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SECTION 3.1 (PAGE 167)

CHAPTER 3. TRANSCENDENTAL FUNC- 7.

TIONS
Section 3.1 Inverse Functions (page 167)
fx)y=x-1

faD)=fx)=>x1—1=x—1=x =x.
Thus f is one-to-one. Let y = f~1(x).

Then x = f(y) =y —1and y = x + 1. Thus 8.

Tl = x + L
D(f)=D(fH)=R=R(f) =R .

fx)=2x—1. If f(x1) = f(x2), then 2x; —1 = 2xp — 1.
Thus 2(x; — x2) = 0 and x; = x2. Hence, f is one-to-
one.

Let y = f~'(x). Thus x = f(y) =2y — 1, so

y= %(x +1). Thus f~'(x) = %(x + 1).

D) = R(f~1) = (=00, 00). 9.

R(f) = D(f™") = (=00, 00).

) =vx—1

fG)=fx) & vxi—1=yx—1,
Sx1—1=x-1=0
< X1 =X2

Thus f is one-to-one. Let y = f~!(x).

Then x = f(y) = v/y—1L,and y = 1 + x%. Thus

ST =142 (x 2 0).

D) =R =11,00), R(f) = D) =10, 00).

(x1,x2>1)

fx)=—+x—1forx > 1. 10.

If f(x1) = f(x2), then —/x] — 1 = —/x2 — 1 and
x1 — 1 =x2 — 1. Thus x; = x; and f is one-to-one.
Lety = f~'(x). Thenx = f(y) = —/y —1s0
x2=y—1land y=x2+1. Thus, f~'(x) = x>+ 1.
D) =R(f™H) =11,00). R(f) =D(f™") = (-00,0].

fx)=x3

f@) = fx) & x) =x3
= (x1 — x2)(x] +x1x2 +x3) =0
= X] = X2

Thus f is one-to-one. Let y = f~!(x).

Then x = f(y) =y so y = x!/3.

Thus f~!(x) = x1/3,

D) =D(fH=R=R(f)=R(.

f) = 14+ > If fx)) = f(x2), then

1+ ¥x1 =1+ 3x2s0x; = xp. Thus, f is one-to-
one.

Lety = f~'(x)sothatx = f(y) = 1 + 3/y. Thus
y=@x—-13and f~1(x) = @x —1)7.

D(f) = R(f™") = (00, 00).

R(f) = D(f™") = (—00, 00).
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f@ =5 x <0

fOD = f00) & xf=x3, (1 <0, x2<0)
S X1 =X2

Thus f is one-to-one. Let y = f~!(x).
Then x = f(y) = y* (y < 0).
therefore y = —/x and f~!(x) = —/x.
D(f) = (-00,0] = R,
D(f~h =10, 00) = R(f).

f@x) =1 —=2x)3 If f(x1) = f(x2), then

(1 —2x1)> = (1 — 2x)? and x| = x,. Thus, f is one-to-
one.

Let y= f~'(x). Then x = f(y) = (1 —2y)3 so

y =31 - Yx). Thus, f~1(x) = 3(1 = ¥x).

D(f) = R(f") = (—00, 00).

R(f) = D(f") = (—00, 00).

_ e ircg s —1t = RCFL
f(x)—x_H- D(f)y=fx:x#-1}=R().

fcvl):f(xﬁ@)q%:xzi—l
Sx+l=x+1
< X2 = X1

Thus f is one-to-one; Let y = £~ (x).

Then x = f(y) =

y+1
1 _1 1
soy+l=—andy=f""(x)=—-—-1
X X
D™ = {x 1 x #0) = R(f).
X _ 1 . x
f(X)——l+x~ If f(x1) = f(x2), then T

Hence x;(1 + x2) = x2(1 + x1) and, on simplification,
x1 = x2. Thus, f is one-to-one.

1 _ _ y
f7'(x). Then x = f(y) = s

x(I1+y)=y. Thus y = lex = ffl(x).
D(f) = R(f™) = (o0, =) U (=1, 00).
R(f) =D(f~) = (o0, U (1, 00).

Lety = and

1—2x 1
f(x)=l S D)= xFE-LF=RT)
+x
1 —2x; 1—2x
&) = o) s Tx 1T n

S 1+x —2x) —2x1x0 =14 x1 —2x — 2x1x2
S 3 =3x1 ©x1=x2
Thus f is one-to-one. Let y = f~!(x).
1-2
Then x = f(y) = Y

I+y
sox +xy=1-2y
1
and fTlx) =y = Ty
D =tx i x # =2 = R().

— X
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X
————. If f(x1) = f(x2), then
Vx2+1
X2

= C®
\/xlz +1 \/xg +1
Thus x7(x3 + 1) = x3(x] + 1) and x? = x3.
From (*), x; and x, must have the same sign. Hence,
x1 = x2 and f is one-to-one.
Let y = f~!(x). Then x = f(y) = Y

Vyt+1
2

Since f(y) and y

fx) =
X1

, and

X
x2(y% +1) = y2. Hence y = 5
1—x

have the same sign, we must have y = ——, so

V1=x2

1 _ X
W= =
D(f) = R(f1) = (—00, ).
R(f)=D(f~H=(-1D.

glr)y=f(x)—2
Lety = g‘l(x). Then x = g(y) = f(y) — 2, so
fO)=x+2and g7 ') =y=f'x+2).

h(x) = f(2x). Let y = h~'(x). Then x = h(y) = f(2y)
and 2y = f~1(x). Thus h~'(x) =y = 1 f~1(x).

k(x) = =3fx). Lety = k~1(x). Then
x = ko) = 3£ 0 f) = —3 and
NN by
o =y=r"(-3)-

m(x) = f(x —2). Let y=m~'(x). Then
x=m(y)=f(y—2),and y—2= f~'(x).
Hence m~'(x) =y = f~1(x) + 2.

p(x) = Let y = p~ ' (x).

1
1+ f(x)

1
Then x = p(y) = s0 f(y)=;—l,

L+ ()
and p~lx)=y=f"! (l - 1).
X
% Let y = g~ !(x). Then
O

qx) =

x=q(y)= and f(y) =2x + 3. Hence
g ') =y=f"12x +3).

r(x)=1-2f3—4x)
Let y=r"!'(x). Then x =r(y) =1 —2f(3 — 4y).

1—x
fB-4y=—

o fl—x
1 _ _l o 1—x
and r (x)—y—4(3 f ( 2 ))
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SECTION 3.1 (PAGE 167)
I+ fx) o
s(x) = 1T fo) o 1Let y=s5""(x).
Then x = s(y) = M Solving for f(y) we obtain
1—f)
f) = T Hence s '(x) =y = F1 (x _ l)
y)= x4+ 1 =Y x+1)/)

f)=x24+1ifx>0,and f(x) =x+1if x <O.
If f(x1) = f(x2) then if x; > 0 and x2 > O then
x12+1:x%—|—1 SO X1 = X2;
if xj >0and x < O0thenx? + 1 =x+150x = x}
(not possible);
if x; <0 and x > 0 then x; = x% (not possible);
if x1p <0and x <O then x;1 +1=x2+1 so x; = xj.
Therefore f is one-to-one. Let y = f~!(x). Then

_ 241 ify=o0
x_f(y)_{y-i-l if y < 0.
Thus f~'(x) =y = {x‘ * I 1

VA

if x>1
if x < 1.

Ty =)

Fig. 3.1.21

g(x) =x3if x > 0, and glx) = x3ifx <0.
Suppose f(x1) = f(x2). If x; >0 and x2 > 0 then
x13 =x§ SO X| = X3.
Similarly, x; = x, if both are negative. If x; and x, have
opposite sign, then so do g(x;) and g(x2).
Therefore g is one-to-one. Let y = g~ (x). Then
3 .
_ _ 1y ify>0
*=80) {y1/3 if y <O.
_ 13 4f x>0
Thus lyy=y=1* 1rx=
g m=y {x3 if x < 0.
If x; and x; are both positive or both negative, and
h(x1) = h(x2), then x} = x3 50 x| = x2. If x; and x>
have opposite sign, then A (x;) and h(x2) are on opposite
sides of 1, so cannot be equal. Hence / is one-to-one.
2 .
_ 1 if y>0
Ify=h~'(x), then x =h(y) = |7 T yz9
Y (x), then x = ~(y) {—y2+1 ify <0
y>0,then y=+/x—1. If y <0, then y =+/1 — x.
Thus 2~ 1 (x) = vx—1 ifx=>1
JI—x ifx <1

y=fTl@)ex=f =y +y Tofindy=f"Q)
we solve y> +y = 2 for y. Evidently y = 1 is the only
solution, so f~1(2) = 1.

If
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SECTION 3.1 (PAGE 167)

g(x) = 1ifx3 +x = 10, that is, if x = 2. Thus
gl =2

h(x) = =3 if x|x|] = —4, that is, if x = —2. Thus
hl(=3) = —2.

If y = f~'(x) then x = f(y).
— P oY _ _
Thus 1 = f (y)dx SO - T0)

=Y

(since f'(x) = 1/x).
Fx)=1+2x3

Let y = f~1(x).

Thus x = f(y) = 1 +2y3.

1 1
1= 629 o (F 1y = 2 =

dx dx — 6y? 6/ TP
x3
If f(x) = m, then
, (2 4+ D(2x%) —4x32x)  4x?(x* +3)
fie) = =

x2+1)2 @2+ 12

Since f’(x) > 0 for all x, except x = 0, f must be one-
to-one and so it has an inverse.

If y = f~'(x), then x = f(y) =

4y3

y2+1

, and

2+ D(12y%y") — 4y32yy’
1=f/(y)z(y+)( YY) — 47 Qyy)

O+ 12
2 1 2
Thus y' = %. Since f(1) = 2, therefore
f'@ =1 and
"y 0+ 1? !
(r)o=2—25 =4
4yt +12y° o 4

If f(x) =x+/3+x2and y = f"'(x), then
x=f()=yy3+y% so,

2yy’ V34?2
1=y’,/3+y2+y2i =y =¥

342 o 342y%

Since f(—1) = —2 implies that f~!(—2) = —1, we have

Note: f(x) =xv3+x2=-2=x>3+x?) =4
x4 432 -4=0= (2+H2 -1 =0.
Since (x2 +4) = 0 has no real solution, therefore
x2—1=0and x =1 or —1. Since it is given that
f(x) = =2, therefore x must be —1.
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y=f102) 2= f) =y*/(1+/y). We must solve
242y = y2 for y. There is a root between 2 and 3:
F~12) ~ 2.23362 to 5 decimal places.

g(x) = 2x +sinx = g'(x) = 2+ cosx > 1 for
all x. Therefore g is increasing, and so one-to-one and
invertible on the whole real line.

y=g ') & x=g(y) =2y +siny. Fory=g""(2),
we need to solve 2y +siny — 2 = 0. The root is between
0 and 1; to five decimal places g~'(2) = y & 0.68404.
Also

dx dy
1====0 4y
dx ( —l—cosy)dx
dy 1
—1y/
2) = — = — ~0.36036.
LAY dx|,.—, 2+cosy

If f(x) =x secx, then f/(x) =secx + xsecxtanx > 1
for x in (—m /2, /2). Thus f is increasing, and so one-
to-one on that interval. Moreover,

limx—>—(ﬂ/2)+ f(x) = —oo and limx—>(rr/2)+ fx) = oo,

so, being continuous, f has range (—oo, 00), and so f*1
has domain (—o0, 00).

