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INSTRUCTOR’S SOLUTIONS MANUAL

CHAPTER 4. SOME APPLICATIONS OF
DERIVATIVES

Section 4.1 Related Rates (page 214)

If the side and area of the square at time ¢ are x and A,

respectively, then A = x2, so

dA 5 dx
— =2x —.
dt dt

If x = 8 cm and dx/dt = 2 cm/min, then the area is
increasing at rate dA/dt = 32 cm?/min.

As in Exercise 1, dA/dt = 2xdx/dt. If dA/dt = =2
ft?/s and x = 8 ft, then dx/dt = —2/(16). The side
length is decreasing at 1/8 ft/s.

Let the radius and area of the ripple ¢ seconds after im-
pact be r and A respectively. Then A = r2. We have

dr dt’

If »r = 20 cm and % = 4 cm/s, then

dA
e 407 (4) = 1607.
The area is increasing at 160 cm?/s.

Let A and r denote the area and radius of the circle.

Then
2 [A
A=nr"=r=,—
T

N dr 1 dA
dt ~ \2J/Arx /) dt’
dr 1

dA
When — = —2,and A = 100, — = ———. Th
en dt an dt 10/ ¢

cm/min when the

1
dius is d i t the rate ——
radius is decreasing at the rate 07
area is 100 cm?.
For A = nr?, we have dA/dt = 2mrdr/dt. If
dA/dt = 1/3 km?/h, then (a) dr/dt = 1/(6mr) km/h, or
(b) dr/dt = 1/(6n/A/m) = 1/(64/7 A) km/h

Let the length, width, and area be /, w, and A at time 7.

Thus A = [w.
dA dw dl

a la TV

dw dA
When !l =16, w =12, — =3, — =0, we have
dt dt
dl dl 48
0=16x34+12— = — = =—4

dt dt 12

The length is decreasing at 4 m/s.
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4 4 dv o dr
V==nr’,so — =4nr"—.
3 dt dt

When r =30 cm and dV /dt =20 cm3/s, we have

dr
20 = 47(30)> —
7 ( )dt

dr 20 1

dr 3600 1807

The radius is increasing at 1/(1807) cm/s.

The volume V of the ball is given by

4 5 4m (D S 3
V=cnar’=—|—=) ==D’
3 3 \2

where D = 2r is the diameter of the ball. We have

dV_n

- Dzd_D
dr — 2 dr’

When D =6 cm, dD/dt = —.5 cm/h. At that time

dv T
—_— == —0.5) = —97 ~ —28.3.
T 2(36)( 0.5) 9 8.3

The volume is decreasing at about 28.3 cm’/h.

The volume V, surface area S, and edge length x of a
cube are related by V = x3and S = 6x2, so that

av 5 dx
=3x°—

ds dx
—_— N _— == 12
dt dt dt

X —.
dt

If V =64 cm’ and dV/dt = 2 cm’/s, then x = 4

cm and dx/dt = 2/(3 x 16) = 1/24 cm/s. Therefore,
dS/dt = 12(4)(1/24) = 2. The surface area is increasing
at 2 cm?/s.

Let V, r and h denote the volume, radius and height of
the cylinder at time ¢. Thus, V = 7r2h and

dv dr ,dh
— =2nrh— 4+ nr°—.
dt dt dt
dv
IfV=60,E=2,r=5, =1, then

h 1
dh 1 (dV _, ¥
dt wr2 \ dt d
1 12 22
=—(2—-10r— | = ——
251 S 251

22
The height is decreasing at the rate 57 cm/min.
bid
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Let the length, width, depth, and volume at time ¢ be /,
w, h and V respectively. Thus V = /[wh, and

dv._dl h—i—lhdw—i-l dh
dr dr a Var
dl dh
If ] = 6 cm, w =5cm, h= 4cm, — = = 1m/s, and
J dt dr
@ —2cm/s, then
dt
dv

— =20—-484+30=2.
dt

The volume is increasing at a rate of 2 cm’/s.

Let the length, width and area at time # be x, y and A
respectively. Thus A = xy and

dA dy n dx

ar Car Var

dA dx
7 5, 7 0, x 0, y 6, then
dy dy 31
5=20—+416(10 - =——.
o T1OU0 = =7

31
Thus, the width is decreasing at T m/s.

dy dx dx
= x*. Th —_2—If = —2and — = -3,
y = x2 us T xd x an T
dy

then I = —4(-3) = 12. y is increasing at rate 12.

Since x2y3 =72, then

dx dy dy 2y dx
2y = 432y L =0 = ==,
T dr ~ 3xdt

dx dy 8
Ifx =3 y=2,— =2,then —— = ——. Hence, the

dt dt 9
vertical velocity is —9 units/s.
We have

Py
= x— _—=
= dr

dy dx
y=t = =t 2y

Atr=2wehave xy=2, y=2x>=2x3=2=x=1,

y=2.
dy dx dx dy
Thus 2 4255 — 1, and 1 4455 = &
P TIT dan * e~
sO1+6——1:>_x:o:>_y:1:>,
dt dt
Distance D from origin satisfies D = /x2 + y2. So
dD 1 dx dy
ez I, 4
dt 2\/x2+y ( - yd1>
- (10 +20) ==
V5 V5

110

16.

17.

18.

R. A. ADAMS: CALCULUS

The distance from the origin is increasing at a rate of

2/V/5.

From the figure, x> + k% = 5. Thus
dx ds

X—=5—.
dt dt

When angle PCA =45°, x =k and s = +/2k. The radar
gun indicates that ds/dt = 100 km/h. Thus

dx/dt = 1008/2k/k ~ 141. The car is travelling at about
141 km/h.
A C
""""" T r---“"""""g"""'
E X
o
P
Fig. 4.1.16

We continue the notation of Exercise 16. If dx/dt = 90
km/h, and angle PCA = 30°, then s = 2k, x = \/§k, and
ds/dt = (v/3k/2k)(90) = 45+/3 = 77.94. The radar gun
will read about 78 km/h.

Let the distances x and y be as shown at time 7. Thus

d d
2 4y2=25and 2025 42,2 .

dt dt
dx 1 4 dy
If —=-andy=3,thenx =4and - +3— =0 so0
dt 3 3 dt
dy 4
dt 9

4
The top of the ladder is slipping down at a rate of 9
m/s.

—_
1/3 m/s

Fig. 4.1.18
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Let x and y be the distances shown in the following fig-
ure. From similar triangles:

x x+y 2y
2" s T3

dx _2dy
dt ~ 3dt’

. dy 1
Since — = 5 then

(LU S DR SN B
— =—— and — = ——=—_.
dr 3 WY 273776

Hence, the man’s shadow is decreasing at %m/s and the
shadow of his head is moving towards the lamppost at a
rate of %m/s.

Fig. 4.1.20

Refer to the figure. s, y, and x are, respectively, the
length of the woman’s shadow, the distances from the
woman to the lamppost, and the distances from the
woman to the point on the path nearest the lamppost.
From one of triangles in the figure we have

y2 =x2 +25.

If x =12, then y = 13. Moreover,

21.

22,
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We are given that dx/dt = 2 ft/s, so dy/dt = 24/13 ft/s
when x = 12 ft. Now the similar triangles in the figure
show that

s s+y

6 15
so that s = 2y/3. Hence ds/dt = 48/39. The woman’s
shadow is changing at rate 48/39 ft/s when she is 12 ft
from the point on the path nearest the lamppost.

2
8,000

dC X dx
— =3+ —.
dt 4,000/ dt

If dC/dt = 600 when x = 12, 000, then dx/dt = 100.
The production is increasing at a rate of 100 tons per
day.

C =10, 000 + 3x +

Let x, y be distances travelled by A and B from their
positions at 1:00 pm in ¢ hours.

dx dy
Thus T 16 km/h, — = 20 km/h.

t t
Let s be the distance between A and B at time ¢.
Thus s = x2 4+ (25 + y)?

ds dx dy
2s— =2x— +2(25 —
Yo = Ha TRy,
At 1:30 (t = %) we have x =8, y = 10,

s = /824352 = /1289 so

d
«/1289‘1—? — 8 x 16+ 35 x 20 = 828

and & = 828 L 23,06, At 130, the ships are
dt /1289 o o P

separating at about 23.06 km/h.

A 16 km/h pos. of A at 1:00 p.m.

25 km

pos. of B at 1:00 p.m.

120 km/h

B

Fig. 4.1.22

Let 6 and w be the angles that the minute hand and hour
hand made with the vertical + minutes after 3 o’clock.
Then

do

== ;T—O rad/min
d

@ _ Lrad/min.
dt 360
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Since 6 =0 and w = % at t = 0, therefore

b4 b4 b4
0 =—t and w=—t+ —.
30 360 2

At the first time after 3 o’clock when the hands of the
clock are together, i.e., 6 = w,

Thus, the hands will be together at 1614—1 minutes after 3
o’clock.

Fig. 4.1.23

24. Let y be the height of balloon ¢ seconds after release.
Then y = 5¢ m.
Let 6 be angle of elevation at B of balloon at time z.
Then tan0 = y/100. Thus

do 1 d 5 1
ec?)— = Y _

dr — 100dr 100 _ 20
deo 1
(1+tan20)E:%
y\21do 1

1+ (=) | = ==.
[+(100)]dt 20

do 1 do 1
Wh =200 have 5— = — so — = —.
en y we have 5—- = oo 50— 100

The angle of elevation of balloon at B is increasing at a

O

N

1
rate of —— rad/s.
100

[ %

B 100 m

Fig. 4.1.24
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25. Let V, r and h be the volume, radius and height of the
cone. Since h = r, therefore

V= %nrzh = %nh3
dv ,dh dh 1 dv
— h _ —

dt ai Al R dr
1
If d_V = — and h = 3, then d_V = ——. Hence, the
dt 2 dt | 187

height of the pile is increasing at T8m m/min.
b4

26. Letr, h, and V be the top radius, depth, and volume of

10
the water in the tank at time 7. Then z = 3 and

1 25
V= gnrzh = %1—6}13 We have
1 n253h2dh dh 16
10 3167 dr ~ dt  250mh?
When 1 =4 h dh !
nh=4m,w —_—=—
¢ CNE T 250
The water level is rising at a rate of 750 m/min when
T
depth is 4 m.
................. 10m._.
-------- T; S‘m
,, |
Fig. 4.1.26

27. Letr and h be the radius and height of the water in the
tank at time #. By similar triangles,

r 10:> Sh
- = — r=—h.
h 8 4

The volume of water in the tank at time ¢ is

1 25
V= carh = 223,
3 48
Thus,
v 2571h2dh dh 16 dV
dr — 16 dt dr ~ 257h? dt’
dv 1 n3
—_— = — and h = 4, then

dt 10 1000

dh 16 1 £\ 9
dr — (25m)@)2 \10 1000/~ 62507
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Hence, the depth of water is increasing at
62507

dh
hen — =0, i.e,
when = ie

16 1 h3 1 n3

— ([———)=0=>——-—=0
257h2 \ 10 1000 10 1000
= h = ¥/100.

Thus, the maximum depth the water in the tank can get

is /100 ~ 4.64 m.

Let r, h, and V be the top radius, depth, and volume of

the water in the tank at time ¢. Then

U < I
< Il

W= O| W
S|

%]
~
|
|
=
[¥)
Sy
~

dh 2
If — =20 cm/h = — m/h when &7 = 6 m, then
dt 10

dv 2 4
T 36x = =T 251 mdh.
i 9 10 5

Since water is coming in at a rate of 10 m3/h, it must be

leaking out at a rate of 10 —2.51 ~ 7.49 m’/h.

Fig. 4.1.28

Let x and s be the distance as shown. Then
s2 = x2 4 30% and

ds dx ds X dx
25— =2— = — = ——.
dt dt dt s dt

d
When x = 40, —’; — 10, s = v/402 + 302 = 50, then

ds 40 .
— = —(10) = 8. Hence, one must let out line at 8
dt 50

m/min.

m/min

when the water is 4 m deep. The maximum depth occurs

30.

com
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10 m/min

30 m

Fig. 4.1.29

Let P, x, and y be your position, height above centre,

and horizontal distance from centre at time 7. Let 6 be
the angle shown. Then y = 10sin6, and x = 10cos6.
We have

d do do
4y =10cosf —, — =1 rpm = 27 rad/min.
dt dt dt
6 d 6
When x = 6, then cosf = —, so & _ 10 x — x 127.

You are rising or falling at a rate of 127 m/min at the
time in question.

Fig. 4.1.30

Let x and y denote the distances of the two aircraft east
and north of the airport respectively at time ¢ as shown in
the following diagram. Also let the distance between the
two aircraft be s, then s2=x2+ y2. Thus,

ds dx dy
25— =2x— +2y—.
AR TR
. dx dy
Since — = —200 and — = 150 when x = 144 and
dt dt

y = 60, we have s = +/1442 4 60?2 = 156, and

ds 1
— = —[144(-200 60(150)] =~ —126.9.
T 156[ ( ) + 60(150)]

Thus, the distance between the aircraft is decreasing at
about 126.9 km/h.
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2150 kv
.S
X
airport % km/h
Fig. 4.131
P %x0.6y0.4
dP 0.6 _o4 g4dx 0.4 o6 _gedy
a3 Y TEY Y T

If dP/dt =0, x =40, dx/dt =1, and y = 10, 000, then

6y d
= Y375

d_y_ 6y0.4 y0.6 dx B
4x dt

dt  x04 2,06 g1

The daily expenses are decreasing at $375 per day.

Let the position of the ant be (x, y) and the position of
its shadow be (0, s). By similar triangles,

s=y Y 3y
X _3—x:>5_3—x
Then,
33 )dy_i_3 dx
— )= -
ds _ dr " ds
dt 3 —x)2 ’
. dx 1 dy 1
If the ant is at (1,2) and — = -, — = ——, then
dt 3" dt 4

ds _ 3@ +3@)(3) _ 1

dr — 4 8"

Hence, the ant’s shadow is moving at % units/s upwards
along the y-axis.

y
o8

ant

(O8]

=6

=

Fig. 4.1.33
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Let x and y be the distances travelled from the intersec-
tion point by the boat and car respectively in ¢ minutes.
Then

dx 1000 1000

7 0 x 0 3 m/min
dy 1000 4000 .
— =80 Xx —— = ——m/min
dt 60 3

The distance s between the boat and car satisfy

ds dx dy
§s— = —

2 2 2 2
= 207, — .
s x“ 4y + 7 xdt+ydt

1 4
After one minute, x = g, y = 000 so s ~ 1374. m.
Thus
1 1 4 4
1374.5§ = 000 1000 000 4000 ~ 1, 888, 889.

dt 33+33

d
Hence d_j ~ 1374.2 m/min =~ 82.45 km/h after 1 minute.

Fig. 4.1.34

Let & and b (measured in metres) be the depth and the
surface width of the water in the trough at time . We
have

h 2
—— =tan60° = V3= b=—
(z0) V3

Thus, the volume of the water is

1 10 ,
v =(3hb)10) = %,

h.

V3
and
dv. _ 20, dh _ dh _ V34V
dt ~— /3 dr  dt ~ 20h dt’
If d_V = l and 4 = 0.2 metres, then
dt 4

dh 3 (1>_¢§
dr — 20002) \4) 16"

. 3 .
Hence, the water level is rising at 1_6 m/min.
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60°
b/2 b/2
30 cm h
30°,
s
Fig. 4.1.35 Fig. 4.1.37
a) By similar triangles,
y 3 N 30
_——=— y = ——\
10 /324 42 V9 + x?
36. Let V and h be the volume and depth of water in the Thus,
pool at time ¢. If 2 <2, then dy dydx  —-30x dx
dt — dxdt  (9+x2)372dr’
20 1 1
S=2210, soV=-xh8 =40k x=dand =L then
h 2 2 dt 5
dy —30(4) 1 24
If 2 <h <3, then V =160+ 160(h — 2). a ©+16)32 \5 =~ Tl
av dh Hence, the free top end of the ladder is moving ver-
a) If h =2.5m, then —1 = —- = 160—. tically downward at 24/125 mJs.
So surface of water is dropping at a rate of 160 b) By similar triangles,
m/min. X Ky N 10x
— = — =Sy = —.
V3Z4+x2 10 V9 + x2
dv dh dh
b) If h = Im, then —1 = — = 80h— = 80— Then,
Codt dt dt ds dsdx
So surface of water is dropping at a rate of »L_
1 m/mi dt dx dt
— m/min.
80 (V9 +x2)(10) — (10x) (27)“)
_ 2/9 +x2/) dx
9+ x?) dt
. 90 dx
IRCEE D e T
dx 1
If x=4and — = —, th
X an =5 en

ds 90 1y 18
dt — (9+1632\5) 125
This is the rate of change of the length of the hori-

zontal projection of the ladder. The free top end of
the ladder is moving horizontally to the right at rate

dx ds 1 18 7

Fig. 4.1.36 dr dr 5 125 125 ™%
38. Letx, y, and s be distances shown at time 7. Then
s2=x+16, 15-5)%=y*+16
ds  dx 15 ds  dy
37. Let the various distances be as shown in the figure. Su = Yar — (5= S)E =Y
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When x = 3 and dx — 1 then s = 5 and 40. Let y be height of ball 7 seconds after it drops.
dr 2 d*y dy
y =102 — 42 = /84, Thus — = —9.8, —|;=0 =0, y|;=0 = 20, and
dr? dt
ds 3 /1 3
Also —=—-(=z)=—=so
dt 5\2) 10 dy
y = —4.9t% 420, = —9.81.
dy 103 3 oo
dt — /8410 Jga 7 Let s be distance of shadow of ball from base of pole.
- 10
. . By similar triangles, T i
Crate B is moving toward Q at a rate of 0.327 m/s. 20
200
20s — 200 = sy, s =
20—y
ds ds dy
20— =y— +s5—.
ar Var T ar

d
a) Atr=1, we have = = —9.8, y = 15.1,

ds 200
49— = —(-9.8).
dt 49( )

The shadow is moving at a rate of 81.63 m/s after
one second.

b) As the ball hits the ground, y = 0, s = 10,

20 dy 20
= J 2 amd Y = 98/
49 M 4 49 %

Fig. 4.1.38 20615 —0 dy
— =0+4+10—.
dt dt
N 20
39. Let 0 be the angle of elevation, and x and y the horizon- Now y = 0 implies that 1 = 19 Thus
tal and vertical distances from the launch site. We have '
dy  dx d_ _Log /22~ 900
y > d0 Y T Var dt PR s
tanf = = = sec” — = —————.
X dt x2 . .
The shadow is moving at about 9.90 m/s when the
At the instant in question ball hits the ground.
d d Q“’m ——————— ;
& 4c0s30° =23, 2 —4sin30° =2, |
dt dt ‘ 20—y
x = 50km, y = 100 km. L
100 5 5 -
Thus tan@:%:Z sec- § = 1+tan” 0 =5, and 20 m
d9  1502) —1002v3) 1-23 7
—~ == = ~ —0.0197. i
dt 5 (50)2 125 ;
10 ; 5—10 .
Therefore, the angle of elevation is decreasing at about s
0.0197 rad/s.
Fig. 4.1.40

41. Let y(r) be the height of the rocket ¢ seconds after it
blasts off. We have

. | d?y dy
Fig. 4.1.39 3100 =y=0
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att = 0. Hence y = 5t2, (y in metres, ¢ in seconds).

Now
do _ dy/dt

tan0 = Y L s0 sec?f— = , and
2000 dt ~ 2000
y \2\do 10t t
1 _— _——=— = —
( + (zooo) )dz 2000 — 200
0 _t 1
dr — 200 2514
20002
ot 1 _ 800¢
200 4T 4002 + 147
* 200
do 8000

At t =10, we have — = ~ 0.047 rad/s.

dr ~ 4002 + 1002
Al

B

2 km
Fig. 4.1.41

Section 4.2 Extreme Values (page 222)
f(x)=x+2on[-1,1]

f/(x) =1 so f is increasing.

f has absolute minimum 1 at x = —1 and absolute maxi-
mum 3 at x = 1.

f(x)=x-+2 on (—o0, 0]
abs max 2 at x = 0, no min.

f@)=x+2on[-1,1)
f has absolute minimum 1 at x = —1 and has no abso-
lute maximum.

f)=x*-1

no max, abs min —1 at x = 0.

fx) =x2—1on[-2,3]
f has abs min —1 at x = 0, abs max 8 at x = 3, and
local max 3 at x = —2.

fx)=x>—1on (2,3)
no max or min values.

fx) =x34+x —4 on [a, b]

f/(x) =3x*+1> 0 for all x.

Therefore f has abs min a® +a — 4 at x = a and abs
max b +b—4 at x = b.

fx) =x34+x—4on (a,b)

Since f'(x) = 3x% + 1 > 0 for all x, therefore f is
increasing. Since (a, b) is open, f has no max or min
values.

10.
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f(x) =x7+x3+2x on (a, b]

f/(x) =5x* +3x2 4+ 2 > 0 for all x.

f has no min value, but has abs max value b° + b> + 2b
at x = b.

1 —
f(x) = xj Since f’(x) = m < 0 for all x in

the domain of f, therefore f has no max or min values.

fx) = on (0, 1)

x—1 )
f(x):—m <0 on (0,1)
f has no max or min values.
fx) = : on [2,3]

x—1

absmin%atx=3,absmaxlatx=2.

