t0 to tf */
nsteps=100;

/* Initial, final values of independent variable */
t0=0.0;
tf=1.0;

/* Error tolerances */
abserr=pow(10.0,-5.0);
relerr=pow(10.0,-5.0);

/* End of intpar */
}

void DEF::inital()

/* Function inital sets the initial condition vector for
the 1 x 1 ODE problem */
{

/* Initial condition */
u0[1]=1.0;

/* End of inital */
}

void DEF::derv(double ut[], double t, double u[])

/* Function derv computes the derivatives vector of the
1 x 1 ODE problem */
{

/* Type variables */
double alpha, lambda;

/* Problem parameters */
alpha=1.0;
lambda=1.0;

/* Derivative vector */
ut[1]=lambda*exp(-alpha*t)*u[1];

/* End of derv */
}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

void DEF::fprint(int ncase, int neqn, double t, double u[])

/* Function fprint displays the numerical and exact
solutions to the 1 x 1 ODE problem; this routine is
implemented in the traditional C style*/
{

/* Type variables */
double ue[2], diff[2];
double u0, alpha, lambda;

/* Problem parameters */
u0=1.0;
alpha=1.0;
lambda=1.0;

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
/* Label for ODE integrator */
switch(ncase)

{
/*Fixed step modified Euler */
case 1:
fprintf(fid,"\n\n euler2a integrator\n\n");
break;

/* Variable step modified Euler */
case 2:
fprintf(fid,"\n\n euler2b integrator\n\n");
break;

/* Fixed step classical fourth order RK */
case 3:
fprintf(fid,"\n\n rkc4a integrator\n\n");
break;

/* Variable step classical fourth order RK */
case 4:
fprintf(fid,"\n\n rkc4b integrator\n\n");
break;

/* Fixed step RK Fehlberg 45 */
case 5:
fprintf(fid,"\n\n rkf45a integrator\n\n");
break;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Variable step RK Fehlberg 45 */
case 6:
fprintf(fid,"\n\n rkf45b integrator\n\n");
break;

}

/* Heading */
fprintf(fid,"\n t u1(num) u1(ex) diff1\n\n");

}

/* Analytical solution */
ue[1]=u0*exp(lambda/alpha*(1.0-exp(-alpha*t)));

/* Difference between exact and numerical solutions */
diff[1]=u[1]-ue[1];

/* Display the numerical and exact solutions, and their
difference */

fprintf(fid,"%10.2f %10.5f %10.5f %13.4e\n\n",t,u[1],
ue[1],diff[1]);

/* End of fprint */
}

void DEF::fprint(ofstream &fout, int ncase, int neqn,
double t, double u[])

/* Function fprint displays the numerical and exact
solutions to the 1 x 1 ODE problem; this function is
implemented in the C++ style */
{

/* Type variables */
double ue[2], diff[2];
double u0, alpha, lambda;

/* Problem parameters */
u0=1.0;
alpha=1.0;
lambda=1.0;

/* Set printing format */
fout<<setiosflags(ios::showpoint|ios::fixed)

<<setprecision(7);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
/* Label for ODE integrator */
switch(ncase)

{
/* Fixed step modified Euler */
case 1:
fout<<"\n\n euler2a integrator\n";
break;

/* Variable step modified Euler */
case 2:
fout<<"\n\n euler2b integrator\n";
break;

/* Fixed step classical fourth order RK */
case 3:
fout<<"\n\n rkc4a integrator\n";
break;

/* Variable step classical fourth order RK */
case 4:
fout<<"\n\n rkc4b integrator\n";
break;

/* Fixed step RK Fehlberg 45 */
case 5:
fout<<"\n\n rkf45a integrator\n";
break;

/* Variable step RK Fehlberg 45 */
case 6:
fout<<"\n\n rkf45b integrator\n";
break;

}

/* Heading */
fout<<endl;
fout<<" t"<<setw(18)<<"u1(num)"<<setw(11)

<<"u1(ex)"<<setw(10)<<"diff"<<"\n";

/* End of t = 0 heading */
}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Analytical solution */
ue[1]=u0*exp(lambda/alpha*(1.0-exp(-alpha*t)));

/* Difference between exact and numerical solutions */
diff[1]=u[1]-ue[1];
fout<<endl;

/* Display the numerical and exact solutions, and their
difference */
fout<<setw(10)<<t<<setw(12)<<u[1]<<setw(12)<<ue[1]

<<setw(12)<<diff[1];

/* End of fprint */
}

Program 2.3.14
intpar, inital, derv, and fprint called in the solution of Equations 1.3 and 1.4

The output from the preceding routines (written to file ode1x1cpp.out in
Program 2.3.1) is as follows:

euler2a integrator

t u1(num) u1(ex) diff

0.0000000 1.0000000 1.0000000 0.0000000
1.0000000 1.8815963 1.8815964 -0.0000001
2.0000000 2.3742138 2.3742099 0.0000039
3.0000000 2.5862663 2.5862603 0.0000060
4.0000000 2.6689549 2.6689479 0.0000069
5.0000000 2.7000350 2.7000278 0.0000073

euler2b integrator

t u1(num) u1(ex) diff

0.0000000 1.0000000 1.0000000 0.0000000
1.0000000 1.8815902 1.8815964 -0.0000062
2.0000000 2.3742061 2.3742099 -0.0000038
3.0000000 2.5862606 2.5862603 0.0000003
4.0000000 2.6689516 2.6689479 0.0000037
5.0000000 2.7000340 2.7000278 0.0000062

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkc4a integrator

t u1(num) u1(ex) diff

0.0000000 1.0000000 1.0000000 0.0000000
1.0000000 1.8815964 1.8815964 0.0000000
2.0000000 2.3742099 2.3742099 0.0000000
3.0000000 2.5862603 2.5862603 0.0000000
4.0000000 2.6689479 2.6689479 0.0000000
5.0000000 2.7000278 2.7000278 0.0000000

rkc4b integrator

t u1(num) u1(ex) diff

0.0000000 1.0000000 1.0000000 0.0000000
1.0000000 1.8815963 1.8815964 0.0000000
2.0000000 2.3742100 2.3742099 0.0000001
3.0000000 2.5862604 2.5862603 0.0000001
4.0000000 2.6689480 2.6689479 0.0000001
5.0000000 2.7000279 2.7000278 0.0000001

rkf45a integrator

t u1(num) u1(ex) diff

0.0000000 1.0000000 1.0000000 0.0000000
1.0000000 1.8815964 1.8815964 0.0000000
2.0000000 2.3742099 2.3742099 0.0000000
3.0000000 2.5862603 2.5862603 0.0000000
4.0000000 2.6689479 2.6689479 0.0000000
5.0000000 2.7000278 2.7000278 0.0000000

rkf45b integrator

t u1(num) u1(ex) diff

0.0000000 1.0000000 1.0000000 0.0000000
1.0000000 1.8815963 1.8815964 0.0000000
2.0000000 2.3742100 2.3742099 0.0000001
3.0000000 2.5862604 2.5862603 0.0000001
4.0000000 2.6689480 2.6689479 0.0000001
5.0000000 2.7000279 2.7000278 0.0000001

We note again that the output verifies the operation of all six integrators. The
fixed step integrators (rkc4a , rkf45a , and ssrkc4) generally surpass the error

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

tolerances set in intpar, with rkf45a and ssrkc4 producing excessive accuracy;
the variable step integrators (rkc4b, rkf45b, and ssrkc4) produce numerical
solutions consistent with the error tolerances.

This completes the programming of the 1x1 ODE problem in C++. We now
move on to Fortran.

2.4 Programming in Fortran

Again, we start with the listing of the main program and ODE integrator
routines:

program ode1x1
C
C Numerical solution to the 1 x 1 ODE system by six
C integrators
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size arrays

parameter(neq=500)
dimension u0(neq),u(neq)

C
C Open a file for output

no=2
open(no,file='ode1x1for.out')

C
C Step through six integrators

do ncase=1,6
C
C Integration parameters

call intpar(neqn,nout,nsteps,t0,tf,abserr,relerr)
C
C Initial condition

call inital(neqn,t0,u0)
C
C Output time

tp=tf-t0
C
C Step through nout grid points

do j=1,nout
C
C Print solution

call fprint(no,ncase,neqn,t0,u0)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C
C Select ODE integrator
C
C Fixed step modified Euler integrator

if(ncase.eq.1)then
call euler2a(neqn,t0,tf,u0,nsteps,u)

end if
C
C Variable step modified Euler integrator

if(ncase.eq.2)then
call euler2b(neqn,t0,tf,u0,nsteps,abserr,

relerr,u)
end if

C
C Fixed step classical fourth order RK integrator

if(ncase.eq.3)then
call rkc4a(neqn,t0,tf,u0,nsteps,u)

end if
C
C Variable step classical fourth order RK integrator

if(ncase.eq.4)then
call rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr,u)

end if
C
C Fixed step RK Fehlberg (RKF45) integrator

if(ncase.eq.5)then
call rkf45a(neqn,t0,tf,u0,nsteps,u)

end if
C
C Variable step Fehlberg (RKF45) integrator

if(ncase.eq.6)then
call rkf45b(neqn,t0,tf,u0,nsteps,abserr,

relerr,u)
end if

C
C Advance solution

t0=tf
tf=tf+tp
do i=1,neqn

u0(i)=u(i)
end do

C
C Next output

end do
C

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C Next integrator
end do

C
C End of ode1x1

end

Program 2.4.1
Fortran main program ode1x1 for the numerical integration of Equation 1.3
subject to initial condition Equation 1.4

Note again, as in Programs 2.2.1 and 2.3.1, that all six integrators are called
within a single loop.

C
C Step through six integrators

do ncase=1,6

Also, an output file, ode1x1f.out is written by this main program.
The ODE integration routines are listed below:

subroutine euler2a(neqn,t0,tf,u0,nsteps,u)
C
C Subroutine euler2a computes an ODE solution by a fixed
C step modified Euler method for a series of points along
C the solution by repeatedly calling subroutine sseuler for
C a single modified Euler step.
C
C Argument list
C
C neqn number of first order ODEs
C
C t0 initial value of independent variable
C
C tf final value of independent variable
C
C u0 initial condition vector of length neqn
C
C nsteps number of modified Euler steps
C
C u ODE solution vector of length neqn after
C nsteps steps
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size arrays

dimension u0(neqn), u(neqn), e(neqn)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C
C Integration step

h=(tf-t0)/dfloat(nsteps)
C
C nsteps modified Euler steps

do j=1,nsteps
C
C Modified Euler step

call sseuler(neqn,t0,u0,h,t,u,e)
C
C Reset base point values for the next modified
C Euler step

do i=1,neqn
u0(i)=u(i)

end do
t0=t

C
C Next modified Euler step

end do
C
C nsteps modified Euler steps completed

return
C
C End of euler2a

end

Program 2.4.2
Integrator euler2a

subroutine euler2b(neqn,t0,tf,u0,nsteps,abserr,relerr,u)
C
C Subroutine euler2b computes an ODE solution by a variable
C step modified Euler method for a series of points along
C the solution by repeatedly calling subroutine sseuler for
C a single modified Euler step. The truncation error is
C estimated along the solution to adjust the integration
C step according to a specified error tolerance.
C
C Argument list
C
C neqn number of first order ODEs
C
C t0 initial value of independent variable
C

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C tf final value of independent variable
C
C u0 initial condition vector of length neqn
C
C nsteps maximum number of modified Euler steps
C
C abserr absolute error tolerance
C
C relerr relative error tolerance
C
C u ODE solution vector of length neqn after
C nsteps steps
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size the arrays

parameter(neq=500)
dimension e(neq)
dimension u0(neqn), u(neqn)

C
C Initial integration step

h=(tf-t0)/8.0d0
C
C Minimum allowable step

hmin=(tf-t0)/dfloat(nsteps)
C
C Start integration

t=t0
C
C While independent variable is less than the final
C value, continue the integration

do while(t.le.tf*0.999d0)
C
C If the next step along the solution will go past
C the final value of the independent variable, set
C the step to the remaining distance to the final
C value

if((t+h).gt.tf)then
h=tf-t

end if
C
C Single modified Euler step

call sseuler(neqn,t0,u0,h,t,u,e)
C

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C Flag for the end of the integration
nfin1=1

C
C Check if any of the ODEs have violated the error
C criteria

do i=1,neqn
if(dabs(e(i)).gt.dabs(u(i))*relerr+abserr)then

C
C Error violation, so integration is not
C complete. Reduce integration step because
C of error violation and repeat integration
C from the base point

nfin1=0
h=h/2.0d0

C
C If the current step is less than the minimum
C allowable step, set the step to the minimum
C allowable value and continue integration from
C new base point

if(h.lt.hmin)then
h=hmin
nfin1=1

end if
go to 1

end if
end do

C
C If there is no error violation, continue the
C integration from new base point
1 if(nfin1.eq.1)then

do i=1,neqn
u0(i)=u(i)

end do
t0=t

C
C Test if integration step can be increased

do i=1,neqn
if(dabs(e(i)).gt.(dabs(u(i))*relerr+abserr)

/4.0d0)then
C
C Integration step cannot be increased

go to 2
end if

end do
C

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C Increase integration step
h=h*2.0d0

C
C Continue for no error violation (nfin1=1)
2 end if

C
C Continue do while

end do
return

C
C End of euler2b

end

Program 2.4.3
Integrator euler2b

subroutine sseuler(neqn,t0,u0,h,t,u,e)
C
C Subroutine sseuler computes an ODE solution by the
C modified Euler method for one step along the solution
C (by calls to derv to define the ODE derivative vector).
C It also estimates the truncation error of the solution,
C and applies this estimate as a correction to the
C solution vector.
C
C Argument list
C
C neqn number of first order ODEs
C
C t0 initial value of independent variable
C
C u0 initial condition vector of length neqn
C
C h integration step
C
C t independent variable
C
C u ODE solution vector of length neqn after
C one modified Euler step
C
C e estimate of truncation error of the solu-
C tion vector
C
C Double precision coding is used

implicit double precision(a-h,o-z)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C
C Size the arrays

parameter(neq=500)
dimension ut(neq),ut0(neq)
dimension u0(neqn), u(neqn), e(neqn)

C
C Derivative vector at initial (base) point

call derv(neqn,t0,u0,ut0)
C
C First order (Euler) step

do i=1,neqn
u(i)=u0(i)+ut0(i)*h

end do
t=t0+h

C
C Derivative vector at advance point

call derv(neqn,t,u,ut)
C
C Second order step

do i=1,neqn
C
C Truncation error estimate

e(i)=(ut(i)-ut0(i))*h/2.0d0
C
C Second order (modified Euler) solution vector

u(i)=u(i)+e(i)
end do
return

C
C End of sseuler

end

Program 2.4.4
Integrator sseuler for a single modified Euler step

subroutine rkc4a(neqn,t0,tf,u0,nsteps,u)
C
C Subroutine rkc4a computes an ODE solution by a fixed step
C rkc4 method for a series of points along the solution by
C repeatedly calling subroutine ssrkc4 for a single rkc4
C step.
C
C Argument list
C
C neqn number of first order ODEs

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C
C t0 initial value of independent variable
C
C tf final value of independent variable
C
C u0 initial condition vector of length neqn
C
C nsteps number of rkc4 steps
C
C u ODE solution vector of length neqn after
C nsteps steps
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size arrays

parameter(neq=500)
dimension e(neq)
dimension u0(neqn), u(neqn)

C
C Integration step

h=(tf-t0)/dfloat(nsteps)
C
C nsteps rkc4 steps

do j=1,nsteps
C
C Single rkc4 step

call ssrkc4(neqn,t0,u0,h,t,u,e)
C
C Reset base point values for the next rkc4 step

do i=1,neqn
u0(i)=u(i)

end do
t0=t

C
C Next rkc4 step

end do
C
C nsteps rkc4 steps completed

return
C
C End of rkc4a

end

Program 2.4.5
Integrator rkc4a

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

subroutine rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr,u)
C
C Subroutine rkc4b computes an ODE solution by a variable
C step classical fourth order RK method for a series of
C points along the solution by repeatedly calling
C subroutine ssrkc4 for a single classical fourth order RK
C step. The truncation error is estimated along the
C solution to adjust the integration step according to a
C specified error tolerance.
C
C Argument list
C
C neqn number of first order ODEs
C
C t0 initial value of independent variable
C
C tf final value of independent variable
C
C u0 initial condition vector of length neqn
C
C nsteps maximum number of rkc4 steps
C
C abserr absolute error tolerance
C
C relerr relative error tolerance
C
C u ODE solution vector of length neqn after
C nsteps steps
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size the arrays

parameter(neq=500)
dimension e(neq)
dimension u0(neqn), u(neqn)

C
C Integration step

h=(tf-t0)/2.0d0
C
C Minimum allowable step

hmin=(tf-t0)/dfloat(nsteps)
C
C Start integration

t=t0

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C
C While independent variable is less than the final
C value, continue the integration

do while(t.le.tf*0.999d0)
C
C If the next step along the solution will go past
C the final value of the independent variable, set
C the step to the remaining distance to the final
C value

if((t+h).gt.tf)then
h=tf-t

end if
C
C Single rkc4 step

call ssrkc4(neqn,t0,u0,h,t,u,e)
C
C Flag for the end of the integration

nfin1=1
C
C Check if any of the ODEs have violated the error
C critreria

do i=1,neqn
if(dabs(e(i)).gt.dabs(u(i))*relerr+abserr)then

C
C Error violation, so integration is not
C complete. Reduce integration step because
C of error violation and repeat integration
C from the base point

nfin1=0
h=h/2.0d0

C
C If the current step is less than the minimum
C allowable step, set the step to the minimum
C allowable value and continue integration from
C new base point

if(h.lt.hmin)then
h=hmin
nfin1=1

end if
go to 1

end if
end do

C
C If there is no error violation, continue the
C integration from new base point

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

1 if(nfin1.eq.1)then
do i=1,neqn

u0(i)=u(i)
end do
t0=t

C
C Test if integration step can be increased

do i=1,neqn
if(dabs(e(i)).gt.(dabs(u(i))*relerr+abserr)

/16.0d0)then
C
C Integration step cannot be increased

go to 2
end if

end do
C
C Increase integration step

h=h*2.0d0
C
C Continue for no error violation (nfin1=1)
2 end if

C
C Continue do while

end do
return

C
C End of rkc4b

end

Program 2.4.6
Integrator rkc4b

subroutine ssrkc4(neqn,t0,u0,h,t,u,e)
C
C Subroutine ssrkc4 computes an ODE solution by the
C classical fourth order RK method for one step along the
C solution (by calls to derv to define the ODE derivative
C vector). It also estimates the truncation error of the
C solution, and applies this estimate as a correction
C to the solution vector.
C
C Argument list
C
C neqn number of first order ODEs
C

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C t0 initial value of independent variable
C
C u0 initial condition vector of length neqn
C
C h integration step
C
C t independent variable
C
C u ODE solution vector of length neqn after
C one rkc4 step
C
C e estimate of truncation error of the solu-
C tion vector
C
C Double precision coding is used

implicit double precision(a-h,k,o-z)
C

C Size the arrays
parameter(neq=500)
dimension ut0(neq), ut(neq), u4(neq),
+ k1(neq), k2(neq), k3(neq), k4(neq)
dimension u0(neqn), u(neqn), e(neqn)

C
C Derivative vector at initial (base) point

call derv(neqn,t0,u0,ut0)
C
C k1, advance of dependent variable vector and
C independent variable for calculation of k2

do i=1,neqn
k1(i)=h*ut0(i)
u(i)=u0(i)+0.5d0*k1(i)

end do
t=t0+0.5d0*h

C
C Derivative vector at new u, t

call derv(neqn,t,u,ut)
C
C k2, advance of dependent variable vector and
C independent variable for calculation of k3

do i=1,neqn
k2(i)=h*ut(i)
u(i)=u0(i)+0.5d0*k2(i)

end do
t=t0+0.5d0*h

C

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C Derivative vector at new u, t
call derv(neqn,t,u,ut)

C
C k3, advance of dependent variable vector and
C independent variable for calculation of k4

do i=1,neqn
k3(i)=h*ut(i)
u(i)=u0(i)+k3(i)

end do
t=t0+h

C
C Derivative vector at new u, t

call derv(neqn,t,u,ut)
C
C k4, stepping

do i=1,neqn
k4(i)=h*ut(i)

C
C Second order step

u(i)=u0(i)+k2(i)
C
C Fourth order step

u4(i)=u0(i)+(1.0d0/6.0d0)*(k1(i)+2.0d0*k2(i)
+2.0d0*k3(i)+k4(i))

end do
do i=1,neqn

C
C Truncation error estimate

e(i)=u4(i)-u(i)
C
C Fourth order solution vector (from (2,4) RK pair)

u(i)=u(i)+e(i)
end do
return

C
C End of ssrkc4

end

Program 2.4.7
Integrator ssrkc4 for a classical fourth-order RK step

subroutine rkf45a(neqn,t0,tf,u0,nsteps,u)
C
C Subroutine rkf45a computes an ODE solution by a fixed
C step rkf45 method for a series of points along the

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C solution by repeatedly calling subroutine ssrkf45 for
C a single rkf45 step.
C
C Argument list
C
C neqn number of first order ODEs
C
C t0 initial value of independent variable
C
C tf final value of independent variable
C
C u0 initial condition vector of length neqn
C
C nsteps number of rkf45 steps
C
C u ODE solution vector of length neqn after
C nsteps steps
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C
C Size arrays

parameter(neq=500)
dimension e(neq)
dimension u0(neqn), u(neqn)

C
C Integration step

h=(tf-t0)/dfloat(nsteps)
C
C nsteps rkf45 steps

do j=1,nsteps
C
C Single rkf45 step

call ssrkf45(neqn,t0,u0,h,t,u,e)
C
C Reset base point values for the next rkf45 step

do i=1,neqn
u0(i)=u(i)

end do
t0=t

C
C Next rkf45 step

end do
C

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C nsteps rkf45 steps completed
return

C
C End of rkf45a

end

Program 2.4.8
Integrator rkf45a

subroutine rkf45b(neqn,t0,tf,u0,nsteps,abserr,relerr,u)
C
C Subroutine rkf45b computes an ODE solution by a variable
C step RK Fehlberg method for a series of points along the
C solution by repeatedly calling subroutine ssrkf45 for a
C single RK Fehlberg step. The truncation error is
C estimated along the solution to adjust the integration
C step according to a specified error tolerance.
C
C Argument list
C
C neqn number of first order ODEs
C
C t0 initial value of independent variable
C
C tf final value of independent variable
C
C u0 initial condition vector of length neqn
C
C nsteps maximum number of rkf45 steps
C
C abserr absolute error tolerance
C
C relerr relative error tolerance
C
C u ODE solution vector of length neqn after
C nsteps steps
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size the arrays

parameter(neq=500)
dimension e(neq)
dimension u0(neqn), u(neqn)

C

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C Initial integration step
h=(tf-t0)/2.0d0

C
C Minimum allowable step

hmin=(tf-t0)/dfloat(nsteps)
C
C Start integration

t=t0
C
C While independent variable is less than the final
C value, continue the integration

do while(t.le.tf*0.999d0)
C
C If the next step along the solution will go past
C the final value of the independent variable, set
C the step to the remaining distance to the final
C value

if((t+h).gt.tf)then
h=tf-t

end if
C
C Single rkf45 step

call ssrkf45(neqn,t0,u0,h,t,u,e)
C
C Flag for the end of the integration

nfin1=1
C
C Check if any of the ODEs have violated the error
C criteria

do i=1,neqn
if(dabs(e(i)).gt.dabs(u(i))*relerr+abserr)then

C
C Error violation, so integration is not
C complete. Reduce integration step because
C of error violation and repeat integration
C from the base point

nfin1=0
h=h/2.0d0

C
C If the current step is less than the minimum
C allowable step, set the step to the minimum
C allowable value and continue integration from
C new base point

if(h.lt.hmin)then
h=hmin

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

nfin1=1
end if
go to 1

end if
end do

C
C If there is no error violation, continue the
C integration from new base point
1 if(nfin1.eq.1)then

do i=1,neqn
u0(i)=u(i)

end do
t0=t

C
C Test if integration step can be increased

do i=1,neqn
if(dabs(e(i)).gt.(dabs(u(i))*relerr+abserr)

/32.0d0)then
C
C Integration step cannot be increased

go to 2
end if

end do
C
C Increase integration step

h=h*2.0d0
C
C Continue for no error violation (nfin1=1)
2 end if

C
C Continue do while

end do
return

C
C End of rkf45b

end

Program 2.4.9
Integrator rkf45b

subroutine ssrkf45(neqn,t0,u0,h,t,u,e)
C
C Subroutine ssrkf45 computes an ODE solution by the RK
C Fehlberg 45 method for one step along the solution (by
C calls to derv to define the ODE derivative vector).

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C It also estimates the truncation error of the solution,
C and applies this estimate as a correction to the
C solution vector.
C
C Argument list
C
C neqn number of first order ODEs
C
C t0 initial value of independent variable
C
C u0 initial condition vector of length neqn
C
C h integration step
C
C t independent variable
C
C u ODE solution vector of length neqn after
C one rkf45 step
C
C e estimate of truncation error of the solu-
C tion vector
C
C Double precision coding is used

implicit double precision(a-h,k,o-z)
C
C Size the arrays

parameter(neq=500)
dimension ut0(neq), ut(neq), u5(neq),
+ k1(neq), k2(neq), k3(neq),
+ k4(neq), k5(neq), k6(neq)
dimension u0(neqn), u(neqn), e(neqn)

C
C Derivative vector at initial (base) point

call derv(neqn,t0,u0,ut0)
C
C k1, advance of dependent variable vector and
C independent variable for calculation of k2

do i=1,neqn
k1(i)=h*ut0(i)
u(i)=u0(i)+0.25d0*k1(i)

end do
t=t0+0.25d0*h

C
C Derivative vector at new u, t

call derv(neqn,t,u,ut)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C
C k2, advance of dependent variable vector and
C independent variable for calculation of k3

do i=1,neqn
k2(i)=h*ut(i)
u(i)=u0(i)+(3.0d0/32.0d0)*k1(i)

+ +(9.0d0/32.0d0)*k2(i)
end do
t=t0+(3.0d0/8.0d0)*h

C
C Derivative vector at new u, t

call derv(neqn,t,u,ut)
C
C k3, advance of dependent variable vector and
C independent variable for calculation of k4

do i=1,neqn
k3(i)=h*ut(i)
u(i)=u0(i)+(1932.0d0/2197.0d0)*k1(i)

+ -(7200.0d0/2197.0d0)*k2(i)
+ +(7296.0d0/2197.0d0)*k3(i)
end do
t=t0+(12.0d0/13.0d0)*h

C
C Derivative vector at new u, t

call derv(neqn,t,u,ut)
C
C k4, advance of dependent variable vector and
C independent variable for calculation of k5

do i=1,neqn
k4(i)=h*ut(i)
u(i)=u0(i)+(439.0d0/ 216.0d0)*k1(i)

+ -(8.0d0)*k2(i)
+ +(3680.0d0/ 513.0d0)*k3(i)
+ -(845.0d0/4104.0d0)*k4(i)
end do
t=t0+h

C
C Derivative vector at new u, t

call derv(neqn,t,u,ut)
C
C k5, advance of dependent variable vector and
C independent variable for calculation of k6

do i=1,neqn
k5(i)=h*ut(i)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

u(i)=u0(i)-(8.0d0/ 27.0d0)*k1(i)
+ +(2.0d0)*k2(i)
+ -(3544.0d0/2565.0d0)*k3(i)
+ +(1859.0d0/4104.0d0)*k4(i)
+ -(11.0d0/ 40.0d0)*k5(i)
end do
t=t0+0.5d0*h

C
C Derivative vector at new u, t

call derv(neqn,t,u,ut)
C
C k6, stepping

do i=1,neqn
k6(i)=h*ut(i)

C
C Fourth order step

u(i)=u0(i)+(25.0d0 / 216.0d0)*k1(i)
+ +(1408.0d0 / 2565.0d0)*k3(i)
+ +(2197.0d0 / 4104.0d0)*k4(i)
+ -(1.0d0 / 5.0d0)*k5(i)

C
C Fifth order step

u5(i)=u0(i)+(16.0d0/ 135.0d0)*k1(i)
+ +(6656.0d0/12825.0d0)*k3(i)
+ +(28561.0d0/56430.0d0)*k4(i)
+ -(9.0d0/ 50.0d0)*k5(i)
+ +(2.0d0/ 55.0d0)*k6(i)
end do
do i=1,neqn

C
C Truncation error estimate

e(i)=u5(i)-u(i)
C
C Fifth order solution vector (from (4,5) RK pair)

u(i)=u(i)+e(i)
end do
t=t0+h
return

C
C End of ssrkf45

end

Program 2.4.10
Integrator ssrkf45 for an RKF45 step

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

subroutine intpar(neqn,nout,nsteps,t0,tf,abserr,relerr)
C
C Subroutine intpar sets the parameters to control the
C integration of the 1 x 1 ODE system
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Number of ODEs

neqn=1
C
C Number of output points

nout=6
C
C Maximum number of steps in the interval t0 to tf

nsteps=100
C
C Initial, final values of the independent variable

t0=0.0d0
tf=1.0d0

C
C Error tolerances

abserr=1.0d-05
relerr=1.0d-05
return

C
C End of intpar

end

subroutine inital(neqn,t,u0)
C
C Subroutine inital sets the initial condition vector
C for the 1 x 1 ODE problem
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size the arrays

dimension u0(neqn)
C
C Initial condition

u0(1)=1.0d0
return

C

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C End of inital
end

subroutine derv(neqn,t,u,ut)
C
C Subroutine derv computes the derivative vector
C of the 1 x 1 ODE problem
C
C Double precision coding is used

implicit double precision(a-h,l,o-z)
C
C Size the arrays

dimension u(neqn), ut(neqn)
C
C Problem parameters

alpha=1.0d0
lambda=1.0d0

C
C Derivative vector

ut(1)=lambda*dexp(-alpha*t)*u(1)
return

C
C End of derv

end

subroutine fprint(no,ncase,neqn,t,u)
C
C Subroutine fprint displays the numerical and
C analytical solutions to the 1 x 1 ODE problem
C
C Double precision coding is used

implicit double precision(a-h,l,o-z)
C
C Size the arrays

dimension u(neqn)
C
C Problem parameters

u0=1.0d0
alpha=1.0d0
lambda=1.0d0

C
C Print a heading for the solution at t = 0

if(t.le.0.0d0)then
C

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C Label for ODE integrator
C
C Fixed step modfied Euler

if(ncase.eq.1)then
write(no,11)

11 format(//,6x,'euler2a integrator')
C
C Variable step modified Euler

else if(ncase.eq.2)then
write(no,12)

12 format(//,6x,'euler2b integrator')
C
C Fixed step classical fourth order RK

else if(ncase.eq.3)then
write(no,13)

13 format(//,6x,'rkc4a integrator')
C
C Variable step classical fourth order RK

else if(ncase.eq.4)then
write(no,14)

14 format(//,6x,'rkc4b integrator')
C
C Fixed step RK Fehlberg 45

else if(ncase.eq.5)then
write(no,15)

15 format(//,6x,'rkf45a integrator')
C
C Variable step RK Fehlberg 45

else if(ncase.eq.6)then
write(no,16)

16 format(//,6x,'rkf45b integrator')
end if

C
C Heading

write(no,2)
2 format(/,9x,'t',3x,'u1(num)',4x,'u1(ex)',8x,'diff1',/)

C
C End of t = 0 heading

end if
C
C Analytical solution

u1exact=u0*dexp(lambda/alpha*(1.0d0-dexp(-alpha*t)))
C
C Difference between exact and numerical solution vectors

diff1=u(1)-u1exact

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C
C Display the numerical and exact solutions, and their
C difference

write(no,3)t,u(1),u1exact,diff1
3 format(f10.2,2f10.5,e13.4)

return
C
C End of fprint

end

Program 2.4.11
intpar, inital, derv, and fprint called in the solution of Equations 1.3 and 1.4

The output from the preceding routines (written to file ode1x1for.out in
Program 2.4.1) is as follows:

euler2a integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000E+00
1.00 1.88160 1.88160 -0.6467E-07
2.00 2.37421 2.37421 0.3879E-05
3.00 2.58627 2.58626 0.6033E-05
4.00 2.66895 2.66895 0.6924E-05
5.00 2.70004 2.70003 0.7265E-05

euler2b integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000E+00
1.00 1.88159 1.88160 -0.6220E-05
2.00 2.37421 2.37421 -0.3778E-05
3.00 2.58626 2.58626 0.2933E-06
4.00 2.66895 2.66895 0.3665E-05
5.00 2.70003 2.70003 0.6249E-05

rkc4a integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000E+00
1.00 1.88160 1.88160 -0.2719E-10

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

2.00 2.37421 2.37421 -0.3267E-10
3.00 2.58626 2.58626 -0.3483E-10
4.00 2.66895 2.66895 -0.3565E-10
5.00 2.70003 2.70003 -0.3595E-10

rkc4b integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000E+00
1.00 1.88160 1.88160 -0.4263E-07
2.00 2.37421 2.37421 0.6877E-07
3.00 2.58626 2.58626 0.9303E-07
4.00 2.66895 2.66895 0.1030E-06
5.00 2.70003 2.70003 0.1462E-06

rkf45a integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000E+00
1.00 1.88160 1.88160 0.6661E-15
2.00 2.37421 2.37421 0.2665E-14
3.00 2.58626 2.58626 0.1332E-14
4.00 2.66895 2.66895 0.1332E-14
5.00 2.70003 2.70003 -0.1332E-14

rkf45b integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000E+00
1.00 1.88159 1.88160 -0.3287E-05
2.00 2.37421 2.37421 -0.4603E-05
3.00 2.58626 2.58626 -0.5037E-05
4.00 2.66894 2.66895 -0.5168E-05
5.00 2.70002 2.70003 -0.5212E-05

We note again that the output verifies the operation of all six integrators. The
fixed step integrators (rkc4a , rkf45a , and ssrkc4) generally surpass the error
tolerances set in intpar, with rkf45a and ssrkc4 producing excessive accuracy;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

the variable step integrators (rkc4b, rkf45b, and ssrkc4) produce numerical
solutions consistent with the error tolerances.

This completes the programming of the 1x1 ODE problem in Fortran. We
now move on to Java.

2.5 Programming in Java

As before, we start with the listing of the main program and ODE integrator
routines (intpar, inital, derv, and fprint are copied to DEF.java before execution):

/*

Numerical solution to the 1 x 1 ODE system by six
integrators

*/

/* Include libraries */
import java.io.*;
import java.text.*;
import java.math.*;
import mol.*;

/* Main program */
public class ode1x1m
{

public static void main(String[] args)
{

/* Type variables */
double tp;
int i, j, ncase;

/* Declare an object from DEF */
DEF o1;

/* Instantiate a class from Euler */
Euler e1=new Euler();

/* Instantiate a class from RK */
RK r1=new RK();

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Use a buffer stream for the solution */
PrintWriter f=null;

/* Open a file for output */
try

{
f = new PrintWriter(new FileOutputStream

("ode1x1jv.out"), true);
}

catch(IOException ioe)
{

System.out.println("Attempt to open file for
writing failed");

System.exit(-1);
}

/* Step through six integrators */
for(ncase=1;ncase<=6;ncase++)

{
/* Integration parameters, initial condition */
o1=new DEF();

/* Output interval */
tp=o1.tf-o1.t0;

/* Complete solution at nout output points */
for(j=1;j<=o1.nout;j++)

{
/* Print current solution */
o1.fprint(f,ncase,o1.neqn,o1.t0,o1.u0);

/* Select ODE integrator */
switch(ncase)
{

/* Fixed step modified Euler integrator */
case 1:
e1.euler2a(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps);
break;

/* Variable step modified Euler integrator */

case 2:
e1.euler2b(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps, o1.abserr, o1.relerr);
break;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Fixed step classical fourth order
RK integrator */
case 3:
r1.rkc4a(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps);
break;

/* Variable step classical fourth order
RK integrator */
case 4:
r1.rkc4b(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps, o1.abserr, o1.relerr);
break;

/* Fixed step RK Fehlberg (RKF45)
integrator */
case 5:
r1.rkf45a(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps);
break;

/* Variable step RK Fehlberg (RKF45)
integrator */
case 6:
r1.rkf45b(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps, o1.abserr, o1.relerr);
break;

}

/* Advance solution */
o1.t0=o1.tf;
o1.tf+=tp;
for(i=1;i<=o1.neqn;i++)

{
o1.u0[i]=o1.u[i];

}

/* Next output */
}

/* Next integrator */
}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Complete solution computed. Close the file stream */
f.close();

}

/* End of ode1x1m */
}

Program 2.5.1
Java main program ode1x1m for the numerical integration of Equation 1.3
subject to initial condition Equation 1.4

Note again, as in Program 2.4.1, that all six integrators are called within a
single loop.

/* Step through six integrators */
for(ncase=1;ncase<=6;ncase++)

Also, an output file, ode1x1jv.out is written by this main program.
The associated interface routines are as follows:

/*

Definition of functions intpar, inital, derv, fprint
for the 1 x 1 ODE system

*/

package mol;

import java.io.*;

public interface ode1x1interface
{

/* Integration parameters */
public void intpar();

/* Initial condition */
public void inital();

/* Derivative vector */
public void derv(double ut[], double t, double u[]);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Output */
public void fprint(PrintWriter f, int ncase, int neqn,

double t, double u[]);

}

/*

Define the common (global) variables for the
1 x 1 ODE problem

*/

package mol;

public class MOL
{

/* Maximum (default) number of ODEs */
public int SIZE=500;

/* Variables for ODE integration */

public int neqn, nout, nsteps;

public double t0, tf, abserr, relerr;

public double u[], u0[], e[];

public MOL()
{

}
}

Program 2.5.2
Interface routines used by Program 2.5.1

The ODE integration routines are listed below:

package mol;

import java.math.*;
import java.io.*;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

public class Euler extends DEF implements EulerInterface
{

public Euler()
{

}

public void euler2a(int neqn, double t0, double tf,
double u[],double u0[],int nsteps)

/*
Function euler2a computes an ODE solution by the fixed
step modified Euler method for a series of points along
the solution by repeatedly calling function sseuler for
a single modified Euler step.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of modified Euler steps

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double ut0[],ut[];
double h,t;
int i,j;

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps modified Euler steps */
for(i=1;i<=nsteps;i++)

{
/* Single modified Euler step */
t=sseuler(neqn,t0,u0,h,u,e);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Reset base point values for next modified Euler
step */
for(j=1;j<=neqn;j++)

{
u0[j]=u[j];

}
t0=t;

/* End for */
}

/* End of euler2a */
}

Program 2.5.3
Integrator euler2a

public void euler2b(int neqn, double t0, double tf,
double u[], double u0[], int nsteps,
double abserr, double relerr)

/*
Function euler2b computes an ODE solution by the variable
step modified Euler method for a series of points along
the solution by repeatedly calling function sseuler for
a single modified Euler step. The truncation error is
estimated along the solution to adjust the integration
step according to a specified error tolerance.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of modified Euler steps

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

double e[]=new double[SIZE];
double hmin, h, t;
int i, nfin1;

/* Integration step */
h=(tf-t0)/8.0;

/* Minimum allowable step */
hmin=(tf-t0)/(float)(nsteps);

/* Start integration */
t=t0;

/* While independent variable is less than the final
value, continue the integration */
while(t <= tf*0.999)

{
/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */
if((t+h) > tf)

{
h=tf-t;

}

/* Single modified Euler step */
t=sseuler(neqn,t0,u0,h,u,e);

/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the error
criterion */
for(i=1;i<=neqn;i++)

{
if(Math.abs(e[i]) > (Math.abs(u[i])*relerr

+abserr))

/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */
{

nfin1=0;
h=h/2.0;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* If the current step is less than the minimum
allowable step, set the step to the minimum
allowable value and continue integration from
new base point */
if(h < hmin)

{
h=hmin;
nfin1=1;

}
break;

}
}

/* If there is no error violation, continue the
integration from the new base point */
if(nfin1 == 1)

{
for(i=1;i<=neqn;i++)

{
u0[i]=u[i];

}
t0=t;

/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)

{
if(Math.abs(e[i]) > ((Math.abs(u[i])

*relerr+abserr)/4.0))
{

/* Integration step cannot be increased */
nfin1=0;
break;

}
}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* End while */
}

/* End of euler2b */
}

Program 2.5.4
Integrator euler2b

public double sseuler(int neqn, double t0, double u0[],
double h,double u[],double e[])

/*
Function sseuler computes an ODE solution by the modified
Euler method for one step along the solution (by calls to
derv to define the ODE derivative vector). It also
estimates the truncation error of the solution, and
applies this estimate as a correction to the solution
vector.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

u0 initial condition vector of length neqn

h integration step

t independent variable

u ODE solution vector of length neqn after
one modified Euler step

e estimate of truncation error of the solu-
tion vector

*/
{

/* Type variables */
double ut0[], ut[];
double t;
int j;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Declare arrays */
ut0=new double[SIZE];
ut=new double[SIZE];

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* First order (Euler) step */
for(j=1;j<=neqn;j++)

{
u[j]=u0[j]+ut0[j]*h;

}
t=t0+h;

/* Derivative at advance point */
derv(ut,t,u);

/* Second order (modified Euler) step */
for(j=1;j<=neqn;j++)

{
/* Truncation error estimate */
e[j]=(ut[j]-ut0[j])*h/2.0;

/* Second order (modified Euler) solution vector */
u[j]=u[j]+e[j];

}

return t;

/* End of sseuler */
}

/* End of public class Euler */
}

Program 2.5.5
Integrator sseuler for a single modified Euler step

/*

Routines for the Euler ODE Integration

*/

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

package mol;

import java.math.*;
import java.io.*;

public interface EulerInterface
{

/* Fixed step modified Euler method */
public void euler2a(int neqn, double t0, double tf,

double u[],double u0[],int nsteps);

/* Variable step modified Euler method */
public void euler2b(int neqn, double t0, double tf,

double u[], double u0[], int nsteps,
double abserr, double relerr);

/* Single step modified Euler method */
public double sseuler(int neqn, double t0, double u0[],

double h, double u[],double e[]);
}

Program 2.5.6
Interface routine for euler2a , euler2b, and sseuler

package mol;

import java.io.*;
import java.math.*;

public class RK extends DEF implements RKInterface
{

public RK()
{

}

public void rkc4a(int neqn, double t0, double tf,
double u[], double u0[], int nsteps)

/*
Function rkc4a computes an ODE solution by the fixed step
classical fourth order RK method for a series of points
along the solution by repeatedly calling function ssrkc4
for a single classical fourth order RK step.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of RKC4 steps

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double h, t;
double e[]=new double[SIZE];
int i, j;

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps rkc4 steps */
for(i=1;i<=nsteps;i++)

{
/* Single rkc4 step */
t=ssrkc4(neqn,t0,u0,h,u,e);

/* Reset base point values for next rk4c step */
for(j=1;j<=neqn;j++)

{
u0[j]=u[j];

}
t0=t;

}

/* End of rkc4a */
}

Program 2.5.7
Integrator rkc4a

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

public void rkc4b(int neqn, double t0, double tf,
double u[],double u0[],int nsteps,
double abserr,double relerr)

/*
Function rkc4b computes an ODE solution by a variable
step classical fourth order RK method for a series of
points along the solution by repeatedly calling function
ssrkc4 for a single classical fourth order RK step. The
truncation error is estimated along the solution to
adjust the integration step according to a specified
error tolerance.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps maximum number of rkc4 steps

abserr absolute error tolerance

relerr relative error tolerance

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double hmin, h, t;
double e[]=new double[SIZE];
int nfin1, i;

/* Integration step */
h=(tf-t0)/2.0;

/* Minimum allowable step */
hmin=(tf-t0)/nsteps;

/* Start integration */
t=t0;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* While independent variable is less than the final
value, continue the integration */
while(t <= (tf*0.999))

{
/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */
if((t+h) > tf)

{
h=tf-t;

}

/* Single rkc4 step */
t=ssrkc4(neqn,t0,u0,h,u,e);

/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the error
criterion */
for(i=1;i<=neqn;i++)

{
if(Math.abs(e[i]) > (Math.abs(u[i])*relerr+abserr))

{
/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */
nfin1=0;
h=h/2.0;

/* If the current step is less than the
minimum allowable step, set the step to the
minimum allowable value and continue
integration from new base point */
if(h < hmin)

{
h=hmin;
nfin1=1;

}
break;

}
}

/* If there is no error violation, continue the
integration from the new base point */

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

if(nfin1 == 1)
{

for(i=1;i<=neqn;i++)
{

u0[i]=u[i];
}
t0=t;

/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)

{
if(Math.abs(e[i]) > ((Math.abs(u[i])

*relerr+abserr)/16.0))
{
/* Integration step cannot be increased */
nfin1=0;
break;

}
}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}

/* End while */
}

/* End of rkc4b */
}

Program 2.5.8
Integrator rkc4b

public double ssrkc4(int neqn, double t0, double u0[],
double h, double u[], double e[])

/*
Function ssrkc4 computes an ODE solution by the classical
fourth order RK method for one step along the solution
(by calls to derv to define the ODE derivative vector).
It also estimates the truncation error of the solution,

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

and applies this estimate as a correction to the
solution vector.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

u0 initial condition vector of length neqn

h integration step

t independent variable

u ODE solution vector of length neqn after
one rkc4 step

e estimate of truncation error of the solu-
tion vector

*/
{

/* Type variables */
double ut0[], ut[], u4[];
double t, k1[], k2[], k3[], k4[];
int j;

/* Declare arrays */
ut0=new double[SIZE];
ut=new double[SIZE];
u4=new double[SIZE];
k1=new double[SIZE];
k2=new double[SIZE];
k3=new double[SIZE];
k4=new double[SIZE];

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* k1; stepping for k2 */
for(j=1;j<=neqn;j++)

{
k1[j]=h*ut0[j];
u[j]=u0[j]+0.5*k1[j];