Since f(0) =0, we have f~'(0) =0, and

1 1

—1y/ 0) = — =1
o o)y o)

If y=(fog) !(x), then x = f o g(y) = f(g(y)). Thus
g =fTwandy =g ' (fTx)=g"o f).
That is, (fog) ! =g o fL.

ooy =21
X) =
’ bx —c¢
Let y = f~'(x). Thenx = f(y) = >~—2 and
by — ¢
bxy—cx=y—a soy:cx_a. We have
bx —1
) = fa) it =L = 7% Evidendy it is
bx —c¢ bx — 1

necessary and sufficient that ¢ = 1. a and b may have
any values.

Let f(x) be an even function. Then f(x) = f(—x).
Hence, f is not one-to-one and it is not invertible.
Therefore, it cannot be self-inverse.

An odd function g(x) may be self-inverse if its graph is
symmetric about the line x = y. Examples are g(x) = x
and g(x) = 1/x.

No. A function that is one-to-one on a single interval
need not be either increasing or decreasing. For example,
consider the function defined on [0, 2] by

f0<x<l1
if l <x <2

X
ro={,

It is one-to-one but neither increasing nor decreasing on
all of [0, 2].
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First we consider the case where the domain of f is a
closed interval. Suppose that f is one-to-one and con-
tinuous on [a, b], and that f(a) < f(b). We show that
f must be increasing on [a, b]. Suppose not. Then there
are numbers x| and x» witha < x| < xp < b and
f(x1) > f(x2). If f(x1) > f(a), let u be a number
such that u < f(x1), f(x2) < u, and f(a) < u. By
the Intermediate-Value Theorem there exist numbers ¢j in
(a,x1) and ¢ in (x1, x2) such that f(c;) = u = f(c2),
contradicting the one-to-oneness of f. A similar con-
tradiction arises if f(x;) < f(a) because, in this case,
f(x2) < f(b) and we can find c; in (x1, x2) and ¢7 in
(x2, b) such that f(c1) = f(c2). Thus f must be increas-
ing on [a, b].

A similar argument shows that if f(a) > f(b), then
f must be decreasing on [a, b].

Finally, if the interval / where f is defined is not
necessarily closed, the same argument shows that if [a, b]
is a subinterval of I on which f is increasing (or de-
creasing), then f must also be increasing (or decreasing)
on any intervals of either of the forms [x1, b] or [a, x2],
where x; and xp arein / and x; <a < b < x2. So f
must be increasing (or decreasing) on the whole of /.

Section 3.2 Exponential and Logarithmic
Functions (page 171)

3
% _ 3352 312 _ /3

2128172 _ 91/293/2 _ 92 _ 4

logs 125 = logs 5° = 3

It log4(é) = ythen 4’ = é, or 22 = 273, Thus
2y = —3 and 10g4(é) =y= —%.

, 1\
10g1/3 32J\ = 10g1/3 (g) = —2x

$£2=8 = log8=3 = 2ud=22_2/2

lo—loglo(l/x) — L =x

1/x

Since log, (x1/10% ) = log, x = 1, therefore

log, x
x/og,x) — 41 — o

(lOga b) (lOgh a) = IOga a=1
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SECTION 3.2 (PAGE 171)

log, (x(og, %)) = log, (2x) = log, x + log, 2

=1+log,2=1+

log, x
1

(logy 16)(log4 2) = 2 x 3= 1

log 575 +1log53 =log 5225 =2

(since 15% = 225)
loge 9 +logg 4 = logg 36 =2

4% .32
2logz 12 — 4log; 6 = logs (W)
=log;(37%) = -2
log, (x* + 3x% 4+ 2) + log, (x* + 5x% 4 6)

—4log, VxZ+2

- loga((xz + )2+ 1)) + loga((xz +2)02 3))

—2log; (x> 4+2)
= log, (x> + 1) 4 log, (x> + 3)
= log, (x4 +4x% + 3)
log. (1 —cosx) +log (1 +cosx) —2log sinx

(1 —cosx)(1 + cosx) sin? x
=log, — =lo
sin® x

™ sin? x
=log,1=0

y=3Y2, logyg y = v/2 log;3.

y = 10V2 12103 ~ 4.72880

logy 5 = (logg5)/(logo 3 ~ 1.46497

22% = 5+ 2xlog)p2 = (x + 1) logyo 5,

x = (log;(5)/(2log 2 —log( 5) ~ —7.21257

x‘/z =3, «/Eloglox =logy( 3,
x = 10002109/V2 ~ 217458

log, 3 =35, (logjy3)/(logpx) =5,
log;ox = (log;3)/5, x = 100°8109/5 ~ 124573

logy x =5, (log;ox)/(ogq3) =5,
logjgx = Slogo3, x = 107108103 = 35 = 243
1 1 _1 _
Let u =log, | — ) then @ = — =x"". Hence, a
X x
and u = —log, x.

1
Thus, log, (—) = —log, x.
X

Let log, x = u, log, y = v.
Then x =a“, y = a".

u
X a _
Thus — = — =ad"*7"
y a’

and log, (£> =u—v=Ilog,x —log, y.
y

u

=X
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Let u =log,(x”), then a" = x” and a'y = x.
Therefore 4 log, x, or u = ylog, x.

y
Thus, log, (x”) = ylog, x.

Let log, x = u, log,a =v.

Thus " = x and b” = a.

Therefore x = b S bUw/v) = gu/v

and log, x = 228t
v log,a

1
logy(x +4) —2logy(x + 1) = 3

1 x+4 1
ogy ——— = =
S Gr D 2
x+4 42 _y
(x +1)2

2x2+3x —2=0but we need x + 1 > 0, so x = 1/2.

First observe that logg x = log; x/log; 9 = % logz x. Now
2logs x +loggx = 10

log; x4 10g3x1/2 =10

logz x°/2 = 10

X2 =310 o x = 310)2/5 = 34 — g

Note that log, 2 = 1/log, x.

Since limy_, 0 log, x = oo, therefore limy_. log, 2 = 0.

Note that log, (1/2) = —log, 2 = —1/log, x.
Since limy_ o+ log, x = —o0, therefore
limy_, 04 log, (1/2) = 0.
Note that log, 2 = 1/log, x.
Since limy_ 14 log, x =
lim,_, 1+ log, 2 = oo.

0+, therefore

Note that log, 2 = 1/log, x.

Since lim,_;—log,x = 0—, therefore

limy_1—log, 2 = —o0.
a" -1
f(x) =a* and f'(0) = ;}m}) = k. Thus
x+h —a
/ = li
Jx) Jim A
a*a — a*
= lim
h—0 h
. a"—1 Y .
=a" lim =a' f'(0) =a'k =kf(x).
h—0

y=fW=x=f)=ad

dx dy
1:—:](}—
= dx “ dx
dy 1 1
dx ~ ka>  kx’

Thus (£~ (x) = 1/(kx).
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Section 3.3 The Natural Logarithm
and Exponential (page 179)

3
&3
26375/2261/22\/5
Jed
1/2 ,2/3 1 2 7
ln(e/e/)zi—l—g:g
eSlnx:xS

Bn9/2 _ 93/2 _ 57

3x

1 _
In— =1Ine = —3x

e3x
2Incosx sin x 2 2 )
e * +(lne‘ ) =cos"x +sin“x =1

43 64
3In4 —4In3=In— =1In—
34 81

4In/x+6InGx"?) =2Inx +2Inx =4Inx
2Inx +5In(x —2) = ln(xz(x - 2)5)

In(x% + 6x +9) = In[(x + 3)*] = 2In(x + 3)

2x+1 — 3X
(x+1)In2=x1n3
In2 In2

YT h3—m2 G2

3x — 917)( :> 3x — 32(17x)

= x=201-x) = x=3
15
ox . gxt3

—xIn2=In5— (x +3)In8
—1n5— GBx+9)In2
2xIn2=1In5—91n2
In5—-9In2
T 2m2

23 g — 02 oy 2 30

=2x-3=0=(x—-3Nx+1=0
Hence, x = —1 or 3.

In(x/(2 — x)) is defined if x/(2 — x) > O, that is, if
0 < x < 2. The domain is the interval (0, 2).

In(x? — x —2) = In[(x — 2)(x + 1)] is defined if
(x —2)(x +1) > 0, that is, if x < —1 or x > 2. The
domain is the union (—oo, —1) U (2, 00).

In2x —5) > In(7 — 2x) holds if 2x —5 > 0,7 —2x > 0,
and 2x —5 > 7 — 2x, that is, if x > 5/2, x < 7/2, and
4x > 12 (i.e., x > 3). The solution set is the interval
(3,7/2).
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In(x?> —2) < Inx holds if x> > 2, x > 0, and x> — 2 < x.
Thus we need x > +/2 and x2 — x — 2 < 0. This latter
inequality says that (x — 2)(x + 1) < 0, so it holds for
—1 < x < 2. The solution set of the given inequality is

+2,2].

S5x

y = e, y/=5€5x

y=xe* —x, y’:ex+xeX_]

— X _ —2x
y = ej = Xe
y/ — e—Zx _ 2xe—2x

=(1—-2x)e >
y = xZ ex/2’ y/ — 2xex/2 + %XZ ex/2

=In(Bx —2) f= 3
y= = 3x =2

3

=1In|3x — 2|, ' =

y | | Y=33
eX

:1 1 X /:
y=In(l+e) vy e
fo =", flx) =@

et , e —e
y = ) Y = )

dx 1
x = e Int, == =363 Int + —¢*
dt t
y=e€), Yy =e%) =t
e* 1 , e’
y = = 1 _ ), y =
1+ e* 1+ e* (14 e¥)2

y=e'sinx, y =e"(sinx + cosx)

!/

y=e ¥ cosx, y'=—eFcosx —e Fsinx

y=Inlnx

y=xlnx —x
1

y’:lnx—{—x(—)—l:lnx
x

2

2 X

= 1 —_ —

y=x"Inx 2
, x2 2x

y=2xInx+ — — — =2xInx
by 2

y = In|sinx]|, y =
y = 52x+1
y =252 In5 = (21n5)5% !

y= 2(x2_3x+8), y/ = (2x — 3)(1n 2)2(x2_3x+8)

gx) =1"x", g (x) =t"x"Int 4+ 1!

h@) =1" —x', K@) =xt* ' —x'Inx

41.

