CHAPTER 3. TRANSCENDENTAL FUNCTIONS

Section 3.1 Inverse Functions (page 167)

1. $f(x)=x-1$
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}-1=x_{2}-1 \Rightarrow x_{1}=x_{2}$.
Thus f is one-to-one. Let $y=f^{-1}(x)$.
Then $x=f(y)=y-1$ and $y=x+1$. Thus
$f^{-1}(x)=x+1$.
$\mathscr{D}(f)=\mathscr{D}\left(f^{-1}\right)=\mathbb{R}=\mathcal{R}(f)=\mathcal{R}\left(f^{-1}\right)$.
2. $f(x)=2 x-1$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $2 x_{1}-1=2 x_{2}-1$.

Thus $2\left(x_{1}-x_{2}\right)=0$ and $x_{1}=x_{2}$. Hence, f is one-toone.
Let $y=f^{-1}(x)$. Thus $x=f(y)=2 y-1$, so
$y=\frac{1}{2}(x+1)$. Thus $f^{-1}(x)=\frac{1}{2}(x+1)$.
$\mathscr{D}(f)=\mathcal{R}\left(f^{-1}\right)=(-\infty, \infty)$.
$\mathcal{R}(f)=\mathscr{D}\left(f^{-1}\right)=(-\infty, \infty)$.
3. $f(x)=\sqrt{x-1}$
$f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow \sqrt{x_{1}-1}=\sqrt{x_{2}-1}, \quad\left(x_{1}, x_{2} \geq 1\right)$ $\Leftrightarrow x_{1}-1=x_{2}-1=0$ $\Leftrightarrow x_{1}=x_{2}$
Thus f is one-to-one. Let $y=f^{-1}(x)$.
Then $x=f(y)=\sqrt{y-1}$, and $y=1+x^{2}$. Thus $f^{-1}(x)=1+x^{2},(x \geq 0)$.
$\mathscr{D}(f)=\mathcal{R}\left(f^{-1}\right)=[1, \infty), \mathcal{R}(f)=\mathscr{D}\left(f^{-1}\right)=[0, \infty)$.
4. $f(x)=-\sqrt{x-1}$ for $x \geq 1$.

If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $-\sqrt{x_{1}-1}=-\sqrt{x_{2}-1}$ and $x_{1}-1=x_{2}-1$. Thus $x_{1}=x_{2}$ and f is one-to-one. Let $y=f^{-1}(x)$. Then $x=f(y)=-\sqrt{y-1}$ so $x^{2}=y-1$ and $y=x^{2}+1$. Thus, $f^{-1}(x)=x^{2}+1$. $\mathscr{D}(f)=\mathcal{R}\left(f^{-1}\right)=[1, \infty) . \mathcal{R}(f)=\mathscr{D}\left(f^{-1}\right)=(-\infty, 0]$.
5. $f(x)=x^{3}$

$$
\begin{aligned}
f\left(x_{1}\right)=f\left(x_{2}\right) & \Leftrightarrow x_{1}^{3}=x_{2}^{3} \\
& \Rightarrow\left(x_{1}-x_{2}\right)\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)=0 \\
& \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

Thus f is one-to-one. Let $y=f^{-1}(x)$.
Then $x=f(y)=y^{3}$ so $y=x^{1 / 3}$.
Thus $f^{-1}(x)=x^{1 / 3}$.
$\mathscr{D}(f)=\mathscr{D}\left(f^{-1}\right)=\mathbb{R}=\mathcal{R}(f)=\mathcal{R}\left(f^{-1}\right)$.
6. $f(x)=1+\sqrt[3]{x}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then
$1+\sqrt[3]{x_{1}}=1+\sqrt[3]{x_{2}}$ so $x_{1}=x_{2}$. Thus, f is one-toone.
Let $y=f^{-1}(x)$ so that $x=f(y)=1+\sqrt[3]{y}$. Thus $y=(x-1)^{3}$ and $f^{-1}(x)=(x-1)^{3}$.
$\mathscr{D}(f)=\mathcal{R}\left(f^{-1}\right)=(-\infty, \infty)$.
$\mathcal{R}(f)=\mathscr{D}\left(f^{-1}\right)=(-\infty, \infty)$.
7. $\quad f(x)=x^{2},(x \leq 0)$
$f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow x_{1}^{2}=x_{2}^{2},\left(x_{1} \leq 0, x_{2} \leq 0\right)$

$$
\Leftrightarrow x_{1}=x_{2}
$$

Thus f is one-to-one. Let $y=f^{-1}(x)$.
Then $x=f(y)=y^{2}(y \leq 0)$.
therefore $y=-\sqrt{x}$ and $f^{-1}(x)=-\sqrt{x}$.
$\mathscr{D}(f)=(-\infty, 0]=\mathcal{R}\left(f^{-1}\right)$,
$\mathscr{D}\left(f^{-1}\right)=[0, \infty)=\mathcal{R}(f)$.
8. $f(x)=(1-2 x)^{3}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then
$\left(1-2 x_{1}\right)^{3}=\left(1-2 x_{2}\right)^{3}$ and $x_{1}=x_{2}$. Thus, f is one-toone.
Let $y=f^{-1}(x)$. Then $x=f(y)=(1-2 y)^{3}$ so
$y=\frac{1}{2}(1-\sqrt[3]{x})$. Thus, $f^{-1}(x)=\frac{1}{2}(1-\sqrt[3]{x})$.
$\mathscr{D}(f)=\mathcal{R}\left(f^{-1}\right)=(-\infty, \infty)$.
$\mathcal{R}(f)=\mathscr{D}\left(f^{-1}\right)=(-\infty, \infty)$.
9. $f(x)=\frac{1}{x+1} . \quad \mathscr{D}(f)=\{x: x \neq-1\}=\mathcal{R}\left(f^{-1}\right)$.

$$
\begin{aligned}
f\left(x_{1}\right)=f\left(x_{2}\right) & \Leftrightarrow \frac{1}{x_{1}+1}=\frac{1}{x_{2}+1} \\
& \Leftrightarrow x_{2}+1=x_{1}+1 \\
& \Leftrightarrow x_{2}=x_{1}
\end{aligned}
$$

Thus f is one-to-one; Let $y=f^{-1}(x)$.
Then $x=f(y)=\frac{1}{y+1}$
so $y+1=\frac{1}{x}$ and $y=f^{-1}(x)=\frac{1}{x}-1$.
$\mathcal{D}\left(f^{-1}\right)=\{x: x \neq 0\}=\mathcal{R}(f)$.
10. $f(x)=\frac{x}{1+x}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $\frac{x_{1}}{1+x_{1}}=\frac{x_{2}}{1+x_{2}}$.

Hence $x_{1}\left(1+x_{2}\right)=x_{2}\left(1+x_{1}\right)$ and, on simplification,
$x_{1}=x_{2}$. Thus, f is one-to-one.
Let $y=f^{-1}(x)$. Then $x=f(y)=\frac{y}{1+y}$ and
$x(1+y)=y$. Thus $y=\frac{x}{1-x}=f^{-1}(x)$.
$\mathscr{D}(f)=\mathcal{R}\left(f^{-1}\right)=(-\infty,-1) \cup(-1, \infty)$.
$\mathcal{R}(f)=\mathscr{D}\left(f^{-1}\right)=(-\infty, 1) \cup(1, \infty)$.
11. $f(x)=\frac{1-2 x}{1+x} . \quad \mathscr{D}(f)=\{x: x \neq-1\}=\mathscr{R}\left(f^{-1}\right)$
$f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow \frac{1-2 x_{1}}{1+x_{1}}=\frac{1-2 x_{2}}{1+x_{2}}$
$\Leftrightarrow 1+x_{2}-2 x_{1}-2 x_{1} x_{2}=1+x_{1}-2 x_{2}-2 x_{1} x_{2}$
$\Leftrightarrow 3 x_{2}=3 x_{1} \Leftrightarrow x_{1}=x_{2}$
Thus f is one-to-one. Let $y=f^{-1}(x)$.
Then $x=f(y)=\frac{1-2 y}{1+y}$
so $x+x y=1-2 y$
and $f^{-1}(x)=y=\frac{1-x}{2+x}$.
$\mathscr{D}\left(f^{-1}\right)=\{x: x \neq-2\}=\mathcal{R}(f)$.
12. $f(x)=\frac{x}{\sqrt{x^{2}+1}}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then
$\frac{x_{1}}{\sqrt{x_{1}^{2}+1}}=\frac{x_{2}}{\sqrt{x_{2}^{2}+1}}$.
Thus $x_{1}^{2}\left(x_{2}^{2}+1\right)=x_{2}^{2}\left(x_{1}^{2}+1\right)$ and $x_{1}^{2}=x_{2}^{2}$.
From (*), x_{1} and x_{2} must have the same sign. Hence, $x_{1}=x_{2}$ and f is one-to-one.
Let $y=f^{-1}(x)$. Then $x=f(y)=\frac{y}{\sqrt{y^{2}+1}}$, and
$x^{2}\left(y^{2}+1\right)=y^{2}$. Hence $y^{2}=\frac{x^{2}}{1-x^{2}}$. Since $f(y)$ and y
have the same sign, we must have $y=\frac{x}{\sqrt{1-x^{2}}}$, so
$f^{-1}(x)=\frac{x}{\sqrt{1-x^{2}}}$.
$\mathscr{D}(f)=\mathcal{R}\left(f^{-1}\right)=(-\infty, \infty)$.
$\mathcal{R}(f)=\mathscr{D}\left(f^{-1}\right)=(-1,1)$.
13. $g(x)=f(x)-2$

Let $y=g^{-1}(x)$. Then $x=g(y)=f(y)-2$, so
$f(y)=x+2$ and $g^{-1}(x)=y=f^{-1}(x+2)$.
14. $h(x)=f(2 x)$. Let $y=h^{-1}(x)$. Then $x=h(y)=f(2 y)$ and $2 y=f^{-1}(x)$. Thus $h^{-1}(x)=y=\frac{1}{2} f^{-1}(x)$.
15. $k(x)=-3 f(x)$. Let $y=k^{-1}(x)$. Then
$x=k(y)=-3 f(y)$, so $f(y)=-\frac{x}{3}$ and
$k^{-1}(x)=y=f^{-1}\left(-\frac{x}{3}\right)$.
16. $m(x)=f(x-2)$. Let $y=m^{-1}(x)$. Then
$x=m(y)=f(y-2)$, and $y-2=f^{-1}(x)$.
Hence $m^{-1}(x)=y=f^{-1}(x)+2$.
17. $p(x)=\frac{1}{1+f(x)}$. Let $y=p^{-1}(x)$.

Then $x=p(y)=\frac{1}{1+f(y)}$ so $f(y)=\frac{1}{x}-1$,
and $p^{-1}(x)=y=f^{-1}\left(\frac{1}{x}-1\right)$.
18. $q(x)=\frac{f(x)-3}{2}$ Let $y=q^{-1}(x)$. Then
$x=q(y)=\frac{f(y)-3}{2}$ and $f(y)=2 x+3$. Hence $q^{-1}(x)=y=f^{-1}(2 x+3)$.
19. $r(x)=1-2 f(3-4 x)$

Let $y=r^{-1}(x)$. Then $x=r(y)=1-2 f(3-4 y)$.

$$
\begin{aligned}
f(3-4 y) & =\frac{1-x}{2} \\
3-4 y & =f^{-1}\left(\frac{1-x}{2}\right)
\end{aligned}
$$

and $r^{-1}(x)=y=\frac{1}{4}\left(3-f^{-1}\left(\frac{1-x}{2}\right)\right)$.
20. $s(x)=\frac{1+f(x)}{1-f(x)}$. Let $y=s^{-1}(x)$.

Then $x=s(y)=\frac{1+f(y)}{1-f(y)}$. Solving for $f(y)$ we obtain
$f(y)=\frac{x-1}{x+1}$. Hence $s^{-1}(x)=y=f^{-1}\left(\frac{x-1}{x+1}\right)$.
21. $f(x)=x^{2}+1$ if $x \geq 0$, and $f(x)=x+1$ if $x<0$.

If $f\left(x_{1}\right)=f\left(x_{2}\right)$ then if $x_{1} \geq 0$ and $x_{2} \geq 0$ then
$x_{1}^{2}+1=x_{2}^{2}+1$ so $x_{1}=x_{2}$;
if $x_{1} \geq 0$ and $x_{2}<0$ then $x_{1}^{2}+1=x_{2}+1$ so $x_{2}=x_{1}^{2}$
(not possible);
if $x_{1}<0$ and $x_{2} \geq 0$ then $x_{1}=x_{2}^{2}$ (not possible);
if $x_{1}<0$ and $x_{2}<0$ then $x_{1}+1=x_{2}+1$ so $x_{1}=x_{2}$.
Therefore f is one-to-one. Let $y=f^{-1}(x)$. Then
$x=f(y)= \begin{cases}y^{2}+1 & \text { if } y \geq 0 \\ y+1 & \text { if } y<0 .\end{cases}$
Thus $f^{-1}(x)=y= \begin{cases}\sqrt{x-1} & \text { if } x \geq 1 \\ x-1 & \text { if } x<1 .\end{cases}$

Fig. 3.1.21
22. $g(x)=x^{3}$ if $x \geq 0$, and $g(x)=x^{1 / 3}$ if $x<0$.

Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$. If $x_{1} \geq 0$ and $x_{2} \geq 0$ then $x_{1}^{3}=x_{2}^{3}$ so $x_{1}=x_{2}$.
Similarly, $x_{1}=x_{2}$ if both are negative. If x_{1} and x_{2} have opposite sign, then so do $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$.
Therefore g is one-to-one. Let $y=g^{-1}(x)$. Then
$x=g(y)= \begin{cases}y^{3} & \text { if } y \geq 0 \\ y^{1 / 3} & \text { if } y<0 .\end{cases}$
Thus $g^{-1}(x)=y= \begin{cases}x^{1 / 3} & \text { if } x \geq 0 \\ x^{3} & \text { if } x<0 .\end{cases}$
23. If x_{1} and x_{2} are both positive or both negative, and $h\left(x_{1}\right)=h\left(x_{2}\right)$, then $x_{1}^{2}=x_{2}^{2}$ so $x_{1}=x_{2}$. If x_{1} and x_{2} have opposite sign, then $h\left(x_{1}\right)$ and $h\left(x_{2}\right)$ are on opposite sides of 1 , so cannot be equal. Hence h is one-to-one.
If $y=h^{-1}(x)$, then $x=h(y)=\left\{\begin{array}{ll}y^{2}+1 & \text { if } y \geq 0 \\ -y^{2}+1 & \text { if } y<0\end{array}\right.$. If $y \geq 0$, then $y=\sqrt{x-1}$. If $y<0$, then $y=\sqrt{1-x}$.
Thus $h^{-1}(x)= \begin{cases}\sqrt{x-1} & \text { if } x \geq 1 \\ \sqrt{1-x} & \text { if } x<1\end{cases}$
24. $y=f^{-1}(x) \Leftrightarrow x=f(y)=y^{3}+y$. To find $y=f^{-1}(2)$ we solve $y^{3}+y=2$ for y. Evidently $y=1$ is the only solution, so $f^{-1}(2)=1$.
25. $g(x)=1$ if $x^{3}+x=10$, that is, if $x=2$. Thus $g^{-1}(1)=2$.
26. $h(x)=-3$ if $x|x|=-4$, that is, if $x=-2$. Thus $h^{-1}(-3)=-2$.
27. If $y=f^{-1}(x)$ then $x=f(y)$.

Thus $1=f^{\prime}(y) \frac{d y}{d x}$ so $\frac{d y}{d x}=\frac{1}{f^{\prime}(y)}=\frac{1}{\frac{1}{y}}=y$
(since $\left.f^{\prime}(x)=1 / x\right)$.
28. $f(x)=1+2 x^{3}$

Let $y=f^{-1}(x)$.
Thus $x=f(y)=1+2 y^{3}$.
$1=6 y^{2} \frac{d y}{d x}$ so $\left(f^{-1}\right)^{\prime}(x)=\frac{d y}{d x}=\frac{1}{6 y^{2}}=\frac{1}{6\left[f^{-1}(x)\right]^{2}}$
29. If $f(x)=\frac{4 x^{3}}{x^{2}+1}$, then

$$
f^{\prime}(x)=\frac{\left(x^{2}+1\right)\left(12 x^{2}\right)-4 x^{3}(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{4 x^{2}\left(x^{2}+3\right)}{\left(x^{2}+1\right)^{2}}
$$

Since $f^{\prime}(x)>0$ for all x, except $x=0, f$ must be one-to-one and so it has an inverse.
If $y=f^{-1}(x)$, then $x=f(y)=\frac{4 y^{3}}{y^{2}+1}$, and

$$
1=f^{\prime}(y)=\frac{\left(y^{2}+1\right)\left(12 y^{2} y^{\prime}\right)-4 y^{3}\left(2 y y^{\prime}\right)}{\left(y^{2}+1\right)^{2}}
$$

Thus $y^{\prime}=\frac{\left(y^{2}+1\right)^{2}}{4 y^{4}+12 y^{2}}$. Since $f(1)=2$, therefore $f^{-1}(2)=1$ and

$$
\left(f^{-1}\right)^{\prime}(2)=\left.\frac{\left(y^{2}+1\right)^{2}}{4 y^{4}+12 y^{2}}\right|_{y=1}=\frac{1}{4}
$$

30. If $f(x)=x \sqrt{3+x^{2}}$ and $y=f^{-1}(x)$, then $x=f(y)=y \sqrt{3+y^{2}}$, so,

$$
1=y^{\prime} \sqrt{3+y^{2}}+y \frac{2 y y^{\prime}}{2 \sqrt{3+y^{2}}} \quad \Rightarrow \quad y^{\prime}=\frac{\sqrt{3+y^{2}}}{3+2 y^{2}}
$$

Since $f(-1)=-2$ implies that $f^{-1}(-2)=-1$, we have

$$
\left(f^{-1}\right)^{\prime}(-2)=\left.\frac{\sqrt{3+y^{2}}}{3+2 y^{2}}\right|_{y=-1}=\frac{2}{5}
$$

Note: $f(x)=x \sqrt{3+x^{2}}=-2 \Rightarrow x^{2}\left(3+x^{2}\right)=4$ $\Rightarrow x^{4}+3 x^{2}-4=0 \Rightarrow\left(x^{2}+4\right)\left(x^{2}-1\right)=0$.
Since $\left(x^{2}+4\right)=0$ has no real solution, therefore $x^{2}-1=0$ and $x=1$ or -1 . Since it is given that $f(x)=-2$, therefore x must be -1 .
31. $y=f^{-1}(2) \Leftrightarrow 2=f(y)=y^{2} /(1+\sqrt{y})$. We must solve $2+2 \sqrt{y}=y^{2}$ for y. There is a root between 2 and 3 : $f^{-1}(2) \approx 2.23362$ to 5 decimal places.
32. $g(x)=2 x+\sin x \Rightarrow g^{\prime}(x)=2+\cos x \geq 1$ for all x. Therefore g is increasing, and so one-to-one and invertible on the whole real line.
$y=g^{-1}(x) \Leftrightarrow x=g(y)=2 y+\sin y$. For $y=g^{-1}(2)$, we need to solve $2 y+\sin y-2=0$. The root is between 0 and 1 ; to five decimal places $g^{-1}(2)=y \approx 0.68404$.
Also

$$
\begin{aligned}
& 1=\frac{d x}{d x}=(2+\cos y) \frac{d y}{d x} \\
& \left(g^{-1}\right)^{\prime}(2)=\left.\frac{d y}{d x}\right|_{x=2}=\frac{1}{2+\cos y} \approx 0.36036 .
\end{aligned}
$$

33. If $f(x)=x \sec x$, then $f^{\prime}(x)=\sec x+x \sec x \tan x \geq 1$ for x in $(-\pi / 2, \pi / 2)$. Thus f is increasing, and so one-to-one on that interval. Moreover,
$\lim _{x \rightarrow-(\pi / 2)+} f(x)=-\infty$ and $\lim _{x \rightarrow(\pi / 2)+} f(x)=\infty$,
so, being continuous, f has range $(-\infty, \infty)$, and so f^{-1} has domain $(-\infty, \infty)$.
Since $f(0)=0$, we have $f^{-1}(0)=0$, and

$$
\left(f^{-1}\right)^{\prime}(0)=\frac{1}{f^{\prime}\left(f^{-1}(0)\right.}=\frac{1}{f^{\prime}(0)}=1 .
$$

34. If $y=(f \circ g)^{-1}(x)$, then $x=f \circ g(y)=f(g(y))$. Thus $g(y)=f^{-1}(x)$ and $y=g^{-1}\left(f^{-1}(x)\right)=g^{-1} \circ f^{-1}(x)$. That is, $(f \circ g)^{-1}=g^{-1} \circ f^{-1}$.
35. $f(x)=\frac{x-a}{b x-c}$

Let $y=f^{-1}(x)$. Then $x=f(y)=\frac{y-a}{b y-c}$ and
$b x y-c x=y-a$ so $y=\frac{c x-a}{b x-1}$. We have
$f^{-1}(x)=f(x)$ if $\frac{x-a}{b x-c}=\frac{c x-a}{b x-1}$. Evidently it is necessary and sufficient that $c=1 . a$ and b may have any values.
36. Let $f(x)$ be an even function. Then $f(x)=f(-x)$. Hence, f is not one-to-one and it is not invertible. Therefore, it cannot be self-inverse.
An odd function $g(x)$ may be self-inverse if its graph is symmetric about the line $x=y$. Examples are $g(x)=x$ and $g(x)=1 / x$.
37. No. A function that is one-to-one on a single interval need not be either increasing or decreasing. For example, consider the function defined on $[0,2]$ by

$$
f(x)= \begin{cases}x & \text { if } 0 \leq x \leq 1 \\ -x & \text { if } 1<x \leq 2\end{cases}
$$

It is one-to-one but neither increasing nor decreasing on all of $[0,2]$.
38. First we consider the case where the domain of f is a closed interval. Suppose that f is one-to-one and continuous on $[a, b]$, and that $f(a)<f(b)$. We show that f must be increasing on $[a, b]$. Suppose not. Then there are numbers x_{1} and x_{2} with $a \leq x_{1}<x_{2} \leq b$ and $f\left(x_{1}\right)>f\left(x_{2}\right)$. If $f\left(x_{1}\right)>f(a)$, let u be a number such that $u<f\left(x_{1}\right), f\left(x_{2}\right)<u$, and $f(a)<u$. By the Intermediate-Value Theorem there exist numbers c_{1} in $\left(a, x_{1}\right)$ and c_{2} in $\left(x_{1}, x_{2}\right)$ such that $f\left(c_{1}\right)=u=f\left(c_{2}\right)$, contradicting the one-to-oneness of f. A similar contradiction arises if $f\left(x_{1}\right) \leq f(a)$ because, in this case, $f\left(x_{2}\right)<f(b)$ and we can find c_{1} in $\left(x_{1}, x_{2}\right)$ and c_{2} in $\left(x_{2}, b\right)$ such that $f\left(c_{1}\right)=f\left(c_{2}\right)$. Thus f must be increasing on $[a, b]$.