}
t=t0+0.5*h;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k2; stepping for k3 */
for(j=1;j<=neqn;j++)

{
k2[j]=h*ut[j];
u[j]=u0[j]+0.5*k2[j];

}
t=t0+0.5*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k3; stepping for k4 */
for(j=1;j<=neqn;j++)

{
k3[j]=h*ut[j];
u[j]=u0[j]+k3[j];

}
t=t0+h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k4; second and fourth order step; error estimate;
error correction */
for(j=1;j<=neqn;j++)

{
k4[j]=h*ut[j];
u[j]=u0[j]+k2[j];
u4[j]=u0[j]+(1.0/6.0)*(k1[j]+2.0*k2[j]+2.0*k3[j]

+k4[j]);
e[j]=u4[j]-u[j];
u[j]=u[j]+e[j];

}
t=t0+h;

return t;

/* End of ssrkc4 */
}

Program 2.5.9
Integrator ssrkc4 for a classical fourth-order RK step

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

public void rkf45a(int neqn, double t0, double tf,
double u[], double u0[], int nsteps)

/*
Function rkf45a computes an ODE solution by the fixed
step RK Fehlberg 45 RK method for a series of points
along the solution by repeatedly calling function ssrkf45
for a single RK Fehlberg 45 step.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of rkf45 steps

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double h, t;
double e[]=new double[SIZE];
int i, j;

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps rkf45 steps */
for(i=1;i<=nsteps;i++)

{
/* Single rkf45 step */
t=ssrkf45(neqn,t0,u0,h,u,e);

/* Reset base point values for next rkf45 step */
for(j=1;j<=neqn;j++)

{
u0[j]=u[j];

}
t0=t;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

}

/* End of rkf45a */
}

Program 2.5.10
Integrator rkf45a

public void rkf45b(int neqn, double t0, double tf,
double u[], double u0[], int nsteps,
double abserr, double relerr)

/*
Function rkf45b computes an ODE solution by a variable
step classical RK Fehlberg 45 method for a series of
points along the solution by repeatedly calling function
ssrkf45 for a single RK Fehlberg 45 step. The truncation
error is estimated along the solution to adjust the
integration step according to a specified error
tolerance.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps maximum number of rkf45 steps

abserr absolute error tolerance

relerr relative error tolerance

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double hmin, h, t;
double e[]=new double[SIZE];
int i, nfin1;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Integration step */
h=(tf-t0)/2.0;

/* Minimum allowable step */
hmin=(tf-t0)/nsteps;

/* Start integration */
t=t0;

/* While independent variable is less than the final
value, continue the integration */
while(t <= (tf*0.999))

{
/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */
if((t+h) > tf)

{
h=tf-t;

}

/* Single rkf45 step */
t=ssrkf45(neqn,t0,u0,h,u,e);

/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the error
criterion */
for(i=1;i<=neqn;i++)

{
if(Math.abs(e[i]) > (Math.abs(u[i])

*relerr+abserr))
{

/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */
nfin1=0;
h=h/2.0;
/* If the current step is less than the
minimum allowable step, set the step to the
minimum allowable value and continue
integration from new base point */

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

if(h < hmin)
{

h = hmin;
nfin1=1;

}
break;

}
}

/* If there is no error violation, continue the
integration from the new base point */
if(nfin1 == 1)

{
for(i=1;i<=neqn;i++)

{
u0[i]=u[i];

}
t0=t;

/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)

{
if(Math.abs(e[i]) > ((Math.abs(u[i])

*relerr+abserr)/32.0))
{
/* Integration step cannot be increased */
nfin1=0;
break;

}
}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}

/* End while */
}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* End of rkf45b */
}

Program 2.5.11
Integrator rkf45b

public double ssrkf45(int neqn, double t0, double u0[],
double h, double u[], double e[])

/*
Function ssrkf45 computes an ODE solution by the RK
Fehlberg 45 method for one step along the solution (by
calls to derv to define the ODE derivative vector). It
also estimates the truncation error of the solution, and
applies this estimate as a correction to the solution
vector.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

u0 initial condition vector of length neqn

h integration step

t independent variable

u ODE solution vector of length neqn after
one rkf45 step

e estimate of truncation error of the solu-
tion vector

*/
{

/* Type variables */
double t, ut0[], ut[], u5[];
double k1[], k2[], k3[], k4[], k5[], k6[];
int j;

/* Declare arrays */
ut0=new double[SIZE];
ut=new double[SIZE];
u5=new double[SIZE];

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

k1=new double[SIZE];
k2=new double[SIZE];
k3=new double[SIZE];
k4=new double[SIZE];
k5=new double[SIZE];
k6=new double[SIZE];

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* k1; stepping for k2 */
for(j=1;j<=neqn;j++)

{
k1[j]=h*ut0[j];
u[j]=u0[j]+0.25*k1[j];

}
t=t0+0.25*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k2; stepping for k3 */
for(j=1;j<=neqn;j++)

{
k2[j]=h*ut[j];
u[j]=u0[j]+(3.0/32.0)*k1[j]

+(9.0/32.0)*k2[j];
}
t=t0+(3.0/8.0)*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k3; stepping for k4 */
for(j=1;j<=neqn;j++)

{
k3[j]=h*ut[j];
u[j]=u0[j]+(1932.0/2197.0)*k1[j]

-(7200.0/2197.0)*k2[j]
+(7296.0/2197.0)*k3[j];

}
t=t0+(12.00/13.0)*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* k4; stepping for k5 */
for(j=1;j<=neqn;j++)

{
k4[j]=h*ut[j];
u[j]=u0[j]+(439.0/ 216.0)*k1[j]

-(8.0)*k2[j]
+(3680.0/ 513.0)*k3[j]
-(845.0/4104.0)*k4[j];

}
t=t0+h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k5; stepping for k6 */
for(j=1;j<=neqn;j++)

{
k5[j]=h*ut[j];
u[j]=u0[j]-(8.0/ 27.0)*k1[j]

+(2.0)*k2[j]
-(3544.0/2565.0)*k3[j]
+(1859.0/4104.0)*k4[j]
-(11.0/ 40.0)*k5[j];

}
t=t0+0.5*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k6; fourth and fifth order step; error estimate; error
correction */
for(j=1;j<=neqn;j++)

{
k6[j]=h*ut[j];
u[j] =u0[j]+(25.0/ 216.0)*k1[j]

+(1408.0/2565.0)*k3[j]
+(2197.0/4104.0)*k4[j]
-(1.0/ 5.0)*k5[j];

u5[j]=u0[j]+(16.0/ 135.0)*k1[j]
+(6656.0/12825.0)*k3[j]
+(28561.0/56430.0)*k4[j]
-(9.0/ 50.0)*k5[j]
+(2.0/ 55.0)*k6[j];

e[j]=u5[j]-u[j];
u[j]=u[j]+e[j];

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

}
t=t0+h;

return t;

/* End of ssrkf45 */
}

/* End public class RK */
}

Program 2.5.12
Integrator ssrkf45 for a RKF45 step

/*

Routines for the Runge Kutta ODE Integration

*/

package mol;

import java.math.*;
import java.io.*;

public interface RKInterface
{

/* Fixed step classical fourth order RK method */
public void rkc4a(int neqn, double t0, double tf,

double u[], double u0[], int nsteps);

/* Variable step classical fourth order RK method */
public void rkc4b(int neqn, double t0, double tf,

double u[], double u0[], int nsteps,
double abserr, double relerr);

/* Single step classical fourth order RK method */
public double ssrkc4(int neqn, double t0, double u0[],

double h, double u[], double e[]);

/* Fixed step RK Fehlberg 45 method */
public void rkf45a(int neqn, double t0, double tf,

double u[], double u0[], int nsteps);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Variable step RK Fehlberg 45 method */
public void rkf45b(int neqn, double t0, double tf,

double u[], double u0[], int nsteps,
double abserr, double relerr);

/* Single step RK Fehlberg 45 method */
public double ssrkf45(int neqn, double t0, double u0[],

double h, double u[], double e[]);

}

Program 2.5.13
Interface routine for rkc4a , rkc4b, ssrkc4,rkf45a , rkf45b, ssrk f 45

intpar, inital, derv, and fprint follow:

/* This file is a member of the package mol */
package mol;

import mol.MOL;
import java.math.*;
import java.io.*;
import java.text.*;

public class DEF extends MOL implements ode1x1interface
{

public DEF()
{

/* Integration parameters */
this.intpar();

/* Declare arrays */
u0=new double[SIZE];
u=new double[SIZE];
e=new double[SIZE];

/* Initial condition vector */
this.inital();

}

public void intpar()

/* Function intpar sets the parameters to control the
integration of the 1 x 1 ODE system */
{

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Number of ODEs */
neqn=1;

/* Size of arrays in MOL library */
SIZE=neqn+1;

/* Number of output points */
nout=6;

/* Maximum number of steps in the interval t0 to tf */
nsteps=100;

/* Initial, final values of the independent variable */
t0=0.0;
tf=1.0;

/* Error tolerances */
abserr=Math.pow(10.0,-5.0);
relerr=Math.pow(10.0,-5.0);

/* End of intpar */
}

public void inital()

/* Function inital sets the initial condition vector for
the 1 x 1 ODE problem */
{

u0[1]=1.0E0;

/* End of inital */
}

public void derv(double ut[], double t, double u[])

/* Function derv computes the derivative vector of the
1 x 1 ODE problem */
{

/* Type variables */
double alpha, lambda;

/* Problem parameters */
alpha=1.0E0;
lambda=1.0E0;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Derivative vector */
ut[1]=lambda*Math.exp(-alpha*t)*u[1];

/* End of derv */
}

public void fprint(PrintWriter f, int ncase, int neqn,
double t, double u[])

/* Function fprint displays the numerical and exact
solutions to the 1 x 1 ODE problem */

{
/* Type variables */
double ue1;
double diff1;
double e1;
double V0, alpha, lambda;

/* Problem parameters */
V0=1.0E0;
alpha=1.0E0;
lambda=1.0E0;

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
/* Label for ODE integrator */
switch(ncase)

{
/*Fixed step modified Euler */
case 1:
f.println("\n\n euler2a integrator\n");
break;

/* Variable step modified Euler */
case 2:
f.println("\n\n euler2b integrator\n");
break;

/* Fixed step classical fourth order RK */
case 3:
f.println("\n\n rkc4a integrator\n");
break;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Variable step classical fourth order RK */
case 4:
f.println("\n\n rkc4b integrator\n");
break;

/* Fixed step RK Fehlberg 45 */
case 5:
f.println("\n\n rkf45a integrator\n");
break;

/* Variable step RK Fehlberg 45 */
case 6:
f.println("\n\n rkf45b integrator\n");
break;

}

/* Heading */
f.println(" t u1(num) ue1 diff1");

/* End of t = 0 heading */
}

/* Analytical solution */
ue1=V0*Math.exp(lambda/alpha*(1.0E0-Math

.exp(-alpha*t)));

/* Difference between exact and numerical solution
vectors */
diff1=u[1]-ue1;

/* Display format for floating numbers */
DecimalFormat df1 = new DecimalFormat(" 0.00");
DecimalFormat df2 = new DecimalFormat("0.0000000");

/* Display the numerical and exact solutions, and their
difference */
f.println(df1.format(t)+"\t"+df2.format(u[1])

+"\t"+df2.format(ue1)+"\t"+df2.format(diff1));

/* End of fprint */
}

/* End of DEF */
}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Program 2.5.14
intpar, inital, derv, and fprint called in the solution of Equations 1.3 and 1.4

The output from the preceding routines (written to file ode1x1jv.out in Pro-
gram 2.5.1) is as follows:

euler2a integrator

t u1(num) ue1 diff1
0.00 1.0000000 1.0000000 0.0000000
1.00 1.8815963 1.8815964 -0.0000001
2.00 2.3742138 2.3742099 0.0000039
3.00 2.5862663 2.5862603 0.0000060
4.00 2.6689549 2.6689479 0.0000069
5.00 2.7000350 2.7000278 0.0000073

euler2b integrator

t u1(num) ue1 diff1
0.00 1.0000000 1.0000000 0.0000000
1.00 1.8815902 1.8815964 -0.0000062
2.00 2.3742061 2.3742099 -0.0000038
3.00 2.5862606 2.5862603 0.0000003
4.00 2.6689516 2.6689479 0.0000037
5.00 2.7000340 2.7000278 0.0000062

rkc4a integrator

t u1(num) ue1 diff1
0.00 1.0000000 1.0000000 0.0000000
1.00 1.8815964 1.8815964 0.0000000
2.00 2.3742099 2.3742099 0.0000000
3.00 2.5862603 2.5862603 0.0000000
4.00 2.6689479 2.6689479 0.0000000
5.00 2.7000278 2.7000278 0.0000000

rkc4b integrator

t u1(num) ue1 diff1
0.00 1.0000000 1.0000000 0.0000000
1.00 1.8815963 1.8815964 0.0000000
2.00 2.3742100 2.3742099 0.0000001

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

3.00 2.5862604 2.5862603 0.0000001
4.00 2.6689480 2.6689479 0.0000001
5.00 2.7000279 2.7000278 0.0000001

rkf45a integrator

t u1(num) ue1 diff1
0.00 1.0000000 1.0000000 0.0000000
1.00 1.8815964 1.8815964 0.0000000
2.00 2.3742099 2.3742099 0.0000000
3.00 2.5862603 2.5862603 0.0000000
4.00 2.6689479 2.6689479 0.0000000
5.00 2.7000278 2.7000278 0.0000000

rkf45b integrator

t u1(num) ue1 diff1
0.00 1.0000000 1.0000000 0.0000000
1.00 1.8815931 1.8815964 -0.0000033
2.00 2.3742053 2.3742099 -0.0000046
3.00 2.5862553 2.5862603 -0.0000050
4.00 2.6689428 2.6689479 -0.0000052
5.00 2.7000225 2.7000278 -0.0000052

We note again that the output verifies the operation of all six integrators. The
fixed step integrators (rkc4a , rkf45a , and ssrkc4) generally surpass the error
tolerances set in intpar, with rkf45a and ssrkc4 producing excessive accuracy;
the variable step integrators (rkc4b, rkf45b, and ssrkc4) produce numerical
solutions consistent with the error tolerances.

This completes the programming of the 1x1 ODE problem in Java. We now
move on to Maple.

2.6 Programming in Maple

We conclude the programming of the 1x1 ODE problem using Maple. Also,
we have used the following approach, which is a small departure from the
preceding programming and the more typical programming in Maple:

• Maple files, with the extension .mws (for Maple Worksheet), are ASCII files,
but they cannot be read using, for example, an ASCII text editor; rather
they must be viewed under Maple. We, therefore, have used Maple coded

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

as readable ASCII files, and have given the resulting files the extension
.txt. Then these .txt files are opened within the Maple code (via read
statements). This may seem complicated, but the following coding will
demonstrate that this procedure is straightforward. This approach has
the major advantage that the Maple code can be written outside of Maple
(in fact, we used the MATLAB routines in Section 2.1, which are readable
ASCII, as templates for writing the corresponding Maple).

• Since the .txt files are opened using the Maple read statement, the sepa-
ration between general-purpose (library) routines and the application-
specific routines cannot be maintained as well as before. In other words,
the read statements in the general-purpose routines have to be modified
to open specific applications files. This is a disadvantage, but we view
it as minor compared with the advantage of using readable ASCII (.txt)
files.

The details of this approach will become clear through the following coding
for the 1x1 ODE problem. We start with a small (three line) .mws main program
that in turn executes a series of read statements for the .txt files:

> restart:

> read "c:\\odelib\\maple\\ode1x1\\ode1x1.txt";

> ode1x1();

Program 2.6.1
Maple main program ode1x1.mws for the numerical integration of Equation
1.3 subject to initial condition Equation 1.4

We can note the following points about this main program:

• The main program ode1x1.txt is read (which means that it is now avail-
able for execution):

> read "c:\\odelib\\maple\\ode1x1\\ode1x1.txt";

• ode1x1, which is a Maple procedure, is then executed:

> ode1x1();

Procedure ode1x1 is listed below:

ode1x1:=proc()
#
Main program ode1x1 computes the numerical
solution to the 1 x 1 ODE system by one of
six integrators
#

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Type variables
global neqn, nout, nsteps, t0, tf, abserr, relerr:
local u0, u, tp, ncase, i, j:

#
Step through six integrators

for ncase from 1 to 6 do
#
Integration parameters

read "c:\\odelib\\maple\\ode1x1\\intpar.txt":
intpar():

#
Size arrays

u0:=array(1..neqn): u:=array(1..neqn):
#
Initial condition vector

read "c:\\odelib\\maple\\ode1x1\\inital.txt":
inital(n,t0,u0):

#
Output interval

tp:=tf-t0:
#
Compute solution at nout output points

for j from 1 to nout do
#
Print current solution

read "c:\\odelib\\maple\\ode1x1\\fprint.txt":
fprint(ncase,neqn,t0,u0):

#
Fixed step modified Euler integrator

if (ncase = 1) then
read "c:\\odelib\\maple\\ode2x2\\euler2a.txt":
euler2a(neqn,t0,tf,u0,nsteps,u):

end if:
#
Variable step modified Euler integrator

if (ncase = 2) then
read "c:\\odelib\\maple\\ode2x2\\euler2b.txt":
euler2b(neqn,t0,tf,u0,nsteps,abserr,relerr,u):

end if:
#
Fixed step classical fourth order RK integrator

if (ncase = 3) then
read "c:\\odelib\\maple\\ode2x2\\rkc4a.txt":
rkc4a(neqn,t0,tf,u0,nsteps,u):

end if:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
Variable step classical fourth order RK integrator

if (ncase = 4) then
read "c:\\odelib\\maple\\ode2x2\\rkc4b.txt":
rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr,u):

end if:
#
Fixed step RK Fehlberg (RKF45) integrator

if (ncase = 5) then
read "c:\\odelib\\maple\\ode2x2\\rkf45a.txt":
rkf45a(neqn,t0,tf,u0,nsteps,u):

end if:
#
Variable step RK Fehlberg (RKF45) integrator

if (ncase = 6) then
read "c:\\odelib\\maple\\ode2x2\\rkf45b.txt":
rkf45b(neqn,t0,tf,u0,nsteps,abserr,relerr,u):

end if:
#
Advance solution

t0:=tf:
tf:=tf+tp:
for i from 1 to neqn do

u0[i]:=u[i]:
end do:

#
Next output

end do:
#
Next integrator

end do:
#
End of ode1x1.txt

end:

Program 2.6.2
Maple main program ode1x1.txt for the numerical integration of Equation 1.3
subject to initial condition Equation 1.4

ode1x1.txt has a familiar structure. We can note the following points:

• # denotes a comment in Maple.
• Again, all six integrators are called within a single loop:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
Step through six integrators

for ncase from 1 to 6 do

• Within this loop, each of the ODE integrators, euler2a , euler2b, sseuler,
rkc4a , rkc4b, ssrkc4, rkf45a , rkf45b, and ssrkf45, is opened via a read state-
ment.

• Additionally, routines intpar, inital, and fprint, which are specific to the
1x1 ODE application, are opened via read statements; thus, the separation
of general-purpose and applications-specific routines is not as clear-cut
as in the discussion of the preceding five languages.

The ODE integration routines are listed below. Generally they have the
same form as before; the file read statements are the only main difference.

euler2a:=proc(neqn,t0,tf,u0,nsteps,u)
#
Procedure euler2a computes an ODE solution by a fixed
step modified Euler method for a series of points along
the solution by repeatedly calling procedure sseuler
for a single modified Euler step.
#
Argument list
#
neqn number of first order ODEs
#
t0 initial value of independent variable
#
tf final value of independent variable
#
u0 initial condition vector of length neqn
#
nsteps number of modified Euler steps
#
u ODE solution vector of length neqn after
nsteps steps
#
Type variables

local e, h, i, j, tm, t:
#
Size arrays

e:=array(1..neqn):
#
Integration step

h:=(tf-t0)/nsteps:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
nsteps modified Euler steps

tm:=t0:
for j from 1 to nsteps do

#
Modified Euler step

read "c:\\odelib\\maple\\ode2x2\\sseuler.txt":
sseuler(neqn,tm,u0,h,u,e):
t:=tm+h:

#
Reset base point values for next modified Euler step

for i from 1 to neqn do
u0[i]:=u[i]:

end do:
tm:=t:

#
Next modified Euler step

end do:
#
End of euler2a

end:

Program 2.6.3
Integrator euler2a

euler2b:=proc(neqn,t0,tf,u0,nsteps,abserr,relerr,u)
#
Procedure euler2b computes an ODE solution by a variable
step modified Euler method for a series of points along
the solution by repeatedly calling procedure sseuler for
a single modified Euler step. The truncation error is
estimated along the solution to adjust the integration
step according to a specified error tolerance.
#
Argument list
#
neqn number of first order ODEs
#
t0 initial value of independent variable
#
tf final value of independent variable
#
u0 initial condition vector of length neqn
#
nsteps maximum number of modified Euler steps

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
abserr absolute error tolerance
#
relerr relative error tolerance
#
u ODE solution vector of length eqn after
nsteps steps
#
Type variables

local e, h, i, j, tm, t, hmin, nfin1:
#
Size arrays

e:=array(1..neqn):
#
Initial integration step

h:=(tf-t0)/8.0:
#
Minimum allowable step

hmin:=(tf-t0)/nsteps:
#
Start integration

tm:=t0:
#
While independent variable is less than the final
value, continue the integration

while(tm <= tf*0.999) do
#
If the next step along the solution will go past
the final value of the independent variable, set
the step to the remaining distance to the final
value

if(tm+h > tf) then h:=tf-tm: end if:
#
Single modified Euler step

read "c:\\odelib\\maple\\ode2x2\\sseuler.txt":
sseuler(neqn,tm,u0,h,u,e):
t:=tm+h:

#
Flag for the end of the integration

nfin1:=1:
#
Check if any of the ODEs have violated the error
criteria

for i from 1 to neqn do
if(abs(e[i]) > abs(u[i])*relerr+abserr) then

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
Error violation, so integration is not complete.
Reduce integration step because of error violation
and repeat integration from the base point

h:=h/2.0: nfin1:=0: break:
end if:

end do:
#
If the current step is less than the minimum
allowable step, set the step to the minimum
allowable value and continue integration from
new base point

if(h < hmin) then h:=hmin: nfin1:=1: end if:
#
If there is no error violation, continue the
integration from new base point

if(nfin1 = 1) then
for i from 1 to neqn do

u0[i]:=u[i]:
end do:
tm:=t:

#
Test if integration step can be increased

for i from 1 to neqn do
if(abs(e[i]) > (abs(u[i])*relerr+abserr)/4.0) then

#
Integration step cannot be increased

nfin1:=0: break:
end if:

end do:
#
Increase integration step

if(nfin1 = 1) then h:=h*2.0: end if:
#
Continue for no error violation (nfin1=1)

end if:
#
Continue while

end do:
#
End of euler2b

end:

Program 2.6.4
Integrator euler2b

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

sseuler:=proc(neqn,t0,u0,h,u,e)
#
Procedure sseuler computes an ODE solution by the
modified Euler method for one step along the solution
(by calls to derv to define the ODE derivative vector).
It also estimates the truncation error of the solution,
and applies this estimate as a correction to the
solution vector.
#
Argument list
#
neqn number of first order ODEs
#
t0 initial value of independent variable
#
u0 initial condition vector of length neqn
#
h integration step
#
u ODE solution vector of length neqn after
one modified Euler step
#
e estimate of truncation error of the solu-
tion vector
#
Type variables

local ut0, ut, t, i:
#
Declare arrays

ut0:=array(1..neqn): ut:=array(1..neqn):
#
Derivative vector at initial (base) point

read "c:\\odelib\\maple\\ode1x1\\derv.txt":
derv(neqn,t0,u0,ut0):

#
First order (Euler) step

for i from 1 to neqn do
u[i]:=u0[i]+ut0[i]*h:

end do:
t:=t0+h:

#
Derivative vector at advance point

derv(neqn,t,u,ut):
#
Truncation error estimate

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

for i from 1 to neqn do
e[i]:=(ut[i]-ut0[i])*h/2.0:

end do:
#
Second order (modified Euler) solution vector

for i from 1 to neqn do
u[i]:=u[i]+e[i]:

end do:
#
End of sseuler

end:

Program 2.6.5
Integrator sseuler for a single modified Euler step

Note in sseuler the read statement to the application specific derv:

#
Derivative vector at initial (base) point

read "c:\\odelib\\maple\\ode1x1\\derv.txt":
derv(neqn,t0,u0,ut0):

rkc4a:=proc(neqn,t0,tf,u0,nsteps,u)
#
Procedure rkc4a computes an ODE solution by a fixed step
classical fourth order RK method for a series of points
along the solution by repeatedly calling procedure ssrkc4
for a single classical fourth order RK step.
#
Argument list
#
neqn number of first order ODEs
#
t0 initial value of independent variable
#
tf final value of independent variable
#
u0 initial condition vector of length neqn
#
nsteps number of rkc4 steps
#
u ODE solution vector of length neqn after
nsteps steps
#
Type variables

local e, h, i, j, tm, t:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
Size arrays

e:=array(1..neqn):
#
Integration step

h:=(tf-t0)/nsteps:
#
nsteps rkc4 steps

tm:=t0:
for j from 1 to nsteps do

#
rkc4 step

read "c:\\odelib\\maple\\ode2x2\\ssrkc4.txt":
ssrkc4(neqn,tm,u0,h,u,e):
t:=tm+h:

#
Reset base point values for next rkc4 step

for i from 1 to neqn do
u0[i]:=u[i]:

end do:
tm:=t:

#
Next rkc4 step

end do:
#
End of rkc4a

end:

Program 2.6.6
Integrator rkc4a

rkc4b:=proc(neqn,t0,tf,u0,nsteps,abserr,relerr,u)
#
Procedure rkc4b computes an ODE solution by a variable
step classical fourth order RK method for a series of
points along the solution by repeatedly calling procedure
ssrkc4 for a single classical fourth order RK step. The
truncation error is estimated along the solution to
adjust the integration step according to a specified
error tolerance.
#
Argument list
#
neqn number of first order ODEs
#

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

t0 initial value of independent variable
#
tf final value of independent variable
#
u0 initial condition vector of length neqn
#
nsteps maximum number of rkc4 steps
#
abserr absolute error tolerance
#
relerr relative error tolerance
#
u ODE solution vector of length neqn after
nsteps steps
#
Type variables

local e, h, i, j, tm, t, hmin, nfin1:
#
Size arrays

e:=array(1..neqn):
#
Initial integration step

h:=(tf-t0)/2.0:
#
Minimum allowable step

hmin:=(tf-t0)/nsteps:
#
Start integration

tm:=t0:
#
While independent variable is less than the final
value, continue the integration

while(tm <= tf*0.999) do
#
If the next step along the solution will go past
the final value of the independent variable, set
the step to the remaining distance to the final
value

if(tm+h > tf) then h:=tf-tm: end if:
#
Single rkc4 step

read "c:\\odelib\\maple\\ode2x2\\ssrkc4.txt":
ssrkc4(neqn,tm,u0,h,u,e):
t:=tm+h:

#

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Flag for the end of the integration
nfin1:=1:

#
Check if any of the ODEs have violated the error
criteria

for i from 1 to neqn do
if(abs(e[i]) > abs(u[i])*relerr+abserr) then

#
Error violation, so integration is not complete.
Reduce integration step because of error violation
and repeat integration from the base point

h:=h/2.0: nfin1:=0: break:
end if:

end do:
#
If the current step is less than the minimum
allowable step, set the step to the minimum
allowable value and continue integration from
new base point

if(h < hmin) then h:=hmin: nfin1:=1: end if:
#
If there is no error violation, continue the
integration from new base point

if(nfin1 = 1) then
for i from 1 to neqn do

u0[i]:=u[i]:
end do:
tm:=t:

#
#
Test if integration step can be increased

for i from 1 to neqn do
if(abs(e[i]) > (abs(u[i])*relerr+abserr)/16.0) then

#
Integration step cannot be increased

nfin1:=0: break:
end if:

end do:
#
Increase integration step

if(nfin1 = 1) then h:=h*2.0: end if:
#
Continue for no error violation (nfin1=1)

end if:
#

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Continue while
end do:

#
End of rkc4b

end:

Program 2.6.7
Integrator rkc4b

ssrkc4:=proc(neqn,t0,u0,h,u,e)
#
Procedure ssrkc4 computes an ODE solution by the
classical fourth order RK method for one step along
the solution (by calls to derv to define the ODE
derivative vector). It also estimates the truncation
error of the solution, and applies this estimate as a
correction to the solution vector.
#
Argument list
#
neqn number of first order ODEs
#
t0 initial value of independent variable
#
u0 initial condition vector of length neqn
#
h integration step
#
u ODE solution vector of length neqn after
one modified Euler step
#
e estimate of truncation error of the solu-
tion vector
#
Type variables

local ut0, ut, t, i, k1, k2, k3, k4, sum2, sum4:
#
Declare arrays

ut0:=array(1..neqn): ut:=array(1..neqn):
k1:=array(1..neqn): k2:=array(1..neqn):
k3:=array(1..neqn): k4:=array(1..neqn):

sum2:=array(1..neqn): sum4:=array(1..neqn):
#
Derivative vector at initial (base) point

read "c:\\odelib\\maple\\ode1x1\\derv.txt":

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

derv(neqn,t0,u0,ut0):
#
k1, advance of dependent variable vector and
independent variable for calculation of k2

for i from 1 to neqn do
k1[i]:=h*ut0[i]:
u[i]:=u0[i]+0.5*k1[i]:

end do:
t:=t0+0.5*h:

#
Derivative vector at new u, t

derv(neqn,t,u,ut):
#
k2, advance of dependent variable vector and
independent variable for calculation of k3

for i from 1 to neqn do
k2[i]:=h*ut[i]:
u[i]:=u0[i]+0.5*k2[i]:

end do:
t:=t0+0.5*h:

#
Derivative vector at new u, t

derv(neqn,t,u,ut):
#
k3, advance of dependent variable vector and
independent variable for calculation of k4

for i from 1 to neqn do
k3[i]:=h*ut[i]:
u[i]:=u0[i]+k3[i]:

end do:
t:=t0+h:

#
Derivative vector at new u, t

derv(neqn,t,u,ut):
#
k4

for i from 1 to neqn do
k4[i]:=h*ut[i]:

end do:
#
Second order step

for i from 1 to neqn do
sum2[i]:=u0[i]+k2[i]:

end do:
#

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Fourth order step
for i from 1 to neqn do

sum4[i]:=u0[i]+(1.0/6.0)*(k1[i]+2.0*k2[i]
+2.0*k3[i]+k4[i]):

end do:
t:=t0+h:

#
Truncation error estimate

for i from 1 to neqn do
e[i]:=sum4[i]-sum2[i]:

end do:
#
Fourth order solution vector (from 2,4 RK pair);
two ways to the same result are listed

for i from 1 to neqn do
u[i]:=sum2[i]+e[i]:

u[i]:=sum4[i]:
end do:

#
End of ssrkc4

end:

Program 2.6.8
Integrator ssrkc4 for a classical fourth-order RK step

Again, in ssrkc4 the read statement is for the application specific derv:

#
Derivative vector at initial (base) point

read "c:\\odelib\\maple\\ode1x1\\derv.txt":
derv(neqn,t0,u0,ut0):

rkf45a:=proc(neqn,t0,tf,u0,nsteps,u)
#
Procedure rkf45a computes an ODE solution by the fixed
step RK Fehlberg 45 method for a series of points along
the solution by repeatedly calling procedure ssrkf45 for
a single RK Fehlberg 45 step.
#
Argument list
#
neqn number of first order ODEs
#

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

t0 initial value of independent variable
#
tf final value of independent variable
#
u0 initial condition vector of length neqn
#
nsteps number of rkf45 steps
#
u ODE solution vector of length neqn after
nsteps steps
#
Type variables

local e, h, i, j, tm, t:
#
Size arrays

e:=array(1..neqn):
#
Integration step

h:=(tf-t0)/nsteps:
#
nsteps rkf45 steps

tm:=t0:
for j from 1 to nsteps do

#
rkf45 step

read "c:\\odelib\\maple\\ode2x2\\ssrkf45.txt":
ssrkf45(neqn,tm,u0,h,u,e):
t:=tm+h:

#
Reset base point values for next rkf45 step

for i from 1 to neqn do
u0[i]:=u[i]:

end do:
tm:=t:

#
Next rkf45 step

end do:
#
End of rkf45a

end:

Program 2.6.9
Integrator rkf45a

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkf45b:=proc(neqn,t0,tf,u0,nsteps,abserr,relerr,u)
#
Procedure rkf45b computes an ODE solution by the variable
step RK Fehlberg 45 method for a series of points along
the solution by repeatedly calling procedure ssrkf45 for
a single RK Fehlberg 45 step. The truncation error is
estimated along the solution to adjust the integration
step according to a specified error tolerance.
#
Argument list
#
neqn number of first order ODEs
#
t0 initial value of independent variable
#
tf final value of independent variable
#
u0 initial condition vector of length neqn
#
nsteps maximum number number of rkf45 steps
#
abserr absolute error tolerance
#
relerr relative error tolerance
#
u ODE solution vector of length neqn after
nsteps steps
#
Type variables

local e, h, i, j, tm, t, hmin, nfin1:
#
Size arrays

e:=array(1..neqn):
#
Initial integration step

h:=(tf-t0)/2.0:
#
Minimum allowable step

hmin:=(tf-t0)/nsteps:
#
Start integration

tm:=t0:
#
While independent variable is less than the final
value, continue the integration

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

while(tm <= tf*0.999) do
#
If the next step along the solution will go past
the final value of the independent variable, set
the step to the remaining distance to the final
value

if(tm+h > tf) then h:=tf-tm: end if:
#
Single rkf45 step

read "c:\\odelib\\maple\\ode2x2\\ssrkf45.txt":
ssrkf45(neqn,tm,u0,h,u,e):
t:=tm+h:

#
Flag for the end of the integration

nfin1:=1:
#
Check if any of the ODEs have violated the error
criteria

for i from 1 to neqn do
if(abs(e[i]) > abs(u[i])*relerr+abserr) then

#
Error violation, so integration is not complete.
Reduce integration step because of error violation
and repeat integration from the base point

h:=h/2.0: nfin1:=0: break:
end if:

end do:
#
If the current step is less than the minimum
allowable step, set the step to the minimum
allowable value and continue integration from
new base point

if(h < hmin) then h:=hmin: nfin1:=1: end if:
#
If there is no error violation, continue the
integration from new base point

if(nfin1 = 1) then
for i from 1 to neqn do

u0[i]:=u[i]:
end do:
tm:=t:

#
Test if integration step can be increased

for i from 1 to neqn do
if(abs(e[i]) > (abs(u[i])*relerr+abserr)/32.0) then

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
Integration step cannot be increased

nfin1:=0: break:
end if:

end do:
#
Increase integration step

if(nfin1 = 1) then h:=h*2.0: end if:
#
Continue for no error violation (nfin1=1)

end if:
#
Continue while

end do:
#
End of rkf45b

end:

Program 2.6.10
Integrator rkf45b

ssrkf45:=proc(neqn,t0,u0,h,u,e)
#
Procedure ssrkf45 computes an ODE solution by the RK
Fehlberg 45 method for one step along the solution (by
calls to derv to define the ODE derivative vector). It
also estimates the truncation error of the solution, and
applies this estimate as a correction to the solution
vector.
#
Argument list
#
neqn number of first order ODEs
#
t0 initial value of independent variable
#
u0 initial condition vector of length neqn
#
h integration step
#
t independent variable
#
u ODE solution vector of length neqn after
one rkf45 step

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
e estimate of truncation error of the solu-
tion vector
#
Type variables

local ut0, ut, t, i, k1, k2, k3, k4, k5, k6, sum4, sum5:
#
Declare arrays

ut0:=array(1..neqn): ut:=array(1..neqn):
k1:=array(1..neqn): k2:=array(1..neqn):
k3:=array(1..neqn): k4:=array(1..neqn):
k5:=array(1..neqn): k6:=array(1..neqn):

sum4:=array(1..neqn): sum5:=array(1..neqn):
#
Derivative vector at initial (base) point

read "c:\\odelib\\maple\\ode1x1\\derv.txt":
derv(neqn,t0,u0,ut0):

#
k1, advance of dependent variable vector and
independent variable for calculation of k2

for i from 1 to neqn do
k1[i]:=h*ut0[i]:
u[i]:=u0[i]+0.25*k1[i]:

end do:
t:=t0+0.25*h:

#
Derivative vector at new u, t

derv(neqn,t,u,ut):
#
k2, advance of dependent variable vector and
independent variable for calculation of k3

for i from 1 to neqn do
k2[i]:=h*ut[i]:
u[i]:=u0[i]+(3.0/32.0)*k1[i]\

+(9.0/32.0)*k2[i]:
end do:
t:=t0+(3.0/8.0)*h:

#
Derivative vector at new u, t

derv(neqn,t,u,ut):
#
k3, advance of dependent variable vector and
independent variable for calculation of k4

for i from 1 to neqn do
k3[i]:=h*ut[i]:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

u[i]:=u0[i]+(1932.0/2197.0)*k1[i]\
-(7200.0/2197.0)*k2[i]\
+(7296.0/2197.0)*k3[i]:

end do:
t:=t0+(12.00/13.0)*h:

#
Derivative vector at new u, t

derv(neqn,t,u,ut):
#
k4, advance of dependent variable vector and
independent variable for calculation of k5

for i from 1 to neqn do
k4[i]:=h*ut[i]:
u[i]:=u0[i]+(439.0/ 216.0)*k1[i]\

-(8.0)*k2[i]\
+(3680.0/ 513.0)*k3[i]\
-(845.0/4104.0)*k4[i]:

end do:
t:=t0+h:

#
Derivative vector at new u, t

derv(neqn,t,u,ut):
#
k5, advance of dependent variable vector and
independent variable for calculation of k6

for i from 1 to neqn do
k5[i]:=h*ut[i]:
u[i]:=u0[i]-(8.0/ 27.0)*k1[i]\

+(2.0)*k2[i]\
-(3544.0/2565.0)*k3[i]\
+(1859.0/4104.0)*k4[i]\
-(11.0/ 40.0)*k5[i]:

end do:
t:=t0+0.5*h:

#
Derivative vector at new u, t

derv(neqn,t,u,ut):
#
k6

for i from 1 to neqn do
k6[i]:=h*ut[i]:

end do:
#
Fourth order step

for i from 1 to neqn do

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

sum4[i]:=u0[i]+(25.0/ 216.0)*k1[i]\
+(1408.0/2565.0)*k3[i]\
+(2197.0/4104.0)*k4[i]\
-(1.0/ 5.0)*k5[i]:

end do:
#
Fifth order step

for i from 1 to neqn do
sum5[i]:=u0[i]+(16.0/ 135.0)*k1[i]\

+(6656.0/12825.0)*k3[i]\
+(28561.0/56430.0)*k4[i]\
-(9.0/ 50.0)*k5[i]\
+(2.0/ 55.0)*k6[i]:

end do:
t:=t0+h;

#
Truncation error estimate

for i from 1 to neqn do
e[i]:=sum5[i]-sum4[i]:

end do:
#
Fifth order solution vector (from 4,5 RK pair);
two ways to the same result are listed

for i from 1 to neqn do
u[i]:=sum4[i]+e[i]:

u[i]:=sum5[i]:
end do:

#
End of ssrkf45

end:

Program 2.6.11
Integrator ssrkf45 for an RKF45 step

Finally, intpar, inital, derv, and fprint are listed next:

intpar:=proc()
#
Function intpar sets the parameters to control the
integration of the 1 x 1 ODE system
#
Type variables

global neqn, nout, nsteps, t0, tf, abserr, relerr:
#
Number of first order ODEs

neqn:=1:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
Number of output points

nout:=6:
#
Maximum number of steps in the interval t0 to tf

nsteps:=100:
#
Initial, final values of independent variable

t0:=0.0:
tf:=1.0:

#
Error tolerances

abserr:=1.0e-05:
relerr:=1.0e-05:

#
End of intpar

end:

inital:=proc(neqn,t,u0)
#
Procedure inital sets the initial condition vector
for the 1 x 1 ODE problem
#

u0[1]:=1.0:
#
End of inital

end:

derv:=proc(neqn,t,u,ut)
#
Procedure derv computes the derivative vector
of the 1 x 1 ODE problem
#
Type variables

local alpha, lambda:
#
Problem parameters

alpha:=1.0:
lambda:=1.0:

#
Derivative vector

ut[1]:=lambda*exp(-alpha*t)*u[1]:
#

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

End of derv
end:

fprint:=proc(ncase,neqn,t,u)
#
Procedure fprint displays the numerical and
exact solutions to the 1 x 1 ODE problem
#
Type variables

local u0, alpha, lambda, ue, diff, i:
#
Problem parameters

u0:=1.0:
alpha:=1.0:
lambda:=1.0:

#
Define arrays

ue:=array(1..neqn): diff:=array(1..neqn):
#
Print a heading for the solution at t = 0

if (t <= 0.0) then
#
Label for ODE integrator
#
Fixed step modified Euler

if (ncase = 1) then
printf(`\n\n euler2a integrator\n\n`);

#
Variable step modified Euler

elif (ncase = 2) then
printf(`\n\n euler2b integrator\n\n`);

#
Fixed step classical fourth order RK

elif (ncase = 3) then
printf(`\n\n rkc4a integrator\n\n`);

#
Variable step classical fourth order RK

elif (ncase = 4) then
printf(`\n\n rkc4b integrator\n\n`);

#
Fixed step RK Fehlberg 45

elif (ncase = 5) then
printf(`\n\n rkf45a integrator\n\n`);

#

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Variable step RK Fehlberg 45
elif (ncase = 6) then

printf(`\n\n rkf45b integrator\n\n`);
end if:

#
Heading

printf(` t u1 u1e u1-u1e\n`):
#
End of t = 0 heading

end if:
#
Numerical and analytical solution output
#
Analytical solution

ue[1]:=u0*exp(lambda/alpha*(1.0-exp(-alpha*t))):
#
Difference between exact and numerical solutions

for i from 1 to neqn do
diff[i]:=u[i]-ue[i]:

end do:
#
Display the numerical and exact solutions, and their
difference

printf(`%10.2f %10.5f %10.5f %10.5f \n`,t,u[1],ue[1],
diff[1]);

#
End of fprint

end:

Program 2.6.12
intpar, inital, derv, and fprint called in the solution of Equations 1.3 and 1.4

The output from the preceding routines is as follows:

euler2a integrator

t u1 u1e u1-u1e
0.00 1.00000 1.00000 0.00000
1.00 1.88160 1.88160 -.00000
2.00 2.37421 2.37421 .00000
3.00 2.58627 2.58626 .00001
4.00 2.66895 2.66895 .00001
5.00 2.70004 2.70003 .00001

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

euler2b integrator

t u1 u1e u1-u1e
0.00 1.00000 1.00000 0.00000
1.00 1.88159 1.88160 -.00001
2.00 2.37421 2.37421 -.00000
3.00 2.58626 2.58626 .00000
4.00 2.66895 2.66895 .00000
5.00 2.70003 2.70003 .00001

rkc4a integrator

t u1 u1e u1-u1e
0.00 1.00000 1.00000 0.00000
1.00 1.88160 1.88160 .00000
2.00 2.37421 2.37421 .00000
3.00 2.58626 2.58626 .00000
4.00 2.66895 2.66895 .00000
5.00 2.70003 2.70003 .00000

rkc4b integrator

t u1 u1e u1-u1e
0.00 1.00000 1.00000 0.00000
1.00 1.88160 1.88160 -.00000
2.00 2.37421 2.37421 -.00000
3.00 2.58626 2.58626 -.00000
4.00 2.66895 2.66895 -.00000
5.00 2.70003 2.70003 .00000

rkf45a integrator

t u1 u1e u1-u1e
0.00 1.00000 1.00000 0.00000
1.00 1.88160 1.88160 -.00000
2.00 2.37421 2.37421 -.00000
3.00 2.58626 2.58626 -.00000
4.00 2.66895 2.66895 -.00000
5.00 2.70003 2.70003 -.00000

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkf45b integrator

t u1 u1e u1-u1e
0.00 1.00000 1.00000 0.00000
1.00 1.88159 1.88160 -.00000
2.00 2.37421 2.37421 -.00000
3.00 2.58626 2.58626 -.00001
4.00 2.66894 2.66895 -.00001
5.00 2.70002 2.70003 -.00001

This output is similar to that considered previously, e.g., the error tolerances
set in intpar have been observed.

This concludes the programming of the 1x1 ODE problem in the six lan-
guages. We have discussed general-purpose routines for the solution of sys-
tems of ODEs in the following sections of Chapter 2:

Section Language

2.1 MATLAB
2.2 C
2.3 C++
2.4 Fortran
2.5 Java
2.6 Maple

These routines

Pair Routines

(1, 2) euler2a, euler2b, sseuler
(2, 4) rkc4a, rkc4b, ssrkc4
(4, 5) rkf45a, rkf45b, ssrkf45

can now be applied to systems of ODEs (the nxn problem with n > 1). By a
straightforward extension, they can also be applied to PDE problems. These
topics are discussed in the remaining chapters of this book.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

3
Solution of a 2 x 2 ODE System

We now consider the programming of the 2x2 ODE problem of Equations
1.6, 1.16, and 1.17 using the general-purpose ODE library integrators from
Chapter 2. Since these integrators were listed and discussed in some detail
in Chapter 2, they are not discussed here, except as they are called in a main
program for the solution of the 2x2 ODE problem. The order in which the six
languages are considered is the same as in Chapter 2.

