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Preface

The study of matrices occupies a singular place within mathematics. It
is still an area of active research, and it is used by every mathematician
and by many scientists working in various specialities. Several examples
illustrate its versatility:

• Scientific computing libraries began growing around matrix calculus.
As a matter of fact, the discretization of partial differential operators
is an endless source of linear finite-dimensional problems.

• At a discrete level, the maximum principle is related to nonnegative
matrices.

• Control theory and stabilization of systems with finitely many degrees
of freedom involve spectral analysis of matrices.

• The discrete Fourier transform, including the fast Fourier transform,
makes use of Toeplitz matrices.

• Statistics is widely based on correlation matrices.

• The generalized inverse is involved in least-squares approximation.

• Symmetric matrices are inertia, deformation, or viscous tensors in
continuum mechanics.

• Markov processes involve stochastic or bistochastic matrices.

• Graphs can be described in a useful way by square matrices.
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• Quantum chemistry is intimately related to matrix groups and their
representations.

• The case of quantum mechanics is especially interesting: Observables
are Hermitian operators, their eigenvalues are energy levels. In the
early years, quantum mechanics was called “mechanics of matrices,”
and it has now given rise to the development of the theory of large
random matrices. See [23] for a thorough account of this fashionable
topic.

This text was conceived during the years 1998–2001, on the occasion of
a course that I taught at the École Normale Supérieure de Lyon. As such,
every result is accompanied by a detailed proof. During this course I tried
to investigate all the principal mathematical aspects of matrices: algebraic,
geometric, and analytic.

In some sense, this is not a specialized book. For instance, it is not as
detailed as [19] concerning numerics, or as [35] on eigenvalue problems,
or as [21] about Weyl-type inequalities. But it covers, at a slightly higher
than basic level, all these aspects, and is therefore well suited for a gradu-
ate program. Students attracted by more advanced material will find one
or two deeper results in each chapter but the first one, given with full
proofs. They will also find further information in about the half of the
170 exercises. The solutions for exercises are available on the author’s site
http://www.umpa.ens-lyon.fr/ ˜serre/exercises.pdf.

This book is organized into ten chapters. The first three contain the
basics of matrix theory and should be known by almost every graduate
student in any mathematical field. The other parts can be read more or
less independently of each other. However, exercises in a given chapter
sometimes refer to the material introduced in another one.

This text was first published in French by Masson (Paris) in 2000, under
the title Les Matrices: théorie et pratique. I have taken the opportunity
during the translation process to correct typos and errors, to index a list
of symbols, to rewrite some unclear paragraphs, and to add a modest
amount of material and exercises. In particular, I added three sections,
concerning alternate matrices, the singular value decomposition, and the
Moore–Penrose generalized inverse. Therefore, this edition differs from the
French one by about 10 percent of the contents.

Acknowledgments. Many thanks to the Ecole Normale Supérieure de Lyon
and to my colleagues who have had to put up with my talking to them
so often about matrices. Special thanks to Sylvie Benzoni for her constant
interest and useful comments.

Lyon, France Denis Serre
December 2001
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1
Elementary Theory

1.1 Basics

1.1.1 Vectors and Scalars

Fields. Let (K, +, ·) be a field. It could be IR, the field of real numbers, CC
(complex numbers), or, more rarely, QQ (rational numbers). Other choices
are possible, of course. The elements of K are called scalars.

Given a field k, one may build larger fields containing k: algebraic ex-
tensions k(α1, . . . , αn), fields of rational fractions k(X1, . . . , Xn), fields of
formal power series k[[X1, . . . , Xn]]. Since they are rarely used in this book,
we do not define them and let the reader consult his or her favorite textbook
on abstract algebra.

The digits 0 and 1 have the usual meaning in a field K, with 0 + x =
1 · x = x. Let us consider the subring ZZ1, composed of all sums (possibly
empty) of the form ±(1 + · · ·+ 1). Then ZZ1 is isomorphic to either ZZ or
to a field ZZ/pZZ. In the latter case, p is a prime number, and we call it the
characteristic of K. In the former case, K is said to have characteristic 0.

Vector spaces. Let (E, +) be a commutative group. Since E is usually
not a subset of K, it is an abuse of notation that we use + for the additive
laws of both E and K. Finally, let

(a, x) �→ ax,

K × E → E,
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be a map such that

(a + b)x = ax + bx, a(x + y) = ax + ay.

One says that E is a vector space over K (one often speaks of a K-vector
space) if moreover,

a(bx) = (ab)x, 1x = x,

hold for all a, b ∈ K and x ∈ E. The elements of E are called vectors. In a
vector space one always has 0x = 0 (more precisely, 0Kx = 0E).

When P, Q ⊂ K and F, G ⊂ E, one denotes by PQ (respectively P +
Q, F+G, PF ) the set of products pq as (p, q) ranges over P×Q (respectively
p+q, f+g, pf as p, q, f, g range over P, Q, F, G). A subgroup (F, +) of (E, +)
that is stable under multiplication by scalars, i.e., such that KF ⊂ F , is
again a K-vector space. One says that it is a linear subspace of E, or just a
subspace. Observe that F , as a subgroup, is nonempty, since it contains 0E .
The intersection of any family of linear subspaces is a linear subspace. The
sum F + G of two linear subspaces is again a linear subspace. The trivial
formula (F + G) + H = F + (G + H) allows us to define unambiguously
F + G+ H and, by induction, the sum of any finite family of subsets of E.
When these subsets are linear subspaces, their sum is also a linear subspace.

Let I be a set. One denotes by KI the set of maps a = (ai)i∈I : I → K
where only finitely many of the ai’s are nonzero. This set is naturally
endowed with a K-vector space structure, by the addition and product
laws

(a + b)i := ai + bi, (λa)i := λai.

Let E be a vector space and let i �→ fi be a map from I to E. A linear
combination of (fi)i∈I is a sum ∑

i∈I

aifi,

where the ai’s are scalars, only finitely many of which are nonzero (in other
words, (ai)i∈I ∈ KI). This sum involves only finitely many terms. It is a
vector of E. The family (fi)i∈I is free if every linear combination but the
trivial one (when all coefficients are zero) is nonzero. It is a generating
family if every vector of E is a linear combination of its elements. In other
words, (fi)i∈I is free (respectively generating) if the map

KI → E,

(ai)i∈I �→
∑
i∈I

aifi,

is injective (respectively onto). Last, one says that (fi)i∈I is a basis of E if
it is free and generating. In that case, the above map is bijective, and it is
actually an isomorphism between vector spaces.
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If G ⊂ E, one often identifies G and the associated family (g)g∈G . The set
G of linear combinations of elements of G is a linear subspace E, called the
linear subspace spanned by G. It is the smallest linear subspace E containing
G, equal to the intersection of all linear subspaces containing G. The subset
G is generating when G = E.

One can prove that every K-vector space admits at least one basis. In
the most general setting, this is a consequence of the axiom of choice.
All the bases of E have the same cardinality, which is therefore called the
dimension of E, denoted by dimE. The dimension is an upper (respectively
a lower) bound for the cardinality of free (respectively generating) families.
In this book we shall only use finite-dimensional vector spaces. If F, G are
two linear subspaces of E, the following formula holds:

dim F + dimG = dimF ∩G + dim(F + G).

If F ∩ G = {0}, one writes F ⊕ G instead of F + G, and one says that F
and G are in direct sum. One has then

dimF ⊕G = dim F + dimG.

Given a set I, the family (ei)i∈I , defined by

(ei)j =
{

0, j �= i,
1, j = i,

is a basis of KI , called the canonical basis. The dimension of KI is therefore
equal to the cardinality of I.

In a vector space, every generating family contains at least one basis of
E. Similarly, given a free family, it is contained in at least one basis of E.
This is the incomplete basis theorem.

Let L be a field and K a subfield of L. If F is an L-vector space, then F
is also a K-vector space. As a matter of fact, L is itself a K-vector space,
and one has

dimK F = dimL F · dimK L.

The most common example (the only one that we shall consider) is K = IR,
L = CC, for which we have

dimIR F = 2 dimCC F.

Conversely, if G is an IR-vector space, one builds its complexification GCC

as follows:

GCC = G×G,

with the induced structure of an additive group. An element (x, y) of GCC

is also denoted x + iy. One defines multiplication by a complex number by

(λ = a + ib, z = x + iy) �→ λz := (ax− by, ay + bx).



4 1. Elementary Theory

One verifies easily that GCC is a CC-vector space, with

dimCC GCC = dimIR G.

Furthermore, G may be identified with an IR-linear subspace of GCC by

x �→ (x, 0).

Under this identification, one has GCC = G+ iG. In a more general setting,
one may consider two fields K and L with K ⊂ L, instead of IR and CC, but
the construction of GL is more delicate and involves the notion of tensor
product. We shall not use it in this book.

One says that a polynomial P ∈ L[X ] splits over L if it can be written
as a product of the form

a

r∏
i=1

(X − ai)ni , a, ai ∈ L, r ∈ IN, ni ∈ IN ∗.

Such a factorization is unique, up to the order of the factors. A field L in
which every nonconstant polynomial P ∈ L[X ] admits a root, or equiva-
lently in which every polynomial P ∈ L[X ] splits, is algebraically closed. If
the field K ′ contains the field K and if every polynomial P ∈ K[X ] admits
a root in K ′, then the set of roots in K ′ of polynomials in K[X ] is an alge-
braically closed field that contains K, and it is the smallest such field. One
calls K ′ the algebraic closure of K. Every field K admits an algebraic clo-
sure, unique up to isomorphism, denoted by K. The fundamental theorem
of algebra asserts that IR = CC. The algebraic closure of QQ, for instance,
is the set of algebraic complex numbers, meaning that they are roots of
polynomials P ∈ ZZ[X ].

1.1.2 Matrices

Let K be a field. If n, m ≥ 1, a matrix of size n×m with entries in K is a
map from {1, . . . , n} × {1, . . . , m} with values in K. One represents it as
an array with n rows and m columns, an element of K (an entry) at each
point of intersection of a row an a column. In general, if M is the name of
the matrix, one denotes by mij the element at the intersection of the ith
row and the jth column. One has therefore

M =




m11 . . . m1m

...
. . .

...
mn1 . . . mnm


 ,

which one also writes

M = (mij)1≤i≤n,1≤j≤m.

In particular circumstances (extraction of matrices or minors, for example)
the rows and the columns can be numbered in a different way, using non-
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consecutive numbers. One needs only two finite sets, one for indexing the
rows, the other for indexing the columns.

The set of matrices of size n × m with entries in K is denoted by
Mn×m(K). It is an additive group, where M + M ′ denotes the matrix M ′′

whose entries are given by m′′
ij = mij + m′

ij . One defines likewise multipli-
cation by a scalar a ∈ K. The matrix M ′ := aM is defined by m′

ij = amij .
One has the formulas a(bM) = (ab)M , a(M + M ′) = (aM) + (aM ′), and
(a + b)M = (aM) + (bM), which endow Mn×m(K) with a K-vector space
structure. The zero matrix is denoted by 0, or 0nm when one needs to avoid
ambiguity.

When m = n, one writes simply Mn(K) instead of Mn×n(K), and 0n

instead of 0nn. The matrices of sizes n× n are called square matrices. One
writes In for the identity matrix, defined by

mij = δj
i =

{
0, if i �= j,
1, if i = j.

In other words,

In =




1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 1


 .

The identity matrix is a special case of a permutation matrix, which are
square matrices having exactly one nonzero entry in each row and each
column, that entry being a 1. In other words, a permutation matrix M
reads

mij = δ
σ(j)
i

for some permutation σ ∈ Sn.
A square matrix for which i < j implies mij = 0 is called a lower

triangular matrix. It is upper triangular if i > j implies mij = 0. It is
strictly upper triangular if i ≥ j implies mij = 0. Last, it is diagonal if mij

vanishes for every pair (i, j) such that i �= j. In particular, given n scalars
d1, . . . , dn ∈ K, one denotes by diag(d1, . . . , dn) the diagonal matrix whose
diagonal term mii equals di for every index i.

When m = 1, a matrix M of size n × 1 is called a column vector. One
identifies it with the vector of Kn whose ith coordinate in the canonical
basis is mi1. This identification is an isomorphism between Mn×1(K) and
Kn. Likewise, the matrices of size 1×m are called row vectors.

A matrix M ∈ Mn×m(K) may be viewed as the ordered list of its
columns M (j) (1 ≤ j ≤ m). The dimension of the linear subspace spanned
by the M (j) in Kn is called the rank of M and denoted by rk M .
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1.1.3 Product of Matrices

Let n, m, p ≥ 1 be three positive integers. We define a (noncommutative)
multiplication law

Mn×m(K)×Mm×p(K) → Mn×p(K),
(M, M ′) �→ MM ′,

which we call the product of M and M ′. The matrix M ′′ = MM ′ is given
by the formula

m′′
ij =

m∑
k=1

mikm′
kj , 1 ≤ i ≤ n, 1 ≤ j ≤ p.

We check easily that this law is associative: if M , M ′, and M ′′ have
respective sizes n×m, m× p, p× q, one has

(MM ′)M ′′ = M(M ′M ′′).

The product is distributive with respect to addition:

M(M ′ + M ′′) = MM ′ + MM ′′, (M + M ′)M ′′ = MM ′′ + M ′M ′′.

It also satisfies

a(MM ′) = (aM)M ′ = M(aM ′), ∀a ∈ K.

Last, if m = n, then InM ′ = M ′. Similarly, if m = p, then MIm = M .
The product is an internal composition law in Mn(K), which endows

this space with a structure of a unitary K-algebra. It is noncommutative
in general. For this reason, we define the commutator of M and N by
[M, N ] := MN − NM . For a square matrix M ∈ Mn(K), one defines
M2 = MM , M3 = MM2 = M2M (from associativity), ..., Mk+1 = MkM .
One completes this notation by M1 = M and M0 = In. One has M jMk =
M j+k for all j, k ∈ IN . If Mk = 0 for some integer k ∈ IN , one says that
M is nilpotent. One says that M is idempotent if In −M is nilpotent.

One says that two matrices M, N ∈ Mn(K) commute with each other
if MN = NM . The powers of a square matrix M commute pairwise. In
particular , the set K(M) formed by polynomials in M , which cinsists of
matrices of the form

a0In + a1M + · · ·+ arM
r, a0, . . . , ar ∈ K, r ∈ IN,

is a commutative algebra.
One also has the formula (see Exercise 2)

rk(MM ′) ≤ min{rk M, rk M ′}.

1.1.4 Matrices as Linear Maps

Let E, F be two K-vector spaces. A map u : E → F is linear (one also
speaks of a homomorphism) if u(x + y) = u(x) + u(y) and u(ax) = au(x)
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for every x, y ∈ E and a ∈ K. One then has u(0) = 0. The preimage
u−1(0), denoted by keru, is the kernel of u. It is a linear subspace of E.
The range u(E) is also a linear subspace of F . The set of homomorphisms
of E into F is a K-vector space, denoted by L(E, F ). If F = E, one defines
End(E) := L(E, F ); its elements are the endomorphisms of E.

The identification of Mn×1(K) with Kn allows us to consider the matri-
ces of size n×m as linear maps from Km to Kn. If M ∈ Mn×m(K), one
proceeds as in the following diagram:

Km → Mm×1(K) → Mn×1(K) → Kn,
x �→ X �→ Y = MX �→ y.

Namely, the image of the vector x with coordinates x1, . . . , xm is the vector
y with coordinates y1, . . . , yn given by

yi =
m∑

j=1

mijxj . (1.1)

One thus obtains an isomorphism between Mn×m(K) and L(Km; Kn),
which we shall use frequently in studying matrix properties.

More generally, if E, F are K-vector spaces of respective dimensions m
and n, in which one chooses bases β = {e1, . . . , em} and γ = {f1, . . . , fn},
one may construct the linear map u : E → F by

u(x1e1 + · · ·+ xmem) = y1f1 + · · ·+ ynfn,

via the formulas (1.1). One says that M is the matrix of u in the bases β,
γ.

Let E, F , G be three K-vector spaces of dimensions p, m, n. Let us
choose respective bases α, β, γ. Given two matrices M, M ′ of sizes n ×m
and m × p, corresponding to linear maps u : F �→ G and u′ : E �→ F , the
product MM ′ is the matrix of the linear map u ◦ u′ : E �→ G. Here lies
the origin of the definition of the product of matrices. The associativity
of the product expresses that of the composition of maps. One will note,
however, that the isomorphism between Mn×m(K) and L(E, F ) is by no
means canonical, since the correspondence M �→ u always depends on an
arbitrary choice of two bases. One thus cannot reduce the entire theory of
matrices to that of linear maps, and vice versa.

When E = F is a K-vector space of dimension n, it is often worth
choosing a single basis (γ = β with the previous notation). One then has
an algebra isomorphism M �→ u between Mn(K) and End(E), the algebra
of endomorphisms of E. Again, this isomorphism depends on an arbitrary
choice of basis.

If M is the matrix of u ∈ L(E, F ) in the bases α, β, the linear subspace
u(E) is spanned by the vectors of F whose representations in the basis β
are the columns M (j) of M . Its dimension thus equals rkM .

If M ∈ Mn×m(K), one defines the kernel of M to be the set kerM of
those X ∈ Mm×1(K) such that MX = 0n. The image of Km under M is
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called the range of M , sometimes denoted by R(M). The kernel and the
range of M are linear subspaces of Km and Kn, respectively. The range is
spanned by the columns of M and therefore has dimension rk M .

Proposition 1.1.1 Let K be a field. If M ∈Mn×m(K), then

m = dim kerM + rk M.

Proof
Let {f1, . . . , fr} be a basis of R(M). By construction, there exist vectors

{e1, . . . , er} of Km such that Mej = fj . Let E be the linear subspace
spanned by the ej . If e =

∑
j ajej ∈ kerM , then

∑
j ajfj = 0, and thus the

aj vanish. It follows that the restriction M : E → R(M) is an isomorphism,
so that dimE = rk M .

If e ∈ Km, then Me ∈ R(M), and there exists e′ ∈ E such that Me′ =
Me. Therefore, e = e′ + (e − e′) ∈ E + kerM , so that Km = E + kerM .
Since E ∩ kerM = {0}, one has m = dimE + dim kerM .

1.2 Change of Basis

Let E be a K-vector space, in which one chooses a basis β = {e1, . . . , en}.
Let P ∈Mn(K) be an invertible matrix.1 The set β′ = {e′1, . . . , e′n} defined
by

e′i =
n∑

j=1

pjiej

is a basis of E. One says that P is the matrix of the change of basis β �→ β′,
or the change-of-basis matrix. If x ∈ E has coordinates (x1, . . . , xn) in the
basis β and (x′

1, . . . , x′
n) in the basis β′, one then has the formulas

xj =
n∑

i=1

pjix
′
i.

If u : E → F is a linear map, one may compare the matrices of u for
different choices of the bases of E and F . Let β, β′ be bases of E and let
γ, γ′ be bases of F . Let us denote by P, Q the change-of-basis matrices of
β �→ β′ and γ �→ γ′. Finally, let M, M ′ be the matrices of u in the bases
β, γ and β′, γ′, respectively. Then

MP = QM ′,

or M ′ = Q−1MP , where Q−1 denotes the inverse of Q. One says that M
and M ′ are equivalent. Two equivalent matrices have same rank.

1See Section 2.2 for the meaning of this notion.
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If E = F and u ∈ End(E), one may compare the matrices M, M ′ of u
in two different bases β, β′ (here γ = β and γ′ = β′). The above formula
becomes

M ′ = P−1MP.

One says that M and M ′ are similar, or that they are conjugate (the latter
term comes from group theory). One also says that M ′ is the conjugate of
M by P .

The equivalence and the similarity of matrices are two equivalence
relations. They will be studied in Chapter 6.

1.2.1 Block Decomposition

Considering matrices with entries in a ring A does not cause difficulties, as
long as one limits oneself to addition and multiplication. However, when A
is not commutative, it is important to choose the formula

m∑
j=1

MijM
′
jk

when computing (MM ′)ik, since this one corresponds to the composition
law when one identifies matrices with A-linear maps from Am to An.

When m = n, the product is a composition law in Mn(K). This space
is thus a K-algebra. In particular, it is a ring, and one may consider the
matrices with entries in B = Mn(K). Let M ∈Mp×q(B) have entries Mij

(one chooses uppercase letters in order to keep in mind that the entries
are themselves matrices). One naturally identifies M with the matrix M ′ ∈
Mpn×qn(K), whose entry of indices ((i − 1)n + k, (j − 1)n + l), for i ≤ p,
j ≤ q, and k, l ≤ n, is nothing but

(Mij)kl.

One verifies easily that this identification is an isomorphism between
Mp×q(B) and Mpn×qn(K) as K-vector spaces.

More generally, choosing decompositions n = n1+· · ·+nr, m = m1+· · ·+
ms with nk, ml ≥ 1, one may associate to every matrix M ∈ Mn×m(K)
an array M̃ with r rows and s columns whose element of index (k, l) is a
matrix M̃kl ∈Mnk×ml

(K). Defining

νk =
∑
t<k

nt, µl =
∑
t<l

mt (ν1 = µ1 = 0),

one has by definition

(M̃kl)ij = mνk+i,µl+j , 1 ≤ i ≤ nk, 1 ≤ j ≤ ml.

This procedure, which depends on the choice of nk, ml, is called block
decomposition.



10 1. Elementary Theory

Though M̃ is not strictly speaking a matrix (except in the case studied
previously where the nk, ml are all equal to each other), one still may define
the sum and the product of such objects. Concerning the product of M̃ and
M̃ ′, we must of course be able to compute the products M̃jkM̃ ′

kl, and thus
the sizes of blocks must be compatible. One verifies easily that the block
decomposition behaves well with respect to the addition and the product.
For instance, if n = n1 + n2, m = m1 + m2 and p = p1 + p2, two matrices
M, M ′ of sizes n×m and m× p, with block decomposition Mij , M ′

kl, have
a product M ′′ = MM ′ ∈ Mn×p(K), whose block decomposition M ′′

ij is
given by

M ′′
ij = Mi1M

′
1j + Mi2M

′
2j .

A square matrix M , whose block decomposition is the same according to
rows and columns (that is mk = nk, in particular the diagonal blocks are
square matrices) is said lower block-triangular if the blocks Mkl with k < l
are null blocks. One defines similarly the upper block-triangular matrices or
the block-diagonal matrices.

1.2.2 Transposition

If M ∈ Mn×m(K), one defines the transposed matrix of M (or simply the
transpose of M) by

MT = (mji)1≤i≤m,1≤j≤n.

The transposed matrix has size m × n, and its entries m̂ij are given by
m̂ij = mji. When the product MM ′ makes sense, one has (MM ′)T =
(M ′)T MT (note that the orders in the two products are reversed). For two
matrices of the same size, (M + M ′)T = MT + (M ′)T . Finally, if a ∈ K,
then (aM)T = a(MT ). The map M �→M ′ defined on Mn(K) is thus linear,
but it is not an algebra endomorphism.

A matrix and its transpose have the same rank. A proof of this fact is
given at the end of this section.

For every matrix M ∈Mn×m(K), the products MT M and MMT always
make sense. These products are square matrices of sizes m×m and n× n,
respectively.

A square matrix is said to be symmetric if MT = M , and skew-symmetric
if MT = −M (notice that these two notions coincide when K has char-
acteristic 2). When M ∈ Mn×m(K), the matrices MT M and MMT are
symmetric. We denote by Symn(K) the subset of symmetric matrices in
Mn(K). It is a linear subspace of Mn(K). The product of two symmetric
matrices need not be symmetric.

A square matrix is called orthogonal if MT M = In. We shall see in
Section 2.2 that this condition is equivalent to MMT = In.

If M ∈ Mn×m(K), y ∈ Km, and x ∈ Kn, then the product xT My
belongs to M1(K) and is therefore a scalar, equal to yT MT x. Saying that
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M = 0 amounts to writing xT My = 0 for every x and y. If m = n and
xT Mx = 0 for every x, one says that M is alternate. An alternate matrix
is skew-symmetric, since

xT (M +MT )y = xT My+yTMx = (x+y)T M(x+y)−xT Mx−yT My = 0.

The converse holds whenever the characteristic of K is not 2, since

2xT Mx = xT (M + MT )x = 0.

However, in characteristic 2 there exist matrices that are skew-symmetric
but not alternate. As a matter of fact, the diagonal of an alternate matrix
must vanish, though this need not be the case for a skew-symmetric matrix
in characteristic 2.

The interpretation of transposition in terms of linear maps is the
following. One provides Kn with the bilinear form

〈x, y〉 := xT y = yT x = x1y1 + · · ·+ xnyn,

called the canonical scalar product; one proceeds similarly in Km. If M ∈
Mn×m(K), there exists a unique matrix N ∈Mm×n(K) satisfying

〈Mx, y〉 = 〈x, Ny〉,
for all x ∈ Km and y ∈ Kn (notice that the scalar products are defined on
distinct vector spaces). One checks easily that N = MT . More generally, if
E, F are K-vector spaces endowed with nondegenerate symmetric bilinear
forms, and if u ∈ L(E, F ), then one can define a unique uT ∈ L(F, E) from
the identity

〈u(x), y〉F = 〈x, uT (y)〉E , ∀x ∈ E, y ∈ F.

When E = Km and F = Kn are endowed with their canonical bases and
canonical scalar products, the matrix associated to uT is the transpose of
the matrix associated to u.

Let K be a field. Let us endow Km with its canonical scalar product. If
F is a linear subspace of Km, one defines the orthogonal subspace of F by

F⊥ := {x ∈ Km; 〈x, y〉 = 0, ∀y ∈ F}.
It is a linear subspace of Km. We observe that for a general field, the
intersection F ∩ F⊥ can be nontrivial, and Km may differ from F + F⊥.
One has nevertheless

dimF + dimF⊥ = m.

Actually, F⊥ is the kernel of the linear map T : Km → L(F ; K) =: F ∗,
defined by T (x)(y) = 〈x, y〉 for x ∈ Km, y ∈ F . Let us show that T is onto.
If {f1, . . . , fr} is a basis of F , then every linear form l on F is a map

f =
∑

j

zjfj �→ l(f) =
∑

j

l(fj)zj .
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Completing the basis of F as a basis of Km, one sees that l is the restric-
tion of a linear form L on Km. Let us define the vector x ∈ Km by its
coordinates in the canonical basis: xj = L(ej). One has L(y) = 〈x, y〉 for
every y ∈ Km; that is, l = T (x). Finally, we obtain

m = dim kerT + rk T = dimF⊥ + dimF ∗.

The dual formulas between kernels and ranges are frequently used. If
M ∈Mn×m(K), one has

Km = kerM ⊕⊥ R(MT ), Kn = ker(MT )⊕⊥ R(M),

where ⊕⊥ means a direct sum of orthogonal subspaces. We conclude that

rk MT = dimR(MT ) = m− dim R(MT )⊥ = m− dimkerM,

and finally, that

rk MT = rk M.

1.2.3 Matrices and Bilinear Forms

Let E, F be two K-vector spaces. One chooses two respective bases β =
{e1, . . . , en} and γ = {f1, . . . , fm}. If B : E × F → K is a bilinear form,
then

B(x, y) =
∑
i,j

B(ei, fj)xiyj ,

where the xi, yj are the coordinates of x, y. One can define a matrix M ∈
Mn×m(K) by mij = B(ei, fj). Conversely, if M ∈Mn×m(K) is given, one
can construct a bilinear form on E × F by the formula

B(x, y) := xT My =
∑
i,j

mijxiyj .

Therefore, there is an isomorphism between Mn×m(K) and the set of bi-
linear forms on E × F . One says that M is the matrix of B with respect
to the bases β, γ. This isomorphism depends on the choice of the bases.
A particular case arises when E = Kn and F = Km are endowed with
canonical bases.

If M is associated to B, it is clear that MT is associated to the bilinear
form defined on F × E by

(y, x) �→ B(x, y).

When M is a square matrix, one may take F = E and γ = β. In that
case, M is symmetric if and only if B is symmetric: B(x, y) = B(y, x).
Likewise, one says that B is alternate if B(x, x) ≡ 0, that is if M itself is
an alternate matrix.



1.3. Exercises 13

If B : E × F → K is bilinear, one can compare the matrices M and
M ′ of B with respect to the bases β, γ and β′, γ′. Denoting by P, Q the
change-of-basis matrices of β �→ β′ and γ �→ γ′, one has

m′
ij = B(e′i, f

′
j) =

∑
k,l

pkiqljB(ek, fl) =
∑
k,l

pkiqljmkl.

Therefore,

M ′ = PT MQ.

When F = E and γ = β, γ′ = β′, the change of basis has the effect of
replacing M by M ′ = PT MP . In general, M ′ is not similar to M , though
it is so if P is orthogonal. If M is symmetric, then M ′ is too. This was
expected, since one expresses the symmetry of the underlying bilinear form
B.

If the characteristic of K is distinct from 2, there is an isomorphism
between Symn(K) and the set of quadratic forms on Kn. This isomorphism
is given by the formula

Q(ei + ej)−Q(ei)−Q(ej) = 2mij.

In particular, Q(ei) = mii.

1.3 Exercises

1. Let G be an IR-vector space. Verify that its complexification GCC is a
CC-vector space and that dimCC GCC = dimIR G.

2. Let M ∈Mn×m(K) and M ′ ∈Mm×p(K) be given. Show that

rk(MM ′) ≤ min{rk M, rk M ′}.
First show that rk(MM ′) ≤ rk M , and then apply this result to the
transpose matrix.

3. Let K be a field and let A, B, C be matrices with entries in K, of
respective sizes n×m, m× p, and p× q.

(a) Show that rkA + rkB ≤ m + rkAB. It is sufficient to consider
the case where B is onto, by considering the restriction of A to
the range of B.

(b) Show that rkAB + rkBC ≤ rkB + rkABC. One may use
the vector spaces Kp/ kerB and R(B), and construct three
homomorphisms u, v, w, with v being onto.

4. (a) Let n, n′, m, m′ ∈ IN∗ and let K be a field. If B ∈Mn×m(K) and
C ∈Mn′×m′(K), one defines a matrix B ⊗C ∈Mnn′×mm′(K),
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the tensor product, whose block form is

B ⊗ C =




b11C · · · b1mC
...

...
bn1C · · · bnmC


 .

Show that (B, C) �→ B ⊗C is a bilinear map and that its range
spans Mnn′×mm′(K). Is this map onto?

(b) If p, p′ ∈ IN∗ and D ∈ Mm×p(K), E ∈ Mm′×p′(K), then
compute (B ⊗ C)(D ⊗ E).

(c) Show that for every bilinear form φ : Mn×m(K)×Mn′×m′(K)→
K, there exists one and only one linear form

L : Mnn′×mm′(K)→ K

such that L(B ⊗ C) = φ(B, C).



2
Square Matrices

The essential ingredient for the study of square matrices is the determinant.
For reasons that will be given in Section 2.5, as well as in Chapter 6, it
is useful to consider matrices with entries in a ring. This allows us to
consider matrices with entries in ZZ (rational integers) as well as in K[X ]
(polynomials with coefficients in K). We shall assume that the ring A of
scalars is a commutative (meaning that the multiplication is commutative)
integral domain (meaning that it does not have zero divisors: ab = 0 implies
either a = 0 or b = 0), with a unit denoted by 1, that is, an element
satisfying 1x = x1 = x for every x ∈ A. Observe that the ring Mn(A) is
not commutative if n ≥ 2. For instance,(

0 1
0 0

)(
0 0
1 0

)
=
(

1 0
0 0

)
�=
(

0 0
0 1

)
=
(

0 0
1 0

)(
0 1
0 0

)
.

An element a of A is invertible if there exists b ∈ A such that ab = 1.
The element b is unique (because A is an integral domain), and one calls it
the inverse of a, with the notation b = a−1. The set of invertible elements
of A is a multiplicative group, denoted by A∗. One has

(ab)−1 = b−1a−1 = a−1b−1.

2.1 Determinants and Minors

We recall that Sn, the symmetric group, denotes the group of permutations
over the set {1, . . . , n}.
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Let M ∈Mn(A) be a square matrix. Its determinant is defined by

detM :=
∑

σ∈Sn

ε(σ)m1σ(1) · · ·mnσ(n),

where the sum ranges over all the permutations of the integers 1, . . . , n.
We denote by ε(σ) = ±1 the signature of σ, equal to +1 if σ is the product
an even number of transpositions, and −1 otherwise. Recall that ε(σσ′) =
ε(σ)ε(σ′).

If M is triangular, then all the products vanish other than the one
associated with the identity (that is, σ(j) = j). The determinant of a
triangular M is thus equal to the product of diagonal entries mii. In par-
ticular, det In = 1 and det 0n = 0. An analogous calculation shows that
the determinant of a block triangular matrix is equal to the product of the
determinants of the diagonal blocks Mjj .

Since ε(σ−1) = ε(σ), one has

detMT = detM.

Looking at M as a row matrix with entries in An, one may view the
determinant as a multilinear form of the n columns of M :

detM = det
(
M (1), . . . , M (n)

)
.

This form is alternate: If two columns are equal, the determinant vanishes.
As a matter of fact, if the ith and the jth columns are equal, one groups the
permutations pairwise (σ, τσ), where τ is the transposition (i, j). For each
pair, both products are equal, up to the signatures, which are opposite;
their sum is thus zero. Likewise, if two rows are equal, the determinant is
zero.

More generally, if the columns of M satisfy a non trivial linear relation
(a1, . . . , an not all zero) of linear dependence

a1M1 + · · ·+ anMn = 0

(that is, if rk M < n), then det M is zero. Let us assume, for instance, that
a1 is nonzero. For j ≥ 2, one has

det
(
M (j), M (2), . . . , M (n)

)
= 0.

Using the multilinearity, one has thus

a1 det M = det
(
a1M

(1) + · · ·+ anM (n), M (2), . . . , M (n)
)

= det
(
0, M (2), . . .

)
= 0.

Since A is an integral domain, we conclude that detM = 0.
For a matrix M ∈Mn×m(A), not necessarily square, and p ≥ 1 an integer

with p ≤ m, n, one may extract a p × p matrix M ′ ∈ Mp(A) by retaining
only p rows and p columns of M . The determinant of such a matrix M ′ is
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called a minor of order p. Once the choice of the row indices i1 < · · · < ip
and column indices j1 < · · · < jp has been made, one denotes by

M

(
i1 i2 · · · ip
j1 j2 · · · jp

)

the corresponding minor. A principal minor is a minor with equal row and
column indices, that is, of the form

M

(
i1 i2 · · · ip
i1 i2 · · · ip

)
.

In particular, the leading principal minor of order p is

M

(
1 2 · · · p
1 2 · · · p

)
.

Given a matrix M ∈ Mn(A), one associates the matrix M̂ of cofactors,
defined as follows: its (i, j)-th entry m̂ij is the minor of order n−1 obtained
by removing the ith row and the jth column multiplied by (−1)i+j . It is
also the factor of mij in the formula for the determinant of M . Finally, we
define the adjoint matrix adjM by

adjM := M̂T .

Proposition 2.1.1 If M ∈Mn(A), one has

M(adjM) = (adjM)M = detM · In. (2.1)

Proof
The identity is clear as far as diagonal terms are concerned; it amounts to

the definition of the determinant (see also below). The off-diagonal terms
m′

ij of M(adjM) are sums involving on the one hand an index, and on
the other hand a permutation σ ∈ Sn. One groups the terms pairwise,
corresponding to permutations σ and στ , where τ is the tranposition (i, j).
The sum of two such terms is zero, so that m′

ij = 0.

Proposition 2.1.1 contains the well-known and important expansion for-
mula for the determinant with respect to either a row or a column. The
expansion with respect to the ith row is written

detM = (−1)i+1mi1m̂i1 + · · ·+ (−1)i+nminm̂in,

while the expansion with respect to the ith column is

detM = (−1)i+1m1im̂1i + · · ·+ (−1)i+nmnim̂ni.

2.1.1 Irreducibility of the Determinant

By definition, the determinant is a polynomial function, in the sense that
detM is the value taken by a polynomial DetA ∈ A[x11, . . . , xnn] when the
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xij ’s are replaced by the scalars mij . We observe that DetA does not really
depend on the ring A, in the sense that it is the image of DetZZ through
the canonical ring homomorphism ZZ → A. For this reason, we shall simply
write Det. The polynomial Det may be viewed as the determinant of the
matrix X = (xij)1≤i,j≤n ∈Mn(A[x11, . . . , xnn]).

Theorem 2.1.1 The polynomial Det is irreducible in A[x11, . . . , xnn].

Proof
We shall proceed by induction on the size n. If n = 1, there is nothing

to prove. Thus let us assume that n ≥ 2. We denote by D the ring of
polynomials in the xij with (i, j) �= (1, 1), so that A[x11, . . . , xnn] = D[x11].
From the expansion with respect to the first row, we see that Det = x11P +
Q, with P, Q ∈ D. Since Det is of degree one as a polynomial in x11,
any factorization must be of the form (x11R + S)T , with R, S, T ∈ D. In
particular, RT = P .

By induction, and since P is the polynomial Det of (n − 1) × (n − 1)
matrices, it is irreducible in E, the ring of polynomials in the xij ’s with
i, j > 1. Therefore, it is also irreducible in D, since D is the polynomial
ring E[x12, . . . , x1n, x21, . . . , xn1]. Therefore, we may assume that either R
or T equals 1.

If the factorization is nontrivial, then R = 1 and T = P . It follows that
P divides Det. An expansion with respect to various rows shows similarly
that every minor of size n−1, considered as an element of A[x11, . . . , xnn],
divides Det. However, each such minor is irreducible, and they are pairwise
distinct, since they do not depend on the same set of xij ’s. We conclude
that the product of all minors of size n− 1 divides Det. In particular, the
degree n of Det is greater than or equal to the degree n2(n − 1) of this
product, an obvious contradiction.

2.1.2 The Cauchy–Binet Formula

In the sequel, we shall use also the following result.

Proposition 2.1.2 Let B ∈ Mn×m(A), C ∈ Mm×l(A), and an integer
p ≤ n, l be given. Let 1 ≤ i1 < · · · < ip ≤ n and 1 ≤ k1 < · · · < kp ≤ l be
indices. Then the minor

(BC)
(

i1 i2 · · · ip
k1 k2 · · · kp

)

is given by the formula
∑

1≤j1<j2<···<jp≤m

B

(
i1 i2 · · · ip
j1 j2 · · · jp

)
· C

(
j1 j2 · · · jp

k1 k2 · · · kp

)
.
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Corollary 2.1.1 Let b, c ∈ A. If b divides every minor of order p of B
and if c divides every minor of order p of C, then bc divides every minor
of order p of BC.

The particular case l = m = n is fundamental:

Theorem 2.1.2 If B, C ∈Mn(A), then det(BC) = detB · detC.

In other words, the determinant is a multiplicative homomorphism from
Mn(A) to A.

Proof
The corollaries are trivial. We only prove the Cauchy–Binet formula.

Since the calculation of the ith row (respectively the jth column) of BC
involves only the ith row of B (respectively the jth column of C), one
may assume that p = n = l. The minor to be evaluated is then detBC. If
m < n, there is nothing to prove, since on the one hand the rank of BC
is less than or equal to m, thus detBC is zero, and on the other hand the
left-hand side sum in the formula is empty.

There remains the case m ≥ n. Let us write the determinant of a ma-
trix P as that of its columns Pj and let us use the multilinearity of the
determinant:

det BC = det


 n∑

j1=1

cj11Bj1 , (BC)2, . . . , (BC)n




=
n∑

j1=1

cj11 det


Bj1 ,

n∑
j2=1

cj22Bj2 , (BC)3, . . . , (BC)n




= · · · =
∑

1≤j1,... ,jn≤n

cj11 · · · cjnn det(Bj1 , . . . , Bjn).

In the sum the determinant is zero as soon as f �→ jf is not injective,
since then there are two identical columns. If on the contrary j is injective,
this determinant is a minor of B, up to the sign. This sign is that of the
permutation that puts j1, . . . , jp in increasing order. Grouping in the sum
the terms corresponding to the same minor, we find that det BC equals

∑
1≤k1<···<kn≤m,

∑
σ∈Sn

ε(σ)ck1σ(1) · · · cknσ(n)B

(
1 2 · · · n
k1 k2 · · · kn

)
,

which is the required formula.

2.2 Invertibility

Since Mn(A) is not an integral domain, the notion of invertible elements
of Mn(A) needs an auxiliary result, presented below.
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Proposition 2.2.1 Given M ∈ Mn(A), the following assertions are
equivalent:

1. There exists N ∈Mn(A) such that MN = In.

2. There exists N ′ ∈Mn(A) such that N ′M = In.

3. detM is invertible.

If M satisfies one of these equivalent conditions, then the matrices N, N ′

are unique and one has N = N ′.

Definition 2.2.1 One then says that M is invertible. One also says some-
times that M is nonsingular, or regular. One calls the matrix N = N ′ the
inverse of M , and one denotes it by M−1. If M is not invertible, one says
that M is singular.

Proof
Let us show that (1) is equivalent to (3). If MN = In, then detM ·

detN = 1; hence detM ∈ A∗. Conversely, if detM is invertible,
(detM)−1M̂T is an inverse of M by (2.1). Analogously, (2) is equivalent
to (3). The three assertions are thus equivalent.

If MN = N ′M = In, one has N = (N ′M)N = N ′(MN) = N ′. This
equality between the left and right inverses shows that these are unique.

The set of the invertible elements of Mn(A) is denoted by GLn(A) (for
“general linear group”). It is a multiplicative group, and one has

(MN)−1 = N−1M−1, (Mk)−1 = (M−1)k, (MT )−1 = (M−1)T .

The matrix (MT )−1 is also written M−T . If k ∈ IN , one writes M−k =
(Mk)−1 and one has M jMk = M j+k for every j, k ∈ ZZ.

The set of the matrices of determinant one is a normal subgroup of
GLn(A), since it is the kernel of the homomorphism M �→ detM . It is
called the special linear group and is denoted by SLn(A).

The orthogonal matrices are invertible, and they satisfy the relation
M−1 = MT . In particular, orthogonality is equivalent to MMT = In.
The set of orthogonal matrices with entries in a field K is obviously a
multiplicative group, and is denoted by On(K). It is called the orthogonal
group. The determinant of an orthogonal matrix equals ±1, since

1 = detM · det MT = (det M)2.

The set SOn(K) of orthogonal matrices with determinant equal to 1 is
obviously a normal subgroup of the orthogonal group. It is called the special
orthogonal group. It is simply the intersection of On(K) with SLn(K).

A triangular matrix is invertible if and only if its diagonal entries are
invertible; its inverse is then triangular of the same type, upper or lower.
The proposition below is an immediate application of Theorem 2.1.2.
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Proposition 2.2.2 If M, M ′ ∈ Mn(A) are similar (that is, M ′ =
P−1MP with P ∈ GLn(A)), then

detM ′ = det M.

2.3 Alternate Matrices and the Pfaffian

The very simple structure of alternate forms is described in the following
statement.

Proposition 2.3.1 Let B be an alternate bilinear form on a vector space
E, of dimension n. Then there exists a basis

{x1, y1, . . . , xk, yk, z1, . . . , zn−2k}
such that the matrix of B in this basis is block-diagonal, equal to
diag(J, . . . , J, 0, . . . , 0), with k blocks J defined by

J =
(

0 1
−1 0

)
.

Proof
We proceed by induction on the dimension n. If B = 0, there is nothing to

prove. If B is nonzero, there exist two vectors x1, y1 such that B(x1, y1) �= 0.
Multiplying one of them by B(x1, y1)−1, one may assume that B(x1, y1) =
1. Since B is alternate, {x1, y1} is free. Let N be the plane spanned by x1, y1.
The set of vectors x satisfying B(x, v) = 0 (or equivalently B(v, x) = 0,
since B must be skew-symmetric) for every v in N is denoted by N⊥. The
formulas

B(ax1 + by1, x1) = −b, B(ax1 + by1, y1) = a

show that N ∩N⊥ = {0}. Additionally, every vector x ∈ E can be written
as x = y + n, where n ∈ N and y ∈ N⊥ are given by

n = B(x, y1)x1 −B(x, x1)y1, y := x− n.

Therefore, E = N ⊕ N⊥. We now consider the restriction of B to the
subspace N⊥ and apply the induction hypothesis. There exists a basis
{x2, y2, . . . , xk, yk, z1, . . . , zn−2k} such that the matrix of the restriction of
B in this basis is block-diagonal, equal to diag(J, . . . , J, 0, . . . , 0), with k−1
blocks J , which means that B(xj , yj) = 1 = −B(yj, xj) and B(u, v) = 0
for every other choice of u, v in the basis. Obviously, this property extends
to the form B itself and the basis {x1, y1, . . . , xk, yk, z1, . . . , zn−2k}.

We now choose an alternate matrix M ∈Mn(K) and apply Proposition
2.3.1 to the form defined by M . In view of Section 1.2.3, we have the
following.
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Corollary 2.3.1 Given an alternate matrix M ∈ Mn(K), there exists a
matrix Q ∈ GLn(K) such that

M = QT diag(J, . . . , J, 0, . . . , 0)Q. (2.2)

Obviously, the rank of M , being the same as that of the block-diagonal
matrix, equals twice the number of J blocks. Finally, since det J = 1, we
have det M = ε(detQ)2, where ε = 0 if there is a zero diagonal block in the
decomposition, and ε = 1 otherwise. Thus we have proved the following
result.

Proposition 2.3.2 The rank of an alternate matrix M is even. The num-
ber of J blocks in the identity (2.2) is the half of that rank. In particular,
it does not depend on the decomposition. Finally, the determinant of an
alternate matrix is a square in K.

A very important application of Proposition 2.3.2 concerns the Pfaffian,
whose crude definition is a polynomial whose square is the determinant of
the general alternate matrix. First of all, since the rank of an alternate
matrix is even, det M = 0 whenever n is odd. Therefore, we restrict our
attention from now on to the even-dimensional case n = 2m. Let us consider
the field F = QQ(xij) of rational functions with rational coefficients, in
n(n − 1)/2 indeterminates xij , i < j. We apply the proposition to the
alternate matrix X whose (i, i)-entry is 0 and (i, j)-entry (respectively (j, i)-
entry) is xij (respectively −xij). Its determinant, a polynomial in ZZ[xij ], is
the square of some irreducible rational function f/g, where f and g belong
to ZZ[xij ]. From g2 detX = f2, we see that g divides f in ZZ[xij ]. But since
f and g are coprime, one finds that g is invertible; in other words g = ±1.
Thus

detX = f2. (2.3)

Now let k be a field and let M ∈ Mn(k) be alternate. There exists
a unique homomorphism from ZZ[xij ] into k sending xij to mij . From
equation (2.3) we obtain

detM = (f(m12, . . . , mn−1,n))2. (2.4)

In particular, if k = QQ and M = diag(J, . . . , J), one has f2 = 1. Up
to multiplication by ±1, which leaves unchanged the identity (2.3), we
may assume that f = 1 for this special case. This determination of the
polynomial f is called the Pfaffian and is denoted by Pf. It may be viewed
as a polynomial function on the vector space of alternate matrices with
entries in a given field k. equation (2.4) now reads

detM = (Pf(M))2. (2.5)

Given an alternate matrix M ∈ Mn(k) and a matrix Q ∈ Mn(k), we
consider the Pfaffian of the alternate matrix QT MQ. We first consider the
case of the field of fractions QQ(xij , yij) in the n2+n(n−1)/2 indeterminates
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xij (1 ≤ i < j ≤ n) and yij (1 ≤ i, j ≤ n). Let Y be the matrix whose
(i, j)-entry is yij . Then, with X as above,

(Pf(Y T XY ))2 = detY T XY = (detY )2 detX = (Pf(X) detY )2.

Since ZZ[xij , yij ] is an integral domain, we have the polynomial identity

Pf
(
Y T XY

)
= ε Pf(X) detY, ε = ±1.

As above, one infers that Pf(QT MQ) = ±Pf(M) detQ for every field k,
matrix Q ∈ Mn(k), and alternate matrix M ∈ Mn(k). Inspection of the
particular case Q = In yields ε = 1. We summarize these results now.

Theorem 2.3.1 Let n = 2m be an even integer. There exists a unique
polynomial Pf in the indeterminates xij (1 ≤ i < j ≤ n) with integer
coefficients such that:

• For every field k and every alternate matrix M ∈ Mn(k), one has
detM = Pf(M)2.

• If M = diag(J, . . . , J), then Pf(M) = 1.

Moreover, if Q ∈Mn(k) is given, then Pf
(
QT MQ

)
= Pf(M) detQ.

We warn the reader that if m > 1, there does not exist a matrix Z ∈ QQ[xij ]
such that X = ZT diag(J, . . . , J)Z. The factorization of the polynomial
detX does not correspond to a similar factorization of X itself. In other
words, the decomposition X = QT diag(J, . . . , J)Q in Mn(QQ(xij)) cannot
be written within Mn(QQ[xij ]).

The Pfaffian is computed easily for small values of n. For instance,
Pf(X) = x12 if n = 2, and Pf = x12x34 − x13x24 + x14x23 if n = 4.

2.4 Eigenvalues and Eigenvectors

Let K be a field and E, F two vector spaces of finite dimension. Let us
recall that if u : E �→ F is a linear map, then

dimE = dim keru + rku,

where rku denotes the dimension of u(E) (the rank of u). In particular, if
u ∈ End(E), then

u is bijective ⇐⇒ u is injective ⇐⇒ u is surjective.