42,
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f(s)=log,(bs +c) = M
Ina

&) = st oma

¢() = log, (2x +3) = 22T
Inx

1 2 In(2 3 !
nx(2x+3>—[n(x+ )](;)

(In x)2
_ 2xInx — (2x +3)In(2x + 3)
- x(2x +3)(Inx)2

y :xﬁ — eﬁlnx

g'x) =

y/ :eﬁlnx ( In x + ﬁ)
2J/x  x

= xV¥ (% (% Inx + 1))

Inx
Given that y = (—) ,let u = Inx. Then x = ¢" and
X

1 u
y = (—) = (e = e Hence,

eu

d_y _ d_y . d_u :(_2’467”2) l _ _21nx
dx du dx X X

y =In|secx + tan x|

, secxtanx + sec? x

y= secx 4+ tanx
=secx
y=1In|x + vx2 —da?|

2x
I+
;o 2Vx2 —a? 1

x4V Vi —a?

y=In(vx%2+a%—x)
x

y = Vx%+a? B
Vx4t a?—x
1

V2t a

y = (cosx)® — x®F =

1
y' = e¥Incosx |:ln cosx + x ( ) (— sin x)]
oS X

1
— ecos0)(Inx) [— sinxInx + — cos x]
X

&r Incosx __ e(cosx)(lnx)

= (cos x)*(Incos x — x tan x)

. 1
— x©o8¥ (— sinxInx + —cosx
x

(

1

X

)lnx
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49. fx) = xe™ Thus Inx = llnazlnal/“, so x =alla.
f'(x) = e™ (1 +ax) ¢
(x) =e*Q2a + a*x) 55. f)=x—-—1Dx-2)x—-3)(x—4)
£ (x) = e‘”(3a2 + a3x) In f(x) =In(x — 1) +1In(x —2) + In(x —3) + In(x — 4)
ro, 1 1 1 1
. f(x)f(x)_x—1+x—2+x—3+x—4
(n) — A% n—1 n 1 1 1 1
[P x)=e"(na"" +a"x) flx) = f(x)( + + + )
. x—1 x-2 x-3 x—-4
50. Since
/3
. X o s p o YRR
E(ax + bx +c)e’ = (2ax + b)e* + (ax” + bx + ¢)e (1 4 5x)%/
4
= [ax’ + Qa + b)x + (b + ¢)]e* In F(x) = 3In(1 +x) + 3 In(1 — x) — 5 In(1 + 5x)
F'(x) 1 1 4

= [Ax? + Bx + Cl¢*.

F(x) 2(1+x) 3(1—x) (1+5%)

Thus, differentiating (ax*> + bx + c)e* produces another F'(0) = F(0) [l — l — i] - (1)[1 — l — 4] - _g
function of the same type with different constants. Any 2 3 1 23 6
number of differentiations will do likewise. 2 2 2
57, fo) " =D& =2)(x" = 3)
2 . X) =
51. y=e" 24+ DE2+2)(x2 +3)
2 3x2x1 1
y = 2xe* f(ﬂziz—, f=0
V2o 4 43205 — (] 4 2x D)t S5x6x7 35
y =ce —|—2xe =201+ xze , lnf(x):ln(xz—1)+1n(x2—2)+ln(x2—3)
V"' =2(4x)e" +2(1 +2x%)2xe” = 4(G3x +2x7)e" —In(x? + 1) — In(x? + 2) — In(x* + 3)
Y@ =43 + 6x2)e™ +4Gx + 2x3)2xe” 1, 2x 2x 2x
2L g o' VT et e 2t e 3
=43 4 12x~ +4x™)e" X x X X
2x 2x 2x
52. f(x)=In@x+1) fl)=2Qx+ 17! 241 x2+2 x243
_ - 1 1
F =02+ W = @2+ £ = 2x f(x)( e
X — x? - X% —
P =-@n2tex+n | | i
Thus,ifn=1,2,l3,...wehave _x2+1_x2—|—2_x2+3>
fO@) ==D""tm - D12"Qx + D™ L1 01 1 11
f’(2):—(—+—+ ——————— )
53. a) f(x)=@xH)F =1 353 21 5 6 7
In f(x) = 21 —ixg—_556
nf)=xinx T35 7105 3675
l £/ =2xInx +x Since f(x) = (x2 — 1)g(x) where g(1) # 0, then
f f'(x) =2xg(x) + (x* — 1)g’(x) and
2 —1)(-2 1
f=x" H2mx+1) f/(1):2g(1)+():2x(2x)3%:g,
b) gl =x"
Ing=x"Inx 58. Since y = x2e~*, then

r, x*
—g' =x*(1+Inx)Inx + —
g/g ( ) x y = 2xe™™ —2x3e™ = 2x(1 —x) + x)efxz.
X l
g =x"x" (— +Inx + (lnx)z)
X

Evidently g grows more rapidly than does f as x grows
large.

1
The tangent is horizontal at (0, 0) and (jzl, —).
e

59. f(x)=xe™*

54. Given that x* —a where a > 0, then fa)=e*(1—x), CPx=1, f(I)= 1
e

f(x)>0if x <1 (f increasing)

Ing=x" Inx=alnx. f'(x) <0if x > 1 (f decreasing)
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(Llje)y =xe"

Fig. 3.3.59

. 1 1
60. Since y =Inx and y’ = 1= 4 then x = 7 and
y= ln% = —In4. The tangent line of slope 4 is
y=—In4+4(x — %), ie, y=4x —1—1In4.

61. Let the point of tangency be (a, e?).
Tangent line has slope

a
e’ —0 d
=_e)( :ea

a—0 dx

X=a

Therefore, a = 1 and line has slope e.
The line has equation y = ex.

y
(a,e®)
y=e
-
Fig. 3.3.61
.o, 1 1
62. Theslopeof y=Inx atx =aisy = — = —. The

, , x=a 7 65
line from (0, 0) to (a, Ina) is tangent to y = Inx if .

Ina -0 1

a—0 a

. . . . X
i.e., if Ina =1, or a = e. Thus, the line is y = —.
e
y
(a,Ina)
X
y=Inx

66.

Fig. 3.3.62

a . 63.

64.

SECTION 3.3 (PAGE 179)

Let the point of tangency be (a, 2*). Slope of the tangent
is

24 -0 _ d o
a—1 dx

=2%m2.

X=a

1
a=14+—.

Thusa — 1= —,
In2 In2
So the slope is 27 In2 = 2!+71/2) |2 = 2¢1n 2.
1
(Note: In2V/M2 = ___|p2=1= ol/In2 _ e)
In2

The tangent line has equation y = 2eln2(x — 1).

The tangent line to y = a* which passes through the
origin is tangent at the point (b, a”) where

a®>-0 d .
= —ua
b—0 ~ dx

=a’lna.
x=b

b — 41/Ina

1
Thus b =Ina, so a = e. The line y = x will

intersect y = a* provided the slope of this tangent line
. . e
does not exceed 1, i.e., provided E < 1l,orelna < 1.
Thus we need a < el/e.
y

(b, ab)

y=a

Fig. 3.3.64

1
e”lni:x—i——
y y

’
- 1

ex})(y +xy/)1n£ +exyX (#) =1—= _zy/
y x y

1
At (e, —) we have
e

1 1

e(— +ey’>2+e—2(e—e3y/) =1 —ezy’
e e

24262y +1—e2y =1—e%y.

Thus the slope is y' = ——.
e

xel+y—2x=In2= e’ +xe’y'+y —2=0.
At (1,In2),242y +y —2=0=y =0.
Therefore, the tangent line is y = In2.
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67. f(x) = Axcoslnx + Bxsinlnx

1
Therefore In — + Inx = C (constant). Taking x = 1, we
f'(x) =Acoslnx — Asinlnx + Bsinlnx + Bcoslnx X

1
= (A+ B)coslnx + (B — A)sinlnx get C =Inl+1Inl=0. Thus ln; =—lInx.
1
fA=B=— th = 1 1 1
en f'(x) ICOS nx. | 72. Il ln(x—>:lnx+ln—:lnx—lny.
Therefore /coslnxdx = —xcoslnx + —xsinlnx + C. Y Y
| 2 2 73 d [In(x") Inx] rx™ b ror 0
. —[In —rlnx] = ——=—-—-=0.
If B= X A=—— then f (x) = sinln x. dx o x x" X X X
1 Therefore In(x") — rlnx = C (constant). Taking
Therefore /smlnxdx = —xsmlnx— Excoslnx—i—c —lL,weget C =1Inl—rlnl =0—0 = 0. Thus

In(x") =rlnx.

_ X X o
68. Fap(x)=Ae’ cosx + Be" sinx 74. Let x > 0, and F(x) be the area bounded by y = 12, the

iFA,B(X) t-axis, t =0and t = x. For h > 0, F(x +h) — F(x) is

dx the shaded area in the following figure.
= Ae”* cosx — Ae”* sinx + Be* sinx + Be* cosx ¥

= (A+ B)e* cosx + (B — A)e* sinx = Forp,p—a(x)

d
69. Since d_FA‘B(x) = Fa4+B.B—A(x) we have
x

=2
2 d y =
8 —5Fa B(x) = EFAJrB,BfA(x) = Fap,24(x)
b) @ & Fro(x) = d Fo,—2(x)
—e*cosx = X —Fo_2(x
dx3 dx3 0 dx 72
= F_p _2(x) = —2¢* cosx —2¢* sinx X x+h P
d .
70. d—(Ae‘” cosbx + Be®™ sinbx) Fig. 3.3.74
x
= Aae™ cosbx — Abe™ sinbx + Bae™ sinbx Comparing this area with that of the two rectangles, we
+ Bbe™ cosbx see that

= (Aa + Bb)e™ cosbx + (Ba — Ab)e™" sinbx. hx* < F(x +h) — F(x) < h(x +h)*.

a
(a) If Aa+Bb =1 and Ba— Ab =0, then A = PRy~ Hence, the Newton quotient for F(x) satisfies
b
d B=———=.Th F h)y—F
an a2 + b2 us X2 < w < (x +h)>2.
“* cosbx dx Letting & approach O from the right (by the Squeeze The-
1 orem applied to one-sided limits)
= ﬁ(ae‘” cos bx + be™ sin bx) +C.
a’+b Fx+h) —F(x)
im ——= = x~.
h—0+ h
—b
(b) If Aa+Bb =0 and Ba—Ab =1, then A = o) If h<0and 0 < x +h < x, then
a
a
_ F h)y—F
andB_a2+b2. Thus @+ h)? < (x + 2 (x) <2
% sinbx dx so similarly,
1 ! Fix+h)—Fkx)
= m(ae‘“‘ sinbx — be™ cos bx) +C. ol I =4
Combining these two limits, we obtain
d 1 1 -1 1 1 1 —
71. — |In—+Inx|=— — 4+ —=——4+-=0. iF(x)zlimF(xJ’_h) F(x)=x2.
dx X 1I/x \ x X X X dx h—0 h
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Therefore F(x) = /xzdx = %x3 + C. Since
FO) = C = 0, therefore F(x) = %x3. For x = 2,
the area of the region is F(2) = % square units.

a) The shaded area A in part (i) of the figure is less
than the area of the rectangle (actually a square)
with base from t = 1 to + = 2 and height 1/1 = 1.

Since In2 = A < 1, we have 2 < e! =e;ie., e > 2.

YV A (1) Yy A (i
y=1/1 =
\
A Ay ”
1 2 ' 1 2 3y
Fig. 3.3.75
b) If f(r) = 1/t, then f'(r) = —1/¢% and

F"() = 2/t > 0fort > 0. Thus f/(r) is an
increasing function of ¢ for r > 0, and so the graph
of f(¢) bends upward away from any of its tangent
lines. (This kind of argument will be explored fur-
ther in Chapter 5.)

c) The tangent to y = 1/t at t = 2 has slope —1/4. Its

equation is

X
-2 =1--.
(x ) ory )

N —
s —

y:

The tangent to y = 1/¢ at t = 3 has slope —1/9. Its

equation is

(x—3)

Wi

ory=

[SSERE
O —
O =

y:

d) The trapezoid bounded by x =1, x =2, y =0, and

y =1— (x/4) has area

The trapezoid bounded by x =2, x =3, y = 0, and

y=1(2/3) — (x/9) has area

) In3 = A+ Ay = >+ By
e) In3 > =4 —=—>
e L TR )

Thus 3 > ¢! = e. Combining this with the result of

(a) we conclude that 2 < e < 3.