Let f(x) =|x — 1] on [-2,2]: f(=2)=3, f(2)=1.
f'(x) =sgn(x —1). NoCP; SP x =1, f(1) =0.
Max value of f is 3 at x = —2; min value is 0 at
x=1.

Let f(x) = [x2 —x —2| = |(x — 2)(x + )| on [-3, 3]:
f(=3)=10, f3) =4

F/(x) = 2x — Dsgn (x* —x — 2).

CPx =1/2;SPx = —1,and x = 2. f(1/2) = 9/4,
f=D) =0, f(2)=0.

Max value of f is 10 at x = —3; min value is 0 at
x=—lorx=2.

1 , 2x
0= a0 = oy

f has abs max value 1 at x = 0; f has no min values.
fx) = (x 42
no max, abs min 0 at x = —2.
1
FEO == f0)=36-27">0

f has no max or min values.

y A

y=@x-2)3

Fig. 4.2.17

f(x) = x2 4 2x, ffx)=2x+2=2(x+1)
Critical point: x = —1.
f(x) = o0 as x — Fo0.

CpP
A

fooN s s
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Hence, f(x) has no max value, and the abs min is —1 at

x =—1.
y

y =x242x

(-1.-1)
Fig. 4.2.18

19. f(x)=x3-3x-2

flx)=3x2=3=3x—-DEx+1)

CcP CcP
F AR S R N
I I x

loc loc
f / max N min /

f has no absolute extrema.

=x3—3x <2
y X X (124

Fig. 4.2.19

20 f)=(x2—4)2 ) =4x(x®—4) =dx(x +2)(x —2)

Critical points: x =0, £2.
f(x) — oo as x — Fo0.

CP CP CP
- =2 + 0 - 42 +

| | |
T T T X

abs loc abs
foN min /" max N min

Hence, f(x) has abs min 0 at x = +2 and loc max 16 at
x=0.

118
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-2 2 X
Fig. 4.2.20
f@) =x(x—1)?
Fl) =32 - D2 +23x = 1)
=x>(x — )(5x —3)

3
CPx=0,-,1
TERs
CP CP CP
3
o+ 0+ = - 1 +
} } I X
loc loc
f o/ / max N min 7

f has no absolute extrema.

y 4

y=x(x—1)7

Fig. 4.2.21

f) =x2(x =172,

i) =2x(x — D2 +2x2(x — 1) =2x2x — D(x — 1)
Critical points: x = 0, % and 1.

f(x) = o0 as x — Fo0.

I
abs loc abs

5N min /" max N min

Hence, f(x) has loc max 11_6 at x = % and abs min O at
x=0and x = 1.
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23, fx) = x(x2 = 1)?
Flx) = (2 = D%+ 2x (x> = 1)2x
== D% —1+4x%)
=2 =DGx2-1)
=@x—Dx+ D5 - DE5x+ 1)

CP CP Cp CP
F e i N

| | | | X

I I I I
loc loc loc loc
r 7 max N min 7/ max N min /"

f(£1) =0, f(£1/4/5) = £16/25/5

y

v ! *
y =x(x% = 1)]
Fig. 4.2.23
by 1—x2
24. = ff0x) = ———
Fe) x2+1 F x24+1)?
Critical point: x = +1.
f(&x) - 0as x - Foo.
CP CP
f — -1 + +1 -
} } x
abs abs
f N min / max N

Hence, f has abs max % at x = 1 and abs min —% at
x =—1.

SECTION 4.2 (PAGE 222)

Fig. 4.2.24
2
X 1
25 = 1
Fx) 2 —|—21 x2 41 =
X
! =
I'® =
CP
= 0 +
. X
foN Mg
y 4
y=1
YT
>
Fig. 4.2.25
X 1—x*
26. = , (X)) = ———5
[0 = == ' =

Critical points: x = +1.
f(x) = 0as x - £oo.

CP CP
o= -1 4+ -

| |
T T X

abs abs
f N min / max N

e — in —-L
Hence, f has abs max 7 at x = 1 and abs min 7 at

x =—1.

¥ l%ﬁ)

Fig. 4.2.26
27, fx)=xv2-x7 (x| =v2)
2

2(1 — x2)
/ — /2_ 2_ X —
7 ¥ V2 —x2 V2 —x2

SP CP CP SP
ff=v2 — -1 + 1 - 2
| | | I X

I I I
loc abs abs loc
f max N min / max N min
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y .0 2 x2—1
— -1 — —
30, f(x)=x-—2tan""' x, f/l(x)=1-— T2 = 21
Critical points: x = +£1.
f(x) — £o0 as x — £oo0.
-2
X
V2 CP CP
y=xv2-x2 ! + -1 N +1 +
| | X
loc loc
(-1-1 ! / max N min 7
Fig. 4.2.27
28. f(x) =x+sinx, f'(x) =14cosx >0 Hence, f has loc max —1 + % at x = —1 and loc min

f'(x) =0 at x = +7, 37, ...

f(x) — Fo0 as x — £oo.

Hence, f has no max or min values. y
y

-2 atx=1.

Qn,27)

T
el (-1.-1+%)

y=x+sinx

y =x —2tan"!|x

Fig. 4.2.30
Fig. 4.2.28
29. f(x) =x —2sinx
f(x)=1—=2cosx
CP: x= :i:% + 2nm
n=0=+1,%£2,---

alternating local maxima and minima

v 4

31. fx) =2x —sin"'x (-1<x<1
) 1
FO=2"n=

/1221

V1=

B 3 — 4x?

TV T-22VT—2 4+ 1)

3
x CP: x=:l:§, SP: (EP:) x = +£1

(=5)-+05-3)

| o

SP CP CP SP
V3 V3
S IEE T
} f | F—x
. loc abs abs loc
Fig. 4.2.29 /' max min max N min
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vt 34.
_V3
2
71 _
: 1 X
B 3
.2 _1
y=2x —sin" ' x
Fig. 4.2.31
32. f(x)= e*)‘z/z, f'(x) = —xe /2
Critical point: x = 0.
f(x) = 0as x - *o0.
CP
S0~
| X 35.
fo7 a0\
Hence, f has abs max 1 at x = 0 and no min value.
X
Fig. 4.2.32
33. f(x)=x27"
ff(x)=2""4+x(-2""1n2)
=271 —-xIn2)
CP
f 4+ 1/In2 -
} X
abs
f /" max N
11
y4 (m’eln2>
- 36.
~
y=x27*
Fig. 4.2.33

SECTION 4.2 (PAGE 222)

@) =x27, f/(x) = 2xe™* (1 — x?)
Critical points: x =0, £1.
f(x) > 0 as x > *oo.

CP CP CP
o+ -1 = 0 4+ 1 -
I I I x
abs abs abs
r 7 max N min / max N

Hence, f has abs max 1/e at x = 1 and abs min 0 at

x =0.

x>0

Fory = X
X

x
, PRnLLE I P R
fx) = o
f(x) = —o0 as x — 0+ (vertical asymptote),
f(x) — 0asx — oo (horizontal asymp-
tote).

ASY CP
0 + e -
I I x
o7 N
1
TR
X
Inx
y=—
X
Fig. 4.2.35
Since f(x) = |x + 1],
, . )1 if x > —1;
f(x)_sg“(XH)_{—l, if x < —1.

—1 is a singular point; f has no max but has abs min 0
at x = —1.
f(x) —> o0 as x — Fo0.
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y=lx+1

K,

Fig. 4.2.36

37. fx)=Ix*-1|
f(x) = 2xsgn (x* — 1)

CP: x=0
SP: x =+l
SP CP SP
- -1 + 0 - 1 +

| 1 f x
abs loc abs
VAN min / max N min

y == 1]

Fig. 4.2.37

38. f(x)=sin|x|
3t 5
_f’(x):sgn(x)cos|x|=0atx=:i:%, ig, 17”

0 is a singular point. Since f(x) is an even function, its
graph is symmetric about the origin.

CP CP SP CP CP
R b4 b4 37

/ — [ —_— — — — [

! 2 " a2~ Yt 3 2
T T T T T X
abs abs loc abs abs

FN min max N min / max min /

Hence, f has abs max 1 at x = +(4k + 1)% and abs min
—latx = £k + 3)% where k = 0, 1, 2, ... and loc

min 0 at x = 0.
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S N

y = sin |x]|
Fig. 4.2.38
39. f(x)=|sinx|
2 1
P x = £ 20T op g
f has abs max 1 at all CP.
f has abs min O at all SP.
y y = |sinx|
- ‘ T 2 X‘
Fig. 4.2.39

40. fx)=@-D -+
f@=3a -7 3@+
Singular point at x = £1. For critical points:
-DP=@+D) VP x—1=x+1=2=0,50
there are no critical points.

SP SP
o+ -1 +1 +
| |
I I
abs abs
f /! max min 7
Hence, f has abs max 22/3 at x = —1 and abs min
—223 atx = 1.
(=123 ¥
‘___/\} Y= (x— 123 — (x + 123

X

(1,223
Fig. 4.2.40

41. f(x) =x/+/x2+1. Since

2x
Vil —x ——
2Vx24+1 1 0

OE =y =T

for all x, f cannot have any maximum or minimum
value.

42. f(x) = x/+x*+ 1. f is continuous on R, and
limy_ 400 f(x) = 0. Since f(1) > 0 and f(—1) < O,
f must have both maximum and minimum values.

453
VNit - x ———
Wit y1 . 1—xt

)=

x4+ 1 NG
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CP x = +1. f(£1) = +1/+/2. f has max value 1/+/2
and min value —1/\/5.

Fig. 4.2.42
f(x) = x+/4 — x2 is continuous on [—2, 2], and
f(&£2) =0.

P = VI

23/4 — x2 B

22 —x?)
N/

CP x = +2. f(:l:ﬁ) = 2. f has maximum value 2
at x = +/2 and min value —2 at x = —/2.

f(x) = x2/+/4 —x2 is continuous on (-2, 2), and
limy—, 24+ f(x) = limy—2— f(x) = oo. Thus f can
have no maximum value, but will have a minimum value.
2x/4 — x2 — x2 _72)6

Wa—x2  8x—x]

- 4 - x2)3/2'

&)=

4 — x2

CP x =0, x = /8. f(0) = 0, and £++/8 is not in the
domain of f. f has minimum value 0 at x = 0.

f(x) = 1/[xsinx] is continuous on (0, ), and

limy_ o4 f(x) = oo = limy—,— f(x). Thus f can
have no maximum value, but will have a minimum value.
Since f is differentiable on (0, ), the minimum value
must occur at a CP in that interval.

f(x) = (sinx)/x is continuous and differentiable on R
except at x = 0 where it is undefined.

Since limy_,0 f(x) = 1 (Theorem 8 of Section 2.5), and
| f(x)] <1 for all x # 0 (because |sinx| < |x|), f cannot
have a maximum value.

Since limy— +00 f(x) = 0 and since f(x) < 0 at some
points, f must have a minimum value occurring at a crit-
ical point. In fact, since |f(x)| < 1/|x| for x # 0 and f
is even, the minimum value will occur at the two critical
points closest to x = 0. (See Figure 2.20 In Section 2.5
of the text.)

If it exists, an absolute max value is the maximum of

the set of all the local max values. Hence, if a function
has an absolute max value, it must have one or more
local max values. On the other hand, if a function has a
local max value, it may or may not have an absolute max
value. Since a local max value, say f(xp) at the point
X, is defined such that it is the max within some interval
[x —x0| < h where h > 0, the function may have greater
values, and may even approach oo outside this interval.
There is no absolute max value in this latter case.

48.

49.

SECTION 4.3 (PAGE 227)

No. f(x) = —x2 has abs max value 0, but
gx)=1fx)| = x2 has no abs max value.

1
f(x): X sin — if x>0
k X

0 if x <0
[f )] < Ix]if x > 0 so limeo4 f(x) =0 = f(0).
Therefore f is continuous at x = 0. Clearly x sin —
X

is continuous at x > 0. Therefore f is continuous on
[0, 00).

Given any & > 0 there exists x; in (0, #) and x» in (0, k)
such that f(x;) > 0 = f(0) and f(x2) < 0 = f(0).
Therefore f cannot be a local max or min value at 0.

1
Specifically, let positive integer n satisfy 2nmw > ;

1 1
> X2 =

and let x| = = .
3
2nm + 3 2nm + 7%

Then f(x;) =x; >0 and f(x2) <O.

Section 4.3 Concavity and Inflections
(page 227)

1
— ’ —
f(x)_\/)?’f(x) 2\/}5
f"(x) <0 for all x > 0. f is concave down on (0, c0).
f)=2x—x2 ff(x)=2—-2x, f'(x) =—-2<0.
Thus, f is concave down on (—o0, 00).
F)=x242x 43, f/(x) =2x+2, f"(x) =2 > 0.
f 1is concave up on (—o00, 00).

f)=x—x3 f'(x) =1-3x%

1
” — __ 32
fr) =—7x

f"(x) = —6x.
f// + 0 _
} by
f — infl —~
Fx) =10x3 = 327,
£/ (x) = 30x? — 15x4,
f(x) =60(x — x3) =60x(1 —x)(1 4+ x).
 + -1 - 0 + 1 -
I I } X
f ~— infl ~ infl — infl ~
Fx) =10x3 +3x%, f'(x) = 30x2 + 15x*,
F"(x) = 60x + 60x3 = 60x(1 + x2).
f// _ 0 +
} X
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f)=@—xH%
() = —4x(3 — x%) = —12x + 4x>,
Fo) = =12+ 12x2 = 12(x — D(x + 1).

f@) = @2+2x —xH?2,
£ =22 —2x)% 4+ 22 + 2x — x2)(=2)

= 12x(x — 2).
N
i I x
f — infl ~ infl  —
f) =G> —4)7,
f1x) = 6x(x> —4)%,
f/(x) = 6(x% —4)? +24x% (x> — 4)
=6(x% — 4)(5x% — 4).
f// + -2 — _2 + 2 _ 2 +
I }fs ? { x
f — infl ~ infl — infl ~ infl —
X S 3—x2
f(x)_x2+3’ f(x)_(x2+3)2’
2x(x2—9)
" —
f (x)_ (x2+3)3 .
.- =3 + 0 - 3 4+
{ } I x
f ~ imfl — infl ~ infl —
f(x)=sinx, f'(x)=cosx, f’(x)=—sinx.

f is concave down on intervals (2nm, (2n 4+ 1)) and
concave up on intervals ((2n — 1), 2n), where n ranges
over the integers. Points x = nm are inflection points.

f(x) =cos3x, f/(x) = —3sin3x, f’(x) = —9cos3x.
Inflection points: x = (n + %) % forn =0, £1, £2,....

. dn+1 4n+3
f is concave up on < ¢ 7 ) and concave
dn+3 4n+5
down on 3 7, 3 ).
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14.

15.
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f(x) =x 4+ sin2x,
f(x) =1+ 2cos2x,
F"(x) = —4sin2x.
2n - )m

f 1is concave up on intervals (f’ rm), and con-

2n + l)rr)
2

. . nmw
cave down on intervals (nn, . Points - are
inflection points.

f(x) =x—2sinx, f'(x) =1—2cosx, f’(x) =2sinx.
Inflection points: x = nmw for n =0, £1, £2, ...

f is concave down on ((2n—|—1)7‘r, (2n—|—2)7‘r) and concave

up on ((Zn)rr, Qn + l)n).

fx)=tan"'x, f'(x)=

1+ x%’
1 _ —2x
)= SR
o+ 0 -
f X
f — infl —~
f) =xe*, f'(x) =e* (1 +x),
f'x) =e* (2 +x).
f// _ _2 +
f X
f —~ infl —
fa)y=e™, fl(x) = —2xe ",
f(x) = e (4x? — 2).
A R B
I T X
f — infl ~ infl —
In(x? 2 — In(x?
Foy = DD gy 2 22000
X 5 X
iy = 8% 231n(x )
X

f has inflection point at x = #¢*? and f is undefined at
x =0. f is concave up on (—€3/2,0) and (¢3/2, 00); and
concave down on (—oo, —e>/2) and (0, e3/2).
2 , 2x
f@) =hA+x7), [f&x)= T2
(1+2)@) —2x2x) _ 2(1 —x?)

(1+x2)2 A +x)

') =

f// _ _ l + 1 _
I } x
f ~ infl — infl ~
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22,

23.

24,

25.

26.

www. nohandesyar . com

INSTRUCTOR’S SOLUTIONS MANUAL

F) = ()2, f1(x) = %m, 2.

(1—-1Inx)

" _ 2
fx)= 5 for all x > 0.
X

0+ e -

=

f N
3 25
) = % —d4x? 4126 - 2,

f(x) = x> —8x + 12, 28.
() =2x —8=2(x —4).

29.

f) =@ =D+ x4+ D3,

@ =310 = D7 + @ + )72,

') = =36 = DB 4 x + DA,
fO)=0x—1=—(x+1) < x=0.

Thus, f has inflection point at x = 0. f”(x) is undefined
at x = £1. f is defined at +1 and x = +£1 are also in-
flection points. f is concave up on (—oo, —1) and (0, 1);
and down on (—1, 0) and (1, 00).

According to Definition 4.3.1 and the subsequent discus-
sion, f(x) = ax + b has no concavity and therefore no
inflections.

f(x)=3x3—=36x =3, f/(x) =9(x%—4), f’(x) = 18x.
The critical points are

x=2, f"(2)> 0= local min;

x=-2, f"(-2) <0= local max.

O =x(x =22 +1=x> —dx> +4x +1
fx) =327 —8x+4=(x—2)(3x - 2)

Cp 2 2
x=2,x==
3
2
fr@ =6x=8, [’ =4>0, f’ (5)
Therefore, f has a loc min at x = 2 and a loc max at
2

X = —.

=—4<0.

3 3.

4 4

f@=x+-, ff@)=1-—=, f'(x) =8>
X x

The critical points are

x=2, f"(2)> 0= local min;

x=-2, f"(-2) <0= local max.

30.

31.
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F@ =342
X

1 3x*—1
_ 2,2 _
f/(x)—3x—;_ 5

2
f(x) =6x + -
X

! (i> >0, f <_—1> <0
V3 0 \B
Therefore f has a loc min at ——= and a loc max at

V3

4—\/5.

X , _ 1—xIn2
fx) = 2_)" fix) = T,
[ =

In2(xIn2 —2)
2% ’
The critical point is

1 1
Y = T bl (n) < 0 = local max.
n n
X
T =133
flay= A2 1o
(1 +x2)2 (1 +x2)?
CP: x = +£1
Py = (LHE0RE20 = (=322 462
1+ x2)*
-2 —dx 43 —6x + 247
- (14 x2)3 (423

1 __l "e_ _l
1y = 2,f( 1)—2-

f has a loc max at 1 and a loc min at —1.

f)=xet, f/x) =€ (1 +x), f"x) =€ 2+ ).
The critical point is x = —1.
f"(=1) > 0,= local min.

f(x)=xInx,

f/(x)=1+1Inx, CP:x:é

" 1 s 1

[ =—, f'(=)=e>0.
X e

f has a loc min at —.
e

F) = (x2—=42, f/(x) =4x3—16x, f"(x) = 12x2 - 16.
The critical points are

x=0, f”(0) <0= Ilocal max;
x=2, f”(2)>0= local min;
x=-2, f"(-2)> 0= local min.
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[ =6 -4

f/@) = 6x(x* — 4
CP:x=0,x=+2

£ (x) = 6(x% — 4)% + 24x> (x> — 4)

= 6(x> —4)(5x> — 4)

/) >0, f"(F2)=0.

f has a loc min at x = 0. Second derivative test yields
no direct information about +2. However, since f” has
opposite signs on opposite sides of the points 2 and —2,
each of these points is an inflection point of f, and
therefore f cannot have a local maximum or minimum
value at either.

F) = (x? =3)e,
) = (6 +2x = 3)e" = (x +3)(x — 1e”,

F7(x) = (x? + 4x — 1)e*.

The critical points are

x=-3, f"(-=3) <0= local max;
x=1, f”(1)> 0= local min.

fx) = xze—le
) = e 2 2x — 4x%) = 2(x — 2x3)e 2
1
CP.x=0,x=+—

2 \/E
F(x) = e 2 (2 — 20x% + 16x4)
70 >0, f” :I:L =—-<0.
P e

Therefore, f has a loc (and abs) min value at 0, and loc

(and abs) max values at =—.
V2

Since
2 .
) x if x>0
f(x)_{—xz if x <0,
we have
oo [ 2x ifx>0 _
f(x)_[—z;c if x <0~ 2™
" _ 2 ifx>0_
f(x)_[—z ifx <0 2E0x

f/(x) = 0if x = 0. Thus, x = 0 is a critical point of
f. Tt is also an inflection point since the conditions of
Definition 3 are satisfied. f”(0) does not exist. If a the
graph of a function has a tangent line, vertical or not, at
xo0, and has opposite concavity on opposite sides of xp,
the xo is an inflection point of f, whether or not f”(x¢)
even exists.

126
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Suppose f is concave up (i.e., f”(x) > 0) on an open
interval containing xp.

Let h(x) = f(x) — f(x0) — f'(x0)(x — x0).

