
SECTION 7.1 (PAGE 376) R. A. ADAMS: CALCULUS

CHAPTER 7. APPLICATIONS OF INTE-
GRATION

Section 7.1 Volumes of Solids of Revolution
(page 376)

1. By slicing:

V = π

∫ 1

0
x4 dx = π

5
cu. units.

By shells:

V = 2π

∫ 1

0
y(1 − √

y) dy

= 2π

(
y2

2
− 2y5/2

5

)∣∣∣∣
1

0
= π

5
cu. units.

y

x

y=x2

(1,1)

x

Fig. 7.1.1

2. Slicing:

V = π

∫ 1

0
(1 − y) dy

= π

(
y − 1

2
y2

)∣∣∣∣
1

0
= π

2
cu. units.

Shells:

V = 2π

∫ 1

0
x3 dx

= 2π

(
x4

4

) ∣∣∣∣
1

0
= π

2
cu. units.

y

x

y=x2

1

Fig. 7.1.2

3. By slicing:

V = π

∫ 1

0
(x − x4) dx

= π

(
x2

2
− x5

5

)∣∣∣∣
1

0
= 3π

10
cu. units.

By shells:

V = 2π

∫ 1

0
y(

√
y − y2) dy

= 2π

(
2y5/2

5
− y4

4

)∣∣∣∣
1

0
= 3π

10
cu. units.

y

xx

y=x2

y=√
x

Fig. 7.1.3

4. Slicing:

V = π

∫ 1

0
(y − y4) dy

= π

(
1

2
y2 − 1

5
y5

)∣∣∣∣
1

0
= 3π

10
cu. units.

Shells:

V = 2π

∫ 1

0
x(x1/2 − x2) dx

= 2π

(
2

5
x5/2 − 1

4
x4

)∣∣∣∣
1

0
= 3π

10
cu. units.

y

x

y=√
x y=x2

(1,1)

Fig. 7.1.4

264

www.mohandesyar.com



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 7.1 (PAGE 376)

5. a) About the x-axis:

V = π

∫ 2

0
x2(2 − x)2 dx

= π

∫ 2

0
(4x2 − 4x3 + x4) dx

= π

(
4x3

3
− x4 + x5

5

)∣∣∣∣
2

0
= 16π

15
cu. units.

b) About the y-axis:

V = 2π

∫ 2

0
x2(2 − x) dy

= 2π

(
2x3

3
− x4

4

)∣∣∣∣
2

0
= 8π

3
cu. units.

y=2x−x2

2

y=2x−x2

2

y

y

x

x

(b)

(a)

Fig. 7.1.5

6. Rotate about

a) the x-axis

V = π

∫ 1

0
(x2 − x4) dx

= π

(
1

3
x3 − 1

5
x5

)∣∣∣∣
1

0
= 2π

15
cu. units.

b) the y-axis

V = 2π

∫ 1

0
x(x − x2) dx

= 2π

(
1

3
x3 − 1

4
x4

)∣∣∣∣
1

0
= π

6
cu. units.

y

x

(1,1)

y=x2

y=x

Fig. 7.1.6

7. a) About the x-axis:

V = 2π

∫ 3

0
y(4y − y2 − y) dy

= 2π

(
y3 − y4

4

)∣∣∣∣
3

0
= 27π

2
cu. units.

b) About the y-axis:

V = π

∫ 3

0

[
(4y − y2)2 − y2

]
dy

= π

∫ 3

0
(15y2 − 8y3 + y4) dy

= π

(
5y3 − 2y4 + y5

5

)∣∣∣∣
3

0
= 108π

5
cu. units.

y

x

(3,3)

x=4y−y2

x=y

Fig. 7.1.7

8. Rotate about

a) the x-axis

V = π

∫ π

0
[(1 + sin x)2 − 1] dx

= π

∫ π

0
(2 sin x + sin2 x) dx

=
(

−2π cos x + π

2
x − π

4
sin 2x

)∣∣∣∣
π

0

= 4π + 1

2
π2 cu. units.
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b) the y-axis

V = 2π

∫ π

0
x sin x dx

U = x

dU = dx

dV = sin x dx

V = − cos x

= 2π

[
−x cos x

∣∣∣∣
π

0
+

∫ π

0
cos x dx

]

= 2π2 cu. units.

9. a) About the x-axis:

V = π

∫ 1

0

(
4 − 1

(1 + x2)2

)
dx Let x = tan θ

dx = sec2 θ dθ

= 4π − π

∫ π/4

0

sec2 θ

sec4 θ
dθ

= 4π − π

∫ π/4

0
cos2 θ dθ

= 4π − π

2
(θ + sin θ cos θ)

∣∣∣∣
π/4

0

= 4π − π2

8
− π

4
= 15π

4
− π2

8
cu. units.

b) About the y-axis:

V = 2π

∫ 1

0
x

(
2 − 1

1 + x2

)
dx

= 2π

(
x2 − 1

2
ln(1 + x2)

)∣∣∣∣
1

0

= 2π

(
1 − 1

2
ln 2

)
= 2π − π ln 2 cu. units.

y

x

y= 1
1+x2

y=2

x 1

Fig. 7.1.9

10. By symmetry, rotation about the x-axis gives the same
volume as rotation about the y-axis, namely

V = 2π

∫ 3

1/3
x

(
10

3
− x − 1

x

)
dx

= 2π

(
5

3
x2 − 1

3
x3 − x

)∣∣∣∣
3

1/3

= 512π

81
cu. units.

y

x

3x+3y=10

y= 1
x (3,1/3)

(1/3,3)

Fig. 7.1.10

11. V = 2 × 2π

∫ 1

0
(2 − x)(1 − x) dx

= 4π

∫ 1

0
(2 − 3x + x2) dx

= 4π

(
2x − 3x2

2
+ x3

3

)∣∣∣∣
1

0
= 10π

3
cu. units.

y

x

y

x

x+y=1 x=2

x

Fig. 7.1.11

12. V = π

∫ 1

−1
[(1)2 − (x2)2] dx

= π

(
x − 1

5
x5

)∣∣∣∣
1

−1

= 8π

5
cu. units.

y

x

x2
y=1

y=1−x2

x
dx

Fig. 7.1.12

13. The volume remaining is

V = 2 × 2π

∫ 2

1
x
√

4 − x2 dx Let u = 4 − x2

du = −2x dx

= 2π

∫ 3

0

√
u du = 4π

3
u3/2

∣∣∣∣
3

0
= 4π

√
3 cu. units.
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Since the volume of the ball is
4

3
π23 = 32π

3
cu. units.,

therefore the volume removed is
32π

3
− 4π

√
3 cu. units.

The percentage removed is

32π

3
− 4π

√
3

32π

3

× 100 = 100

(
1 − 3

√
3

8

)
≈ 35.

About 35% of the volume is removed.
y

x
1 2

y=
√

4−x2

x

dx

Fig. 7.1.13

14. The radius of the hole is
√

R2 − 1
4 L2. Thus, by slicing,

the remaining volume is

V = π

∫ L/2

−L/2

[(
R2 − x2

)
−

(
R2 − L2

4

)]
dx

= 2π

(
L2

4
x − 1

3
x3

)∣∣∣∣
L/2

0

= π

6
L3 cu. units (independent of R).

y

x

y=
√

R2−x2

R

L
2

√
R2− L2

4

L

y

x

Fig. 7.1.14

15. The volume remaining is

V = 2π

∫ b

a
xh

(
1 − x

b

)
dx

= 2πh

(
x2

2
− x3

3b

)∣∣∣∣
b

a

= πh(b2 − a2) − 2

3
πh

(
b2 − a3

b

)

= 1

3
πh

(
b2 − 3a2 + 2a3

b

)
cu. units.

y

x

h

x
b + y

h =1

bx=a

x

dx

Fig. 7.1.15

16. Let a circular disk with radius a have centre at point
(a, 0). Then the disk is rotated about the y-axis which is
one of its tangent lines. The volume is:

V = 2 × 2π

∫ 2a

0
x
√

a2 − (x − a)2 dx Let u = x − a

du = dx

= 4π

∫ a

−a
(u + a)

√
a2 − u2 du

= 4π

∫ a

−a
u
√

a2 − u2 du + 4πa
∫ a

−a

√
a2 − u2 du

= 0 + 4πa

(
1

2
πa2

)
= 2π2a3 cu. units.

(Note that the first integral is zero because the integrand
is odd and the interval is symmetric about zero; the sec-
ond integral is the area of a semicircle.)

y

xa

2a

(x−a)2+y2=a2

Fig. 7.1.16
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17. Volume of the smaller piece:

V = π

∫ a

b
(a2 − x2) dx

= π

(
a2x − x3

3

)∣∣∣∣
a

b

= π

(
a2(a − b) − a3 − b3

3

)

= π

3
(a − b)[3a2 − (a2 + ab + b2)]

= π

3
(a − b)2(2a + b) cu. units.

y

x

y=
√

a2−x2

b x
adx

Fig. 7.1.17

18. Let the centre of the bowl be at (0, 30). Then the vol-
ume of the water in the bowl is

V = π

∫ 20

0

[
302 − (y − 30)2

]
dy

= π

∫ 20

0
60y − y2 dy

= π

[
30y2 − 1

3
y3

]∣∣∣∣
20

0

≈ 29322 cm3.

y

x

20

30

x2+(y−30)2=302

Fig. 7.1.18

19. The volume of the ellipsoid is

V = 2π

∫ a

0
b2

(
1 − x2

a2

)
dx

= 2πb2
(

x − x3

3a2

)∣∣∣∣
a

0
= 4

3
πab2 cu. units.

y

x

y=b

√
1− x2

a2

a

b

x

dx

Fig. 7.1.19

20. The cross-section at height y is an annulus (ring)
having inner radius b −√

a2 − y2 and outer radius
b + √

a2 − y2. Thus the volume of the torus is

V = π

∫ a

−a

[
(b +

√
a2 − y2)2 − (b −

√
a2 − y2)2

]
dy

= 2π

∫ a

0
4b

√
a2 − y2 dy

= 8πb
πa2

4
= 2π2a2b cu. units..

We used the area of a quarter-circle of radius a to evalu-
ate the last integral.

21. a) Volume of revolution about the x-axis is

V = π

∫ ∞

0
e−2x dx

= π lim
R→∞

e−2x

−2

∣∣∣∣
R

0
= π

2
cu. units.

b) Volume of revolution about the y-axis is

V = 2π

∫ ∞

0
xe−x dx

= 2π lim
R→∞(−xe−x − e−x)

∣∣∣∣
R

0
= 2π cu. units.
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y

x

y=e−x

1

x
dx

Fig. 7.1.21

22. The volume is

V = π

∫ ∞

1
x−2k dx = π lim

R→∞
x1−2k

1 − 2k

∣∣∣∣
R

1

= π lim
R→∞

R1−2k

1 − 2k
+ π

2k − 1
.

In order for the solid to have finite volume we need

1 − 2k < 0, that is, k >
1

2
.

23. The volume is V = 2π
∫ ∞

1 x1−k dx . This improper inte-
gral converges if 1 − k < −1, i.e., if k > 2. The solid has
finite volume only if k > 2.

y

x

y=x−k

1 x

dx

Fig. 7.1.23

24. A solid consisting of points on parallel line segments
between parallel planes will certainly have congruent
cross-sections in planes parallel to and lying between the
two base planes, any solid satisfying the new definition
will certainly satisfy the old one. But not vice versa;
congruent cross-sections does not imply a family of par-
allel line segments giving all the points in a solid. For
a counterexample, see the next exercise. Thus the ear-
lier, incorrect definition defines a larger class of solids
than does the current definition. However, the formula
V = Ah for the volume of such a solid is still valid, as
all congruent cross-sections still have the same area, A,
as the base region.

25. Since all isosceles right-angled triangles having leg length
a cm are congruent, S does satisfy the condition for be-
ing a prism given in previous editions. It does not satisfy
the condition in this edition because one of the line seg-
ments joining vertices of the triangular cross-sections,
namely the x-axis, is not parallel to the line joining the
vertices of the other end of the hypotenuses of the two
bases.

The volume os S is still the constant cross-sectional
area a2/2 times the height b, that is, V = a2b/2 cm3.

26. Using heights f (x) estimated from the given graph, we
obtain

V = π

∫ 9

1

(
f (x)

)2
dx

≈ π

3

[
32 + 4(3.8)2 + 2(5)2 + 4(6.7)2 + 2(8)2

+ 4(8)2 + 2(7)2 + 4(5.2)2 + 32
]

≈ 938 cu. units.

27. Using heights f (x) estimated from the given graph, we
obtain

V = 2π

∫ 9

1
x f (x) dx

≈ 2π

3

[
1(3) + 4(2)(3.8) + 2(3)(5) + 4(4)(6.7) + 2(5)(8)

+ 4(6)(8) + 2(7)(7) + 4(8)(5.2) + 9(3)
]

≈ 1537 cu. units.

28. Using heights f (x) estimated from the given graph, we
obtain

V = 2π

∫ 9

1
(x + 1) f (x) dx

≈ 2π

3

[
2(3) + 4(3)(3.8) + 2(4)(5) + 4(5)(6.7) + 2(6)(8)

+ 4(7)(8) + 2(8)(7) + 4(9)(5.2) + 10(3)
]

≈ 1832 cu. units.
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29. The region is symmetric about x = y so has the same
volume of revolution about the two coordinate axes. The
volume of revolution about the y-axis is

V = 2π

∫ 8

0
x(4 − x2/3)3/2 dx Let x = 8 sin3 u

dx = 24 sin2 u cos u du

= 3072π

∫ π/2

0
sin5 u cos4 u du

= 3072π

∫ π/2

0
(1 − cos2 u)2 cos4 u sin u du Let v = cos u

dv = − sin u du

= 3072π

∫ 1

0
(1 − v2)2v4 dv

= 3072π

∫ 1

0
(v4 − 2v6 + v8) dv

= 3072π

(
1

5
− 2

7
+ 1

9

)
= 8192π

105
cu. units.

30. The volume of the ball is
4

3
π R3. Expressing this volume

as the “sum” (i.e., integral) of volume elements that are
concentric spherical shells of radius r and thickness dr ,
and therefore surface area kr2 and volume kr2 dr , we
obtain

4

3
π R3 =

∫ R

0
kr2 dr = k

3
R3.

Thus k = 4π .

dr

R

r

Fig. 7.1.30

31. Let the ball have radius R, and suppose its centre is x
units above the top of the conical glass, as shown in the
figure. (Clearly the ball which maximizes wine overflow
from the glass must be tangent to the cone along some
circle below the top of the cone — larger balls will have
reduced displacement within the cone. Also, the ball will
not be completely submerged.)

h secα

(h+x) cos α

α

h

x

R

Fig. 7.1.31

Note that
R

x + h
= sin α, so R = (x + h) sin α.

Using the result of Exercise #17, the volume of wine
displaced by the ball is

V = π

3
(R − x)2(2R + x).

We would like to consider V as a function of x for
−2R ≤ x ≤ R since V = 0 at each end of this in-
terval, and V > 0 inside the interval. However, the
actual interval of values of x for which the above for-
mulation makes physical sense is smaller: x must satisfy
−R ≤ x ≤ h tan2 α. (The left inequality signifies non-
submersion of the ball; the right inequality signifies that
the ball is tangent to the glass somewhere below the rim.)
We look for a critical point of V , considered as a func-
tion of x . (As noted above, R is a function of x .) We
have

0 = dV

dx
= π

3

[
2(R − x)

(
d R

dx
− 1

)
(2R + x)

+ (R − x)2
(

2
d R

dx
+ 1

)]

d R

dx
(4R + 2x + 2R − 2x) = 4R + 2x − (R − x).

Thus

6R sin α = 3(R + x) = 3

(
R + R

sin α
− h

)

2R sin2 α = R sin α + R − h sin α

R = h sin α

1 − 2 sin2 α + sin α
= h sin α

cos 2α + sin α
.

This value of R yields a positive value of V , and corre-
sponds to x = R(2 sin α − 1). Since sin α ≥ sin2 α,

−R ≤ x = h sin α(2 sin α − 1)

1 + sin α − 2 sin2 α
≤ h sin2 α

cos2 α
= h tan2 α.

Therefore it gives the maximum volume of wine dis-
placed.
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32. Let P be the point (t, 5
2 − t). The line through P perpen-

dicular to AB has equation y = x + 5
2 − 2t , and meets the

curve xy = 1 at point Q with x-coordinate s equal to the
positive root of s2 + ( 5

2 − 2t)s = 1. Thus,

s = 1

2

[
2t − 5

2
+

√(
5

2
− 2t

)2

+ 4

]
.

y

x

√
2 dt

x+y= 5
2

B(2,1/2)

A(1/2,2)

P

Q

y= 1
x

s t

Fig. 7.1.32

The volume element at P has radius

P Q = √
2(t − s)

= √
2

⎡
⎣5

4
− 1

2

√(
5

2
− 2t

)2

+ 4

⎤
⎦

and thickness
√

2 dt . Hence, the volume of the solid is

V = π

∫ 2

1/2

[√
2

(
5

4
− 1

2

√(
5

2
− 2t

)2

+ 4

)]2√
2 dt

= 2
√

2π

∫ 2

1/2

⎡
⎣25

16
− 5

4

⎛
⎝
√(

5

2
− 2t

)2

+ 4

⎞
⎠ +

1

4

[(
5

2
− 2t

)2

+ 4

]]
dt Let u = 2t − 5

2
du = 2 dt

= √
2π

∫ 3/2

−3/2

(
41

16
− 5

4

√
u2 + 4 + u2

4

)
du

= √
2π

(
41

16
u + 1

12
u3

)∣∣∣∣
3/2

−3/2
−

5
√

2π

4

∫ 3/2

−3/2

√
u2 + 4 du Let u = 2 tan v

du = 2 sec2 v dv

= 33
√

2π

4
− 5

√
2π

∫ tan−1 (3/4)

tan−1 (−3/4)

sec3 v dv

= 33
√

2π

4
− 10

√
2π

∫ tan−1 (3/4)

0
sec3 v dv

= 33
√

2π

4
− 5

√
2π

(
sec v tan v+

ln | sec v + tan v|
)∣∣∣∣

tan−1 (3/4)

0

= √
2π

[
33

4
− 5

(
15

16
+ ln 2 − 0 − ln 1

)]

= √
2π

(
57

16
− 5 ln 2

)
cu. units.