However, u is bijective, that is invertible, in End(E), if and only if its
matrix M in some basis β is invertible, that is if its determinant is nonzero.
As a matter of fact, the matrix of u−1 is M−1; the existence of an inverse
(either that of M or that of u) implies that of the other one. Finally, if
M ∈Mn(K), then detM �= 0 is equivalent to

∀X ∈ Kn, MX = 0 =⇒ X = 0.
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In other words,

detM = 0 ⇐⇒ (∃X ∈ Kn, X �= 0, MX = 0).

More generally, since MX = λX (λ ∈ K) can also be written (λIn−M)X =
0, one sees that det(λIn −M) is zero if and only if there exists a nonzero
vector in Kn such that MX = λX . One then says that λ is an eigenvalue
of M in K, and that X is an eigenvector associated to λ. An eigenvector
is thus always a nonzero vector. The set of the eigenvalues of M in K is
called the spectrum of M and is denoted by SpK(M).

A matrix in Mn(K) may have no eigenvalues in K, as the following
example demonstrates, with K = IR:(

0 1
−1 0

)
.

In order to understand in detail in the structure of a square matrix M ∈
Mn(K), one is thus led to consider M as a matrix with entries in K. One
then writes Sp(M) instead of SpK(M), and one has SpK(M) = K∩Sp(M),
since the eigenvalues are characterized by det(λIn − M) = 0, and this
equality has the same meaning in K as in K when λ ∈ K.

2.5 The Characteristic Polynomial

The previous calculations show that the eigenvalues of M ∈ Mn(K) are
the roots of the polynomial

PM (X) := det(XIn −M).

Let us observe in passing that if X is an indeterminate, then XIn −M ∈
Mn(K(X)). Its determinant PM is thus well-defined, since K(X) is a
commutative integral domain with a unit element. One calls PM the charac-
teristic polynomial of M . Substituting 0 for X , one sees that the constant
term in PM is simply (−1)n detM . Since the term corresponding to the
permutation σ = id in the computation of the determinant is of degree
n (it is

∏
i(X −mii)) and since the products corresponding to the other

permutations are of degree less than or equal to n− 2, one sees that PM is
of degree n, with

PM (X) = Xn −
(

n∑
i=1

mii

)
Xn−1 + · · ·+ (−1)n detM.

The coefficient
n∑

i=1

mii
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is called the trace of M and is denoted by TrM . One has the trivial formula
that if N ∈Mn×m(K) and P ∈Mm×n(K), then

Tr(NP ) = Tr(PN).

For square matrices, this identity also becomes

Tr[N, P ] = 0.

Since PM possesses n roots in K, counting multiplicities, one sees that
a square matrix has always at least one eigenvalue, which, however, does
not necessarily belong to K. The multiplicity of λ as a root of PM is called
algebraic multiplicity of the eigenvalue λ. The geometric multiplicity of λ is
the dimension of ker(λIn−M) in Kn. The sum of the algebraic multiplicities
of the eigenvalues of M (considered in K) is n, the size of the matrix. An
eigenvalue of algebraic multiplicity one (that is, a simple root of PM ) is
called simple. It is geometrically simple if its geometric multiplicity equals
one.

The characteristic polynomial is a similarity invariant, in the following
sense:

Proposition 2.5.1 If M and M ′ are similar, then PM = PM ′ . In
particular, detM = det M ′ and Tr M = TrM ′.

The proof is immediate. One deduces that the eigenvalues and their
algebraic multiplicities are similarity invariants. This is also true for the
geometric multiplicities, by a direct comparison of the kernel of λIn −
M and of λIn −M ′. Furthermore, the expression obtained above for the
characteristic polynomial provides the following result.

Proposition 2.5.2 The product of the eigenvalues of M (considered in
K), counted with their algebraic multiplicities, is detM . Their sum is Tr M .

Let µ be the geometric multiplicity of an eigenvalue λ of M . Let us choose
a basis γ of ker(λIn −M), and then a basis of β of K

n
that completes γ.

Using the change-of-basis matrix from the canonical basis to β, one sees
that M is similar to a matrix M ′ = P−1MP , whose µ first columns have
the form (

λIµ

0n−µ,µ

)
.

A direct calculation shows then that (X−λ)µ divides PM ′ , that is, PM . The
geometric multiplicity is thus less than or equal to the algebraic multiplicity.

The characteristic polynomials of M and MT are equal. Thus, M and
MT have the same eigenvalues. We shall show in Chapter 6 a much deeper
result, namely M and MT are similar.

The main result concerning the characteristic polynomial is the Cayley–
Hamilton theorem:
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Theorem 2.5.1 Let M ∈Mn(K). Let

PM (X) = Xn + a1X
n−1 + · · ·+ an

be its characteristic polynomial. Then the matrix

Mn + a1M
n−1 + · · ·+ anIn

equals 0n.

One also writes PM (M) = 0. Though this formula looks trivial (obviously,
det(MIn − M) = 0), it is not. Actually, it must be understood in the
following way. Let us consider the expression XIn −M as a matrix with
entries in K[X ]. When one substitutes a matrix N for the indeterminate
X in XIn −M , one obtains a matrix of Mn(A), where A is the subring
of Mn(K) spanned by In and N (one denotes it by K(N)). The ring A is
commutative (but is not an integral domain in general), since it is the set
of the q(N) for q ∈ K[X ]. Therefore,

PM (N) =




N −m11In

. . . −mijIn

. . .
N −mnnIn


 .

The Cayley–Hamilton theorem expresses that the determinant (which is
an element of Mn(K), rather than of K) of this matrix is zero.

Proof
Let R ∈Mn(K(X)) be the matrix XIn−M , and let S be the adjoint of

R. Each sij is a polynomial of degree less than or equal to n− 1, because
the products arising in the calculation of the cofactors involve n− 1 linear
or constant terms. Thus we may write

S = S0X
n−1 + · · ·+ Sn−1,

where Sj ∈Mn(K). Let us now write RS = (det R)In = PM (X)In:

(XIn −M)(S0X
n−1 + · · ·+ Sn−1) = (Xn + a1X

n−1 + · · ·+ an)In.

Identifying the powers of X , we obtain

S0 = In,

S1 −MS0 = a1In,

...
Sj −MSj−1 = ajIn,

...
Sn−1 −MSn−2 = an−1In,

−MSn−1 = anIn.
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Let us multiply these rows by the powers of M , beginning with Mn and
ending with M0 = In. Summing the obtained equalities, we obtain the
expected formula.

For example, every 2× 2 matrix satisfies the identity

M2 − (Tr M)M + (detM)I2 = 0.

2.5.1 The Minimal Polynomial

For a square matrix M ∈ Mn(K), let us denote by JM the set of polyno-
mials Q ∈ K[X ] such that Q(M) = 0. It is clearly an ideal of K[X ]. Since
K[X ] is Euclidean, hence principal (see Sections 6.1.1 and 6.1.2), there ex-
ists a polynomial QM such that JM = K[X ]QM . In other words, Q(M) = 0
and Q ∈ K[X ] imply QM |Q. Theorem 2.5.1 shows that the ideal JM does
not reduce to {0}, because it contains the characteristic polynomial. Hence,
QM �= 0 and one may choose it monic. This choice determines QM in a
unique way, and one calls it the minimal polynomial of M . It divides the
characteristic polynomial.

Contrary to the case of the characteristic polynomial, it is not immedi-
ate that the minimal polynomial is independent of the field in which one
considers JM (note that we consider only fields that contain the entries of
M). We shall see in Section 6.3.2 that if L is a field containing K, then the
minimal polynomials of M in K[X ] and L[X ] are the same. This explains
the terminology.

Two similar matrices obviously have the same minimal polynomial, since

Q(P−1MP ) = P−1Q(M)P.

If λ is an eigenvalue of M , associated to an eigenvector X , and if q ∈
K[X ], then q(λ)X = q(M)X . Applied to the minimal polynomial, this
equality shows that the minimal polynomial is divisible by X − λ. Hence,
if PM splits over K̄ in the form

r∏
j=1

(X − λj)nj ,

the λj all being distinct, then the minimal polynomial can be written as

r∏
j=1

(X − λj)mj ,

with 1 ≤ mj ≤ nj . In particular, if every eigenvalue of M is simple, the
minimal polynomial and the characteristic polynomial are equal.

An eigenvalue is called semi-simple if it is a simple root of the minimal
polynomial.
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2.6 Diagonalization

If λ ∈ K is an eigenvalue of M , one calls the linear subspace EK(λ) =
ker(M − λIn) in Kn the eigenspace associated to λ. It is formed of eigen-
vectors associated to λ on the one hand, and of the zero vector on the other
hand. Its dimension is nonzero. If L is a field containing K (an “extension”
of K), then dimK EK(λ) = dimL EL(λ). This equality is not obvious. It
follows from the third canonical form with Jordan blocks, which we shall
see in Section 6.3.3.

If λ1, . . . , λr are distinct eigenvalues, then the eigenspaces are in direct
sum. That is,

(x1 ∈ EK(λ1), . . . , xr ∈ EK(λr), x1+· · ·+xr = 0) =⇒ (x1 = · · · = xr = 0).

As a matter of fact, if there existed a relation x1 + · · · + xs = 0 where
x1, . . . , xs did not vanish simultaneously (we say that it has length s), one
could choose such a relation of minimal length r. One then would have
r ≥ 2. Multiplying this relation by M − λrIn, one would obtain

(λ1 − λr)x1 + · · ·+ (λr−1 − λr)xr−1 = 0,

which is a nontrivial relation of length r − 1 for the vectors (λj − λr)xj ∈
EK(λj). This contradicts the minimality of r.

If all the eigenvalues of M are in K and if the algebraic and geometric
multiplicities coincide for each eigenvalue of M , the sum of the dimensions
of the eigenspaces equals n. Since these linear subspaces are in direct sum,
one deduces that

Kn = E(λ1)⊕ · · · ⊕E(λr).

Thus one may choose a basis of Kn formed of eigenvectors. If P is the
change-of-basis matrix from the canonical basis to the new one, then
M ′ = P−1MP is diagonal, and its diagonal terms are the eigenvalues,
repeted with their multiplicities. One says that M is diagonalizable in K.
A particular case is that in which the eigenvalues of M are in K and are
simple.

Conversely, if M is similar, in Mn(K), to a diagonal matrix M ′ =
P−1MP , then P is a change-of-basis matrix from the canonical basis to
an eigenbasis (that is, a basis composed of eigenvectors) of M . Hence, M
is diagonalizable if and only if the algebraic and geometric multiplicities of
each eigenvalue coincide.

Two obstacles could prevent M from being diagonalizable in K. The
first one is that an eigenvalue of M does not belong to K. One can always
overcome this difficulty by moving towards Mn(K). The second one is more
serious: In K, the geometric multiplicity of an eigenvalue can be strictly
less than its algebraic multiplicity. For instance, a triangular matrix whose
diagonal vanishes has only one eigenvalue, zero, of algebraic multiplicity
n. Such a matrix is nilpotent. However it is diagonalizable only if it is 0n,
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since M = PM ′P−1 and M ′ = 0 imply M = 0. Hence,
(

0 1
0 0

)

is not diagonalizable.

2.7 Trigonalization

Let us begin with an application of the Cayley–Hamilton theorem.

Proposition 2.7.1 Let M ∈Mn(K) and let PM be its characteristic poly-
nomial. If PM = QR with coprime factors Q, R ∈ K[X ], then Kn = E⊕F ,
where E, F are the ranges of Q(M) and R(M), respectively. Moreover, one
has E = kerR(M), F = kerQ(M).

More generally, if PM = R1 · · ·Rs, where the Rs are coprime, one has
Kn = E1 ⊕ · · · ⊕Es with Ej = kerRj(M).

Proof
It is sufficient to prove the first assertion. From Bézout’s theorem, there

exists R1, Q1 ∈ K[X ] such that RR1 + QQ1 = 1. Hence, every x ∈ Kn can
be written as a sum y + z with y = Q(M)(Q1(M)x) ∈ E, and similarly
z = R(M)(R1(M)x) ∈ F . Hence Kn = E + F .

Furthermore, for every y ∈ E, the Cayley–Hamilton theorem says that
R(M)y = 0. Likewise, z ∈ F implies Q(M)z = 0. If x ∈ E ∩ F , one has
thus R(M)x = Q(M)x = 0. Again using Bézout’s theorem, one obtains
x = 0. This proves Kn = E ⊕ F .

Finally, E ⊂ kerR(M). Since these two vector spaces have the same
dimension (namely n− dimF ), they are equal.

If K is algebraically closed, we can split PM in the form

PM (X) =
∏

λ∈Sp(M)

(X − λ)nλ .

From Proposition 2.7.1 one has Kn = ⊕λEλ, where Eλ = ker(M − λI)nλ

is called a generalized eigenspace. Choosing a basis in each Eλ, we obtain a
new basis B of Kn. If P is the matrix of the linear transformation from the
canonical basis to B, the matrix PMP−1 is block-diagonal, because each
Eλ is stable under the action of M :

PMP−1 = diag(. . . , Mλ, . . . ).

The matrix Mλ is that of the restriction of M to Eλ. Since Eλ = ker(M −
λI)nλ , one has (Mλ−λI)nλ = 0, so that λ is the unique eigenvalue of Mλ.
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Let us define Nλ = Mλ − λInλ
, which is nilpotent. Let us also write

D′ = diag(. . . , λInλ
, . . . ),

N ′ = diag(. . . , Nλ, . . . ),

and then D = P−1D′P , N = P−1N ′P . The matrices D′, N ′ are respec-
tively diagonal and nilpotent. Moreover, they commute with each other:
D′N ′ = N ′D′. One deduces the following result.

Proposition 2.7.2 If K is algebraically closed, every matrix M ∈Mn(K)
decomposes as a sum M = D+N , where D is diagonalizable, N is nilpotent,
DN = ND, and Sp(D) = Sp(M).

Let us continue this analysis.

Lemma 2.7.1 Every nilpotent matrix is similar to a strictly upper
triangular matrix (and also to a strictly lower triangular one).

Proof
Let us consider the nondecreasing sequence of linear subspaces Ek =

kerNk. Since E0 = {0} and Er = Kn for a suitable r, one can find a basis
{x1, . . . , xn} of Kn such that {x1, . . . , xj} is a basis of Ek if j = dim Ek

(use the theorem that any linearly independent set can be enlarged to
a basis). Since N(Ek+1) = Ek, Nxj ∈ Ek. If P is the change-of-basis
matrix from this basis to the canonical one, then PNP−1 is strictly upper
triangular.

Let us return to the decomposition PMP−1 = D′ + N ′ above. Each Nλ

can be written, from the lemma, in the form R−1
λ TλRλ, where Tλ is strictly

upper triangular. Then Rλ(Dλ + Nλ)R−1
λ = Dλ + Tλ is triangular. Let us

set

R = diag(. . . , Rλ, . . . ).

Then (RP )M(RP )−1 is block-diagonal, with the diagonal blocks upper
triangular, and hence this matrix is itself upper triangular.

Theorem 2.7.1 If K is algebraically closed, then every square matrix is
similar to a triangular matrix (one says that it is trigonalizable).

More generally, if the characteristic polynomial of M ∈Mn(K) splits as
the product of linear factors, then M is trigonalizable.

A direct proof of this theorem that does not use the three previous
statements is possible. Its strategy is used in the proof of Theorem 3.1.3

2.8 Irreducibility

A square matrix A is said reducible if there exists a nontrivial partition
{1, . . . , n} = I ∪ J such that (i, j) ∈ I × J implies aij = 0. It is irreducible
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otherwise. Saying that a matrix is reducible is equivalent to saying that
there exists a permutation matrix P such that PAP−1 is of block-triangular
form (

B C
0p,n−p D

)
,

with 1 ≤ p ≤ n− 1. As a matter of fact, P is the matrix of the transforma-
tion from a basis γ to the canonical one, γ being obtained by first writing
the vectors ej with j ∈ J , and then those with j ∈ I. Working in the new
basis amounts to decomposing the linear system Ax = b into two subsys-
tems Dz = d and By = c − Cz, which are to be solved successively. The
spectrum of A is the union of those of B and D, so that many interesting
questions concerning square matrices reduce to questions about irreducible
matrices.

We shall see in the exercises a characterization of irreducible matrices in
terms of graphs. Here is a useful consequence of irreducibility.

Proposition 2.8.1 Let M ∈ Mn(K) be an irreducible matrix such that
i ≥ j + 2 implies mij = 0. Then the eigenvalues of M are geometrically
simple.

Proof
The hypothesis implies that all entries mi+1,i are nonzero. If λ is an eigen-

value, let us consider the matrix N ∈ Mn−1(K̄), obtained from M − λIn

by deleting the first row and the last column. It is a triangular matrix,
whose diagonal terms are nonzero. It is thus invertible, which implies
rk(M − λIn) = n− 1. Hence ker(M − λIn) is of dimension one.

2.9 Exercises

1. Verify that the product of two triangular matrices of the same type
(upper or lower) is triangular, of the same type.

2. Prove in full detail that the determinant of a triangular matrix (re-
spectively a block-triangular one) equals the product of its diagonal
terms (respectively the product of the determinants of its diagonal
blocks).

3. Find matrices M, N ∈ M2(K) such that MN = 02 and NM �= 02.
Such an example shows that MN and NM are not necessarily similar,
though they would be in the case where M or N is invertible.

4. Characterize the square matrices that are simultaneously orthogonal
and triangular.
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5. One calls any square matrix M satisfying M2 = M a projection
matrix, or projector.

(a) Let P ∈Mn(K) be a projector, and let E = kerP , F = ker(In−
P ). Show that Kn = E ⊕ F .

(b) Let P, Q be two projectors. Show that (P −Q)2 commute with
P and with Q. Also, prove the identity

(P −Q)2 + (In − P −Q)2 = In.

6. Let M be a square matrix over a field K, which we write blockwise
as

M =
(

A B
C D

)
.

The formula detM = det(AD−BC) is meaningless in general, except
when A, B, C, D have the same size. In that case the formula is false,
with the exception of scalar blocks. Compare with Schur’s formula
(Proposition 8.1.2).

7. If A, B, C, D ∈Mm(K) and if AC = CA, show that the determinant
of

M =
(

A B
C D

)

equals det(AD − CB). Begin with the case where A is invertible, by
computing the product (

Im 0m

−C A

)
M.

Then apply this intermediate result to the matrix A−zIn, with z ∈ K̄
a suitable scalar.
Compare with the previous exercise.

8. Verify that the inverse of a triangular matrix, whenever it exists, is
triangular of the same type.

9. Show that the eigenvalues of a triangular matrix are its diagonal
entries. What are their algebraic multiplicities?

10. Let A ∈ Mn(K) be given. One says that a list (a1σ(1), . . . , anσ(n))
is a diagonal of A if σ is a permutation (in that case, the diagonal
given by the identity is the main diagonal). Show the equivalence of
the following properties.

• Every diagonal of A contains a zero element.
• There exists a null matrix extracted from A of size k × l with

k + l > n.
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11. Compute the number of elements in the group GL2(ZZ/2ZZ). Show
that it is not commutative. Show that it is isomorphic to the
symmetric group Sm, for a suitable integer m.

12. If (a0, . . . , an−1) ∈ CCn is given, one defines the circulant matrix
circ(a0, . . . , an−1) ∈Mn(CC) by

circ(a0, . . . , an−1) :=




a0 a1 . . . an−1

an−1 a0
. . .

...
...

. . . . . . a1

a1 . . . an−1 a0


 .

We denote by Cn the set of circulant matrices. Obviously, the ma-
trix circ(1, 0, 0, . . . , 0) is the identity. The matrix circ(0, 1, 0, . . . , 0)
is denoted by π.

(a) Show that Cn is a subalgebra of Mn(CC), equal to CC[π]. Deduce
that it is isomorphic to the quotient ring CC[X ]/(Xn − 1).

(b) Let C be a circulant matrix. Show that C∗, as well as P (C), is
circulant for every polynomial P . If C is nonsingular, show that
C−1 is circulant.

(c) Show that the elements of Cn are diagonalizable in a common
eigenbasis.

(d) Replace CC by any field K. If K contains a primitive nth root ω
of unity (that is, ωn = 1, and ωm = 1 implies m ∈ nZZ), show
that the elements of Cn are diagonalizable.
Note: A thorough presentation of circulant matrices and
applications is given in Davis’s book [12].

(e) One assumes that the characteristic of K divides n. Show that
Cn contains matrices that are not diagonalizable.

13. Show that the Pfaffian is linear with respect to any row or column
of an alternate matrix. Deduce that the Pfaffian is an irreducible
polynomial in ZZ[xij ].

14. (Schur’s Lemma).
Let k be an algebraically closed field and S a subset of Mn(k). As-
sume that the only linear subspaces of kn that are stable under every
element of S are {0} and kn itself. Let A ∈Mn(k) be a matrix that
commutes with every element of S. Show that there exists c ∈ k such
that A = cIn.

15. (a) Show that A ∈Mn(K) is irreducible if and only if for every pair
(j, k) with 1 ≤ j, k ≤ n, there exists a finite sequence of indices
j = l1, . . . , lr = k such that alp,lp+1 �= 0.

(b) Show that a tridiagonal matrix A ∈ Mn(K), for which none of
the aj,j+1’s and aj+1,j ’s vanish, is irreducible.
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16. Let A ∈ Mn(k) (k = IR or CC) be given, with minimal polynomial q.
If x ∈ kn, the set

Ix := {p ∈ k[X ] | p(A)x = 0}
is an ideal of k[X ], which is therefore principal.

(a) Show that Ix �= (0) and that its monic generator, denoted by
px, divides q.

(b) One writes rj instead of px when x = ej. Show that q is the
least common multiple of r1, . . . , rn.

(c) If p ∈ k[X ], show that the set

Vp := {x ∈ kn | px ∈ (p)}
(the vectors x such that p divides px) is open.

(d) Let x ∈ kn be an element for which px is of maximal degree.
Show that px = q. Note: In fact, the existence of an element x
such that px equals the minimal polynomial holds true for every
field k.

17. Let k be a field and A ∈Mn×m(k), B ∈Mm×n(k) be given.

(a) Let us define

M =
(

XIn A
B XIm

)
.

Show that Xm detM = Xn det(X2Im−BA) (search for a lower
triangular matrix M ′ such that M ′M is upper triangular).

(b) Find an analogous relation between det(X2In−AB) and detM .
Deduce that XnPBA(X) = XmPAB(X).

(c) What do you deduce about the eigenvalues of A and of B?

18. Let k be a field and θ : Mn(k)→ k a linear form satisfying θ(AB) =
θ(BA) for every A, B ∈Mn(k).

(a) Show that there exists α ∈ k such that for all X, Y ∈ kn, one
has θ(XY T ) = α

∑
j xjyj .

(b) Deduce that θ = α Tr.

19. Let An be the ring K[X1, . . . , Xn] of polynomials in n variables.
Consider the matrix M ∈Mn(An) defined by

M =




1 · · · 1
X1 · · · Xn

X2
1 · · · X2

n
...

...
Xn−1

1 · · · Xn−1
n




.

Let us denote by ∆(X1, . . . , Xn) the determinant of M .
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(a) Show that for every i �= j, the polynomial Xj −Xi divides ∆.
(b) Deduce that

∆ = a
∏
i<j

(Xj −Xi),

where a ∈ K.
(c) Determine the value of a by considering the monomial

n∏
j=1

Xj
j .

(d) Redo this analysis for the matrix


Xp1
1 · · · Xp1

n
...

...
Xpn

1 · · · Xpn
n


 ,

where p1, . . . , pn are nonnegative integers.

20. Deduce from the previous exercise that the determinant of the
Vandermonde matrix



1 · · · 1
a1 · · · an

a2
1 · · · a2

n
...

...
an−1
1 · · · an−1

n




, a1, . . . , an ∈ K,

is zero if and only if at least two of the aj ’s coincide.

21. A matrix A ∈ Mn(IR) is called a totally positive matrix when all
minors

A

(
i1 i2 · · · ip
j1 j2 · · · jp

)

with 1 ≤ p ≤ n, 1 ≤ i1 < · · · < ip ≤ n and 1 ≤ j1 < · · · < jp ≤ n are
positive.

(a) Prove that the product of totally positive matrices is totally
positive.

(b) Prove that a totally positive matrix admits an LU factorization
(see Chapter 8), and that every “nontrivial” minor of L and U
is positive. Here, “nontrivial” means

L

(
i1 i2 · · · ip
j1 j2 · · · jp

)

with 1 ≤ p ≤ n, 1 ≤ i1 < · · · < ip ≤ n, 1 ≤ j1 < · · · < jp ≤ l,
and is ≥ js for every s. For U , read is ≤ js instead. Note: One
says that L and U are triangular totally positive.
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(c) Show that a Vandermonde matrix (see the previous exercise) is
totally positive whenever 0 < a1 < · · · < an.

22. Multiplying a Vandermonde matrix by its transpose, show that

det




n s1 · · · sn−1

s1 s2 . . .
...

... . . .
...

sn−1 · · · · · · s2n−2


 =

∏
i<j

(aj − ai)2,

where sq := aq
1 + · · ·+ aq

n.

23. The discriminant of a matrix A ∈Mn(k) is the number

d(A) :=
∏
i<j

(λj − λi)2,

where λ1, . . . , λn are the eigenvalues of A, counted with multiplicity.

(a) Verify that the polynomial

∆(X1, . . . , Xn) :=
∏
i<j

(Xj −Xi)2

is symmetric. Therefore, there exists a unique polynomial Q ∈
ZZ[Y1, . . . , Yn] such that

∆ = Q(σ1, . . . , σn),

where the σj ’s are the elementary symmetric polynomials

σ1 = X1 + · · ·+ Xn, . . . , σn = X1 · · ·Xn.

(b) Deduce that there exits a polynomial D ∈ ZZ[xij ] in the indeter-
minates xij , 1 ≤ i, j ≤ n, such that for every k and every square
matrix A,

d(A) = D(a11, a12, . . . , ann).

(c) Consider the restriction DS of the discriminant to symmetric
matrices, where xji is replaced by xij whenever i < j. Prove that
DS takes only nonnegative values on IRn(n+1)/2. Show, however,
that DS is not the square of a polynomial if n ≥ 2 (consider first
the case n = 2).
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24. Let P ∈ k[X ] be a polynomial of degree n that splits completely in
k. Let BP be the companion matrix

BP :=




0 · · · · · · 0 −an

1
. . .

...
...

0
. . . . . .

...
...

...
. . . . . . 0

...
0 · · · 0 1 −a1




.

Find a matrix H ∈Mn(k), whose transpose is of Vandermonde type,
such that

HBP = diag(λ1, . . . , λn)H.

This furnishes a direct proof of the fact that when the roots of P are
simple, BP is diagonalizable.

25. (E. Formanek [14])
Let k be a field of characteristic 0.

(a) Show that for every A, B, C ∈M2(k),[
[A, B]2, C

]
= 0.

Hint: use the Cayley–Hamilton theorem.
(b) Show that for every M, N ∈M2(k),

MN + NM − Tr(M)N − Tr(N)M+
(Tr(M)Tr(N)− Tr(MN))I2 = 0.

One may begin with the case M = N and recognize a classical
theorem, then “bilinearize” the formula.

(c) If π ∈ Sr (Sr is the symmetric group over {1, . . . , r}), one
defines a map Tπ : M2(k)r → k in the following way. One de-
composes π as a product of disjoint cycles, including the cycles
of order one, which are the fixed points of π:

π = (a1, . . . , ak1)(b1, . . . , bk2) · · · .
One sets then

Tπ(N1, . . . , Nr) = Tr(Na1 · · ·Nak1
)Tr(Nb1 · · ·Nbk2

) · · ·
(note that the right-hand side depends neither on the order of
the cycles in the product nor on the choice of the first index
inside each cycle, because of the formula Tr(AB) = Tr(BA)).
Show that for every N1, N2, N3 ∈M2(k), one has∑

π∈S3

ε(π)Tπ(N1, N2, N3) = 0.
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(d) Generalize this result to Mn(k): for every N1, . . . , Nn+1 ∈
Mn(k), one has ∑

π∈Sn+1

ε(π)Tπ(N1, . . . , Nn+1) = 0.

Note: Polynomial identities satisfied by every n×n matrix have
been studied for decades. See [15] for a thorough account. One
should at least mention the theorem of Amitsur and Levitzki:

Theorem 2.9.1 Consider the free algebra ZZ[x1, . . . , xr] (where
x1, . . . , xr are noncommuting indeterminates) define the stan-
dard polynomial Sr by

Sr(x1, . . . , xr) =
∑

π∈Sr

ε(π)xπ(1) · · ·xπ(r).

Then, given a commutative ring A, one has the polynomial
identity

S2n(Q1, . . . , Q2n) = 0n, ∀Q1, . . . , Q2n ∈Mn(A).

26. Let k be a field and let A ∈ Mn(k) be given. For every set J ⊂
{1, . . . , n}, denote by AJ the matrix extracted from A by keeping
only the indices i, j ∈ J . Hence, AJ ∈ Mp(k) for p = cardJ . Let
λ ∈ k.

(a) Assume that for every J whose cardinality is greater than or
equal to n − p, λ is an eigenvalue of AJ . Show that λ is an
eigenvalue of A, of algebraic multiplicity greater than or equal
to p+1 (express the derivatives of the characteristic polynomial).

(b) Conversely, let q be the geometric multiplicity of λ as an eigen-
value of A. Show that if cardJ > n− q, then λ is an eigenvalue
of AJ .

27. Let A ∈ Mn(k) and l ∈ IN be given. Show that there exists a poly-
nomial ql ∈ k[X ], of degree at most n − 1, such that Al = ql(A). If
A is invertible, show that there exists rl ∈ k[X ], of degree at most
n− 1, such that A−l = rl(A).

28. Let k be a field and A, B ∈ Mn(k). Assume that λ �= µ for every
λ ∈ Sp A, µ ∈ Sp B. Show, using the Cayley–Hamilton theorem,
that the linear map M �→ AM −MB is an automorphism of Mn(k).

29. Let k be a field and (Mjk)1≤j,k≤n a set of matrices of Mn(k), at
least one of which is nonzero, such that MijMkl = δk

j Mil for all
1 ≤ i, j, k, l ≤ n.

(a) Show that none of the matrices Mjk vanishes.
(b) Verify that each Mii is a projector. Denote its range by Ei.
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(c) Show that E1, . . . , En are in direct sum. Deduce that each Ej

is a line.
(d) Show that there exist generators ej of each Ej such that Mjkel =

δl
kej.

(e) Deduce that every algebra automorphism of Mn(k) is interior:
For every σ ∈ AutMn(k), there exists P ∈ GLn(k) such that
σ(M) = P−1MP For every M ∈Mn(k).



3
Matrices with Real or Complex Entries

Definitions

A square matrix M ∈Mn(IR) is said to be normal if M and MT commute:
MT M = MMT . The real symmetric, skew-symmetric, and orthogonal
matrices are normal.

In considering matrices with complex entries, a useful operation is com-
plex conjugation z �→ z̄. One denotes by M̄ the matrix obtained from M
by conjugating the entries. We then define the Hermitian adjoint matrix1

M∗ by

M∗ := (M̄)T = MT .

One therefore has m∗
ij = mji and detM∗ = detM . The map M �→ M∗

is an anti-isomorphism, which means that it is antilinear (meaning that
(λM)∗ = λ̄M∗) and satisfies, moreover, the product formula

(MN)∗ = N∗M∗.

When a square matrix M ∈Mn(CC) is invertible, then (M∗)−1 = (M−1)∗.
This matrix is sometimes denoted by M−∗.

One says that a square matrix M ∈Mn(CC) is Hermitian if M∗ = M and
skew-Hermitian if M∗ = −M . If M ∈ Mn×m(CC), the matrices MM∗ and

1We warn the reader about the possible confusion between the adjoint and the Her-
mitian adjoint of a matrix. One may remark that the Hermitian adjoint is defined for
every rectangular matrix with complex entries, while the adjoint is defined for every
square matrix with entries in a commutative ring.
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M∗M are Hermitian. We denote by Hn the set of Hermitian matrices in
Mn(CC). It is an IR-linear subspace of Mn(CC), though it is not a CC-linear
subspace, since iM is skew-Hermitian when M is Hermitian.

A square matrix M ∈Mn(CC) is said to be unitary if M∗M = In. Since
this means that M is invertible, with inverse M∗, and since the left and
the right inverses are equal, an equivalent criterion is MM∗ = In. The
set of unitary matrices in Mn(CC) forms a multiplicative group, denoted
by Un. Unitary matrices satisfy | detM | = 1, since det M∗M = | detM |2
for every matrix M . The set of unitary matrices whose determinant equals
1, denoted by SUn is obviously a normal subgroup of Un. Finally, M is
said to be normal if M and M∗ commute: MM∗ = M∗M . The Hermitian,
skew-Hermitian, and unitary matrices are normal.

Observe that the real orthogonal (respectively symmetric, skew-sym-
metric) matrices are unitary (respectively Hermitian, skew-Hermitian).
Conversely, if M is real and either unitary, symmetric, or skew-symmetric,
then M is either orthogonal, Hermitian, or skew-Hermitian.

A sesquilinear form on a complex vector space is a map

(x, y) �→ 〈x, y〉,
linear in x and satisfying

〈y, x〉 = 〈x, y〉.
It is thus antilinear in y:

〈x, λy〉 = λ̄〈x, y〉.
When y = x, 〈x, y〉 = 〈x, x〉 is a real number. The map x �→ 〈x, x〉 is called
a Hermitian form. The correspondence between sesquilinear and Hermitian
forms is one-to-one.

Given a matrix M ∈Mn(CC), the form

(x, y) �→
∑
j,k

mjkxjyk,

defined on CCn × CCn, is sesquilinear if and only if M is Hermitian. It fol-
lows that there is an isomorphism between the sets of Hermitian matrices,
Hermitian, and sesquilinear forms on CCn. As a matter of fact, a Hermitian
form can be written in the form

x �→
∑
j,k

mjkxj x̄k.

The kernel of a Hermitian or a sesquilinear form is the set of vectors
x ∈ E such that 〈x, y〉 = 0 for every y ∈ E. It equals the set of vectors
y ∈ E such that 〈x, y〉 = 0 for every x ∈ E. If E = CCn, it is also the kernel
of MT , where M is the (Hermitian) matrix associated to the Hermitian
form. One says that the Hermitian form is degenerate if its kernel does not
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reduce to {0}. When E = CCn, this amounts to detM = 0. One says that
the form is nondegenerate otherwise.

If both E and F are endowed with nondegenerate sequilinear forms 〈·, ·〉E
and 〈·, ·〉F , respectively, and if u ∈ L(E, F ), one defines u∗ by the formula

〈u∗(x), y〉E = 〈x, u(y)〉F , ∀x ∈ F, y ∈ E.

The map u �→ u∗ is an IR-isomorphism from L(E, F ) onto L(F, E), and
one has (λu)∗ = λ̄u∗, (u∗)∗ = u. When E = CCn and F = CCm are endowed
with the canonical sesquilinear forms x1y1 + · · · , the matrix associated
to u∗ is simply the Hermitian adjoint of the matrix associated to u. The
canonical Hermitian form over CCn is positive definite: 〈x, x〉 > 0 if x �= 0. It
allows us to define a norm by ‖x‖ =

√〈x, x〉. Identifying CCn with column
vectors, one also defines ‖X‖ =

√
X∗X if X ∈ Mn×1(CC). This norm will

be denoted by ‖ · ‖2 in Chapter 4. A matrix is unitary if and only if it is
associated with an isometry of CCn:

‖u(x)‖ = ‖x‖, ∀x ∈ CCn.

More generally, let M be a Hermitian matrix and 〈·, ·〉 the form that it
defines on CCn. One says that M is positive definite if 〈x, x〉 > 0 for ev-
ery x �= 0. Again,

√〈x, x〉 is a norm on CCn. We shall denote by HPDn

the set of the positive definite Hermitian matrices; it is an open cone in
Hn. Its closure consists of the Hermitian matrices M that define a posi-
tive semidefinite Hermitian form over CCn (〈x, x〉 ≥ 0 for every x). They
are called positive semidefinite Hermitian matrices. One defines similarly,
among the real symmetric matrices, those that are positive definite, respec-
tively positive semidefinite. The positive definite real symmetric matrices
form an open cone in Symn(IR), denoted by SPDn.

The natural ordering on Hermitian forms induces an ordering on Hermi-
tian matrices. One writes H ≥ 0n when the Hermitian form associated to H
takes nonnegative values. More generally, one writes H ≥ h if H − h ≥ 0n.
We likewise define an ordering on real-valued symmetric matrices, referring
to the ordering on real-valued quadratic forms.2

If U is unitary, the matrix U∗MU is similar to M . If M is Hermitian,
skew-Hermitian, normal, or unitary and if U is unitary, then U∗MU is still
Hermitian, skew-Hermitian, normal, or unitary.

2We warn the reader that another, completely different, order still denoted by the
symbol ≥ will be defined in Chapter 5. This one will concern real-valued matrices that
are neither symmetric nor even square. One expects that the context is never ambiguous.
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3.1 Eigenvalues of Real- and Complex-Valued
Matrices

Since CC is algebraically closed, every complex-valued square matrix, and
every endomorphism of a CC-vector space of dimension n ≥ 1, possesses
eigenvalues. As a matter of fact, the characteristic polynomial has roots.
A real-valued square matrix may not have eigenvalues in IR, but it has at
least one in CC. If n is odd, M ∈ Mn(IR) has at least a real eigenvalue,
because PM is real of odd degree.

Proposition 3.1.1 The eigenvalues of Hermitian matrices, as well as
those of real symmetric matrices, are real.

Proof
Let M ∈ Mn(CC) be a Hermitian matrix and let λ be one of its eigen-

values. Let us choose an eigenvector X : MX = λX . Taking the Hermitian
adjoint, we obtain X∗M = λ̄X . Hence,

λX∗X = X∗(MX) = (X∗M)X = λ̄X∗X,

or

(λ− λ̄)X∗X = 0.

However X∗X =
∑

j |xj |2 > 0. Therefore, we are left with λ̄−λ = 0. Hence
λ is real.

We leave it to the reader to show, as an exercise, that the eigenvalues of
skew-Hermitian matrices are purely imaginary.

Proposition 3.1.2 The eigenvalues of the unitary matrices, as well as
those of real orthogonal matrices, are complex numbers of modulus one.

Proof
As before, if X is an eigenvector associated to λ, one has

|λ|2‖X‖2 = (λX)∗(λX) = (MX)∗MX = X∗M∗MX = X∗X = ‖X‖2,
and therefore |λ|2 = 1.

3.1.1 Continuity of Eigenvalues

One of the more delicate statements in the elementary theory of matrices
concerns the continuity of the eigenvalues. Though a proof might be pro-
vided througth explicit bounds, it is easier to use Rouché’s theorem about
holomorphic functions. We begin with a statement concerning polynomials,
that is a bit less precise than Rouché’s theorem.
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Theorem 3.1.1 Let n ∈ IN and let P ∈ CC[X ] be a polynomial of degree
n,

P (X) = p0 + p1X + · · ·+ pnXn.

Let x be a root of P , with multiplicity µ, and let d be the distance from x to
the other roots of P . Let D be an open disk, D = D(x; ρ), with 0 < ρ < d.
Then there exists a number ε > 0 such that if Q ∈ CC[X ] has degree n,

Q(X) = q0 + q1X + · · ·+ qnXn,

and if

max
j
|qj − pj| < ε,

then D contains exactly µ roots of Q, counting multiplicities.

Let us apply this result to the characteristic polynomial of a given matrix.
Since the coefficients of the characteristic polynomial pM are polynomial
functions of the entries of M , the map M �→ pM is continuous from Mn(CC)
to the set of polynomials of degree n. From Rouché’s theorem, we have the
following result.

Theorem 3.1.2 Let M ∈Mn(CC), and let λ be one of its eigenvalues, with
multiplicity µ, and let d be the distance from λ to the other eigenvalues of
M . Let D be an open disk, D = D(λ; ρ), with 0 < ρ < d. Let us fix a norm
on Mn(CC).

There exists an ε > 0 such that if A ∈ Mn(CC) and ‖A‖ < ε, the sum of
algebraic multiplicities of the eigenvalues of M + A in D equals µ.

Let us remark that this statement becomes false if one considers the
geometric multiplicities.

One often invokes this theorem by saying that the eigenvalues of a ma-
trix are continuous functions of its entries. Here is an interpretation. One
adapts the Hausdorff distance between compact sets so as to take into ac-
count the multiplicity of the eigenvalues. If M, N ∈Mn(CC), let us denote
by (λ1, . . . , λn) and (θ1, . . . , θn) their eigenvalues, repeated according to
their multiplicities. One then defines

d(SpM, SpN) := inf
σ∈Sn

max
j
|λj − θσ(j)|,

where Sn is the group of permutations of the indices {1, . . . , n}. This num-
ber is called the distance between the spectra of M and N . With this
notation, one may rewrite Theorem 3.1.2 in the following form.

Proposition 3.1.3 If M ∈ Mn(CC) and α > 0, there exists ε > 0 such
that ‖N −M‖ < ε implies d(SpM, SpN) < α.

A useful consequence of Theorem 3.1.2 is the following.
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Corollary 3.1.1 In Mn(k) (k = IR or CC) the set of diagonalizable
matrices is an open subset.

3.1.2 Trigonalization in an Orthonormal Basis

From now on we say that two matrices are unitarily similar if they are
similar through a unitary transformation. Two real matrices are unitarily
similar if they are similar through an orthogonal transformation.

If K = CC, one may sharpen Theorem 2.7.1:

Theorem 3.1.3 (Schur) If M ∈ Mn(CC), there exists a unitary matrix
U such that U∗MU is upper triangular.

One also says that every matrix with complex entries is unitarily
trigonalizable.

Proof
We proceed by induction on the size n of the matrices. The statement is

trivial if n = 1. Let us assume that it is true in Mn−1(CC), with n ≥ 2. Let
M ∈ Mn(CC) be a matrix. Since CC is algebraically closed, M has at least
one eigenvalue λ. Let X be an eigenvector associated to λ. By dividing X
by ‖X‖, one can assume that X is a unit vector. One can then find an
orthonormal basis {X1, X2, . . . , Xn} of CCn whose first element is X . Let
us consider the matrix V := (X1 = X, X2, . . . , Xn), which is unitary, and
let us form the matrix M ′ := V ∗MV . Since

V M ′e1 = MV e1 = MX = λX = λV e1,

one obtains M ′e1 = λe1. In other words, M ′ has the block-triangular form:

M ′ =
(

λ · · ·
0n−1 N

)
,

where N ∈ Mn−1(CC). Applying the induction hypothesis, there exists
W ∈ Un−1 such that W ∗NW is upper triangular. Let us denote by Ŵ
the (block-diagonal) matrix diag(1, W ) ∈ Un. Then Ŵ ∗M ′Ŵ is upper
triangular. Hence, U = V Ŵ satisfies the conditions of the theorem.

3.2 Spectral Decomposition of Normal Matrices

We recall that a matrix M is normal if M∗ commutes with M . For real
matrices, this amounts to saying that MT commutes with M . Since it is
equivalent for a Hermitian matrix H to be zero or to satisfy x∗Hx = 0 for
every vector x, we see that M is normal if and only if ‖Ax‖2 = ‖A∗x‖2
for every vector, where ‖x‖2 denotes the standard Hermitian (Euclidean)
norm (take H = AA∗ −A∗A).
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Theorem 3.2.1 If K = CC, the normal matrices are diagonalizable, using
unitary matrices:

(M∗M = MM∗) =⇒ (∃U ∈ Un; M = U−1 diag(d1, . . . , dn)U).

Again, one says that normal matrices are unitarily diagonalizable. This
theorem contains the following properties.

Corollary 3.2.1 Unitary, Hermitian, and skew-Hermitian matrices are
unitarily diagonalizable.

Observe that among normal matrices one distinguishes each of the above
families by the nature of their eigenvalues. Those of unitary matrices have
modulus one, while those of Hermitian matrices are real. Finally, those of
skew-Hermitian matrices are purely imaginary.

Proof
We proceed by induction on the size n of the matrix M . If n = 0, there

is nothing to prove. Otherwise, if n ≥ 1, there exists an eigenpair (λ, x):

Mx = λx, ‖x‖2 = 1.

Since M is normal, M−λIn is, too. From above, we see that ‖(M∗−λ̄)x‖2 =
‖(M − λ)x‖2 = 0, and hence M∗x = λ̄x. Let V be a unitary matrix such
that V e1 = x. Then the matrix M1 := V ∗MV is normal and satisfies
M1e1 = λe1. Hence it satisfies M∗

1 e1 = λ̄e1. This amounts to saying that
M1 is block-diagonal, of the form M1 = diag(λ, M ′). Obviously, M ′ inherits
the normality of M1. From the induction hypothesis, M ′, and therefore M1

and M , are unitarily diagonalizable.

One observes that the same matrix U diagonalizes M∗, because M =
U−1DU implies M∗ = U∗D∗U−1∗ = U−1D∗U , since U is unitary.

Let us consider the case of a positive semidefinite Hermitian matrix H . If
HX = λX , then 0 ≤ X∗HX = λ‖X‖2. The eigenvalues are thus nonnega-
tive. Let λ1, . . . , λp be the nonzero eigenvalues of H . Then H is unitarily
similar to

D := diag(λ1, . . . , λp, 0, . . . , 0).

From this, we conclude that rkH = p. Let U ∈ Un be such that H =
UDU∗. Defining the vectors Xα =

√
λαUα, where the Uα are the columns

of U , we obtain the following statement.

Proposition 3.2.1 Let H ∈Mn(CC) be a positive semidefinite Hermitian
matrix. Let p be its rank. Then H has p real, positive eigenvalues, while the
eigenvalue λ = 0 has multiplicity n− p. There exist p column vectors Xα,
pairwise orthogonal, such that

H = X1X
∗
1 + · · ·+ XpX

∗
p .

Finally, H is positive definite if and only if p = n (in which case, λ = 0 is
not an eigenvalue).
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3.3 Normal and Symmetric Real-Valued Matrices

The situation is a bit more involved if M , a normal matrix, has real en-
tries. Of course, one can consider M as a matrix with complex entries and
diagonalize it in an orthonormal basis, but we quit in general the field of
real numbers when doing so. We prefer to allow bases consisting of only
real vectors. Since some of the eigenvalues might be nonreal, one cannot in
general diagonalize M . The statement is thus the following.

Theorem 3.3.1 Let M ∈Mn(IR) be a normal matrix. There exists an or-
thogonal matrix O such that OMO−1 be block-diagonal, the diagonal blocks
being 1× 1 (those corresponding to the real eigenvalues of M) or 2× 2, the
latter being matrices of direct similitude:3(

a b
−b a

)
(b �= 0).

Similarly, OMT O−1 is block-diagonal, the diagonal blocks being eigen-
values or matrices of direct similitude.

Proof
One again proceeds by induction on n. When n ≥ 1, the proof is the same

as in the previous section whenever M has at least one real eigenvalue.
If this is not the case, then n is even. Let us first consider the case n = 2.

Then

M =
(

a b
c d

)
.

Since M is normal, we have b2 = c2 and (a − d)(b − c) = 0. However,
b �= c, since otherwise M would be symmetric, hence would have two real
eigenvalues. Hence b = −c and a = d.

Now let us consider the general case, with n ≥ 4. We know that M has
an eigenpair (λ, z), where λ is not real. If the real and imaginary parts of
z were colinear, M would have a real eigenvector, hence a real eigenvalue,
a contradiction. In other words, the real and imaginary parts of z span a
plane P in IRn. As before, Mz = λz implies MT z = λ̄z. Hence we have
MP ⊂ P and MT P ⊂ P . Now let V be an orthogonal matrix that maps
the plane P0 := IRe1 ⊕ IRe2 onto P . Then the matrix M1 := V T MV is
normal and satisfies

M1P0 ⊂ P0, MT
1 P0 ⊂ P0.

This means that M1 is block-diagonal. Of course, each diagonal block (of
sizes 2×2 and (n−2)× (n−2)) inherits the normality of M1. Applying the
induction hypothesis, we know that these blocks are unitarily similar to a

3A similitude is an endomorphism of a Euclidean space that preserves angles. It splits
as aR, where R is orthogonal and a is a scalar. It is direct if its determinant is positive.



48 3. Matrices with Real or Complex Entries

block-diagonal matrix whose diagonal blocks are direct similitudes. Hence
M1 and M are unitarily similar to such a matrix.

Corollary 3.3.1 Real symmetric matrices are diagonalizable over IR,
through orthogonal conjugation. In other words, given M ∈ Symn(IR),
there exists an O ∈ On(IR) such that OMO−1 is diagonal.

In fact, since the eigenvalues of M are real, OMO−1 has only 1× 1 blocks.
We say that real symmetric matrices are orthogonally diagonalizable.

The interpretation of this statement in terms of quadratic forms is the
following. For every quadratic form Q on IRn, there exists an orthonor-
mal basis {e1, . . . , en} in which this form can be written with at most n
squares:4

Q(x) =
n∑

i=1

aix
2
i .