Since h'(x) = f'(x) — f'(x0) =0 at x = xp, x = xp is a
CP of h.

Now A”(x) = f”(x). Since h”(xg) > 0, therefore h has a
min value at xg, so i(x) > h(xg) = 0 for x near xg.
Since h(x) measures the distance y = f(x) lies above the
tangent line y = f(xo) + f’(x0)(x — xo) at x, therefore
y = f(x) lies above that tangent line near xp.

Note: we must have h(x) > 0 for x near xp, x # xp,
for otherwise there would exist x; 7# xp, xX] near xg, such
that h(x1) = 0 = h(xg). If x; > xg, there would therefore
exist xp such that xo < x2 < x; and f'(x2) = f/(x0).
Therefore there would exist x3 such that xo < x3 < xp
and f’(x3) = 0, a contradiction.

The same contradiction can be obtained if x| < xg.

Suppose that f has an inflection point at xo. To be
specific, suppose that f”(x) < 0 on (a, xo) and
f”(x) > 0 on (xg, b) for some numbers a and b satis-
fying a < xp < b.

If the graph of f has a non-vertical tangent line at xp,
then f(xo) exists. Let

F(x) = f(x) — f(x0) — f'(x0)(x — x0).

F(x) represents the signed vertical distance between the
graph of f and its tangent line at xo. To show that the
graph of f crosses its tangent line at xp, it is sufficient to
show that F(x) has opposite signs on opposite sides of
X0-

Observe that F(xg) = 0, and F'(x) = f'(x) — f'(x0),
so that F'(xg) = 0 also. Since F”(x) = f”(x), the as-
sumptions above show that F’ has a local minimum value
at xo (by the First Derivative Test). Hence F(x) > 0 if
a <x <xporxg <x < b. It follows (by Theorem
6) that F(x) < 0ifa < x < xp, and F(x) > 0if

xp < x < b. This completes the proof for the case of a
nonvertical tangent.

If f has a vertical tangent at xg, then its graph necessar-
ily crosses the tangent (the line x = xp) at xp, since the
graph of a function must cross any vertical line through a
point of its domain that is not an endpoint.

fx)=x"

g)y=—x"=—f(x), n=2,3,4,...
flx)y=nx""'=0atx =0
If n is even, f, has a loc min, g, has a loc max at
x =0.
If n is odd, f, has an inflection at x = 0, and so does
8n-
Let there be a function f such that

f'xo) = f"(x0) = ... = & V(x0) =0,
F®(x0) #0

for some k > 2.
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If k£ is even, then f has a local min value at x = xg
when f® (xg) > 0, and f has a local max value at
x = xo when f(k) (xp) < 0.

If k is odd, then f has an inflection point at x = xp.

. fo) = {e*“* if x #0
0 ifx=0
—1/x2
a) lim x7"f(x) = lim (put y = 1/x)
x—0+ x—=04+ x"

= lim y”e_v"2 =0 by Theorem 5 of Sec. 4.4

y—>0o0 42.

Similarly, limy_o— x 7" f(x) = 0, and
limy—0x ™" f(x) = 0.

b) If P(x) =3, ajx/ then by (a)
1 n
lim P | — = lim x ™/ =0.
im () 7 Z lim £ ()
c) If x 20 and Pi1(¢) = 213, then

2 1
floy=Se ¥ = p (—) £
x x
Assume that f(k)(x) = P %) f(x) for some

k > 1, where Py is a polynomial. Then

1 1 1 1
FUHD () = —= P (-) )+ Px (—) Py (—) S
x X X X

1
= Py (—> fx),
X

where Pyi1(t) = tsz’(t) + Pi(¢)Pr(¢) is a polyno-
mial.

1

By induction, f™ = P, (—) f(x) for n # 0, where
n

P, is a polynomial.

d) f(0) = limy— M = }}in})h_l_f(h) =0 by

(a). Suppose that f(k) (0) = 0 for some k > 1. Then
[P — D0

h
=lim A= f®
Jim &7 ()

(k+1) 0) = li
f7770) = lim

1
= }}igbhflpk (ﬁ) fh)=0

by (b). L

Thus £ (0) =0 for n = 1,2, ... by induction.

e) Since f/(x) < O0ifx < Oand f'(x) > 0if x > 0,
therefore f has a local min value at 0 and —f has a
loc max value there.

SECTION 4.4 (PAGE 236)

f) If g(x) = xf(x) then g'(x) = f(x) + x/"(x),
g'x) =2f"(x) + xf"(x).
In general, g™ (x) = nf® D) + xf™(x) (by
induction).
Then g™ (0) = 0 for all n (by (d)).
Since g(x) < 0if x <0 and g(x) >0ifx >0, g
cannot have a max or min value at 0. It must have
an inflection point there.

We are given that

1
fx) = xzsin;, %fx;/:();
0, if x =0.
If x # 0, then
1 1
f'(x) =2xsin — — cos —
x x
1 2 1 1 1
f”(x)=25in———cos———zsin—.
X X X x X
If x =0, then
1
h%sin — — 0
f’(x):}}ig}) =0.

h

Thus O is a critical point of f. There are points x ar-
bitrarily close to 0 where f(x) > 0, for example

x = m, and other such points where f(x) < 0,

for example x = ————— Therefore f does not have
(4n +3)m

a local max or min at x = 0. Also, there are points

arbitrarily close to 0 where f”(x) > 0, for example

x = ——, and other such points where f”(x) < 0,
2n+ )m

for instance x = e Therefore f does not have con-
n

T
stant concavity on any interval (0, a) where a > 0, so 0
is not an inflection point of f either.

Section 4.4 Sketching the Graph
of a Function (page 236)

Function (d) appears to be the derivative of function (c),
and function (b) appears to be the derivative of function
(d). Thus graph (c) is the graph of f, (d) is the graph of
f', (b) is the graph of f”, and (a) must be the graph of
the other function g.
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has inflections at £2.5 and £1 (approximately).

The function graphed in Fig. 4.2(c):

is even, is asymptotic to y = 2 at 300,

is increasing on (0, 00),

is decreasing on (—oo, 0),

has a CP at x = 0 (min),

is concave up on (—1, 1) (approximately),

is concave down on (—oo, —1) and (1, co) (approxi-
mately),

has inflections at x = +1 (approximately).

The function graphed in Fig. 4.2(d):

is odd, is asymptotic to y = 0 at £oo,

is increasing on (—1, 1),

is decreasing on (—oo, —1) and (1, 00),
has CPs at x = —1 (min) and 1 (max),

(© %1 (d

mately),

must be (c).

is concave down on (—oo, —1.7) and (0, 1.7) (approxi-

is concave up on (—1.7,0) and (1.7, co) (approximately),
has inflections at 0 and £1.7 (approximately).

3. f(x) =x/(1 —x?%) has slope 1 at the origin, so its graph

g(x) = x3/(1 — x*) has slope 0 at the origin, but has the
same sign at all points as does f(x), so its graph must

Fig. 4.4.2

The function graphed in Fig. 4.2(a):

is odd, is asymptotic to y = 0 at £oo,
is increasing on (—oo, —1) and (1, 00),
is decreasing on (—1, 1),

has CPs at x = —1 (max) and 1 (min),

is concave up on (—oo, —2) and (0, 2) (approximately),
is concave down on (—2, 0) and (2, c0) (approximately),

has inflections at x = +2 (approximately).

The function graphed in Fig. 4.2(b):
is even, is asymptotic to y = 0 at o0,

is increasing on (—1.7,0) and (1.7, co) (approximately),

is decreasing on (—oo, —1.7) and (0, 1.7) (approxi-
mately),

has CPs at x = 0 (max) and +1.7 (min) (approximately),

is concave up on (—2.5, —1) and (1, 2.5) (approxi-
mately),

is concave down on (—oo, —2.5), (—1, 1), and (2.5, c0)

128

be (b).

h(x) = (x3 — x)/+/1 + x° has no vertical asymptotes, so

its graph must be (d).

k(x) = x3/y/|x* — 1] is positive for all positive x # 1, so

its graph must be (a).

Fig. 4.4.4
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The function graphed in Fig. 4.4(a):

is odd, is asymptotic to x = =1 and y = x,

is increasing on (—oo, —1.5), (—1, 1), and (1.5, c0) (ap-
proximately),

is decreasing on (—1.5, —1) and (1, 1.5) (approximately),
has CPs at x = —1.5, x =0, and x = 1.5,

is concave up on (0, 1) and (1, 00),

is concave down on (—oo, —1) and (—1, 0),

has an inflection at x = 0.

The function graphed in Fig. 4.4(b):

is odd, is asymptotic to x = +1 and y =0,

is increasing on (—oo, —1), (—1, 1), and (1, c0),
has a CP at x =0,

is concave up on (—oo, —1) and (0, 1),

is concave down on (—1, 0) and (1, c0),

has an inflection at x = 0.

The function graphed in Fig. 4.4(c):

is odd, is asymptotic to x = +1 and y =0,

is increasing on (—oo, —1), (—1, 1), and (1, c0),
has no CP,

is concave up on (—oo, —1) and (0, 1),

is concave down on (—1, 0) and (1, c0),

has an inflection at x = 0.

The function graphed in Fig. 4.4(d):

is odd, is asymptotic to y = 2,

is increasing on (—oo, —0.7) and (0.7, co) (approxi-
mately),

is decreasing on (—0.7,0.7) (approximately),

has CPs at x = £0.7 (approximately),

is concave up on (—oo, —1) and (0, 1) (approximately),
is concave down on (—1, 0) and (1, co0) (approximately),
has an inflection at x = 0 and x = 1 (approximately).

O =1 fEH=0 f@)=1

limy 00 f(x) =2, limy, oo f(x) =—1

SP CP
f + 0 — 1 +
f | X
loc loc
r s max N min /"
f// + 0 + 2 _
i i x

0 must be a SP because f” > 0 on both sides and it is a
loc max. 1 must be a CP because f” is defined there so
f/ must be too.

SECTION 4.4 (PAGE 236)

According to the given properties:
Oblique asymptote: y =x — 1.

Critical points: x = 0, 2. Singular point: x = —1.
Local max 2 at x = 0; local min O at
x =2
SP CP CP
o+ -1 + 0 - 2 +
{ I } x
loc loc
r 7 7 max N min
Inflection points: x = —1, 1, 3.
o+ -1 - 1 4+ 3 -
| | I X

f — inl ~ infl — infl ~

Since lim (f(x) 1 —x) — 0, the line y = x — 1 is an
x—+00

oblique asymptote.

Fig. 4.4.6
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y=@a =17

y = 6x(x? —1)°
=6x(x — 1)2(x + 1)2

V' =6[(x* = D% + 4x2 (x> = 1)]
=6(x2—1)5x2—1)
=6(x — D(x + (+/5x — D(/5x + 1)

From y: Asymptotes: none. Symmetry: even. Intercepts:
x ==+l
From y": CP: x =0, x = 1. SP: none.

Y — -1 — 0 + 1 +
| | | x
YN\ /
From y”: y”:Oatx::I:l,x::i:L.
NG
" _ 1 I
yoo+ -1 = T 5 I+

y — infl ~ infl — infl ~ infl —

y=x(x2-12% y = x2-DGx2-1), y" = 4x(5x2 =3).
From y: Intercepts: (0,0), (1,0). Symmetry: odd (i.e.,

about the origin).
1
From y’: Critical point: x = +1, +—.
V5

CP CP CP CP
1 1
Yo+ -l - —— 4 — = 1 4
NG NE]
f f | | X
loc loc loc loc
Y /" max min /" max N min
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From y”: Inflection points at

x =0, :I:\/g.

y=x(?—17
Fig. 44.8
2—-x 2 , 2 , 4
y= =--1 YyY=—-=5, Y =3
X X X X7
From y: Asymptotes: x =0, y = —1.
Symmetry: none obvious.
Intercept: (2, 0). Points: (—1, —3).
From y’: CP: none. SP: none.
ASY
yooo- 0 -
. X
Yoo\ N
From y”: y” = 0 nowhere.
ASY
y// _ 0 +
| by
y —~ ~
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(=1.-3)

Fig. 4.4.9

/

-1 2 2
10. y=2""—1

Other points: (—2, 3).
From y’: No critical point.

ASY
y + -1

— — " — .
Y+l x+1) T Tar)s
From y: Intercepts: (0, —1), (1,0). Asymptotes: y = 1
(horizontal), x = —1 (vertical). No obvious symmetry.

y /! /!

From y”: No inflection point.

Fig. 4.4.10

SECTION 4.4 (PAGE 236)

3
1L y= 1+x
;A +x3x2 —x3 3x? 4207
B (1 + x)?2 T (14 x)?
, (L+x)2(6x + 6x%) — Bx? + 2x*)2(1 + x)
N (14 x)*
~6x(1+x)? —6x? —4x?  6x +6x2 4243
B (1 +x)3 B 1+ x)3
_ 2x(3 4 3x + x2)
 (+x)
From y:
Asymptotes: x = —1. Symmetry: none.

Intercepts (0, 0). Points (—3/2, 27/4).
3

From y' CP: x =0, x = —=.

2
CP ASY Cp
y - -3 + -1 + 0 +
| | |
I I I
YN e S s

From y”: y” =0 only at x = 0.

12. y=

ASY
y’ + -1 - 0 +
| |
I I
y — — infl -
y A
YT +x
(+3)
24 |
x=—1
Fig. 4.4.11
1 , —2x ., 6x2-—38
—, ) = Y= :
4+ x2 (4 +x2)? (4 +x%)3

From y: Intercept: (0, %). Asymptotes: y = 0 (horizon-
tal). Symmetry: even (about y-axis).
From y’: Critical point: x = 0.

CP
Y + 0 -
f X

v s N
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From y”: y" =0at x = +—.
V3

y// _|_ — i — i +
¥3 V3
I I
y = infl ~ infl —

=2
Fig. 4.4.12
1 2x
1B, y=— =
M A R
2 8x2 4 4 6x2

"
Y Teoer Tamey T a-an
From y: Asymptotes: y = 0, x = £+/2.
Symmetry: even.
Intercepts (0, %). Points (£2, —%).
From y": CP x = 0.

ASY CP ASY
R, S S, B

| | |

I I I
y N\ N /

y” . y” = 0 nowhere.
ASY ASY

Y = 3+ B -
| | X

y ~—~~ ~— —~~

Fig. 4.4.13
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x , 2+1, 2x(x?+3)
YEa Y T oY T ey
From y: Intercept: (0,0). Asymptotes: y = 0 (horizon-
tal), x = %1 (vertical). Symmetry: odd. Other points:
2, %), (=2,-3).
From y’: No critical or singular points.

ASY ASY

’ -1 - 1 -
|
I

y oo\ N N

From y”: y” =0 atx =0.

x:—lf

x2 1

x2—1 x2

;. —2x
YT
B 2(x2 —D2—x2(x2—1D2x  203x2+1)

15. y=

N (2 — 1 w1
From y: Asymptotes: y =1, x = &1. Symmetry: even.
4
Intercepts (0, 0). Points | 2, 5)

From y": CP x =0.

ASY CP ASY
y 4 -1 + 0 - 1 =

| | = x
v/ S Joc N
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From y”: y” = 0 nowhere.

y// + _l _

y=I1
i x'
x=—1 | :
: rx=1
Fig. 44.15
16 v X X3, 26?43
Sy L PRy R e

From y: Intercept: (0,0). Asymptotes: x = *£1 (ver-
tical), y = x (oblique). Symmetry: odd. Other points:

(iﬁ, i%)
From y’: Critical point: x =0, =£+/3.

CP ASY CP ASY CP

Y 4 =3 - -1 — 0 - 1 = /3 +
| | | |
I I I

I
v /odoe NN N o

From y”: y” =0 at x = 0.

ASY ASY
y' - -1 4+ 0 - 1
| |
| I

SECTION 4.4 (PAGE 236)

y
V3| L
T RS ;
ix:l
Fig. 4.4.16
3 3
X X7 +x—x X
17. = - —x—
YT x2+1 T
;L (x2 4 1)3x2 — x32x _ x* 4 3x2 _ x2(x2 +3)
B 2+ 1)? D2 (2412
- (x% 4+ 12 (4x3 + 6x) — (x* +3x2)2(x2 + 1)2x
(x24+1D*
. 4x5 + 10x3 4 6x — 4x° — 12x3
- (x2 4+ 1)3
_ 2x(3—x?)
CEEEE

From y: Asymptotes: y = x (oblique). Symmetry: odd.
Intercepts (0, 0).

Points (:l:\/g, :I:%«/g).

From y": CP: x = 0.

CP

From y”: ¥/ =0at x =0, x = ++/3.

Y 4+ =3 - 0 + V3 -
| | | X
I I I

y — infl ~ infl — infl ~
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Symmetry: none.
Intercepts (0, —4), (£2, 0).
From y’: CP: none.

Y= AT / ASY
y + -1 +
3v3
(ﬂ’T) I X
. y /
X
3J3)
—J3,-22
( V3-S From y”: y” = 0 nowhere.
ASY
///y:X y// + _l _
| by
y ~— —~
Fig. 4.4.17 P 1
2 2 2(1 —3x2 |
18. y= Zx Ly = 2x - " _ (2 x)' |
x2+1 x2+1 (x24+1)3 3
From y: Intercept: (0,0). Asymptotes: y = 1 (horizon- 3
tal). Symmetry: even.
From y’: Critical point: x = 0. 3
=
CP i
y' - 0 +
: .
YN w7
From y”: y” =0 at x = :I:L.
V3
o _L ) L B Fig. 4.4.19
N
I I
y ~ il — il ~ 0, yX T2 % . —2B3x2+1)
B L P @2 — 1)
Y From y: Intercept: (0,2), (£+/2,0). Asymptotes: y = 1
,,,,,,,,,,,,,,,,,, Rt FOS (horizontal), x = +1 (vertical). Symmetry: even.
_ x? From y’: Critical point: x = 0.
y= x2+1
‘ . ‘1 ASY CP ASY
_— —_ X
B A o= _|1 — (|) + I1 +
T T T X
Fig. 4.4.18 loc
2
—4 3
B y= = - x+1 From y”: y” = 0 nowhere.
L 3 (41?43
Y G+ (+1)2 ASY ASY
" 6 y/ - _l + l -
y = TR | ! X
(x +1)° T T
From y: Asymptotes: y = x — 1 (oblique), x = —1. y ~ ~ ~
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Fig. 4.4.20

x3 —4x _x(x—=2)(x +2)

YT T x2 -1
, (2= DGx? —4) — (xF —4x)2x
B (2 = 1)?
3xt — Tx2 + 4 —2x* + 8x2
B (2 =12
_ a2 +4
G
L (2= D23 4+ 2x) — (¢ + x4 4)2(x% — D2x
v PR
4x% —2x3 —2x —4x° —4x3 — 16x
B =13
_—6x3 —18x x2+3
GG

From y: Asymptotes: y = x (oblique), x = %1.
Symmetry: odd. Intercepts (0, 0), (£2,0).
From y’: CP: none.

yo o+ -1+

y / / /

From y”: y” =0 at x = 0.

y + -1 - 0 +

ASY ASY
1
t

y ~— —~

22,

SECTION 4.4 (PAGE 236)

Fig. 4.4.21
2
xc—1 1 2 6
= :1——, /:—, ”:——,
Y x2 2 =3 x4

From y: Intercepts: (%1, 0). Asymptotes: y = 1 (hori-
zontal), x = 0 (vertical). Symmetry: even.
From y’: No critical points.

y
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =l
—1 1 x
_ x2—1
y= 2
Fig. 4.4.22
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x° 2x3 —x

23. y= (x2—1)2:x+(x2—1)2
= D25t — %22 — 1)2x
B e

5x0 —5x* —4x®  x*(x2-—3)
BT R CER S
(x2 = 13 (6x —20x3) — (x® — 5xH)3(x2 — 1)?2x

(2 = 1)°
_6x7 —26x7 4 20x% — 6x7 + 30x7
B (x2 = D*
4x3(x% +5)

N
From y: Asymptotes: y = x, x = £1. Symmetry: odd.
Intercepts (0, 0). Points (:l:«/g, :l:%«/g)

From y': CP x =0, x = /5.

/

" __

CP ASY CP  ASY CP
Yy + V5 - -1 + 0 + 1 -5 +
I I I I I x
v N s N e
From y”: y” =0if x = 0.
ASY ASY
y' - -1 - 0 + 1 +
} } } x
y o~ ~ infl — -
Fig. 4.4.23
24, y= @ —3x)2, y = _w,
X X
= 202 — 120 +24)  2(x — 6+ 2V3)(x — 6 - 2V3)
x3 x3 '

From y: Intercept: (2,0). Asymptotes: y = 0 (hori-
zontal), x = 0 (vertical). Symmetry: none obvious. Other
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points: (=2, —2), (=10, —0.144).
From y’: Critical points: x =2, 6.

ASY CP CP
! 0 — 2 + 6 —
I i I x
loc loc
N min /7 max N

From y”: y/ =0 at x = 6 £ 2./3.