Section 7.2 Other Volumes by Slicing
(page 380)

1. V =
∫ 2

0
3x dx = 3

2
x2

∣∣∣∣
2

0
= 6 m3

2. A horizontal slice of thickness dz at height a has volume
dV = z(h − z) dz. Thus the volume of the solid is

V =
∫ h

0
(z(h − z) dz =

(
hz2

2
− z3

3

)∣∣∣∣∣
h

0

= h3

6
units3.

3. A horizontal slice of thickness dz at height a has volume
dV = π z

√
1 − z2 dz. Thus the volume of the solid is

V =
∫ 1

0
z
√

1 − z2 dz let u − 1 − z2

= π

2

∫ 1

0

√
u du = π

2

2

3
u3/2

∣∣∣∣∣
1

0

= π

3
units3.

4. V =
∫ 3

1
x2 dx = x3

3

∣∣∣∣
3

1
= 26

3
cu. units

5. V =
∫ 6

0
(2 + z)(8 − z) dz =

∫ 6

0
(16 + 6z − z2) dz

=
(

16z + 3z2 − z3

3

)∣∣∣∣
6

0
= 132 ft3

6. The area of an equilateral triangle of edge
√

x is

A(x) = 1
2

√
x
(√

3
2

√
x
)

=
√

3
4 x sq. units. The volume of

the solid is

V =
∫ 4

1

√
3

4
x dx =

√
3

8
x2

∣∣∣∣
4

1
= 15

√
3

8
cu. units.

7. The area of cross-section at height y is

A(y) = 2π(1 − (y/h))

2π
(πa2) = πa2

(
1 − y

h

)
sq. units.
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The volume of the solid is

V =
∫ h

0
πa2

(
1 − y

h

)
dy = πa2h

2
cu. units.

8. Since V = 4, we have

4 =
∫ 2

0
kx3 dx = k

x4

4

∣∣∣∣
2

0
= 4k.

Thus k = 1.

9. The volume between height 0 and height z is z3. Thus

z3 =
∫ z

0
A(t) dt,

where A(t) is the cross-sectional area at height t . Dif-
ferentiating the above equation with respect to z, we
get 3z2 = A(z). The cross-sectional area at height z is
3z2 sq. units.

10. This is similar to Exercise 7. We have 4z =
∫ z

0
A(t) dt ,

so A(z) = 4. Thus the square cross-section at height z
has side 2 units.

11. V = 2
∫ r

0

(
2
√

r2 − y2
)2

dy

= 8
∫ r

0
(r2 − y2) dy = 8

(
r2 y − y3

3

)∣∣∣∣
r

0
= 16r3

3
cu. units.

x

y

z

x=
√

r2−y2

2
√

r2−y2

Fig. 7.2.11

12. The area of an equilateral triangle of base 2y is
1
2 (2y)(

√
3y) = √

3y2. Hence, the solid has volume

V = 2
∫ r

0

√
3(r2 − x2) dx

= 2
√

3

(
r2x − 1

3
x3

)∣∣∣∣
r

0

= 4√
3

r3 cu. units.

x2+y2=r2

r

x

y

√
3y

2y

Fig. 7.2.12

13. The cross-section at distance y from the vertex of the
partial cone is a semicircle of radius y/2 cm, and hence
area πy2/8 cm2. The volume of the solid is

V =
∫ 12

0

π

8
y2 dy = π123

24
= 72π cm3.

x y

z

12
y

(12, 12, 0)

Fig. 7.2.13

14. The volume of a solid of given height h and given cross-
sectional area A(z) at height z above the base is given
by

V =
∫ h

0
A(z) dz.

If two solids have the same height h and the same area
function A(z), then they must necessarily have the same
volume.

15. Let the x-axis be along the diameter shown in the fig-
ure, with the origin at the centre of the base. The cross-
section perpendicular to the x-axis at x is a rectangle

having base 2
√

r2 − x2 and height h = a + b

2
+ a − b

2
x .

Thus the volume of the truncated cylinder is

V =
∫ r

−r
(2

√
r2 − x2)

(
a + b

2
+ a − b

2r
x

)
dx

=
∫ r

−r
(a + b)

√
r2 − x2 dx = πr2(a + b)

2
cu. units.
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x
r

x

y

h

y = √
r2 − x2

Fig. 7.2.15

16. The plane z = k meets the ellipsoid in the ellipse

( x

a

)2 +
( y

b

)2 = 1 −
(

k

c

)2

that is,
x2

a2

[
1 −

(
k

c

)2] + y2

b2

[
1 −

(
k

c

)2] = 1

which has area

A(k) = πab

[
1 −

(
k

c

)2]
.

The volume of the ellipsoid is found by summing volume
elements of thickness dk:

V =
∫ c

−c
πab

[
1 −

(
k

c

)2]
dk

= πab

[
k − 1

3c2 k3
]∣∣∣∣

c

−c

= 4

3
πabc cu. units.

  z

x

y

k

A(k)

c

a

b

x2

a2 + y2

b2 + z2

c2 =1

(one-eighth of the
solid is shown)

Fig. 7.2.16

17. Cross-sections of the wedge removed perpendicular to the
x-axis are isosceles, right triangles. The volume of the
wedge removed from the log is

V = 2
∫ 20

0

1

2
(
√

400 − x2)2 dx

=
(

400x − x3

3

)∣∣∣∣
20

0
= 16, 000

3
cm3.

x

y

z

45◦
20

y=
√

400−x2

x

Fig. 7.2.17

18. The solution is similar to that of Exercise 15 except that
the legs of the right-triangular cross-sections are y − 10
instead of y, and x goes from −10

√
3 to 10

√
3 instead

of −20 to 20. The volume of the notch is

V = 2
∫ 10

√
3

0

1

2
(
√

400 − x2 − 10)2 dx

=
∫ 10

√
3

0

(
500 − x2 − 20

√
400 − x2

)
dx

= 3, 000
√

3 − 4, 000π

3
≈ 1, 007 cm3.

19. The hole has the shape of two copies of the trun-
cated cylinder of Exercise 13, placed base to base,
with a + b = 3

√
2 in and r = 2 in. Thus the

volume of wood removed (the volume of the hole) is
V = 2(π22)(3

√
2/2) = 12

√
2π in3.

20. One eighth of the region lying inside both cylinders is
shown in the figure. If the region is sliced by a horizon-
tal plane at height z, then the intersection is a rectangle
with area

A(z) =
√

b2 − z2
√

a2 − z2.

The volume of the whole region is

V = 8
∫ b

0

√
b2 − z2

√
a2 − z2 dz.
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  z

x

ya

b

z

A(z)

√
b2−z2

√
a2−z2

Fig. 7.2.20

21. By the result given in Exercise 18 with a = 4 cm and
b = 2 cm, the volume of wood removed is

V = 8
∫ 2

0

√
4 − z2

√
16 − z2 dz ≈ 97.28 cm3.

(We used the numerical integration routine in Maple to
evaluate the integral.)

Section 7.3 Arc Length and Surface Area
(page 387)

1. y = 2x − 1, y ′ = 2, ds =
√

1 + 22 dx

L =
∫ 3

1

√
5 dx = 2

√
5 units.

2. y = ax + b, A ≤ x ≤ B, y ′ = a. The length is

L =
∫ B

A

√
1 + a2 dx =

√
1 + a2(B − A) units.

3. y = 2
3 x3/2, y ′ = √

x, ds = √
1 + x dx

L =
∫ 8

0

√
1 + x dx = 2

3
(1 + x)3/2

∣∣∣∣
8

0
= 52

3
units.

4. y2 = (x − 1)3, y = (x − 1)3/2, y ′ = 3

2

√
x − 1

L =
∫ 2

1

√
1 + 9

4
(x − 1) dx = 1

2

∫ 2

1

√
9x − 5 dx

= 1

27
(9x − 5)3/2

∣∣∣∣
2

1
= 133/2 − 8

27
units.

5. y = x2/3, y ′ = 2

3
x−1/3,

ds =
√

1 + 4

9
x−2/3 dx =

√
9x2/3 + 4

3|x |1/3 dx

L = 2
∫ 1

0

√
9x2/3 + 4

3x1/3
dx Let u = 9x2/3 + 4

du = 6x−1/3 dx

= 1

9

∫ 13

4

√
u du = 2(133/2) − 16

27
units.

6. 2(x + 1)3 = 3(y − 1)2, y = 1 +
√

2
3 (x + 1)3/2

y ′ =
√

3
2 (x + 1)1/2,

ds =
√

1 + 3x + 3

2
dx =

√
3x + 5

2
dx

L = 1√
2

∫ 0

−1

√
3x + 5 dx =

√
2

9
(3x + 5)3/2

∣∣∣∣
0

−1

=
√

2

9

(
53/2 − 23/2

)
units.

7. y = x3

12
+ 1

x
, y ′ = x2

4
− 1

x2

ds =
√

1 +
(

x2

4
− 1

x2

)2

dx =
(

x2

4
+ 1

x2

)
dx

L =
∫ 4

1

(
x2

4
+ 1

x2

)
dx =

(
x3

12
− 1

x

)∣∣∣∣
4

1
= 6 units.

8. y = x3

3
+ 1

4x
, y ′ = x2 − 1

4x2

ds =
√

1 +
(

x2 − 1

4x2

)2

dx =
(

x2 + 1

4x2

)
dx

L =
∫ 2

1

(
x2 + 1

4x2

)
dx =

(
x3

3
− 1

4x

)∣∣∣∣
2

1
= 59

24
units.

9. y = ln x

2
− x2

4
, y ′ = 1

2x
− x

2

ds =
√

1 +
(

1

2x
− x

2

)2

dx =
(

1

2x
+ x

2

)
dx

L =
∫ e

1

(
1

2x
+ x

2

)
dx =

(
ln x

2
+ x2

4

)∣∣∣∣
e

1

= 1

2
+ e2 − 1

4
= e2 + 1

4
units.

10. If y = x2 − ln x

8
then y′ = 2x − 1

8x
and

1 + (y ′)2 =
(

2x + 1

8x

)2

.
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Thus the arc length is given by

s =
∫ 2

1

√
1 +

(
2x − 1

8x

)2

dx

=
∫ 2

1

(
2x + 1

8x

)
dx

=
(

x2 + 1

8
ln x

)∣∣∣∣
2

1
= 3 + 1

8
ln 2 units.

11. s =
∫ a

0

√
1 + sinh2 x dx =

∫ a

0
cosh x dx

= sinh x

∣∣∣∣
a

0
= sinh a = ea − e−a

2
units.

12. s =
∫ π/4

π/6

√
1 + tan2 x dx

=
∫ π/4

π/6
sec x dx = ln | sec x + tan x |

∣∣∣∣
π/4

π/6

= ln(
√

2 + 1) − ln

(
2√
3

+ 1√
3

)

= ln

√
2 + 1√

3
units.

13. y = x2, 0 ≤ x ≤ 2, y ′ = 2x .

length =
∫ 2

0

√
1 + 4x2 dx Let 2x = tan θ

2 dx = sec2 θ dθ

= 1

2

∫ x=2

x=0
sec3 θ

= 1

4

(
sec θ tan θ + ln | sec θ + tan θ |

)∣∣∣∣
x=2

x=0

= 1

4

(
2x

√
1 + 4x2 + ln(2x +

√
1 + 4x2)

)∣∣∣∣
2

0

= 1

4

(
4
√

17 + ln(4 + √
17)

)

= √
17 + 1

4
ln(4 + √

17) units.

14. y = ln
ex − 1

ex + 1
, 2 ≤ x ≤ 4

y ′ = ex + 1

ex − 1

(ex + 1)ex − (ex − 1)ex

(ex + 1)2

= 2ex

e2x − 1
.

The length of the curve is

L =
∫ 4

2

√
1 + 4e2x

(e2x − 1)2
dx

=
∫ 4

2

e2x + 1

e2x − 1
dx

=
∫ 4

2

ex + e−x

ex − e−x
dx = ln

∣∣ex − e−x
∣∣
∣∣∣∣
4

2

= ln

(
e4 − 1

e4

)
− ln

(
e2 − 1

e2

)

= ln

(
e8 − 1

e4

e2

e4 − 1

)
= ln

e4 + 1

e2 units.

15. x2/3+y2/3 = x2/3. By symmetry, the curve has congruent
arcs in the four quadrants. For the first quadrant arc we
have

y =
(

a2/3 − x2/3
)3/2

y ′ = 3

2

(
a2/3 − x2/3

)1/2
(

−2

3
x−1/3

)
.

Thus the length of the whole curve is

L = 4
∫ a

0

√
1 + a2/3 − x2/3

x2/3 dx

= 4a1/3
∫ a

0
x−1/3 dx

= 4a1/3 3

2
x2/3

∣∣∣∣
a

0
= 6a units.

16. The required length is

L =
∫ 1

0

√
1 + (4x3)2 dx =

∫ 1

0

√
1 + 16x6 dx .

Using a calculator we calculate some Simpson’s Rule
approximations as described in Section 7.2:

S2 ≈ 1.59921

S8 ≈ 1.60025

S4 ≈ 1.60110

S16 ≈ 1.60023.

To four decimal places the length is 1.6002 units.
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17. y = x1/3, 1 ≤ x ≤ 2, y ′ = 1

3
x−2/3.

Length = ∫ 2
1 f (x) dx , where f (x) =

√
1 + 1

9x4/3 . We

have
T4 = 1.03406

T8 = 1.03385

T16 = 1.03378

M4 = 1.03363

M8 = 1.03374

M16 = 1.00376.

Thus the length is approximately 1.0338 units.

18. For the ellipse 3x2 + y2 = 3, we have 6x + 2yy′ = 0, so
y ′ = −3x/y. Thus

ds =
√

1 + 9x2

3 − 3x2 dx =
√

3 + 6x2

3 − 3x2 dx .

The circumference of the ellipse is

4
∫ 1

0

√
3 + 6x2

3 − 3x2
dx ≈ 8.73775 units

(with a little help from Maple’s numerical integration
routine.)

19. For the ellipse x2 + 2y2 = 2, we have 2x + 4yy′ = 0, so
y ′ = −x/(2y). Thus

ds =
√

1 + x2

4 − 2x2 dx =
√

4 − x2

4 − 2x2 dx

The length of the short arc from (0, 1) to (1, 1/
√

2) is

∫ 1

0

√
4 − x2

4 − 2x2
dx ≈ 1.05810 units

(with a little help from Maple’s numerical integration
routine).

20. S = 2π

∫ 2

0
|x |

√
1 + 4x2 dx Let u = 1 + 4x2

du = 8x dx

= π

4

∫ 17

1

√
u du = π

4

(2

3
u3/2

)∣∣∣∣
17

1

= π

6
(17

√
17 − 1) sq. units.

21. y = x3, 0 ≤ x ≤ 1. ds = √
1 + 9x4 dx .

The area of the surface of rotation about the x-axis is

S = 2π

∫ 1

0
x3

√
1 + 9x4 dx Let u = 1 + 9x4

du = 36x3 dx

= π

18

∫ 10

1

√
u du = π

27
(103/2 − 1) sq. units.

22. y = x3/2, 0 ≤ x ≤ 1. ds =
√

1 + 9
4 x dx .

The area of the surface of rotation about the x-axis is

S = 2π

∫ 1

0
x3/2

√
1 + 9x

4
dx Let 9x = 4u2

9 dx = 8u du

= 128π

243

∫ 3/2

0
u4

√
1 + u2 du Let u = tan v

du = sec2 v dv

= 128π

243

∫ tan−1
(3/2)

0
tan4 v sec3 v dv

= 128π

243

∫ tan−1
(3/2)

0
(sec7 v − 2 sec5 v + sec3 v) dv.

At this stage it is convenient to use the reduction formula

∫
secn v dv = 1

n − 1
secn−2 v tan v + n − 2

n − 1

∫
secn−2 v dv

(see Exercise 36 of Section 7.1) to reduce the powers of
secant down to 3, and then use

∫ a

0
sec3 v dv = 1

2
(sec a tan a + ln | sec a + tan a|.

We have

I =
∫ a

0
(sec7 v − 2 sec5 v + sec3 v) dv

= sec5 v tan v

6

∣∣∣∣
a

0
+

(
5

6
− 2

)∫ a

0
sec5 v dv +

∫ a

0
sec3 v dv

= sec5 a tan a

6
− 7

6

[
sec3 v tan v

4

∣∣∣∣
a

0
+ 3

4

∫ a

0
sec3 v dv

]

+
∫ a

0
sec3 v dv

= sec5 a tan a

6
− 7 sec3 a tan a

24
+ 1

8

∫ a

0
sec3 v dv

= sec5 a tan a

6
− 7 sec3 a tan a

24

+ sec a tan a + ln | sec a + tan a|
16

.

Substituting a = arctan(3/2) now gives the following
value for the surface area:

S = 28
√

13π

81
+ 8π

243
ln

(
3 + √

13

2

)
sq. units.
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23. If y = x3/2, 0 ≤ x ≤ 1, is rotated about the y-axis, the
surface area generated is

S = 2π

∫ 1

0
x

√
1 + 9x

4
dx Let u = 1 + 9x

4

du = 9

4
dx

= 32π

81

∫ 13/4

1
(u − 1)

√
u du

= 32π

81

(
2

5
u5/2 − 2

3
u3/2

)∣∣∣∣
13/4

1

= 64π

81

(
(13/4)5/2 − 1

5
− (13/4)3/2 − 1

3

)
sq. units.

24. We have

S = 2π

∫ 1

0
ex

√
1 + e2x dx Let ex = tan θ

ex dx = sec2 θ dθ

= 2π

∫ x=1

x=0

√
1 + tan2 θ sec2 θ dθ = 2π

∫ x=1

x=0
sec3 θ dθ

= π

[
sec θ tan θ + ln | sec θ + tan θ |

]∣∣∣∣
x=1

x=0
.