3.1 Programming in MATLAB

A main program for the solution of the 2x2 ODE problem is listed below:

%
% Main program ode2x2 computes the numerical
% solution to the 2 x 2 ODE system by six
% integrators
%
% Step through six integrators

for int=1:6
%
% Integration parameters

[neqn,nout,nsteps,t0,tf,abserr,relerr]=intpar;
%
% Initial condition vector

[u0]=inital(neqn,t0);
%
% Output interval

tp=tf-t0;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Compute solution at nout output points

for j=1:nout
%
% Print current solution

[out]=fprint(int,neqn,t0,u0);
%
% Fixed step modified Euler integrator

if int == 1
[u]=euler2a(neqn,t0,tf,u0,nsteps);

end
%
% Variable step modified Euler integrator

if int == 2
[u]=euler2b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end
%
% Fixed step classical fourth order RK integrator

if int == 3
[u]=rkc4a(neqn,t0,tf,u0,nsteps);

end
%
% Variable step classical fourth order RK integrator

if int == 4
[u]=rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end
%

% Fixed step RK Fehlberg (RKF45) integrator
if int == 5

[u]=rkf45a(neqn,t0,tf,u0,nsteps);
end

%
% Variable step RK Fehlberg (RKF45) integrator

if int == 6
[u]=rkf45b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end
%
% Advance solution

t0=tf;
tf=tf+tp;
u0=u;

%
% Next output

end

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Next integrator

end
%
% End of ode2x2

Program 3.1.1
MATLAB main program for the numerical integration of Equations 1.6, 1.16,
with analytical solution Equation 1.17

The only essential difference between Program 3.1.1 and 2.1.1 is the use of
a loop in the latter to cycle through all six integrators:

%
% Step through six integrators

for int=1:6

Thus, int, which was set for a particular integrator by a call to intpar in Program
2.1.1, is now set by this for loop.

Routines intpar, inital, derv, and fprint are listed below:

function [neqn,nout,nsteps,t0,tf,abserr,relerr]=intpar
%
% Function intpar sets the parameters to control the
% integration of the 2 x 2 ODE system
%
% Number of first order ODEs

neqn=2;
%
% Number of output points

nout=6;
%
% Maximum number of steps in the interval t0 to tf

nsteps=100;
%
% Initial, final values of independent variable

t0=0.0;
tf=1.0;

%
% Error tolerances

abserr=1.0e-05;
relerr=1.0e-05;

%
% End of intpar

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

function [u0]=inital(neqn,t)
%
% Function inital sets the initial condition vector
% for the 2 x 2 ODE problem
%

u0(1)=0;
u0(2)=2;

%
% End of inital

function [ut]=derv(neqn,t,u)
%
% Function derv computes the derivative vector
% of the 2 x 2 ODE problem
%
% Problem parameters

a=5.5;
b=4.5;

%
% Derivative vector

ut(1)=-a*u(1)+b*u(2);
ut(2)= b*u(1)-a*u(2);

%
% End of derv

function [out]=fprint(ncase,neqn,t,u)
%
% Function fprint displays the numerical and
% exact solutions to the 2 x 2 ODE problem
%
% Return current value of independent variable
% (MATLAB requires at least one return argument)

out=t;
%
% Problem parameters

a=5.5;
b=4.5;

%
% Print a heading for the solution at t = 0

if(t<=0.0)
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Label for ODE integrator
%
% Fixed step modified Euler

if(ncase==1)
fprintf('\n\n euler2a integrator\n\n');

%
% Variable step modified Euler

elseif(ncase==2)
fprintf('\n\n euler2b integrator\n\n');

%
% Fixed step classical fourth order RK

elseif(ncase==3)
fprintf('\n\n rkc4a integrator\n\n');

%
% Variable step classical fourth order RK

elseif(ncase==4)
fprintf('\n\n rkc4b integrator\n\n');

%
% Fixed step RK Fehlberg 45

elseif(ncase==5)
fprintf('\n\n rkf45a integrator\n\n');

%
% Variable step RK Fehlberg 45

elseif(ncase==6)
fprintf('\n\n rkf45b integrator\n\n');

end
%
% Heading

fprintf(' t u1 u2 u1-ue1 u2-ue2\n');
%
% End of t = 0 heading

end
%
% Numerical and analytical solution output

% Exact solution eigenvalues
e1=-(a-b);
e2=-(a+b);

%
% Analytical solution

ue(1)=exp(e1*t)-exp(e2*t);
ue(2)=exp(e1*t)+exp(e2*t);

%
% Difference between exact and numerical solutions

diff=u-ue;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Display the numerical and exact solutions,
% and their difference

fprintf('%10.2f %10.5f %10.5f %10.5f %10.5f \n',t,u,
diff);

%
% End of fprint

Program 3.1.2
intpar, inital, derv, and fprint for the solution of Equations 1.6 and 1.16

We can note the following points about these routines:

• The initial conditions of Equations 1.6 are set in inital as y1(0) = y10 = 0,
y2(0) = y20 = 2:

%
u0(1)=0;
u0(2)=2;

• The RHS of Equations 1.6 are programmed in derv as

%
% Problem parameters

a=5.5;
b=4.5;

%
% Derivative vector

ut(1)=-a*u(1)+b*u(2);
ut(2)= b*u(1)-a*u(2);

• The analytical solution, Equation 1.17, is programmed in fprint as

%
% Exact solution eigenvalues

e1=-(a-b);
e2=-(a+b);

%
% Analytical solution

ue(1)=exp(e1*t)-exp(e2*t);
ue(2)=exp(e1*t)+exp(e2*t);

• The numerical and analytical solutions, and their difference, are then
displayed in fprint:

%
% Difference between exact and numerical solutions

diff=u-ue;
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Display the numerical and exact solutions,
% and their difference

fprintf('%10.2f %10.5f %10.5f %10.5f %10.5f \n',t,
u,diff);

Since the library integration routines called by Program 3.1.1, euler2a , euler2b,
sseuler, rkc4a , rkc4b, ssrkc4, rkf45a , rkf45ba , and ssrkf45, are considered in detail
in Chapter 2, they will not be discussed here.

The output from Programs 3.1.1 and 3.1.2 is listed below:

euler2a integrator

t u1 u2 u1-ue1 u2-ue2
0.00 0.00000 2.00000 0.00000 0.00000
1.00 0.36784 0.36793 0.00001 0.00001
2.00 0.13534 0.13534 0.00000 0.00000
3.00 0.04979 0.04979 0.00000 0.00000
4.00 0.01832 0.01832 0.00000 0.00000
5.00 0.00674 0.00674 0.00000 0.00000

euler2b integrator

t u1 u2 u1-ue1 u2-ue2
0.00 0.00000 2.00000 0.00000 0.00000
1.00 0.36784 0.36793 0.00001 0.00001
2.00 0.13534 0.13534 0.00000 0.00000
3.00 0.04979 0.04979 0.00000 0.00000
4.00 0.01832 0.01832 0.00000 0.00000
5.00 0.00674 0.00674 0.00000 0.00000

rkc4a integrator

t u1 u2 u1-ue1 u2-ue2
0.00 0.00000 2.00000 0.00000 0.00000
1.00 0.36783 0.36792 0.00000 0.00000
2.00 0.13534 0.13534 0.00000 0.00000
3.00 0.04979 0.04979 0.00000 0.00000
4.00 0.01832 0.01832 0.00000 0.00000
5.00 0.00674 0.00674 0.00000 0.00000

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkc4b integrator

t u1 u2 u1-ue1 u2-ue2
0.00 0.00000 2.00000 0.00000 0.00000
1.00 0.36783 0.36792 0.00000 0.00000
2.00 0.13534 0.13534 0.00000 0.00000
3.00 0.04979 0.04979 0.00000 0.00000
4.00 0.01832 0.01832 0.00000 0.00000
5.00 0.00674 0.00674 0.00000 0.00000

rkf45a integrator

t u1 u2 u1-ue1 u2-ue2
0.00 0.00000 2.00000 0.00000 0.00000
1.00 0.36783 0.36792 0.00000 0.00000
2.00 0.13534 0.13534 0.00000 0.00000
3.00 0.04979 0.04979 0.00000 0.00000
4.00 0.01832 0.01832 0.00000 0.00000
5.00 0.00674 0.00674 0.00000 0.00000

rkf45b integrator

t u1 u2 u1-ue1 u2-ue2
0.00 0.00000 2.00000 0.00000 0.00000
1.00 0.36783 0.36792 0.00000 0.00000
2.00 0.13534 0.13534 0.00000 0.00000
3.00 0.04978 0.04978 0.00000 0.00000
4.00 0.01831 0.01831 0.00000 0.00000
5.00 0.00673 0.00674 0.00000 0.00000

We conclude from this output that the error tolerances set in intpar (1.0×10−5)
are observed by all six integrators.

3.2 Programming in C

Since main Program 2.2.1 and the associated header file Program 2.2.2 are
unchanged in the 2x2 ODE problem, they are not listed here. intpar, par, inital,
derv, and fprint are listed below:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#include "ode2x2.h"

/* Type global variables */

int neqn, nout, nsteps;

double t0, tf, abserr, relerr;

/* Define file ID */
FILE *fid;

void intpar()

/* Function intpar sets the parameters to control the
integration of the 2 x 2 ODE system */
{

/* Number of ODEs */
neqn=2;

/* Number of output points */
nout=6;

/* Maximum number of steps in the interval t0 to tf */
nsteps=100;

/* Initial, final values of independent variable */
t0=0.0;
tf=1.0;

/* Error tolerances */
abserr=pow(10,-5);
relerr=pow(10,-5);

/* End of intpar */
}

void par(double a[])

/* Function par sets the parameters for the 2 x 2 ODE
problem */
{

a[1]=5.5;
a[2]=4.5;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* End of par */
}

void inital(double u0[],double t0)

/* Function inital sets the initial condition vector for
the 2 x 2 ODE problem */
{

/* Initial condition */
u0[1]=0.0;
u0[2]=2.0;

/* End of inital */
}

void derv(double ut[], double t, double u[])

/* Function derv computes the derivative vector of the
2 x 2 ODE problem */
{

/* Type variables */
double a[3];

/* Problem parameters */
par(a);

/* Derivative vector */
ut[1]=-a[1]*u[1]+a[2]*u[2];
ut[2]= a[2]*u[1]-a[1]*u[2];

/* End of derv */
}

void fprint(int ncase, double t, double u[])

/* Function fprint displays the numerical and exact
solutions to the 2 x 2 ODE problem */
{

/* Type variables */
double a[3], ue[3], diff[3], e1, e2;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Problem parameters */
par(a);

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
/* Label for ODE integrator */
switch(ncase)

{
case 1: /* Fixed step modified Euler */
fprintf(fid,"\n euler2a integrator\n");
break;

case 2: /* Variable step modified Euler */
fprintf(fid,"\n euler2b integrator\n");
break;

case 3: /* Fixed step classical fourth order RK */
fprintf(fid,"\n rkc4a integrator\n");
break;

case 4: /* Variable step classical fourth
order RK */

fprintf(fid,"\n rkc4b integrator\n");
break;

case 5: /* Fixed step RK Fehlberg 45 */
fprintf(fid,"\n rkf45a integrator\n");
break;

case 6: /* Variable step RK Fehlberg 45 */
fprintf(fid,"\n rkf45b integrator\n");
break;

}

/* Heading */
fprintf(fid,"\n t u1(num) u1(ex) diff1");
fprintf(fid,"\n u2(num) u2(ex) diff2\n\n");

/* End of t = 0 heading */
}

/* Analytical solution eigenvalues */
e1=-(a[1]-a[2]);
e2=-(a[1]+a[2]);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Analytical solution vector */
ue[1]=exp(e1*t)-exp(e2*t);
ue[2]=exp(e1*t)+exp(e2*t);

/* Difference between exact and numerical solution
vectors */
diff[1]=u[1]-ue[1];
diff[2]=u[2]-ue[2];

/* Display the numerical and exact solutions, and
their difference */

fprintf(fid,"%10.2f %10.5f %10.5f %13.4e \n",
t,u[1],ue[1],diff[1]);

fprintf(fid," %10.5f %10.5f %13.4e \n\n",
u[2],ue[2],diff[2]);

/* End of fprint */
}

Program 3.2.1
intpar, par, inital, derv, and fprint for the solution of Equations 1.6 and 1.16

The only new feature of these routines is the addition of par, which sets the
problem parameters a = 5.5, b = 4.5. These parameters are then used in derv
and fprint by a call to par:

/* Type variables */
double a[3];

/* Problem parameters */
par(a);

Of course, these parameters could be set directly in derv and fprint as in
Program 3.1.2. The use of par is just an alternative, which would be more
attractive as the number of parameters becomes large (so that the code for the
assignment statements is programmed once in par, then used in more than
one place, such as in derv and fprint, by calls to par).

The output from the preceding routines is as follows:

euler2a integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.00000 0.00000 0.0000e+00
2.00000 2.00000 0.0000e+00

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

1.00 0.36784 0.36783 5.3545e-06
0.36793 0.36792 7.0006e-06

2.00 0.13534 0.13534 4.5451e-06
0.13534 0.13534 4.5453e-06

3.00 0.04979 0.04979 2.5082e-06
0.04979 0.04979 2.5082e-06

4.00 0.01832 0.01832 1.2303e-06
0.01832 0.01832 1.2303e-06

5.00 0.00674 0.00674 5.6575e-07
0.00674 0.00674 5.6575e-07

euler2b integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.00000 0.00000 0.0000e+00
2.00000 2.00000 0.0000e+00

1.00 0.36784 0.36783 5.4556e-06
0.36793 0.36792 7.1360e-06

2.00 0.13534 0.13534 4.6322e-06
0.13534 0.13534 4.6323e-06

3.00 0.04979 0.04979 2.6575e-06
0.04979 0.04979 2.6575e-06

4.00 0.01832 0.01832 1.9472e-06
0.01832 0.01832 1.9472e-06

5.00 0.00674 0.00674 1.8392e-06
0.00674 0.00674 1.8392e-06

rkc4a integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.00000 0.00000 0.0000e+00
2.00000 2.00000 0.0000e+00

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

1.00 0.36783 0.36783 -3.8034e-10
0.36792 0.36792 4.4217e-10

2.00 0.13534 0.13534 2.2707e-11
0.13534 0.13534 2.2782e-11

3.00 0.04979 0.04979 1.2551e-11
0.04979 0.04979 1.2551e-11

4.00 0.01832 0.01832 6.1563e-12
0.01832 0.01832 6.1563e-12

5.00 0.00674 0.00674 2.8310e-12
0.00674 0.00674 2.8310e-12

rkc4b integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.00000 0.00000 0.0000e+00
2.00000 2.00000 0.0000e+00

1.00 0.36783 0.36783 -1.8012e-08
0.36792 0.36792 2.0370e-08

2.00 0.13534 0.13534 1.5347e-09
0.13534 0.13534 1.5407e-09

3.00 0.04979 0.04979 7.2352e-09
0.04979 0.04979 7.2352e-09

4.00 0.01832 0.01832 5.1152e-09
0.01832 0.01832 5.1152e-09

5.00 0.00674 0.00674 1.7098e-08
0.00674 0.00674 1.7098e-08

rkf45a integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.00000 0.00000 0.0000e+00
2.00000 2.00000 0.0000e+00

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

1.00 0.36783 0.36783 4.4252e-12
0.36792 0.36792 -4.4910e-12

2.00 0.13534 0.13534 -2.4120e-14
0.13534 0.13534 -2.4869e-14

3.00 0.04979 0.04979 -1.3572e-14
0.04979 0.04979 -1.3593e-14

4.00 0.01832 0.01832 -6.6648e-15
0.01832 0.01832 -6.6648e-15

5.00 0.00674 0.00674 -3.0739e-15
0.00674 0.00674 -3.0739e-15

rkf45b integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.00000 0.00000 0.0000e+00
2.00000 2.00000 0.0000e+00

1.00 0.36783 0.36783 8.6412e-07
0.36792 0.36792 -8.7008e-07

2.00 0.13534 0.13534 -1.4522e-07
0.13534 0.13534 -1.4887e-07

3.00 0.04978 0.04979 -2.1496e-06
0.04978 0.04979 -2.1386e-06

4.00 0.01831 0.01832 -1.6852e-06
0.01831 0.01832 -1.4300e-06

5.00 0.00673 0.00674 -3.8224e-06
0.00674 0.00674 2.1107e-06

Generally, the accuracy of the numerical solution meets or exceeds the toler-
ances set in intpar.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

3.3 Programming in C++

Again, since main Program 2.3.1 and the associated header file Program 2.3.2
are unchanged in the 2x2 ODE problem, they are not listed here. intpar, par,
inital, derv, and fprint are listed below:

#include "DEF.h"
#include <iomanip.h>

/* Define file ID */
FILE *fid;

void DEF::intpar()

/* Function intpar sets the parameters to control the
integration of the 2 x 2 ODE system */
{

/* Number of ODEs */
neqn=2;

/* Number of output points */
nout=6;

/* Maximum number of steps in the interval t0 to tf */
nsteps=100;

/* Initial, final values of independent variable */
t0=0.0;
tf=1.0;

/* Error tolerances */
abserr=pow(10.0,-5.0);
relerr=pow(10.0,-5.0);

/* End of intpar */
}

void DEF::inital()

/* Function inital sets the initial condition vector for
the 2 x 2 ODE problem */

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

{
/* Initial condition */
u0[1]=0.0;
u0[2]=2.0;

/* End of inital */
}

void DEF::derv(double ut[], double t, double u[])

/* Function derv computes the derivative vector of the
2 x 2 ODE problem */
{

/* Type variables */
double a, b;

/* Problem parameters */
a=5.5;
b=4.5;

/* Derivative vector */
ut[1]=-a*u[1]+b*u[2];
ut[2]= b*u[1]-a*u[2];

/* End of derv */
}

void DEF::fprint(int ncase, int neqn, double t, double u[])

/* Function fprint displays the numerical and exact
solutions to the 2 x 2 ODE problem; this function has
two override-defined functions */
{

/* Type variables */
double ue[3], diff[3];
double a, b, e1, e2;

/* Problem parameters */
a=5.5;
b=4.5;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
/* Label for ODE integrator */
switch(ncase)

{
/*Fixed step modified Euler */
case 1:
fprintf(fid,"\n\n euler2a integrator\n\n");
break;

/* Variable step modified Euler */
case 2:
fprintf(fid,"\n\n euler2b integrator\n\n");
break;

/* Fixed step classical fourth order RK */
case 3:
fprintf(fid,"\n\n rkc4a integrator\n\n");
break;

/* Variable step classical fourth order RK */
case 4:
fprintf(fid,"\n\n rkc4b integrator\n\n");
break;

/* Fixed step RK Fehlberg 45 */
case 5:
fprintf(fid,"\n\n rkf45a integrator\n\n");
break;

/* Variable step RK Fehlberg 45 */
case 6:
fprintf(fid,"\n\n rkf45b integrator\n\n");
break;

}

/* Heading */
fprintf(fid,"\n t u1(num) u1(ex) diff1\n");
fprintf(fid,"\n u2(num) u2(ex) diff2\n\n");

/* End of t = 0 heading */
}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Analytical solution eigenvalues*/
e1=-(a-b);
e2=-(a+b);

/* Analytical solution vector */
ue[1]=exp(e1*t)-exp(e2*t);
ue[2]=exp(e1*t)+exp(e2*t);

/* Difference between exact and numerical solutions */
diff[1]=u[1]-ue[1];
diff[2]=u[2]-ue[2];

/* Display the numerical and exact solutions, and their
difference */
fprintf(fid,"%10.2f %10.5f %10.5f %13.4e\n",t,u[1],ue[1],

diff[1]);
fprintf(fid,"%10.2f %10.5f %10.5f %13.4e\n",t,u[2],ue[2],

diff[2]);

/* End of fprint */
}

void DEF::fprint(ofstream &fout, int ncase, int neqn,
double t, double u[])

/* Function fprint displays the numerical and exact
solutions to the 2 x 2 ODE problem; this function has
two override-defined functions */
{

/* Type variables */
double ue[3], diff[3];
double a, b, e1, e2;

/* Problem parameters */
a=5.5;
b=4.5;

/* Set printing format */
fout<<setiosflags(ios::showpoint|ios::fixed)

<<setprecision(7);

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Label for ODE integrator */
switch(ncase)

{
/* Fixed step modified Euler */
case 1:
fout<<"\n\n euler2a integrator\n";
break;

/* Variable step modified Euler */
case 2:
fout<<"\n\n euler2b integrator\n";
break;

/* Fixed step classical fourth order RK */
case 3:
fout<<"\n\n rkc4a integrator\n";
break;

/* Variable step classical fourth order RK */
case 4:
fout<<"\n\n rkc4b integrator\n";
break;

/* Fixed step RK Fehlberg 45 */
case 5:
fout<<"\n\n rkf45a integrator\n";
break;

/* Variable step RK Fehlberg 45 */
case 6:
fout<<"\n\n rkf45b integrator\n";
break;

}

/* Heading */
fout<<endl;
fout<<" t"<<setw(18)<<"u1(num)"<<setw(11)

<<"u1(ex)"<<setw(11)<<"diff1"<<"\n";
fout <<setw(20)<<"u2(num)"<<setw(11)

<<"u2(ex)"<<setw(11)<<"diff2"<<"\n";

/* End of t = 0 heading */
}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Analytical solution eigenvalues*/
e1=-(a-b);
e2=-(a+b);

/* Analytical solution vector */
ue[1]=exp(e1*t)-exp(e2*t);
ue[2]=exp(e1*t)+exp(e2*t);

/* Difference between exact and numerical solutions */
diff[1]=u[1]-ue[1];
diff[2]=u[2]-ue[2];
fout<<endl;

/* Display the numerical and exact solutions, and their
difference */
fout<<setw(10)<<t<<setw(12)<<u[1]<<setw(12)<<ue[1]

<<setw(12)<<diff[1]<<"\n";
fout<<setw(22) <<u[2]<<setw(12)<<ue[2]

<<setw(12)<<diff[2]<<"\n";

/* End of fprint */
}

Program 3.3.1
intpar, inital, derv, and fprint for the solution of Equations 1.6 and 1.16

The output from the preceding routines is as follows:

euler2a integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.0000000 0.0000000 0.0000000 0.0000000
2.0000000 2.0000000 0.0000000

1.0000000 0.3678394 0.3678340 0.0000054
0.3679318 0.3679248 0.0000070

2.0000000 0.1353398 0.1353353 0.0000045
0.1353398 0.1353353 0.0000045

3.0000000 0.0497896 0.0497871 0.0000025
0.0497896 0.0497871 0.0000025

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

4.0000000 0.0183169 0.0183156 0.0000012
0.0183169 0.0183156 0.0000012

5.0000000 0.0067385 0.0067379 0.0000006
0.0067385 0.0067379 0.0000006

euler2b integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.0000000 0.0000000 0.0000000 0.0000000
2.0000000 2.0000000 0.0000000

1.0000000 0.3678395 0.3678340 0.0000055
0.3679320 0.3679248 0.0000071

2.0000000 0.1353399 0.1353353 0.0000046
0.1353399 0.1353353 0.0000046

3.0000000 0.0497897 0.0497871 0.0000027
0.0497897 0.0497871 0.0000027

4.0000000 0.0183176 0.0183156 0.0000019
0.0183176 0.0183156 0.0000019

5.0000000 0.0067398 0.0067379 0.0000018
0.0067398 0.0067379 0.0000018

rkc4a integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.0000000 0.0000000 0.0000000 0.0000000
2.0000000 2.0000000 0.0000000

1.0000000 0.3678340 0.3678340 0.0000000
0.3679248 0.3679248 0.0000000

2.0000000 0.1353353 0.1353353 0.0000000
0.1353353 0.1353353 0.0000000

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

3.0000000 0.0497871 0.0497871 0.0000000
0.0497871 0.0497871 0.0000000

4.0000000 0.0183156 0.0183156 0.0000000
0.0183156 0.0183156 0.0000000

5.0000000 0.0067379 0.0067379 0.0000000
0.0067379 0.0067379 0.0000000

rkc4b integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.0000000 0.0000000 0.0000000 0.0000000
2.0000000 2.0000000 0.0000000

1.0000000 0.3678340 0.3678340 0.0000000
0.3679249 0.3679248 0.0000000

2.0000000 0.1353353 0.1353353 0.0000000
0.1353353 0.1353353 0.0000000

3.0000000 0.0497871 0.0497871 0.0000000
0.0497871 0.0497871 0.0000000

4.0000000 0.0183156 0.0183156 0.0000000
0.0183156 0.0183156 0.0000000

5.0000000 0.0067380 0.0067379 0.0000000
0.0067380 0.0067379 0.0000000

rkf45a integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.0000000 0.0000000 0.0000000 0.0000000
2.0000000 2.0000000 0.0000000

1.0000000 0.3678340 0.3678340 0.0000000
0.3679248 0.3679248 0.0000000

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

2.0000000 0.1353353 0.1353353 0.0000000
0.1353353 0.1353353 0.0000000

3.0000000 0.0497871 0.0497871 0.0000000
0.0497871 0.0497871 0.0000000

4.0000000 0.0183156 0.0183156 0.0000000
0.0183156 0.0183156 0.0000000

5.0000000 0.0067379 0.0067379 0.0000000
0.0067379 0.0067379 0.0000000

rkf45b integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.0000000 0.0000000 0.0000000 0.0000000
2.0000000 2.0000000 0.0000000

1.0000000 0.3678340 0.3678340 0.0000000
0.3679248 0.3679248 0.0000000

2.0000000 0.1353353 0.1353353 0.0000000
0.1353353 0.1353353 0.0000000

3.0000000 0.0497871 0.0497871 0.0000000
0.0497871 0.0497871 0.0000000

4.0000000 0.0183156 0.0183156 0.0000000
0.0183156 0.0183156 0.0000000

5.0000000 0.0067380 0.0067379 0.0000000
0.0067380 0.0067379 0.0000000

Generally, the accuracy of the numerical solution meets or exceeds the toler-
ances set in intpar.

3.4 Programming in Fortran

Again, since main Program 2.4.1 is unchanged in the 2x2 ODE problem, it is
not listed here. intpar, par, inital, derv, and fprint are listed below:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

subroutine intpar(neqn,nout,nsteps,t0,tf,abserr,relerr)
C
C Subroutine intpar sets the parameters to control the
C integration of the 2 x 2 ODE system
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Number of ODEs

neqn=2
C
C Number of output points

nout=6
C
C Maximum number of steps in the interval t0 to tf

nsteps=100
C
C Initial, final values of the independent variable

t0=0.0d0
tf=0.2d0

C
C Error tolerances

abserr=1.0d-05
relerr=1.0d-05
return

C
C End of intpar

end

subroutine inital(neqn,t,u0)
C
C Subroutine inital sets the initial condition vector
C for the 2 x 2 ODE problem
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size the arrays

dimension u0(neqn)
C
C Initial condition

u0(1)=0.0d0
u0(2)=2.0d0
return

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C
C End of inital

end

subroutine par(a,b)
C
C Subroutine par sets the parameters for the 2 x 2 ODE
C problem
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Problem parameters

a=5.5d0
b=4.5d0
return

C
C End of par

end

subroutine derv(neqn,t,u,ut)
C
C Subroutine derv computes the derivative vector
C of the 2 x 2 ODE problem
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size the arrays

dimension u(neqn), ut(neqn)
C
C Problem parameters

call par(a,b)
C
C Derivative vector

ut(1)=-a*u(1)+b*u(2)
ut(2)= b*u(1)-a*u(2)
return

C
C End of derv

end

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

subroutine fprint(no,ncase,neqn,t,u)
C
C
C Subroutine fprint displays the numerical and
C analytical solutions to the 2 x 2 ODE problem
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size the arrays

dimension u(neqn)
C
C Problem parameters

call par(a,b)
C
C Print a heading for the solution at t = 0

if(t.le.0.0d0)then
C
C Label for ODE integrator
C
C Fixed step modfied Euler

if(ncase.eq.1)then
write(no,11)

11 format(/,6x,'euler2a integrator')
C
C Variable step modified Euler

else if(ncase.eq.2)then
write(no,12)

12 format(/,6x,'euler2b integrator')
C
C Fixed step classical fourth order RK

else if(ncase.eq.3)then
write(no,13)

13 format(/,6x,'rkc4a integrator')
C
C Variable step classical fourth order RK

else if(ncase.eq.4)then
write(no,14)

14 format(/,6x,'rkc4b integrator')
C
C Fixed step RK Fehlberg 45

else if(ncase.eq.5)then
write(no,15)

15 format(/,6x,'rkf45a integrator')
C

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C Variable step RK Fehlberg 45
else if(ncase.eq.6)then

write(no,16)
16 format(/,6x,'rkf45b integrator')

end if
C
C Heading

write(no,2)
2 format(/,9x,'t',3x,'u1(num)',4x,'u1(ex)',8x,'diff1',/,

1 10x, 3x,'u2(num)',4x,'u2(ex)',8x,'diff2',/)
C
C End of t = 0 heading

end if
C
C Analytical solution

u1exact=dexp(-(a-b)*t)-dexp(-(a+b)*t)
u2exact=dexp(-(a-b)*t)+dexp(-(a+b)*t)

C
C Difference between exact and numerical solution vectors

diff1=u(1)-u1exact
diff2=u(2)-u2exact

C
C Display the numerical and exact solutions,
C and their difference

write(no,3)t,u(1),u1exact,diff1,u(2),u2exact,diff2
3 format(f10.2,2f10.5,e13.4,/,10x,2f10.5,e13.4,/)

return
C
C End of fprint

end

Program 3.4.1
intpar, inital, par, derv, and fprint for the solution of Equations 1.6 and 1.16

The output from the preceding routines is as follows:

euler2a integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.00000 0.00000 0.0000E+00
2.00000 2.00000 0.0000E+00

1.00 0.36784 0.36783 0.5354E-05
0.36793 0.36792 0.7001E-05

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

2.00 0.13534 0.13534 0.4545E-05
0.13534 0.13534 0.4545E-05

3.00 0.04979 0.04979 0.2508E-05
0.04979 0.04979 0.2508E-05

4.00 0.01832 0.01832 0.1230E-05
0.01832 0.01832 0.1230E-05

5.00 0.00674 0.00674 0.5657E-06
0.00674 0.00674 0.5657E-06

euler2b integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.00000 0.00000 0.0000E+00
2.00000 2.00000 0.0000E+00

1.00 0.36784 0.36783 0.5456E-05
0.36793 0.36792 0.7136E-05

2.00 0.13534 0.13534 0.4632E-05
0.13534 0.13534 0.4632E-05

3.00 0.04979 0.04979 0.2658E-05
0.04979 0.04979 0.2658E-05

4.00 0.01832 0.01832 0.1947E-05
0.01832 0.01832 0.1947E-05

5.00 0.00674 0.00674 0.1839E-05
0.00674 0.00674 0.1839E-05

rkc4a integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.00000 0.00000 0.0000E+00
2.00000 2.00000 0.0000E+00

1.00 0.36783 0.36783 -0.3803E-09
0.36792 0.36792 0.4422E-09

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

2.00 0.13534 0.13534 0.2271E-10
0.13534 0.13534 0.2278E-10

3.00 0.04979 0.04979 0.1255E-10
0.04979 0.04979 0.1255E-10

4.00 0.01832 0.01832 0.6156E-11
0.01832 0.01832 0.6156E-11

5.00 0.00674 0.00674 0.2831E-11
0.00674 0.00674 0.2831E-11

rkc4b integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.00000 0.00000 0.0000E+00
2.00000 2.00000 0.0000E+00

1.00 0.36783 0.36783 -0.1801E-07
0.36792 0.36792 0.2037E-07

2.00 0.13534 0.13534 0.1535E-08
0.13534 0.13534 0.1541E-08

3.00 0.04979 0.04979 0.7235E-08
0.04979 0.04979 0.7235E-08

4.00 0.01832 0.01832 0.5115E-08
0.01832 0.01832 0.5115E-08

5.00 0.00674 0.00674 0.1710E-07
0.00674 0.00674 0.1710E-07

rkf45a integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.00000 0.00000 0.0000E+00
2.00000 2.00000 0.0000E+00

1.00 0.36783 0.36783 0.4425E-11
0.36792 0.36792 -0.4491E-11

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

2.00 0.13534 0.13534 -0.2412E-13
0.13534 0.13534 -0.2487E-13

3.00 0.04979 0.04979 -0.1357E-13
0.04979 0.04979 -0.1359E-13

4.00 0.01832 0.01832 -0.6665E-14
0.01832 0.01832 -0.6665E-14

5.00 0.00674 0.00674 -0.3074E-14
0.00674 0.00674 -0.3074E-14

rkf45b integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.00000 0.00000 0.0000E+00
2.00000 2.00000 0.0000E+00

1.00 0.36783 0.36783 0.8641E-06
0.36792 0.36792 -0.8701E-06

2.00 0.13534 0.13534 -0.1452E-06
0.13534 0.13534 -0.1489E-06

3.00 0.04978 0.04979 -0.2150E-05
0.04978 0.04979 -0.2139E-05

4.00 0.01831 0.01832 -0.1685E-05
0.01831 0.01832 -0.1430E-05

5.00 0.00673 0.00674 -0.3822E-05
0.00674 0.00674 0.2111E-05

Generally, the accuracy of the numerical solution meets or exceeds the toler-
ances set in intpar.

3.5 Programming in Java

Again, since main Program 2.5.1 and interface routines 2.5.2 are unchanged
in the 2x2 ODE problem, they are not listed here. intpar, par, inital, derv, and
fprint are listed below:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* This file is a member of the package mol */
package mol;

import mol.MOL;
import java.math.*;
import java.io.*;
import java.text.*;

public class DEF extends MOL implements ode2x2interface
{

public DEF()
{

/* Integration parameters */
this.intpar();

/* Declare arrays */
u0=new double[SIZE];
u=new double[SIZE];
e=new double[SIZE];

/* Problem parameters */
this.par();

/* Initial condition vector */
this.inital();

}

public void intpar()

/* Function intpar sets the parameters to control the
integration of the 2 x 2 ODE system */
{

/* Number of ODEs */
neqn=2;

/* Size of arrays in MOL library */
SIZE=neqn+1;

/* Number of output points */
nout=6;

/* Maximum number of steps in the interval t0 to tf */

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

nsteps=100;

/* Initial, final values of the independent variable */
t0=0.0;
tf=1.0;

/* Error tolerances */
abserr=Math.pow(10.0,-5.0);
relerr=Math.pow(10.0,-5.0);

/* End of inpar */
}

public void inital()

/* Function inital sets the initial condition vector for
the 2 x 2 ODE problem */
{

u0[1]=0.0E0;
u0[2]=2.0E0;

/* End of inital */
}

public void par()

/* Function par sets the parameters for the 2 x 2 ODE
problem */
{

a=5.5;
b=4.5;

/* End of par */
}

public void derv(double ut[], double t, double u[])

/* Function derv computes the derivative vector of the
2 x 2 ODE problem */
{

/* Problem parameters */
par();

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Derivative vector */
ut[1]=-a*u[1] + b*u[2];
ut[2]= b*u[1] - a*u[2];

/* End of derv */
}

public void fprint(PrintWriter f, int ncase, int neqn,
double t, double u[])

/* Function fprint displays the numerical and exact
solutions to the 2 x 2 ODE problem */
{

/* Type variables */
double ue1, ue2;
double diff1, diff2;
double e1, e2;

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
/* Label for ODE integrator */
switch(ncase)

{
/*Fixed step modified Euler */
case 1:
f.println("\n euler2a integrator\n");
break;

/* Variable step modified Euler */
case 2:
f.println("\n euler2b integrator\n");
break;

/* Fixed step classical fourth order RK */
case 3:
f.println("\n rkc4a integrator\n");
break;

/* Variable step classical fourth order RK */
case 4:
f.println("\n rkc4b integrator\n");
break;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Fixed step RK Fehlberg 45 */
case 5:
f.println("\n rkf45a integrator\n");
break;

/* Variable step RK Fehlberg 45 */
case 6:
f.println("\n rkf45b integrator\n");
break;

}

/* Heading */
f.println(" t u1(num) u1(ex) diff1");
f.println(" u2(num) u2(ex) diff2");

/* End of t = 0 heading */
}

/* Analytical solution */
ue1=Math.exp(-(a-b)*t)-Math.exp(-(a+b)*t);
ue2=Math.exp(-(a-b)*t)+Math.exp(-(a+b)*t);

/* Difference between exact and numerical solution
vectors */
diff1=u[1]-ue1;
diff2=u[2]-ue2;

/* Display format for floating numbers */
DecimalFormat df1 = new DecimalFormat(" 0.00");
DecimalFormat df2 = new DecimalFormat("0.0000000");

/* Display the numerical and exact solutions, and their
difference */
f.println("\n"+df1.format(t)+"\t"+df2.format(u[1])

+"\t"+df2.format(ue1)+"\t"+df2.format(diff1));
f.println(" \t"+df2.format(u[2])

+"\t"+df2.format(ue2)+"\t"+df2.format(diff2));
/* End of fprint */
}

/* End of DEF */
}

Program 3.5.1
intpar, inital, par, derv, and fprint for the solution of Equations 1.6 and 1.16

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

The output from the preceding routines is as follows:

euler2a integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.0000000 0.0000000 0.0000000
2.0000000 2.0000000 0.0000000

1.00 0.3678394 0.3678340 0.0000054
0.3679318 0.3679248 0.0000070

2.00 0.1353398 0.1353353 0.0000045
0.1353398 0.1353353 0.0000045

3.00 0.0497896 0.0497871 0.0000025
0.0497896 0.0497871 0.0000025

4.00 0.0183169 0.0183156 0.0000012
0.0183169 0.0183156 0.0000012

5.00 0.0067385 0.0067379 0.0000006
0.0067385 0.0067379 0.0000006

euler2b integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.0000000 0.0000000 0.0000000
2.0000000 2.0000000 0.0000000

1.00 0.3678395 0.3678340 0.0000055
0.3679320 0.3679248 0.0000071

2.00 0.1353399 0.1353353 0.0000046
0.1353399 0.1353353 0.0000046

3.00 0.0497897 0.0497871 0.0000027
0.0497897 0.0497871 0.0000027

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

4.00 0.0183176 0.0183156 0.0000019
0.0183176 0.0183156 0.0000019

5.00 0.0067398 0.0067379 0.0000018
0.0067398 0.0067379 0.0000018

rkc4a integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.0000000 0.0000000 0.0000000
2.0000000 2.0000000 0.0000000

1.00 0.3678340 0.3678340 -0.0000000
0.3679248 0.3679248 0.0000000

2.00 0.1353353 0.1353353 0.0000000
0.1353353 0.1353353 0.0000000

3.00 0.0497871 0.0497871 0.0000000
0.0497871 0.0497871 0.0000000

4.00 0.0183156 0.0183156 0.0000000
0.0183156 0.0183156 0.0000000

5.00 0.0067379 0.0067379 0.0000000
0.0067379 0.0067379 0.0000000

rkc4b integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.0000000 0.0000000 0.0000000
2.0000000 2.0000000 0.0000000

1.00 0.3678340 0.3678340 -0.0000000
0.3679249 0.3679248 0.0000000

2.00 0.1353353 0.1353353 0.0000000
0.1353353 0.1353353 0.0000000

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

3.00 0.0497871 0.0497871 0.0000000
0.0497871 0.0497871 0.0000000

4.00 0.0183156 0.0183156 0.0000000
0.0183156 0.0183156 0.0000000

5.00 0.0067380 0.0067379 0.0000000
0.0067380 0.0067379 0.0000000

rkf45a integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.0000000 0.0000000 0.0000000
2.0000000 2.0000000 0.0000000

1.00 0.3678340 0.3678340 0.0000000
0.3679248 0.3679248 -0.0000000

2.00 0.1353353 0.1353353 -0.0000000
0.1353353 0.1353353 -0.0000000

3.00 0.0497871 0.0497871 -0.0000000
0.0497871 0.0497871 -0.0000000

4.00 0.0183156 0.0183156 -0.0000000
0.0183156 0.0183156 -0.0000000

5.00 0.0067379 0.0067379 -0.0000000
0.0067379 0.0067379 -0.0000000

rkf45b integrator

t u1(num) u1(ex) diff1
u2(num) u2(ex) diff2

0.00 0.0000000 0.0000000 0.0000000
2.0000000 2.0000000 0.0000000

1.00 0.3678349 0.3678340 0.0000009
0.3679240 0.3679248 -0.0000009

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

2.00 0.1353351 0.1353353 -0.0000001
0.1353351 0.1353353 -0.0000001

3.00 0.0497849 0.0497871 -0.0000021
0.0497849 0.0497871 -0.0000021

4.00 0.0183140 0.0183156 -0.0000017
0.0183142 0.0183156 -0.0000014

5.00 0.0067341 0.0067379 -0.0000038
0.0067401 0.0067379 0.0000021

Generally, the accuracy of the numerical solution meets or exceeds the toler-
ances set in intpar.

3.6 Programming in Maple

Since main Program 3.6.1 (and subordinate routines) accesses specific files by
read statements, it is listed first:

> restart:

> read "c:\\odelib\\maple\\ode2x2\\ode2x2.txt";

> ode2x2();

Program 3.6.1
Maple main program ode2x2.mws for the numerical integration of Equations
1.6 and 1.16

ode2x2:=proc()
#
Main program ode2x2 computes the numerical
solution to the 2 x 2 ODE system by one of
six integrators
#
Type variables

global neqn, nout, nsteps, t0, tf, abserr, relerr:
local u0, u, tp, ncase, i, j:

#
Step through six integrators

for ncase from 1 to 6 do

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
Integration parameters

read "c:\\odelib\\maple\\ode2x2\\intpar.txt":
intpar():

#
Size arrays

u0:=array(1..neqn): u:=array(1..neqn):
#
Initial condition vector

read "c:\\odelib\\maple\\ode2x2\\inital.txt":
inital(n,t0,u0):

#
Output interval

tp:=tf-t0:
#
Compute solution at nout output points

for j from 1 to nout do
#
Print current solution

read "c:\\odelib\\maple\\ode2x2\\fprint.txt":
fprint(ncase,neqn,t0,u0):

#
Fixed step modified Euler integrator

if (ncase = 1) then
read "c:\\odelib\\maple\\ode2x2\\euler2a.txt":
euler2a(neqn,t0,tf,u0,nsteps,u):

end if:
#
Variable step modified Euler integrator

if (ncase = 2) then
read "c:\\odelib\\maple\\ode2x2\\euler2b.txt":
euler2b(neqn,t0,tf,u0,nsteps,abserr,relerr,u):

end if:
#
Fixed step classical fourth order RK integrator

if (ncase = 3) then
read "c:\\odelib\\maple\\ode2x2\\rkc4a.txt":
rkc4a(neqn,t0,tf,u0,nsteps,u):

end if:
#
Variable step classical fourth order RK integrator

if (ncase = 4) then
read "c:\\odelib\\maple\\ode2x2\\rkc4b.txt":
rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr,u):

end if:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
Fixed step RK Fehlberg (RKF45) integrator

if (ncase = 5) then
read "c:\\odelib\\maple\\ode2x2\\rkf45a.txt":
rkf45a(neqn,t0,tf,u0,nsteps,u):

end if:
#
Variable step RK Fehlberg (RKF45) integrator

if (ncase = 6) then
read "c:\\odelib\\maple\\ode2x2\\rkf45b.txt":
rkf45b(neqn,t0,tf,u0,nsteps,abserr,relerr,u):

end if:
#
Advance solution

t0:=tf:
tf:=tf+tp:
for i from 1 to neqn do

u0[i]:=u[i]:
end do:

#
Next output

end do:
#
Next integrator

end do:
#
End of ode2x2.txt

end:

Program 3.6.2
Maple main program ode2x2.txt for the numerical integration of Equations
1.6 and 1.16

Note the reference to specific files by read statements, e.g.,

#
Initial condition vector

read "c:\\odelib\\maple\\ode2x2\\inital.txt":
inital(neqn,t0,u0):

intpar, inital, derv, and fprint are listed below:

intpar:=proc()
#
Function intpar sets the parameters to control the
integration of the 2 x 2 ODE problem

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
Type variables

global neqn, nout, nsteps, t0, tf, abserr, relerr:
#
Number of first order ODEs

neqn:=2:
#
Number of output points

nout:=6:
#
Maximum number of steps in the interval t0 to tf

nsteps:=100:
#
Initial, final values of independent variable

t0:=0.0:
tf:=1.0:

#
Error tolerances

abserr:=1.0e-05:
relerr:=1.0e-05:

#
End of intpar

end:

inital:=proc(neqn,t,u0)
#
Procedure inital sets the initial condition vector
for the 2 x 2 ODE problem
#

u0[1]:=0:
u0[2]:=2:

#
End of inital

end:

derv:=proc(neqn,t,u,ut)
#
Procedure derv computes the derivative vector
of the 2 x 2 ODE problem
#
Type variables

global a, b:
#

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Problem parameters
a:=5.5:
b:=4.5:

#
Derivative vector

ut[1]:=-a*u[1]+b*u[2]:
ut[2]:= b*u[1]-a*u[2]:

#
End of derv

end:

fprint:=proc(ncase,neqn,t,u)
#
Procedure fprint displays the numerical and
exact solutions to the 2 x 2 ODE problem
#
Type variables

global a, b:
local e1, e2, ue, diff, i:

#
Define arrays

ue:=array(1..neqn): diff:=array(1..neqn):
#
Print a heading for the solution at t = 0

if (t <= 0.0) then
#
Label for ODE integrator
#
Fixed step modified Euler

if (ncase = 1) then
printf(`\n\n euler2a integrator\n\n`);

#
Variable step modified Euler

elif (ncase = 2) then
printf(`\n\n euler2b integrator\n\n`);

#
Fixed step classical fourth order RK

elif (ncase = 3) then
printf(`\n\n rkc4a integrator\n\n`);

#
Variable step classical fourth order RK

elif (ncase = 4) then
printf(`\n\n rkc4b integrator\n\n`);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
Fixed step RK Fehlberg 45

elif (ncase = 5) then
printf(`\n\n rkf45a integrator\n\n`);

#
Variable step RK Fehlberg 45

elif (ncase = 6) then
printf(`\n\n rkf45b integrator\n\n`);

end if:
#
Heading

printf(` t u1 u2 u1-ue1 u2-ue2\n`);
#
End of t = 0 heading

end if:
#
Numerical and analytical solution output
#
Exact solution eigenvalues

e1:=-(a-b):
e2:=-(a+b):

#
Analytical solution

ue[1]:=exp(e1*t)-exp(e2*t):
ue[2]:=exp(e1*t)+exp(e2*t):

#
Difference between exact and numerical solutions

for i from 1 to neqn do
diff[i]:=u[i]-ue[i]:

end do:
#
Display the numerical and exact solutions,
and their difference

printf(`%10.2f %10.5f %10.5f %10.5f %10.5f \n`,t,u[1],
u[2],diff[1],diff[2]);

#
End of fprint

end:

Program 3.6.3
intpar, inital, derv, and fprint for the solution of Equations 1.6 and 1.16

The output from the preceding routines is as follows:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

euler2a integrator

t u1 u2 u1-ue1 u2-ue2
0.00 0.00000 2.00000 0.00000 0.00000
1.00 .36784 .36793 .00001 .00001
2.00 .13534 .13534 .00000 .00000
3.00 .04979 .04979 .00000 .00000
4.00 .01832 .01832 .00000 .00000
5.00 .00674 .00674 .00000 .00000

euler2b integrator

t u1 u2 u1-ue1 u2-ue2
0.00 0.00000 2.00000 0.00000 0.00000
1.00 .36784 .36793 .00001 .00001
2.00 .13534 .13534 .00000 .00000
3.00 .04979 .04979 .00000 .00000
4.00 .01832 .01832 .00000 .00000
5.00 .00674 .00674 .00000 .00000

rkc4a integrator

t u1 u2 u1-ue1 u2-ue2
0.00 0.00000 2.00000 0.00000 0.00000
1.00 .36783 .36792 .00000 .00000
2.00 .13534 .13534 .00000 .00000
3.00 .04979 .04979 .00000 .00000
4.00 .01832 .01832 .00000 .00000
5.00 .00674 .00674 .00000 .00000

rkc4b integrator

t u1 u2 u1-ue1 u2-ue2
0.00 0.00000 2.00000 0.00000 0.00000
1.00 .36783 .36792 -.00000 .00000
2.00 .13534 .13534 .00000 .00000
3.00 .04979 .04979 .00000 .00000
4.00 .01832 .01832 .00000 .00000
5.00 .00674 .00674 .00000 .00000

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkf45a integrator

t u1 u2 u1-ue1 u2-ue2
0.00 0.00000 2.00000 0.00000 0.00000
1.00 .36783 .36792 -.00000 -.00000
2.00 .13534 .13534 -.00000 -.00000
3.00 .04979 .04979 0.00000 0.00000
4.00 .01832 .01832 .00000 .00000
5.00 .00674 .00674 .00000 .00000

rkf45b integrator

t u1 u2 u1-ue1 u2-ue2
0.00 0.00000 2.00000 0.00000 0.00000
1.00 .36783 .36792 .00000 -.00000
2.00 .13534 .13534 -.00000 -.00000
3.00 .04978 .04978 -.00000 -.00000
4.00 .01831 .01831 -.00000 -.00000
5.00 .00674 .00674 -.00000 -.00000

Generally, the accuracy of the numerical solution meets or exceeds the toler-
ances set in intpar.