Yy N\

y' — 0 + 6423 — 6-23 +
i i I X
y o~ — infl —~ infl —

2-x)?
= 3

X
(6,2/27)

(—10,-0.144)

Fig. 4.4.24

1 1

T4 x(x-—2(x+2)

, o 3x?—4  3x2—4
S P Y - )

(3 —4x0)2(6x) — 3x2 — H)2(x — 4x)(3x2 — 4)
B (x3 — 4x)*

6x* — 24x% — 18x* +48x2 — 32

(x3 —4x)3

1262 = 1) +20

x3(x2 —4)3
From y: Asymptotes: y =0, x =0, =2, 2.
Symmetry: odd. No intercepts.

Point (:I:Z:i:m)(:iﬁ:tl)
oints: —, ), ,—

V3 3J§2 15
From y: CP: x = +—.

V3

y:

ASY CP ASY
2
3

) - -

The S
|

-+ ™
|

+ 0 +
|
1

| |
I

loc loc
N min / max N
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From y”: y” = 0 nowhere.

Fig. 4.4.25
X X
26. = = s
T e x—2 T 2+oa -1
V= —(x?+2) , 2% +6x +2)

Gr2a -2 T aria -1

From y: Intercepts: (0, 0). Asymptotes: y = O (horizon-
tal), x = 1, x = —2 (vertical). Other points: (-3, —%),
2, 3)

From y’: No critical point.

From y”: y" = 0if f(x) = x> 4+ 6x +2 = 0. Since
f'(x) = 3x2 4+ 6 > 6, f is increasing and can only
have one root. Since f(0) = 2 and f(—-1) = -5,
that root must be between —1 and 0. Let the root be

SECTION 4.4 (PAGE 236)

r X
ix=1
Fig. 4.4.26
3-3x2+1 31
27, y=t o2
X x X
y,_i_i:3(x2—l)
xz x4 x4
, 6 12 2—x?
STa T T
From y : Asymptotes: y = 1, x = 0. Symmetry: none.
Intercepts: since limy—.0+ y = 00, and limy_,o— y = —o0,

there are intercepts between —1 and 0, between O and 1,
and between 2 and 3.

1
Points: (—1,3), (1, —1), 2, —3), G, 77)"
From y": CP: x = +1.

CP ASY CP
Yy 4 -1 — 0 - 1 +
f f 1 X
loc loc
Y/ max N min /"
From y”: v/ =0 at x = £/2.
ASY
Yo+ V2 - 0+ V2 -
| f | X
y ~ infl —~ — infl —~
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29. y=x+2sinx, y =1+2cosx, y’=—2sinx.
y=0ifx=0

e 0ifx e — ) ey alT
yV=0ifx = 2,1.6:.,x_:|:3:|:2m'r

v'=0if x = tnnw
From y: Asymptotes: (none). Symmetry: odd.

Points: (iz?n i—+f> (i? i_+f>

47 4w
+—, +— —+/3).
(5 +5-)

, 2w
From y": CP: x = :l:? +2nm.

CP CP CP CP CP
Fig. 4.4.27 y - oy 4oy o4 oz 4y
I t 1 I I X
loc loc loc loc loc
Y N min max N min /" max N min

28. y=x+sinx, y'=1+cosx, y/ = —sinx.
From y: Intercept: (0, 0). Other points: (km, k), where
k is an integer. Symmetry: odd.
From y’: Critical point: x = (2k + 1)7, where k is an

From y”: y” =0 at x = +nmx.

. v+ 27 — —m + 0 — @w + 27 -—
nteger. | | | | |
T T T T T X
y — infl ~ infl — infl ~ infl — infl ~
CP CP CP
ff + -~ 4+ T - 3 + v 4
I I I x
o/ / / /
From y”: y” = 0 at x = km, where k is an inte- ‘
ger.
y 4+ 27 — —m + 0 — 7w + 2m — ﬂ 2‘{
| | | | | 1 4n 4
1 1 1 1 T x y=x 3 3
y — infl ~ infl — infl ~ infl — infl ~ g
y=x+2sinx
y
2w
Fig. 4.4.29
b y=x+sinx
ﬂ o x 30. y= e*)‘z, y = —2xe*x2, vy = (4x? — 2)67)(2.
From y: Intercept: (0, 1). Asymptotes: y = 0 (horizon-
tal). Symmetry: even.
From y’: Critical point: x = 0.
CP
Y + 0 -
f X
Fig. 4.4.28 y s N

138



31.

32,

1
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2

y” + __L_ — _L_ +
Y2 V2
I I

y - infl —~ infl —

—1

2
Fig. 4.4.30

y=xet, y=e(+x), Y =2+
From y: Asymptotes: y =0 (at x = —00).
Symmetry: none. Intercept (0, 0).

. 1 2
Points: | —1,—— |, | =2, -
e e

From y": CP: x = —1.

CP
N
. X
abs
From y”: y" =0atx = -2
y// _ _2 +
} X

(x =0,

y = e *(cosx —sinx), y' = —2e ¥ cos x.
From y: Intercept: (km,0), where k is an integer.
Asymptotes: y =0 as x — oo.

y=e sinx

33.

SECTION 4.4 (PAGE 236)

From y’: Critical points: x = % + km, where k is an

integer.
Cp CP CP
"o+ b4 Sw n o
y - - = - _
, 4 4 4

abs abs loc
y / max N min 7 max N

From y”: y/ = 0atx = (k + %)n, where k is an
integer.
b4 3n Sm
Y0 - = o+ = - = 1
S i M

N\ y=e ¥ sinx
% St 3m
1 T 4 2
" ———
2
Fig. 4.4.32

2
y::XZex

y = efxz(2x —2x%) =2x(1 - xz)eﬂc2
y' = e (2 — 6x% — 2x(2x — 2x%))

=2 —10x% + 4xhHe ™
From y: Asymptotes: y = 0.
Intercept: (0, 0). Symmetry: even.

1
Points (:l:l, —)
e

From y: CP x =0, x = £1.

CP CP CP
y + -1 — 0 + 1
| ] |
1 I |
abs abs abs
Y /" max N min max
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. " __ : Inx 1—Inx
From y”: y" =0 if 35, y=—-, y=—"HF
2t —5x2 +1=0 X x2

1
, 5+425-8 x2 (== )= —=Inx)2x
2= y X 2Inx —3
4 y = 4 T3
_ 5+V17 From y: Asymptotes: x =0, y =0.

Symmetry: none. Intercept: (1,0).

4
1 3
54+417 5 —4/17 s 3/2
S0 x = 4a =+ ’%,x:ib::l: ,T' Points: (e, E)’ (e/,ZeS/z).

From y": CP: x = e.

' + —a — —b + b - a + ASY Cp
| } | } x y 0 + e _
y — infl ~ infl — infl ~ infl — | | X
b
y 7 max N
From y”: v/ =0 at x = &3/2.
ASY
y// 0 _ 63/2 +
f I x
y —~ infl  —
. y4
Flg. 4.4.33 (e,1/e)
y o
1 2312 X
34, y=xZe, y = 2x +xH)e* = x(2 + x)e”,
V= @2 +4x +2)ef = (x +2 - V2)(x + 2+ V2)e .
From y: Intercept: (0, 0). Inx
Asymptotes: y =0 as x - —oo. y=—
From y’: Critical point: x =0, x = —2. X
Cp CpP
yooo+ -2 - 0 +
lI kl) x Fig. 4.4.35
oc abs
y “ max N min 7 Inx
36. y=— (x > 0),
X
From y//: y// —Qatx=-2+ ﬁ y, _ 1-— 231nx’ y” _ 61n;c4— 5.
From y: Intercepts: (1,0). Asymptotes: y = 0, since
i Inx 0. and 0. si i Inx
im —- =0, and x =0, since lim — = —o0.
Yo+ 2-V2 - 2442+ x=o0 x2 =0+ x?
} } X From y’: Critical point: x = ¢!/2.
y o~ infl —~ infl N cp
y o0+ e -
y } } X
abs
(—2.40-2) y / max N
y=x2e From y”: y” =0 at x = &/,
: i 7 0 _ 5/6
-2-4/2 —24v2 x Y | el + X
I I
Fig. 4.4.34 y ~ infl  —
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y
1 ;5/6
_ Inx
Y=
Fig. 4.4.36
1 20—1/2
3. y=—s=d-x)
vVa—X
1 X
r_ - W 2\=3/2, _
y = 2(4 x7)7( 2)6)—7(4_)62)3/2
3
(4 —x2)3/2 — xS = )2 (—2x)
" o__
= @ —x2)3
. 4+ 2x2
- (4 — x2)5/2

From y: Asymptotes: x = +2. Domain -2 < x < 2.

Symmetry: even. Intercept: (O, %).
From y": CP: x = 0.

ASY CP ASY
y' -2 — 0 + 2
I I }
abs
y N min

From y”: y” = 0 nowhere, y” > 0 on (-2, 2).
Therefore, y is concave up.

X

Fig. 4.4.37

38.

39.

SECTION 4.4 (PAGE 236)

— ;C LY = (2 1),y = 3 (x4 )2,
X

From y: Intercept: (0,0). Asymptotes: y = 1 as

x — 00, and y = —1 as x — —oo. Symmetry: odd.

From y’: No critical point. y > 0 and y is increasing

for all x.

From y”: y" =0 atx =0.

y=0?-D"

2
¥ = 5x(xz —1)2

2 2
y' = §[<x2 N §x<x2 — 1)73P2x]

2 5 o5 x?
- _Z B DV N (N T
3(x ) (+ 3

From y: Asymptotes: none.
Symmetry: even. Intercepts: (£1,0), (0, —1).
From y": CP: x =0. SP: x = +1.

SP CP SP
Yy — -1 — 0 4+ 1 +

| | | x
Y\ abs /

From y”: y” = 0 nowhere.

y// _ _1 + 1 _

y ~ infl — infl ~
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y=G2 -1l

Fig. 4.4.39

40. According to Theorem 5 of Section 4.4,

lim xInx =0.
x—>0+

Thus,

limxIn|x| = lim xlnx =0.
x—0 x— 0+

If f(x) = xIn|x| for x # 0, we may define f(0) such
that f(0) = lin(l)xln |x| = 0. Then f is continuous on
x—

the whole real line and

1
f"(x) = —sgn (x).

f'@) =Inlx|+1,
[x]

From f: Intercept: (0, 0), (+1,0). Asymptotes: none.
Symmetry: odd.

1
From f’: CP: x =+—. SP: x =0.
e

CP SP CP
/ L _ 1
o+ 0 +
I | ot x
£ e N N

142
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y =xIn|x]|
Fig. 4.4.40
sin x
41. =0 is an asymptote of y = ——.
y ymp YET e

Curve crosses asymptote at infinitely many points:
x=nwx (n=0,x1,%2,...).
v sinx
| YT 2

YT

Fig. 4.4.41

Section 4.5 Extreme-Value Problems
(page 242)

1. Let the numbers be x and 7 — x. Then 0 < x < 7. The
product is P(x) = x(7 — x) = 7x — x2.
PO) = P(7) =0and P(x) > 0if 0 < x < 7. Thus
maximum P occurs at a CP:

0 ap 7—-2x = !
=—=T-2x=x=—.
dx 2

The maximum product is P(7/2) = 49/4.
8
2. Let the numbers be x and — where x > 0. Their sum is
X
8
S=x+—. Since S - o0 as x — oo or x — 0+, the
X

minimum sum must occur at a critical point:

ds 8
0=—=1—-— =x=2v2.
dx x2
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8
Thus, the smallest possible sum is W2+ — = 42,

232

Let the numbers be x and 60 — x. Then 0 < x < 60.

Let P(x) = x2(60 — x) = 60x2 — x3.

Clearly, P(0) = P(60) =0 amd P(x) > 0if 0 < x < 60.
Thus maximum P occurs at a CP:

dP 2
0= — =120x — 3x“ =3x(40 — x).
dx

Therefore, x = 0 or 40.
Max must correspond to x = 40. The numbers are 40
and 20.

Let the numbers be x and 16 — x. Let

P(x) = x3(16 — x)>. Since P(x) - —o0 as x — 00,
so the maximum must occur at a critical point:

0= P'(x) =3x*(16 — x)° — 5x°(16 — x)*
=x%(16 — x)*(48 — 8x).
The critical points are 0, 6 and 16. Clearly,

P(0) = P(16) =0, and P(6) =216 x 10°. Thus, P(x) is
maximum if the numbers are 6 and 10.

Let the numbers be x and 10 — x. We want to minimize
Sx)=x>+10-x)? 0<x<10.
S(0) = 100 and S(10) = 1,000. For CP:
0=8(x) =3x> —2(10 — x) = 3x% + 2x — 20.
The only positive CP is x = (=2 + /4 + 240)/6 ~ 2.270.

Since S§(2.270) ~ 71.450, the minimum value of § is
about 71.45.

If the numbers are x and n — x, then 0 < x < n and the
sum of their squares is

Sx) =x>+n—x)%
Observe that S(0) = S(n) = n2. For critical points:
0=5(x)=2x—-2(n—x)=22x —n) = x =n/2.

Since S(n/2) = n2/2, this is the smallest value of the
sum of squares.

Let the dimensions of a rectangle be x and y. Then the
area is A = xy and the perimeter is P = 2x + 2y.
Given A we can express

2A
P=Px)=2x+—, 0 < x < 0).
X

SECTION 4.5 (PAGE 242)

Evidently, minimum P occurs at a CP. For CP:

dPpP 2A )
():_:2__2 = x"=A=xy=>x=y.
dx X

Thus min P occurs for x =y, i.e., for a square.

Let the width and the length of a rectangle of given
perimeter 2P be x and P — x. Then the area of the rect-
angle is

Ax) =x(P —x) = Px — x2.

Since A(x) — —o0 as x — oo the maximum must
occur at a critical point:

0 dA P—-2x = P
= — = — 22X X = —
dx 2

P
Hence, the width and the length are £l and
P P
(P - =) = > Since the width equals the length, it

is a sqare.

Let the dimensions of the isosceles triangle be as shown.
Then 2x + 2y = P (given constant). The area is

P 2
A=xh=x/y2—x2=x (5—)6) —x2.

Evidently, y > xso0<x < P/4. If x =0 or x = P/4,
then A = 0. Thus the maximum of A must occur at a
CP. For max A:

dA P2 Px
0=— =,/ — —Px— ———,
dx 4 P2
4

I P
ie, — —2Px — Px=0,o0or x = Y& Thus y = P/3 and

the triangle is equilateral since all three sides are P/3.

Fig. 4.5.9

10. Let the various dimensions be as shown in the figure.

Since & = 10sin# and b = 20cos 6, the area of the
triangle is

A(9) = $bh = 100sin 6 cos 6
= 50sin26 f0r0<0<%.
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Since A(l) - 0as 0 — 0 and 6 — %, the maximum Since
must be at a critial point: d2pP _oR2

=@y 0

0=A'(0) =100c0s20 =20 == = 60 =

o]

T
1
Hence, the largest possible area is therefore P(x) is concave down on [0, R], so it must

2R
- have an absolute maximum value at x = ﬁ The largest
_ . TN\| _ 2
A(/4) = 50sin |:2 (4 )] =350m*". perimeter is therefore
(Remark: alternatively, we may simply observe that the
largest value of sin26 is 1; therefore the largest possible (

2
area is 50(1) = 50 m?.) Z_R) =4 (2_R> +./R2— AR" _ 10R units.

V5 V5 5 V5
/R2_x2
10 Y 10 N
0 6 -
b/2 b/2
Fig. 4.5.10
Let the corners of the rectangle be as shown.
The area of the rectangle is A = 2xy = 2x+/R% — x2 (for Fig. 4.5.12
0<x<R).
If x =0 or x = R then A = 0; otherwise A > 0.
Thus maximum A must occur at a critical point:
dA 2
0="Cc2|VR -2 - | RP—2?=0,
dx R2 — )C2
Thus x = —= and the maximum area is
2
R R2 13. Let the upper right corner be (x, y) as shown. Then
2—./R? — 5 = R? square units. 2
V2 x>0and y=>b,/1——,s0x <a.
y a2
The area of the rectangle is
L)
x2
SR A(x) =4dxy = 4bx |1 — — O <x<a).
a
x x'
Fig. 4.5.11 . .
Clearly, A = 0 if x = 0 or x = a, so maximum A must

Let x be as shown in the figure. The perimeter of the occur at a critical point:
rectangle is 252

_dA x? 2

P(x) =4x + 2V R?2 — x2 0<x<R). 4b |1 - = —

0= — =
dx a? 2
For critical points: 2.1 — —
a

dP —2x x2  x2 a b
= — =4 _ [ — — _
0 I + o Thus 1 2 aZ_O andx_ﬁ. Thusy—ﬁ.
2R a b
S2/R2 —xl=x=x=—. The largest area is 4— —— = 2ab square units.
V5 V22
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S}
<
[N}
<

QNl =
+

!
Il

(x,y)

Fig. 4.5.13
14. See the diagrams below.
a) The area of the rectangle is A = xy. Since

y b
a—x a

:>y=b(a—x).

Thus, the area is
bx
A=Ax)=—(a—x) 0O <x<a).
a

For critical points:

o _b _a
0=A(x)=—-(a—2x) = x=—.
a 2

2
Since A”(x) = —— < 0, A must have a maxi-
a

a
mum value at x = —. Thus, the largest area for the

. 2
rectangle is

b sa a ab .
- (—) a — — | = — square units,
a \2 2 4

that is, half the area of the triangle ABC.

C

C a B

Fig. 4.5.14(a) Fig. 4.5.14(b)

(b) This part has the same answer as part (a). To see
this, let CD L AB, and solve separate problems for
the largest rectangles in triangles ACD and BCD
as shown. By part (a), both maximizing rectangles
have the same height, namely half the length of CD.
Thus, their union is a rectangle of area half of that

of triangle ABC.

15.

16.

17.
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NEED FIGURE If the sides of the triangle are 10 cm,
10 cm, and 2x cm, then the area of the triangle is

A(x) = x+/100 — x2 cm?, where 0 < x < 10. Evi-
dently A(0) = A(10) =0 and A(x) > 0 for 0 < x < 10.
Thus A will be maximum at a critical point. For a criti-
cal point

0=A/(x)=\/100—x2—x(

100 — x% — x?

/100 — x2

1
(=
24/100 — x2 ( x))

Thus the critical point is given by 2x2 = 100, so
x = +/50. The maximum area of the triangle is
A(W50) = 50 cm?.

NEED FIGURE If the equal sides of the isosceles trian-
gle are 10 cm long and the angles opposite these sides
are 6, then the area of the triangle is

1
A@O) = 5(10)(10 sinf) = 50sinf cm?,

which is evidently has maximum value 50 cm?> when

0 = m/2, that is, when the triangle is right-angled. This
solution requires no calculus, and so is easier than the
one given for the previous problem.

Let the width and the height of the billboard be w and

h m respectively. The area of the board is A = wh. The
printed area is (w — 8)(h —4) = 100.

00 100
Thus h =4 + andA:4w+—w, (w > 8).
w—38 w—8

Clearly, A — oo if w — o0 or w — 8+. Thus minimum
A occurs at a critical point:

O_d_A_4+ 100 100w
T dw w—8 (w—28):2
100w = 4(w? — 16w + 64) + 100w — 800
w2 — 16w —136=0
16 + /300
w=———— =8+ 10v/2.

Since w > 0 wel(l)lg)ust have w = 8 + 10+/2.
Thus h =4+ —— =4+ 5v2.
10+/2

The billboard should be 8 + 10+/2 m wide and 4 + 5+/2
m high.
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W

Fig. 4.5.17

Let x be the side of the cut-out squares. Then the vol-
ume of the box is

V(x) = x(70 — 2x)(150 —2x) (0 < x < 35).

Since V(0) = V(35) = 0, the maximum value will occur
at a critical point:

0= V'(x) = 4(2625 — 220x + 3x2)
= 43x — 175)(x — 15)

175
=x=15o0r =

The only critical point in [0, 35] is x = 15. Thus, the
largest possible volume for the box is

V(15) = 15(70 — 30)(150 — 30) = 72, 000 cm’.

150
I L]
X 150—2x
;7072x 70
T [
Fig. 4.5.18

Let the rebate be $x. Then number of cars sold per
month is

2000 + 200 (SX—O) = 2000 + 4x.
The profit per car is 1000 — x, so the total monthly profit
is

P = (2000 + 4x)(1000 — x) = 4(500 + x)(1000 — x)
= 4(500, 000 4 500x — x?).

146
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For maximum profit:

dpP
0=— =4(500 — 2x) = x = 250.
dx
2
(Since e —8 < 0 any critical point gives a local
X

max.) The manufacturer should offer a rebate of $250 to
maximize profit.

If the manager charges $(40+x) per room, then (80— 2x)
rooms will be rented.

The total income will be $(80 — 2x)(40 + x) and the total
cost will be $(80 — 2x)(10) + (2x)(2). Therefore, the
profit is

P(x) = (80 — 2x)(40 + x) — [(80 — 2x)(10) + (2x)(2)]

= 2400 4 16x —2x>  for x > 0.
If PP(x) = 16 — 4x = 0, then x = 4. Since
P’(x) = —4 < 0, P must have a maximum value at
x = 4. Therefore, the manager should charge $44 per
room.

