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CHAPTER 3. TRANSCENDENTAL FUNC-
TIONS

Section 3.1 Inverse Functions (page 167)

1. f (x) = x − 1
f (x1) = f (x2) ⇒ x1 − 1 = x2 − 1 ⇒ x1 = x2.
Thus f is one-to-one. Let y = f −1(x).
Then x = f (y) = y − 1 and y = x + 1. Thus
f −1(x) = x + 1.
D( f ) = D( f −1) = � = R( f ) = R( f −1).

2. f (x) = 2x −1. If f (x1) = f (x2), then 2x1 −1 = 2x2 −1.
Thus 2(x1 − x2) = 0 and x1 = x2. Hence, f is one-to-
one.
Let y = f −1(x). Thus x = f (y) = 2y − 1, so
y = 1

2 (x + 1). Thus f −1(x) = 1
2 (x + 1).

D( f ) = R( f −1) = (−∞,∞).
R( f ) = D( f −1) = (−∞,∞).

3. f (x) = √
x − 1

f (x1) = f (x2) ⇔
√

x1 − 1 =
√

x2 − 1, (x1, x2 ≥ 1)

⇔ x1 − 1 = x2 − 1 = 0

⇔ x1 = x2

Thus f is one-to-one. Let y = f −1(x).
Then x = f (y) = √

y − 1, and y = 1 + x2. Thus
f −1(x) = 1 + x2, (x ≥ 0).
D( f ) = R( f −1) = [1, ∞), R( f ) = D( f −1) = [0, ∞).

4. f (x) = −√
x − 1 for x ≥ 1.

If f (x1) = f (x2), then −√
x1 − 1 = −√

x2 − 1 and
x1 − 1 = x2 − 1. Thus x1 = x2 and f is one-to-one.
Let y = f −1(x). Then x = f (y) = −√

y − 1 so
x2 = y − 1 and y = x2 + 1. Thus, f −1(x) = x2 + 1.
D( f ) = R( f −1) = [1, ∞). R( f ) = D( f −1) = (−∞, 0].

5. f (x) = x3

f (x1) = f (x2) ⇔ x3
1 = x3

2

⇒ (x1 − x2)(x
2
1 + x1x2 + x2

2 ) = 0

⇒ x1 = x2

Thus f is one-to-one. Let y = f −1(x).
Then x = f (y) = y3 so y = x1/3.
Thus f −1(x) = x1/3.
D( f ) = D( f −1) = � = R( f ) = R( f −1).

6. f (x) = 1 + 3
√

x . If f (x1) = f (x2), then
1 + 3

√
x1 = 1 + 3

√
x2 so x1 = x2. Thus, f is one-to-

one.
Let y = f −1(x) so that x = f (y) = 1 + 3

√
y. Thus

y = (x − 1)3 and f −1(x) = (x − 1)3.
D( f ) = R( f −1) = (−∞,∞).
R( f ) = D( f −1) = (−∞,∞).

7. f (x) = x2, (x ≤ 0)

f (x1) = f (x2) ⇔ x2
1 = x2

2 , (x1 ≤ 0, x2 ≤ 0)

⇔ x1 = x2

Thus f is one-to-one. Let y = f −1(x).
Then x = f (y) = y2 (y ≤ 0).
therefore y = −√

x and f −1(x) = −√
x .

D( f ) = (−∞, 0] = R( f −1),
D( f −1) = [0, ∞) = R( f ).

8. f (x) = (1 − 2x)3. If f (x1) = f (x2), then
(1 − 2x1)

3 = (1 − 2x2)
3 and x1 = x2. Thus, f is one-to-

one.
Let y = f −1(x). Then x = f (y) = (1 − 2y)3 so
y = 1

2 (1 − 3
√

x). Thus, f −1(x) = 1
2 (1 − 3

√
x).

D( f ) = R( f −1) = (−∞,∞).
R( f ) = D( f −1) = (−∞,∞).

9. f (x) = 1

x + 1
. D( f ) = {x : x �= −1} = R( f −1).

f (x1) = f (x2) ⇔ 1

x1 + 1
= 1

x2 + 1
⇔ x2 + 1 = x1 + 1

⇔ x2 = x1

Thus f is one-to-one; Let y = f −1(x).

Then x = f (y) = 1

y + 1

so y + 1 = 1

x
and y = f −1(x) = 1

x
− 1.

D( f −1) = {x : x �= 0} = R( f ).

10. f (x) = x

1 + x
. If f (x1) = f (x2), then

x1

1 + x1
= x2

1 + x2
.

Hence x1(1 + x2) = x2(1 + x1) and, on simplification,
x1 = x2. Thus, f is one-to-one.

Let y = f −1(x). Then x = f (y) = y

1 + y
and

x(1 + y) = y. Thus y = x

1 − x
= f −1(x).

D( f ) = R( f −1) = (−∞,−1) ∪ (−1, ∞).
R( f ) = D( f −1) = (−∞, 1) ∪ (1, ∞).

11. f (x) = 1 − 2x

1 + x
. D( f ) = {x : x �= −1} = R( f −1)

f (x1) = f (x2) ⇔ 1 − 2x1

1 + x1
= 1 − 2x2

1 + x2
⇔ 1 + x2 − 2x1 − 2x1x2 = 1 + x1 − 2x2 − 2x1x2

⇔ 3x2 = 3x1 ⇔ x1 = x2

Thus f is one-to-one. Let y = f −1(x).

Then x = f (y) = 1 − 2y

1 + y
so x + xy = 1 − 2y

and f −1(x) = y = 1 − x

2 + x
.

D( f −1) = {x : x �= −2} = R( f ).
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12. f (x) = x√
x2 + 1

. If f (x1) = f (x2), then

x1√
x2

1 + 1
= x2√

x2
2 + 1

. (∗)

Thus x2
1 (x2

2 + 1) = x2
2 (x2

1 + 1) and x2
1 = x2

2 .
From (*), x1 and x2 must have the same sign. Hence,
x1 = x2 and f is one-to-one.

Let y = f −1(x). Then x = f (y) = y
√

y2 + 1
, and

x2(y2 + 1) = y2. Hence y2 = x2

1 − x2 . Since f (y) and y

have the same sign, we must have y = x√
1 − x2

, so

f −1(x) = x√
1 − x2

.

D( f ) = R( f −1) = (−∞,∞).
R( f ) = D( f −1) = (−1, 1).

13. g(x) = f (x) − 2
Let y = g−1(x). Then x = g(y) = f (y) − 2, so
f (y) = x + 2 and g−1(x) = y = f −1(x + 2).

14. h(x) = f (2x). Let y = h−1(x). Then x = h(y) = f (2y)

and 2y = f −1(x). Thus h−1(x) = y = 1
2 f −1(x).

15. k(x) = −3 f (x). Let y = k−1(x). Then

x = k(y) = −3 f (y), so f (y) = − x

3
and

k−1(x) = y = f −1
(
− x

3

)
.

16. m(x) = f (x − 2). Let y = m−1(x). Then
x = m(y) = f (y − 2), and y − 2 = f −1(x).
Hence m−1(x) = y = f −1(x) + 2.

17. p(x) = 1

1 + f (x)
. Let y = p−1(x).

Then x = p(y) = 1

1 + f (y)
so f (y) = 1

x
− 1,

and p−1(x) = y = f −1
(

1

x
− 1

)
.

18. q(x) = f (x) − 3

2
Let y = q−1(x). Then

x = q(y) = f (y) − 3

2
and f (y) = 2x + 3. Hence

q−1(x) = y = f −1(2x + 3).

19. r(x) = 1 − 2 f (3 − 4x)

Let y = r−1(x). Then x = r(y) = 1 − 2 f (3 − 4y).

f (3 − 4y) = 1 − x

2

3 − 4y = f −1
(

1 − x

2

)

and r−1(x) = y = 1

4

(
3 − f −1

(
1 − x

2

))
.

20. s(x) = 1 + f (x)

1 − f (x)
. Let y = s−1(x).

Then x = s(y) = 1 + f (y)

1 − f (y)
. Solving for f (y) we obtain

f (y) = x − 1

x + 1
. Hence s−1(x) = y = f −1

(
x − 1

x + 1

)
.

21. f (x) = x2 + 1 if x ≥ 0, and f (x) = x + 1 if x < 0.
If f (x1) = f (x2) then if x1 ≥ 0 and x2 ≥ 0 then
x2

1 + 1 = x2
2 + 1 so x1 = x2;

if x1 ≥ 0 and x2 < 0 then x2
1 + 1 = x2 + 1 so x2 = x2

1
(not possible);
if x1 < 0 and x2 ≥ 0 then x1 = x2

2 (not possible);
if x1 < 0 and x2 < 0 then x1 + 1 = x2 + 1 so x1 = x2.
Therefore f is one-to-one. Let y = f −1(x). Then

x = f (y) =
{

y2 + 1 if y ≥ 0
y + 1 if y < 0.

Thus f −1(x) = y =
{√

x − 1 if x ≥ 1
x − 1 if x < 1.

y

x

y = f (x)1

Fig. 3.1.21

22. g(x) = x3 if x ≥ 0, and g(x) = x1/3 if x < 0.
Suppose f (x1) = f (x2). If x1 ≥ 0 and x2 ≥ 0 then
x3

1 = x3
2 so x1 = x2.

Similarly, x1 = x2 if both are negative. If x1 and x2 have
opposite sign, then so do g(x1) and g(x2).
Therefore g is one-to-one. Let y = g−1(x). Then

x = g(y) =
{

y3 if y ≥ 0
y1/3 if y < 0.

Thus g−1(x) = y =
{

x1/3 if x ≥ 0
x3 if x < 0.

23. If x1 and x2 are both positive or both negative, and
h(x1) = h(x2), then x2

1 = x2
2 so x1 = x2. If x1 and x2

have opposite sign, then h(x1) and h(x2) are on opposite
sides of 1, so cannot be equal. Hence h is one-to-one.

If y = h−1(x), then x = h(y) =
{

y2 + 1 if y ≥ 0
−y2 + 1 if y < 0

. If

y ≥ 0, then y = √
x − 1. If y < 0, then y = √

1 − x .

Thus h−1(x) =
{√

x − 1 if x ≥ 1√
1 − x if x < 1

24. y = f −1(x) ⇔ x = f (y) = y3 + y. To find y = f −1(2)

we solve y3 + y = 2 for y. Evidently y = 1 is the only
solution, so f −1(2) = 1.
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25. g(x) = 1 if x3 + x = 10, that is, if x = 2. Thus
g−1(1) = 2.

26. h(x) = −3 if x |x | = −4, that is, if x = −2. Thus
h−1(−3) = −2.

27. If y = f −1(x) then x = f (y).

Thus 1 = f ′(y)
dy

dx
so

dy

dx
= 1

f ′(y)
= 1

1

y

= y

(since f ′(x) = 1/x).

28. f (x) = 1 + 2x3

Let y = f −1(x).
Thus x = f (y) = 1 + 2y3.

1 = 6y2 dy

dx
so ( f −1)′(x) = dy

dx
= 1

6y2 = 1

6[ f −1(x)]2

29. If f (x) = 4x3

x2 + 1
, then

f ′(x) = (x2 + 1)(12x2) − 4x3(2x)

(x2 + 1)2 = 4x2(x2 + 3)

(x2 + 1)2 .

Since f ′(x) > 0 for all x , except x = 0, f must be one-
to-one and so it has an inverse.

If y = f −1(x), then x = f (y) = 4y3

y2 + 1
, and

1 = f ′(y) = (y2 + 1)(12y2 y ′) − 4y3(2yy ′)
(y2 + 1)2

.

Thus y ′ = (y2 + 1)2

4y4 + 12y2 . Since f (1) = 2, therefore

f −1(2) = 1 and

(
f −1
)′

(2) = (y2 + 1)2

4y4 + 12y2

∣∣∣∣
y=1

= 1

4
.

30. If f (x) = x
√

3 + x2 and y = f −1(x), then
x = f (y) = y

√
3 + y2, so,

1 = y ′
√

3 + y2 + y
2yy ′

2
√

3 + y2
⇒ y ′ =

√
3 + y2

3 + 2y2
.

Since f (−1) = −2 implies that f −1(−2) = −1, we have

(
f −1
)′

(−2) =
√

3 + y2

3 + 2y2

∣∣∣∣
y=−1

= 2

5
.

Note: f (x) = x
√

3 + x2 = −2 ⇒ x2(3 + x2) = 4
⇒ x4 + 3x2 − 4 = 0 ⇒ (x2 + 4)(x2 − 1) = 0.
Since (x2 + 4) = 0 has no real solution, therefore
x2 − 1 = 0 and x = 1 or −1. Since it is given that
f (x) = −2, therefore x must be −1.

31. y = f −1(2) ⇔ 2 = f (y) = y2/(1 + √
y). We must solve

2 + 2
√

y = y2 for y. There is a root between 2 and 3:
f −1(2) ≈ 2.23362 to 5 decimal places.

32. g(x) = 2x + sin x ⇒ g′(x) = 2 + cos x ≥ 1 for
all x . Therefore g is increasing, and so one-to-one and
invertible on the whole real line.

y = g−1(x) ⇔ x = g(y) = 2y + sin y. For y = g−1(2),
we need to solve 2y + sin y − 2 = 0. The root is between
0 and 1; to five decimal places g−1(2) = y ≈ 0.68404.
Also

1 = dx

dx
= (2 + cos y)

dy

dx

(g−1)′(2) = dy

dx

∣∣∣∣
x=2

= 1

2 + cos y
≈ 0.36036.