Since

x = 1 ⇒ tan θ = e, sec θ =
√

1 + e2,

x = 0 ⇒ tan θ = 1, sec θ = √
2,

therefore

S = π

[
e
√

1 + e2 + ln |
√

1 + e2 + e| − √
2 − ln |√2 + 1|

]

= π

[
e
√

1 + e2 − √
2 + ln

√
1 + e2 + e√

2 + 1

]
sq. units.

25. If y = sin x, 0 ≤ x ≤ π , is rotated about the x-axis, the
surface area generated is

S = 2π

∫ π

0
sin x

√
1 + cos2 dx Let u = cos x

du = − sin x dx

= 2π

∫ 1

−1

√
1 + u2 du Let u = tan θ

du = sec2 θ dθ

= 2π

∫ π/4

−π/4
sec3 θ dθ = 4π

∫ π/4

0
sec3 θ dθ

= 2π
(

sec θ tan θ + ln | sec θ + tan θ |
)∣∣∣∣

π/4

0

= 2π
(√

2 + ln(1 + √
2)

)
sq. units.

26. 1 + (y ′)2 = 1 +
(

x2

4
− 1

x2

)2

=
(

x2

4
+ 1

x2

)2

S = 2π

∫ 4

1

(
x3

12
+ 1

x

)(
x2

4
+ 1

x2

)
dx

= 2π

∫ 4

1

(
x5

48
+ x

3
+ 1

x3

)
dx

= 2π

(
x6

288
+ x2

6
− 1

2x2

) ∣∣∣∣
4

1

= 275

8
π sq. units.

27. For y = x3

12
+ 1

x
, 1 ≤ x ≤ 4, we have

ds =
(

x2

4
+ 1

x2

)
dx .

The surface generated by rotating the curve about the
y-axis has area

S = 2π

∫ 4

1
x

(
x2

4
+ 1

x2

)
dx

= 2π

(
x4

16
+ ln |x |

)∣∣∣∣
4

1

= 2π

(
255

16
+ ln 4

)
sq. units.

28. The area of the cone obtained by rotating the line
y = (h/r)x , 0 ≤ x ≤ r , about the y-axis is

S = 2π

∫ r

0
x
√

1 + (h/r)2 dx = 2π

√
r2 + h2

r

x2

2

∣∣∣∣
r

0

= πr
√

r2 + h2 sq. units.

29. For the circle (x − b)2 + y2 = a2 we have

2(x − b) + 2y
dy

dx
= 0 ⇒ dy

dx
= − x − b

y
.

Thus

ds =
√

1 + (x − b)2

y2 dx = a

y
dx = a√

a2 − (x − b)2
dx

(if y > 0).
The surface area of the torus obtained by rotating the
circle about the line x = 0 is

S = 2 × 2π

∫ b+a

b−a
x

a√
a2 − (x − b)2

dx Let u = x − b

du = dx

= 4πa
∫ a

−a

u + b√
a2 − u2

du

= 8πab
∫ a

0

du√
a2 − u2

by symmetry

= 8πab sin−1 u

a

∣∣∣∣
a

0
= 4π2ab sq. units.
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30. The top half of x2 + 4y2 = 4 is y = 1

2

√
4 − x2, so

dy

dx
= −x

2
√

4 − x2
, and

S = 2 × 2π

∫ 2

0

√
4 − x2

2

√
1 +

(
x

2
√

4 − x2

)2

dx

= π

∫ 2

0

√
16 − 3x2 dx Let x =

√
16

3
sin θ

dx =
√

16

3
cos θ dθ

= π

∫ π/3

0
(4 cos θ)

4√
3

cos θ dθ

= 16π√
3

∫ π/3

0
cos2 θ dθ

= 8π√
3

(
θ + sin θ cos θ

)∣∣∣∣
π/3

0

= 2π(4π + 3
√

3)

3
√

3
sq. units.

31. For the ellipse x2 + 4y2 = 4 we have

2x
dx

dy
+ 8y = 0 ⇒ dx

dy
= −4

y

x
.

The arc length element on the ellipse is given by

ds =
√

1 +
(

dx

dy

)2

dy

=
√

1 + 16y2

x2 dy = 1

x

√
4 + 12y2 dy.

If the ellipse is rotated about the y-axis, the resulting
surface has area

S = 2 × 2π

∫ 1

0
x

1

x

√
4 + 12y2 dy

= 8π

∫ 1

0

√
1 + 3y2 dy Let

√
3y = tan θ√

3dy = sec2 θ dθ

= 8π√
3

∫ π/3

0
sec3 θ dθ

= 8π

2
√

3

(
sec θ tan θ + ln | sec θ + tan θ |

)∣∣∣∣
π/3

0

= 8π

2
√

3

(
2
√

3 + ln(2 + √
3)

)

= 8π

(
1 + ln(2 + √

3)

2
√

3

)
sq. units.

32. As in Example 4, the arc length element for the ellipse is

ds =
√

1 +
(

dy

dx

)2

dx =

√√√√√a2 − a2 − b2

a2 x2

a2 − x2 dx .

To get the area of the ellipsoid, we must rotate both the
upper and lower semi-ellipses (see the figure for Exercise
20 of Section 8.1):

S = 2 × 2π

∫ a

0

[(
c − b

√
1 −

( x

a

)2
)

+
(

c + b

√
1 −

( x

a

)2
)]

ds

= 8πc
∫ a

0

√√√√√a2 − a2 − b2

a2
x2

a2 − x2
dx

= 8πc

[
1

4
of the circumference of the ellipse

]

= 8πcaE(ε)

where ε =
√

a2 − b2

a
and E(ε) = ∫ π/2

0

√
1 − ε2 sin t dt

as defined in Example 4.

33. From Example 3, the length is

s = 10

π

∫ π/2

0

√
1 + π2

4
cos2 t dt

= 10

π

∫ π/2

0

√
1 + π2

4
− π2

4
sin2 t dt

= 5

π

√
4 + π2

∫ π/2

0

√
1 − π2

4 + π2 sin2 t dt

= 5

π

√
4 + π2 E

(
π√

4 + π2

)
.

34. Let the equation of the sphere be x2 + y2 = R2. Then the
surface area between planes x = a and x = b
(−R ≤ a < b ≤ R) is

S = 2π

∫ b

a

√
R2 − x2

√
1 +

(
dy

dx

)2

dx

= 2π

∫ b

a

√
R2 − x2 R√

R2 − x2
dx

= 2π R
∫ b

a
dx = 2π R(b − a) sq. units.
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Thus, the surface area depends only on the radius R of
the sphere, and the distance (b − a) between the parellel
planes.

y

x

x2+y2=R2

ba

Fig. 7.3.34

35. If the curve y = xk , 0 < x ≤ 1, is rotated about the
y-axis, it generates a surface of area

S = 2π

∫ 1

0
x
√

1 + k2x2(k−1) dx

= 2π

∫ 1

0

√
x2 + k2x2k dx .

If k ≤ −1, we have S ≥ 2πk
∫ 1

0
xk dx , which is infinite.

If k ≥ 0, the surface area S is finite, since xk is bounded
on (0, 1] in that case.
Hence we need only consider the case −1 < k < 0. In
this case 2 < 2 − 2k < 4, and

S = 2π

∫ 1

0
x
√

1 + k2x2(k−1) dx

= 2π

∫ 1

0

√
x2−2k + k2 xk dx

< 2π
√

1 + k2

∫ 1

0
xk dx < ∞.

Thus the area is finite if and only if k > −1.

36. S = 2π

∫ 1

0
|x |

√
1 + 1

x2
dx

= 2π

∫ 1

0

√
x2 + 1 dx Let x = tan θ

dx = sec2 θ dθ

= 2π

∫ π/4

0
sec3 θ dθ

= π
(

sec θ tan θ + ln | sec θ + tan θ |
)∣∣∣∣

π/4

0

= π [
√

2 + ln(
√

2 + 1)] sq. units.

37. a) Volume V = π
∫ ∞

1
dx

x2 = π cu. units.

b) The surface area is

S = 2π

∫ ∞

1

1

x

√
1 + 1

x4 dx

> 2π

∫ ∞

1

dx

x
= ∞.

c) Covering a surface with paint requires applying a
layer of paint of constant thickness to the surface.
Far to the right, the horn is thinner than any pre-
scribed constant, so it can contain less paint than
would be required to cover its surface.

Section 7.4 Mass, Moments, and
Centre of Mass (page 394)

1. The mass of the wire is

m =
∫ L

0
δ(s) ds =

∫ L

0
sin

πs

L
ds

= − L

π
cos

πs

L

∣∣∣∣
L

0
= 2L

π
.

Since δ(s) is symmetric about s = L/2 (that is,
δ((L/2) − s) = δ((L/2) + s)), the centre of mass is at the
midpoint of the wire: s̄ = L/2.

2. A slice of the wire of width dx at x has volume
dV = π(a + bx)2 dx . Therefore the mass of the whole
wire is

m =
∫ L

0
δ0π(a + bx)2 dx

= δ0π

∫ L

0
(a2 + 2abx + b2x2) dx

= δ0π

(
a2 L + abL2 + 1

3
b2L3

)
.

Its moment about x = 0 is

Mx=0 =
∫ L

0
xδ0π(a + bx)2 dx

= δ0π

∫ L

0
(a2x + 2abx2 + b2x3) dx

= δ0π

(
1

2
a2 L2 + 2

3
abL3 + 1

4
b2L4

)
.

Thus, the centre of mass is

x̄ =
δ0π

(
1

2
a2L2 + 2

3
abL3 + 1

4
b2L4

)

δ0π

(
a2 L + abL2 + 1

3
b2L3

)

=
L

(
1

2
a2 + 2

3
abL + 1

4
b2L2

)

a2 + abL + 1

3
b2L2

.
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3. The mass of the plate is m = δ0 × area = πδ0a2

4
.

The moment about x = 0 is

Mx=0 =
∫ a

0
xδ0

√
a2 − x2 dx Let u = a2 − x2

du = −2x dx

= δ0

2

∫ a2

0

√
u du

= δ0

2

2

3
u3/2

∣∣∣∣
a2

0
= δ0a3

3
.

Thus x̄ = Mx=0

m
= δ0a3

3

4

πδ0a2 = 4a

3π
. By symmetry,

ȳ = x̄ . Thus the centre of mass of the plate is(
4a

3π
,

4a

3π

)
.

y

x

dx
x a

y=
√

a2−x2

Fig. 7.4.3

4. A vertical strip has area d A = √
a2 − x2 dx . Therefore,

the mass of the quarter-circular plate is

m =
∫ a

0
(δ0x)

√
a2 − x2 dx Let u = a2 − x2

du = −2x dx

= 1

2
δ0

∫ a2

0

√
u du = 1

2
δ0

(
2

3
u3/2

)∣∣∣∣
a2

0
= 1

3
δ0a3.

The moment about x = 0 is

Mx=0 =
∫ a

0
δ0x2

√
a2 − x2 dx Let x = a sin θ

dx = a cos θ dθ

= δ0a4
∫ π/2

0
sin2 θ cos2 θ dθ

= δ0a4

4

∫ π/2

0
sin2 2θ dθ

= δ0a4

8

∫ π/2

0
(1 − cos 4θ) dθ = πδ0a4

16
.

The moment about y = 0 is

My=0 = 1

2
δ0

∫ a

0
x(a2 − x2) dx

= 1

2
δ0

(
a2x2

2
− x4

4

)∣∣∣∣
a

0
= 1

8
a4δ0.

Thus, x̄ = 3

16
πa and ȳ = 3

8
a. Hence, the centre of mass

is located at (
3

16
πa,

3

8
a).

5. The mass of the plate is

m = 2
∫ 4

0
ky

√
4 − y dy Let u = 4 − y

du = −dy

= 2k
∫ 4

0
(4 − u)u1/2 du

= 2k

(
8

3
u3/2 − 2

5
u5/2

)∣∣∣∣
4

0
= 256k

15
.

By symmetry, Mx=0 = 0, so x̄ = 0.

My=0 = 2
∫ 4

0
ky2

√
4 − y dy Let u = 4 − y

du = −dy

= 2k
∫ 4

0
(16u1/2 − 8u3/2 + u5/2) du

= 2k

(
32

3
u3/2 − 16

5
u5/2 + 2

7
u7/2

)∣∣∣∣
4

0
= 4096k

105
.

Thus ȳ = 4096k

105
· 15

256k
= 16

7
. The centre of mass of the

plate is (0, 16/7).
y

x

2−2

density ky

x=√
4−y

4

Fig. 7.4.5

6. A vertical strip at h has area d A = (2 − 2
3 h) dh. Thus,

the mass of the plate is

m =
∫ 3

0
(5h)

(
2 − 2

3
h

)
dh = 10

∫ 3

0

(
h − h2

3

)
dh

= 10

(
h2

2
− h3

9

)∣∣∣∣
3

0
= 15 kg.

The moment about x = 0 is

Mx=0 = 10
∫ 3

0

(
h2 − h3

3

)
dh

= 10

(
h3

3
− h4

12

)∣∣∣∣
3

0
= 45

2
kg-m.
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The moment about y = 0 is

My=0 = 10
∫ 3

0

1

2

(
2 − 2

3
h

)(
h − 1

3
h2

)
dh

= 10
∫ 3

0

(
h − 2

3
h2 + 1

9
h3

)
dh

= 10

(
h2

2
− 2h3

9
+ h4

36

)∣∣∣∣
3

0
= 15

2
kg-m.

Thus, x̄ =

(
45

2

)

15
= 3

2
and ȳ =

(
15

2

)

15
= 1

2
. The centre

of mass is located at (3
2 , 1

2 ).
y

x

dh

h

y=2− 2
3 x

3

2

Fig. 7.4.6

7. The mass of the plate is

m =
∫ a

0
kx a dx = ka3

2
.

By symmetry, ȳ = a/2.

Mx=0 =
∫ a

0
kx2 a dx = ka4

3
.

Thus x̄ = ka4

3
· 2

ka3 = 2a

3
. The centre of mass of the

plate is

(
2a

3
,

a

2

)
.

y

xa

density kx

a

Fig. 7.4.7

8. A vertical strip has area d A = 2

(
a√
2

− r

)
dr . Thus, the

mass is

m = 2
∫ a/

√
2

0
kr

[
2

(
a√
2

− r

)]
dr

= 4k
∫ a/

√
2

0

(
a√
2

r − r 2
)

dr = k

3
√

2
a3 g.

Since the mass is symmetric about the y-axis, and the
plate is symmetric about both the x- and y-axis, therefore
the centre of mass must be located at the centre of the
square.

y

x

y= a√
2

−x

a√
2

a√
2

r
dr

Fig. 7.4.8

9. m =
∫ b

a
δ(x)

(
g(x) − f (x)

)
dx

Mx=0 =
∫ b

a
xδ(x)

(
g(x) − f (x)

)
dx

My=0 = 1

2

∫ b

a
xδ(x)

(
(g(x))2 − ( f (x))2

)
dx

Centre of mass:

(
Mx=0

m
,

My=0

m

)
.

y

x

density ρ(x)

y=g(x)

y= f (x)

ba

Fig. 7.4.9

10. The slice of the brick shown in the figure has volume
dV = 50 dx . Thus, the mass of the brick is

m =
∫ 20

0
kx50 dx = 25kx2

∣∣∣20

0
= 10000k g.

The moment about x = 0, i.e., the yz-plane, is

Mx=0 = 50k
∫ 20

0
x2 dx = 50

3
kx3

∣∣∣20

0

= 50

3
(8000)k g-cm.
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Thus, x̄ =
50

3
(8000)k

10000k
= 40

3
. Since the density is inde-

pendent of y and z, ȳ = 5

2
and z̄ = 5. Hence, the centre

of mass is located on the 20 cm long central axis of the
brick, two-thirds of the way from the least dense 10 × 5
face to the most dense such face.

dx

x 20

5

10
z

y

x

Fig. 7.4.10

11. Choose axes through the centre of the ball as shown in
the following figure. The mass of the ball is

m =
∫ R

−R
(y + 2R)π(R2 − y2) dy

= 4π R

(
R2 y − y3

3

)∣∣∣∣
R

0
= 8

3
π R4 kg.

By symmetry, the centre of mass lies along the y-axis;
we need only calculate ȳ.

My=0 =
∫ R

−R
y(y + 2R)π(R2 − y2) dy

= 2π

∫ R

0
y2(R2 − y2) dy

= 2π

(
R2 y3

3
− y5

5

)∣∣∣∣
R

0
= 4

15
π R5.

Thus ȳ = 4π R5

15
· 3

8π R4 = R

10
. The centre of mass is

on the line through the centre of the ball perpendicular to
the plane mentioned in the problem, at a distance R/10
from the centre of the ball on the side opposite to the
plane.

y

x

y+2R

−R

−2R

y

Fig. 7.4.11

12. A slice at height z has volume dV = πy2 dz and density
kz g/cm3. Thus, the mass of the cone is

m =
∫ b

0
kzπy2 dz

= πka2
∫ b

0
z

(
1 − z

b

)2

dz

= πka2
(

z2

2
− 2z3

3b
+ z4

4b2

)∣∣∣∣
b

0

= 1

12
πka2b2 g.

The moment about z = 0 is

Mz=0 = πka2
∫ b

0
z2

(
1 − z

b

)2

dz = 1

30
πka2b3 g-cm.

Thus, z̄ = 2b

5
. Hence, the centre of mass is on the axis

of the cone at height 2b/5 cm above the base.

dz

y=a
(

1− z
b

)

b
z

z

a
y

Fig. 7.4.12

13. By symmetry, ȳ = 0.
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x

y

z

x

y

z

a
a

−a

z
√

a2−z2

a

Fig. 7.4.13

A horizontal slice of the solid at height z with thickness
dz is a half-disk of radius

√
a2 − z2 with centre of mass

at x̄ = 4
√

a2 − z2

3π
, by Exercise 3 above. Its mass is

dm = δ0z dz
π

2
(a2 − z2),

and its moment about x = 0 is

d Mx=0 = dm x̄ = πδ0

2
z(a2 − z2)

4
√

a2 − z2

3π

= 2δ0

3
z(a2 − z2)3/2.