Head for point C on road x km east of A. Travel time is

V122 + x2 " 10 —x
15 39

7)) =2+ 19 o5 n
15 739 s

V244
T(10) = ~ == = 1.0414 hs

For critical points:

We have

_dT 1 x 1
Tdx 1512252 39
= 13x =5y 122 + x2

=132 -5 =5?x12=x=5

13 5 T(0)
T(5) = — + — = 0.994
®)=13+135 0999<{T(10)’

(Or note that

2
2 12— — >
T 1 V122122
dr? 15 122 + x2
122
=— >0

15(122 + x2)3/2

so any critical point is a local minimum.)
To minimize travel time, head for point 5 km east of A.
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24,

Fig. 4.5.21

This problem is similar to the previous one except that
the 10 in the numerator of the second fraction in the ex-
pression for T is replaced with a 4. This has no effect
on the critical point of 7, namely x = 5, which now lies
outside the appropriate interval 0 < x < 4. Minimum T
must occur at an endpoint. Note that

T(0) = 12+ 4 = 0.9026
15039

1
T@4) = E\/ 122 + 42 = 0.8433.

The minimum travel time corresponds to x = 4, that is,
to driving in a straight line to B.

Use x m for the circle and 1 — x m for square. The sum
of areas is

472
2 2
X (I —x)
= — 0<x<1
& O=x=D
1 1
Now A(0) = —, A(1) = — > A(0). For CP:
16 4
O_dA_x l—x:> 1+1 _1:>_ T
“dx 2 8 "\ T8) T8 T T ara
Si A ! + 0, the CP gi local mini
1n —_— = — — >0, 1 minimmum
ce > =5-+g e CP gives loca u
for A.

a) For max total area use none of wire for the square,
ie., x = 1.
T 4

b) For minimum total area use 1 — —— = m
44 44m

for square.

25.
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1 metre

s

x=C=2nr

l—x=P=4s

Fig. 4.5.23

Let the dimensions of the rectangle be as shown in the
figure. Clearly,

x =asinf +bcosH,
y=acos6f + bsinf.
Therefore, the area is
A@O) =xy
= (asinf + bcosH)(acosh + bsinb)
= ab + (a® + b*) sin 6 cos O

1
=ab+ (@ +b)sin20  for 06 < %
If A/(0) = (@ + b%)cos26 = 0, then 6 = % Since
A"(®) = —2(a® + b*)sin20 < 0 when 0 < 0 < %
therefore A(f) must have a maximum value at 8 = %

Hence, the area of the largest rectangle is

A(Z) =ab+ 5@ +1sin (%)

1 1
=ab + E(a2 + bz) = E(a + b)2 Sg. units.

a
(Note: x =y = — 4+ —
y \/z

containing the given rectangle with sides a and b, has
largest area when it is a square.)

indicates that the rectangle

Fig. 4.5.24

Let the line have intercepts x, y as shown. Let 6 be an-
gle shown. The length of line is

9 3
L

cos6

L=

T
0<6 < —).
sin @ O<6< 2)

147



26.

www. nohandesyar . com

SECTION 4.5 (PAGE 242)

Clearly, L — 00 if § — 0+ or 6 — %—.

Thus the minimum length occurs at a critical point.
For CP:

dL  9sin@  +/3cosé 3 1)\?
0=—=—  ——— =St b=—
dd  cos?9 sin2 @ V3
b4
=60=—
6
Shortest line segment has length
9 3
L:—+£=8\/§units.
V320 172

The longest beam will have length equal to the minimum
of L = x 4 y, where x and y are as shown in the figure
below:

_a B b
" cos@’ " sing’
Thus,
b
L=LO) =2 + 2 0<0<2).
cosf  sinf 2

Fig. 4.5.26
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If L'(#) =0, then
asinf  bcos6
—— — —— =0
cos2f  sin? 6
N asin39—bcos36_0
cos2 sin2 9
& asin® @ —bcos® 6 =0
3 b
< tan® 0 = —
a
b1/3
< tanf = m

Clearly, L(@) - coas § — 0+ or 6 — %—. Thus, the

1/3
minimum must occur at § = tan™! (W) Using the
a
b1/3
triangle above for tan6 = 75 it follows that
al/3
al/3 . pl/3
cos) = ———, sinf = ———.
W23 ¥ 213 W23 ¥ 213
Hence, the minimum is
a b
L) =

1/3 p1/3
(=) ()

32
= (a2/3 + b2/3> units.

If the largest beam that can be carried horizon-

tally around the corner is [ m long (by Exercise 26,

1 = (@®3 + b*3)2/3 m), then at the point of maximum
clearance, one end of the beam will be on the floor at
the outer wall of one hall, and the other will be on the
ceiling at the outer wall of the second hall. Thus the hor-
izontal projection of the beam will be /. So the beam
will have length

VI2 4+ 2 = [(@®? + b2 + ¢2]'/2 units.

Let 6 be the angle of inclination of the ladder. The
height of the fence is

h(0) = 6sinf — 2 tan 0 (0 <0 < %)
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For critical points:

0="Hh(@®) =6cos8 — 2sec’ 6
=3cosf = sec? 0 = 3cos’> 0 = 1

=cosf = (%)1/3.

Since h”’(0) = —6sind — 4sec? ftand < O for
b4
0 < 6 < —, therefore £ (f) must be maximum at

6 = cos™! (%)1/3. Then

V323 —1 e yra—
SiHOZT, tanf = 32/3—1.

Thus, the maximum height of the fence is

/32/3 _ 1
h(0)26< 331/3 >—2 32/3 —1

=23%3 - 1)¥2 ~224m

Let (x, y) be a point on x2y* = 1. Then x2y* = 1
and the square of distance from (x, y) to (0, 0) is

1
S=x2+y’=—+y, (#0)

Clearly, S - coas y — 0 or y — 400, so minimum S
must occur at a critical point. For CP:

ds —4
dy ¥
1
=>x=:|:21T

Thus the shortest distance from origin to curve is

1 | 3 32
_ /3 _ —
S = \/—22/3 + 27 = 77 = 513 units.

The square of the distance from (8, 1) to the curve
y=1+x3%is

S=x—-82+(u-1)?
=x—82+0+x*-1)?
= x> +x% — 16x + 64.

Note that y, and therefore also S, is only defined for
x>0. If x =0 then § = 64. Also, S - o0 if x — o0.
For critical points:

as
0=d—=3x +2x—16=0CBx+8)(x —2)
X
:}x:—% or 2.

31.

32.
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Only x = 2 is feasible. At x = 2 we have S = 44 < 64.
Therefore the minimum distance is +/44 = 2+/11 units.

Let the cylinder have radius r and height #. By sym-
metry, the centre of the cylinder is at the centre of the
sphere. Thus

h
2 2
— =R".
re+ n
The volume of cylinder is
h2
V:nﬂh:nh<ﬁ-_z>,(05h52m.

Clearly, V. = 0if h = 0 or h = 2R, so maximum V
occurs at a critical point. For CP:

h?  2K2
A - S
dh

4
:>h2:§R2 :>h:

o 2n
r=,/zR.
3

2R
The largest cylinder has height 7§ units and radius

/2 .
— R units.
3

Fig. 4531

Let the radius and the height of the circular cylinder be r
and h. By similar triangles,

h H = HR—r)
R—r R - R

Hence, the volume of the circular cylinder is

2
H(R —
V(r)=nr’h = NS ; r)

3
:nH(rz—%> for 0 <r <R.
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Since V(0) = V(R) = 0, the maximum value of V must

. , dv 3r2

be at a critical point. If — =7H[2r — — ) =0,
dr R

then r = E Therefore the cylinder has maximum

. L 2R . . L
volume if its radius is r = Y units, and its height is

2R
H(R‘ ?)
h

= ——— % — — units.
3

Fig. 4.5.32

33. Let the box have base dimensions x m and height y m.
Then x2y = volume = 4.
Most economical box has minimum surface area (bottom
and sides). This area is

S =x? fdxy = x* +dx |
=x"+4dxy =x" +4x 2
16
=x2+—, 0 <x < 0).
X
Clearly, S — oo if x — 00 or x — 0+4. Thus minimum

S occurs at a critical point. For CP:

ds 16
0:—:2x——2:>x3:8:>x:2:>y:1.
dx X
Most economical box has base 2 m x 2 m and
height 1 m.

Fig. 4.5.33
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34.

2 ft

Fig. 4.5.34

From the figure, if the side of the square base of the
pyramid is 2x, then the slant height of triangular walls
of the pyramid is s = v/2 — x. The vertical height of the
pyramid is

h=\/s2—x2=\/2—2\/§x+x2—x2=\/§ 1 —/2x.

Thus the volume of the pyramid is
442
V = —;/— x2 1-— \/Ex,

for 0 < x < 1/4/2. V = 0 at both endpoints, so the
maximum will occur at an interior critical point. For CP:

dv 42 — V2x2
4x(1 — vV/2x) = V/2x2
4x =5v2x% x =4/(5Y2).

V(4/(5«/§)) = 32\/5/(75\/5). The largest volume of
such a pyramid is 32+/2/(75+/3) ft3.

35. Let the dimensions be as shown. The perimeter is
7{% + x + 2y = 10. Therefore,

(l—i—%)x—i—Zy: 10, or (24 7m)x+4y=20.

The area of the window is

1 /x\2 %2 Q2 +m)x
A_xy—{—zn(z) —n§+x(5—T>.
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To maximize light admitted, maximize the area A. For
CP:

_dA_ch_|_5 247 24n N 20
Tdx 4 4 T Ty YT T,
Yy 10
M
. . . 20
To admit greatest amount of light, let width = —— m
44+ m

1
and height (of the rectangular part) be m.
44+ m

Fig. 4.5.35

36. Let i and r be the length and radius of the cylindrical

part of the tank. The volume of the tank is

V = nrih + %nr3.

h

Fig. 4.5.36

If the cylindrical wall costs $k per unit area and the
hemispherical wall $2k per unit area, then the total cost
of the tank wall is

C = 2mrhk + 87r’k
4 3

V- §7Tr 2
=2nrk———=— +8nr’k
wr
2Vk 16
:——|—?nr2k 0 <r < o00).
’

Since C — o0 as r — 0+ or r — 00, the minimum cost
must occur at a critical point. For critical points,

dc
0= — = 2Vir 2+ Znrk

32 _(3VAS
dr 3 < =\Tex)

37.

38.

SECTION 4.5 (PAGE 242)

Since V = wr2h + %7‘[7'3,

3 4 1
r3=—167r (nr2h+§nr3>:>r=2h
3v '3
h=4r =4 — .
= " (1671)

Hence, in order to minimize the cost, the radius and
length of the cylindrical part of the tank should be

3y \1/3 3y 0\ 1/3
(F) and 4 (F) units respectively.
T T

Let D’ be chosen so that mirror AB is the right bisector
of DD’. Let CD’' meet AB at X. Therefore, the travel
time along CXD is

CX+XD CX+XD cD’
X: = =

speed speed  speed’

If Y is any other point on AB, travel time along CY D is

cD’
> .
speed

CY+YD CY+YD
Y: =
speed

speed
(The sum of two sides of a triangle is greater than the
third side.) Therefore, X minimizes travel time. Clearly,
XN bisects ZCXD.

Fig. 4.5.37

If the path of the light ray is as shown in the figure then
the time of travel from A to B is

Va2 + x2 n \/bz—i— (c —x)?
V1 V2 )

T=T(kx)=
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TY— a. Coipw-0F  kL>0
“ ! Q grows at the greatest rate when f(Q) = Q3(L — Q)°
= ;C_x is maximum, i.e., when
A
\ 0= () =30*L ~ 0)° ~50°(L - O)*
5 3L
— 021 — 0)* _ - -
Fig. 4.5.38 =Q0'L-0)0CL-80) = 0=0L —.

To minimize 7', we look for a critical point: 37
Since f(0) = f(L) =0 and f (?) > 0, Q is growing

0= dar 1 X 1 c—x . 3L
Tdix T wJZiel wnJp T e—x2 most rapidly when Q = 5
_ 1 sini — 1 sinr 42. Let h and r be the height and base radius of the cone
V1 v ' and R be the radius of the sphere. From similar trian-
gles,
Thus, ) r __R
sini _ vt Jiir h-R
sinr vy’ 22 R
= h=—= 2 (r > R)

39. Let the width be w, and the depth be i. Therefore

() + ()=

The stiffness is S = wh® = h3v4RZ — K2 for
O<h<2R).Wehave S = 0if h = Oor h = 2R.
For maximum stiffness:

ds n*
0=— =3h*V/4R> — h2 —

~dh AR — 12

Thus 3(4R? — h?) = h? so h = /3R, and w = R.
The stiffest beam has width R and depth +/3R.

Fig. 4542
‘ Then the volume of the cone is
Pw/2
1, 2 r
h/2 R V=§rrr hzgﬂRm (R<V<OO)
i 7777777777 Clearly V — oo if r — oo or r — R+. Therefore to
minimize V, we look for a critical point:
v 2 (r? — R?)(4r3) — r*(r)
0=—==-7R
dr 3 (r2 — R?)?
: & 4 —4’R2 -2 =0
< r=~/2R.
Fig. 4.5.39
Hence, the smallest possible volume of a right circular
40. The curve y = 1 + 2x — x3 has slope m = y' = 2 — 3x2. cone which can contain sphere of radius R is
Evidently m is greatest for x = 0, in which case y = 1 .
— i i i 2 4R
and m = 2. Thus the tangent line with maximal slope V==2x — 27 R3 cubic units.
has equation y = 1 + 2x. 3 2R? — R? 3
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If x cars are loaded, the total time for the trip is

X 1,000 ¢
T=t4+14+—— pem

1,000 where x = f(t) =

We can minimize the average time per car (or, equiva-
lently, maximize the number of cars per hour). The aver-
age time (in hours) per car is
A_T_e_l—i—z e+t 1
~x 1,000  1,000r 1,000

= 1,500 [(e" +1) (1 + ;) + 1] :

This expression approaches oo as t — 0+ or t — oo.
For a minimum we should look for a positive critical
point. Thus we want

ozlyoﬁ[(—e"“) (l—i—;)—(e_l-i-t) ziz]

which simplifies to

Zrt+1=12¢"

Both sides of this equation are increasing functions but
the left side has smaller slope than the right side for

t > 0. Since the left side is 1 while the right side is O at
t = 0, there will exist a unique solution in ¢ > 0. Using
a graphing calculator or computer program we determine
that the critical point is approximately t = 1.05032. For
this value of + we have x ~ 750.15, so the movement
of cars will be optimized by loading 750 cars for each
sailing.

. 2
Let distances and angles be as shown. Then tana = —,
X

12
tan(@ + o) = —
X

2

12 tanf +tana tan9—|—;
Y 1 - 2
X 1 —tanf tana 1— Ztano

x
12 24 2
———ztan9=tan9+—
X x X

24 10 10x

tan 0 1+x_2 = %o tan0=x2—+24=f(x).

To maximize 6 (i.e., to get the best view of the mural),
we can maximize tan6 = f(x).

Since f(0) =0 and f(x) — 0 as x — oo, we look for a
critical point.

2 2

24 -2

0= fm=10] 22" 2y
(x2 +24)?

=x=2/6

SECTION 4.5 (PAGE 242)

Stand back 2/6 ft (=~ 4.9 ft) to see the mural best.

Fig. 4.5.44

45. Let r be the radius of the circular arc and 6 be the angle
shown in the left diagram below. Thus,

2r6 =100 =

)

S \

e y=tanx

wall /2 b3
0

fence

Fig. 4.5.45(a) Fig. 4.5.45(b)
The area of the enclosure is

20

A= —qr*— (r cos0)(rsinf)
2
50 50%sin20
0 9z 2

_ 502 l B sin 20
0 202
for 0 < 6§ < m. Note that A — oo as § — 0+, and
for 6 = m we are surrounding the entire enclosure with
fence (a circle) and not using the wall at all. Evidently

this would not produce the greatest enclosure area, so the
maximum area must correspond to a critical point of A:

do 02 464
1 cos 260 sin 260
@2 T e

& 20 cos® 0 = 2sin 6 cos 6

& cos® =0 or tanf =6.

0— dA _ 502 (_L B 262(2 cos 20) — sin29(49)>

<
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Observe that tanf = 6 has no solutions in (0, 7]. (The
graphs of y = tanf and y = 6 cross at 6 = 0 but
nowhere else between O and 7.) Thus, the greatest en-
closure area must correspond to cosé = 0, that is, to

b1 . ..
0 = 7 The largest enclosure is thus semicircular, and

2 5000
has area —(50)2 =" m
T

46. Let the cone have radius r and height h.

Let sector of angle 6 from disk be used.
R
Then 27r = RO so r = —6.
2
R%0%> R
Also h=+~/R2—r2 = |R2 - — = —/472 — 02
T

472 T 2
The cone has volume

7r2h

_TR LR

3 34x2 27
3

472 -6

= %f(@) where f(0) = 6*vV4n2 —02 (0 <6 <27)

V() = V@2n) = 0 so maximum V must occur at a
critical point. For CP:

93
0=f'(0)=20van2—02 —

472 — 62

= 2(47% — 6%) = 02 = 0% = gnz.

8 2R3
The largest cone has volume V |7,/ =) =
3 9V3
cu. units.
LI
ey
R
R
R
RO

Fig. 4.5.46

47. Let the various distances be as labelled in the diagram.

Fig. 4.5.47
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From the geometry of the various triangles in the diagram

we have
x2:hz—i—(a—x)z=>hz:2ax—a2

yzzaz—l—(y—h)2 = h* =2hy — a*

hence hy = ax. Then

2.2
2 2 2 2 ax
L =x +y =X +7
2 a’x? 2ax
= X =
2ax —a?  2ax —a

3

2

a a
for 5 < x < a. Clearly, L —> o0 as x — §+’ and

L(a) = +/2a. For critical points of L2:

0 d(L?)  (ax —a?)(6ax?) — (2ax?)(2a)

dx (2ax — a?)?
_ 2a%x%(4x —3a)
T (Qax —a?)?

3
The only critical point in (%, a] isx = Ta' Since

(5)- 2

< L(a), therefore the least possible

33
length for the fold is «Z_a

cm.

Section 4.6 Finding Roots of Equations
(page 251)

fx) =x*=2, f'(x) =2x.
Newton’s formula x,4; = g(x,), where

@) x2 -2 x242
X)=x — = .
g 2x 2x

Starting with xo = 1.5, get x3 = x4 = 1.41421356237.

f(x) =x2=3, f'(x) =2x.
Newton’s formula x,4+; = g(x,), where

@) x2-3 x*43
X)=x — = .
§ 2x 2x

Starting with xp = 1.5, get x4 = x5 = 1.73205080757.

f)=x3+2x =1, f'(x) =3x2 +2.

Newton’s formula x,4; = g(x,), where

P42 —1 23 +1
3x242 7 3x242°

glx) =x—

Starting with xg = 0.5, get x3 = x4 = 0.45339765152.
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F) =x34+2x2 =2, f/(x) = 3x2 + 4x.

Newton’s formula x,+; = g(x,), where

B2 2w+ 2?42
3x2+4x  3x24+4x

gx) =x—

Starting with xp = 1.5, get x5 = x¢ = 0.839286755214.
f)=x*—8x2—x+16, f/(x) =4x3 —16x — 1.
Newton’s formula x,+; = g(x,), where

xt—8x2—x+16 3x*—8x2—16
43 —16x—1 ~ 4x3—16x—1"

gx) =x—

Starting with xo = 1.5, get x4 = x5 = 1.64809536561.
Starting with xo = 2.5, get x5 = x¢ = 2.35239264766.

f) =x34+3x2— 1, f/(x) = 3x2 +6x.

Newton’s formula x,+; = g(x,), where

4321 _ 2x3 4+ 3x2 41
3x24+6x  3x2+46x

gx)=x—

Because f(—3) = —1, f(=2) = 3, f(-1) = 1,
f(O) = —1, f(1) = 3, there are roots between —3 and
—2, between —1 and 0, and between 0 and 1.

Starting with xo = —2.5, get x5 = x¢ = —2.87938524157.

Starting with xp = —0.5, get
x4 = x5 = —0.652703644666.
Starting with xp = 0.5, get x4 = x5 = 0.532088886328.

f(x)=sinx —1+x, f/(x) =cosx + 1.
Newton’s formula is x,,4+1 = g(x,), where

@) sinx — 1 +x
X)=x— ——
§ cosx + 1

The graphs of sinx and 1—x suggest a root near x = 0.5.

Starting with xp = 0.5, get
x3 = x4 = 0.510973429389.
y A

\ y=1—x

y = sinx

4

0.5 1b\ 1.5%

Fig. 4.6.7

fx) =x2 —cosx, f/(x) =2x +sinx.
Newton’s formula is x,4+1 = g(x,), where

)C2 — COS X

X)=x— ——+—.
) 2x + sinx

SECTION 4.6 (PAGE 251)

The graphs of cosx and x2, suggest a root near

x = £0.8. Starting with xp = 0.8, get

x3 = x4 = 0.824132312303. The other root is the neg-
ative of this one, because cosx and x2 are both even
functions.

y = Ccos X

-15-1.0-05 | 0.5 1.0 1.
Fig. 4.6.8

Since tan x takes all real values between any two consec-
utive odd multiples of /2, its graph intersects y = x
infinitely often. Thus, tanx = x has infinitely many solu-
tions. The one between /2 and 37/2 is close to 37/2,
so start with xo = 4.5. Newton’s formula here is

tanx, — x,
X =Xp — ——— -
n+1 n sec2 X, — 1
We get x3 = x4 = 4.49340945791.
y '

y =tanx

Fig. 4.6.9

10. A graphing calculator shows that the equation

(1+xHJx—1=0

has a root near x = 0.6. Use of a solve routine or New-
ton’s Method gives x = 0.56984029099806.
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sinx . 2
Let f(x) = T2 Since [f(x)] < 1/l +x7) = 0
X
as x — £oo and f(0) = 0, the maximum and minimum
values of f will occur at the two critical points of f that
are closest to the origin on the right and left, respectively.