33. If f (x) = x sec x , then f ′(x) = sec x + x sec x tan x ≥ 1
for x in (−π/2, π/2). Thus f is increasing, and so one-
to-one on that interval. Moreover,
limx→−(π/2)+ f (x) = −∞ and limx→(π/2)+ f (x) = ∞,
so, being continuous, f has range (−∞,∞), and so f −1

has domain (−∞,∞).
Since f (0) = 0, we have f −1(0) = 0, and

( f −1)′(0) = 1

f ′( f −1(0)
= 1

f ′(0)
= 1.

34. If y = ( f ◦ g)−1(x), then x = f ◦ g(y) = f (g(y)). Thus
g(y) = f −1(x) and y = g−1( f −1(x)) = g−1 ◦ f −1(x).
That is, ( f ◦ g)−1 = g−1 ◦ f −1.

35. f (x) = x − a

bx − c

Let y = f −1(x). Then x = f (y) = y − a

by − c
and

bxy − cx = y − a so y = cx − a

bx − 1
. We have

f −1(x) = f (x) if
x − a

bx − c
= cx − a

bx − 1
. Evidently it is

necessary and sufficient that c = 1. a and b may have
any values.

36. Let f (x) be an even function. Then f (x) = f (−x).
Hence, f is not one-to-one and it is not invertible.
Therefore, it cannot be self-inverse.
An odd function g(x) may be self-inverse if its graph is
symmetric about the line x = y. Examples are g(x) = x
and g(x) = 1/x .

37. No. A function that is one-to-one on a single interval
need not be either increasing or decreasing. For example,
consider the function defined on [0, 2] by

f (x) =
{

x if 0 ≤ x ≤ 1
−x if 1 < x ≤ 2.

It is one-to-one but neither increasing nor decreasing on
all of [0, 2].
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38. First we consider the case where the domain of f is a
closed interval. Suppose that f is one-to-one and con-
tinuous on [a, b], and that f (a) < f (b). We show that
f must be increasing on [a, b]. Suppose not. Then there
are numbers x1 and x2 with a ≤ x1 < x2 ≤ b and
f (x1) > f (x2). If f (x1) > f (a), let u be a number
such that u < f (x1), f (x2) < u, and f (a) < u. By
the Intermediate-Value Theorem there exist numbers c1 in
(a, x1) and c2 in (x1, x2) such that f (c1) = u = f (c2),
contradicting the one-to-oneness of f . A similar con-
tradiction arises if f (x1) ≤ f (a) because, in this case,
f (x2) < f (b) and we can find c1 in (x1, x2) and c2 in
(x2, b) such that f (c1) = f (c2). Thus f must be increas-
ing on [a, b].

A similar argument shows that if f (a) > f (b), then
f must be decreasing on [a, b].

Finally, if the interval I where f is defined is not
necessarily closed, the same argument shows that if [a, b]
is a subinterval of I on which f is increasing (or de-
creasing), then f must also be increasing (or decreasing)
on any intervals of either of the forms [x1, b] or [a, x2],
where x1 and x2 are in I and x1 ≤ a < b ≤ x2. So f
must be increasing (or decreasing) on the whole of I .

Section 3.2 Exponential and Logarithmic
Functions (page 171)

1.
33

√
35

= 33−5/2 = 31/2 = √
3

2. 21/281/2 = 21/223/2 = 22 = 4

3. (x−3)−2 = x6

4. ( 1
2 )x 4x/2 = 2x

2x
= 1

5. log5 125 = log5 53 = 3

6. If log4(
1
8 ) = y then 4y = 1

8 , or 22y = 2−3. Thus
2y = −3 and log4(

1
8 ) = y = − 3

2 .

7. log1/3 32x = log1/3

(
1

3

)−2x

= −2x

8. 43/2 = 8 ⇒ log4 8 = 3
2 ⇒ 2log4 8 = 23/2 = 2

√
2

9. 10− log10(1/x) = 1

1/x
= x

10. Since loga

(
x1/(loga x)

) = 1

loga x
loga x = 1, therefore

x1/(loga x) = a1 = a.

11. (loga b)(logb a) = loga a = 1

12. logx

(
x(logy y2)

)
= logx(2x) = logx x + logx 2

= 1 + logx 2 = 1 + 1

log2 x

13. (log4 16)(log4 2) = 2 × 1

2
= 1

14. log15 75 + log15 3 = log15 225 = 2

(since 152 = 225)

15. log6 9 + log6 4 = log6 36 = 2

16. 2 log3 12 − 4 log3 6 = log3

(
42 · 32

24 · 34

)

= log3(3
−2) = −2

17. loga(x4 + 3x2 + 2) + loga(x4 + 5x2 + 6)

− 4 loga

√
x2 + 2

= loga

(
(x2 + 2)(x2 + 1)

)
+ loga

(
(x2 + 2)(x2 + 3)

)

− 2 log1(x
2 + 2)

= loga(x2 + 1) + loga(x2 + 3)

= loga(x4 + 4x2 + 3)

18. logπ (1 − cos x) + logπ (1 + cos x) − 2 logπ sin x

= logπ

[
(1 − cos x)(1 + cos x)

sin2 x

]
= logπ

sin2 x

sin2 x

= logπ 1 = 0

19. y = 3
√

2, log10 y = √
2 log10 3,

y = 10
√

2 log10 3 ≈ 4.72880

20. log3 5 = (log10 5)/(log10 3 ≈ 1.46497

21. 22x = 5x+1, 2x log10 2 = (x + 1) log10 5,
x = (log10 5)/(2 log10 2 − log10 5) ≈ −7.21257

22. x
√

2 = 3,
√

2 log10 x = log10 3,

x = 10(log10 3)/
√

2 ≈ 2.17458

23. logx 3 = 5, (log10 3)/(log10 x) = 5,
log10 x = (log10 3)/5, x = 10(log10 3)/5 ≈ 1.24573

24. log3 x = 5, (log10 x)/(log10 3) = 5,
log10 x = 5 log10 3, x = 105 log10 3 = 35 = 243

25. Let u = loga

(
1

x

)
then au = 1

x
= x−1. Hence, a−u = x

and u = − loga x .

Thus, loga

(
1

x

)
= − loga x .

26. Let loga x = u, loga y = v.
Then x = au , y = av .

Thus
x

y
= au

av
= au−v

and loga

(
x

y

)
= u − v = loga x − loga y.
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27. Let u = loga(x y), then au = x y and au/y = x .

Therefore
u

y
= loga x , or u = y loga x .

Thus, loga(x y) = y loga x .

28. Let logb x = u, logb a = v.
Thus bu = x and bv = a.
Therefore x = bu = bv(u/v) = au/v

and loga x = u

v
= logb x

logb a
.

29. log4(x + 4) − 2 log4(x + 1) = 1

2

log4
x + 4

(x + 1)2
= 1

2
x + 4

(x + 1)2 = 41/2 = 2

2x2 + 3x − 2 = 0 but we need x + 1 > 0, so x = 1/2.

30. First observe that log9 x = log3 x/ log3 9 = 1
2 log3 x . Now

2 log3 x + log9 x = 10

log3 x2 + log3 x1/2 = 10

log3 x5/2 = 10

x5/2 = 310, so x = (310)2/5 = 34 = 81

31. Note that logx 2 = 1/ log2 x .
Since limx→∞ log2 x = ∞, therefore limx→∞ logx 2 = 0.

32. Note that logx (1/2) = − logx 2 = −1/ log2 x .
Since limx→0+ log2 x = −∞, therefore
limx→0+ logx (1/2) = 0.

33. Note that logx 2 = 1/ log2 x .
Since limx→1+ log2 x = 0+, therefore
limx→1+ logx 2 = ∞.

34. Note that logx 2 = 1/ log2 x .
Since limx→1− log2 x = 0−, therefore
limx→1− logx 2 = −∞.

35. f (x) = ax and f ′(0) = lim
h→0

ah − 1

h
= k. Thus

f ′(x) = lim
h→0

ax+h − ax

h

= lim
h→0

ax ah − ax

h

= ax lim
h→0

ah − 1

h
= ax f ′(0) = ax k = k f (x).

36. y = f −1(x) ⇒ x = f (y) = ay

⇒ 1 = dx

dx
= kay dy

dx

⇒ dy

dx
= 1

kay
= 1

kx
.

Thus ( f −1)′(x) = 1/(kx).

Section 3.3 The Natural Logarithm
and Exponential (page 179)

1.
e3

√
e5

= e3−5/2 = e1/2 = √
e

2. ln(e1/2e2/3) = 1
2 + 2

3 = 7
6

3. e5 ln x = x5

4. e(3 ln 9)/2 = 93/2 = 27

5. ln
1

e3x
= ln e−3x = −3x

6. e2 ln cos x +
(

ln esin x
)2 = cos2 x + sin2 x = 1

7. 3 ln 4 − 4 ln 3 = ln
43

34 = ln
64

81

8. 4 ln
√

x + 6 ln(x1/3) = 2 ln x + 2 ln x = 4 ln x

9. 2 ln x + 5 ln(x − 2) = ln
(

x2(x − 2)5
)

10. ln(x2 + 6x + 9) = ln[(x + 3)2] = 2 ln(x + 3)

11. 2x+1 = 3x

(x + 1) ln 2 = x ln 3

x = ln 2

ln 3 − ln 2
= ln 2

ln(3/2)

12. 3x = 91−x ⇒ 3x = 32(1−x)

⇒ x = 2(1 − x) ⇒ x = 2
3

13.
1

2x
= 5

8x+3

−x ln 2 = ln 5 − (x + 3) ln 8

= ln 5 − (3x + 9) ln 2

2x ln 2 = ln 5 − 9 ln 2

x = ln 5 − 9 ln 2

2 ln 2

14. 2x2−3 = 4x = 22x ⇒ x2 − 3 = 2x

x2 − 2x − 3 = 0 ⇒ (x − 3)(x + 1) = 0

Hence, x = −1 or 3.

15. ln(x/(2 − x)) is defined if x/(2 − x) > 0, that is, if
0 < x < 2. The domain is the interval (0, 2).

16. ln(x2 − x − 2) = ln[(x − 2)(x + 1)] is defined if
(x − 2)(x + 1) > 0, that is, if x < −1 or x > 2. The
domain is the union (−∞,−1) ∪ (2, ∞).

17. ln(2x − 5) > ln(7 − 2x) holds if 2x − 5 > 0, 7 − 2x > 0,
and 2x − 5 > 7 − 2x , that is, if x > 5/2, x < 7/2, and
4x > 12 (i.e., x > 3). The solution set is the interval
(3, 7/2).
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18. ln(x2 − 2) ≤ ln x holds if x2 > 2, x > 0, and x2 − 2 ≤ x .
Thus we need x >

√
2 and x2 − x − 2 ≤ 0. This latter

inequality says that (x − 2)(x + 1) ≤ 0, so it holds for
−1 ≤ x ≤ 2. The solution set of the given inequality is
(
√

2, 2].

19. y = e5x , y ′ = 5e5x

20. y = xex − x, y ′ = ex + xex − 1

21. y = x

e2x
= xe−2x

y ′ = e−2x − 2xe−2x

= (1 − 2x)e−2x

22. y = x2 ex/2, y ′ = 2xex/2 + 1
2 x2 ex/2

23. y = ln(3x − 2) y ′ = 3

3x − 2

24. y = ln |3x − 2|, y ′ = 3

3x − 2

25. y = ln(1 + ex ) y ′ = ex

1 + ex

26. f (x) = ex2
, f ′(x) = (2x)ex2

27. y = ex + e−x

2
, y ′ = ex − e−x

2

28. x = e3t ln t,
dx

dt
= 3e3t ln t + 1

t
e3t

29. y = e(ex ), y ′ = ex e(ex ) = ex+ex

30. y = ex

1 + ex
= 1 − 1

1 + ex
, y ′ = ex

(1 + ex)2

31. y = ex sin x, y ′ = ex(sin x + cos x)

32. y = e−x cos x, y ′ = −e−x cos x − e−x sin x

33. y = ln ln x y ′ = 1

x ln x

34. y = x ln x − x

y ′ = ln x + x

(
1

x

)
− 1 = ln x

35. y = x2 ln x − x2

2

y ′ = 2x ln x + x2

x
− 2x

2
= 2x ln x

36. y = ln | sin x |, y ′ = cos x

sin x
= cot x

37. y = 52x+1

y ′ = 2(52x+1) ln 5 = (2 ln 5)52x+1

38. y = 2(x2−3x+8), y ′ = (2x − 3)(ln 2)2(x2−3x+8)

39. g(x) = t x x t , g′(x) = t x x t ln t + t x+1xt−1

40. h(t) = t x − xt , h ′(t) = xt x−1 − xt ln x

41. f (s) = loga(bs + c) = ln(bs + c)

ln a

f ′(s) = b

(bs + c) ln a

42. g(x) = logx(2x + 3) = ln(2x + 3)

ln x

g′(x) =
ln x

(
2

2x + 3

)
− [ln(2x + 3)]

(
1

x

)

(ln x)2

= 2x ln x − (2x + 3) ln(2x + 3)

x(2x + 3)(ln x)2

43. y = x
√

x = e
√

x ln x

y ′ = e
√

x ln x
(

ln x

2
√

x
+

√
x

x

)

= x
√

x
(

1√
x

(
1

2
ln x + 1

))

44. Given that y =
(

1

x

)ln x

, let u = ln x . Then x = eu and

y =
(

1

eu

)u

= (e−u)u = e−u2
. Hence,

dy

dx
= dy

du
· du

dx
= (−2ue−u2

)

(
1

x

)
= −2 ln x

x

(
1

x

)ln x

.