This completes the discussion of the 2x2 ODE problem programmed in the
six languages. Basically, what we have considered is the use of the library
integrations for the solution of nxn systems of ODEs (as illustrated by the
solution of the 2x2 system).

We again point out that the preceding numerical solutions are for a = 5.5,
b = 4.5 corresponding to the nonstiff case λ1 = − 1, λ2 = −10. As expected,
this problem can be handled efficiently and with good accuracy by the six
nonstiff integrators (stability is not a problem). However, for the stiff case
a = 500, 000.5, b = 499, 999.5 listed after Equations 1.54, a stiff integrator
should be used to efficiently handle the problem of stability. This require-
ment (for a stiff or implicit integrator) is discussed in some detail in
Appendix C.

Thus, we emphasize that the library integrators discussed previously have
limitations (as do all numerical algorithms). They are therefore intended to
serve as a starting point, and to demonstrate some basic concepts and ap-
proaches. But success in solving any particular problem cannot be guaranteed
in advance, and generally some experimentation with the choice of integra-
tors and parameters (such as error tolerances) is required to arrive at a solution
with acceptable accuracy and computational effort.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

For example, we offer the suggestion that for a new ODE problem, a nonstiff
(explicit) integrator should be tried first. Our experience has indicated that a
broad spectrum of problems can be handled in this way. If the calculations
appear to be excessive, possibly signaling stiffness, then a switch to a stiff
integrator is a logical next step.

We now consider two problems in PDEs in the next two chapters. We shall
see that the preceding techniques for ODEs can also be applied to PDEs.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

4
Solution of a Linear PDE

The preceding methods, e.g., the (1, 2), (2, 4) and (4, 5) RK pairs, can be
applied to PDEs by using the numerical method of lines. Briefly, the spatial
(boundary value) derivatives in the PDEs are replaced with algebraic ap-
proximations, typically finite differences. The resulting equations are ODEs in
the initial value variable, previously designated t, so that we have an initial
value problem in ODEs. This is exactly the problem we considered in Chapters
1 through 3.

We now illustrate this approach to PDEs through two examples: (1) a linear
PDE problem in this chapter and (2) a nonlinear PDE problem in the next chapter.
The linear PDE problem is just Fourier’s second law, which is also called the
heat conduction equation:

∂u
∂t

= ∂2u
∂x2 (4.1)

Briefly, here is some terminology and associated mathematical conditions for
Equation 4.1:

• u is the dependent variable. Although Equation 4.1 typically describes
the temperature distribution in a solid, and therefore T (for temperature)
would seem a more logical name for the dependent variable, by conven-
tion, at least in much of the mathematical literature, u is used for a PDE
dependent variable.

• x and t are the independent variables. There are two types of such inde-
pendent variables:
— x is a spatial or boundary value (BV) variable. As these names imply, x

defines a spatial scale, i.e., a distance. Also, our physical world is three
dimensional, so Equation 4.1 is a one-dimensional (1D) approximation.
Such an approximation might seem unrealistic (since the world is
three dimensional), but there are often circumstances under which
a 1D (or 2D) approximation is quite adequate; we do not go into

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

details here, but the use of a lower-dimensional approximation is quite
common.

— t is an initial value (IV) variable, generally time.
• The features that distinguish IV from BV variables are considered sub-

sequently.
• Equation 4.1 is linear since the dependent variable u is to the first power. In

other words, Equation 4.1 is first degree.
• Equation 4.1 might appear to not be linear or first degree because of the

derivative ∂2u/∂x2. However, this is a second-order derivative. In other
words, Equation 4.1 is first degree (linear) and second order (in x). It is easy
to confuse order and degree!

• Equation 4.1 is a parabolic PDE. This geometric classification is one of three
possibilities: elliptic, parabolic, or hyperbolic. We do not get into the details
of this classification of PDEs, but it is quite important in understanding
the properties of the PDE solution and in the selection of numerical
methods for the calculation of numerical solutions. More details of the
geometric classification of PDEs, and some of the other nomenclature we
are considering here, can be found in many books (e.g., Wouver et al.,1

chap. 1).
• The solution to Equation 4.1 is the dependent variable, u, as a function of the

independent variables, x and t, that is u(x, t). As in the case of the ODEs
discussed in Chapters 1 through 3, the solution to a PDE might be (1)
exact or analytical or (2) numerical.

• Since Equation 4.1 is first order in t, it requires one initial condition in t,
which we take as

u(x, 0) = u0(x) (4.2)

We can note the following points about this initial condition:
— The initial value independent variable is specified at only one value,

in this case t = 0. Even if we had a system of PDEs, each requiring,
an initial condition, all of the initial conditions would be specified at
the same value of the initial value independent variable. In other words,
we can think of this single value as a starting point for the solution;
hence the name “initial.”

— The initial condition can be a function of the other PDE independent
variables, in this case u0(x). For Equation 4.1, we take u0(x) = sin(πx).

— For a PDE which is nth order in the initial value variable, n initial
conditions are required. In other words, a differential equation re-
quires a number of initial conditions equal to the order of the highest-
order derivative in the initial value independent variable. In the case of
Equation 4.1, n = 1. Also, all of the ODEs considered in Chapters 1
through 3 were first order in t, and therefore each ODE required only
one initial condition.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• Since Equation 4.1 is second order in x, it requires two boundary condi-
tions. We will take these to be

u(0, t) = 0 (4.3)

u(1, t) = 0 (4.4)

We can note the following about Equations 4.3 and 4.4:
— The boundary value independent variable, x, is specified at two dif-

ferent values, x = 0 and x = 1. In other words, boundary conditions
are specified at two more values of the boundary value independent vari-
able, in contrast to initial conditions, which are specified at the same
value of the independent variable.

— The boundary conditions could be functions of the other independent
variables, e.g.,

u(0, t) = f1(t), u(1, t) = f2(t) (4.5)

For Equations 4.3 and 4.4, we have taken f1(t) = f2(t) = 0.
— As the name “boundary condition” implies, the values of the bound-

ary value independent variable at which the boundary conditions
are specified are often boundaries of a physical system.

— Whereas the initial value problem is open-ended in the sense that the
range of the initial value variable (e.g., t) is unlimited and typically is
the semi-infinite interval, 0 ≤ t ≤ ∞, the range of the boundary value
variable is often finite; in the case of Equations 4.3 and 4.3, 0 ≤ x ≤ 1.
However, the limits of the boundary value independent variable can
be semi-infinite, e.g., 0 ≤ x ≤ ∞ or fully infinite −∞ ≤ x ≤ ∞. This
implies a physical system of infinite dimensions, which may actually
be a good approximation.

• PDEs are often expressed in an alternative subscript notation. For exam-
ple, we can express Equation 4.1 as

ut = uxx (4.6)

where
— A subscript denotes a partial derviative with respect to an indepen-

dent variable, e.g., ut = ∂u/∂t.
— The subscript is repeated a number of times equal to the order of the

derivative, e.g., uxx = ∂2u/∂x2.
This subscript notation has the advantage of simplicity in expressing the
PDE and in writing the associated computer code (the use of conven-
tional partial derivatives is avoided).

Equations 4.1 (or 4.6), 4.2, 4.3, and 4.4 constitute a complete, well-posed PDE
problem and we can proceed to the solution, u(x, t). To reiterate, we seek

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

as the solution of a system of differential equations the dependent variables
as functions of the independent variables. We have already observed this in the
case of the two preceding ODE problems, i.e., (1) Equation 1.5 for y(t) is the
analytical solution to Equation 1.3 and (2) Equations 1.17 for [y1(t) y2(t)]T are
the analytical solution to Equations 1.6. We now consider the analytical and
numerical solutions of Equations 4.1 to 4.4.

The analytical solution is

u(x, t) = sin(πx)e−π2t (4.7)

Equation 4.7 can easily be verified as the solution to Equations 4.1 to 4.4:

Equation Term Equation 4.7

4.1
∂u
∂t

−π 2 sin(πx)e−π2t

−∂2u
∂x2

π2 sin(πx)e−π2t

=0 =0
4.2 u(x, 0) sin(πx)

4.3 u(0, t) 0
4.4 u(1, t) 0

Thus, we can use Equation 4.7 to evaluate a numerical solution to Equa-
tions 4.1 to 4.4; that is, we can compute the exact error in the numerical
solution using Equation 4.7.

Before we can proceed to the calculation of a numerical solution to Equa-
tions 4.1 to 4.4, we first have to develop a method to program PDEs, and
in particular, Equation 4.1. We actually faced this problem with the ODEs
of Chapter 1; i.e., there is no way that a computer can accept ODEs directly
(since computers can basically only do high-speed arithmetic and store the
results).

In the case of ODEs, we adopted RK algorithms, which reduce the solution
of ODEs to high-speed arithmetic. In other words, calculation of ODE nu-
merical solutions required only the numerical evaluation of derivatives in the
routine derv, and stepping along the solution using the RK stepping formulas
such as Equation 1.19 for the Euler method—note that Equation 1.19 required
only the numerical value of the derivative dyi/dt (from derv), followed by
multiplication by h and addition to yi , that is, just high-speed arithmetic!
In general, all of the RK methods, (1, 2), (2, 3), (2, 4), and (4, 5), ultimately
require only the numerical calculation of derivatives and arithmetic.

Thus, we first must develop a method for solving PDEs using only what the
computer can do. Certainly a computer is not well suited for understanding
partial derivatives and generating a solution like Equation 4.7 (admittedly,
computer algebra systems such as Maple can produce analytical solutions

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

to a limited class of PDE problems, including Equation 4.7, but we want to
develop a general numerical method for PDEs that can be applied to large,
complex systems of PDEs for which computer algebra systems are unable to
produce analytical solutions).

To this end, we first replace the derivative ∂2u/∂x2 in Equation 4.1 (uxx in
Equation 4.6) with a finite difference (FD) approximation:

∂2u
∂x2 x=i

= ∂2ui

∂x2 � ui+1 − 2ui + ui−1

�x2 + O(�x2), i = 1, 2, · · · , n (4.8)

We can note the following points about Equation 4.8:

• A spatial grid in x is defined over the interval 0 ≤ x ≤ 1. Along this grid,
the value of a particular value of x is designated with the index i . Thus,
i = 1 corresponds to x = 0 and i = n corresponds to x = 1. The spacing
between adjacent grid points is �x. In other words, �x = xi − xi−1 =
xi+1 − xi or �x = (1 − 0)/(n − 1).

• At a particular point along the grid, i , the second-order derivative
∂2u/∂x2

x=i is approximated by the RHS of Equation 4.8, i.e., a three point
FD approximation since it involves the value of u at three points, ui+1, ui ,
and ui−1.

• Most importantly, note that the RHS of Equation 4.8 does not have a
derivative; rather, it is entirely algerbraic, and can therefore be easily com-
puted (since a computer does high-speed arithmetic). In other words, we
have replaced the derivative ∂2u/∂x2, which a computer cannot handle,
with an algebraic approximation, which a computer can easily evaluate.

• O(�x2) indicates that the approximation of Equation 4.8 is second order in
x, i.e., the truncation error of the approximation is proportional to �x2. We can
therefore expect to compute more accurate values of ∂2u/∂x2 from Equa-
tion 4.8 as we use more grid points (larger n, and therefore smaller �x).

If the FD approximation of Equation 4.8 is substituted in Equation 4.1, we
have

dui

dt
� ui+1 − 2ui + ui−1

�x2 , i = 1, 2, · · · , n (4.9)

We can note the following points about Equation 4.9:

• It has only one independent variable, t. Thus, it is an ODE!
• Actually, Equation 4.9 represents a system of n ODEs for i = 1, 2, · · · , n.

Furthermore, they are initial value ODEs since Equation 4.2 provides an
initial condition, that is,

u(xi , 0) = ui (t) = sin(πxi), i = 1, 2, · · · , n (4.10)

Thus, we now have a system of initial value ODEs, Equation 4.9, in place
of a PDE, Equation 4.1.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

344 Ordinary and Partial Differential Equation Routines

• Since Chapters 1 to 3 are devoted to the solution of systems of initial
value ODEs, we now have methods and routines for the solution of
Equations 4.9, and therefore, we can compute a numerical to PDE Equa-
tion 4.1 for comparison with the analytical solution of Equation 4.8.

• Basically all that is required is to step along the spatial grid and integrate
the corresponding ODEs from Equations 4.9. For i = 1, we can apply BC
(Equation 4.2) as

u(x1, t) = u1(t) = 0,
du1

dt
= 0 (4.11)

Similarly, for i = n, BC (Equation 4.3) becomes

u(xn, t) = un(t) = 0,
dun

dt
= 0 (4.12)

Equations 4.11 and 4.12 merely express the fact that if the boundary
values are constant (u1(t) = 0, un(t) = 0), their derivatives are zero
(du1/dt = 0, dun/dt = 0).

To conclude this brief discussion of the approximation of PDEs as systems
of ODEs (termed the method of lines), we point out that FD approximations
of derivatives, such as Equation 4.8, are well developed. FD approximations
of any order (e.g., O(�x2)) for derivatives of any order (e.g., ∂2u/∂x2) are
readily available.2–4 use an O(�x4) approximation of ∂2u/∂x2 as discussed in
Appendix D.

We now proceed to the calculation of a numerical solution to Equations 4.1
to 4.4 using the six languages, starting with MATLAB. In each case, we use
Equation 4.7 to evaluate the error in the numerical solution.

4.1 Programming in MATLAB

A main program for the solution of the linear PDE problems, Equations 4.1 to
4.4, is the same as Program 3.1.1 and therefore is not listed here. intpar, inital,
derv, and fprint are listed below followed by some discussion for each.

function [neqn,nout,nsteps,t0,tf,abserr,relerr]=intpar
%
% Function intpar sets the parameters to control the
% integration of the linear PDE problem
%
% Number of first order ODEs

neqn=21;
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Number of output points
nout=6;

%
% Maximum number of steps in the interval t0 to tf

nsteps=100;
%
% Initial, final values of independent variable

t0=0.0;
tf=0.2;

%
% Error tolerances

abserr=1.0e-05;
relerr=1.0e-05;

Program 4.1.1
intpar for the solution of Equations 4.1 to 4.4

We can note the following points about intpar:

• The number of ODEs is 21:

%
% Number of first order ODEs

neqn=21;

In other words, we have defined a spatial grid with 21 points in using
Equations 4.9. At this point, this selection of 21 is arbitrary and we will
have to assess whether this is an adequate number of points, that is,
whether it gives acceptable accuracy. Thus, we have an additional consid-
eration that we did not have with ODEs, the spatial discretization error as
set by the number of grid points.

• The output interval is set to 0.2:

%
% Initial, final values of independent variable

t0=0.0;
tf=0.2;

This is different from the output interval used for the preceding ODE
problems (t f = 1.0). The necessity to use a smaller output interval is
suggested by the analytical solution, Equation 4.7, u(x, t) = sin(πx)e−π2t.
The rate of change of the solution with t is determined by the exponential
e−π2t. If the output interval is t f = 0.2, the exponential changes only
modestly (by e−π2(0.2) at each output) and the change in the solution with
t can therefore be observed. If t f = 1.0 is used, the solution would decay
to a small value at the end of one interval (it would change to e−π2(1) of its
initial value). This raises an important point; when selecting the output

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

interval t f in intpar, we must consider the timescale of the problem. If
we underestimate the timescale (make the total time interval too small),
we will miss a significant part of the solution since the solution will
not be completely computed (t f = 0.01 would do this with nout = 6 for
Equations 4.1 to 4.4); if we overestimate the timescale (make the total time
interval too large), we will again miss a significant part of the solution
since the solution will essentially be completely computed within the
first output interval (t f = 1.0 would do this with nout = 6). Thus, we
must be careful in specifying the output interval t f and the number of
output points nout so as to achieve reasonable resolution of the solution
in time. In other words, some tuning of the integration parameters is required;
using values that are not well thought out will cause the integrator to fail
(as we shall observe when we use the intpar in Program 4.1.1). In fact,
a poor choice of the integration parameters is the single most common cause of
integrator failures.

The rest of intpar is essentially self-explanatory (it follows from the previous
discussion of the two ODE problems).

inital is listed below:

function [u]=inital(neqn,t)
%
% Function inital sets the initial condition vector
% of the linear PDE problem
%
% Problem parameters

xl=0.0;
xu=1.0;

%
% Initial condition

for i=1:neqn
x=xl+(i-1)/(neqn-1)*(xu-xl);
u(i)=sin(pi*x);

end

Program 4.1.2
inital for the solution of Equations 4.1 to 4.4

inital is an implementation of IC Equation 4.10. We can note the following
points:

• The initial condition function, u(xi , 0) = sin(πxi), is computed over the
grid in x using the for loop

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Initial condition

for i=1:neqn
x=xl+(i-1)/(neqn-1)*(xu-xl);
u(i)=sin(pi*x);

end

Note that x covers the interval 0 ≤ x ≤ 1.
• pi is a predefined constant in MATLAB so it does not have to be assigned

a numerical value (this is not the case in most of the other programming
languages).

Thus, the 21 starting (initial) values of u(x, 0) have been assigned and we can
now consider the 21 ODEs from Equations 4.9, which are programmed in derv:

function [ut]=derv(neqn,t,u)
%
% Function derv computes the derivative vector
% of the linear PDE problem
%
% Problem parameters

xl=0.0;
xu=1.0;

%
% BC at x = 0

ut(1)=0.0;
%
% BC at x = 1

ut(neqn)=0.0;
%
% Interior points

dx=(xu-xl)/(neqn-1);
dxs=dx*dx;
for i=2:neqn-1

ut(i)=(u(i+1)-2.0*u(i)+u(i-1))/dxs;
end

Program 4.1.3
derv for the solution of Equations 4.1 to 4.4

We can note the following points about derv:

• The boundary values of x are first set:

%
% Problem parameters

xl=0.0;
xu=1.0;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• ODEs 4.11 and 4.12 are then programmed (here we make good use of the
subscript notation of Equation 4.6 for partial derivatives, i.e., ∂u/∂t =
ut ↔ ut(i)):

%
% BC at x = 0

ut(1)=0.0;
%
% BC at x = 1

ut(neqn)=0.0;

• The remaining ODEs for i = 2, 3, · · · , neqn − 1 are then programmed in
a for loop according to Equation 4.9:

%
% Interior points

dx=(xu-xl)/(neqn-1);
dxs=dx*dx;
for i=2:neqn-1

ut(i)=(u(i+1)-2.0*u(i)+u(i-1))/dxs;
end

At the end of derv, all 21 ODEs of Equation 4.9 are programmed. These 21
derivatives (ut(i)) are then returned to one of the ODE integrators, euler2a
to rkf45b, to take the next step along the solution. In this way, the complete
solution to Equations 4.1 to 4.4 is computed through t and x, that is, we have
u(x, t) in numerical form.

This numerical solution is displayed by fprint:

function [out]=fprint(ncase,neqn,t,u)
%
% Function fprint displays the numerical and exact
% solutions to the linear PDE problem
%
% Declare global variables

global nsteps;
%
% Return current value of independent variable
% (MATLAB requires at least one return argument)

out=t;
%
% Problem parameters

xl=0.0;
xu=1.0;

%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Print a heading for the solution at t = 0
if(t<=0.0)

%
% Label for ODE integrator
%
% Fixed step modified Euler

if(ncase==1)
fprintf('\n\n euler2a integrator\n\n');

%
% Variable step modified Euler

elseif(ncase==2)
fprintf('\n\n euler2b integrator\n\n');

%
% Fixed step classical fourth order RK

elseif(ncase==3)
fprintf('\n\n rkc4a integrator\n\n');

%
% Variable step classical fourth order RK

elseif(ncase==4)
fprintf('\n\n rkc4b integrator\n\n');

%
% Fixed step RK Fehlberg 45

elseif(ncase==5)
fprintf('\n\n rkf45a integrator\n\n');

%
% Variable step RK Fehlberg 45

elseif(ncase==6)
fprintf('\n\n rkf45b integrator\n\n');

end
%
% Heading

fprintf(' ncase = %2d neqn = %2d
nsteps = %3d \n\n',ncase,neqn,nsteps);

fprintf(' t u(num) u(exact) diff\n');
%
% End of t = 0 heading

end
%
% Numerical and analytical solution output
%
% Midpoint value of x

x=(xu-xl)/2.0;
%
% Analytical solution at midpoint

ue=exp(-pi*pi*t)*sin(pi*x);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Grid index of midpoint

im=round((neqn+1)/2);
%
% Display the numerical and exact solutions,
% and their difference

fprintf('%5.2f %11.6f %11.6f %13.4e\n',t,u(im),ue,
u(im)-ue);

Program 4.1.4
fprint for the solution of Equations 4.1 to 4.4

fprint has the same function as the previous fprint routines for the two ODE
problems, i.e.,

• Labeling of the ODE integrator
• Calculation of the analytical or exact solution (ue from Equation 4.7)
• Display of the numerical and analytical solutions, and their difference

(u(im) − ue) (note that this comparison is made at the midpoint value
x = 1/2)

This completes the programming of Equations 4.1 to 4.4 (or Equations 4.9).
Execution of this program produced some interesting and unexpected results.
First, the solution was unstable. This instability was apparent since the dis-
played numbers either (1) overflowed the formats of the fprintf statement in
fprint or (2) produced NAN (not a number).

Thus, the stability analysis of Chapter 1 becomes quite relevant. Recall in
Section 1.7 that the explicit RK methods discussed in Chapter 1 have a stability
limit. For example, for the Euler method, |λh| < 2 set the maximum value
of h for which an Euler integration remains stable. In the present case of the
linear PDE approximated by Equation 4.9, this stability limit has apparently
been reached (or exceeded).

To test this idea, we executed the program again with nsteps in intpar in-
creased from 100 to 250 (so that h could be reduced by a factor of 100/250).
This reduction in nsteps was, in fact, enough to stabilize the solution, which
is listed below:

euler2a integrator

ncase = 1 neqn = 21 nsteps = 250

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139478 0.138911 5.6734e-04
0.40 0.019454 0.019296 1.5794e-04

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

0.60 0.002713 0.002680 3.2977e-05
0.80 0.000378 0.000372 6.1203e-06
1.00 0.000053 0.000052 1.0649e-06

euler2b integrator

ncase = 2 neqn = 21 nsteps = 250

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139530 0.138911 6.1893e-04
0.40 0.019464 0.019296 1.6763e-04
0.60 0.002719 0.002680 3.8243e-05
0.80 0.000382 0.000372 9.2987e-06
1.00 0.000059 0.000052 7.0554e-06

rkc4a integrator

ncase = 3 neqn = 21 nsteps = 250

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139476 0.138911 5.6448e-04
0.40 0.019453 0.019296 1.5714e-04
0.60 0.002713 0.002680 3.2810e-05
0.80 0.000378 0.000372 6.0893e-06
1.00 0.000053 0.000052 1.0595e-06

rkc4b integrator

ncase = 4 neqn = 21 nsteps = 250

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139479 0.138911 5.6748e-04
0.40 0.019454 0.019296 1.5742e-04
0.60 0.002714 0.002680 3.3680e-05
0.80 0.000380 0.000372 7.3932e-06
1.00 0.000054 0.000052 2.0762e-06

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkf45a integrator

ncase = 5 neqn = 21 nsteps = 250

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139476 0.138911 5.6448e-04
0.40 0.019453 0.019296 1.5714e-04
0.60 0.002713 0.002680 3.2810e-05
0.80 0.000378 0.000372 6.0893e-06
1.00 0.000053 0.000052 1.0595e-06

rkf45b integrator

ncase = 6 neqn = 21 nsteps = 250

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139484 0.138911 5.7324e-04
0.40 0.019453 0.019296 1.5714e-04
0.60 0.002713 0.002680 3.2809e-05
0.80 0.000378 0.000372 6.0901e-06
1.00 0.000051 0.000052 -5.0979e-07

However, we note that the numerical solution does not meet the error criteria
set in intpar

%
% Error tolerances

abserr=1.0e-05;
relerr=1.0e-05;

For example, from euler2a, the following output has errors (diff) that exceed
the error tolerances:

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139478 0.138911 5.6734e-04
0.40 0.019454 0.019296 1.5794e-04
0.60 0.002713 0.002680 3.2977e-05

However, this does not mean that euler2a did not integrate correctly because
now we have a second source of error in the numerical solution, the spatial
discretization error from the FD approximation of Equation 4.8.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

To investigate this possible explanation for the errors in the output, the
preceding MATLAB program was executed with neqn = 31 in intpar (31 grid
points). Again the solution became unstable, and it was necessary to increase
nsteps to 500. When this was done, the output listed below resulted:

euler2a integrator

ncase = 1 neqn = 31 nsteps = 500

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139163 0.138911 2.5143e-04
0.40 0.019366 0.019296 6.9915e-05
0.60 0.002695 0.002680 1.4581e-05
0.80 0.000375 0.000372 2.7031e-06
1.00 0.000052 0.000052 4.6979e-07

euler2b integrator

ncase = 2 neqn = 31 nsteps = 500

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139182 0.138911 2.7122e-04
0.40 0.019369 0.019296 7.3151e-05
0.60 0.002695 0.002680 1.4604e-05
0.80 0.000365 0.000372 -6.9759e-06
1.00 0.000042 0.000052 -1.0031e-05

rkc4a integrator

ncase = 3 neqn = 31 nsteps = 500

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139162 0.138911 2.5071e-04
0.40 0.019366 0.019296 6.9716e-05
0.60 0.002695 0.002680 1.4540e-05
0.80 0.000375 0.000372 2.6954e-06
1.00 0.000052 0.000052 4.6845e-07

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkc4b integrator

ncase = 4 neqn = 31 nsteps = 500

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139159 0.138911 2.4782e-04
0.40 0.019221 0.019296 -7.5061e-05
0.60 0.002698 0.002680 1.7490e-05
0.80 0.000327 0.000372 -4.4904e-05
1.00 0.000042 0.000052 -9.3554e-06

rkf45a integrator

ncase = 5 neqn = 31 nsteps = 500

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139162 0.138911 2.5071e-04
0.40 0.019366 0.019296 6.9716e-05
0.60 0.002695 0.002680 1.4540e-05
0.80 0.000375 0.000372 2.6954e-06
1.00 0.000052 0.000052 4.6845e-07

rkf45b integrator

ncase = 6 neqn = 31 nsteps = 500

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139161 0.138911 2.5000e-04
0.40 0.019368 0.019296 7.1557e-05
0.60 0.002690 0.002680 9.5294e-06
0.80 0.000389 0.000372 1.6293e-05
1.00 0.000052 0.000052 6.4318e-08

Note now that the errors are smaller, e.g., for euler2a;

neqn = 21

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139478 0.138911 5.6734e-04

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

0.40 0.019454 0.019296 1.5794e-04
0.60 0.002713 0.002680 3.2977e-05

neqn = 31

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139163 0.138911 2.5143e-04
0.40 0.019366 0.019296 6.9915e-05
0.60 0.002695 0.002680 1.4581e-05

Since the FD approximation of Equation 4.8 is O(�x2), we can estimate the
error ε31 for neqn = 31 from the error ε21 for neqn = 21:

ε31 = c31�x2
31

ε21 = c21�x2
21

Division of one equation by the other, assuming c21 = c31 gives

ε31

ε21
= �x2

31

�x2
21

and therefore

ε31 = ε21

[
�x31

�x21

]2

We can apply this result to estimate ε31. For neqn = 21, �x21 = (1 − 0)/

(21 − 1) and for neqn = 31, �x31 = (1 − 0)/(31 − 1). Therefore, �x31/�x21 =
(21 − 1)/(31 − 1). For t = 0.20 (using numbers from the preceding output)

5.6734e − 04 × [(21 − 1)/(31 − 1)]2 = 2.5219e − 04 � 2.5143e − 04

Thus, we can infer that the errors above the error tolerances set in intpar are
due to the spatial gridding or discretization, i.e., the choice of a low value of
neqn. In other words, if the integration t contributed a significant error to
the preceding output, the O(�x2) analysis would not necessarily give these
consistent numerical results.

This conclusion was explored further by computing a solution at neqn = 41
(and nsteps = 500) in intpar. Again the solution became unstable, but by using
nsteps = 1000, the solution stabilized to the values indicated below:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

euler2a integrator

ncase = 1 neqn = 41 nsteps = 1000

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139052 0.138911 1.4117e-04
0.40 0.019336 0.019296 3.9240e-05
0.60 0.002689 0.002680 8.1805e-06
0.80 0.000374 0.000372 1.5159e-06
1.00 0.000052 0.000052 2.6336e-07

euler2b integrator

ncase = 2 neqn = 41 nsteps = 1000

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139235 0.138911 3.2417e-04
0.40 0.019400 0.019296 1.0374e-04
0.60 0.002701 0.002680 2.0959e-05
0.80 0.000374 0.000372 1.9047e-06
1.00 0.000046 0.000052 -5.8058e-06

rkc4a integrator

ncase = 3 neqn = 41 nsteps = 1000

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139052 0.138911 1.4099e-04
0.40 0.019335 0.019296 3.9191e-05
0.60 0.002689 0.002680 8.1702e-06
0.80 0.000374 0.000372 1.5140e-06
1.00 0.000052 0.000052 2.6302e-07

rkc4b integrator

ncase = 4 neqn = 41 nsteps = 1000

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139118 0.138911 2.0675e-04

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

0.40 0.019292 0.019296 -4.3926e-06
0.60 0.002700 0.002680 1.9308e-05
0.80 0.000376 0.000372 3.3049e-06
1.00 0.000052 0.000052 -1.4026e-08

rkf45a integrator

ncase = 5 neqn = 41 nsteps = 1000

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139052 0.138911 1.4099e-04
0.40 0.019335 0.019296 3.9191e-05
0.60 0.002689 0.002680 8.1702e-06
0.80 0.000374 0.000372 1.5140e-06
1.00 0.000052 0.000052 2.6302e-07

rkf45b integrator

ncase = 6 neqn = 41 nsteps = 1000

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139052 0.138911 1.4091e-04
0.40 0.019340 0.019296 4.4135e-05
0.60 0.002694 0.002680 1.3738e-05
0.80 0.000381 0.000372 9.0848e-06
1.00 0.000048 0.000052 -3.6816e-06

Again, the errors are reduced below those for neqn = 21 and neqn = 31:

neqn = 21

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139478 0.138911 5.6734e-04
0.40 0.019454 0.019296 1.5794e-04
0.60 0.002713 0.002680 3.2977e-05

neqn = 31

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139163 0.138911 2.5143e-04

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

0.40 0.019366 0.019296 6.9915e-05
0.60 0.002695 0.002680 1.4581e-05

neqn=41

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139052 0.138911 1.4117e-04
0.40 0.019336 0.019296 3.9240e-05
0.60 0.002689 0.002680 8.1805e-06

The error analysis at t = 0.20 gives

5.6734e − 04 × [(21 − 1)/(41 − 1)]2 = 1.4184e − 04 � 1.4117e − 04

Again, this error analysis using O(�x2) is consistent with the dominant effect
of the truncation errors in x (the error in t is relatively small).

To reiterate the principal points of this analysis:

• By increasing neqn (the number of grid points) and thereby decreasing
the spatial discretization error in x, we would eventually reach a point
where the truncation error in t might become comparable to the error in
x (assuming we could keep the solution stable by increasing nsteps). In
other words, the errors in the x and t integrations occur simultaneously.

• To restate the preceding point, we were able to perform the error analysis
in this case (using O(�x2) from Equation 4.9) only because the spatial
error in x dominated the solution error. We in effect varied�x in Equation
4.9 (by changing neqn) to estimate the spatial error while the error due to
h in the t integration remained relatively small (or at least smaller than
the �x error in the x integration).

• As the grid is refined in x (by increasing neqn), the resulting system of
ODEs becomes larger and stiffer (the increased stiffness was apparent
from the need to increase nsteps or reduce h). The separation in the ODE
eigenvalues is proportional to 1/�x2, and as �x becomes smaller (with
increasing neqn), the ODE eigenvalues become more widely separated (and
so the ODE system becomes stiffer).

• Thus, there is a twofold effect that increases the computational effort,
increased number of ODEs and increase in stiffness of these ODEs. This in-
creased computational effort to improve the accuracy in x is apparent in
running the preceding program with increased neqn; i.e., it runs percep-
tibly slower.

As a second interesting observation (in addition to instability), we observed
that the lower-order algorithms (in euler2a and euler2b) became unstable while
the higher-order algorithms (in rkc4a, rkc4b, rkf45a , and rkf45b) generally re-
mained stable. This effect is due to the slightly larger stability domain for the

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

higher-order methods, e.g., |λh| < 2 for the Euler method and |λh| < 2.785
for the classical fourth-order RK method as determined from Equation 55c.

As a third observation, the variable step integrators, euler2b, rkc4b, and
rkf45b executed perceptibly faster than the fixed step integrators, euler2a ,
rkc4a , and rkf45a . This can be explained by the use of the smallest integration
step, h = (t f − t0)/nsteps, throughout the solution by the fixed step integra-
tors, while the variable step integrators could increase h above this value,
and thus, by taking larger steps, the solutions could be computed faster. In
other words, this observation clearly demonstrates the relative computational
efficiency of the variable step integrators.

To summarize the preceding observations, when numerically integrating
PDEs, we must investigate and control the errors in time and space (e.g., t and x)
to arrive at solutions with acceptable accuracy. This investigation usually
takes the form of numerical experimentation, since in most cases, we will not
have analytical solutions (like Equation 4.7) to give us the exact errors; i.e.,
we can only estimate the errors in time and space. More advanced integration
algorithms in x and t could, at least in principle, adjust h and �x automatically
to achieve solutions of prescribed accuracy, but we should still keep in mind
the requirement to control truncation errors in time and space, and to carefully
examine and test the solutions.

This completes the solution of Equations 4.1 to 4.4 with MATLAB. We now
proceed to equivalent solutions in the five other languages.

4.2 Programming in C

Since main Program 2.2.1 is unchanged in the nonlinear PDE problem, it is
not listed here. The header file, intpar, par, inital, derv, and fprint are listed
below:

/*

Definition of functions intpar, par, inital, derv, fprint
for the linear PDE

*/

/* Include headers */
#include <math.h>
#include <stdio.h>

/* Maximum number of ODES */
#define SIZE 500

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Type variables as extern (global) */
extern int neqn, nout, nsteps;
extern double t0, tf, abserr, relerr;
extern double pi;
extern double xl, xu, dx, dxs;
extern FILE *fid;

/* Integration parameters */
void intpar();

/* Problem parameters */
void par();

/* Initial condition */
void inital(double u0[]);

/* Derivative vector */
void derv(double ut[], double t, double u[]);

/* Output */
void fprint(int ncase, double t, double u[]);

#include "pdelin.h"

#define SIZE 500

/* Type global variables */

int neqn, nout, nsteps;

double t0, tf, abserr, relerr;

double pi, xl, xu, dx, dxs;

/* Define file ID */
FILE *fid;

void intpar()

/* Function intpar sets the parameters to control
the integration of the linear PDE system */
{

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Number of ODEs */
neqn=21;

/* Number of output points */
nout=6;

/* Maximum number of steps in the interval t0 to tf */
nsteps=250;

/* Initial, final values of the independent variable */
t0=0.0;
tf=0.2;

/* Error tolerances */
abserr=pow(10.0,-5);
relerr=pow(10.0,-5);

/* End of intpar */
}

void par()

/* Function par sets the parameters for the linear
PDE problem */
{

pi=4.0*atan(1.0);
xl=0.0;
xu=1.0;
dx=(xu-xl)/(neqn-1);
dxs=dx*dx;

}

void inital(double u0[])

/* Function inital sets the initial condition vector
for the linear PDE problem */
{

/* Type variables */
int i;
double x;

/* Problem parameters */
par();

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Initial condition */
for(i=1;i<=neqn;i++)

{
x=xl+(float)(i-1)/(neqn-1)*(xu-xl);
u0[i]=sin(pi*x);

}
/* End of inital */
}

void derv(double ut[], double t, double u[])

/* Function derv computes the derivative vector
of the linear PDE problem */
{

/* Type variables */
int i;

/* Problem parameters */
par();

/* BC at x = xl */
ut[1]=0.0;

/* BC at x = xu */
ut[neqn]=0.0;

/* Derivative vector */
for(i=2;i<=(neqn-1);i++)

{
/* Approximation to the PDE */
ut[i]=(u[i+1]-2.0*u[i]+u[i-1])/dxs;

}
/* End of derv */
}

void fprint(int ncase, double t, double u[])

/* Function fprint displays the numerical and exact
solutions to the linear PDE problem */
{

/* Type variables */
double x, ue;
int im;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
/* Label for ODE integrator */
switch(ncase)

{
/*Fixed step modified Euler */
case 1:
fprintf(fid,"\n\n euler2a integrator\n\n");
break;

/* Variable step modified Euler */
case 2:
fprintf(fid,"\n\n euler2b integrator\n\n");
break;

/* Fixed step classical fourth order RK */
case 3:
fprintf(fid,"\n\n rkc4a integrator\n\n");
break;

/* Variable step classical fourth order RK */
case 4:
fprintf(fid,"\n\n rkc4b integrator\n\n");
break;

/* Fixed step RK Fehlberg 45 */
case 5:
fprintf(fid,"\n\n rkf45a integrator\n\n");
break;

/* Variable step RK Fehlberg 45 */
case 6:
fprintf(fid,"\n\n rkf45b integrator\n\n");
break;

}

/* Heading */
fprintf(fid," ncase = %1d neqn = %3d\n\n",ncase,neqn);
fprintf(fid," t u(0.5) ue(0.5) diff\n");

/* End of t = 0 heading */
}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Numerical and analytical solution output */

/* Problem parameters */
par();

/* Midpoint value of x */
x=(xu-xl)/2.0;

/* Analytical solution at midpoint */
ue=exp(-pi*pi*t)*sin(pi*x);

/* Grid index of midpoint */
im=(neqn+1)/2;

/* Display the numerical and exact solutions, and
their difference */
fprintf(fid,"%5.2f %11.6f %11.6f %13.4e\n",t,u[im],
ue,u[im]-ue);

/* End of fprint */
}

Program 4.2.1
Header file, intpar, par, inital, derv, and fprint for the solution of Equations 4.1
to 4.4

The preceding intpar, par, inital, derv, and fprint closely parallel the anal-
ogous routines of Programs 4.1.1 to 4.1.4; therefore, no further discussion is
given here, except to point out that a routine par was used to set the problem
parameters in Program 4.2.1 while the parameters were set in each routine
where they are used in Programs 4.1.2 to 4.1.4.

The output from the routines of Program 4.2.1 is listed below:

euler2a integrator

ncase = 1 neqn = 21

t u(0.5) ue(0.5) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139478 0.138911 5.6734e-04
0.40 0.019454 0.019296 1.5794e-04
0.60 0.002713 0.002680 3.2977e-05
0.80 0.000378 0.000372 6.1203e-06
1.00 0.000053 0.000052 1.0649e-06

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

euler2b integrator

ncase = 2 neqn = 21

t u(0.5) ue(0.5) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139530 0.138911 6.1894e-04
0.40 0.019466 0.019296 1.7004e-04
0.60 0.002713 0.002680 3.2297e-05
0.80 0.000378 0.000372 5.7139e-06
1.00 0.000047 0.000052 -4.3060e-06

rkc4a integrator

ncase = 3 neqn = 21

t u(0.5) ue(0.5) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139476 0.138911 5.6448e-04
0.40 0.019453 0.019296 1.5714e-04
0.60 0.002713 0.002680 3.2810e-05
0.80 0.000378 0.000372 6.0893e-06
1.00 0.000053 0.000052 1.0595e-06

rkc4b integrator

ncase = 4 neqn = 21

t u(0.5) ue(0.5) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139476 0.138911 5.6480e-04
0.40 0.019454 0.019296 1.5815e-04
0.60 0.002717 0.002680 3.6838e-05
0.80 0.000380 0.000372 7.9663e-06
1.00 0.000054 0.000052 2.2905e-06

rkf45a integrator

ncase = 5 neqn = 21

t u(0.5) ue(0.5) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139476 0.138911 5.6448e-04

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

0.40 0.019453 0.019296 1.5714e-04
0.60 0.002713 0.002680 3.2810e-05
0.80 0.000378 0.000372 6.0893e-06
1.00 0.000053 0.000052 1.0595e-06

rkf45b integrator

ncase = 6 neqn = 21

t u(0.5) ue(0.5) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139493 0.138911 5.8147e-04
0.40 0.019449 0.019296 1.5306e-04
0.60 0.002714 0.002680 3.3790e-05
0.80 0.000379 0.000372 6.1732e-06
1.00 0.000053 0.000052 1.0393e-06

This output is essentially the same as the MATLAB output in Section 4.1, i.e.,
the error tolerances in intpar are exceeded because of the spatial discretization
errors. We now proceed to the C++ programming of the linear PDE.