For CP:

(1 + x%)cosx — 2x sinx
(1+x7)
0= —|—x2) cosx — 2x sinx

0=f'(0) =

with 0 < x < & for the maximum and —7 < x < 0 for
the minimum. Solving this equation using a solve routine
or Newton’s Method starting, say, with xp = 1.5, we get
x = £0.79801699184239. The corresponding max and
min values of f are +0.437414158279.

cos X
Let = .

et f0) =T
that f has maximum value 1 at x = 0. (Clearly f(0) =1
and |f(x)| < 1if x #0.) The minimum value will occur
at the critical points closest to but not equal to 0. For
CP:

Note that f is an even function, and

o . (1+x2)(—sinx)—2xcosx
0=f(x)= sy

0 = (1 + x?)sinx + 2x cos x.

The first CP to the right of zero is between 7 /2
and 37w /2, so start with x = 2.5, say, and get

x = 2.5437321475261. The minimum value is
f(x) =—0.110639672192.

For x2 = 0 we have X4l = Xp — (x,%/(Zx,l)) = Xxp/2.
If xo =1, then x; = 1/2, xo = 1/4, x3 = 1/8.

a) x, = 1/2", by induction.

b) x, approximates the root x = 0 to within 0.0001
provided 2" > 10,000. We need n > 14 to ensure
this.

¢) To ensure that x? is within 0.0001 of 0 we need
(1/2”)2 < 0.0001, that is, 22" > 10, 000. We need
n>7T7.

d) Convergence of Newton approximations to the root
x = 0 of x2 = 0 is slower than usual because the
derivative 2x of x2 is zero at the root.

VX ifx>0
fx) = {J—T ifx <0
f/(x):{l/(zﬁ) if x>0
—1/Q2J=x) ifx <0
The Newton’s Method formula says that
Xn+1 = Xp — Jxn) =X, — 2X; = —Xp.
S xn)
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If xo = a, then x; = —a, x2 = a, and, in general,

Xxn = (—1)"a. The approximations oscillate back and
forth between two numbers.

If one observed that successive approximations were 0s-
cillating back and forth between two values a and b, one
should try their average, (a + b)/2, as a new starting
guess. It may even turn out to be the root!

Newton’s Method formula for f(x) = x!/ 3 s

73
Xn4+1 = Xp — %2/3 =xp — 3%, = —2x,.
(1/3)x,
If xo =1, then x1 = =2, xp =4, x3 = —8, x4 = 16, and,

in general, x, = (—2)". The successive “approximations”
oscillate ever more widely, diverging from the root at
x =0.

Newton’s Method formula for f(x) = x23 is

2/3
Xn 3 1
Xn+1 = Xp — By =Xp — 5Xn = —5Xn.
(2/3)xp
If xo = 1, then x1 = —1/2, x2 = 1/4, x3 = —1/8,

x4 = 1/16, and, in general, x, = (—1/2)". The succes-
sive approximations oscillate around the root x = 0, but
still converge to it (though more slowly than is usual for
Newton’s Method).

To solve 1 + %sinx = x, start with xo = 1 and iterate

Xn41 = 1+ § sinx,. x5 and xe round to 1.23613.

To solve cos(x/3) = x, start with xop = 0.9 and iterate
Xp4+1 = c0s(x,/3). x4 and x5 round to 0.95025.

To solve (x 4+ 9)!/3 = x, start with xp = 2 and iterate
Xnt1 = (X0 +9)1/3. x4 and xs round to 2.24004.

To solve 1/(2 4+ x2) = x, start with xg = 0.5 and iterate
Xny1 =1/Q2 4+ x,%). xe and x7 round to 0.45340.

To solve x3 + 10x — 10 = 0, start with xo = 1 and iterate
Xpy1=1— l—loxfl. x7 and xg round to 0.92170.

r is a fixed point of N(x)

_ _ . J»
<~ r=N@Fr)=r o)
= 0=—f/f'()
— f(@r)=0

i.e., if and only if r is a root of f(x) = 0. In this case,
Xn4+1 = N(x,) is the nth Newton’s Method approximation
to the root, starting from the initial guess xp.

Let g(x) = f(x) —x fora < x < b. g is continuous
(because f is), and since a < f(x) < b whenever

a < x < b (by condition (i)), we know that g(a) > 0
and g(b) < 0. By the Intermediate-Value Theorem there
exists r in [a, b] such that g(r) = 0, that is, such that

fr)y=r.
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We are given that there is a constant K satisfying
0 < K < 1, such that

[f) — f)] < Klu—v]

holds whenever u and v are in [a, b]. Pick any xp in
[a, b], and let x; = f(x9), x2 = f(x1), and, in general,
Xn+1 = f(xn). Let r be the fixed point of f in [a, b]
found in Exercise 24. Thus f(r) =r. We have

lx1 —r| =1f(x0) — f(r)| < Klxo —r|
lx2 —rl = f(x1) — £ < Klxi —r] < K*|xg — 7,

and, in general, by induction
|xp —r] < K"|xo —r|.

Since K < 1, limy_00 K" = 0, so lim, 50X, = r.
The iterates converge to the fixed point as claimed in
Theorem 6.

Section 4.7 Linear Approximations
(page 256)

f)=x2, f'(x)=2x, f3) =9, f'3)=6.
Linearization at x = 3: L(x) =9+ 6(x — 3).

f@) = x73, fl(0) = =374 f2) = 1/8,
f'(2) = -3/16.
Linearization at x = 2: L(x) = § — 1= (x —2).

f)=vd—x, f'(x)=-1/2v4—x), f(0) =2,
f'(0)=—1/4.

Linearization at x = 0: L(x) =2 — %x.

f@x) = V3+x2 fl(x) = x//3+x2, f(1) = 2,
ffay=1y2.

Linearization at x = 1: L(x) =2+ %(x —1).

f) =04+072 /() = =200+ 07, f(2) = 1/9,
'@ =-2/27.
Linearization at x = 2: L(x) = é — %(x —-2).

Fo)=x712 f10) = (=1/2x72, f(4) = 1/2,
fl4) =—1/16.
Linearization at x = 4: L(x) = % — %(x —4).

f(x) =sinx, f'(x) =cosx, f(x)=0, f'(m) = —1.

Linearization at x = 7: L(x) = —(x — ).

f(x) = cos(2x), f'(x) = —2sin(2x), f(7/3) = —1/2,
F1(0/3) = —3.
Linearization at x = 7 /3: L(x) = —% — \/g(x - %)

f(x) = sin®x, f'(x) = 2sinxcosx, f(x/6) = 1/4,
f'(/6) = \/3/2.
Linearization at x = /6: L(x) =} + (v/3/2) (x — Z).

10.

11.

12.

13.

14.

15.

16.
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) = tanx, f'(x) =sec?x, f(n/4) =1, f(n/4) = 2.
Linearization at x =7 /4: L(x) =142 (x - %)

If A and x are the area and side length of the square,
then A = x2. If x = 10 ¢cm and Ax = 0.4 cm, then

dA
AA ~ I Ax =2x Ax =20(0.4) = 8.
X

The area increases by about 8 cm?.

If V and x are the volume and side length of the cube,
then V=x3. If x =20 cm and AV = —12 cm3, then

av
—12=AV ~ - Ax = 3x% Ax = 1,200 Ax,
X

so that Ax = —1/100. The edge length must decrease by
about 0.01 cm in to decrease the volume by 12 cm?.

The circumference C and radius r of the orbit are linked
by C = 2nr. Thus AC = 27 Ar. If Ar = —10 mi then
AC ~ 2w Ar = 20m. The circumference of the orbit will
decrease by about 20 ~ 62.8 mi if the radius decreases
by 10 mi. Note that the answer does not depend on the
actual radius of the orbit.

a = g[R/(R + h)]? implies that
d —
Aa~ 2L A =gR? ——= AR,
dh (R +h)3
If h =0 and Ah = 10 mi, then

208 20 x32
R~ 3960

Aa ~ ~ 0.16 ft/s2.

f(x) = xl/z f/(x) — %x—l/z f//(x) — _%x,:;/z

V30 = £(50) ~ F(49) + f'(49)(50 — 49)

1 99
=7+ —=— =707l
+14 14 0
99

f"(x) <0 on [49, 50], so error is negative: +/50 < I
1 1

1
, _ = — ~0.00073 = k
[f7(x)] < 4x492 " 4ax73 1372
on (49, 50).

k 1
Thus [error] < 2(50 — 49)? = 74z = 000036, We have

99 1 99
— ——— <V50<—,
14 2744~ 77 T 14

ie., 7.071064 < /50 < 7.071429

Let f(x) = /x, then f'(x) = x~'/? and
() = —%x‘3/2, Hence,

VAT = f(47) =~ f(49) + f/(49)(47 — 49)
1 48
=7+ <ﬁ> (-2) = =~ 6.8571429.
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Clearly, if x > 36, then

1

1
" <— _ =—=K
OIS 7576 = 36a

Since f”(x) < 0, f is concave down. Therefore, the
48
error E = /47 — - < 0 and

K 2
E| < =47 — 49)> = —.
2 432

Thus,

48 1 48
X <2
7 a3 VY T3

6.8548 < v/47 < 6.8572.

1 3
_ 14 PN . y7' P e 7
fx)y=x"7, f(x)—4x . ) = 6"

Y85 = £(85) ~ F81) + f'(81)(85 — 81)

=3+ 4 —3+l—82’“3037
T U 4x27T T 21T 21 T
. . 4 82
f"(x) <0 on [81,85] so error is negative: +/85 < >
1
" —=— =k 81, 85].
POl < 16537 = T1,66a — * on 81831

k
Thus [Error| < 2 (85 ~ 81)% = 0.00069.

82 1, 82
f_1458<\/g<f’

or 3.036351 < /85 < 3.037037

1 1 )
Let f(x) = o then f'(x) = - and f(x) = 5

Hence,

1 !
7003 =/ 2003) ~ £(2) + £(2)(0.003)
1

1
== —— . = 0.49925.
2+( 4) (0.003) = 0.49925

If x > 2, then | f"(x)| < % = %. Since f”(x) > 0 for
x > 0, f is concave up. Therefore, the error

1
E=——--049925>0
2.003

and {
|E| < §(0.003)2 = 0.000001125.

Thus,

1
0.49925 < —— < 0.49925 4 0.000001125
2.003

1
0.49925 < —— < 0.499251125.
2.003
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fx)=cosx, f'(x)=—sinx, f"(x)=—cosx
cos46° = cos (z + L)
B 4 180
T TN T
~ cos - —sin (Z> <@)
1 b4
=—(1—-—)=~0.694765.
V2 ( 180)
f”(0) < 0 on [45°,46°] so
|Error| < —— (—” )2 0.0001
rror| < ~ 0. .
242 \180

We have

1 b4 2 1 T
(- s46° < — (1- 2
ﬁ( 180 2><1802> s = ﬂ( 180)

i.e., 0.694658 < cos46° < 0.694765.

Let f(x) = sinx, then f/(x) = cosx and
f"(x) = —sinx. Hence,
(PN (T \A (T (TN (T
Sm(?) _f<6 +30) f(6>+f (6)(30)
1 3
_1, 1) ~ 0.5906900.
2 2 \30
T
If x < —, then |f”(x)] < —. Since f”(x) < 0 on
7 S 7 S

0 < x <90°, f is concave down. Therefore, the error E
is negative and

1

E|l < —
llzﬁ

T \2

(—) = 0.0038772.
30

Thus,

0.5906900 — 0.0038772 < sin( ) < 0.5906900

AR

0.5868128 < sin( ) < 0.5906900.

Let f(x) = sinx, then f/(x) = cosx and
f”(x) = —sinx. The linearization at x = 7 gives:

sin(3.14) ~ sinm+cosw(3.14—m) = m—3.14 ~ 0.001592654.

Since f”(x) < O between 3.14 and m, the er-
ror E in the above approximation is negative:
sin(3.14) < 0.001592654. For 3.14 <t < m, we have

|f” ()| =sint < sin(3.14) < 0.001592654.

Thus the error satisfies

0.001592654

|E| < (3.14 — )* < 0.000000002.
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Therefore 0.001592652 < sin(3.14) < 0.001592654.

Let f(x) = sinx, then f/(x) = cosx and
f"(x) = —sinx. The linearization at x = 30° = 7/6
gives

Since f”(x) < 0 between 30° and 33°, the error E in the
above approximation is negative: sin(33°) < 0.545345.
For 30° <t < 33°, we have

| f”(#)| = sint < sin(33°) < 0.545345.
Thus the error satisfies

0.545345 /m
Bl = =222 (

2
: %) < 0.000747.

Therefore

0.545345 — 0.000747 < sin(33°) < 0.545345
0.544598 < sin(33°) < 0.545345.

From the solution to Exercise 15, the linearization to
f(x) =x'? at x = 49 has value at x = 50 given by

L(50) = f(49) + f'(49)(50 — 49) ~ 7.071429.

Also, 7.071064 < /50 < 7.071429, and, since
[ = =1/(4(J/x)),
-1
4(7)3

~1 -1
<
4(v/50)3 ~ 4(7.071429)3

<f' <

for 49 < x < 50. Thus, on that interval,
M < f"(x) < N, where M = —0.000729 and
N = —0.000707. By Corollary C,

M 2 N 2
L(50) + 7(50 —49)° < f(50) < L(50) + ?(50 —49)
7.071064 < +/50 < 7.071075.

Using the midpoint of this interval as a new approxima-
tion for /50 ensures that the error is no greater than half
the length of the interval:

V50 ~ 7.071070, |error| < 0.000006.

From the solution to Exercise 16, the linearization to
f(x) =x'/2 at x = 49 has value at x = 47 given by

L(47) = £(49) + £/(49)(47 — 49) ~ 6.8571429.

25.

26.
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Also, 6.8548 < /47 < 6.8572, and, since
) = =1/4(J/x)%),

-1 .

4(6.8548)% ~ 4(/47)

/" -1
3§f(x)§W

for 47 < x < 49. Thus, on that interval,
M < f’(x) < N, where M = —0.000776 and
N = —0.000729. By Corollary C,

M N
L(47) + 7(47 —49)% < f(47) < L(47) + 3(47 — 49)?
6.855591 < /47 < 6.855685.

Using the midpoint of this interval as a new approxima-

tion for /47 ensures that the error is no greater than half
the length of the interval:

V47 =~ 6.855638, |error| < 0.000047.

From the solution to Exercise 17, the linearization to
f(x) = x4 at x = 81 has value at x = 85 given by

L(85) = f(81) + f/(81)(85 — 81) ~ 3.037037.

Also, 3.036351 < 85!/% < 3.037037, and, since
) = =3/16(x*4)7),

-3 -3
(x) < <
16(851/4)7 ~ 16(3.037037)7

16(3)7 =/

for 81 < x < 85. Thus, on that interval,
M < f’(x) < N, where M = —0.000086 and
N = —0.000079. By Corollary C,

M 2 N 2
L(85) + 7(85 —81)° < f(85) < L(85) + 3(85 —81)
3.036351 < 85"/* < 3.036405.
Using the midpoint of this interval as a new approxima-
tion for 85!/% ensures that the error is no greater than
half the length of the interval:
85!/4 ~3.036378, |error| < 0.000028.

From the solution to Exercise 22, the linearization to
f(x) = sinx at x = 30° = /6 has value at
x =33°=m/6+ /60 given by

L(33°) = f(1/6) + f'(7/6)(r/60) ~ 0.545345.
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Also, 0.544597 < sin(33°) < 5.545345, and, since
f"(x) = —sinx,

—sin(33°) < f”(x) < —sin(30°)

for 30° < x < 33°. Thus, on that interval,
M < f"(x) < N, where M = —0.545345 and N = —0.5.
By Corollary C,

M . N 5
L(33°) + = (1/60)° < sin(33°) < L(33°) + — (7/60)
0.544597 < sin(33°) < 0.544660.

Using the midpoint of this interval as a new approxima-
tion for sin(33°) ensures that the error is no greater than
half the length of the interval:

sin(33°) ~ 0.544629, |error| < 0.000031.

FQ =4 Q) =—1, 0<f'() < % it x> 0.

fO=fQO+f23—-2)=4—-1=3.
f"(x) > 0= error > 0= f(3) > 3.

" 1 1. 1 2
[f"(x)] < — <z if 2 <x <3, so |[Error| < —(3 —2)~.
X 2 4

Thus 3 < f(3) <3}

The linearization of f(x) at x =2 is
Lx)=fQ+fQx—-2)=4—(x-2).

Thus L(3) = 3. Also, since 1/(2x) < f”(x) < 1/x for

x > 0, we have for 2 < x <3, (1/6) < f"(x) < (1/2).

Thus

3+1(1)(3—2)2<f(3)<3+1(1)(3—2)2
2\6 R A\ '

The best approximation for f(3) is the midpoint of this
interval: f(3) ~ 3%.

The linearization of g(x) at x =2 is
Lx)=gR)+g2)(x—2)=1+2(x —2).

Thus L(1.8) = 0.6.
If Ig7()] < 1+ (x — 2% forx > 0, then
lg”(x)] < 1+ (—=0.2)2 = 1.04 for 1.8 < x < 2. Hence

1
g(1.8) ~ 0.6 with |error| < 5(1.04)(1.8 —2)? =0.0208.

If f(0) = sin®, then f'(0) = cosd and f”(0) = —sinb.
Since f(0) = 0 and f'(0) = 1, the linearization of f at

0=0is L(O)=0+1(06 —0) =6.

If0<t<0,then f/(t) <0, s00 <sinf <46.

If 0>t >0, then /() >0, so 0 >sinf > 6.

In either case, |sint| < |sinf| < |0]| if  is between 0 and
6. Thus the error E(f) in the approximation sinf = 6

satisfies 3
£6) < Zop = 1
-2 2
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If 18] < 17° = 177/180, then

E 1 (177\?
LEOL _ 1IN 6044,
9] — 2 \ 180

Thus the percentage error is less than 5%.

V=13nr3= AV ~dnr? Ar

If » =20.00 and Ar = 0.20, then

AV 2 477(20.00)%(0.20) ~ 1005.

The volume has increased by about 1005 cm?.

Section 4.8 Taylor Polynomials (page 264)
If f(x) = e, then fP(x) = (—=Dke ™, s0
F®0) = (=D¥. Thus
x2 x3 x4

P4(x)=1—x+a—§+z.
If f(x) = cosx, then f/(x) = —sinx,
f"(x) = —cosx,and f”(x) = sinx. In par-
ticular, f(m/4) = f"(n/4) = 1/+/2 and

f'(x/4) = f"(x/4) = —1/+/2. Thus

por= [ (- D3 D3]

f(x)=Inx f(2)=1In2
fw=1 o=
o= ro=7
o= re=:
rPm="2 fYe =7
Thus

Pa(x) = In 242 (+—2) 2 (+—2) 42 (1—2)* ——— (1—2)"
4(0) = In 242 (x g 57 ™ )

f(x) =secx fO) =1
f'(x) = secx tanx f0)=0
£ (x) = 2sec® x —secx 1o =1
F"(x) = (6sec® x — 1) sec x tan x ") =0

Thus P3(x) = 1+ (x2/2).
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5. f(x)=x'? f4) =2
/ _ l —-1/2 / _
f(X)—zx f(4)—4

" _ __1 -3/2 " _ __1

i) =—x @)=~

Ex—5/2 f///(4) — i

frx) = 756

Thus

Py(x) =2+ - (x —4) - —(x 4P -y

512
6. fo=0-x" fO) =1
floy=0-x7 fo=1
Fre =201—x73 110 =2
f///(x):3!(1_x)—4 f (0):3'
f(’”(x).= p(t -yt F70) =n!
Thus
Pa)=1ldx+x2+x> 4 42"
1
7. f&x)= T f(1)=§
/ _ -1 / _ __l
f(x)—m f(l)—9
v 2 (1) = 2!
)= e . 273’
-3 " _ 9
My = ) ==
1"® = 5 3
(=1)"n!
—1D"n! (n) —
f(")(x) — ﬁ FAud()) 73n+1
Thus
1 1 ( H" .
Py(x) = ———( — Dt =Dk e (= )
8. f(x) = sin(2x) f(@/2)=0
f/(x) =2cos(2x) fl@/2)=-
F'(x) = —2%sin(2x) f'(@/2)=0
£ (x) = —23 cos(2x) @) =2

@@/ =0
O/ =-2°

F® ) =2%sin@x) =24 £ (x)
O =2"f(x)

10.
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Evidently f®(r/2) = 0 and
F@=D(z/2) = (—=1)"22"=1, Thus

T 23 N3 25 T n
Pon—1(0) = (“5)*5(“5) ‘a(x 2)+ +E=D
Fa) = x‘/3, £ = éx—w,
10

1 75/3 1" _ 78/3
) = LW = )
a=8§: f(x)%f(8)+f/(8)( —8>+f() -8)?