Thus the mass of the solid is

m = πδ0

2

∫ a

0
(a2z − z3) dz

= πδ0

2

(
a2z2

2
− z4

4

)∣∣∣∣
a

0
= πδ0a4

8
.

Also,

Mz=0 = πδ0

2

∫ a

0
(a2z2 − z4) dz

= πδ0

2

(
a2z3

3
− z5

5

)∣∣∣∣
a

0
= πδ0a5

15
,

and z̄ = πδ0a5

15
· 8

πδ0a4 = 8a

15
.

Finally,

Mx=0 = 2δ0

3

∫ a

0
z(a2 − z2)3/2 dz Let u = a2 − z2

du = −2z dz

= δ0

3

∫ a2

0
u3/2 du

= δ0

3

(
2

5
u5/2

)∣∣∣∣
a2

0
= 2δ0a5

15
,

so x̄ = 2δ0a5

15
· 8

πδ0a4 = 16a

15
.

The centre of mass is

(
16a

15
, 0,

8a

15

)
.

14. Assume the cone has its base in the xy-plane and its
vertex at height b on the z-axis. By symmetry, the cen-
tre of mass lies on the z-axis. A cylindrical shell of
thickness dx and radius x about the z-axis has height
z = b(1 − (x/a)). Since it’s density is constant kx , its
mass is

dm = 2πbkx2
(

1 − x

a

)
dx .

Also its centre of mass is at half its height,

ȳshell = b

2

(
1 − x

a

)
.

Thus its moment about z = 0 is

d Mz=0 = ȳshell dm = πbkx2
(

1 − x

a

)2
dx .

Hence

m =
∫ a

0
2πbkx2

(
1 − x

a

)
dx = πkba3

6

Mz=0 =
∫ a

0
πbkx2

(
1 − x

a

)2
dx = πkb2a3

30

and z̄ = Mz=0/m = b/5. The centre of mass is on the
axis of the cone at height b/5 cm above the base.

15.
y

x

ds

θ dθ
a−a s

x2+y2=a2

Fig. 7.4.15

Consider the area element which is the thin half-ring
shown in the figure. We have

dm = ks πs ds = kπ s2 ds.

Thus, m = kπ

3
a3.

Regard this area element as itself composed of smaller el-
ements at positions given by the angle θ as shown. Then

d My=0 =
(∫ π

0
(s sin θ)s dθ

)
ks ds

= 2ks3 ds,

My=0 = 2k
∫ a

0
s3 ds = ka4

2
.
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Therefore, ȳ = ka4

2
· 3

kπa3
= 3a

2π
. By symmetry, x̄ = 0.

Thus, the centre of mass of the plate is

(
0,

3a

2π

)
.

16.
y

x

ds

s

θ

L
π

Fig. 7.4.16

The radius of the semicircle is
L

π
. Let s measure the

distance along the wire from the point where it leaves
the positive x-axis. Thus, the density at position s is

δδ(s) = sin
(πs

L

)
g/cm. The mass of the wire is

m =
∫ L

0
sin

πs

L
ds = − L

π
cos

πs

L

∣∣∣∣
L

0
= 2L

π
g.

Since an arc element ds at position s is at height

y = L

π
sin θ = L

π
sin

πs

L
, the moment of the wire about

y = 0 is

My=0 =
∫ L

0

L

π
sin2 πs

L
ds Let θ = πs/L

dθ = πds/L

=
(

L

π

)2 ∫ π

0
sin2 θ dθ

= L2

2π2

(
θ − sin θ cos θ

)∣∣∣∣
π

0
= L2

2π
g-cm.

Since the wire and the density function are both symmet-
ric about the y-axis, we have Mx=0 = 0.

Hence, the centre of mass is located at

(
0,

L

4

)
.

17. m =
∫ ∞

0
Ce−kr2

(4πr2) dr

= 4πC
∫ ∞

0
r2e−kr2

dr Let u = √
k r

du = √
k dr

= 4πC

k3/2

∫ ∞

0
u2e−u2

du

U = u

dU = du

dV = ue−u2
du

V = − 1
2 e−u2

= 4πC

k3/2 lim
R→∞

(
−ue−u2

2

∣∣∣∣
R

0
+ 1

2

∫ R

0
e−u2

du

)

= 4πC

k3/2

(
0 + 1

2

∫ ∞

0
e−u2

du

)

= 4πC

k3/2

√
π

4
= C

(π

k

)3/2 ≈ 5.57C

k3/2 .

18. r̄ = 1

m

∫ ∞

0
rCe−kr2

(4πr2) dr

= 4πC

Cπ3/2k−3/2

∫ ∞

0
r3e−kr2

dr Let u = kr 2

du = 2kr dr

= 4k3/2
√

π

1

2k2

∫ ∞

0
ue−u du

U = u

dU = du

dV = e−u du

V = −e−u

= 2√
πk

lim
R→∞

(
−ue−u

∣∣∣∣
R

0
+

∫ R

0
e−u du

)

= 2√
πk

(
0 + lim

R→∞(e0 − e−R
)

= 2√
πk

.

Section 7.5 Centroids (page 399)

1. A = πr2

4

Mx=0 =
∫ r

0
x
√

r2 − x2 dx Let u = r2 − x2

du = −2x dx

= 1

2

∫ r2

0
u1/2 du = u3/2

3

∣∣∣∣
r2

0
= r3

3

x̄ = r3

3
· 4

πr2
= 4r

3π
= ȳ by symmetry.

The centroid is

(
4r

3π
,

4r

3π

)
.
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y

x

y=
√

r2−x2

dx

x r

r

Fig. 7.5.1

2. By symmetry, x̄ = 0. A horizontal strip at y has mass
dm = 2

√
9 − y dy and moment d My=0 = 2y

√
9 − y dy

about y = 0. Thus,

m = 2
∫ 9

0

√
9 − y dy = −2

(
2

3

)
(9 − y)3/2

∣∣∣∣
9

0
= 36

and

My=0 = 2
∫ 9

0
y
√

9 − y dy Let u2 = 9 − y

2u du = −dy

= 4
∫ 3

0
(9u2 − u4) du = 4(3u3 − 1

5 u5)

∣∣∣∣
3

0
= 648

5
.

Thus, ȳ = 648

5 × 36
= 18

5
. Hence, the centroid is at(

0,
18

5

)
.

y

x

dy y

y=9−x2
9

−3 3

Fig. 7.5.2

3. The area and moments of the region are

A =
∫ 1

0

dx√
1 + x2

Let x = tan θ

dx = sec2 θ dθ

=
∫ π/4

0
sec θ dθ

= ln | sec θ + tan θ |
∣∣∣∣
π/4

0
= ln(1 + √

2)

Mx=0 =
∫ 1

0

x dx√
1 + x2

=
√

1 + x2

∣∣∣∣
1

0
= √

2 − 1

My=0 = 1

2

∫ 1

0

dx

1 + x2
= 1

2
tan−1 x

∣∣∣∣
1

0
= π

8
.

Thus x̄ =
√

2 − 1

ln(1 + √
2)

, and ȳ = π

8 ln(1 + √
2)

. The

centroid is

( √
2 − 1

ln(1 + √
2)

,
π

8 ln(1 + √
2)

)
.

y

x

y= 1√
1+x2

1

Fig. 7.5.3

4. The area of the sector is A = 1
8πr2. Its moment about

x = 0 is

Mx=0 =
∫ r/

√
2

0
x2 dx +

∫ r

r/
√

2
x
√

r2 − x2 dx

= r3

6
√

2
− 1

3
(r2 − x2)3/2

∣∣∣∣
r

r/
√

2
= r3

3
√

2
.

Thus, x̄ = r3

3
√

2
× 8

πr2 = 8r

3
√

2π
. By symmetry, the

centroid must lie on the line y = x

(
tan

π

8

)
= x(

√
2 − 1).

Thus, ȳ = 8r(
√

2 − 1)

3
√

2π
.

y

x

y=x
y=

√
r2−x2

rr√
2

Fig. 7.5.4

285

www.mohandesyar.com



SECTION 7.5 (PAGE 399) R. A. ADAMS: CALCULUS

5. By symmetry, x̄ = 0. We have

A = 2
∫ √

3

0

(√
4 − x2 − 1

)
dx Let x = 2 sin θ

dx = 2 cos θ dθ

= 2

(
4
∫ π/3

0
cos2 θ dθ − √

3

)

= 4(θ + sin θ cos θ)

∣∣∣∣
π/3

0
− 2

√
3

= 4

(
π

3
+

√
3

4

)
− 2

√
3 = 4π

3
− √

3

My=0 = 2 × 1

2

∫ √
3

0

(√
4 − x2 − 1

)2
dx

=
∫ √

3

0

(
5 − x2 − 2

√
4 − x2

)
dx

= 5
√

3 − √
3 − 2

∫ √
3

0

√
4 − x2 dx

= 4
√

3 − 4

(
π

3
+

√
3

4

)
= 3

√
3 − 4π

3
.

Thus ȳ = 9
√

3 − 4π

3
· 3

4π − 3
√

3
= 9

√
3 − 4π

4π − 3
√

3
. The

centroid is

(
0,

9
√

3 − 4π

4π − 3
√

3

)
.

y

x√
3−√

3

y=
√

4−x2−11

Fig. 7.5.5

6. By symmetry, x̄ = 0. The area is A = 1
2πab. The

moment about y = 0 is

My=0 = 1

2

∫ a

−a
b2

[
1 −

(
x

a

)2]
dx = b2

∫ a

0
1 − x2

a2 dx

= b2
(

x − x3

3a2

)∣∣∣∣
a

0
= 2

3
ab2.

Thus, ȳ = 2ab2

3
× 2

πab
= 4b

3π
.

y

x

y=b

√
1− x2

a2

dx

a−a x

Fig. 7.5.6

7. The quadrilateral consists of two triangles, T1 and T2,
as shown in the figure. The area and centroid of T1 are
given by

A1 = 4 × 1

2
= 2,

x̄1 = 0 + 3 + 4

3
= 7

3
, ȳ1 = 0 + 1 + 0

3
= 1

3
.

The area and centroid of T2 are given by

A2 = 4 × 2

2
= 4,

x̄2 = 0 + 2 + 4

3
= 2, ȳ2 = 0 − 2 + 0

3
= −2

3
.

It follows that

M1,x=0 = 7

3
× 2 = 14

3

M1,y=0 = 1

3
× 2 = 2

3

M2,x=0 = 2 × 4 = 8

M2,y=0 = −2

3
× 4 = −8

3
.

Since areas and moments are additive, we have for the
whole quadrilateral

A = 2 + 4 = 6,

Mx=0 = 14

3
+ 8 = 38

3
, My=0 = 2

3
− 8

3
= −2.

Thus x̄ = 38

3 × 6
= 19

9
, and ȳ = −2

6
= −1

3
. The centroid

of the quadrilateral is

(
19

9
,−1

3

)
.

y

x

(3,1)

4

(2,−2)

T1

T2

Fig. 7.5.7
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8. The region is the union of a half-disk and a triangle. The

centroid of the half-disk is known to be at

(
1,

4

3π

)
and

that of the triangle is at

(
2

3
,−2

3

)
. The area of the semi-

circle is
π

2
and the triangle is 2. Hence,

Mx=0 =
(π

2

)
(1) + (2)

(
2

3

)
= 3π + 8

6
;

My=0 =
(π

2

)(
4

3π

)
+ (2)

(
−2

3

)
= −2

3
.

Since the area of the whole region is
π

2
+ 2, then

x̄ = 3π + 8

3(π + 4)
and ȳ = − 4

3(π + 4)
.

y

x

y=
√

1−(x−1)2

21

y=x−2

−2

Fig. 7.5.8

9. A circular strip of the surface between heights y and
y + dy has area

d S = 2πx
dy

cos θ
= 2πx

r

x
dy = 2πr dy.

The total surface area is

S = 2πr
∫ r

0
dy = 2πr2.

The moment about y = 0 is

My=0 = 2πr
∫ r

0
y dy = πr(y2)

∣∣∣∣
r

0
= πr3.

Thus ȳ = πr3

2πr2 = r

2
. By symmetry, the centroid of the

hemispherical surface is on the axis of symmetry of the
hemisphere. It is halfway between the centre of the base
circle and the vertex.

y

x

(x,y)

θ

y

x

θ

dS

r

Fig. 7.5.9

10. By symmetry, x̄ = ȳ = 0. The volume is V = 2
3πr3. A

thin slice of the solid at height z will have volume
dV = πy2 dz = π(r2 − z2) dz. Thus, the moment about
z = 0 is

Mz=0 =
∫ r

0
zπ(r 2 − z2) dz

= π

(
r2z2

2
− z4

4

) ∣∣∣∣
r

0
= πr4

4
.

Thus, z̄ = πr4

4
× 3

2πr3 = 3r

8
. Hence, the centroid is

on the axis of the hemisphere at distance 3r/8 from the
base.

y=
√

r2−z2

dz

r

y

z

x

Fig. 7.5.10

11. The cone has volume V = 1
3πr2h. (See the following

figure.) The disk-shaped slice with vertical width dz has

radius y = r
(

1 − z

h

)
, and therefore has volume

dV = πr 2
(

1 − z

h

)2
dz = π

r2

h2
(h − z)2 dz.

We have

Mz=0 = πr2

h2

∫ h

0
z(h − z)2 dz Let u = h − z

du = −dz

= πr2

h2

∫ h

0
(h − u)u2 du

= πr2

h2

(
hu3

3
− u4

4

)∣∣∣∣
h

0
= πr2h2

12
.

Therefore z̄ = πr2h2

12
· 3

πr2h
= h

4
. The centroid of the

solid cone is on the axis of the cone, at a distance above
the base equal to one quarter of the height of the cone.
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dz

y=r
(

1− z
h

)

h
z

z

r
y

Fig. 7.5.11

12. A band at height z with vertical width dz has radius

y = r

(
1 − z

h

)
, and has actual (slant) width

ds =
√

1 +
(

dy

dz

)2

dz =
√

1 + r2

h2 dz.

Its area is

d A = 2πr
(

1 − z

h

)√
1 + r2

h2 dz.

Thus the area of the conical surface is

A = 2πr

√
1 + r2

h2

∫ h

0

(
1 − z

h

)
dz = πr

√
r2 + h2.

The moment about z = 0 is

Mz=0 = 2πr

√
1 + r2

h2

∫ h

0
z

(
1 − z

h

)
dz

= 2πr

√
1 + r2

h2

(
z2

2
− z3

3h

)∣∣∣∣
h

0
= 1

3
πrh

√
r2 + h2.

Thus, z̄ = πrh
√

r2 + h2

3
× 1

πr
√

r2 + h2
= h

3
. By

symmetry, x̄ = ȳ = 0. Hence, the centroid is on the axis
of the conical surface, at distance h/3 from the base.

13. By symmetry, x̄ = π

2
. The area and y-moment of the

region are given by

A =
∫ π

0
sin x dx = 2

My=0 = 1

2

∫ π

0
sin2 x dx

= 1

4
(x − sin x cos x)

∣∣∣∣
π

0
= π

4
.

Thus ȳ = π

8
, and the centroid is

(π

2
,
π

8

)
.

y

x

y=sin x

π/2 π

Fig. 7.5.13

14. The area of the region is

A =
∫ π/2

0
cos x dx = sin x

∣∣∣∣
π/2

0
= 1.

The moment about x = 0 is

Mx=0 =
∫ π/2

0
x cos x dx

U = x

dU = dx

dV = cos x dx

V = sin x

= x sin x

∣∣∣∣
π/2

0
−

∫ π/2

0
sin x dx = π

2
− 1.

Thus, x̄ = π

2
− 1. The moment about y = 0 is

My=0 = 1

2

∫ π/2

0
cos2 x dx

= 1

4

(
x + 1

2
sin 2x

)∣∣∣∣
π/2

0
= π

8
.

Thus, ȳ = π

8
. The centroid is

(
π

2
− 1,

π

8

)
.

y

x

y=cos x1

dx

x π
2

Fig. 7.5.14

15. The arc has length L = πr

2
. By symmetry, x̄ = ȳ. An

element of the arc between x and x + dx has length

ds = dx

sin θ
= r dx

y
= r dx√

r2 − x2
.
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Thus

Mx=0 =
∫ r

0

xr dx√
r2 − x2

= −r
√

r2 − x2

∣∣∣∣
r

0
= r2.

Hence x̄ = r2 · 2

πr
= 2r

π
, and the centroid is

(
2r

π
,

2r

π

)
.

y

x

ds

x2+y2=r2
r

r

θ

x x+dx r

Fig. 7.5.15

16. The solid S in question consists of a solid cone C with
vertex at the origin, height 1, and top a circular disk of
radius 2, and a solid cylinder D of radius 2 and height
1 sitting on top of the cone. These solids have volumes
VC = 4π/3, VD = 4π , and VS = VC + VD = 16π/3.

By symmetry, the centroid of the solid lies on its verti-
cal axis of symmetry; let us continue to call this the y-
axis. We need only determine ȳS . Since D lies between
y = 1 and y = 2, its centroid satisfies ȳD = 3/2. Also,
by Exercise 11, the centroid of the solid cone satisfies
ȳC = 3/4. Thus C and D have moments about y = 0:

MC,y=0 =
(

4π

3

)(
3

4

)
= π, MD,y=0 = (4π)

(
3

2

)
= 6π.

Thus MS,y=0 = π + 6π = 7π , and
z̄S = 7π/(16π/3) = 21/16. The centroid of the solid S
is on its vertical axis of symmetry at height 21/16 above
the vertex of the conical part.

17. The region in figure (a) is the union of a rectangle of
area 2 and centroid (1, 3/2) and a triangle of area 1 and
centroid (2/3, 2/3). Therefore its area is 3 and its cen-
troid is (x̄, ȳ), where

3x̄ = 2(1) + 1

(
2

3

)
= 8

3

3ȳ = 2

(
3

2

)
+ 1

(
2

3

)
= 11

3
.