Replacing the basis vector ej by |aj |1/2ej, one sees that there also exists
an orthogonal basis in which the quadratic form can be written

Q(x) =
r∑

i=1

x2
i −

s∑
j=1

x2
j+r ,

with r+s ≤ n. This quadratic form is nondegenerate if and only if r+s = n.
The pair (r, s) is unique and called the signature or the Sylvester index of
the quadratic form. In such a basis, the matrix associated to Q is



1
. . . 0

1
−1

. . .
−1

0

0
. . .

0




.

3.3.1 Rayleigh Quotients

Let M be a real n × n symmetric matrix, and let λ1 ≤ · · · ≤ λn be its
eigenvalues arranged in increasing order and counted with multiplicity. Let

4In solid mechanics, when Q is the matrix of inertia, the vectors of this basis are
along the inertia axes, and the aj , which then are positive, are the momenta of inertia.
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us denote by B = {v1, . . . , vn} an orthonormal eigenbasis (Mvj = λjvj).
If x ∈ IRn, let us denote by y1, . . . , yn the coordinates of x in the basis B.
Finally, let us denote by ‖ · ‖2 the usual Euclidean norm on IRn. Then

xT Mx =
∑

j

λjy
2
j ≤ λn

∑
j

y2
j = λn‖x‖22.

Since vT
n Mvn = λn‖vn‖22, we deduce the value of the largest eigenvalue of

M :

λn = max
x �=0

xT Mx

‖x‖22
= max

{
xT Mx | ‖x‖22 = 1

}
. (3.1)

Similarly, the smallest eigenvalue of a real symmetric matrix is given by

λ1 = min
x �=0

xT Mx

‖x‖22
= min{xT Mx | ‖x‖22 = 1}. (3.2)

For a Hermitian matrix, the formulas (3.1,3.2) remain valid when we replace
xT by x∗.

We evaluate the other eigenvalues of M ∈ Symn(IR) in the following
way. For every linear subspace F of IRn of dimension k, let us define

R(F ) = max
x∈F\{0}

xT Mx

‖x‖22
= max

{
xT Mx |x ∈ F, ‖x‖22 = 1

}
.

The intersection of F with the linear subspace spanned by {vk, . . . , vn} is
of dimension greater than or equal to one. There exists, therefore, a nonzero
vector x ∈ F such that y1 = · · · = yk−1 = 0. One has then

xT Mx =
n∑

j=k

λjy
2
j ≥ λk

∑
j

y2
j = λk‖x‖22.

Hence, R(F ) ≥ λk. Furthermore, if G is the space spanned by {v1, . . . , vk},
one has R(G) = λk. Thus, we have

λk = min{R(F ) | dim F = k}.
Finally, we may state the following theorem.

Theorem 3.3.2 Let M be an n×n real symmetric matrix and λ1, . . . , λn

its eigenvalues arranged in increasing order, counted with multiplicity. Then

λk = min
dim F=k

max
x∈F\{0}

xT Mx

‖x‖22
.

If M is complex Hermitian, one has similarly

λk = min
dim F=k

max
x∈F\{0}

x∗Mx

‖x‖22
.

This formula generalizes (3.1, 3.2).



50 3. Matrices with Real or Complex Entries

3.3.2 Applications

Theorem 3.3.3 Let H ∈ Hn−1, x ∈ CCn−1, and a ∈ IR be given. Let
λ1 ≤ · · · ≤ λn−1 be the eigenvalues of H and µ1 ≤ · · · ≤ µn those of the
Hermitian matrix

H ′ =
(

H x
x∗ a

)
.

One has then µ1 ≤ λ1 ≤ · · · ≤ µj ≤ λj ≤ µj+1 ≤ · · · .
Proof
By Theorem 3.3.2, the inequality µj ≤ λj is obvious, because the infimum

is taken over a smaller set.
Conversely, let π : x �→ (x1, . . . , xn−1)T be the projection from CCn on

CCn−1. If F is a linear subspace of CCn of dimension j + 1, its image under
π contains a linear subspace G of dimension j (it will often be exactly of
dimension j). By Theorem 3.3.2, applied to H , one therefore has

R′(F ) ≥ R(G) ≥ λj .

Taking the infimum, we obtain µj+1 ≥ λj .

The previous theorem is optimal, in the following sense.

Theorem 3.3.4 Let λ1 ≤ · · · ≤ λn−1 and µ1 ≤ · · · ≤ µn be real numbers
satisfying µ1 ≤ λ1 ≤ · · · ≤ µj ≤ λj ≤ µj+1 ≤ · · · . Then there exist a vector
x ∈ IRn and a ∈ IR such that the real symmetric matrix

H =
(

Λ x
xT a

)
,

where Λ = diag(λ1, . . . , λn−1), has the eigenvalues µj.

Proof
Let us compute the characteristic polynomial of H from Schur’s

complement formula5 (see Proposition 8.1.2):

pn(X) =
(
X − a− xT (XIn−1 − Λ)−1x

)
det(XIn−1 − Λ)

=


X − a−

∑
j

x2
j

X − λj


∏

j

(X − λj).

Let us assume for the moment that all the inequalities µj ≤ λj ≤ µj+1

hold strictly. In particular, the λj ’s are distinct. Let us consider the partial
fraction decomposition of the rational function∏

l(X − µl)∏
j(X − λj)

= X − a−
∑

j

cj

X − λj
.

5One may equally (exercise) compute it by induction on n.
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One thus obtains

a =
∑

l

µl −
∑

j

λj ,

a formula that could also have been found by comparing the traces of Λ
and of H . The inequalities λj−1 < µj < λj ensure that each cj is positive,
because

cj = −
∏

l(λj − µl)∏
k �=j(λj − λk)

.

Let us put, then, xj = √
cj (or −xj = √

cj). We obtain, as announced,

pn(X) =
∏

l

(X − µl).

In the general case one may choose sequences µ
(m)
l and λ

(m)
j that con-

verge to the µl’s and the λj ’s as m → +∞ and that satisfy the inequalities
in the hypothesis strictly. The first part of the proof (case with strict in-
equalities) provides matrices H(m). Since the spectral radius is a norm over
Symn(IR) (the spectral radius is defined in the next Chapter), the sequence
(H(m))m∈IN is bounded. In other words, (a(m), x(m)) remains bounded. Let
us extract a subsequence that converges to a pair (a, x) ∈ IR× IRn−1. The
matrix H associated to (a, x) solves our problem, since the eigenvalues
depend continuously on the entries of the matrix.

Corollary 3.3.2 Let H ∈ Symn−1(IR) with eigenvalues λ1 ≤ · · · ≤ λn−1.
Let µ1, . . . , µn be real numbers satisfying µ1 ≤ λ1 ≤ · · · ≤ µj ≤ λj ≤
µj+1 ≤ · · · . Then there exist a vector x ∈ IRn and a ∈ IR such that the real
symmetric matrix

H ′ =
(

H x
xT a

)

has the eigenvalues µj.

The proof consists in diagonalizing H through an orthogonal conjugation,
then applying the theorem, and finally performing the inverse conjugation.

3.4 The Spectrum and the Diagonal of Hermitian
Matrices

Let us begin with an order relation between finite sequences of real num-
bers. If a = (a1, . . . , an) is a sequence of n real numbers, and if 1 ≤ l ≤ n,
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we denote by sk(a) the number

min



∑
j∈J

aj | cardJ = k


 .

Definition 3.4.1 Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two se-
quences of n real numbers. One says that b majorizes a, and one writes
a ≺ b, if

sk(a) ≤ sk(b), ∀1 ≤ k ≤ n, sn(a) = sn(b).

The functions sk are symmetric:

sk(a) = sk(aσ(1), . . . , aσ(n))

for every permutation σ. One thus may always restrict attention to the
case of nondecreasing sequences a1 ≤ · · · ≤ an. One has then sk(a) =
a1 + · · ·+ ak. The relation a ≺ b for nondecreasing sequences, can now be
written as

a1 + · · ·+ ak ≤ b1 + · · ·+ bk, k = 1, . . . , n− 1,

a1 + · · ·+ an = b1 + · · ·+ bn.

The latter equality plays a crucial role in the analysis below. The relation
≺ is a partial ordering.

Proposition 3.4.1 Let x, y ∈ IRn. Then x ≺ y if and only if for every
real number t,

n∑
j=1

|xj − t| ≥
n∑

j=1

|yj − t|. (3.3)

Proof
We may assume that x and y are nondecreasing. If the inequality (3.3)

holds, we write it first for t outside the interval I containing the xj ’s and
the yj’s. This gives sn(x) = sn(y). Then we write it for t = xk. Using
sn(x) = sn(y), we obtain

∑
j

|xj − xk| =
k∑
1

(xk − yj) +
n∑

k+1

(yj − xk) + 2(sk(y)− sk(x))

≤
∑

j

|yj − xk|+ 2(sk(y)− sk(x)),

which with (3.3) gives sk(x) ≤ sk(y).
Conversely, let us assume that x ≺ y. Let us define φ(t) :=

∑
j |xj −

t| − ∑
j |yj − t|. This is a piecewise linear function, zero outside I. Its

derivative, integer-valued, is piecewise constant. It increases at the points
xj ’s and decreases at the points yj ’s only. If min{φ(t); t ∈ IR} < 0, this
minimum will thus be reached at some xk, with φ′(xk−0) ≤ 0 ≤ φ′(xk +0),
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from which one obtains yk−1 ≤ xk ≤ yk+1. Therefore, there are two cases,
depending on the position of yx with respect to xk. For example, if yk ≤ xk,
we compute

∑
j

|xj − xk| =
n∑

k+1

(xj − xk) +
k∑
1

(xk − xj).

From the assumption, it follows that

∑
j

|xj − xk| ≥
n∑

k+1

(yj − xk) +
k∑
1

(xk − yj) =
∑
j �=k

|yj − xk|,

which means that φ(xk) ≥ 0, which contradicts the hypothesis. Hence, φ is
a nonnegative function.

Our first statement expresses an order between the diagonal and the
spectrum of a Hermitian matrix.

Theorem 3.4.1 (Schur) Let H be a Hermitian matrix with diagonal a
and spectrum λ. Then a � λ.

Proof
Let n be the size of H . We argue by induction on n. We may assume that

an is the largest component of a. Since sn(λ) = TrA, one has sn(λ) = sn(a).
In particular, the theorem holds true for order 1. Let us assume that it holds
for order n− 1. Let A be the matrix obtained from H by deleting the nth
row and the nth column. Let µ = (µ1, . . . , µn−1) be the spectrum of A.
Let us arrange λ and µ in increasing order. From Theorem 3.3.3, one has
λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µn−1 ≤ λn. It follows that sk(µ) ≥ sk(λ) for
every k < n. The induction hypothesis tells us that sk(µ) ≤ sk(a′), where
a′ = (a1, . . . , an−1). Finally, we have sk(a′) = sk(a), and sk(λ) ≤ sk(a) for
every k < n, which ends the induction.

.
Here is the converse.

Theorem 3.4.2 Let a and λ be two sequences of n real numbers such that
a � λ. Then there exists a real symmetric matrix of size n × n whose
diagonal is a and spectrum is λ.

Proof
We proceed by induction on n. The statement is trivial if n = 1. If n ≥ 2,

we use the following lemma, which will be proved afterwards.

Lemma 3.4.1 Let n ≥ 2 and α, β two nondecreasing sequences of n real
numbers, satisfying α ≺ β. Then there exists a sequence γ of n − 1 real
numbers such that

α1 ≤ γ1 ≤ α2 ≤ · · · ≤ γn−1 ≤ αn
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and γ ≺ β′ = (β1, . . . , βn−1).

We apply the lemma to the sequences α = λ, β = a. Since γ ≺ a′, the
induction hypothesis tells us that there exists a real symmetric matrix S
of size (n− 1)× (n− 1) with diagonal a′ and spectrum γ. From Corollary
3.3.2, there exist a vector y ∈ IRn and b ∈ IR such that the matrix

Σ =
(

S yT

y b

)

has spectrum λ. Since sn(a) = sn(λ) = Tr Σ = Tr S + b = sn−1(a′) + b, we
have b = an. Hence, a is the diagonal of Σ.

We prove now Lemma 3.4.1. Let ∆ be the set of sequences δ of n−1 real
numbers satisfying

α1 ≤ δ1 ≤ α2 ≤ · · · ≤ δn−1 ≤ αn (3.4)

together with

k∑
j=1

δj ≤
k∑

j=1

βj , ∀k ≤ n− 2. (3.5)

We must show that there exists δ ∈ ∆ such that sn−1(δ) = sn−1(β′). Since
∆ is convex and compact (it is closed and bounded in IRn), it is enough to
show that

inf
δ∈∆

sn−1(δ) ≤ sn−1(β′) ≤ sup
δ∈∆

sn−1(δ). (3.6)

On the one hand, α′ = (α1, . . . , αn−1) belongs to ∆ and sn−1(α′) ≤
sn−1(β′) from the hypothesis, which proves the first inequality in (3.6).

Let us now choose a δ that achieves the supremum of sn−1 over ∆. Let r
be the largest index less than or equal to n−2 such that sr(δ) = sr(β′), with
r = 0 if all the inequalities are strict. From sj(δ) < sj(β′) for r < j < n−1,
one has δj = αj+1, since otherwise, there would exist ε > 0 such that
δ̂ := δ + εej belong to ∆, and one would have sn−1(δ̂) = sn−1(δ) + ε,
contrary to the maximality of δ. Now let us compute

sn−1(δ)− sn−1(β′) = sr(β)− sn−1(β) + αr+2 + · · ·+ αn

= sr(β)− sn−1(β) + sn(α)− sr+1(α)
≥ sr(β)− sn−1(β) + sn(β)− sr+1(β)
= βn − βr+1 ≥ 0.

This proves (3.6) and completes the proof of the lemma.
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3.4.1 Hadamard’s Inequality

Proposition 3.4.2 Let H ∈ Hn be a positive semidefinite Hermitian
matrix. Then

detH ≤
n∏

j=1

hjj .

If H ∈ HPDn, the equality holds only if H is diagonal.

Proof
If detH = 0, there is nothing to prove, because the hjj are nonnegative

(these are numbers (ej)∗Hej). Otherwise, H is positive definite and one
has hjj > 0. We restrict attention to the case with a constant diagonal
by letting D := diag(h−1/2

11 , . . . , h
−1/2
nn ) and writing (det H)/(

∏
j hjj) =

detDHD = det H ′, where the diagonal entries of H ′ equal one. There
remains to prove that detH ′ ≤ 1. However, the eigenvalues µ1, . . . , µn of
H ′ are strictly positive, of sum n. Since the logarithm is concave, one has

1
n

log detH ′ =
1
n

∑
j

log µj ≤ log
1
n

∑
µj = log 1 = 0,

which proves the inequality. Since the concavity is strict, the equality holds
only if µ1 = · · · = µn = 1, but then H ′ is similar, thus equal to In. In that
case, H is diagonal.

Applying proposition 3.4.2 to matrices of the form M∗M or MM∗, one
obtains the following result.

Theorem 3.4.3 For M ∈Mn(CC), one has

| detM | ≤
n∏

i=1


 n∑

j=1

|mij |2



1/2

, | detM | ≤
n∏

j=1

(
n∑

i=1

|mij |2
)1/2

.

When M ∈ GLn(CC), the first (respectively the second) inequality is an
equality only if the rows (respectively the columns) of M are pairwise
orthogonal.

3.5 Exercises

1. Show that the eigenvalues of skew-Hermitian matrices, or as well
those of real skew-symmetric matrices, are pure imaginary.

2. Let P, Q ∈Mn(IR) be given. Assume that P + iQ ∈ GLn(CC). Show
that there exist a, b ∈ IR such that aP + bQ ∈ GLn(IR). Deduce that
if M, N ∈ Mn(IR) are similar in Mn(CC), then these matrices are
similar in Mn(IR).
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3. Show that a triangular and normal matrix is diagonal. Deduce that
if U∗TU is a unitary trigonalization of M , and if M is normal, then
T is diagonal.

4. For A ∈Mn(IR), symmetric positive definite, show that

max
i,j≤n

|aij | = max
i≤n

aii.

5. Given an invertible matrix

M =
(

a b
c d

)
∈ GL2(IR),

define a map hM from S2 := CC ∪ {∞} into itself by

hM (z) :=
az + b

cz + d
.

(a) Show that hM is a bijection.
(b) Show that h : M �→ hM is a group homomorphism. Compute its

kernel.
(c) Let H be the upper half-plane, consisting on those z ∈ CC with

�z > 0. Compute �hM (z) in terms of �z and deduce that the
subgroup

GL+
2 (IR) := {M ∈ GL2(IR) | detM > 0}

acts on H.
(d) Conclude that the group PSL2(IR) := SL2(IR)/{±I2}, called

the modular group, acts on H.
(e) Let M ∈ SL2(IR) be given. Determine, in terms of TrM , the

number of fixed points of hM on H.

6. Show that the supremum of a family of convex functions on IRN is
convex. Deduce that the map M �→ λn (largest eigenvalue of M)
defined on Hn is convex.

7. Show that M ∈Mn(CC) is normal if and only if there exists a unitary
matrix U such that M∗ = MU .

8. Show that in Mn(CC) the set of diagonalizable matrices is dense. Hint:
Use Theorem 3.1.3.

9. Let (a1, . . . , an) and (b1, . . . , bn) be two sequences of real numbers.
Find the supremum and the infimum of Tr(AB) as A (respectively B)
runs over the Hermitian matrices with spectrum equal to (a1, . . . , an)
(respectively (b1, . . . , bn)).

10. (Kantorovich inequality)
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(a) Let a1 ≤ · · · ≤ an be a list of real numbers, with a−1
n = a1 > 0.

Define

l(u) :=
n∑

j=1

ajuj , L(u) :=
n∑

j=1

uj

aj
.

Let Kn be the simplex of IRn defined by the constraints uj ≥ 0
for every j = 1, . . . , n, and

∑
j uj = 1. Show that there exists

an element v ∈ Kn that maximizes l + L and minimizes |L − l|
on Kn simultaneously.

(b) Deduce that

max
u∈Kn

l(u)L(u) =
(

a1 + an

2

)2

.

(c) Let A ∈ HPDn and let a1, an be the smallest and largest
eigenvalues of A. Show that for every x ∈ Cn,

(x∗Ax)(x∗A−1x) ≤ (a1 + an)2

4a1an
‖x‖4.

11. (Weyl’s inequalities)
Let A, B be two Hermitian matrices of size n × n whose respective
eigenvalues are α1 ≤ · · · ≤ αn and β1 ≤ · · · ≤ βn. Define C = A + B
and let γ1 ≤ · · · ≤ γn be its eigenvalues.

(a) Show that αj + β1 ≤ γj ≤ αj + βn.
(b) Let us recall that if F is a linear subspace of CCn, one writes

RA(F ) = max{x∗Ax |x ∈ F, ‖x‖2 = 1}.
Show that if G, H are two linear subspaces of CCn, then RC(G∩
H) ≤ RA(G) + RB(H).

(c) Deduce that if l, m ≥ 1 and l+m = k+n (hence l+m ≥ n+1),
then

γk ≤ αl + βm.

(d) Similarly, show that l + m = k + 1 implies

γk ≥ αl + βm.

(e) Conclude that the function A �→ λk(A) that associates to a Her-
mitian matrix its kth eigenvalue (in increasing order) is Lipschitz
with ratio 1, meaning that

|λk(B) − λk(A)| ≤ ‖B −A‖2 = ρ(B −A)

(see the next chapter for the meaning of the norm ‖M‖2 and for
the spectral radius ρ(M)).

Remark: The description of the set of the 3n-tuplets (�α, �β,�γ) as A
and B run over Hn is especially delicate. For a complete historical
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account of this question, one may read the first section of Fulton’s
and Bhatia’s articles [16, 6]. For another partial result, see Exercise
19 of Chapter 5 (theorem of Lidskii).

12. Let A be a Hermitian matrix of size n × n whose eigenvalues are
α1 ≤ · · · ≤ αn. Let B be a Hermitian positive semidefinite matrix.
Let γ1 ≤ · · · ≤ γn be the eigenvalues of A + B. Show that γk ≥ αk.

13. Let M, N be two Hermitian matrices such that N and M − N are
positive semidefinite. Show that detN ≤ detM .

14. Let A ∈Mp(CC), C ∈Mq(CC) be given with p, q ≥ 1. Assume that

M :=
(

A B
B∗ C

)

is Hermitian positive definite. Show that detM ≤ (detA)(det C). Use
the previous exercise and Proposition 8.1.2.

15. For M ∈ HPDn, we denote by Pk(M) the product of all the principal
minors of order k of M . There are(

n
k

)

such minors.
Applying Proposition 3.4.2 to the matrix M−1, show that

Pn(M)n−1 ≤ Pn−1(M),

and then in general that

Pk+1(M)k ≤ Pk(M)n−k.

16. Let d : Mn(IR)→ IR+ be a multiplicative function; that is,

d(MN) = d(M)d(N)

for every M, N ∈ Mn(IR). If α ∈ IR, define δ(α) := d(αIn)1/n.
Assume that d is not constant.

(a) Show that d(0n) = 0 and d(In) = 1. Deduce that P ∈ GLn(IR)
implies d(P ) �= 0 and d(P−1) = 1/d(P ). Show, finally, that if M
and N are similar, then d(M) = d(N).

(b) Let D ∈Mn(IR) be diagonal. Find matrices D1, . . . , Dn−1, sim-
ilar to D, such that DD1 · · ·Dn−1 = (detD)In. Deduce that
d(D) = δ(det D).

(c) Let M ∈Mn(IR) be a diagonalizable matrix. Show that d(M) =
δ(detM).

(d) Using the fact that MT is similar to M , show that d(M) =
δ(detM) for every M ∈Mn(IR).
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17. Let B ∈ GLn(CC). Verify that the inverse and the Hermitian adjoint
of B−1B∗ are similar. Conversely, let A ∈ GLn(CC) be a matrix whose
inverse and the Hermitian adjoint are similar: A∗ = PA−1P−1.

(a) Show that there exists an invertible Hermitian matrix H such
that H = A∗HA. Look for an H as a linear combination of P
and of P ∗.

(b) Show that there exists a matrix B ∈ GLn(CC) such that A =
B−1B∗. Look for a B of the form (aIn + bA∗)H .

18. Let A ∈Mn(CC) be given, and let λ1, . . . , λn be its eigenvalues. Show,
by induction on n, that A is normal if and only if

∑
i,j

|aij |2 =
n∑
1

|λl|2.

Hint: The left-hand side (whose square root is called Schur’s norm)
is invariant under conjugation by a unitary matrix. It is then enough
to restrict attention to the case of a triangular matrix.

19. (a) Show that | det(In + A)| ≥ 1 for every skew-Hermitian matrix
A, and that equality holds only if A = 0n.

(b) Deduce that for every M ∈Mn(CC) such that H := (M +M∗)/2
is positive definite,

detH ≤ | detM |
by showing that H−1(M −M∗) is similar to a skew-Hermitian
matrix. You may use the square root defined at Chapter 7.

20. Describe every positive semidefinite matrix M ∈ Symn(IR) such that
mjj = 1 for every j and possessing the eigenvalue λ = n (first show
that M has rank one).

21. If A, B ∈Mn×m(CC), define the Hadamard product of A and B by

A ◦B := (aijbij)1≤i≤n,1≤j≤m.

(a) Let A, B be two Hermitian matrices. Verify that A ◦ B is
Hermitian.

(b) Assume that A and B are positive semidefinite, of respective
ranks p and q. Using Proposition 3.2.1, show that there exist pq
vectors zαβ such that

A ◦B =
∑
α,β

zαβz∗αβ .

Deduce that A ◦B is positive semi-definite.
(c) If A and B are positive definite, show that A ◦B also is positive

definite.
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(d) Construct an example for which p, q < n, but A ◦ B is positive
definite.

22. (Fiedler and Pták [13]) Given a matrix A ∈Mn(IR), we wish to prove
the equivalence of the following properties:

P1 For every vector x �= 0 there exists an index k such that
xk(Ax)k > 0.

P2 For every vector x �= 0 there exists a diagonal matrix D with
positive diagonal elements such that the scalar product (Ax, Dx)
is positive.

P3 For every vector x �= 0 there exists a diagonal matrix D with
nonnegative diagonal elements such that the scalar product
(Ax, Dx) is positive.

P4 The real eigenvalues of all principal submatrices of A are positive.
P5 All principal minors of A are positive.

We shall use the following notation: if x ∈ IRn and if J is the index set
of its nonzero components, then xJ denotes the vector in IRk, and k
the cardinality of J , where one retains only the nonzero components
of x. To the set J one also associates the matrix AJ , retaining only
the indices in J .

(a) Prove that Pj implies P(j+1) for every j = 1, . . . , 4.
(b) Assume P5. Show that for every diagonal matrix D with

nonnegative entries, one has det(A + D) > 0.
(c) Then prove that P5 implies P1.



4
Norms

4.1 A Brief Review

In this Chapter, the field K will always be IR or CC and E will denote Kn.
If A ∈ Mn(K), the spectral radius of A, denoted by ρ(A), is defined as

the largest modulus of the eigenvalues of A:

ρ(A) = max{|λ|; λ ∈ Sp(A)}.

When K = IR, one takes into account the complex eigenvalues when
computing ρ(A).

The scalar (if K = IR) or Hermitian (if K = CC) product on E is denoted
by (x, y) :=

∑
j xj ȳj. The vector space E is endowed with various norms,

pairwise equivalent since E has finite dimension (Proposition 4.1.3 below).
Among these, the most used norms are the lp norms:

‖x‖p =


∑

j

|xj |p



1/p

, ‖x‖∞ = max
j
|xj |.

Proposition 4.1.1 For 1 ≤ p ≤ ∞, the map x �→ ‖x‖p is a norm on E.
In particular, one has Minkowski’s inequality

‖x + y‖p ≤ ‖x‖p + ‖y‖p. (4.1)
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Furthermore, one has Hölder’s inequality

|(x, y)| ≤ ‖x‖p‖y‖p′ ,
1
p

+
1
p′

= 1. (4.2)

The numbers p, p′ are called conjugate exponents.
Proof
Everything except the Hölder and Minkowski inequalities is obvious.

When p = 1 or p = ∞, these inequalities are trivial. We thus assume
that 1 < p <∞.

Let us begin with (4.2). If x or y is null, it is obvious. Indeed, one can
even assume, by decreasing the value of n, that none of the xj , yj ’s is null.
Likewise, since |(x, y)| ≤∑

j |xj ||yj |, one can also assume that the xj , yj are
real and positive. Dividing by ‖x‖p and by ‖y‖p′ , one may restrict attention
to the case where ‖x‖p = ‖y‖p′ = 1. Hence, xj , yj ∈ (0, 1] for every j. Let
us define

aj = p log xj , bj = p′ log yj .

Since the exponential function is convex,

eaj/p+bj/p′ ≤ 1
p
eaj +

1
p′

ebj ,

that is,

xjyj ≤ 1
p
xp

j +
1
p′

yp′
j .

Summing over j, we obtain

(x, y) ≤ 1
p
‖x‖p

p +
1
p′
‖y‖p′

p′ =
1
p

+
1
p′

= 1,

which proves (4.2).
We now turn to (4.1). First, we have

‖x + y‖p
p =

∑
k

|xk + yk|p ≤
∑

k

|xk||xk + yk|p−1 +
∑

k

|yk||xk + yk|p−1.

Let us apply Hölder’s inequality to each of the two terms of the right-hand
side. For example,

∑
k

|xk||xk + yk|p−1 ≤ ‖x‖p

(∑
k

|xk + yk|(p−1)p′
)1/p′

,

which amounts to∑
k

|xk||xk + yk|p−1 ≤ ‖x‖p‖x + y‖p−1
p .

Finally,

‖x + y‖p
p ≤ (‖x‖p + ‖y‖p)‖x + y‖p−1

p ,
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which gives (4.1).

For p = 2, the norm ‖ · ‖2 is given by a Hermitian form and thus satisfies
the Cauchy–Schwarz inequality:

|(x, y)| ≤ ‖x‖2‖y‖2.
This is a particular case of Hölder’s inequality.

Proposition 4.1.2 For conjugate exponents p, p′, one has

‖x‖p = sup
y �=0

�(x, y)
‖y‖p′

.

Proof
The inequality ≥ is a consequence of Hölder’s. The reverse inequality is

obtained by taking yj = x̄j |xj |p−2 if p < ∞. If p = ∞, choose yj = x̄j for
an index j such that |xj | = ‖x‖∞. For k �= j, take yk = 0.

Definition 4.1.1 Two norms N and N ′ on a (real or complex) vector
space are said to be equivalent if there exist two numbers c, c′ ∈ IR such
that

N ≤ cN ′, N ′ ≤ c′N.

The equivalence between norms is obviously an equivalence relation, as
its name implies. As announced above, we have the following result.

Proposition 4.1.3 All norms on E = Kn are equivalent. For example,

‖x‖∞ ≤ ‖x‖p ≤ n1/p‖x‖∞.

Proof
It is sufficient to show that every norm is equivalent to ‖ · ‖1.
Let N be a norm on E. If x ∈ E, the triangle inequality gives

N(x) ≤
∑

i

|xi|N(ei),

where (e1, . . . , en) is the canonical basis. One thus has N ≤ c‖ · ‖1 for
c := maxi N(ei). Observe that this first inequality expresses the fact that
N is Lipschitz (hence continuous) on the metric space X = (E, ‖ · ‖1).

For the reverse inequality, we reduce ad absurdum: Let us assume that
the supremum of ‖x‖1/N(x) is infinite for x �= 0. By homogeneity, there
would then exist a sequence of vectors (xm)m∈IN such that ‖xm‖1 = 1 and
N(xm) → 0 when m → +∞. Since the unit sphere of X is compact, one
may assume (up to the extraction of a subsequence) that xm converges to
a vector x such that ‖x‖1 = 1. In particular, x �= 0. Since N is continuous
on X , one has also N(x) = limm→+∞ N(xm) = 0. Since N is a norm, we
deduce x = 0, a contradiction.
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4.1.1 Duality

Definition 4.1.2 Given a norm ‖ · ‖ on IRn, its dual norm on IRn is
defined by

‖x‖′ := sup
y �=0

yT x

‖y‖ .

The fact that ‖ · ‖′ is a norm is obvious. The dual of a norm on CCn is
defined in a similar way, with �y∗x instead of yT x. For every x, y ∈ CCn,
one has

�y∗x ≤ ‖x‖ · ‖y‖′. (4.3)

Proposition 4.1.2 shows that the dual norm of ‖·‖p is ‖·‖q for 1/p+1/q = 1.
This suggests the following property.

Proposition 4.1.4 The bidual (dual of the dual norm) of a norm is this
norm itself:

(‖ · ‖′)′ = ‖ · ‖.
Proof
From (4.3), one has (‖ · ‖′)′ ≤ ‖ · ‖. The converse is a consequence of

the Hahn–Banach theorem: the unit ball B of ‖ · ‖ is convex and compact.
If x is a point of its boundary (that is, ‖x‖ = 1), there exists an IR-
affine (that is, of the form constant plus IR-linear) function that is zero
at x and nonpositive on B. Such a function can be written in the form
z �→ �z∗y + c, where c is a constant, necessarily equal to −�z∗x. Without
loss of generality, one may assume that z∗x is real. Hence

‖y‖′ = sup
‖z‖=1

�y∗z = y∗x.

One deduces

(‖x‖′)′ ≥ y∗x
‖y‖′ = 1 = ‖x‖.

By homogeneity, this is true for every x ∈ CCn.

4.1.2 Matrix Norms

Let us recall that Mn(K) can be identified with the set of endomorphisms
of E = Kn by

A �→ (x �→ Ax).

Definition 4.1.3 If ‖ · ‖ is a norm on E and if A ∈Mn(K), we define

‖A‖ := sup
x �=0

‖Ax‖
‖x‖ .
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Equivalently,

‖A‖ = sup
‖x‖≤1

‖Ax‖ = max
‖x‖≤1

‖Ax‖.

One verifies easily that A �→ ‖A‖ is a norm on Mn(K). It is called the norm
induced by that of E, or the norm subordinated to that of E. Though we
adopted the same notation ‖ · ‖ for the two norms, that on E and that on
Mn(K), these are, of course, distinct objects. In many places, one finds the
notation ||| · ||| for the induced norm. When one does not wish to mention
from which norm on E a given norm on Mn(K) is induced, one says that
A �→ ‖A‖ is a matrix norm. The main properties of matrix norms are

‖AB‖ ≤ ‖A‖ ‖B‖, ‖In‖ = 1.

These properties are those of any algebra norm (otherwise called norm of
algebra, see Section 4.4). In particular, one has ‖Ak‖ ≤ ‖A‖k for every
k ∈ IN .

Here are a few examples induced by the norms lp:

‖A‖1 = max
1≤j≤n

i=n∑
i=1

|aij |,

‖A‖∞ = max
1≤i≤n

j=n∑
j=1

|aij |,

‖A‖2 = ρ(A∗A)1/2.

To prove these formulas, we begin by proving the inequalities ≥, selecting
a suitable vector x, and writing ‖A‖p ≥ ‖Ax‖p/‖x‖p. For p = 1 we choose
an index j such that the maximum in the above formula is achieved. Then
we let xj = 1, while xk = 0 otherwise. For p = ∞, we let xj = āi0j/|ai0j |,
where i0 achieves the maximum in the above formula; For p = 2 we choose
an eigenvector of A∗A associated to an eigenvalue of maximal modulus.
We thus obtain three inequalities. The reverse inequalities are direct con-
sequences of the definitions. The values of ‖A‖1 and ‖A‖∞ illustrate a
particular case of the general formula

‖A∗‖′ = ‖A‖ = sup
x �=0

sup
y �=0

�(y∗Ax)
‖x‖ · ‖y‖′ .

Proposition 4.1.5 For an induced norm, the condition ‖B‖ < 1 implies
that In −B is invertible, with inverse given by the sum of the series

∞∑
k=0

Bk.

Proof
The series

∑
k Bk is normally convergent, since

∑
k ‖Bk‖ ≤ ∑

k ‖B‖k,
where the latter series converges because ‖B‖ < 1. Since Mn(K) is com-
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plete, the series
∑

k Bk converges. Furthermore, (In − B)
∑

k≤N Bk =
In −BN+1, which tends to In. The sum of the series is thus the inverse of
In −B. One has, moreover,

‖(In −B)−1‖ ≤
∑

k

‖B‖k =
1

1− ‖B‖ .

One can also deduce Proposition 4.1.5 from the following statement.

Proposition 4.1.6 For every induced norm, one has

ρ(A) ≤ ‖A‖.
Proof

The case K = CC is easy, because there exists an eigenvector X ∈ E
associated to an eigenvalue of modulus ρ(A):

ρ(A)‖X‖ = ‖λX‖ = ‖AX‖ ≤ ‖A‖ ‖X‖.
If K = IR, one needs a more involved trick.

Let us choose a norm on CCn and let us denote by N the induced norm
on Mn(CC). We still denote by N its restriction to Mn(IR); it is a norm.
Since this space has finite dimension, any two norms are equivalent: There
exists C > 0 such that N(B) ≤ C‖B‖ for every B in Mn(IR). Using the
result already proved in the complex case, one has for every m ∈ IN that

ρ(A)m = ρ(Am) ≤ N(Am) ≤ C‖Am‖ ≤ C‖A‖m.

Taking the mth root and letting m tend to infinity, and noticing that C1/m

tends to 1, one obtains the announced inequality.
In general, the equality does not hold. For example, if A is nilpotent

though nonzero, one has ρ(A) = 0 < ‖A‖ for every matrix norm.

Proposition 4.1.7 Let ‖ · ‖ be a norm on Kn and P ∈ GLn(K). Hence,
N(x) := ‖Px‖ defines a norm on Kn. Denoting still by ‖ · ‖ and N the
induced norms on Kn, one has N(A) = ‖PAP−1‖.
Proof

Using the change of dummy variable y = Px, we have

N(A) = sup
x �=0

‖PAx‖
‖Px‖ = sup

y �=0

‖PAP−1y‖
‖y‖ = ‖PAP−1‖.

4.2 Householder’s Theorem

Householder’s theorem is a kind of converse of the inequality ρ(B) ≤ ‖B‖.



4.3. An Interpolation Inequality 67

Theorem 4.2.1 For every B ∈Mn(CC) and all ε > 0, there exists a norm
on CCn such that for the induced norm

‖B‖ ≤ ρ(B) + ε.

In other words, ρ(B) is the infimum of ‖B‖, as ‖ · ‖ ranges over the set
of matrix norms.

Proof
From Theorem 2.7.1 there exists P ∈ GLn(CC) such that T := PBP−1

is upper triangular. From Proposition 4.1.7, one has

inf ‖B‖ = inf ‖PBP−1‖ = inf ‖T ‖,
where the infimum is taken over the set of induced norms. Since B and
T have the same spectra, hence the same spectral radius, it is enough to
prove the theorem for upper triangular matrices.

For such a matrix T , Proposition 4.1.7 still gives

inf ‖T ‖ ≤ inf{‖QTQ−1‖2; Q ∈ GLn(CC)}.
Let us now take Q(µ) = diag(1, µ, µ2, . . . , µn−1). The matrix Q(µ)TQ(µ)−1

is upper triangular, with the same diagonal as that of T . Indeed, the entry
with indices (i, j) becomes µi−jtij . Hence,

lim
µ→∞Q(µ)TQ(µ)−1

is simply the matrix D = diag(t11, . . . , tnn). Since ‖ · ‖2 is continuous (as
is every norm), one deduces

inf ‖T ‖ ≤ lim
µ→∞ ‖Q(µ)TQ(µ)−1‖2 = ‖D‖2 =

√
ρ(D∗D) = max |tjj | = ρ(T ).

Remark: The theorem tells us that ρ(A) = Λ(A), where

Λ(A) := inf ‖A‖,
the infimum being taken over the set of matrix norms. The first part of the
proof tells us that ρ and Λ coincide on the set of diagonalizable matrices,
which is a dense subset of Mn(CC). But this is insufficient to conclude,
since Λ is a priori only upper semicontinuous, as the infimum of continuous
functions. The continuity of Λ is actually a consequence of the theorem.

4.3 An Interpolation Inequality

Theorem 4.3.1 (case K = CC) Let ‖ · ‖p be the norm on Mn(CC) induced
by the norm lp on CCn. The function

1/p �→ log ‖A‖p,

[0, 1] → IR,
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is convex. In other words, if 1/r = θ/p + (1− θ)/q with θ ∈ (0, 1), then

‖A‖r ≤ ‖A‖θ
p‖A‖1−θ

q .

Remark:

1. The proof uses the fact that K = CC. However, the norms induced
by the ‖ · ‖p’s on Mn(IR) and Mn(CC) take the same values on real
matrices, even though their definitions are different (see Exercise 6).
The statement is thus still true in Mn(IR).

2. The case (p, q, r) = (1,∞, 2) admits a direct proof. See the exercises.

3. The result still holds true in infinite dimension, at the expense of
some functional analysis. One even can take different Lp norms at
the source and target spaces. Here is an example:

Theorem 4.3.2 (Riesz–Thorin) Let Ω be an open set in IRD and
ω an open set in IRd. Let p0, p1, q0, q1 be four numbers in [1, +∞].
Let θ ∈ [0, 1] and p, q be defined by

1
p

=
1− θ

p0
+

θ

p1
,

1
q

=
1− θ

q0
+

θ

q1
.

Consider a linear operator T defined on Lp0∩Lp1(Ω), taking values in
Lq0∩Lq1(ω). Assume that T can be extended as a continuous operator
from Lpj(Ω) to Lqj (ω), with norm Mj, j = 1, 2 :

Mj := sup
f �=0

‖Tf‖qj

‖f‖pj

.

Then T can be extended as a continuous operator from Lp(Ω) to
Lq(ω), and its norm is bounded above by

M1−θ
0 Mθ

1 .

4. A fundamental application is the continuity of the Fourier transform
from Lp(IRd) into its dual Lp′

(IRd) when 1 ≤ p ≤ 2. We have only
to observe that (p0, p1, q0, q1) = (1, 2, +∞, 2) is suitable. It can be
proved by inspection that every pair (p, q) such that the Fourier trans-
form is continuous from Lp(IRd) into Lq(IRd) has the form (p, p′) with
1 ≤ p ≤ 2.

5. One has analogous results for Fourier series. There lies the origin of
Riesz–Thorin theorem.

Proof (due to F. Riesz)
Let us fix x and y in Kn. We have to bound

|(Ax, y)| =
∣∣∣∣∣∣
∑
j,k

ajkxj ȳk

∣∣∣∣∣∣ .
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Let B be the strip in the complex plane defined by �z ∈ [0, 1]. Given z ∈ B,
define (conjugate) exponents r(z) and r′(z) by

1
r(z)

=
z

p
+

1− z

q
,

1
r′(z)

=
z

p′
+

1− z

q′
.

Set

Xj(z) := |xj |−1+r/r(z)xj = xj exp
((

r

r(z)
− 1

)
log |xj |

)
,

Yj(z) := |yj |−1+r′/r′(z̄)yj .

We then have

‖X(z)‖r(
z) = ‖x‖r/r(
z)
r , ‖Y (z)‖r′(
z) = ‖y‖r′/r′(
z)

r′ .

Next, define a holomorphic map in the strip B by f(z) := (AX(z), Y (z)).
It is bounded, because the numbers Xj(z) and Yk(z) are. For example,

|Xj(z)| = |xj |r/r(
z)

lies between |xj |r/p and |xj |r/q.
Let us set M(θ) = sup{|f(z)|;�z = θ}. Hadamard’s three lines lemma

(see [29], Chapter 12, exercise 8) expresses that

θ �→ log M(θ)

is convex on (0, 1). However, r(0) = q, r(1) = p, r′(0) = q′, r′(1) = p′,
r(θ) = r, r′(θ) = r′, X(θ) = x, and Y (θ) = y. Hence

|(Ax, y)| = |f(θ)| ≤M(θ) ≤M(1)θM(0)1−θ.

Now we have

M(1) = sup{|f(z)|;�z = 1}
≤ sup{‖AX(z)‖r(1)‖Y (z)‖r(1)′ ;�z = 1}
= sup{‖AX(z)‖p‖Y (z)‖p′ ;�z = 1}
≤ ‖A‖p sup{‖X(z)‖p‖Y (z)‖p′ ;�z = 1}
= ‖A‖p‖x‖r/p

r ‖y‖r′/p′

r′ .

Likewise, M(0) ≤ ‖A‖q‖x‖r/q
r ‖y‖r′/q′

r′ . Hence

|(Ax, y)| ≤ ‖A‖θ
p‖A‖1−θ

q ‖x‖r(θ/p+(1−θ)/q)
r ‖y‖r′(θ/p′+(1−θ)/q′)

r′

= ‖A‖θ
p‖A‖1−θ

q ‖x‖r‖y‖r′.

Finally,

‖Ax‖r = sup
y �=0

|(Ax, y)|
‖y‖r′

≤ ‖A‖θ
p‖A‖1−θ

q ‖x‖r,

which proves the theorem.
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4.4 A Lemma about Banach Algebras

Definition 4.4.1 A normed algebra is a K-algebra endowed with a norm
satisfying ‖xy‖ ≤ ‖x‖ ‖y‖. Such a norm is called an algebra norm. When
a normed algebra is complete (which is always true in finite dimension), it
is called a Banach algebra.

Lemma 4.4.1 Let A be a normed algebra and let x ∈ A. The sequence
um := ‖xm‖1/m converges to its infimum, denoted by r(x). Additionally,
if K = CC, and if A has a unit element and is complete, then 1/r(x) is
the radius of the largest open ball B(0; R) such that e− zx is invertible for
every z ∈ B(0; R).

Of course, one may apply the lemma to A = Mn(CC) endowed with
a matrix norm. One then has r(x) = ρ(x), because e − zx = I − zA is
invertible, provided that z is not the inverse of an eigenvalue. In the case
K = IR, one uses an auxiliary norm N that is the restriction to Mn(IR) of
an induced norm on Mn(CC). Since ‖ · ‖ and N are equivalent, one simply
writes

ρ(A) = ρ(Am)1/m ≤ ‖Am‖1/m ≤ C1/mN(Am)1/m.

The latter sequence converges to ρ(A) from the lemma, which implies the
convergence of the former. We thus have the following result.

Proposition 4.4.1 If A ∈Mn(K), then

ρ(A) = lim
m→∞ ‖A

m‖1/m

for every matrix norm.

Proof

Convergence. The result is trivial if xm = 0 for some exponent. In the
opposite case, we use the following inequalities, which come directly
from the definition:

‖xap+r‖ ≤ ‖xp‖a‖xr‖, ∀a, p, r ∈ IN.

We then define

vm =
1
m

log ‖xm‖ = log um.

Let us fix an integer p and perform Euclidean division of m by p:
m = ap + r with 0 ≤ r ≤ p− 1. This yields

vap+r ≤ apvp + rvr

ap + r
.

As m, hence a, tends to infinity, the right-hand side converges,
because rvr remains bounded:

lim sup vm ≤ vp.



4.5. The Gershgorin Domain 71

Since this holds true for every p, we conclude that

lim sup vm ≤ inf vp ≤ lim inf vp,

which proves the convergence to the infimum.

Characterization (complex case). If R < 1/r(x), the Taylor series∑
m∈IN

zmxm, z ∈ CC,

converges in norm in the ball B(0; R). Its sum equals (e− zx)−1 (see
the proof of Proposition 4.1.5).
The domain of the map z �→ (e− zx)−1 is open, since if it contains a
point z0, the previous paragraph shows that e− (z− z0)(e− z0x)−1x
is invertible for every z satisfying

|z − z0|r
(
(e− z0x)−1x

)
< 1.

Denoting by Xz the inverse, we see that Xz(e− z0x)−1 is an inverse
of e− zx. In particular, f : z �→ (e− z)−1 is holomorphic.
If f is defined on a ball B(0; s), Cauchy’s formula

xm =
1
m!

f (m)(0) =
1

2iπ

∫
B(0;s)

f(z)
zm+1

dz

shows that ‖xm‖ = O(s−m). Hence, 1/r(x) ≥ s.

Corollary 4.4.1 Let B ∈Mn(K) be given. Then Bm m→+∞→ 0 if and only
if ρ(B) < 1.

Indeed, ρ(B) ≥ 1 implies ‖Bm‖ ≥ ρ(Bm) ≥ 1 for every m. Conversely,
ρ(B) < 1 implies ‖Bm‖ < rm for m large enough, where r is selected in
(ρ(B), 1).

We observe that this result is also a consequence of Householder’s
theorem.

4.5 The Gershgorin Domain

Let A ∈Mn(CC), and let λ be an eigenvalue and x an associated eigenvector.
Let i be an index such that |xi| = ‖x‖∞. Then xi �= 0 and

|aii − λ| =
∣∣∣∣∣∣
∑
j �=i

aij
xj

xi

∣∣∣∣∣∣ ≤
∑
j �=i

|aij |.

Proposition 4.5.1 (Gershgorin) The spectrum of A is included in the
Gershgorin domain G(A), defined as the union of the Gershgorin disks
Di := D(aii;

∑
j �=i |aij |).
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This result can also be deduced from Proposition 4.1.5: Let us decompose
A = D + C, where D is the diagonal part of A. If λ �= aii for every i, then
λIn − A = (λIn −D)(In − B) with B = (λIn −D)−1C. Hence, if λ is an
eigenvalue, then either λ is an aii, or ‖B‖∞ ≥ 1.

One may improve this result by considering the connected components
of G. Let G be one of them. It is the union of the Dk’s that meet it. Let
p be the number of such disks. One then has G = ∪i∈IDi where I has
cardinality p.

Theorem 4.5.1 There are exactly p eigenvalues of A in G, counted with
their multiplicities.

Proof
For r ∈ [0, 1], we define a matrix A(r) by the formula

aij(r) :=
{

aii, j = i,
raij , j �= i.

It is clear that the Gershgorin domain Gr of A(r) is included in G. We
observe that A(1) = A, and that r �→ A(r) is continuous. Let us denote by
m(r) the number of eigenvalues (counted with multiplicity) of A(r) that
belong to G.

Since G and G \G are compact, one can find a Jordan curve, oriented in
the trigonometric sense, that separates G from G\G. Let Γ be such a curve.
Since Gr is included in G, the residue formula expresses m(r) in terms of
the characteristic polynomial of A(r):

m(r) =
1

2iπ

∫
Γ

P ′
r(z)

Pr(z)
dz.

Since Pr does not vanish on Γ and r �→ Pr, P
′
r are continuous, we deduce

that r �→ m(r) is continuous. Since m(r) is an integer and [0, 1] is connected,
m(r) remains constant. In particular, m(0) = m(1).

Finally, m(0) is the number of entries ajj (eigenvalues of A(0)) that
belong to G. But ajj is in G if and only if Dj ⊂ G. Hence m(0) = p, which
implies m(1) = p, the desired result.

An improvement of Gershgorin’s theorem concerns irreducible matrices.

Proposition 4.5.2 Let A be an irreducible matrix. If an eigenvalue of A
does not belong to the interior of any Gershgorin disk, then it belongs to
all the circles S(aii;

∑
j �=i |aij |).

Proof
Let λ be such an eigenvalue and x an associated eigenvector. By assump-

tion, one has |λ − aii| ≥
∑

j �=i |aij | for every i. Let I be the set of indices
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for which |xi| = ‖x‖∞ and let J be its complement. If i ∈ I, then

‖x‖∞
∑
j �=i

|aij | ≤ |λ− aii| ‖x‖∞ =

∣∣∣∣∣∣
∑
j �=i

aijxj

∣∣∣∣∣∣ ≤
∑
j �=i

|aij | |xj |.