—2+i< -8) - (x —8)?

= o 9x32"

1 1
912 24 — — — ~2.07986

///12 288 0 |
Error = ! (C) o — 8)3 = X6 X583 for some ¢ in
[8,9].
For 8 < ¢ <9 we have ¢33 > 88/3 =28 =256 so

5
0 < Error < ———— < 0.000241.
81 x 256

Thus 2.07986 < 9'/3 < 2.08010.
Since f(x) = 4/x, then f/(x) = 1 x~1/2,
f//(x) 1 —3/2 and f///(x) 5/2 Hence,

V61~ f(64) + f/(64)(61 — 64) + —f”(64)(61 — 64)°
1

1 1
=8+ —(=3)— = 3)% &~ 7.8103027.
T3 (2048>( )

f”’( )
The error is Ry = Ra(f; 64,61) = (61 — 64) for

some ¢ between 61 and 64. Clearly R2 < 0. If r = 49,
and in particular 61 < < 64, then
If" (0] < 3(49)75/2 = 0.0000223 = K
Hence,
K 3
[Ra] < §|61 — 647 = 0.0001004.

Since R; < 0, therefore,

7.8103027 — 0.0001004 < +/61 < 7.8103027

7.8102023 < +/61 < 7.8103027.

1, 1
f(x) = f (x) :__25
X X
7" 2 " —6
f(x)=x—g i (x)=x—4
a:l:f(x)%l—(x—l)—i—z(x—l)z

1
—— ~1—(0.02) + (0.02)> = 0.9804.

1.02

G
Error = (0. 02) = ——(0 02) where
1<c<1 02

1
Therefore, —(0.02)3 < T~ 0.9804 < 0,

1
ie., 0.980392 < — < 0.980400.
1.02
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Since f(x) = tan~! x, then

£ = Fay= B ey = 228
T+x% (I +x2)2 (1+x2)3"

Hence,

an™! (0.97) ~ f(1) + f(1)(0.97 — 1) +  f(1)(0.97 — 1)?

T 00+ (<L) (<0032
T4 20 4 ’
=0.7701731.
"
The error is Ry = ! (c)( 0. 03:)3 for some ¢ between
0.97 and 1. Note that Rz < 0. If 0.97 <t <1, then

246
1)) < (1) = ﬁ <05232=K
Hence,
K 3
|Ry| < §|0.97 — 17 < 0.0000024.
Since R, < 0,

0.7701731 — 0.0000024 < tan™! (0.97) < 0.7701731
0.7701707 < tan~' (0.97) < 0.7701731.

fx)y=e*, O =e fork=1273...

2
a=0: f(x)%1—|—x+%

0.5)2
e 03 ~1-05+ ©.5) =0.625
"
Error = f 6(C) (0. 5)3 (—0.05)3 for some ¢ between
—0.5 and 0. Thus
0.5)3
|Error| < < 0.020834,

and —0.020833 < ¢ %5 - 0.625 < 0, or

0.604 < ¢ %5 < 0.625.

Since f(x) = sinx, then f’(x) = cosx, f”(x) = —sinx

and f"'(x) = —cosx. Hence,
sin(47°) = f (7 + 35)
2
= ()7 (7)) 2 (3) )
1 1 /7 1 T\2
=7§+ﬁ(%)‘2—ﬁ(%)

~ (0.7313587.
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1 3
f fc) (l) for some ¢ between 45°

The error is Ry =

and 47°. Observe that.Rz < 0. If 45° <t < 47°, then
F7O] < | - cosds®| = —— = K
' B V2

Hence,

K /m\3
IRal = 5 (55) < 00000051,

Since R; < 0, therefore

0.7313587 — 0.0000051 < sin(47°) < 0.7313587
0.7313536 < sin(47°) < 0.7313587.

f(x) =sinx
f/(x) =cosx
f(x) = —sinx
f"(x) = —cosx
F®(x) =sinx
a=0; n=17:
3 X5 7
91nx—0+x—0—§+0—|— 51 —0—W+R7,
B JRCIR 7 .
—X—E‘FE—%-F 7(x)

sin ¢
where R7(x) = sz for some ¢ between O and x.

For f(x) = cosx we have

f"(x) =sinx

O =

fx) =
FOwm =

—sinx

o) =

f(4)(x) = cosx

— COSx

—sinx —CoSX.

The Taylor’s Formula for f with a =0 and n =6 is
| x2 x*t %O R 0.
COoOSx = _E—i_z_a—i_ 6(f X)

where the Lagrange remainder Rg is given by

N ;
Re = Re(f;0,x) = ! 7,(C)x7 = S%xﬂ

for some ¢ between O and x.

I
N
Il
N

f(x) =sinx a

o= (8- (- )
11 a3 11 T4
Al Eald)

1 NS

where Ry(x) = g(cos c) (x — _>

b4
for some ¢ between 1 and x.
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18. Given that f(x) = —1 then Given that @ = 0 and n = 3, the Taylor’s Formula is
—x’
" 0 " 0
N NN anx = £ + FOr + 22+ L5 prio,0)
)= — [T = —. T 3
X) (1—x) 5
=x + —x° + R3(f3 0,
In general, =x+ 3,)6 + R3(f;0,x)
f(n)(x)_nil x—i—lx —l—ix

T (1 —x)tD” =x+3 5
Since a =0, "™ (0) = n!. Hence, for n = 6, the Taylor’s The Lagrange remainder is
Formula is
L O Rs(f:0,0) = L@ 4 tanc@sec X —sec )

X"+ Re(f;0,x) 4 3

BRI SR BV SNC N J Re(f: 0, x). for some ¢ between 0 and x.
21. e3x — e3(x+1) 673
The Langrange remainder is 9 9
Py(x) =e? [1 +3+ D+ -G+ D+ o+ 1)3] .
P 5 A 2 2
7T T U= op w o ow o
22. For ", P4(u)—1+u+——|——+— Let u = —x2.

31
Then for ¢=*":

Re(f30,x) =

for some ¢ between 0 and x.

19. f(x)=1Inx
/ ! P(x) = 1 — x2 +—4—£+ﬁ
f(x)=; 8 21 31
” —1
f (X)Z—x—z

1
21 23. For sin?x = —(1 — cos(2x)> at x = 0, we have
" _ 2
@ =5

-3! 1 21)2 4 4
@y - =3¢ 202 o\, x
o o Pato = E[ _(1_ TR TR
O ==
X
f(6)(x) _ —_2' 24. sinx = sin(n + (x — n)) = —sin(x — )
x 3 5
6! e (x—m) _(x—n)
O = Psx) = —(r =) + 5
= 1’ = 6
“ " 1 , 2! 3 25. For atu =0, P3u) = 1 4+ u+u® + u’. Let
lnx:0+1(x—1)——(x—1) —|—§(x—1)‘ 1—u |
4v 51 u = —2x%. Then for —5 ax=0,
——( =D = DT = = D+ Re(x) T2
=(x—-1-— x—1)? + o — 1) N b Pe(x) = 1 — 2x? + 4x* — 8x5.
2 3 4
5 6
+ x-D° G-D + Rg(x) 26. cos(3x — ) = —cos(3x)
5 6 32 2 34x4 36x6 38)68
where Rg(x) = 7—c7(x —1)7 for some ¢ between 1 and x. Pg(x) =—1+ TR TR TR
20. Given that f(x) = tanx, then 27. Since x3 = 04 0x + 0x2 + x3 + 0x* + - -+ we have

P,x)=0if0<n<2;, P,(x)=x3ifn>3

f(x) = sec” x 28. Letr=x —1 so that

F(x) = 2sec? x tan x
f(3)(x):6sec4x—4seczx x3=(1—i—z‘)3=1+3t—|—3t2—i—t3
f(4)(x) = 8tanx(3sect x — sec? X). =1(x—1)+3x — 1)2 + (x — 1)3.
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Thus the Taylor polynomials for x> at x =1 are
Pox) =1
Pi(x)=14+3x—-1)
Pix) = 143(x — 1) +3(x — 1)?

Px)=143x—-D+3x-D>+x—-13 ifn>3.

1
1 h = — X _ e ¥
sinh x 2(e e )

1 X2 K2+l
P = (l+x+=+ -+ —
211 (%) 2( SR (2n+l)!>
1 X2 K2+l
(1= Ty
2( AT (2n—|—1)!>
x3 xS x2n+1
TR T C Fang TR
For In(1 + x) at x = 0 we have
b 2 3 2n+l
2n+1(x)—x_7+?_"'+2n+1
For In(1 — x) at x = 0 we have
xZ x3 x2n+l
P = —)Y — — — — — i —
2n+1(X) X573 1

1 1
For tanh~! x = 3 In(1 + x) — 3 In(1 — x),

R © +x3+x5+ +x2n+1
W) = T S T T
fx)y=e™
MWy — e if n is even
Frw { —e™* if n is odd
—X __ l x2 x3 l n xs R
e =l b (1 T Ro)
n+1
where R, (x) = (—1)""!—— for some X between 0
(n+1)!
and x.
For x = 1, we have
L_ 1—-1 ! ! D" ! R, (1
€_X n+1
where R, (1) = (—=1)"H'——— for some X between
n+ 1!
—1 and 0.
Therefore, |R,(1)| < m We want

|R,(1)] < 0.000005 for 5 decimal places.

Choose n so that < 0.000005. n = 8 will do

n+
since 1/9! ~ 0.0000027.
Th 1 1 1 1 1 . 1 1 . 1
us — N — — —+ — — — 4+ — — — + —
e 2! 31 4 51 6 71 &
~ (0.36788 (to 5 decimal places).
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In Taylor’s Formulas for f(x) = sinx with a = 0, only
odd powers of x have nonzero coefficients. Accordingly
we can take terms up to order x%"*! but use the remain-
der after the next term 0x2"*2. The formula is

5 2n+1

x3 X _ + (_1)”7
2n + D!

siny =x — — 4+ —

TR + Rony2,

where

Ronsa(f30,x) = (_1)n+1% 2n+3

for some ¢ between 0 and x.

In order to use the formula to approximate

sin(1) correctly to 5 decimal places, we need
[R2n4+2(f;0,1)] < 0.000005. Since |cosc| < 1, itis
sufficient to have 1/(2n 4 3)! < 0.000005. n = 3 will do
since 1/9! = 0.000003. Thus

. 1 1 1
sin(l) ~ 1 — 3 + TR 0.84147

correct to five decimal places.

f@) =(x—D32 2f’(X) =2(x —1),
f(x)%l—2x+§x2=l—2x+x2
Error = 0

g(x) =x34+2x243x+4

Quadratic approx.: g(x) ~4 4 3x + 2x?

f(x) =2.

Error = x>
g///(c)
3!

1. .
so that constant A in the error formula for the quadratic

Since g"”’(c) = 6 = 3!, error = %3

approximation cannot be improved.
1—x" =1 —-x)1+x+x>+ x>+ +x"). Thus

1 n+1

—— =l4x+x 7+ "+
1—x 1—x

If | x] <K <1,then|l—x|>1—-K >0, so

xn+l

< H|xn+1| — O(xn+l)

1—x

asx — 0. By Theorem 11, the nth-order
Maclaurin polynomial for 1/(1 — x) must be
Po(x)=14+x4+x>4+x34+ - +x"

Differentiating

xn+1

=l+x+x>+x>+- "+
I—x I—x
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with respect to x gives 7. lin%] X cotx [0 x o0]
xX—
by
- (o)
7=l+2x+3x2+---+nx”71+ux". feare) sinx cos
(I—x)? (I —x)? . 0
=1x lim — [—]
Then replacing n with n + 1 gives X%lo Sinx 0
- D = lin}) =1
n+2—m+1)x x—0 cosx
I ) 3 2 . 1 n, -~ = v~ Vl+1.
a2 +2x+43x"+- -+ (n+Dx"+ aT=n2
.l —cosx 0
If [ x] <K <1,then |l —x|>1—K >0, and so 8. Ilim— |-
x—0 In(1 +x2) 0
. sin x
nt2-@t+ Dx ?1_ (”;2“ DX ont] < = ha 2)2| ) 2 o = lm 7y
* 1+ x2
asx — 0. By Theorem 11, the nth-order = hm(l +x?) 1 sin x
Maclaurin polynomial for 1/(1 — x)* must be 1 ~0 2x
Pu(x) == 142x +3x2 4+ -+ (n + Dx™. — lim X _ 1
=0 2 2
Section 4.9 Indeterminate Forms )
sin” ¢ 0
(page 269) 9. i SO [_]
>t —7 0
lim 3x 9 ~ im 2sint cost —0
x—0 tan 4x 0 t—m 1
3
= Fsec2dx 4
x—0 4 sec” 4x 10 ) 10 — o 0
. im — | =
i 22— [0 oA — 0
x—2 x2—4 0 . 10*In10 —¢*
2 =lim —— =In10—1.
x—0 1
_ <2x —3) _l
2x 2 1 . cos 3x 0
. . im -
im Smnax 9 x—>n/2 T —2X 0
x—0 sin bx 0 . —3sin3x 3 3
acos ax = lm ——=-(-)=-3
— lim B _ g x—>m/2 -2 2 2
x—=0bcosbx b
lim l_cﬂ [9] 12 i In(ex) — 1 0
. im —— | =
x—0 1 — cosbx 0 i1 sin T x 0
. asinax 0 1
= lim — — —
x-0 b sin bx 0 X 1
=lim ————— = ——.
a? cos ax a? x—1 71 cos(mx) T
= lim —— = —.
x—0 b2cosbx b2
. 1 1
lim 22_* 0 13. lim x sm - [0o x 0]
x—0 tan~! x 0 *—>00 1
1 2 .
= lim = _sin— 0
x—=0 /1 — x2 = lim —
xX—>00 0
i —1 0 X
im ——— —
,\—>1x2/%—1 0 —iCOSl 1
G = lim 22— — lim cos— = 1.
= lméi:_' X— 00 _i xX—>00 X
x—1 (g)x*1/3 2 X2
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14, lim 2 [9]

. sinx 0
= lim —
x—0 6x 0

COS X 1
im .
=0 6 6

15, Jim 22510 [9]
x—0x —tanx 0

.1 —cosx 0

= lim ——— —

x—0 1 —secZx 0
1 —cosx
lim (cos2 X)——
x—0 C

os2x —1

cosx — 1
=—1x1

www. nohandesyar . com

21.

22,

1
2

x—0 x4
—2x + 2sinx [0]

6.  lim 2—x2—2cosx |:0]

= lim
x—0

L)
v Y]

im
x—0+ tanx — x
2sin x cos x [0]

0

= lim —
x—0+ secx — 1

CoS X

=2x1x 5

x—0+ 2sec” x tan x

18. lim Insinr [9]

r—m/2 COST 0
(cos r)
sinr / __

r—m/2 —sinr

2
19. lim — =—
T

-1
20.  lim 27 [9]
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im
x—0 (cosx — 1)(cosx + 1)

23.

24,

lim ——— =00

25.
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1

lim x(2tan™ " x — ) [0 x o0]
X—> 00
o 2tanlx—m [0]
= lm ——— -
X—00 1 0
X
. 2 1
= lim / - =
x—o00 | + x x2
. 2x2
= lim — =-2
x—oo |4 x2
lim (sect —tant) [00— o0]
t—(/2)—
) 1 —sint [0]
= lim -
t—(7/2)— COSt 0
. —cost
= lim — =0
t—(w/2)— —SInt
. 1 1
lim [ — — (00 — 0)
-0\t te¥
e — 1 0
= lim -
t—0 te 0
aeal
1—0 e + ate®
Inx

Since lim +/xInx = lim
x—0+ x— 0+

()

12

= lim TN T 0,
x—0+ 1 x73/2
2
hence lim xv*
x—>0+
= lim eV*"¥ =0 =1.
x—0+
2
Let y = (cscx)S™ ¥,
Then In y = sin? x In(csc x)
. . In(cscx) 00
lim Iny = lim ——— [
x—>0+ x—0+ CSC-Xx
CcSCx cotx
— lim CSCX
x—0+ —2csc2 x cotx
1

x—0+ 2 csc? x

. 02 o
Thus limy_ o4 (cscx)S" ¥ = ¢0 = 1.

[_

0
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lim x _ 1 [00 — 00] Therefore lim,_o(cos 26)!/"* = e=2.
x—1+\x—1 Inx
| xlnx —x+1 0
= lim — |-
x—1+ (x — D(@nx) [0 30.  Lim o¢f [_E]
. Inx 0 x—0+ Inx 00
le_lf{l+ 1 [6] _ —cscxcotx 0
Inx+1—— = Jm —7— [—;]
1 X
- —X COS X 0
= lim —X — lim %% 2
- AI_IHI_F 11 vo0+ sinZ x |:0]
x  x2 _ , 1
X 1 =—( lim cosx ) lim ———
— lim = — x—>0+ x—0+ 2 sinx cos x
x—>1+ x+1 2 - —00.

3sint — sin 3¢ [0]

im—— —
t—0 3tant — tan 3¢ 0

. 3(cost —cos3t) 0 31 lim In sin 7T x [oo]
=lim—bn———— — . — —
t—0 3(sec? t — sec? 3t) 0 x—>1- cscmx 00
y cost — cos 3t T CosTX
=1m -———--- .
10 cos® 3t — cos® ¢t = |jm —Softx
x—1— —IT CSCTTX COt T X

cos? t cos? 3t —x
cos 3t — cost = — lim tanwtx =0

[ - c—1—
0 cos? 31 — cos2 1 ™
1
= oS3 tcost © 2
t—0 COS cos
s 32. Lety=(l+tanx)'/*
Let y = (ﬂ) /X . . . In(1 +tanx) 0
X limlny = lim ————— | =
sin x x—0 x—0 X 0
ln( ) 2
0
lim Iny = lim ——* 2 |2 = lim =% _
x—0 x—0 X 0 x—0 1+ tanx
( X ) (x coSx — sinx) Thus, lin})(l +tanx)/F =e.
any/\ " 2 =
sin x X
- x—0 2x
— i Yos¥ —sinx 10 C fOR) —2F(0) + fx—h) 0
x—0  2xZsinx 0 33. lim > e
. h—0 h 0
= lim —remy Fx+h) — fl(x—h) 0
x—0 4x sinx + 2x2 cos x = lim [—:|
. —sinx 0 h—0 ) 2h ) 0
T x—04sinx + 2x cos x 0 = lim Serm+ ffx—h)
. —cCcosx 1 ”2_“) 2
=lim ——M = ——.
x—>0 6cosx — 2x sinx 6 = % = f(x)
. 2
Thus, lim (ﬂ)w — /8,
x—0 X
Let y = (cos 21) /7. 4 i S G —3FG A ) 3 —h) — f (e —3h)
1 s 2t . 3
Then Iny = w. We have h=0 , , w , ,
t _lim3f(x—|—3h)—3f(x—|—h)—3f(x—h)+3f(x—3h)
1 2t 0 - 2
limIny = lim H(LZS) [_] h—0 , , 3h , ,
P, =0 1 0 i 3G 4 3h) = G ) 4 = ) = 3 (= 3h)
—lim —2tan 2t 0 T =0 2h
T 50 2t 0 — lim 9f"(x +3h) — f"(x +h) — f"(x —h) +9f" (x — 3h)
. 2sec?2t h—0 2
= —IEI(I) 1 = -2. :8f’”(x).
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Suppose that f and g are continuous on [a, b] and
differentiable on (a, b) and g(x) # O there. Let

a < x <t < b, and apply the Generalized Mean-Value
Theorem; there exists ¢ in (x, t) such that

fo) - f@ _ f(©)
gx)—g) gl

. [f(x)—f(t)M g(x) ]zf’(c)
@ ls®—s0l 7@
L w0 O [g(x)—g(n]
) s gL sm
oSO 0 f'© o)
T g0 o gwm
f0) _ S 1 [ B f’(C)]
Z e go TP %0
£ fo 1 [ £
L = - —
7 7@ 55 AR TT)

Since |m + n| < |m| + |n|, therefore,

f(x)_L’ S

f'o) ’
g(x)

1
- +—[|f(t)|+|g(t)|
g' (o)

lg ()]

Since lim¢— 4+ f'(c)/g'(c) =
we can choose ¢ sufficiently close to a to ensure that

!
/© —L| < E
g'(c) 2
In particular,
/ €
FOF i+ €.
g'(c) 2

Since lim,_, 44 |g(x)| = 0o, we can choose x between a
and ¢ sufficiently close to a to ensure that

| ( )l |:|f(l)|+|g(t)|(|L|+§):| - %

It follows that

fx) L‘ -
g(x)
S&x)

Thus limy_, o4 ——

glx)
Review Exercises 4 (page 270)
Since dr/dt = 2r/100 and V =

(4/3)7'rr3, we have

dv 4w _ ,dr 2 6V
—=—=3r"— =3V —=—.
dt 3 dt 100 100
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Now suppose that € is an arbitrary small positive number.