A similar argument shows that if $f(a)>f(b)$, then f must be decreasing on $[a, b]$.

Finally, if the interval I where f is defined is not necessarily closed, the same argument shows that if $[a, b]$ is a subinterval of I on which f is increasing (or decreasing), then f must also be increasing (or decreasing) on any intervals of either of the forms $\left[x_{1}, b\right]$ or $\left[a, x_{2}\right]$, where x_{1} and x_{2} are in I and $x_{1} \leq a<b \leq x_{2}$. So f must be increasing (or decreasing) on the whole of I.

Section 3.2 Exponential and Logarithmic Functions (page 171)

1. $\frac{3^{3}}{\sqrt{3^{5}}}=3^{3-5 / 2}=3^{1 / 2}=\sqrt{3}$
2. $2^{1 / 2} 8^{1 / 2}=2^{1 / 2} 2^{3 / 2}=2^{2}=4$
3. $\left(x^{-3}\right)^{-2}=x^{6}$
4. $\left(\frac{1}{2}\right)^{x} 4^{x / 2}=\frac{2^{x}}{2^{x}}=1$
5. $\log _{5} 125=\log _{5} 5^{3}=3$
6. If $\log _{4}\left(\frac{1}{8}\right)=y$ then $4^{y}=\frac{1}{8}$, or $2^{2 y}=2^{-3}$. Thus $2 y=-3$ and $\log _{4}\left(\frac{1}{8}\right)=y=-\frac{3}{2}$.
7. $\log _{1 / 3} 3^{2 x}=\log _{1 / 3}\left(\frac{1}{3}\right)^{-2 x}=-2 x$
8. $4^{3 / 2}=8 \quad \Rightarrow \quad \log _{4} 8=\frac{3}{2} \quad \Rightarrow \quad 2^{\log _{4} 8}=2^{3 / 2}=2 \sqrt{2}$
9. $10^{-\log _{10}(1 / x)}=\frac{1}{1 / x}=x$
10. Since $\log _{a}\left(x^{1 /\left(\log _{a} x\right)}\right)=\frac{1}{\log _{a} x} \log _{a} x=1$, therefore $x^{1 /\left(\log _{a} x\right)}=a^{1}=a$.
11. $\left(\log _{a} b\right)\left(\log _{b} a\right)=\log _{a} a=1$
12. $\log _{x}\left(x\left(\log _{y} y^{2}\right)\right)=\log _{x}(2 x)=\log _{x} x+\log _{x} 2$

$$
=1+\log _{x} 2=1+\frac{1}{\log _{2} x}
$$

13. $\left(\log _{4} 16\right)\left(\log _{4} 2\right)=2 \times \frac{1}{2}=1$
14. $\log _{15} 75+\log _{15} 3=\log _{15} 225=2$
(since $15^{2}=225$)
15. $\log _{6} 9+\log _{6} 4=\log _{6} 36=2$
16. $2 \log _{3} 12-4 \log _{3} 6=\log _{3}\left(\frac{4^{2} \cdot 3^{2}}{2^{4} \cdot 3^{4}}\right)$

$$
=\log _{3}\left(3^{-2}\right)=-2
$$

17. $\log _{a}\left(x^{4}+3 x^{2}+2\right)+\log _{a}\left(x^{4}+5 x^{2}+6\right)$

$$
-4 \log _{a} \sqrt{x^{2}+2}
$$

$$
=\log _{a}\left(\left(x^{2}+2\right)\left(x^{2}+1\right)\right)+\log _{a}\left(\left(x^{2}+2\right)\left(x^{2}+3\right)\right)
$$

$$
-2 \log _{1}\left(x^{2}+2\right)
$$

$$
=\log _{a}\left(x^{2}+1\right)+\log _{a}\left(x^{2}+3\right)
$$

$$
=\log _{a}\left(x^{4}+4 x^{2}+3\right)
$$

18. $\log _{\pi}(1-\cos x)+\log _{\pi}(1+\cos x)-2 \log _{\pi} \sin x$
$=\log _{\pi}\left[\frac{(1-\cos x)(1+\cos x)}{\sin ^{2} x}\right]=\log _{\pi} \frac{\sin ^{2} x}{\sin ^{2} x}$
$=\log _{\pi} 1=0$
19. $y=3^{\sqrt{2}}, \log _{10} y=\sqrt{2} \log _{10} 3$,
$y=10^{\sqrt{2} \log _{10} 3} \approx 4.72880$
20. $\log _{3} 5=\left(\log _{10} 5\right) /\left(\log _{10} 3 \approx 1.46497\right.$
21. $2^{2 x}=5^{x+1}, 2 x \log _{10} 2=(x+1) \log _{10} 5$,
$x=\left(\log _{10} 5\right) /\left(2 \log _{10} 2-\log _{10} 5\right) \approx-7.21257$
22. $x^{\sqrt{2}}=3, \sqrt{2} \log _{10} x=\log _{10} 3$,
$x=10^{\left(\log _{10} 3\right) / \sqrt{2}} \approx 2.17458$
23. $\log _{x} 3=5,\left(\log _{10} 3\right) /\left(\log _{10} x\right)=5$,
$\log _{10} x=\left(\log _{10} 3\right) / 5, x=10^{\left(\log _{10} 3\right) / 5} \approx 1.24573$
24. $\log _{3} x=5,\left(\log _{10} x\right) /\left(\log _{10} 3\right)=5$,
$\log _{10} x=5 \log _{10} 3, x=10^{5 \log _{10} 3}=3^{5}=243$
25. Let $u=\log _{a}\left(\frac{1}{x}\right)$ then $a^{u}=\frac{1}{x}=x^{-1}$. Hence, $a^{-u}=x$ and $u=-\log _{a} x$.
Thus, $\log _{a}\left(\frac{1}{x}\right)=-\log _{a} x$.
26. Let $\log _{a} x=u, \log _{a} y=v$.

Then $x=a^{u}, y=a^{v}$.
Thus $\frac{x}{y}=\frac{a^{u}}{a^{v}}=a^{u-v}$
and $\log _{a}\left(\frac{x}{y}\right)=u-v=\log _{a} x-\log _{a} y$.
27. Let $u=\log _{a}\left(x^{y}\right)$, then $a^{u}=x^{y}$ and $a^{u / y}=x$.

Therefore $\frac{u}{y}=\log _{a} x$, or $u=y \log _{a} x$.
Thus, $\log _{a}\left(x^{y}\right)=y \log _{a} x$.
28. Let $\log _{b} x=u, \log _{b} a=v$.

Thus $b^{u}=x$ and $b^{v}=a$.
Therefore $x=b^{u}=b^{v(u / v)}=a^{u / v}$
and $\log _{a} x=\frac{u}{v}=\frac{\log _{b} x}{\log _{b} a}$.
29. $\log _{4}(x+4)-2 \log _{4}(x+1)=\frac{1}{2}$
$\log _{4} \frac{x+4}{(x+1)^{2}}=\frac{1}{2}$
$\frac{x+4}{(x+1)^{2}}=4^{1 / 2}=2$
$2 x^{2}+3 x-2=0$ but we need $x+1>0$, so $x=1 / 2$.
30. First observe that $\log _{9} x=\log _{3} x / \log _{3} 9=\frac{1}{2} \log _{3} x$. Now $2 \log _{3} x+\log _{9} x=10$
$\log _{3} x^{2}+\log _{3} x^{1 / 2}=10$
$\log _{3} x^{5 / 2}=10$
$x^{5 / 2}=3^{10}$, so $x=\left(3^{10}\right)^{2 / 5}=3^{4}=81$
31. Note that $\log _{x} 2=1 / \log _{2} x$.

Since $\lim _{x \rightarrow \infty} \log _{2} x=\infty$, therefore $\lim _{x \rightarrow \infty} \log _{x} 2=0$.
32. Note that $\log _{x}(1 / 2)=-\log _{x} 2=-1 / \log _{2} x$.

Since $\lim _{x \rightarrow 0+} \log _{2} x=-\infty$, therefore $\lim _{x \rightarrow 0+} \log _{x}(1 / 2)=0$.
33. Note that $\log _{x} 2=1 / \log _{2} x$.

Since $\lim _{x \rightarrow 1+} \log _{2} x=0+$, therefore
$\lim _{x \rightarrow 1+} \log _{x} 2=\infty$.
34. Note that $\log _{x} 2=1 / \log _{2} x$.

Since $\lim _{x \rightarrow 1-} \log _{2} x=0-$, therefore
$\lim _{x \rightarrow 1-} \log _{x} 2=-\infty$.
35. $f(x)=a^{x}$ and $f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=k$. Thus

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x} a^{h}-a^{x}}{h} \\
& =a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=a^{x} f^{\prime}(0)=a^{x} k=k f(x) .
\end{aligned}
$$

36. $y=f^{-1}(x) \Rightarrow x=f(y)=a^{y}$

$$
\begin{aligned}
& \Rightarrow 1=\frac{d x}{d x}=k a^{y} \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{k a^{y}}=\frac{1}{k x} .
\end{aligned}
$$

Thus $\left(f^{-1}\right)^{\prime}(x)=1 /(k x)$.

Section 3.3 The Natural Logarithm and Exponential (page 179)

1. $\frac{e^{3}}{\sqrt{e^{5}}}=e^{3-5 / 2}=e^{1 / 2}=\sqrt{e}$
2. $\ln \left(e^{1 / 2} e^{2 / 3}\right)=\frac{1}{2}+\frac{2}{3}=\frac{7}{6}$
3. $e^{5 \ln x}=x^{5}$
4. $e^{(3 \ln 9) / 2}=9^{3 / 2}=27$
5. $\ln \frac{1}{e^{3 x}}=\ln e^{-3 x}=-3 x$
6. $e^{2 \ln \cos x}+\left(\ln e^{\sin x}\right)^{2}=\cos ^{2} x+\sin ^{2} x=1$
7. $3 \ln 4-4 \ln 3=\ln \frac{4^{3}}{3^{4}}=\ln \frac{64}{81}$
8. $4 \ln \sqrt{x}+6 \ln \left(x^{1 / 3}\right)=2 \ln x+2 \ln x=4 \ln x$
9. $2 \ln x+5 \ln (x-2)=\ln \left(x^{2}(x-2)^{5}\right)$
10. $\ln \left(x^{2}+6 x+9\right)=\ln \left[(x+3)^{2}\right]=2 \ln (x+3)$
11. $2^{x+1}=3^{x}$
$(x+1) \ln 2=x \ln 3$
$x=\frac{\ln 2}{\ln 3-\ln 2}=\frac{\ln 2}{\ln (3 / 2)}$
12. $3^{x}=9^{1-x} \Rightarrow 3^{x}=3^{2(1-x)}$
$\Rightarrow \quad x=2(1-x) \quad \Rightarrow \quad x=\frac{2}{3}$
13. $\frac{1}{2^{x}}=\frac{5}{8^{x+3}}$
$-x \ln 2=\ln 5-(x+3) \ln 8$

$$
=\ln 5-(3 x+9) \ln 2
$$

$2 x \ln 2=\ln 5-9 \ln 2$
$x=\frac{\ln 5-9 \ln 2}{2 \ln 2}$
14. $2^{x^{2}-3}=4^{x}=2^{2 x} \Rightarrow x^{2}-3=2 x$
$x^{2}-2 x-3=0 \Rightarrow(x-3)(x+1)=0$
Hence, $x=-1$ or 3 .
15. $\ln (x /(2-x))$ is defined if $x /(2-x)>0$, that is, if $0<x<2$. The domain is the interval $(0,2)$.
16. $\ln \left(x^{2}-x-2\right)=\ln [(x-2)(x+1)]$ is defined if $(x-2)(x+1)>0$, that is, if $x<-1$ or $x>2$. The domain is the union $(-\infty,-1) \cup(2, \infty)$.
17. $\ln (2 x-5)>\ln (7-2 x)$ holds if $2 x-5>0,7-2 x>0$, and $2 x-5>7-2 x$, that is, if $x>5 / 2, x<7 / 2$, and $4 x>12$ (i.e., $x>3$). The solution set is the interval (3, 7/2).
18. $\ln \left(x^{2}-2\right) \leq \ln x$ holds if $x^{2}>2, x>0$, and $x^{2}-2 \leq x$. Thus we need $x>\sqrt{2}$ and $x^{2}-x-2 \leq 0$. This latter inequality says that $(x-2)(x+1) \leq 0$, so it holds for $-1 \leq x \leq 2$. The solution set of the given inequality is $(\sqrt{2}, 2]$.
19. $y=e^{5 x}, y^{\prime}=5 e^{5 x}$
20. $y=x e^{x}-x, \quad y^{\prime}=e^{x}+x e^{x}-1$
21. $y=\frac{x}{e^{2 x}}=x e^{-2 x}$
$y^{\prime}=e^{-2 x}-2 x e^{-2 x}$
$=(1-2 x) e^{-2 x}$
22. $y=x^{2} e^{x / 2}, \quad y^{\prime}=2 x e^{x / 2}+\frac{1}{2} x^{2} e^{x / 2}$
23. $y=\ln (3 x-2) \quad y^{\prime}=\frac{3}{3 x-2}$
24. $y=\ln |3 x-2|, \quad y^{\prime}=\frac{3}{3 x-2}$
25. $y=\ln \left(1+e^{x}\right) \quad y^{\prime}=\frac{e^{x}}{1+e^{x}}$
26. $f(x)=e^{x^{2}}, \quad f^{\prime}(x)=(2 x) e^{x^{2}}$
27. $y=\frac{e^{x}+e^{-x}}{2}, \quad y^{\prime}=\frac{e^{x}-e^{-x}}{2}$
28. $x=e^{3 t} \ln t, \quad \frac{d x}{d t}=3 e^{3 t} \ln t+\frac{1}{t} e^{3 t}$
29. $y=e^{\left(e^{x}\right)}, \quad y^{\prime}=e^{x} e^{\left(e^{x}\right)}=e^{x+e^{x}}$
30. $y=\frac{e^{x}}{1+e^{x}}=1-\frac{1}{1+e^{x}}, \quad y^{\prime}=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}$
31. $y=e^{x} \sin x, y^{\prime}=e^{x}(\sin x+\cos x)$
32. $y=e^{-x} \cos x, \quad y^{\prime}=-e^{-x} \cos x-e^{-x} \sin x$
33. $y=\ln \ln x \quad y^{\prime}=\frac{1}{x \ln x}$
34. $y=x \ln x-x$
$y^{\prime}=\ln x+x\left(\frac{1}{x}\right)-1=\ln x$
35. $y=x^{2} \ln x-\frac{x^{2}}{2}$
$y^{\prime}=2 x \ln x+\frac{x^{2}}{x}-\frac{2 x}{2}=2 x \ln x$
36. $y=\ln |\sin x|, \quad y^{\prime}=\frac{\cos x}{\sin x}=\cot x$
37. $y=5^{2 x+1}$
$y^{\prime}=2\left(5^{2 x+1}\right) \ln 5=(2 \ln 5) 5^{2 x+1}$
38. $y=2^{\left(x^{2}-3 x+8\right)}, \quad y^{\prime}=(2 x-3)(\ln 2) 2^{\left(x^{2}-3 x+8\right)}$
39. $g(x)=t^{x} x^{t}, \quad g^{\prime}(x)=t^{x} x^{t} \ln t+t^{x+1} x^{t-1}$
40. $h(t)=t^{x}-x^{t}, \quad h^{\prime}(t)=x t^{x-1}-x^{t} \ln x$
41. $f(s)=\log _{a}(b s+c)=\frac{\ln (b s+c)}{\ln a}$

$$
f^{\prime}(s)=\frac{b}{(b s+c) \ln a}
$$

42. $g(x)=\log _{x}(2 x+3)=\frac{\ln (2 x+3)}{\ln x}$

$$
\begin{aligned}
g^{\prime}(x) & =\frac{\ln x\left(\frac{2}{2 x+3}\right)-[\ln (2 x+3)]\left(\frac{1}{x}\right)}{(\ln x)^{2}} \\
& =\frac{2 x \ln x-(2 x+3) \ln (2 x+3)}{x(2 x+3)(\ln x)^{2}}
\end{aligned}
$$

43. $y=x^{\sqrt{x}}=e^{\sqrt{x} \ln x}$

$$
\begin{aligned}
y^{\prime} & =e^{\sqrt{x} \ln x}\left(\frac{\ln x}{2 \sqrt{x}}+\frac{\sqrt{x}}{x}\right) \\
& =x^{\sqrt{x}}\left(\frac{1}{\sqrt{x}}\left(\frac{1}{2} \ln x+1\right)\right)
\end{aligned}
$$

44. Given that $y=\left(\frac{1}{x}\right)^{\ln x}$, let $u=\ln x$. Then $x=e^{u}$ and $y=\left(\frac{1}{e^{u}}\right)^{u}=\left(e^{-u}\right)^{u}=e^{-u^{2}}$. Hence,

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=\left(-2 u e^{-u^{2}}\right)\left(\frac{1}{x}\right)=-\frac{2 \ln x}{x}\left(\frac{1}{x}\right)^{\ln x}
$$

45. $y=\ln |\sec x+\tan x|$

$$
\begin{aligned}
y^{\prime} & =\frac{\sec x \tan x+\sec ^{2} x}{\sec x+\tan x} \\
& =\sec x
\end{aligned}
$$

46. $y=\ln \left|x+\sqrt{x^{2}-a^{2}}\right|$

$$
y^{\prime}=\frac{1+\frac{2 x}{2 \sqrt{x^{2}-a^{2}}}}{x+\sqrt{x^{2}-a^{2}}}=\frac{1}{\sqrt{x^{2}-a^{2}}}
$$