Therefore, the centroid is (8/9, 11/9).

18. The region in figure (b) is the union of a square of area
(
√

2)2 = 2 and centroid (0, 0) and a triangle of area 1/2
and centroid (2/3, 2/3). Therefore its area is 5/2 and its
centroid is (x̄, ȳ), where

5

2
x̄ = 2(0) + 1

2

(
2

3

)
= 1

3
.

Therefore, x̄ = ȳ = 2/15, and the centroid is
(2/15, 2/15).

19. The region in figure (c) is the union of a half-disk of
area π/2 and centroid (0, 4/(3π)) (by Example 1) and a
triangle of area 1 and centroid (0, −1/3). Therefore its
area is (π/2) + 1 and its centroid is (x̄, ȳ), where x̄ = 0
and

π + 2

2
ȳ = π

2

(
4

3π

)
+ 1

(−1

3

)
= 1

3
.

Therefore, the centroid is (0, 2/[3(π + 2)]).

20. The region in figure (d) is the union of three half-disks,
one with area π/2 and centroid (0, 4/(3π)), and two
with areas π/8 and centroids (−1/2,−2/(3π)) and
(1/2, −2/(3π)). Therefore its area is 3π/4 and its cen-
troid is (x̄ , ȳ), where

3π

4
(x̄) = π

2
(0) + π

8

(−1

2

)
+ π

8

(
1

2

)
= 0

3π

4
(ȳ) = π

2

(
4

3π

)
+ π

8

(−2

3π

)
+ π

8

(−2

3π

)
= 1

2
.

Therefore, the centroid is (0, 2/(3π)).

21. By symmetry the centroid is (1,−2).
y

x

(1,−2)

(1,1)
y=2x−x2

y=−2

Fig. 7.5.21

22. The line segment from (1, 0) to (0, 1) has centroid (1
2 , 1

2 )

and length
√

2. By Pappus’s Theorem, the surface area
of revolution about x = 2 is

A = 2π

(
2 − 1

2

)√
2 = 3π

√
2 sq. units.

y

x

1

1 2 3

r̄

1
2

Fig. 7.5.22
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23. The triangle T has centroid
( 1

3 , 1
3

)
and area 1

2 . By Pap-
pus’s Theorem the volume of revolution about x = 2
is

V = 1

2
× 2π

(
2 − 1

3

)
= 5π

3
cu. units.

y

x

T

1

1

x=2

Fig. 7.5.23

24. The altitude h of the triangle is
s
√

3

2
. Its centroid is at

height
h

3
= s

2
√

3
above the base side. Thus, by Pappus’s

Theorem, the volume of revolution is

V = 2π

(
s

2
√

3

)(
s

2
×

√
3s

2

)
= πs3

4
cu. units.

The centroid of one side is
h

2
= s

√
3

4
above the base.

Thus, the surface area of revolution is

S = 2 × 2π

(√
3s

4

)
(s) = s2π

√
3 sq. units.

h

s

s

Fig. 7.5.24

25. For the purpose of evaluating the integrals in this prob-
lem and the next, the definite integral routine in the TI-85
calculator was used. For the region bounded by y = 0
and y = √

x cos x between x = 0 and x = π/2, we have

A =
∫ π/2

0

√
x cos x dx ≈ 0.704038

x̄ = 1

A

∫ π/2

0
x3/2 cos x dx ≈ 0.71377

ȳ = 1

2A

∫ π/2

0
x cos2 x dx ≈ 0.26053.

26. The region bounded by y = 0 and y = ln(sin x) between
x = 0 and x = π/2 lies below the x-axis, so

A = −
∫ π/2

0
ln(sin x) dx ≈ 1.088793

x̄ = −1

A

∫ π/2

0
x ln(sin x) dx ≈ 0.30239

ȳ = −1

2A

∫ π/2

0

(
ln(sin x)

)2
dx ≈ −0.93986.

27. The area and moments of the region are

A =
∫ ∞

0

dx

(1 + x)3 = lim
R→∞

−1

2(1 + x)2

∣∣∣∣
R

0
= 1

2

Mx=0 =
∫ ∞

0

x dx

(1 + x)3 Let u = x + 1

du = dx

=
∫ ∞

1

u − 1

u3 du

= lim
R→∞

(
− 1

u
+ 1

2u2

)∣∣∣∣
R

1
= 1 − 1

2
= 1

2

My=0 = 1

2

∫ ∞

0

dx

(1 + x)6
= lim

R→∞
−1

10(1 + x)5

∣∣∣∣
R

0
= 1

10
.

The centroid is
(
1, 1

5

)
.

y

x

1
y=

1

(x + 1)3

Fig. 7.5.27

28. The surface area is given by

S = 2π

∫ ∞

−∞
e−x2

√
1 + 4x2e−2x2 dx . Since

lim
x→±∞ 1 + 4x2e−2x2 = 1, this expression must be bounded

for all x , that is, 1 ≤ 1 + 4x2e−2x2 ≤ K 2 for some con-

stant K . Thus, S ≤ 2π K
∫ ∞

−∞
e−x2

dx = 2Kπ
√

π . The

integral converges and the surface area is finite. Since the
whole curve y = e−x2

lies above the x-axis, its centroid
would have to satisfy ȳ > 0. However, Pappus’s Theorem
would then imply that the surface of revolution would
have infinite area: S = 2π ȳ × (length of curve) = ∞.
The curve cannot, therefore, have any centroid.
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29. By analogy with the formulas for the region a ≤ x ≤ b,
f (x) ≤ y ≤ g(y), the region c ≤ y ≤ d , f (y) ≤ x ≤ g(y)

will have centroid (Mx=0/A, My=0/A), where

A =
∫ d

c

(
g(y) − f (y)

)
dy

Mx=0 = 1

2

∫ d

c

[(
g(y)

)2 −
(

f (y)
)2]

dy

My=0 =
∫ d

c
y
(

g(y) − f (y)
)

dy.

30. Let us take L to be the y-axis and suppose that a plane
curve C lies between x = a and x = b where 0 < a < b.
Thus, r̄ = x̄ , the x-coordinate of the centroid of C. Let
ds denote an arc length element of C at position x . This
arc length element generates, on rotation about L , a cir-
cular band of surface area d S = 2πx ds, so the surface
area of the surface of revolution is

S = 2π

∫ x=b

x=a
x ds = 2π Mx=0 = 2π r̄ s.

31. y

x
t

(π/4) − t
P

N

M

L

(π/4) − t

1
t

1

√
2

√
2

Fig. 7.5.31

We need to find the x-coordinate x̄L M N P of the centre of
buoyancy, that is, of the centroid of quadrilateral L M N P.
From various triangles in the figure we can determine the
x-coordinates of the four points:

xL = − sec t, xP = sec t,

xM = − sec t + (1 + tan t) sin t

xN = sec t + (1 − tan t) sin t

Triangle L M N has area 1 + tan t , and the x-coordinate of
its centroid is

x̄L M N

= − sec t − sec t + (1 + tan t) sin t + sec t + (1 − tan t) sin t

3

= 2 sin t − sec t

3
.

Triangle L N P has area 1 − tan t , and the x-coordinate of
its centroid is

x̄L N P = − sec t + sec t + sec t + (1 − tan t) sin t

3

= sec t + (1 − tan t) sin t

3
.

Therefore,

x̄L M N P = 1

6

[
(2 sin t − sec t)(1 + tan t)

+ (sec t + sin t − sin t tan t)(1 − tan t)
]

= 1

6

[
3 sin t − 2 sec t tan t + sin t tan2 t

]

= sin t

6

[
3 − 2

cos2 t
+ sin2 t

cos2 t

]

= sin t

6 cos2 t

[
3 cos2 t + sin2 t − 2

]

= sin t

6 cos2 t

[
2 cos2 t − 1

]
= sin t

6 cos2 t

[
cos(2t)

]

which is positive provided 0 < t < π/4. Thus the beam
will rotate counterclockwise until an edge is on top.

Section 7.6 Other Physical Applications
(page 406)

1. a) The pressure at the bottom is p = 9, 800 × 6 N/m2.
The force on the bottom is 4 × p = 235, 200 N.

b) The pressure at depth h metres is 9, 800h N/m2.
The force on a strip between depths h and h + dh on
one wall of the tank is

d F = 9, 800h × 2 dh = 19, 600 h dh N.

Thus, the total force on one wall is

F = 19, 600
∫ 6

0
h dh = 19, 600 × 18 = 352, 800 N.
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dh
h

2 m

2 m

6 m

Fig. 7.6.1

2. A vertical slice of water at position y with thickness dy
is in contact with the botttom over an area
8 sec θ dy = 4

5

√
101 dy m2, which is at depth

x = 1
10 y + 1 m. The force exerted on this area is then

d F = ρg( 1
10 y + 1) 4

5

√
101 dy. Hence, the total force

exerted on the bottom is

F = 4

5

√
101 ρg

∫ 20

0

(
1

10
y + 1

)
dy

= 4

5

√
101 (1000)(9.8)

(
y2

20
+ y

)∣∣∣∣
20

0

≈ 3.1516 × 106 N.

20

3

1

dy

θ

y

x

x= y
10 +1

y

Fig. 7.6.2

3. A strip along the slant wall of the dam between depths h
and h + dh has area

d A = 200 dh

cos θ
= 200 × 26

24
dh.

The force on this strip is

d F = 9, 800 h d A ≈ 2.12 × 106 h dh N.

Thus the total force on the dam is

F = 2.12 × 106
∫ 24

0
h dh ≈ 6.12 × 108 N.

h
h+dh

24

θ

26

Fig. 7.6.3

4. The height of each triangular face is 2
√

3 m and the
height of the pyramid is 2

√
2 m. Let the angle between

the triangular face and the base be θ , then sin θ =
√

2

3

and cos θ = 1√
3

.

2
√

32
√

2

2

4

4
θ

Fig. 7.6.4

θ
x=√

2y+10−2
√

2

dy

10−2
√

2

x

10 dy sec θ=√
3dy

4

front view of

one face

side view of one face

60◦
2

y

Fig. 7.6.4

A vertical slice of water with thickness dy at a distance
y from the vertex of the pyramid exerts a force on the
shaded strip shown in the front view, which has area
2
√

3y dy m2 and which is at depth
√

2y + 10 − 2
√

2
m. Hence, the force exerted on the triangular face is

F = ρg
∫ 2

0
(
√

2y + 10 − 2
√

2)2
√

3y dy

= 2
√

3(9800)

[√
2

3
y3 + (5 − √

2)y2
]∣∣∣∣

2

0

≈ 6.1495 × 105 N.

292

www.mohandesyar.com



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 7.6 (PAGE 406)

5. The unbalanced force is

F = 9, 800 × 5
∫ 20

6
h dh

= 9, 800 × 5

(
h2

2

)∣∣∣∣
20

6
≈ 8.92 × 106 N.

6 m

20 m

5 m

Fig. 7.6.5

6. The spring force is F(x) = kx , where x is the amount
of compression. The work done to compress the spring 3
cm is

100 N·cm = W =
∫ 3

0
kx dx = 1

2
kx2

∣∣∣∣
3

0
= 9

2
k.

Hence, k = 200

9
N/cm. The work necessary to compress

the spring a further 1 cm is

W =
∫ 4

3
kx dx =

(
200

9

)
1

2
x2

∣∣∣∣
4

3
= 700

9
N·cm.

7. A layer of water in the tank between depths h and h +dh
has weight d F = ρg dV = 4ρg dh. The work done
to raise the water in this layer to the top of the tank is
dW = h d F = 4ρgh dh. Thus the total work done to
pump all the water out over the top of the tank is

W = 4ρg
∫ 6

0
h dh = 4 × 9, 800 × 18 ≈ 7.056 × 105 N·m.

8. The horizontal cross-sectional area of the pool at depth h
is

A(h) =
{

160, if 0 ≤ h ≤ 1;
240 − 80h, if 1 < h ≤ 3.

The work done to empty the pool is

W = ρg
∫ 3

0
h A(h) dh

= ρg

[∫ 1

0
160h dh +

∫ 3

1
240h − 80h2 dh

]

= 9800

[
80h2

∣∣∣∣
1

0
+

(
120h2 − 80

3
h3

)∣∣∣∣
3

1

]

= 3.3973 × 106 N·m.

8

1

20

A(h)

h

3

Fig. 7.6.8

9. A layer of water between depths y and y + dy
has volume dV = π(a2 − y2) dy and weight
d F = 9, 800π(a2 − y2) dy N. The work done to raise
this water to height h m above the top of the bowl is

dW = (h + y) d F = 9, 800π(h + y)(a2 − y2) dy N·m.

Thus the total work done to pump all the water in the
bowl to that height is

W = 9, 800π

∫ a

0
(ha2 + a2 y − hy2 − y3) dy

= 9, 800π

[
ha2 y + a2 y2

2
− hy3

3
− y4

4

]∣∣∣∣
a

0

= 9, 800π

[
2a3h

3
+ a4

4

]

= 9, 800πa3 3a + 8h

12
= 2450πa3

(
a + 8h

3

)
N·m.

dy
y a

Fig. 7.6.9
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10. Let the time required to raise the bucket to height h m
be t minutes. Given that the velocity is 2 m/min, then

t = h

2
. The weight of the bucket at time t is

16 kg − (1 kg/min)(t min) = 16 − h

2
kg. Therefore,

the work done required to move the bucket to a height of
10 m is

W = g
∫ 10

0

(
16 − h

2

)
dh

= 9.8

(
16h − h2

4

)∣∣∣∣
10

0
= 1323 N·m.

Section 7.7 Applications in Business,
Finance, and Ecology (page 409)

1. Cost = $4, 000 +
∫ 1,000

0

(
6 − 2x

103 + 6x2

106

)
dx

= $11, 000.

2. The number of chips sold in the first year was

1, 000
∫ 52

0
te−t/10 dt = 100, 000 − 620, 000e−26/5

that is, about 96,580.

3. The monthly charge is

∫ x

0

4

1 + √
t

dt let t = u2

=8
∫ √

x

0

u

1 + u
du = 8

∫ √
x

0

(
1 − 1

1 + u

)
du

=$8
(√

x − ln(1 + √
x)

)
.

4. The price per kg at time t (years) is $10 + 5t . Thus the
revenue per year at time t is 400(10 + 5t)/(1 + 0.1t)
$/year. The total revenue over the year is

∫ 1

0

400(10 + 5t)

1 + 0.1t
dt ≈ $4, 750.37.

5. The present value of continuous payments of $1,000 per
year for 10 years at a discount rate of 2% is

V =
∫ 10

0
1,000e−0.02t dt = 1,000

−0.02
e−0.02t

∣∣∣∣
10

0
= $9,063.46.

6. The present value of continuous payments of $1,000 per
year for 10 years at a discount rate of 5% is

V =
∫ 10

0
1,000e−0.05t dt = 1,000

−0.05
e−0.05t

∣∣∣∣
10

0
= $7,869.39.

7. The present value of continuous payments of $1,000 per
year for 10 years beginning 2 years from now at a dis-
count rate of 8% is

V =
∫ 12

2
1,000e−0.08t dt = 1,000

−0.08
e−0.08t

∣∣∣∣
12

2
= $5,865.64.

8. The present value of continuous payments of $1,000 per
year for 25 years beginning 10 years from now at a dis-
count rate of 5% is

V =
∫ 35

10
1,000e−0.05t dt = 1,000

−0.05
e−0.05t

∣∣∣∣
35

10
= $8,655.13.

9. The present value of continuous payments of $1,000 per
year for all future time at a discount rate of 2% is

V =
∫ ∞

0
1,000e−0.02t dt = 1, 000

−0.02
= $50, 000.

10. The present value of continuous payments of $1,000 per
year beginning 10 years from now and continuing for all
future time at a discount rate of 5% is

V =
∫ ∞

10
1,000e−0.05t dt = 1,000

−0.05
e−0.5 = $12,130.61.

11. After t years, money is flowing at $(1,000 + 100t) per
year. The present value of 10 years of payments dis-
counted at 5% is

V = 100
∫ 10

0
(10 + t)e−0.05t dt

U = 10 + t

dU = dt

dV = e−0.05t dt

V = e−0.05t

−0.05

= 100(10 + t)
e−0.05t

−0.05

∣∣∣∣
10

0
+ 100

0.05

∫ 10

0
e−0.05t dt

= −4261.23 + 100

−(0.05)2
e−0.05t

∣∣∣∣
10

0
= $11, 477.54.
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12. After t years, money is flowing at $1,000(1.1)t per year.
The present value of 10 years of payments discounted at
5% is

V = 1,000
∫ 10

0
et ln(1.1)e−0.05t dt

= 1,000

ln(1.1) − 0.05
et (ln(1.1)−0.05

∣∣∣∣
10

0
= $12, 650.23.

13. The amount after 10 years is

A = 5, 000
∫ 10

0
e0.05t dt = 5,000

0.05
e0.05t

∣∣∣∣
10

0
= $64,872.13.

14. Let T be the time required for the account balance to
reach $1,000,000. The $5, 000(1.1)t dt deposited in the
time interval [t, t + dt] grows for T − t years, so the
balance after T years is

∫ T

0
5, 000(1.1)t (1.06)T −t dt = 1, 000, 000

(1.06)T
∫ T

0

(
1.1

1.06

)t

dt = 1, 000, 000

5, 000
= 200

(1.06)T

ln(1.1/1.06)

[(
1.1

1.06

)T

− 1

]
= 200

(1.1)T − (1.06)T = 200 ln
1.1

1.06
.

This equation can be solved by Newton’s method or
using a calculator “solve” routine. The solution is
T ≈ 26.05 years.

15. Let P(τ ) be the value at time τ < t that will grow to
$P = P(t) at time t . If the discount rate at time τ is
δ(τ), then

d

dτ
P(τ ) = δ(τ)P(τ ),

or, equivalently,

d P(τ )

P(τ )
= δ(τ) dτ.