4.3 Programming in C++

Again, since main Program 2.3.1 is unchanged, it is not listed here. The asso-
ciated header files are listed below:

/*

Definition of functions intpar, inital, par, derv, fprint
for the linear PDE system

*/

#include <stdio.h>
#include <math.h>
#include "MOL.h"

/* Type variables as extern (global) */
extern FILE *fid;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

class DEF:public MOL
{

public:

/* Integration parameters */
void intpar();

/* Problem parameters */
void par();

/* Initial condition */
void inital();

/* Derivative vector */
void derv(double ut[], double t, double u[]);

/* Output */
void fprint(int ncase, int neqn, double t, double u[]);

};

/*

Define the common (global) variables for the
linear PDE integration

*/

/* Maximum (default) number of ODEs */
#define SIZE 500

class MOL
{

public:

/* Variables for ODE integration */

int neqn, nout, nsteps;

double t0, tf, abserr, relerr;

double u[SIZE], u0[SIZE], e[SIZE];

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Problem parameters */

double pi, xl, xu, dx, dxs;

};

Program 4.3.1
Header files pdelin.h and MOL.h for the solution of Equations 4.1 to 4.4

intpar, par, inital, derv, and fprint are listed below:

#include "DEF.h"

void DEF::intpar()

/* Function intpar sets the parameters to control the
integration of the linear PDE system */
{

/* Number of ODEs */
neqn=21;

/* Number of output points */
nout=6;

/* Maximum number of steps in the interval t0 to tf */
nsteps=250;

/* Initial, final values of the independent variable */
t0=0.0;
tf=0.2;

/* Error tolerances */
abserr=pow(10.0,-5);
relerr=pow(10.0,-5);

/* End of intpar */
}

void DEF::par()

/* Function par sets the parameters for the linear PDE
problem */
{

pi=4.0*atan(1.0);
xl=0.0;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

xu=1.0;
dx=(xu-xl)/(neqn-1);
dxs=dx*dx;

}

void DEF::inital()

/* Function inital sets the initial condition vector for
the linear PDE problem */
{

/* Type variables */
double x;
int i;

/* Initial condition */
for(i=1;i<=neqn;i++)

{
x=xl+(float)(i-1)/(neqn-1)*(xu-xl);
u0[i]=sin(pi*x);

}

/* End of inital */
}

void DEF::derv(double ut[], double t, double u[])

/* Function derv computes the derivative vector of the
linear PDE problem */
{

/* Type variables */
int i;

/* Integration parameters */
intpar();

/* Problem parameters */
par();

/* BC at x = xl */
ut[1]=0.0;

/* BC at x = xu */
ut[neqn]=0.0;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Derivative vector */
for(i=2;i<=(neqn-1);i++)

{
/* Approximation to the PDE */
ut[i]=(u[i+1]-2.0*u[i]+u[i-1])/dxs;

}

/* End of derv */
}

void DEF::fprint(int ncase, int neqn, double t, double u[])

/* Function fprint displays the numerical and exact
solutions to the linear PDE problem */
{

/* Type variables */
double x, ue;
int im;

/* Problem parameters */
par();

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
/* Label for ODE integrator */
switch(ncase)

{
/*Fixed step modified Euler */
case 1:
fprintf(fid,"\n\n euler2a integrator\n\n");
break;

/* Variable step modified Euler */
case 2:
fprintf(fid,"\n\n euler2b integrator\n\n");
break;

/* Fixed step classical fourth order RK */
case 3:
fprintf(fid,"\n\n rkc4a integrator\n\n");
break;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Variable step classical fourth order RK */
case 4:
fprintf(fid,"\n\n rkc4b integrator\n\n");
break;

/* Fixed step RK Fehlberg 45 */
case 5:
fprintf(fid,"\n\n rkf45a integrator\n\n");
break;

/* Variable step RK Fehlberg 45 */
case 6:
fprintf(fid,"\n\n rkf45b integrator\n\n");
break;

}

/* Heading */
fprintf(fid," ncase = %1d, neqn = %2d \n\n",ncase,n);
fprintf(fid," t u(num) u(exact) diff\n");

/* End of t = 0 heading */
}

/* Numerical and analytical solution output */

/* Midpoint value of x */
x=(xu-xl)/2.0;

/* Analytical solution at midpoint */
ue=exp(-pi*pi*t)*sin(pi*x);

/* Grid index of midpoint */
im=(neqn+1)/2;

/* Display the numerical and exact solutions,
and their difference */
fprintf(fid,"%5.2f %11.6f %11.6f %13.4e\n",t,u[im],

ue,u[im]-ue);

/* End of fprint */
}

Program 4.3.2
intpar, par, inital, derv, and fprint for the solution of Equations 4.1 to 4.4

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

The output from the routines of Programs 4.3.1 and 4.3.2 is listed below:

euler2a integrator

ncase = 1, neqn = 21

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139478 0.138911 5.6734e-04
0.40 0.019454 0.019296 1.5794e-04
0.60 0.002713 0.002680 3.2977e-05
0.80 0.000378 0.000372 6.1203e-06
1.00 0.000053 0.000052 1.0649e-06

euler2b integrator

ncase = 2, neqn = 21

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139530 0.138911 6.1894e-04
0.40 0.019466 0.019296 1.7004e-04
0.60 0.002713 0.002680 3.2297e-05
0.80 0.000378 0.000372 5.7139e-06
1.00 0.000047 0.000052 -4.3060e-06

rkc4a integrator

ncase = 3, neqn = 21

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139476 0.138911 5.6448e-04
0.40 0.019453 0.019296 1.5714e-04
0.60 0.002713 0.002680 3.2810e-05
0.80 0.000378 0.000372 6.0893e-06
1.00 0.000053 0.000052 1.0595e-06

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkc4b integrator

ncase = 4, neqn = 21

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139476 0.138911 5.6480e-04
0.40 0.019454 0.019296 1.5815e-04
0.60 0.002717 0.002680 3.6838e-05
0.80 0.000380 0.000372 7.9663e-06
1.00 0.000054 0.000052 2.2905e-06

rkf45a integrator

ncase = 5, neqn = 21

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139476 0.138911 5.6448e-04
0.40 0.019453 0.019296 1.5714e-04
0.60 0.002713 0.002680 3.2810e-05
0.80 0.000378 0.000372 6.0893e-06
1.00 0.000053 0.000052 1.0595e-06

rkf45b integrator

ncase = 6, neqn = 21

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+00
0.20 0.139476 0.138911 5.6472e-04
0.40 0.019454 0.019296 1.5721e-04
0.60 0.002713 0.002680 3.3024e-05
0.80 0.000397 0.000372 2.4645e-05
1.00 0.000054 0.000052 1.7941e-06

This output is equivalent to the output from the preceding MATLAB (Sec-
tion 4.1) and C (Section 4.2); i.e., the error tolerances in intpar are exceeded
because of the spatial discretization errors. We now proceed to the Fortran
programming of the linear PDE.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

4.4 Programming in Fortran

Again, since main Program 2.4.1 is unchanged, it is not listed here. intpar, par,
inital, derv, and fprint are listed below:

subroutine intpar(neqn,nout,nsteps,t0,tf,abserr,relerr)
C
C Subroutine intpar sets the parameters to control the
C integration of the linear PDE problem
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Number of ODEs

neqn=21
C
C Number of output points

nout=6
C
C Maximum number of steps in the interval t0 to tf

nsteps=250
C
C Initial, final values of the independent variable

t0=0.0d0
tf=0.2d0

C
C Error tolerances

abserr=1.0d-05
relerr=1.0d-05
return

C
C End of intpar

end

subroutine par(xl,xu,pi)
C
C Subroutine par sets the parameters for the linear
C PDE problem
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Problem parameters

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

xl=0.0d0
xu=1.0d0
pi=4.0d0*datan(1.0d0)
return

C
C End of par

end

subroutine inital(neqn,t,u0)
C
C Subroutine inital sets the initial condition vector
C for the linear PDE problem
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size the arrays

dimension u0(neqn)
C
C Problem parameters

call par(xl,xu,pi)
C
C Initial condition

do i=1,neqn
x=xl+dfloat(i-1)/dfloat(neqn-1)*(xu-xl)
u0(i)=dsin(pi*x)

end do
return

C
C End of inital

end

subroutine derv(neqn,t,u,ut)
C
C Subroutine derv computes the derivative vector
C of the linear PDE problem
C
C Double precision coding is used

implicit double precision(a-h,l,o-z)
C
C Size the arrays

dimension u(neqn), ut(neqn)
C

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C Problem parameters
call par(xl,xu,pi)

C
C BC at x = 0

ut(1)=0.0d0
C
C BC at x = 1

ut(neqn)=0.0d0
C
C Interior points

dx=(xu-xl)/dfloat(neqn-1)
dxs=dx*dx
do i=2,neqn-1

ut(i)=(u(i+1)-2.0d0*u(i)+u(i-1))/dxs
end do
return

C
C End of derv

end

subroutine fprint(no,ncase,neqn,t,u)
C
C Subroutine fprint displays the numerical and
C exact solutions to the linear PDE problem
C
C Double precision coding is used

implicit double precision(a-h,l,o-z)
C
C Size the arrays

dimension u(neqn)
C
C Problem parameters

call par(xl,xu,pi)
C
C Print a heading for the solution at t = 0

if(t.le.0.0d0)then
C
C Label for ODE integrator
C
C Fixed step modfied Euler

if(ncase.eq.1)then
write(no,11)

11 format(//,' euler2a integrator')
C

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C Variable step modified Euler
else if(ncase.eq.2)then

write(no,12)
12 format(//,' euler2b integrator')
C
C Fixed step classical fourth order RK

else if(ncase.eq.3)then
write(no,13)

13 format(//,' rkc4a integrator')
C
C Variable step classical fourth order RK

else if(ncase.eq.4)then
write(no,14)

14 format(//,' rkc4b integrator')
C
C Fixed step RK Fehlberg 45

else if(ncase.eq.5)then
write(no,15)

15 format(//,' rkf45a integrator')
C
C Variable step RK Fehlberg 45

else if(ncase.eq.6)then
write(no,16)

16 format(//,' rkf45b integrator')
end if

C
C Heading

write(no,4)ncase,neqn
4 format(/,' ncase = ',i1,' neqn = ',i2)

write(no,2)
2 format(/,4x,'t',4x,'u1(num)',5x,'u1(ex)',8x,'diff1',/)
C
C End of t = 0 heading

end if
C
C Numerical and analytical solution output
C
C Midpoint value of x

x=(xu-xl)/2.0d0
C
C Analytical solution at midpoint

ue=dexp(-pi*pi*t)*dsin(pi*x)
C
C Grid index of midpoint

im=dfloat((neqn+1)/2)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C
C Display the numerical and exact solutions, and their
C difference

write(no,3)t,u(im),ue,u(im)-ue
3 format(f5.2,2f11.6,e13.4)

return
C
C End of fprint

end

Program 4.4.1
intpar, par, inital, derv, and fprint for the solution of Equations 4.1 to 4.4

The output from the routines of Program 4.4.1 is listed below:

euler2a integrator

ncase = 1 neqn = 21

t u1(num) u1(ex) diff1

0.00 1.000000 1.000000 0.0000E+00
0.20 0.139478 0.138911 0.5673E-03
0.40 0.019454 0.019296 0.1579E-03
0.60 0.002713 0.002680 0.3298E-04
0.80 0.000378 0.000372 0.6120E-05
1.00 0.000053 0.000052 0.1065E-05

euler2b integrator

ncase = 2 neqn = 21

t u1(num) u1(ex) diff1

0.00 1.000000 1.000000 0.0000E+00
0.20 0.139530 0.138911 0.6189E-03
0.40 0.019464 0.019296 0.1678E-03
0.60 0.002717 0.002680 0.3661E-04
0.80 0.000379 0.000372 0.6835E-05
1.00 0.000057 0.000052 0.5205E-05

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkc4a integrator

ncase = 3 neqn = 21

t u1(num) u1(ex) diff1

0.00 1.000000 1.000000 0.0000E+00
0.20 0.139476 0.138911 0.5645E-03
0.40 0.019453 0.019296 0.1571E-03
0.60 0.002713 0.002680 0.3281E-04
0.80 0.000378 0.000372 0.6089E-05
1.00 0.000053 0.000052 0.1059E-05

rkc4b integrator

ncase = 4 neqn = 21

t u1(num) u1(ex) diff1

0.00 1.000000 1.000000 0.0000E+00
0.20 0.139472 0.138911 0.5605E-03
0.40 0.019453 0.019296 0.1568E-03
0.60 0.002712 0.002680 0.3165E-04
0.80 0.000378 0.000372 0.5946E-05
1.00 0.000052 0.000052 -0.1941E-06

rkf45a integrator

ncase = 5 neqn = 21

t u1(num) u1(ex) diff1

0.00 1.000000 1.000000 0.0000E+00
0.20 0.139476 0.138911 0.5645E-03
0.40 0.019453 0.019296 0.1571E-03
0.60 0.002713 0.002680 0.3281E-04
0.80 0.000378 0.000372 0.6089E-05
1.00 0.000053 0.000052 0.1059E-05

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkf45b integrator

ncase = 6 neqn = 21

t u1(num) u1(ex) diff1

0.00 1.000000 1.000000 0.0000E+00
0.20 0.139476 0.138911 0.5644E-03
0.40 0.019446 0.019296 0.1498E-03
0.60 0.002715 0.002680 0.3457E-04
0.80 0.000380 0.000372 0.7272E-05
1.00 0.000053 0.000052 0.1161E-05

This output is equivalent to the output from the preceding MATLAB (Sec-
tion 4.1), C (Section 4.2), and C++ (Section 4.3); i.e., the error tolerances in
intpar are exceeded because of the spatial discretization errors. We now pro-
ceed to the Java programming of the linear PDE.

4.5 Programming in Java

Again, since main Program 2.5.1 is unchanged in the linear PDE problem, it
is not listed here. An interface routine is listed below:

/*

Define the common (global) variables for the
linear PDE integration

*/

package mol;

public class MOL
{

/* Maximum (default) number of ODEs */
public int SIZE=500;

/* Variables for ODE integration */

public int neqn, nout, nsteps;

public double t0, tf, abserr, relerr;

public double u[], u0[], e[];

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Parameters for PDE */

public double pi, xl, xu, dx, dxs;

public MOL()
{

}
}

Program 4.5.1
Interface routine for the solution of Equations 4.1 to 4.4

intpar, par, inital, derv, and fprint are listed next:

/* This file is a member of the package mol */
package mol;

import mol.MOL;
import java.math.*;
import java.io.*;
import java.text.*;

public class DEF extends MOL implements pdelininterface
{

public DEF()
{

/* Integration parameters */
this.intpar();

/* Declare arrays */
u0=new double[SIZE];
u=new double[SIZE];
e=new double[SIZE];

/* Problem parameters */
this.par();

/* Initial condition vector */
this.inital();

}

public void intpar()

/* Function intpar sets the parameters to control the
integration of the linear PDE system */

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

{
/* Number of ODEs */
neqn=21;

/* Size of arrays in MOL library */
SIZE=neqn+1;

/* Number of output points */
nout=6;

/* Maximum number of steps in the interval t0 to tf */
nsteps=250;

/* Initial, final values of the independent variable */
t0=0.0;
tf=0.2;

/* Error tolerances */
abserr=Math.pow(10.0,-5.0);
relerr=Math.pow(10.0,-5.0);

/* End of intpar */
}

public void par()

/* Function par sets the parameters for the linear
PDE problem */
{

pi=4.0*Math.atan(1.0);
xl=0.0;
xu=1.0;
dx=(xu-xl)/(neqn-1);
dxs=dx*dx;

/* End of par */
}

public void inital()

/* Function inital sets the initial condition vector
for the linear PDE problem */
{

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Type variables */
double x;
int i;

/* Initial condition */
for(i=1;i<=neqn;i++)

{
x=xl+(double)(i-1)/(neqn-1)*(xu-xl);
u0[i]=Math.sin(pi*x);

}

/* End of inital */
}

public void derv(double ut[], double t, double u[])

/* Function derv computes the derivative vector
of the linear PDE problem */
{

/* Type variables */
int i;

/* Problem parameters */
par();

/* BC at x = xl */
ut[1]=0.0;

/* BC at x = xu */
ut[neqn]=0.0;

/* Derivative vector */
for(i=2;i<=(neqn-1);i++)

{
/* Approximation to the PDE */
ut[i]=(u[i+1]-2.0*u[i]+u[i-1])/dxs;

}

/* End of derv */
}

public void fprint(PrintWriter f, int ncase, int neqn,
double t, double u[])

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Function fprint displays the numerical and exact
solutions to the linear PDE problem */
{

/* Type variables */
double x, ue;
int im;

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
/* Label for ODE integrator */
switch(ncase)

{
/*Fixed step modified Euler */
case 1:
f.println("\n\n euler2a integrator\n");
break;

/* Variable step modified Euler */
case 2:
f.println("\n\n euler2b integrator\n");
break;

/* Fixed step classical fourth order RK */
case 3:
f.println("\n\n rkc4a integrator\n");
break;

/* Variable step classical fourth order RK */
case 4:
f.println("\n\n rkc4b integrator\n");
break;

/* Fixed step RK Fehlberg 45 */
case 5:
f.println("\n\n rkf45a integrator\n");
break;

/* Variable step RK Fehlberg 45 */
case 6:
f.println("\n\n rkf45b integrator\n");
break;

}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Heading */
f.println(" ncase = "+ncase+" neqn = "+neqn+"\n");
f.println(" t u(num) u(exact) diff");

/* End of t = 0 heading */
}

/* Numerical and analytical solution output */

/* Midpoint value of x */
x=(xu-xl)/2.0;

/* Analytical solution at midpoint */
ue=Math.exp(-pi*pi*t)*Math.sin(pi*x);

/* Grid index of midpoint */
im=(neqn+1)/2;

/* Display format for floating numbers */
DecimalFormat df1=new DecimalFormat("0.00");
DecimalFormat df2=new DecimalFormat("0.0000000000");

/* Display the numerical and exact solutions,
and their difference */
f.println(df1.format(t)+"\t"+df2.format(u[im])

+"\t"+df2.format(ue)+"\t"+df2.format(u[im]-ue));

/* End of fprint */
}

/* End of DEF */
}

Program 4.5.2
intpar, par, inital, derv, and fprint for the solution of Equations 4.1 to 4.4

The output from the preceding routines is

euler2a integrator

ncase = 1 neqn = 21

t u(num) u(exact) diff
0.00 1.0000000000 1.0000000000 0.0000000000
0.20 0.1394784736 0.1389111331 0.0005673405

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

0.40 0.0194542446 0.0192963029 0.0001579417
0.60 0.0027134483 0.0026804713 0.0000329770
0.80 0.0003784676 0.0003723473 0.0000061203
1.00 0.0000527881 0.0000517232 0.0000010649

euler2b integrator

ncase = 2 neqn = 21

t u(num) u(exact) diff
0.00 1.0000000000 1.0000000000 0.0000000000
0.20 0.1395300624 0.1389111331 0.0006189292
0.40 0.0194641053 0.0192963029 0.0001678024
0.60 0.0027170826 0.0026804713 0.0000366113
0.80 0.0003791827 0.0003723473 0.0000068354
1.00 0.0000569278 0.0000517232 0.0000052046

rkc4a integrator

ncase = 3 neqn = 21

t u(num) u(exact) diff
0.00 1.0000000000 1.0000000000 0.0000000000
0.20 0.1394756138 0.1389111331 0.0005644806
0.40 0.0194534468 0.0192963029 0.0001571439
0.60 0.0027132814 0.0026804713 0.0000328101
0.80 0.0003784366 0.0003723473 0.0000060893
1.00 0.0000527827 0.0000517232 0.0000010595

rkc4b integrator

ncase = 4 neqn = 21

t u(num) u(exact) diff
0.00 1.0000000000 1.0000000000 0.0000000000
0.20 0.1394715959 0.1389111331 0.0005604628
0.40 0.0194530717 0.0192963029 0.0001567688
0.60 0.0027121171 0.0026804713 0.0000316458
0.80 0.0003782931 0.0003723473 0.0000059458
1.00 0.0000515291 0.0000517232 -0.0000001941

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkf45a integrator

ncase = 5 neqn = 21

t u(num) u(exact) diff
0.00 1.0000000000 1.0000000000 0.0000000000
0.20 0.1394756138 0.1389111331 0.0005644806
0.40 0.0194534468 0.0192963029 0.0001571439
0.60 0.0027132814 0.0026804713 0.0000328101
0.80 0.0003784366 0.0003723473 0.0000060893
1.00 0.0000527827 0.0000517232 0.0000010595

rkf45b integrator

ncase = 6 neqn = 21

t u(num) u(exact) diff
0.00 1.0000000000 1.0000000000 0.0000000000
0.20 0.1394755775 0.1389111331 0.0005644444
0.40 0.0194461297 0.0192963029 0.0001498268
0.60 0.0027150369 0.0026804713 0.0000345656
0.80 0.0003796192 0.0003723473 0.0000072719
1.00 0.0000528840 0.0000517232 0.0000011608

This output is equivalent to the output from the preceding MATLAB (Section
4.1), C (Section 4.2), C++ (Section 4.3), and Fortran (Section 4.4); i.e., the error
tolerances in intpar are exceeded because of the spatial discretization errors.
We now proceed to the Maple programming of the linear PDE.

4.6 Programming in Maple

Since main Program 4.6.1 (and subordinate routines) accesses specific files by
read statements, it is listed first:

> restart:

> read "c:\\odelib\\maple\\pdelin\\pdelin.txt";

> pdelin();

Program 4.6.1
Maple main program pdelin.mws for the numerical integration of Equations
4.1 to 4.4

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

pdelin:=proc()
#
Main program pdelin computes the numerical
solution to the linear PDE system by one of
six integrators
#
Type variables

global neqn, nout, nsteps, t0, tf, abserr, relerr:
local u0, u, tp, ncase, i, j:

#
Step through six integrators

for ncase from 1 to 6 do
#
Integration parameters

read "c:\\odelib\\maple\\pdelin\\intpar.txt":
intpar():

#
Size arrays

u0:=array(1..neqn): u:=array(1..neqn):
#
Initial condition vector

read "c:\\odelib\\maple\\pdelin\\inital.txt":
inital(neqn,t0,u0):

#
Output interval

tp:=tf-t0:
#
Compute solution at nout output points

for j from 1 to nout do
#
Print current solution

read "c:\\odelib\\maple\\pdelin\\fprint.txt":
fprint(ncase,neqn,t0,u0):

#
Fixed step modified Euler integrator

if (ncase = 1) then
read "c:\\odelib\\maple\\pdelin\\euler2a.txt":
euler2a(neqn,t0,tf,u0,nsteps,u):

end if:
#
Variable step modified Euler integrator

if (ncase = 2) then
read "c:\\odelib\\maple\\pdelin\\euler2b.txt":
euler2b(neqn,t0,tf,u0,nsteps,abserr,relerr,u):

end if:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
Fixed step classical fourth order RK integrator

if (ncase = 3) then
read "c:\\odelib\\maple\\pdelin\\rkc4a.txt":
rkc4a(neqn,t0,tf,u0,nsteps,u):

end if:
#
Variable step classical fourth order RK integrator

if (ncase = 4) then
read "c:\\odelib\\maple\\pdelin\\rkc4b.txt":
rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr,u):

end if:
#
Fixed step RK Fehlberg (RKF45) integrator

if (ncase = 5) then
read "c:\\odelib\\maple\\pdelin\\rkf45a.txt":
rkf45a(neqn,t0,tf,u0,nsteps,u):

end if:
#
Variable step RK Fehlberg (RKF45) integrator

if (ncase = 6) then
read "c:\\odelib\\maple\\pdelin\\rkf45b.txt":
rkf45b(neqn,t0,tf,u0,nsteps,abserr,relerr,u):

end if:
#
Advance solution

t0:=tf:
tf:=tf+tp:
for i from 1 to neqn do

u0[i]:=u[i]:
end do:

#
Next output

end do:
#
Next integrator

end do:
#
End of pdelin

end:

Program 4.6.2
Maple main program pdelin.txt for the numerical integration of Equations 4.1
to 4.4

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Note the reference to specific files by read statements, e.g.,

#
Initial condition vector

read "c:\\odelib\\maple\\pdelin\\inital.txt":
inital(neqn,t0,u0):

intpar, inital, derv, and fprint are listed below:

intpar:=proc()
#
Function intpar sets the parameters to control the
integration of the linear PDE problem
#
Type variables

global neqn, nout, nsteps, t0, tf, abserr, relerr:
#
Number of first order ODEs

neqn:=21:
#
Number of output points

nout:=6:
#
Maximum number of steps in the interval t0 to tf

nsteps:=250:
#
Initial, final values of independent variable

t0:=0.0:
tf:=0.2:

#
Error tolerances

abserr:=1.0e-05:
relerr:=1.0e-05:

#
End of intpar

end:

inital:=proc(neqn,t,u0)
#
Function inital sets the initial condition vector
of the linear PDE problem
#

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Type variables
local xl, xu, pi, x, i:

#
Problem parameters

xl:=0.0:
xu:=1.0:

#
Initial condition

pi:=evalf(Pi):
for i from 1 to neqn do

x:=xl+(i-1)/(neqn-1)*(xu-xl):
u0[i]:=sin(pi*x):

end do:
#
End of inital

end:

derv:=proc(neqn,t,u,ut)
#
Function derv computes the derivative vector
of the linear PDE problem
#
Type variables

local xl, xu, dx, dxs, i:
#
Problem parameters

xl:=0.0:
xu:=1.0:

#
BC at x = 0

ut[1]:=0.0:
#
BC at x = 1

ut[neqn]:=0.0:
#
Interior points

dx:=(xu-xl)/(neqn-1):
dxs:=dx*dx:
for i from 2 to neqn-1 do

ut[i]:=(u[i+1]-2.0*u[i]+u[i-1])/dxs:
end do:

#
End of derv

end:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

fprint:=proc(ncase,neqn,t,u)
#
Function fprint displays the numerical and exact
solutions to the linear PDE problem
#
Type variables

local xl, xu, x, pi, ue, im:
#
Declare global variables

global nsteps:
#
Problem parameters

xl:=0.0:
xu:=1.0:

#
Print a heading for the solution at t = 0

if (t <= 0.0) then
#
Label for ODE integrator
#
Fixed step modified Euler

if (ncase = 1) then
printf(`\n\n euler2a integrator\n\n`);

#
Variable step modified Euler

elif (ncase = 2) then
printf(`\n\n euler2b integrator\n\n`);

#
Fixed step classical fourth order RK

elif (ncase = 3) then
printf(`\n\n rkc4a integrator\n\n`);

#
Variable step classical fourth order RK

elif (ncase = 4) then
printf(`\n\n rkc4b integrator\n\n`);

#
Fixed step RK Fehlberg 45

elif (ncase = 5) then
printf(`\n\n rkf45a integrator\n\n`);

#
Variable step RK Fehlberg 45

elif (ncase = 6) then
printf(`\n\n rkf45b integrator\n\n`);

end if:
#

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Heading
printf(` ncase = %2d neqn = %2d nsteps = %3d \n\n`,

ncase,neqn,nsteps);
printf(` t u(num) u(exact) diff\n`);

#
End of t = 0 heading

end if:
#
Numerical and analytical solution output
#
Midpoint value of x

x:=(xu-xl)/2.0:
#
Analytical solution at midpoint

pi:=evalf(Pi):
ue:=exp(-pi*pi*t)*sin(pi*x):

#
Grid index of midpoint

im:=round((neqn+1)/2):
#
Display the numerical and exact solutions,
and their difference

printf(`%5.2f %11.6f %11.6f %13.4e\n`,t,u[im],
ue,u[im]-ue);

#
End of fprint

end:

Program 4.6.3
intpar, inital, derv, and fprint for the solution of Equations 4.1 to 4.4

Note the use of the Maple in-line value of π in inital, derv, and fprint, e.g.,

#
Initial condition

pi:=evalf(Pi):
for i from 1 to neqn do

x:=xl+(i-1)/(neqn-1)*(xu-xl):
u0[i]:=sin(pi*x):

end do:

Pi is a symbolic value of π which is then converted to a numerical value,
evalf(Pi), for use in subsequent calculations.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

The output from the preceding routines is listed below:

euler2a integrator

ncase = 1 neqn = 21 nsteps = 250

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e-01
.20 .139478 .138911 5.6734e-04
.40 .019454 .019296 1.5794e-04
.60 .002713 .002680 3.2977e-05
.80 .000378 .000372 6.1201e-06

1.00 .000053 .000052 1.0647e-06

euler2b integrator

ncase = 2 neqn = 21 nsteps = 250

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e-01
.20 .139530 .138911 6.1893e-04
.40 .019462 .019296 1.6544e-04
.60 .002712 .002680 3.1091e-05
.80 .000378 .000372 5.6249e-06

1.00 .000049 .000052 -3.1368e-06

rkc4a integrator

ncase = 3 neqn = 21 nsteps = 250

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e-01
.20 .139476 .138911 5.6448e-04
.40 .019453 .019296 1.5714e-04
.60 .002713 .002680 3.2810e-05
.80 .000378 .000372 6.0891e-06

1.00 .000053 .000052 1.0593e-06

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkc4b integrator

ncase = 4 neqn = 21 nsteps = 250

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e-01
.20 .139473 .138911 5.6189e-04
.40 .019453 .019296 1.5690e-04
.60 .002713 .002680 3.2058e-05
.80 .000376 .000372 3.7570e-06
1.00 .000053 .000052 8.4148e-07

rkf45a integrator

ncase = 5 neqn = 21 nsteps = 250

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e-01
.20 .139476 .138911 5.6448e-04
.40 .019453 .019296 1.5714e-04
.60 .002713 .002680 3.2810e-05
.80 .000378 .000372 6.0891e-06
1.00 .000053 .000052 1.0593e-06

rkf45b integrator

ncase = 6 neqn = 21 nsteps = 250

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e-01
.20 .139476 .138911 5.6448e-04
.40 .019449 .019296 1.5311e-04
.60 .002714 .002680 3.3779e-05
.80 .000379 .000372 6.1720e-06
1.00 .000053 .000052 9.4329e-07

This output is equivalent to the output from the preceding MATLAB (Sec-
tion 4.1), C (Section 4.2), C++ (Section 4.3), Fortran (Section 4.4), and Java

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

(Section 4.5), i.e., the error tolerances in intpar are exceeded because of the
spatial discretization errors.

This completes the discussion of the linear PDE problem programmed in the
six languages. Basically, we have observed that PDEs can also be integrated
using the methods for ODEs discussed in Chapters 2 and 3. The additional step
is the algebraic approximation of the spatial (boundary value) derivatives in
the PDEs, including the boundary conditions, so that the PDEs are replaced
by an approximating system of initial values ODEs. This procedure is the
essence of the method of lines.

We now consider the final problem, a nonlinear PDE, in the remaining
chapter. Again, as in the case of the preceding linear PDE, the techniques
for ODEs in Chapters 2 and 3 can also be applied to the nonlinear PDE
problem.

References

1. Vande Wouwer, A., Ph. Saucez, and W.E. Schiesser, Adaptive Method of Lines,
CRC Press, Boca Raton, FL, 2001.

2. Schiesser, W.E., The Numerical Method of Lines Integration of Partial Differential Equa-
tions, Academic Press, San Diego, CA, 1991.

3. Schittkowski, K., Numerical Data Fitting in Dynamical Systems, Kluwer, Dordrecht,
the Netherlands, 2002.

4. Hundsdorfer, W., and J.G. Verwer, Numerical Solution of Time-Dependent Advection-
Diffusion-Reaction Equations, Springer Series in Computational Mathematics,
Vol. 33, Springer-Verlag, New York, 2003.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

5
Solution of a Nonlinear PDE

The concluding PDE example is based on a physical system comprising a
section of steel with a layer of external insulation, as depicted in Figure 5.1.
The external surface of the insulation is heated by radiation from a flame, and
the basic question to be answered then is how the temperature of the steel
changes with time due to the radiative heating (the insulation is designed to
prevent rapid heating of the steel).

To analyze this system, we first realize that the temperature varies across the
insulation as well as with time. Thus, we have a problem in time and space, as
we did with the PDE of Chapter 4, Equation 4.1, and we therefore will again
use a PDE to analyze the system of Figure 5.1. Since we can generally not
model a physical system in complete detail, we will make some simplifying
assumptions so that the analysis becomes tractable, yet we expect that the
resulting mathematical model will still capture the essential features (the first-
order effects) of the problem. Here then is a list of assumptions:

1. The conduction of heat along the insulation is significant in only one
direction, the smallest dimension (transverse to the cross section); thus
the insulation “thickness” is assumed to be much smaller than its other
two (longitudinal) dimensions. Again we use x and t to denote position
(in the insulation) and time.

2. Consequently, the temperature variation is also only one dimensional
(in the same direction as the heat conduction).

3. Because the steel has a much higher thermal conductivity than the in-
sulation, the variation of temperature in the steel with position will be
much smaller than the spatial temperature variation in the insulation.
Thus, we will assume that the steel is at a single, uniform temperature
(which can vary with time).

4. Since the steel temperature does not vary spatially, we have only one in-
dependent variable for the steel, time, and the steel is therefore modeled
by an ODE in time.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Steel column
(in cross section)

Insulation

Flame

Flame

Flame

Flame

FIGURE 5.1
Composite steel–insulation system.

Steel column
(in cross section)

Insulation

Flame

Flame

Flame

Flame

Section for analysis

T(x,0) = T0

= 25°C = 298 K

T(x,∞) = Tf

= 2000 K

x = 0 x = L

Steel column Insulation

t

t = 0

Insulation

Line of symmetry

FIGURE 5.2
Transient heating of composite steel–insulation system.

5. The physical properties of the insulation and steel are constant (do not
vary with temperature). This may be a reasonable assumption, or may
be sufficiently accurate if we use properties averaged over the tempera-
tures that the insulation and steel experience. If this is not a reasonable
assumption, the properties can be computed as a function of tempera-
ture and used for each x and t.

The temperature profiles that we will be calculating are illustrated in
Figure 5.2. Note that the system (insulation and steel) starts at a tempera-
ture of 25◦C = 298 K. The left face of the insulation (z = 0) is then subjected to
a flame at a temperature of Tf = 2000 K. The temperatures in the insulation
and the steel then begin to rise, and if the solution is computed to suffi-
ciently large time t, the entire system would come to a uniform temperature
of 2000 K. Some intermediate temperature profiles (for finite t) are illustrated

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

T(x,0) = T0

 = 25°C = 298 K

T(x,∞) = Tf

 = 2000 K

x = 0 x = L

Steel column Insulation

t

t = 0

∆x

x
x + (1/2)∆xx−(1/2)∆x

Heat fluxes

Isothermal lines

FIGURE 5.3
Transient heating of composite steel–insulation system.

0=x Lx =

Insulation

xxq ∆+)2/1(xxq ∆−)2/1(

x∆

xi ∆−)2/1(

xi ∆+)2/1(

on a finite volume

2/1−= iq
2/1+= iq

iT 1+iT1−iT

Ni ,,2,1=

accumulation = input - output

)(2/12/1 +− −=∆ ii
i

p qqA
dt

dT
CxA ρ

By a FD approximation to Fourier’s first law

x

TT
kq ii

i ∆
−−= +

+
)(1

2/1 x

TT
kq ii

i ∆
−−= −

−
)(1

2/1

∆
−−

∆
−=∆ +−

x

TT
k

x

TT
kA

dt

dT
CxA iiiii

p
11ρ

x

x
TT

x
TT

C
k

dt

dT
iiii

pi

∆

∆
−−

∆
−

=

+− 11

ρ

∆
+−= −+

2
11 2

x

TTT

dt

dT iiii α

2

2

x

T

t

T

∂
∂=

∂
∂ αFor ∆x → 0, Fourier’s second law:

One IC, 2 BCs

By energy conservation

FIGURE 5.4
Energy balance on the incremental volume of insulation.

in Figure 5.2, and in more detail in Figure 5.3. Note in Figure 5.3 the definition
of a finite volume of the insulation of thickness �z. The mathematical model
for the insulation is based on an energy balance for this incremental volume.
The derivation of the mathematical model is outlined in Figure 5.4.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

The final result of the energy balance, in the limit �z → 0, is again Fourier’s
second law, which we now state in terms of u for temperature (rather than T):

∂u
∂t

= α
∂2u
∂x2 (5.1)

The initial and boundary conditions for Equation 5.1 taken as

u(x, 0) = u0 (5.2)

−k
∂u(0, t)

∂x
= σ(au4

a − eu4(0, t)) (5.3)

LsρsC ps
dus

dt
= −k

∂u(L, t)
∂x

(5.4)

where, in SI (MKS) units,
u = insulation temperature, K
t = time, s
x = position in the insulation, m

ua = ambient (flame) temperature, K
α = insulation thermal diffusivity, m2/s

k = insulation thermal conductivity,
J · m

s · m2 · K
σ = Stefan–Boltzmann constant

= 5.67x10−8 J
s · m2 · K4

L = insulation half thickness, m
a = absorptivity
e = emissivity

us = steel temperature, K
Ls = steel half thickness, m
ρs = steel density, kg/m3

C ps = steel specific heat, J/kg · K

Equations 5.3 and 5.4 are also energy balances, but applied at the boundaries
of the insulation and steel. For Equation 5.3, we have the following:

• −k∂u(0, t)/∂x, the rate of heat conduction at the left surface of the insu-
lation (at x = 0) according to Fourier’s first law. This term is actually a
flux (a rate of heat conduction per unit area of insulation) with the units
J/m2 · s.

• σ(au4
a − eu4(0, t)), the rate of radiative heat transfer from the flame to

the insulation surface according to the Stefan–Boltzmann law. Again, this
is a flux with the units J/m2 · s. Note that the dependent variable (the
insulation temperature) is raised to the fourth power, u4(0, t). This is a
nonlinear term in the model. Thus, although Equation 5.1 is linear, this
nonlinear BC is the reason the model is considered nonlinear (and, also, the
reason an analytical solution is precluded).

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• Equation 5.3 is therefore an energy balance that equates the rate of ra-
diative heat transfer to the rate of heat conduction at the surface of the
insulation.

For Equation 5.4, we have an energy balance on the steel:

• LsρsC ps(dus/dt), the rate of accumulation of energy within the steel (with
thickness Ls). This term again has the units of J/m2 · s.

• −k∂u(L, t)/∂x, the rate of heat conduction from the right face of the
insulation (at x = L) to the steel. Since this is a flux, it has the units of
J/m2 · s.

• Equation 5.4 is therefore an energy balance that equates the rate of heat
transfer from the insulation to the rate of accumulation of energy within
the steel.

• Equation 5.4 is actually an ODE in time. Therefore, the model is a mixed
ODE/PDE system. This feature does not present any particular difficulty
in computing a numerical solution since the PDE, Equation 5.1, will be
converted to a system of (n = 21) ODEs, as before in Chapter 4. Thus, we
will merely add Equation 5.4 as another ODE for a system of 22 ODEs.

• This last point illustrates an important advantage of the method of lines,
i.e., it can easily accommodate mixed ODE/PDE systems.

• Since Equation 5.4 is an ODE, it requires an initial condition, which we
take as

us(0) = u0 (5.5)

To facilitate the subsequent computer analysis, dimensionless independent
variables are defined as

x′ = x/L, t′ = tα/L2 (5.6)(5.7)

Substitution of Equations 5.6 and 5.7 in Equation 5.1 gives

∂u
∂(L2t′/α)

= α
∂2u

∂(L2x′)2

or
∂u
∂t

= ∂2u
∂x2 (5.8)

where the prime (′) has been dropped and it is understood that we are working
with the dimensionless independent variables of Equations 5.6 and 5.7.

Equations 5.2 to 5.5 transform to (again, with the prime finally dropped).

u(x, 0) = u0 (5.9)

− k
L

∂u(0, t)
∂x

= σ(au4
a − eu4(0, t)) (5.10)

LsρsC ps
dus

d(L2t′/α)
= − k

L
∂u(1, t)

∂x′

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

or

dus

dt
= −

(
kL
α

) (
1

LsρsC ps

)
∂u(1, t)

∂x
(5.11)

us(0) = u0 (5.12)

Equations 5.8 to 5.12 are the model equations programmed in the six lan-
guages as discussed below. The parameters are taken as:

k = 1.0
J · m

s · m2 · K
σ = 5.67x10−8 J

s · m2 · K4

α = 1.0x10−6m2/s
L = 0.1 m
a = 1.0
e = 1.0

ua = 2000 K
uo = 25◦C
ρs = 7800.0 kg/m3

C ps = 435.0 J/kg · K
Ls = 0.025 m

These values are typical for an insulation and steel system. Their particu-
lar significance is discussed subsequently when the numerical solution to
Equations 5.8 to 5.12 is discussed.

The output is u(0, t), u(1/2, t), u(1, t) vs. t (in minutes; note t (minutes) = t
(dimensionless) L2/α/60). In particular, we are interested in the steel temper-
ature, us(t) as a function of t, which is also the temperature of the insulation
at the right face, u(1, t).

In constructing a program for Equations 5.8 to 5.12, we can make use of the
methods of Chapter 4. In particular, we can approximate Equation 5.8 with
the three point centered FD of Equation 4.9.

5.1 Programming in MATLAB

A main program for the solution of the nonlinear PDE problem, Equations
5.8 to 5.12, is the same as Program 3.1.1 and therefore is not listed here. intpar,
par1, par2, inital, derv, and fprint are listed below followed by some discussion
for each.

function [neqn,nout,nsteps,t0,tf,abserr,relerr]=intpar
%
% Function intpar sets the parameters to control the

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% integration of the nonlinear PDE problem
%
% Number of first order ODEs

neqn=22;
%
% Number of output points

nout=6;
%
% Maximum number of steps in the interval t0 to tf

nsteps=1000;
%
% Initial, final values of independent variable

t0=0.0;
tf=0.2;

%
% Error tolerances

abserr=1.0e-01;
relerr=1.0e-05;

Program 5.1.1
intpar for the solution of Equations 5.8 to 5.12

We can note the following points about intpar:

• The number of ODEs is 22 (21 for Equation 5.8 and 1 for Equation 5.11):

%
% Number of first order ODEs

neqn=22;

• 1000 steps produce a stable solution, which is apparently also accurate
since the low-order (euler2b) and high-order (rkc4b, rkf45b) variable step
ODE algorithms give essentially the same numerical solution (recall from
Chapter 1 that in addition to varying the step size, i.e., h refinement,
the comparison of solutions from algorithms of different orders, i.e.,
p refinement, is a general way for assessing the accuracy of a numerical
solution).

%
% Maximum number of steps in the interval t0 to tf

nsteps=1000;

• The timescale for the problem is again 0 ≤ t ≤ 1 based on the dimen-
sionless time of Equation 5.7:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Initial, final values of independent variable

t0=0.0;
tf=0.2;

• The error tolerances are set to abserr = 10−1 (0.1 K) and relerr = 10−5

(0.001%):

%
% Error tolerances

abserr=1.0e-01;
relerr=1.0e-05;

inital is listed below:

function [u]=inital(neqn,t)
%
% Function inital sets the initial condition vector
% for the nonlinear PDE
%
% Problem parameters

[alpha,k,sigma,L,ui,ua]=par1;
%
% Inital condition

for i=1:neqn
u(i)=ui;

end
%
% End of inital

Program 5.1.2
inital for the solution of Equations 5.8 to 5.12

inital is a straightforward implementation of Equations 5.9 and 5.12. Specif-
ically, it calls function par1 to set the initial temperature, ui (= 25◦C = 298 K),
then uses this initial value for the neqn = 22 ODEs. par1 and a second routine
to set parameters, par2, are listed below (MATLAB would not accept a func-
tion with 12 output parameters, so two routines, par1 and par2, are used, each
with six parameters).

function [alpha,k,sigma,L,ui,ua]=par1
%
% Function par1 sets parameters for the nonlinear PDE

alpha=1.0e-06;
k=1.0;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

sigma=5.67e-08;
L=0.1;
ui=298.0;
ua=2000.0;

%
% End of par1

function [a,e,rhos,cps,ls,cs]=par2
%
% Function par2 sets parameters for the nonlinear PDE

a=1.0;
e=1.0;
rhos=7800.0;
cps=435.0;
ls=0.025;
cs=rhos*cps*ls;

%
% End of par2

Program 5.1.3
par1 and par2 for the parameters of Equations 5.8 to 5.12

function [ut]=derv(neqn,t,u)
%
% Function derv computes the derivative vector
% for the nonlinear PDE
%
% Problem parameters

[alpha,k,sigma,L,ui,ua]=par1;
[a, e, rhos,cps,ls,cs]=par2;

%
% Spatial grid

dx=1.0/(neqn-2);
dxs=dx*dx;

%
% Insulation

for i=1:neqn-2
if(i==1)

u0=u(2)+2.0*dx*L*(sigma/k)*(a*ua^4-e*u(1)^4);
ut(1)=(u(2)-2.0*u(1)+u0)/dxs;

else
ut(i)=(u(i+1)-2.0*u(i)+u(i-1))/dxs;

end
end

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Steel

ut(neqn)=(k*L/alpha)*(1.0/cs)*(u(neqn-2)-u(neqn-1))/dx;
ut(neqn-1)=ut(neqn);

%
% End of derv

Program 5.1.4
derv for the solution of Equations 5.8 to 5.12

We can note the following points about derv:

• The parameters in Equations 5.8 to 5.11 are first set by calls to par1 and
par2:

%
% Problem parameters

[alpha,k,sigma,L,ui,ua]=par1;
[a, e, rhos,cps,ls,cs]=par2;

• �x (= dx) is then computed. Note that the length of the system (the
thickness of the insulation) is unity in terms of the dimensionless length
of Equation 5.6:

%
% Spatial grid

dx=1.0/(neqn-2);
dxs=dx*dx;

• The method of lines solution of the PDE, Equation 5.8, is then pro-
grammed as a system of 20 ODEs (the 21st ODE is programmed subse-
quently by equating its derivative to that of the steel)

%
% Insulation

for i=1:neqn-2
if(i==1)

u0=u(2)+2.0*dx*L*(sigma/k)*(a*ua^4-e*u(1)^4);
ut(1)=(u(2)-2.0*u(1)+u0)/dxs;

else
ut(i)=(u(i+1)-2.0*u(i)+u(i-1))/dxs;

end
end

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Note that for the first grid point (i = 1), BC Equation 5.10, is approxi-
mated with a FD for the spatial derivative:

− k
L

∂u(0, t)
∂x

� − k
L

u2 − u0

2�x
= σ(au4

a − eu4(0, t)) = σ(au4
a − eu4

1)

where u0 is a fictitious value that is outside the grid (the lowest grid index
is i = 1). We can solve for u0

u0 = u2 + 2(L/k)�xσ(au4
a − eu4

1) (5.13)

then use this value for u0 in the FD approximation of Equation 5.8:

du1

dt
� u2 − 2u1 + u0

�x2 (5.14)

Equations 5.13 and 5.14 are programmed in the for loop for i = 1.
• For i = 2 to i = 20, the FD approximation of Equation 4.9 can be used:

ut(i)=(u(i+1)-2.0*u(i)+u(i-1))/dxs;

• For ODEs 21 and 22, the programming is

%
% Steel

ut(neqn)=(k*L/alpha)*(1.0/cs)*(u(neqn-2)
-u(neqn-1))/dx;

ut(neqn-1)=ut(neqn);

The programming for ut(neqn) is Equation 5.11. Note that a FD approxi-
mation is used for the derivative ∂u(1, t)/∂x, i.e.,

∂u(1, t)
∂x

� u21 − u20

�x

The programming for ut(neqn − 1) merely sets u21 to u22 by equating
their derivatives:

∂u(1, t)
∂t

= dus

dt
or

du21

dt
= du22

dt

In other words, this provides continuity (equality) of the temperature
between the right face of the insulation (u(1, t)) and the left face of the
steel (with the uniform steel temperature us(t)).

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

At the end of derv, all 22 ODEs of Equations 5.8 and 5.11 are programmed.
These 22 derivatives (ut(i)) are then returned to one of the ODE integrators,
euler2a to rkf45b, to take the next step along the solution. In this way, the
complete solution to Equations 5.8 to 5.12 is computed through t and x; that
is, we have u(x, t) and us(t) in numerical form.