10.

11.

SECTION 3.4 (PAGE 187)

Section 3.4 Growth and Decay (page 187)
x3
lim x3¢™ = lim — = 0 (exponential wins)
X—>00 x—>00 eX
X
lim xe* = lim — = oo
X— 00 X—00 X
2e* -3 2-3¢F 2-0

im ——=1m — = —— =
x—oo e* +5 x—00 | 4 5¢—* 14+0
.ox—2eF . 1=2/(xe") 1-0
lim —— = lim = =
x—>00 x +3e™*  x—oo | +3/(xe¥) 140

lim xInx =0 (power wins)
x—0+

lim x(In|x))> =0
x—0

. (Inx)?
lim

X—>00

=0 (power wins)

Let N(¢) be the number of bacteria present after ¢ hours.
Then N(0) =100, N(1) =200.

d
Since e kN we have N(t) = N(0)e¥" = 100X,
Thus 200 = %OOek and k = In2.

Finally, N <§> = 100e®/22 ~ 565 .685.

There will be approximately 566 bacteria present after
another 1% hours.

Let y(¢) be the number of kg undissolved after ¢ hours.
Thus, y(0) = 50 and y(5) = 20. Since y'(¢) = ky(¢),
therefore y(t) = y(0)e* = 50e*’. Then

Sk 1 2
20 = y(5) = 50¢* = k=12

If 90% of the sugar is dissolved at time 7 then
5= y(T) = 50eT, so

1 1 5In0.1)

T=-In—=
k10  In(0.4)

~ 12.56.

Hence, 90% of the sugar will dissolved in about 12.56
hours.

Let P(¢) be the percentage undecayed after ¢ years.
Thus P(0) = 100, P(15) =170.

dP
Since - = kP, we have P(r) = P(0)ek" = 100e*

1

Thus 70 = P(15) = 100e'%* so k = s 1n(0.7).

The half-life T satisfies if 50 = P(T) = 1007, so
1 151n(0.5)

T =2In(0.5) = === ~29.15.

In(0.7)
The half-life is about 29.15 years.
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Let P(¢) be the percentage remaining after ¢ years. Thus
P'(t) = kP(t) and P(t) = P(0)e!" = 100e"". Then,

50 = P(1690) = 100e'% — k =
(1650) ¢ = K= 1600

a) P(100) = 100¢!9% =~ 9598, i.c., about 95.98%
remains after 100 years.

b) P(1000) = 100¢!90% =~ 66.36, i.c., about 66.36%
remains after 1000 years.

Let P(¢) be the percentage of the initial amount remain-
ing after ¢ years.
Then P(t) = 100eX and 99.57 = P(1) = 100¢*.
Thus k£ = In(0.9957).
The half-life T satisfies 50 = P(T) = 1007,
T = lln(OS)— w ~ 160.85
O T Y T n0.995) o
The half-life is about 160.85 years.

Let N(z) be the number of bacteria in the culture ¢ days
after the culture was set up. Thus N(3) = 3N(0) and
N(7) = 10 x 10%. Since N(t) = N(0)ek, we have

3N@©0) =N@3) = NO)e** = k= {In3.

10" = N(7) = N(O)e'™* = N(©0) = 107~ 73113 x 770400.

There were approximately 770,000 bacteria in the cul-
ture initially. (Note that we are approximating a discrete
quantity (number of bacteria) by a continuous quantity
N(t) in this exercise.)

Let W(r) be the weight ¢ days after birth.
Thus W (0) = 4000 and W (r) = 4000’
1
Also 4400 = W (14) = 4000e'%, is k = o In(1.1).
Five days after birth, the baby weighs
W (5) = 4000e6/1H (D) ~ 413850 ~ 4139 grams.

Since

I')=kI@) = 1) = 1(0)e" = 4067,
15

1 3
15 =1(0.01) = 40¢*9% — k= ——In — = 1001n =,
0.0 =40 = k= 557" 20 "3

thus,

3 3\ 1001
I1(t) =40exp (IOOt In §) =40 (g) .

$P invested at 4% compounded continuously grows to
$P (%047 = $Pe028 in 7 years. This will be $10,000 if
$P = $10,000e~"28 = $7, 557.84.

Let y(¢) be the value of the investment after ¢ years.
Thus y(0) = 1000 and y(5) = 1500. Since

y(t) = 1000 and 1500 = y(5) = 1000e*, therefore,
k=13

92

1
In 3 ~ (0.0004101.

19.

20.
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a) Let ¢ be the time such that y(r) = 2000, i.e.,

1000 = 2000

1 5In2
1

= t=—-In2= = 8.55.
k In(3

Hence, the doubling time for the investment is about
8.55 years.

b) Let r% be the effective annual rate of interest; then

p
1000(1 + —) = y(1) = 1000&*
000(1 + o) y(1) = 1000e

=r = 100(e" — 1) = 100[exp (+In 3) — 1]
= 8.447.

The effective annual rate of interest is about 8.45%.

Let the purchasing power of the dollar be P(¢) cents af-
ter ¢ years.

Then P(0) = 100 and P(¢) = 100,

Now 91 = P(1) = 100¢F so k = In(0.91).

If25 = P@ = 100 then
1 1n(0.25)

t = —1n(0.25) = ~ 14.7.
k In(0.91)

The purchasing power will decrease to $0.25 in about
14.7 years.

Let i% be the effective rate, then an original investment
i

of $A will grow to $A<1 + m) in one year. Let r%

be the nominal rate per annum compounded n times per

year, then an original investment of $A will grow to

$A( 1+ — '
100n

in one year, if compounding is performed n times per
year. For i = 9.5 and n = 12, we have

sal1422) zsaf14+ :
100/ — 1200

== 1200( /1,095 — 1) —9.1098.

The nominal rate of interest is about 9.1098%.

Let x(z) be the number of rabbits on the island ¢ years
after they were introduced. Thus x(0) = 1,000,

x(3) = 3,500, and x(7) = 3,000. For t < 5 we have
dx/dt = kjx, so

x(1) = x(0)eF = 1,000e5"

x(2) = 1,000e*1 =3,500 = %1 =35
5/2
x(5) = 1,000 = 1,000(e2’<1) =1,000(3.5)%/2

~ 22,918.
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For t > 5 we have dx/dt = kyx, so that

x(1) = x(5)ek2(t=>

x(7) = x(5)e®2 =3,000 — e

5/2 3,000 \>/?
x(10) = x(5)3% = x(5)(e2k2) ~ 22,918 (22 918)

~ 142.

so there are approximately 142 rabbits left after 10 years.

22. Let N(¢) be the number of rats on the island # months
after the initial population was released and before the
first cull. Thus N(0O) = R and N(3) = 2R. Since
N(t) = Ref, we have e3* = 2, so e = 21/3. Hence
N(5) = Re* = 25/3R. After the first 1,000 rats
are killed the number remaining is 2PBR — 1,000. If
this number is less than R, the number at the end of
succeeding 5-year periods will decline. The minimum
value of R for which this won’t happen must satisfy
25/3R—1,000 = R, that is, R = 1,000/(2°/3 —1) ~ 459.8.
Thus R = 460 rats should be brought to the island ini-
tially.

23. f/(x) =a+bf(x).

a) fu(x) = a + bf(x), then
u'(x) = bf'(x) = bla + bf(x)] = bu(x).
This equation for u is the equation of exponential
growth/decay. Thus

u(x) = Cre?*,

_ 1 bx _ bx a
fo =1 (Cre* —a) = ce .

d
b) If d—y — a+ by and y(0) = yo, then, from part (a),
X

a
, yo=Ce"——.

=Cbx_
y e b

SR

Thus C = yo + (a/b), and

ay . a
= + _> — .
y ()’0 b e b

d
24. a) The concentration x(¢) satisfies d—): =a — bx(1).

This says that x(¢) is increasing if it is less than a/b
and decreasing if it is greater than a/b. Thus, the
limiting concentration is a/b.

25.

26.
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b) The differential equation for x(¢) resembles that of
Exercise 21(b), except that y(x) is replaced by x(z),
and b is replaced by —b. Using the result of Exer-
cise 21(b), we obtain, since x(0) = 0,

a

x(1) = (x(O) - %) -

= % (1 —eib’>.

) We will have x(t) = 3(a/b) if 1 —e™" =1, that is,
if e = 1, or —bt = In(1/2) = —In2. The time
required to attain half the limiting concentration is
t = (In2)/b.

Let T(¢) be the reading ¢ minutes after the Thermometer
is moved outdoors. Thus 7 (0) =72, T (1) = 48.

dT
By Newton’s law of cooling, e k(T — 20).

dv
If V(t) = T(t) — 20, then ar =kV, so

V() = V(0)ek = 52¢X.

Also 28 = V(1) = 52¢F, so k = In(7/13).

Thus V(5) = 52¢°17/13) ~ 2354, At+ = 5 the ther-
mometer reads about 7'(5) = 20 + 2.354 = 22.35°C.

Let T(¢) be the temperature of the object r minutes after
its temperature was 45° C. Thus 7 (0) = 45 and

T@40) = 20. Also 62—7; = k(T + 5). Let
u() = T(@) +5,s0u0) = 50, u(40) = 25, and
d_u = d—T = k(T +5) = ku. Thus,
dt dt
u(t) = 50e",
25 = u(40) = 50e*%,
1 25 1 1

“K=20"50 " 10 "2

We wish to know ¢ such that T () = 0, i.e., u(t) = 5,
hence

5 =u(t) = 50¢"
5
401n (%>
—— - = 13288 min.
In (—)
2

Hence, it will take about (132.88 — 40) = 92.88 minutes
more to cool to 0° C.

=

93



27.

28.

29.

30.

www. nohandesyar . com

SECTION 3.4 (PAGE 187)

Let T(¢) be the temperature of the body ¢ minutes after it

was 5°.
Thus 7(0) =5, T(4) = 10. Room temperature = 20°.

dT
By Newton’s law of cooling (warming) T = k(T —20).

av
If V(t) = T(¢) — 20 then E =kV,
so V(1) = V(0)ek! = —15¢K.

2

1
Also —10 = V(4) = —15¢%, s0 k = I In (§>

If T(t) = 15°, then —5 = V() = —15¢

n(3)
al =
SOt = %ln (l> :4—3 ~ 10.838.

3 In %
3
It will take a further 6.84 minutes to warm to 15°C.

By the solution given for the logistic equation, we have

Lyo Lyo

NnN=————"—"7: D= %
Yo+ L—yoe* T Yo+ (L —yoe *

Thus yi (L — yo)e ™ = (L — y1)yo, and
y2(L — yo)e % = (L — y2)y0.
Square the first equation and thus eliminate ¢ *:

((L - y1))’0)2 _ L —y)y
yi(L = yo) y2(L = y0)

Now simplify: yoy2(L — y1)?* = y?(L — yo)(L — y2)

yoy2L2=2y1y0y2L+yoy?y: = y2L*—y?(yo+y2) L+yoyiy»

2
+y2) —2
Assuming L #0, L = Yilo+y2) Yoyiy2

yE = Yoy
If yo =3, y1 =35, y2 =6, then
2 —1 4
Vo) im0 e o
25 —18 7

The rate of growth of y in the logistic equation is
dy y
— =ky(l—-=).
ar ( L )

dy  k L2+kL
ar — L\’ ’

Since

d
thus mtd is greatest when y = —.
dt 2
Lyo
, Yo+ (L — yo)e™* _
largest interval containing + = 0 on which the denomina-
tor does not vanish.
If yo > L then yo + (L — yo)e ® =0 if
Yo
t=t*=——In .
k yo—L
Then the solution is valid on (*, 00).
lim;— =4 y () = o0.