45. y = ln | sec x + tan x |
y ′ = sec x tan x + sec2 x

sec x + tan x
= sec x

46. y = ln |x +
√

x2 − a2|

y ′ =
1 + 2x

2
√

x2 − a2

x + √
x2 − a2

= 1√
x2 − a2

47. y = ln(
√

x2 + a2 − x)

y ′ =
x√

x2 + a2
− 1

√
x2 + a2 − x

= − 1√
x2 + a2

48. y = (cos x)x − xcos x = ex ln cos x − e(cos x)(ln x)

y ′ = ex ln cos x
[

ln cos x + x

(
1

cos x

)
(− sin x)

]

− e(cos x)(ln x)

[
− sin x ln x + 1

x
cos x

]

= (cos x)x (ln cos x − x tan x)

− xcos x
(

− sin x ln x + 1

x
cos x

)
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49. f (x) = xeax

f ′(x) = eax(1 + ax)

f ′′(x) = eax(2a + a2x)

f ′′′(x) = eax(3a2 + a3x)

...

f (n)(x) = eax(nan−1 + an x)

50. Since

d

dx
(ax2 + bx + c)ex = (2ax + b)ex + (ax2 + bx + c)ex

= [ax2 + (2a + b)x + (b + c)]ex

= [Ax2 + Bx + C]ex .

Thus, differentiating (ax2 + bx + c)ex produces another
function of the same type with different constants. Any
number of differentiations will do likewise.

51. y = ex2

y ′ = 2xex2

y ′′ = 2ex2 + 4x2ex2 = 2(1 + 2x2)ex2

y ′′′ = 2(4x)ex2 + 2(1 + 2x2)2xex2 = 4(3x + 2x3)ex2

y(4) = 4(3 + 6x2)ex2 + 4(3x + 2x3)2xex2

= 4(3 + 12x2 + 4x4)ex2

52. f (x) = ln(2x + 1)

f ′′(x) = (−1)22(2x + 1)−2

f (4)(x) = −(3!)24(2x + 1)−4

f ′(x) = 2(2x + 1)−1

f ′′′(x) = (2)23(2x + 1)−3

Thus, if n = 1, 2, 3, . . . we have
f (n)(x) = (−1)n−1(n − 1)!2n (2x + 1)−n .

53. a) f (x) = (x x )x = x (x2)

ln f (x) = x2 ln x
1

f
f ′ = 2x ln x + x

f ′ = x x2+1(2 ln x + 1)

b) g(x) = xxx

ln g = x x ln x
1

g′ g′ = x x(1 + ln x) ln x + x x

x

g′ = x xx
x x
(

1

x
+ ln x + (ln x)2

)

Evidently g grows more rapidly than does f as x grows
large.

54. Given that x xx ..
.

= a where a > 0, then

ln a = x xx ..
.

ln x = a ln x .

Thus ln x = 1

a
ln a = ln a1/a , so x = a1/a .

55. f (x) = (x − 1)(x − 2)(x − 3)(x − 4)

ln f (x) = ln(x − 1) + ln(x − 2) + ln(x − 3) + ln(x − 4)

1

f (x)
f ′(x) = 1

x − 1
+ 1

x − 2
+ 1

x − 3
+ 1

x − 4

f ′(x) = f (x)

(
1

x − 1
+ 1

x − 2
+ 1

x − 3
+ 1

x − 4

)

56. F(x) =
√

1 + x(1 − x)1/3

(1 + 5x)4/5

ln F(x) = 1
2 ln(1 + x) + 1

3 ln(1 − x) − 4
5 ln(1 + 5x)

F ′(x)

F(x)
= 1

2(1 + x)
− 1

3(1 − x)
− 4

(1 + 5x)

F ′(0) = F(0)

[
1

2
− 1

3
− 4

1

]
= (1)

[
1

2
− 1

3
− 4

]
= −23

6

57. f (x) = (x2 − 1)(x2 − 2)(x2 − 3)

(x2 + 1)(x2 + 2)(x2 + 3)

f (2) = 3 × 2 × 1

5 × 6 × 7
= 1

35
, f (1) = 0

ln f (x) = ln(x2 − 1) + ln(x2 − 2) + ln(x2 − 3)

− ln(x2 + 1) − ln(x2 + 2) − ln(x2 + 3)

1

f (x)
f ′(x) = 2x

x2 − 1
+ 2x

x2 − 2
+ 2x

x2 − 3

− 2x

x2 + 1
− 2x

x2 + 2
− 2x

x2 + 3

f ′(x) = 2x f (x)

(
1

x2 − 1
+ 1

x2 − 2
+ 1

x2 − 3

− 1

x2 + 1
− 1

x2 + 2
− 1

x2 + 3

)

f ′(2) = 4

35

(
1

3
+ 1

2
+ 1

1
− 1

5
− 1

6
− 1

7

)

= 4

35
× 139

105
= 556

3675
Since f (x) = (x2 − 1)g(x) where g(1) �= 0, then
f ′(x) = 2xg(x) + (x2 − 1)g′(x) and

f ′(1) = 2g(1) + 0 = 2 × (−1)(−2)

2 × 3 × 4
= 1

6
.

58. Since y = x2e−x2
, then

y ′ = 2xe−x2 − 2x3e−x2 = 2x(1 − x)(1 + x)e−x2
.

The tangent is horizontal at (0, 0) and

(
±1,

1

e

)
.

59. f (x) = xe−x

f ′(x) = e−x (1 − x), C.P. x = 1, f (1) = 1

e
f ′(x) > 0 if x < 1 ( f increasing)
f ′(x) < 0 if x > 1 ( f decreasing)
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y

x

(1,1/e) y = x e−x

Fig. 3.3.59

60. Since y = ln x and y ′ = 1

x
= 4 then x = 1

4 and

y = ln 1
4 = − ln 4. The tangent line of slope 4 is

y = − ln 4 + 4(x − 1
4 ), i.e., y = 4x − 1 − ln 4.

61. Let the point of tangency be (a, ea).
Tangent line has slope

ea − 0

a − 0
= d

dx
ex
∣∣∣∣
x=a

= ea.

Therefore, a = 1 and line has slope e.
The line has equation y = ex .

y

x

(a,ea)

y = ex

Fig. 3.3.61

62. The slope of y = ln x at x = a is y ′ = 1

x

∣∣∣∣
x=a

= 1

a
. The

line from (0, 0) to (a, ln a) is tangent to y = ln x if

ln a − 0

a − 0
= 1

a

i.e., if ln a = 1, or a = e. Thus, the line is y = x

e
.

y

x

(a, ln a)

y = ln x

Fig. 3.3.62

63. Let the point of tangency be (a, 2a). Slope of the tangent
is

2a − 0

a − 1
= d

dx
2x

∣∣∣∣
x=a

= 2a ln 2.

Thus a − 1 = 1

ln 2
, a = 1 + 1

ln 2
.

So the slope is 2a ln 2 = 21+(1/ ln 2) ln 2 = 2e ln 2.

(Note: ln 21/ ln 2 = 1

ln 2
ln 2 = 1 ⇒ 21/ ln 2 = e)

The tangent line has equation y = 2e ln 2(x − 1).

64. The tangent line to y = ax which passes through the
origin is tangent at the point (b, ab) where

ab − 0

b − 0
= d

dx
ax
∣∣∣∣
x=b

= ab ln a.

Thus
1

b
= ln a, so ab = a1/ ln a = e. The line y = x will

intersect y = ax provided the slope of this tangent line

does not exceed 1, i.e., provided
e

b
≤ 1, or e ln a ≤ 1.

Thus we need a ≤ e1/e.
y

x

(b, ab)

y = ax

Fig. 3.3.64

65. exy ln
x

y
= x + 1

y

exy(y + xy ′) ln
x

y
+ exy y

x

(
y − xy ′

y2

)
= 1 − 1

y2
y ′

At

(
e,

1

e

)
we have

e

(
1

e
+ ey ′

)
2 + e

1

e2
(e − e3y ′) = 1 − e2 y ′

2 + 2e2y ′ + 1 − e2 y ′ = 1 − e2 y ′.
Thus the slope is y ′ = − 1

e2 .

66. xey + y − 2x = ln 2 ⇒ ey + xey y ′ + y ′ − 2 = 0.

At (1, ln 2), 2 + 2y′ + y ′ − 2 = 0 ⇒ y ′ = 0.
Therefore, the tangent line is y = ln 2.
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67. f (x) = Ax cos ln x + Bx sin ln x

f ′(x) = A cos ln x − A sin ln x + B sin ln x + B cos ln x

= (A + B) cos ln x + (B − A) sin ln x

If A = B = 1

2
then f ′(x) = cos ln x .

Therefore
∫

cos ln x dx = 1

2
x cos ln x + 1

2
x sin ln x + C .

If B = 1

2
, A = −1

2
then f ′(x) = sin ln x .

Therefore
∫

sin ln x dx = 1

2
x sin ln x − 1

2
x cos ln x + C .

68. FA,B (x) = Aex cos x + Bex sin x
d

dx
FA,B (x)

= Aex cos x − Aex sin x + Bex sin x + Bex cos x

= (A + B)ex cos x + (B − A)ex sin x = FA+B,B−A(x)

69. Since
d

dx
FA,B (x) = FA+B,B−A(x) we have

a)
d2

dx2 FA,B (x) = d

dx
FA+B,B−A(x) = F2B,−2A(x)

b)
d3

dx3 ex cos x = d3

dx3 F1,0(x) = d

dx
F0,−2(x)

= F−2,−2(x) = −2ex cos x − 2ex sin x

70.
d

dx
(Aeax cos bx + Beax sin bx)

= Aaeax cos bx − Abeax sin bx + Baeax sin bx

+ Bbeax cos bx

= (Aa + Bb)eax cos bx + (Ba − Ab)eax sin bx .

(a) If Aa + Bb = 1 and Ba − Ab = 0, then A = a

a2 + b2

and B = b

a2 + b2 . Thus

∫
eax cos bx dx

= 1

a2 + b2

(
aeax cos bx + beax sin bx

)
+ C.

(b) If Aa + Bb = 0 and Ba − Ab = 1, then A = −b

a2 + b2

and B = a

a2 + b2 . Thus

∫
eax sin bx dx

= 1

a2 + b2

(
aeax sin bx − beax cos bx

)
+ C.

71.
d

dx

[
ln

1

x
+ ln x

]
= 1

1/x

(−1

x2

)
+ 1

x
= − 1

x
+ 1

x
= 0.

Therefore ln
1

x
+ ln x = C (constant). Taking x = 1, we

get C = ln 1 + ln 1 = 0. Thus ln
1

x
= − ln x .

72. ln
x

y
= ln

(
x

1

y

)
= ln x + ln

1

y
= ln x − ln y.

73.
d

dx
[ln(xr ) − r ln x] = r xr−1

xr
− r

x
= r

x
− r

x
= 0.

Therefore ln(xr ) − r ln x = C (constant). Taking
x = 1, we get C = ln 1 − r ln 1 = 0 − 0 = 0. Thus
ln(xr ) = r ln x .

74. Let x > 0, and F(x) be the area bounded by y = t2, the
t-axis, t = 0 and t = x . For h > 0, F(x + h) − F(x) is
the shaded area in the following figure.

y

t

y = t2

x x + h

Fig. 3.3.74

Comparing this area with that of the two rectangles, we
see that

hx2 < F(x + h) − F(x) < h(x + h)2.

Hence, the Newton quotient for F(x) satisfies

x2 <
F(x + h) − F(x)

h
< (x + h)2.

Letting h approach 0 from the right (by the Squeeze The-
orem applied to one-sided limits)

lim
h→0+

F(x + h) − F(x)

h
= x2.

If h < 0 and 0 < x + h < x , then

(x + h)2 <
F(x + h) − F(x)

h
< x2,

so similarly,

lim
h→0−

F(x + h) − F(x)

h
= x2.

Combining these two limits, we obtain

d

dx
F(x) = lim

h→0

F(x + h) − F(x)

h
= x2.
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Therefore F(x) =
∫

x2 dx = 1
3 x3 + C . Since

F(0) = C = 0, therefore F(x) = 1
3 x3. For x = 2,

the area of the region is F(2) = 8
3 square units.

75. a) The shaded area A in part (i) of the figure is less
than the area of the rectangle (actually a square)
with base from t = 1 to t = 2 and height 1/1 = 1.
Since ln 2 = A < 1, we have 2 < e1 = e; i.e., e > 2.

y

t

y=1/t

A

1 2

y

t1 2 3

A1
A2

y=1/t

(i) (ii)

Fig. 3.3.75

b) If f (t) = 1/t , then f ′(t) = −1/t2 and
f ′′(t) = 2/t3 > 0 for t > 0. Thus f ′(t) is an
increasing function of t for t > 0, and so the graph
of f (t) bends upward away from any of its tangent
lines. (This kind of argument will be explored fur-
ther in Chapter 5.)

c) The tangent to y = 1/t at t = 2 has slope −1/4. Its
equation is

y = 1

2
− 1

4
(x − 2) or y = 1 − x

4
.

The tangent to y = 1/t at t = 3 has slope −1/9. Its
equation is

y = 1

3
− 1

9
(x − 3) or y = 2

3
− x

9
.

d) The trapezoid bounded by x = 1, x = 2, y = 0, and
y = 1 − (x/4) has area

A1 = 1

2

(
3

4
+ 1

2

)
= 5

8
.

The trapezoid bounded by x = 2, x = 3, y = 0, and
y = (2/3) − (x/9) has area

A2 = 1

2

(
4

9
+ 1

3

)
= 7

18
.

e) ln 3 > A1 + A2 = 5

8
+ 7

18
= 73

72
> 1.