47. $y=\ln \left(\sqrt{x^{2}+a^{2}}-x\right)$

$$
\begin{aligned}
y^{\prime} & =\frac{\frac{x}{\sqrt{x^{2}+a^{2}}}-1}{\sqrt{x^{2}+a^{2}}-x} \\
& =-\frac{1}{\sqrt{x^{2}+a^{2}}}
\end{aligned}
$$

48. $y=(\cos x)^{x}-x^{\cos x}=e^{x \ln \cos x}-e^{(\cos x)(\ln x)}$

$$
\begin{aligned}
y^{\prime}= & e^{x \ln \cos x}\left[\ln \cos x+x\left(\frac{1}{\cos x}\right)(-\sin x)\right] \\
& \quad-e^{(\cos x)(\ln x)}\left[-\sin x \ln x+\frac{1}{x} \cos x\right] \\
= & (\cos x)^{x}(\ln \cos x-x \tan x) \\
& \quad-x^{\cos x}\left(-\sin x \ln x+\frac{1}{x} \cos x\right)
\end{aligned}
$$

49. $f(x)=x e^{a x}$

$$
\begin{aligned}
f^{\prime}(x) & =e^{a x}(1+a x) \\
f^{\prime \prime}(x) & =e^{a x}\left(2 a+a^{2} x\right) \\
f^{\prime \prime \prime}(x) & =e^{a x}\left(3 a^{2}+a^{3} x\right) \\
& \vdots \\
f^{(n)}(x) & =e^{a x}\left(n a^{n-1}+a^{n} x\right)
\end{aligned}
$$

50. Since

$$
\begin{aligned}
\frac{d}{d x}\left(a x^{2}+b x+c\right) e^{x} & =(2 a x+b) e^{x}+\left(a x^{2}+b x+c\right) e^{x} \\
& =\left[a x^{2}+(2 a+b) x+(b+c)\right] e^{x} \\
& =\left[A x^{2}+B x+C\right] e^{x} .
\end{aligned}
$$

Thus, differentiating $\left(a x^{2}+b x+c\right) e^{x}$ produces another function of the same type with different constants. Any number of differentiations will do likewise.
51. $y=e^{x^{2}}$

$$
\begin{aligned}
y^{\prime} & =2 x e^{x^{2}} \\
y^{\prime \prime} & =2 e^{x^{2}}+4 x^{2} e^{x^{2}}=2\left(1+2 x^{2}\right) e^{x^{2}} \\
y^{\prime \prime \prime} & =2(4 x) e^{x^{2}}+2\left(1+2 x^{2}\right) 2 x e^{x^{2}}=4\left(3 x+2 x^{3}\right) e^{x^{2}} \\
y^{(4)} & =4\left(3+6 x^{2}\right) e^{x^{2}}+4\left(3 x+2 x^{3}\right) 2 x e^{x^{2}} \\
& =4\left(3+12 x^{2}+4 x^{4}\right) e^{x^{2}}
\end{aligned}
$$

52. $f(x)=\ln (2 x+1) \quad f^{\prime}(x)=2(2 x+1)^{-1}$
$f^{\prime \prime}(x)=(-1) 2^{2}(2 x+1)^{-2} \quad f^{\prime \prime \prime}(x)=(2) 2^{3}(2 x+1)^{-3}$
$f^{(4)}(x)=-(3!) 2^{4}(2 x+1)^{-4}$
Thus, if $n=1,2,3, \ldots$ we have
$f^{(n)}(x)=(-1)^{n-1}(n-1)!2^{n}(2 x+1)^{-n}$.
53. a) $f(x)=\left(x^{x}\right)^{x}=x^{\left(x^{2}\right)}$
$\ln f(x)=x^{2} \ln x$
$\frac{1}{f} f^{\prime}=2 x \ln x+x$
$f^{\prime}=x^{x^{2}+1}(2 \ln x+1)$
b) $g(x)=x^{x^{x}}$
$\ln g=x^{x} \ln x$ $\frac{1}{g^{\prime}} g^{\prime}=x^{x}(1+\ln x) \ln x+\frac{x^{x}}{x}$
$g^{\prime}=x^{x^{x}} x^{x}\left(\frac{1}{x}+\ln x+(\ln x)^{2}\right)$
Evidently g grows more rapidly than does f as x grows large.
54. Given that $x^{x^{x^{*}}}=a$ where $a>0$, then

$$
\ln a=x^{x^{x}} \ln x=a \ln x
$$

Thus $\ln x=\frac{1}{a} \ln a=\ln a^{1 / a}$, so $x=a^{1 / a}$.
55. $f(x)=(x-1)(x-2)(x-3)(x-4)$
$\ln f(x)=\ln (x-1)+\ln (x-2)+\ln (x-3)+\ln (x-4)$
$\frac{1}{f(x)} f^{\prime}(x)=\frac{1}{x-1}+\frac{1}{x-2}+\frac{1}{x-3}+\frac{1}{x-4}$
$f^{\prime}(x)=f(x)\left(\frac{1}{x-1}+\frac{1}{x-2}+\frac{1}{x-3}+\frac{1}{x-4}\right)$
56. $F(x)=\frac{\sqrt{1+x}(1-x)^{1 / 3}}{(1+5 x)^{4 / 5}}$
$\ln F(x)=\frac{1}{2} \ln (1+x)+\frac{1}{3} \ln (1-x)-\frac{4}{5} \ln (1+5 x)$
$\frac{F^{\prime}(x)}{F(x)}=\frac{1}{2(1+x)}-\frac{1}{3(1-x)}-\frac{4}{(1+5 x)}$
$F^{\prime}(0)=F(0)\left[\frac{1}{2}-\frac{1}{3}-\frac{4}{1}\right]=(1)\left[\frac{1}{2}-\frac{1}{3}-4\right]=-\frac{23}{6}$
57. $f(x)=\frac{\left(x^{2}-1\right)\left(x^{2}-2\right)\left(x^{2}-3\right)}{\left(x^{2}+1\right)\left(x^{2}+2\right)\left(x^{2}+3\right)}$
$f(2)=\frac{3 \times 2 \times 1}{5 \times 6 \times 7}=\frac{1}{35}, \quad f(1)=0$
$\ln f(x)=\ln \left(x^{2}-1\right)+\ln \left(x^{2}-2\right)+\ln \left(x^{2}-3\right)$
$-\ln \left(x^{2}+1\right)-\ln \left(x^{2}+2\right)-\ln \left(x^{2}+3\right)$
$\frac{1}{f(x)} f^{\prime}(x)=\frac{2 x}{x^{2}-1}+\frac{2 x}{x^{2}-2}+\frac{2 x}{x^{2}-3}$
$-\frac{2 x}{x^{2}+1}-\frac{2 x}{x^{2}+2}-\frac{2 x}{x^{2}+3}$
$f^{\prime}(x)=2 x f(x)\left(\frac{1}{x^{2}-1}+\frac{1}{x^{2}-2}+\frac{1}{x^{2}-3}\right.$
$\left.-\frac{1}{x^{2}+1}-\frac{1}{x^{2}+2}-\frac{1}{x^{2}+3}\right)$
$f^{\prime}(2)=\frac{4}{35}\left(\frac{1}{3}+\frac{1}{2}+\frac{1}{1}-\frac{1}{5}-\frac{1}{6}-\frac{1}{7}\right)$
$=\frac{4}{35} \times \frac{139}{105}=\frac{556}{3675}$
Since $f(x)=\left(x^{2}-1\right) g(x)$ where $g(1) \neq 0$, then
$f^{\prime}(x)=2 x g(x)+\left(x^{2}-1\right) g^{\prime}(x)$ and
$f^{\prime}(1)=2 g(1)+0=2 \times \frac{(-1)(-2)}{2 \times 3 \times 4}=\frac{1}{6}$.
58. Since $y=x^{2} e^{-x^{2}}$, then

$$
y^{\prime}=2 x e^{-x^{2}}-2 x^{3} e^{-x^{2}}=2 x(1-x)(1+x) e^{-x^{2}}
$$

The tangent is horizontal at $(0,0)$ and $\left(\pm 1, \frac{1}{e}\right)$.
59. $f(x)=x e^{-x}$
$f^{\prime}(x)=e^{-x}(1-x), \quad$ C.P. $x=1, f(1)=\frac{1}{e}$
$f^{\prime}(x)>0$ if $x<1$ (f increasing)
$f^{\prime}(x)<0$ if $x>1$ (f decreasing $)$

Fig. 3.3.59
60. Since $y=\ln x$ and $y^{\prime}=\frac{1}{x}=4$ then $x=\frac{1}{4}$ and $y=\ln \frac{1}{4}=-\ln 4$. The tangent line of slope 4 is $y=-\ln 4+4\left(x-\frac{1}{4}\right)$, i.e., $y=4 x-1-\ln 4$.
61. Let the point of tangency be $\left(a, e^{a}\right)$. Tangent line has slope

$$
\frac{e^{a}-0}{a-0}=\left.\frac{d}{d x} e^{x}\right|_{x=a}=e^{a}
$$

Therefore, $a=1$ and line has slope e.
The line has equation $y=e x$.

Fig. 3.3.61
62. The slope of $y=\ln x$ at $x=a$ is $y^{\prime}=\left.\frac{1}{x}\right|_{x=a}=\frac{1}{a}$. The line from $(0,0)$ to $(a, \ln a)$ is tangent to $y=\ln x$ if

$$
\frac{\ln a-0}{a-0}=\frac{1}{a}
$$

i.e., if $\ln a=1$, or $a=e$. Thus, the line is $y=\frac{x}{e}$.

Fig. 3.3.62
63. Let the point of tangency be $\left(a, 2^{a}\right)$. Slope of the tangent is

$$
\frac{2^{a}-0}{a-1}=\left.\frac{d}{d x} 2^{x}\right|_{x=a}=2^{a} \ln 2
$$

Thus $a-1=\frac{1}{\ln 2}, \quad a=1+\frac{1}{\ln 2}$.
So the slope is $2^{a} \ln 2=2^{1+(1 / \ln 2)} \ln 2=2 e \ln 2$.
(Note: $\ln 2^{1 / \ln 2}=\frac{1}{\ln 2} \ln 2=1 \Rightarrow 2^{1 / \ln 2}=e$)
The tangent line has equation $y=2 e \ln 2(x-1)$.
64. The tangent line to $y=a^{x}$ which passes through the origin is tangent at the point $\left(b, a^{b}\right)$ where

$$
\frac{a^{b}-0}{b-0}=\left.\frac{d}{d x} a^{x}\right|_{x=b}=a^{b} \ln a
$$

Thus $\frac{1}{b}=\ln a$, so $a^{b}=a^{1 / \ln a}=e$. The line $y=x$ will intersect $y=a^{x}$ provided the slope of this tangent line does not exceed 1, i.e., provided $\frac{e}{b} \leq 1$, or $e \ln a \leq 1$. Thus we need $a \leq e^{1 / e}$.

Fig. 3.3.64
65. $e^{x y} \ln \frac{x}{y}=x+\frac{1}{y}$
$e^{x y}\left(y+x y^{\prime}\right) \ln \frac{x}{y}+e^{x y} \frac{y}{x}\left(\frac{y-x y^{\prime}}{y^{2}}\right)=1-\frac{1}{y^{2}} y^{\prime}$
At $\left(e, \frac{1}{e}\right)$ we have
$e\left(\frac{1}{e}+e y^{\prime}\right) 2+e \frac{1}{e^{2}}\left(e-e^{3} y^{\prime}\right)=1-e^{2} y^{\prime}$
$2+2 e^{2} y^{\prime}+1-e^{2} y^{\prime}=1-e^{2} y^{\prime}$.
Thus the slope is $y^{\prime}=-\frac{1}{e^{2}}$.
66. $x e^{y}+y-2 x=\ln 2 \Rightarrow e^{y}+x e^{y} y^{\prime}+y^{\prime}-2=0$.

At $(1, \ln 2), 2+2 y^{\prime}+y^{\prime}-2=0 \Rightarrow y^{\prime}=0$.
Therefore, the tangent line is $y=\ln 2$.
67. $f(x)=A x \cos \ln x+B x \sin \ln x$
$f^{\prime}(x)=A \cos \ln x-A \sin \ln x+B \sin \ln x+B \cos \ln x$

$$
=(A+B) \cos \ln x+(B-A) \sin \ln x
$$

If $A=B=\frac{1}{2}$ then $f^{\prime}(x)=\cos \ln x$.
Therefore $\int \cos \ln x d x=\frac{1}{2} x \cos \ln x+\frac{1}{2} x \sin \ln x+C$.
If $B=\frac{1}{2}, A=-\frac{1}{2}$ then $f^{\prime}(x)=\sin \ln x$.
Therefore $\int \sin \ln x d x=\frac{1}{2} x \sin \ln x-\frac{1}{2} x \cos \ln x+C$.
68. $F_{A, B}(x)=A e^{x} \cos x+B e^{x} \sin x$
$\frac{d}{d x} F_{A, B}(x)$
$=A e^{x} \cos x-A e^{x} \sin x+B e^{x} \sin x+B e^{x} \cos x$

$$
=(A+B) e^{x} \cos x+(B-A) e^{x} \sin x=F_{A+B, B-A}(x)
$$

69. Since $\frac{d}{d x} F_{A, B}(x)=F_{A+B, B-A}(x)$ we have
a) $\frac{d^{2}}{d x^{2}} F_{A, B}(x)=\frac{d}{d x} F_{A+B, B-A}(x)=F_{2 B,-2 A}(x)$
b) $\frac{d^{3}}{d x^{3}} e^{x} \cos x=\frac{d^{3}}{d x^{3}} F_{1,0}(x)=\frac{d}{d x} F_{0,-2}(x)$
$=F_{-2,-2}(x)=-2 e^{x} \cos x-2 e^{x} \sin x$
70. $\frac{d}{d x}\left(A e^{a x} \cos b x+B e^{a x} \sin b x\right)$
$=A a e^{a x} \cos b x-A b e^{a x} \sin b x+B a e^{a x} \sin b x$ $+B b e^{a x} \cos b x$
$=(A a+B b) e^{a x} \cos b x+(B a-A b) e^{a x} \sin b x$.
(a) If $A a+B b=1$ and $B a-A b=0$, then $A=\frac{a}{a^{2}+b^{2}}$ and $B=\frac{b}{a^{2}+b^{2}}$. Thus

$$
\begin{aligned}
& \int e^{a x} \cos b x d x \\
& =\frac{1}{a^{2}+b^{2}}\left(a e^{a x} \cos b x+b e^{a x} \sin b x\right)+C
\end{aligned}
$$

(b) If $A a+B b=0$ and $B a-A b=1$, then $A=\frac{-b}{a^{2}+b^{2}}$ and $B=\frac{a}{a^{2}+b^{2}}$. Thus

$$
\begin{aligned}
& \int e^{a x} \sin b x d x \\
& =\frac{1}{a^{2}+b^{2}}\left(a e^{a x} \sin b x-b e^{a x} \cos b x\right)+C
\end{aligned}
$$

71. $\frac{d}{d x}\left[\ln \frac{1}{x}+\ln x\right]=\frac{1}{1 / x}\left(\frac{-1}{x^{2}}\right)+\frac{1}{x}=-\frac{1}{x}+\frac{1}{x}=0$.

Therefore $\ln \frac{1}{x}+\ln x=C$ (constant). Taking $x=1$, we get $C=\ln 1+\ln 1=0$. Thus $\ln \frac{1}{x}=-\ln x$.
72. $\ln \frac{x}{y}=\ln \left(x \frac{1}{y}\right)=\ln x+\ln \frac{1}{y}=\ln x-\ln y$.
73. $\frac{d}{d x}\left[\ln \left(x^{r}\right)-r \ln x\right]=\frac{r x^{r-1}}{x^{r}}-\frac{r}{x}=\frac{r}{x}-\frac{r}{x}=0$.

Therefore $\ln \left(x^{r}\right)-r \ln x=C$ (constant). Taking $x=1$, we get $C=\ln 1-r \ln 1=0-0=0$. Thus $\ln \left(x^{r}\right)=r \ln x$.
74. Let $x>0$, and $F(x)$ be the area bounded by $y=t^{2}$, the t-axis, $t=0$ and $t=x$. For $h>0, F(x+h)-F(x)$ is the shaded area in the following figure.

Fig. 3.3.74
Comparing this area with that of the two rectangles, we see that

$$
h x^{2}<F(x+h)-F(x)<h(x+h)^{2} .
$$

Hence, the Newton quotient for $F(x)$ satisfies

$$
x^{2}<\frac{F(x+h)-F(x)}{h}<(x+h)^{2} .
$$

Letting h approach 0 from the right (by the Squeeze Theorem applied to one-sided limits)

$$
\lim _{h \rightarrow 0+} \frac{F(x+h)-F(x)}{h}=x^{2} .
$$

If $h<0$ and $0<x+h<x$, then

$$
(x+h)^{2}<\frac{F(x+h)-F(x)}{h}<x^{2}
$$

so similarly,

$$
\lim _{h \rightarrow 0-} \frac{F(x+h)-F(x)}{h}=x^{2} .
$$

Combining these two limits, we obtain

$$
\frac{d}{d x} F(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=x^{2} .
$$

Therefore $F(x)=\int x^{2} d x=\frac{1}{3} x^{3}+C$. Since $F(0)=C=0$, therefore $F(x)=\frac{1}{3} x^{3}$. For $x=2$, the area of the region is $F(2)=\frac{8}{3}$ square units.
75. a) The shaded area A in part (i) of the figure is less than the area of the rectangle (actually a square) with base from $t=1$ to $t=2$ and height $1 / 1=1$. Since $\ln 2=A<1$, we have $2<e^{1}=e$; i.e., $e>2$.

Fig. 3.3.75
b) If $f(t)=1 / t$, then $f^{\prime}(t)=-1 / t^{2}$ and $f^{\prime \prime}(t)=2 / t^{3}>0$ for $t>0$. Thus $f^{\prime}(t)$ is an increasing function of t for $t>0$, and so the graph of $f(t)$ bends upward away from any of its tangent lines. (This kind of argument will be explored further in Chapter 5.)
c) The tangent to $y=1 / t$ at $t=2$ has slope $-1 / 4$. Its equation is

$$
y=\frac{1}{2}-\frac{1}{4}(x-2) \quad \text { or } y=1-\frac{x}{4} .
$$

The tangent to $y=1 / t$ at $t=3$ has slope $-1 / 9$. Its equation is

$$
y=\frac{1}{3}-\frac{1}{9}(x-3) \quad \text { or } y=\frac{2}{3}-\frac{x}{9} .
$$

d) The trapezoid bounded by $x=1, x=2, y=0$, and $y=1-(x / 4)$ has area

$$
A_{1}=\frac{1}{2}\left(\frac{3}{4}+\frac{1}{2}\right)=\frac{5}{8} .
$$

The trapezoid bounded by $x=2, x=3, y=0$, and $y=(2 / 3)-(x / 9)$ has area

$$
A_{2}=\frac{1}{2}\left(\frac{4}{9}+\frac{1}{3}\right)=\frac{7}{18}
$$

e) $\ln 3>A_{1}+A_{2}=\frac{5}{8}+\frac{7}{18}=\frac{73}{72}>1$.

Thus $3>e^{1}=e$. Combining this with the result of (a) we conclude that $2<e<3$.