The solution y = is valid on the
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The solution
Lyo

y =
yo + (L — yo)e™k
of the logistic equation is valid on any interval containing

t = 0 and not containing any point where the denomina-
tor is zero. The denominator is zero if yp = (yo— L)e ¥,

that is, if
1
t=t"=——In %0 .
k yo— L

Assuming k and L are positive, but yp is negative, we
have * > 0. The solution is therefore valid on (—o0, *).
The solution approaches —oo as t — t*—.

y(@) =

1+ Me*
200 = y(0) = L
BRIy
1,000 = y(1) = L
’ =7 T 14 Mek

10,000 = lim y(t) =L
1—00

Thus 200(1 + M) = L = 10, 000, so M = 49. Also
1,000(1 4+ 49¢%) = L = 10,000, so e ¥ = 9/49 and
k = 1n(49/9) ~ 1.695.

L 10, 000
y(3) = = ~ 7671 cases
1+ Me—3k 1+ 49(9/49)3
Gy = M 008 casesiweek
= 3, cases/week.
Y (1 + Me—3%)2

Section 3.5 The Inverse Trigonometric
Functions (page 195)

.1 \/§ T
sin —_— = —
2 3

@an~ (1) = -2
T4

sec”! V2 = %

sin(sinf1 0.7) =0.7

cos(sin~' 0.7) = v/1 — sin2(arcsin 0.7)

=+/1-049 =051
2
tan~! (tan ?JT) = tan" ! (—v/3) = —%

sin™! (cos 40°) = 90° — cos™! (cos40°) = 50°

cos*l(sin(—o.z)) - % — sin*l(sin(—o.z))

b
=—+02
2+
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sin(cosfl(—%)) = \/1 — cos2( arccos (—%)
T V822

97 3 3

1 1
cos | tan - —_—
2 1
sec|tan™ " <
2

1

1
1 t 2 t -1 —_
\/ -+ tan ( an 2)
tan(tan~' 200) = 200
sin(cos ™! x) = v/1 — cos2(cos~! x)
=+1—-x2

cos(sin™! x) = /1 — sin2 (sin"lx) = V1 —x?

1 1
sec(tan—! x) /1t x2

tan(arctan x) = x = sec(arctanx) = /1 4+ x2

Sl

cos(tan_1 x) =

1
= cos(arctanx) =
V14 x2
X
= sin(arctan x) =
V1 + x2
; -1
tan(cos*1 X) = m
cos(cos™! x
/1 — 2
= " (by # 13)
X
1 1 2_1
cos(sec'x) = — = sin(sec™!x) = \/l - — = L
by x2 [x]

= tan(sec”'x) = v/x2 — I'sgnx

={ X2—1  ifx>1
—Vx2 -1 ifx<-1
=sin~! 2o
= 3
1 2
’
Y= >
1_(2x—1>23
3
3 2
VO—(4x2—4x+1)
B 1
V2 4+ x —x2
y = tan"! (ax +b), y = L.
1 + (ax + b)?

21.

22,

23.

24.

25.

26.

27.

28.

29.
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—b
y=cosflx
a
1 1
/
y =
| (x—b>2“
a2
—1 )
= ﬁ (assuming) a > 0).
a* — (x —

fx)=x sin~! x

X
f'(x) =sin~! x + .
V1 —x2
f(t) =ttan" "¢
t
"(t)y =tan" '
fi@) =tan Ty

u=z%sec” (1 + zz)

du _ 722z
— =2zsec ' U +D)+ (22)

dz A+2)/a+2)2 -1

2zzsgn ()
=2zsec (1422 + —= "2
14+ 22)vVz2+2
F(x)=(1 +x2) tan~! x
F'(x) =2xtan"'x +1
.1 /(@
y=sin (2) (x> laD)
x
o [ i] - *
Y= ) (a)Z 21y = a2
X
sin~! x
Gx)= ———
sin—1(2x)
in~! (22)—— in~! 2
sinT! (2x) ——= —sin” x ——
G'(x) = A1 —x2 A1 —4x2
= 2
(sin—1(2x))
A1 —4x? sin~!2x) —24/1 — x2sin" ' x
= 2
NN 4x2<sin*1(2x))
sin~! ¢
H(@) = —
sint
in ¢ ! in~!'t cost
/ sin N sin~!¢ cos
H'(t) = =
sin? ¢
1 -
= — —cscteottsin ¢
(sint)v/1 — 12
fx) = (sin_l xz)l/2
1 2x
Fl) = ~(sin~ ' x2)12 2
2 V1 — x4
X
V1 —x*/sin—! x2

95
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—1 a
y = cos —_—
(«/a2 +x2>

a2 -2 a
/ 2, 2\-32
Y _(1 a2+ x2 +x2> [_E(a +x%) Qx)]

__asgn(x)
T a?+x2
y= @2 —xZ4asin' L
a
Y = X " a 1
«/az—)c2 xza
-2
22
_a—x  [fa—x 0
= T3 Vaz (a > 0)
y:acos_1<1—i>—\/2ax—x2 (a > 0)
a
v a[l (1 x)z]_l/z( 1) 2a — 2x
a a 2v/2ax — x2
X
_«/Zax—x2

1 2x _mx
tan 7 —F

1 2y—2xy y2 —2xyy’
=7

A2 2 4
42 y y
y
14-2y  4—4y
At(1,2) ~— 2 _ 2T
2 4 16
T =2
8—4y =dn —dny =y =
T —1
At (1,2) the slope is —
If y = sin™! x, then y/ = # If the slope is 2
' V1 —x2
1 V3 :
then ﬁ =2 so that x = iT. Thus the equations
—x

of the two tangent lines are

y=%+2(x—?> andy:—%—i—Z(x—i—?).

1
. —1
—sinm x = ——— > 0on (-1, 1).
- — (-1, 1)
Therefore, sin~! is increasing.

1

—tan”  x = > (0 on (—o0, 00).

dx T 142x2
Therefore tan™! is increasing.
1
—1
—cos x=————=<0on (—1,1).
Ix s ( )

Therefore cos™! is decreasing.
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36. Since the domain of sec™! consists of two disjoint inter-

vals (—oo, —1] and [1, 00), the fact that the derivative of
sec™! is positive wherever defined does not imply that

sec™! is increasing over its whole domain, only that it is
increasing on each of those intervals taken independently.

In fact, sec™! (—=1) = 7 > 0 = sec™! (1) even though

—-1<1.
d 1
37. —cse'x=—sin ! -
Ix cse X Ix sin P
. 1 1
1 ! *
'z
. 1
lx|v/x2 =1
y 4
K
-
y = cse ! x
(=1,—7/2)
Fig. 3.5.37
38. cot™!x = arctan (1/x);
d - 1 -1 1
—cot N =—/— — =
dx I x2 14 x2
1+ —
X
Y /2
y= cot™ ! x
X
—m/2
Fig. 3.5.38

Remark: the domain of cot™! can be extended to include
0 by defining, say, cot™! 0 = /2. This will make cot™!
right-continuous (but not continuous) at x = 0. It is also
possible to define cot™! in such a way that it is contin-
uous on the whole real line, but we would then lose the
identity cot™! x = tan~!(1/x), which we prefer to main-
tain for calculation purposes.
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d d 1
39. —(an 'x+cot 'x)=—(tan'x +tan"! =
dx dx X

= ! + ! ( 1>_()'f £0
=———+—F\|—-——=5)=0ifx
2 1 2
! 1+ —

x2

Thus tan~' x 4+ cot™' x = C; (const. for x > 0)

Atx=1wehave = + % =
X = we nave — —_ =
44!

Thus tan~! x + cot™ x % for x > 0.
Also tan~! x + cot™ ! x = C, for (x < 0).
T T
At x = —1, t —— — — = (.
X we ge 1 47T )
Thus tan—!' x 4+ cot~ ! x = —3 for x < 0.
40. If g(x) = tan(tan~! x) then
2 -1
, _sec (tan™" x)
g =—7 35— 2
. 1 + [tan(tan™! )c)]2 _ 1+x2 _
- 1+ x2 T 14x2 7

If h(x) = tan™! (tan x) then % is periodic with period 7,

and

SE:C2 X

provided that x # (k+ %)n where k is an integer. h(x) is
not defined at odd multiples of %

y y

y=tan(tan™ ! x) /

(/2,7/2)

"
A

y=tan~ 1 (tan x)

e

Fig. 3.5.40(a) Fig. 3.5.40(b)

4. 4 ~!(cos x) !
. —cos (cosx) = ———
dx A1 —cos? x
_{1 if sinx > 0
—1 ifsinx <0

(—sinx)

os~!(cos x) is continuous everywhere and differen-
tiable everywhere except at x = nm for integers n.

y A

y = cos~!(cos x)

T+

Fig. 3.5.41

SECTION 3.5 (PAGE 195)

42. 4 sin”!(cos x) =
dx

1
——(—sinx)
/1 —cos?x
_{—1 if sinx > 0
1 if sinx <0

sin~!(cos x) is continuous everywhere and differen-
tiable everywhere except at x = nm for integers n.

y A

/2

N N
NN

y = sin~!(cos x)

Fig. 3.5.42

1
72(5602)6) = 1 except at odd

d
43. —tan!(tanx) =
dx 1 4+ tan® x

multiples of 7 /2.

tan—!(tan x) is continuous and differentiable every-
where except at x = (2n + 1)r/2 for integers n. It is not
defined at those points.

yaye
s

y= tan~! (tan x)

’/n /x

Fig. 3.5.43

1
ﬁ(_ csc? x) = —1 except at
cot x

integer multiples of .

d
44. — tan"!(cotx) =
dx

tan~! (cot x) is continuous and differentiable every-
where except at x = nm for integers n. It is not defined
at those points.

AN
NI

Fig. 3.5.44

'Y

y = tan—! (cot x)

\\\
NN
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X
45. Ifjx|]<land y=tan! ——— theny>0< x >0
V1 —x2
and
tany:#
V1 —x2
Zy=1+ X !
sec”y = —_— =
Y 1 —x2 1 —x2
siffy=1—cos’y=1— (1 —x?) =x>
siny = x.
Thus y = sin™! x and sin~! x = tan~!

—xZ
An alternative method of proof involves showing that the
derivative of the left side minus the right side is 0, and
both sides are 0 at x = 0.

46. If x > 1and y = tan~! +/x2 — 1, then tany = +/x2 — 1

and sec y = x, so that y = sec™! x.
If x<—1and y =7 —tan~' +/x2 — 1, then Z<y< 37”,

so secy < 0. Therefore

tany = tan(r —tan~ ' Vx2 — 1) = —/x2 — 1
sec?y =1+ @2 —1)=x>
secy = x,

because both x and sec y are negative. Thus y = sec™! x

in this case also.