It follows that
∑

j �=i(‖x‖∞ − |xj |)|aij | ≤ 0, where all the terms in the sum
are nonnegative. Each term is thus zero, so that aij = 0 for j ∈ J . Since A
is irreducible, J is empty. One has thus |xj | = ‖x‖∞ for every j, and the
previous inequalities show that λ belongs to every circle.

Definition 4.5.1 A square matrix A ∈Mn(CC) is said to be

1. diagonally dominant if

|aii| ≥
∑
j �=i

|aij |, 1 ≤ i ≤ n;

2. strongly diagonally dominant if in addition at least one of these n
inequalities is strict;

3. strictly diagonally dominant if the inequality is strict for every index
i.

Corollary 4.5.1 Let A be a square matrix. If A is strictly diagonally dom-
inant, or if A is irreducible and strongly diagonally dominant, then A is
invertible.

In fact, either zero does not belong to the Gershgorin domain, or it is
not interior to the disks. In the latter case, A is assumed to be irreducible,
and there exists a disk Dj that does not contain zero.

4.6 Exercises

1. Under what conditions on the vectors a, b ∈ CCn does the matrix M
defined by mij = aibj satisfy ‖M‖p = 1 for every p ∈ [1,∞]?

2. Under what conditions on x, y, and p does the equality in (4.2) or
(4.1) hold?

3. Show that

lim
p→+∞ ‖x‖p = ‖x‖∞, ∀x ∈ E.

4. A norm on Kn is a strictly convex norm if ‖x‖ = ‖y‖ = 1, x �= y, and
0 < θ < 1 imply ‖θx + (1 − θ)y‖ < 1.

(a) Show that ‖ · ‖p is strictly convex for 1 < p < ∞, but is not so
for p = 1,∞.
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(b) Deduce from Corollary 5.5.1 that the induced norm ‖ · ‖p is not
strictly convex on Mn(IR).

5. Let N be a norm on IRn.

(a) For x ∈ CCn, define

N1(x) := inf

{∑
l

|αl|N(xl)

}
,

where the infimum is taken over the set of decompositions x =∑
l αlx

l with αl ∈ CC and xl ∈ IRn. Show that N1 is a norm on
CCn (as a CC-vector space) whose restriction to IRn is N . Note:
N1 is called the complexification of N .

(b) Same question as above for N2, defined by

N2(x) :=
1
2π

∫ 2π

0

[eiθx]dθ,

where

[x] :=
√

N(�x)2 + N(�x)2.

(c) Show that N2 ≤ N1.
(d) If N(x) = ‖x‖1, show that N1(x) = ‖x‖1. Considering then the

vector

x =
(

1
i

)
,

show that N2 �= N1.

6. (continuation of exercise 5)
The norms N (on IRn) and N1 (on CCn) lead to induced norms on
Mn(IR) and Mn(CC), respectively. Show that if M ∈ Mn(IR), then
N(M) = N1(M). Deduce that Theorem 4.3.1 holds true in Mn(IR).

7. Let ‖ · ‖ be an algebra norm on Mn(K) (K = IR or CC), that is, a
norm satisfying ‖AB‖ ≤ ‖A‖ · ‖B‖. Show that ρ(A) ≤ ‖A‖ for every
A ∈Mn(K).

8. In Mn(CC), let D be a diagonalizable matrix and N a nilpotent matrix
that commutes with D. Show that ρ(D) = ρ(D + N).

9. Let B ∈Mn(CC) be given. Assume that there exists an induced norm
such that ‖B‖ = ρ(B). Let λ be an eigenvalue of maximal modulus
and X a corresponding eigenvector. Show that X does not belong to
the range of B − λIn. Deduce that the Jordan block associated to λ
is diagonal (Jordan reduction is presented in Chapter 6).

10. (continuation of exercise 9)
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Conversely, show that if the Jordan blocks of B associated to the
eigenvalues of maximal modulus of B are diagonal, then there exists
a norm on CCn such that, using the induced norm, ρ(B) = ‖B‖.

11. Here is another proof of Theorem 4.2.1. Let K = IR or CC, A ∈
Mn(K), and let N be a norm on Kn. If ε > 0, we define for all
x ∈ Kn

‖x‖ :=
∑
k∈IN

(ρ(A) + ε)−kN(Akx).

(a) Show that this series is convergent (use Corollary 4.4.1).
(b) Show that ‖ · ‖ is a norm on Kn.
(c) Show that for the induced norm, ‖A‖ ≤ ρ(A) + ε.

12. A matrix norm ‖ · ‖ on Mn(CC) is said to be unitarily invariant if
‖UAV ‖ = ‖A‖ for every A ∈Mn(CC) and all unitary matrices U, V .

(a) Find, among the most classical norms, two examples of unitarily
invariant norms.

(b) Given a unitarily invariant norm, show that there exists a norm
N on IRn such that

‖A‖ = N(s1(A), . . . , sn(A)),

where the sj(A)’s, the eigenvalues of H in the polar decompo-
sition A = QH (see Chapter 7 for this notion), are called the
singular values of A.

13. (R. Bhatia [5]) Suppose we are given a norm ‖ · ‖ on Mn(CC) that
is unitarily invariant (see the previous exercise). If A ∈ Mn(CC), we
denote by D(A) the diagonal matrix obtained by keeping only the
ajj and setting all the other entries to zero. If σ is a permutation,
we denote by Aσ the matrix whose entry of index (j, k) equals ajk if
k = σ(j), and zero otherwise. For example, Aid = D(A), where id is
the identity permutation. If r is an integer between 1− n and n− 1,
we denote by Dr(A) the matrix whose entry of index (j, k) equals ajk

if k − j = r, and zero otherwise. For example, D0(A) = D(A).

(a) Let ω = exp(2iπ/n) and let U be the diagonal matrix whose
diagonal entries are the roots of unity 1, ω, . . . , ωn−1. Show that

D(A) =
1
n

n−1∑
j=0

U∗jAU j .

Deduce that ‖D(A)‖ ≤ ‖A‖.
(b) Show that ‖Aσ‖ ≤ ‖A‖ for every σ ∈ Sn. Observe that ‖P‖ =

‖In‖ for every permutation matrix P . Show that ‖M‖ ≤ ‖In‖
for every bistochastic matrix M (see Section 5.5 for this notion).
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(c) If θ ∈ IR, let us denote by Uθ the diagonal matrix, whose kth
diagonal term equals exp(ikθ). Show that

Dr(A) =
1
2π

∫ 2π

0

eirθUθAU∗
θ dθ.

(d) Deduce that ‖Dr(A)‖ ≤ ‖A‖.
(e) Let p be an integer between zero and n− 1 and r = 2p + 1. Let

us denote by Tr(A) the matrix whose entry of index (j, k) equals
ajk if |k − j| ≤ p, and zero otherwise. For example, T3(A) is a
tridiagonal matrix. Show that

Tr(A) =
1
2π

∫ 2π

0

dp(θ)UθAU∗
θ dθ,

where

dp(θ) =
p∑
−p

eikθ

is the Dirichlet kernel.
(f) Deduce that ‖Tr(A)‖ ≤ Lp‖A‖, where

Lp =
1
2π

∫ 2π

0

|dp(θ)|dθ

is the Lebesgue constant (note: Lp = 4π−2 log p +O(1)).
(g) Let ∆(A) be the upper triangular matrix whose entries above

the diagonal coincide with those of A. Using the matrix

B =
(

0 ∆(A)∗

∆(A) 0

)
,

show that ‖∆(A)‖2 ≤ Ln‖A‖2 (observe that ‖B‖2 = ‖∆(A)‖2).
(h) What inequality do we obtain for ∆0(A), the strictly upper tri-

angular matrix whose entries lying strictly above the diagonal
coincide with those of A?

14. We endow CCn with the usual Hermitian structure, so that Mn(CC) is
equipped with the norm ‖A‖ = ρ(A∗A)1/2.
Suppose we are given a sequence of matrices (Aj)j∈ZZ in Mn(CC) and
a summable sequence γ ∈ l1(ZZ) of positive real numbers. Assume,
finally, that for every pair (j, k) ∈ ZZ × ZZ,

‖A∗
jAk‖ ≤ γ(j − k)2, ‖AjA

∗
k‖ ≤ γ(j − k)2.

(a) Let F be a finite subset of ZZ. Let BF denote the sum of the
Aj ’s as j runs over F . Show that

‖(B∗
F BF )2m‖ ≤ card F ‖γ‖2m

1 , ∀m ∈ IN.

(b) Deduce that ‖BF ‖ ≤ ‖γ‖1.
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(c) Show (Cotlar’s lemma) that for every x, y ∈ CCn, the series

yT
∑
j∈ZZ

Ajx

is convergent, and that its sum yT Ax defines a matrix A ∈
Mn(CC) that satisfies

‖A‖ ≤
∑
j∈ZZ

γ(j).

Hint: For a sequence (uj)j∈ZZ of real numbers, the series
∑

j uj

is absolutely convergent if and only if there exists M < +∞
such that

∑
j∈F |uj | ≤ M for every finite subset F .

(d) Deduce that the series
∑

j Aj converges in Mn(CC). May one
conclude that it converges normally?

15. Let ‖ · ‖ be an induced norm on Mn(IR). We wish to characterize the
matrices B ∈Mn(IR) such that there exist ε0 > 0 and ω > 0 with

(0 < ε < ε0) =⇒ (‖In − εB‖ ≤ 1− ωε).

(a) For the norm ‖·‖∞, it is equivalent that B be strictly diagonally
dominant.

(b) What is the characterization for the norm ‖ · ‖1?
(c) For the norm ‖ · ‖2, it is equivalent that BT + B be positive

definite.

16. If A ∈ Mn(CC) and j = 1, . . . , n are given, we define rj(A) :=∑
k �=j |ajk|. For i �= j, define

Bij(A) = {z ∈ CC ; |(z − aii)(z − ajj)| ≤ ri(A)rj(A)}.
These sets are Cassini ovals. Finally, let

B(A) := ∪1≤i<j≤nBij(A).

(a) Show that SpA ⊂ B(A).
(b) Show that this result is sharper than Proposition 4.5.1.
(c) When n = 2, show that in fact SpA is included in the boundary

of B(A).

17. Let B ∈Mn(CC).

(a) Returning to the proof of Theorem 4.2.1, show that for every
ε > 0 there exists on CCn a Hermitian norm ‖ · ‖ such that for
the induced norm ‖B‖ ≤ ρ(B) + ε.

(b) Deduce that ρ(B) < 1 holds if and only if there exists a matrix
A ∈ HPDn such that A−B∗AB ∈ HPDn.

18. For A ∈Mn(CC), define

ε := max
i�=j

|aij |, δ := min
i�=j

|aii − ajj |.
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We assume in this exercise that δ > 0 and ε ≤ δ/4n.

(a) Show that each Gershgorin disk Dj contains exactly one
eigenvalue of A.

(b) Let ρ > 0 be a real number. Show that Aρ, obtained by multi-
plying the ith row of A by ρ and the ith column by 1/ρ, has the
same eigenvalues as A.

(c) Choose ρ = 2ε/δ. Show that the ith Gershgorin disk of Aρ con-
tains exactly one eigenvalue. Deduce that the eigenvalues of A
are simple and that

d(Sp(A), diag(A)) ≤ 2nε2

δ
,

where diag(A) = {a11, . . . , ann}.
19. Let A ∈Mn(CC) be a diagonalizable matrix:

A = S diag(d1, . . . , dn)S−1.

Let ‖ · ‖ be an induced norm for which ‖D‖ = maxj |dj | holds, where
D := diag(d1, . . . , dn). Show that for every E ∈Mn(CC) and for every
eigenvalue λ of A + E, there exists an index j such that

|λ− dj | ≤ ‖S‖ · ‖S−1‖ · ‖E‖.
20. Let A ∈ Mn(K), with K = IR or CC. Give another proof, using

the Cauchy–Schwarz inequality, of the following particular case of
Theorem 4.3.1:

‖A‖2 ≤ ‖A‖1/2
1 ‖A‖1/2

∞ .

21. Show that if A ∈Mn(CC) is normal, then ρ(A) = ‖A‖2. Deduce that
if A and B are normal, ρ(AB) ≤ ρ(A)ρ(B).

22. Let N1 and N2 be two norms on CCn. Denote by N1 and N2 the
induced norms on Mn(CC). Let us define

R := max
x �=0

N1(x)
N2(x)

, S := max
x �=0

N2(x)
N1(x)

.

(a) Show that

max
A �=0

N1(A)
N2(A)

= RS = max
A �=0

N2(A)
N1(A)

.

(b) Deduce that if N1 = N2, then N2/N1 is constant.
(c) Show that if N1 ≤ N2, then N2/N1 is constant and therefore

N2 = N1.

23. (continuation of exercise 22)
Let ‖ · ‖ be an algebra norm on Mn(CC). If y ∈ CCn is nonzero, we
define ‖x‖y := ‖xy∗‖.
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(a) Show that ‖ · ‖y is a norm on CCn for every y �= 0.
(b) Let Ny be the norm induced by ‖ · ‖y. Show that Ny ≤ ‖ · ‖.
(c) We say that ‖·‖ is minimal if there exists no other algebra norm

less than or equal to ‖ · ‖. Show that the following assertions are
equivalent:

i. ‖ · ‖ is an induced norm on Mn(CC).
ii. ‖ · ‖ is a minimal norm on Mn(CC).
iii. For all y �= 0, one has ‖ · ‖ = Ny.

24. (continuation of exercise 23)
Let ‖ · ‖ be an induced norm on Mn(CC).

(a) Let y, z �= 0 be two vectors in CCn. Show that (with the notation
of the previous exercise) ‖ · ‖y/‖ · ‖z is constant.

(b) Prove the equality

‖xy∗‖ · ‖zt∗‖ = ‖xt∗‖ · ‖zy∗‖.
25. Let M ∈Mn(CC) and H ∈ HPDn be given. Show that

‖HMH‖2 ≤ 1
2
‖H2M + MH2‖2.

26. We endow IR2 with the Euclidean norm ‖ · ‖2, and M2(IR) with the
induced norm, denoted also by ‖·‖2. We denote by Σ the unit sphere of
M2(IR): M ∈ Σ is equivalent to ‖M‖2 = 1, that is, to ρ(MT M) = 1.
Similarly, B denotes the unit ball of M2(IR).
Recall that if C is a convex set and if P ∈ C, then P is called an
extremal point if P ∈ [Q, R] and Q, R ∈ C imply Q = R = P .

(a) Show that the set of extremal points of B is equal to O2(IR).
(b) Show that M ∈ Σ if and only if there exist two matrices P, Q ∈

O2(IR) and a number a ∈ [0, 1] such that

M = P

(
a 0
0 1

)
Q.

(c) We denote by R = SO2(IR) the set of rotation matrices, and
by S that of matrices of planar symmetry. Recall that O2(IR) is
the disjoint union of R and S. Show that Σ is the union of the
segments [r, s] as r runs over R and s runs over S.

(d) Show that two such “open” segments (r, s) and (r′, s′) are either
disjoint or equal.

(e) Let M, N ∈ Σ. Show that ‖M −N‖2 = 2 (that is, (M, N) is a
diameter of B) if and only if there exists a segment [r, s] (r ∈ R
and s ∈ S) such that M ∈ [r, s] and N ∈ [−r,−s].



5
Nonnegative Matrices

In this chapter matrices have real entries in general. In a few specified cases,
entries might be complex.

5.1 Nonnegative Vectors and Matrices

Definition 5.1.1 A vector x ∈ IRn is nonnegative, and we write x ≥ 0,
if its coordinates are nonnegative. It is positive, and we write x > 0, if its
coordinates are (strictly) positive. Furthermore, a matrix A ∈ Mn×m(IR)
(not necessarily square) is nonnegative (respectively positive) if its entries
are nonnegative (respectively positive); we again write A ≥ 0 (respectively
A > 0). More generally, we define an order relationship x ≤ y whose
meaning is y − x ≥ 0.

Definition 5.1.2 Given x ∈ CCn, we let |x| denote the nonnegative vector
whose coordinates are the numbers |xj |. Similarly, if A ∈ Mn(CC), the
matrix |A| has entries |aij |.

Observe that given a matrix and a vector (or two matrices), the triangle
inequality implies

|Ax| ≤ |A| · |x|.
Proposition 5.1.1 A matrix is nonnegative if and only if x ≥ 0 implies
Ax ≥ 0. It is positive if and only if x ≥ 0 and x �= 0 imply Ax > 0.

Proof
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Let us assume that Ax ≥ 0 (respectively > 0) for every x ≥ 0 (respec-
tively ≥ 0 and �= 0). Then the ith column A(i) is nonnegative (respectively
positive), since it is the image of the ith vector of the canonical basis. Hence
A ≥ 0 (respectively > 0).

Conversely, A ≥ 0 and x ≥ 0 imply trivially Ax ≥ 0. If A > 0, x ≥ 0,
and x �= 0, there exists an index l such that xl > 0. Then

(Ax)i =
∑

j

aijxj ≥ ailxl > 0,

and hence Ax > 0.

An important point is the following:

Proposition 5.1.2 If A ∈ Mn(IR) is nonnegative and irreducible, then
(I + A)n−1 > 0.

Proof
Let x be a nonnegative, nonzero vector and define xm = (I + A)mx,

which is nonnegative. Let us denote by Pm the set of indices of the nonzero
components of xm: P0 is nonempty. Since xm+1

i ≥ xm
i , one has Pm ⊂

Pm+1. Let us assume that the cardinality |Pm| of Pm is strictly less than
n. There are thus one or more zero components, whose indices form a
nonempty subset I, complement of Pm. Since A is irreducible, there exists
some nonzero entry aij , with i ∈ I and j ∈ Pm. Then xm+1

i ≥ aijx
m
j > 0,

which shows that Pm+1 is not equal to Pm, and thus |Pm+1| > |Pm|. By
induction, we deduce that |Pm| ≥ min{m + 1, n}. Hence |Pn−1| = n.

5.2 The Perron–Frobenius Theorem: Weak Form

Theorem 5.2.1 Let A ∈ Mn(IR) be a nonnegative matrix. Then ρ(A) is
an eigenvalue of A associated to a nonnegative eigenvector.

Proof
Let λ be an eigenvalue of maximal modulus and v an eigenvector,

normalized by ‖v‖1 = 1. Then

ρ(A)|v| = |λv| = |Av| ≤ A|v|.
Let us denote by C the subset of IRn (actually a subset of the unit simplex
Kn) defined by the (in)equalities

∑
i xi = 1, x ≥ 0, and Ax ≥ ρ(A)x. This

is a closed convex set, nonempty, since it contains |v|. Finally, it is bounded,
because x ∈ C implies 0 ≤ xj ≤ 1 for every j; thus it is compact. Let us
distinguish two cases:

1. There exists x ∈ C such that Ax = 0. Then ρ(A)x ≤ 0 furnishes
ρ(A) = 0. The theorem is thus proved in this case.
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2. For every x in C, Ax �= 0. Then let us define on C a continuous map
f by

f(x) =
1

‖Ax‖1 Ax.

It is clear that f(x) ≥ 0 and that ‖f(x)‖1 = 1. Finally,

Af(x) =
1

‖Ax‖1 AAx ≥ 1
‖Ax‖1 Aρ(A)x = ρ(A)f(x),

so that f(C) ⊂ C. Then Brouwer’s theorem (see [3], p. 217) asserts
that a continuous function from a compact convex subset of IRN

into itself has a fixed point. Thus let y be a fixed point of f . It is
a nonnegative eigenvector, associated to the eigenvalue r = ‖Ay‖1.
Since y ∈ C, we have ry = Ay ≥ ρ(A)y and thus r ≥ ρ(A), which
implies r = ρ(A).

That proof can be adapted to the case where a real number r and a
nonzero vector y are given satisfying y ≥ 0 and Ay ≥ ry. Just take for C
the set of vectors x such that

∑
i xi = 1, x ≥ 0, and Ax ≥ rx. We then

conclude that ρ(A) ≥ r.

5.3 The Perron–Frobenius Theorem: Strong Form

Theorem 5.3.1 Let A ∈ Mn(IR) be a nonnegative irreducible matrix.
Then ρ(A) is a simple eigenvalue of A, associated to a positive eigenvector.
Moreover, ρ(A) > 0.

5.3.1 Remarks

1. Though the Perron–Frobenius theorem says that ρ(A) is a simple
eigenvalue, it does not tell anything about the other eigenvalues
of maximal modulus. The following example shows that such other
eigenvalues may exist: (

0 1
1 0

)
.

The existence of several eigenvalues of maximal modulus will be
studied in Section 5.4.

2. One obtains another proof of the weak form of the Perron–Frobenius
theorem by applying the strong form to A + αJ , where J > 0 and
α > 0, then letting α tend to zero.
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3. Without the irreducibility assumption, ρ(A) may be a multiple eigen-
value, and a nonnegative eigenvector may not be positive. This holds
for a matrix of size n = 2m that reads blockwise

A =
(

B 0m

Im B

)
.

Here, ρ(A) = ρ(B), and every eigenvalue has an even algebraic mul-
tiplicity. Moreover, if ρ(B) is a simple eigenvalue of B, associated to
the eigenvector Z ≥ 0, then the kernel of A− ρ(A)In is spanned by

X =
(

0m

Z

)
,

which is not positive.

Proof
For r ≥ 0, we denote by Cr the set of vectors of IRn defined by the

(in)equalities

x ≥ 0, ‖x‖1 = 1, Ax ≥ rx.

Each Cr is a convex compact set. We saw in the previous section that if λ
is an eigenvalue associated to an eigenvector x of unit norm ‖x‖1 = 1, then
|x| ∈ C|λ|. In particular, Cρ(A) is nonempty. Conversely, if Cr is nonempty,
then for x ∈ Cr,

r = r‖x‖1 ≤ ‖Ax‖1 ≤ ‖A‖1‖x‖1 = ‖A‖1,
and therefore r ≤ ‖A‖1. Furthermore, the map r �→ Cr is nonincreasing
with respect to inclusion, and is “left continuous” in the following sense. If
r > 0, one has

Cr = ∩s<rCs.

Let us then define

R = sup{r |Cr �= ∅},
so that R ∈ [ρ(A), ‖A‖1]. The monotonicity with respect to inclusion shows
that r < R implies Cr �= ∅.

If x > 0 and ‖x‖1 = 1, then Ax ≥ 0 and Ax �= 0, since A is nonnegative
and irreducible. From Lemma 5.3.1 it follows that R > 0. The set CR, being
the intersection of a totally ordered family of nonempty compacts sets, is
nonempty.

Let x ∈ CR. Lemma 5.3.1 below shows that x is an eigenvector of A
associated to the eigenvalue R. We observe that this eigenvalue is not less
than ρ(A) and infer that ρ(A) = R. Hence ρ(A) is an eigenvalue associated
to the eigenvector x, and ρ(A) > 0. Lemma 5.3.2 below ensures that x > 0.

The proof of the simplicity of the eigenvalue ρ(A) will be given in Section
5.3.3.
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5.3.2 A Few Lemmas

Lemma 5.3.1 Let r ≥ 0 and x ≥ 0 such that Ax ≥ rx and Ax �= rx.
Then there exists r′ > r such that Cr′ is nonempty.

Proof
Let y := (In + A)n−1x. Since A is irreducible and x ≥ 0 is nonzero, one

has y > 0. Similarly, Ay − ry = (In + A)n−1(Ax − rx) > 0. Let us define
r′ := minj(Ay)j/yj , which is strictly larger than r. We then have Ay ≥ r′y,
so that Cr′ contains the vector y/‖y‖1.

Lemma 5.3.2 The nonnegative eigenvectors of A are positive.

Proof
Given such a vector x with Ax = λx, we observe that λ ∈ IR+. Then

x =
1

(1 + λ)n−1
(In + A)n−1x,

and the right-hand side is strictly positive, from Proposition 5.1.2.

Finally, we can state the following result.

Lemma 5.3.3 Let A, B ∈ Mn(CC) be matrices, with A irreducible and
|B| ≤ A. Then ρ(B) ≤ ρ(A).

In case of equality (ρ(B) = ρ(A)), the following hold:

• |B| = A;

• for every eigenvector x of B associated to an eigenvalue of modulus
ρ(A), |x| is an eigenvector of A associated to ρ(A).

Proof
In order to establish the inequality, we proceed as above. If λ is an

eigenvalue of B, of modulus ρ(B), and if x is a normalized eigenvector,
then ρ(B)|x| ≤ |B| · |x| ≤ A|x|, so that Cρ(B) is nonempty. Hence ρ(B) ≤
R = ρ(A).

Let us investigate the case of equality. If ρ(B) = ρ(A), then |x| ∈ Cρ(A),
and therefore |x| is an eigenvector: A|x| = ρ(A)|x| = ρ(B)|x| ≤ |B| · |x|.
Hence, (A−|B|)|x| ≤ 0. Since |x| > 0 (from Lemma 5.3.2) and A−|B| ≥ 0,
this gives |B| = A.

5.3.3 The Eigenvalue ρ(A) Is Simple

Let PA(X) be the characteristic polynomial of A. It is given as the compo-
sition of an n-linear form (the determinant) with polynomial vector-valued
functions (the columns of XIn−A). If φ is p-linear and if V1(X), . . . , Vp(X)
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are polynomial vector-valued functions, then the polynomial P (X) :=
φ(V1(X), . . . , Vp(X)) has the derivative

P ′(X) = φ(V ′
1 , V2, . . . , Vp) + φ(V1, V

′
2 , . . . , Vp) + · · ·+ φ(V1, . . . , Vp−1, V

′
p).

One therefore has

P ′
A(X) = det(e1, a2, . . . , an) + det(a1, e2, . . . , an) + · · ·

+ · · ·+ det(a1, . . . , an−1, en),

where aj is the jth column of XIn − A and {e1, . . . , en} is the canonical
basis of IRn. Developping the jth determinant with respect to the jth
column, one obtains

P ′
A(X) =

n∑
j=1

PAj (X), (5.1)

where Aj ∈ Mn−1(IR) is obtained from A by deleting the jth row and
the jth column. Let us now denote by Bj ∈ Mn(IR) the matrix obtained
from A by replacing the entries of the jth row and column by zeroes. This
matrix is block-diagonal, the two diagonal blocks being Aj ∈Mn−1(IR) and
0 ∈ M1(IR). Hence, the eigenvalues of Bj are those of Aj , together with
zero, and therefore ρ(Bj) = ρ(Aj). Furthermore, |Bj | ≤ A, but |Bj | �= A
because A is irreducible and Bj is block-diagonal, hence reducible. It follows
(Lemma 5.3.3) that ρ(Bj) < ρ(A). Hence PAj (ρ(A)) is nonzero, with the
same sign as PAj in a neighborhood of +∞, which is positive. Finally,
P ′

A(ρ(A)) is positive and ρ(A) is a simple root.
This completes the proof of Theorem 5.3.1. A different proof of the sim-

plicity and another proof of the Perron–Frobenius theorem are given in
Exercises 2 and 4.

5.4 Cyclic Matrices

The following statement completes Theorem 5.3.1.

Theorem 5.4.1 Under the assumptions of Theorem 5.3.1, the set R(A) of
eigenvalues of A of maximal modulus ρ(A) is of the form R(A) = ρ(A)Up,
where Up is the group of pth roots of unity, where p is the cardinality of
R(A). Every such eigenvalue is simple. The spectrum of A is invariant un-
der multiplication by Up. Finally, A is similar, by means of a permutation
of coordinates in IRn, to the following cyclic form. In this cyclic matrix each
element is a block, and the diagonal blocks (which all vanish) are square
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with nonzero sizes: 


0 M1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0
. . . Mp−1

Mp 0 · · · · · · 0




.

Remarks:

• The converse is true. For example, the spectrum of a cyclic matrix is
stable under multiplication by exp(2iπ/p).

• One may show that p divides n− n0, where n0 is the multiplicity of
the zero eigenvalue.

• The nonzero eigenvalues of A are the pth roots of those of the matrix
M1M2 · · ·Mp, which is square, though its factors might not be square.

Proof
Let us denote by X the unique nonnegative eigenvector of A normalized

by ‖X‖1 = 1. If Y is a unitary eigenvector, associated to an eigenvalue µ
of maximal modulus ρ(A), the inequality ρ(A)|Y | = |AY | ≤ A|Y | im-
plies (Lemma 5.3.3) |Y | = X . Hence there is a diagonal matrix D =
diag(eiα1 , . . . , eiαn) such that Y = DX . Let us define a unimodular com-
plex number eiγ = µ/ρ(A) and let B be the matrix e−iγD−1AD. One has
|B| = A and BX = X . For every j, one therefore has∣∣∣∣∣

n∑
k=1

bjkxk

∣∣∣∣∣ =
n∑

k=1

|bjk|xk.

Since X > 0, one deduces that B is real-valued and nonnegative; that is,
B = A. Hence D−1AD = eiγA. The spectrum of A is thus invariant under
multiplication by eiγ .

Let U = ρ(A)−1R(A), which is included in S1, the unit circle. The previ-
ous discussion shows that U is stable under multiplication. Since U is finite,
it follows that its elements are roots of unity. Since the inverse of a dth root
of unity is its own (d− 1)th power, U is stable under inversion. Hence it is
a finite subgroup of S1; that is, it is Up, for a suitable p.

Let PA be the characteristic polynomial and let ω = exp(2iπ/p). One
may apply the first part of the proof to µ = ωρ(A). One has thus D−1AD =
ωA, and it follows that PA(X) = ωnPA(X/ω). Therefore, multiplication by
ω sends eigenvalues to eigenvalues of the same multiplicities. In particular,
the eigenvalues of maximal modulus are simple.

Iterating the conjugation, one obtains D−pADp = A. Let us set

Dp = diag(d1, . . . , dn).
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One has thus dj = dk, provided that ajk �= 0. Since A is irreducible, one
can link any two indices j and k by a chain j0 = j, . . . , jr = k such that
ajs−1,js �= 0 for every s. It follows that dj = dk for every j, k. But since one
may choose Y1 = X1, that is, α1 = 0, one also has d1 = 1 and hence Dp =
In. The αj are thus pth roots of unity. With a conjugation by a permutation
matrix we may limit ourselves to the case where D has the block-diagonal
form diag(J0, ωJ1, . . . , ωp−1Jp−1), where the Jl are identity matrices of
respective sizes n0, . . . , np−1. Decomposing A into blocks Alm of sizes nl×
nm, one obtains ωkAjk = ωj+1Ajk directly from the conjugation identity.
Hence Ajk = 0 except for the pairs (j, k) of the form (0, 1), (1, 2), . . . , (p−
2, p− 1), (p− 1, 0). This is the announced cyclic form.

5.5 Stochastic Matrices

Definition 5.5.1 A matrix M ∈Mn(IR) is said to be stochastic if M ≥ 0
and if for every i = 1, . . . , n, one has

n∑
j=1

mij = 1.

One says that M is bistochastic (or doubly stochastic) if both M and MT

are stochastic.

Denoting by e ∈ IRn the vector all of whose coordinates equal one, one
sees that M is stochastic if and only if M ≥ 0 and Me = e. Moreover, M
is bistochastic if M ≥ 0, Me = e, and eT M = eT . If M is stochastic, one
has ‖Mx‖∞ ≤ ‖x‖∞ for every x ∈ CCn, and therefore ρ(M) ≤ 1. But since
Me = e, one has in fact ρ(M) = 1.

The stochastic matrices play an important role in the study of Markov
chains. A special case of a bistochastic matrix is a permutation matrix P (σ)
(σ ∈ Sn), whose entries are

pij = δj
σ(i).

The following theorem explains the role of permutation matrices.

Theorem 5.5.1 (Birkhoff) A matrix M ∈Mn(IR) is bistochastic if and
only if it is a center of mass (that is, a barycenter with nonnegative weights)
of permutation matrices.

The fact that a center of mass of permutation matrices is a doubly stochas-
tic matrix is obvious, since the set ∆n of doubly stochastic matrices is
convex. The interest of the theorem lies in the statement that if M ∈ ∆n,
there exist permutation matrices P1, . . . , Pr and positive real numbers
α1, . . . , αr with α1 + · · ·+ αr = 1 such that M = α1P1 + · · ·+ αrPr.
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Let us recall that a point a of a convex set C is an extreme point if the
equality x = θy + (1− θ)z, with y, z ∈ C and θ ∈ (0, 1) implies y = z = x.
The Krein–Milman theorem (see [30], Theorem 3.23) says that a convex
compact subset of IRn is the convex hull, that is, the set of centers of mass,
of its extreme points. Since ∆n is closed and bounded, hence compact, it
is permissible to apply the Krein–Milman theorem.

Proof
To begin with, it is immediate that the permutation matrices are ex-

treme points of ∆n. From the Krein–Milman theorem, the proof amounts
to showing that there is no other extreme point in ∆n.

Let M ∈ ∆n be given. If M is not a permutation matrix, there exists
an entry mi1j1 ∈ (0, 1). Since M is stochastic, there also exists j2 �= j1
such that mi1j2 ∈ (0, 1). Since MT is stochastic, there exists i2 �= i1
such that mi2j2 ∈ (0, 1). By this procedure one constructs a sequence
(j1, i1, j2, i2, . . . ) such that miljl

∈ (0, 1) and mil−1jl
∈ (0, 1). Since the

set of indices is finite, it eventually happens that one of the indices (a row
index or a column index) is repeated.

Therefore, one can assume that the sequence (j1, i1, . . . , jr, ir, jr+1 = j1)
has the above property. Let us define a matrix B ∈ Mn(IR) by biljl

= 1,
biljl+1 = −1, bij = 0 otherwise. By construction, Be = 0 and eT B = 0. If
α ∈ IR, one therefore has (M ± αB)e = e and eT (M ± αB) = eT . If α > 0
is small enough, M ± αB turns out to be nonnegative. Finally, M + αB
and M − αB are bistochastic, and

M =
1
2
(M − αB) +

1
2
(M + αB).

Hence M is not an extreme point of ∆n.

Here is a nontrivial consequence (Stoer and Witzgall [32]):

Corollary 5.5.1 Let ‖ · ‖ be a norm on IRn, invariant under permutation
of the coordinates. Then ‖M‖ = 1 for every bistochastic matrix (where by
abuse of notation we have used ‖ · ‖ for the induced norm on Mn(IR)).

Proof
To begin with, ‖P‖ = 1 for every permutation matrix, by assumption.

Since the induced norm is convex (true for every norm), one deduces
from Birkhoff’s theorem that ‖M‖ ≤ 1 for every bistochastic matrix.
Furthermore, Me = e implies ‖M‖ ≥ ‖Me‖/‖e‖ = 1.

This result applies, for instance, to the norm ‖·‖p, providing a nontrivial
convex set on which the map 1/p �→ log ‖M‖p is constant (compare with
Theorem 4.3.1).

The bistochastic matrices are intimately related to the relation ≺ (see
Section 3.4). In fact, we have the following theorem.
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Theorem 5.5.2 A matrix A is bistochastic if and only if Ax � x for every
x ∈ IRn.

Proof
If A is bistochastic, then

‖Ax‖1 ≤ ‖A‖1‖x‖1 = ‖x‖1,
since AT is stochastic. Since A is stochastic, Ae = e. Applying this inequal-
ity to x − te, one therefore has ‖Ax − te‖1 ≤ ‖x − te‖1. Proposition 3.4.1
then shows that x ≺ Ax.

Conversely, let us assume that x ≺ Ax for every x ∈ IRn. Choosing x as
the jth vector of the canonical basis, ej , the inequality s1(ej) ≤ s1(Aej)
expresses that A is a nonnegative matrix, while sn(ej) = sn(Aej) yields

n∑
i=1

aij = 1. (5.2)

One then chooses x = e. The inequality s1(e) ≤ s1(Ae) expresses1 that
Ae ≥ e. Finally, sn(e) = sn(Ae) and Ae ≥ e give Ae = e. Hence, A is
bistochastic.

This statement is completed by the following.

Theorem 5.5.3 Let x, y ∈ IRn. Then x ≺ y if and only if there exists a
bistochastic matrix A such that y = Ax.

Proof
From the previous theorem, it is enough to show that if x ≺ y, there exists

A, a bistochastic matrix, such that y = Ax. To do so, one applies Theorem
3.4.2: There exists a Hermitian matrix H whose diagonal and spectrum
are y and x, respectively. Let us diagonalize H by a unitary conjugation:
H = U∗DU , with D = diag(x1, . . . , xn). Then y = Ax, where aij = |uij |2.
Since U is unitary, A is bistochastic.2

An important aspect of stochastic matrices is their action on the simplex

Kn :=

{
x ∈ IRn ; x ≥ 0 and

∑
i

xi = 1

}
.

It is clear that MT is stochastic if and only if M(Kn) is contained in Kn;
M is bistochastic if, moreover, Me = e.

Considered as a part of the affine subspace whose equation is
∑

i xi = 1,
Kn is a convex set with a nonempty interior. Its interior comprises those
points that satisfy x > 0. One denotes ∂Kn the boundary of Kn. If x ∈ Kn,

1For another vector y, s1(y) ≤ s1(Ay) does not imply Ay ≥ y.
2This kind of bistochastic matrix is called orthostochastic.
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we denote by O(x) the set of indices i such that xi = 0, and by o(x)
its cardinality, in such a way that ∂Kn comprises those points satisfying
o(x) ≥ 1. One always has mij = 0 for (i, j) ∈ O(Mx) × O(x)c, where Ic

denotes the complement of I in {1, . . . , n}.
Proposition 5.5.1 Let x ∈ Kn and M ∈ ∆n be given. Then one has

o(Mx) ≤ o(x).

Moreover, if o(Mx) = o(x), one has mij = 0 for every (i, j) ∈ O(Mx)c ×
O(x).

Proof
Let us compute

o(x)− o(Mx) =
n∑

i=1

∑
O(x)

mij −
∑

O(Mx)

n∑
j=1

mij =
∑

O(Mx)c×O(x)

mij ≥ 0.

The case of equality is immediate.

We could have obtained the first part of the proposition by applying
Theorem 5.5.2.

Corollary 5.5.2 Let I and J be two subsets of {1, . . . , n} and let M ∈ ∆n

be a matrix satisfying mij = 0 for every (i, j) ∈ I × Jc. Then one has
|J | ≥ |I|. If, moreover, |I| = |J |, then mij also vanishes for (i, j) ∈ Ic× J .

Proof
It is sufficient to choose x ∈ Kn with Jc = O(x) if J is nonempty. If J

is empty, the statement is obvious.

We shall denote by S∆n (S for strict) the set of doubly stochastic matri-
ces M for which the conditions |I| = |J | and mij = 0 for every (i, j) ∈ I×Jc

imply either I = ∅ or I = {1, . . . , n}. These are also the matrices for which
x ∈ ∂Kn implies o(Mx) < o(x). This set does not contain permutation
matrices P , since these satisfy o(Px) = o(x) for every x ∈ Kn.

Let M ∈ ∆n be given. A decomposition of M consists of two partitions
I1 ∪ · · · ∪ Ir and J1 ∪ · · · ∪ Jr of the set {1, . . . , n} such that

(i ∈ Il, j ∈ Jm, l �= m) =⇒ mij = 0.

From Corollary 5.5.2, we have |Il| = |Jl| for every l. Eliminating empty
parts if necessary, we can always assume that none of the Il’s or Jl’s is
empty. A decomposition of M furnishes a block structure, in which each
row-block has only one nonzero block, and the same for the column-blocks.
The blocks of indices Il × Jl are themselves stochastic matrices. A matrix
of S∆n admits only the trivial decomposition r = 1, I1 = J1 = {1, . . . , n}.

If M admits two decompositions, one with the sets Il, Jl, 1 ≤ l ≤ r, the
other one with I ′l , J

′
l , 1 ≤ l ≤ s, let us form the partitions ∪l,mI ′′lm and
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∪l,mJ ′′
lm, with I ′′lm := Il ∩ I ′m and J ′′

lm := Jl ∩ J ′
m. If i ∈ I ′′lm and j ∈ J ′′

pq,
with (l, m) �= (p, q), we have mij = 0. From Corollary 5.5.2, applied to
M and to its transposition, we have |I ′′lm| = |J ′′

lm|. Eliminating the empty
parts, we obtain therefore a decomposition of M that is finer than the first
two, in the sense of inclusion order: Each Il (or I ′l) is a union of some parts
of the form I ′′p .

Since the set of decompositions of M is finite, the previous argument
shows that there exists a finest one. We shall call it the canonical decom-
position of M . It is the only decomposition for which the blocks of indices
Il × Jl are themselves of class S∆.

5.6 Exercises

1. We consider the following three properties for a matrix M ∈Mn(IR).

P1 M is nonnegative.
P2 MT e = e, where e = (1, . . . , 1)T .
P3 ‖M‖1 ≤ 1.

(a) Show that P2 and P3 imply P1.
(b) Show that P2 and P1 imply P3.
(c) Does P1 and P3 imply P2?

2. Here is another proof of the simplicity of ρ(A) in the Perron–
Frobenius theorem, which does not require Lemma 5.3.3.

(a) We assume that A is irreducible and nonnegative, and we denote
by x a positive eigenvector associated to the eigenvalue ρ(A). Let
K be the set of nonnegative eigenvectors y associated to ρ(A)
such that ‖y‖1 = 1. Show that K is compact and convex.

(b) Show that the geometric multiplicity of ρ(A) equals 1 (Hint:
Otherwise, K would contain a vector with at least one zero
component.)

(c) Show that the algebraic multiplicity of ρ(A) equals 1 (Hint:
Otherwise, there would be a nonnegative vector y such that Ay−
ρ(A)y = x > 0.)

3. Let M ∈ Mn(IR) be either a strictly diagonally dominant, or an
irreducible strongly diagonally dominant, matrix. Assume that mjj >
0 for every j = 1, . . . , n and mij ≤ 0 otherwise. Show that M is
invertible and that the solution of Mx = b, when b ≥ 0, satisfies
x ≥ 0. Deduce that M−1 ≥ 0.

4. Here is another proof of Theorem 5.3.1, due to Perron himself. We
proceed by induction on the size n of the matrix. The statement is
obvious if n = 1. We therefore assume that it holds for matrices
of size n. We give ourselves an irreducible nonnegative matrix A ∈
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Mn+1(IR), which we decompose blockwise as

A =
(

a ξT

η B

)
, a ∈ IR, ξ, η ∈ IRn, B ∈Mn(IR).

(a) Applying the induction hypothesis to the matrix B + εJ , where
ε > 0 and J > 0 is a matrix, then letting ε go to zero, show
that ρ(B) is an eigenvalue of B, associated to a nonnegative
eigenvector (this avoids the use of Theorem 5.2.1).

(b) Using the formula

(λIn −B)−1 =
∞∑

k=1

λ−kBk−1,

valid for λ ∈ (ρ(B), +∞), deduce that the function h(λ) :=
λ−a−ξT (λIn−B)−1η is strictly increasing on this interval and
that on the same interval the vector x(λ) := (λIn − B)−1η is
positive.

(c) Prove the relation PA(λ) = PB(λ)h(λ) between the characteris-
tic polynomials.

(d) Deduce that the matrix A has one and only one eigenvalue in
(ρ(B), +∞), and that it is a simple one, associated to a positive
eigenvector. One denotes this eigenvalue by λ0.

(e) Applying the previous results to AT , show that there exists � ∈
IRn such that � > 0 and �T (A− λ0In) = 0.

(f) Let µ be an eigenvalue of A, associated to an eigenvector X .
Show that (λ0 − |µ|)�T |X | ≥ 0. Conclusion?

5. Let A ∈Mn(IR) be a matrix satisfying aij ≥ 0 for every pair (i, j) of
distinct indices.

(a) Using the Exercise 3, show that

R(h; A) := (In − hA)−1 ≥ 0,

for h > 0 small enough.
(b) Deduce that exp(tA) ≥ 0 for every t > 0 (the exponential of

matrices is presented in Chapter 7). Consider Trotter’s formula

exp tA = lim
m→+∞R(t/m; A)m,

where exp is the exponential of square matrices, defined in
Chapter 7. Trotter’s formula is justified by the convergence (see
Exercise 10 in Chapter 7) of the implicit Euler method for the
differential equation

dx

dt
= Ax. (5.3)

(c) Deduce that if x(0) ≥ 0, then the solution of (5.3) is nonnegative
for every nonnegative t.
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(d) Deduce also that

σ := sup{�λ; λ ∈ Sp A}
is an eigenvalue of A.

6. Let A ∈Mn(IR) be a matrix satisfying aij ≥ 0 for every pair (i, j) of
distinct indices.

(a) Let us define

σ := sup{�λ; λ ∈ Sp A}.
Among the eigenvalues of A whose real parts equal σ, let us
denote by µ the one with the largest imaginary part. Show that
for every positive large enough real number τ , ρ(A + τIn) =
|µ + τ |.

(b) Deduce that µ = σ = ρ(A) (apply Theorem 5.2.1).

7. Let B ∈ Mn(IR) be a matrix whose off-diagonal entries are positive
and such that the eigenvalues have strictly negative real parts. Show
that there exists a nonnegative diagonal matrix D such that B′ :=
D−1BD is strictly diagonally dominant, namely,

b′ii < −
∑
j �=i

b′ij .

8. Let B ∈Mn(IR) be a nonnegative matrix and

A :=
(

B 0m

Im B

)
.

(a) If an eigenvalue λ of A is associated to a positive eigenvector,
show that there exists µ > λ and Z > 0 such that BZ ≥ µZ.
Deduce that λ < ρ(B).

(b) Deduce that A admits no strictly positive eigenvector (first of
all, apply Theorem 5.2.1 to the matrix AT ).

9. (a) Let B ∈ Mn(IR) be given, with ρ(B) = 1. Assume that the
eigenvalues of B of modulus one are (algebraically) simple. Show
that the sequence (Bm)m≥1 is bounded.

(b) Let M ∈ Mn(IR) be a nonnegative irreducible matrix, with
ρ(M) = 1. We denote by x and yT the left and right eigenvectors
for the eigenvalue 1 (Mx = x and yT M = yT ), normalized by
yT x = 1. We define L := xyT and B = M − L.

i. Verify that B−In is invertible. Determine the spectrum and
the invariant subspaces of B by means of those of M .

ii. Show that the sequence (Bm)m≥1 is bounded. Express Mm

in terms of Bm.
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iii. Deduce that

lim
N→+∞

1
N

N−1∑
m=0

Mm = L.

iv. Under what additional assumption do we have the stronger
convergence

lim
N→+∞

MN = L?

10. Let B ∈ Mn(IR) be a nonnegative irreducible matrix and let C ∈
Mn(IR) be a nonzero nonnegative matrix. For t > 0, we define rt :=
ρ(B + tC) and we let Xt denote the nonnegative unitary eigenvector
associated to the eigenvalue rt.

(a) Show that t �→ rt is strictly increasing.
Define r := limt→+∞ rt. We wish to show that r = +∞. Let X
be a cluster point of the sequence Xt. We may assume, up to a
permutation of the indices, that

X =
(

Y
0

)
, Y > 0.

(b) Suppose that in fact, r < +∞. Show that BX ≤ rX . Deduce
that B′Y = 0, where B′ is a matrix extracted from B.

(c) Deduce that X = Y ; that is, X > 0.
(d) Show, finally, that CX = 0. Conclude that r = +∞.
(e) Assume, moreover, that ρ(B) < 1. Show that there exists one

and only one t ∈ IR such that ρ(B + tC) = 1.

11. Show that ∆ is stable under multiplication. In particular, if M is
bistochastic, the sequence (Mm)m≥1 is bounded.

12. Let M ∈Mn(IR) be a bistochastic irreducible matrix. Show that

lim
N→+∞

1
N

N−1∑
m=0

Mm =
1
n




1 . . . 1
...

...
1 . . . 1


 =: Jn

(use Exercise 9). Show by an example that the sequence (Mm)m≥1

may or may not converge.

13. Show directly that for every p ∈ [1,∞], ‖Jn‖p = 1, where Jn was
defined in the previous exercise.

14. Let P ∈ GLn(IR) be given such that P, P−1 ∈ ∆n. Show that P is a
permutation matrix.

15. If M ∈ ∆n is given, we define an equivalence relation between in-
dices in the following way: i′Ri′′ if there exists a sequence i1 =
i′, j1, i2, j2, . . . , ip = i′′ such that mij > 0 each time that (i, j) is
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of the form (il, jl) or (il+1, jl) (compare with the proof of Theorem
5.5.1). Show that in the canonical decomposition of M , the Il are the
equivalence classes of R.
Deduce that the following matrix belongs to S∆n:



1/2 1/2 0 · · · 0

1/2 0 1/2
. . .

...

0 1/2
. . .

. . . 0
...

. . . . . . 0 1/2
0 · · · 0 1/2 1/2




.

16. Let M ∈ S∆n and M ′ ∈ ∆n be given. Show that MM ′, M ′M ∈ S∆n.

17. If M ∈ S∆n, show that limN→+∞ MN exists.

18. Consider the induced norm ‖ ·‖p on Mn(CC). Let M be a bistochastic
matrix.
(a) Compute ‖M‖1 and ‖M‖∞.
(b) Show that ‖M‖ ≥ 1 for every induced norm.
(c) Deduce from Theorem 4.3.1 that ‖M‖p = 1. To what extent is

this result different from Corollary 5.5.1?