Section 3.4 Growth and Decay (page 187)

1. $\lim _{x \rightarrow \infty} x^{3} e^{-x}=\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x}}=0$ (exponential wins)
2. $\lim _{x \rightarrow \infty} x^{-3} e^{x}=\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{3}}=\infty$
3. $\lim _{x \rightarrow \infty} \frac{2 e^{x}-3}{e^{x}+5}=\lim _{x \rightarrow \infty} \frac{2-3 e^{-x}}{1+5 e^{-x}}=\frac{2-0}{1+0}=2$
4. $\lim _{x \rightarrow \infty} \frac{x-2 e^{-x}}{x+3 e^{-x}}=\lim _{x \rightarrow \infty} \frac{1-2 /\left(x e^{x}\right)}{1+3 /\left(x e^{x}\right)}=\frac{1-0}{1+0}=1$
5. $\lim _{x \rightarrow 0+} x \ln x=0 \quad$ (power wins)
6. $\lim _{x \rightarrow 0+} \frac{\ln x}{x}=-\infty$
7. $\lim _{x \rightarrow 0} x(\ln |x|)^{2}=0$
8. $\lim _{x \rightarrow \infty} \frac{(\ln x)^{3}}{\sqrt{x}}=0 \quad$ (power wins)
9. Let $N(t)$ be the number of bacteria present after t hours. Then $N(0)=100, \quad N(1)=200$.
Since $\frac{d N}{d t}=k N$ we have $N(t)=N(0) e^{k t}=100 e^{k t}$.
Thus $200=100 e^{k}$ and $k=\ln 2$.
Finally, $N\left(\frac{5}{2}\right)=100 e^{(5 / 2) \ln 2} \approx 565.685$.
There will be approximately 566 bacteria present after another $1 \frac{1}{2}$ hours.
10. Let $y(t)$ be the number of kg undissolved after t hours. Thus, $y(0)=50$ and $y(5)=20$. Since $y^{\prime}(t)=k y(t)$, therefore $y(t)=y(0) e^{k t}=50 e^{k t}$. Then

$$
20=y(5)=50 e^{5 k} \Rightarrow k=\frac{1}{5} \ln \frac{2}{5} .
$$

If 90% of the sugar is dissolved at time T then $5=y(T)=50 e^{k T}$, so

$$
T=\frac{1}{k} \ln \frac{1}{10}=\frac{5 \ln (0.1)}{\ln (0.4)} \approx 12.56 .
$$

Hence, 90% of the sugar will dissolved in about 12.56 hours.
11. Let $P(t)$ be the percentage undecayed after t years. Thus $P(0)=100, \quad P(15)=70$.
Since $\frac{d P}{d t}=k P$, we have $P(t)=P(0) e^{k t}=100 e^{k t}$.
Thus $70=P(15)=100 e^{15 k}$ so $k=\frac{1}{15} \ln (0.7)$.
The half-life T satisfies if $50=P(T)=100 e^{k T}$, so $T=\frac{1}{k} \ln (0.5)=\frac{15 \ln (0.5)}{\ln (0.7)} \approx 29.15$.
The half-life is about 29.15 years.
12. Let $P(t)$ be the percentage remaining after t years. Thus $P^{\prime}(t)=k P(t)$ and $P(t)=P(0) e^{k t}=100 e^{k t}$. Then,
$50=P(1690)=100 e^{1690 k} \Rightarrow k=\frac{1}{1690} \ln \frac{1}{2} \approx 0.0004101$.
a) $P(100)=100 e^{100 k} \approx 95.98$, i.e., about 95.98% remains after 100 years.
b) $P(1000)=100 e^{1000 k} \approx 66.36$, i.e., about 66.36% remains after 1000 years.
13. Let $P(t)$ be the percentage of the initial amount remaining after t years.
Then $P(t)=100 e^{k t}$ and $99.57=P(1)=100 e^{k}$.
Thus $k=\ln (0.9957)$.
The half-life T satisfies $50=P(T)=100 e^{k T}$,
so $T=\frac{1}{k} \ln (0.5)=\frac{\ln (0.5)}{\ln (0.995)} \approx 160.85$.
The half-life is about 160.85 years.
14. Let $N(t)$ be the number of bacteria in the culture t days after the culture was set up. Thus $N(3)=3 N(0)$ and $N(7)=10 \times 10^{6}$. Since $N(t)=N(0) e^{k t}$, we have
$3 N(0)=N(3)=N(0) e^{3 k} \Rightarrow k=\frac{1}{3} \ln 3$.
$10^{7}=N(7)=N(0) e^{7 k} \Rightarrow N(0)=10^{7} e^{-(7 / 3) \ln 3} \approx 770400$.
There were approximately 770,000 bacteria in the culture initially. (Note that we are approximating a discrete quantity (number of bacteria) by a continuous quantity $N(t)$ in this exercise.)
15. Let $W(t)$ be the weight t days after birth.

Thus $W(0)=4000$ and $W(t)=4000 e^{k t}$.
Also $4400=W(14)=4000 e^{14 k}$, is $k=\frac{1}{14} \ln (1.1)$.
Five days after birth, the baby weighs
$W(5)=4000 e^{(5 / 14) \ln (1.1)} \approx 4138.50 \approx 4139$ grams.
16. Since

$$
\begin{aligned}
& I^{\prime}(t)=k I(t) \Rightarrow I(t)=I(0) e^{k t}=40 e^{k t} \\
& 15=I(0.01)=40 e^{0.01 k} \Rightarrow k=\frac{1}{0.01} \ln \frac{15}{40}=100 \ln \frac{3}{8}
\end{aligned}
$$

thus,

$$
I(t)=40 \exp \left(100 t \ln \frac{3}{8}\right)=40\left(\frac{3}{8}\right)^{100 t}
$$

17. $\$ P$ invested at 4% compounded continuously grows to $\$ P\left(e^{0.04}\right)^{7}=\$ P e^{0.28}$ in 7 years. This will be $\$ 10,000$ if $\$ P=\$ 10,000 e^{-0.28}=\$ 7,557.84$.
18. Let $y(t)$ be the value of the investment after t years. Thus $y(0)=1000$ and $y(5)=1500$. Since $y(t)=1000 e^{k t}$ and $1500=y(5)=1000 e^{5 k}$, therefore, $k=\frac{1}{5} \ln \frac{3}{2}$.
a) Let t be the time such that $y(t)=2000$, i.e.,

$$
\begin{aligned}
& 1000 e^{k t}=2000 \\
\Rightarrow \quad & t=\frac{1}{k} \ln 2=\frac{5 \ln 2}{\ln \left(\frac{3}{2}\right)}=8.55
\end{aligned}
$$

Hence, the doubling time for the investment is about 8.55 years.
b) Let $r \%$ be the effective annual rate of interest; then

$$
\begin{aligned}
& 1000\left(1+\frac{r}{100}\right)=y(1)=1000 e^{k} \\
& \Rightarrow r=100\left(e^{k}-1\right)=100\left[\exp \left(\frac{1}{5} \ln \frac{3}{2}\right)-1\right] \\
& =8.447
\end{aligned}
$$

The effective annual rate of interest is about 8.45%.
19. Let the purchasing power of the dollar be $P(t)$ cents after t years.
Then $P(0)=100$ and $P(t)=100 e^{k t}$.
Now $91=P(1)=100 e^{k}$ so $k=\ln (0.91)$.
If $25=P(t)=100^{k t}$ then
$t=\frac{1}{k} \ln (0.25)=\frac{\ln (0.25)}{\ln (0.91)} \approx 14.7$.
The purchasing power will decrease to $\$ 0.25$ in about 14.7 years.
20. Let $i \%$ be the effective rate, then an original investment of $\$ A$ will grow to $\$ A\left(1+\frac{i}{100}\right)$ in one year. Let $r \%$ be the nominal rate per annum compounded n times per year, then an original investment of $\$ A$ will grow to

$$
\$ A\left(1+\frac{r}{100 n}\right)^{n}
$$

in one year, if compounding is performed n times per year. For $i=9.5$ and $n=12$, we have

$$
\begin{aligned}
& \$ A\left(1+\frac{9.5}{100}\right)=\$ A\left(1+\frac{r}{1200}\right)^{12} \\
\Rightarrow & r=1200(\sqrt[12]{1.095}-1)=9.1098
\end{aligned}
$$

The nominal rate of interest is about 9.1098%.
21. Let $x(t)$ be the number of rabbits on the island t years after they were introduced. Thus $x(0)=1,000$, $x(3)=3,500$, and $x(7)=3,000$. For $t<5$ we have $d x / d t=k_{1} x$, so

$$
\begin{aligned}
& x(t)=x(0) e^{k_{1} t}=1,000 e^{k_{1} t} \\
& x(2)=1,000 e^{2 k_{1}}=3,500 \quad \Longrightarrow \quad e^{2 k_{1}}=3.5 \\
& x(5)=1,000 e^{5 k_{1}}=1,000\left(e^{2 k_{1}}\right)^{5 / 2}=1,000(3.5)^{5 / 2} \\
& \quad \approx 22,918
\end{aligned}
$$

For $t>5$ we have $d x / d t=k_{2} x$, so that

$$
\begin{aligned}
x(t) & =x(5) e^{k_{2}(t-5)} \\
x(7) & =x(5) e^{2 k_{2}}=3,000 \quad \Longrightarrow \quad e^{2 k_{2}} \approx \frac{3,000}{22,918} \\
x(10) & =x(5) 3^{5 k_{2}}=x(5)\left(e^{2 k_{2}}\right)^{5 / 2} \approx 22,918\left(\frac{3,000}{22,918}\right)^{5 / 2} \\
& \approx 142
\end{aligned}
$$

so there are approximately 142 rabbits left after 10 years.
22. Let $N(t)$ be the number of rats on the island t months after the initial population was released and before the first cull. Thus $N(0)=R$ and $N(3)=2 R$. Since $N(t)=R e^{k t}$, we have $e^{3 k}=2$, so $e^{k}=2^{1 / 3}$. Hence $N(5)=R e^{5 k}=2^{5 / 3} R$. After the first 1,000 rats are killed the number remaining is $2^{5 / 3} R-1,000$. If this number is less than R, the number at the end of succeeding 5 -year periods will decline. The minimum value of R for which this won't happen must satisfy $2^{5 / 3} R-1,000=R$, that is, $R=1,000 /\left(2^{5 / 3}-1\right) \approx 459.8$. Thus $R=460$ rats should be brought to the island initially.
23. $f^{\prime}(x)=a+b f(x)$.
a) If $u(x)=a+b f(x)$, then $u^{\prime}(x)=b f^{\prime}(x)=b[a+b f(x)]=b u(x)$. This equation for u is the equation of exponential growth/decay. Thus

$$
\begin{aligned}
& u(x)=C_{1} e^{b x} \\
& f(x)=\frac{1}{b}\left(C_{1} e^{b x}-a\right)=C e^{b x}-\frac{a}{b}
\end{aligned}
$$

b) If $\frac{d y}{d x}=a+b y$ and $y(0)=y_{0}$, then, from part (a),

$$
y=C e^{b x}-\frac{a}{b}, \quad y_{0}=C e^{0}-\frac{a}{b}
$$

Thus $C=y_{0}+(a / b)$, and

$$
y=\left(y_{0}+\frac{a}{b}\right) e^{b x}-\frac{a}{b} .
$$

24. a) The concentration $x(t)$ satisfies $\frac{d x}{d t}=a-b x(t)$. This says that $x(t)$ is increasing if it is less than a / b and decreasing if it is greater than a / b. Thus, the limiting concentration is a / b.
b) The differential equation for $x(t)$ resembles that of Exercise 21(b), except that $y(x)$ is replaced by $x(t)$, and b is replaced by $-b$. Using the result of Exercise $21(\mathrm{~b})$, we obtain, since $x(0)=0$,

$$
\begin{aligned}
x(t) & =\left(x(0)-\frac{a}{b}\right) e^{-b t}+\frac{a}{b} \\
& =\frac{a}{b}\left(1-e^{-b t}\right) .
\end{aligned}
$$

c) We will have $x(t)=\frac{1}{2}(a / b)$ if $1-e^{-b t}=\frac{1}{2}$, that is, if $e^{-b t}=\frac{1}{2}$, or $-b t=\ln (1 / 2)=-\ln 2$. The time required to attain half the limiting concentration is $t=(\ln 2) / b$.
25. Let $T(t)$ be the reading t minutes after the Thermometer is moved outdoors. Thus $T(0)=72, T(1)=48$.
By Newton's law of cooling, $\frac{d T}{d t}=k(T-20)$.
If $V(t)=T(t)-20$, then $\frac{d V}{d t}=k V$, so
$V(t)=V(0) e^{k t}=52 e^{k t}$.
Also $28=V(1)=52 e^{k}$, so $k=\ln (7 / 13)$.
Thus $V(5)=52 e^{5 \ln (7 / 13)} \approx 2.354$. At $t=5$ the ther-
mometer reads about $T(5)=20+2.354=22.35^{\circ} \mathrm{C}$.
26. Let $T(t)$ be the temperature of the object t minutes after its temperature was $45^{\circ} \mathrm{C}$. Thus $T(0)=45$ and
$T(40)=20$. Also $\frac{d T}{d t}=k(T+5)$. Let $u(t)=T(t)+5$, so $u(0)=50, u(40)=25$, and $\frac{d u}{d t}=\frac{d T}{d t}=k(T+5)=k u$. Thus,

$$
\begin{aligned}
& u(t)=50 e^{k t} \\
& 25=u(40)=50 e^{40 k} \\
\Rightarrow & k=\frac{1}{40} \ln \frac{25}{50}=\frac{1}{40} \ln \frac{1}{2} .
\end{aligned}
$$

We wish to know t such that $T(t)=0$, i.e., $u(t)=5$, hence

$$
\begin{aligned}
5 & =u(t)=50 e^{k t} \\
t & =\frac{40 \ln \left(\frac{5}{50}\right)}{\ln \left(\frac{1}{2}\right)}=132.88 \mathrm{~min}
\end{aligned}
$$

Hence, it will take about $(132.88-40)=92.88$ minutes more to cool to $0^{\circ} \mathrm{C}$.
27. Let $T(t)$ be the temperature of the body t minutes after it was 5°.
Thus $T(0)=5, T(4)=10$. Room temperature $=20^{\circ}$.
By Newton's law of cooling (warming) $\frac{d T}{d t}=k(T-20)$.
If $V(t)=T(t)-20$ then $\frac{d V}{d t}=k V$,
so $V(t)=V(0) e^{k t}=-15 e^{k t}$.
Also $-10=V(4)=-15 e^{4 k}$, so $k=\frac{1}{4} \ln \left(\frac{2}{3}\right)$.
If $T(t)=15^{\circ}$, then $-5=V(t)=-15 e^{k t}$
so $t=\frac{1}{k} \ln \left(\frac{1}{3}\right)=4 \frac{\ln \left(\frac{1}{3}\right)}{\ln \left(\frac{2}{3}\right)} \approx 10.838$.
It will take a further 6.84 minutes to warm to $15^{\circ} \mathrm{C}$.
28. By the solution given for the logistic equation, we have

$$
y_{1}=\frac{L y_{0}}{y_{0}+\left(L-y_{0}\right) e^{-k}}, \quad y_{2}=\frac{L y_{0}}{y_{0}+\left(L-y_{0}\right) e^{-2 k}}
$$

Thus $y_{1}\left(L-y_{0}\right) e^{-k}=\left(L-y_{1}\right) y_{0}$, and
$y_{2}\left(L-y_{0}\right) e^{-2 k}=\left(L-y_{2}\right) y_{0}$.
Square the first equation and thus eliminate e^{-k} :

$$
\left(\frac{\left(L-y_{1}\right) y_{0}}{y_{1}\left(L-y_{0}\right)}\right)^{2}=\frac{\left(L-y_{2}\right) y_{0}}{y_{2}\left(L-y_{0}\right)}
$$

Now simplify: $y_{0} y_{2}\left(L-y_{1}\right)^{2}=y_{1}^{2}\left(L-y_{0}\right)\left(L-y_{2}\right)$ $y_{0} y_{2} L^{2}-2 y_{1} y_{0} y_{2} L+y_{0} y_{1}^{2} y_{2}=y_{1}^{2} L^{2}-y_{1}^{2}\left(y_{0}+y_{2}\right) L+y_{0} y_{1}^{2} y_{2}$

Assuming $L \neq 0, \quad L=\frac{y_{1}^{2}\left(y_{0}+y_{2}\right)-2 y_{0} y_{1} y_{2}}{y_{1}^{2}-y_{0} y_{2}}$.
If $y_{0}=3, y_{1}=5, y_{2}=6$, then
$L=\frac{25(9)-180}{25-18}=\frac{45}{7} \approx 6.429$.
29. The rate of growth of y in the logistic equation is

$$
\frac{d y}{d t}=k y\left(1-\frac{y}{L}\right)
$$

Since

$$
\frac{d y}{d t}=-\frac{k}{L}\left(y-\frac{L}{2}\right)^{2}+\frac{k L}{4}
$$

thus $\frac{d y}{d t}$ is greatest when $y=\frac{L}{2}$.
30. The solution $y=\frac{L y_{0}}{y_{0}+\left(L-y_{0}\right) e^{-k t}}$ is valid on the largest interval containing $t=0$ on which the denominator does not vanish.
If $y_{0}>L$ then $y_{0}+\left(L-y_{0}\right) e^{-k t}=0$ if
$t=t^{*}=-\frac{1}{k} \ln \frac{y_{0}}{y_{0}-L}$.
Then the solution is valid on $\left(t^{*}, \infty\right)$.
$\lim _{t \rightarrow t^{*}+} y(t)=\infty$.
31. The solution

$$
y=\frac{L y_{0}}{y_{0}+\left(L-y_{0}\right) e^{-k t}}
$$

of the logistic equation is valid on any interval containing $t=0$ and not containing any point where the denominator is zero. The denominator is zero if $y_{0}=\left(y_{0}-L\right) e^{-k t}$, that is, if

$$
t=t^{*}=-\frac{1}{k} \ln \left(\frac{y_{0}}{y_{0}-L}\right) .
$$

Assuming k and L are positive, but y_{0} is negative, we have $t^{*}>0$. The solution is therefore valid on $\left(-\infty, t^{*}\right)$. The solution approaches $-\infty$ as $t \rightarrow t^{*}-$.
32. $y(t)=\frac{L}{1+M e^{-k t}}$

$$
\begin{aligned}
200=y(0) & =\frac{L}{1+M} \\
1,000=y(1) & =\frac{L}{1+M e^{-k}} \\
10,000 & =\lim _{t \rightarrow \infty} y(t)=L
\end{aligned}
$$

Thus $200(1+M)=L=10,000$, so $M=49$. Also $1,000\left(1+49 e^{-k}\right)=L=10,000$, so $e^{-k}=9 / 49$ and $k=\ln (49 / 9) \approx 1.695$.
33. $y(3)=\frac{L}{1+M e^{-3 k}}=\frac{10,000}{1+49(9 / 49)^{3}} \approx 7671 \mathrm{cases}$
$y^{\prime}(3)=\frac{L k M e^{-3 k}}{\left(1+M e^{-3 k}\right)^{2}} \approx 3,028$ cases $/$ week.