This numerical solution is displayed by fprint:

function [out]=fprint(ncase,neqn,t,u)
%
% Function fprint displays the numerical solution to the
% nonlinear PDE
%
% Return current value of independent variable
% (MATLAB requires at least one return argument)

out=t;
%
% Problem parameters

[alpha,k,sigma,L,ui,ua]=par1;
[a, e, rhos,cps,ls,cs]=par2;

%
% Print a heading for the solution at t = 0

if(t<=0.0)
%
% Label for ODE integrator
%
% Fixed step modified Euler

if(ncase==1)
fprintf('\n\n euler2a integrator\n');

%
% Variable step modified Euler

elseif(ncase==2)
fprintf('\n\n euler2b integrator\n');

%
% Fixed step classical fourth order RK

elseif(ncase==3)
fprintf('\n\n rkc4a integrator\n');

%
% Variable step classical fourth order RK

elseif(ncase==4)
fprintf('\n\n rkc4b integrator\n');

%
% Fixed step RK Fehlberg 45

elseif(ncase==5)
fprintf('\n\n rkf45a integrator\n');

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Variable step RK Fehlberg 45

elseif(ncase==6)
fprintf('\n\n rkf45b integrator\n');

end
%
% Heading

fprintf('\n ncase = %2d neqn = %2d\n',ncase,neqn);
fprintf('\n t u(1) u(im) u(neqn)\n');

%
% End of t = 0 heading

end
%
% Grid index of midpoint

im=round(neqn)/2.0;
%
% Display the numerical solution

tmin=t*L^2/alpha/60.0;
fprintf('%7.1f%10.2f%10.2f%10.2f\n',tmin,u(1),u(im),

u(neqn));
%
% End of fprint

Program 5.1.5
fprint for the solution of Equations 5.8 to 5.12

fprint has the same function as the previous fprint routines, i.e.,

• Labeling of the ODE integrator.
• Display of the numerical solution.

This completes the programming of Equations 5.8 to 5.12. The output is as
follows:

euler2a integrator

ncase = 1 neqn = 22

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00
33.3 1987.96 1002.15 394.17
66.7 1991.05 1218.09 622.84
100.0 1992.55 1345.04 834.65
133.3 1993.72 1447.20 1015.31
166.7 1994.70 1533.03 1168.10

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

euler2b integrator

ncase = 2 neqn = 22

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00

33.3 1987.93 1002.11 394.14
66.7 1991.00 1217.92 622.58

100.0 1992.54 1344.68 834.02
133.3 1993.68 1446.70 1014.43
166.7 1994.65 1532.29 1166.78

rkc4a integrator

ncase = 3 neqn = 22

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00

33.3 1987.96 1002.16 394.17
66.7 1991.05 1218.10 622.85

100.0 1992.55 1345.05 834.66
133.3 1993.72 1447.20 1015.32
166.7 1994.70 1533.03 1168.10

rkc4b integrator

ncase = 4 neqn = 22

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00

33.3 1986.00 1002.16 394.17
66.7 1991.04 1217.94 622.61

100.0 1992.35 1344.91 834.42
133.3 1993.56 1446.90 1014.78
166.7 1994.69 1532.53 1167.22

rkf45a integrator

ncase = 5 neqn = 22

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00

33.3 1987.96 1002.16 394.17
66.7 1991.05 1218.10 622.85

100.0 1992.55 1345.05 834.66

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

133.3 1993.72 1447.20 1015.32
166.7 1994.70 1533.03 1168.10

rkf45b integrator

ncase = 6 neqn = 22

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00
33.3 1988.02 1002.16 394.17
66.7 1991.28 1218.10 622.85
100.0 1992.55 1345.05 834.66
133.3 1993.94 1447.02 1014.99
166.7 1994.68 1532.63 1167.40

We can note the following points about this output:

• The insulation starts at a uniform temperature of 298 K. The steel also
starts at this temperature since, at the insulation–steel interface, u(1, t) =
us(t) (from the coding in derv).

• As expected, the left face of the insulation (at x = 0) responds rapidly to
the flame and is above 1990 K for most of the transient.

• The insulation at the right face (x = L), which is also the steel tempera-
ture, responds more slowly due to the low thermal conductivity of the
insulation. This delay in the rise of the steel temperature is critical in the
case of structural steel used in buildings that may be subject to fire. This
point is discussed further at the end of this chapter.

This completes the solution of Equations 5.8 to 5.12 with MATLAB. We now
proceed to equivalent solutions in the five other languages.

5.2 Programming in C

Since main Program 2.2.1 is unchanged in the nonlinear PDE problem, it is not
listed here. The header file, intpar, par, inital, derv, and fprint are listed below

/*

Definition of functions intpar, par, inital, derv, fprint
for the nonlinear PDE

*/

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Include headers */
#include <math.h>
#include <stdio.h>

/* Maximum number of ODES */
#define SIZE 500

/* Type variables as extern (global) */
extern int neqn, nout, nsteps;
extern double t0, tf, abserr, relerr;
extern double alpha, k, sigma, L,

ui, ua, ar, er,
rhos, cps, ls, cs,

xl, xu, dx, dxs;
extern FILE *fid;

/* Integration parameters */
void intpar();

/* Problem parameters */
void par();

/* Initial condition */
void inital(double u0[]);

/* Derivative vector */
void derv(double ut[], double t, double u[]);

/* Output */
void fprint(int ncase, double t, double u[]);

#include "pdenon.h"

#define SIZE 500

/* Type global variables */

int neqn, nout, nsteps;

double t0, tf, abserr, relerr;

double alpha, k, sigma, L,
ui, ua, ar, er,

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rhos, cps, ls, cs,
xl, xu, dx, dxs;

/* Define file ID */
FILE *fid;

void intpar()

/* Function intpar sets the parameters to control the
integration of the nonlinear PDE */
{

/* Number of ODEs */
neqn=22;

/* Number of output points */
nout=6;

/* Maximum number of steps in the interval t0 to tf */
nsteps=1000;

/* Initial, final values of the independent variable */
t0=0.0;
tf=0.2;

/* Error tolerances */
abserr=pow(10.0,-1);
relerr=pow(10.0,-5);

/* End of intpar */
}

void par()

/* Function par sets the parameters for the nonlinear PDE */

{

alpha=1.0e-06; k=1.0; sigma=5.67e-08; L=0.1;
ui=298.0; ua=2000.0; ar=1.0; er=1.0;
rhos=7800.0; cps=435.0; ls=0.025; cs=rhos*cps*ls;
xl=0.0; xu=1.0; dx=(xu-xl)/(neqn-2); dxs=dx*dx;

}

void inital(double u0[])

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Function inital sets the initial condition vector for
the nonlinear PDE */
{

/* Type variables */
int i;

/* Problem parameters */
par();

/* Initial condition */
for(i=1;i<=neqn;i++)

{
u0[i]=ui;

}

/* End of inital */
}

void derv(double ut[], double t, double u[])

/* Function derv computes the derivative vector of the
nonlinear PDE */
{

/* Type variables */
double u0;
int i;

/* Problem parameters */
par();

/* Insulation*/
for(i=1;i<=(neqn-2);i++)

{
if(i==1)

{
u0=u[2]+2.0*dx*L*(sigma/k)*(ar*pow(ua,4)

-er*pow(u[1],4));
ut[1]=(u[2]-2.0*u[1]+u0)/dxs;

}
if(i>1)

{
ut[i]=(u[i+1]-2.0*u[i]+u[i-1])/dxs;

}
}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Steel */
ut[neqn]=(k*L/alpha)*(1.0/cs)*(u[neqn-2]-u[neqn-1])/dx;
ut[neqn-1]=ut[neqn];

/* End of derv */
}

void fprint(int ncase, double t, double u[])

/* Function fprint displays the numerical solution to the
nonlinear PDE */

{
/* Type variables */
int im;

/* Problem parameters */
par();

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
/* Label for ODE integrator */
switch(ncase)

{
/*Fixed step modified Euler */
case 1:
fprintf(fid,"\n\n euler2a integrator\n\n");
break;

/* Variable step modified Euler */
case 2:
fprintf(fid,"\n\n euler2b integrator\n\n");
break;

/* Fixed step classical fourth order RK */
case 3:
fprintf(fid,"\n\n rkc4a integrator\n\n");
break;

/* Variable step classical fourth order RK */
case 4:
fprintf(fid,"\n\n rkc4b integrator\n\n");
break;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Fixed step RK Fehlberg 45 */
case 5:
fprintf(fid,"\n\n rkf45a integrator\n\n");
break;

/* Variable step RK Fehlberg 45 */
case 6:
fprintf(fid,"\n\n rkf45b integrator\n\n");
break;

}

/* Heading */
fprintf(fid," ncase = %1d neqn = %2d \n\n",ncase,

neqn);}
fprintf(fid," t u(1) u(im) u(neqn)\n");

/* End of t = 0 heading */
}

/* Numerical and analytical solution output */

/* Grid index of midpoint */
im=(neqn+1)/2;

/* Display the numerical solution */
fprintf(fid,"%5.0f %11.1f %11.1f %11.1f\n",

t*pow(L,2)/alpha/60.0,u[1],u[im],u[neqn]);

/* End of fprint */
}

Program 5.2.1
Header file, intpar, par , inital, derv and fprint for the solution of Equations 5.8
to 5.12

These routines closely parallel the MATLAB routines in Section 5.1 and there-
fore will not be discussed here.

The output from the preceding Program 5.2.1 is listed below:

euler2a integrator

ncase = 1 neqn = 22

t u(1) u(im) u(neqn)
0 298.0 298.0 298.0
33 1988.0 1002.1 394.2

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

67 1991.0 1218.1 622.8
100 1992.6 1345.0 834.7
133 1993.7 1447.2 1015.3
167 1994.7 1533.0 1168.1

euler2b integrator

ncase = 2 neqn = 22

t u(1) u(im) u(neqn)
0 298.0 298.0 298.0

33 1987.9 1002.1 394.1
67 1991.0 1217.9 622.6
100 1992.5 1344.7 834.0
133 1993.7 1446.7 1014.4
167 1994.7 1532.3 1166.8

rkc4a integrator

ncase = 3 neqn = 22

t u(1) u(im) u(neqn)
0 298.0 298.0 298.0

33 1988.0 1002.2 394.2
67 1991.0 1218.1 622.8
100 1992.6 1345.0 834.7
133 1993.7 1447.2 1015.3
167 1994.7 1533.0 1168.1

rkc4b integrator

ncase = 4 neqn = 22

t u(1) u(im) u(neqn)
0 298.0 298.0 298.0

33 1986.0 1002.2 394.2
67 1991.0 1217.9 622.6
100 1992.3 1344.9 834.4
133 1993.6 1446.9 1014.8
167 1994.7 1532.5 1167.2

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkf45a integrator

ncase = 5 neqn = 22

t u(1) u(im) u(neqn)
0 298.0 298.0 298.0
33 1988.0 1002.2 394.2
67 1991.0 1218.1 622.8

100 1992.6 1345.0 834.7
133 1993.7 1447.2 1015.3
167 1994.7 1533.0 1168.1

rkf45b integrator

ncase = 6 neqn = 22

t u(1) u(im) u(neqn)
0 298.0 298.0 298.0
33 1988.0 1002.2 394.2
67 1991.3 1218.1 622.8

100 1992.5 1345.0 834.7
133 1993.9 1447.0 1015.0
167 1994.7 1532.6 1167.4

This output is essentially the same as the MATLAB output in Section 5.1. We
now proceed to the C++ programming of the nonlinear PDE.

5.3 Programming in C++

Again, since main Program 2.3.1 is unchanged, it is not listed here. The asso-
ciated header files are listed below:

/* Problem parameters */
void par();

/* Initial condition */
void inital();

/* Derivative vector */
void derv(double ut[], double t, double u[]);

/* Output */
void fprint(int ncase, int neqn, double t, double u[]);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

};
#define SIZE 500

class MOL
{

public:

/* Variables for ODE integration */

int neqn, nout, nsteps;

double t0, tf, abserr, relerr;

double u[SIZE], u0[SIZE], e[SIZE];

/* Problem parameters */

double alpha, k, sigma, L, ui, ua, ar, er,
rhos, cps, ls, cs, xl, xu, dx, dxs;

};

Program 5.3.1
Header files pdenon.h and MOL.h for the solution of Equations 5.8 to 5.12

intpar, par, inital, derv, and fprint are listed below:

#include "DEF.h"

void DEF::intpar()

/* Function intpar sets the parameters to control the
integration of the nonlinear PDE */
{

/* Number of ODEs */
neqn=22;

/* Number of output points */
nout=6;

/* Maximum number of steps in the interval t0 to tf */
nsteps=1000;

/* Initial, final values of the independent variable */
t0=0.0;
tf=0.2;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Error tolerances */
abserr=pow(10.0,-1);
relerr=pow(10.0,-5);

/* End of intpar */
}

void DEF::par()

/* Function par sets the parameters for the nonlinear PDE */
{

alpha=1.0e-06; k=1.0; sigma=5.67e-08; L=0.1;
ui=298.0; ua=2000.0; ar=1.0; er=1.0;
rhos=7800.0; cps=435.0; ls=0.025; cs=rhos*cps*ls;
xl=0.0; xu=1.0; dx=(xu-xl)/(neqn-2); dxs=dx*dx;

/* End of par */
}

void DEF::inital()

/* Function inital sets the initial condition vector for
the nonlinear PDE */
{

/* Type variables */
int i;

/* Initial condition */
for(i=1;i<=neqn;i++)

{
u0[i]=ui;

}

/* End of inital */
}

void DEF::derv(double ut[], double t, double u[])

/* Function derv computes the derivative vector of the
nonlinear PDE problem */
{

/* Type variables */
double u0;
int i;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Integration parameters */
intpar();

/* Problem parameters */
par();

/* Insulation */
for(i=1;i<=(neqn-2);i++)

{
if(i==1)

{
u0=u[2]+2.0*dx*L*(sigma/k)*(ar*pow(ua,4)

-er*pow(u[1],4));
ut[1]=(u[2]-2.0*u[1]+u0)/dxs;

}
if(i>1)

{
ut[i]=(u[i+1]-2.0*u[i]+u[i-1])/dxs;

}
}

/* Steel */
ut[neqn]=(k*L/alpha)*(1.0/cs)*(u[neqn-2]-u[neqn-1])/dx;
ut[neqn-1]=ut[neqn];

/* End of derv */
}

void DEF::fprint(int ncase, int neqn, double t, double u[])

/* Function fprint displays the numerical solution to the
nonlinear PDE */

{
/* Type variables */
int im;

/* Problem parameters */
par();

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
/* Label for ODE integrator */
switch(ncase)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

{
/*Fixed step modified Euler */
case 1:
fprintf(fid,"\n\n euler2a integrator\n");
break;

/* Variable step modified Euler */
case 2:
fprintf(fid,"\n\n euler2b integrator\n");
break;

/* Fixed step classical fourth order RK */
case 3:
fprintf(fid,"\n\n rkc4a integrator\n");
break;

/* Variable step classical fourth order RK */
case 4:
fprintf(fid,"\n\n rkc4b integrator\n");
break;

/* Fixed step RK Fehlberg 45 */
case 5:
fprintf(fid,"\n\n rkf45a integrator\n");
break;

/* Variable step RK Fehlberg 45 */
case 6:
fprintf(fid,"\n\n rkf45b integrator\n");
break;

}

/* Heading */
fprint(fid,"\n ncase = %1d, neqn = %2d\n\n",ncase,neqn);
fprintf(fid," t u(1) u(im) u(neqn)\n");

/* End of t = 0 heading */
}

/* Grid index of midpoint */
im=(neqn+1)/2;

/* Display the numerical solution */

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

fprintf(fid,"%5.0f %11.1f %11.1f %11.1f\n",
t*pow(L,2)/alpha/60.0,u[1],u[im],u[neqn]);

/* End of fprint */
}

Program 5.3.2
intpar, par, inital, derv, and fprint for the solution of Equations 5.8 to 5.12

The output from the routines of Programs 5.3.1 and 5.3.2 is listed below:

euler2a integrator

ncase = 1, neqn = 22

t u(1) u(im) u(neqn)
0 298.0 298.0 298.0
33 1988.0 1002.1 394.2
67 1991.0 1218.1 622.8
100 1992.6 1345.0 834.7
133 1993.7 1447.2 1015.3
167 1994.7 1533.0 1168.1

euler2b integrator

ncase = 2, neqn = 22

t u(1) u(im) u(neqn)
0 298.0 298.0 298.0

33 1987.9 1002.1 394.1
67 1991.0 1217.9 622.6
100 1992.5 1344.7 834.0
133 1993.7 1446.7 1014.4
167 1994.7 1532.3 1166.8

rkc4a integrator

ncase = 3, neqn = 22

t u(1) u(im) u(neqn)
0 298.0 298.0 298.0

33 1988.0 1002.2 394.2
67 1991.0 1218.1 622.8
100 1992.6 1345.0 834.7

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

133 1993.7 1447.2 1015.3
167 1994.7 1533.0 1168.1

rkc4b integrator

ncase = 4, neqn = 22

t u(1) u(im) u(neqn)
0 298.0 298.0 298.0
33 1986.0 1002.2 394.2
67 1991.0 1217.9 622.6

100 1992.3 1344.9 834.4
133 1993.6 1446.9 1014.8
167 1994.7 1532.5 1167.2

rkf45a integrator

ncase = 5, neqn = 22

t u(1) u(im) u(neqn)
0 298.0 298.0 298.0
33 1988.0 1002.2 394.2
67 1991.0 1218.1 622.8

100 1992.6 1345.0 834.7
133 1993.7 1447.2 1015.3
167 1994.7 1533.0 1168.1

rkf45b integrator

ncase = 6, neqn = 22

t u(1) u(im) u(neqn)
0 298.0 298.0 298.0
33 1988.0 1002.2 394.2
67 1990.0 1218.1 622.8

100 1989.5 1345.0 834.6
133 1993.7 1446.9 1014.8
167 1994.6 1532.7 1167.5

This output is equivalent to the output from the preceding MATLAB (Section
5.1) and C (Section 5.2). We now proceed to the Fortran programming of the
nonlinear PDE.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

5.4 Programming in Fortran

Again, since main Program 2.4.1 is unchanged, it is not listed here. intpar, par,
inital, derv, and fprint are listed below:

subroutine intpar(neqn,nout,nsteps,t0,tf,abserr,relerr)
C
C Subroutine intpar sets the parameters to control the
C integration of the nonlinear PDE problem
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Number of ODEs

neqn=22
C
C Number of output points

nout=6
C
C Maximum number of steps in the interval t0 to tf

nsteps=1000
C
C Initial, final values of the independent variable

t0=0.0d0
tf=0.2d0

C
C Error tolerances

abserr=1.0d-01
relerr=1.0d-05
return

C
C End of intpar

end

subroutine par
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Global variables

common/p/ alpha, xk, sigma, xl, ui, ua,
+ a, e, rhos, cps, xls, cs

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C
C Subroutine par sets the parameters for the nonlinear PDE

alpha=1.0d-06
xk=1.0d0
sigma=5.67d-08
xl=0.1d0
ui=298.0d0
ua=2000.0d0
a=1.0d0
e=1.0d0
rhos=7800.0d0
cps=435.0d0
xls=0.025d0
cs=rhos*cps*xls
return

C
C End of par

end

subroutine inital(neqn,t,u0)
C
C Subroutine inital sets the initial condition vector
C for the nonlinear PDE problem
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Global variables

common/p/ alpha, xk, sigma, xl, ui, ua,
+ a, e, rhos, cps, xls, cs

C
C Size the arrays

dimension u0(neqn)
C
C Problem parameters

call par
C
C Initial condition

do i=1,neqn
u0(i)=ui

end do
return

C
C End of inital

end

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

subroutine derv(neqn,t,u,ut)
C
C Subroutine derv computes the derivative vector
C of the nonlinear PDE problem
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Global variables

common/p/ alpha, xk, sigma, xl, ui, ua,
+ a, e, rhos, cps, xls, cs

C
C Size the arrays

dimension u(neqn), ut(neqn)
C
C Spatial grid

dx=1.0d0/dfloat(neqn-2)
dxs=dx*dx

C
C Insulation

do i=1,neqn-2
if(i.eq.1)then

u0=u(2)+2.0d0*dx*xl*(sigma/xk)*(a*ua**4-e*u(1)**4)
ut(i)=(u(2)-2.0d0*u(1)+u0)/dxs

else
ut(i)=(u(i+1)-2.0d0*u(i)+u(i-1))/dxs

end if
end do

C
C Steel

ut(neqn)=(xk*xl/alpha)*(1.0d0/cs)*(u(neqn-2)
-u(neqn-1))/dx

ut(neqn-1)=ut(neqn)
C
C End of derv

return
end

subroutine fprint(no,ncase,neqn,t,u)
C
C Subroutine fprint displays the numerical solution to the
C nonlinear PDE problem
C
C Double precision coding is used

implicit double precision(a-h,o-z)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

C
C Global variables

common/p/ alpha, xk, sigma, xl, ui, ua,
+ a, e, rhos, cps, xls, cs

C
C Size the arrays

dimension u(neqn)
C
C Print a heading for the solution at t = 0

if(t.le.0.0d0)then
C
C Label for ODE integrator
C
C Fixed step modfied Euler

if(ncase.eq.1)then
write(no,11)

11 format(//,' euler2a integrator')
C
C Variable step modified Euler

else if(ncase.eq.2)then
write(no,12)

12 format(//,' euler2b integrator')
C
C Fixed step classical fourth order RK

else if(ncase.eq.3)then
write(no,13)

13 format(//,' rkc4a integrator')
C
C Variable step classical fourth order RK

else if(ncase.eq.4)then
write(no,14)

14 format(//,' rkc4b integrator')
C
C Fixed step RK Fehlberg 45

else if(ncase.eq.5)then
write(no,15)

15 format(//,' rkf45a integrator')
C
C Variable step RK Fehlberg 45

else if(ncase.eq.6)then
write(no,16)

16 format(//,' rkf45b integrator')
end if

C
C Heading

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

write(no,2)ncase,neqn
2 format(/,' ncase = ',i2,' neqn = ',i2,/)

write(no,3)
3 format(' t u(1) u(im) u(neqn)')

C
C End of t = 0 heading

end if
C
C Numerical and analytical solution output
C
C Grid index of midpoint

im=neqn/2
C
C Display the numerical solution

tmin=t*xl**2/alpha/60.0d0
write(no,4) tmin, u(1), u(im), u(neqn)

4 format(f6.1,3f10.2)
return

C
C End of fprint

end

Program 5.4.1
intpar, par, inital, derv, and fprint for the solution of Equations 5.8 to 5.12

The output from the routines of Program 5.4.1 is listed below:

euler2a integrator

ncase = 1 neqn = 22

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00
33.3 1987.96 1002.15 394.17
66.7 1991.05 1218.09 622.84
100.0 1992.55 1345.04 834.65
133.3 1993.72 1447.20 1015.31
166.7 1994.70 1533.03 1168.10

euler2b integrator

ncase = 2 neqn = 22
t u(1) u(im) u(neqn)

0.0 298.00 298.00 298.00

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

33.3 1987.93 1002.11 394.14
66.7 1991.00 1217.92 622.58

100.0 1992.54 1344.68 834.02
133.3 1993.68 1446.70 1014.43
166.7 1994.65 1532.29 1166.78

rkc4a integrator

ncase = 3 neqn = 22

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00

33.3 1987.96 1002.16 394.17
66.7 1991.05 1218.10 622.85

100.0 1992.55 1345.05 834.66
133.3 1993.72 1447.20 1015.32
166.7 1994.70 1533.03 1168.10

rkc4b integrator

ncase = 4 neqn = 22

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00

33.3 1986.00 1002.16 394.17
66.7 1991.04 1217.94 622.61

100.0 1992.35 1344.91 834.42
133.3 1993.56 1446.90 1014.78
166.7 1994.69 1532.53 1167.22

rkf45a integrator

ncase = 5 neqn = 22

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00

33.3 1987.96 1002.16 394.17
66.7 1991.05 1218.10 622.85

100.0 1992.55 1345.05 834.66
133.3 1993.72 1447.20 1015.32
166.7 1994.70 1533.03 1168.10

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkf45b integrator

ncase = 6 neqn = 22

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00
33.3 1988.02 1002.16 394.17
66.7 1991.28 1218.10 622.85
100.0 1992.55 1345.05 834.66
133.3 1993.94 1447.02 1014.99
166.7 1994.68 1532.63 1167.40

This output is equivalent to the output from the preceding MATLAB (Sec-
tion 5.1), C (Section 5.2), and C++ (Section 5.3). We now proceed to the Java
programming of the nonlinear PDE.

5.5 Programming in Java

Again, since main Program 2.5.1 is unchanged in the nonlinear PDE problem,
it is not listed here. An interface routine is listed below:

/*

Define the common (global) variables for the
nonlinear PDE integration

*/

package mol;

public class MOL
{

/* Maximum (default) number of ODEs */
public int SIZE=500;

/* Variables for ODE integration */

public int neqn, nout, nsteps;

public double t0, tf, abserr, relerr;
public double u[], u0[], e[];

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* Parameters for PDE */
public double

alpha, k, sigma, L,
ui, ua, ar, er,

rhos, cps, ls, cs=rhos*cps*ls,
xl, xu,dx=(xu-xl)/(neqn-2), dxs=dx*dx;

public MOL()
{

}
}

Program 5.5.1
Interface routine for the solution of Equations 5.8 to 5.12

intpar, par, inital, derv, and fprint are listed next:

/* This file is a member of the package mol */
package mol;

import mol.MOL;
import java.math.*;
import java.io.*;
import java.text.*;

public class DEF extends MOL implements pdenoninterface
{

public DEF()
{

/* Integration parameters */
this.intpar();

/* Declare arrays */
u0=new double[SIZE];
u=new double[SIZE];
e=new double[SIZE];

/* Problem parameters */
this.par();

/* Initial condition vector */
this.inital();

}

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

public void intpar()

/* Function intpar sets the parameters to control the
integration of the nonlinear PDE */
{

/* Number of ODEs */
neqn=22;

/* Size of arrays in MOL library */
SIZE=neqn+1;

/* Number of output points */
nout=6;

/* Maximum number of steps in the interval t0 to tf */
nsteps=1000;

/* Initial, final values of the independent variable */
t0=0.0;
tf=0.2;

/* Error tolerances */
abserr=Math.pow(10.0,-1.0);
relerr=Math.pow(10.0,-5.0);

/* End of intpar */
}

public void par()

/* Function par sets the parameters for the nonlinear PDE */
{
alpha=1.0e-06; k=1.0; sigma=5.67e-08; L=0.1;

ui=298.0; ua=2000.0; ar=1.0; er=1.0;

rhos=7800.0; cps=435.0; ls=0.025; cs=rhos*cps*ls;

xl=0.0; xu=1.0; dx=(xu-xl)/(neqn-2); dxs=dx*dx;

/* End of par */
}

public void inital()

/* Function inital sets the initial condition vector for
the nonlinear PDE */

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

{
/* Type variables */
int i;

/* Initial condition */
for(i=1;i<=neqn;i++)

{
u0[i]=ui;

}

/* End of inital */
}

public void derv(double ut[], double t, double u[])

/* Function derv computes the derivative vector of the
nonlinear PDE */
{

/* Type variables */
double u0;
int i;

/* Problem parameters */
par();

/* Insulation */
for(i=1;i<=(neqn-1);i++)

{
if(i==1)

{
u0=u[2]+2.0*dx*L*(sigma/k)*(ar*Math.pow(ua,4)

-er*Math.pow(u[1],4));
ut[1]=(u[2]-2.0*u[1]+u0)/dxs;

}
if(i>1)

{
ut[i]=(u[i+1]-2.0*u[i]+u[i-1])/dxs;

}
}

/* Steel */
ut[neqn]=(k*L/alpha)*(1.0/cs)*(u[neqn-2]-u[neqn-1])/dx;
ut[neqn-1]=ut[neqn];

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

/* End of derv */
}

public void fprint(PrintWriter f, int ncase, int neqn,
double t, double u[])

/* Function fprint displays the numerical solution to the
nonlinear PDE */
{

/* Type variables */
int im;

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
/* Label for ODE integrator */
switch(ncase)

{
/*Fixed step modified Euler */
case 1:
f.println("\n\n euler2a integrator\n");
break;

/* Variable step modified Euler */
case 2:
f.println("\n\n euler2b integrator\n");
break;

/* Fixed step classical fourth order RK */
case 3:
f.println("\n\n rkc4a integrator\n");
break;

/* Variable step classical fourth order RK */
case 4:
f.println("\n\n rkc4b integrator\n");
break;

/* Fixed step RK Fehlberg 45 */
case 5:
f.println("\n\n rkf45a integrator\n");
break;

/* Variable step RK Fehlberg 45 */

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

case 6:
f.println("\n\n rkf45b integrator\n");
break;

}

/* Heading */
f.println(" neqn = "+neqn+ " ncase = "+ncase+" \n");
f.println(" t u(1) u(im) u(neqn)");

/* End of t = 0 heading */
}

/* Grid index of midpoint */
im=(neqn+1)/2;

/* Display format for floating numbers */
DecimalFormat df1=new DecimalFormat("0.00");
DecimalFormat df2=new DecimalFormat("0.0");

/* Display the numerical solution */
f.println(df1.format(t)

+"\t " +df2.format(u[1])
+"\t "+df2.format(u[im])
+"\t "+df2.format(u[neqn]));

/* End of fprint */
}

/* End of DEF */
}

Program 5.5.2
intpar, par, inital, derv, and fprint for the solution of Equations 5.8 to 5.12

The output from the preceding routines is listed below:

euler2a integrator

neqn = 22 ncase = 1

t u(1) u(im) u(neqn)
0.00 298.0 298.0 298.0
0.20 1988.0 1002.1 394.2
0.40 1991.0 1218.1 622.8

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

0.60 1992.6 1345.0 834.7
0.80 1993.7 1447.2 1015.3
1.00 1994.7 1533.0 1168.1

euler2b integrator

neqn = 22 ncase = 2

t u(1) u(im) u(neqn)
0.00 298.0 298.0 298.0
0.20 1987.9 1002.1 394.1
0.40 1991.0 1217.9 622.6
0.60 1992.5 1344.7 834.0
0.80 1993.7 1446.7 1014.4
1.00 1994.7 1532.3 1166.8

rkc4a integrator

neqn = 22 ncase = 3

t u(1) u(im) u(neqn)
0.00 298.0 298.0 298.0
0.20 1988.0 1002.2 394.2
0.40 1991.0 1218.1 622.8
0.60 1992.6 1345.0 834.7
0.80 1993.7 1447.2 1015.3
1.00 1994.7 1533.0 1168.1

rkc4b integrator

neqn = 22 ncase = 4

t u(1) u(im) u(neqn)
0.00 298.0 298.0 298.0
0.20 1986.0 1002.2 394.2
0.40 1991.0 1217.9 622.6
0.60 1992.3 1344.9 834.4
0.80 1993.6 1446.9 1014.8
1.00 1994.7 1532.5 1167.2

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkf45a integrator

neqn = 22 ncase = 5

t u(1) u(im) u(neqn)
0.00 298.0 298.0 298.0
0.20 1988.0 1002.2 394.2
0.40 1991.0 1218.1 622.8
0.60 1992.6 1345.0 834.7
0.80 1993.7 1447.2 1015.3
1.00 1994.7 1533.0 1168.1

rkf45b integrator

neqn = 22 ncase = 6

t u(1) u(im) u(neqn)
0.00 298.0 298.0 298.0
0.20 1988.0 1002.2 394.2
0.40 1991.3 1218.1 622.8
0.60 1992.5 1345.0 834.7
0.80 1993.9 1447.0 1015.0
1.00 1994.7 1532.6 1167.4

This output is equivalent to the output from the preceding MATLAB (Section
5.1), C (Section 5.2), C++ (Section 5.3), and Fortran (Section 5.4). We now
proceed to the Maple programming of the nonlinear PDE.

5.6 Programming in Maple

Since main Program 5.6.1 (and subordinate routines) accesses specific files by
read statements, it is listed first:

> restart:

> read "c:\\odelib\\maple\\pdenon\\pdenon.txt";

> pdenon();

Program 5.6.1
Maple main program pdenon.mws for the numerical integration of Equations
5.8 to 5.12

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

pdenon:=proc()
#
Main program pdenon computes the numerical
solution to the nonlinear PDE system by one of
six integrators
#
Type variables

global neqn, nout, nsteps, t0, tf, abserr, relerr:
local u0, u, tp, ncase, i, j:

#
Step through six integrators

for ncase from 1 to 6 do
#
Integration parameters

read "c:\\odelib\\maple\\pdenon\\intpar.txt":
intpar():

#
Size arrays

u0:=array(1..neqn): u:=array(1..neqn):
#
Initial condition vector

read "c:\\odelib\\maple\\pdenon\\inital.txt":
inital(neqn,t0,u0):

#
Output interval

tp:=tf-t0:
#
Compute solution at nout output points

for j from 1 to nout do
#
Print current solution

read "c:\\odelib\\maple\\pdenon\\fprint.txt":
fprint(ncase,neqn,t0,u0):

#
Fixed step modified Euler integrator

if (ncase = 1) then
read "c:\\odelib\\maple\\pdenon\\euler2a.txt":
euler2a(neqn,t0,tf,u0,nsteps,u):

end if:
#
Variable step modified Euler integrator

if (ncase = 2) then
read "c:\\odelib\\maple\\pdenon\\euler2b.txt":
euler2b(neqn,t0,tf,u0,nsteps,abserr,relerr,u):

end if:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
Fixed step classical fourth order RK integrator

if (ncase = 3) then
read "c:\\odelib\\maple\\pdenon\\rkc4a.txt":
rkc4a(neqn,t0,tf,u0,nsteps,u):

end if:
#
Variable step classical fourth order RK integrator

if (ncase = 4) then
read "c:\\odelib\\maple\\pdenon\\rkc4b.txt":
rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr,u):

end if:
#
Fixed step RK Fehlberg (RKF45) integrator

if (ncase = 5) then
read "c:\\odelib\\maple\\pdenon\\rkf45a.txt":
rkf45a(neqn,t0,tf,u0,nsteps,u):

end if:
#
Variable step RK Fehlberg (RKF45) integrator

if (ncase = 6) then
read "c:\\odelib\\maple\\pdenon\\rkf45b.txt":
rkf45b(neqn,t0,tf,u0,nsteps,abserr,relerr,u):

end if:
#
Advance solution

t0:=tf:
tf:=tf+tp:
for i from 1 to neqn do

u0[i]:=u[i]:
end do:

#
Next output

end do:
#
Next integrator

end do:
#
End of pdenon

end:

Program 5.6.2
Maple main program pdenon.txt for the numerical integration of Equations
5.8 to 5.12

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Note the reference to specific files by read statements, e.g.,

#
Initial condition vector

read "c:\\odelib\\maple\\pdenon\\inital.txt":
inital(neqn,t0,u0):

intpar, inital, derv, and fprint are listed below:

intpar:=proc()
#
Function intpar sets the parameters to control the
integration of the nonlinear PDE problem
#
Type variables

global neqn, nout, nsteps, t0, tf, abserr, relerr:
#
Number of first order ODEs

neqn:=22:
#
Number of output points

nout:=6:
#
Maximum number of steps in the interval t0 to tf

nsteps:=1000:
#
Initial, final values of independent variable

t0:=0.0:
tf:=0.2:

#
Error tolerances

abserr:=1.0e-01:
relerr:=1.0e-05:

#
End of intpar

end:

inital:=proc(neqn,t,u0)
#
Function inital sets the initial condition vector
of the nonlinear PDE problem
#
Type variables

local ui, i:
#

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Problem parameters
ui:=298.0:

#
Initial condition

for i from 1 to neqn do
u0[i]:=ui:

end do:
#
End of inital

end:

derv:=proc(neqn,t,u,ut)
#
Function derv computes the derivative vector
of the nonlinear PDE problem
#
Type variables

local
u0,
dx, dxs, i,
alpha, k, sigma,
L, ui, ua,
a, e, rhos,
cps, ls, cs:

#
Problem parameters

alpha:=1.0e-06: k:=1.0: sigma:=5.67e-08:
L:=0.1: ui:=298.0: ua:=2000.0:
a:=1.0: e:=1.0: rhos:=7800.0:
cps:=435.0: ls:=0.025: cs:=rhos*cps*ls:

#
Spatial grid

dx:=1.0/(neqn-2):
dxs:=dx*dx:

#
Insulation

for i from 1 to neqn-2 do
if(i=1)then

u0:=u[2]+2.0*dx*L*(sigma/k)*(a*ua^4-e*u[1]^4):
ut[1]:=(u[2]-2.0*u[1]+u0)/dxs:

else
ut[i]:=(u[i+1]-2.0*u[i]+u[i-1])/dxs:

end if:
end do:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
Steel

ut[neqn]:=(k*L/alpha)*(1.0/cs)*(u[neqn-2]-u[neqn-1])/dx:
ut[neqn-1]:=ut[neqn]:

#
End of derv

end:

fprint:=proc(ncase,neqn,t,u)
#
Function fprint displays the numerical solution
to the nonlinear PDE problem
#
Declare global variables

global nsteps:
#
Type variables

local
im, tmin,
dx, dxs, i,
alpha, k, sigma,
L, ui, ua,
a, e, rhos,
cps, ls, cs:

#
Problem parameters

alpha:=1.0e-06: k:=1.0: sigma:=5.67e-08:
L:=0.1: ui:=298.0: ua:=2000.0:
a:=1.0: e:=1.0: rhos:=7800.0:
cps:=435.0: ls:=0.025: cs:=rhos*cps*ls:

#
Print a heading for the solution at t = 0

if (t <= 0.0) then
#
Label for ODE integrator
#
Fixed step modified Euler

if (ncase = 1) then
printf(`\n\n euler2a integrator\n\n`);

#
Variable step modified Euler

elif (ncase = 2) then
printf(`\n\n euler2b integrator\n\n`);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

#
Fixed step classical fourth order RK

elif (ncase = 3) then
printf(`\n\n rkc4a integrator\n\n`);

#
Variable step classical fourth order RK

elif (ncase = 4) then
printf(`\n\n rkc4b integrator\n\n`);

#
Fixed step RK Fehlberg 45

elif (ncase = 5) then
printf(`\n\n rkf45a integrator\n\n`);

#
Variable step RK Fehlberg 45

elif (ncase = 6) then
printf(`\n\n rkf45b integrator\n\n`);

end if:
#
Heading

printf(` ncase = %2d neqn = %2d
nsteps = %3d\n\n`,ncase,neqn,nsteps);

printf(` t u(1) u(im) u(neqn)\n`);
#
End of t = 0 heading

end if:
#
Numerical solution output
#
Grid index of midpoint

im:=(neqn/2);
#
Display the numerical solution

tmin:=t*L^2/alpha/60.0;
printf(`%7.1f%10.2f%10.2f%10.2f\n`,tmin,u[1],u[im],

u[neqn]);
#
End of fprint

end:

Program 5.6.3
intpar, inital, derv, and fprint for the solution of Equations 5.8 to 5.12

Programs 5.6.1, 5.6.2, and 5.6.3 closely parallel Programs 4.6.1, 4.6.2, and 4.6.3
so they will not be discussed here.

The output from the preceding routines is listed below:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

euler2a integrator

ncase = 1 neqn = 22 nsteps = 1000

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00
33.3 1987.96 1002.15 394.17
66.7 1991.05 1218.09 622.84
100.0 1992.55 1345.04 834.65
133.3 1993.72 1447.20 1015.31
166.7 1994.70 1533.03 1168.10

euler2b integrator

ncase = 2 neqn = 22 nsteps = 1000

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00
33.3 1987.93 1002.11 394.14
66.7 1991.00 1217.92 622.58
100.0 1992.54 1344.68 834.02
133.3 1993.68 1446.70 1014.43
166.7 1994.65 1532.29 1166.78

rkc4a integrator

ncase = 3 neqn = 22 nsteps = 1000

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00
33.3 1987.96 1002.16 394.17
66.7 1991.05 1218.10 622.85
100.0 1992.55 1345.05 834.66
133.3 1993.72 1447.20 1015.32
166.7 1994.70 1533.03 1168.10

rkc4b integrator

ncase = 4 neqn = 22 nsteps = 1000

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

33.3 1987.94 1001.97 394.06
66.7 1990.90 1217.84 622.46

100.0 1992.54 1344.63 833.92
133.3 1993.70 1446.55 1014.16
166.7 1994.65 1532.15 1166.53

rkf45a integrator

ncase = 5 neqn = 22 nsteps = 1000

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00

33.3 1987.96 1002.16 394.17
66.7 1991.05 1218.10 622.85

100.0 1992.55 1345.05 834.66
133.3 1993.72 1447.20 1015.32
166.7 1994.70 1533.03 1168.10

rkf45b integrator

ncase = 6 neqn = 22 nsteps = 1000

t u(1) u(im) u(neqn)
0.0 298.00 298.00 298.00

33.3 1988.01 1002.16 394.17
66.7 1991.05 1217.81 622.40

100.0 1992.54 1344.61 833.89
133.3 1993.73 1446.47 1014.02
166.7 1994.70 1532.10 1166.45

This output is equivalent to the output from the preceding MATLAB
(Section 5.1), C (Section 5.2), C++ (Section 5.3), Fortran (Section 5.4), and Java
(Section 5.5).

This completes the discussion of the nonlinear PDE problem programmed
in the six languages. We now consider an interpretation of the application of
the six programs and the outputs.

The collapse of the World Trade Center (WTC) towers on September 11,
2001 is generally attributed to the effect of the fires that resulted from burning
jet fuel. Specifically, the structural steel was heated by the fires until it was
weakened to the point that it could no longer support the towers; the four to
six floors that suffered the most direct impact of the fires collapsed onto the

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

floors below, which in turn were overloaded and collapsed. This successive
floor collapse propagated down the towers until they completely collapsed
onto the ground.

The structural steel was insulated to protect it from fire (a standard practice
in the construction of buildings with steel frames). The question of how well
this insulation protected the columns from the fires is complicated by two
additional factors:

• Some of the vertical columns in the outer walls of the towers were
sheared off by the planes; thus, vertical support from these columns
was lost.

• The insulation at the point of impact of the planes was damaged and,
in the case of some columns, was dislodged so that the steel in those
columns was unprotected from the fire.

Thus, the situation surrounding the impact of the planes and the resulting
fires was complicated, and a detailed analysis is certainly beyond the scope
of this discussion. However, a central question remains of how much the
insulation that remained intact protected the steel columns from the burning
jet fuel. The fact that the buildings did not collapse immediately suggests that
the insulation was effective; the delayed collapse, summarized below, may
have saved up to as many as 25,000 lives of the people who were able to
escape the towers:

Time to Collapse
Tower (min)

North 143
South 56

The preceding model of steel covered with insulation and subject to a high
temperature through thermal radiation gives some insight into how the in-
sulation might have performed. The numerical parameters that were used in
the calculations are representative of the values for steel, insulation, and ther-
mal radiation, but they cannot be considered accurate in the sense that they
apply with certainty to the situation in the towers immediately after the time
of impact of the planes. This is particularly true because of the complexity of
the devastation that occurred at the points of impact.

However, solutions to the model Equations 5.8 to 5.12 give an indication of
how the structural steel temperatures may have increased with time. Specifi-
cally, if we consider the last output (from Programs 5.6.1, 5.6.2, and 5.6.3), we
first observe that the temperature of the insulation directly facing the flame,
u(1), increases rapidly:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

ncase = 6 neqn = 22 nsteps = 1000

t u(1)
0.0 298.00

33.3 1988.01
66.7 1991.05

100.0 1992.54
133.3 1993.73
166.7 1994.70

This numerical output also gives some indication of what might have hap-
pened to the steel from which the insulation was dislodged. Clearly in a matter
of a few minutes the temperatures reached values that would cause the steel
to soften.

The interior insulation temperatures (at the midpoint of the insulation,
u(im) = u(11), and at the insulation/steel interface, u(neqn) = u(22)) were
substantially delayed in time:

ncase = 6 neqn = 22 nsteps = 1000

t u(im) u(neqn)
0.0 298.00 298.00

33.3 1002.16 394.17
66.7 1217.81 622.40

100.0 1344.61 833.89
133.3 1446.47 1014.02
166.7 1532.10 1166.45

At the insulation/steel interface (neqn = 22), the steel temperature eventually
enters a temperature range that would lead to substantial weakening of the
steel,

Steel Temperature

Time (min) K F

66.7 622.40 660
100.0 833.89 1041
133.3 1014.02 1365

The time delay of about 60 to 120 min is approximately in agreement with
the time of collapse of the towers, which suggests that the insulation was
effective in delaying the collapse.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

However, there is substantial uncertainty in the model. Therefore, the reader
may wish to study the effect of parameter changes on the model output. The
parameter values are set in the following code taken from Program 5.6.3:

#
Problem parameters

alpha:=1.0e-06: k:=1.0: sigma:=5.67e-08:
L:=0.1: ui:=298.0: ua:=2000.0:
a:=1.0: e:=1.0: rhos:=7800.0:
cps:=435.0: ls:=0.025: cs:=rhos*cps*ls:

Here are some suggested variations in the parameter values:

Parameter Current Value Variation

Thermal conductivity, k 1.0 J/s·m2·K 0.5–2.0
Thermal diffusivity, α 10−6 m2/s 0.8 × 10−6–1.2 × 10−6

Insulation thickness, L 0.1 m 0.1–0.2
Steel thickness, ls 0.025 m 0.025–0.1
Absorptivity, a 1.0 (dimensionless) 0.25–1.0
Emissivity, e 1.0 (dimensionless) 0.25–1.0
Flame temperature, ua 2000 (K) 1800–2000

The reader will observe when making the suggested variations in the pa-
rameters that:

• Some parameters are more sensitive than others in affecting the steel
temperature variations with time.

• The heating of the steel is substantially affected by the parameters. Thus,
the conclusions drawn from the model (e.g., when the steel begins to
weaken substantially) are determined significantly by the values of the
model paramaters.