19. Suppose that we are given three real symmetric matrices (or
Hermitian matrices) A, B, C = A + B.
(a) If t ∈ [0, 1] consider the matrix S(t) := A+ tB, so that S(0) = A

and S(1) = C. Arrange the eigenvalues of S(t) in increasing
order λ1(t) ≤ · · · ≤ λn(t). For each value of t there exists an
orthonormal eigenbasis {X1(t), . . . , Xn(t)}. We admit the fact
that it can be chosen continuously with respect to t, so that
t �→ Xj(t) is continuous with a piecewise continuous derivative.
Show that λ′

j(t) = (BXj(t), Xj(t)).
(b) Let αj , βj , γj (j = 1, . . . , n) be the eigenvalues of A, B, C,

respectively. Deduce from part (a) that

γj − αj =
∫ 1

0

(BXj(t), Xj(t)) dt.

(c) Let {Y1, . . . , Yn} be an orthonormal eigenbasis, relative to B.
Define

σjk :=
∫ 1

0

|(Xj(t), Yk)|2dt.

Show that the matrix Σ := (σjk)1≤j,k≤n is bistochastic.
(d) Show that γj−αj =

∑
k σjkβk. Deduce (Lidskii’s theorem) that

the vector (γ1 − α1, . . . , γn − αn) belongs to the convex hull of
the vectors obtained from the vector (β1, . . . , βn) by all possible
permutations of the coordinates.
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20. Let a ∈ IRn be given, a = (a1, . . . , an).

(a) Show that

C(a) := {b ∈ IRn | b � a}
is a convex compact set. Characterize its extremal points.

(b) Show that

Y (a) := {M ∈ Symn(IR) | Sp M � a}
is a convex compact set. Characterize its extremal points.

(c) Deduce that Y (a) is the closed convex hull (actually the convex
hull) of the set

X(a) := {M ∈ Symn(IR) | Sp M = a}.
(d) Set α = sn(a)/n and a′ := (α, . . . , α). Show that a′ ∈ C(a), and

that b ∈ C(a) =⇒ b ≺ a′.
(e) Characterize the set

{M ∈ Symn(IR) | Sp M ≺ a′}.



6
Matrices with Entries in a Principal
Ideal Domain; Jordan Reduction

6.1 Rings, Principal Ideal Domains

In this Chapter we consider commutative integral domains A (see Chapter
2). In particular, such a ring A can be embeded in its field of fractions, which
is the quotient of A× (A \ {0}) by the equivalence relation (a, b)R(c, d) ⇔
ad = bc. The embedding is the map a �→ (a, 1). In a ring A the set of
invertible elements is denoted by A∗. If a, b ∈ A are such that b = ua with
u ∈ A∗, we say that a and b are associated, and we write a ∼ b, which
amounts to saying that aA = bA. If there exists c ∈ A such that ac = b,
we say that a divides b and write a|b. Then the quotient c is unique and
is denoted by b/a. We say that b is a prime, or irreducible, element if the
equality b = ac implies that one of the factors is invertible.

An ideal I in a ring A is an additive subgroup of A such that A · I ⊂ I:
a ∈ A, x ∈ I imply ax ∈ I. For example, if b ∈ A, the subset bA is an ideal,
denoted by (b). Ideals of the form (b) are called principal ideals.

6.1.1 Facts About Principal Ideal Domains

Definition 6.1.1 A commutative ring A is a principal ideal domain if
every ideal in A is principal: For every ideal I there exists a ∈ A such that
I = (a).

A field is a principal ideal domain that has only two ideals, (0) and (1).
The set ZZ of rational integers and the polynomial algebra over a field k,
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denoted by k[X ], are also principal ideal domains. More generally, every
Euclidean domain is a principal ideal domain (see Proposition 6.1.3 below).

In a commutative integral domain one says that d is a greatest common
divisor (gcd) of a and b if d divides a and b, and if every common divisor
of a and b divides d. In other words, the set of common divisors of a and
b admits d as a greatest element. The gcd of a and b, whenever it exists,
is unique up to multiplication by an invertible element. We say that a
and b are coprime if all their common divisors are invertible; in that case,
gcd(a, b) = 1.

Proposition 6.1.1 In a principal ideal domain, every pair of elements has
a greatest common divisor. The gcd satisfies the Bézout identity: For every
a, b ∈ A, there exist u, v ∈ A such that

gcd(a, b) = ua + vb.

Such u and v are coprime.

Proof
Let A be a principal ideal domain. If a, b ∈ A, the ideal I =: (a, b)

spanned by a and b, which is the set of elements of the form xa + yb,
x, y ∈ A, is principal: I = (d), where d = gcd(a, b). Since a, b ∈ I, d divides
a and b. Furthermore, d = ua+ vb because d ∈ I. If c divides a and b, then
c divides ua + vb; hence divides d, which happens to be a gcd of a and b.

If m divides u and v, then md|ua + vb; hence d = smd. If d �= 0, one has
sm = 1, which means that m ∈ A∗. Thus u and v are coprime. If d = 0,
then a = b = 0, and one may take u = v = 1, which are coprime.

Let us remark that a gcd of a and b is a generator of the ideal aA+bA. It
is thus nonunique. Every element associated to a gcd of a and b is another
gcd. In certain rings one can choose the gcd in a canonical way, such as
being positive in ZZ, or monic in k[X ].

The gcd is associative: gcd(a, gcd(b, c)) = gcd(gcd(a, b), c). It is therefore
possible to speak of the gcd of an arbitrary finite subset of A. In the above
example we denote it by gcd(a, b, c). At our disposal is a generalized Bézout
formula: There exist elements u1, . . . , ur ∈ A such that

gcd(a1, . . . , ar) = a1u1 + · · ·+ arur.

Definition 6.1.2 A ring A is Noetherian if every nondecreasing (for in-
clusion) sequence of ideals is constant beyond some index: I0 ⊂ I1 ⊂ · · · ⊂
Im ⊂ · · · implies that there is an l such that Il = Il+1 = · · · .
Proposition 6.1.2 The principal ideal domains are Noetherian.

Observe that in the case of principal ideal domains the Noetherian property
means exactly that if a sequence a1, . . . of elements of A is such that every
element is divisible by the next one, then there exists an index J such that
the aj ’s are pairwise associated for every j ≥ J .
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This property seems natural because it is shared by all the rings encoun-
tered in number theory. But the ring of entire holomorphic functions is not
Noetherian: Just take for an the function

z �→
(

n∏
k=1

(z − k)−1

)
sin 2πz.

Proof
Let A be a principal ideal domain and let (Ij)j≥0 be a nondecreasing

sequence of ideals in A. Let I be their union. This sequence is nondecreasing
under inclusion, so that I is an ideal. Let a be a generator: I = (a). Then
a belongs to one of the ideals, say a ∈ Ik. Hence I ⊂ Ik, which implies
Ij = I for j ≥ k.

We remark that the proof works with slight changes if we know that
every ideal in A is spanned by a finite set. For example, the ring of poly-
nomials over a Noetherian ring is itself Noetherian: ZZ[X ] and k[X, Y ] are
Noetherian rings.

The principal ideal domains are also factorial (a short term for unique
factorization domain): Every element of A admits a factorization consist-
ing of prime factors. This factorization is unique up to ambiguities, which
may be of three types: the order of factors, the presence of invertible ele-
ments, and the replacement of factors by associated ones. This property is
fundamental to the arithmetic in A.

6.1.2 Euclidean Domains

Definition 6.1.3 A Euclidean domain is a ring A endowed with a map
N : A �→ IN such that for every a, b ∈ A with b �= 0, there exists a unique
pair (q, r) ∈ A × A such that a = qb + r with N(r) < N(b) (Euclidean
division).

A special case of Euclidean division occurs when b divides a. Then r = 0
and we conclude that N(b) > N(0) for every b �= 0.

Classical examples of Euclidean domains are the ring of the rational
integers ZZ, with N(a) = |a|, the ring k[X ] of polynomials over a field
k, with N(P ) = 2deg P ,1 and the ring of Gaussian integers ZZ[

√−1], with
N(z) = |z|2. Observe that if b is nonzero, the Euclidean division of b by
itself shows that N(b) is positive. The function N is often called a norm,
though it does not resemble the norm on a real or complex vector space. In
practice, one may define N(0) in a consistent way by 0 if b �= 0 =⇒ N(b) > 0
(case of ZZ and ZZ[

√−1]), and by −∞ otherwise (case of k[X ]). With that

1One may take either N(P ) = 1 + deg P if P is nonzero, and N(0) = 0.
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extension, the pair (q, r) in the definition is uniquely defined by a = bq + r
and N(r) < N(b).

Proposition 6.1.3 Euclidean domains are principal ideal domains.

Proof
Let I be an ideal of a Euclidean domain A. If I = (0), there is nothing

to show. Otherwise, let us select in I \ {0} an element a of minimal norm.
If b ∈ I, the remainder r of the Euclidean division of b by a is an element
of I and satisfies N(r) < N(a). The minimality of N(a) implies r = 0, that
is, a|b. Finally, I = (a).

The converse of Proposition 6.1.3 is not true. For example, the quadratic
ring ZZ[

√
14] is Euclidean, though not a principal ideal domain. More infor-

mation about rings of quadratic integers can be found in Cohn’s monograph
[10].

6.1.3 Elementary Matrices

An elementary matrix of order n is a matrix of one of the following forms:

• The transposition matrices: If σ ∈ Sn, the matrix Pσ has entries
pij = δj

σ(i), where δ is the Kronecker symbol.

• The matrices In + aJik, for a ∈ A and 1 ≤ i �= k ≤ n, with

(Jik)lm = δl
iδ

m
k .

• The diagonal invertible matrices, that is, those whose diagonal entries
are invertible in A.

We observe that the inverse of an elementary matrix is again elementary.
For example, (In + aJik)(In − aJik) = In.

Theorem 6.1.1 A square invertible matrix of size n with entries in a
Euclidean domain A is a product of elementary matrices with entries in
A.

Proof
We shall prove the theorem for n = 2. The general case will be deduced

from that particular one and from the proof of Theorem 6.2.1 below, since
the matrices used in that proof are block-diagonal with 1 × 1 and 2 × 2
diagonal blocks.

Let

M =
(

a a1

c d

)
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be given in SL2(A): we have ad− a1c ∈ A∗. If N(a) < N(a1), we multiply
M on the right by (

0 1
1 0

)
.

We are now in the case N(a1) ≤ N(a). Let a = a1q + a2 be the Euclidean
division of a by a1. Then

M

(
1 0
−q 1

)
=: M ′ =

(
a2 a1

· d

)
.

Next, we have

M ′
(

0 1
1 0

)
=: M1 =

(
a1 a2

· ·
)

,

with N(a2) < N(a1). We thus construct a sequence of matrices Mk of the
form (

ak−1 ak

· ·
)

,

with ak−1 �= 0, each one the product of the previous one by elementary
matrices. Furthermore, N(ak) < N(ak−1). From Proposition 6.1.2, this
sequence is finite, and there is a step for which ak = 0. The matrix Mk,
being triangular and invertible, has an invertible diagonal D. Then MkD−1

has the form (
1 0
· 1

)
,

which is an elementary matrix.

Again, the statement is false in a general principal ideal domain. Whether
GLn(A) equals the group spanned by elementary matrices is a difficult
question of Ktheory.

6.2 Invariant Factors of a Matrix

Theorem 6.2.1 Let M ∈Mn×m(A) be a matrix with entries in a principal
ideal domain. Then there exist two invertible matrices P ∈ GLn(A), Q ∈
GLm(A) and a quasi-diagonal matrix D ∈ Mn×m(A) (that is, dij = 0 for
i �= j) such that:

• on the one hand, M = PDQ,

• on the other hand, d1|d2, . . . , di|di+1, . . . , where the dj are the
diagonal entries of D.
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Furthermore, if M = P ′D′Q′ is another decomposition with these two prop-
erties, the scalars dj and d′j are associated. Up to invertible elements, they
are thus unique.

Definition 6.2.1 For this reason, the scalars d1, . . . , dr (r = min(n, m))
are called the invariant factors of M .

Proof

Uniqueness: for k ≤ r, let us denote by Dk(N) the gcd of minors of order
k of the matrix N . From Corollary 2.1.1, we have Dk(M) = Dk(D) =
Dk(D′). It is immediate that Dk(D) = d1 · · ·dk (because the minors
of order k are either null, or products of k terms dj with distinct
subscripts), so that

d1 · · ·dk = ukd′1 · · · d′k, 1 ≤ k ≤ r,

for some uk ∈ A∗. Hence, d1 and d′1 are associated. Since A is an
integral domain, we also have d′k = u−1

k uk−1dk. In other words, dk

and d′k are associated.

Existence: We see from the above that the dj ’s are determined by the
equalities d1 · · ·dj = Dj(M). In particular, d1 is the gcd of the entries
of M . Hence the first step consists in finding a matrix M ′, equivalent
to M , such that m′

11 is equal to this gcd.

To do so, we construct a sequence of equivalent matrices M (p), with M (0) =
M , such that m

(p)
11 divides m

(p−1)
11 . Given the matrix N := M (p−1), we

distinguish four cases:

1. n11 divides n11, . . . , n1,j−1, but does not divide n1j . Then d :=
gcd(n11, n1j) reads d = un11 + vn1j . Let us define w := −n1j/d
and z := n11/d and let us define a matrix Q ∈ GLm(A) by:

• q11 = u, qj1 = v, q1j = w, qjj = z,
• qkl = δl

k, otherwise.

Then M (p) := M (p−1)Q is suitable, because m
(p)
11 = d|n11 = m

(p−1)
11 .

2. n11 divides each n1j , as well as n11, . . . , ni−1,1, but does not divide
ni1. This case is symmetric to the previous one. Multiplication on
the right by a suitable P ∈ GLn(A) furnishes M (p), with m

(p)
11 =

gcd(n11, ni1)|m(p−1)
11 .

3. n11 divides each n1j and each ni1, but does not divide some nij with
i, j ≥ 2. Then ni1 = an11. Let us define a matrix P ∈ GLn(A) by

• p11 = a + 1, pi1 = 1, p1i = −1, pii = 0;
• pkl = δl

k, otherwise;

If we then set N ′ = PN , we have n′
11 = n11 and n′

1j = (a+1)n1j−nij .
We have thus returned to the first case, and there exists an equiv-



6.2. Invariant Factors of a Matrix 103

alent matrix M (p), with m
(p)
11 = gcd(n′

11, n
′
1j) = gcd(n11, nij)|n11 =

m
(p−1)
11 .

4. n11 divides all the entries of the matrix N . In that case, M (p) :=
M (p−1).

It is essential to observe that in the first three cases, m
(p)
11 is not associated

to m
(p−1)
11 , though it divides it.

From Proposition 6.1.2, the elements of the sequence
(
m

(p)
11

)
p≥0

are pair-

wise associated, once p is large enough. We are then in the last of the
four cases above: m

(q)
11 divides all the m

(q)
ij ’s. We have m

(q)
i1 = aim

(q)
11 and

m
(q)
1j = bjm

(q)
11 . Then let P ∈ GLn(A) and Q ∈ GLm(A) be the matrices

defined by:

• pii = 1, pi1 = −ai if i ≥ 2, pij = 0 otherwise,

• qjj = 1, q1j = −bj if j ≥ 2, qij = 0 otherwise.

The matrix M ′ := PM (q)Q is equivalent to M (q), hence to M . It has the
form

M ′ =




m 0 · · · 0
0
... M ′′

0


 ,

where m divides all the entries of M ′′. Obviously, m = D1(M ′) = D1(M).
Having shown that every matrix M is equivalent to a matrix of the form

described above, one may argue by induction on the size of M (that is,
on the integer r = min(n, m)). If r = 1, we have just proved the claim.
If r ≥ 2 and if the claim is true up to the order r − 1, we apply the
induction hypothesis to the factor M ′′ ∈ M(n−1)×(m−1)(A) in the above
reduction: there exist P ′′ ∈ GLn−1(A) and Q′′ ∈ GLm−1(A) such that
P ′′M ′′Q′′ is quasi-diagonal, with diagonal entries d2, . . . , dr ordered by
dl|dl+1 for l ≥ 2. From the uniqueness step, d2 = D1(M ′′). Since m divides
the entries of M ′′, we have m|d2. Let us then define P ′ = diag(1, P ′′)
and Q′ = diag(1, Q′′), which are invertible: P ′M ′Q′ is quasi-diagonal, with
diagonal entries d1 = m, d2, . . . , a nondecreasing sequence (according to
the division in A). Since M is equivalent to M ′, this proves the existence
part of the theorem.

6.2.1 Comments

In the list of invariant factors of a matrix some dj ’s may equal zero. In
that case, dj = 0 implies dj+1 = · · · = dr = 0. Moreover, some invariant
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factor may occur several times in the list d1, . . . , dr, up to association. The
number of times that a factor d or its associates occur is its multiplicity.

If m = n and if the invariant factors of a matrix M are (1, · · · , 1), then
D = In, and M = PQ is invertible. Conversely, if M is invertible, then the
decomposition M = MInIn shows that d1 = · · · = dn = 1.

If A is a field, then there are only two ideals: A = (1) itself and (0). The
list of invariant factors of a matrix is thus of the form (1, . . . , 1, 0, . . . , 0).
Of course, there may be no 1’s (for the matrix 0m×n), or no 0’s. There are
thus exactly min(n, m) + 1 classes of equivalent matrices in Mn(A), two
matrices being equivalent if and only if they have the same rank q. The rank
is then the number of 1’s among the invariant factors. The decomposition
M = PDQ is then called the rank decomposition.

Theorem 6.2.2 Let k be a field and M ∈ Mn×m(k) a matrix. Let q be
the rank of M , that is, the dimension of the linear subspace of kn spanned
by the columns of M . Then there exist two square invertible matrices P, Q
such that M = PDQ with dii = 1 if i ≤ q and dij = 0 in all other cases.

6.3 Similarity Invariants and Jordan Reduction

From now on, k will denote a field and A = k[X ] the ring of polynomi-
als over k. This ring is Euclidean, hence a principal ideal domain. In the
sequel, the results are effective, in the sense that the normal forms that
we define will be obtained by means of an algorithm that uses right or left
multiplications by elementary matrices of Mn(A), the computations being
based upon the Euclidean division of polynomials.

Given a matrix B ∈Mn(k) (a square matrix with constant entries, in the
sense that they are not polynomials), we consider the matrix XIn − B ∈
Mn(A), where X is the indeterminate in A.

Definition 6.3.1 If B ∈ Mn(k), the invariant factors of M := XIn − B
are called invariant polynomials of B, or similarity invariants of B.

This definition is justified by the following statement.

Theorem 6.3.1 Two matrices in Mn(k) are similar if and only if
they have the same list of invariant polynomials (counted with their
multiplicities).

This theorem is a particular case of a more general one:

Theorem 6.3.2 Let A0, A1, B0, B1 be matrices in Mn(k), with A0, A1.
Then the matrices XA0 + B0 and XA1 + B1 are equivalent (in Mn(A)) if
and only if there exist G, H ∈ GLn(k) such that

GA0 = A1H, GB0 = B1H.
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When A0 = A1 = In, Theorem 6.3.2 tells that XIn − B0 and XIn −B1

are equivalent, namely that they have the same invariant polynomials, if
there exists P ∈ GLn(k) such that PB0 = B1P , which is the criterion
given by Theorem 6.3.1.

Proof
We prove Theorem 6.3.2. The condition is clearly sufficient.
Conversely, if XA0+B0 and XA1+B1 are equivalent, there exist matrices

P, Q ∈ GLn(A), such that P (XA0 + B0) = (XA1 + B1)Q. Since A1 is
invertible, one may perform Euclidean division2 of P by XA1 + B1 on the
right:

P = (XA1 + B1)P1 + G,

where G is a matrix whose entries are constant polynomials. We warn the
reader that since Mn(k) is not commutative, Euclidean division may be
done either on the right or on the left, with distinct quotients and distinct
remainders. Likewise, we have Q = Q1(XA0 + B0) + H with H ∈Mn(k).
Let us write, then,

(XA1 + B1)(P1 −Q1)(XA0 + B0) = (XA1 + B1)H −G(XA0 + B0).

The left-hand side of this equality has degree (the degree is defined as the
supremum of the degrees of the entries of the matrix) 2 + deg(P1 − Q1),
while the right-hand side has degree less than or equal to one. The two
sides, being equal, must vanish, and we conclude that

GA0 = A1H, GB0 = B1H.

There remains to show that G and H are invertible. To do so, let us define
R ∈ Mn(A) as the inverse matrix of P (which exists by assumption). We
still have

R = (XA0 + B0)R1 + K, K ∈Mn(k).

Combining the equalities stated above, we obtain

In −GK = (XA1 + B1)(QR1 + P1K).

Since the left-hand side is constant and the right-hand side has degree
1 + deg(QR1 + P1K), we must have In = GK, so that G is invertible.
Likewise, H is invertible.

We conclude this paragraph with a remarkable statement:

Theorem 6.3.3 If B ∈Mn(k), then B and BT are similar.

Indeed, XIn−B and XIn−BT are transposes of each other, and hence
have the same list of minors, hence the same invariant factors.

2The fact that A1 is invertible is essential, since the ring Mn(A) is not an integral
domain.



106 6. Matrices with Entries in a Principal Ideal Domain; Jordan Reduction

6.3.1 Example: The Companion Matrix of a Polynomial

Given a polynomial

P (X) = Xn + a1X
n−1 + · · ·+ an,

there exists a matrix B ∈ Mn(k) such that the list of invariant factors of
the matrix XIn − B is (1, . . . , 1, P ). We may take the companion matrix
associated to P to be

BP :=




0 · · · · · · 0 −an

1
. . .

...
...

0
. . .

. . .
...

...
...

. . . . . . 0
...

0 · · · 0 1 −a1




.

Naturally, any matrix similar to BP would do as well, because if B =
Q−1BP Q, then XIn−B is similar, hence equivalent, to XIn−BP . In order
to show that the invariant factors of BP are the polynomials (1, . . . , 1, P ),
we observe that XIn−BP possesses a minor of order n−1 that is invertible,
namely, the determinant of the submatrix



−1 X 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . X
0 · · · · · · 0 −1




.

We thus have Dn−1(XIn − BP ) = 1, so that the invariant factors
d1, . . . , dn−1 are all equal to 1. Hence dn = Dn(XIn − BP ) = det(XIn −
BP ), the characteristic polynomial of BP , namely P .

In this example P is also the minimal polynomial of BP . In fact, if Q is
a polynomial of degree less than or equal to n− 1,

Q(X) = b0X
n−1 + · · ·+ bn−1,

the vector Q(A)e1 reads

b0en + · · ·+ bn−1e1.

Hence Q(A) = 0 and deg Q ≤ n− 1 imply Q = 0. The minimal polynomial
is thus of degree at least n. It is thus equal to the characteristic polynomial.

6.3.2 First Canonical Form of a Square Matrix

Let M ∈ Mn(k) be a square matrix and P1, . . . , Pn ∈ k[X ] its similarity
invariants. The sum of their degrees nj (1 ≤ j ≤ n) is n. Let us denote
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by M (j) ∈ Mnj (k) the companion matrix of the polynomial Pj . Let us
form the matrix M ′, block-diagonal, whose diagonal blocks are the M (j)’s.
The few first polynomials Pj are generally constant (we shall see below
that the only case where P1 is not constant corresponds to M = αIn), and
the corresponding blocks are empty, as are the corresponding rows and
columns. To be precise, the actual number m of diagonal blocks is equal to
the nuber of nonconstant similarity invariants.

Since the matrix XInj − M (j) is equivalent to the matrix N (j) =
diag(1, . . . , 1, Pj), we have

XInj −M (j) = P (j)N (j)Q(j),

where P (j), Q(j) ∈ GLnj (k[X ]). Let us form matrices P, Q ∈ GLn(k[X ])
by

P = diag(P (1), . . . , P (n)), Q = diag(Q(1), . . . , Q(n)).

We obtain

XIn −M ′ = PNQ, N = diag(N (1), . . . , N (n)).

Here N is a diagonal matrix, whose diagonal entries are the similarity
invariants of M , up to the order. In fact, each nonconstant Pj appears
in the associated block N (j). The other diagonal terms are the constant
1, which occurs n−m times; these are the polynomials P1, . . . , Pn−m, as
expected. Conjugating by a permutation matrix, we obtain that XIn−M ′

is equivalent to the matrix diag(P1, . . . , Pn). Hence XIn−M ′ is equivalent
to XIn −M . From Theorem 6.3.1, M and M ′ are similar.

Theorem 6.3.4 Let k be a field, M ∈ Mn(k) a square matrix, and
P1, . . . , Pn its similarity invariants. Then M is similar to the block-
diagonal matrix M ′ whose jth diagonal block is the companion matrix of
Pj.

The matrix M ′ is called the first canonical form of M , or the Frobenius
canonical form of M .

Remark: If L is an extension of k (namely, a field containing k) and M ∈
Mn(k), then M ∈Mn(L). Let P1, . . . , Pn be the similarity invariants of M
as a matrix with entries in k. Then XIn−M = P diag(P1, . . . , Pn)Q, where
P, Q ∈ GLn(k[X ]). Since P, Q, their inverses, and the diagonal matrix also
belong to Mn(L[X ]), P1, . . . , Pn are the similarity invariants of M as a
matrix with entries in L. In other words, the similarity invariants depend
on M but not on the field k. To compute them, it is enough to place
ourselves in the smallest possible field, namely that spanned by the entries
of M . The same remark holds true for the first canonical form. As we shall
see in the next section, it is no longer true for the second canonical form,
which is therefore less canonical.

We end this paragraph with a characterization of the minimal polyno-
mial.
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Theorem 6.3.5 Let k be a field, M ∈ Mn(k) a square matrix, and
P1, . . . , Pn its similarity invariants. Then Pn is the minimal polynomial
of M . In particular, the minimal polynomial does not depend on the field
under consideration, as long as it contains the entries of M .

Proof
We use the first canonical form M ′ of M . Since M ′ and M are similar,

they have the same minimal polynomial. One thus can assume that M is
in the canonical form M = diag(M1, . . . , Mn), where Mj is the companion
matrix of Pj . Since Pj(Mj) = 0 (Cayley–Hamilton, theorem 2.5.1) and
Pj |Pn, we have Pn(Mj) = 0 and thus Pn(M) = 0n. Hence, the minimal
polynomial QM divides Pn. Conversely, Q(M) = 0n implies Q(Mn) = 0.
Since Pn is the minimal polynomial of Mn, Pn divides Q. Finally, Pn = QM .

Finally, since the similarity invariants do not depend on the choice of the
field, Pn also does not depend on this choice.

Warning: One may draw an incorrect conclusion if one applies Theorem
6.3.5 carelessly. Given a matrix M ∈ Mn(ZZ), one can define a matrix
M(p) in Mn(ZZ/pZZ) by reduction modulo p (p a prime number). But the
minimal polynomial of M(p) is not necessarily the reduction modulo p of
QM . Here is an example: Let us take n = 2 and

M =
(

2 2
0 2

)
.

Then QM divides PM = (X − 2)2, but QM �= X − 2, since M �= 2I2. Hence
QM = (X− 2)2. On the other hand, M(2) = 02, whose minimal polynomial
is X , which is different from X2, the reduction modulo 2 of QM .

The explanation of this phenomenon is the following. The matrices M
and M(2) are composed of scalars of different natures. There is no field
L containing simultaneously ZZ and ZZ/2ZZ. There is thus no context in
which Theorem 6.3.5 could be applied.

6.3.3 Second Canonical Form of a Square Matrix

We now decompose the similarity invariants of M into products of irre-
ducible polynomials. This decomposition depends, of course, on the choice
of the field of scalars. Denoting by p1, . . . , pt the list of distinct irreducible
(in k[X ]) factors of Pn, we have

Pj =
t∏

k=1

p
α(j,k)
k , 1 ≤ j ≤ n

(because Pj divides Pn), where the α(j, k) are nondecreasing with respect
to j, since Pj divides Pj+1.
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Definition 6.3.2 The elementary divisors of the matrix M ∈ Mn(k) are
the polynomials p

α(j,k)
k for which the exponent α(j, k) is nonzero. The mul-

tiplicity of an elementary divisor pm
k is the number of solutions j of the

equation α(j, k) = m. The list of elementary divisors is the sequence of
these polynomials, repeated with their multiplicities.

Let us begin with the case of the companion matrix N of some polynomial
P . Its similarity invariants are (1, . . . , 1, P ) (see above). Let Q1, . . . , Qt be
its elementary divisors (we observe that each has multiplicity one). We then
have P = Q1 · · ·Qt, while the Ql’s are pairwise coprime. To each Ql we
associate its companion matrix Nl, and we form a block-diagonal matrix
N ′ := diag(N1, . . . , Nt). Since each Nl − XIl is equivalent to a diagonal
matrix 


1

. . .
1

Ql




in Mn(l)(k[X ]), the whole matrix N ′ −XIn is equivalent to

Q :=




1
. . . O

1
Q1

O
. . .

Qt




.

Let us now compute the similarity invariants of N ′, that is, the invariant
factors of Q. It will be enough to compute the greatest common divisor
Dn−1 of the minors of size n− 1. Taking into account the principal minors
of Q, we see that Dn−1 must divide every product of the form∏

l�=k

Ql, 1 ≤ k ≤ t.

Since the Ql’s are pairwise coprime, this implies that Dn−1 = 1. This
means that the list of similarity invariants of N ′ has the form (1, . . . , 1, ·),
where the last polynomial must be the characteristic polynomial of N ′.
This polynomial is the product of the characteristic polynomials of the
Nl’s. These being equal to the Ql’s, the characteristic polynomial of N ′ is
P . Finally, N and N ′ have the same similarity invariants and are therefore
similar.

Now let M be a general matrix in Mn(k). We apply the former reduction
to every diagonal block Mj of its Frobenius canonical form. Each Mj is
similar to a block-diagonal matrix whose diagonal blocks are companion
matrices corresponding to the elementary divisors of M entering into the
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factorization of the jth invariant polynomial of M . We have thus proved
the following statement.

Theorem 6.3.6 Let Q1, . . . , Qs be the elementary divisors of M ∈
Mn(k). Then M is similar to a block-diagonal matrix M ′ whose diagonal
blocks are companion matrices of the Ql’s.

The matrix M ′ is called the second canonical form of M .

Remark: The exact computation of the second canonical form of a given
matrix is impossible in general, in contrast to the case of the first form.
Indeed, if there were an algorithmic construction, it would provide an algo-
rithm for factorizing polynomials into irreducible factors via the formation
of the companion matrix, a task known to be impossible if k = IR or CC.
Recall that one of the most important results in Galois theory, known as
Abel’s theorem, states the impossibility of solving a general polynomial
equation of degree at least five with complex coefficients, using only the
basic operations and the extraction of roots of any order.

6.3.4 Jordan Form of a Matrix

When the characteristic polynomial splits over k, which holds, for instance,
if the field k is algebraically closed, the elementary divisors have the form
(X − a)r for a ∈ k and r ≥ 1. In that case, the second canonical form can
be greatly simplified by replacing the companion matrix of the monomial
(X − a)r by its Jordan block

J(a; r) :=




a 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . .
. . . 1

0 · · · · · · 0 a




.

In fact, the characteristic polynomial of J(a; r) (of size r × r) is (X − a)r,
while the matrix XIr−J(a; r) possesses an invertible minor of order r− 1,
namely 



−1 0 · · · 0

X − a
. . . . . .

...
. . . . . . 0

X − a −1


 ,

which is obtained by deleting the first column and the last row. Again, this
shows that Dn−1(XIr − J) = 1, so that the invariant factors d1, . . . , dr−1

are equal to 1. Hence dr = Dr(XIr − J) = det(XIr − J) = (X − a)r. Its
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invariant factors are thus 1, . . . , 1, (X − a)r. Hence we have the following
theorem.

Theorem 6.3.7 When an elementary divisor of M is (X − a)r, one may,
in the second canonical form of M , replace its companion matrix by the
Jordan block J(a; r).

Corollary 6.3.1 If the characteristic polynomial of M splits over k, then
M is similar to a block-diagonal matrix whose jth diagonal block is a Jordan
block J(aj ; rj). This form is unique, up to the order of blocks.

Corollary 6.3.2 If k is algebraically closed (for example if k = CC), then
every square matrix M is similar to a block-diagonal matrix whose jth
diagonal block is a Jordan block J(aj ; rj). This form is unique, up to the
order of blocks.

6.4 Exercises

See also the exercise 12 in Chapter 7.

1. Show that every principal ideal domain is a unique factorization
domain.

2. Verify that the characteristic polynomial of the companion matrix of
a polynomial P is equal to P .

3. Let k be a field and M ∈ Mn(k). Show that M , MT have the same
rank and that in general, the rank of MT M is less than or equal
to that of M . Show that the equality of these ranks always holds if
k = IR, but that strict inequality is possible, for example with k = CC.

4. Compute the elementary divisors of the matrices


22 23 10 −98
12 18 16 −38
−15 −19 −13 58
6 7 4 −25


 ,




0 −21 −56 −96
18 36 52 −8
−12 −17 −16 38
3 2 −2 −20




and 


44 89 120 −32
0 −12 −32 −56
−14 −20 −16 49
8 14 16 −16




in Mn(CC). What are their Jordan reductions?

5. (Lagrange’s theorem)
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Let K be a field and A ∈ Mn(K). Let X, Y ∈ Kn be vectors such
that XT AY �= 0. We normalize by XT AY = 1 and define

B := A− (AY )(XT A).

Show that in the factorization

PAQ =
(

Ir 0
0 0n−r

)
, P, Q ∈ GLn(K),

one can choose Y as the first column of Q and XT as the first row of
P . Deduce that rkB = rkA− 1.
More generally, show that if X, Y ∈Mn×m(K), XT AY ∈ GLm(K),
and if

B := A− (AY )(XT AY )−1(XT A),

then rk B = rk A−m.
If A ∈ Symn(IR) and if A is positive semidefinite, and if X = Y ,
show that B is also positive semidefinite.

6. For A ∈Mn(CC), consider the linear differential equation in CCn

dx

dt
= Ax. (6.1)

(a) Let P ∈ GLn(CC) and let t �→ x(t) be a solution of (6.1). What
is the differential equation satisfied by t �→ Px(t)?

(b) Let (X−a)m be an elementary divisor of A. Show that for every
k = 0, . . . , m− 1, (6.1) possesses solutions of the form eatQk(t),
where Qk is a complex-valued polynomial map of degree k.

7. Consider the following differential equation of order n in CC:

x(n)(t) + a1x
(n−1)(t) + · · ·+ anx(t) = 0. (6.2)

(a) Define P (X) = Xn + a1X
n−1 + · · · + an and let M be the

companion matrix of P . Let

P (X) =
∏
a∈A

(X − a)na

be the factorization of P into irreducible factors. Compute the
Jordan form of M .

(b) Using either the previous exercise or arguing directly, show that
the set of solutions of (6.2) is spanned by the solutions of the
form

t �→ eatR(t), R ∈ CC[X ], deg R < na.

8. Consider a linear recursion of order n in a field K

um+n + a1um+n−1 + · · ·+ anum = 0, m ∈ IN. (6.3)
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With the notation of the previous exercise, show that the set of
solutions of (6.3) is spanned by the solutions of the form

(amR(m))m∈IN , R ∈ CC[X ], deg R < na.

9. Let n ≥ 2 and let M ∈ Mn(ZZ) be the matrix defined by mij =
i + j − 1:

M =




1 2 · · · n

2 . . . . . .
...

... . . . . . .
...

n · · · · · · 2n− 1


 .

(a) Show that M has rank 2 (you may look for two vectors x, y ∈ ZZn

such that mij = xixj − yiyj).
(b) Compute the invariant factors of M in Mn(ZZ) (the equivalent

diagonal form is obtained after five elementary operations).

10. The ground field is CC.

(a) Define

N = J(0; n), B =




. . . 0 1
... . . . . . . 0

0 . . . . . .
...

1 0 . . .


 .

Compute NB, BN , and BNB. Show that S := 1√
2
(I + iB) is

unitary.
(b) Deduce that N is similar to

1
2




0 1 0 . . . 0

1
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . 1

0 . . . 0 1 0




+
i

2




0 . . . 0 −1 0
... . . . . . . . . . 1
0 . .

.
. .

.
. .

.
0

−1 . . . . . . . . .
...

0 1 0 . . . 0




.

(c) Deduce that every matrix M ∈ Mn(CC) is similar to a complex
symmetric matrix. Compare with the real case.



7
Exponential of a Matrix, Polar
Decomposition, and Classical Groups

7.1 The Polar Decomposition

The polar decomposition of matrices is defined by analogy with that in the
complex plane: If z ∈ CC∗, there exists a unique pair (r, q) ∈ (0, +∞)× S1

(S1 denotes the unit circle, the set of complex numbers of modulus 1) such
that z = rq. If z acts on CC (or on CC∗) by multiplication, this action can
be decomposed as the product of a rotation of angle θ (where q = exp(iθ))
with a homothety of ratio r > 0. The fact that these two actions commute
is a consequence of the commutativity of the multiplicative group CC∗; this
property does not hold for the polar decomposition in GLn(k), k = IR or
CC, because the general linear group is not commutative.

Let us recall that HPDn denotes the (open) cone of matrices of Mn(CC)
that are Hermitian positive definite, while Un denotes the group of unitary
matrices. In Mn(IR), SPDn is the set of symmetric positive definite ma-
trices, and On is the orthogonal group. The group Un is compact, since it
is closed and bounded in Mn(CC). Indeed, the columns of unitary matrices
are unit vectors, so that Un is bounded. On the other hand, Un is defined
by an equation U∗U = In, where the map U �→ U∗U is continuous; hence
Un is closed. By the same arguments, On is compact.

Polar decomposition is a fundamental tool in the theory of finite-
dimensional Lie groups and Lie algebras. For this reason, it is intimately
related to the exponential map. We shall not consider these two notions
here in their full generality, but we shall restrict attention to their matricial
aspects.
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Theorem 7.1.1 For every M ∈ GLn(CC), there exists a unique pair

(H, Q) ∈ HPDn ×Un

such that M = HQ. If M ∈ GLn(IR), then (H, Q) ∈ SPDn ×On.
The map M �→ (H, Q), called the polar decomposition of M , is a

homeomorphism between GLn(CC) and HPDn ×Un (respectively between
GLn(IR) and SPDn ×On).

Theorem 7.1.2 Let H be a positive definite Hermitian matrix. There ex-
ists a unique positive definite Hermitian matrix h such that h2 = H. If H
is real-valued, then so is h. The matrix h is called the square root of H,
and is denoted by h =

√
H.

Proof
We prove Theorem 7.1.1 and obtain Theorem 7.1.2 as a by-product.
Existence. Since MM∗ ∈ HPDn, we can diagonalize MM∗ by a

unitary matrix

MM∗ = U∗DU, D = diag(d1, . . . , dn),

where dj ∈ (0, +∞). The matrix H := U∗ diag(
√

d1, . . . ,
√

dn)U is Hermi-
tian positive definite and satisfies H2 = HH∗ = MM∗. Then Q := H−1M
satisfies Q∗Q = M∗H−2M = M∗(MM∗)−1M = In, hence Q ∈ Un. If
M ∈ Mn(IR), then clearly MM∗ is real symmetric. In fact, U is orthogo-
nal and H is real symmetric. Hence Q is real orthogonal. Note: H is called
the square root of MM∗.

Uniqueness. Let M = H ′Q′ be another suitable decomposition. Then
N := H−1H ′ = Q(Q′)−1 is unitary, so that Sp(N) ⊂ S1. Let S ∈ HPDn

be a positive definite Hermitian square root of H ′ (we shall prove below
that it is unique). Then N is similar to N ′ := SH−1S. However, N ′ ∈
HPDn. Hence N is diagonalizable, with real positive eigenvalues. Hence
Sp(N) = {1}, and N is therefore similar, and thus equal, to In.

This proves that the positive definite Hermitian square root of a matrix
of HPDn is unique in HPDn, since otherwise, our construction would
provide several polar decompositions. We have thus proved Theorem 7.1.2
in passing.

Smoothness. The map (H, Q) �→ HQ is polynomial, hence continuous.
Conversely,, it is enough to prove that M �→ (H, Q) is sequentially con-
tinuous, since GLn(CC) is a metric space. Let (Mk)k∈IN be a convergent
sequence in GLn(CC) and let M be its limit. Let us denote by Mk = HkQk

and M = HQ their respective polar decompositions. Let R be a cluster
point of the sequence (Qk)k∈IN , that is, the limit of some subsequence
(Qkl

)l∈IN , with kl → +∞. Then Hkl
= Mkl

Q∗
kl

converges to S := MR∗.
The matrix S is Hermitian positive semidefinite (because it is the limit
of the Hkl

’s) and invertible (because it is the product of M and R∗). It
is thus positive definite. Hence, SR is a polar decomposition of M . The
uniqueness part ensures that R = Q and S = H . The sequence (Qk)k∈IN ,
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which is relatively compact and has at most one cluster point (namely Q),
converges to Q. Finally, Hk = MkQ∗

k converges to MQ∗ = H .

Remark: There is as well a polar decomposition M = QH with the same
properties. We shall use one or the other depending on the context. We
warn the reader, however, that for a given matrix, the two decompositions
do not coincide. For example, in M = HQ, H is the square root of MM∗,
though in M = QH, it is the square root of M∗M .

7.2 Exponential of a Matrix

The ground field is here k = CC. By restriction, we can also treat the case
k = IR.

For A in Mn(CC), the series

∞∑
k=0

1
k!

Ak

converges normally (which means that the series of norms is convergent),
since for any matrix norm, we have

∞∑
k=0

∥∥∥∥ 1
k!

Ak

∥∥∥∥ ≤
∞∑

k=0

1
k!
‖A‖k = exp ‖A‖.

Since Mn(CC) is complete, the series is convergent, and the estimation above
shows that it converges uniformly on every compact set. Its sum, denoted
by expA, thus defines a continuous map exp : Mn(CC) → Mn(CC), called
the exponential. When A ∈Mn(IR), we have expA ∈Mn(IR).

Given two matrices A and B in general position, the binomial formula
is not valid: (A + B)k does not necessarily coincide with

j=k∑
j=0

(
k
j

)
AjBk−j .

It thus follows that exp(A + B) differs in general from expA · expB. A
correct statement is the following.

Proposition 7.2.1 Let A, B ∈ Mn(CC) be commuting matrices; that is,
AB = BA. Then exp(A + B) = (expA)(expB).

Proof
The proof proceeds in exactly the same way as for the exponential of

complex numbers. We observe that since the series defining the expo-
nential of a matrix is normally convergent, we may compute the product
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(expA)(expB) by multiplying term by term the series

(expA)(exp B) =
∞∑

j,k=0

1
j!k!

AjBk.

In other words,

(expA)(expB) =
∞∑
l=0

1
l!

Cl,

where

Cl :=
∑

j+k=l

l!
j!k!

AjBk.

From the assumption AB = BA, we know that the binomial formula holds.
Therefore, Cl = (A + B)l, which proves the proposition.

Noting that exp 0n = In and that A and −A commute, we derive the
following corollary.

Corollary 7.2.1 For every A ∈ Mn(CC), exp A is invertible, and its
inverse is exp(−A).

Given two conjugate matrices B = P−1AP , we have Bk = P−1AkP for
each integer k and thus

exp(P−1AP ) = P−1(expA)P. (7.1)

If D = diag(d1, . . . , dn) is diagonal, we have

expD = diag(expd1, . . . , exp dn).

Of course, this formula, or more generally (7.1), can be combined with
Jordan reduction in order to compute the exponential of a given matrix.
Let us keep in mind, however, that Jordan reduction cannot be carried out
explicitly.

Let us introduce a real parameter t and let us define a function g by
g(t) = exp tA. From Proposition 7.2.1, we see that g satisfies the functional
equation

g(s + t) = g(s)g(t). (7.2)

On the other hand, g(0) = In, and we have

g(t)− g(0)
t

−A =
∞∑

k=2

tk−1

k!
Ak.

Using any matrix norm, we deduce that∥∥∥∥g(t)− g(0)
t

−A

∥∥∥∥ ≤ e‖tA‖ − 1− ‖tA‖
|t| ,
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from which we obtain

lim
t→0

g(t)− g(0)
t

= A.

We conclude that g has a derivative at t = 0, with g′(0) = A. Using the
functional equation (7.2), we then obtain that g is differentiable everywhere,
with

g′(t) = lim
s→0

g(t)g(s)− g(t)
s

= g(t)A.

We observe that we also have

g′(t) = lim
s→0

g(s)g(t)− g(t)
s

= Ag(t).

From either of these differential equations we see that g is actually infinitely
differentiable. We shall retain the formula

d

dt
exp tA = A exp tA = (exp tA)A. (7.3)

This differential equation is sometimes the most practical way to compute
the exponential of a matrix. This is of particular relevance when A has real
entries but has at least one nonreal eigenvalue if one wishes to avoid the
use of complex numbers.

Proposition 7.2.2 For every A ∈Mn(CC),

det expA = exp TrA. (7.4)

Proof
We could deduce (7.4) directly from (7.3). Here is a more elementary

proof. We begin with a reduction of A of the form A = P−1TP , where T
is upper triangular. Since T k is still triangular, with diagonal entries equal
to tkjj , exp T is triangular too, with diagonal entries equal to exp tjj . Hence

det expT =
∏
j

exp tjj = exp
∑

j

tjj = expTr T.

This is the expected formula, since expA = P−1(expT )P .

Since (M∗)k = (Mk)∗, we see easily that (exp M)∗ = exp(M∗). In
particular, the exponential of a skew-Hermitian matrix is unitary, for then

(expM)∗ exp M = exp(M∗) exp M = exp(−M) expM = In.

Similarly, the exponential of a Hermitian matrix is Hermitian positive
definite, because

exp M =
(

exp
1
2
M

)∗
exp

1
2
M.
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This calculation also shows that if M is Hermitian, then
√

expM = exp
1
2
M.

We shall use the following more precise statement:

Proposition 7.2.3 The map exp : Hn → HPDn is a homeomorphism
(that is, a bicontinuous bijection).

Proof

Injectivity: Let A, B ∈ Hn with exp A = expB =: H . Then

exp
1
2
A =

√
H = exp

1
2
B.

By induction, we have

exp 2−mA = exp 2−mB, m ∈ ZZ.

Substracting In, multiplying by 2m, and passing to the limit as m →
+∞, we obtain

d

dt

∣∣∣∣
t=0

exp tA =
d

dt

∣∣∣∣
t=0

exp tB;

that is, A = B.

Surjectivity: Let H ∈ HPDn be given. Then H = U∗ diag(d1, . . . , dn)U ,
where U is unitary and dj ∈ (0, +∞). From above, we know that
H = expM for

M := U∗ diag(log d1, . . . , log dn)U,

which is Hermitian.

Continuity: The continuity of exp has already been proved. Let us in-
vestigate the continuity of the reciprocal map. Let (H l)l∈IN be a
sequence in HPDn that converges to H ∈ HPDn. We denote by
M l, M ∈ Hn, the Hermitian matrices whose exponentials are H l and
H . The continuity of the spectral radius gives

lim
l→+∞

ρ(H l) = ρ(H), lim
l→+∞

ρ
(
(H l)−1

)
= ρ

(
(H)−1

)
. (7.5)

Since Sp(M l) = log Sp(M l), we have

ρ(M l) = log max
{
ρ(H l), ρ

(
(H l)−1

)}
. (7.6)

Keeping in mind that the restriction to Hn of the induced norm ‖ ·‖2
coincides with that of the spectral radius ρ, we deduce from (7.5, 7.6)
that the sequence (M l)l∈IN is bounded. If N is a cluster point of the
sequence, the continuity of the exponential implies expN = H . But
the injectivity shown above implies N = M . The sequence (M l)l∈IN ,
bounded with a unique cluster point, is convergent.
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7.3 Structure of Classical Groups

Proposition 7.3.1 Let G be a subgroup of GLn(CC). We assume that G
is stable under the map M �→M∗ and that for every M ∈ G ∩HPDn, the
square root

√
M is an element of G. Then G is stable under polar decompo-

sition. Furthermore, polar decomposition is a homeomorphism between G
and

(G ∩Un)× (G ∩HPDn).

This proposition applies in particular to subgroups of GLn(IR) that are
stable under transposition and under extraction of square roots in SPDn.
One has then

G
homeo∼ (G ∩On)× (G ∩ SPDn).

Proof
Let M ∈ G be given and let HQ be its polar decomposition. Since

MM∗ ∈ G, we have H2 ∈ G, that is, H ∈ G, by assumption. Finally, we
have Q = H−1M ∈ G. An application of Theorem 7.1.1 finishes the proof.

We apply this general result to the classical groups U(p, q), O(p, q)
(where n = p+q) and Spm (where n = 2m). These are respectively the uni-
tary group of the Hermitian form |z1|2+ · · ·+ |zp|2−|zp+1|2−· · ·−|zn|2, the
orthogonal group of the quadratic form x2

1 + · · ·+x2
p−x2

p+1−· · ·−x2
n, and

the symplectic group. They are defined by G = {M ∈Mn(k)|M∗JM = J},
with k = CC for U(p, q), k = IR otherwise. The matrix J equals(

Ip 0p×q

0q×p −Iq

)
,

for U(p, q) and O(p, q), and (
0m Im

−Im 0m

)
,

for Spm. In each case, J2 = ±In.