Section 3.5 The Inverse Trigonometric Functions (page 195)

1. $\sin ^{-1} \frac{\sqrt{3}}{2}=\frac{\pi}{3}$
2. $\cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3}$
3. $\tan ^{-1}(-1)=-\frac{\pi}{4}$
4. $\sec ^{-1} \sqrt{2}=\frac{\pi}{4}$
5. $\sin \left(\sin ^{-1} 0.7\right)=0.7$
6. $\cos \left(\sin ^{-1} 0.7\right)=\sqrt{1-\sin ^{2}(\arcsin 0.7)}$

$$
=\sqrt{1-0.49}=\sqrt{0.51}
$$

7. $\tan ^{-1}\left(\tan \frac{2 \pi}{3}\right)=\tan ^{-1}(-\sqrt{3})=-\frac{\pi}{3}$
8. $\sin ^{-1}\left(\cos 40^{\circ}\right)=90^{\circ}-\cos ^{-1}\left(\cos 40^{\circ}\right)=50^{\circ}$
9. $\cos ^{-1}(\sin (-0.2))=\frac{\pi}{2}-\sin ^{-1}(\sin (-0.2))$

$$
=\frac{\pi}{2}+0.2
$$

10. $\sin \left(\cos ^{-1}\left(-\frac{1}{3}\right)\right)=\sqrt{1-\cos ^{2}\left(\arccos \left(-\frac{1}{3}\right)\right.}$

$$
=\sqrt{1-\frac{1}{9}}=\frac{\sqrt{8}}{3}=\frac{2 \sqrt{2}}{3}
$$

11. $\cos \left(\tan ^{-1} \frac{1}{2}\right)=\frac{1}{\sec \left(\tan ^{-1} \frac{1}{2}\right)}$

$$
=\frac{1}{\sqrt{1+\tan ^{2}\left(\tan ^{-1} \frac{1}{2}\right)}}=\frac{2}{\sqrt{5}}
$$

12. $\tan \left(\tan ^{-1} 200\right)=200$
13. $\sin \left(\cos ^{-1} x\right)=\sqrt{1-\cos ^{2}\left(\cos ^{-1} x\right)}$

$$
=\sqrt{1-x^{2}}
$$

14. $\cos \left(\sin ^{-1} x\right)=\sqrt{1-\sin ^{2}\left(\sin ^{-1} x\right)}=\sqrt{1-x^{2}}$
15. $\cos \left(\tan ^{-1} x\right)=\frac{1}{\sec \left(\tan ^{-1} x\right)}=\frac{1}{\sqrt{1+x^{2}}}$
16. $\tan (\arctan x)=x \Rightarrow \sec (\arctan x)=\sqrt{1+x^{2}}$

$$
\begin{aligned}
& \Rightarrow \cos (\arctan x)=\frac{1}{\sqrt{1+x^{2}}} \\
& \Rightarrow \sin (\arctan x)=\frac{x}{\sqrt{1+x^{2}}}
\end{aligned}
$$

17. $\tan \left(\cos ^{-1} x\right)=\frac{\sin \left(\cos ^{-1} x\right)}{\cos \left(\cos ^{-1} x\right.}$

$$
=\frac{\sqrt{1-x^{2}}}{x}(\text { by \# 13) }
$$

18. $\quad \cos \left(\sec ^{-1} x\right)=\frac{1}{x} \Rightarrow \sin \left(\sec ^{-1} x\right)=\sqrt{1-\frac{1}{x^{2}}}=\frac{\sqrt{x^{2}-1}}{|x|}$

$$
\begin{aligned}
& \Rightarrow \tan \left(\sec ^{-1} x\right)=\sqrt{x^{2}-1} \operatorname{sgn} x \\
& \quad= \begin{cases}\sqrt{x^{2}-1} & \text { if } x \geq 1 \\
-\sqrt{x^{2}-1} & \text { if } x \leq-1\end{cases}
\end{aligned}
$$

19. $y=\sin ^{-1}\left(\frac{2 x-1}{3}\right)$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{\sqrt{1-\left(\frac{2 x-1}{3}\right)^{2}}} \frac{2}{3} \\
& =\frac{2}{\sqrt{9-\left(4 x^{2}-4 x+1\right)}} \\
& =\frac{1}{\sqrt{2+x-x^{2}}}
\end{aligned}
$$

20. $y=\tan ^{-1}(a x+b), \quad y^{\prime}=\frac{a}{1+(a x+b)^{2}}$.
21. $y=\cos ^{-1} \frac{x-b}{a}$

$$
\begin{aligned}
y^{\prime} & =-\frac{1}{\sqrt{1-\frac{(x-b)^{2}}{a^{2}}}} \frac{1}{a} \\
& \left.=\frac{-1}{\sqrt{a^{2}-(x-b)^{2}}} \quad(\text { assuming }) a>0\right)
\end{aligned}
$$

22. $f(x)=x \sin ^{-1} x$

$$
f^{\prime}(x)=\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}
$$

23. $f(t)=t \tan ^{-1} t$

$$
f^{\prime}(t)=\tan ^{-1} t+\frac{t}{1+t^{2}}
$$

24. $u=z^{2} \sec ^{-1}\left(1+z^{2}\right)$

$$
\begin{aligned}
\frac{d u}{d z} & =2 z \sec ^{-1}\left(1+z^{2}\right)+\frac{z^{2}(2 z)}{\left(1+z^{2}\right) \sqrt{\left(1+z^{2}\right)^{2}-1}} \\
& =2 z \sec ^{-1}\left(1+z^{2}\right)+\frac{2 z^{2} \operatorname{sgn}(z)}{\left(1+z^{2}\right) \sqrt{z^{2}+2}}
\end{aligned}
$$

25. $F(x)=\left(1+x^{2}\right) \tan ^{-1} x$

$$
F^{\prime}(x)=2 x \tan ^{-1} x+1
$$

26. $y=\sin ^{-1}\left(\frac{a}{x}\right) \quad(|x|>|a|)$
$y^{\prime}=\frac{1}{\sqrt{1-\left(\frac{a}{x}\right)^{2}}}\left[-\frac{a}{x^{2}}\right]=-\frac{a}{|x| \sqrt{x^{2}-a^{2}}}$
27. $G(x)=\frac{\sin ^{-1} x}{\sin ^{-1}(2 x)}$

$$
\begin{aligned}
G^{\prime}(x) & =\frac{\sin ^{-1}(2 x) \frac{1}{\sqrt{1-x^{2}}}-\sin ^{-1} x \frac{2}{\sqrt{1-4 x^{2}}}}{\left(\sin ^{-1}(2 x)\right)^{2}} \\
& =\frac{\sqrt{1-4 x^{2}} \sin ^{-1}(2 x)-2 \sqrt{1-x^{2}} \sin ^{-1} x}{\sqrt{1-x^{2}} \sqrt{1-4 x^{2}}\left(\sin ^{-1}(2 x)\right)^{2}}
\end{aligned}
$$

28. $H(t)=\frac{\sin ^{-1} t}{\sin t}$

$$
\begin{aligned}
H^{\prime}(t) & =\frac{\sin t\left(\frac{1}{\sqrt{1-t^{2}}}\right)-\sin ^{-1} t \cos t}{\sin ^{2} t} \\
& =\frac{1}{(\sin t) \sqrt{1-t^{2}}}-\csc t \cot t \sin ^{-1} t
\end{aligned}
$$

29. $f(x)=\left(\sin ^{-1} x^{2}\right)^{1 / 2}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2}\left(\sin ^{-1} x^{2}\right)^{-1 / 2} \frac{2 x}{\sqrt{1-x^{4}}} \\
& =\frac{x}{\sqrt{1-x^{4}} \sqrt{\sin ^{-1} x^{2}}}
\end{aligned}
$$

30. $y=\cos ^{-1}\left(\frac{a}{\sqrt{a^{2}+x^{2}}}\right)$

$$
\begin{aligned}
y^{\prime} & =-\left(1-\frac{a^{2}}{a^{2}+x^{2}}\right)^{-1 / 2}\left[-\frac{a}{2}\left(a^{2}+x^{2}\right)^{-3 / 2}(2 x)\right] \\
& =\frac{a \operatorname{sgn}(x)}{a^{2}+x^{2}}
\end{aligned}
$$

31. $y=\sqrt{a^{2}-x^{2}}+a \sin ^{-1} \frac{x}{a}$

$$
\begin{aligned}
y^{\prime} & =-\frac{x}{\sqrt{a^{2}-x^{2}}}+\frac{a}{\sqrt{1-\frac{x^{2}}{a^{2}}}} \frac{1}{a} \\
& =\frac{a-x}{\sqrt{a^{2}-x^{2}}}=\sqrt{\frac{a-x}{a+x}} \quad(a>0)
\end{aligned}
$$

32. $y=a \cos ^{-1}\left(1-\frac{x}{a}\right)-\sqrt{2 a x-x^{2}} \quad(a>0)$

$$
\begin{aligned}
y^{\prime} & =-a\left[1-\left(1-\frac{x}{a}\right)^{2}\right]^{-1 / 2}\left(-\frac{1}{a}\right)-\frac{2 a-2 x}{2 \sqrt{2 a x-x^{2}}} \\
& =\frac{x}{\sqrt{2 a x-x^{2}}}
\end{aligned}
$$

33. $\tan ^{-1}\left(\frac{2 x}{y}\right)=\frac{\pi x}{y^{2}}$
$\frac{1}{1+\frac{4 x^{2}}{y^{2}}} \frac{2 y-2 x y^{\prime}}{y^{2}}=\pi \frac{y^{2}-2 x y y^{\prime}}{y^{4}}$
At $(1,2) \frac{1}{2} \frac{4-2 y^{\prime}}{4}=\pi \frac{4-4 y^{\prime}}{16}$
$8-4 y^{\prime}=4 \pi-4 \pi y^{\prime} \Rightarrow y^{\prime}=\frac{\pi-2}{\pi-1}$
At $(1,2)$ the slope is $\frac{\pi-2}{\pi-1}$
34. If $y=\sin ^{-1} x$, then $y^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$. If the slope is 2
then $\frac{1}{\sqrt{1-x^{2}}}=2$ so that $x= \pm \frac{\sqrt{3}}{2}$. Thus the equations of the two tangent lines are
$y=\frac{\pi}{3}+2\left(x-\frac{\sqrt{3}}{2}\right)$ and $y=-\frac{\pi}{3}+2\left(x+\frac{\sqrt{3}}{2}\right)$.
35. $\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}>0$ on $(-1,1)$.

Therefore, $\sin ^{-1}$ is increasing.
$\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}>0$ on $(-\infty, \infty)$.
Therefore $\tan ^{-1}$ is increasing.
$\frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}}<0$ on $(-1,1)$.
Therefore $\cos ^{-1}$ is decreasing.
36. Since the domain of $\sec ^{-1}$ consists of two disjoint intervals $(-\infty,-1]$ and $[1, \infty)$, the fact that the derivative of sec^{-1} is positive wherever defined does not imply that sec^{-1} is increasing over its whole domain, only that it is increasing on each of those intervals taken independently. In fact, $\sec ^{-1}(-1)=\pi>0=\sec ^{-1}$ (1) even though $-1<1$.
37. $\frac{d}{d x} \csc ^{-1} x=\frac{d}{d x} \sin ^{-1} \frac{1}{x}$

$$
=\frac{1}{\sqrt{1-\frac{1}{x^{2}}}}\left(-\frac{1}{x^{2}}\right)
$$

$$
=-\frac{1}{|x| \sqrt{x^{2}-1}}
$$

Fig. 3.5.37
38. $\cot ^{-1} x=\arctan (1 / x)$;
$\frac{d}{d x} \cot ^{-1} x=\frac{1}{1+\frac{1}{x^{2}}} \frac{-1}{x^{2}}=-\frac{1}{1+x^{2}}$

Fig. 3.5.38

Remark: the domain of $\cot ^{-1}$ can be extended to include 0 by defining, say, $\cot ^{-1} 0=\pi / 2$. This will make $\cot ^{-1}$ right-continuous (but not continuous) at $x=0$. It is also possible to define $\cot ^{-1}$ in such a way that it is continuous on the whole real line, but we would then lose the identity $\cot ^{-1} x=\tan ^{-1}(1 / x)$, which we prefer to maintain for calculation purposes.
39. $\frac{d}{d x}\left(\tan ^{-1} x+\cot ^{-1} x\right)=\frac{d}{d x}\left(\tan ^{-1} x+\tan ^{-1} \frac{1}{x}\right)$

$$
=\frac{1}{1+x^{2}}+\frac{1}{1+\frac{1}{x^{2}}}\left(-\frac{1}{x^{2}}\right)=0 \text { if } x \neq 0
$$

Thus $\tan ^{-1} x+\cot ^{-1} x=C_{1}$ (const. for $x>0$)
At $x=1$ we have $\frac{\pi}{4}+\frac{\pi}{4}=C_{1}$
Thus $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}$ for $x>0$.
Also $\tan ^{-1} x+\cot ^{-1} x=C_{2}$ for $(x<0)$.
At $x=-1$, we get $-\frac{\pi}{4}-\frac{\pi}{4}=C_{2}$.
Thus $\tan ^{-1} x+\cot ^{-1} x=-\frac{\pi}{2}$ for $x<0$.
40. If $g(x)=\tan \left(\tan ^{-1} x\right)$ then

$$
\begin{aligned}
g^{\prime}(x) & =\frac{\sec ^{2}\left(\tan ^{-1} x\right)}{1+x^{2}} \\
& =\frac{1+\left[\tan \left(\tan ^{-1} x\right)\right]^{2}}{1+x^{2}}=\frac{1+x^{2}}{1+x^{2}}=1
\end{aligned}
$$

If $h(x)=\tan ^{-1}(\tan x)$ then h is periodic with period π, and

$$
h^{\prime}(x)=\frac{\sec ^{2} x}{1+\tan ^{2} x}=1
$$

provided that $x \neq\left(k+\frac{1}{2}\right) \pi$ where k is an integer. $h(x)$ is not defined at odd multiples of $\frac{\pi}{2}$.

Fig. 3.5.40(a)
Fig. 3.5.40(b)
41. $\frac{d}{d x} \cos ^{-1}(\cos x)=\frac{-1}{\sqrt{1-\cos ^{2} x}}(-\sin x)$

$$
= \begin{cases}1 & \text { if } \sin x>0 \\ -1 & \text { if } \sin x<0\end{cases}
$$

$\cos ^{-1}(\cos x)$ is continuous everywhere and differentiable everywhere except at $x=n \pi$ for integers n.

Fig. 3.5.41
42. $\frac{d}{d x} \sin ^{-1}(\cos x)=\frac{1}{\sqrt{1-\cos ^{2} x}}(-\sin x)$

$$
= \begin{cases}-1 & \text { if } \sin x>0 \\ 1 & \text { if } \sin x<0\end{cases}
$$

$\sin ^{-1}(\cos x)$ is continuous everywhere and differentiable everywhere except at $x=n \pi$ for integers n.
(

Fig. 3.5.42
43. $\frac{d}{d x} \tan ^{-1}(\tan x)=\frac{1}{1+\tan ^{2} x}\left(\sec ^{2} x\right)=1$ except at odd multiples of $\pi / 2$.
$\tan ^{-1}(\tan x)$ is continuous and differentiable everywhere except at $x=(2 n+1) \pi / 2$ for integers n. It is not defined at those points.

Fig. 3.5.43
44. $\frac{d}{d x} \tan ^{-1}(\cot x)=\frac{1}{1+\cot ^{2} x}\left(-\csc ^{2} x\right)=-1$ except at integer multiples of π.
$\tan ^{-1}(\cot x)$ is continuous and differentiable everywhere except at $x=n \pi$ for integers n. It is not defined at those points.

Fig. 3.5.44
45. If $|x|<1$ and $y=\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}$, then $y>0 \Leftrightarrow x>0$ and

$$
\begin{aligned}
\tan y & =\frac{x}{\sqrt{1-x^{2}}} \\
\sec ^{2} y & =1+\frac{x^{2}}{1-x^{2}}=\frac{1}{1-x^{2}} \\
\sin ^{2} y & =1-\cos ^{2} y=1-\left(1-x^{2}\right)=x^{2} \\
\sin y & =x
\end{aligned}
$$

Thus $y=\sin ^{-1} x$ and $\sin ^{-1} x=\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}$.
An alternative method of proof involves showing that the derivative of the left side minus the right side is 0 , and both sides are 0 at $x=0$.
46. If $x \geq 1$ and $y=\tan ^{-1} \sqrt{x^{2}-1}$, then $\tan y=\sqrt{x^{2}-1}$ and $\sec y=x$, so that $y=\sec ^{-1} x$.
If $x \leq-1$ and $y=\pi-\tan ^{-1} \sqrt{x^{2}-1}$, then $\frac{\pi}{2}<y<\frac{3 \pi}{2}$, so $\sec y<0$. Therefore

$$
\begin{aligned}
\tan y & =\tan \left(\pi-\tan ^{-1} \sqrt{x^{2}-1}\right)=-\sqrt{x^{2}-1} \\
\sec ^{2} y & =1+\left(x^{2}-1\right)=x^{2} \\
\sec y & =x
\end{aligned}
$$

because both x and sec y are negative. Thus $y=\sec ^{-1} x$ in this case also.
47. If $y=\sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}$, then $y>0 \Leftrightarrow x>0$ and

$$
\begin{aligned}
\sin y & =\frac{x}{\sqrt{1+x^{2}}} \\
\cos ^{2} y & =1-\sin ^{2} y=1-\frac{x^{2}}{1+x^{2}}=\frac{1}{1+x^{2}} \\
\tan ^{2} y & =\sec ^{2} y-1=1+x^{2}-1=x^{2} \\
\tan y & =x
\end{aligned}
$$

Thus $y=\tan ^{-1} x$ and $\tan ^{-1} x=\sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}$.
48. If $x \geq 1$ and $y=\sin ^{-1} \frac{\sqrt{x^{2}-1}}{x}$, then $0 \leq y<\frac{\pi}{2}$ and

$$
\begin{aligned}
\sin y & =\frac{\sqrt{x^{2}-1}}{x} \\
\cos ^{2} y & =1-\frac{x^{2}-1}{x^{2}}=\frac{1}{x^{2}} \\
\sec ^{2} y & =x^{2}
\end{aligned}
$$

Thus sec $y=x$ and $y=\sec ^{-1} x$.
If $x \leq-1$ and $y=\pi-\sin ^{-1} \frac{\sqrt{x^{2}-1}}{x}$, then $\frac{\pi}{2} \leq y<\frac{3 \pi}{2}$ and $\sec y<0$. Therefore

$$
\begin{aligned}
\sin y & =\sin \left(\pi-\sin ^{-1} \frac{\sqrt{x^{2}-1}}{x}\right)=\frac{\sqrt{x^{2}-1}}{x} \\
\cos ^{2} y & =1-\frac{x^{2}-1}{x^{2}}=\frac{1}{x^{2}} \\
\sec ^{2} y & =x^{2} \\
\sec y & =x
\end{aligned}
$$

because both x and $\sec y$ are negative. Thus $y=\sec ^{-1} x$ in this case also.
49. $f^{\prime}(x) \equiv 0$ on $(-\infty,-1)$

Thus $f(x)=\tan ^{-1}\left(\frac{x-1}{x+1}\right)-\tan ^{-1} x=C$ on $(-\infty,-1)$.

Evaluate the limit as $x \rightarrow-\infty$:

$$
\lim _{x \rightarrow-\infty} f(x)=\tan ^{-1} 1-\left(-\frac{\pi}{2}\right)=\frac{3 \pi}{4}
$$

Thus $\tan ^{-1}\left(\frac{x-1}{x+1}\right)-\tan ^{-1} x=\frac{3 \pi}{4}$ on $(-\infty,-1)$.
50. Since $f(x)=x-\tan ^{-1}(\tan x)$ then

$$
f^{\prime}(x)=1-\frac{\sec ^{2} x}{1+\tan ^{2} x}=1-1=0
$$

if $x \neq-\left(k+\frac{1}{2}\right) \pi$ where k is an integer. Thus, f is constant on intervals not containing odd multiples of $\frac{\pi}{2}$. $f(0)=0$ but $f(\pi)=\pi-0=\pi$. There is no contradiction here because $f^{\prime}\left(\frac{\pi}{2}\right)$ is not defined, so f is not constant on the interval containing 0 and π.
51. $f(x)=x-\sin ^{-1}(\sin x) \quad(-\pi \leq x \leq \pi)$

$$
\begin{aligned}
f^{\prime}(x) & =1-\frac{1}{\sqrt{1-\sin ^{2} x}} \cos x \\
& =1-\frac{\cos x}{|\cos x|} \\
& = \begin{cases}0 & \text { if }-\frac{\pi}{2}<x<\frac{\pi}{2} \\
2 & \text { if }-\pi<x<-\frac{\pi}{2} \text { or } \frac{\pi}{2}<x<\pi\end{cases}
\end{aligned}
$$

Note: f is not differentiable at $\pm \frac{\pi}{2}$.

Fig. 3.5.51
52. $y^{\prime}=\frac{1}{1+x^{2}} \Rightarrow y=\tan ^{-1} x+C$
$y(0)=C=1$
Thus, $y=\tan ^{-1} x+1$.
53. $\begin{cases}y^{\prime}=\frac{1}{9+x^{2}} & \Rightarrow y=\frac{1}{3} \tan ^{-1} \frac{x}{3}+C \\ y(3)=2 & 2=\frac{1}{3} \tan ^{-1} 1+C \quad C=2-\frac{\pi}{12}\end{cases}$

Thus $y=\frac{1}{3} \tan ^{-1} \frac{x}{3}+2-\frac{\pi}{12}$.
54. $y^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \Rightarrow y=\sin ^{-1} x+C$
$y\left(\frac{1}{2}\right)=\sin ^{-1}\left(\frac{1}{2}\right)+C=1$
$\Rightarrow \frac{\pi}{6}+C=1 \Rightarrow C=1-\frac{\pi}{6}$.
Thus, $y=\sin ^{-1} x+1-\frac{\pi}{6}$.
55. $\left\{\begin{array}{lr}y^{\prime}=\frac{4}{\sqrt{25-x^{2}}} & \Rightarrow y=4 \sin ^{-1} \frac{x}{5}+C \\ y(0)=0 & 0=0+C \Rightarrow C=0\end{array}\right.$

Thus $y=4 \sin ^{-1} \frac{x}{5}$.