Integrating this from 0 to t , we get

ln P(t) − ln P(0) =
∫ t

0
δ(τ) dτ = λ(t),

and, taking exponentials of both sides and solving for
P(0), we get

P(0) = P(t)e−λ(t) = Pe−λ(t).

The present value of a stream of payments due at a rate
P(t) at time t from t = 0 to t = T is

∫ T

0
P(t)e−λ(t) dt, where λ(t) =

∫ t

0
δ(τ) dτ.

16. The analysis carried out in the text for the logistic growth
model showed that the total present value of future har-
vests could be maximized by holding the population size
x at a value that maximizes the quadratic expression

Q(x) = kx
(

1 − x

L

)
− δx .

If the logistic model dx/dt = kx(1 − (x/L)) is replaced
with a more general growth model dx/dt = F(x), ex-
actly the same analysis leads us to maximize

Q(x) = F(x) − δx .

For realistic growth functions, the maximum will occur
where Q′(x) = 0, that is, where F ′(x) = δ.

17. We are given L = 80, 000, k = 0.12, and δ = 0.05.
According to the analysis in the text, the present value of
future harvests will be maximized if the population level
is maintained at

x = (k − δ)
L

2k
= 0.07

0.24
(80, 000) = 23, 333.33

The annual revenue from harvesting to keep the popula-
tion at this level (given a price of $6 per fish) is

6(0.12)(23, 333.33)

(
1 − 23, 333.33

80, 000

)
= $11, 900.

18. We are given that k = 0.02, L = 150, 000, p = $10, 000.
The growth rate at population level x is

dx

dt
= 0.02x

(
1 − x

150, 000

)
.

a) The maximum sustainable annual harvest is

dx

dt

∣∣∣∣
x=L/2

= 0.02(75, 000)(0.5) = 750 whales.

b) The resulting annual revenue is
$750p = $7, 500, 000.

c) If the whole population of 75,000 is harvested and
the proceeds invested at 2%, the annual interest will
be

75, 000($10, 000)(0.02) = $15, 000, 000.
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d) At 5%, the interest would be
(5/2)($15, 000) = $37, 500, 000.

e) The total present value of all future harvesting rev-
enue if the population level is maintained at 75,000
and δ = 0.05 is

∫ ∞

0
e−0.05t 7, 500, 000 dt = 7, 500, 000

0.05
= $150, 000, 000.

19. If we assume that the cost of harvesting 1 unit of pop-
ulation is $C(x) when the population size is x , then the
effective income from 1 unit harvested is $(p − C(x)).
Using this expression in place of the constant p in the
analysis given in the text, we are led to choose x to max-
imize

Q(x) =
(

p − C(x)
) [

kx
(

1 − x

L

)
− δx

]
.

A reasonable cost function C(x) will increase as x de-
creases (the whales are harder to find), and will exceed
p if x ≤ x0, for some positive population level x0. The
value of x that maximizes Q(x) must exceed x0, so the
model no longer predicts extinction, even for large dis-
count rates δ. However, the optimizing population x may
be so low that other factors not accounted for in the sim-
ple logistic growth model may still bring about extinction
whether it is economically indicated or not.

Section 7.8 Probability (page 421)

1. The expected winnings on a toss of the coin are

$1 × 0.49 + $2 × 0.49 + $50 × 0.02 = $2.47.

If you pay this much to play one game, in the long term
you can expect to break even.

2. (a) We need
∑6

n=1 K n = 1. Thus 21K = 1, and
K = 1/21.
(b) Pr(X ≤ 3) = (1/21)(1 + 2 + 3) = 2/7.

3. From the second previous Exercise, the mean winings is
µ = $2.47. Now

σ 2 = 1 × 0.49 + 4 × 0.49 + 2,500 × 0.02 − µ2

≈ 52.45 − 6.10 = 46.35.

The standard deviation is thus σ ≈ $6.81.

4. Since Pr(X = n) = n/21, we have

µ =
6∑

n=1

nPr(X = n) = 1 × 1 + 2 × 2 + · · · + 6 × 6

21
= 13

3
≈ 4.33

σ 2 =
6∑

n=1

n2Pr(X = n) − µ2 = 12 + 23 + · · · + 63

21
− µ2

= 21 − 169

9
= 20

9
≈ 2.22

σ =
√

20

3
≈ 1.49.

5. The mean of X is

µ = 1 × 9

60
+ (2 + 3 + 4 + 5) × 1

6
+ 6 × 1160 ≈ 3.5833.

The expectation of X2 is

E(X2) = 12× 9

60
+(22+32+42+52)×1

6
+62×1160 ≈ 15.7500.

Hence the standard deviation of X is√
15.75 − 3.58332 ≈ 1.7059.

Also Pr(X ≤ 3) = 9

60
+ 2

6
= 29

60
≈ 0.4833.

6. (a) Calculating as we did to construct the probability
function in Example 2, but using the different values for
the probabilities of “1” and “6”, we obtain

f (2) = 9

60
× 9

60
≈ 0.0225

f (3) = 2 × 9

60
× 16 = 0.0500

f (4) = 2 × 9

60
× 16 + 1

36
= 0.0778

f (5) = 2 × 9

60
× 16 + 2

36
= 0.1056

f (6) = 2 × 9

60
× 16 + 3

36
= 0.1333

f (7) = 2 × 9

60
× 1160 + 4

36
= 0.1661

f (8) = 2 × 11

60
× 16 + 3

36
= 0.1444

f (9) = 2 × 11

60
× 16 + 2

36
= 0.1167

f (10) = 2 × 11

60
× 16 + 1

36
= 0.0889

f (11) = 2 × 11

60
× 16 = 0.0611

f (12) = 11

60
× 1160 = 0.0336.

296

www.mohandesyar.com



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 7.8 (PAGE 421)

(b) Multiplying each value f (n) by n and summing, we
get

µ =
12∑

n=2

n f (n) ≈ 7.1665.

Similarly,

E(X2) =
12∑

n=2

n2 f (n) ≈ 57.1783,

so the standard deviation of X is

σ =
√

E(X2) − µ2 ≈ 2.4124.

The mean is somewhat larger than the value (7) ob-
tained for the unweighted dice, because the weight-
ing favours more 6s than 1s showing if the roll is
repeated many times. The standard deviation is just
a tiny bit smaller than that found for the unweighted
dice (2.4152); the distribution of probability is just
slightly more concentrated around the mean here.

7. (a) The sample space consists of the eight triples
(H, H, H), (H, H, T ), (H, T, H), (T, H, H),
(H, T, T ), (T, H, T ), (T, T, H), and (T, T, T ).

(b) We have

Pr(H, H, H) = (0.55)3 = 0.166375

Pr(H, H, T ) = Pr(H, T, H) = Pr(T, H, H) = (0.55)2(0.45)

= 0.136125

Pr(H, T, T ) = Pr(T, H, T ) = Pr(T, T, H) = (0.55)(0.45)2

= 0.111375

Pr(T, T, T ) = (0.45)3 = 0.091125.

(c) The probability function f for X is given by

f (0) = (0.45)3 = 0.911125

f (1) = 3 × (0.55)(0.45)2 = 0.334125

f (2) = 3 × (0.55)2(0.45) = 0.408375

f (3) = (0.55)3 = 0.166375.

(d) Pr(X ≥ 1) = 1 − Pr(X = 0) = 0.908875.

(e) E(X) = 0× f (0)+1× f (1)+2× f (2)+3× f (3) = 1.6500.

8. The number of red balls in the sack must be
0.6 × 20 = 12. Thus there are 8 blue balls.

(a) The probability of pulling out one blue ball is 8/20.
If you got a blue ball, then there would be only 7
blue balls left among the 19 balls remaining in the
sack, so the probability of pulling out a second blue
ball is 7/19. Thus the probability of pulling out two

blue balls is
8

20
× 7

19
= 14

95
.

(b) The sample space for the three ball selection consists
of all eight triples of the form (x, y, z), where each
of x, y, z is either R(ed) or B(lue). Let X be the
number of red balls among the three balls pulled
out. Arguing in the same way as in (a), we calculate

Pr(X = 0) = Pr(B, B, B) = 8

20
× 7

19
× 6

18
= 14

285
≈ 0.0491

Pr(X = 1) = Pr(R, B, B) + Pr(B, R, B) + Pr(B, B, R)

= 3 × 12

20
× 8

19
× 7

18
= 28

95
≈ 0.2947

Pr(X = 2) = Pr(R, R, B) + Pr(R, B, R) + Pr(B, R, R)

= 3 × 12

20
× 11

19
× 8

18
= 44

95
≈ 0.4632

Pr(X = 3) = Pr(R, R, R) = 12

20
× 11

19
× 10

18
= 11

57
≈ 0.1930

Thus the expected value of X is

E(X) = 0 × 14

285
+ 1 × 28

95
+ 2 × 44

95
+ 3 × 11

57

= 9

5
= 1.8.

9. We have f (x) = Cx on [0, 3].

a) C is given by

1 =
∫ 3

0
Cx dx = C

2
x2

∣∣∣∣
3

0
= 9

2
C.

Hence, C = 2

9
.

b) The mean is

µ = E(X) = 2

9

∫ 3

0
x2 dx = 2

27
x3

∣∣∣∣
3

0
= 2.

Since E(X2) = 2

9

∫ 3

0
x3 dx = 2

36
x4

∣∣∣∣
3

0
= 9

2
, the

variance is

σ 2 = E(X2) − µ2 = 9

2
− 4 = 1

2
,

and the standard deviation is σ = 1/
√

2.

c) We have

Pr(µ − σ ≤ X ≤ µ + σ) = 2

9

∫ µ+σ

µ−σ

x dx

= (µ + σ)2 − (µ − σ)2

9
= 4µσ

9
≈ 0.6285.
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10. We have f (x) = Cx on [1, 2].

a) To find C , we have

1 =
∫ 2

1
Cx dx = C

2
x2

∣∣∣∣
2

1
= 3

2
C.

Hence, C = 2

3
.

b) The mean is

µ = E(X) = 2

3

∫ 2

1
x2 dx = 2

9
x3

∣∣∣∣
2

1
= 14

9
≈ 1.556.

Since E(X2) = 2

3

∫ 2

1
x3 dx = 1

6
x4

∣∣∣∣
2

1
= 5

2
, the

variance is

σ 2 = E(X2) − µ2 = 5

2
− 196

81
= 13

162

and the standard deviation is

σ =
√

13

162
≈ 0.283.

c) We have

Pr(µ − σ ≤ X ≤ µ + σ) = 2

3

∫ µ+σ

µ−σ

x dx

= (µ + σ)2 − (µ − σ)2

3
= 4µσ

3
≈ 0.5875.

11. We have f (x) = Cx2 on [0, 1].

a) C is given by

1 =
∫ 1

0
Cx2 dx = C

3
x3

∣∣∣∣
1

0
= C

3
.

Hence, C = 3.

b) The mean, variance, and standard deviation are

µ = E(X) = 3
∫ 1

0
x3 dx = 3

4

σ 2 = E(X2) − µ2 = 3
∫ 1

0
x4 dx − 9

16
= 3

5
− 9

16
= 3

80

σ = √
3/80.

c) We have

Pr(µ − σ ≤ X ≤ µ + σ) = 3
∫ µ+σ

µ−σ

x2 dx

= (µ + σ)3 − (µ − σ)3

=
(

3

4
+

√
3

80

)3

−
(

3

4
−

√
3

80

)3

≈ 0.668.

12. We have f (x) = C sin x on [0, π ].

a) To find C , we calculate

1 =
∫ π

0
C sin x dx = −C cos x

∣∣∣∣
π

0
= 2C.

Hence, C = 1

2
.

b) The mean is

µ = E(X) = 1

2

∫ π

0
x sin x dx

U = x

dU = dx

dV = sin x dx

V = − cos x

= 1

2

[
−x cos x

∣∣∣∣
π

0
+

∫ π

0
cos x dx

]

= π

2
= 1.571.

Since

E(X2) = 1

2

∫ π

0
x2 sin x dx

U = x2

dU = 2x dx

dV = sin x dx

V = − cos x

= 1

2

[
−x2 cos x

∣∣∣∣
π

0
+ 2

∫ π

0
x cos x dx

]

U = x

dU = dx

dV = cos x dx

V = sin x

= 1

2

[
π2 + 2

(
x sin x

∣∣∣∣
π

0
−

∫ π

0
sin x dx

)]

= 1

2
(π2 − 4).

Hence, the variance is

σ 2 = E(X2)−µ2 = π2 − 4

2
− π2

4
= π2 − 8

4
≈ 0.467

and the standard deviation is

σ =
√

π2 − 8

4
≈ 0.684.
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c) Then

Pr(µ − σ ≤ X ≤ µ + σ) = 1

2

∫ µ+σ

µ−σ

sin x dx

= −1

2

[
cos(µ + σ) − cos(µ − σ)

]

= sin µ sin σ = sin σ ≈ 0.632.

13. We have f (x) = C(x − x2) on [0, 1].

a) C is given by

1 =
∫ 1

0
C(x − x2) dx = C

(
x2

2
− x3

3

) ∣∣∣∣
1

0
= C

6
.

Hence, C = 6.

b) The mean, variance, and standard deviation are

µ = E(X) = 6
∫ 1

0
(x2 − x3) dx = 1

2

σ 2 = E(X2) − µ2 = 6
∫ 1

0
(x3 − x4) dx − 1

4

= 3

10
− 1

4
= 1

20
σ = √

1/20.

c) We have

Pr(µ − σ ≤ X ≤ µ + σ) = 6
∫ (1/2)+σ

(1/2)−σ

(x − x2) dx

= 6
∫ (1/2)+σ

(1/2)−σ

[
1

4
−

(
x − 1

2

)2
]

dx

Let u = x − 1
2

du = dx

= 12
∫ σ

0

[
1

4
− u2

]
du = 12

[
σ

4
− σ 3

3

]

= 12√
20

[
1

4
− 1

60

]
≈ 0.626.

14. It was shown in Section 6.1 (p. 349) that

∫
xne−x dx = −xne−x + n

∫
xn−1e−x dx .

If In =
∫ ∞

0
xne−x dx , then

In = lim
R→∞ −Rne−R + nIn−1 = nIn−1 if n ≥ 1.

Since I0 =
∫ ∞

0
e−x dx = 1, therefore In = n! for n ≥ 1.

Let u = kx ; then

∫ ∞

0
xne−kx dx = 1

kn+1

∫ ∞

0
une−u du = 1

kn+1 In = n!

kn+1 .

Now let f (x) = Cxe−kx on [0, ∞).

a) To find C , observe that

1 = C
∫ ∞

0
xe−kx dx = C

k2 .

Hence, C = k2.

b) The mean is

µ = E(X) = k2
∫ ∞

0
x2e−kx dx = k2

(
2

k3

)
= 2

k
.

Since E(X2) = k2
∫ ∞

0
x3e−kx dx = k2

(
6

k4

)
= 6

k2
,

then the variance is

σ 2 = E(X2) − µ2 = 6

k2 − 4

k2 = 2

k2

and the standard deviation is σ =
√

2

k
.

c) Finally,

Pr(µ − σ ≤ X ≤ µ + σ)

= k2
∫ µ+σ

µ−σ

xe−kx dx Let u = kx

du = k dx

=
∫ k(µ+σ )

k(µ−σ )

ue−u du

= −ue−u
∣∣∣∣
k(µ+σ )

k(µ−σ )

+
∫ k(µ+σ )

k(µ−σ )

e−u du

= −(2 + √
2)e−(2+√

2) + (2 − √
2)e−(2−√

2)

− e−(2+√
2) + e−(2−√

2)

≈ 0.738.

15. a) We have

1 = C
∫ ∞

0
e−x2

dx = C

2

∫ ∞

−∞
e−x2

dx = C
√

π

2
.

Thus C = 2/
√

π .
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b) The mean, variance, and standard deviation are

µ = 2√
π

∫ ∞

0
xe−x2

dx = − e−x2

√
π

∣∣∣∣
∞

0
= 1√

π

σ 2 = − 1

π
+ 2√

π

∫ ∞

0
x2e−x2

dx

U = x

dU = dx

dV = xe−x2
dx

V = − 1
2 e−x2

= − 1

π
+ 2√

π

(
− x

2
e−x2

∣∣∣∣
∞

0
+ 1

2

∫ ∞

0
e−x2

dx

)

= − 1

π
+ 2√

π

(
0 + 1

2
·
√

π

2

)
= 1

2
− 1

π

σ =
√

1

2
− 1

π
≈ 0.426.

c) We have

Pr(µ − σ ≤ X ≤ µ + σ) = 2√
π

∫ µ+σ

µ−σ

e−x2
dx

Let x = z/
√

2

dx = dz/
√

2

=
√

2

π

∫ √
2(µ+σ )

√
2(µ−σ )

e−z2/2 dz.

But
√

2(µ − σ) ≈ 0.195 and
√

2(µ + σ) ≈ 1.40.
Thus, if Z is a standard normal random variable, we
obtain by interpolation in the table on page 386 in
the text,

Pr(µ − σ ≤ X ≤ µ + σ) = 2Pr(0.195 ≤ Z ≤ 1.400)

≈ 2(0.919 − 0.577) ≈ 0.68.

16. No. The identity
∫ ∞

−∞
C dx = 1 is not satisfied for any

constant C .

17. fµ,σ (x) = 1

σ
√

2π
e−(x−µ)2/2σ 2

mean = 1

σ
√

2π

∫ ∞

−∞
xe−(x−µ)2/2σ 2

dx Let z = x − µ

σ

dz = 1

σ
dx

= 1√
2π

∫ ∞

−∞
(µ + σ z)e−z2/2 dz

= µ√
2π

∫ ∞

−∞
e−z2/2 dz = µ

variance = E
(
(x − µ)2

)

= 1

σ
√

2π

∫ ∞

−∞
(x − µ)2e−(x−µ)2/2σ 2

dx

= 1

σ
√

2π

∫ ∞

−∞
σ 2z2e−z2/2 dz = σVar(Z) = σ

18. Since f (x) = 2

π(1 + x2)
> 0 on [0,∞) and

2

π

∫ ∞

0

dx

1 + x2 = lim
R→∞

2

π
tan−1(R) = 2

π

(π

2

)
= 1,

therefore f (x) is a probability density function on
[0, ∞). The expectation of X is

µ = E(X) = 2

π

∫ ∞

0

x dx

1 + x2

= lim
R→∞

1

π
ln(1 + R2) = ∞.