Proposition 7.3.2 Let J be a complex n×n matrix satisfying J2 = ±In.
The subgroup G of Mn(CC) defined by the equation M∗JM = J is invariant
under polar decomposition. If M ∈ G, then | detM | = 1.

Proof
The fact that G is a group is immediate. Let M ∈ G. Then detJ =

detM∗ detM detJ ; that is, | detM |2 = 1. Furthermore, M∗JM(JM∗) =
J2M∗ = ±M∗ = M∗J2. Simplifying by M∗J on the left, there remains
MJM∗ = J , that is, M∗ ∈ G.
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Observe that, since G is a group, M ∈ G implies (M∗)kJ = JM−k for
every k ∈ IN . By linearity, it follows that p(M∗)J = Jp(M−1) holds for
every polynomial p ∈ IR[X ].

Let us now assume that M ∈ G ∩ HPDn. We then have M =
U∗ diag(d1, . . . , dn)U , where U is unitary and the dj ’s are positive real
numbers. Let A be the set formed by the numbers dj and 1/dj. There ex-
ists a polynomial p with real entries such that p(a) =

√
a for every a ∈ A.

Then we have p(M) =
√

M and p(M−1) =
√

M
−1

. Since M∗ = M , we
have also p(M)J = Jp(M−1); that is,

√
MJ = J

√
M

−1
. Hence

√
M ∈ G.

From Proposition 7.3.1, G is stable under polar decomposition.

The main result of this section is the following:

Theorem 7.3.1 Under the hypotheses of Proposition 7.3.2, the group G
is homeomorphic to (G ∩Un)× IRd, for a suitable integer d.

Of course, if G = O(p, q) or Spm, the subgroup G∩Un can also be written
as G∩On. We call G∩Un a maximal compact subgroup of G, because one
can prove that it is not a proper subgroup of a compact subgroup of G.
Another deep result, which is beyond the scope of this book, is that every
maximal compact subgroup of G is a conjugate of G ∩Un. In the sequel,
when speaking about the maximal compact subgroup of G, we shall always
have in mind G ∩Un.

Proof
The proof amounts to showing that G∩HPDn is homeomorphic to some

IRd. To do this, we define

G := {N ∈Mn(k)| exp tN ∈ G, ∀t ∈ IR}.
Lemma 7.3.1 The set G defined above satifies

G = {N ∈Mn(k)|N∗J + JN = 0n}.
Proof

If N∗J + JN = 0n, let us set M(t) = exp tN . Then M(0) = In and

d

dt
M(t)∗JM(t) = M∗(t)(N∗J + JN)M(t) = 0n,

so that M(t)∗JM(t) ≡ J . We thus have N ∈ G. Conversely,, if M(t) :=
exp tN ∈ G for every t, then the derivative at t = 0 of M∗(t)JM(t) = J
gives N∗J + JN = 0n.

Lemma 7.3.2 The map exp : G∩Hn → G∩HPDn is a homeomorphism.

Proof
We must show that exp : G ∩ Hn → G ∩ HPDn is onto. Let M ∈

G ∩ HPDn and let N be the Hermitian matrix such that expN = M .
Let p ∈ IR[X ] be a polynomial with real entries such that for every λ ∈
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SpM ∪ SpM−1, we have p(λ) = log λ. Such a polynomial exists, since the
numbers λ are real and positive.

Let N = U∗DU be a unitary diagonalization of N . Then M = expN =
U∗(expD)U and M−1 = exp(−N) = U∗ exp(−D)U . Hence, p(M) = N
and p(M−1) = −N . However, M ∈ G implies MJ = JM−1, and therefore
q(M)J = Jq(M−1) for every q ∈ IR[X ]. With q = p, we obtain NJ = −JN .

These two lemmas complete the proof of the theorem, since G ∩Hn is an
IR-vector space. The integer d mentionned in the theorem is its dimension.

We wish to warn the reader that neither G, nor Hn is a CC-vector space.
We shall see examples in the next section that show that G ∩Hn can be
naturally IR-isomorphic to a CC-vector space, which is a source of confusion.
One therefore must be cautious when computing d.

The reader eager to learn more about the theory of classical groups is
advised to have a look at the book of R. Mneimné and F. Testard [28] or
the one by A. W. Knapp [24].

7.4 The Groups U(p, q)

Let us begin with the study of the maximal compact subgroup of U(p, q).
If M ∈ U(p, q) ∩Un, let us write M blockwise:

M =
(

A B
C D

)
,

where A ∈ Mp(CC), etc. The following equations express that M belongs
to Un:

A∗A + C∗C = Ip, B∗B + D∗D = Iq, A∗B + C∗D = 0pq.

Similarly, writing that M ∈ U(p, q),

A∗A− C∗C = Ip, D∗D −B∗B = Iq, A∗B − C∗D = 0pq.

Combining these equations, we obtain first C∗C = 0p and B∗B = 0q. For
every vector X ∈ CCn, we have ‖CX‖22 = X∗C∗CX = 0; hence CX = 0.
Finally, C = 0 and similarly B = 0. There remains A ∈ Up and D ∈ Uq .
The maximal compact subgroup of U(p, q) is thus isomorphic (not only
homeomorphic) to Up ×Uq.

Furthermore, G ∩Hn is the set of matrices

N =
(

A B
B∗ D

)
,

where A ∈ Hp, D ∈ Hq, which satisfy NJ + JN = 0n; that is, A = 0p,
D = 0q. Hence G ∩ Hn is isomorphic to Mp×q(CC). One therefore has
d = 2pq.
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Proposition 7.4.1 The unitary group U(p, q) is homeomorphic to Up ×
Uq × IR2pq. In particular, U(p, q) is connected.

There remains to show connectivity. It is a straightforward consequence of
the following lemma.

Lemma 7.4.1 The unitary group Un is connected.

Since GLn(CC) is homeomorphic to Un×HPDn (via polar decomposition),
hence to Un ×Hn (via the exponential), it is equivalent to the following
statement.

Lemma 7.4.2 The linear group GLn(CC) is connected.

Proof
Let M ∈ GLn(CC) be given. Define A := CC \ {(1 − λ)−1|λ ∈ Sp(M)}.

The arcwise-connected set A does not contain the origin, nor the point
z = 1, since 0 �∈ Sp(M). There thus exists a path γ joining 0 to 1 in A:
γ ∈ C([0, 1]; A), γ(0) = 0 and γ(1) = 1. Let us define M(t) := γ(t)M +(1−
γ(t))In. By construction, M(t) is invertible for every t, and M(0) = In,
M(1) = M . The connected component of In is thus all of GLn(CC).

7.5 The Orthogonal Groups O(p, q)

The analysis of the maximal compact subgroup and of G∩Hn for the group
O(p, q) is identical to that in the previous paragraph. On the one hand,
O(p, q) ∩ On is isomorphic to Op × Oq. On the other hand, G ∩ Hn is
isomorphic to Mp×q(IR), which is of dimension d = pq.

Proposition 7.5.1 Let n ≥ 1. The group O(p, q) is homeomorphic to Op×
Oq× IRpq. The number of its connected components is two if p or q is zero,
four otherwise.

Proof
We must show that On has two connected components. However, On is

the disjoint union of SOn (matrices of determinant +1) and of O−
n (matri-

ces of determinant −1). Since O−
n = M ·SOn for any matrix M ∈ O−

n (for
example a hyperplane symmetry), there remains to show that the special
orthogonal group SOn is connected, in fact arcwise connected. We use the
following property:
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Lemma 7.5.1 Given M ∈ On, there exists Q ∈ On such that the matrix
Q−1MQ has the form




(·) 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 (·)


 , (7.7)

where the diagonal blocks are of size 1×1 or 2×2 and are orthogonal, those
of size 2× 2 being rotations matrices:

(
cos θ sin θ
− sin θ cos θ

)
. (7.8)

Let us apply Lemma 7.5.1 to M ∈ SOn. The determinant of M , which
is the product of the determinants of the diagonal blocks, equals (−1)m,
m being the multiplicity of the eigenvalue −1. Since detM = 1, m is even,
and we can gather the diagonal −1’s pairwise in order to form matrices of
the form (7.8), with θ = π. Finally, there exists Q ∈ On such that

M = QT




R1 0 · · · · · · · · · 0

0
. . . . . .

...
...

. . . Rr
. . . 0

...
. . . 1

. . .
...

...
. . . . . . 0

0 · · · · · · · · · 0 1




Q,

where each diagonal block Rj is a matrix of planar rotation:

Rj =
(

cos θj sin θj

− sin θj cos θj

)
.

Let us now define a matrix M(t) as above, in which we replace the angles
θj by tθj . We thus obtain a path in SOn, from M(0) = In to M(1) = M .
The connected component of In is thus the whole of SOn.

We now prove Lemma 7.5.1: As an orthogonal matrix, M is normal.
From Theorem 3.3.1, it decomposes into a matrix of the form (7.7), the
1× 1 diagonal blocks being the real eigenvalues. These eigenvalues are ±1,
since Q−1MQ is orthogonal. The diagonal blocks 2×2 are direct similitude
matrices. However, they are isometries, since Q−1MQ is orthogonal. Hence
they are rotation matrices.
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7.5.1 Notable Subgroups of O(p, q)

We assume here that p, q ≥ 1, so that O(p, q) has four connected
components. We first describe them.

Let us recall that if M ∈ O(p, q) reads blockwise

M =
(

A B
C D

)
,

where A ∈ Mp(IR), etc. Then AT A = CT C + Ip is larger than Ip as a
symmetric matrix, so that det A cannot vanish. Similarly, DT D = BT B+Iq

shows that det D does not vanish. The continuous map M �→ (detA, detD)
thus sends O(p, q) to IR∗ × IR∗ (in fact, to (IR \ (−1, 1))2). Since the sign
map from IR∗ to {−, +} is continuous, we may thus define a continuous
function

O(p, q) σ→ {−, +}2 ∼ (ZZ/2ZZ)2 ,

M �→ (sgndetA, sgn det D).

The diagonal matrices whose diagonal entries are ±1 belong to O(p, q). It
follows that σ is onto. Since σ is continuous, the preimage Gα of an element
α of {−, +}2 is the union of some connected components of O(p, q); let n(α)
be the number of these components. Then n(α) ≥ 1 (σ being onto), and∑

α n(α) equals 4, the number of connected components of O(p, q). Since
there are four terms in this sum, we obtain n(α) = 1 for every α. Finally,
the connected components of O(p, q) are the Gα’s, where α ∈ {−, +}2.

The left multiplication by an element M of O(p, q) is continuous, bijec-
tive, whose inverse (another multiplication) is continuous. It thus induces a
permutation of the set π0 of connected components of O(p, q). Since σ in-
duces a bijection between π0 and {−, +}2, there exists thus a permutation
qM of {−, +}2 such that σ(MM ′) = qM (σ(M ′)). Similarly, the multiplica-
tion at right by M ′ is an homeomorphism, allowing to define a permutation
pM ′ of{−, +}2 such that σ(MM ′) = pM ′(σ(M)). The equality

pM ′(σ(M)) = qM (σ(M ′))

shows that pM and qM actually depend only on σ(M). In other words,
σ(MM ′) depends only on σ(M) and σ(M ′). A direct evaluation in the
special case of matrices in O(p, q)∩On(IR) leads to the following conclusion.

Proposition 7.5.2 (p, q ≥ 1) The connected components of G = O(p, q)
are the sets Gα := σ−1(α), defined by α1 detA > 0 and α2 detD > 0, when
a matrix M is written blockwise as above. The map σ : O(p, q)→ {−, +}2
is a surjective group homomorphism; that is, σ(MM ′) = σ(M)σ(M ′). In
particular:

1. G−1
α = Gα;

2. Gα ·Gα′ = Gαα′ .
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Remark: σ admits a right inverse, namely

α �→Mα := diag(α11, 1, . . . , 1, α21).

The group O(p, q) appears, therefore, as the semidirect product of G++

with (ZZ/2ZZ)2.
We deduce immediately from the proposition that O(p, q) possesses five

open and closed normal subgroups, the preimages of the five subgroups of
(ZZ/2ZZ)2:

• O(p, q) itself;

• G++, which we also denote by G0 (see Exercise 21), the connected
component of the unit element In,

• G++ ∪Gα, for the three other choices of an element α.

One of these groups, namely G++ ∪G−− is equal to the kernel SO(p, q)
of the homomorphism M �→ detM . In fact, this kernel is open and closed,
thus is the union of connected components of O(p, q). However the sign of
detM for M ∈ Gα is that of α1α2, which can be seen directly from the
case of diagonal matrices Mα.

7.5.2 The Lorentz Group O(1, 3)

If p = 1 and q = 3, the group O(1, 3) is isomorphic to the orthogonal
group of the Lorentz quadratic form dt2 − dx2

1 − dx2
2 − dx2

3, which defines
the space-time distance in special relativity.1 Each element M of O(1, 3)
corresponds to the transformation(

t,
x

)
�→M

(
t,
x

)
,

which we still denote by M , by abuse of notation. This transformation
preserve the light cone of equation t2 − x2

1 − x2
2 − x2

3 = 0. Since it is
a homeomorphism of IR4, it permutes the connected components of the
complement C of that cone. There are three such components (see Figure
7.1):

• the convex set C+ := {(t, x) | ‖x‖ < t};
• the convex set C− := {(t, x) | ‖x‖ < −t};
• the “ring” A := {(t, x) | |t| < ‖x‖}.

Clearly, C+ and C− are homeomorphic. For example, they are so via the
time reversal t �→ −t. However, they are not homeomorphic to A, because
the latter is homeomorphic to S2× IR2 (here, S2 denotes the unit sphere),

1We have selected a system of units in which the speed of light equals one.
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x1

C−

x2

A

C+

t

Figure 7.1. The Lorentz cone.

which is not contractible, while a convex set is always contractible. Since
M is a homeomorphism, one deduces that necessarily, MA = A, while
MC+ = C±, MC− = C∓.

The transformations that preserve C+, and therefore every connected
component of C, form the orthochronous Lorentz group. Its elements are
those that send the vector e0 := (1, 0, 0, 0)T to C+; that is, those for which
the first component of Me0 is positive. Since this component is A (here it
is nothing but a scalar), this group must be G++ ∪G+−.

7.6 The Symplectic Group Spn

Let us study first of all the maximal compact subgroup Spn ∩O2n. If

M =
(

A B
C D

)
,

with blocks of size n× n, then M ∈ Spn means that

AT C = CT A, AT D − CT B = In, BT D = DT B,

while M ∈ O2n yields

AT A + CT C = In, BT B + DT D = In, BT A + DT C = 0n.
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But since MT ∈ Spn, we also have

ABT = BAT , ADT −BCT = In, CDT = DCT .

Let us combine these equations:

B = B(AT A+CT C) = ABT A+(ADT−In)C = A(BT A+DT C)−C = −C.

Similarly,

D = D(AT A+CT C) = (In+CBT )A+CDT C = A+C(BT A+DT C) = A.

Hence

M =
(

A B
−B A

)
.

The remaining conditions are

AT A + BT B = In, AT B = BT A.

This amounts to saying that A + iB is unitary. One immediately checks
that the map M �→ A + iB is an isomorphism from Spn onto Un.

Finally, if

N =
(

A B
BT D

)

is symmetric and NJ + JN = 02n, we have, in fact,

N =
(

A B
B −A

)
,

where A and B are symmetric. Hence G ∩ Sym2n is homeomorphic to
Symn × Symn, that is, to IRn(n+1).

Proposition 7.6.1 The symplectic group Spn is homeomorphic to Un ×
IRn(n+1).

Corollary 7.6.1 In particular, every symplectic matrix has determinant
+1.

Indeed, Proposition 7.6.1 shows that Spn is connected. Since the de-
terminant is continuous, with values in {−1, 1}, it is constant, equal to
+1.

7.7 Singular Value Decomposition

As we shall see in Exercise 8 (see also Exercise 12 in Chapter 4), the
eigenvalues of the matrix H in the polar decomposition of a given matrix
M are of some importance. They are called the singular values of M . Since
these are the square roots of the eigenvalues of M∗M , one may even speak
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of the singular values of an arbitrary matrix, not necessarily invertible.
Recalling that (see Exercise 17 in Chapter 2) when M is n×m, M∗M and
MM∗ have the same nonzero eigenvalues, counting with multiplicities, one
may even speak of the singular values of a rectangular matrix, up to an
ambiguity concerning the multiplicity of the eigenvalue 0.

The main result of the section is the following.

Theorem 7.7.1 Let M ∈ Mn×m(CC) be given. Then there exist two
unitary matrices U ∈ Un, V ∈ Um and a quasi-diagonal matrix

D =




s1

. . .
sr

0
. . .




,

with s1, . . . , sr ∈ (0, +∞), such that M = UDV . The numbers s1, . . . , sr

are uniquely defined up to permutation; they are the nonzero singular values
of M . In particular, r is the rank of M .

If M ∈Mn×m(IR), then one may choose U, V to be real orthogonal.

Remark: The factorization given in the theorem is far from being unique,
even for invertible square matrices. In fact, the number of real degrees of
freedom in that factorization is n2+m2+min(n, m), which is always greater
than the dimension 2nm of Mn×m(CC) as an IR-vector space.

Proof
Since MM∗ is positive semidefinite, we may write its eigenvalues as

s2
1, . . . , s2

r, 0, . . . , where the sj ’s, the singular values of M , are positive
real numbers. The spectrum of M∗M has the same form, except for the
multiplicity of 0. Indeed, the multiplicities of 0 as an eigenvalue of MM∗

and MM∗, respectively, differ by n −m, while the multiplicities of other
eigenvalues are the same for both matrices. We set S = diag(s1, . . . , sr).

Since M and MM∗ have the same rank, and since R(MM∗) ⊂ R(M), we
have R(MM∗) = R(M). Since MM∗ is Hermitian, its kernel is R(M)⊥,
where orthogonality is relative to the canonical scalar product; with the
duality formula, we conclude that kerMM∗ = kerM∗. Now we are in
position to state that

CCn = R(MM∗)⊕⊥ kerM∗.

Therefore, there exists an orthonormal basis {u1, . . . ,un} of CCn consist-
ing of eigenvectors of MM∗, associated to the s2

j ’s, followed by vectors of
kerM∗. Let us form the unitary matrix

U = (u1, . . . ,un).

Written blockwise, we have U = (UR, UK), where

MM∗UR = URS2, M∗UK = 0.
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Let now define VR := M∗URS−1. From above, we have

V ∗
RVR = S−1U∗

RMM∗URS−1 = Ir.

This means that the columns v1, . . . ,vr of VR constitute an orthonormal
family.

Noting that these column vectors belong to R(M∗), that is, to (kerM)⊥,
a subspace of codimension r, we see that {v1, . . . ,vr} can be extended to
an orthonormal basis {v1, . . . ,vm} of CCm, where vr+1, . . . belong to kerM .
Let V =: (VR, VK) be the unitary matrix whose columns are v1, . . .

We now compute blockwise the product U∗MV . From MVK = 0 and
M∗U∗

K = 0, we get

U∗MV =
(

U∗
RMVR 0

0 0

)
.

Finally, we obtain

U∗
RMVR = U∗

RMM∗URS−1 = U∗
RURS = S.

7.8 Exercises

1. Show that the square root map from HPDn into itself is continuous.

2. Let M ∈ Mn(k) be given, with k = IR or CC. Show that there ex-
ists a polynomial P ∈ k(X), of degree at most n − 1, such that
P (M) = expM . However, show that this polynomial cannot be
chosen independently of the matrix.
Compute this polynomial when M is nilpotent.

3. For t ∈ IR, define Pascal’s matrix P (t) by pij(t) = 0 if i < j (the
matrix is lower triangular) and

pij(t) = ti−j

(
i− 1
j − 1

)

otherwise. Let us emphasize that for just this once in this book, P
is an infinite matrix, meaning that its indices range over the infinite
set IN∗. Compute P ′(t) and deduce that there exists a matrix L such
that P (t) = exp(tL). Compute L explicitly.

4. Let I be an interval of IR and t �→ P (t) be a map of class C1 with
values in Mn(IR) such that for each t, P (t) is a projector: P (t)2 =
P (t).

(a) Show that the rank of P (t) is constant.
(b) Show that P (t)P ′(t)P (t) = 0n.
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(c) Let us define Q(t) := [P ′(t), P (t)]. Show that P ′(t) =
[Q(t), P (t)].

(d) Let t0 ∈ I be given. Show that the differential equation U ′ = QU
possesses a unique solution in I such that U(t0) = In. Show that
P (t) = U(t)P (t0)U(t)−1.

5. Show that the set of projectors of given rank p is a connected subset
in Mn(CC).

6. (a) Let A ∈ HPDn and B ∈ Hn be given. Show that AB is di-
agonalizable with real eigenvalues (though it is not necessarily
Hermitian). Show also that the sum of the multiplicities of the
positive eigenvalues (respectively zero, respectively negative) is
the same for AB as for B.

(b) Let A, B, C be three Hermitian matrices such that ABC ∈ Hn.
Show that if three of the matrices A, B, C, ABC are positive
definite, then the fourth is positive definite too.

7. Let M ∈ GLn(CC) be given and M = HQ be its polar decomposition.
Show that M is normal if and only if HQ = QH.

8. The deformation of an elastic body is represented at each point by a
square matrix F ∈ GL+

3 (IR) (the sign + expresses that det F > 0).
More generally, F ∈ GL+

n (IR) in other space dimensions. The density
of elastic energy is given by a function F �→W (F ) ∈ IR+.

(a) The principle of frame indifference says that W (QF ) = W (F )
for every F ∈ GL+

n (IR) and every rotation Q. Show that there
exists a map w : SPDn → IR+ such that W (F ) = w(H), where
F = QH is the polar decomposition.

(b) When the body is isotropic, we also have W (FQ) = W (F ), for
every F ∈ GL+

n (IR) and every rotation Q. Show that there exists
a map φ : IRn → IR+ such that W (F ) = φ(h1, . . . , hn), where
the hj are the entries of the characteristic polynomial of H . In
other words, W (F ) depends only on the singular values of F .

9. We use Schur’s norm ‖A‖ = (Tr A∗A)1/2.

(a) If A ∈ Mn(CC), show that there exists Q ∈ Un such that ‖A−
Q‖ ≤ ‖A − U‖ for every U ∈ Un. We shall define S := Q−1A.
We therefore have ‖S − In‖ ≤ ‖S − U‖ for every U ∈ Un.

(b) Let H ∈ Hn be a Hermitian matrix. Show that exp(itH) ∈ Un

for every t ∈ IR. Compute the derivative at t = 0 of

t �→ ‖S − exp(itH)‖2

and deduce that S ∈ Hn.
(c) Let D be a diagonal matrix, unitarily similar to S. Show that

‖D−In‖ ≤ ‖DU−In‖ for every U ∈ Un. By selecting a suitable
U , deduce that S ≥ 0n.
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(d) If A ∈ GLn(CC), show that QS is the polar decomposition of A.
(e) Deduce that if H ∈ HPDn and if U ∈ Un, U �= In, then

‖H − In‖ < ‖H − U‖.
(f) Finally, show that if H ∈ Hn, H ≥ 0n and U ∈ Un, then

‖H − In‖ ≤ ‖H − U‖.
10. Let A ∈Mn(CC) and h ∈ CC. Show that In − hA is invertible as soon

as |h| < 1/ρ(A). One then denotes its inverse by R(h; A).

(a) Let r ∈ (0, 1/ρ(A)). Show that there exists a c0 > 0 such that
for every h ∈ CC with |h| ≤ r, we have

‖R(h; A)− ehA‖ ≤ c0|h|2.
(b) Verify the formula

Cm −Bm = (C −B)Cm−1 + · · ·+ Bl−1(C −B)Cm−l + · · ·
+ · · ·+ Bm−1(C −B),

and deduce the bound

‖R(h; A)m − emhA‖ ≤ c0m|h|2ec2m|h|,

when |h| ≤ r and m ∈ IN .
(c) Show that for every t ∈ CC,

lim
m→+∞R(t/m; A)m = etA.

11. (a) Let J(a; r) be a Jordan block of size r, with a ∈ CC∗. Let b ∈ CC be
such that a = eb. Show that there exists a nilpotent N ∈Mr(CC)
such that J(a; r) = exp(bIr + N).

(b) Show that exp : Mn(CC) → GLn(CC) is onto, but that it is not
one-to-one. Deduce that X �→ X2 is onto GLn(CC). Verify that
it is not onto Mn(CC).

12. (a) Show that the matrix

J2 =
( −1 1

0 −1

)

is not the square of any matrix of M2(IR).
(b) Show, however, that the matrix J4 := diag(J2, J2) is the square

of a matrix of M4(IR).
Show also that the matrix

J3 =
(

J2 I2

02 J2

)

is not the square of a matrix of M4(IR).
(c) Show that J2 is not the exponential of any matrix of M2(IR).

Compare with the previous exercise.
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(d) Show that J4 is the exponential of a matrix of M4(IR), but that
J3 is not.

13. Let An(CC) be the set of skew-Hermitian matrices of size n. Show
that exp : An(CC)→ Un is onto. Hint: If U is unitary, diagonalize it.

14. (a) Let θ ∈ IR be given. Compute expB, where

B =
(

0 θ
−θ 0

)
.

(b) Let An(IR) be the set of real skew-symmetric matrices of size n.
Show that exp : An(IR)→ SOn is onto. Hint: Use the reduction
of direct orthogonal matrices.

15. Let φ : Mn(IR) → IR be a nonnull map satisfying φ(AB) = φ(A)φ(B)
for every A, B ∈ Mn(IR). If α ∈ IR, we set δ(α) = |φ(αIn)|1/n. We
have seen, in Exercise 16 of Chapter 3, that |φ(M)| = δ(det M) for
every M ∈Mn(IR).

(a) Show that on the range of M �→M2 and on that of M �→ exp M ,
φ ≡ δ ◦ det.

(b) Deduce that φ ≡ δ◦det on SOn (use Exercise 14) and on SPDn.
(c) Show that either φ ≡ δ ◦ det or φ ≡ (sgn(det))δ ◦ det.

16. Let A be a K-Banach algebra (K = IR or CC) with a unit denoted by
e. If x ∈ A, define x0 := e.

(a) Given x ∈ A, show that the series

∑
m∈IN

1
m!

xm

converges normally, hence converges in A. Its sum is denoted by
exp x.

(b) If x, y ∈ A, [x, y] = xy− yx is called the “commutator” of x and
y. Show that [x, y] = 0 implies

exp(x + y) = (expx)(exp y), [x, exp y] = 0.

(c) Show that the map t �→ exp tx is differentiable on IR, with

d

dt
exp tx = x exp tx = (exp tx)x.

(d) Let x, y ∈ A be given. Assume that [x, y] commutes with x and
y.

i. Show that (exp−tx)xy(exp tx) = xy + t[y, x]x.

ii. Deduce that [exp−tx, y] = t[y, x] exp−tx.
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iii. Compute the derivative of t �→ (exp−ty)(exp−tx) exp t(x+
y). Finally, prove the Campbell–Hausdorff formula

exp(x + y) = (expx)(exp y)
(

exp
1
2
[y, x]

)
.

(e) In A = M3(IR), construct an example that satisfies the above
hypothesis ([x, y] commutes with x and y), where [x, y] is
nonzero.

17. Show that the map

H �→ f(H) := (iIn + H)(iIn −H)−1

induces a homeomorphism from Hn onto the set of matrices of Un

whose spectrum does not contain −1. Find an equivalent of f(tH)−
exp(−2itH) as t→ 0.

18. Let G be a group satisfying the hypotheses of Proposition 7.3.2.

(a) Show that G is a Lie algebra, meaning that it is stable under the
bilinear map (A, B) �→ [A, B] := AB −BA.

(b) Show that for t→ 0+,

exp(tA) exp(tB) exp(−tA) exp(−tB) = In + t2[A, B] +O(t3).

Deduce another proof of the stability of G by [·, ·].
(c) Show that the map M �→ [A, M ] is a derivation, meaning that

the Jacobi identity

[A, [B, C]] = [[A, B], C] + [B, [A, C]]

holds.

19. In the case p = 1, q ≥ 1, show that G++ ∪G+− is the set of matrices
M ∈ O(p, q) such that the image under M of the “time” vector
(1, 0, . . . , 0)T belongs to the convex cone whose equation is

x1 >
√

x2
2 + · · ·+ x2

n.

20. Assume that p, q ≥ 1 and consider the group O(p, q). Define G0 :=
G++. Since −In ∈ O(p, q), we denote by (µ, β) the indices for which
−In ∈ Gµ,β .
If H ∈ GLn(IR), denote by σH the conjugation M �→ H−1MH .

(a) Let H ∈ G be given. Show that σH (or rather its restriction to
G0) is an automorphism of G0.

(b) Let H ∈ Mn(IR) be such that HM = MH for every M ∈ G0.
Show that HN = NH for every N ∈ G. Deduce that H is a
homothety.

(c) Let H ∈ G. Show that there exists K ∈ G0 such that σH = σK

if and only if H ∈ G0 ∪Gµ,β .
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21. A topological group is a group G endowed with a topology for which
the maps (g, h) �→ gh and g �→ g−1 are continuous. Show that in a
topological group, the connected component of the unit element is
a normal subgroup. Show also that the open subgroups are closed.
Give an example of a closed subgroup that is not open.

22. One identifies IR2n with CCn by the map(
x
y

)
�→ x + iy.

Therefore, every matrix M ∈ M2n(IR) defines an IR-linear map M̃
form CCn into itself.

(a) Let

M =
(

A B
C D

)
∈M2n(IR)

be given. Under what condition on the blocks A, B, C, D is the
map M̃ CC-linear?

(b) Show that M �→ M̃ is an isomorphism from Spn∩O2n onto Un.



8
Matrix Factorizations

The direct solution (by Cramer’s method) of a linear system Mx = b,
where M ∈ GLn(k) (b ∈ kn) is computationally expensive, especially if
one wishes to solve the system many times with various values of b. In the
next chapter we shall study iterative methods for the case k = IR or CC.
Here we concentrate on a simple idea: To decompose M as a product PQ
in such a way that the resolution of the intermediate systems Py = b and
Qx = y is “cheap.” In general, at least one of the matrices is triangular.
For example, if P is lower triangular (pij = 0 if i < j), then its diagonal
entries pii are nonzero, and one may solve the system Py = b step by step:

y1 =
b1

p11
,

...

yi =
bi − pi1y1 − · · · − pi,i−1yi−1

pii
,

...

yn =
bn − pn1y1 − · · · − pn,n−1yn−1

pnn
.

The computation of yi needs 2i−1 operations and the final result is obtained
in n2 operations. This is not expensive if one notes that computing the
product x = M−1b (assuming that M−1 is computed once and for all, an
expensive task) needs 2n2 − n operations.
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Another example of easily invertible matrices is the orthogonal matrices:
If Q ∈ On (or Q ∈ Un), then Qx = y amounts to x = QT y (or x = Q∗y),
which is computed in O(n2) operations.

The techniques described below are often called direct solving methods.

8.1 The LU Factorization

Definition 8.1.1 Let M ∈ GLn(k), where k is a field. We say that M
admits an LU factorization if there exist in GLn(k) two matrices L (lower
triangular with 1’s on the diagonal) and U (upper triangular) such that
M = LU .

Remarks:

• The diagonal entries of U are not equal to 1 in general. The LU
factorization is thus asymmetric with respect to L and U .

• The letters L and U recall the shape of the matrices: L for lower and
U for upper.

• If there exists an LU factorization (which is unique, as we shall see
below), then it can be computed by induction on the size of the
matrix. The algorithm is provided in the proof of the next theorem.
Indeed, if N (p) denotes the matrix extracted from N by keeping only
the first p rows and columns, we have easily

M (p) = L(p)U (p),

where the matrices L(p) and U (p) have the required properties.

Definition 8.1.2 The leading principal minors of M are the determinants
of the matrices M (p), for 1 ≤ p ≤ n.

Theorem 8.1.1 The matrix M ∈ GLn(k) admits an LU factorization if
and only if its leading principal minors are nonzero. When this condition
is fulfilled, the LU factorization is unique.

Proof
Let us begin with uniqueness: If LU = L′U ′, then (L′)−1L = U ′U−1,

which reads L′′ = U ′′, where L′′ and U ′′ are triangular of opposite types,
the diagonal entries of L′′ being 1’s. We deduce L′′ = U ′′ = In; that is,
L′ = L, U ′ = U .

We next assume that M admits an LU factorization. Then detM (p) =
detL(p) detU (p) =

∏
1≤j≤p ujj , which is nonzero because U is invertible.

We prove the converse (the existence of an LU factorization) by induction
on the size of the matrices. It is clear if n = 1. Otherwise, let us assume
that the statement is true up to the order n − 1 and let M ∈ GLn(k) be
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given, with nonzero leading principal minors. We look for L and U in the
blockwise form

L =
(

L′ 0
XT 1

)
, U =

(
U ′ Y
0 u

)
,

with L′, U ′ ∈Mn−1(k), etc. We likewise obtain the description

M =
(

M ′ R
ST m

)
.

Multiplying blockwise, we obtain the equations

L′U ′ = M ′, L′Y = R, (U ′)T X = S, u = m−XT Y.

By assumption, the leading principal minors of M ′ are nonzero. The induc-
tion hypothesis guarantees the existence of the factorization M ′ = L′U ′.
Then Y and X are the unique solutions of (triangular) Cramer systems.
Finally, u is explicitly given.

Let us now compute the number of operations needed in the computation
of L and U . We pass from a factorization in GLn−1(k) to a factorization in
GLn(k) by means of the computations of X ((n− 1)(n− 2) operations), Y
((n−1)2 operations) and u (2(n−1) operations), for a total of (n−1)(2n−1)
operations. Finally, the computation ex nihilo of an LU factorization costs
P (n) operations, where P is a polynomial of degree three, with P (X) =
2X3/3 + · · · .
Proposition 8.1.1 The LU factorization is computable in 2

3n3 + O(n2)
operations.

One says that the complexity of the LU factorization is 2
3n3.

Remark: When all leading principal minors but the last (detM) are
nonzero, the proof above furnishes a factorization M = LU , in which U is
not invertible; that is, unn = 0.

8.1.1 Block Factorization

One can likewise perform a blockwise LU factorization. If n = p1 + · · ·+ pr

with pj ≥ 1, the matrices L and U will be block-triangular. The diagonal
blocks are square, of respective sizes p1, . . . , pr. Those of L are of the form
Ipj , while those of U are invertible. A necessary and sufficient condition
for such a factorization to exist is that the leading principal minors of M ,
of orders p1 + · · · + pj (j ≤ r), be nonzero. As above, it is not necessary
that the last minor detM be nonzero. Such a factorization is useful for the
resolution of the linear system MX = b if the diagonal blocks of U are
easily inverted, for instance if their sizes are small enough (say pj ≈ √n).

An interesting application of block factorization is the computation of
the determinant by the Schur complement formula:
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Proposition 8.1.2 Let M ∈Mn(k) read blockwise

M =
(

A B
C D

)
,

where the diagonal blocks are square and A is invertible. Then

detM = detAdet(D − CA−1B).

Of course, this formula generalizes detM = ad− bc, which is valid only for
2× 2 matrices. The matrix D−CA−1B is called the Schur complement of
A in M .

Proof
Since A is invertible, M admits a blockwise LU factorization, with the

same subdivision. We easily compute

L =
(

I 0
CA−1 I

)
, U =

(
A B
0 D − CA−1B

)
.

Then detM = detL detU furnishes the expected formula.

Corollary 8.1.1 Let M ∈ GLn(k), with n = 2m, read blockwise

M =
(

A B
C D

)
, A, B, C, D ∈ GLm(k).

Then

M−1 =
(

(A−BD−1C)−1 (C −DB−1A)−1

(B −AC−1D)−1 (D − CA−1B)−1

)
.

Proof
We can verify the formula by multiplying by M . The only point to show is

that the inverses are meaningful, that is, that A−BD−1C, . . . are invertible.
Because of the symmetry of the formulas, it is enough to check it for a single
term, namely D − CA−1B. However, det(D − CA−1B) = detM/ detA,
which is nonzero by assumption.

We might add that as soon as M ∈ GLn(k) and A ∈ GLp(k) (even if
p �= n/2), then

M−1 =
( · ·
· (D − CA−1B)−1

)
,

because M admits the blockwise LU factorization and

M−1 = U−1L−1 =
(

A−1 ·
0 (D − CA−1B)−1

)
·
(

I 0
· I

)
.
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8.1.2 Complexity of Matrix Inversion

We can now show that the complexity of inverting a matrix is not higher
than that of matrix multiplication, at equivalent sizes. We assume here that
k = IR or CC.

Notation 8.1.1 We denote by Jn the number of operations in k used in
the inversion of an n× n matrix, and by Pn the number of operations (in
k) used in the product of two n× n matrices.

Of course, the number Jn must be understood for generic matrices, that
is, for matrices within a dense open subset of Mn(k). More important,
Jn, Pn also depend on the algorithm chosen for inversion or for multipli-
cation. In the sequel we wish to adapt the inversion algorithm to the one
used for multiplication.

Let us examine first of all the matrices whose size n has the form 2k.
We decompose the matrices M ∈ GLn(k) blockwise, with blocks of size

n/2 × n/2. The condition A ∈ GLn/2(k) defines a dense open set, since
M �→ det A is a nonzero polynomial. Suppose that we are given an inver-
sion algorithm for generic matrices in GLn/2(k) in jk−1 operations. Then
blockwise LU factorization and the formula M−1 = U−1L−1 furnish an
inversion algorithm for generic matrices in GLn(k). We can then bound
jk by means of jk−1 and the number πk−1 = P2k−1 of operations used in
the computation of the product of two matrices of size 2k−1 × 2k−1. We
shall denote also by σk = 22k the number of operations involved in the
computation of the sum of matrices in M2k(k).

To compute M−1, we first compute A−1, then CA−1, which gives us
L−1 in jk−1 + πk−1 operations. Then we compute (D − CA−1B)−1 (this
amounts to σk−1 + πk−1 + jk−1 operations) and A−1B(D − CA−1B)−1

(cost: 2πk−1), which furnishes U−1. The computation of U−1L−1 is done
at the cost σk−1 + 2πk−1. Finally,

jk ≤ 2jk−1 + 2σk−1 + 6πk−1.

In other words,

2−kjk − 21−kjk−1 ≤ 2k−1 + 3 · 21−kπk−1. (8.1)

The complexity of the product in Mn(k) obeys the inequalities

n2 ≤ Pn ≤ n2(2n− 1).

The first inequality is due to the number of data (2n2) and the fact that
each operation involves only two of them. The second is given by the naive
algorithm that consists in computing n2 scalar products.

Lemma 8.1.1 If Pn ≤ cαnα (with 2 ≤ α ≤ 3), then jl ≤ Cαπl, where
Cα = 1 + 3cα/(2α−1 − 1).

It is enough to sum (8.1) from k = 1 to l and use the inequality 1 + q +
· · ·+ ql−1 ≤ ql/(q − 1) for q > 1.
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When n is not a power of 2, we obtain M−1 by computing the inverse of a
block-diagonal matrix diag(M, I), whose size N satisfies n ≤ N = 2l < 2n.
We obtain Jn ≤ jl ≤ Cαπl. Finally, we have the following result.

Proposition 8.1.3 If the complexity Pn of the product in Mn(CC) is
bounded by cαnα, then the complexity Jn of inversion in GLn(CC) is
bounded by dαnα, where

dα =
(

1 +
3cα

2α−1 − 1

)
2α.

That can be summarized as follows:

Those who know how to multiply know also how to invert.

8.1.3 Complexity of the Matrix Product

The ideas that follow apply to the product of rectangular matrices, but for
the sake of simplicity, we present only the case of square matrices.

As we have seen above, the complexity Pn of matrix multiplication in
Mn(k) is O(n3). However, better algorithms will allow us to improve the
exponent 3. The simplest and oldest one is Strassen’s algorithm, which
uses a recursion. We note first that there exists a way of computing the
product of two 2× 2 matrices by means of 7 multiplications and 18 addi-
tions. Two features of Strassen’s formula are essential. First, the number of
multiplications that it involves is stricly less than that (eight) of the naive
algorithm. The second is that the method is valid when the matrices have
entries in a noncommutative ring, and so it can be employed for two matri-
ces M, N ∈Mn(k), considered as elements of M2(A), with A := Mn/2(k).
This trick yields

Pn ≤ 7Pn/2 + 9n2/2.

For n = 2l, we then have

7−lπl − 71−lπl−1 ≤ 9
2

(
4
7

)l

,

which, after summation from k = 1 to l, gives

7−lπl ≤ 9
2

1
1− 4/7

,

because of 4
7 < 1. Finally,

πl ≤ 21
2

7l.

When n is not a power of two, one chooses l such that n ≤ 2l < 2n and we
obtain the following result.



142 8. Matrix Factorizations

Proposition 8.1.4 The complexity of the multiplication of n×n matrices
is O(nα), with α = log 7/ log 2 = 2.807 . . . More precisely,

Pn ≤ 147
2

n
log 7
log 2 .

The exponent α can be improved, at the cost of greater complication and a
larger constant cα. The best exponent known in 1997, due to Coppersmith
and Winograd [11], is α = 2.376 . . . A rather complete analysis can be
found in the book by P. Bürgisser, M. Clausen, and M. A. Shokrollahi [7].

Here is Strassen’s formula [33]. Let M, N ∈M2(A), with

M =
(

a b
c d

)
, N =

(
x y
z t

)
.

One first forms the expressions x1 = (a + d)(x + t), x2 = (c + d)x, x3 =
a(y−t), x4 = d(z−x), x5 = (a+b)t, x6 = (c−a)(x+y), x7 = (b−d)(z+t).
Then one computes the product

MN =
(

x1 + x4 − x5 + x7 x3 + x5

x2 + x4 x1 − x2 + x3 + x6

)
.

8.2 Choleski Factorization

In this section k = IR, and we consider symmetric positive definite matrices.

Theorem 8.2.1 Let M ∈ SPDn. Then there exists a unique lower trian-
gular matrix L ∈Mn(IR), with strictly positive diagonal entries, satisfying
M = LLT .

Proof
Let us begin with uniqueness. If L1 and L2 have the properties stated

above, then In = LLT , for L = L−1
2 L1, which still has the same form. In

other words, L = L−T , where both sides are triangular matrices, but of
opposite types (lower and upper). The equality shows that L is actually
diagonal, with L2 = In. Since its diagonal is positive, we obtain L = In;
that is, L2 = L1.

We shall give two constructions of L.

First method. The matrix M (p) is positive definite (test the quadratic
form induced by M on the linear subspace IRp × {0}). The lead-
ing principal minors of M are thus nonzero and there exists an LU
factorization M = L0U0. Let D be the diagonal of U0, which is in-
vertible. Then U0 = DU1, where the diagonal entries of U1 equal
1. By transposition, we have M = UT

1 D0L
T
0 . From uniqueness of

the LU factorization, we deduce U1 = LT
0 and M = L0DLT

0 . Then
L =

√
DL0 satisfies the conditions of the theorem. Observe that

D > 0 because D = PMPT , with P = L−1
0 .
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Second method. We proceed by induction on n. The statement is clear
if n = 1. Otherwise, we seek an L of the form

L =
(

L′ 0
XT l

)
,

knowing that

M =
(

M ′ R
RT m

)
.

The matrix L′ is obtained by Choleski factorization of M ′, which
belongs to SPDn−1. Then X is obtained by solving L′X = R. Finally,
l is a square root of m− ‖X‖2. Since 0 < detM = (l detL′)2, we see
that m − ‖X‖2 > 0; we thus choose l =

√
m− ‖X‖2. This method

again shows uniqueness.

Remark: Choleski factorization extends to Hermitian positive definite ma-
trices. In that case, L has complex entries, but its diagonal entries are still
real and positive.

8.3 The QR Factorization

In this section k = IR or CC, the real case being a particular case of the
complex one.

Proposition 8.3.1 Let M ∈ GLn(CC) be given. Then there exist a unitary
matrix Q and an upper triangular matrix R, whose diagonal entries are real
positive, such that M = QR. This factorization is unique.

We observe that the condition on the numbers rjj is essential for unique-
ness. In fact, if D is diagonal with |djj | = 1 for every j, then Q′ := QD̄ is
unitary, R′ := DR is upper triangular, and M = Q′R′, which gives an in-
finity of factorizations “QU .” Even in the real case, where Q is orthogonal,
there are 2n “QU” factorizations.

Proof
We first prove uniqueness. If (Q1, R1) and (Q2, R2) give two factoriza-

tions, then Q = R, with Q := Q−1
2 Q1 and R := R2R

−1
1 . Since Q is unitary,

we deduce Q∗ = R−1, or Q = R−∗. This shows (recall that the inverse of a
triangular matrix is a triangular matrix of same type) that Q is simultane-
ously upper and lower triangular, and is therefore diagonal. Additionally,
its diagonal part is strictly positive. Then Q2 = Q∗Q = In gives Q = In.
Finally, Q2 = Q1 and consequently, R2 = R1.

The existence follows from that of Choleski factorization. If M ∈
GLn(CC), the matrix M∗M is Hermitian positive definite, hence admits a
Choleski factorization R∗R, where R is upper triangular with real positive
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diagonal entries. Defining Q := MR−1, we have

Q∗Q = R−∗M∗MR−1 = R−∗R∗RR−1 = In;

hence Q is unitary. Finally, M = QR by construction.

The method used above is unsatisfactory from a practical point of view,
because one can compute Q and R directly, at a lower cost, without com-
puting M∗M or its Choleski factorization. Moreover, the direct method,
which we shall present now, is based on a theoretical observation: The QR
factorization is nothing but the Gram–Schmidt orthonormalization proce-
dure in CCn, endowed with the canonical scalar product 〈·, ·〉. In fact, if
V 1, . . . , V n denote the column vectors of M , then giving M in GLn(CC)
amounts to giving a basis of CCn. If Y 1, . . . , Y n denote the column vectors
of Q, then {Y 1, . . . , Y n} is an orthonormal basis. Moreover, if M = QR,
then

V k =
k∑

j=1

rjkY j .

Denoting by Ek the linear subspace spanned by Y 1, . . . , Y k, of dimension
k, one sees that V 1, . . . , V k are in Ek; that is, {V 1, . . . , V k} is a basis of
Ek. Hence, the columns of Q are obtained by the Gram–Schmidt procedure,
applied to the columns of M .

The practical computation of Q and R is done by induction on k. If
k = 1, then

r11 = ‖V 1‖, Y 1 =
1

r11
V 1.

If k > 1, and if Y 1, . . . , Y k−1 are already known, one looks for Y k and the
entries rjk (j ≤ k). For j < k, we have

rjk = 〈V k, Y j〉.
Then

rkk = ‖Zk‖, Y k =
1

rkk
Zk,

where

Zk := V k −
k−1∑
j=1

rjkY j .

Let us examine the complexity of the procedure described above. To
pass from the step k− 1 to the step k, one computes k− 1 scalar products,
then Zk, its norm, and finally Y k. This requires (4n− 1)k +3n operations.
Summing from k = 1 to n yields 2n3 + O(n2) operations. This method is
not optimal, as we shall see in Section 10.2.3.
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The interest of this construction lies also in giving a more complete
statement than Proposition 8.3.1:

Theorem 8.3.1 Let M ∈ Mn(CC) be a matrix of rank p. There exists
Q ∈ Un and an upper triangular matrix R, with rll ∈ IR+ for every l and
rjk = 0 for j > p, such that M = QR.

Remarks: The QR factorization of a singular matrix (i.e., a noninvertible
one) is not unique. There exists, in fact, a QR factorization for rectangular
matrices, in which R is a “quasi-triangular” matrix.

8.4 The Moore–Penrose Generalized Inverse

The resolution of a general linear system Ax = b, where A may be singular
and may even not be square, is a delicate question, whose treatment is
made much simpler by the use of the Moore–Penrose generalized inverse.
We begin with the fundamental theorem.

Theorem 8.4.1 Let A ∈Mn×m(CC) be given. There exists a unique matrix
A† ∈ Mm×n(CC), called the Moore–Penrose generalized inverse, satisfying
the following four properties:

1. AA†A = A;

2. A†AA† = A†;

3. AA† ∈ Hn;

4. A†A ∈ Hm.

Finally, if A has real entries, then so has A†.

When A ∈ GLn(CC), A† coincides with the standard inverse A−1, since
the latter obviously satisfies the four properties. More generaly, if A is
onto, then property 1 shows that AA† = In; i.e., A† is a right inverse of A.
Likewise, if A is one-to-one, then A†A = Im; i.e., A† is a left inverse of A.

Proof
We first remark that if X is a generalized inverse of A, that is, it satisfies

these four properties, and if U ∈ Un, V ∈ Um, then V ∗XU∗ is a generalized
inverse of UAV . Therefore, existence and uniqueness need to be proved
for only a single representative D of the equivalence class of A modulo
unitary multiplications on the right and the left. From Theorem 7.7.1, we
may choose D = diag(s1, . . . , sr, 0, . . . ), where s1, . . . , sr are the nonzero
singular values of A.

We are thus concerned only with quasi-diagonal matrices D. Let D† be
any generalized inverse of D, which we write blockwise as

D† =
(

G H
J K

)
.
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We use the notation of Theorem 7.7.1. From property 1, we obtain S =
SGS, where S := diag(s1, . . . , sr). Since S is nonsingular, we obtain G =
S−1. Next, property 3 implies SH = 0, that is, H = 0. Likewise, property
4 gives JS = 0, that is, J = 0. Finally, property 2 yields K = JSH = 0.
We see, then, that D† must equal (uniqueness)(

S−1 0
0 0

)
.