Thus 3 > e1 = e. Combining this with the result of
(a) we conclude that 2 < e < 3.

Section 3.4 Growth and Decay (page 187)

1. lim
x→∞ x3e−x = lim

x→∞
x3

ex
= 0 (exponential wins)

2. lim
x→∞ x−3ex = lim

x→∞
ex

x3
= ∞

3. lim
x→∞

2ex − 3

ex + 5
= lim

x→∞
2 − 3e−x

1 + 5e−x
= 2 − 0

1 + 0
= 2

4. lim
x→∞

x − 2e−x

x + 3e−x
= lim

x→∞
1 − 2/(xex )

1 + 3/(xex )
= 1 − 0

1 + 0
= 1

5. lim
x→0+ x ln x = 0 (power wins)

6. lim
x→0+

ln x

x
= −∞

7. lim
x→0

x(ln |x |)2 = 0

8. lim
x→∞

(ln x)3
√

x
= 0 (power wins)

9. Let N(t) be the number of bacteria present after t hours.
Then N(0) = 100, N(1) = 200.

Since
d N

dt
= kN we have N(t) = N(0)ekt = 100ekt .

Thus 200 = 100ek and k = ln 2.

Finally, N

(
5

2

)
= 100e(5/2) ln 2 ≈ 565.685.

There will be approximately 566 bacteria present after
another 1 1

2 hours.

10. Let y(t) be the number of kg undissolved after t hours.
Thus, y(0) = 50 and y(5) = 20. Since y′(t) = ky(t),
therefore y(t) = y(0)ekt = 50ekt . Then

20 = y(5) = 50e5k ⇒ k = 1
5 ln 2

5 .

If 90% of the sugar is dissolved at time T then
5 = y(T ) = 50ekT , so

T = 1

k
ln

1

10
= 5 ln(0.1)

ln(0.4)
≈ 12.56.

Hence, 90% of the sugar will dissolved in about 12.56
hours.

11. Let P(t) be the percentage undecayed after t years.
Thus P(0) = 100, P(15) = 70.

Since
d P

dt
= k P, we have P(t) = P(0)ekt = 100ekt .

Thus 70 = P(15) = 100e15k so k = 1

15
ln(0.7).

The half-life T satisfies if 50 = P(T ) = 100ekT , so

T = 1

k
ln(0.5) = 15 ln(0.5)

ln(0.7)
≈ 29.15.

The half-life is about 29.15 years.
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12. Let P(t) be the percentage remaining after t years. Thus
P ′(t) = k P(t) and P(t) = P(0)ekt = 100ekt . Then,

50 = P(1690) = 100e1690k ⇒ k = 1

1690
ln

1

2
≈ 0.0004101.

a) P(100) = 100e100k ≈ 95.98, i.e., about 95.98%
remains after 100 years.

b) P(1000) = 100e1000k ≈ 66.36, i.e., about 66.36%
remains after 1000 years.

13. Let P(t) be the percentage of the initial amount remain-
ing after t years.
Then P(t) = 100ekt and 99.57 = P(1) = 100ek .
Thus k = ln(0.9957).

The half-life T satisfies 50 = P(T ) = 100ekT ,

so T = 1

k
ln(0.5) = ln(0.5)

ln(0.995)
≈ 160.85.

The half-life is about 160.85 years.

14. Let N(t) be the number of bacteria in the culture t days
after the culture was set up. Thus N(3) = 3N(0) and
N(7) = 10 × 106. Since N(t) = N(0)ekt , we have

3N(0) = N(3) = N(0)e3k ⇒ k = 1
3 ln 3.

107 = N(7) = N(0)e7k ⇒ N(0) = 107e−(7/3) ln 3 ≈ 770400.

There were approximately 770,000 bacteria in the cul-
ture initially. (Note that we are approximating a discrete
quantity (number of bacteria) by a continuous quantity
N(t) in this exercise.)

15. Let W (t) be the weight t days after birth.
Thus W (0) = 4000 and W (t) = 4000ekt .

Also 4400 = W (14) = 4000e14k , is k = 1

14
ln(1.1).

Five days after birth, the baby weighs
W (5) = 4000e(5/14) ln(1.1) ≈ 4138.50 ≈ 4139 grams.

16. Since

I ′(t) = kI (t) ⇒ I (t) = I (0)ekt = 40ekt ,

15 = I (0.01) = 40e0.01k ⇒ k = 1

0.01
ln

15

40
= 100 ln

3

8
,

thus,

I (t) = 40 exp

(
100t ln

3

8

)
= 40

(
3

8

)100t

.

17. $P invested at 4% compounded continuously grows to
$P(e0.04)7 = $Pe0.28 in 7 years. This will be $10,000 if
$P = $10, 000e−0.28 = $7, 557.84.

18. Let y(t) be the value of the investment after t years.
Thus y(0) = 1000 and y(5) = 1500. Since
y(t) = 1000ekt and 1500 = y(5) = 1000e5k , therefore,
k = 1

5 ln 3
2 .

a) Let t be the time such that y(t) = 2000, i.e.,

1000ekt = 2000

⇒ t = 1

k
ln 2 = 5 ln 2

ln( 3
2 )

= 8.55.

Hence, the doubling time for the investment is about
8.55 years.

b) Let r% be the effective annual rate of interest; then

1000(1 + r

100
) = y(1) = 1000ek

⇒r = 100(ek − 1) = 100[exp (1
5 ln 3

2 ) − 1]

= 8.447.

The effective annual rate of interest is about 8.45%.

19. Let the purchasing power of the dollar be P(t) cents af-
ter t years.
Then P(0) = 100 and P(t) = 100ekt .
Now 91 = P(1) = 100ek so k = ln(0.91).
If 25 = P(t) = 100kt then

t = 1

k
ln(0.25) = ln(0.25)

ln(0.91)
≈ 14.7.

The purchasing power will decrease to $0.25 in about
14.7 years.

20. Let i% be the effective rate, then an original investment

of $A will grow to $A

(
1 + i

100

)
in one year. Let r%

be the nominal rate per annum compounded n times per
year, then an original investment of $A will grow to

$A

(
1 + r

100n

)n

in one year, if compounding is performed n times per
year. For i = 9.5 and n = 12, we have

$A

(
1 + 9.5

100

)
= $A

(
1 + r

1200

)12

⇒r = 1200
(

12
√

1.095 − 1
)

= 9.1098.

The nominal rate of interest is about 9.1098%.

21. Let x(t) be the number of rabbits on the island t years
after they were introduced. Thus x(0) = 1,000,
x(3) = 3,500, and x(7) = 3,000. For t < 5 we have
dx/dt = k1x , so

x(t) = x(0)ek1 t = 1,000ek1 t

x(2) = 1,000e2k1 = 3,500 �⇒ e2k1 = 3.5

x(5) = 1,000e5k1 = 1,000
(

e2k1
)5/2 = 1,000(3.5)5/2

≈ 22,918.
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For t > 5 we have dx/dt = k2x , so that

x(t) = x(5)ek2(t−5)

x(7) = x(5)e2k2 = 3,000 �⇒ e2k2 ≈ 3,000

22,918

x(10) = x(5)35k2 = x(5)
(

e2k2
)5/2 ≈ 22,918

(
3,000

22,918

)5/2

≈ 142.

so there are approximately 142 rabbits left after 10 years.

22. Let N(t) be the number of rats on the island t months
after the initial population was released and before the
first cull. Thus N(0) = R and N(3) = 2R. Since
N(t) = Rekt , we have e3k = 2, so ek = 21/3. Hence
N(5) = Re5k = 25/3 R. After the first 1,000 rats
are killed the number remaining is 25/3 R − 1,000. If
this number is less than R, the number at the end of
succeeding 5-year periods will decline. The minimum
value of R for which this won’t happen must satisfy
25/3 R−1,000 = R, that is, R = 1,000/(25/3 −1) ≈ 459.8.
Thus R = 460 rats should be brought to the island ini-
tially.

23. f ′(x) = a + b f (x).

a) If u(x) = a + b f (x), then
u′(x) = b f ′(x) = b[a + b f (x)] = bu(x).
This equation for u is the equation of exponential
growth/decay. Thus

u(x) = C1ebx ,

f (x) = 1

b

(
C1ebx − a

)
= Cebx − a

b
.

b) If
dy

dx
= a + by and y(0) = y0, then, from part (a),

y = Cebx − a

b
, y0 = Ce0 − a

b
.

Thus C = y0 + (a/b), and

y =
(

y0 + a

b

)
ebx − a

b
.

24. a) The concentration x(t) satisfies
dx

dt
= a − bx(t).

This says that x(t) is increasing if it is less than a/b
and decreasing if it is greater than a/b. Thus, the
limiting concentration is a/b.

b) The differential equation for x(t) resembles that of
Exercise 21(b), except that y(x) is replaced by x(t),
and b is replaced by −b. Using the result of Exer-
cise 21(b), we obtain, since x(0) = 0,

x(t) =
(

x(0) − a

b

)
e−bt + a

b

= a

b

(
1 − e−bt

)
.

c) We will have x(t) = 1
2 (a/b) if 1 − e−bt = 1

2 , that is,
if e−bt = 1

2 , or −bt = ln(1/2) = − ln 2. The time
required to attain half the limiting concentration is
t = (ln 2)/b.

25. Let T (t) be the reading t minutes after the Thermometer
is moved outdoors. Thus T (0) = 72, T (1) = 48.

By Newton’s law of cooling,
dT

dt
= k(T − 20).

If V (t) = T (t) − 20, then
dV

dt
= kV , so

V (t) = V (0)ekt = 52ekt .
Also 28 = V (1) = 52ek , so k = ln(7/13).
Thus V (5) = 52e5 ln(7/13) ≈ 2.354. At t = 5 the ther-
mometer reads about T (5) = 20 + 2.354 = 22.35◦C.

26. Let T (t) be the temperature of the object t minutes after
its temperature was 45◦ C. Thus T (0) = 45 and

T (40) = 20. Also
dT

dt
= k(T + 5). Let

u(t) = T (t) + 5, so u(0) = 50, u(40) = 25, and
du

dt
= dT

dt
= k(T + 5) = ku. Thus,

u(t) = 50ekt ,

25 = u(40) = 50e40k ,

⇒k = 1

40
ln

25

50
= 1

40
ln

1

2
.

We wish to know t such that T (t) = 0, i.e., u(t) = 5,
hence

5 = u(t) = 50ekt

t =
40 ln

(
5

50

)

ln

(
1

2

) = 132.88 min.

Hence, it will take about (132.88 − 40) = 92.88 minutes
more to cool to 0◦ C.
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27. Let T (t) be the temperature of the body t minutes after it
was 5◦.
Thus T (0) = 5, T (4) = 10. Room temperature = 20◦.

By Newton’s law of cooling (warming)
dT

dt
= k(T − 20).

If V (t) = T (t) − 20 then
dV

dt
= kV ,

so V (t) = V (0)ekt = −15ekt .

Also −10 = V (4) = −15e4k , so k = 1

4
ln

(
2

3

)
.

If T (t) = 15◦, then −5 = V (t) = −15ekt

so t = 1

k
ln

(
1

3

)
= 4

ln

(
1

3

)

ln

(
2

3

) ≈ 10.838.

It will take a further 6.84 minutes to warm to 15◦C.

28. By the solution given for the logistic equation, we have

y1 = Ly0

y0 + (L − y0)e−k
, y2 = Ly0

y0 + (L − y0)e−2k

Thus y1(L − y0)e−k = (L − y1)y0, and
y2(L − y0)e−2k = (L − y2)y0.
Square the first equation and thus eliminate e−k :

(
(L − y1)y0

y1(L − y0)

)2

= (L − y2)y0

y2(L − y0)

Now simplify: y0y2(L − y1)
2 = y2

1(L − y0)(L − y2)

y0y2L2−2y1y0y2L+y0y2
1 y2 = y2

1 L2−y2
1(y0+y2)L+y0y2

1 y2

Assuming L �= 0, L = y2
1(y0 + y2) − 2y0y1 y2

y2
1 − y0y2

.

If y0 = 3, y1 = 5, y2 = 6, then

L = 25(9) − 180

25 − 18
= 45

7
≈ 6.429.

29. The rate of growth of y in the logistic equation is

dy

dt
= ky

(
1 − y

L

)
.

Since
dy

dt
= − k

L

(
y − L

2

)2

+ kL

4
,

thus
dy

dt
is greatest when y = L

2
.

30. The solution y = Ly0

y0 + (L − y0)e−kt
is valid on the

largest interval containing t = 0 on which the denomina-
tor does not vanish.
If y0 > L then y0 + (L − y0)e−kt = 0 if

t = t∗ = −1

k
ln

y0

y0 − L
.

Then the solution is valid on (t∗,∞).
limt→t∗+ y(t) = ∞.

31. The solution

y = Ly0

y0 + (L − y0)e−kt

of the logistic equation is valid on any interval containing
t = 0 and not containing any point where the denomina-
tor is zero. The denominator is zero if y0 = (y0 − L)e−kt ,
that is, if

t = t∗ = −1

k
ln

(
y0

y0 − L

)
.

Assuming k and L are positive, but y0 is negative, we
have t∗ > 0. The solution is therefore valid on (−∞, t∗).
The solution approaches −∞ as t → t∗−.

32. y(t) = L

1 + Me−kt

200 = y(0) = L

1 + M

1, 000 = y(1) = L

1 + Me−k

10, 000 = lim
t→∞ y(t) = L

Thus 200(1 + M) = L = 10, 000, so M = 49. Also
1, 000(1 + 49e−k) = L = 10, 000, so e−k = 9/49 and
k = ln(49/9) ≈ 1.695.