L,and sincea <x <c <t,

|

R. A. ADAMS: CALCULUS

Hence The volume is increasing at 6%/min.

a) Since F must be continuous at r = R, we have

R2
mex =mkR, or k= §.
R? R

b) The rate of change of F as r decreases from R is

(—%(mkr))

The rate of change of F as r increases from R is

d mgR?

Cdr 2
Thus F decreases as r increases from R at twice the
rate at which it decreases as r decreases from R.

1/R = 1/Ry + 1/R,. If R; = 250 ohms and R, = 1, 000

ohms, then 1/R = (1/250) + (1/1, 000) = 1/200,
so R =200 ohms. If dR;/dt = 100 ohms/min, then

= —mk = —%
r=R R

2mg R? . mg

r=R R3 R

1 dR _ 1 dR; 1 dRy

R> dt R} dt R} dt

1 dR 1 1 dR2
—_— — = 00 .
2002 dt 02 100 + 500 1, 0002 dt

a) If R remains constant, then dR/dt = 0, so

dR 1,000% x 100
@t _ DT Xy 600.
dt 2502

R; is decreasing at 1,600 ohms/min.

b) If R is increasing at 10 ohms/min, then then

dR/dt = 10, and
dR; ,( 10 100
22 21,000 ( — — — ) = —1,350.
dt (2002 2502>

R; is decreasing at 1,350 ohms/min.

If pV =5.0T, then

d av
Py p _s50dl
dr d1 di

a) If T =400 K, dT/dt = 4 K/min, and V = 2.0 m3,
then dV/dt = 0, so dp/dt = 5.0(4)/2.0 = 10. The
pressure is increasing at 10 kPa/min.

b) f T = 400K, dT/dt = 0,V = 2
m?, and dV/dt = 0.05 m3/min, then
p = 5.0(400)/2 = 1,000 kPa, and
2dp/dt + 1,000(0.05) = 0, so dp/dt = —25.
The pressure is decreasing at 25 kPa/min.
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If x copies of the book are printed, the cost of printing
each book is

10, 000
C =
X

+8+6.25x 1077 x2.

Since C — oo asx — 0+ orx — oo, C will be
minimum at a critical point. For CP:

ac 10, 000
0= - _

= 0= 2 +12.5 x 1077,

s0 x3 =8 x 10° and x = 2 x 103. 2,000 books should be
printed.

If she charges $x per bicycle, her total profit is $ P,
where

x—175
x2

P=(x—T75Nx) =45 x 10°

Evidently P <O if x <75,and P —- Oas x — oco. P
will therefore have a maximum value at a critical point in
(75, 00). For CP:
dp 2 (x—175)2

0=2F _ 45 o0 720
dx x4
from which we obtain x = 150. She should charge $150
per bicycle and order N(150) = 200 of them from the
manufacturer.

Fig. R-4.7

Let r, h and V denote the radius, height, and volume of
the cone respectively. The volume of a cone is one-third
the base area times the height, so

From the small right-angled triangle in the figure,
(h— R)? +r? =R
Thus r> = R? — (h — R)* and

V=Vh) = %h(Rz —(h— R)2) - %(2Rh2 —h3).

REVIEW EXERCISES 4 (PAGE 270)

The height of any inscribed cone cannot exceed the di-

ameter of the sphere, so 0 < h < 2R. Being continu-

ous, V(h) must have a maximum value on this interval.
Since V.=0whenh = 0orh = 2R, and V > 0 if

0 < h < 2R, the maximum value of V must occur at a
critical point. (V has no singular points.) For a critical
point,

0=V'(h) = % (4Rh — 3h%) = %h(4R —3h),
4R

h=0 h=—.
or 3

V'(h) > 0if0 < h < 4R/3 and V'(h) < 0O if
4R/3 < h < 2R. Hence h = 4R/3 does indeed give
the maximum value for V. The volume of the largest
cone can be inscribed in a sphere of radius R is

() =5 (e () - ()

32
= 31 7R3 cubic units.

T ()

.-~ slope = = average cost

Fig. R-4.8
a) For minimum C(x)/x, we need

d C(x) xC'(x)—C(x)
il — > ,

dx x X

so C'(x) = C(x)/x; the marginal cost equals the
average cost.

b) The line from (0, 0) to (x, C(x)) has smallest slope
at a value of x which makes it tangent to the graph
of C(x). Thus C’(x) = C(x)/x, the slope of the
line.

¢) The line from (0, 0) to (x, C(x)) can be tangent to
the graph of C(x) at more than one point. Not all
such points will provide a minimum value for the
average cost. (In the figure, one such line will make
the average cost maximum.)
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side flap
T T Tt I [
| | |
| o
side i bottom i side i top 50 cm
l l l
| o
side flap
b 80 cm "
Fig. R-4.9

If the edge of the cutout squares is x cm, then the vol-
ume of the folded box is

V(x) =x(50 —2x)(40 — x)
=2x3 — 130x% + 2, 000,

and is valid for 0 < x < 25. Since V(0) = V(25) =0,
and V(x) > 0if 0 < x < 25, the maximum will occur at
a CP:

0= V'(x) = 6x2 — 260x + 2, 000
=2(3x? — 130x + 1, 000)
=23x — 100)(x — 10).

Thus x = 10 or x = 100/3. The latter CP is not in the
interval [0, 25], so the maximum occurs at x = 10. The
maximum volume of the box is V(10) = 9, 000 cm’.

If x more trees are planted, the yield of apples will be

Y = (60 + x)(800 — 10x)
= 10(60 + x)(80 — x)
= 10(4, 800 + 20x — x?).

This is a quadratic expression with graph opening down-
ward; its maximum occurs at a CP:

dy
0=— =100 —2x) =20(10 — x).
dx

Thus 10 more trees should be planted to maximize the
yield.
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e

2 km

Fig. R-4.11

It was shown in the solution to Exercise 41 in Section
3.2 that at time ¢ s after launch, the tracking antenna
rotates upward at rate

do 800¢ £0)
— == , say.

di 4002 1 /4 Y

Observe that f(0) = 0 and f(r) — 0 as ¢t — oo. For
critical points,

o (400% + 1*) — 4¢*
0= s =0 | e

= 3r* = 4007, or t=~15.197.

The maximum rate at which the antenna must turn is
f(15.197) ~ 0.057 rad/s.

The narrowest hallway in which the table can be turned
horizontally through 180° has width equal to twice the
greatest distance from the origin (the centre of the table)
to the curve x> + y* = 1/8 (the edge of the table). We
maximize the square of this distance, which we express
as a function of y:

1
S =x*+y*=y"+ i yho0<y< /8.

Note that S(0) = 1/8 and S((1/8)"/*) = 1//8 > S(0).
For CP:

ds 3
0=— =2y —4y-

=2y(1 —2y?).
& ¥( )
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The CPs are given by y = 0 (already considered), and
y2 = 1/2, where S(y) = 3/8. Since 3/8 > 1/+/8, this is
the maximum value of S. The hallway must therefore be
at least 2,/3/8 ~ 1.225 m wide.

Let the ball have radius » cm. Its weight is proportional
to the volume of metal it contains, so the condition of the
problem states that

3 — 1272 +24r — 16 = 0.

Graphing the left side of this latter equation with a
graphics calculator shows a root between 9 and 10. A
“solve routine” or Newton’s Method then refines an ini-
tial guess of, say, r = 9.5 to give r = 9.69464420373 cm
for the radius of the ball.

e .. trajectory

1,000
Y= T+(x/500)2

Fig. R-4.14

If the origin is at sea level under the launch point, and
x(t) and y(t) are the horizontal and vertical coordinates
of the cannon ball’s position at time ¢ s after it is fired,
then

d*x 0 d2y 0

a2 dr? '

At t = 0, we have dx/dt = dy/dt = 200/+/2, so

dx 200 dy .. 200

dr — J2°  dt V2

Att = 0, we have x = 0 and y = 1,000. Thus the
position of the ball at time ¢ is given by

200¢ , 200z
x=—, y=—1624+=—= +1,000.
V2 y V2

We can obtain the Cartesian equation for the path of the
cannon ball by solving the first equation for ¢ and substi-
tuting into the second equation:

2

=162 v +1,000
YT P00 T

15.

16.

17.
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The cannon ball strikes the ground when

2x2 1, 000
162 1,000 = — =
2000 T 1+ (x/500)2

Graphing both sides of this equation suggests a solution
near x = 1,900. Newton’s Method or a solve routine
then gives x &~ 1, 873. The horizontal range is about
1,873 ft.

The percentage error in the approximation
—(g/L)sinf ~ —(g.L)0 is

100 w‘:100( i —1).
sin 6 sin 6

Since limy_,06/(sinf) = 1, the percentage error — 0
as 8 — 0. Also, 6/sin8 grows steadily larger as |0|
increases from O towards /2. Thus the maximum per-
centage error for |#| < 20° = w/9 will occur at 6 = /9.
This maximum percentage error is

/9 N
00 (m — 1) ~ 2.06%.

. 1
sin“x = §<1 — cos(2x)>
RN PO O S A A 06
' Umar e O
4 6
:xz—x—+2i—|—0(x8)
3 45
. 3sin?x —3xZ 4+ x*
lim
x—0 x6
2
3x2 —xt 4+ X0 4 O(xg) —3x2—x*
= lim 15
= 6
x—0 X
lim = + 0() = —
= Im — = —.
e ST T
1 —2x
— a1 _ _
o = 0 = 75 11O = 5
6x2 =2
" _
0= a5y
T x—1 (x-1)?2
About x =1, P = — -
out x 5 (x) T + 2 T
~1 T 1 1
Thus tan™'(1.1)  — + — — — = 0.832898. On
4 20 00
[1, 1.1], we have
el = 22 g 6srs
X ——— = U. .
' = A+

0.6575

5 (1.1-1)% ~ .00011

Thus the error does not exceed

in absolute value.
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The second approximation x; is the x-intercept of the
tangent to y = f(x) at x = xp = 2; it is the x-intercept
of the line 2y = 10x — 19. Thus x; = 19/10 = 1.9.

Fig. R-4.19

y =cosx and y = (x — 1)2 intersect at x = 0 and at a
point x between x = 1 and x = 7w /2 ~ 1.57. Starting
with an initial guess xo = 1.3, and iterating the Newton’s
Method formula

(xn — D? — cosx,
Xptl =Xp — —————,
ntl " 2(x, — 1) 4+ sinx,
we get x4 = x5 = 1.40556363276. To 10 decimal places
the two roots of the equation are x = 0 (exact), and
x = 1.4055636328.

The square of the distance from (2, 0) to (x,Inx) is
S(x) = (x —2)> + (Inx)?, for x > 0. Since S(x) — o0
as x — oo or x — 04, the minimum value of S(x) will
occur at a critical point. For CP:

1
0=s’(x)=2<x—2+ﬂ>.
X

We solve this equation using a TI-85 solve routine;

x ~ 1.6895797. The minimum distance from the origin
to

y =e* is /S(x) = 0.6094586.

If the car is at (a, %), then its headlight beam lies along
the tangent line to y = e* there, namely

y=e+e(x—a)=e'(1+x —a).
This line passes through (1, 1) if 1 = ¢*(2 — a). A solve

routine gives a ~ —1.1461932. The corresponding value
of e? is about 0.3178444. The car is at (a, e%).

Challenging Problems 4 (page 272)

— =k Vo—V).
7 x“(Vo )

172

R. A. ADAMS: CALCULUS

_ .3 2d_x_d_v_ 20, .3
a) If V =x’, then 3x = =kx“(Vo —x7), so
dt dt
dx k(V 3)
= _= —x
30

b) The rate of growth of the edge is (k/3)(Vo — x3),
which is positive if 0 < x < xp = VO1 / 3. The time
derivative of this rate is

dx K?
—kx? = = —— X2 (Vo—x>) <0
T 3 Vo )
for 0 < x < xp. Thus the edge length is increasing
at a decreasing rate.

c) Initially, x grows at rate kVy/3. The rate of growth
of x will be half of this if

- V — = —,
3( 0—x7) ;
that is, if x = (Vo/2)!/3. Then V = V,/2.

d
Let the speed of the tank be v where v = d—i = ky.

Thus, y = CeX'. Given that at r = 0, y = 4, then
4 = y(0) = C. Also given that at t = 10, y = 2, thus,

10k 1
2=y(10)=4e™ = k=—15In2

_L 1

Hence, y = 4¢"10"2" and v = o (——In2)y. The
dt l{)

slope of the curve xy = 1 is m = @& ——5. Thus, the
dx X

1
equation of the tangent line at the point (—, yo) is
Yo

1 1 . 2
x——, ie, y=2y—xy;.
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. . 2 . .
Hence, the x-intercept is x = — and the y-intercept is

Yo
y = 2y0. Let 6 be the angle between the gun and the
y-axis. We have

cand 1 4
anfd = — = = — = —
y 2yo i »?
do  —8dy
2
= sec” 0 —_ =
dt  y3 dt
Now
) ) 16 y*+16
sec@:1+tan0:1+_4: —
y y
SO
de 8y dy 8ky?

dt ~ Yy +16dt Y 416
2

The maximum value of 4y—
y*+16

occurs at a critical
point:
0_ 0141602y —y2yh)
(y*+16)%
& 0 2y° =32y,

or y = 2. Therefore the maximum rate of rotation of the
gun turret must be

22

1
—8k T —k = In2 ~ 0.0693 rad/m,

T 10
and occurs when your tank is 2 km from the origin.

a) If ¢ =0.99, the number of tests required is
T = N((1/x)+1—-0.99%). T is a decreasing
function for small values of x because the term
1/x dominates. It is increasing for large x because
—0.99* dominates. Thus 7" will have a minimum
value at a critical point, provided N is sufficiently
large that the CP is in (0, N). For CP:

0=9T _y (—i —0.99" ln(0.99))
dx x2
, (0.99)
T Thn0.99)
(0.99)~*/2

X = W = f(x), say.

b) Starting with xo = 20, we iterate x,4+; = f(x,). The
first three iterations give

x1 ~ 11.03, x2~10.54, x3~10.51.

CHALLENGING PROBLEMS 4 (PAGE 272)

This suggests the CP is near 10.5. Since x must
be an integer, we test x = 10 and x = 11:
T(10) =~ 0.19562 and T(11) =~ 0.19557. The
minimum cost should arise by using groups of 11
individuals.

P =2nL]g =2rxL2g=1/2,

a) If L remains constant, then

dP
AP~ = Ag = —nL'?g73% Ag
g

AP _ —mL'2g732 Ap — 1 Ag
P 2nLl2g-12 §=73 g

If g increases by 1%, then Ag/g = 1/100, and
AP/P = —1/200. Thus P decreases by 0.5%.

b) If g remains constant, then

dP
AP~ = AL = aL™12g7 12 AL

AL

AP _mL7'2g712 1
2 L

P aaLng i AT

If L increases by 2%, then AL/L =2/100, and
AP/P =1/100. Thus P increases by 1%.

dv

— =—k V = Ay.

yr AT y

dy dV dy k
A= = — = —k/y,30 = =——./y.

VAT @ VY80 =gy

kt \?

b) If y() = (/Yo — 24 then y(0) = yo, and
dy kt k
=~z _9 _ _
G =2(vo-35) (%)

__k ®
= A y .

Thus the given expression does solve the initial-value
problem for y.

kT
c) If y(T) = 0, then A= yo, s0 k = 2A./yo/T.
Thus

2A./yot \ 2 1\?
y(r)=(¢%— 2;(?) =yo(l—?> )

d) Half the liquid drains out in time #, where

LY _w
Yo T 2

Thus 11 = T(1 — (1/+/2)).

173
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If the depth of liquid in the tank at time ¢ is y(¢), then
the surface of the liquid has radius r(t) = Ry(t)/H, and
the volume of liquid in the tank at that time is

Ry R? 3
V) = %( 2“)) ¥ =55 (v0)

By Torricelli’s law, dV /dt = —k,/y. Thus

NR23 2dy _ dV

bl — = —kJy,
3m2 Y ar T dr vy

or, dy/dt = —kyy~3/%, where ki = kH?/(7 R?).
5

2
t
If y(t) = yo (1 — ?> , then y(0) = yg, y(T) =0, and

dy 2 NP i
i a— 1— — —— ) =—k —/,
dr syo( T) ( T) 1y

where ki = 2yo/(5T). Thus this function y(¢) satisfies
the conditions of the problem.

If the triangle has legs x and y and hypotenuse

Vx2 4 y2, then
P=x+y+,/x2+y?

(P—x—y)?=x*+y?
P> +x%+y? +2xy —2Px —2Py = x> +y?
y(2P —2x) = P2 —2Px

_ P(P—2x)

T 2P—-x)

The area of the triangle is

Aoy _ P Px-22
2 4 P—x

A=0ifx =0o0orx = P/2and A > 0 between these
values of x. The maximum area will therefore occur at a
critical point.

0= 9A _ P (P—x)(P —40) —x(P —20)(-1)
T dx 4 (P —x)?

0= P2 —5Px +4x? + Px — 2x?

2x2 —4Px + P2 =0.

This quadratic has two roots, but the only one in [0, P/2]

is
4P — 16P2 —8P2 1
x = ) =Pl1 .

2

2
This value of x gives A(x) = %Pz (l — %) un? for the

maximum area of the triangle. (Note that the maximal
triangle is isosceles, as we might have guessed.)
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The slope of y = x> +ax? + bx + ¢ is
y' =3x%+2ax +b,

which — o0 as x — =4o00. The quadratic expression
y’ takes each of its values at two different points except
its minimum value, which is achieved only at one point
given by y” = 6x + 2a = 0. Thus the tangent to the
cubic at x = —a/3 is not parallel to any other tangent.
This tangent has equation

I
A ‘ B
%) |
h
c
Fig. C-4.9

a) The total resistance of path APC is

kIAP|  k|PC|
R —

= +
rf ry
L —hcot®  hcsch
=k 5 + 5 .
s )
We have
dR csc29  cschcotd
— = kh 2 2 ’
do ri rs
cscf r2
so the CP of R is given by = —12, that
cot6 rs

is, cos® = (r2/r1)? or 8 = cos~ ((r2/r1)?).
This CP will give the minimum resistance if it

is in the interval of possible values of 6, namely
[tan—' (h /L), mw/2]; otherwise the minimum will oc-
cur for P = A. Thus, for large L, P should be
chosen to make cosf = (r2/r1)2.

b) This is the same problem as that in (a) except that
r1 and ry are replaced with r12 and r22, respectively.
Thus the minimum resistance corresponds to choos-
ing P so that cosf = (rz/r1)4. This puts P closer
to B than it was in part (a), which is reasonable
since the resistance ratio between the thin and thick
pipes is greater than for the wires in part (a).
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10.

1 I

Fig. C-4.10

a) Let the origin be at the point on the table di-

b)

9

rectly under the hole. If a water particle leaves
the tank with horizontal velocity v, then its position
(X (), Y(2)), t seconds later, is given by

d*Xx d?y

dr? dr?

dX dY
— = — = —gt

dt dt
— 1

The range R of the particle (i.e., of the spurt) is the
value of X when Y = 0, that is, at time t = /2h/g.
Thus R = v+/2h/g.

Since v = k+/y — h, the range R is a function of y,
the depth of water in the tank.

R= k\/;/h(y —h).

For a given depth y, R will be maximum if 2(y — h)
is maximum. This occurs at the critical point
h = y/2 of the quadratic Q(h) = h(y — h).

By the result of part (c) of Problem 3 (with y re-
placed by y — h, the height of the surface of the
water above the drain in the current problem), we
have

2
t
Y(Z)—hZ(yo—h)(l—T) , forO0<t<T.

As shown above, the range of the spurt at time ¢ is

R(t) = k\/g /h(y(t) - h).

11.

CHALLENGING PROBLEMS 4 (PAGE 272)

Since R = Ry when y = yp, we have
Ro

k= ———
2
\/;x/h(yo —h)

o
Therefore R(t) = Rg—————— = Ry (1 — —).

h(yo — h)

T

<725 (611 ——
Fig. C-4.11

Note that the vertical back wall of the dustpan is perpen-
dicular to the plane of the fop of the pan, not the bottom.
The volume of the pan is made up of three parts:

a triangular prism (the centre part) having
height x, width 25 — 2x, and depth y (all dis-
tances in cm), where y2 +x2 = (25-x)2, and
s0 y = /625 — 50x = 54/25 — 2x, and

two triangular pyramids (one on each side) each
having height x and a right-triangular top with
dimensions x and y.

The volume of the pan is, therefore,

1 1 1
V= Exy(25 —2x)+2 (§> (Exy> X

_ ! 25 -2 +2
= ny X 3x
5
= gx\/25 —2x(75 —4x) = V(x).

The appropriate values for x are 0 < x < 25/2. Note that
V() = V(25/2) = 0 and V(x) > 0 in (0,25/2). The
maximum volume will therefore occur at a critical point:

_dV _ 254x? —85x 4375
V25 —2x

Tdx 6
(after simplification). The quadratic in the numerator
factors to (x — 15)(4x — 25), so the CPs are x = 15 and
x = 25/4. Only x = 25/4 is in the required interval.
The maximum volume of the dustpan is V (25/4) =~ 921
3
cm”.

175