Section 3.6 Hyperbolic Functions (page 200)

1. $\frac{d}{d x} \operatorname{sech} x=\frac{d}{d x} \frac{1}{\cosh x}$

$$
=-\frac{1}{\cosh ^{2} x} \sinh x=-\operatorname{sech} x \tanh x
$$

$$
\frac{d}{d x} \operatorname{csch} x=\frac{d}{d x} \frac{1}{\sinh x}
$$

$$
=-\frac{1}{\sinh ^{2} x} \cosh x=-\operatorname{csch} x \operatorname{coth} x
$$

$\frac{d}{d x} \operatorname{coth} x=\frac{d}{d x} \frac{\cosh }{\sinh x}$
$=\frac{\sinh ^{2} x-\cosh ^{2} x}{\sinh ^{2} x}=-\frac{1}{\sinh ^{2} x}=-\operatorname{csch}^{2} x$
2. $\cosh x \cosh y+\sinh x \sinh y$
$=\frac{1}{4}\left[\left(e^{x}+e^{-x}\right)\left(e^{y}+e^{-y}\right)+\left(e^{x}-e^{-x}\right)\left(e^{y}-e^{-y}\right)\right]$
$=\frac{1}{4}\left(2 e^{x+y}+2 e^{-x-y}\right)=\frac{1}{2}\left(e^{x+y}+e^{-(x+y)}\right)$
$=\cosh (x+y)$.
$\sinh x \cosh y+\cosh x \sinh y$
$=\frac{1}{4}\left[\left(e^{x}-e^{-x}\right)\left(e^{y}+e^{-y}\right)+\left(e^{x}+e^{-x}\right)\left(e^{y}-e^{-y}\right)\right]$
$=\frac{1}{2}\left(e^{x+y}-e^{-(x+y)}\right)=\sinh (x+y)$.
$\cosh (x-y)=\cosh [x+(-y)]$
$=\cosh x \cosh (-y)+\sinh x \sinh (-y)$
$=\cosh x \cosh y-\sinh x \sinh y$.
$\sinh (x-y)=\sinh [x+(-y)]$
$=\sinh x \cosh (-y)+\cosh x \sinh (-y)$
$=\sinh x \cosh y-\cosh x \sinh y$.
3. $\tanh (x \pm y)=\frac{\sinh (x \pm y)}{\cosh (x \pm y)}$

$$
\begin{aligned}
& =\frac{\sinh x \cosh y \pm \cosh x \sinh y}{\cosh x \cosh y \pm \sinh x \sinh y} \\
& =\frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}
\end{aligned}
$$

4. $y=\operatorname{coth} x=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} \quad y=\operatorname{sech} x=\frac{2}{e^{x}+e^{-x}}$

Fig. 3.6.4(a) Fig. 3.6.4(b)

$$
y=\operatorname{csch} x=\frac{2}{e^{x}-e^{-x}}
$$

Fig. 3.6.4
5. $\frac{d}{d x} \sinh ^{-1} x=\frac{d}{d x} \ln \left(x+\sqrt{x^{2}+1}\right)=\frac{1+\frac{x}{\sqrt{x^{2}+1}}}{x+\sqrt{x^{2}+1}}$
$=\frac{1}{\sqrt{x^{2}+1}}$

$$
\begin{aligned}
& \begin{aligned}
& \frac{d}{d x} \cosh ^{-1} x=\frac{d}{d x} \ln \left(x+\sqrt{x^{2}-1}\right)=\frac{1+\frac{x}{\sqrt{x^{2}-1}}}{x+\sqrt{x^{2}-1}} \\
&=\frac{1}{\sqrt{x^{2}-1}}
\end{aligned} \\
& \begin{aligned}
& \frac{d}{d x} \tanh ^{-1} x=\frac{d}{d x} \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \\
&=\frac{1}{2} \frac{1-x}{1+x} \frac{1-x-(1+x)(-1)}{(1-x)^{2}}=\frac{1}{1-x^{2}} \\
& \int \frac{d x}{\sqrt{x^{2}+1}}=\sinh ^{-1} x+C \\
& \int \frac{d x}{\sqrt{x^{2}-1}}=\cosh ^{-1} x+C \quad(x>1) \\
& \int \frac{d x}{1-x^{2}}=\tanh ^{-1} x+C \quad(-1<x<1)
\end{aligned}
\end{aligned}
$$

6. Let $y=\sinh ^{-1}\left(\frac{x}{a}\right) \Leftrightarrow x=a \sinh y \Rightarrow 1=a(\cosh y) \frac{d y}{d x}$.

Thus,

$$
\begin{aligned}
& \frac{d}{d x} \sinh ^{-1}\left(\frac{x}{a}\right)=\frac{1}{a \cosh y} \\
& \quad=\frac{1}{a \sqrt{1+\sinh ^{2} y}}=\frac{1}{\sqrt{a^{2}+x^{2}}} \\
& \int \frac{d x}{\sqrt{a^{2}+x^{2}}}=\sinh ^{-1} \frac{x}{a}+C . \quad(a>0)
\end{aligned}
$$

Let $y=\cosh ^{-1} \frac{x}{a} \Leftrightarrow x=a \operatorname{Cosh} y=a \cosh y$ for $y \geq 0, x \geq a$. We have $1=a(\sinh y) \frac{d y}{d x}$. Thus,

$$
\begin{aligned}
& \frac{d}{d x} \cosh ^{-1} \frac{x}{a}=\frac{1}{a \sinh y} \\
& \quad=\frac{1}{a \sqrt{\cosh ^{2} y-1}}=\frac{1}{\sqrt{x^{2}-a^{2}}} \\
& \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\cosh ^{-1} \frac{x}{a}+C . \quad(a>0, x \geq a)
\end{aligned}
$$

Let $y=\tanh ^{-1} \frac{x}{a} \Leftrightarrow x=a \tanh y \Rightarrow 1=a\left(\operatorname{sech}^{2} y\right) \frac{d y}{d x}$. Thus,

$$
\begin{aligned}
& \frac{d}{d x} \tanh ^{-1} \frac{x}{a}=\frac{1}{a \operatorname{sech}^{2} y} \\
& \quad=\frac{a}{a^{2}-a^{2} \tanh ^{2} x}=\frac{a}{a^{2}-x^{2}} \\
& \int \frac{d x}{a^{2}-x^{2}}=\frac{1}{a} \tanh ^{-1} \frac{x}{a}+C
\end{aligned}
$$

7. a) $\sinh \ln x=\frac{1}{2}\left(e^{\ln x}-e^{-\ln x}\right)=\frac{1}{2}\left(x-\frac{1}{x}\right)=\frac{x^{2}-1}{2 x}$
b) $\cosh \ln x=\frac{1}{2}\left(e^{\ln x}+e^{-\ln x}\right)=\frac{1}{2}\left(x+\frac{1}{x}\right)=\frac{x^{2}+1}{2 x}$
c) $\tanh \ln x=\frac{\sinh \ln x}{\cosh \ln x}=\frac{x^{2}-1}{x^{2}+1}$
d) $\frac{\cosh \ln x+\sinh \ln x}{\cosh \ln x-\sinh \ln x}=\frac{x^{2}+1+\left(x^{2}-1\right)}{\left(x^{2}+1\right)-\left(x^{2}-1\right)}=x^{2}$
8. $\quad \operatorname{csch}^{-1} x=\sinh ^{-1}(1 / x)=\ln \left(\frac{1}{x}+\sqrt{\frac{1}{x^{2}}+1}\right)$ has
domain and range consisting of all real numbers x except $x=0$. We have

$$
\begin{aligned}
\frac{d}{d x} \operatorname{csch}^{-1} x & =\frac{d}{d x} \sinh ^{-1} \frac{1}{x} \\
& =\frac{1}{\sqrt{1+\left(\frac{1}{x}\right)^{2}}}\left(\frac{-1}{x^{2}}\right)=\frac{-1}{|x| \sqrt{x^{2}+1}}
\end{aligned}
$$

Fig. 3.6.8
9. $\operatorname{coth}^{-1} x=\tanh ^{-1} \frac{1}{x}=\frac{1}{2} \ln \left(\frac{1+\frac{1}{x}}{1-\frac{1}{x}}\right)=\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right)$, for $|x|>1$. Also

$$
\begin{aligned}
\frac{d}{d x} \operatorname{coth}^{-1} x & =\frac{d}{d x} \tanh ^{-1} \frac{1}{x} \\
& =\frac{1}{1-(1 / x)^{2}} \frac{-1}{x^{2}}=\frac{-1}{x^{2}-1}
\end{aligned}
$$

Fig. 3.6.9
10. Let $y=\operatorname{Sech}^{-1} x$ where $\operatorname{Sech} x=\operatorname{sech} x$ for $x \geq 0$. Hence, for $y \geq 0$,

$$
\begin{aligned}
x=\operatorname{sech} y & \Leftrightarrow \frac{1}{x}=\cosh y \\
& \Leftrightarrow \frac{1}{x}=\operatorname{Cosh} y \Leftrightarrow y=\operatorname{Cosh}^{-1} \frac{1}{x} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \operatorname{Sech}^{-1} x=\operatorname{Cosh}^{-1} \frac{1}{x} \\
& \mathscr{D}\left(\operatorname{Sech}^{-1}\right)=\mathcal{R}(\operatorname{sech})=(0,1] \\
& \mathcal{R}\left(\operatorname{Sech}^{-1}\right)=\mathscr{D}(\operatorname{sech})=[0, \infty)
\end{aligned}
$$

Also,

$$
\begin{aligned}
\frac{d}{d x} \operatorname{Sech}^{-1} x & =\frac{d}{d x} \operatorname{Cosh}^{-1} \frac{1}{x} \\
& =\frac{1}{\sqrt{\left(\frac{1}{x}\right)^{2}-1}}\left(\frac{-1}{x^{2}}\right)=\frac{-1}{x \sqrt{1-x^{2}}} \\
& \int_{1}^{y} \left\lvert\, \begin{array}{l}
y=\operatorname{Sech}^{-1} x \\
\end{array}\right.
\end{aligned}
$$

Fig. 3.6.10
11. $f_{A, B}(x)=A e^{k x}+B e^{-k x}$
$f_{A, B}^{\prime}(x)=k A e^{k x}-k B e^{-k x}$
$f_{A, B}^{\prime \prime}(x)=k^{2} A e^{k x}+k^{2} B e^{-k x}$
Thus $f_{A, B}^{\prime \prime}-k^{2} f_{A, B}=0$

$$
\begin{aligned}
g_{C, D}(x) & =C \cosh k x+D \sinh k x \\
g_{C, D}^{\prime}(x) & =k C \cosh k x+k D \sinh k x \\
g_{C, D}^{\prime \prime}(x) & =k^{2} C \cosh k x+k^{2} D \sinh k x
\end{aligned}
$$

Thus $g_{C, D}^{\prime \prime}-k^{2} g_{C, D}=0$
$\cosh k x+\sinh k x=e^{k x}$
$\cosh k x-\sinh k x=e^{-k x}$
Thus $f_{A, B}(x)=(A+B) \cosh k x+(A-B) \sinh k x$, that is,
$f_{A, B}(x)=g_{A+B, A-B}(x)$, and
$g_{C, D}(x)=\frac{c}{2}\left(e^{k x}+e^{-k x}\right)+\frac{D}{2}\left(e^{k x}-e^{-k x}\right)$,
that is $g_{C, D}(x)=f_{(C+D) / 2,(C-D) / 2}(x)$.
12. Since

$$
\begin{aligned}
h_{L, M}(x) & =L \cosh k(x-a)+M \sinh k(x-a) \\
h_{L, M}^{\prime \prime}(x) & =L k^{2} \cosh k(x-a)+M k^{2} \sinh k(x-a) \\
& =k^{2} h_{L, M}(x)
\end{aligned}
$$

hence, $h_{L, M}(x)$ is a solution of $y^{\prime \prime}-k^{2} y=0$ and

$$
\begin{aligned}
& h_{L, M}(x) \\
& =\frac{L}{2}\left(e^{k x-k a}+e^{-k x+k a}\right)+\frac{M}{2}\left(e^{k x-k a}-e^{-k x+k a}\right) \\
& =\left(\frac{L}{2} e^{-k a}+\frac{M}{2} e^{-k a}\right) e^{k x}+\left(\frac{L}{2} e^{k a}-\frac{M}{2} e^{k a}\right) e^{-k x} \\
& =A e^{k x}+B e^{-k x}=f_{A, B}(x)
\end{aligned}
$$

where $A=\frac{1}{2} e^{-k a}(L+M)$ and $B=\frac{1}{2} e^{k a}(L-M)$.
13. $y^{\prime \prime}-k^{2} y=0 \Rightarrow y=h_{L, M}(x)$

$$
=L \cosh k(x-a)+M \sinh k(x-a)
$$

$y(a)=y_{0} \Rightarrow y_{0}=L+0 \Rightarrow L=y_{0}$,
$y^{\prime}(a)=v_{0} \Rightarrow v_{0}=0+M k \Rightarrow M=\frac{v_{0}}{k}$
Therefore $y=h_{y_{0}, v_{0} / k}(x)$
$=y_{0} \cosh k(x-a)+\left(v_{0} / k\right) \sinh k(x-a)$.

Section 3.7 Second-Order Linear DEs with Constant Coefficients (page 206)

1.

auxiliary eqn $r^{2}+7 r+10=0$
$(r+5)(r+2)=0 \quad \Rightarrow r=-5,-2$
$y=A e^{-5 t}+B e^{-2 t}$
2.

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

auxiliary eqn $r^{2}-2 r-3=0 \Rightarrow r=-1, r=3$
$y=A e^{-t}+B e^{3 t}$
3.

$$
y^{\prime \prime}+2 y^{\prime}=0
$$

auxiliary eqn $\quad r^{2}+2 r=0 \quad \Rightarrow r=0,-2$

$$
y=A+B e^{-2 t}
$$

4. $4 y^{\prime \prime}-4 y^{\prime}-3 y=0$
$4 r^{2}-4 r-3=0 \Rightarrow(2 r+1)(2 r-3)=0$
Thus, $r_{1}=-\frac{1}{2}, r_{2}=\frac{3}{2}$, and $y=A e^{-(1 / 2) t}+B e^{(3 / 2) t}$.
5.

$$
y^{\prime \prime}+8 y^{\prime}+16 y=0
$$

auxiliary eqn $r^{2}+8 r+16=0 \quad \Rightarrow r=-4,-4$

$$
y=A e^{-4 t}+B t e^{-4 t}
$$

6. $y^{\prime \prime}-2 y^{\prime}+y=0$
$r^{2}-2 r+1=0 \Rightarrow(r-1)^{2}=0$
Thus, $r=1,1$, and $y=A e^{t}+B t e^{t}$.
7.

$$
\begin{array}{ll}
& y^{\prime \prime}-6 y^{\prime}+10 y=0 \\
\text { auxiliary eqn } & r^{2}-6 r+10=0 \Rightarrow r=3 \pm i \\
& y=A e^{3 t} \cos t+B e^{3 t} \sin t
\end{array}
$$

8. $9 y^{\prime \prime}+6 y^{\prime}+y=0$
$9 r^{2}+6 r+1=0 \Rightarrow(3 r+1)^{2}=0$
Thus, $r=-\frac{1}{3},-\frac{1}{3}$, and $y=A e^{-(1 / 3) t}+B t e^{-(1 / 3) t}$.
9. $y^{\prime \prime}+2 y^{\prime}+5 y=0$
auxiliary eqn $r^{2}+2 r+5=0 \quad \Rightarrow r=-1 \pm 2 i$

$$
y=A e^{-t} \cos 2 t+B e^{-t} \sin 2 t
$$

10. For $y^{\prime \prime}-4 y^{\prime}+5 y=0$ the auxiliary equation is $r^{2}-4 r+5=0$, which has roots $r=2 \pm i$. Thus, the general solution of the DE is $y=A e^{2 t} \cos t+B e^{2 t} \sin t$.
11. For $y^{\prime \prime}+2 y^{\prime}+3 y=0$ the auxiliary equation is
$r^{2}+2 r+3=0$, which has solutions $r=-1 \pm \sqrt{2} i$. Thus the general solution of the given equation is
$y=A e^{-t} \cos (\sqrt{2} t)+B e^{-t} \sin (\sqrt{2} t)$.
12. Given that $y^{\prime \prime}+y^{\prime}+y=0$, hence $r^{2}+r+1=0$. Since $a=1, b=1$ and $c=1$, the discriminant is $D=b^{2}-4 a c=-3<0$ and $-(b / 2 a)=-\frac{1}{2}$ and $\omega=\sqrt{3} / 2$. Thus, the general solution is
$y=A e^{-(1 / 2) t} \cos \left(\frac{\sqrt{3}}{2} t\right)+B e^{-(1 / 2) t} \sin \left(\frac{\sqrt{3}}{2} t\right)$.
13. $\left\{\begin{array}{l}2 y^{\prime \prime}+5 y^{\prime}-3 y=0 \\ y(0)=1 \\ y^{\prime}(0)=0\end{array}\right.$

The DE has auxiliary equation $2 r^{2}+5 y-3=0$, with roots $r=\frac{1}{2}$ and $r=-3$. Thus $y=A e^{t / 2}+B e^{-3 t}$.
Now $1=y(0)=A+B$, and $0=y^{\prime}(0)=\frac{A}{2}-3 B$.
Thus $B=1 / 7$ and $A=6 / 7$. The solution is $y=\frac{6}{7} e^{t / 2}+\frac{1}{7} e^{-3 t}$.
14. Given that $y^{\prime \prime}+10 y^{\prime}+25 y=0$, hence
$r^{2}+10 r+25=0 \Rightarrow(r+5)^{2}=0 \Rightarrow r=-5$. Thus,

$$
\begin{aligned}
& y=A e^{-5 t}+B t e^{-5 t} \\
& y^{\prime}=-5 e^{-5 t}(A+B t)+B e^{-5 t}
\end{aligned}
$$

Since

$$
\begin{aligned}
& 0=y(1)=A e^{-5}+B e^{-5} \\
& 2=y^{\prime}(1)=-5 e^{-5}(A+B)+B e^{-5}
\end{aligned}
$$

we have $A=-2 e^{5}$ and $B=2 e^{5}$.
Thus, $y=-2 e^{5} e^{-5 t}+2 t e^{5} e^{-5 t}=2(t-1) e^{-5(t-1)}$.
15. $\left\{\begin{array}{l}y^{\prime \prime}+4 y^{\prime}+5 y=0 \\ y(0)=2 \\ y^{\prime}(0)=0\end{array}\right.$

The auxiliary equation for the DE is $r^{2}+4 r+5=0$, which has roots $r=-2 \pm i$. Thus

$$
\begin{aligned}
& y=A e^{-2 t} \cos t+B e^{-2 t} \sin t \\
& y^{\prime}=\left(-2 A e^{-2 t}+B e^{-2 t}\right) \cos t-\left(A e^{-2 t}+2 B e^{-2 t}\right) \sin t
\end{aligned}
$$

Now $2=y(0)=A \Rightarrow A=2$, and $2=y^{\prime}(0)=-2 A+B \Rightarrow B=6$. Therefore $y=e^{-2 t}(2 \cos t+6 \sin t)$.
16. The auxiliary equation $r^{2}-(2+\epsilon) r+(1+\epsilon)$ factors to $(r-1-\epsilon)(r-1)=0$ and so has roots $r=1+\epsilon$ and $r=1$. Thus the DE $y^{\prime \prime}-(2+\epsilon) y^{\prime}+(1+\epsilon) y=0$ has general solution $y=A e^{(1+\epsilon) t}+B e^{t}$. The function $y_{\epsilon}(t)=\frac{e^{(1+\epsilon) t}-e^{t}}{\epsilon}$ is of this form with $A=-B=1 / \epsilon$. We have, substituting $\epsilon=h / t$,

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} y_{\epsilon}(t) & =\lim _{\epsilon \rightarrow 0} \frac{e^{(1+\epsilon) t}-e^{t}}{\epsilon} \\
& =t \lim _{h \rightarrow 0} \frac{e^{t+h}-e^{t}}{h} \\
& =t\left(\frac{d}{d t} e^{t}\right)=t e^{t}
\end{aligned}
$$

which is, along with e^{t}, a solution of the CASE II DE $y^{\prime \prime}-2 y^{\prime}+y=0$.
17. Given that $a>0, b>0$ and $c>0$:

Case 1: If $D=b^{2}-4 a c>0$ then the two roots are

$$
r_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Since

$$
\begin{aligned}
b^{2}-4 a c & <b^{2} \\
\pm \sqrt{b^{2}-4 a c} & <b \\
-b \pm \sqrt{b^{2}-4 a c} & <0
\end{aligned}
$$

therefore r_{1} and r_{2} are negative. The general solution is

$$
y(t)=A e^{r_{1} t}+B e^{r_{2} t} .
$$

If $t \rightarrow \infty$, then $e^{r_{1} t} \rightarrow 0$ and $e^{r_{2} t} \rightarrow 0$.
Thus, $\lim _{t \rightarrow \infty} y(t)=0$.
Case 2: If $D=b^{2}-4 a c=0$ then the two equal roots $r_{1}=r_{2}=-b /(2 a)$ are negative. The general solution is

$$
y(t)=A e^{r_{1} t}+B t e^{r_{2} t}
$$

If $t \rightarrow \infty$, then $e^{r_{1} t} \rightarrow 0$ and $e^{r_{2} t} \rightarrow 0$ at a faster rate than $B t \rightarrow \infty$. Thus, $\lim _{t \rightarrow \infty} y(t)=0$.
Case 3: If $D=b^{2}-4 a c<0$ then the general solution is

$$
y=A e^{-(b / 2 a) t} \cos (\omega t)+B e^{-(b / 2 a) t} \sin (\omega t)
$$

where $\omega=\frac{\sqrt{4 a c-b^{2}}}{2 a}$. If $t \rightarrow \infty$, then the amplitude of both terms $A e^{-(b / 2 a) t} \rightarrow 0$ and $B e^{-(b / 2 a) t} \rightarrow 0$. Thus, $\lim _{t \rightarrow \infty} y(t)=0$.
18. The auxiliary equation $a r^{2}+b r+c=0$ has roots

$$
r_{1}=\frac{-b-\sqrt{D}}{2 a}, \quad r_{2}=\frac{-b+\sqrt{D}}{2 a}
$$

where $D=b^{2}-4 a c$. Note that $a\left(r_{2}-r_{1}\right)=\sqrt{D}=-\left(2 a r_{1}+b\right)$. If $y=e^{r_{1} t} u$, then $y^{\prime}=e^{r_{1} t}\left(u^{\prime}+r_{1} u\right)$, and $y^{\prime \prime}=e^{r_{1} t}\left(u^{\prime \prime}+2 r_{1} u^{\prime}+r_{1}^{2} u\right)$. Substituting these expressions into the $\mathrm{DE} a y^{\prime \prime}+b y^{\prime}+c y=0$, and simplifying, we obtain

$$
e^{r_{1} t}\left(a u^{\prime \prime}+2 a r_{1} u^{\prime}+b u^{\prime}\right)=0,
$$

or, more simply, $u^{\prime \prime}-\left(r_{2}-r_{1}\right) u^{\prime}=0$. Putting $v=u^{\prime}$ reduces this equation to first order:

$$
v^{\prime}=\left(r_{2}-r_{1}\right) v
$$

which has general solution $v=C e^{\left(r_{2}-r_{1}\right) t}$. Hence

$$
u=\int C e^{\left(r_{2}-r_{1}\right) t} d t=B e^{\left(r_{2}-r_{1}\right) t}+A
$$

and $y=e^{r_{1} t} u=A e^{r_{1} t}+B e^{r_{2} t}$.
19. If $y=A \cos \omega t+B \sin \omega t$ then

$$
\begin{aligned}
y^{\prime \prime}+\omega^{2} y= & -A \omega^{2} \cos \omega t-B \omega^{2} \sin \omega t \\
& +\omega^{2}(A \cos \omega t+B \sin \omega t)=0
\end{aligned}
$$

for all t. So y is a solution of (\dagger).
20. If $f(t)$ is any solution of (\dagger) then $f^{\prime \prime}(t)=-\omega^{2} f(t)$ for all t. Thus,

$$
\begin{aligned}
& \frac{d}{d t}\left[\omega^{2}(f(t))^{2}+\left(f^{\prime}(t)\right)^{2}\right] \\
& =2 \omega^{2} f(t) f^{\prime}(t)+2 f^{\prime}(t) f^{\prime \prime}(t) \\
& =2 \omega^{2} f(t) f^{\prime}(t)-2 \omega^{2} f(t) f^{\prime}(t)=0
\end{aligned}
$$

for all t. Thus, $\omega^{2}(f(t))^{2}+\left(f^{\prime}(t)\right)^{2}$ is constant. (This can be interpreted as a conservation of energy statement.)
21. If $g(t)$ satisfies (\dagger) and also $g(0)=g^{\prime}(0)=0$, then by Exercise 20,

$$
\begin{aligned}
& \omega^{2}(g(t))^{2}+\left(g^{\prime}(t)\right)^{2} \\
& =\omega^{2}(g(0))^{2}+\left(g^{\prime}(0)\right)^{2}=0
\end{aligned}
$$

Since a sum of squares cannot vanish unless each term vanishes, $g(t)=0$ for all t.
22. If $f(t)$ is any solution of (\dagger), let
$g(t)=f(t)-A \cos \omega t-B \sin \omega t$ where $A=f(0)$ and $B \omega=f^{\prime}(0)$. Then g is also solution of (\dagger). Also $g(0)=f(0)-A=0$ and $g^{\prime}(0)=f^{\prime}(0)-B \omega=0$. Thus, $g(t)=0$ for all t by Exercise 24, and therefore $f(x)=A \cos \omega t+B \sin \omega t$. Thus, it is proved that every solution of (\dagger) is of this form.
23. We are given that $k=-\frac{b}{2 a}$ and $\omega^{2}=\frac{4 a c-b^{2}}{4 a^{2}}$ which is positive for Case III. If $y=e^{k t} u$, then

$$
\begin{aligned}
y^{\prime} & =e^{k t}\left(u^{\prime}+k u\right) \\
y^{\prime \prime} & =e^{k t}\left(u^{\prime \prime}+2 k u^{\prime}+k^{2} u\right)
\end{aligned}
$$

Substituting into $a y^{\prime \prime}+b y^{\prime}+c y=0$ leads to

$$
\begin{aligned}
0 & =e^{k t}\left(a u^{\prime \prime}+(2 k a+b) u^{\prime}+\left(a k^{2}+b k+c\right) u\right) \\
& =e^{k t}\left(a u^{\prime \prime}+0+\left(\left(b^{2} /(4 a)-\left(b^{2} /(2 a)+c\right) u\right)\right.\right. \\
& =a e^{k t}\left(u^{\prime \prime}+\omega^{2} u\right)
\end{aligned}
$$

Thus u satisfies $u^{\prime \prime}+\omega^{2} u=0$, which has general solution

$$
u=A \cos (\omega t)+B \sin (\omega t)
$$

by the previous problem. Therefore $a y^{\prime \prime}+b y^{\prime}+c y=0$ has general solution

$$
y=A e^{k t} \cos (\omega t)+B e^{k t} \sin (\omega t)
$$

24. Because $y^{\prime \prime}+4 y=0$, therefore $y=A \cos 2 t+B \sin 2 t$. Now

$$
\begin{aligned}
& y(0)=2 \Rightarrow A=2, \\
& y^{\prime}(0)=-5 \Rightarrow B=-\frac{5}{2}
\end{aligned}
$$

Thus, $y=2 \cos 2 t-\frac{5}{2} \sin 2 t$.
circular frequency $=\omega=2$, frequency $=$
$\frac{\omega}{2 \pi}=\frac{1}{\pi} \approx 0.318$
period $=\frac{2 \pi}{\omega}=\pi \approx 3.14$
amplitude $=\sqrt{(2)^{2}+\left(-\frac{5}{2}\right)^{2}} \simeq 3.20$
25. $\left\{\begin{array}{l}y^{\prime \prime}+100 y=0 \\ y(0)=0 \\ y^{\prime}(0)=3\end{array}\right.$
$y=A \cos (10 t)+B \sin (10 t)$
$A=y(0)=0, \quad 10 B=y^{\prime}(0)=3$
$y=\frac{3}{10} \sin (10 t)$
26. $y=\mathcal{A} \cos (\omega(t-c))+\boldsymbol{B} \sin (\omega(t-c))$
(easy to calculate $y^{\prime \prime}+\omega^{2} y=0$)

$$
\begin{aligned}
y=\mathcal{A} & (\cos (\omega t) \cos (\omega c)+\sin (\omega t) \sin (\omega c)) \\
& +\boldsymbol{B}(\sin (\omega t) \cos (\omega c)-\cos (\omega t) \sin (\omega c)) \\
= & (\mathcal{A} \cos (\omega c)-\boldsymbol{B} \sin (\omega c)) \cos \omega t \\
& +(\mathcal{A} \sin (\omega c)+\boldsymbol{B} \cos (\omega c)) \sin \omega t
\end{aligned}
$$

$=A \cos \omega t+B \sin \omega t$
where $A=\boldsymbol{A} \cos (\omega c)-\boldsymbol{B} \sin (\omega c)$ and
$B=\mathscr{A} \sin (\omega c)+\boldsymbol{B} \cos (\omega c)$
27. For $y^{\prime \prime}+y=0$, we have $y=A \sin t+B \cos t$. Since,

$$
\begin{aligned}
& y(2)=3=A \sin 2+B \cos 2 \\
& y^{\prime}(2)=-4=A \cos 2-B \sin 2
\end{aligned}
$$

therefore

$$
\begin{aligned}
& A=3 \sin 2-4 \cos 2 \\
& B=4 \sin 2+3 \cos 2 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
y & =(3 \sin 2-4 \cos 2) \sin t+(4 \sin 2+3 \cos 2) \cos t \\
& =3 \cos (t-2)-4 \sin (t-2) .
\end{aligned}
$$

28. $\left\{\begin{array}{l}y^{\prime \prime}+\omega^{2} y=0 \\ y(a)=A \\ y^{\prime}(a)=B\end{array}\right.$
$y=A \cos (\omega(t-a))+\frac{B}{\omega} \sin (\omega(t-a))$
29. From Example 9, the spring constant is
$k=9 \times 10^{4} \mathrm{gm} / \mathrm{sec}^{2}$. For a frequency of 10 Hz (i.e., a circular frequency $\omega=20 \pi \mathrm{rad} / \mathrm{sec}$.), a mass m satisfying $\sqrt{k / m}=20 \pi$ should be used. So,

$$
m=\frac{k}{400 \pi^{2}}=\frac{9 \times 10^{4}}{400 \pi^{2}}=22.8 \mathrm{gm}
$$

The motion is determined by

$$
\left\{\begin{array}{l}
y^{\prime \prime}+400 \pi^{2} y=0 \\
y(0)=-1 \\
y^{\prime}(0)=2
\end{array}\right.
$$

therefore, $y=A \cos 20 \pi t+B \sin 20 \pi t$ and

$$
\begin{aligned}
& y(0)=-1 \Rightarrow A=-1 \\
& y^{\prime}(0)=2 \Rightarrow B=\frac{2}{20 \pi}=\frac{1}{10 \pi}
\end{aligned}
$$

Thus, $y=-\cos 20 \pi t+\frac{1}{10 \pi} \sin 20 \pi t$, with y in cm and t in second, gives the displacement at time t. The amplitude is $\sqrt{(-1)^{2}+\left(\frac{1}{10 \pi}\right)^{2}} \approx 1.0005 \mathrm{~cm}$.
30. Frequency $=\frac{\omega}{2 \pi}, \omega^{2}=\frac{k}{m}(k=$ spring const, $m=$ mass $)$

Since the spring does not change, $\omega^{2} m=k$ (constant)
For $m=400 \mathrm{gm}, \omega=2 \pi(24)$ (frequency $=24 \mathrm{~Hz}$)
If $m=900 \mathrm{gm}$, then $\omega^{2}=\frac{4 \pi^{2}(24)^{2}(400)}{900}$
so $\omega=\frac{2 \pi \times 24 \times 2}{3}=32 \pi$.
Thus frequency $=\frac{32 \pi}{2 \pi}=16 \mathrm{~Hz}$
For $m=100 \mathrm{gm}, \omega=\frac{4 \pi^{2}(24)^{2} 400}{100}$
so $\omega=96 \pi$ and frequency $=\frac{\omega}{2 \pi}=48 \mathrm{~Hz}$.
31. Using the addition identities for cosine and sine,

$$
\begin{aligned}
y= & e^{k t}\left[A \cos \omega\left(t-t_{0}\right) B \sin \omega\left(t-t_{0}\right)\right] \\
= & e^{k t}\left[A \cos \omega t \cos \omega t_{0}+A \sin \omega t \sin \omega t_{0}\right. \\
& \left.+B \sin \omega t \cos \omega t_{0}-B \cos \omega t \sin \omega t_{0}\right] \\
= & e^{k t}\left[A_{1} \cos \omega t+B_{1} \sin \omega t\right],
\end{aligned}
$$

where $A_{1}=A \cos \omega t_{0}-B \sin \omega t_{0}$ and $B_{1}=A \sin \omega t_{0}+B \cos \omega t_{0}$. Under the conditions of this problem we know that $e^{k t} \cos \omega t$ and $e^{k t} \sin \omega t$ are independent solutions of $a y^{\prime \prime}+b y^{\prime}+c y=0$, so our function y must also be a solution, and, since it involves two arbitrary constants, it is a general solution.
32. Expanding the hyperbolic functions in terms of exponentials,

$$
\begin{aligned}
y= & e^{k t}\left[A \cosh \omega\left(t-t_{0}\right) B \sinh \omega\left(t-t_{0}\right)\right] \\
= & e^{k t}\left[\frac{A}{2} e^{\omega\left(t-t_{0}\right)}+\frac{A}{2} e^{-\omega\left(t-t_{0}\right)}\right. \\
& \left.\quad+\frac{B}{2} e^{\omega\left(t-t_{0}\right)}-\frac{B}{2} e^{-\omega\left(t-t_{0}\right)}\right] \\
= & A_{1} e^{(k+\omega) t}+B_{1} e^{(k-\omega) t}
\end{aligned}
$$

where $A_{1}=(A / 2) e^{-\omega t_{0}}+(B / 2) e^{-\omega t_{0}}$ and $B_{1}=(A / 2) e^{\omega t_{0}}-(B / 2) e^{\omega t_{0}}$. Under the conditions of this problem we know that $R r=k \pm \omega$ are the two real roots of the auxiliary equation $a r^{2}+b r+c=0$, so $e^{(k \pm \omega) t}$ are independent solutions of $a y^{\prime \prime}+b y^{\prime}+c y=0$, and our function y must also be a solution. Since it involves two arbitrary constants, it is a general solution.
33. $\left\{\begin{array}{l}y^{\prime \prime}+2 y^{\prime}+5 y=0 \\ y(3)=2 \\ y^{\prime}(3)=0\end{array}\right.$

The DE has auxiliary equation $r^{2}+2 r+5=0$ with roots $r=-1 \pm 2 i$. By the second previous problem, a general solution can be expressed in the form $y=e^{-t}[A \cos 2(t-3)+B \sin 2(t-3)]$ for which

$$
\begin{aligned}
y^{\prime}= & -e^{-t}[A \cos 2(t-3)+B \sin 2(t-3)] \\
& +e^{-t}[-2 A \sin 2(t-3)+2 B \cos 2(t-3)] .
\end{aligned}
$$

The initial conditions give

$$
\begin{aligned}
& 2=y(3)=e^{-3} A \\
& 0=y^{\prime}(3)=-e^{-3}(A+2 B)
\end{aligned}
$$

Thus $A=2 e^{3}$ and $B=-A / 2=-e^{3}$. The IVP has solution

$$
y=e^{3-t}[2 \cos 2(t-3)-\sin 2(t-3)] .
$$

34. $\left\{\begin{array}{l}y^{\prime \prime}+4 y^{\prime}+3 y=0 \\ y(3)=1 \\ y^{\prime}(3)=0\end{array}\right.$

The DE has auxiliary equation $r^{2}+4 r+3=0$ with roots $r=-2+1=-1$ and $r=-2-1=-3$ (i.e. $k \pm \omega$, where $k=-2$ and $\omega=1$). By the second previous problem, a general solution can be expressed in the form $y=e^{-2 t}[A \cosh (t-3)+B \sinh (t-3)]$ for which

$$
\begin{aligned}
y^{\prime}=- & 2 e^{-2 t}[A \cosh (t-3)+B \sinh (t-3)] \\
& +e^{-2 t}[A \sinh (t-3)+B \cosh (t-3)] .
\end{aligned}
$$

The initial conditions give

$$
\begin{aligned}
& 1=y(3)=e^{-6} A \\
& 0=y^{\prime}(3)=-e^{-6}(-2 A+B)
\end{aligned}
$$

Thus $A=e^{6}$ and $B=2 A=2 e^{6}$. The IVP has solution

$$
y=e^{6-2 t}[\cosh (t-3)+2 \sinh (t-3)]
$$

35. Let $u(x)=c-k^{2} y(x)$. Then $u(0)=c-k^{2} a$. Also $u^{\prime}(x)=-k^{2} y^{\prime}(x)$, so $u^{\prime}(0)=-k^{2} b$. We have

$$
u^{\prime \prime}(x)=-k^{2} y^{\prime \prime}(x)=-k^{2}\left(c-k^{2} y(x)\right)=-k^{2} u(x)
$$

This IVP for the equation of simple harmonic motion has solution

$$
u(x)=\left(c-k^{2} a\right) \cos (k x)-k b \sin (k x)
$$

so that

$$
\begin{aligned}
y(x) & =\frac{1}{k^{2}}(c-u(x)) \\
& =\frac{c}{k^{2}}\left(c-\left(c-k^{2} a\right) \cos (k x)+k b \sin (k x)\right) \\
& =\frac{c}{k^{2}}\left(1-\cos (k x)+a \cos (k x)+\frac{b}{k} \sin (k x) .\right.
\end{aligned}
$$

36. Since $x^{\prime}(0)=0$ and $x(0)=1>1 / 5$, the motion will be governed by $x^{\prime \prime}=-x+(1 / 5)$ until such time $t>0$ when $x^{\prime}(t)=0$ again.

Let $u=x-(1 / 5)$. Then $u^{\prime \prime}=x^{\prime \prime}=-(x-1 / 5)=-u$, $u(0)=4 / 5$, and $u^{\prime}(0)=x^{\prime}(0)=0$. This simple harmonic motion initial-value problem has solution $u(t)=(4 / 5) \cos t$. Thus $x(t)=(4 / 5) \cos t+(1 / 4)$ and $x^{\prime}(t)=u^{\prime}(t)=-(4 / 5) \sin t$. These formulas remain valid until $t=\pi$ when $x^{\prime}(t)$ becomes 0 again. Note that $x(\pi)=-(4 / 5)+(1 / 5)=-(3 / 5)$.
Since $x(\pi)<-(1 / 5)$, the motion for $t>\pi$ will be governed by $x^{\prime \prime}=-x-(1 / 5)$ until such time $t>\pi$ when $x^{\prime}(t)=0$ again.