33. y(3) = L

1 + Me−3k
= 10, 000

1 + 49(9/49)3
≈ 7671 cases

y ′(3) = LkMe−3k

(1 + Me−3k)2
≈ 3, 028 cases/week.

Section 3.5 The Inverse Trigonometric
Functions (page 195)

1. sin−1

√
3

2
= π

3

2. cos−1
(

−1

2

)
= 2π

3

3. tan−1(−1) = −π

4

4. sec−1
√

2 = π

4

5. sin(sin−1 0.7) = 0.7

6. cos(sin−1 0.7) =
√

1 − sin2( arcsin 0.7)

= √
1 − 0.49 = √

0.51

7. tan−1
(

tan
2π

3

)
= tan−1(−√

3) = −π

3

8. sin−1 (cos 40◦) = 90◦ − cos−1 (cos 40◦) = 50◦

9. cos−1
(

sin(−0.2)
)

= π

2
− sin−1

(
sin(−0.2)

)

= π

2
+ 0.2
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10. sin
(

cos−1(− 1
3 )
)

=
√

1 − cos2( arccos (− 1
3 )

=
√

1 − 1
9 =

√
8

3
= 2

√
2

3

11. cos

(
tan−1 1

2

)
= 1

sec

(
tan−1 1

2

)

= 1
√

1 + tan2

(
tan−1 1

2

) = 2√
5

12. tan(tan−1 200) = 200

13. sin(cos−1 x) =
√

1 − cos2(cos−1 x)

=
√

1 − x2

14. cos(sin−1 x) =
√

1 − sin2
(
sin−1 x

) =
√

1 − x2

15. cos(tan−1 x) = 1

sec(tan−1 x)
= 1√

1 + x2

16. tan( arctan x) = x ⇒ sec( arctan x) =
√

1 + x2

⇒ cos( arctan x) = 1√
1 + x2

⇒ sin( arctan x) = x√
1 + x2

17. tan(cos−1 x) = sin(cos−1 x)

cos(cos−1 x

=
√

1 − x2

x
(by # 13)

18. cos(sec−1x) = 1

x
⇒ sin(sec−1x) =

√

1 − 1

x2 =
√

x2 − 1

|x |
⇒ tan(sec−1x) =

√
x2 − 1 sgn x

=
{√

x2 − 1 if x ≥ 1
−√

x2 − 1 if x ≤ −1

19. y = sin−1
(

2x − 1

3

)

y ′ = 1
√

1 −
(

2x − 1

3

)2

2

3

= 2
√

9 − (4x2 − 4x + 1)

= 1√
2 + x − x2

20. y = tan−1 (ax + b), y ′ = a

1 + (ax + b)2 .

21. y = cos−1 x − b

a

y ′ = − 1
√

1 − (x − b)2

a2

1

a

= −1
√

a2 − (x − b)2
(assuming) a > 0).

22. f (x) = x sin−1 x

f ′(x) = sin−1 x + x√
1 − x2

.

23. f (t) = t tan−1 t

f ′(t) = tan−1 t + t

1 + t2

24. u = z2 sec−1 (1 + z2)

du

dz
= 2z sec−1 (1 + z2) + z2(2z)

(1 + z2)
√

(1 + z2)2 − 1

= 2z sec−1 (1 + z2) + 2z2sgn (z)

(1 + z2)
√

z2 + 2

25. F(x) = (1 + x 2) tan−1 x

F ′(x) = 2x tan−1 x + 1

26. y = sin−1
(a

x

)
(|x | > |a|)

y ′ = 1
√

1 −
(a

x

)2

[
− a

x2

]
= − a

|x |√x2 − a2

27. G(x) = sin−1 x

sin−1(2x)

G ′(x) =
sin−1(2x)

1√
1 − x2

− sin−1 x
2√

1 − 4x2
(

sin−1(2x)
)2

=
√

1 − 4x2 sin−1(2x) − 2
√

1 − x2 sin−1 x
√

1 − x2
√

1 − 4x2
(

sin−1(2x)
)2

28. H(t) = sin−1 t

sin t

H ′(t) =
sin t

(
1√

1 − t2

)
− sin−1 t cos t

sin2 t

= 1

(sin t)
√

1 − t2
− csc t cot t sin−1 t

29. f (x) = (sin−1 x2)1/2

f ′(x) = 1

2
(sin−1 x2)−1/2 2x√

1 − x4

= x√
1 − x4

√
sin−1 x2
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30. y = cos−1
(

a√
a2 + x2

)

y ′ = −
(

1 − a2

a2 + x2

)−1/2[
−a

2
(a2 + x2)−3/2(2x)

]

= asgn (x)

a2 + x2

31. y =
√

a2 − x2 + a sin−1 x

a

y ′ = − x√
a2 − x2

+ a
√

1 − x2

a2

1

a

= a − x√
a2 − x2

=
√

a − x

a + x
(a > 0)

32. y = a cos−1
(

1 − x

a

)
−
√

2ax − x2 (a > 0)

y ′ = −a

[
1 −

(
1 − x

a

)2]−1/2 (
− 1

a

)
− 2a − 2x

2
√

2ax − x2

= x√
2ax − x2

33. tan−1
(

2x

y

)
= πx

y2

1

1 + 4x2

y2

2y − 2xy ′

y2
= π

y2 − 2xyy ′

y4

At (1, 2)
1

2

4 − 2y′

4
= π

4 − 4y′

16

8 − 4y′ = 4π − 4πy ′ ⇒ y ′ = π − 2

π − 1

At (1, 2) the slope is
π − 2

π − 1

34. If y = sin−1 x , then y′ = 1√
1 − x2

. If the slope is 2

then
1√

1 − x2
= 2 so that x = ±

√
3

2
. Thus the equations

of the two tangent lines are

y = π

3
+ 2

(
x −

√
3

2

)
and y = −π

3
+ 2

(
x +

√
3

2

)
.

35.
d

dx
sin−1 x = 1√

1 − x2
> 0 on (−1, 1).

Therefore, sin−1 is increasing.
d

dx
tan−1 x = 1

1 + x2 > 0 on (−∞,∞).

Therefore tan−1 is increasing.
d

dx
cos−1 x = − 1√

1 − x2
< 0 on (−1, 1).

Therefore cos−1 is decreasing.

36. Since the domain of sec−1 consists of two disjoint inter-
vals (−∞,−1] and [1,∞), the fact that the derivative of
sec−1 is positive wherever defined does not imply that
sec−1 is increasing over its whole domain, only that it is
increasing on each of those intervals taken independently.
In fact, sec−1 (−1) = π > 0 = sec−1 (1) even though
−1 < 1.

37.
d

dx
csc−1 x = d

dx
sin−1 1

x

= 1
√

1 − 1

x2

(
− 1

x2

)

= − 1

|x |√x2 − 1
y

x

(1,π/2)

(−1,−π/2)

y = csc−1 x

Fig. 3.5.37

38. cot−1 x = arctan (1/x);
d

dx
cot−1 x = 1

1 + 1

x2

−1

x2 = − 1

1 + x2

y

x

−π/2

π/2

y = cot−1 x

Fig. 3.5.38

Remark: the domain of cot−1 can be extended to include
0 by defining, say, cot−1 0 = π/2. This will make cot−1

right-continuous (but not continuous) at x = 0. It is also
possible to define cot−1 in such a way that it is contin-
uous on the whole real line, but we would then lose the
identity cot−1 x = tan−1(1/x), which we prefer to main-
tain for calculation purposes.
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39.
d

dx
(tan−1 x + cot−1 x) = d

dx

(
tan−1 x + tan−1 1

x

)

= 1

1 + x2 + 1

1 + 1

x2

(
− 1

x2

)
= 0 if x �= 0

Thus tan−1 x + cot−1 x = C1 (const. for x > 0)

At x = 1 we have
π

4
+ π

4
= C1

Thus tan−1 x + cot−1 x = π

2
for x > 0.

Also tan−1 x + cot−1 x = C2 for (x < 0).

At x = −1, we get −π

4
− π

4
= C2.

Thus tan−1 x + cot−1 x = −π

2
for x < 0.

40. If g(x) = tan(tan−1 x) then

g′(x) = sec2 (tan−1 x)

1 + x2

= 1 + [tan(tan−1 x)]2

1 + x2
= 1 + x2

1 + x2
= 1.

If h(x) = tan−1 (tan x) then h is periodic with period π ,
and

h ′(x) = sec2 x

1 + tan2 x
= 1

provided that x �= (k + 1
2 )π where k is an integer. h(x) is

not defined at odd multiples of
π

2
.

y

x

y=tan(tan−1 x)

y

x

(π/2,π/2)

π−π

y=tan−1(tan x)

Fig. 3.5.40(a) Fig. 3.5.40(b)

41.
d

dx
cos−1(cos x) = −1√

1 − cos2 x
(− sin x)

=
{ 1 if sin x > 0

−1 if sin x < 0

cos−1(cos x) is continuous everywhere and differen-
tiable everywhere except at x = nπ for integers n.

y

x

y = cos−1(cos x)

−π π

π

Fig. 3.5.41

42.
d

dx
sin−1(cos x) = 1√

1 − cos2 x
(− sin x)

=
{−1 if sin x > 0

1 if sin x < 0

sin−1(cos x) is continuous everywhere and differen-
tiable everywhere except at x = nπ for integers n.

y

x

y = sin−1(cos x)
π/2

−π π

Fig. 3.5.42

43.
d

dx
tan−1(tan x) = 1

1 + tan2 x
(sec2 x) = 1 except at odd

multiples of π/2.

tan−1(tan x) is continuous and differentiable every-
where except at x = (2n + 1)π/2 for integers n. It is not
defined at those points.

y

x

y = tan−1(tan x)

π−π

π/2

Fig. 3.5.43

44.
d

dx
tan−1(cot x) = 1

1 + cot2 x
(− csc2 x) = −1 except at

integer multiples of π .

tan−1(cot x) is continuous and differentiable every-
where except at x = nπ for integers n. It is not defined
at those points.

y

x

y = tan−1(cot x)

π−π

π/2

Fig. 3.5.44
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45. If |x | < 1 and y = tan−1 x√
1 − x2

, then y > 0 ⇔ x > 0

and

tan y = x√
1 − x2

sec2 y = 1 + x2

1 − x2 = 1

1 − x2

sin2 y = 1 − cos2 y = 1 − (1 − x2) = x2

sin y = x .

Thus y = sin−1 x and sin−1 x = tan−1 x√
1 − x2

.

An alternative method of proof involves showing that the
derivative of the left side minus the right side is 0, and
both sides are 0 at x = 0.

46. If x ≥ 1 and y = tan−1
√

x2 − 1, then tan y = √
x2 − 1

and sec y = x , so that y = sec−1 x .
If x ≤ −1 and y = π − tan−1

√
x2 − 1, then π

2 < y < 3π
2 ,

so sec y < 0. Therefore

tan y = tan(π − tan−1
√

x2 − 1) = −
√

x2 − 1

sec2 y = 1 + (x2 − 1) = x2

sec y = x,

because both x and sec y are negative. Thus y = sec−1 x
in this case also.

47. If y = sin−1 x√
1 + x2

, then y > 0 ⇔ x > 0 and

sin y = x√
1 + x2

cos2 y = 1 − sin2 y = 1 − x2

1 + x2 = 1

1 + x2

tan2 y = sec2 y − 1 = 1 + x2 − 1 = x2

tan y = x .

Thus y = tan−1 x and tan−1 x = sin−1 x√
1 + x2

.

48. If x ≥ 1 and y = sin−1

√
x2 − 1

x
, then 0 ≤ y < π

2 and

sin y =
√

x2 − 1

x

cos2 y = 1 − x2 − 1

x2 = 1

x2

sec2 y = x2.

Thus sec y = x and y = sec−1 x .

If x ≤ −1 and y = π − sin−1

√
x2 − 1

x
, then π

2 ≤ y < 3π
2

and sec y < 0. Therefore

sin y = sin

(

π − sin−1

√
x2 − 1

x

)

=
√

x2 − 1

x

cos2 y = 1 − x2 − 1

x2
= 1

x2

sec2 y = x2

sec y = x,

because both x and sec y are negative. Thus y = sec−1 x
in this case also.

49. f ′(x) ≡ 0 on (−∞,−1)

Thus f (x) = tan−1
(

x − 1

x + 1

)
− tan−1 x = C on

(−∞,−1).

Evaluate the limit as x → −∞:

lim
x→−∞ f (x) = tan−1 1 −

(
−π

2

)
= 3π

4

Thus tan−1
(

x − 1

x + 1

)
− tan−1 x = 3π

4
on (−∞,−1).

50. Since f (x) = x − tan−1 (tan x) then

f ′(x) = 1 − sec2 x

1 + tan2 x
= 1 − 1 = 0

if x �= −(k + 1
2 )π where k is an integer. Thus, f is

constant on intervals not containing odd multiples of
π

2
.

f (0) = 0 but f (π) = π − 0 = π . There is no contra-

diction here because f ′
(π

2

)
is not defined, so f is not

constant on the interval containing 0 and π .

51. f (x) = x − sin−1(sin x) (−π ≤ x ≤ π)

f ′(x) = 1 − 1√
1 − sin2 x

cos x

= 1 − cos x

| cos x |

=
⎧
⎨

⎩

0 if −π

2
< x <

π

2
2 if −π < x < −π

2
or

π

2
< x < π

Note: f is not differentiable at ±π

2
.
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y

x

(π,π)

(−π,−π)

π/2

−π/2

y = f (x)

Fig. 3.5.51

52. y ′ = 1

1 + x2 ⇒ y = tan−1 x + C

y(0) = C = 1

Thus, y = tan−1 x + 1.