No matter what the cost per game, you should be will-
ing to play (if you have an adequate bankroll). Your ex-
pected winnings per game in the long term is infinite.

19. a) The density function for the uniform distribution on
[a, b] is given by f (x) = 1/(b − a), for a ≤ x ≤ b.
By Example 5, the mean and standard deviation are
given by

µ = b + a

2
, σ = b − a

2
√

3
.

Since µ + 2σ = b + a

2
+ b − a√

3
> b, and similarly,

µ − 2σ < a, therefore Pr(|X − µ| ≥ 2σ) = 0.

b) For f (x) = ke−kx on [0, ∞), we know that

µ = σ = 1

k
(Example 6). Thus µ − 2σ < 0 and

µ + 2σ = 3

k
. We have

Pr(|X − µ| ≥ 2σ) = Pr

(
X ≥ 3

k

)

= k
∫ ∞

3/k
e−kx dx

= −e−kx

∣∣∣∣
∞

3/k
= e−3 ≈ 0.050.

c) For fµ,σ (x) = 1

σ
√

2π
e(x−µ)2/2σ 2

, which has mean µ

and standard deviation σ , we have

Pr(|X − µ| ≥ 2σ) = 2Pr(X ≤ µ − 2σ)

= 2
∫ µ−2σ

−∞
1

σ
√

2π
e−(x−µ)2/2σ 2

dx

Let z = x − µ

σ

dz = 1

σ
dx

= 2√
2π

∫ −2

−∞
e−z2

dz

= 2Pr(Z ≤ −2) ≈ 2 × 0.023 = 0.046
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from the table in this section.

20. The density function for T is f (t) = ke−kt on [0,∞),

where k = 1

µ
= 1

20
(see Example 6). Then

Pr(T ≥ 12) = 1

20

∫ ∞

12
e−t/20 dt = 1 − 1

20

∫ 12

0
e−t/20 dt

= 1 + e−t/20
∣∣∣∣
12

0
= e−12/20 ≈ 0.549.

The probability that the system will last at least 12 hours
is about 0.549.

21. If X is distributed normally, with mean µ = 5, 000, and
standard deviation σ = 200, then

Pr(X ≥ 5500)

= 1

200
√

2π

∫ ∞

5500
e−(x−5000)2/(2×2002) dx

Let z = x − 5000

200

dz = dx

200

= 1√
2π

∫ ∞

5/2
e−z2/2 dz

= Pr(Z ≥ 5/2) = Pr(Z ≤ −5/2) ≈ 0.006

from the table in this section.

22. If X is the random variable giving the spinner’s value,
then Pr(X = 1/4) = 1/2 and the density function for the
other values of X is f (x) = 1/2. Thus the mean of X is

µ = E(X) = 1

4
Pr

(
X = 1

4

)
+
∫ 1

0
x f (x) dx = 1

8
+1

4
= 3

8
.

Also,

E(X2) = 1

16
Pr

(
X = 1

4

)
+

∫ 1

0
x2 f (x) dx = 1

32
+ 1

6
= 19

96

σ 2 = E(X2) − µ2 = 19

96
− 9

64
= 11

192
.

Thus σ = √
11/192.

Section 7.9 First-Order
Differential Equations (page 429)

1.
dy

dx
= y

2x

2
dy

y
= dx

x

2 ln y = ln x + C1 ⇒ y2 = Cx

2.
dy

dx
= 3y − 1

x∫
dy

3y − 1
=

∫
dx

x
1

3
ln |3y − 1| = ln |x | + 1

3
ln C

3y − 1

x3
= C

⇒ y = 1

3
(1 + Cx3).

3.
dy

dx
= x2

y2 ⇒ y2 dy = x2 dx

y3

3
= x3

3
+ C1, or x3 − y3 = C

4.
dy

dx
= x2 y2

∫
dy

y2
=

∫
x2 dx

− 1

y
= 1

3
x3 + 1

3
C

⇒ y = − 3

x3 + C
.

5.
dY

dt
= tY ⇒ dY

Y
= t dt

ln Y = t2

2
+ C1, or Y = Cet2/2

6.
dx

dt
= ex sin t∫

e−x dx =
∫

sin t dt

−e−x = − cos t − C

⇒ x = − ln(cos t + C).

7.
dy

dx
= 1 − y2 ⇒ dy

1 − y2 = dx

1

2

(
1

1 + y
+ 1

1 − y

)
dy = dx

1

2
ln

∣∣∣∣1 + y

1 − y

∣∣∣∣ = x + C1

1 + y

1 − y
= Ce2x or y = Ce2x − 1

Ce2x + 1

8.
dy

dx
= 1 + y2

∫
dy

1 + y2
=

∫
dx

tan−1 y = x + C

⇒ y = tan(x + C).
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9.
dy

dt
= 2 + ey ⇒ dy

2 + ey
= dt

∫
e−y dy

2e−y + 1
=

∫
dt

− 1

2
ln(2e−y + 1) = t + C1

2e−y + 1 = C2e−2t , or y = − ln

(
Ce−2t − 1

2

)

10. We have
dy

dx
= y2(1 − y)∫

dy

y2(1 − y)
=

∫
dx = x + K .

Expand the left side in partial fractions:

1

y2(1 − y)
= A

y
+ B

y2 + C

1 − y

= A(y − y2) + B(1 − y) + Cy2

y2(1 − y)

⇒
{−A + C = 0;

A − B = 0;
B = 1.

⇒ A = B = C = 1.

Hence, ∫
dy

y2(1 − y)
=

∫ (
1

y
+ 1

y2 + 1

1 − y

)
dy

= ln |y| − 1

y
− ln |1 − y|.

Therefore,

ln

∣∣∣∣ y

1 − y

∣∣∣∣ − 1

y
= x + K .

11.
dy

dx
− 2

x
y = x2 (linear)

µ = exp

(∫
− 2

x
dx

)
= 1

x2

1

x2

dy

dx
− 2

x3
y = 1

d

dx

y

x2
= 1

y

x2 = x + C, so y = x3 + Cx2

12. We have
dy

dx
+ 2y

x
= 1

x2
. Let

µ =
∫

2

x
dx = 2 ln x = ln x2, then eµ = x2, and

d

dx
(x2 y) = x2 dy

dx
+ 2xy

= x2
(

dy

dx
+ 2y

x

)
= x2

(
1

x2

)
= 1

⇒ x2 y =
∫

dx = x + C

⇒ y = 1

x
+ C

x2 .

13.
dy

dx
+ 2y = 3 µ = exp

(∫
2 dx

)
= e2x

d

dx
(e2x y) = e2x(y ′ + 2y) = 3e2x

e2x y = 3

2
e2x + C ⇒ y = 3

2
+ Ce−2x

14. We have
dy

dx
+ y = ex . Let µ = ∫

dx = x , then eµ = ex ,

and

d

dx
(ex y) = ex dy

dx
+ ex y = ex

(
dy

dx
+ y

)
= e2x

⇒ ex y =
∫

e2x dx = 1

2
e2x + C.

Hence, y = 1

2
ex + Ce−x .

15.
dy

dx
+ y = x µ = exp

(∫
1 dx

)
= ex

d

dx
(ex y) = ex(y ′ + y) = xex

ex y =
∫

xex dx = xex − ex + C

y = x − 1 + Ce−x

16. We have
dy

dx
+ 2ex y = ex . Let µ = ∫

2ex dx = 2ex , then

d

dx

(
e2ex

y
)

= e2ex dy

dx
+ 2exe2ex

y

= e2ex
(

dy

dx
+ 2ex y

)
= e2ex

ex .

Therefore,

e2ex
y =

∫
e2ex

ex dx Let u = 2ex

du = 2ex dx

= 1

2

∫
eu du = 1

2
e2ex + C.

Hence, y = 1

2
+ Ce−2ex

.
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17.
dy

dt
+ 10y = 1, y

( 1
10

) = 2
10

µ =
∫

10 dt = 10t

d

dt
(e10t y) = e10t dy

dt
+ 10e10t y = e10t

e10t y(t) = 1

10
e10t + C

y
( 1

10

) = 2
10 ⇒ 2e

10
= e

10
+ C ⇒ C = e

10

y = 1

10
+ 1

10
e1−10t .

18.
dy

dx
+ 3x2 y = x2, y(0) = 1

µ =
∫

3x2 dx = x3

d

dx
(ex3

y) = ex3 dy

dx
+ 3x2ex3

y = x2ex3

ex3
y =

∫
x2ex3

dx = 1

3
ex3 + C

y(0) = 1 ⇒ 1 = 1

3
+ C ⇒ C = 2

3

y = 1

3
+ 2

3
e−x3

.

19. x2 y ′ + y = x2e1/x , y(1) = 3e

y ′ + 1

x2
y = e1/x

µ =
∫

1

x2 dx = − 1

x
d

dx

(
e−1/x y

)
= e−1/x

(
y ′ + 1

x2
y

)
= 1

e−1/x y =
∫

1 dx = x + C

y(1) = 3e ⇒ 3 = 1 + C ⇒ C = 2

y = (x + 2)e1/x .

20. y ′ + (cos x)y = 2xe− sin x , y(π) = 0

µ =
∫

cos x dx = sin x

d

dx
(esin x y) = esin x(y ′ + (cos x)y) = 2x

esin x y =
∫

2x dx = x2 + C

y(π) = 0 ⇒ 0 = π2 + C ⇒ C = −π2

y = (x2 − π2)e− sin x .

21. y(x) = 2 +
∫ x

0

t

y(t)
dt 
⇒ y(0) = 2

dy

dx
= x

y
, i.e. y dy = x dx

y2 = x2 + C

22 = 02 + C 
⇒ C = 4

y =
√

4 + x2.

22. y(x) = 1 +
∫ x

0

(y(t))2

1 + t2 dt 
⇒ y(0) = 1

dy

dx
= y2

1 + x2
, i.e. dy/y2 = dx/(1 + x2)

− 1

y
= tan−1 x + C

− 1 = 0 + C 
⇒ C = −1

y = 1/(1 − tan−1 x).

23. y(x) = 1 +
∫ x

1

y(t)

t (t + 1)
dt 
⇒ y(1) = 1

dy

dx
= y

x(x + 1)
, for x > 0

dy

y
= dx

x(x + 1)
= dx

x
− dx

x + 1

ln y = ln
x

x + 1
+ ln C

y = Cx

x + 1
, 
⇒ 1 = C/2

y = 2x

x + 1
.

24. y(x) = 3 +
∫ x

0
e−y dt 
⇒ y(0) = 3

dy

dx
= e−y, i.e. ey dy = dx

ey = x + C 
⇒ y = ln(x + C)

3 = y(0) = ln C 
⇒ C = e3

y = ln(x + e3).

25. Since a > b > 0 and k > 0,

lim
t→∞ x(t) = lim

t→∞
ab

(
e(b−a)kt − 1

)

be(b−a)kt − a

= ab(0 − 1)

0 − a
= b.

26. Since b > a > 0 and k > 0,

lim
t→∞ x(t) = lim

t→∞
ab

(
e(b−a)kt − 1

)

be(b−a)kt − a

= lim
t→∞

ab
(

1 − e(a−b)kt
)

b − ae(a−b)kt

= ab(1 − 0)

b − 0
= a.
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27. The solution given, namely

x = ab
(
e(b−a)kt − 1

)
be(b−a)kt − a

,

is indeterminate (0/0) if a = b.
If a = b the original differential equation becomes

dx

dt
= k(a − x)2,

which is separable and yields the solution

1

a − x
=

∫
dx

(a − x)2
= k

∫
dt = kt + C.

Since x(0) = 0, we have C = 1

a
, so

1

a − x
= kt + 1

a
.

Solving for x , we obtain

x = a2kt

1 + akt
.

This solution also results from evaluating the limit of
solution obtained for the case a �= b as b approaches a
(using l’Hôpital’s Rule, say).

28. Given that m
dv

dt
= mg − kv, then

∫
dv

g − k

m
v

=
∫

dt

− m

k
ln

∣∣∣∣g − k

m
v

∣∣∣∣ = t + C.

Since v(0) = 0, therefore C = −m

k
ln g. Also, g − k

m
v

remains positive for all t > 0, so

m

k
ln

g

g − k

m
v

= t

g − k

m
v

g
= e−kt/m

⇒ v = v(t) = mg

k

(
1 − e−kt/m

)
.

Note that lim
t→∞ v(t) = mg

k
. This limiting velocity can be

obtained directly from the differential equation by setting
dv

dt
= 0.

29. We proceed by separation of variables:

m
dv

dt
= mg − kv2

dv

dt
= g − k

m
v2

dv

g − k

m
v2

= dt

∫
dv

mg

k
− v2

= k

m

∫
dt = kt

m
+ C.

Let a2 = mg/k, where a > 0. Thus, we have∫
dv

a2 − v2 = kt

m
+ C

1

2a
ln

∣∣∣∣a + v

a − v

∣∣∣∣ = kt

m
+ C

ln

∣∣∣∣a + v

a − v

∣∣∣∣ = 2akt

m
+ C1 = 2

√
kg

m
t + C1

a + v

a − v
= C2e2t

√
kg/m .

Assuming v(0) = 0, we get C2 = 1. Thus

a + v = e2t
√

kg/m (a − v)

v
(

1 + e2t
√

kg/m
)

= a
(

e2t
√

kg/m − 1
)

=
√

mg

k

(
e2t

√
kg/m − 1

)

v =
√

mg

k

e2t
√

kg/m − 1

e2t
√

kg/m + 1

Clearly v →
√

mg

k
as t → ∞. This also follows from

setting
dv

dt
= 0 in the given differential equation.

30. The balance in the account after t years is y(t) and
y(0) = 1000. The balance must satisfy

dy

dt
= 0.1y − y2

1, 000, 000
dy

dt
= 105 y − y2

106∫
dy

105 y − y2
=

∫
dt

106

1

105

∫ (
1

y
+ 1

105 − y

)
dy = t

106 − C

105

ln |y| − ln |105 − y| = t

10
− C

105 − y

y
= eC−(t/10)

y = 105

eC−(t/10) + 1
.
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Since y(0) = 1000, we have

1000 = y(0) = 105

eC + 1
⇒ C = ln 99,

and

y = 105

99e−t/10 + 1
.

The balance after 1 year is

y = 105

99e−1/10 + 1
≈ $1, 104.01.

As t → ∞, the balance can grow to

lim
t→∞ y(t) = lim

t→∞
105

e(4.60−0.1t) + 1
= 105

0 + 1
= $100, 000.

For the account to grow to $50,000, t must satisfy

50, 000 = y(t) = 100, 000

99e−t/10 + 1
⇒ 99e−t/10 + 1 = 2

⇒ t = 10 ln 99 ≈ 46 years.

31. The hyperbolas xy = C satisfy the differential equation

y + x
dy

dx
= 0, or

dy

dx
= − y

x
.

Curves that intersect these hyperbolas at right angles

must therefore satisfy
dy

dx
= x

y
, or x dx = y dy, a sep-

arated equation with solutions x2 − y2 = C , which is
also a family of rectangular hyperbolas. (Both families
are degenerate at the origin for C = 0.)

32. Let x(t) be the number of kg of salt in the
solution in the tank after t minutes. Thus,
x(0) = 50. Salt is coming into the tank at a rate of
10 g/L × 12 L/min = 0.12 kg/min. Since the contents
flow out at a rate of 10 L/min, the volume of the solu-
tion is increasing at 2 L/min and thus, at any time t , the
volume of the solution is 1000 + 2t L. Therefore the con-

centration of salt is
x(t)

1000 + 2t
L. Hence, salt is being

removed at a rate

x(t)

1000 + 2t
kg/L × 10 L/min = 5x(t)

500 + t
kg/min.

Therefore,
dx

dt
= 0.12 − 5x

500 + t
dx

dt
+ 5

500 + t
x = 0.12.

Let µ =
∫

5

500 + t
dt = 5 ln |500 + t | = ln(500 + t)5 for

t > 0. Then eµ = (500 + t)5, and

d

dt

[
(500 + t)5x

]
= (500 + t)5 dx

dy
+ 5(500 + t)4x

= (500 + t)5
(

dx

dy
+ 5x

500 + t

)

= 0.12(500 + t)5.

Hence,

(500 + t)5x = 0.12
∫

(500 + t)5 dt = 0.02(500 + t)6 + C

⇒ x = 0.02(500 + t) + C(500 + t)−5.

Since x(0) = 50, we have C = 1.25 × 1015 and

x = 0.02(500 + t) + (1.25 × 1015)(500 + t)−5.

After 40 min, there will be

x = 0.02(540) + (1.25 × 1015)(540)−5 = 38.023 kg

of salt in the tank.

Review Exercises 7 (page 430)

1.

3 cm5 cm

1 cm

3 cm 3 cm

5 cm1 cm

1 cm

Fig. R-7.1

The volume of thread that can be wound on the left spool
is π(32 − 12)(5) = 40π cm3.
The height of the winding region of the right spool at
distance r from the central axis of the spool is of the
form h = A + Br . Since h = 3 if r = 1, and h = 5 if
r = 3, we have A = 2 and B = 1, so h = 2 + r . The
volume of thread that can be wound on the right spool is

2π

∫ 3

1
r(2 + r) dr = 2π

(
r2 + r3

3

)∣∣∣∣
3

1
= 100π

3
cm3.

The right spool will hold
100

3 × 40
(1, 000) = 833.33 m of

thread.
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2. Let A(y) be the cross-sectional area of the bowl at height
y above the bottom. When the depth of water in the
bowl is Y , then the volume of water in the bowl is

V (Y ) =
∫ Y

0
A(y) dy.

The water evaporates at a rate proportional to exposed
surface area. Thus

dV

dt
= k A(Y )

dV

dY

dY

dt
= k A(Y )

A(Y )
dY

dt
= k A(Y ).