• The preceding conclusion indicates the need for reliable parameter val-
ues, and the increased uncertainty of the conclusions drawn from the
model with increased uncertainty in the model parameters. Thus, exper-
imental measurements of the model parameters (in a laboratory) would
be well worth the effort if models such as the one outlined in this chapter
are to be used. Additionally, laboratory measurements of the strength
of steel as a function of temperature would be essential for the inter-
pretation of the solutions computed from the mathematical model of
Equations 5.8 to 5.12.

• Although the uncertainty in the model output is substantial, we would
look to a refinement of the model as the next logical step for better

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

understanding of the basic problem (the effect of fire on structural steel);
that is, we would refine the equations and parameters. The alternative
is to design without an analysis that serves as a quantitative guide; this
would be unacceptable for the design of important physical and chemical
systems.

Thus, we conclude with an indication of the following:

• How ODE/PDE models might be used in important applications
• Some numerical methods and associated software that can produce re-

liable (accurate) numerical solutions with reasonable effort

In general, computation has become an essential part of scientific and en-
gineering analysis, particularly for situations that can only be studied math-
ematically, and perhaps augmented by laboratory data, such as the effect of
fire on structural steel, and its implications for the safety of large structures.
Another example is the growth of tumors modeled by the 1x1 ODE system.
The insights gained by computational analysis are indispensable for the un-
derstanding and design of scientific and engineering systems. We hope the
preceding material in Chapters 1 to 5, and the supplementary material in the
following Appendices A to F, will be of assistance in this type of analysis.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Appendix A
Embedded Runge Kutta Pairs

The following 17 embedded RK pairs can be used for practice programming
(Pairs 1, 9, and 11 are already programmed in Chapters 1 and 2 and the
programs can therefore be used as templates). The performance of the error
estimators can also be studied by applying the algorithms to problems with
known analytical solutions as was done in Chapters 1 to 4. Of course, the 17
algorithms can also be applied to general nxn nonstiff ODE problems, with
extensions to PDEs by the method of lines. Stiff ODEs can be studied by the
methods discussed in Appendix C.

The equations of each algorithm are listed in the order in which they would
be programmed; i.e., they are listed in an executable sequence. Three pairs
appear in routines discussed in Chapter 2:

Pair Routine

1 euler2a (fixed step)
euler2b (variable step)

9 rkf45a (fixed step)
rkf45b (variable step)

11 rkc4a (fixed step)
rkc4b (variable step)

Pair 1 (1,2) Chap 1
Calculation Equation

Stage 1 k1 = f (yi , ti)h
Stage 2 k2 = f (yi + k1, ti + h)h

Step O(h1) y(1)

i+1 = yi + k1

Est error e (1)

i+1 = 1
2 (k2 − k1)

Step O(h2) y(2)

i+1 = y(1)

i+1 + e (1)

i+1

Step t ti+1 = ti + h

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Pair 2 (2,3) Chap 1
Calculation Equation

Stage 1 k1 = f (yi , ti)h
Stage 2 k2 = f (yi + 2

3 k1, ti + 2
3 h)h

Stage 3 k3 = f (yi + 2
3 k2, ti + 2

3 h)h

Step O(h2) y(2)

i+1 = yi + 1
4 k1 + 3

4 k2

Step O(h3) y(3)

i+1 = yi + 2
8 k1 + 3

8 k2 + 3
8 k3

Est error e (2)

i+1 = y(3)

i+1 − y(2)

i+1

Step t ti+1 = ti + h

Pair 3 (2,3)
Calculation Equation

Stage 1 k1 = f (yi , ti)h
Stage 2 k2 = f (yi + k1

2 , ti + h
2)h

Stage 3 k3 = f (yi − k1 + 2k2, ti + h)h

Step O(h2) y(2)

i+1 = yi + 1
2 (k1 + k3)

Est error e (2)

i+1 = 1
3 (−k1 + 2k2 − k3)

Step O(h3) y(3)

i+1 = y(2)

i+1 + e (2)

i+1

Step t ti+1 = ti + h

Pair 4 (3,4)
Calculation Equation

Stage 1 k1 = f (yi , ti)
h
3

Stage 2 k2 = f (yi + k1, ti + h
3) h

3

Stage 3 k3 = f (yi + 1
2 (k1 + k2), ti + h

3) h
3

Stage 4 k4 = f (yi + 3
8 k1 + 9

8 k3, ti + h
2) h

3

Stage 5 k5 = f (yi + 3
2 k1 − 9

2 k3 + 6k4, ti + h) h
3

Step O(h3) y(3)

i+1 = yi + 1
2 (k1 + 4k4 + k5)

Est error e (3)

i+1 = 1
5 (−k1 + 9

2 k3 − 4k4 + 1
2 k5)

Step O(h4) y(4)

i+1 = y(3)

i+1 + e (3)

i+1

Step t ti+1 = ti + h

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Pair 5 (3,4)
Calculation Equation

Stage 1 k1 = f (yi , ti)h
Stage 2 k2 = f (yi − 0.4k1, ti − 0.4h)h
Stage 3 k3 = f (yi + 0.6684895833k1 − 0.2434895833k2, ti + 0.425h)h
Stage 4 k4 = f (yi − 2.323685857k1 + 1.125483559k2

+ 2.198202298k3, ti + h)h
Step O(h3) y(3)

i+1 = yi + 0.03968253968k2 + 0.7729468599k3
+ 0.18737060041k4

Est error e (3)

i+1 = −y(3)

i+1 + yi + 0.03431372549k1 + 0.02705627706k2
+ 0.7440130202k3 + 0.1946169772k4

Step O(h4) y(4)

i+1 = y(3)

i+1 + e (3)

i+1
Step t ti+1 = ti + h

Pair 6 (4,5)
Calculation Equation

Stage 1 k1 = f (yi , ti)h
Stage 2 k2 = f (yi + 0.0005k1, ti + 0.0005h)h
Stage 3 k3 = f (yi − 80.89939470k1 + 81.18439470k2, ti + 0.285h)h
Stage 4 k4 = f (yi + 2113.327899k1 − 2117.778035k2

+5.442136522k3, ti + 0.992h)h
Stage 5 k5 = f (yi + 2249.757677k1 − 2254.489040k2 + 5.739991965k3

−0.008629230728k4, ti + h)h
Step O(h4) y(4)

i+1 = yi − 131.2823524k1 + 131.4998223k2 + 0.4837620276k3
+0.2987680554k4

Est error e (4)

i+1 = −y(4)

i+1 + yi + 65.80784286k1 − 65.94767173k2
+0.7959885276k3 + 4.715404915k4 − 4.371564570k5

Step O(h5) y(5)

i+1 = y(4)

i+1 + e (4)

i+1
Step t ti+1 = ti + h

Pair 7 (3,4)
Calculation Equation

Stage 1 k1 = f (yi , ti)h
Stage 2 k2 = f (yi + 1

3 k1, ti + 1
3 h)h

Stage 3 k3 = f (yi + 1
6 (k1 + k2), ti + 1

3 h)h
Stage 4 k4 = f (yi + 1

8 (k1 + 3k3), ti + 1
2 h)h

Stage 5 k5 = f (yi + 1
2 k1 − 3

2 k3 + 2k4, ti + h)h

Step O(h3) y(3)

i+1 = yi + 1
2 k1 − 3

2 k3 + 2k4

Est error e (3)

i+1 = − 1
3 k1 + 3

2 k3 − 4
3 k4 + 1

6 k5

Step O(h4) y(4)

i+1 = y(3)

i+1 + e (3)

i+1
Step t ti+1 = ti + h

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Pair 8 (4,5)
Calculation Equation

Stage 1 k1 = f (yi , ti)h

Stage 2 k2 = f (yi + 1
2 k1, ti + 1

2 h)h

Stage 3 k3 = f (yi + 1
4 (k1 + k2), ti + 1

2 h)h

Stage 4 k4 = f (yi − k2 + 2k3, ti + h)h

Stage 5 k5 = f (yi + 1
27 (7k1 + 10k2 + k4), ti + 2

3 h)h

Stage 6 k6 = f (yi + 1
625 (28k1 − 125k2 + 546k3 + 54k4 − 378k5), ti + 1

5 h)h

Step O(h4) y(4)

i+1 = yi + 1
6 (k1 + 4k3 + 4k4)

Est error e (4)

i+1 = 1
336 (−42k1 − 224k3 − 21k4 + 162k5 + 125k6)

Step O(h5) y(5)

i+1 = y(4)

i+1 + e (4)

i+1

Step t ti+1 = ti + h

Pair 9 (4,5) Chap 1
Calculation Equation

Stage 1 k1 = f (yi , ti)h

Stage 2 k2 = f (yi + 1
4 k1, ti + 1

4 h)h

Stage 3 k3 = f (yi + 1
32 (3k1 + 9k2), ti + 3

8 h)h

Stage 4 k4 = f (yi + 1
2197 (1932k1 − 7200k2 + 7296k3), ti + 12

13 h)h

Stage 5 k5 = f (yi + 439
216 k1 − 8k2 + 3680

513 k3 − 845
4104 k4, ti + h)h

Stage 6 k6 = f (yi − 8
27 k1 + 2k2 − 3544

2565 k3 + 1859
4104 k4 − 11

40 k5, ti + 1
2 h)h

Step O(h4) y(4)

i+1 = yi + 25
216 k1 + 1408

2565 k3 + 2197
4104 k4 − 1

5 k5

Step O(h5) y(5)

i+1 = yi + 16
135 k1 + 6656

12825 k3 + 28561
56430 k4 − 9

50 k5 + 2
55 k6

Est error e (4)

i+1 = y(5)

i+1 − y(4)

i+1

Step t ti+1 = ti + h

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Pair 10 (4,5)
Calculation Equation

Stage 1 k1 = f (yi , ti)h
Stage 2 k2 = f (yi + 1

5 k1, ti + 1
5 h)h

Stage 3 k3 = f (yi + 3
40 k1 + 9

40 k2, ti + 3
10 h)h

Stage 4 k4 = f (yi + 3
10 k1 − 9

10 k2 + 6
5 k3, ti + 3

5 h)h

Stage 5 k5 = f (yi − 11
54 k1 + 5

2 k2 − 70
27 k3 + 35

27 k4, ti + h)h

Stage 6 k6 = f (yi + 1631
55296 k1 + 175

512 k2 + 575
13824 k3 + 44275

110592 k4

+ 253
4096 k5, ti + 7

8 h)h

Step O(h4) y(4)

i+1 = yi + 2825
27648 k1 + 18575

48384 k3 + 13525
55296 k4 + 277

14336 k5 + 1
4 k6

Step O(h5) y(5)

i+1 = yi + 37
378 k1 + 250

621 k3 + 125
594 k4 + 512

1771 k6

Est error e (4)

i+1 = y(5)

i+1 − y(4)

i+1

Step t ti+1 = ti + h

Pair 11 (2,4) Chap 1
Calculation Equation

Stage 1 k1 = f (yi , ti)h
Stage 2 k2 = f (yi + 1

2 k1, ti + 1
2 h)h

Stage 3 k3 = f (yi + 1
2 k2, ti + 1

2 h)h
Stage 4 k4 = f (yi + k3, ti + h)h

Step O(h2) y(2)

i+1 = yi + k2

Est error e (2)

i+1 = 1
6 (k1 − 4k2 + 2k3 + k4)

Step O(h4) y(4)

i+1 = y(2)

i+1 + e (2)

i+1

Step t ti+1 = ti + h

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Pair 12 (2,4)
Calculation Equation

Stage 1 k1 = f (yi , ti)h
Stage 2 k2 = f (yi + 1

3 k1, ti + 1
3 h)h

Stage 3 k3 = f (yi − 1
3 k1 + k2, ti + 2

3 h)h
Stage 4 k4 = f (yi + k1 − k2 + k3, ti + h)h

Step O(h2) y(2)

i+1 = yi − 1
2 k1 + 3

2 k2

Est error e (2)

i+1 = 1
8 (5k1 − 9k2 + 3k3 + k4)

Step O(h4) y(4)

i+1 = y(2)

i+1 + e (2)

i+1

Step t ti+1 = ti + h

Pair 13 (2,4)
Calculation Equation

Stage 1 k1 = f (yi , ti)h
Stage 2 k2 = f (yi + 1

2 k1, ti + 1
2 h)h

Stage 3 k3 = f (yi − (1
2 − 1√

2
)k1 + (1 − 1√

2
)k2, ti + 1

2 h)h

Stage 4 k4 = f (yi − 1√
2
k2 + (1 + 1√

2
)k3, ti + h)h

Step O(h2) y(2)

i+1 = yi + k2

Est error e (2)

i+1 = 1
6 (k1 − 2(2 + 1√

2
)k2 + 2(1 + 1√

2
)k3 + k4)

Step O(h4) y(4)

i+1 = y(2)

i+1 + e (2)

i+1

Step t ti+1 = ti + h

Pair 14 (2,4)
Calculation Equation

Stage 1 k1 = f (yi , ti)h

Stage 2 k2 = f (yi + 1
2 k1, ti + 1

2 h)h

Stage 3 k3 = f (yi − 1
2 k1 + k2, ti + 1

2 h)h

Stage 4 k4 = f (yi + 1
2 k2 + 1

2 k3, ti + h)h

Step O(h2) y(2)

i+1 = yi + k2

Est error e (2)

i+1 = 1
6 (k1 − 3k2 + k3 + k4)

Step O(h4) y(4)

i+1 = y(2)

i+1 + e (2)

i+1

Step t ti+1 = ti + h

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Pair 15 (2,4)
Calculation Equation

Stage 1 k1 = f (yi , ti)h

Stage 2 k2 = f (yi + 2
5 k1, ti + 2

5 h)h

Stage 3 k3 = f (yi + 0.29697760924775360k1 + 0.15875964497103583k2,
ti + 0.45573725421878943h)h

Stage 4 k4 = f (yi + 0.21810038822592047k1 − 3.0509651486929308k2
+3.8328647604670103k3, ti + h)h

Step O(h2) y(2)

i+1 = yi − 1
4 k1 + 1.25k2

Est error e (2)

i+1 = 0.42476028226269037k1 − 1.8014806628787329k2

+ 1.2055355993965235k3 + 0.17118478121951903k4

Step O(h4) y(4)

i+1 = y(2)

i+1 + e (2)

i+1

Step t ti+1 = ti + h

Pair 16 (2,5)
Calculation Equation

Stage 1 k1 = f (yi , ti)h

Stage 2 k2 = f (yi + 1
2 k1, ti + 1

2 h)h

Stage 3 k3 = f (yi + 1
4 (k1 + k2), ti + 1

2 h)h

Stage 4 k4 = f (yi − k2 + 2k3, ti + h)h

Stage 5 k5 = f (yi + 1
27 (7k1 + 10k2 + k4), ti + 2

3 h)h

Stage 6 k6 = f (yi + 1
625 (28k1 − 125k2 + 546k3 + 54k4 − 378k5), ti + 1

5 h)h

Step O(h2) y(2)

i+1 = yi + 1
2 k2

Est error e (2)

i+1 = 1
336 (14k1 − 336k2 + 35k4 + 162k5 + 125k6)

Step O(h5) y(5)

i+1 = y(2)

i+1 + e (2)

i+1

Step t ti+1 = ti + h

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Pair 17 (2,5)
Calculation Equation

Stage 1 k1 = f (yi , ti)h

Stage 2 k2 = f (yi + 1
3 k1, ti + 1

3 h)h

Stage 3 k3 = f (yi + 1
25 (4k1 + 6k2), ti + 2

5 h)h

Stage 4 k4 = f (yi + 1
4 (k1 − 12k2 + 15k3), ti + h)h

Stage 5 k5 = f (yi + 1
81 (6k1 + 90k2 − 50k3 + 8k4), ti + 2

3 h)h

Stage 6 k6 = f (yi + 1
75 (6k1 + 36k2 + 10k3 + 8k4), ti + 4

5 h)h

Step O(h2) y(2)

i+1 = yi − 1
2 k1 + 3

2 k2

Est error e (2)

i+1 = 1
192 (119k1 − 288k2 + 125k3 − 81k5 + 125k6)

Step O(h5) y(5)

i+1 = y(2)

i+1 + e (2)

i+1

Step t ti+1 = ti + h

Note that these 17 integrators have error estimates based on varying num-
bers of terms in the associated Taylor series. The number of terms in each error
estimate, which just equals the difference in the orders of the pairs, is summa-
rized below. For example, a (2, 4) pair has 4−2 = 2 terms in the error estimate.

Terms in the
Pairs Error Estimate

1,2,3,4,5,6,7,8,9,10 1
11,12,13,14,15 2
16,17 3

The algorithms with 3 term error estimates (Pairs 16 and 17) are recommended
for ODE problems with particularly stringent accuracy requirements.

In addition to the references for Pairs 1, 2, 9, and 11 given in Chapter 1,
references for the other pairs (except 10), are given in Reference 1. This
reference also provides Fortran routines for the ODE integrators summarized
above (except 2 and 10). Pair 10 is taken from Reference 2.

References

1. Silebi, C.A., and W.E. Schiesser, Dynamic Modeling of Transport Process
Systems, Academic Press, San Diego, CA, 1992.

2. Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in
Fortran, 2nd ed., Cambridge University Press, Cambridge, U.K., 1992.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Appendix B
Integrals from ODEs

The ODE algorithms discussed in Chapter 1 can be used to compute one-
dimensional integrals. Specifically, the special case ODE (with the derivative
function f (t) a function of the independent variable t and not the dependent
variable y)

dy
dt

= f (t), y(t0) = y0 (B.1)

has the solution

y(t) = y0 +
∫ t

t0
f (τ)dτ (B.2)

Thus, we can integrate Equation B.1 to produce a numerical value of the
integral of Equation B.2. To illustrate this procedure, consider the ODE

dy
dt

= 2√
π

e−t2
, y(0) = 0 (B.3)

which has the solution

y(t) = 2√
π

∫ t

0
e−τ 2

dτ (B.4)

y(t) of Equation B.4 is the well-known error function, erf(t), which has broad
application in science and engineering, and is tabulated extensively.

Functions intpar, inital, derv, and fprint, which follow directly from the pre-
ceding discussion (for the solution of Equation B.3), are listed below:

function [neqn,nout,nsteps,t0,tf,abserr,relerr]=intpar
%
% Function intpar sets the parameters to control the
% integration of the ODE with erf as a solution
%
% Number of first order ODEs

neqn=1;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Number of output points

nout=6;
%
% Maximum number of steps in the interval t0 to tf

nsteps=100;
%
% Initial, final values of independent variable

t0=0.0;
tf=0.1;

%
% Error tolerances

abserr=1.0e-05;
relerr=1.0e-05;

function [y]=inital(neqn,t)
%
% Function inital sets the initial condition vector
% for the ODE with erf as the solution
%
% Initial condition

y(1)=0.0;

function [yt]=derv(neqn,t,y)
%
% Function derv computes the derivative vector
% of the ODE with erf as the solution
%
% Declare global variables

global nsteps;
%
% ODE

yt(1)=exp(-t^2);

function [out]=fprint(ncase,neqn,t,y)
%
% Function fprint displays the numerical and
% tabulated solutions to the ODE with erf as
% a solution
%
% Define global variables

global nsteps;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Return current value of independent variable
% (MATLAB requires at least one return argument)

out=t;
%
% Print a heading for the solution at t = 0

if(t<=0.0)
%
% Label for ODE integrator
%
% Fixed step modified Euler

if(ncase==1)
fprintf('\n\n euler2a integrator\n\n');

%
% Variable step modified Euler

elseif(ncase==2)
fprintf('\n\n euler2b integrator\n\n');

%
% Fixed step classical fourth order RK

elseif(ncase==3)
fprintf('\n\n rkc4a integrator\n\n');

%
% Variable step classical fourth order RK

elseif(ncase==4)
fprintf('\n\n rkc4b integrator\n\n');

%
% Fixed step RK Fehlberg 45

elseif(ncase==5)
fprintf('\n\n rkf45a integrator\n\n');

%
% Variable step RK Fehlberg 45

elseif(ncase==6)
fprintf('\n\n rkf45b integrator\n\n');

end
%
% Heading

fprintf(' ncase = %2d nsteps = %3d\n\n',ncase,nsteps);
fprintf(' t y(num) y(tab) diff\n');

%
% End of t = 0 heading

end
%
% Tabulated solution

if(t<0.001) ytab=0.0; end
if((t>0.0999)&(t<0.1001)) ytab=0.112463; end

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

if((t>0.1999)&(t<0.2001)) ytab=0.222703; end
if((t>0.2999)&(t<0.3001)) ytab=0.328627; end
if((t>0.3999)&(t<0.4001)) ytab=0.428392; end
if((t>0.4999)&(t<0.5001)) ytab=0.520500; end

%
% Numerical and tabulated solutions and their difference
% as output

y1=(2.0/sqrt(pi))*y(1);
diff=y1-ytab;

%
% Display the numerical and exact solutions, and their
% difference

fprintf('%5.2f %11.6f %11.6f %11.6f\n',t,y1,ytab,diff);

Program B.1
intpar, inital, derv, and fprint for the solution of Equation B.3

The main program is again Program 3.1.1. The output from the preceding
program is listed below

euler2a integrator

ncase = 1 nsteps = 100

t y(num) y(tab) diff
0.00 0.000000 0.000000 0.000000
0.10 0.112463 0.112463 0.000000
0.20 0.222703 0.222703 0.000000
0.30 0.328627 0.328627 0.000000
0.40 0.428392 0.428392 0.000000
0.50 0.520500 0.520500 0.000000

euler2b integrator

ncase = 2 nsteps = 100

t y(num) y(tab) diff
0.00 0.000000 0.000000 0.000000
0.10 0.112461 0.112463 -0.000002
0.20 0.222700 0.222703 -0.000003
0.30 0.328623 0.328627 -0.000004
0.40 0.428388 0.428392 -0.000004
0.50 0.520496 0.520500 -0.000004

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkc4a integrator

ncase = 3 nsteps = 100

t y(num) y(tab) diff
0.00 0.000000 0.000000 0.000000
0.10 0.112463 0.112463 0.000000
0.20 0.222703 0.222703 0.000000
0.30 0.328627 0.328627 0.000000
0.40 0.428392 0.428392 0.000000
0.50 0.520500 0.520500 0.000000

rkc4b integrator

ncase = 4 nsteps = 100

t y(num) y(tab) diff
0.00 0.000000 0.000000 0.000000
0.10 0.112463 0.112463 0.000000
0.20 0.222703 0.222703 0.000000
0.30 0.328627 0.328627 0.000000
0.40 0.428392 0.428392 0.000000
0.50 0.520500 0.520500 0.000000

rkf45a integrator

ncase = 5 nsteps = 100

t y(num) y(tab) diff
0.00 0.000000 0.000000 0.000000
0.10 0.112463 0.112463 0.000000
0.20 0.222703 0.222703 0.000000
0.30 0.328627 0.328627 0.000000
0.40 0.428392 0.428392 0.000000
0.50 0.520500 0.520500 0.000000

rkf45b integrator

ncase = 6 nsteps = 100

t y(num) y(tab) diff
0.00 0.000000 0.000000 0.000000
0.10 0.112463 0.112463 0.000000

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

0.20 0.222703 0.222703 0.000000
0.30 0.328627 0.328627 0.000000
0.40 0.428392 0.428392 0.000000
0.50 0.520500 0.520500 0.000000

The error tolerances set in intpar are satisfied by all six integrators. Of course,
this problem tests only the stepping in t, and not y, because of the special form
of Equation B.1.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Appendix C
Stiff ODE Integration

The explicit integrators discussed in Chapters 1 and 2, and applied to ODE
and PDE systems in Chapters 2 to 5, can be used for a broad spectrum of
applications. However, as discussed in Section 1.7, these explicit (nonstiff)
integrators will require lengthy calculations for stiff systems. Again, this diffi-
culty with stiff systems results from having to take small integration steps to
maintain stability of the numerical integration (because of the stability con-
straints of explicit algorithms) while having to cover a large interval in the
independent variable to compute a complete solution. An example is the 2x2
system of Chapter 3 for which the maximum integration step to maintain
stability is set by the largest eigenvalue, while the timescale of the solution
is set by the smallest eigenvalue. If the eigenvalues are widely separated, the
problem is stiff, and an implicit integrator is required to compute a solution
efficiently, as we will demonstrate.

We now illustrate some of the properties of stiff systems using the 2x2
system. Specifically, we will consider:

• The BDF formulas of Section 1.7 applied to the 2x2 ODE system
• A MATLAB program for the first-order BDF method (implicit Euler method)
• The 2x2 ODE system integrated by the MATLAB stiff integrators ode23s

and ode15s

C.1 The BDF Formulas Applied to the 2x2 ODE System

The BDF method is first applied to the general (possibly nonlinear) 2x2 ODE
system

dy1/dt = f1(y1, y2, t)

dy2/dt = f2(y1, y2, t)
(C.1)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

The BDF equations are

α0 yi+1,1 + α1 yi,1 + · · · + αν yi−ν+1,1 = h f1(yi+1,1, yi+1,2, ti+1)

α0 yi+1,2 + α1 yi,2 + · · · + αν yi−ν+1,2 = h f2(yi+1,1, yi+1,2, ti+1)

or

h f1(yi+1,1, yi+1,2, ti+1) − [α0 yi+1,1 + α1 yi,1 + · · · + αν yi−ν+1,1]

= g1(yi+1,1, yi+1,2ti+1) = 0

h f2(yi+1,1, yi+1,2, ti+1) − [α0 yi+1,2 + α1 yi,2 + · · · + αν yi−ν+1,2]

= g2(yi+1,1, yi+1,2, ti+1) = 0

(C.2)

Equations C.2 are a 2x2 nonlinear system (nonlinear if the original ODE
system, Equations C.1, is nonlinear), for the two unknowns yi+1,1, yi+1,2 (the
ODE solution at the advanced point i +1). We need to apply a nonlinear solver
to Equations C.2 such as Newton’s method to compute the two unknowns,
yi+1,1, yi+1,2.

Jδy = −g(y) (C.3)

where for the nxn problem

y =

y1
y2
...

yn

 , δy =

δy1
δy2
...

δyn

 (C.4)(C.5)

g =

g1
g2
...

gn

 =

g1(y1, y2, · · · yn, t)
g2(y1, y2, · · · yn, t)

...

gn(y1, y2, · · · yn, t)

 (C.6)

J =

∂g1

∂y1

∂g1

∂y2
· · · ∂g1

∂yn

∂g2

∂y1

∂g2

∂y2
· · · ∂g2

∂yn
...

...
. . .

...
∂gn

∂y1

∂gn

∂y2
· · · ∂gn

∂yn

=

J11 J12 · · · J1n

J21 J22 · · · J2n
...

...
. . .

...

Jn1 Jn2 · · · Jnn

 (C.7)

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

J is the nxn Jacobian matrix, consisting of all first-order partial derivatives of
the functions, [g1 g2 . . . gi . . . gn]T with respect to the dependent variables
[y1 y2 . . . yj . . . yn]T , i.e.,

J i j = ∂gi

∂yj
(C.8)

δy is the vector of Newton corrections, which should decrease below a specified
tolerance or threshold as the Newton iteration proceeds.

Application of the preceding equations to the 2x2 ODE system of Equations
1.6 of Chapter 1:

dy1

dt
= −ay1 + by2

dy2

dt
= by1 − ay2

(C.9)

gives

y =
[

y1
y2

]
, δy =

[
δy1
δy2

]
(C.10)(C.11)

g =
[

g1(y1, y2, t)

g2(y1, y2, t)

]

=
[

h [−ayi+1,1 + byi+1,2] − [α0 yi+1,1 + α1 yi,1 + · · · + αν yi−ν+1,1]
h [+byi+1,1 − ayi+1,2] − [α0 yi+1,2 + α1 yi,2 + · · · + αν yi−ν+1,2]

]
(C.12)

J =

∂g1

∂y1

∂g1

∂y2

∂g2

∂y1

∂g2

∂y2

 =

[
J11 J12

J21 J22

]
=

[
−ah − α0 bh

bh −ah − α0

]
(C.13)

Thus, Equation C.3 becomes

[−ah − α0 bh
bh −ah − α0

] [
δy1

δy2

]

= −
[

h [−ayi+1,1 + byi+1,2] − [α0 yi+1,1 + α1 yi,1 + · · · + αν yi−ν+1,1]

h [+byi+1,1 − ayi+1,2] − [α0 yi+1,2 + α1 yi,2 + · · · + αν yi−ν+1,2]

]
(C.14)

For the first-order BDF (first-order implicit RK or implicit Euler method), ν = 1,
α0 = 1, α1 = −1, α2, . . . αν = 0. Thus, Equations C.14 require only the preced-
ing values yi,1, yi,2 (generally RK methods are self-starting while higher-order
BDF methods require a history of the solution at the points i −1, i −2, . . . i −ν+1

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

to take the step from i to i + 1; but, of course, the higher-order BDF methods
have better accuracy than the first-order BDF).

Equations C.14 are programmed in the following MATLAB program. The
numerical integration continues until the condition

|δy1| < eps

|δy2| < eps

is satisfied where eps is a tolerance set in the program.

C.2 MATLAB Program for the Solution of the 2x2 ODE System

Equations C.14 with ν = 1 (first-order BDF or the implicit Euler method) are
solved by Newton’s method in the following program:
%
% 2 x 2 ODE system by first order BDF
%
% Open a file for output

fid=fopen('appc1.out','w');
%
% Number of ODEs

neqn=2;
%
% Convergence tolerance, maximum number of
% iterations to compute Newton corrections

eps=0.00001;
maxiter=20;

%
% Initial condition

y10=0.0;
y20=2.0;
y(1)=y10;
y(2)=y20;
t=0.0;

%
% Values just for initial output

dy(1)=0.0;
dy(2)=0.0;
niter=0;

%
% Integration step, steps/output, number of outputs

h=0.01;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

nsteps=100;
nout=11;

%
% Problem parameters

a=500000.5;
b=499999.5;

%
% Jacobian matrix

J(1,1)=-a*h-1.0;
J(1,2)=b*h;
J(2,1)=b*h;
J(2,2)=-a*h-1.0;

%
% Print a heading

fprintf(' t dy(1) dy(2)
y(1) y(2) erry(1) erry(2) iter\n');

%
% nout outputs

for i=1:nout
%
% Initial output or after nstep integration steps
% completed; display Newton corrections, numerical and
% exact solutions for output

lambda1=-(a-b);
lambda2=-(a+b);
exp1=exp(lambda1*t);
exp2=exp(lambda2*t);
y1e=exp1-exp2;
y2e=exp1+exp2;
erry1=y1e-y(1);
erry2=y2e-y(2);
fprintf(fid,'%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f

%10.5f%5d\n',...t,dy(1),dy(2),y(1),y(2),
erry1,erry2,niter);

fprintf('%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f
%10.5f%5d\n',...t,dy(1),dy(2),y(1),y(2),
erry1,erry2,niter);

%
% nsteps steps/output

for is=1:nsteps
%
% Initialize iteration counter

niter=1;
stop=0;

%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Test for the end of the current step
while stop==0

%
% Functions g1, g2

g=[h*(-a*y(1)+b*y(2))-y(1)+y10
h*(b*y(1)-a*y(2))-y(2)+y20];

%
% Solve for Newton corrections
%
% Gaussian elimination

dy=-J\g;
%
% Jacobian inverse
% dy=-J^(-1)*g;
%
% Update solution

for ic=1:neqn
y(ic)=y(ic)+dy(ic);

end
stop=1;

%
% Check if the corrections are within the tolerance eps

for ic=1:neqn
if abs(dy(ic))>eps

%
% Convergence not achieved; continue calculation

niter=niter+1;
stop=0;
break;

end
end

%
% If maximum iterations reached, accept current step

if (niter==maxiter) stop=1; end
%
% Continue integration step

end
%
% Integration step completed

y10=y(1);
y20=y(2);
t=t+h;

%
% Continue nstep integration steps

end

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Continue integration for next output interval

end

Program C.1
Solution of Equations C.14 by Newton’s method

We can note the following points about Program C.1:

• An output file is defined, then the number of nonlinear equations to be
solved, in this case 2 for Equations C.14:

%
% 2 x 2 ODE system by first order BDF
%
% Open a file for output

fid=fopen('appc1.out','w');
%
% Number of ODEs

neqn=2;

• The tolerance for the Newton corrections and the maximum number of
Newton iterations are then defined numerically:

%
% Convergence tolerance, maximum number of
% iterations to compute Newton corrections

eps=0.00001;
maxiter=20;

• An initial estimate of the solution, required by Newton’s method is de-
fined, which is taken as the initial condition for Equations C.9 (y1(0) = 0,
y2(0) = 2). Also, the independent variable, t, in Equations C.9 is
initialized:

%
% Initial condition

y10=0.0;
y20=2.0;
y(1)=y10;
y(2)=y20;
t=0.0;

• The Newton corrections are zeroed and the counter for the Newton it-
erations is initialized:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Values just for initial output

dy(1)=0.0;
dy(2)=0.0;
niter=0;

• The variables that control the BDF integration are set, specifically, the
integration step in Equations C.14 (this will be for a fixed step BDF
integration), the maximum number of integration steps for each output
interval, and the number of outputs:

%
% Integration step, steps/output, number of outputs

h=0.01;
nsteps=100;
nout=11;

• The parameters in Equations C.9 are set:

%
% Problem parameters

a=500000.5;
b=499999.5;

These values correspond to the stiff case discussed in Section 1.7 for
which the eigenvalues of Equations 1.6 (or C.9) are λ1 = −(a − b) = −1,
λ2 = −(a +b) = −1, 000, 000. Thus, there will be a total of 100×(11−1) =
1000 Newton steps, each of length 0.01 so that the final value of t is
0.01 × 1000 = 10.

• The elements of the nxn = 2x2 Jacobian matrix of Equation C.13 are
programmed:

%
% Jacobian matrix

J(1,1)=-a*h-1.0;
J(1,2)=b*h;
J(2,1)=b*h;
J(2,2)=-a*h-1.0;

Note that since Equations C.9 are linear (constant coefficient ODEs), the
Jacobian matrix is constant and therefore has to be evaluated only once.
More generally, if the ODEs are nonlinear, the Jacobian matrix would
have to be updated at each Newton iteration (which is a major portion
of the calculation in using Newton’s method).

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• A heading for the numerical solution is then printed:

%
% Print a heading

fprintf(' t dy(1) dy(2)
y(1) y(2) erry(1) erry(2) iter\n');

(this output statement has been put in two lines to fit within the available
printed space; they should be returned to single lines if Equation C.1 is
executed).

• An outer loop is used to output the solution at the nout output points:

%
% nout outputs

for i=1:nout
%
% Initial output or after nstep integration steps
% completed; display Newton corrections, numerical
% and exact solutions for output

lambda1=-(a-b);
lambda2=-(a+b);
exp1=exp(lambda1*t);
exp2=exp(lambda2*t);
y1e=exp1-exp2;
y2e=exp1+exp2;
erry1=y1e-y(1);
erry2=y2e-y(2);
fprintf(fid,'%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f

%10.5f%5d\n',...t,dy(1),dy(2),y(1),
y(2),erry1,erry2,niter);

fprintf('%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f
%10.5f%5d\n',...t,dy(1),dy(2),y(1),
y(2),erry1,erry2,niter);

The first task in this loop is to compute the exact solution to Equations
1.6 (or Equations C.9), i.e., Equations 1.17. The difference between the
numerical and exact solution is then computed, followed by printing of
the independent variable, t, the two Newton corrections, the numerical
solution, the error in the numerical solution, and the number of iterations
required to produce the numerical solution.

• An intermediate loop performs the calculations through nsteps integra-
tion steps of length h; the iteration counter is initialized for each inte-
gration step and a variable is initialized, which will indicate when the
Newton iterations are stopped:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% nsteps steps/output

for is=1:nsteps
%
% Initialize iteration counter

niter=1;
stop=0;

• An inner loop then performs the Newton iterations while nstop= 0; first
the vector of functions to be zeroed is computed according to Equation
C.12 (with ν = 1):

%
% Test for the end of the current step

while stop==0
%
% Functions g1, g2

g=[h*(-a*y(1)+b*y(2))-y(1)+y10
h*(b*y(1)-a*y(2))-y(2)+y20];

• The linear Newton Equations C.3 are then solved for the Newton
corrections:

%
% Solve for Newton corrections
%
% Gaussian elimination

dy=-J\g;
%
% Jacobian inverse
% dy=-J^(-1)*g;

Note that two methods of solution are programmed:
— Gaussian elimination, which is the preferred method of solution
— Inverse Jacobian matrix, i.e.,

δy = −J−1g(y) (C.15)

Although Equation C.15 is formally (mathematically) correct, it is not
used in practice because computing the inverse Jacobian matrix is ineffi-
cient; rather, some form of Gaussian elimination is generally used. Note,
however, how easily either method is programmed in MATLAB; this
is due to the facility of MATLAB to handle matrices (arrays) without
subscripting, plus the definition of basic matrix operations, e.g., mul-
tiplication, inverse, Gaussian reduction. This step (for computing the
Newton corrections) will fail if the Jacobian matrix is singular or near
singular (i.e., ill-conditioned). Thus, the calculation of the condition of J at

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

this point would be a good idea. MATLAB has a utility for calculating
the condition of a matrix which can then be compared with the machine
epsilon discussed in Section 1.7; specifically, if the condition number ex-
ceeds the reciprocal of the machine epsilon, the linear algebraic system (in this
case, Equation C.3) is numerically singular.

• The Newton corrections are then applied to the current solution vector
to produce (one hopes) an improved solution:

%
% Update solution

for ic=1:neqn
y(ic)=y(ic)+dy(ic);

end
stop=1;

If the Newton corrections are small enough (to be tested next), the iter-
ations are terminated by setting stop= 1.

• Each Newton correction is tested against the convergence tolerance:

%
% Check if the corrections are within the
% tolerance eps

for ic=1:neqn
if abs(dy(ic))>eps

%
% Convergence not achieved; continue
% calculation

niter=niter+1;
stop=0;
break;

end
end

If any Newton correction exceeds the tolerance, the iteration counter is
incremented, the iterations are continued (stop = 0) and the testing is
ended (break from the for loop)

• If the maximum number of iterations is reached, the iterations are
stopped. Otherwise, if the iterations are to be continued (stop = 0), the
next pass through the while loop (based on stop == 0) is initiated

%
% If maximum iterations reached, accept current step

if (niter==maxiter) stop=1; end
%
% Continue integration step

end

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• Convergence has been achieved (stop = 1) so the new solution is now
used as the old (base) solution in the next step of the ODE integration; the
independent variable is incremented for the next step along the solution:

%
% Integration step completed

y10=y(1);
y20=y(2);
t=t+h;

• Finally, the nstep integration steps are completed, and the next output
interval is covered until all nout output intervals are completed.

%
% Continue nstep integration steps

end
%
% Continue integration for next output interval

end

Note that Program C.1 contains a general Newton solver that can be ap-
plied to an nxn system of nonlinear equations; all that really is required is to
reprogram: (1) the Jacobian matrix (which generally will be inside the loop
for the Newton iterations rather than outside) and (2) the vector of functions
to be zeroed. Also, some tuning of the parameters will generally be required
(e.g., the tolerance eps and the maximum number of iterations maxiter).

The output from the preceding program is as follows:

t dy(1) dy(2) y(1) y(2) erry(1) erry(2) iter

0.00000 0.00000 0.00000 0.00000 2.00000 0.00000 0.00000 0

1.00000 0.00000 0.00000 0.36971 0.36971 -0.00183 -0.00183 2

2.00000 0.00000 0.00000 0.13669 0.13669 -0.00135 -0.00135 2

3.00000 0.00000 0.00000 0.05053 0.05053 -0.00075 -0.00075 2

4.00000 0.00000 0.00000 0.01868 0.01868 -0.00037 -0.00037 2

5.00000 0.00000 0.00000 0.00691 0.00691 -0.00017 -0.00017 2

6.00000 0.00000 0.00000 0.00255 0.00255 -0.00007 -0.00007 2

7.00000 -0.00001 -0.00001 0.00094 0.00094 -0.00003 -0.00003 1

8.00000 0.00000 0.00000 0.00035 0.00035 -0.00001 -0.00001 1

9.00000 0.00000 0.00000 0.00013 0.00013 -0.00001 -0.00001 1

10.00000 0.00000 0.00000 0.00005 0.00005 0.00000 0.00000 1

We can note the following points about this example:

• Only 1000 implicit Euler steps were used. This contrasts with the
5 × 106 steps estimated for the explicit Euler method in Section 1.7; thus
there was a reduction of 1/5000 in the number of steps required by an
explicit integrator, which clearly shows the advantage of using an im-
plicit integrator for stiff ODEs. Again, as discussed in Section 1.7, if this

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

conclusion is not convincing, using a = 500,000,000.5, b = 499,999,999.5
would result in a reduction of 1/5 × 106 steps!

• The two Newton corrections, δy1 and δy2, met the tolerance eps= 0.00001
with no more than two iterations, which is an indication of the quadratic
converegnce of Newton’s method, i.e., when Newton’s method works, it
generally is very efficient.

• Accuracy (not stability) was limited by the step size h = 0.01; this sug-
gests a higher-order BDF method could be used to good advantage (to
increase the accuracy, while maintaining stability). Specifically, the BDF
methods are stable along the entire negative real axis, and therefore
would be stable for the 2 × 2 linear problem of Equations C.9 (since the
two eigenvalues are real and negative, e.g., λ1 = −(a − b) = −1, λ2 =
−(a + b) = −1,000,000). An extension of Program C.1 for BDF methods
of order 2 and 3 is available from the authors (W.E.S.).

To investigate this last point (the possible advantage of using higher-order
BDF methods), we now consider the use of a stiff ODE integrator in MATLAB,
which varies the order of the BDF method.

C.3 MATLAB Program for the Solution of the 2x2 ODE System
Using ode23s and ode15s

A MATLAB program that calls ode23s and ode15s for the solution of the 2x2
ODE system of Equations C.9 is listed below:

%
% 2 x 2 ODE system by variable order BDF
%
% Global variables

global a b ncall;
%
% Model parameters

a=500000.5;
b=499999.5;

%
% Select method

for mf=1:2
%
% Error tolerances

reltol=1.0e-02;
abstol=1.0e-02;

%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Cases for changes in error tolerances
for ncase=1:2

reltol=1.0e-02*reltol;
abstol=1.0e-02*abstol;

%
% Variables for ODE integration

t0=0.0;
tf=10.0;
tout=[t0:1.0:tf]';
nout=11;

%
% Initialize number of calls to derivative
% subroutine

ncall=0;
%
% Initial condition

y10=0.0;
y20=2.0;
y0=[y10 y20]';

%
% Call ODE integrator

options=odeset('RelTol',reltol,'AbsTol',abstol);
if(mf==1)[t,y]=ode23s('ode2x2',tout,y0,options); end
if(mf==2)[t,y]=ode15s('ode2x2',tout,y0,options); end

%
% Display solution and error

fprintf('\n\n mf = %1d\n case = %1d
\n reltol = %6.2e\n abstol = %6.2e\n\n',...
mf,ncase,reltol,abstol);

fprintf(' t y1e y1 erry1
\n y2e y2 erry2\n');

for i=1:nout
lambda1=-(a-b);
lambda2=-(a+b);
exp1=exp(lambda1*t(i));
exp2=exp(lambda2*t(i));
y1e=(y10+y20)/2.0*exp1-(y20-y10)/2.0*exp2;
y2e=(y10+y20)/2.0*exp1+(y20-y10)/2.0*exp2;
erry1=y1e-y(i,1);
erry2=y2e-y(i,2);
fprintf('%5.1f%9.4f%9.4f%15.10f\n

%9.4f%9.4f%15.10f\n\n',...
t(i),y1e,y(i,1),erry1,y2e,y(i,2),erry2);

end
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Next case
fprintf(' ncall = %5d\n',ncall);
end

%
% Next method

end
%
% Plot last solution

plot(t,y);
xlabel('t')
ylabel('y1(t),y2(t)')
title(' Appendix C, 2 x 2 Linear System')
gtext('y1(t)');
gtext('y2(t)');
print appc.ps

Program C.2
Solution of Equations C.9 by ode23s and ode15s

We can note the following points about Program C.2:

• The beginning of the program is similar to that of Program C.1; three vari-
ables are declared global so that they can be shared with other
routines:

%
% 2 x 2 ODE system by variable order BDF
%
% Global variables

global a b ncall;
%
% Model parameters

a=500000.5;
b=499999.5;

• An outer loop executes two times; for the first (mf = 1), ode23s is called,
while for the second, ode15s is called:

%
% Select method

for mf=1:2
%
% Error tolerances

reltol=1.0e-02;
abstol=1.0e-02;

For each of the two passes through this for loop, the relative and absolute
error tolerances for the two ODE integrators are set to 10−2.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• In a subordinate loop, the error tolerances are reduced by 10−2 (so that
for the two passes through this loop, the error tolerances are set to 10−4

and 10−6); in this way, the performance of the integrators can be assessed
using the exact solution of the 2x2 ODE problem, Equation 1.17:

%
% Cases for changes in error tolerances

for ncase=1:2
reltol=1.0e-02*reltol;
abstol=1.0e-02*abstol;

• The variables controlling the integration are set:

%
% Variables for ODE integration

t0=0.0;
tf=10.0;
tout=[t0:1.0:tf]';
nout=11;

Note that the solution is computed to a final time t f = 10 with 11 outputs
at an interval of 1.

• A counter for the number of calls to the derivative routine (discussed
subsequently) is initialized; also, the initial conditions for the two ODEs
(Equations C.9) are set (these are a 2 × 1 column vector, which is defined
as the transpose of a 1 × 2 row vector):

%
% Initialize number of calls to derivative
% subroutine

ncall=0;
%
% Initial condition

y10=0.0;
y20=2.0;
y0=[y10 y20]';

• The MATLAB utility odeset is called to set the error tolerances for the
subsequent calls to ode23s and ode15s:

%
% Call ODE integrator

options=odeset('RelTol',reltol,'AbsTol',abstol);
if(mf==1)[t,y]=ode23s('ode2x2',tout,y0,options); end
if(mf==2)[t,y]=ode15s('ode2x2',tout,y0,options); end

Note that the two integrators call the function ode2x2 to define the deriva-
tives (RHS functions) of Equations C.9. Also, the coding to call ode23s
and ode15s is straightforward (which facilitates their use).