Let $v=x+(1 / 5)$. Then $v^{\prime \prime}=x^{\prime \prime}=-(x+1 / 5)=-v$, $v(\pi)=-(3 / 5)+(1 / 5)=-(2 / 5)$, and $v^{\prime}(\pi)=x^{\prime}(\pi)=0$. Thius initial-value problem has solution $v(t)=-(2 / 5) \cos (t-\pi)=(2 / 5) \cos t$, so that $x(t)=(2 / 5) \cos t-(1 / 5)$ and $x^{\prime}(t)=-(2 / 5) \sin t$. These formulas remain valid for $t \geq \pi$ until $t=2 \pi$ when x^{\prime} becomes 0 again. We have $x(2 \pi)=(2 / 5)-(1 / 5)=1 / 5$ and $x^{\prime}(2 \pi)=0$.
The conditions for stopping the motion are met at $t=2 \pi$; the mass remains at rest thereafter. Thus

$$
x(t)= \begin{cases}\frac{4}{5} \cos t+\frac{1}{5} & \text { if } 0 \leq t \leq \pi \\ \frac{2}{5} \cos t-\frac{1}{5} & \text { if } \pi<t \leq 2 \pi \\ \frac{1}{5} & \text { if } t>2 \pi\end{cases}
$$

Review Exercises 3 (page 208)

1. $f(x)=3 x+x^{3} \Rightarrow f^{\prime}(x)=3\left(1+x^{2}\right)>0$ for all x, so f is increasing and therefore one-to-one and invertible. Since $f(0)=0$, therefore $f^{-1}(0)=0$, and

$$
\left.\frac{d}{d x}\left(f^{-1}\right)(x)\right|_{x=0}=\frac{1}{f^{\prime}\left(f^{-1}(0)\right)}=\frac{1}{f^{\prime}(0)}=\frac{1}{3}
$$

2. $f(x)=\sec ^{2} x \tan x \Rightarrow f^{\prime}(x)=2 \sec ^{2} x \tan ^{2} x+\sec ^{4} x>0$ for x in $(-\pi / 2, \pi / 2)$, so f is increasing and therefore one-to-one and invertible there. The domain of f^{-1} is $(-\infty, \infty)$, the range of f. Since $f(\pi / 4)=2$, therefore $f^{-1}(2)=\pi / 4$, and

$$
\left(f^{-1}\right)^{\prime}(2)=\frac{1}{f^{\prime}\left(f^{-1}(2)\right)}=\frac{1}{f^{\prime}(\pi / 4)}=\frac{1}{8}
$$

3. $\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty} \frac{x}{e^{x^{2}}}=0$.
4. Observe $f^{\prime}(x)=e^{-x^{2}}\left(1-2 x^{2}\right)$ is positive if $x^{2}<1 / 2$ and is negative if $x^{2}>1 / 2$. Thus f is increasing on $(-1 / \sqrt{2}, 1 / \sqrt{2})$ and is decreasing on $(-\infty,-1 / \sqrt{2})$ and on $(1 / \sqrt{2}, \infty)$.
5. The max and min values of f are $1 / \sqrt{2 e}$ (at $x=1 / \sqrt{2}$) and $-1 / \sqrt{2 e}$ (at $x=-1 / \sqrt{2}$).
6. $y=e^{-x} \sin x,(0 \leq x \leq 2 \pi)$ has a horizontal tangent where

$$
0=\frac{d y}{d x}=e^{-x}(\cos x-\sin x)
$$

This occurs if $\tan x=1$, so $x=\pi / 4$ or $x=5 \pi / 4$. The points are $\left(\pi / 4, e^{-\pi / 4} / \sqrt{2}\right)$ and $\left(5 \pi / 4,-e^{-5 \pi / 4} / \sqrt{2}\right)$.
7. If $f^{\prime}(x)=x$ for all x, then

$$
\frac{d}{d x} \frac{f(x)}{e^{x^{2} / 2}}=\frac{f^{\prime}(x)-x f(x)}{e^{x^{2} / 2}}=0
$$

Thus $f(x) / e^{x^{2} / 2}=C$ (constant) for all x. Since $f(2)=3$, we have $C=3 / e^{2}$ and $f(x)=\left(3 / e^{2}\right) e^{x^{2} / 2}=3 e^{\left(x^{2} / 2\right)-2}$.
8. Let the length, radius, and volume of the clay cylinder at time t be ℓ, r, and V, respectively. Then $V=\pi r^{2} \ell$, and

$$
\frac{d V}{d t}=2 \pi r \ell \frac{d r}{d t}+\pi r^{2} \frac{d \ell}{d t}
$$

Since $d V / d t=0$ and $d \ell / d t=k \ell$ for some constant $k>0$, we have

$$
2 \pi r \ell \frac{d r}{d t}=-k \pi r^{2} \ell, \quad \Rightarrow \quad \frac{d r}{d t}=-\frac{k r}{2}
$$

That is, r is decreasing at a rate proportional to itself.
9. a) An investment of $\$ P$ at $r \%$ compounded continuously grows to $\$ P e^{r T / 100}$ in T years. This will be $\$ 2 P$ provided $e^{r T / 100}=2$, that is, $r T=100 \ln 2$. If $T=5$, then $r=20 \ln 2 \approx 13.86 \%$.
b) Since the doubling time is $T=100 \ln 2 / r$, we have

$$
\Delta T \approx \frac{d T}{d r} \Delta r=-\frac{100 \ln 2}{r^{2}} \Delta r
$$

If $r=13.863 \%$ and $\Delta r=-0.5 \%$, then

$$
\Delta T \approx-\frac{100 \ln 2}{13.863^{2}}(-0.5) \approx 0.1803 \text { years }
$$

The doubling time will increase by about 66 days.
10. a) $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=\lim _{h \rightarrow 0} \frac{a^{0+h}-a^{0}}{h}=\left.\frac{d}{d x} a^{x}\right|_{x=0}=\ln a$.

Putting $h=1 / n$, we get $\lim _{n \rightarrow \infty} n\left(a^{1 / n}-1\right)=\ln a$.
b) Using the technique described in the exercise, we calculate

$$
\begin{aligned}
& 2^{10}\left(2^{1 / 2^{10}}-1\right) \approx 0.69338183 \\
& 2^{11}\left(2^{1 / 2^{11}}-1\right) \approx 0.69326449
\end{aligned}
$$

Thus $\ln 2 \approx 0.693$.
11. $\frac{d}{d x}(f(x))^{2}=\left(f^{\prime}(x)\right)^{2}$
$\Rightarrow 2 f(x) f^{\prime}(x)=\left(f^{\prime}(x)\right)^{2}$
$\Rightarrow f^{\prime}(x)=0$ or $f^{\prime}(x)=2 f(x)$.
Since $f(x)$ is given to be nonconstant, we have $f^{\prime}(x)=2 f(x)$. Thus $f(x)=f(0) e^{2 x}=e^{2 x}$.
12. If $f(x)=(\ln x) / x$, then $f^{\prime}(x)=(1-\ln x) / x^{2}$. Thus $f^{\prime}(x)>0$ if $\ln x<1$ (i.e., $x<e$) and $f^{\prime}(x)<0$ if $\ln x>1$ (i.e., $x>e$). Since f is increasing to the left of e and decreasing to the right, it has a maximum value $f(e)=1 / e$ at $x=e$. Thus, if $x>0$ and $x \neq e$, then

$$
\frac{\ln x}{x}<\frac{1}{e}
$$

Putting $x=\pi$ we obtain $(\ln \pi) / \pi<1 / e$. Thus

$$
\ln \left(\pi^{e}\right)=e \ln \pi<\pi=\pi \ln e=\ln e^{\pi}
$$

and $\pi^{e}<e^{\pi}$ follows because \ln is increasing.
13. $y=x^{x}=e^{x \ln x} \Rightarrow y^{\prime}=x^{x}(1+\ln x)$. The tangent to $y=x^{x}$ at $x=a$ has equation

$$
y=a^{a}+a^{a}(1+\ln a)(x-a) .
$$

This line passes through the origin if
$0=a^{a}[1-a(1+\ln a)]$, that is, if $(1+\ln a) a=1$. Observe that $a=1$ solves this equation. Therefore the slope of the line is $1^{1}(1+\ln 1)=1$, and the line is $y=x$.
14. a) $\frac{\ln x}{x}=\frac{\ln 2}{2}$ is satisfied if $x=2$ or $x=4$ (because $\ln 4=2 \ln 2$)
b) The line $y=m x$ through the origin intersects the curve $y=\ln x$ at $(b, \ln b)$ if $m=(\ln b) / b$. The same line intersects $y=\ln x$ at a different point $(x, \ln x)$ if $(\ln x) / x=m=(\ln b) / b$. This equation will have only one solution $x=b$ if the line $y=m x$ intersects the curve $y=\ln x$ only once, at $x=b$, that is, if the line is tangent to the curve at $x=b$. In this case m is the slope of $y=\ln x$ at $x=b$, so

$$
\frac{1}{b}=m=\frac{\ln b}{b}
$$

Thus $\ln b=1$, and $b=e$.
15. Let the rate be $r \%$. The interest paid by account A is $1,000(r / 100)=10 r$.
The interest paid by account B is $1,000\left(e^{r / 100}-1\right)$. This is $\$ 10$ more than account A pays, so

$$
1,000\left(e^{r / 100}-1\right)=10 r+10
$$

A TI-85 solve routine gives $r \approx 13.8165 \%$.
16. If $y=\cos ^{-1} x$, then $x=\cos y$ and $0 \leq y \leq \pi$. Thus

$$
\tan y=\operatorname{sgn} x \sqrt{\sec ^{2} y-1}=\operatorname{sgn} x \sqrt{\frac{1}{x^{2}}-1}=\frac{\sqrt{1-x^{2}}}{x}
$$

Thus $\cos ^{-1} x=\tan ^{-1}\left(\left(\sqrt{1-x^{2}}\right) / x\right)$.
Since $\cot x=1 / \tan x, \cot ^{-1} x=\tan ^{-1}(1 / x)$.

$$
\begin{aligned}
\csc ^{-1} x & =\sin ^{-1} \frac{1}{x}=\frac{\pi}{2}-\cos ^{-1} \frac{1}{x} \\
& =\frac{\pi}{2}-\tan ^{-1} \frac{\sqrt{1-(1 / x)^{2}}}{1 / x} \\
& =\frac{\pi}{2}-\operatorname{sgn} x \tan ^{-1} \sqrt{x^{2}-1}
\end{aligned}
$$

17. $\cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x$.

If $y=\cot ^{-1} x$, then $x=\cot y$ and $0<y<\pi / 2$. Thus

$$
\begin{aligned}
& \csc y=\operatorname{sgn} x \sqrt{1+\cot ^{2} y}=\operatorname{sgn} x \sqrt{1+x^{2}} \\
& \sin y=\frac{\operatorname{sgn} x}{\sqrt{1+x^{2}}}
\end{aligned}
$$

Thus $\cot ^{-1} x=\sin ^{-1} \frac{\operatorname{sgn} x}{\sqrt{1+x^{2}}}=\operatorname{sgn} x \sin ^{-1} \frac{1}{\sqrt{1+x^{2}}}$.
$\csc ^{-1} x=\sin ^{-1} \frac{1}{x}$.
18. Let $T(t)$ be the temperature of the milk t minutes after it is removed from the refrigerator. Let $U(t)=T(t)-20$. By Newton's law,

$$
U^{\prime}(t)=k U(t) \quad \Rightarrow \quad U(t)=U(0) e^{k t}
$$

Now $T(0)=5 \Rightarrow U(0)=-15$ and $T(12)=12 \Rightarrow U(12)=-8$. Thus

$$
\begin{aligned}
-8 & =U(12)=U(0) e^{12 k}=-15 e^{12 k} \\
e^{12 k} & =8 / 15, \quad k=\frac{1}{12} \ln (8 / 15)
\end{aligned}
$$

If $T(s)=18$, then $U(s)=-2$, so $-2=-15 e^{s k}$. Thus $s k=\ln (2 / 15)$, and

$$
s=\frac{\ln (2 / 15)}{k}=12 \frac{\ln (2 / 15)}{\ln (8 / 15)} \approx 38.46
$$

It will take another $38.46-12=26.46$ min for the milk to warm up to 18°.
19. Let R be the temperature of the room, Let $T(t)$ be the temperature of the water t minutes after it is brought into the room. Let $U(t)=T(t)-R$. Then

$$
U^{\prime}(t)=k U(t) \quad \Rightarrow \quad U(t)=U(0) e^{k t}
$$

We have

$$
\begin{aligned}
T(0) & =96 \\
T(10) & =60 \\
T(20) & =40
\end{aligned} \Rightarrow U(10)=96-R(20)=40-R \Rightarrow 40-R=(96-R) e^{20 k} . ~ \$ 60-R=(96-R) e^{10 k} .
$$

Thus

$$
\begin{aligned}
& \left(\frac{60-R}{96-R}\right)^{2}=e^{20 k}=\frac{40-R}{96-R} \\
& (60-R)^{2}=(96-R)(40-R) \\
& 3600-120 R+R^{2}=3840-136 R+R^{2} \\
& 16 R=240 \quad R=15
\end{aligned}
$$

Room temperature is 15°.
20. Let $f(x)=e^{x}-1-x$. Then $f(0)=0$ and by the MVT,

$$
\frac{f(x)}{x}=\frac{f(x)-f(0)}{x-0}=f^{\prime}(c)=e^{c}-1
$$

for some c between 0 and x. If $x>0$, then $c>0$, and $f^{\prime}(c)>0$. If $x<0$, then $c<0$, and $f^{\prime}(c)<0$. In either case $f(x)=x f^{\prime}(c)>0$, which is what we were asked to show.
21. Suppose that for some positive integer k, the inequality

$$
e^{x}>1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{k}}{k!}
$$

holds for all $x>0$. This is certainly true for $k=1$, as shown in the previous exercise. Apply the MVT to

$$
g(t)=e^{t}-1-t-\frac{t^{2}}{2!}-\cdots-\frac{t^{k+1}}{(k+1)!}
$$

on the interval $(0, x)$ (where $x>0$) to obtain

$$
\frac{g(x)}{x}=\frac{g(x)-g(0)}{x-0}=g^{\prime}(c)
$$

for some c in $(0, x)$. Since x and $g^{\prime}(c)$ are both positive, so is $g(x)$. This completes the induction and shows the desired inequality holds for $x>0$ for all positive integers k.

Challenging Problems 3 (page 209)

1. a) $(d / d x) x^{x}=x^{x}(1+\ln x)>0$ if $\ln x>-1$, that is, if $x>e^{-1}$. Thus x^{x} is increasing on $\left[e^{-1}, \infty\right)$.
b) Being increasing on $\left[e^{-1}, \infty\right), f(x)=x^{x}$ is invertible on that interval. Let $g=f^{-1}$. If $y=x^{x}$, then $x=g(y)$. Note that $y \rightarrow \infty$ if and only if $x \rightarrow \infty$. We have

$$
\begin{aligned}
\ln y & =x \ln x \\
\ln (\ln y) & =\ln x+\ln (\ln x) \\
\lim _{y \rightarrow \infty} \frac{g(y) \ln (\ln y)}{\ln y} & =\lim _{x \rightarrow \infty} \frac{x(\ln x+\ln (\ln x))}{x \ln x} \\
& =\lim _{x \rightarrow \infty}\left(1+\frac{\ln (\ln x)}{\ln x}\right) .
\end{aligned}
$$

Now $\ln x<\sqrt{x}$ for sufficiently large x, so $\ln (\ln x)<\sqrt{\ln x}$ for sufficiently large x.
Therefore, $0<\frac{\ln (\ln x)}{\ln x}<\frac{1}{\sqrt{\ln x}} \rightarrow 0$ as $x \rightarrow \infty$, and so

$$
\lim _{y \rightarrow \infty} \frac{g(y) \ln (\ln y)}{\ln y}=1+0=1
$$

2. $\frac{d v}{d t}=-g-k v$.
a) Let $u(t)=-g-k v(t)$. Then $\frac{d u}{d t}=-k \frac{d v}{d t}=-k u$, and

$$
\begin{aligned}
& u(t)=u(0) e^{-k t}=-\left(g+k v_{0}\right) e^{-k t} \\
& v(t)=-\frac{1}{k}(g+u(t))=-\frac{1}{k}\left(g-\left(g+k v_{0}\right) e^{-k t}\right) .
\end{aligned}
$$

b) $\lim _{t \rightarrow \infty} v(t)=-g / k$
c) $\frac{d y}{d t}=v(t)=-\frac{g}{k}+\frac{g+k v_{0}}{k} e^{-k t}, \quad y(0)=y_{0}$

$$
y(t)=-\frac{g t}{k}-\frac{g+k v_{0}}{k^{2}} e^{-k t}+C
$$

$$
y_{0}=-0-\frac{g+k v_{0}}{k^{2}}+C \Rightarrow C=y_{0}+\frac{g+k v_{0}}{k^{2}}
$$

$$
y(t)=y_{0}-\frac{g t}{k}+\frac{g+k v_{0}}{k^{2}}\left(1-e^{-k t}\right)
$$

3. $\frac{d v}{d t}=-g+k v^{2}(k>0)$
a) Let $u=2 t \sqrt{g k}$. If $v(t)=\sqrt{\frac{g}{k}} \frac{1-e^{u}}{1+e^{u}}$, then

$$
\begin{aligned}
\frac{d v}{d t} & =\sqrt{\frac{g}{k}} \frac{\left(1+e^{u}\right)\left(-e^{u}\right)-\left(1-e^{u}\right) e^{u}}{\left(1+e^{u}\right)^{2}} 2 \sqrt{g k} \\
& =\frac{-4 g e^{u}}{\left(1+e^{u}\right)^{2}} \\
k v^{2}-g & =g\left(\frac{\left(1-e^{u}\right)^{2}}{\left(1+e^{u}\right)^{2}}-1\right) \\
& =\frac{-4 g e^{u}}{\left(1+e^{u}\right)^{2}}=\frac{d v}{d t} .
\end{aligned}
$$

108 Thus $v(t)=\sqrt{\frac{g}{k}} \frac{1-e^{2 t \sqrt{g k}}}{1+e^{2 t \sqrt{g k}}}$.
b) $\lim _{t \rightarrow \infty} v(t)=\lim _{t \rightarrow \infty} \sqrt{\frac{g}{k}} \frac{e^{-2 t \sqrt{g k}}-1}{e^{-2 t \sqrt{g k}}+1}=-\sqrt{\frac{g}{k}}$
c) If $y(t)=y_{0}+\sqrt{\frac{g}{k}} t-\frac{1}{k} \ln \frac{1+e^{2 t \sqrt{g k}}}{2}$, then $y(0)=y_{0}$ and

$$
\begin{aligned}
\frac{d y}{d t} & =\sqrt{\frac{g}{k}}-\frac{1}{k} \frac{2 \sqrt{g k} e^{2 t \sqrt{g k}}}{1+e^{2 t} \sqrt{g k}} \\
& =\sqrt{\frac{g}{k}} \frac{1-e^{2 t \sqrt{g k}}}{1+e^{2 t \sqrt{g k}}}=v(t) .
\end{aligned}
$$

Thus $y(t)$ gives the height of the object at time t during its fall.
4. If $p=e^{-b t} y$, then $\frac{d p}{d t}=e^{-b t}\left(\frac{d y}{d t}-b y\right)$.

The DE $\frac{d p}{d t}=k p\left(1-\frac{p}{e^{-b t} M}\right)$ therefore transforms to

$$
\begin{aligned}
\frac{d y}{d t} & =b y+k p e^{b t}\left(1-\frac{p}{e^{-b t} M}\right) \\
& =(b+k) y-\frac{k y^{2}}{M}=K y\left(1-\frac{y}{L}\right),
\end{aligned}
$$

where $K=b+k$ and $L=\frac{b+k}{k} M$. This is a standard Logistic equation with solution (as obtained in Section 3.4) given by

$$
y=\frac{L y_{0}}{y_{0}+\left(L-y_{0}\right) e^{-K t}},
$$

where $y_{0}=y(0)=p(0)=p_{0}$. Converting this solution back in terms of the function $p(t)$, we obtain

$$
\begin{aligned}
p(t) & =\frac{L p_{0} e^{-b t}}{p_{0}+\left(L-p_{0}\right) e^{-(b+k) t}} \\
& =\frac{(b+k) M p_{0}}{p_{0} k e^{b t}+\left((b+k) M-k p_{0}\right) e^{-k t}} .
\end{aligned}
$$

Since p represents a percentage, we must have $(b+k) M / k<100$.
$\begin{aligned} \text { If } k & =10, b=1, M=90, \text { and } p_{0}=1 \text {, then } \\ \frac{b+k}{k} M & =99<100 \text {. The numerator of the final expres- }\end{aligned}$ sion for $p(t)$ given above is a constant. Therefore $p(t)$ will be largest when the derivative of the denominator,
$f(t)=p_{0} k e^{b t}+\left((b+k) M-k p_{0}\right) e^{-k t}=10 e^{t}+980 e^{-10 t}$
is zero. Since $f^{\prime}(t)=10 e^{t}-9,800 e^{-10 t}$, this will happen at $t=\ln (980) / 11$. The value of p at this t is approximately 48.1. Thus the maximum percentage of potential clients who will adopt the technology is about 48.1\%.