Hence dY/dt = k; the depth decreases at a constant
rate.

3. The barrel is generated by revolving x = a − by2,
(−2 ≤ y ≤ 2), about the y-axis. Since the top and
bottom disks have radius 1 ft, we have a − 4b = 1. The
volume of the barrel is

V = 2
∫ 2

0
π(a − by2)2 dy

= 2π

(
a2 y − 2aby3

3
+ b2 y5

5

)∣∣∣∣
2

0

== 2π

(
2a2 − 16

3
ab + 32

5
b2

)
.

Since V = 16 and a = 1 + 4b, we have

2π

(
2(1 + 4b)2 − 16

3
b(1 + 4b) + 32

5
b2

)
= 16

128b2 + 80b + 15 − 60

π
= 0.

Solving this quadratic gives two solutions, b ≈ 0.0476
and b ≈ −0.6426. Since the second of these leads to an
unacceptable negative value for a, we must have
b ≈ 0.0476, and so a = 1 + 4b ≈ 1.1904.

4. A vertical slice parallel to the top ridge of the solid at
distance x to the right of the centre is a rectangle of base
2
√

100 − x2 cm^and height
√

3(10 − x) cm. Thus the
solid has volume

V = 2
∫ 10

0

√
3(10 − x)2

√
100 − x2 dx

= 40
√

3
∫ 10

0

√
100 − x2 dx − 4

√
3
∫ 10

0
x
√

100 − x2 dx

Let u = 100 − x2

du = −2x dx

= 40
√

3
100π

4
− 2

√
3
∫ 100

0

√
u du

= 1, 000
√

3

(
π − 4

3

)
cm3.

60◦

10 cm x

Fig. R-7.4

5. The arc length of y = 1

a
cosh(ax) from x = 0 to x = 1 is

s =
∫ 1

0

√
1 + sinh2(ax) dx =

∫ 1

0
cosh(ax) dx

= 1

a
sinh(ax)

∣∣∣∣
1

0
= 1

a
sinh a.

We want
1

a
sinh a = 2, that is, sinh a = 2a. Solving this

by Newton’s Method or a calculator solve function, we
get a ≈ 2.1773.

6. The area of revolution of y = √
x , (0 ≤ x ≤ 6), about the

x-axis is

S = 2π

∫ 6

0
y

√
1 +

(
dy

dx

)2

dx

= 2π

∫ 6

0

√
x

√
1 + 1

4x
dx

= 2π

∫ 6

0

√
x + 1

4
dx

= 4π

3

(
x + 1

4

)3/2∣∣∣∣
6

0
= 4π

3

[
125

8
− 1

8

]
= 62π

3
sq. units.

7. The region is a quarter-elliptic disk with semi-axes a = 2
and b = 1. The area of the region is A = πab/4 = π/2.
The moments about the coordinate axes are

Mx=0 =
∫ 2

0
x

√
1 − x2

4
dx Let u = 1 − x2

4

du = − x

2
dx

= 2
∫ 1

0

√
u du = 4

3

My=0 = 1

2

∫ 2

0

(
1 − x2

4

)
dx

= 1

2

(
x − x3

12

)∣∣∣∣
2

0
= 2

3
.
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Thus x̄ = Mx=0/A = 8/(3π) and
ȳ = My=0/A = 4/(3π). The centroid is(
8/(3π), 4/(3π)

)
.

8.
y

x
31

Fig. R-7.8

Let the disk have centre (and therefore centroid) at (0, 0).
Its area is 9π . Let the hole have centre (and therefore
centroid) at (1, 0). Its area is π . The remaining part has
area 8π and centroid at (x̄, 0), where

(9π)(0) = (8π)x̄ + (π)(1).

Thus x̄ = −1/8. The centroid of the remaining part is
1/8 ft from the centre of the disk on the side opposite
the hole.

9. Let the area of cross-section of the cylinder be A. When
the piston is y cm above the base, the volume of gas in
the cylinder is V = Ay, and its pressure P(y) satisfies
P(y)V = k (constant). The force exerted by the piston is

F(y) = P(y)A = k A

Ay
= k

y
.

We are told that F = 1, 000 N when y = 20 cm. Thus
k = 20, 000 N·cm. The work done by the piston as it
descends to 5 cm is

W =
∫ 20

5

20, 000

y
dy = 20, 000 ln

20

5
≈ 27, 726 N·cm.

10. We are told that for any a > 0,

π

∫ a

0

[(
f (x)

)2−
(

g(x)
)2]

dx = 2π

∫ a

0
x
[

f (x)−g(x)
]

dx .

Differentiating both sides of this equation with respect to
a, we get

(
f (a)

)2 −
(

g(a)
)2 = 2a

[
f (a) − g(a)

]
,

or, equivalently, f (a) + g(a) = 2a. Thus f and g must
satisfy

f (x) + g(x) = 2x for every x > 0.

11.
dy

dx
= 3y

x − 1
⇒

∫
dy

y
= 3

dx

x − 1

⇒ ln |y| = ln |x − 1|3 + ln |C |
⇒ y = C(x − 1)3.

Since y = 4 when x = 2, we have 4 = C(2 − 1)3 = C , so
the equation of the curve is y = 4(x − 1)3.

12. The ellipses 3x2 + 4y2 = C all satisfy the differential
equation

6x + 8y
dy

dx
= 0, or

dy

dx
= −3x

4y
.

A family of curves that intersect these ellipses at right

angles must therefore have slopes given by
dy

dx
= 4y

3x
.

Thus

3
∫

dy

y
= 4

∫
dx

x

3 ln |y| = 4 ln |x | + ln |C |.
The family is given by y3 = Cx4.

13. The original $8,000 grows to $8, 000e0.08 in two years.
Between t and t + dt , an amount $10, 000 sin(2π t) dt
comes in, and this grows to $10, 000 sin(2π t)e0.04(2−t) dt
by the end of two years. Thus the amount in the account
after 2 years is

8, 000e0.08+10, 000
∫ 2

0
sin(2π t)e0.04(2−t) dt ≈ $8, 798.85.

(We omit the details of evaluation of the integral, which
is done by the method of Example 4 of Section 7.1.)

Challenging Problems 7 (page 430)

1. a) The nth bead extends from x = (n − 1)π to x = nπ ,
and has volume

Vn = π

∫ nπ

(n−1)π

e−2kx sin2 x dx

= π

2

∫ nπ

(n−1)π

e−2kx (1 − cos(2x)) dx

Let x = u + (n − 1)π

dx = du

= π

2

∫ π

0
e−2kue−2k(n−1)π

[
1 − cos(2u + 2(n − 1)π)

]
du

= π

2
e−2k(n−1)π

∫ π

0
e−2ku (1 − cos(2u)) du

= e−2k(n−1)π V1.
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Thus
Vn+1

Vn
= e−2knπ V1

e−2k(n−1)π V1
= e−2kπ , which de-

pends on k but not n.

b) Vn+1/Vn = 1/2 if −2kπ = ln(1/2) = − ln 2, that is,
if k = (ln 2)/(2π).

c) Using the result of Example 4 in Section 7.1, we
calculate the volume of the first bead:

V1 = π

2

∫ π

0
e−2kx (1 − cos(2x)) dx

= πe−2kx

−4k

∣∣∣∣
π

0
− π

2

e−2kx (2 sin(2x) − 2k cos(2x))

4(1 + k2)

∣∣∣∣
π

0

= π

4k
(1 − e−2kπ ) − π

4(1 + k2)
(k − ke−2kπ )

= π

4k(1 + k2)
(1 − e−2kπ ).

By part (a) and Theorem 1(d) of Section 6.1, the
sum of the volumes of the first n beads is

Sn = π

4k(1 + k2)
(1 − e−2kπ )

×
[
1 + e−2kπ +

(
e−2kπ

)2 + · · · +
(

e−2kπ
)n−1]

= π

4k(1 + k2)
(1 − e−2kπ )

1 − e−2knπ

1 − e−2kπ

= π

4k(1 + k2)
(1 − e−2knπ ).

Thus the total volume of all the beads is

V = lim
n→∞ Sn = π

4k(1 + k2)
cu. units..

2.

10 m

1 m

Fig. C-7.2

h(r) = a(r2 − 100)(r2 − k2), where 0 < k < 10

h ′(r) = 2ar(r 2 − k2) + 2ar(r2 − 100) = 2ar(2r2 − 100 − k2).

The deepest point occurs where 2r2 = 100 + k2, i.e.,
r2 = 50 + (k2/2). Since this depth must be 1 m, we
require

a

(
k2

2
− 50

)(
50 − k2

2

)
= −1,

or, equivalently, a(100 − k2)2 = 4. The volume of the
pool is

VP = 2πa
∫ 10

k
r(100 − r2)(r2 − k2) dr

= 2πa

(
250, 000

3
− 2, 500k2 + 25k4 − 1

12
k6

)
.

The volume of the hill is

VH = 2πa
∫ k

0
r(r 2−100)(r2−k2) dr = 2πa

(
25k4 − 1

12
k6

)
.

These two volumes must be equal, so k2 = 100/3 and
k ≈ 5.77 m. Thus a = 4/(100 − k2)2 = 0.0009. The
volume of earth to be moved is VH with these values of
a and k, namely

2π(0.0009)

[
25

(
100

3

)2

− 1

12

(
100

3

)4
]

≈ 140 m3.

3.
y

x

(h, r)

y = ax + bx2 + cx3

Fig. C-7.3

f (x) = ax + bx2 + cx3 must satisfy f (h) = r , f ′(h) = 0,
and f ′(x) > 0 for 0 < x < h. The first two conditions
require that

ah + bh2 + ch3 = r

a + 2bh + 3ch2 = 0,

from which we obtain by solving for b and c,

b = 3r − 2ah

h2
, c = ah − 2r

h3
.

The volume of the nose cone is then

V (a) = π

∫ h

0

(
f (x)

)2
dx = πh

210
(13ahr + 78r2 + 2a2h2).

Solving dV/da = 0 gives only one critical point,
a = −13r/(4h). This is unacceptable, because the con-
dition f ′(x) > 0 on (0, h) forces us to require a ≥ 0. In
fact

f ′(x) = a + 2(3r − 2ah)

h2 x + 3(ah − 2r)

h3 x2
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is clearly positive for small x if a > 0. Its two roots are
x1 = h and x2 = h2a/(3ah − 6r). a must be restricted
so that x2 is not in the interval (0, h). If a < 2r/h, then
x2 < 0. If 2r/h < a < 3r/h, then x2 > h. If a > 3r/h,
then 0 < x2 < h. Hence the interval of acceptable values
of a is 0 ≤ a ≤ 3r/h. We have

V (0) = 13πr2h

35
, V

(
3r

h

)
= 9πr2h

14
.

The largest volume corresponds to a = 3r/h, which is
the largest allowed value for a and so corresponds to the
bluntest possible nose. The corresponding cubic f (x) is

f (x) = r

h3 (3h2x − 3hx2 + x3).

4. a) If f (x) =
{

a + bx + cx2 for 0 ≤ x ≤ 1
p + qx + r x2 for 1 ≤ x ≤ 3

, then

f ′(x) =
{

b + 2cx for 0 < x < 1
q + 2r x for 1 < x < 3

. We require that

a = 1

a + b + c = 2

b + 2c = m

p + 3q + 9r = 0

p + q + r = 2

q + 2r = m.

The solutions of these systems are a = 1, b = 2 − m,
c = m − 1, p = 3

2 (1 − m), q = 2m + 1, and
r = − 1

2 (1 + m). f (x, m) is f (x) with these values
of the six constants.

b) The length of the spline is

L(m) =
∫ 1

0

√
1 + (b + 2cx)2 dx +

∫ 3

1

√
1 + (q + 2r x)2 dx

with the values of b, c, q, and r determined above.
A plot of the graph of L(m) reveals a minimum
value in the neighbourhood of m = −0.3. The
derivative of L(m) is a horrible expression, but
Mathematica determined its zero to be about
m = −0.281326, and the corresponding minimum
value of L is about 4.41748. The polygonal line
ABC has length 3

√
2 ≈ 4.24264, which is only

slightly shorter.

5. Let b = ka so that the cross-sectional curve is given by

y = f (x) = ax(1 − x)(x + k).

The requirement that f (x) ≥ 0 for 0 ≤ x ≤ 1 is satisfied
provided either a > 0 and k ≥ 0 or a < 0 and k ≤ −1.
The volume of the wall is

V (a, k) =
∫ 1

0
2π(15 + x) f (x) dx = πa

30
(78 + 155k).

To minimize this expression for a > 0 we should take
k = 0. This gives f (x) = ax2(1 − x). To minimize
V (a, k) for a < 0 we should take k = −1. This gives
f (x) = −ax(1 − x)2. Since we want the maximum
value of f to be 2 in either case, we calculate the critical
points of these two possible functions. For a > 0 the CP
is x = 2/3 and f (2/3) = 2 gives a = 27/2. The volume
in this case is V (27/2, 0) = (27π/60)(78 − 0). For a < 0
the CP is x = 1/3 and f (1/3) = 2 gives a = −27/2.
The volume in this case is
V (−27/2, −1) = −(27π/60)(78 − 155) = (27π/60)(77).
Thus the minimum volume occurs for
f (x) = (27/2)x(1 − x)2, i.e. b = −a = 27/2.

6. Starting with V1(r) = 2r , and using repeatedly the for-
mula

Vn(r) =
∫ r

−r
Vn−1(

√
r2 − x2) dx,

Maple gave the following results:

V1(r) = 2r

V3(r) = 4

3
πr3

V5(r) = 8

15
π2r5

V7(r) = 16

105
π3r7

V9(r) = 32

945
π4r9

V2(r) = πr 2

V4(r) = 1

2
π2r4

V6(r) = 1

6
π3r6

V8(r) = 1

24
π4r8

V10(r) = 1

120
π5r10

It appears that

V2n(r) = 1

n!
πnr2n, and

V2n−1(r) = 2n

1 · 3 · 5 · · · (2n − 1)
πn−1r2n−1

= 22n−1(n − 1)!

(2n − 1)!
πn−1r2n−1.

These formulas predict that

V11(r) = 2115!

11!
π5r11 and V12(r) = 1

6!
π6r12,

both of which Maple is happy to confirm.

7. With y and θ as defined in the statement of the problem,
we have

0 ≤ y ≤ 10 and 0 ≤ θ < π.

The needle crosses a line if y < 5 sin θ . The probability
of this happening is the ratio of the area under the curve
to the area of the rectangle in the figure, that is,

Pr = 1

10π

∫ π

0
5 sin θ dθ = 1

π
.
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y

θ

y = 10

y = 5 sin x

π

Fig. C-7.7

8. y

x

P(x, y)

(L , 0)

L

Q

y = f (x)

Fig. C-7.8

If Q = (0, Y ), then the slope of P Q is

y − Y

x − 0
= f ′(x) = dy

dx
.

Since |P Q| = L , we have (y − Y )2 = L2 − x2. Since the
slope dy/dx is negative at P, dy/dx = −√

L2 − x2/x .
Thus

y = −
∫ √

L2 − x2

x
dx = L ln

(
L + √

L2 − x2

x

)
−
√

L2 − x2+C.

Since y = 0 when x = L , we have C = 0 and the
equation of the tractrix is

y = L ln

(
L + √

L2 − x2

x

)
−

√
L2 − x2.

Note that the first term can be written in an alternate
way:

y = L ln

(
x

L − √
L2 − x2

)
−

√
L2 − x2.

9. a) S(a, a, c) is the area of the surface obtained by
rotating the ellipse (x2/a2) + (y2/c2) = 1
(where a > c) about the y-axis. Since
y ′ = −cx/(a

√
a2 − x2), we have

S(a, a, c) = 2 × 2π

∫ a

0
x

√
1 + c2x2

a2(a2 − x2)
dx

= 4π

a

∫ a

0
x

√
a4 − (a2 − c2)x2

√
a2 − x2

dx

Let x = a sin u

dx = a cos u du

= 4π

a

∫ π/2

0
a sin u

√
a4 − (a2 − c2)a2 sin2 u du

= 4πa
∫ π/2

0
sin u

√
a2 − (a2 − c2)(1 − cos2 u) du

Let v = cos u

dv = − sin u du

= 4πa
∫ 1

0

√
c2 + (a2 − c2)v2 dv.

This integral can now be handled using tables or
computer algebra. It evaluates to

S(a, a, c) = 2πa2 + 2πac2

√
a2 − c2

ln

(
a + √

a2 − c2

c

)
.

b) S(a, c, c) is the area of the surface obtained by ro-
tating the ellipse of part (a) about the y-axis. Since
y ′ = −cx/(a

√
a2 − x2), we have

S(a, c, c) = 2 × 2π

∫ a

0
y

√
1 + c2x2

a2(a2 − x2)
dx

= 4πc

a2

∫ a

0

√
a2 − x2

√
a4 − (a2 − c2)x2

√
a2 − x2

dx

= 4πc

a2

∫ a

0

√
a4 − (a2 − c2)x2 dx

= 4πc
∫ a

0

√
1 − a2 − c2

a4 x2 dx

= 2πc2 + 2πa2c√
a2 − c2

cos−1 c

a
.

c) Since b =
(

b − c

a − c

)
a +

(
a − b

a − c

)
c, we use

S(a, b, c) ≈
(

b − c

a − c

)
S(a, a, c)+

(
a − b

a − c

)
S(a, c, c).
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d) We cannot evaluate S(3, 2, 1) even numerically at
this stage. The double integral necessary to calculate
it is not treated until a later chapter. (The value is
approximately 48.882 sq. units.) However, using the
formulas obtained above,

S(3, 2, 1) ≈ S(3, 3, 1) + S(3, 1, 1)

2

= 1

2

(
18π + 6π√

8
ln(3 + √

8) + 2π + 18π√
8

cos−1(1/3)

)

≈ 49.595 sq. units.
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