47. If y =sin~! ,then y >0 < x > 0 and

1+ x2

X

V1 4+ x2

coszyzl—sinzyzl—

siny =

x2 1
T+x2  1+22
tan’y =sec?y —1=1+4x>—1=2x2
tany = x.

1 X

NSETZ

Thus y = tan~! x and tan~! x = sin™

1 b4

—1
48. ,then 0 <y < 7 and

If x>1and y =sin"

) x2—1
smmy =
X
2 x2—1 1
cos"y=1-— = —
Y x2 x2
SGCZ)/ =x2.
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Thus secy = x and y = sec™ ! x.

. xXe =
If x < -1 andy:n—31n_1?,then%§y<37”
and secy < 0. Therefore
. . ( ,1¢x2—1) 21
siny = sin | 7 — sin =
X X
2
2 x—1 1
cos“y=1-— = —
Y x2 x2
seczy:x2
secy = x,

because both x and secy are negative. Thus y = sec™!

in this case also.

f'(x) =0 on (—o0, —1)

-1
Thus f(x) = tan~! (x_) —tan"'x = Con
x+1
(—o00, —1).
Evaluate the limit as x — —o0:
i —an - (-2) =T
xl}r_noof(x) =tan 1 ( 7)==

-1 3
Thus tan~—! al —tanlx = il on (—oo, —1).
x+1 4

Since f(x) =x — tan~! (tanx) then

SCC2 X

f@y=1-—72 =1

—1=0
1 + tan2 x

ifx # —(k + %)n where k is an integer. Thus, f is

X

. .. . 7T
constant on intervals not containing odd multiples of 7

f(©0) =0but f(w) = w — 0 = 7. There is no contra-

.. TN . .
diction here because f’ <E) is not defined, so f is not

constant on the interval containing O and .

f(x)=x —sin"'(sinx) (=7 <x <)

fle)y=1-

1
————cosx
/1 —sin? x

COoS x

| cos x|
. b4 b4
0 if——<x<—
_ 2 2
= . b4 b4
2 f—-m<x<——o0r—<x<m
2 2

b4
Note: f is not differentiable at :I:E'
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y
(r.m) 2.
—/2
/2 x
= f(x)
(=m,—7)
Fig. 3.5.51
y/z;:>y=tam_1 x+C
14 x2
YO =C=1
Thus, y =tan~' x 4 1.
o1 = —ltan*1x+C
YT o e Y=3 3 3.
3)=2 = lanlitc c il
= = —tan =2 — —
Y 3 12

I x T
Thusyzgtan §+2—E.

1
/
y = —
V1 —x2
y(3) =sin"' () +C=1

:>y:sin_1x+C

22 ic=1=>c=1-1~
6 o o 6

Thus, y = sin~! x +1—- %

4 X
y = —— = y=4sin"!'Z +C
V25 — x2 5
y0) =0 0=0+C=C=0

Thus y = 4sin~! %

Section 3.6 Hyperbolic Functions

(page 200)
d 1
—sechx = —
dx dx cosh x
=—— sinh x = — sech x tanh x
cosh” x
d 1
—cschx = ——
dx dx sinh x
1
=-—— coshx = — cschx coth x
sinh” x
d h d cosh
—cothx = —
dx dx sinh x
inh? x — cosh® 1
_ sin x 2cos x_ L _ esch 2y
sinh” x sinh” x

4.

SECTION 3.6 (PAGE 200)

cosh x cosh y + sinh x sinh y

=l +e ) +e )+ (" —e ) —e )]
= 12" 4 2e77) = L(e" T oY)

= cosh(x + y).

sinh x cosh y 4 cosh x sinh y

=1l —e ™) +e )+ (e +e ) —e )]
= %(e“'y — ¢~y = sinh(x + y).

cosh(x — y) = cosh[x + (—y)]

= cosh x cosh(—y) + sinh x sinh(—y)

= coshx cosh y — sinhx sinh y.

sinh(x — y) = sinh[x 4+ (—y)]

= sinh x cosh(—y) + cosh x sinh(—y)

= sinh x cosh y — coshx sinh y.

sinh(x £ y)
cosh(x £+ y)
sinh x cosh y & cosh x sinh y

tanh(x £ y) =

cosh x cosh y & sinh x sinh y
tanh x &£ tanh y

1 &+ tanh x tanh y

er +e* 2

=cothx = =sechx = ———
y y e

eX —e™*

y y

y = sechx

Fig. 3.6.4(a) Fig. 3.6.4(b)
y= cschx = m
y
y =cschx
X
Fig. 3.6.4
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X
1+ —
d . _ d 2+1
—sinh 'x = —In(x+vVx2+1)= —¥*
dx | dx x+v/x2+1
x2+1
X
J J I+ = -
—cosh™lx = —1 Vi = —NYEr
dxcos X I n(x +vx ) Y oy
1
RN
d d1 (l+x
—tanh'x = — 21
dx dx2n<1—x>
S ll—xl-x—(+x)(=D) 1
T 214x (1—x)?2 T 1—x2
dx
——  =sinh'x+C
/x/xz—i-l
s hlx+C (> 1)
———— = COS X X >
Va2 —1

dx

/ﬁ=tanh*1x+c (—l<x<1

d
Lety = sinh~! (f) & x=asinhy = 1= a(COShy)d—y.
a X

Thus,

d . _|/x 1
— sinh (—) =
dx a acoshy
_ 1 _ 1
o - 2 2
a\/l—i—sinhzy Va? +x

/ dx inh™' = +C.  (a>0)
———— =sin — . a >
VT a
Let y = cosh™! al < x =aCoshy =acoshy
a
d
for y > 0, x > a. We have 1 = a(sinh y)d—y. Thus,
X
d X 1
—cosh™ — =

dx a asinhy
. 1 1

I
a\/coshzy 1 Va'-a

dx X
——  =cosh™' = +C. 0, x >
/ = cos a+ (a > X >a)

-1 X 2 4y
Let y =tanh™ — < x =atanhy = 1 = a(sech y)d—.
a X
Thus,
d 1
4 fanh™! L = —
dx a asech®y

a a
2

a2 —a2tanh? x a2 —x2

dx 1 X
—— = —tanh™ — + C.
a?—x2 a a
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1 1 1 2
a) sinhlnx = —(e"* —e My = Z (y—2) =2
2 2 X 2x
1 1 1 x24+1
b ;hl — Inx —Inx - _ _ —
) coshlnx 2(e +e ) 2(x—|—x> X

sinhlnx  x?—1
coshlnx ~ x2+1
coshlnx +sinhlnx x> +1+ % —1) 5

c) tanhlnx =

§ = =x
coshlnx —sinhlnx  (x24+1)—(@x2-1)

1 /1
csch™'x = sinh~!(1/x) = In (— +y=+ 1) has
x X

domain and range consisting of all real numbers x except
x = 0. We have

d d 1
—csch™'x = —sinh™! =
dx dx X

Fig. 3.6.8
1+1
11 = 1 (x+1
th™! x = tanh ' — = =1 Xl =21 ,
CO X an X 21’1 l_l 211 x—l
X

for |x| > 1. Also

d d 1
—coth™! x = — tanh™! —
dx X X

1 -1 -1

GRS

Fig. 3.6.9
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10. Let y = Sech™!x where Sechx = sechx for x > 0.
Hence, for y > 0,

1
x =sechy & — =coshy
X

1 1
& — =Coshy &y = Cosh™! —.
X X

Thus,
1
Sech™ x = Cosh™! —
X
D(Sech™!) = R(sech) = (0, 1]
R(Sech™) = D(sech) = [0, c0). "
Also, )
d d
—Sech™!x = —Cosh™! =
dx dx
. 1 ( -1 ) . -1
1\2 x? x4/1—x2
-] -1
(2)
y
y = Sech™!x 1
. -
Fig. 3.6.10 2.
11.  fap(x) = A" + Be™**
fap(x) =kAe* —kBe ™
fip(x) = K*Ae"™ + K> Be ™ 3.
Thus f) 5 — k*fap=0
gc.p(x) = Ccoshkx + D sinhkx
gc.p(x) = kC coshkx + kD sinh kx 4.
8¢.p(x) = k*C coshkx + k* D sinh kx
Thus g¢ p — k*gcp =0
coshkx + sinhkx = ek
coshkx — sinhkx = e~** 5.
Thus fa,p(x) = (A4 B)coshkx 4+ (A — B)sinh kx, that
is,
fa.B(x) = ga+p.a-B(x), and
D
gep(x) = =k ek 4 (e — ek, 6.
that is gc,p(x) = f(c+Dp)/2.(c-p)2 (*).
12. Since
hp m(x) = Lcoshk(x —a) + M sinhk(x —a) 7.

hy () = Lk?coshk(x — a) + Mk? sinhk(x — a)
= K*h m(x)

SECTION 3.7 (PAGE 206)

hence, Ay p(x) is a solution of y” — k*y =0 and

hi,m(x)

_ %(ekxfka + eka+ka> + %(ekxfka _ eka+ka)

L M L M
— (Ee—ka + Te—ka>ekx + (Eeka _ 7eka>e—kx

= A + Be™ = fap(x)
where A = Je *(L + M) and B = Je**(L — M).

V' =Ky =0=y=hpu(x)
= Lcoshk(x —a) + M sinhk(x — a)
y@=yo=>y=L+0=L =y,
Y@ =v=>v=0+Mk=M= %
Therefore y = hy, vy k(x)
= ypcoshk(x —a) + (vo/k) sinhk(x — a).

Section 3.7 Second-Order Linear DEs with
Constant Coefficients (page 206)

y'+7y' +10y =0
rP+7r+10=0

r+5r+2)=0 = r=-5-2
y=AefSt+Befzt

auxiliary eqn

y'=2y'=3y=0
P2—2r—3=0 = r=—-1,r=3
y = Ae”" + Be!

auxiliary eqn

y//+2y/=0
P4+2r=0 = r=0, -2
y=A+Be_2t

auxiliary eqn

4y//_4y/_3y:()
42 —4r —3=0=Qr+1@2r-3)=0
Thus, r1 = —3, =3, and y = Ae™ (/2" 4 BeO/".

y//+8y/+ 16)7 -0
auxiliary eqn P48 4+16=0 = r=-4, —4
y = Ae ™ + Bre™

y'=2y'+y=0
PP=2r+1=0=@0¢-172=0
Thus, r =1, 1, and y = Ae’ + Bte'.

y'—6y +10y =0
rP—6r+10=0 = r=3+i
y = Ae* cost + Be sint

auxiliary eqn
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9y//+6y/+y=0

92 4+6r+1=0=Gr+1>=0

Thus, r = —1, —1, and y = Ae™ /" 4 Bre~ 1/,
y”+2y/+5y=0

PP+2r+5=0 = r=—1+2i
y = Ae ' cos2t + Be ' sin 2t

16.

auxiliary eqn

For y” — 4y’ 4+ 5y = 0 the auxiliary equation is
P2 4r+5= 0, which has roots r = 2 £+ i. Thus, the
general solution of the DE is y = Ae* cost + Be? sint.

For y” + 2y’ + 3y = 0 the auxiliary equation is

r?+2r +3 = 0, which has solutions r = —14+/2i. Thus
the general solution of the given equation is

y = Ae~! cos(v/2t) + Be ! sin(v/21).