One easily checks that this matrix solves our problem (existence).

Some obvious properties are stated in the following proposition. We warn
the reader that, contrary to what happens for the standard inverse, the
generalized inverse of AB does not need to be equal to B†A†.

Proposition 8.4.1 The following equalities hold for the generalized in-
verse:

(λA)† =
1
λ

A† (λ �= 0),
(
A†)† = A,

(
A†)∗ = (A∗)† .

If A ∈ GLn(CC), then A† = A−1.

Since (AA†)2 = AA†, the matrix AA† is a projector, which can therefore
be described in terms of its range and kernel. Since AA† is Hermitian, these
subspaces are orthogonal to each other. Obviously, R(AA†) ⊂ R(A). But
since AA†A = A, the reverse inclusion holds too. Finally, we have

R(AA†) = R(A),

and AA† is the orthogonal projector onto R(A). Likewise, A†A is an orthog-
onal projector. Obviously, kerA ⊂ kerA†A, while the identity AA†A = A
implies the reverse inclusion, so that

kerA†A = kerA.

Finally, A†A is the orthogonal projector onto (kerA)⊥.

8.4.1 Solutions of the General Linear System

Given a matrix M ∈ Mn×m(CC) and a vector b ∈ CCn, let us consider the
linear system

Mx = b. (8.2)

In (8.2), the matrix M need not be square, even not of full rank. From
property 1, a necessary condition for the solvability of (8.2) is MM †b =
b. Obviously, this is also sufficient, since it ensures that x0 := M †b is
a solution. Hence, the generalized inverse plays one of the roles of the
standard inverse, namely to provide one solution of (8.2) when it is solvable.
To catch every solution of that system, it remains to solve the homogeneous
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problem My = 0. From the analysis done in the previous section, kerM is
nothing but the range of Im−M †M . Therefore, we may state the following
proposition:

Proposition 8.4.2 The system (8.2) is solvable if and only if b = MM †b.
When it is solvable, its general solution is x = M †b+(Im−M †M)z, where
z ranges over CCm. Finally, the special solution x0 := M †b is the one of
least Hermitian norm.

There remains to prove that x0 has the smallest norm among the solu-
tions. That comes from the Pythagorean theorem and from the fact that
R(M †) = R(M †M) = (kerM)⊥.

8.5 Exercises

1. Assume that there exists an algorithm for multiplying two N × N
matrices with entries in a noncommutative ring by means of K
multiplications and L additions. Show that the complexity of the
multiplication in Mn(k) is O(nα), with α = log K/ log N .

2. What is the complexity of Choleski factorization?

3. Let M ∈ SPDn be also tridiagonal. What is the structure of L in
the Choleski factorization? More generally, what is the structure of
L when mij = 0 for |i− j| > r?

4. (continuation of exercise 3)
For i ≤ n, denote by φ(i) the smallest index j such that mij �= 0.
In Choleski factorization, show that lij = 0 for every pair (i, j) such
that j < φ(i).

5. In the QR factorization, show that the map M �→ (Q, R) is continuous
on GLn(CC).

6. Let H be an n× n Hermitian matrix, that blockwise reads

H =
(

A B∗

B C

)
.

Assume that A ∈ HPDn−k (1 ≤ k ≤ n− 1).
Find a matrix T of the form

T =
(

In−k 0
· Ik

)

such that THT ∗ is block-diagonal. Deduce that if W ∈ Hk, then

H −
(

0 0
0 W

)
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is positive (semi)definite if and only if S−W is, where S is the Schur
complement of A in H .

7. (continuation of exercise 6)
Fix the size k and denote by S(H) the Schur complement in the
Hermitian matrix H when A ∈ HPDn−k. Using the previous exercise,
show that:

(a) S(H + H ′)− S(H)− S(H ′) is positive semidefinite.
(b) If H −H ′ is positive semidefinite, then so is S(H)− S(H ′).

In other words, H �→ S is “concave nondecreasing” on the convex
set formed of those matrices of Hn such that A ∈ HPDn−k into the
ordered set Hk. The article [26] gives a review of the properties of
the map H �→ S(H).

8. In Proposition 8.3.1, find an alternative proof of the uniqueness part,
by inspection of the spectrum of the matrix Q := Q−1

2 Q1 = R2R
−1
1 .

9. Identify the generalized inverse of row matrices and column matrices.

10. What is the generalized inverse of an orthogonal projector, that is, a
Hermitian matrix P satisfying P 2 = P? Deduce that the description
of AA† and A†A as orthogonal projectors does not characterize A†

uniquely.

11. Given a matrix B ∈ Mp×q(CC) and a vector a ∈ CCp, let us form the
matrix A := (B, a) ∈Mp×(q+1)(CC).

(a) Let us define d := B†a, c := a−Bd, and

b :=
{

c†, if c �= 0,
(1 + |d|2)−1d∗B†, if c = 0.

Prove that

A† =
(

B† − db
b

)
.

(b) Deduce an algorithm (Greville’s algorithm in O(pq2) operations
for the computation of the generalized inverse of a p× q matrix.
Hint: To get started with the algorithm, use Exercise 9.
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Iterative Methods for Linear Problems

In this chapter the field of scalars is K = IR or CC.
We have seen in the previous Chapter a few direct methods for solving

a linear system Ax = b, when A ∈Mn(K) is invertible. For example, if A
admits an LU factorization, the successive resolution of Ly = b, Ux = y
is called the Gauss method. When a leading principal minor of A van-
ishes, a permutation of the columns allows us to return to the generic case.
More generally, the Gauss method with pivoting consists in permuting the
columns at each step of the factorization in such a way as to limit the
magnitude of round-off errors and that of the conditioning number of the
matrices L, U .

The direct computation of the solution of a Cramer’s linear system Ax =
b, by the Gauss method or by any other direct method, is rather costly,
on the order of n3 operations. It also presents several inconveniences. On
the one hand, it does not exploit completely the sparse shape of many
matrices A; in numerical analysis it happens frequently that an n × n
matrix has only O(n) nonzero entries, instead of O(n2). On the other hand,
the computation of an LU factorization is rather unstable, because the
round-off errors produced by the computer are amplified at each step of
the computation.

For these reasons, one often uses an iterative method to compute an ap-
proximate solution xm, instead of an exact solution. The iterative methods
fully exploit the sparse structure of A. The number of operations is O(am),
where a is the number nonzero entries in A. The choice of m depends on
the accuracy that one requires a priori. It is, however, modest, because
the error ‖xm − x̄‖ from the exact solution x̄ is of order constant × km,
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where k < 1 whenever the method converges. Typically, a dozen iterations
give a rather good result, and then O(10a)� O(n3). another advantage of
the iterative methods is that the round-off errors are damped during the
computation, instead of being amplified.
General principle: Choose a decomposition of A of the form M −N and
rewrite the system, assuming that M is invertible:

x = M−1(Nx + b).

Then choosing a starting vector x0 ∈ Kn, which may be a rather coarse
approximation of the solution, one constructs a sequence (xm)m∈IN by
induction:

xm+1 = M−1(Nxm + b). (9.1)

In practice, one does not compute M−1 explicitly but one solves the linear
systems Mxm+1 = · · · . It is thus important that this resolution be cheap.
This will be the case when M is triangular. In that case, the invertibility of
M can be read from its diagonal, since it occurs precisely when the diagonal
entries are nonzero.

9.1 A Convergence Criterion

Definition 9.1.1 Let us assume that A and M are invertible, A = M−N .
We say that an iterative method is convergent if for every pair (x0, b) ∈
Kn ×Kn, we have

lim
m→+∞xm = A−1b.

Proposition 9.1.1 An iterative method is convergent if and only if
ρ(M−1N) < 1.

Proof
If the method is convergent, then for b = 0,

lim
m→+∞(M−1N)mx0 = 0,

for every x0 ∈ Kn. In other words,

lim
m→+∞(M−1N)m = 0.

From Corollary 4.4.1, this implies ρ(M−1N) < 1.
Conversely, if ρ(M−1N) < 1, then by Proposition 4.4.1,

lim
m→+∞(M−1N)m = 0,

and hence

xm −A−1b = (M−1N)m(x0 −A−1b)→ 0.
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To be more precise, if ‖ · ‖ is a norm on Kn, then

‖xm −A−1b‖ ≤ ‖(M−1N)m‖ ‖x0 −A−1b‖.
From Householder’s theorem (Theorem 4.2.1), there exists for every ε > 0
a constant C(ε) < ∞ such that

‖xm −A−1b‖ ≤ C(ε)‖x0 − x̄‖(ρ(M−1N) + ε)m.

In most cases (in fact, when there exists an induced norm satisfying
‖M−1N‖ = ρ(M−1N)), one can choose ε = 0 in this inequality such that

‖xm −A−1b‖ = O(ρ(M−1N)m).

The choice of a vector x0 such that x0 −A−1b is an eigenvector associated
to an eigenvalue of maximal modulus shows that this inequality cannot be
improved in general. For this reason, we call the positive number

τ := − log ρ(M−1N)

the convergence ratio of the method. Given two convergent methods, we
say that the first one converges faster than the second one if τ1 > τ2. For
example, we say that it converges twice as fast if τ1 = 2τ2. In fact, with
an error of order ρ(M−1N)m = exp(−mτ), we see that the faster method
needs only half as many iterations to obtain the same accuracy.

9.2 Basic Methods

There are three basic iterative methods, of which the first has only a his-
torical or theoretical interest. Each uses the decomposition of A into three
parts, a diagonal one D, a lower triangular −E, and an upper triangular
one −F :

A = D − E − F =




d1

. . . −F

−E
. . .

dn


 .

In all cases, one assumes that D is invertible: The diagonal entries of A are
nonzero.

Jacobi method: One chooses M = D; thus N = E + F . The iteration
matrix is J := D−1(E + F ). Knowing the vector xm, one computes
the components of the vector xm+1 by the formula

xm+1
i =

1
aii


bi −

∑
j �=i

aijx
m
j


 .
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Gauss–Seidel method: One chooses M = D−E, and thus N = F . The
iteration matrix is G := (D−E)−1F . As we shall see below, one never
computes G explicitly. One computes the approximate solutions by
a double induction, on m on the one hand, and on i ∈ {1, . . . , n} on
the other hand:

xm+1
i =

1
aii


bi −

i−1∑
j=1

aijx
m+1
j −

j=n∑
j=i+1

aijx
m
j


 .

The difference between the two methods is that in Gauss–Seidel one
always uses the most recently computed values of each coordinate.

Relaxation method: It often happens that the Gauss–Seidel method
converges exceedingly slowly. We thus wish to improve the Gauss–
Seidel method by looking for a “best” approximated value of the xj

(with j < i) when computing xm+1
i . Instead of being simply xm

j , as
in the Jacobi method, or xm+1

j , as in that of Gauss–Seidel, this best
value will be an interpolation of both (we shall see that it is merely
an extrapolation). This justifies the choice of

M =
1
ω

D − E, N =
(

1
ω
− 1

)
D + F,

where ω ∈ CC is a parameter. This parameter remains, in general,
constant throughout the calculations. The method is called successive
relaxation. When ω > 1, it bears the name successive overrelaxation
(SOR). The iteration matrix is

Lω := (D − ωE)−1((1− ω)D + ωF ).

The Gauss–Seidel method is a particular case of the relaxation
method, with ω = 1: L1 = G. Special attention is given to the choice
of ω, in order to reach the minimum of ρ(Lω). The computation of
the approximate solutions is done through a double induction:

xm+1
i =

ω

aii


bi −

i−1∑
j=1

aijx
m+1
j −

j=n∑
j=i+1

aijx
m
j +

(
1
ω
− 1

)
aiix

m
i


 .

Without additional assumptions relative to the matrix A, the only result
concerning the convergence is the following:

Proposition 9.2.1 We have ρ(Lω) ≥ |ω − 1|. In particular, if the relax-
ation method converges for a matrix A ∈Mn(CC) and a parameter ω ∈ CC,
then

|ω − 1| < 1.

In other words, it is necessary that ω belong to the disk for which (0, 2) is
a diameter.
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Proof
If the method is convergent, we have ρ(Lω) < 1. However,

detLω =
det((1 − ω)D + ωF )

det(D − ωE)
=

det((1− ω)D)
detD

= (1 − ω)n.

Hence

ρ(Lω) ≥ | detLω |1/n = |1− ω|.

9.3 Two Cases of Convergence

In this section and the following one we show that simple and natural
hypotheses on A imply the convergence of the classical methods. We also
compare their efficiencies.

9.3.1 The Diagonally Dominant Case

We assume here that one of the following two properties is satisfied:

1. A is strictly diagonally dominant,

2. A is irreducible and strongly diagonally dominant.

Proposition 9.3.1 Under one or the other of the hypotheses (1) and (2),
the Jacobi method converges, as well as the relaxation method, with ω ∈
(0, 1].

Proof

Jacobi method: The matrix J = D−1(E + F ) is clearly irreducible if A
is. Furthermore,

n∑
j=1

|Jij | ≤ 1, i = 1, . . . , n,

in which all inequalities are strict if (1) holds, and at least one in-
equality is strict under the hypothesis (2). Then either Gershgorin’s
theorem (Theorem 4.5.1) or its improvement, Proposition 4.5.2 for
irreducible matrices, yields ρ(J) < 1.

Relaxation method: We assume that ω ∈ (0, 1]. Let λ ∈ CC be a nonzero
eigenvalue of Lω. It is a root of

det((1− ω − λ)D + λωE + ωF ) = 0.

Hence, λ+ω−1 is an eigenvalue of A′ := ωD−1(λE+F ). This matrix
is irreducible when A is. Then Gershgorin’s theorem (Theorem 4.5.1)
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shows that

|λ + ω − 1| ≤ max




ω

|aii|


|λ|∑

j<i

|aij |+
∑
j>i

|aij |

 ; 1 ≤ i ≤ n


 .

(9.2)

If |λ| ≥ 1, we deduce that

|λ + ω − 1| ≤ max




ω|λ|
|aii|

∑
j �=i

|aij | ; 1 ≤ i ≤ n


 .

In case (1), this yields

|λ + ω − 1| < ω|λ|,
so that |λ| ≤ |λ+ω−1|+|1−ω|< |λ|ω+1−ω; that is, (|λ|−1)(1−ω) <
0, which is a contradiction. In case (2), Proposition 4.5.2 says that
inequality (9.2) is strict. One concludes the proof the same way as in
case (1).

Of course, this result is not fully satisfactory, since ω ≤ 1 is not the
hypothesis that we should consider. Recall that in practice, one uses over-
relaxation (that is, ω > 1), which turns out to be much more efficient than
the Gauss–Seidel method for an appropriate choice of the parameter.

9.3.2 The Case of a Hermitian Positive Definite Matrix

Let us begin with an intermediate result.

Lemma 9.3.1 If A and M∗ + N are Hermitian positive definite (in a
decomposition A = M −N), then ρ(M−1N) < 1.

Proof
Let us remark first that M∗ +N = M∗ +M −A is necessarily Hermitian

when A is.
It is therefore enough to show that ‖M−1Nx‖A < ‖x‖A for every nonzero

x ∈ CCn, where ‖ · ‖A denotes the norm associated to A:

‖x‖A =
√

x∗Ax.

We have M−1Nx = x− y with y = M−1Ax. Hence,

‖M−1Nx‖2A = ‖x‖2A − y∗Ax − x∗Ay + y∗Ay

= ‖x‖2A − y∗(M∗ + N)y.

We conclude by observing that y is not zero; hence y∗(M∗ + N)y > 0.
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This proof gives a slightly more precise result than what was claimed: By
taking the supremum of ‖M−1Nx‖A on the unit ball, which is compact,
we obtain ‖M−1N‖ < 1 for the matrix norm induced by ‖ · ‖A.

The main application of this lemma is the following theorem.

Theorem 9.3.1 If A is Hermitian positive definite, then the relaxation
method converges if and only if |ω − 1| < 1.

Proof
We have seen in Proposition 9.2.1 that the convergence implies |ω−1| <

1. Let us see the converse. We have E∗ = F and D∗ = D. Thus

M∗ + N =
(

1
ω

+
1
ω̄
− 1

)
D =

1− |ω − 1|2
|ω|2 D.

Since D is positive definite, M∗ + N is positive definite if and only if
|ω − 1| < 1.

However, Lemma 9.3.1 does not apply to the Jacobi method, since the
hypothesis (A positive definite) does not imply that M∗ + N = D +E + F
must be positive definite. We shall see in an exercise that this method
diverges for certain matrices A ∈ HPDn, though it converges when A ∈
HPDn is tridiagonal.

9.4 The Tridiagonal Case

We consider here the case of tridiagonal matrices A, frequently encountered
in the approximation of partial differential equations by finite differences
or finite elements. The general structure of A is the following:

A =




x x′ 0 · · · 0

x′′ . . . . . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . . . . y′

0 · · · 0 y′′ y




.

In other words, the entries aij are zero as soon as |j − i| ≥ 2.
In many cases, these matrices are blockwise tridiagonal, meaning that

the aij are matrices, the diagonal blocks aii being square matrices. In that
case, the iterative methods also read blockwise, the decomposition A =
D − E − F being done blockwise. The corresponding iterative methods
need the inversion of matrices of smaller sizes, namely the aii, usually done
by a direct method. We shall not detail here this extension of the classical
methods.

The structure of the matrix allows us to write a useful algebraic relation:
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Lemma 9.4.1 Let µ be a nonzero complex number and C a tridiagonal
matrix, of diagonal C0, of upper triangular part C+ and lower triangular
part C−. Then

det C = det
(

C0 +
1
µ

C− + µC+

)
.

Proof
It is enough to observe that the matrix C is conjugate to

C0 +
1
µ

C− + µC+,

through the linear transformation matrix

Qµ =




µ
µ2 0

. . .

0
. . .

µn




.

Let us apply the lemma to the computation of the characteristic
polynomial Pω of Lω . We have

(det D)Pω(λ) = det((D − ωE)(λIn − Lω))
= det((ω + λ− 1)D − ωF − λωE)

= det
(

(ω + λ− 1)D − µωF − λω

µ
E

)
,

for every nonzero µ. Let us choose for µ any square root of λ. We then have

(det D)Pω(µ2) = det((ω + µ2 − 1)D − µω(E + F ))
= (detD) det((ω + µ2 − 1)In − µωJ).

Finally, we have the following lemma.

Lemma 9.4.2 If A is tridiagonal and D invertible, then

Pω(µ2) = (µω)nPJ

(
µ2 + ω − 1

µω

)
,

where PJ is the characteristic polynomial of the Jacobi matrix J .

Let us begin with the analysis of a simple case, that of the Gauss–Seidel
method, for which G = L1.

Proposition 9.4.1 If A is tridiagonal and D invertible, then:

1. PG(X2) = XnPJ (X), where PG is the characteristic polynomial of
the Gauss–Seidel matrix G,
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2. ρ(G) = ρ(J)2,

3. the Gauss–Seidel method converges if and only if the Jacobi method
converges; moreover, in case of convergence, the Gauss–Seidel method
converges twice as fast as the Jacobi method;

4. the spectrum of J is even: SpJ = − SpJ .

Proof
Formula (1) comes from Lemma 9.4.2. The spectrum of G is thus formed

of λ = 0 (which is of multiplicity [(n + 1)/2] at least) and of squares of the
eigenvalues of J , which proves 2). Point 3 follows immediately. Finally, if
µ ∈ SpJ , then PJ (µ) = 0, and also PG(µ2) = 0, so that (−µ)nPJ(−µ) = 0.
Finally, either PJ (−µ) = 0, or µ = 0 = −µ, in which case PJ (−µ) also
vanishes.

In fact, the comparison given in point 3 of the proposition holds under
various assumptions. For example (see Exercises 3 and 8), it holds true
when D is positive and E, F are nonnegative.

We go back to the SOR, with an additional hypothesis: The spectrum of
J is real, and the Jacobi method converges. This property is satisfied, for
instance, when A is Hermitian positive definite, since Theorem 9.3.1 and
Proposition 9.4.1 ensure the convergence of the Jacobi method, and since
J is similar to the Hermitian matrix D−1/2(E + F )D−1/2.

We also select a real ω, that is, ω ∈ (0, 2), taking into account Proposition
9.2.1. The spectrum of J is thus formed of the eigenvalues

−λr < · · · < −λ1 ≤ λ1 < · · · < λr = ρ(J) < 1,

from Proposition 9.4.1. This notation does not mean that n be even: If n is
odd, λ1 = 0. Aside from the zero eigenvalue, which does not enter into the
computation of the spectral radius, the eigenvalues of Lω are the squares
of the roots of

µ2 + ω − 1 = µωλa, (9.3)

for 1 ≤ a ≤ r. Indeed, taking−λa instead of λa furnishes the sames squares.
Let us define ∆(λ) := ω2λ2 +4(1−ω), the discriminant of (9.3). If ∆(λa)

is negative, both roots of (9.3) are complex conjugate, hence have modulus
|ω−1|1/2. The case λ = 0 furnishes the same modulus. If that discriminant
is strictly positive, the roots are real and of distinct modulus. One of them,
denoted by µa, satisfies µ2

a > |ω − 1|, the other one satisfying the opposite
inequality.

From Proposition 9.2.1, ρ(Lω) is thus equal to one of the following:

• |ω − 1|, if ∆(λa) ≤ 0 for every a, that is, if ∆(ρ(J)) ≤ 0;

• the maximum of the µ2
a’s defined above, otherwise.
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The first case corresponds to the choice ω ∈ [ωJ , 2), where

ωJ = 2
1−√

1− ρ(J)2

ρ(J)2
=

2
1 +

√
1− ρ(J)2

∈ [1, 2).

Then ρ(Lω) = ω − 1.
The second case is ω ∈ (0, ωJ). If ∆(λa) > 0, let us denote by Qa(X)

the polynomial X2 + ω − 1 −Xωλa. The sum of its roots being positive,
µa is the largest one; it is thus positive. Moreover, Qa(1) = ω(1 − λa) > 0
shows that both roots belong to the same half-line of IR \ {1}. Since their
product has modulus less than or equal to one, they are less than or equal
to one. In particular,

|ω − 1|1/2 < µa < 1.

This shows that ρ(Lω) < 1 holds for every ω ∈ (0, 2). Under our
hypotheses, the relaxation method is convergent.

If λa �= ρ(J), we have Qr(µa) = µaω(λa − ρ(J)) < 0. Hence, µa lies
between both roots of Qr, so that µa < µr. Finally, the case ∆(ρ(J)) ≤ 0
furnishes ρ(Lω) = µ2

r. We then have

(2µr − ωρ(J))
dµr

dω
+ 1− µrρ(J) = 0.

Since 2µr is larger than the sum ωρ(J) of the roots and since µr, ρ(J) ∈
[0, 1), one deduces that ω �→ ρ(Lω) is nonincreasing over (0, ωJ).

We conclude that ρ(Lω) reaches its minimum at ωJ , that minimum being

ωJ − 1 =
1−√

1− ρ(J)2

1 +
√

1− ρ(J)2
.

Theorem 9.4.1 [See Figure 9.1] Suppose that A is tridiagonal, D is in-
vertible, and that the eigenvalues of J are real and belong to (−1, 1). Assume
also that ω ∈ IR.

Then the relaxation method converges if and only if ω ∈ (0, 2).
Furthermore, the convergence ratio is optimal for the parameter

ωJ :=
2

1 +
√

1− ρ(J)2
∈ [1, 2),

where the spectral radius of LωJ is

(ωJ − 1 =)
1−√

1− ρ(J)2

1 +
√

1− ρ(J)2
=

(
1−√

1− ρ(J)2

ρ(J)

)2

.

Remarks:

• We shall see in Exercise 7 that Theorem 9.4.1 extends to complex
values of ω: Under the same assumptions, ρ(Lω) is minimal at ωJ ,
and the relaxation method converges if and only if |ω − 1| < 1.
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2ωJ1

1

ρ(Lω)

ωJ − 1

ω

Figure 9.1. ρ(Lω) in the tridiagonal case.

• The Gauss–Seidel method is not optimal in general; ωJ = 1 holds
only when ρ(J) = 0, though in practice ρ(J) is close to 1. A typical
example is the resolution of an elliptic PDE by the finite element
method.
For values of ρ(J) that are not too close to 1, the relaxation method
with optimal parameter ωJ , though improving the convergence ratio,
is not overwhelmingly more efficient than Gauss–Seidel. In fact,

ρ(G)/ρ (LωJ ) =
(
1 +

√
1− ρ(J)2

)2

lies between 1 (for ρ(J) close to 1) and 4 (for ρ(J) = 0), so that the
ratio

log ρ(LωJ )/ log ρ(G)

remains moderate, as long as ρ(J) keeps away from 1. However, in
the realistic case where ρ(J) is close to 1, we have

log ρ(G)/ log ρ(LωJ ) ∼
√

1− ρ(J)
2

,

which is very small. The number of iterations needed for a prescribed
accuracy is multiplied by that ratio when one replaces the Gauss–
Seidel method by the relaxation method with the optimal parameter.

9.5 The Method of the Conjugate Gradient

We present here the conjugate gradient method in the most appropriate
framework, namely that of systems Ax = b where A is real symmetric
positive definite (A ∈ SPDn). As we shall see below, it is a direct method,
in the sense that it furnishes the solution x̄ after a finite number of iterations
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(at most n). However, the round-off errors pollute the final result, and we
would prefer to consider the conjugate gradient as an iterative method in
which the number N of iterations, much less than n, gives a rather good
approximation of x̄. We shall see that the choice of N is linked to the
condition number of the matrix A.

We denote by 〈·, ·〉 the canonical scalar product on IRn. When A ∈ SPDn

and b ∈ IRn, the function

x �→ J(x) :=
1
2
〈Ax, x〉 − 〈b, x〉

is strictly convex and tends to infinity as ‖x‖ → +∞. It thus reaches
its infimum at a unique point x̄, which is the unique vector where the
gradient of J vanishes. We shall denote by r (for residue) the gradient of
J : r(x) = Ax− b. Hence x̄ is the solution of the linear system Ax = b.

If Ax̄ = b and x ∈ IRn, x �= x̄, then

J(x) = J(x̄) +
1
2
〈A(x − x̄), x− x̄〉 > J(x̄). (9.4)

The conjugate gradient is thus a descent method.
We shall denote by E the quadratic form associated to A: E(x) :=

〈Ax, x〉. It is the square of a norm of IRn. The character ⊥A indicates
the orthogonality with respect to the scalar product defined by A.

9.5.1 A Theoretical Analysis

Let x0 ∈ IRn be given. We define e0 = x0 − x̄, r0 = r(x0) = Ae0. We may
assume that e0 �= 0; otherwise, we would already have the solution. For
k ≥ 1, let us define the vector space

Hk := {P (A)r0 |P ∈ IR[X ], deg P ≤ k − 1}, H0 = {0}.
In Hk+1, the linear subspace Hk is of codimension 0 or 1. In the first case,
Hk+1 = Hk, and it follows that Hk+2 = AHk+1 + Hk+1 = AHk + Hk =
Hk+1 = Hk and thus by induction, Hk = Hm for every m > k. Let us
denote by l the smallest index such that Hl = Hl+1. For k < l, Hk is thus
of codimension one in Hk+1, while if k ≥ l, then Hk = Hk+1. It follows
that dimHk = k if k ≤ l. In particular, l ≤ n.

One can always find, by Gram–Schmidt orthonormalization, an A-
orthogonal1 basis (that is, such that 〈Apj , pi〉 = 0 if i �= j) {p0, . . . , pl−1}
of Hl such that {p0, . . . , pk−1} is a basis of Hk when k ≤ l. The vectors pj ,
which are not necessarily unit vectors, are defined, up to a scalar multiple,
by

pk ∈ Hk+1, pk⊥AHk.

1One must distinguish in this section between the two scalar products, namely 〈·, ·〉
and 〈A·, ·〉.
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One says that the vectors pj are pairwise conjugate. Of course, conjugation
means A-orthogonality. This explains the name of the method.

The quadratic function J , strictly convex, reaches its infimum on the
affine subspace x0 +Hk at a unique vector, which we denote by xk. This
notation makes sense for k = 0. If x = y+γpk ∈ x0+Hk+1 with y ∈ x0+Hk,
then

J(x) = J(x̄) +
1
2
E(x − x̄)

= J(x̄) +
1
2
E(y − x̄) +

1
2
γ2E(pk) + γ〈Apk, y − x̄〉

= J(y) +
1
2
γ2E(pk)− γ〈Apk, e0〉,

since 〈Apk, y − x0〉 = 0. Hence, minimizing J over x0 +Hk+1 amounts to
minimizing J over x0 + Hk, together with minimizing γ �→ 1

2γ2E(pk) −
γ〈pk, r0〉 over IR. We therefore have

xk+1 − xk ∈ IRpk. (9.5)

By definition of l there exists a nonzero polynomial P of degree l such
that P (A)r0 = 0, that is, AP (A)e0 = 0. Since A is invertible, P (A)e0 = 0.
Let us assume that P (0) vanishes. Then P (X) = XQ(X) with deg Q = l−1.
Therefore, Q(A)r0 = 0: The map S �→ S(A)r0 is not one-to-one over the
polynomials of degree less than or equal to l − 1. Hence dimHl < l, a
contradiction. Hence P (0) �= 1, and we may assume that P (0) = 1. Then
P (X) = 1 − XR(X), where deg R = l − 1. Thus e0 = R(A)r0 ∈ Hl or,
equivalently, x̄ ∈ x0 + Hl. Conversely, if k ≤ l and x̄ ∈ x0 + Hk, then
e0 ∈ Hk; that is, e0 = Q(A)r0, where deg Q ≤ k − 1. Then Q1(A)e0 = 0,
because Q1(X) = 1 − XQ(X). Therefore, Q1(A)r0 = 0, Q1(0) �= 0, and
deg Q1 ≤ k. Hence k ≥ l; that is, k = l. Summing up, we have x̄ ∈ x0 +Hl

but x̄ �∈ x0 +Hl−1. Therefore, xl = x̄ and xk �= x̄ if k < l.

Lemma 9.5.1 Let us denote by λn ≥ · · · ≥ λ1(> 0) the eigenvalues of A.
If k ≤ l, then

E(xk − x̄) ≤ E(e0) · min
deg Q≤k−1

max
j
|1 + λjQ(λj)|2.

Proof
Let us compute

E(xk − x̄) = min{E(x− x̄) |x ∈ x0 +Hk}
= min{E(e0 + y) | y ∈ Hk}
= min{E((In + AQ(A))e0) | deg Q ≤ k − 1}
= min{‖(In + AQ(A))A1/2e0‖22 | deg Q ≤ k − 1},
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where we have used the equality 〈Aw, w〉 = ‖A1/2w‖22. Hence

E(xk − x̄) ≤ min{‖In + AQ(A)‖22‖A1/2e0‖22 | deg Q ≤ k − 1}
= E(e0)min{ρ(In + AQ(A))2 | deg Q ≤ k − 1},

since ρ(S) = ‖S‖2 holds for every real symmetric matrix.

From Lemma 9.5.1, we deduce an estimate of the error E(xk − x̄) by
bounding the right-hand side by

min
deg Q≤k−1

max
t∈[λ1,λn]

|1 + tQ(t)|2.

Classically, the minimum is reached for

1 + XQ(X) = ωkTk

(
2X − λ1 − λn

λn − λ1

)
,

where Tk is a Chebyshev polynomial:

Tk(t) =




cos k arccos t if |t| ≤ 1,
cosh k arcosh t if t ≥ 1,
(−1)k cosh k arcosh |t| if t ≤ −1.

The number ωk is the number that furnishes the value 1 at X = 0, namely

ωk =
(−1)k

Tk

(
λn+λ1
λn−λ1

) .

Then

max
[λ1,λn]

|1 + tQ(t)| = |ωk| = 1
cosh k arcoshλn+λ1

λn−λ1

.

Hence E(xk − x̄) ≤ |ωk|2E(e0). However, if

θ := arrcosh
λn + λ1

λn − λ1
,

then |ωk| = (cosh kθ)−1 ≤ 2 exp(−kθ), while exp(−θ) is the root, less than
one, of the quadratic polynomial

T 2 − 2
λn + λ1

λn − λ1
T + 1.

Setting K(A) := ‖A‖2‖A−1‖2 = λn/λ1 the condition number of A, we
obtain

e−θ =
λn + λ1

λn − λ1
−
√(

λn + λ1

λn − λ1

)2

− 1 =
√

λn −
√

λ1√
λn +

√
λ1

=

√
K(A)− 1√
K(A) + 1

.

The final result is the following.
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Theorem 9.5.1 If k ≤ l, then

E(xk − x̄) ≤ 4E(x0 − x̄)

(√
K(A)− 1√
K(A) + 1

)2k

. (9.6)

We now set rk = r(xk) = A(xk − x̄). We have seen that rl = 0 and that
rk �= 0 if k < l. In fact, rk is the gradient of J at xk. The minimality of J at
xk over x0 +Hk thus implies that rk⊥Hk (for the usual scalar product). In
other words, we have 〈rk, pj〉 = 0 if j < k. However, xk−x̄ ∈ e0+Hk can also
be written as xk− x̄ = Q(A)e0 with deg Q ≤ k, which implies rk = Q(A)r0,
so that rk ∈ Hk+1. If k < l, one therefore has Hk+1 = Hk ⊕ IRrk.

We now normalize pk (which was not done up to now) by

pk − rk ∈ Hk.

In other words, pk is the A-orthogonal projection of rk = r(xk), parallel to
Hk. It is actually an element of Hk+1, since rk ∈ Hk+1. It is also nonzero
since rk �∈ Hk. We note that rk is orthogonal to Hk with respect to the
usual scalar product, though pk is orthogonal to Hk with respect to the
A-scalar product; this explains why pk and rk are generally different.

If j ≤ k−2, we compute 〈A(pk−rk), pj〉 = −〈Ark, pj〉 = −〈rk, Apj〉 = 0.
We have used successively the conjugation of the pk, the symmetry of A,
the fact that Apj ∈ Hj+2, and the orthogonality of rk and Hk. We have
therefore pk − rk⊥AHk−1, so that

pk = rk + δkpk−1 (9.7)

for a suitable number δk.

9.5.2 Implementing the Conjugate Gradient

The main feature of the conjugate gradient is the simplicity of the com-
putation of the vectors xk, which is done by induction. To begin with, we
have p0 = r0 = Ax0 − b, where x0 is at our disposal. Let us assume now
that xk and pk−1 are known. Then rk = Axk − b. If rk = 0, we already
have the solution. Otherwise, the formulas (9.5, 9.7) show that in fact,
xk+1 minimizes J over the plane xk + IRrk ⊕ IRpk−1. We therefore have
xk+1 = xk+αkrk+βkpk−1, where the entries αk, βk are obtained by solving
the linear system of two equations{

αk〈Ark, rk〉+ βk〈Ark, pk−1〉+ ‖rk‖2 = 0,
αk〈Ark, pk−1〉+ βk〈Apk−1, pk−1〉 = 0

(we have used 〈rk, pk−1〉 = 0). Then we have δk = βk/αk. Observe that αk

is nonzero, because otherwise βk would vanish and rk would too.
Summing up, the algorithm reads as follows

• Choose x0; then define p0 = r0 = r(x0) := Ax0 − b.
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• For k ≥ 0 with unit increment, do

– Compute rk = r(xk) = Axk − b. If rk = 0, then x̄ = xk.
– Otherwise, minimize J(xk + αrk +βpk−1), by computing αk, βk

as above.
– Define

pk+1 = rk + (βk/αk)pk−1, xk+1 = xk + αkpk.

A priori, this computation furnishes the exact solution x̄ in l iterations.
However, l equals n in general, and the cost of each iteration is O(n2).
The conjugate gradient, viewed as a direct method, is thus rather slow.
One often uses this method for sparse matrices, whose maximal number
of nonzero elements m per rows is small compared to n. The complexity
of an iteration is then O(mn). However, that is still rather costly as a
direct method (O(mn2) operations in all), since the complexity of iterative
methods is also reduced for sparse matrices.

This explains why one prefers to consider the conjugate gradient as an
iterative method, in which one makes only a few iterations N � n. Strictly
speaking, Theorem 9.5.1 does not define a convergence rate τ , since one
does not have, in general, an inequality of the form

‖xk+1 − x̄‖ ≤ e−τ‖xk − x̄‖.
In particular, one is not certain that ‖x1 − x̄‖ is smaller than ‖x0 − x̄‖.
However, the inequality (9.6) is analogous to what we have for a classi-
cal iterative method, up to the factor 4. We shall therefore say that the
conjugate gradient admits a convergence rate τCG that satisfies

τCG ≤ θ = − log

√
K(A)− 1√
K(A) + 1

. (9.8)

This rate is equivalent to 2K(A)−1/2 when K(A) is large. This method
can be considered as an iterative method when nτCG � 1 since then it is
possible to choose N � n. Obviously, a sufficient condition is K(A)� n2.
Application: Let us consider the resolution of the Laplace equation in an
open bounded set Ω of IRd, with a Dirichlet boundary condition, by the
finite elements method:

∆u = f in Ω, u = 0 on ∂Ω.

The matrix A is symmetric, reflecting the symmetry of the variational
formulation ∫

Ω

(∇u · ∇v + fv) dx = 0, ∀v ∈ H1
0 (Ω).

If the diameter of the grid is h with 0 < h � 1, and if that grid is regular
enough, the number of degrees of freedom (the size of the matrix) n is of
order C/hd, where C is a constant. The matrix is sparse with m = O(1).
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Each iteration thus needs O(n) operations. Finally, the condition number of
A is of order c/h2. Hence, a number of iterations N " 1/h is appropriate.
This is worthwhile as soon as d ≥ 2. The method becomes more useful as
d grows larger and the threshold 1/h is independent of the dimension.
Preconditioning: In practice, the performance of the method is improved
by preconditioning the matrix A. The idea is to replace the system Ax = b
by BT ABy = BT b, where the inversion of B is easy, for example B is block-
triangular or block-diagonal with small blocks. If BBT is close enough to
A−1, the condition number of the new matrix is smaller, and the number
of iterations is reduced. Actually, when the condition number reaches its
infimum K = 1, we have A = In, and the solution x̄ = b is obvious. The
simplest preconditioning consists in choosing B = D−1/2. Its efficiency is
clear in the (trivial) case where A is diagonal, because the matrix of the
new system is In, and the condition number is lowered to 1. Observe that
preconditioning is also used with SOR, because it allows us to diminish the
value of ρ(J), hence also the convergence rate. We shall see in Exercise 5
that, if A ∈ SPDn is tridiagonal and if D = dIn (which corresponds to the
preconditioning described above), the conjugate gradient method is twice
as slow as the relaxation method with optimal parameter; that is,

θ =
1
2
τRL.

This equality is obtained by computing θ and the optimal convergence
rate τRL of the relaxation method in terms of ρ(J). In the real world, in
which A might not be tridiagonal, or be only blockwise tridiagonal, the
map ρ(J) �→ θ remains the same, while τRL deteriorates. The conjugate
gradient method becomes more efficient than the relaxation method. It has
also the advantage that it does not need the preliminary computation of
ρ(J), in contrast to the relaxation method with optimal parameter.

The reader will find a deeper analysis of the method of the conjugate
gradient in the article of J.-F. Mâıtre in [1].

9.6 Exercises

1. Let A be a tridiagonal matrix with an invertible diagonal and let J
be its Jacobi matrix. Show that J is conjugate to −J . Compare with
Proposition 9.4.1.

2. We fix n ≥ 2. Use Theorem 3.4.2 to construct a matrix A ∈ SPDn

for which the Jacobi method does not converge. Show in particular
that

sup{ρ(J) |A ∈ SPDn, D = In} = n− 1.

3. Let A ∈ Mn(IR) satisfy aii > 0 for every index i, and aij ≤ 0
whenever j �= i. Using (several times) the weak form of the Perron–
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Frobenius theorem, prove that either 1 ≤ ρ(J) ≤ ρ(G) or ρ(G) ≤
ρ(J) ≤ 1. In particular, as in point 3 of Proposition 9.4.1, the Jacobi
and Gauss–Seidel methods converge or diverge simultaneously, and
Gauss–Seidel is faster in the former case. Hint: Prove that

(ρ(G) ≥ 1) =⇒ (ρ(J) ≥ 1) =⇒ (ρ(G) ≥ ρ(J))

and

(ρ(G) ≤ 1) =⇒ (ρ(J) ≥ ρ(G)).

4. Let n ≥ 2 and A ∈ HPDn be given. Assume that A is tridiagonal.

(a) Verify that the spectrum of J is real and even.
(b) Show that the eigenvalues of J satisfy λ < 1.
(c) Deduce that the Jacobi method is convergent.

5. Let A ∈ HPDn, A = D − E − E∗. Use the Hermitian norm ‖ · ‖2.
(a) Show that |((E + E∗)v, v)| ≤ ρ(J)‖D1/2v‖2 for every v ∈ CCn.

Deduce that

K(A) ≤ 1 + ρ(J)
1− ρ(J)

K(D).

(b) Let us define a function by

g(x) :=
√

x− 1√
x + 1

.

Verify that

g

(
1 + ρ(J)
1− ρ(J)

)
=

1−√
1− ρ(J)2

ρ(J)
.

(c) Deduce that if A is tridiagonal and if D = dIn, then the con-
vergence ratio θ of the conjugate gradient is the half of that of
SOR with optimal parameter.

6. Here is another proof of Theorem 9.3.1, when ω is real. Let A ∈
HPDn.

(a) Suppose we are given ω ∈ (0, 2).
i. Assume that λ = e2iθ (θ real) is an eigenvalue of Lω. Show

that (1− ω − λ)e−iθ ∈ IR.
ii. Deduce that λ = 1, then show that this case is impossible

too.
iii. Let m(ω) be the number of eigenvalues of Lω of modulus

less than or equal to one (counted with multiplicities). Show
that m is constant on (0, 2).

(b) i. Compute

lim
ω→0

1
ω

(Lω − In).
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ii. Deduce that m = n, hence that the SOR converges for every
ω ∈ (0, 2).

7. (Extension of Theorem 9.4.1 to complex values of ω). We still assume
that A is tridiagonal, that the Jacobi method converges, and that the
spectrum of J is real. We retain the notation of Section 9.4.

(a) Given an index a such that λa > 0, verify that ∆(λa) vanishes for
two real values of ω, of which only one, denoted by ωa, belongs
to the open disk D = D(1; 1). Show that 1 < ωa < 2.

(b) Show that if ω ∈ D\ [ωa, 2), then the roots of X2+ω−1−ωλaX
have distinct moduli, with one and only one of them, denoted
by µa(ω), of modulus larger than |ω − 1|1/2.

(c) Show that ω �→ µa is holomorphic on its domain, and that

lim
|ω−1|→1

|µa(ω)|2 = 1,

lim
ω→γ

|µa(ω)|2 = γ − 1 if γ ∈ [ωa, 2).

(d) Deduce that |µa(ω)| < 1 (use the maximum principle), then that
the relaxation method converges for every ω ∈ D.

(e) Show, finally, that the spectral radius of Lω is minimal for ω =
ωr, which previously was denoted by ωJ .

8. Let B be a cyclic matrix of order three. With square diagonal blocks,
it reads blockwise as

B =


 0 0 M1

M2 0 0
0 M3 0


 .

We wish to compare the Jacobi and Gauss–Seidel methods for the
matrix A := I−B. Compute the matrix G. Show that ρ(G) = ρ(J)3.
Deduce that both methods converge or diverge simultaneously and
that, in case of convergence, Gauss–Seidel is three times faster than
Jacobi. Show that for AT , the convergence or the divergence still
holds simultaneously, but that Gauss–Seidel is only one and a half
times faster. Generalize to cyclic matrices of any order p.



10
Approximation of Eigenvalues

The computation of the eigenvalues of a square matrix is a problem of
considerable difficulty. The naive idea, according to which it is enough to
compute the characteristic polynomial and then find its roots, turns out
to be hopeless because of Abel’s theorem, which states that the general
equation P (x) = 0, where P is a polynomial of degree d ≥ 5, is not solvable
using algebraic operations and roots of any order. For this reason, there
exists no direct method, even an expensive one, for the computation of
Sp(M).

Dropping half of that program, one could compute the characteristic
polynomial exactly, then compute an approximation of its roots. But the
cost and the instability of the computation are prohibitive. Amazingly, the
opposite strategy is often used: A standard algorithm for computing the
roots of a polynomial of high degree consists in forming its companion
matrix1 and then applying to this matrix the QR algorithm to compute its
eigenvalues with good accuracy.

Hence, all the methods are iterative. In particular, we shall limit ourselves
to the cases K = IR or CC. The general strategy consists in constructing a
sequence of matrices

M (0), M (1), . . . , M (m), . . . ,

1Fortunately, the companion matrix is a Hessenberg matrix; see below for this notion
and its practical aspects.
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pairwise similar, whose structure has some convergence property. Each
method is conceived in such a way that the sequence converges to a simple
form, triangular or diagonal, since then the eigenvalues can be read on the
diagonal. Such convergence is not always possible. For example, an algo-
rithm in Mn(IR) cannot converge to a triangular form when the matrix
under consideration possesses a pair of nonreal eigenvalues.

There are two strategies for the choice of M (0). One can naively take
M (0) = M . But since an iteration on a generic matrix is rather costly,
one often uses a preliminary reduction to a simple form (for example the
Hessenberg form, in the QR algorithm), which is preserved throughout the
iterations. With a few such tricks, certain methods can be astonishingly
efficient. The danger of iterative methods is the possible growth of round-
off errors and errors in the data. Typically, a procedure that doubles the
errors at each step transforms an initial error of size 10−3 into an O(1)
after ten iterations, which is by no means acceptable. For this reason, it
is important that the passage of M (m) to M (m+1) be contracting, that is,
that the errors be damped, or at worst not be amplified. Since M (m+1) is
conjugate to M (m) by some matrix P (which in fact depends on m), the
growth rate is approximately the number K(P ) := ‖P‖ · ‖P−1‖, called the
condition number, which is always greater than or equal to one. Using the
induced norm ‖ · ‖2, it equals 1 if and only if P is a similitude matrix; that
is, P ∈ CC · Un. For this reason, each iterative method builds sequences
of unitarily similar matrices: The conjugation matrices P (m) are unitary
(orthogonal if the ground field is IR).

10.1 Hessenberg Matrices

Definition 10.1.1 A square matrix M ∈ Mn(K) is called upper Hessen-
berg (one speaks simply of a Hessenberg matrix) if mjk = 0 for every pair
(j, k) such that j − k ≥ 2.

A Hessenberg matrix thus has the form


x · · · · · ·
y

. . .

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 z t




.

In particular, an upper triangular matrix is a Hessenberg matrix.
When computing the spectrum of a given matrix, we may always restrict

ourselves to the case of an irreducible matrix, using a conjugation by a
permutation matrix: If M is reducible, we may limit ourselves to a block-
triangular matrix whose diagonal blocks are irreducible. It is enough then
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to compute the spectrum of each diagonal block. This principle applies
as well to a Hessenberg matrix. Hence one may always assume that M is
Hessenberg and that the mj+1,j ’s are nonzero. In that case, the eigenspaces
have dimension one. In fact, if λ ∈ K̄, let L be the matrix extracted from
M −λIn by deletion of the first row and the last column. It is a triangular
matrix of Mn−1(K̄), invertible because its diagonal entries, the mj+1,j ’s,
are nonzero. Hence, M−λIn is of rank at least equal to n−1, which implies
that the dimension of ker(M − λIn) equals at most one.

Proposition 10.1.1 If M ∈Mn(K) is a Hessenberg matrix with mj+1,j �=
0 for every j, in particular if this matrix is irreducible, then the eigenvalues
of M are geometrically simple.

The example

M =
(

1 1
−1 −1

)

shows that the eigenvalues of an irreducible Hessenberg matrix are not
necessarily algebraically simple.

From the point of view of matrix reduction by conjugation, one can at-
tribute two advantages to the Hessenberg class, compared with the class of
triangular matrices. First of all, if K = IR, many matrices are not trigonal-
izable in IR, though all are trigonalizable in CC. Of course, computing with
complex numbers is more expensive than computing with real numbers.
But we shall see that every square matrix with real entries is similar to a
Hessenberg matrix over the real numbers. Next, if K is algebraically closed,
the trigonalization of M needs the effective computation of the eigenvalues,
which is impossible in view of Abel’s theorem. However, the computation of
a similar Hessenberg matrix is obtained after a finite number of operations.

Let us observe, finally, that as the trigonalization (see Theorem 3.1.3),
the Hessenberg form is obtained through unitary transformations, a well-
conditionned process. When K = IR, these transformation are obviously
real orthogonal.

Theorem 10.1.1 For every matrix M ∈ Mn(CC) there exists a unitary
transformation U such that U−1MU is a Hessenberg matrix. If M ∈
Mn(IR), one may take U ∈ On.

Moreover, the matrix U is computable in 5n3/3 + O(n2) multiplications
and 4n3/3 + O(n2) additions.