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• The numerical and exact solutions, and their differences, are displayed
in the same way as Program C.1:

%
% Display solution and error

fprintf('\n\n mf = %1d\n case = %1d
\n reltol = %6.2e\n abstol = %6.2e\n\n',
...mf,ncase,reltol,abstol);

fprintf(' t y1e y1 erry1
\n y2e y2 erry2\n');

for i=1:nout
lambda1=-(a-b);
lambda2=-(a+b);
exp1=exp(lambda1*t(i));
exp2=exp(lambda2*t(i));
y1e=(y10+y20)/2.0*exp1-(y20-y10)/2.0*exp2;
y2e=(y10+y20)/2.0*exp1+(y20-y10)/2.0*exp2;
erry1=y1e-y(i,1);
erry2=y2e-y(i,2);
fprintf('%5.1f%9.4f%9.4f%15.10f\n

%9.4f%9.4f%15.10f\n\n',...
t(i),y1e,y(i,1),erry1,y2e,y(i,2),erry2);

end
%
% Next case

fprintf(' ncall = %5d\n',ncall);
end

%
% Next method

end

Also, the number of calls to the derivative routine ode2x2 is displayed
at the end of the solution. In this way, we can compare the number of
derivative evaluations for the two integrators, and the fixed step inte-
grator of Program C.1.

• Plotting is added at the end to display the solutions from ode15s (which,
graphically, is identical to the solution from ode23s):

%
% Plot last solution

plot(t,y);
xlabel('t')
ylabel('y1(t),y2(t)')
title(' Appendix C, 2 x 2 Linear System')

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

gtext('y1(t)');
gtext('y2(t)');
print appc.ps

Function ode2x2 to define the RHS functions of the ODEs (Equations C.9)
is listed below:

function yt=ode2x2(t,y)
%
% Global variables

global a b ncall;
%
% ODEs

yt(1)=-a*y(1)+b*y(2);
yt(2)= b*y(1)-a*y(2);
yt=yt';

%
% Increment number of calls to ode2x2

ncall=ncall+1;

Program C.3
Function ode2x2.m called by Program C.2

We can note the following points about ode2x2:

• The global variables are available for use in calculating the derivatives;
also, the counter for derivative evaluations is incremented by 1 each time
ode2x2 is called.

• The derivative row vector is transposed into a column vector, which is
the required format for ode23s and ode15s.

The output from Programs C.2 and C.3 is listed in abbreviated form below
(the output for t = 2, 3, . . . , 9 is deleted to reduce the output to reasonable
length):

mf = 1
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

t y1e y1 erry1
y2e y2 erry2

0.0 0.0000 0.0000 0.0000000000
2.0000 2.0000 0.0000000000

1.0 0.3679 0.3684 -0.0004764099
0.3679 0.3684 -0.0004764099

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

. .

. .

. .
10.0 0.0000 0.0000 -0.0000030593

0.0000 0.0000 -0.0000030594

ncall = 324

mf = 1
case = 2
reltol = 1.00e-006
abstol = 1.00e-006

t y1e y1 erry1
y2e y2 erry2

0.0 0.0000 0.0000 0.0000000000
2.0000 2.0000 0.0000000000

1.0 0.3679 0.3678 0.0000421012
0.3679 0.3678 0.0000420695
. .
. .
. .

10.0 0.0000 0.0000 -0.0000017745
0.0000 0.0000 -0.0000017747

ncall = 1591

mf = 2
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

t y1e y1 erry1
y2e y2 erry2

0.0 0.0000 0.0000 0.0000000000
2.0000 2.0000 0.0000000000

1.0 0.3679 0.3680 -0.0001104769
0.3679 0.3680 -0.0001104769
. .
. .
. .

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

10.0 0.0000 0.0000 0.0000057390
0.0000 0.0000 0.0000057390

ncall = 139

mf = 2
case = 2
reltol = 1.00e-006
abstol = 1.00e-006

t y1e y1 erry1
y2e y2 erry2

0.0 0.0000 0.0000 0.0000000000
2.0000 2.0000 0.0000000000

1.0 0.3679 0.3679 0.0000002033
0.3679 0.3679 0.0000002033
. .
. .
. .

10.0 0.0000 0.0000 -0.0000002999
0.0000 0.0000 -0.0000002999

ncall = 233

We can note the following points about this output:

• ode23s did not meet the error tolerances, even with 1591 calls to ode2x2,
e.g., 1.00e—004 vs. −0.0004764099:

mf = 1
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

t y1e y1 erry1
y2e y2 erry2

1.0 0.3679 0.3684 -0.0004764099
0.3679 0.3684 -0.0004764099

ncall = 324

mf = 1
case = 2

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

reltol = 1.00e-006
abstol = 1.00e-006

t y1e y1 erry1
y2e y2 erry2

1.0 0.3679 0.3678 0.0000421012
0.3679 0.3678 0.0000420695

ncall = 1591

However, we should keep in mind that Program C.1 did not produce
solutions that were any better than about 2+ figures, e.g., −0.00183, with
1000 derivative evaluations (due to the use of a fixed step, first-order
BDF):

t dy(1) dy(2) y(1) y(2) erry(1) erry(2) iter

1.00000 0.00000 0.00000 0.36971 0.36971 -0.00183 -0.00183 2

• ode15s did come close to meeting, or exceeded, the error tolerances, e.g.,
1.00e − 004 vs. −0.0001104769:

mf = 2
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

t y1e y1 erry1
y2e y2 erry2

1.0 0.3679 0.3680 -0.0001104769
0.3679 0.3680 -0.0001104769

ncall = 139

mf = 2
case = 2
reltol = 1.00e-006
abstol = 1.00e-006

t y1e y1 erry1
y2e y2 erry2

1.0 0.3679 0.3679 0.0000002033
0.3679 0.3679 0.0000002033

ncall = 233

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• The number of derivative evaluations by ode15s was substantially lower
than for ode23s, which infers better performance of the higher-order
methods in ode15s. For ode23s:

mf = 1
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

ncall = 324

mf = 1
case = 2
reltol = 1.00e-006
abstol = 1.00e-006

ncall = 1591

and for ode15s:

mf = 2
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

ncall = 139

mf = 2
case = 2
reltol = 1.00e-006
abstol = 1.00e-006

ncall = 233

ode23s and ode15s vary the order of the BDF method (in accordance with the
table of coefficients in Section 1.7) as well as the integration step in attempting
to meet the specified error tolerance. Thus, they are variable step–variable order
implementations of the BDF method; i.e., they perform h refinement and p
refinement simultaneously.

To conclude this appendix, we have observed the effectiveness (superior
efficiency) of implicit methods, such as BDF, for stiff ODE problems. This
improved performance, however, involves greater computational complexity
(generally the solution of linear or nonlinear algebraic or transcendental
equations (Equations C.2), depending on whether the ODE system is linear

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

or nonlinear); therefore implicit methods should be used only if the ODE system is
stiff. Also, we should not conclude that a nonlinear ODE system is necessarily stiff,
and therefore an implicit integrator is required.

This final discussion suggests a fundamental question: “How do we know if
an ODE system is stiff and therefore an implicit integrator should be used?” In
the case of linear ODE systems, we can look at the spread in the eigenvalues, as
we did for Equations C.9. However, in the case of nonlinear ODEs, eigenvalues
are not defined (and therefore cannot be studied for possible stiffness). For
this more general case (of nonlinear ODEs), we suggest the following criterion
for determining if an implicit integrator should be used:

maximum stable step << problem timescale

In other words, observe if the ODE problem timescale is much greater than
the largest integration step (h) that can be taken while still maintaining a
stable solution, i.e., this suggests that stability is the limiting condition on h,
and therefore the ODE system is effectively stiff so that an implicit integrator
should be used.

To illustrate the application of this criterion, for the 2x2 ODE system of
Equations C.9 with a = 500000.5, b = 499999.5, and λ1 = −(a −b) = −1, λ2 =
−(a + b) = −1,000,000, we found in Section 1.7 that (1) the maximum step
for a stable explicit solution is 2/1,000,000, and (2) the timescale for the ODE
system is 10 (so that e−1(10) has decayed to insignificance). Thus, application
of the preceding criterion gives

2
1, 000, 000

<< 10

which implies that an implicit integrator should be used.
To confirm the preceding analysis, Programs c.2 and c.3 were executed

with the two MATLAB explicit integrators, ode23 and ode45. This was easily
accomplished by changing the following lines:

%
% Call ODE integrator

options=odeset('RelTol',reltol,'AbsTol',abstol);
if(mf==1)[t,y]=ode23s('ode2x2',tout,y0,options); end
if(mf==2)[t,y]=ode15s('ode2x2',tout,y0,options); end

to

%
% Call ODE integrator

options=odeset('RelTol',reltol,'AbsTol',abstol);
if(mf==1)[t,y]=ode23('ode2x2',tout,y0,options); end
if(mf==2)[t,y]=ode45('ode2x2',tout,y0,options); end

The resulting change in the numbers of calls to the ODE routine ode2x2 is
summarized below:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Integrator Tolerance Calls to ode2x2

ode23s 10−4 324
ode23 10−4 11, 939, 197
ode23s 10−6 1591
ode23 10−6 11, 939, 440
ode15s 10−4 139
ode45 10−4 19, 283, 629
ode15s 10−6 233
ode45 10−6 19, 283, 713

Clearly, the MATLAB stiff integrators, and even the basic BDF integrator
of Program C.1, are substantially more efficient than the MATLAB explicit
(nonstiff) integrators (and the same conclusion would be true for the explicit
integrators discussed in Chapters 1 and 2).

However, we now have two additional questions to answer in applying
the preceding criterion for stiffness (involving the maximum integration step
and problem timescale):

1. How do we determine the maximum integration step for an explicit
integrator that still produces a stable solution? Answer: In general, by
trial and error using a computer program with an explicit integrator.
Or, if the computer run times for a stable explicit solution are large, or
an excessive number of derivative evaluations is required to maintain
a stable solution, an implicit integrator may possibly be used to good
advantage.

2. How do we determine the timescale for the ODE problem? Answer:
Either from some knowledge of the characteristics of the problem such
as physical reasoning, or again, by trial and error to observe when a
complete solution appears to have been computed.

In other words, some trial and error with an explicit integrator is generally
required. If the computational effort required to compute a complete solution
appears to be excessive, switch to an implicit integrator.

Admittedly, this procedure is rather vague (a general, easily applied math-
ematical test is not available, especially for nonlinear problems), and some
trial and error with explicit integrators first, followed possibly by a switch
to implicit integrators, may be required (this is the procedure we generally
follow for a new ODE problem). The preceding discussion (in this appendix
and Chapters 1 to 5) indicates that a spectrum of ODE/PDE problems can be
handled with explicit integrators (e.g., the 1x1 and 2x2 ODE problems, and
the linear and nonlinear PDE problems), and that only under the condition
of stiffness (or stability constraints) is an implicit integrator required. Thus,
some judgment based on direct computational experience is required.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Appendix D
Alternative Forms of ODEs

The ODE systems considered previously (in Chapters 1 to 5 and Appendices A
to C) all defined the derivatives (RHS of the ODEs) explicitly; that is, only one
derivative appeared in each ODE; Equations 1.6 for the 2x2 linear, constant
coefficient ODE system are an example (renumbered here as Equations D.1)

dy1

dt
= a11 y1 + a12 y2 y1(0) = y10

dy2

dt
= a21 y1 + a22 y2 y2(0) = y20

(D.1)

Equations D.1 are an example of explicit ODEs (not to be confused with explicit
ODE integration algorithms); this designation comes from the characteristic
that each ODE defines one derivative explicitly.

However, we could consider ODEs in which each ODE contains more than
one derivative, e.g.,

c11
dy1

dt
+ c12

dy2

dt
= −ay1 + by2

c21
dy1

dt
+ c22

dy2

dt
= by1 − ay2 (D.2)

y1(0) = y10, y2(0) = y20

or in matrix form

[
c11 c12
c21 c22

]
·

dy1

dt
dy2

dt

 =

[−a b
b −a

]
·
[

y1
y2

]

[
y1(0)

y2(0)

]
=

[
y10
y20

]

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

For the special case c11 = 1, c12 = 0, c21 = 0, c22 = 1, is the explicit ODE
system (not to be confused with an explicit integrator):

dy1

dt
= −ay1 + by2

dy2

dt
= by1 − ay2 (D.3)

y1(0) = y10, y2(0) = y20

which can be written in matrix form (for the general nxn case) as

I
dy
dt

= Ay (D.4)

where
I = identity matrix

A = ODE coefficient matrix
y = dependent variable vector

Equations D.2 are an example of a linearly coupled implicit ODE system, with
the coupling matrix M

M
dy
dt

= Ay (D.5)

The term linearly coupled comes from the linear coupling (or linear combina-
tions) of the derivatives on the LHS of Equations D.2.

This form of coupled ODEs is common in applications, and therefore library
integrators are available to handle such systems. For example, the MATLAB
ODE integrators can accept a coupling matrix that is not the identity matrix;
L SODI ,1,4 DASSL ,2,4,5 RADAU5,3,5 and MEBDFDAE5 can also accommo-
date such coupled ODE systems.

One approach to the solution of Equations D.2 would be to consider them
as linear algebraic equations in the derivatives dy1/dt and dy2/dt. Then these
equations can be solved in the usual ways for linear algebraic equations to
arrive at the derivatives explicitly. For example, eliminating dy1/dt from Equa-
tions D.2 gives

dy2

dt
= c21ay1 − c21by2 + c11by1 − c11ay2

c11c22 − c21c12
(D.6)

Higher-order (nxn) linearly coupled ODE systems can be uncoupled by Gaus-
sian elimination or any other established method for simultaneous algebraic
equations. Of course, this presupposes that the coupling matrix M is not sin-
gular or ill-conditioned (e.g., that c11c22 − c21c12 �= 0 in Equation D.6). If this
is the case, which is common in applications, more sophisticated methods
must be applied to perform the numerical integration of the equations, as
subsequently discussed briefly.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

For example, if in Equations D.2 c11 = c12 = 1, c21 = c22 = 0, the coupling
matrix [

c11 c12

c21 c22

]
(D.7)

is singular. Note that the second ODE is actually an algebraic equation, i.e.,

dy1

dt
+ dy2

dt
= −ay1 + by2

0
dy1

dt
+ 0

dy2

dt
= by1 − ay2

(D.8)

Thus, Equations D.8 are actually an example of a differential algebraic or DAE
system.

Equation D.5 can be generalized to

M(y)
dy
dt

= Ay (D.9)

where now the coupling matrix M(y) is a function of y; thus, Equation D.9
defines a nonlinearly coupled implicit ODE system.

Finally, if the ODE system is of the form

f
(

y,
dy
dt

, t
)

= 0 (D.10)

Equation D.10 is a fully implicit ODE system; it is also frequently designated
as a DAE system since some of the equations defined by f can be algebraic.

All of the preceding ODEs are a special case of Equation D.10 (depending on
the form of f in Equation D.10). Library integrators are available, in principle,
for all of the preceding forms of ODE systems. In particular, DASSL2,4 and
RADAU53 will accommodate Equations D.10 for certain cases of coupling
between the ODEs and algebraic equations. The solution of Equation D.10 for
completely general forms of f is still an open and active area of research.

In summary, we list these alternate forms of ODEs (beyond the explicit
ODEs illustrated by Equations D.4 to indicate that (1) all of these forms occur
in applications in science and engineering, and (2) library solvers are available
for most of these forms (but without a guarantee for the successful calculation
of an accurate solution, especially for Equation D.10, depending on the form
of f).

A detailed discussion of these alternate ODE forms and the available solvers
is beyond the scope of this book. However, the following mathematical soft-
ware libraries are a good starting point and source of solvers: netlib,4 gams,4

and mebdfdae.5

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

References

1. Hindmarsh, A.C., ODEPACK, a systematized collection of ODE solvers, in Scientific
Computing, R.S. Stepleman et al., Eds., North-Holland, Amsterdam, 1983, 55–64.

2. Brenan, K.E., S.L. Campbell, and L.R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, SIAM, Philadelphia, 1996.

3. Hairer, E., and G. Wanner, Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991.

4. Library mathematical software is available from
http://www.netlib.org/index.html; http://gams.nist.gov.

5. Library ODE/DAE integrators are available from
http://hilbert.dm. uniba.it/˜ testset/software.htm

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Appendix E
Spatial p Refinement

In Section 4.1 and Section 5.1 we considered the numerical integration of
a PDE (Equation 4.1) in which the finite difference approximation of the
second-order spatial derivative ∂u2/∂x2 was programed in derv. Since first-
and second-order derivatives in space, with their associated boundary condi-
tions, are so commonplace in applications, the calculation of these derivatives
can be facilitated by using library routines. We consider here a few library rou-
tines for this purpose.

For example, a derv is listed below that can be used in place of the derv in
Section 4.1 (Program 4.1.3):

function [ut]=derv(n,t,u)
%
% Function derv computes the derivative vector
% of the linear PDE problem
%
% Declare global variables

global nsteps ndss;
%
% Problem parameters

xl=0.0;
xu=1.0;

%
% BC at x = 0

u(1)=0.0;
%
% BC at x = 1

u(n)=0.0;
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% ux
if ndss == 2 [ux]=dss002(xl,xu,n,u); end
if ndss == 4 [ux]=dss004(xl,xu,n,u); end

%
% uxx

if ndss == 2 [uxx]=dss002(xl,xu,n,ux); end
if ndss == 4 [uxx]=dss004(xl,xu,n,ux); end
if ndss == 42

nl=1;
nu=1;
ux=zeros(n,1);
[uxx]=dss042(xl,xu,n,u,ux,nl,nu);

end
if ndss == 44

nl=1;
nu=1;
ux=zeros(n,1);
[uxx]=dss044(xl,xu,n,u,ux,nl,nu);

end
%
% pdelin

for i=1:n
ut(i)=uxx(i);

end

Program E.1
derv for the solution of Equations 4.1 to 4.4

We can note the following points about derv:

• After setting the boundary values in x, xl = 0.0, xu = 1.0, boundary
conditions (Equations 4.3 and 4.4) are programmed:

%
% BC at x = 0

u(1)=0.0;
%
% BC at x = 1

u(n)=0.0;

Note that here we have zeroed the dependent variables, u(1) and u(n),
rather than the time derivatives, ut(1) and ut(n) as in Program 4.1.3. This
difference is due to the way the PDE, Equation 4.1, is programmed at
the end of derv, as explained below.

• The first derivative ∂u/∂x is computed by one of two spatial differenti-
ation (DSS) routines, dss002 or dss004:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% ux

if ndss == 2 [ux]=dss002(xl,xu,n,u); end
if ndss == 4 [ux]=dss004(xl,xu,n,u); end

dss002 implements three point (O(�x2)) finite difference approximations
for ∂u/∂x whereas dss004 implements five point (O(�x4)) approxima-
tions for this derivative. The vector of dependent variables to be differ-
entiated, u, is an input to dss002 and dss004, and ∂u/∂x is returned in the
vector ux. The choice of the differentiator is through ndss, which is set
in intpar (ndss is added as another parameter to intpar of Program 4.1.1,
with ndss = 2 to call dss002 and ndss = 4 to call dss004).

• The second derivative, ∂2u/∂x2, is then computed by differentiating the
first derivative ∂u/∂x (i.e., by stagewise differentiation):

%
% uxx

if ndss == 2 [uxx]=dss002(xl,xu,n,ux); end
if ndss == 4 [uxx]=dss004(xl,xu,n,ux); end

The second derivative is returned in vector uxx.
• For ndss = 42 or ndss = 44, two differentiation routines, dss042 and

dss044, are called that calculate the second derivative, ∂2u/∂x2, directly:

if ndss == 42
nl=1;
nu=1;
ux=zeros(n,1);
[uxx]=dss042(xl,xu,n,u,ux,nl,nu);

end
if ndss == 44

nl=1;
nu=1;
ux=zeros(n,1);
[uxx]=dss044(xl,xu,n,u,ux,nl,nu);

end

nl = 1 and nu = 1 specify that Dirichlet boundary conditions are used
(according to Equations 4.3 and 4.4); if nl = 2 and/or nu = 2, Neu-
mann boundary conditions are used. For the latter, the first derivative,
ux, is required and it is therefore an input to dss042 and dss044. In the
present case (with Dirichlet boundary conditions), the first derivative is
not required and it is therefore zeroed.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

• The finite difference approximations in dss042 and dss044 are O(�x2)

and O(�x4), respectively. For example, for dss042, the calculation of the
second derivative ∂2u/∂x2 is done with the following code (taken from
dss042):

%...
%... Grid spacing

dx=(xu-xl)/(n-1);
%...
%... Calculate uxx at the left boundary, without ux

if nl==1
uxx(1)=((2.)*u(1)...

+(-5.)*u(2)...
+(4.)*u(3)...
+(-1.)*u(4))/(dx^2);

%...
%... Calculate uxx at the left boundary, including ux

elseif nl==2
uxx(1)=((-7.)*u(1)...

+(8.)*u(2)...
+(-1.)*u(3))/(2.*dx^2)...
+(-6.)*ux(1) /(2.*dx);

end
%...
%... Calculate uxx at the right boundary, without ux

if nu==1
uxx(n)=((2.)*u(n)...

+(-5.)*u(n-1)...
+(4.)*u(n-2)...
+(-1.)*u(n-3))/(dx^2);

%...
%... Calculate uxx at the right boundary, including ux

elseif nu==2
uxx(n)=((-7.)*u(n)...

+(8.)*u(n-1)...
+(-1.)*u(n-2))/(2.*dx^2)...
+(6.)*ux(n) /(2.*dx);

end
%...
%... Calculate uxx at the interior grid points

for i=2:n-1
uxx(i)=(u(i+1)-2.*u(i)+u(i-1))/dx^2;

end

This code involves several finite difference approximations at the bound-
aries for Dirichlet and Neumann boundary conditions. To keep this

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

discussion to reasonable length, the details are not discussed (they are
available in Reference 1). However, the calculation of the second deriva-
tive at the interior points by

%...
%... Calculate uxx at the interior grid points

for i=2:n-1
uxx(i)=(u(i+1)-2.*u(i)+u(i-1))/dx^2;

end

directly parallels the coding in derv of Program 4.1.3:

%
% Interior points

dx=(xu-xl)/(n-1);
dxs=dx*dx;
for i=2:n-1

ut(i)=(u(i+1)-2.0*u(i)+u(i-1))/dxs;
end

• The corresponding code in dss044 for the second derivative at the interior
points is

%...
%... i = 3, 4,..., n-2

for i=3:n-2
uxx(i)=r12dxs*...

(-1.0*u(i-2)...
+16.0*u(i-1)...
-30.0*u(i)...
+16.0*u(i+1)...
-1.0*u(i+2));

Note that five points (or values of u) are used to calculate the second
derivative, while in dss042, only three points are used. This explains the
greater accuracy for dss044 (O(�x4) for dss044 and O(�x2) for dss042).
Again, the details of the finite difference approximations in dss042 and
dss044 are given in Reference 1.

• Finally, the PDE, Equation 4.1 is programmed:

%
% pdelin

for i=1:n
ut(i)=uxx(i);

end

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

The close correspondence between this coding and the PDE is clear; this
is possible through the use of the vector uxx computed by the preceding
differentiation (DSS) routines.

Functions inital of Program 4.1.2 and fprint of Program 4.1.4 are essentially
the same (the value of ndss is printed in fprint).

The output from this combination of functions, plus a main program that is
also the same as Program 3.1.1, is discussed below. Since this output is quite
voluminous, only a summary with key points is given. For ndss = 2, n = 21,
the output is as follows:

euler2a integrator

ncase = 1 neqn = 21 nsteps = 250 ndss = 2

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+000
0.20 0.141180 0.138911 2.2689e-003
0.40 0.019932 0.019296 6.3550e-004
0.60 0.002814 0.002680 1.3350e-004
0.80 0.000397 0.000372 2.4930e-005
1.00 0.000056 0.000052 4.3644e-006

euler2b integrator

ncase = 2 neqn = 21 nsteps = 250 ndss = 2

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+000
0.20 0.141232 0.138911 2.3208e-003
0.40 0.019940 0.019296 6.4378e-004
0.60 0.002817 0.002680 1.3634e-004
0.80 0.000398 0.000372 2.5813e-005
1.00 0.000056 0.000052 4.5242e-006

rkc4a integrator

ncase = 3 neqn = 21 nsteps = 250 ndss = 2

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+000
0.20 0.141177 0.138911 2.2661e-003
0.40 0.019931 0.019296 6.3470e-004

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

0.60 0.002814 0.002680 1.3333e-004
0.80 0.000397 0.000372 2.4898e-005
1.00 0.000056 0.000052 4.3588e-006

rkc4b integrator

ncase = 4 neqn = 21 nsteps = 250 ndss = 2

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+000
0.20 0.141177 0.138911 2.2661e-003
0.40 0.019931 0.019296 6.3471e-004
0.60 0.002814 0.002680 1.3333e-004
0.80 0.000397 0.000372 2.4898e-005
1.00 0.000056 0.000052 4.3589e-006

rkf45a integrator

ncase = 5 neqn = 21 nsteps = 250 ndss = 2

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+000
0.20 0.141177 0.138911 2.2661e-003
0.40 0.019931 0.019296 6.3470e-004
0.60 0.002814 0.002680 1.3333e-004
0.80 0.000397 0.000372 2.4898e-005
1.00 0.000056 0.000052 4.3588e-006

rkf45b integrator

ncase = 6 neqn = 21 nsteps = 250 ndss = 2

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+000
0.20 0.141177 0.138911 2.2661e-003
0.40 0.019931 0.019296 6.3470e-004
0.60 0.002814 0.002680 1.3333e-004
0.80 0.000397 0.000372 2.4898e-005
1.00 0.000056 0.000052 4.3587e-006

For this case (n = 21), the errors are relatively large, e.g., for rkf45a at t = 0.20
the error at x = 0.5 is 2.2661e–003:

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

rkf45a integrator

ncase = 5 neqn = 21 nsteps = 250 ndss = 2

t u(num) u(exact) diff
0.00 1.000000 1.000000 0.0000e+000
0.20 0.141177 0.138911 2.2661e-003

Thus, we would expect that as more points are added (h refinement) and a
higher-order spatial differentiator is used (dss044 in place of dss042), which is
a form of p refinement in space, the accuracy of the solution would improve.
This improvement is demonstrated in the following summary of results from
rkf45a at t = 0.2:

ncase = 5 neqn = 21 nsteps = 250 ndss = 2
0.20 0.141177 0.138911 2.2661e-003

ncase = 5 neqn = 31 nsteps = 250 ndss = 2
0.20 0.139828 0.138911 9.1682e-004

ncase = 5 neqn = 41 nsteps = 250 ndss = 2
0.20 0.139476 0.138911 5.6448e-004

ncase = 5 neqn = 21 nsteps = 500 ndss = 4
0.20 0.138921 0.138911 9.6684e-006

ncase = 5 neqn = 31 nsteps = 500 ndss = 4
0.20 0.138913 0.138911 2.1371e-006

ncase = 5 neqn = 41 nsteps = 500 ndss = 4
0.20 0.138912 0.138911 6.5075e-007

ncase = 5 neqn = 21 nsteps = 500 ndss = 42
0.20 0.139476 0.138911 5.6448e-004

ncase = 5 neqn = 31 nsteps = 500 ndss = 42
0.20 0.139162 0.138911 2.5071e-004

ncase = 5 neqn = 41 nsteps = 1000 ndss = 42
0.20 0.139052 0.138911 1.4099e-004

ncase = 5 neqn = 21 nsteps = 500 ndss = 44
0.20 0.138913 0.138911 1.6930e-006

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

ncase = 5 neqn = 31 nsteps = 500 ndss = 44
0.20 0.138911 0.138911 3.5667e-007

ncase = 5 neqn = 41 nsteps = 1000 ndss = 44
0.20 0.138911 0.138911 1.1461e-007

We can note the following points about this output:

• The number of steps in t to maintain stability changed through the values
250, 500, 1000. Generally this number had to be increased with increasing
numbers of grid points, neqn (as h refinement was used), and increasing
order of the finite difference approximations (as p refinement was used).

• Generally, the order conditions were maintained when changing the num-
ber of grid points, neqn. For example, with ndss = 44 (dss044 was called),
O(�x4), and comparing the neqn = 21 and neqn = 41 solutions,

1.6930 × 10−6(1/2)4 = 1.0581 × 10−7 � 1.1461 × 10−7

These order conditions will not be maintained exactly because of the
additional error introduced by the integration in t, i.e., errors occur
because of the approximate spatial and time discretizations. Note that
nsteps = 500 and 1000 in the preceding solutions so that the change in
the number of steps in t complicates the comparisons in x.

• Also, the order conditions were maintained when changing the order of
the approximations, e.g., dss042 (with O(�x2)) to dss044 (with O(�x4)).
For example, for neqn = 21,

5.6448 × 10−4 (1/20)4

(1/20)2 = 1.4112 × 10−6 � 1.6930 × 10−6

This result clearly indicates the advantage of using higher-order approx-
imations, e.g., O(�x4) rather than O(�x2).

Finally, in addition to the routines for ∂u/∂x and ∂2u/∂x2, i.e., three point
(O(�x2)) and five point (O(�x4)) approximations in the six languages, rou-
tines with seven point (O(�x6)), nine point (O(�x8)) and 11 point (O(�x10))
approximations in Fortran and MATLAB are available from the authors; the
translation of these routines to the other four languages is straightforward.

References

1. Schiesser, W.E. The Numerical Method of Lines Integration of Partial Differential Equa-
tions, Academic Press, San Diego, CA, 1991.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Appendix F
Testing ODE/PDE Codes

The development of a new ODE/PDE application typically requires some
trial-and-error analysis until the application is running correctly. The
errors that can occur during this development process are generally of two
types:

1. Compiler errors resulting from incorrect syntax for the particular com-
piler (language)

2. Execution errors after successful compilation of the source code

We cannot give any specific help with compiler errors since they must be
corrected by repeated attempts at compiling the source code until the compiler
accepts the source code with no reported errors. The success in the elimination
of compiler errors is directly tied to the programmer’s experience with the
language.

Execution errors can generally occur for two reasons:

1. The ODE/PDE mathematical model has fundamental flaws that even-
tually cause arithmetic problems. For example, if the model involves di-
vision by zero, or if the model equations are unstable so that eventually
the calculations cause an overflow (the calculations produce numbers
that exceed the largest number the computer can handle), an execution
error will eventually be reported.

2. Errors were made in the programming of the model equations; this
could be something as simple as a sign error.

Execution errors are generally the more difficult to correct (compiler errors
will be rather explicit and can generally be corrected by reading the compiler
error messages and making corrections in the source code). Thus, we present
here a method for detecting and correcting execution errors when developing
an ODE/PDE application.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Here, then, are the steps that should be most relevant to finding execution
errors:

• We assume that some form of numerical integration of an ODE sys-
tem is a fundamental part of the calculations and the associated source
code (PDEs will generally be approximated as a system of ODEs by the
method of lines (MOL) as discussed in Chapters 4 and 5).

• Next, we assume that the execution errors are most likely the result of
errors in programming the RHSs of the ODEs. Thus, we concentrate on
the programming of the ODEs to look for execution errors.

• In all the programming of initial value ODEs we have considered previ-
ously, a vector of dependent variables is to be computed (starting with
the vector defined as initial conditions). Thus, the principal output of
the calculations is the vector of dependent variables as a function of the
independent variable (which is the solution to a system of ODEs), and
we therefore examine the vector of dependent variables in detail to look
for results that are obviously in error, e.g., some “bad numbers.”

• However, the vector of dependent variables is generated by numerically
integrating the associated vector of derivatives. So we also should ex-
amine in detail the vector of derivatives computed from the RHSs of the
ODEs. In fact, it is the vector of derivatives that determines the vector
of dependent variables (i.e., that determines the solution). In this sense,
the derivatives are as interesting as the dependent variables since they
define the solution (through the ODEs).

• To organize these ideas, we can output the dependent variable vector at
the beginning of the derivative code or routine (since this vector defines
the vector of derivatives through the ODEs).

• We can then output the vector of derivatives at the end of the derivative
calculations (the end of the code for the ODEs) to look for possible errors
in the programming of the ODEs.

To illustrate this procedure for finding the source of execution errors, we
consider again the 2x2 linear ODE system of Equations 1.6. Function inital
now includes initialization of a counter for the number of times the derivative
routine is called:

function [u0]=inital(n,t)
%
% Function inital sets the initial condition vector
% for the 2 x 2 ODE problem
%
% Define global variables

global ncall;
%

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

% Initialize counter for calls to the dervative
% routine (derv)

ncall=0;
%
% Initial condition vector

u0(1)=0;
u0(2)=2;

Program F.1
inital with a counter for the derivative evaluations

Note that ncall is declared global so that it can be passed to other routines,
in this case derv.

function [ut]=derv(n,t,u)
%
% Function derv computes the derivative vector
% of the 2 x 2 ODE problem
%
% Define global variables

global ncall;
%
% Heading during first call to derv

if ncall == 0
fprintf('\n\n Output from derv\n\n');
fprintf(' t u(1) u(2)\n');
fprintf(' ut(1) ut(2)\n\n');

end
%
% Display dependent variable vector

fprintf('%10.4f%10.4f%10.4f\n',t,u(1),u(2));
%
% Problem parameters

a=5.5;
b=4.5;

%
% Derivative vector

ut(1)=-a*u(1)+b*u(2);
ut(2)= b*u(1)-a*u(2);

%
% Display derivative vector

fprintf('%20.4f%10.4f\n\n',ut(1),ut(2));
%
% Increment counter for calls to derv

ncall=ncall+1;

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Terminate execution after five calls to derv

if ncall==5 dbstop in derv; end

Program F.2
derv with output of the dependent variable vector and derivative vector

We can note the following points about derv:

• The first time derv is executed (with ncall = 0), a heading for the output
from derv is displayed:

%
% Heading during first call to derv

if ncall == 0
fprintf('\n\n Output from derv\n\n');
fprintf(' t u(1) u(2)\n');
fprintf(' ut(1) ut(2)\n\n');

end

• Since derv has the central function of using the dependent variable vector,
in this case [u(1) u(2)]T , to compute the derivative vector [ut(1) ut(2)]T ,
two output (fprintf) statements are used:
— The dependent variable vector is displayed at the beginning of derv

so that the state of the dependent variables coming into derv can be
judged. If they do not look reasonable, then there is probably an error
in the numerical integration; e.g., perhaps some of the dependent
variables are moving in the wrong direction (due possibly to an error
in the programming of the derivatives that follows in derv), or are
becoming large due to an instability in the numerical integration (for
example, if an explicit ODE integrator is being used and the step h is
too large).
%
% Display dependent variable vector

fprintf('%10.4f%10.4f%10.4f\n',t,u(1),u(2));

— The derivative vector is then programmed (the central function of
derv) using the dependent variables, i.e., the RHSs of the ODEs are
programmed. Once all of the derivatives are computed, they are dis-
played by an output statement (generally close to the end of the
derivative routine)

%
% Derivative vector

ut(1)=-a*u(1)+b*u(2);
ut(2)= b*u(1)-a*u(2);

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

%
% Display derivative vector

fprintf('%20.4f%10.4f\n\n',ut(1),ut(2));

The purpose of this output statement for the derivatives is to check
if the derivatives appear reasonable (not of the wrong sign, e.g., a
dependent variable that should be decreasing should have a negative
derivative or too large because units in the model equations are not
correct or the numerical integration is becoming unstable).

• Once the input dependent variable vector and output derivative vector
are checked, the number of times the output appears should be limited
(because the derivative routine typically can be called hundreds or thou-
sands of times during the computation of a complete numerical solution
to an ODE problem). In this case, execution of the program is terminated
when ncall reaches a value of 5 (five calls to derv):

%
% Increment counter for calls to derv

ncall=ncall+1;
%
% Terminate execution after five calls to derv

if ncall==5 dbstop in derv; end

Note that the MATLAB command dbstop is used when ncall = 5 to ter-
minate execution.

The output from derv is listed below:

Output from derv

t u(1) u(2)
ut(1) ut(2)

0.0000 0.0000 2.0000
9.0000 -11.0000

0.0100 0.0900 1.8900
8.0100 -9.9900

0.0100 0.0850 1.8950
8.0600 -10.0400

0.0200 0.1656 1.7946
7.1649 -9.1251

0.0200 0.1612 1.7992
7.2101 -9.1704

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

Not too surprisingly, the output looks reasonable (this is a small, simple ODE
problem). As expected, u1(t) has a positive derivative (it increases from the
initial condition u1(0) = 0) and u2(t) has a negative derivative (it decreases
from the initial condition u2(0) = 2). If these signs in the derivatives were not
observed, we would know something is wrong, probably in the preceding
programming of the derivatives.

Also, note that the initial conditions can be checked (in the t = 0 output).
This is an important check (the solution must start out at the right values).
Although this check is obvious in this small problem (there are only two
initial conditions, u1(0) = 0, u2(0) = 2), for larger problems, e.g., hundreds
or thousands of ODEs, overlooking even one initial condition or using an
incorrect value will most likely guarantee that the numerical solution will be
incorrect.

The same is true for the derivative calculations in derv. If we are integrating
n first-order ODEs, we need to program n derivatives. If we overlook even
one derivative, which is easy to do in a large ODE system, the solution will
be incorrect. Thus, at the end of derv we must have n good numerical values
for the derivative vector.

Also, intermediate calculations before the final calculation of the derivatives
are quite common. For example, we might have to solve a set of nonlinear
equations, using the ODE dependent variables as inputs. Once these inter-
mediate variables, such as from the solution of a set of nonlinear equations,
are computed in derv, they can be used in the calculation of the derivatives.
Of course, errors can occur in these intermediate calculations, and they can
be checked by using additional output statements.

Generally, a complete output of all of the variables used in the calculation
of the derivative vector can be included in derv to ensure that the calculations
are done correctly (according to the model equations). This is particularly true
for PDE systems in which spatial (boundary value) derivatives are computed
in the method of lines. These spatial derivatives can be displayed from derv
to check their calculation.

Eventually, after detailed checking of the output from derv, the derivative
vector (that is the input to the ODE integrator) will be correct; the output
statements in derv and the derivative counter can then be removed to compute
a complete solution (or these statements can be “commented out” in case they
have to be subsequently reactivated for more checking).

Although the preceding method of checking the initial derivative calcula-
tions is usually effective in finding and correcting errors, it will not be effective
for the case when the initial calculations appear to be correct, but later, the nu-
merical solution develops an obvious problem; e.g., the dependent variables
become excessively large, or the compiler reports a NAN (not a number). This
may be due to integrator instability, or possibly to an error that grows slowly,
but eventually causes a calculational failure. The difficulty in finding the cause
of such problems stems from the uncertainty in knowing when it occurs (in
order to produce some output from derv, for example), and why. That is why

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

some knowledge of how numerical ODEs integrators function is important,
such as issues of stability, and error monitoring and step size control. For the
latter, a common source of failures is to specify unreasonable error tolerances,
as discussed in Chapter 1. But in any case, there is no substitute for thorough
testing and scrutiny of the computed output.

Finally, two other points can be considered to assist in the checking of
computer codes for ODE/PDE problems:

First, we can consider the question of the units of the timescale, e.g., in an
application, when we compute the dependent variables of an ODE system as a
function of the independent variable t, is the timescale (units of t) in microsec-
onds, milliseconds, seconds, hours, days, years, etc.? The answer generally
is that the units of the timescale are the same as the units of the derivative
vector. In order words, the derivatives will have the units of reciprocal time,
and whatever those units are will be the units of the timescale.

Additionally, the time units must be the same for all of the computed deriva-
tives. Thus, we cannot calculate the derivative for one dependent variable
with the units of seconds, and another derivative with the units of hours.
The simultaneous integration of the two derivatives will lead to an incorrect
solution. To avoid this problem, the time units of all of the derivatives should
be checked to ensure that they are the same.

The same reasoning can be applied to the units of the dependent variables.
For example, if an energy balance produces a time derivative with the units
of K/min, integration of this derivative will produce a solution with the tem-
perature in K and the timescale in min.

Second, as a word of advice based on experience, we suggest that the devel-
opment of a new ODE/PDE application should not necessarily be initiated
with all of the details of the mathematical model included. This might seem
like an inexplicable approach since we eventually want to solve the model
equations with the full and complete details we think are necessary to describe
the physical system. However, for a relatively complicated model, putting all
the mathematical details into the code at the beginning very often guarantees
that the code will not execute correctly. If this occurs, the question then that
is often difficult or impossible to answer is “What caused the code to fail?”
In other words, there are so many details that could be the source of the cal-
culational failure, the identification of which particular detail(s) are the cause
of the failure is difficult (although the testing with intermediate output as
described previously can help in identifying the cause of the failure).

As an alternate approach, we suggest that the code be built up a little
at a time. For example, very simple ODEs can be coded first which can be
numerically integrated and the solution checked. The ODEs might even be
coded with constant derivatives (and therefore their solutions should be linear
in the independent variable); if the derivatives of some of the dependent
variables are set to zero, those dependent variables should remain constant
during the testing. Then an ODE can be added while the other dependent
variables are computed from derivatives that are constant. The code is then

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

built by adding more ODEs. As this process continues, if a failure occurs,
it must be due to the ODEs or mathematical relationships just added, and
these can be examined in detail, or they can be reset to the previous condition
for which the code executed and some additional testing can be performed
to determine why the last step failed. In this way, mathematical details are
added until the entire model is coded. The source of any failure along the way
can be identified and corrected, particularly by using detailed output from
the derivative routine as discussed previously.

In other words, the development of an ODE/PDE code is an experimen-
tal, trial-and-error, evolutionary process. Thus, as much as we might like to
proceed directly to the solution of the complete mathematical model with all
of the details that we think are relevant and should be included, starting out
with a simpler ODE/PDE system that has a solution that can be checked, then
extending the system through a series of steps, each of which can be checked
before going on to the next step, we think is the best way to arrive at a final
working code for the problem system of interest.

Copyright © 2004 by Chapman & Hall/CRCCopyright 2004 by Chapman & Hall/CRC

	Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java®, Maple®, and MATLAB®
	Preface
	Contents

	c231_c01.pdf
	Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java®, Maple®, and MATLAB®
	Contents
	Chapter 1: Some Basics of ODE Integration
	General Initial Value ODE Problem
	Origin of ODE Integrators in the Taylor Series
	The Runge Kutta Method
	Accuracy of RK Methods
	Embedded RK Algorithms
	Library ODE Integrators
	Stability of RK Methods
	References

	c231_c02.pdf
	Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java®, Maple®, and MATLAB®
	Contents
	Chapter 2: Solution of a 1 x 1 ODE System
	2.1 Programming in MATLAB
	Program 2.1.1
	Program 2.1.2
	Program 2.1.3
	Program 2.1.4
	Program 2.1.5
	Program 2.1.6
	Program 2.1.7
	Program 2.1.8
	Program 2.1.9
	Program 2.1.10
	Program 2.1.11
	Program 2.1.12
	Program 2.1.13
	Program 2.1.14

	2.2 Programming in C
	Program 2.2.1
	Program 2.2.2
	Program 2.2.3
	Program 2.2.4
	Program 2.2.5
	Program 2.2.6
	Program 2.2.7
	Program 2.2.8
	Program 2.2.9
	Program 2.2.10
	Program 2.2.11
	Program 2.2.12
	Program 2.2.13
	Program 2.2.14
	Program 2.2.15

	2.3 Programming in C++
	2.4 Programming in Fortran
	2.5 Programming in Java
	2.6 Programming in Maple
	Program 2.6.1
	Program 2.6.2
	Program 2.6.3
	Program 2.6.4
	Program 2.6.5
	Program 2.6.6
	Program 2.6.7
	Program 2.6.8
	Program 2.6.9
	Program 2.6.10
	Program 2.6.11
	Program 2.6.12

	c231_c03.pdf
	Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java®, Maple®, and MATLAB®
	Contents
	Chapter 3: Solution of a 2 x 2 ODE System
	3.1 Programming in MATLAB
	3.2 Programming in C
	3.3 Programming in C++
	3.4 Programming in Fortran
	3.5 Programming in Java
	3.6 Programming in Maple

	c231_c04.pdf
	Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java®, Maple®, and MATLAB®
	Contents
	Chapter 4: Solution of a Linear PDE
	4.1 Programming in MATLAB
	4.2 Programming in C
	4.3 Programming in C++
	4.4 Programming in Fortran
	4.5 Programming in Java
	4.6 Programming in Maple
	References

	c231_c05.pdf
	Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java®, Maple®, and MATLAB®
	Contents
	Chapter 5: Solution of a Nonlinear PDE
	5.1 Programming in MATLAB
	Program 5.1.1
	Program 5.1.2
	Program 5.1.3
	Program 5.1.4
	Program 5.1.5

	5.2 Programming in C
	Program 5.2.1
	5.3 Programming in C++

	5.3 Programming in C++
	Program 5.3.1
	Program 5.3.2

	5.4 Programming in Fortran
	Program 5.4.1

	5.5 Programming in Java
	Program 5.5.1
	Program 5.5.2

	5.6 Programming in Maple
	Program 5.6.1
	Program 5.6.2
	Program 5.6.3

	c231_App.pdf
	Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java®, Maple®, and MATLAB®
	Contents
	Appendix A: Embedded Runge Kutta Pairs
	Appendix B: Integrals from ODEs
	Appendix C: Stiff ODE Integration
	C.1 The BDF Formulas Applied to the 2x2 ODE System
	C.2 MATLAB Program for the Solution of the 2x2 ODE System
	C.3 MATLAB Program for the Solution of the 2x2 ODE System Using ode23s and ode15s

	Appendix D: Alternative Forms of ODEs
	Appendix E: Spatial p Refinement
	Appendix F: Testing ODE/PDE Codes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile ()
 /CalCMYKProfile (Japan Standard v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF004300520043002000730065007400740069006e0067>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