Given that y” +y +y =0, hence #2 +r + 1 = 0. Since
a=1,b=1 and ¢ = 1, the discriminant is

D = b* —4ac = -3 < 0 and —(b/2a) = —% and

w = +/3/2. Thus, the general solution is

y = Ae~ (/21 cos(?t) + Be~ /21 sin(?t). 17.
2y" +5y" —3y=0
y0) =1
y'(©0)=0

The DE has auxiliary equation 2r2 + 5y — 3 = 0, with
roots r = % and r = —3. Thus y = Ae'/2 4+ Be™2,

A
Now 1 =y(0) = A+ B, and 0 = y'(0) = 5—33.
Thus B =1/7 and A = 6/7. The solution is

6r/2 —3t
7e +7e .

Given that y” + 10y’ 4+ 25y = 0, hence
r24+10r +25=0= (r + 52 =0=r = —5. Thus,

y:

y = Ae™' + Bre™
y' = —5¢"(A+ Bt) + Be .

Since
0=y(l)=Ae™> + Be™>
2=y'(1)=—5¢"(A+ B) + Be™,
we have A = —2¢° and B = 2¢°.

Thus, y = —2e%¢ > + 2tede™> = 2(t — 1)e >~ D,

y'+4y' +5y=0

y(0) =2

y'(©0)=0
The auxiliary equation for the DE is r> + 4r +5 = 0,
which has roots r = —2 £i. Thus

y = Ae  cost + Be ' sint
y' = (=2Ae7 % + Be ) cost — (Ae™> +2Be ) sint.
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Now 2 =y(0) =A = A =2, and
2=y (0)=-24+B=B=6.
Therefore y = e~ (2cost + 6sint).

The auxiliary equation r2— Q2+ e)r + (1 + €) factors
to(r—1—¢€)r — 1) =0 and so hasroots r = 1 + €
and r = 1. Thus the DE y" — 2+¢€)y'+ (1 +€)y =0

has general solution y = Ae!t9)" 4 Be!. The function
e+ _ yt
Ve(t) = is of this form with A = —B = 1/e.

€
We have, substituting € = h/1,

. o elrar _
lim ye(¢) = lim ———
e—0 e—0 €
) ez+h — e
=t lim
h—0 h

d
=t (—ef> =te
dt

which is, along with ¢/, a solution of the CASE II DE
y//_zy/_"_y:().

Given that a > 0, b > 0 and ¢ > O:
Case 1: If D = b? — 4ac > 0 then the two roots are

—b + /b2 —4ac
rao=—"7——"—""".
’ 2a

Since
b* — dac < b*

+vb2 —4dac <b

—b+Vb2—4ac <0

therefore r; and rp are negative. The general solution is
y(t) = Ae"" + Be™'.
If t — oo, then €'¥ — 0 and €' — 0.
Thus, lim y(z) = 0.
=00

Case 2: If D = b? — 4ac = 0 then the two equal roots
r1 =rp = —b/(2a) are negative. The general solution is

y(t) = Ae""' + Bte™'.

t t

If t - o0, then ¢V — 0 and 2’ — 0 at a faster rate
than Bt — oo. Thus, tlim y()=0.
—00

Case 3: If D = b%> —4ac < 0 then the general solution is
y = Ae 2D cos(wi) + Be™ P2 sin(wr)

4ac — b?
where 0 = ——

a
both terms Ae~ (/20! _ (0 and Be~ /20t _ (. Thus,
lim y(t) = 0.

—00

. If t - oo, then the amplitude of
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The auxiliary equation ar? + br + ¢ = 0 has roots

_—b—+D

_ —b++D
2a N ’

r
2a

r2

where D = b? — 4ac. Note that
a(ry —r1) = ¥D = —Qar; + b). If y = ¢"u, then
y =e"'(u' +riu), and y” = e”’(u”—|—2r1u/—|—r12u). Sub-
stituting these expressions into the DE ay” + by’ +cy =0,
and simplifying, we obtain

e (au” + 2aru’ + bu') =0,

or, more simply, u” — (r — r1)u’ = 0. Putting v = o’
reduces this equation to first order:

v = (2 —ri)v,

which has general solution v = Ce2~")" Hence
u= / Ce?7™ gt = Be2 7! 4 A

and y = e"'u = Ae"'! 4+ Be™.
If y = Acoswt + Bsinwt then

vy + a)zy = —Aw’ coswt — Bo’ sin ot
+ wz(A coswt + Bsinwt) =0

for all 7. So y is a solution of (f).

If £(¢) is any solution of (1) then f”(t) = —w?f(¢) for
all r. Thus,

d 2 2
gl (ro) +(ro)]

=207 F() f' (1) + 21 () £ (1)
=207 (1) f'(t) — 20 f (1) f'(£) = O

2 2
for all £. Thus, w? (f(t)) + (f/(z)) is constant. (This
can be interpreted as a conservation of energy statement.)

If g(¢) satisfies () and also g(0) = g’(0) = 0, then by
Exercise 20,

o (s0) +(s0)
= ?(30) + (0)" =o0.

Since a sum of squares cannot vanish unless each term
vanishes, g(t) = 0 for all ¢.

22,

23.

24.

25.

SECTION 3.7 (PAGE 206)

If f(¢) is any solution of (%), let

g(t) = f(@) — Acoswt — Bsinwt where A = f(0)
and Bw = f/(0). Then g is also solution of (). Also
g(0) = f(0)— A =0and g'0) = f/(0) — Bw = 0.
Thus, g(¢) = O for all ¢+ by Exercise 24, and therefore
f(x) = Acoswt + Bsinwt. Thus, it is proved that every
solution of () is of this form.

4ac — b?

12 which is
a

b
We are given that k = % and w? =

a
positive for Case III. If y = &Ky, then

y = ekt (u’ + ku)

Y =M (u” + 2ku’ + k2u>.

Substituting into ay” + by’ 4+ ¢y = 0 leads to

o
|

=t (au” + (2ka + by + (ak® + bk + c)u)
— okt (au” 0+ ((b%/(4a) — b2/ (2a) + c)u)

=ae (u” + a)zu).
Thus u satisfies «” 4+ @?u = 0, which has general solution
u = Acos(wt) + B sin(wt)

by the previous problem. Therefore ay” + by’ +cy = 0
has general solution

y = Ae" cos(wr) + Be! sin(wr).

Because y” + 4y = 0, therefore y = A cos2t + B sin2t.
Now
YyO0)=2= A=2,

5
Y(O0) =-5=B=-3.

Thus, y = 2cos2t — % sin 2¢.

circular frequency = w =

w 1
— = —~0.318
2 T

period = o T ~3.14
1)

amplitude = ,/(2)? + (—3)? =~ 3.20

2, frequency =

y"+ 100y =0

y(0)=0

y'(©0)=3
y = Acos(10t) + B sin(10¢)
A=y0)=0, 10B=y'(0)=3

3
y = To sin(10¢)
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y = Acos(w(z - c)) + .Bsin(w(t — c))
(easy to calculate y” + w?y = 0)
y= e,«t,(cos(a)t) cos(we) + sin(wr) sin(wc))
+ B(sin(wt) cos(wc) — cos(wt) sin(wc))
= (eA cos(wec) — B sin(a)c)) cos wt

n (,A, sin(we) + B cos(wc)) sin wt

= Acoswt + B sinwt
where A = A cos(wc) — B sin(wc) and
B = A sin(wc) + B cos(wc)

For y” +y =0, we have y = Asinfr + Bcost. Since,

y(2) =3 = Asin2+ Bcos?2
y'(2) = —4 = Acos2 — Bsin2,

therefore
A =3sin2 —4cos2

B =4sin2 4+ 3cos 2.
Thus,

y = (3sin2 —4cos2)sint + (4sin2 + 3cos2)cost
= 3cos(t —2) — 4sin(t — 2).

y// +w2y =0
y@=A
y'(a) =B

y= Acos(a)(t — a)) + g sin(a)(t - a))

From Example 9, the spring constant is
k =9 x 10* gm/sec?. For a frequency of 10 Hz (i.e., a
circular frequency w = 20m rad/sec.), a mass m satisfy-
ing «/k/m = 20m should be used. So,

k 9 x 10*

_ X 58 em.
"= 20072 T 40072 gm

The motion is determined by

y" 440072y = 0
y(0) = -1
y'(0) =2

therefore, y = A cos20m¢ + Bsin20x¢ and

yO0)=—1=A=—1

’(0)—2:>B—L—L
Y= T 207 107
. . .
Thus, y = —cos20mt + Tom sin 20 ¢, with y in cm
T

and ¢ in second, gives the displacement at time . The

1
amplitude is \/(—1)2 + (m)2 ~ 1.0005 cm.
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k
Frequency = 22, w? = = (k = spring const, m = mass)
b4 m

Since the spring does not change, w?m = k (constant)
For m = 400 gm, w = 27 (24) (frequency = 24 Hz)
4772 (24)%(400)

If m =900 gm, then w? =
m gm, then w 900

27'r><24><2_

SO w = = 32m.

32r
Thus frequency = P 16 Hz
4

472(24)24
Form:lOOgm,w:M
100

so w = 96 and frequency = 22 = 48 Hz.
b4

Using the addition identities for cosine and sine,

y = e"[Acosw(r — 1) B sinw(t — ty)]
=M [A cos wt cos wty + A sin wt sin wly
+ B sin wt cos wty — B cos wt sin wt]

= eM[A] coswt + By sinwt],

where Ay = Acoswty — Bsinwty and

B) = Asinwty + Bcoswty. Under the conditions of
this problem we know that ¥ cos wt and €* sin wt are
independent solutions of ay” + by’ 4+ ¢y = 0, so our func-
tion y must also be a solution, and, since it involves two
arbitrary constants, it is a general solution.

Expanding the hyperbolic functions in terms of exponen-
tials,

y = e [Acoshw(t — 19) B sinhw(t — to)]

P [éew(t*to) + gefw(tft[))

2
B B

+ Zel—t0) _ — ,—w(r—fo)
2 2

— Ale(k+w)l + Ble(k—u))r

where A| = (A/2)e ®0 + (B/2)e™®" and

By = (A/2)e®" — (B/2)e“". Under the conditions of
this problem we know that Rr = k £ w are the two real
roots of the auxiliary equation ar?+br+c = 0, so e*+®)
are independent solutions of ay” + by’ + cy = 0, and our
function y must also be a solution. Since it involves two
arbitrary constants, it is a general solution.

y//+2y/+5y:0
y3)=2
Y3 =0
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The DE has auxiliary equation 2 4+ 2r + 5 = 0 with
roots r = —1 &£ 2i. By the second previous prob-
lem, a general solution can be expressed in the form
y =e '[Acos2(t — 3) + Bsin2(t — 3)] for which

y = —e '[Acos2(t — 3) + Bsin2(t — 3)]
+ e '[-2Asin2(t — 3) + 2B cos2(t — 3)].