Proof
Let X ∈ CCm be a unit vector: X∗X = 1. The matrix of the unitary

(orthogonal) symmetry with respect to the hyperplane X⊥ is S = Im −
2XX∗. In fact, SX = X − 2X = −X , while Y ∈ X⊥; that is X∗Y = 0,
implies SY = Y .
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We construct a sequence M1 = M, . . . , Mn−1 of unitarily similar
matrices. The matrix Mn−r will be of the form(

H B
0r,n−r−1 Z N

)
,

where H ∈Mn−r(CC) is Hessenberg and Z is a vector in CCr. Hence, Mn−1

will be suitable.
One passes from Mn−r to Mn−r+1, that is, from r to r−1, in the following

way. Let e1 be the first vector of the canonical basis of CCr. If Z is colinear
to e1, one does nothing besides defining Mn−r+1 = Mn−r. Otherwise, one
chooses X ∈ CCr so that SZ is parallel to e1 (we discuss below the possible
choices for X). Then one sets

V =
(

In−r 0n−r,r

0r,n−r S

)
,

which is a unitary matrix, with V ∗ = V −1 = V (such a matrix is called a
Householder matrix). We then have

V −1Mn−rV =
(

H BS
0n,n−r−1 SZ SNS

)
.

We thus define Mn−r+1 = V −1Mn−rV .
There are two possible choices for S, given by

X± :=
1

‖Z ± ‖Z‖2�q‖2 (Z ± ‖Z‖2q), q =
z1

|z1|e
1.

It is always advantageous to choose the sign that gives the largest denom-
inator, namely the positive sign. One thus optimizes the round-off errors
when Z is almost aligned with e1.

Let us consider now the complexity of the (n− r)th step. Only the terms
of order r2 and r(n − r) are meaningful. The computation of X , in O(r)
operations, is thus negligible, like that of X∗ and of 2X . The computation
of BS = B − (BX)(2X∗) needs about 4r(n − r) operations. Then 2NX
needs 2r2 operations, as does 2X∗N . We next compute 4X∗NX , and then
form the vector T := 4(X∗NX)X − 2NX at the cost O(r). The product
TX∗ takes r2 operations, as 2X(X∗N). Then N +TX∗−X(2X∗N) needs
2r2 additions. The complete step is thus accomplished in 7r2 + 4r(n −
r) + O(n) operations. A sum from r = 1 to n − 2 yields a complexity
of 3n3 + O(n2), in which one recognizes 5n3/3 + O(n2) multiplications,
4n3/3 + O(n2) additions, and O(n) square roots.

When M is Hermitian, the matrix U−1MU is still Hermitian. Since it
is Hessenberg, it is tridiagonal, with aj,j+1 = āj+1,j and ajj ∈ IR. The
symmetry reduces the complexity to 2n3/3 + O(n2) multiplications. One
can then use the Hessenberg form of M in order to localize its eigenvalues.
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Proposition 10.1.2 If M is tridiagonal Hermitian and if the entries
mj+1,j are nonzero (that is, if M is irreducible), then the eigenvalues of
M are real and simple. Furthermore, if Mj is the (Hermitian, tridiagonal,
irreducible) matrix obtained by keeping only the j last rows and columns of
M , the eigenvalues of Mj strictly separate those of Mj+1.

The separation, not necessarily strict, of the eigenvalues of Mj+1 by those
of Mj has already been proved, in a more general framework, in Theorem
3.3.3.

Proof
The eigenvalues of a Hermitian matrix are real. Since this matrix is

diagonalizable, Proposition 10.1.1 shows that the eigenvalues are simple.
Both properties can be deduced from the following analysis.

We proceed by induction on j. If j ≥ 1, we decompose the matrix Mj+1

blockwise: 


m ā 0 · · · 0
a
0 Mj

...
0




,

where a �= 0 and m ∈ IR, m > 0. Let Pl be the characteristic polynomial
of Ml. We compute that of Mj+1 by expanding according to the elements
of the first column:

Pj+1(X) = mPj(X)− |a|2Pj−1(X), (10.1)

where P0 ≡ 1 by convention.
The induction hypothesis is as follows: Pj and Pj−1 have real entries and

have respectively j and j − 1 real roots µ1, . . . , µj and σ1, . . . , σj−1, with

µ1 < σ1 < µ2 < · · · < σj−1 < µj .

In particular, they have no other roots, and their roots are simple. The signs
of the values of Pj−1 at points µj thus alternate. Since Pj−1 is positive over
(σj−1, +∞), we have (−1)j−kPj−1(µk) > 0.

This hypothesis clearly holds at step j = 1. If j ≥ 2 and if it holds at
step j, then (10.1) shows that Pj+1 ∈ IR[X ]. Furthermore,

(−1)j−kPj+1(µk) = −|a|2(−1)j−kPj−1(µk) < 0.

From the intermediate value theorem, Pj+1 possesses a root λk in
(µk−1, µk). Furthermore, Pj+1(µj) < 0, and Pj+1(x) is positive for x " 1;
hence there is also a root in (µj , +∞). Likewise, Pj+1 has a root in
(−∞, µ1). Hence, Pj+1 possesses j + 1 distinct real roots λk, with

λ1 < µ1 < λ2 < · · · < µj < λj+1.

Since Pj+1 has degree j +1, there is no root other than the λk’s, and these
are simple.
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The sequence of polynomials Pj is a Sturm sequence, which allows
us to compute the number of roots of Pn in a given interval (a, b). A
Sturm sequence is a finite sequence of real polynomials Q0, . . . , Qn, with
Q0 a nonzero constant such that Qj(x) = 0 and 0 < j < n imply
Qj+1(x)Qj−1(x) < 0. In particular, Qj and Qj+1 do not share a com-
mon root. If a ∈ IR is not a root of Qn, we denote by V (a) the number of
sign changes in the sequence (Q0(a), . . . , Qn(a)), with the zeros playing no
role.

Proposition 10.1.3 If Qn(a) �= 0 and Qn(b) �= 0, and if a < b, then the
number of roots of Qn in (a, b) is equal to V (a)− V (b).

Let us remark that it is not necessary of compute the polynomials Pj to
apply them to this proposition. Given a ∈ IR, it is enough to compute the
sequence of values Pj(a).

Once an interval (a, b) is known to contain an eigenvalue λ and only that
one (by means of Proposition 10.1.3 or Theorem 4.5.1), one can compute an
approximate value of λ, either by dichotomy, or by computing the numbers
V ((a+b)/2), . . . , or by the secant or Newton method. In the latter case, one
must compute Pn itself. The last two methods are convergent, provided that
we have a good initial approximation at our disposal, because P ′

n(λ) �= 0.
We end this section with an obvious but nevertheless useful remark.

If M is Hessenberg and T upper triangular, the products TM and MT
are still Hessenberg (that would not be true if both matrices were Hessen-
berg). For example, if M admits an LU factorization, then L is Hessenberg,
and thus has only two nonzero diagonals, because L = MU−1. Similarly, if
M ∈ GLn(CC), then the factor Q of the factorization M = QR is again Hes-
senberg, because Q = MR−1. An elementary compactness and continuity
argument shows that the same fact holds true for every M ∈Mn(CC).

10.2 The QR Method

The QR method is considered the most efficient one for the approximate
computation of the whole spectrum of a square matrix M ∈ Mn(CC). One
employs it only after having reduced M to Hessenberg form, because this
form is preserved throughout the algorithm, while each iteration is much
cheaper than it is for a generic matrix.

10.2.1 Description of the QR Method

Let A ∈ Mn(K) be given, with K = IR or CC. We construct a sequence
of matrices (Aj)j∈IN , with A1 = A. The induction Aj �→ Aj+1 consists
in performing the QR factorization of Aj , Aj = QjRj , and then defining
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Aj+1 := RjQj. We then have

Aj+1 = Q−1
j AjQj ,

which shows that Aj+1 is unitarily similar to Aj . Hence,

Aj = (Q0 · · ·Qj−1)−1A(Q0 · · ·Qj−1) (10.2)

is conjugate to A by a unitary transformation.
Let Pj := Q0 · · ·Qj−1, which is unitary. Since Un is compact, the se-

quence (Pj)j∈IN possesses cluster values. Let P be one of them. Then
A′ := P−1AP = P ∗AP is a cluster point of (Aj)j∈IN . Hence, if the se-
quence (Aj)j converges, its limit is unitarily similar to A, hence has the
same spectrum.

This argument shows that in general, the sequence (Aj)j does not con-
verge to a diagonal matrix, because then the eigenvectors of A would be
the columns of P . In other words, A would have an orthonormal eigenba-
sis. Namely, A would be normal. Except in this special case, one expects
merely that the sequence (Aj)j converges to a triangular matrix, an expec-
tation that is compatible with Theorem 3.1.3. But even this hope is too
optimistic in general. For example, if A is unitary, then Aj = A for every j,
with Qj = A and Rj = In; in that case, the convergence is useless, since the
limit A is not simpler than the data. We shall see later on that the reason
for this bad behavior is that the eigenvalues of a unitary matrix have the
same modulus: The QR method does not do a good job of separating the
eigenvalues of close modulus.

An important case in which a matrix has at least two eigenvalues of
the same modulus is that of matrices with real entries. If A ∈ Mn(IR),
then each Qj is real orthogonal, Rj is real, and Aj is real. This is seen by
induction on j. A limit A′ will not be triangular if some eigenvalues of A
are nonreal, that is, if A possesses a pair of complex conjugate eigenvalues.

Let us sum up what can be expected in a brave new world. If all the
eigenvalues of A ∈Mn(CC) have distinct moduli, the sequence (Aj)j might
converge to a triangular matrix, or at least its lower triangular part might
converge to




λ1

0 λ2

...
. . .

. . .
0 · · · 0 λn


 .

When A ∈ Mn(IR), one makes the following assumption. Let p be the
number of real eigenvalues and 2q that of nonreal eigenvalues; then there
are p + q distinct eigenvalue moduli. In that case, (Aj)j might converge to
a block-triangular form, the diagonal blocks being 2×2 or 1×1. The limits
of the diagonal blocks provide trivially the eigenvalues of A.
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The assertions made above have never been proved in full generality,
to our knowledge. We shall give below a rather satisfactory result in the
complex case.

10.2.2 The Case of a Singular Matrix

When A is not invertible, the QR factorization is not unique, raising a
difficulty in the definition of the algorithm. The computation of the deter-
minant would detect immediately the case of noninvertibility, but would
not provide any solution. However, if the matrix has been first reduced to
the Hessenberg form, then a single QR iteration detects the case and does
provide a solution. Indeed, if A is Hessenberg but not invertible, and if
A = QR, then Q is Hessenberg and R is not invertible. If a21 = 0, the
matrix A is block-triangular and we are reduced to the case of a matrix of
size (n− 1)× (n − 1) by deleting the first row and the first column. Oth-
erwise, there exists j ≥ 2 such that rjj = 0. The matrix A1 = RQ is then
block-triangular, because it is Hessenberg and (A1)j,j−1 = rjjqj,j−1 = 0.
We are thus reduced to the computation of the spectra of two matrices of
sizes j × j and (n− j) × (n − j), the diagonal blocks of A1. After finitely
many such steps (not larger than the multiplicity of the null eigenvalue),
there remain only Hessenberg invertible matrices to deal with. We shall
assume therefore from now one that A ∈ GLn(K).

10.2.3 Complexity of an Iteration

An iteration of the QR method requires the factorization Aj = QjRj and
the computation of Aj+1 = RjQj . Each part costs O(n3) operations if it
is done on a generic matrix (using the naive way of multiplying matrices).
Since the reduction to the Hessenberg form has a comparable cost, we loose
nothing by reducing A to this form. Actually, we make considerable gains
in two aspects. First, the cost of the QR iterations is reduced to O(n2).
Second, the cluster values of the sequence (Aj)j must have the Hessenberg
form too.

Let us examine first the Householder method of QR factorization for a
generic matrix A. In practice, one computes only the factor R and matri-
ces of unitary symmetries whose product is Q. One then multiplies these
unitary matrices by R on the left to obtain A′ = RQ.

Let a1 ∈ CCn be the first column vector of A. We begin by determining a
unit vector v1 ∈ CCn such that the hyperplane symmetry H1 := In − 2v1v

∗
1



176 10. Approximation of Eigenvalues

sends a1 to ‖a1‖2e1. The matrix H1A has the form

Ã =




‖a1‖2 x · · ·
0

...
...

...
0 y · · ·


 .

We then perform these operations again on the matrix extracted from Ã
by deleting the first rows and columns, and so on. At the kth step, Hk is a
matrix of the form (

Ik 0
0 In−k − 2vkv∗k

)
,

where vk ∈ CCn−k is a unit vector. The computation of vk requires O(n−k)
operations. The product HkA(k), where A(k) is block-triangular, amounts
to that of two square matrices of size n−k, one of them I−2vkv∗k. We thus
compute a matrix N − 2vv∗N from v and N , which costs about 4(n− k)2

operations. Summing from k = 1 to k = n− 1, we find that the complexity
of the computation of R alone is 4n3/3 + O(n2). As indicated above, we
do not compute the factor Q, but compute all the matrices RHn−1 · · ·Hk.
That necessitates 2n3 + O(n) operations (check this!). The complexity of
one step of the QR method on a generic matrix is thus 10n3/3 + O(n2).

Let us now analyze the situation when A is a Hessenberg matrix. By
induction on k, we see that vk belongs to the plane spanned by ek and
ek+1. Its computation needs O(1) operations. Then the product of Hk and
A(k) can be obtained by simply recomputing the rows of indices k and k+1,
about 6(n− k) operations. Summing from k = 1 to n− 1, we find that the
complexity of the computation of R alone is 3n2 + O(n). The computation
of the product (RHn−1 · · ·Hk+1)Hk needs about 6k operations. Finally, the
complexity of the QR factorization of a Hessenberg matrix is 6n2 + O(n),
in which there are 4n2 + O(n) multiplications.

To sum up, the cost of the preliminary reduction of a matrix to Hessen-
berg form is less than or equal to what is saved during the first iteration
of the QR method.

10.2.4 Convergence of the QR Method

As explained above, the best convergence statement assumes that the
eigenvalues have distinct moduli.

Let us recall that the sequence Ak is not always convergent. For example,
if A is already triangular, its QR factorization is Q = D, R = D−1A, with
dj = ajj/|ajj |. Hence, A1 = D−1AD is triangular, with the same diagonal
as that of A. By induction, Ak is triangular, with the same diagonal as
that of A. We have thus Qk = D for every k, so that Ak = D−kADk. The
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entry of index (l, m) is thus multiplied at each step by a unit number zlm,
which is not necessarily equal to one if l < m. Hence, the part above the
diagonal of Ak does not converge.

Summing up, a convergence theorem may concern only the diagonal of
Ak and what is below it.

Lemma 10.2.1 Let A ∈ GLn(K) be given, with K = IR or CC. Let
Ak = QkRk be the sequence of matrices given by the QR algorithm. Let
us define Pk = Q0 · · ·Qk−1 and Uk = Rk−1 · · ·R0. Then PkUk is the QR
factorization of the kth power of A:

Ak = PkUk.

Proof
From (10.2), we have Ak = P−1

k APk; that is, PkAk = APk. Then

Pk+1Uk+1 = PkQkRkUk = PkAkUk = APkUk.

By induction, PkUk = Ak. However, Pk ∈ Un and Uk is triangular, with a
positive real diagonal, as a product of such matrices.

Theorem 10.2.1 Let A ∈ GLn(CC) be given. Assume that the moduli of
the eigenvalues of A are distinct:

|λ1| > |λ2| > · · · > |λn| (> 0).

In particular, the eigenvalues are simple, and thus A is diagonalizable:

A = Y −1 diag(λ1, . . . , λn)Y.

Assume also that Y admits an LU factorization. Then the strictly lower
triangular part of Ak converges to zero, and the diagonal of Ak converges
to D := diag(λ1, . . . , λn).

Proof
Let Y = LU be the factorization of Y . We also make use of the QR

factorization of Y −1: Y −1 = QR. Since Ak = Y −1DkY , we have PkUk =
Y −1DkY = QRDkLU .

The matrix DkLD−k is lower triangular with unit numbers on its di-
agonal. By assumption, its strictly lower part tends to zero (because
each term is multiplied by (λi/λj)k, where |λi/λj | < 1). Therefore,
DkLD−k = In + Ek with Ek → 0n as k → +∞. Hence, PkUk =
QR(In + Ek)DkU = Q(In + REkR−1)RDkU = Q(In + Fk)RDkU, where
Fk → 0n. Let OkTk = In + Fk be the QR factorization of In + Fk. By
continuity, Ok and Tk both tend to In. Then

PkUk = (QOk)(TkRDkU).

The first product is a unitary matrix, while the second is a triangular
one. Let |D| be the “modulus” matrix of D (whose entries are the moduli
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of those of D), and let D1 be |D|−1D, which is unitary. We also define
D2 = diag(ujj/|ujj |) and U ′ = D−1

2 U . Then D2 is unitary and the diagonal
of U ′ is positive real. From the uniqueness of the QR factorization of an
invertible matrix we obtain

Pk = QOkDk
1D2, Uk = (Dk

1D2)−1TkRDk
1D2|D|kU ′,

which yields

Qk = P−1
k Pk+1 = D−1

2 D−k
1 O−1

k Ok+1D
k+1
1 D2,

Rk = Uk+1U
−1
k = D−1

2 D−k−1
1 Tk+1RDR−1T−1

k Dk
1D2.

Since D−k
1 and Dk+1

1 are bounded, we deduce that Qk converges, to D1.
Similarly, Rk −R′

k → 0n, where

R′
k = D−1

2 D−k
1 RDR−1Dk−1

1 D2. (10.3)

The fact that the matrix R′
k is upper triangular shows that the strict lower

triangular part of Ak = QkRk tends to zero (observe that the sequence
(Rk)k∈IN is bounded, because the set of unitary matrices conjugate to A
is bounded). Similarly, the diagonal of R′

k is |D|, which shows that the
diagonal of Ak converges to D1|D| = D.

Remark: Formula (10.3) shows that the sequence Ak does not converge,
at least when the eigenvalues have distinct complex arguments. However,
if the eigenvalues have equal complex arguments, for example if they are
real and positive, then D1 = αIn and Rk → T := D−1

2 R|D|R−1D2; hence
Ak converges to αT . Note that this limit is not diagonal in this case.

The situation is especially favorable for tridiagonal Hermitian matrices.
To begin with, we may assume that A is positive definite, up to the change
of A into A+µIn with µ > −ρ(A). Next, we can write A in block-diagonal
form, where the diagonal blocks are tridiagonal irreducible Hermitian ma-
trices. The QR method then treats each block separately. We are thus
reduced to the case of a Hermitian positive definite, tridiagonal and irre-
ducible matrix. Its eigenvalues are real, strictly positive, and simple, from
Proposition 10.1.2: we have λ1 > · · · > λn > 0. We can then use the
following statement.

Theorem 10.2.2 Let A ∈ GLn(CC) be an irreducible Hessenberg matrix
whose eigenvalues are of distinct moduli:

|λ1| > · · · > |λn| (> 0).
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Then the QR method converges; that is, the lower triangular part of Ak

converges to 


λ1

0 λ2

...
. . . . . .

0 · · · 0 λn


 .

Proof
In the light of Theorem 10.2.1, it is enough to show that the matrix

Y in the previous proof admits an LU factorization. We have Y A =
diag(λ1, . . . , λn)Y . The rows of Y are thus the left eigenvectors: ljA = λj lj .

If x ∈ CCn is nonzero, there exists a unique index r such that xr �= 0,
while j > r implies xj = 0. By induction, quoting the Hessenberg form and
the irreducibility of A, we obtain (Amx)r+m �= 0, while j > r + m implies
(Amx)j = 0. Hence, the vectors x, Ax, . . . , An−rx are linearly independent.
A linear subspace, stable under A and containing x, is thus of dimension
greater than or equal to n− r + 1.

Let F be a linear subspace, stable under A, of dimension p ≥ 1. Let
r be the smallest integer such that F contains a nonzero vector x with
xr+1 = · · · = xn = 0. The minimality of r implies that xr �= 0. Hence, we
have p ≥ n − r + 1. By construction, the intersection of F and of linear
subspace [e1, . . . , en−p] spanned by e1, . . . , er−1 reduces to {0}. Thus we
also have p + (r − 1) ≤ n. Finally, r = n− p + 1, and we see that

F ⊕ [e1, . . . , en−p] = CCn.

Let us choose F = [l1, . . . , lq]⊥, which is stable under A. Then p = n− q,
and we have

[l1, . . . , lq]⊥ ⊕ [e1, . . . , eq] = CCn.

This amounts to saying that det(ljek)1≤j,k≤q �= 0. In other words, the
leading principal minor of order q of Y is nonzero. From Theorem 8.1.1, Y
admits an LU factorization.

Corollary 10.2.1 If A ∈ HPDn and if A0 is a Hessenberg matrix, unitar-
ily similar to A (for example, a matrix obtained by Householder’s method),
then the sequence Ak defined by the QR method converges to a diagonal
matrix whose diagonal entries are the eigenvalues of A.

Indeed, A0 is block-diagonal with irreducible diagonal blocks. We are thus
reduced to the case of a Hermitian positive definite tridiagonal irreducible
matrix. Such a matrix satisfies the hypotheses of Theorem 10.2.2. The lower
triangular part converges, hence the whole matrix, since it is Hermitian.
Implementing the QR method: The QR method converges faster as
λn, or merely λn/λn−1, becomes smaller. We can obtain this situation
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by translating Ak �→ Ak − αkIn. The strategies for the choice of αk are
described in [25]. This procedure is called Rayleigh translation. It allows
for a observeable improvement of the convergence of the QR method. If
the eigenvalues of A are simple, a suitable translation allows us to restrict
ourselves to the case of distinct moduli. But this trick has a nonnegligible
cost if A is a real matrix with a pair of complex conjugate eigenvalues,
since it requires a translation by a nonreal number α. As mentioned above,
the computations become much more costly than they are in the domain
of real numbers.

As k increases, the triangular form of Ak appears first at the last row.
In other words, the sequence (Ak)nn converges more rapidly thanother
sequences (Ak)jj . When the last row is sufficiently close to (0, . . . , 0, λn),
the Rayleigh translation must be selected in such a way as to bring λn−1,
instead of λn, to the origin; and so on.

With a clever choice of Rayleigh translations, the QR method, when it
converges, is of order two for a generic matrix, and is of order three for a
Hermitian matrix.

10.3 The Jacobi Method

The Jacobi method allows for the approximate computation of the whole
spectrum of a real symmetric matrix A ∈ Symn. As in the QR method,
one constructs a sequence of matrices, unitarily similar to A. In particular,
the round-off errors are not amplified. Each iteration is cheap (O(n) opera-
tions), and the convergence is quadratic when the eigenvalues are distinct.
It is thus a rather efficient method.

10.3.1 Conjugating by a Rotation Matrix

Let 1 ≤ p, q ≤ n be two distinct indices and θ ∈ [−π, π) an angle. We
denote by Rp,q(θ) the rotation matrix through the angle θ in the plane
spanned by ep and eq. For example, if p < q, then

R = Rp,q(θ) :=




Ip−1

... 0
... 0

· · · cos θ · · · sin θ · · ·
0

... Iq−p−1

... 0
· · · − sin θ · · · cos θ · · ·
0

... 0
... In−q




.
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If H is a symmetric matrix, we compute K := R−1HR = RT HR, which is
also symmetric. Setting c = cos θ, s = sin θ the following formulas hold:

kij = hij if i, j �= p, q,

kip = chip − shiq if i �= p, q,

kiq = chiq + ship if i �= p, q,

kpp = c2hpp + s2hqq − 2cshpq,

kqq = c2hqq + s2hpp + 2cshpq,

kpq = cs(hpp − hqq) + (c2 − s2)hpq.

The cost of the computation of entries kij for i, j �= p, q is zero; that of
kpp, kqq, and kpq is O(1). The cost of this conjugation is thus 6n + O(1)
operations, keeping in mind the symmetry KT = K.

Let us remark that the conjugation by the rotation through the angle
θ±π yields the same matrix K. For this reason, we limit ourselves to angles
θ ∈ [−π/2, π/2).

10.3.2 Description of the Method

One constructs a sequence A(0) = A, A(1), . . . of symmetric matrices,
each one conjugate to the previous one by a rotation as above: A(k+1) =
(R(k))T A(k)R(k). At step k, we choose two distinct indices p and q (in fact,
pk, qk) in such a way that a

(k)
pq �= 0 (if it is not possible, A(k) is already a

diagonal matrix similar to A). We then choose θ (in fact θk) in such a way
that a

(k+1)
pq = 0. From the formulas above, this is equivalent to

cs(a(k)
pp − a(k)

qq ) + (c2 − s2)a(k)
pq = 0.

This amounts to solving the equation

cot 2θ =
a
(k)
qq − a

(k)
pp

2a
(k)
pq

=: σk. (10.4)

This equation possesses two solutions in [−π/2, π/2), namely θk ∈
[−π/4, π/4) and θk ± π/2. There are thus two possible rotation matri-
ces, which yield to two distinct results. Once the angle has been selected,
its computation is useless (it would be actually rather expensive). In fact,
t := tan θk solves

2t

1− t2
= tan 2θ;

that is,

t2 + 2tσk − 1 = 0.
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The two angles correspond to the two possible roots of this quadratic
equation. We then obtain

c =
1√

1 + t2
, s = tc.

We shall see below that the best choice is the angle θk ∈ [−π/4, π/4), which
corresponds to the unique root t in [−1, 1).

The computation of c, s needs only O(1) operations, so that the cost of
an iteration of the Jacobi method is 6n+O(1). Observe that an entry that
has vanished at an iteration becomes in general nonzero after a few more
iterations.

10.3.3 Convergence of the Jacobi Method

We use here the Schur norm ‖M‖ = (Tr MT M)1/2, also called the Frobe-
nius norm, denoted elsewhere by ‖M‖2. Since it amounts to showing that
A(k) converges to a diagonal matrix, we decompose this matrix in the form
A(k) = Dk + Ek, where Dk = diag(a(k)

11 , . . . , a
(k)
nn ). To begin with, since the

sequence is formed of unitarily similar matrices, we have ‖A(k)‖ = ‖A‖.
Lemma 10.3.1 We have

‖Ek+1‖2 = ‖Ek‖2 − 2
(
a(k)

pq

)2

.

Proof
It is sufficient to redo the calculations of Section 10.3.1, noting that

k2
ip + k2

iq = h2
ip + h2

iq

whenever i �= p, q, while k2
pq = 0.

We deduce from the lemma that ‖Dk+1‖2 = ‖Dk‖2 + 2
(
a
(k)
pq

)2

. The
convergence of the Jacobi method depends, then, on the choice of the pair
(p, q) at each step. For example, the choice of the same pair at two consec-
utive iterations is stupid, since it yields A(k+1) = A(k). A first strategy (the
so-called optimal choice) consists in taking the pair (p, q) that optimizes the
instantaneous decay of ‖Ek‖, that is, maximizes the number |a(k)

pq |. Since
this method involves the sorting of n(n−1)/2 entries, it is rather expensive.
Other strategies are available. One can, for instance, range over every pair
(p, q) with p < q, or choose a (p, q) for which |a(k)

pq | is larger than some
threshold. Here we shall study only the method with optimal choice.

Theorem 10.3.1 With the “optimal choice” of (pk, qk) and with the choice
θk ∈ [−π/4, π/4), the Jacobi method converges in the following sense. There
exists a diagonal matrix D such that

‖A(k) −D‖ ≤
√

2‖E0‖
1− ρ

ρk, ρ :=

√
1− 2

n2 − n
.



10.3. The Jacobi Method 183

In particular, the spectrum of A consists of the diagonal terms of D, and
the Jacobi method is of order one at least.

Proof
With the optimal choice of (p, q), we have

(n2 − n)
(
a(k)

pq

)2

≥ ‖Ek‖2.
Hence,

‖Ek+1‖2 ≤
(

1− 2
n2 − n

)
‖Ek‖2.

It follows that ‖Ek‖ ≤ ρk‖E0‖. In particular, Ek tends to zero as k → +∞.
It remains to show that Dk converges too. A calculation using the

notation of Section 10.3.1 and the fact that kpq = 0 yield

kpp − hpp = thpq.

Since |θk| ≤ π/4, we have |t| ≤ 1, so that |a(k+1)
pp − a

(k)
pp | ≤ |a(k)

pq |. Likewise,
|a(k+1)

qq − a
(k)
qq | ≤ |a(k)

pq |. Since the other diagonal entries are unchanged, we
have ‖Dk+1 −Dk‖ ≤ ‖Ek‖.

We have seen that ‖Ek‖ ≤ ρk‖E0‖. Therefore,

‖Dl −Dk‖ ≤ ‖E0‖ ρk

1− ρ
, l > k.

The sequence (Dk)k∈IN is thus Cauchy, hence convergent. Since Ek tends
to zero, Ak converges to the same limit D. This matrix is diagonal, with
the same spectrum as A, since this is true for each Ak. Finally, we obtain

‖A(k) −D‖2 = ‖Dk −D‖2 + ‖Ek‖2 ≤ 2
(1− ρ)2

‖Ek‖2.

10.3.4 Quadratic Convergence

The following statement shows that the Jacobi method compares rather
well with other methods.

Theorem 10.3.2 The Jacobi method with optimal choice of (p, q) is of
order two when the eigenvalues of A are simple, in the following sense. Let
N = n(n− 1)/2 be the number of elements under the diagonal. Then there
exists a number c > 0 such that

‖Ek+N‖ ≤ c‖Ek‖2,
for every k ∈ IN .

Proof
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We first remark that if i �= j with {i, j} �= {pl, ql}, then

|a(l+1)
ij − a

(l)
ij | ≤ |tl|

√
2‖El‖, (10.5)

where tl = tan θl. To see this, observe that 1 − c ≤ t and |s| ≤ t
whenever |t| ≤ 1. However, Theorem 10.3.1 ensures that Dk converges
to diag(λ1, . . . , λn), where the λj ’s are the eigenvalues of A. Since these
are distinct, there exist K ∈ IN and δ > 0 such that, if k ≥ K, then

min
i�=j

|a(k)
ii − a

(k)
jj | ≥ δ

for k ≥ K. We have therefore

|σk| ≥ δ√
2‖Ek‖

k→+∞−→ +∞.

It follows that tk tends to zero and, more precisely, that

tk ∼ − 1
2σk

.

Finally, there exists a constant c1 such that

|tk| ≤ c1‖Ek‖.
Let us fix then k larger than K, and let us denote by J the set of pairs
(pl, ql) when k ≤ l ≤ k + N − 1. For such an index, we have ‖El‖ ≤
ρl−k‖Ek‖ ≤ ‖Ek‖. In particular, |tl| ≤ c1‖Ek‖.

If (p, q) ∈ J and if l < k+N is the largest index such that (p, q) = (pl, ql),
a repeated application of (10.5) shows that

|a(k+N)
pq | ≤ c1N

√
2‖Ek‖2.

If J is equal to the set of pairs (i, j) such that i < j, these inequalities
ensure that ‖Ek+N‖ ≤ c2‖Ek‖2. Otherwise, there exists a pair (p, q) that
one twice sets to zero: (p, q) = (pl, ql) = (pm, qm) with k ≤ l < m < k + N .
In that case, the same argument as above shows that

‖Ek+N‖ ≤ ‖Em‖ ≤
√

2N |a(m)
pq | ≤ 2

√
Nc1(m− l)‖Ek‖2.

Remarks: Exercise 18 shows that the distance between the diagonal and
the spectrum of A is O(‖Ek‖2), and not O(‖Ek‖) as naively expected. We
shall also analyze, in Exercise 10, the (bad) behavior of Dk when we make
the opposite choice π/4 ≤ |θk| ≤ π/2.

10.4 The Power Methods

The power methods allow only for the approximation of a single eigenvalue.
Of course, their cost is significantly lower than that of the previous ones.
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The standard method is especially designed for the search for the optimal
parameter in the SOR method for a tridiagonal matrix, where we have to
compute the spectral radius of the Jacobi iteration matrix (Theorem 9.4.1).

10.4.1 The Standard Method

Let M ∈Mn(CC) be a matrix. We search for an approximation of its eigen-
value of maximum modulus, whenever only one such exists. The standard
method consists in choosing a norm on CCn, a unit vector x0 ∈ CCn, and
then computing successively the vectors xk by the formula

xk+1 :=
1

‖Mxk‖Mxk.

The justification of this method is given in the following theorem.

Theorem 10.4.1 One assumes that SpM contains only one element λ of
maximal modulus (that modulus is thus equal to ρ(M)).

If ρ(M) = 0, the method stops because Mxk = 0 for some k < n.
Otherwise, let CCn = E ⊕ F be the decomposition of CCn, where E, F are

stable linear subspaces under M , with Sp(M |E) = {λ} and λ �∈ Sp(M |F ).
Assume that x0 �∈ F . Then Mxk �= 0 for every k ∈ IN and:

1.

lim
k→+∞

‖Mxk‖ = ρ(M). (10.6)

2.

V := lim
k→+∞

(
λ̄

ρ(M)

)k

xk

is a unit eigenvector of M , associated to the eigenvalue λ.

3. If Vj �= 0, then

lim
k→+∞

(Mxk)j

xk
j

= λ.

Proof
The case ρ(M) = 0 is obvious because M is then nilpotent. We may thus

assume that ρ(M) > 0.
Let x0 = y0 + z0 be the decomposition of x0 with y0 ∈ E and z0 ∈ F .

By assumption, y0 �= 0. Since M |E is invertible, Mky0 �= 0. Since Mkx0 =
Mky0 + Mkz0, Mky0 ∈ E, and Mkz0 ∈ F , we conclude that Mkx0 �= 0.
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The algorithm may be rewritten as2

xk =
1

‖Mkx0‖Mkx0.

We therefore have xk �= 0.
If F �= {0}, then ρ(M |F ) < ρ(M) by construction. Hence there exist

(from Theorem 4.2.1) η < ρ(M) and C > 0 such that ‖(M |F )k‖ ≤ Cηk for
every k. Then ‖(M |F )kz0‖ ≤ C1η

k. On the other hand, ρ((M |E)−1) =
1/ρ(M), and the same argument as above ensures that ‖(M |E)−k‖ ≤
1/C2µ

k, for some µ ∈ (η, ρ(M)), so that ‖Mky0‖ ≥ C3µ
k. Hence,

‖Mkz0‖ � ‖Mky0‖,
so that

xk ∼ 1
‖Mky0‖Mky0.

We are thus reduced to the case where z0 = 0, that is, where M has no
eigenvalue but λ. That will be assumed from now on.

Let r be the degree of the minimal polynomial of M . The vector space
spanned by the vectors x0, Mx0, . . . , M r−1x0 contains all the xk’s. Up to
the replacement of CCn by this linear subspace, one may assume that it
equals CCn. Then we have r = n. Furthermore, since ker(M − λ)n−1, a
nontrivial linear subspace, is stable under A, we see that x0 �∈ ker(M −
λ)n−1.

The vector space CCn then admits the basis

{v1 = x0, v2 = (M − λ)x0, . . . , vn = (M − λ)n−1x0}.
With respect to this basis, M becomes the Jordan matrix

M̃ =




λ 0 . . . . . .

1
. . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
. . . 0 1 λ




.

The matrix λ−kM̃k depends polynomially on k. The coefficient of highest
degree, as k → +∞, is at the intersection of the first column and the last
row. It equals (

k
n− 1

)
λ1−n,

2One could normalize xk at the end of the computation, but we prefer doing it at
each step in order to avoid overflows, and also to ensure (10.6).
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which is equivalent to (k/λ)n−1/(n− 1)!. We deduce that

Mkx0 ∼ kn−1λk−n+1

(n− 1)!
vn.

Hence,

xk ∼
(

λ

|λ|
)k−n+1

vn

‖vn‖ .

Since vn is an eigenvector of M , the claims of the theorem have been proved.

The case where the algebraic and geometric multiplicities of λ are equal
(that is, M |E = λIE), for example if λ is a simple eigenvalue, is especially
favorable. Indeed, Mky0 = λky0, and therefore

xk =
1
‖y0‖y0 + O

(‖Mkz0‖
|λ|k

)
.

Theorem 4.2.1 thus shows that the error

xk − 1
‖y0‖y0

tends to zero faster than (
ρ(M |F ) + ε

ρ(M)

)k

,

for every ε > 0. The convergence is thus of order one, and becomes faster
as the ratio |λ2|/|λ1| becomes smaller (arranging the eigenvalues by nonin-
creasing moduli). However, the convergence is much slower when the Jordan
blocks of M relative to λ are nontrivial. The error decays then like 1/k in
general.

The situation is more delicate when ρ(M) is the modulus of several
distinct eigenvalues. The vector xk, suitably normalized, does not converge
in general but “spins” closer and closer to the sum of the corresponding
eigenspaces. The observation of the asymptotic behavior of xk allows us
to identify the eigendirections associated to the eigenvalues of maximal
modulus. The sequence ‖Mxk‖ does not converge and depends strongly on
the choice of the norm. However, log ‖Mxk‖ converges in the Cesaro sense,
that is, in the mean, to log ρ(M) (Exercise 12).
Remark: The hypothesis on x0 is generic, in the sense that it is satisfied for
every choice of x0 in an open dense subset of CCn. If by chance x0 belongs to
F , the power method furnishes theoretically another eigenvalue, of smaller
modulus. In practice, a large enough number of iterations always allows for
the convergence to λ. In fact, the number λ is rarely exactly representable in
a computer. If it is not, the linear subspace F does not contain any nonzero
representable vector. Thus the vector x0, or its computer representation,
does not belong to F , and Theorem 10.4.1 applies.
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10.4.2 The Inverse Power Method

Let us assume that M is invertible. The standard power method, applied
to M−1, furnishes the eigenvalue of least modulus, whenever it is simple, or
at least its modulus in the general case. Since the inversion of a matrix is a
costly operation, we involve ourselves with that idea only if M has already
been inverted, for example if we had previously had to make an LU or a QR
factorization. That is typically the situation when one begins to implement
the QR algorithm for M . It might look strange to involve a method giving
only one eigenvalue in the course of a method that is expected to compute
the whole spectrum.

The inverse power method is thus subtle. Here is the idea. One begins
by implementing the QR method, until one gets coarse approximations
µ1, . . . , µn of the eigenvalues λ1, . . . , λn. If one persists in the QR method,
the proof of Theorem 10.2.1 shows that the error is at best of order σk

with σ = maxj |λj+1/λj |. When n is large, σ is in general close to 1 and
this convergence is rather slow. Similarly, the method with Rayleigh trans-
lations, for which σ is replaced by σ(η) := maxj |(λj+1−η)/(λj−η)|, is not
satisfactory. However, if one wishes to compute a single eigenvalue, say λp,
with full accuracy, the power method, applied to M − µpIn, produces an
error on the order of θk, where θ := |λp − µp|/ minj �=p |λj − µp| is a small
number, since λp − µp is small.

In practice, the inverse power method is used mainly to compute an
approximate eigenvector, associated to an eigenvalue for which one already
has a good approximate value.

10.5 Leverrier’s Method

The method of Leverrier allows for the computation of the characteris-
tic polynomial of a square matrix. Though inserted in this Chapter, this
method is not suitable for computing approximate values of the eigenval-
ues of a matrix. First of all, it furnishes only the characteristic polynomial
which, as mentioned at the opening if this chapter, is not a good technique
for computing the eigenvalues. Its interest is purely academic. Observe,
however, that it is of great generality, applying to matrices with entries in
any field of characteristic 0.

10.5.1 Description of the Method

Let K be a field of characteristic 0 and M ∈ Mn(K) be given. Let us
denote by λ1, . . . , λn the eigenvalues of M , counted with multiplicity. Let
us define the two following lists of n numbers:
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Elementary symmetric polynomials

σ1 := λ1 + · · ·+ λn = TrM,

σ2 :=
∑
j<k

λjλk,

...
σr :=

∑
j1<···<jr

λj1 · · ·λjr ,

...
σn :=

∏
j

λj = detM.

Newton sums

sm :=
∑

j

λm
j , 1 ≤ m ≤ n.

The numbers (−1)jσj are the coefficients of the characteristic polynomial
of M :

PM (X) = Xn − σ1X
n−1 + σ2X

n−2 − · · ·+ (−1)nσn.

Furthermore, the sm are the traces of the powers Mm. One can obtain
them by computing M2, . . . , Mn. Each of these matrices is obtained in
O(nα) operations, with 2 ≤ α ≤ 3 (α = 3, using the naive method for
the product of two matrices). In all, the computation of s1, . . . , sn needs
O(nα+1) operations, which is a lot, compared to iterative methods (QR ,
Jacobi), for which each iteration is made in O(n2) operations at worst.

The passage from Newton sums to elementary symmetric polynomials is
done through Newton’s formulas. If Σj = (−1)jσj and Σ0 := 1, we have

mΣm +
m∑

k=1

skΣm−k = 0, 1 ≤ n.

One uses these formulas in increasing order, beginning with Σ1 = −s1.
When Σ1, . . . ,Σm−1 are known, one computes

Σm = − 1
m

(s1Σm−1 + · · ·+ smΣ0).

This computation, which needs only O(n2) operations, has a negligible cost.
Besides the high cost of this method, its instability is unfortunate when

k = IR or k = CC: when n is large, sk increases like ρ(M)k, thus much
more rapidly than σk. The eigenvalues of smaller modulus are thus much
perturbed by the round-off errors, and this is reinforced by the large number
of operations.
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When the field is of nonzero characteristic p, the Leverrier method may
be employed only if n < p. Since sp = σp

1 , the computation of the sm’s for
m ≥ p does not bring any new information about the σj ’s.

10.6 Exercises

1. Given a polynomial P ∈ IR[X ], use the Euclidean division in order to
define a sequence of nonzero polynomials Pj in the following way. Set
P0 = P , P1 = P ′. If Pj is not constant, −Pj+1 is the remainder of
the division of Pj−1 by Pj : Pj−1 = QjPj − Pj+1, deg Pj+1 < deg Pj .

(a) Assume that P has only simple roots. Show that the sequence
(Pj)j is well-defined, that it has only finitely many terms, and
that it is a Sturm sequence.

(b) Use Proposition 10.1.3 to compute the number of real roots of
the real polynomials X2 + aX + b or X3 + pX + q in terms of
their discriminants.

2. (J. Wilkinson [35], Section 5.45) Let n = 2p − 1 be an odd number
and Wn ∈Mn(IR) be the symmetric tridiagonal matrix



p 1

1
. . .

. . .
. . . 1

. . .
. . . . . . 1

1 p




.

The diagonal entries are thus p, p−1, . . . , 2, 1, 2, . . . , p−1, p, and the
subdiagonal entries are equal to 1.

(a) Show that the linear subspace

E′ = {X ∈ IRn |xp+j = xp−j , 1 ≤ j < p}
is stable under Wn. Similarly, show that the linear subspace

E′′ = {X ∈ IRn |xp+j = −xp−j , 0 ≤ j < p}
is stable under Wn.

(b) Deduce that the spectrum of Wn is the union of the spectra of
the matrices

W ′
n =




p 1

1
. . . . . .
. . . . . . . . .

1 2 1
2 1




(∈Mp(IR))
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and

W ′′
n =




p 1

1
. . . . . .
. . . . . . . . .

1 3 1
1 2




(∈Mp−1(IR)).

(c) Show that the eigenvalues of W ′′
n separate strictly those of W ′

n.

3. For a1, . . . , an ∈ IR, with
∑

j aj = 1, form the matrix

M(a) :=




a1 a2 a3 a4 an

a2 b2 a3

...
...

...

a3 a3 b3

...
...

a4 · · · ...
· · · · · · an

an · · · · · · · · · an bn




,

where bj := a1 + · · ·+ aj−1 − (j − 2)aj.

(a) Compute the eigenvalues and the eigenvectors of M(a).
(b) We limit ourselves to n-uplets a that belong to the simplex S

defined by 0 ≤ an ≤ · · · ≤ a1 and
∑

j aj = 1. Show that for
a ∈ S M(a) is bistochastic and b2 − a2 ≤ · · · ≤ bn − an ≤ 1.

(c) Let µ1, . . . , µn be an n-uplet of elements in [0, 1] with µn = 1.
Show that there exists a unique a in S such that {µ1, . . . , µn}
is equal to the spectrum of M(a) (counting with multiplicity).

(d) Consider the unit sphere Σ of Mn(IR), when this space is en-
dowed with the norm ‖M‖2 =

√
ρ(MT M). Show that if P ∈ Σ,

then there exists a convex polytope T , of dimension (n − 1)2,
included in Σ and containing P . Hint: Use Corollary 5.5.1, with
unitary invariance of the norm ‖ · ‖2.

4. Show that the cost of an iteration of the QR method for a Hermitian
tridiagonal matrix is 20n + O(1).

5. Show that the reduction to the Hessenberg form (in this case,
tridiagonal form) of a Hermitian matrix costs 7n3/6 + O(n2)
operations.

6. (Invariants of the algorithm QR ) For M ∈Mn(IR) and 1 ≤ k ≤ n−1,
let us denote by (M)k the matrix of size (n−k)× (n−k) obtained by
deleting the first k rows and the last k columns. For example, (I)1 is
the Jordan matrix J(0; n− 1). We shall denote also by K ∈Mn(IR)
the matrix defined by k1n = 1 and kij = 0 otherwise.



192 10. Approximation of Eigenvalues

(a) For an upper triangular matrix T , compute explicitly KT and
TK.

(b) Let M ∈Mn(IR). Prove the equality

det(M − λI − µK) = (−1)nµ det(M − λI)1 + det(M − λI).

(c) Let A ∈ GLn(IR) be given, with factorization A = QR. Prove
that

det(A− λI)1 =
detR

rnn
det(Q− λR−1)1.

(d) Let A′ = RQ. Show that

rnn det(A′ − λI)1 = r11 det(A− λI)1.

(e) Generalize the previous calculation by replacing the index 1 by
k. Deduce that the roots of the polynomial det(A − λI)k are
conserved throughout the QR algorithm. How many such roots
do we have for a general matrix? How many for a Hessenberg
matrix?

7. (Invariants; continuing) For M ∈ Mn(IR), let us define PM (h; z) :=
det((1− h)M + hMT − zIn).

(a) Show that PM (h; z) = PM (1 − h; z). Deduce that there exists a
polynomial QM such that PM (h; z) = QM (h(1− h); z).

(b) Show that QM remains constant throughout the QR algorithm:
If Q ∈ On(IR), R is upper triangular, and M = QR, N = RQ,
then QM = QN .

(c) Deduce that there exist polynomial functions Jrk on Mn(IR),
defined by

PM (h; z) =
n∑

r=0

[r/2]∑
k=0

(h(1 − h))kzn−rJrk(M),

that are invariant throughout the QR algorithm. Verify that the
Jr0’s can be expressed in terms of invariants that we already
know.

(d) Compute explicitly J21 when n = 2. Deduce that in the case
where Theorem 10.2.1 applies and detA > 0, the matrix Ak

converges.
(e) Show that for n ≥ 2,

J21(M) = −1
2

Tr
(
(M −MT )2

)
.

Deduce that if Ak converges to a diagonal matrix, then A is
symmetric.
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8. In the Jacobi method, show that if the eigenvalues are simple, then
the product R1 · · ·Rm converges, to an orthogonal matrix R such
that R∗AR is diagonal.

9. Extend the Jacobi method to Hermitian matrices. Hint: Replace the
rotation matrices (

cos θ sin θ
− sin θ cos θ

)

by unitary matrices (
z1 z2

z3 z4

)
.

10. Let A ∈ Symn(IR) be a matrix whose eigenvalues, of course real, are
simple. Apply the Jacobi method, but selecting the angle θk so that
π/4 ≤ |θk| ≤ π/2.

(a) Show that Ek tends to zero, that the sequence Dk is relatively
compact, and that its cluster values are diagonal matrices whose
diagonal terms are the eigenvalues of A.

(b) Show that an iteration has the effect of permuting, asymp-
totically, a

(k)
pp and a

(k)
qq , where (p, q) = (pk, qk). In other

words

lim
k→+∞

|a(k+1)
pp − a(k)

qq | = 0,

and vice versa, permuting p and q.

11. The Bernoulli method computes an approximation of the root of
largest modulus for a polynomial a0X

n + · · · + an, when that root
is unique. To do so, one defines a sequence by a linear induction of
order n:

zk = − 1
a0

(a1zk−1 + · · ·+ anzk−n).

Compare this method with the power method for a suitable matrix.

12. Consider the power method for a matrix M ∈Mn(CC) of which several
eigenvalues are of modulus ρ(M) �= 0. Again, CCn = E ⊕ F is the
decomposition of CCn into linear subspaces stable under M , such that
ρ(M |F ) < ρ(M) and λ ∈ Sp(M |E) =⇒ |λ| = ρ(M). Finally, x0 =
y0 + z0 with y0 ∈ E, z0 ∈ F , and y0 �= 0.

(a) Express

1
m

m−1∑
k=0

log ‖Mxk‖

in terms of ‖Mmx0‖.
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(b) Show that if 0 < µ < ρ(M) < η, then there exist constants C, C′

such that

Cµk ≤ ‖Mkx0‖ ≤ C′ηk, ∀k ∈ IN.

(c) Deduce that log ‖Mxk‖ converges in the mean to log ρ(M).

13. Let M ∈ Mn(CC) be given. Assume that the Gershgorin disk Dl is
disjoint from the other disks Dm, m �= l. Show that the inverse power
method, applied to M−mllIn, provides an approximate computation
of the unique eigenvalue of M that belongs to Dl.
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