53.

⎧
⎪⎨

⎪⎩

y ′ = 1

9 + x2 ⇒ y = 1

3
tan−1 x

3
+ C

y(3) = 2 2 = 1

3
tan−11 + C C = 2 − π

12

Thus y = 1

3
tan−1 x

3
+ 2 − π

12
.

54. y ′ = 1√
1 − x2

⇒ y = sin−1 x + C

y( 1
2 ) = sin−1 ( 1

2 ) + C = 1

⇒ π

6
+ C = 1 ⇒ C = 1 − π

6
.

Thus, y = sin−1 x + 1 − π

6
.

55.

{
y ′ = 4√

25 − x2
⇒ y = 4sin−1 x

5
+ C

y(0) = 0 0 = 0 + C ⇒ C = 0

Thus y = 4sin−1 x

5
.

Section 3.6 Hyperbolic Functions
(page 200)

1.
d

dx
sech x = d

dx

1

cosh x

= − 1

cosh2 x
sinh x = − sech x tanh x

d

dx
csch x = d

dx

1

sinh x

= − 1

sinh2 x
cosh x = − csch x coth x

d

dx
coth x = d

dx

cosh

sinh x

= sinh2 x − cosh2 x

sinh2 x
= − 1

sinh2 x
= − csch 2x

2. cosh x cosh y + sinh x sinh y

= 1
4 [(ex + e−x )(ey + e−y) + (ex − e−x)(ey − e−y)]

= 1
4 (2ex+y + 2e−x−y) = 1

2 (ex+y + e−(x+y))

= cosh(x + y).

sinh x cosh y + cosh x sinh y

= 1
4 [(ex − e−x )(ey + e−y) + (ex + e−x)(ey − e−y)]

= 1
2 (ex+y − e−(x+y)) = sinh(x + y).

cosh(x − y) = cosh[x + (−y)]

= cosh x cosh(−y) + sinh x sinh(−y)

= cosh x cosh y − sinh x sinh y.

sinh(x − y) = sinh[x + (−y)]

= sinh x cosh(−y) + cosh x sinh(−y)

= sinh x cosh y − cosh x sinh y.

3. tanh(x ± y) = sinh(x ± y)

cosh(x ± y)

= sinh x cosh y ± cosh x sinh y

cosh x cosh y ± sinh x sinh y

= tanh x ± tanh y

1 ± tanh x tanh y

4. y = coth x = ex + e−x

ex − e−x
y = sech x = 2

ex + e−x

y

x

1

−1

y = coth x

y

x

1 y = sech x

Fig. 3.6.4(a) Fig. 3.6.4(b)

y = csch x = 2

ex − e−x

y

x

y = csch x

Fig. 3.6.4
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5.
d

dx
sinh−1 x = d

dx
ln(x +

√
x2 + 1) =

1 + x√
x2 + 1

x + √
x2 + 1

= 1√
x2 + 1

d

dx
cosh−1 x = d

dx
ln(x +

√
x2 − 1) =

1 + x√
x2 − 1

x + √
x2 − 1

= 1√
x2 − 1

d

dx
tanh−1 x = d

dx

1

2
ln

(
1 + x

1 − x

)

= 1

2

1 − x

1 + x

1 − x − (1 + x)(−1)

(1 − x)2 = 1

1 − x2

∫ dx√
x2 + 1

= sinh−1 x + C

∫ dx√
x2 − 1

= cosh−1 x + C (x > 1)

∫ dx

1 − x2 = tanh−1 x + C (−1 < x < 1)

6. Let y = sinh−1
( x

a

)
⇔ x = a sinh y ⇒ 1 = a(cosh y)

dy

dx
.

Thus,

d

dx
sinh−1

( x

a

)
= 1

a cosh y

= 1

a
√

1 + sinh2 y
= 1√

a2 + x2

∫
dx√

a2 + x2
= sinh−1 x

a
+ C. (a > 0)

Let y = cosh−1 x

a
⇔ x = a Cosh y = a cosh y

for y ≥ 0, x ≥ a. We have 1 = a(sinh y)
dy

dx
. Thus,

d

dx
cosh−1 x

a
= 1

a sinh y

= 1

a
√

cosh2 y − 1
= 1√

x2 − a2

∫
dx√

x2 − a2
= cosh−1 x

a
+ C. (a > 0, x ≥ a)

Let y = tanh−1 x

a
⇔ x = a tanh y ⇒ 1 = a(sech2 y)

dy

dx
.

Thus,
d

dx
tanh−1 x

a
= 1

a sech2 y

= a

a2 − a2 tanh2 x
= a

a2 − x2
∫

dx

a2 − x2 = 1

a
tanh−1 x

a
+ C.

7. a) sinh ln x = 1

2
(eln x − e− ln x ) = 1

2

(
x − 1

x

)
= x2 − 1

2x

b) cosh ln x = 1

2
(eln x + e− ln x ) = 1

2

(
x + 1

x

)
= x2 + 1

2x

c) tanh ln x = sinh ln x

cosh ln x
= x2 − 1

x2 + 1

d)
cosh ln x + sinh ln x

cosh ln x − sinh ln x
= x2 + 1 + (x2 − 1)

(x2 + 1) − (x2 − 1)
= x2

8. csch −1x = sinh−1(1/x) = ln

(
1

x
+
√

1

x2
+ 1

)

has

domain and range consisting of all real numbers x except
x = 0. We have

d

dx
csch−1 x = d

dx
sinh−1 1

x

= 1
√

1 +
(

1

x

)2

(−1

x2

)
= −1

|x |√x2 + 1
.

y

x

y = csch−1 x

Fig. 3.6.8

9. coth−1 x = tanh−1 1

x
= 1

2
ln

⎛

⎜
⎝

1 + 1

x

1 − 1

x

⎞

⎟
⎠ = 1

2
ln

(
x + 1

x − 1

)
,

for |x | > 1. Also

d

dx
coth−1 x = d

dx
tanh−1 1

x

= 1

1 − (1/x)2

−1

x2
= −1

x2 − 1
.

y

x

−1

1

y = coth−1x

Fig. 3.6.9
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10. Let y = Sech−1 x where Sech x = sech x for x ≥ 0.
Hence, for y ≥ 0,

x = sech y ⇔ 1

x
= cosh y

⇔ 1

x
= Cosh y ⇔ y = Cosh−1 1

x
.

Thus,

Sech−1 x = Cosh−1 1

x
D(Sech−1) = R(sech) = (0, 1]

R(Sech−1) = D(sech) = [0,∞).

Also,

d

dx
Sech−1 x = d

dx
Cosh−1 1

x

= 1
√(

1

x

)2

− 1

(−1

x2

)
= −1

x
√

1 − x2
.

y

x1

y = Sech−1 x

Fig. 3.6.10

11. f A,B (x) = Aekx + Be−kx

f ′
A,B (x) = k Aekx − kBe−kx

f ′′
A,B (x) = k2 Aekx + k2 Be−kx

Thus f ′′
A,B − k2 f A,B = 0

gC,D(x) = C cosh kx + D sinh kx

g′
C,D(x) = kC cosh kx + kD sinh kx

g′′
C,D(x) = k2C cosh kx + k2 D sinh kx

Thus g′′
C,D − k2gC,D = 0

cosh kx + sinh kx = ekx

cosh kx − sinh kx = e−kx

Thus f A,B (x) = (A + B) cosh kx + (A − B) sinh kx , that
is,
f A,B (x) = gA+B,A−B (x), and

gC,D(x) = c

2
(ekx + e−kx ) + D

2
(ekx − e−kx ),

that is gC,D(x) = f(C+D)/2,(C−D)/2 (x).

12. Since

hL ,M(x) = L cosh k(x − a) + M sinh k(x − a)

h ′′
L ,M(x) = Lk2 cosh k(x − a) + Mk2 sinh k(x − a)

= k2hL ,M(x)

hence, hL ,M(x) is a solution of y′′ − k2 y = 0 and

hL ,M(x)

= L

2

(
ekx−ka + e−kx+ka

)
+ M

2

(
ekx−ka − e−kx+ka

)

=
(

L

2
e−ka + M

2
e−ka

)
ekx +

(
L

2
eka − M

2
eka
)

e−kx

= Aekx + Be−kx = f A,B(x)

where A = 1
2 e−ka(L + M) and B = 1

2 eka(L − M).

13. y ′′ − k2 y = 0 ⇒ y = hL ,M(x)

= L cosh k(x − a) + M sinh k(x − a)

y(a) = y0 ⇒ y0 = L + 0 ⇒ L = y0,

y ′(a) = v0 ⇒ v0 = 0 + Mk ⇒ M = v0

k
Therefore y = hy0,v0/k(x)

= y0 cosh k(x − a) + (v0/k) sinh k(x − a).

Section 3.7 Second-Order Linear DEs with
Constant Coefficients (page 206)

1. y ′′ + 7y ′ + 10y = 0

auxiliary eqn r2 + 7r + 10 = 0

(r + 5)(r + 2) = 0 ⇒ r = −5,−2

y = Ae−5t + Be−2t

2. y ′′ − 2y ′ − 3y = 0

auxiliary eqn r2 − 2r − 3 = 0 ⇒ r = −1, r = 3

y = Ae−t + Be3t

3. y ′′ + 2y ′ = 0

auxiliary eqn r2 + 2r = 0 ⇒ r = 0, −2

y = A + Be−2t

4. 4y ′′ − 4y ′ − 3y = 0

4r2 − 4r − 3 = 0 ⇒ (2r + 1)(2r − 3) = 0

Thus, r1 = − 1
2 , r2 = 3

2 , and y = Ae−(1/2)t + Be(3/2)t .

5. y ′′ + 8y ′ + 16y = 0

auxiliary eqn r2 + 8r + 16 = 0 ⇒ r = −4, −4

y = Ae−4t + Bte−4t

6. y ′′ − 2y ′ + y = 0

r2 − 2r + 1 = 0 ⇒ (r − 1)2 = 0

Thus, r = 1, 1, and y = Aet + Btet .

7. y ′′ − 6y ′ + 10y = 0

auxiliary eqn r2 − 6r + 10 = 0 ⇒ r = 3 ± i

y = Ae3t cos t + Be3t sin t
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8. 9y ′′ + 6y ′ + y = 0

9r2 + 6r + 1 = 0 ⇒ (3r + 1)2 = 0

Thus, r = − 1
3 , − 1

3 , and y = Ae−(1/3)t + Bte−(1/3)t .

9. y ′′ + 2y ′ + 5y = 0

auxiliary eqn r2 + 2r + 5 = 0 ⇒ r = −1 ± 2i

y = Ae−t cos 2t + Be−t sin 2t

10. For y ′′ − 4y ′ + 5y = 0 the auxiliary equation is
r2 − 4r + 5 = 0, which has roots r = 2 ± i . Thus, the
general solution of the DE is y = Ae2t cos t + Be2t sin t .

11. For y ′′ + 2y ′ + 3y = 0 the auxiliary equation is
r2 + 2r + 3 = 0, which has solutions r = −1±√

2i . Thus
the general solution of the given equation is
y = Ae−t cos(

√
2t) + Be−t sin(

√
2t).

12. Given that y ′′ + y ′ + y = 0, hence r2 + r + 1 = 0. Since
a = 1, b = 1 and c = 1, the discriminant is
D = b2 − 4ac = −3 < 0 and −(b/2a) = − 1

2 and
ω = √

3/2. Thus, the general solution is

y = Ae−(1/2)t cos

(√
3

2
t

)
+ Be−(1/2)t sin

(√
3

2
t

)
.

13.

⎧
⎨

⎩

2y ′′ + 5y ′ − 3y = 0
y(0) = 1
y ′(0) = 0

The DE has auxiliary equation 2r2 + 5y − 3 = 0, with
roots r = 1

2 and r = −3. Thus y = Aet/2 + Be−3t .

Now 1 = y(0) = A + B, and 0 = y′(0) = A

2
− 3B.

Thus B = 1/7 and A = 6/7. The solution is

y = 6

7
et/2 + 1

7
e−3t .

14. Given that y ′′ + 10y′ + 25y = 0, hence
r2 + 10r + 25 = 0 ⇒ (r + 5)2 = 0 ⇒ r = −5. Thus,

y = Ae−5t + Bte−5t

y ′ = −5e−5t (A + Bt) + Be−5t .

Since
0 = y(1) = Ae−5 + Be−5

2 = y ′(1) = −5e−5(A + B) + Be−5,

we have A = −2e5 and B = 2e5.
Thus, y = −2e5e−5t + 2te5e−5t = 2(t − 1)e−5(t−1).

15.

⎧
⎨

⎩

y ′′ + 4y ′ + 5y = 0
y(0) = 2
y ′(0) = 0

The auxiliary equation for the DE is r2 + 4r + 5 = 0,
which has roots r = −2 ± i . Thus

y = Ae−2t cos t + Be−2t sin t

y ′ = (−2Ae−2t + Be−2t) cos t − (Ae−2t + 2Be−2t ) sin t.

Now 2 = y(0) = A ⇒ A = 2, and
2 = y ′(0) = −2A + B ⇒ B = 6.
Therefore y = e−2t (2 cos t + 6 sin t).

16. The auxiliary equation r2 − (2 + ε)r + (1 + ε) factors
to (r − 1 − ε)(r − 1) = 0 and so has roots r = 1 + ε

and r = 1. Thus the DE y ′′ − (2 + ε)y ′ + (1 + ε)y = 0
has general solution y = Ae(1+ε)t + Bet . The function

yε(t) = e(1+ε)t − et

ε
is of this form with A = −B = 1/ε.

We have, substituting ε = h/t ,

lim
ε→0

yε(t) = lim
ε→0

e(1+ε)t − et

ε

= t lim
h→0

et+h − et

h

= t

(
d

dt
et
)

= t et

which is, along with et , a solution of the CASE II DE
y ′′ − 2y ′ + y = 0.

17. Given that a > 0, b > 0 and c > 0:
Case 1: If D = b2 − 4ac > 0 then the two roots are

r1,2 = −b ± √
b2 − 4ac

2a
.

Since
b2 − 4ac < b2

±
√

b2 − 4ac < b

−b ±
√

b2 − 4ac < 0

therefore r1 and r2 are negative. The general solution is

y(t) = Aer1 t + Ber2t .

If t → ∞, then er1t → 0 and er2t → 0.
Thus, lim

t→∞ y(t) = 0.

Case 2: If D = b2 − 4ac = 0 then the two equal roots
r1 = r2 = −b/(2a) are negative. The general solution is

y(t) = Aer1 t + Bter2t .

If t → ∞, then er1t → 0 and er2t → 0 at a faster rate
than Bt → ∞. Thus, lim

t→∞ y(t) = 0.

Case 3: If D = b2 − 4ac < 0 then the general solution is

y = Ae−(b/2a)t cos(ωt) + Be−(b/2a)t sin(ωt)

where ω =
√

4ac − b2

2a
. If t → ∞, then the amplitude of

both terms Ae−(b/2a)t → 0 and Be−(b/2a)t → 0. Thus,
lim

t→∞ y(t) = 0.
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18. The auxiliary equation ar2 + br + c = 0 has roots

r1 = −b − √
D

2a
, r2 = −b + √

D

2a
,

where D = b2 − 4ac. Note that
a(r2 − r1) = √

D = −(2ar1 + b). If y = er1t u, then
y ′ = er1t (u′ + r1u), and y′′ = er1t (u′′ + 2r1u′ + r2

1 u). Sub-
stituting these expressions into the DE ay′′+by ′ +cy = 0,
and simplifying, we obtain

er1 t (au′′ + 2ar1u′ + bu′) = 0,

or, more simply, u′′ − (r2 − r1)u′ = 0. Putting v = u′
reduces this equation to first order:

v′ = (r2 − r1)v,

which has general solution v = Ce(r2−r1)t . Hence

u =
∫

Ce(r2−r1)t dt = Be(r2−r1)t + A,

and y = er1t u = Aer1t + Ber2t .

19. If y = A cos ωt + B sin ωt then

y ′′ + ω2 y = −Aω2 cos ωt − Bω2 sin ωt

+ ω2(A cos ωt + B sin ωt) = 0

for all t . So y is a solution of (†).

20. If f (t) is any solution of (†) then f ′′(t) = −ω2 f (t) for
all t . Thus,

d

dt

[
ω2
(

f (t)
)2 +

(
f ′(t)

)2]

= 2ω2 f (t) f ′(t) + 2 f ′(t) f ′′(t)
= 2ω2 f (t) f ′(t) − 2ω2 f (t) f ′(t) = 0

for all t . Thus, ω2
(

f (t)
)2 +

(
f ′(t)

)2
is constant. (This

can be interpreted as a conservation of energy statement.)

21. If g(t) satisfies (†) and also g(0) = g′(0) = 0, then by
Exercise 20,

ω2
(

g(t)
)2 +

(
g′(t)

)2

= ω2
(

g(0)
)2 +

(
g′(0)

)2 = 0.

Since a sum of squares cannot vanish unless each term
vanishes, g(t) = 0 for all t .

22. If f (t) is any solution of (†), let
g(t) = f (t) − A cos ωt − B sin ωt where A = f (0)

and Bω = f ′(0). Then g is also solution of (†). Also
g(0) = f (0) − A = 0 and g′(0) = f ′(0) − Bω = 0.
Thus, g(t) = 0 for all t by Exercise 24, and therefore
f (x) = A cos ωt + B sin ωt . Thus, it is proved that every
solution of (†) is of this form.

23. We are given that k = − b

2a
and ω2 = 4ac − b2

4a2 which is

positive for Case III. If y = ekt u, then

y ′ = ekt
(

u′ + ku
)

y ′′ = ekt
(

u′′ + 2ku′ + k2u
)
.

Substituting into ay′′ + by ′ + cy = 0 leads to

0 = ekt
(

au′′ + (2ka + b)u′ + (ak2 + bk + c)u
)

= ekt
(

au′′ + 0 + ((b2/(4a) − (b2/(2a) + c)u
)

= a ekt
(

u′′ + ω2u
)
.

Thus u satisfies u′′ + ω2u = 0, which has general solution

u = A cos(ωt) + B sin(ωt)

by the previous problem. Therefore ay′′ + by ′ + cy = 0
has general solution

y = Aekt cos(ωt) + Bekt sin(ωt).

24. Because y ′′ + 4y = 0, therefore y = A cos 2t + B sin 2t .
Now

y(0) = 2 ⇒ A = 2,

y ′(0) = −5 ⇒ B = − 5
2 .

Thus, y = 2 cos 2t − 5
2 sin 2t .

circular frequency = ω = 2, frequency =
ω

2π
= 1

π
≈ 0.318

period =
2π

ω
= π ≈ 3.14

amplitude =
√

(2)2 + (− 5
2 )2 � 3.20

25.

⎧
⎨

⎩

y ′′ + 100y = 0
y(0) = 0
y ′(0) = 3

y = A cos(10t) + B sin(10t)

A = y(0) = 0, 10B = y ′(0) = 3

y = 3

10
sin(10t)
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26. y = A cos
(
ω(t − c)

)
+ B sin

(
ω(t − c)

)

(easy to calculate y′′ + ω2 y = 0)

y = A
(

cos(ωt) cos(ωc) + sin(ωt) sin(ωc)
)

+ B
(

sin(ωt) cos(ωc) − cos(ωt) sin(ωc)
)

=
(
A cos(ωc) − B sin(ωc)

)
cos ωt

+
(
A sin(ωc) + B cos(ωc)

)
sin ωt

= A cos ωt + B sin ωt
where A = A cos(ωc) − B sin(ωc) and
B = A sin(ωc) + B cos(ωc)

27. For y ′′ + y = 0, we have y = A sin t + B cos t . Since,

y(2) = 3 = A sin 2 + B cos 2

y ′(2) = −4 = A cos 2 − B sin 2,

therefore
A = 3 sin 2 − 4 cos 2

B = 4 sin 2 + 3 cos 2.

Thus,

y = (3 sin 2 − 4 cos 2) sin t + (4 sin 2 + 3 cos 2) cos t

= 3 cos(t − 2) − 4 sin(t − 2).

28.

⎧
⎨

⎩

y ′′ + ω2 y = 0
y(a) = A
y ′(a) = B

y = A cos
(
ω(t − a)

)
+ B

ω
sin
(
ω(t − a)

)

29. From Example 9, the spring constant is
k = 9 × 104 gm/sec2. For a frequency of 10 Hz (i.e., a
circular frequency ω = 20π rad/sec.), a mass m satisfy-
ing

√
k/m = 20π should be used. So,

m = k

400π2 = 9 × 104

400π2 = 22.8 gm.

The motion is determined by
⎧
⎨

⎩

y ′′ + 400π2 y = 0
y(0) = −1
y ′(0) = 2

therefore, y = A cos 20π t + B sin 20π t and

y(0) = −1 ⇒ A = −1

y ′(0) = 2 ⇒ B = 2

20π
= 1

10π
.

Thus, y = − cos 20π t + 1

10π
sin 20π t , with y in cm

and t in second, gives the displacement at time t . The

amplitude is

√

(−1)2 + (
1

10π
)2 ≈ 1.0005 cm.

30. Frequency = ω

2π
, ω2 = k

m
(k = spring const, m = mass)

Since the spring does not change, ω2m = k (constant)
For m = 400 gm, ω = 2π(24) (frequency = 24 Hz)

If m = 900 gm, then ω2 = 4π2(24)2(400)

900

so ω = 2π × 24 × 2

3
= 32π .

Thus frequency =
32π

2π
= 16 Hz

For m = 100 gm, ω = 4π2(24)2400

100
so ω = 96π and frequency =

ω

2π
= 48 Hz.

31. Using the addition identities for cosine and sine,

y = ekt [A cos ω(t − t0)B sin ω(t − t0)]

= ekt [A cos ωt cos ωt0 + A sin ωt sin ωt0
+ B sin ωt cos ωt0 − B cos ωt sin ωt0]

= ekt [A1 cos ωt + B1 sin ωt],

where A1 = A cos ωt0 − B sin ωt0 and
B1 = A sin ωt0 + B cos ωt0. Under the conditions of
this problem we know that ekt cos ωt and ekt sin ωt are
independent solutions of ay′′ + by ′ + cy = 0, so our func-
tion y must also be a solution, and, since it involves two
arbitrary constants, it is a general solution.

32. Expanding the hyperbolic functions in terms of exponen-
tials,

y = ekt [A cosh ω(t − t0)B sinh ω(t − t0)]

= ekt
[

A

2
eω(t−t0) + A

2
e−ω(t−t0)

+ B

2
eω(t−t0) − B

2
e−ω(t−t0)

]

= A1e(k+ω)t + B1e(k−ω)t

where A1 = (A/2)e−ωt0 + (B/2)e−ωt0 and
B1 = (A/2)eωt0 − (B/2)eωt0 . Under the conditions of
this problem we know that Rr = k ± ω are the two real
roots of the auxiliary equation ar2+br +c = 0, so e(k±ω)t

are independent solutions of ay′′ + by ′ + cy = 0, and our
function y must also be a solution. Since it involves two
arbitrary constants, it is a general solution.

33.

⎧
⎨

⎩

y ′′ + 2y ′ + 5y = 0
y(3) = 2
y ′(3) = 0
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The DE has auxiliary equation r2 + 2r + 5 = 0 with
roots r = −1 ± 2i . By the second previous prob-
lem, a general solution can be expressed in the form
y = e−t [A cos 2(t − 3) + B sin 2(t − 3)] for which

y ′ = −e−t [A cos 2(t − 3) + B sin 2(t − 3)]

+ e−t [−2A sin 2(t − 3) + 2B cos 2(t − 3)].

The initial conditions give

2 = y(3) = e−3 A

0 = y ′(3) = −e−3(A + 2B)

Thus A = 2e3 and B = −A/2 = −e3. The IVP has
solution

y = e3−t [2 cos 2(t − 3) − sin 2(t − 3)].

34.

⎧
⎨

⎩

y ′′ + 4y ′ + 3y = 0
y(3) = 1
y ′(3) = 0

The DE has auxiliary equation r2 + 4r + 3 = 0 with roots
r = −2 + 1 = −1 and r = −2 − 1 = −3 (i.e. k ± ω,
where k = −2 and ω = 1). By the second previous
problem, a general solution can be expressed in the form
y = e−2t [A cosh(t − 3) + B sinh(t − 3)] for which

y ′ = −2e−2t [A cosh(t − 3) + B sinh(t − 3)]

+ e−2t [A sinh(t − 3) + B cosh(t − 3)].

The initial conditions give

1 = y(3) = e−6 A

0 = y ′(3) = −e−6(−2A + B)

Thus A = e6 and B = 2A = 2e6. The IVP has solution

y = e6−2t [cosh(t − 3) + 2 sinh(t − 3)].

35. Let u(x) = c − k2 y(x). Then u(0) = c − k2a.
Also u′(x) = −k2 y ′(x), so u′(0) = −k2b. We have

u′′(x) = −k2 y ′′(x) = −k2
(

c − k2 y(x)
)

= −k2u(x)

This IVP for the equation of simple harmonic motion has
solution

u(x) = (c − k2a) cos(kx) − kb sin(kx)

so that

y(x) = 1

k2

(
c − u(x)

)

= c

k2

(
c − (c − k2a) cos(kx) + kb sin(kx)

)

= c

k2 (1 − cos(kx) + a cos(kx) + b

k
sin(kx).

36. Since x ′(0) = 0 and x(0) = 1 > 1/5, the motion will be
governed by x ′′ = −x + (1/5) until such time t > 0 when
x ′(t) = 0 again.

Let u = x − (1/5). Then u′′ = x ′′ = −(x − 1/5) = −u,
u(0) = 4/5, and u′(0) = x ′(0) = 0. This sim-
ple harmonic motion initial-value problem has solution
u(t) = (4/5) cos t . Thus x(t) = (4/5) cos t + (1/4) and
x ′(t) = u′(t) = −(4/5) sin t . These formulas remain
valid until t = π when x′(t) becomes 0 again. Note that
x(π) = −(4/5) + (1/5) = −(3/5).

Since x(π) < −(1/5), the motion for t > π will be
governed by x ′′ = −x − (1/5) until such time t > π

when x ′(t) = 0 again.

Let v = x + (1/5). Then v′′ = x ′′ = −(x + 1/5) = −v,
v(π) = −(3/5) + (1/5) = −(2/5), and
v′(π) = x ′(π) = 0. Thius initial-value problem has
solution v(t) = −(2/5) cos(t − π) = (2/5) cos t , so that
x(t) = (2/5) cos t − (1/5) and x ′(t) = −(2/5) sin t . These
formulas remain valid for t ≥ π until t = 2π when x′
becomes 0 again. We have x(2π) = (2/5) − (1/5) = 1/5
and x ′(2π) = 0.

The conditions for stopping the motion are met at
t = 2π ; the mass remains at rest thereafter. Thus

x(t) =

⎧
⎪⎨

⎪⎩

4
5 cos t + 1

5 if 0 ≤ t ≤ π
2
5 cos t − 1

5 if π < t ≤ 2π
1
5 if t > 2π

Review Exercises 3 (page 208)

1. f (x) = 3x + x3 ⇒ f ′(x) = 3(1 + x2) > 0 for all x ,
so f is increasing and therefore one-to-one and invertible.
Since f (0) = 0, therefore f −1(0) = 0, and

d

dx
( f −1)(x)

∣∣∣∣
x=0

= 1

f ′( f −1(0))
= 1

f ′(0)
= 1

3
.

2. f (x) = sec2 x tan x ⇒ f ′(x) = 2 sec2 x tan2 x + sec4 x > 0
for x in (−π/2, π/2), so f is increasing and therefore
one-to-one and invertible there. The domain of f−1 is
(−∞,∞), the range of f . Since f (π/4) = 2, therefore
f −1(2) = π/4, and

( f −1)′(2) = 1

f ′( f −1(2))
= 1

f ′(π/4)
= 1

8
.
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3. lim
x→±∞ f (x) = lim

x→±∞
x

ex2 = 0.

4. Observe f ′(x) = e−x2
(1 − 2x2) is positive if x2 < 1/2

and is negative if x2 > 1/2. Thus f is increasing on
(−1/

√
2, 1/

√
2) and is decreasing on (−∞,−1/

√
2) and

on (1/
√

2, ∞).

5. The max and min values of f are 1/
√

2e (at x = 1/
√

2)
and −1/

√
2e (at x = −1/

√
2).

6. y = e−x sin x , (0 ≤ x ≤ 2π) has a horizontal tangent
where

0 = dy

dx
= e−x (cos x − sin x).

This occurs if tan x = 1, so x = π/4 or x = 5π/4. The
points are (π/4, e−π/4/

√
2) and (5π/4, −e−5π/4/

√
2).

7. If f ′(x) = x for all x , then

d

dx

f (x)

ex2/2
= f ′(x) − x f (x)

ex2/2
= 0.

Thus f (x)/ex2/2 = C (constant) for all x .
Since f (2) = 3, we have C = 3/e2 and
f (x) = (3/e2)ex2/2 = 3e(x2/2)−2.

8. Let the length, radius, and volume of the clay cylinder at
time t be �, r , and V , respectively. Then V = πr2�, and

dV

dt
= 2πr�

dr

dt
+ πr2 d�

dt
.

Since dV/dt = 0 and d�/dt = k� for some constant
k > 0, we have

2πr�
dr

dt
= −kπr2�, ⇒ dr

dt
= − kr

2
.

That is, r is decreasing at a rate proportional to itself.

9. a) An investment of $P at r% compounded continu-
ously grows to $PerT/100 in T years. This will be
$2P provided erT/100 = 2, that is, r T = 100 ln 2. If
T = 5, then r = 20 ln 2 ≈ 13.86%.

b) Since the doubling time is T = 100 ln 2/r , we have

�T ≈ dT

dr
�r = −100 ln 2

r2
�r.

If r = 13.863% and �r = −0.5%, then

�T ≈ − 100 ln 2

13.8632
(−0.5) ≈ 0.1803 years.

The doubling time will increase by about 66 days.

10. a) lim
h→0

ah − 1

h
= lim

h→0

a0+h − a0

h
= d

dx
ax
∣∣∣∣
x=0

= ln a.

Putting h = 1/n, we get lim
n→∞ n

(
a1/n − 1

)
= ln a.

b) Using the technique described in the exercise, we
calculate

210
(

21/210 − 1
)

≈ 0.69338183

211
(

21/211 − 1
)

≈ 0.69326449

Thus ln 2 ≈ 0.693.

11.
d

dx

(
f (x)

)2 =
(

f ′(x)
)2

⇒ 2 f (x) f ′(x) =
(

f ′(x)
)2

⇒ f ′(x) = 0 or f ′(x) = 2 f (x).

Since f (x) is given to be nonconstant, we have
f ′(x) = 2 f (x). Thus f (x) = f (0)e2x = e2x .

12. If f (x) = (ln x)/x , then f ′(x) = (1 − ln x)/x2. Thus
f ′(x) > 0 if ln x < 1 (i.e., x < e) and f ′(x) < 0 if
ln x > 1 (i.e., x > e). Since f is increasing to the left
of e and decreasing to the right, it has a maximum value
f (e) = 1/e at x = e. Thus, if x > 0 and x �= e, then

ln x

x
<

1

e
.

Putting x = π we obtain (ln π)/π < 1/e. Thus

ln(πe) = e ln π < π = π ln e = ln eπ ,

and π e < eπ follows because ln is increasing.

13. y = x x = ex ln x ⇒ y ′ = x x (1 + ln x). The tangent to
y = x x at x = a has equation

y = aa + aa(1 + ln a)(x − a).

This line passes through the origin if
0 = aa [1−a(1+ ln a)], that is, if (1+ ln a)a = 1. Observe
that a = 1 solves this equation. Therefore the slope of
the line is 11(1 + ln 1) = 1, and the line is y = x .

14. a)
ln x

x
= ln 2

2
is satisfied if x = 2 or x = 4 (because

ln 4 = 2 ln 2).

b) The line y = mx through the origin intersects the
curve y = ln x at (b, ln b) if m = (ln b)/b. The same
line intersects y = ln x at a different point (x, ln x)

if (ln x)/x = m = (ln b)/b. This equation will have
only one solution x = b if the line y = mx intersects
the curve y = ln x only once, at x = b, that is, if the
line is tangent to the curve at x = b. In this case m
is the slope of y = ln x at x = b, so

1

b
= m = ln b

b
.

Thus ln b = 1, and b = e.
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15. Let the rate be r%. The interest paid by account A is
1, 000(r/100) = 10r .
The interest paid by account B is 1, 000(er/100 − 1). This
is $10 more than account A pays, so

1, 000(er/100 − 1) = 10r + 10.

A TI-85 solve routine gives r ≈ 13.8165%.

16. If y = cos−1 x , then x = cos y and 0 ≤ y ≤ π . Thus

tan y = sgn x
√

sec2 y − 1 = sgn x

√
1

x2 − 1 =
√

1 − x2

x
.

Thus cos−1x = tan−1((
√

1 − x2)/x).

Since cot x = 1/ tan x , cot−1 x = tan−1(1/x).

csc−1 x = sin−1 1

x
= π

2
− cos−1 1

x

= π

2
− tan−1

√
1 − (1/x)2

1/x

= π

2
− sgn x tan−1

√
x2 − 1.

17. cos−1 x = π

2
− sin−1 x .

If y = cot−1 x , then x = cot y and 0 < y < π/2. Thus

csc y = sgn x
√

1 + cot2 y = sgn x
√

1 + x2

sin y = sgn x√
1 + x2

.

Thus cot−1 x = sin−1 sgn x√
1 + x2

= sgn xsin−1 1√
1 + x2

.

csc−1 x = sin−1 1

x
.

18. Let T (t) be the temperature of the milk t minutes after it
is removed from the refrigerator. Let U(t) = T (t) − 20.
By Newton’s law,

U ′(t) = kU(t) ⇒ U(t) = U(0)ekt .

Now T (0) = 5 ⇒ U(0) = −15 and
T (12) = 12 ⇒ U(12) = −8. Thus

− 8 = U(12) = U(0)e12k = −15e12k

e12k = 8/15, k = 1
12 ln(8/15).

If T (s) = 18, then U(s) = −2, so −2 = −15esk . Thus
sk = ln(2/15), and

s = ln(2/15)

k
= 12

ln(2/15)

ln(8/15)
≈ 38.46.

It will take another 38.46 − 12 = 26.46 min for the milk
to warm up to 18◦.

19. Let R be the temperature of the room, Let T (t) be the
temperature of the water t minutes after it is brought into
the room. Let U(t) = T (t) − R. Then

U ′(t) = kU(t) ⇒ U(t) = U(0)ekt .

We have

T (0) = 96 ⇒ U(0) = 96 − R

T (10) = 60 ⇒ U(10) = 60 − R ⇒ 60 − R = (96 − R)e10k

T (20) = 40 ⇒ U(20) = 40 − R ⇒ 40 − R = (96 − R)e20k .

Thus
(

60 − R

96 − R

)2

= e20k = 40 − R

96 − R

(60 − R)2 = (96 − R)(40 − R)

3600 − 120R + R2 = 3840 − 136R + R2

16R = 240 R = 15.

Room temperature is 15◦.

20. Let f (x) = ex − 1 − x . Then f (0) = 0 and by the MVT,

f (x)

x
= f (x) − f (0)

x − 0
= f ′(c) = ec − 1

for some c between 0 and x . If x > 0, then c > 0, and
f ′(c) > 0. If x < 0, then c < 0, and f ′(c) < 0. In either
case f (x) = x f ′(c) > 0, which is what we were asked to
show.

21. Suppose that for some positive integer k, the inequality

ex > 1 + x + x2

2!
+ · · · + xk

k!

holds for all x > 0. This is certainly true for k = 1, as
shown in the previous exercise. Apply the MVT to

g(t) = et − 1 − t − t2

2!
− · · · − tk+1

(k + 1)!

on the interval (0, x) (where x > 0) to obtain

g(x)

x
= g(x) − g(0)

x − 0
= g′(c)

for some c in (0, x). Since x and g′(c) are both positive,
so is g(x). This completes the induction and shows the
desired inequality holds for x > 0 for all positive integers
k.

Challenging Problems 3 (page 209)

1. a) (d/dx)x x = x x (1 + ln x) > 0 if ln x > −1, that is, if
x > e−1. Thus x x is increasing on [e−1,∞).
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b) Being increasing on [e−1,∞), f (x) = x x is invert-
ible on that interval. Let g = f −1. If y = xx , then
x = g(y). Note that y → ∞ if and only if x → ∞.
We have

ln y = x ln x

ln(ln y) = ln x + ln(ln x)

lim
y→∞

g(y) ln(ln y)

ln y
= lim

x→∞
x(ln x + ln(ln x))

x ln x

= lim
x→∞

(
1 + ln(ln x)

ln x

)
.

Now ln x <
√

x for sufficiently large x , so
ln(ln x) <

√
ln x for sufficiently large x .

Therefore, 0 <
ln(ln x)

ln x
<

1√
ln x

→ 0 as x → ∞,

and so

lim
y→∞

g(y) ln(ln y)

ln y
= 1 + 0 = 1.

2.
dv

dt
= −g − kv.

a) Let u(t) = −g − kv(t). Then
du

dt
= −k

dv

dt
= −ku,

and

u(t) = u(0)e−kt = −(g + kv0)e−kt

v(t) = −1

k

(
g + u(t)

)
= −1

k

(
g − (g + kv0)e−kt

)
.

b) limt→∞ v(t) = −g/k

c)
dy

dt
= v(t) = − g

k
+ g + kv0

k
e−kt , y(0) = y0

y(t) = − gt

k
− g + kv0

k2
e−kt + C

y0 = −0 − g + kv0

k2
+ C ⇒ C = y0 + g + kv0

k2

y(t) = y0 − gt

k
+ g + kv0

k2

(
1 − e−kt

)

3.
dv

dt
= −g + kv2 (k > 0)

a) Let u = 2t
√

gk. If v(t) =
√

g

k

1 − eu

1 + eu
, then

dv

dt
=
√

g

k

(1 + eu)(−eu) − (1 − eu)eu

(1 + eu)2 2
√

gk

= −4geu

(1 + eu)2

kv2 − g = g

(
(1 − eu)2

(1 + eu)2
− 1

)

= −4geu

(1 + eu)2
= dv

dt
.

Thus v(t) =
√

g

k

1 − e2t
√

gk

1 + e2t
√

gk
.

b) lim
t→∞ v(t) = lim

t→∞

√
g

k

e−2t
√

gk − 1

e−2t
√

gk + 1
= −

√
g

k

c) If y(t) = y0+
√

g

k
t− 1

k
ln

1 + e2t
√

gk

2
, then y(0) = y0

and

dy

dt
=
√

g

k
− 1

k

2
√

gke2t
√

gk

1 + e2t
√

gk

=
√

g

k

1 − e2t
√

gk

1 + e2t
√

gk
= v(t).

Thus y(t) gives the height of the object at time t
during its fall.

4. If p = e−bt y, then
dp

dt
= e−bt

(
dy

dt
− by

)
.

The DE
dp

dt
= kp

(
1 − p

e−bt M

)
therefore transforms to

dy

dt
= by + kpebt

(
1 − p

e−bt M

)

= (b + k)y − ky2

M
= K y

(
1 − y

L

)
,

where K = b + k and L = b + k

k
M . This is a standard

Logistic equation with solution (as obtained in Section
3.4) given by

y = Ly0

y0 + (L − y0)e−K t
,

where y0 = y(0) = p(0) = p0. Converting this solution
back in terms of the function p(t), we obtain

p(t) = Lp0e−bt

p0 + (L − p0)e−(b+k)t

= (b + k)Mp0

p0kebt +
(
(b + k)M − kp0

)
e−kt

.

Since p represents a percentage, we must have
(b + k)M/k < 100.

If k = 10, b = 1, M = 90, and p0 = 1, then
b + k

k
M = 99 < 100. The numerator of the final expres-

sion for p(t) given above is a constant. Therefore p(t)
will be largest when the derivative of the denominator,

f (t) = p0kebt +
(
(b + k)M − kp0

)
e−kt = 10et + 980e−10t

is zero. Since f ′(t) = 10et − 9, 800e−10t , this will
happen at t = ln(980)/11. The value of p at this t is
approximately 48.1. Thus the maximum percentage of
potential clients who will adopt the technology is about
48.1%.108
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