The initial conditions give

2=yB)=¢A
0=y'(3) =—e>(A+2B)

Thus A = 2¢3 and B = —A/2 = —e3. The IVP has
solution

y =e3[2cos2(t — 3) —sin2(t — 3)].

y'+4y' +3y=0
y@3 =1
y'(3) =0

The DE has auxiliary equation r> + 4r 4+ 3 = 0 with roots
r=-241=—-landr = -2—-1= -3 (ie. ko,
where k = —2 and w = 1). By the second previous
problem, a general solution can be expressed in the form
y= e~ 2[A cosh(tr — 3) + Bsinh(t — 3)] for which

y' = —2e 2[Acosh(t — 3) 4+ Bsinh(t — 3)]
+ e [Asinh(t — 3) + B cosh(t — 3)].

The initial conditions give

1=yB)=e°A
0=y(3)=—e%-24+B)

Thus A = ¢® and B = 2A = 2¢°. The IVP has solution

y = €% [cosh(r — 3) + 2sinh(r — 3)].

Let u(x) = ¢ — k?y(x). Then u(0) = ¢ — k?a.
Also u'(x) = —k%y/'(x), so u’(0) = —k2b. We have

W' (x) = —k>y" (x) = —k* (c — kzy(x)) = —Ku(x)

This IVP for the equation of simple harmonic motion has
solution

ux) =(c — kza) cos(kx) — kb sin(kx)

36.
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so that

yx) = kiz (c - u(X))
C

2 (c — (¢ — k*a) cos(kx) + kb sin(kx))

b
= k%(l — cos(kx) + acos(kx) + z sin(kx).

Since x’(0) = 0 and x(0) = 1 > 1/5, the motion will be
governed by x” = —x + (1/5) until such time ¢ > 0 when
x'(t) = 0 again.

Letu =x — (1/5). Then u” = x" = —(x — 1/5) = —u,
u(0) = 4/5,and u'(0) = x’(0) = 0. This sim-

ple harmonic motion initial-value problem has solution
u(t) = (4/5)cost. Thus x(¢) = (4/5)cost + (1/4) and
x'(t) = u'(t) = —(4/5)sint. These formulas remain
valid until # = = when x'(¢) becomes 0 again. Note that
x(m) = —@4/5) + (1/5) = —@3/5).

Since x(wr) < —(1/5), the motion for t > m will be
governed by x” = —x — (1/5) until such time t > =
when x/(¢) = 0 again.

Let v = x + (1/5). Then v/ = x" = —(x + 1/5) = —v,
v(r) = —@3/5) + (1/5) = —(2/5), and

v/(r) = x'(x) = 0. Thius initial-value problem has
solution v(t) = —(2/5)cos(t — ) = (2/5) cost, so that
x(t) = (2/5) cost — (1/5) and x'(t) = —(2/5) sint. These
formulas remain valid for + > 7 until + = 27 when x’
becomes 0 again. We have x(27) = (2/5) — (1/5) =1/5
and x'(27) = 0.

The conditions for stopping the motion are met at
t = 2m; the mass remains at rest thereafter. Thus

%cost—i—% if0<t<m
%cost—% ifm <t <2mw

if t > 2w

x(t) =

wn|—

Review Exercises 3 (page 208)

fx) =3x +x3 = f/(x) =30+ x2) > 0 for all x,
so f is increasing and therefore one-to-one and invertible.
Since f(0) = 0, therefore f -10) =0, and

_ 1 11
R A (V)R A (ORI

d o1
o

fx) = sec? x tanx = fl(x) = 2sec? x tan® x + sec* x > 0
for x in (—m /2, w/2), so f is increasing and therefore
one-to-one and invertible there. The domain of f~! is
(—00, 00), the range of f. Since f(w/4) = 2, therefore
1@ = n/4, and

1 1 1

@)~ fla4 8

e =
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. . X
¥ Jp f@ = lp = =0
4. Observe f/(x) = e~ (1 — 2x?) is positive if x> < 1/2
and is negative if x> > 1/2. Thus f is increasing on
(—1/+/2,1/+/2) and is decreasing on (—oo, —1/+/2) and
on (1/+/2, c0).

5.  The max and min values of f are 1/+/2e (at x = 1//2)
and —1/4/2e (at x = —1//2).

6. y = e *sinx, (0 < x < 2m) has a horizontal tangent
where d
y
0 = — =
dx
This occurs if tanx = 1, so x = /4 or x = 5w /4. The
points are (/4, e~"/*//2) and (57 /4, —e /4 //2).

7. If f/(x) = x for all x, then

e " (cosx — sinx).

d fo) _ f@—xfe)

dx ex2/2 eX2/2 -
Thus f ()c)/e"z/2 = C (constant) for all x.
Since f(2) = 3, wehave C = 3/e* and
fx) = (3/(32)6"2/2 = 3e0%/2)-2,

8. Let the length, radius, and volume of the clay cylinder at
time 7 be £, r, and V, respectively. Then V = mr2¢, and

v _, dr ol
— =TIl — Tr-—.
dt dt di

Since dV /dt = 0 and d¢/dt = k{ for some constant
k > 0, we have

d d k
ané—r = —knr¥t, = o __r'
dt dt 2
That is, r is decreasing at a rate proportional to itself.

9. a) An investment of $P at r% compounded continu-
ously grows to $Pe"7/190 in T years. This will be
$2P provided ¢ 7/190 = 2 that is, rT = 100In2. If
T =5, then r =20In2 =~ 13.86%.

b) Since the doubling time is 7 = 100In2/r, we have

dT 100In2

AT ~ — Ar = — Ar.
dr r2

If r =13.863% and Ar = —0.5%, then

1001In2

~ _m(—O.S) ~ (0.1803 years.

The doubling time will increase by about 66 days.

h _ 1 ] aOJrh _ aO d
= lim
h h—0 h

X

= —a =Ina.
dx x=0

10. a) lim a
h—0
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Putting h = 1/n, we get lim n (al/" - 1) =Ina.
n—o0

b) Using the technique described in the exercise, we
calculate

210 (21/2”’ - 1) ~ 0.69338183

ol (21/2” - 1) ~ 0.69326449

Thus In2 ~ 0.693.
L(rw) = (rm)

2
=2/ f @ = (@)
= ff(x)=0or f'(x) =2f(x).

Since f(x) is given to be nonconstant, we have
f'(x) =2f(x). Thus f(x) = f(0)e?* = 2*,

If f(x) = (Inx)/x, then f'(x) = (1 — Inx)/x%. Thus
f'(x) > 0iflInx < 1 (i.e,, x < e) and f/(x) < O if
Inx > 1 (i.e., x > e). Since f is increasing to the left
of ¢ and decreasing to the right, it has a maximum value
f(e) =1/e at x = e. Thus, if x > 0 and x # e, then

In x 1
_ << .
X e

Putting x = 7 we obtain (Inw)/7 < 1/e. Thus
In(7®) =elnm <m =nlne =Ine",

and ¢ < e follows because In is increasing.

y=x* =M™ = y = x*(1 +1Inx). The tangent to
y = x* at x = a has equation

y=a+a“(+1na)(x —a).

This line passes through the origin if

0 =a?%[l—a(l+Ina)], that is, if (1+Ina)a = 1. Observe
that a = 1 solves this equation. Therefore the slope of
the line is 11(1 +1n1) = 1, and the line is y =x.

Inx In2 . . .
) — = — is satisfied if x = 2 or x = 4 (because

X
In4 =21n2).

b) The line y = mx through the origin intersects the
curve y = Inx at (b,Inb) if m = (Inb)/b. The same
line intersects y = Inx at a different point (x, Inx)
if Inx)/x = m = (Inb)/b. This equation will have
only one solution x = b if the line y = mx intersects
the curve y = Inx only once, at x = b, that is, if the
line is tangent to the curve at x = b. In this case m
is the slope of y =1Inx at x = b, so

1 Inb
—=m=—.
b b
b

Thus Inb =1, and b = e.
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Let the rate be r%. The interest paid by account A is
1, 000(r/100) = 10r.

The interest paid by account B is 1, 000(¢’/'% — 1). This 19

is $10 more than account A pays, so
1,000 — 1) = 107 + 10.

A TI-85 solve routine gives r &~ 13.8165%.

If y=cos™!x, then x =cosy and 0 < y < 7. Thus

1 V1 —x2
tany = sgnx/sec?y — 1 =sgnx,/— — 1 = ———.
x x

Thus cos™'x = tan~ ! ((+/1 — x2)/x).

Since cotx = 1/tanx, cot™' x = tan=!(1/x).

—1 .1 1 b 1 1
cs¢ x =sinm — = — —cos  —
X 2 X
e L VT=(1/x)?
= — —tan
2 1/x
b4
== —sgnxtan~'vx2 — 1
2
1 T 1 20.
cos™ X = — —sin” X

If y=cot™!x, then x =coty and 0 < y < /2. Thus

cscy = sgnxy/1 +cot? y = sgnxy/1 + x2

. sgnx
siny = ——.
V1 +x2
Thus cot™ x = sin~! ey sgn xsinflé 2
‘ V1 + x2 VI+x2
1
csclx =sin~! —.
X
Let T(t) be the temperature of the milk r minutes after it
is removed from the refrigerator. Let U(t) = T(t) — 20.
By Newton’s law,
U@)y=kU@r) = U@)=U®O)".
Now T(0) =5 = U(0) = —15 and
T(12) =12 = U(12) = —8. Thus
—8=U(12) = U(0)e'* = —15¢'%
' =8/15, k=1 ne@/15).
If T(s) = 18, then U(s) = —2, so —2 = —15¢**. Thus
sk =1n(2/15), and
In(2/15 In(2/15
szn(/ ) _ o, In/ )%38.46. 1.
k In(8/15)

CHALLENGING PROBLEMS 3 (PAGE 209)

It will take another 38.46 — 12 = 26.46 min for the milk
to warm up to 18°.

Let R be the temperature of the room, Let 7'(¢) be the
temperature of the water ¢+ minutes after it is brought into
the room. Let U(¢) = T(t) — R. Then

U@ =kU®) = U@ = U0,
We have

T0)=96= U0) =96—R
T(10) =60 = U(10) =60 — R = 60 — R = (96 — R)e'%*
T(20) =40 = U(20) =40 — R = 40 — R = (96 — R)e*%%.

Thus

96 — R T 96—R
(60 — R)> = (96 — R)(40 — R)
3600 — 120R + R?> = 3840 — 136R + R?
16R =240 R =15.

<6O—R>2 _ oo _40-R

Room temperature is 15°.
Let f(x) =e* — 1 —x. Then f(0) =0 and by the MVT,
f@) _ f®=fO

X x—=0

=fl(c)=e"—1

for some ¢ between O and x. If x > O, then ¢ > 0, and
f'(¢c) >0. If x <0, then ¢ < 0, and f’'(c) < 0. In either
case f(x) = xf’(c) > 0, which is what we were asked to
show.

Suppose that for some positive integer k, the inequality

x o x2 xk
e > +x+5+---+ﬁ
holds for all x > 0. This is certainly true for k = 1, as
shown in the previous exercise. Apply the MVT to

t2 lk+l

H=e —1—¢t — — — .. —
glt) =e 20 &+ D!

on the interval (0, x) (where x > 0) to obtain

gx)  gx) —g /
— =7 =80)

X x—0
for some ¢ in (0, x). Since x and g'(c) are both positive,
so is g(x). This completes the induction and shows the
desired inequality holds for x > 0 for all positive integers
k.

Challenging Problems 3 (page 209)

a) (d/dx)x* =x*(1+1Inx) > 0if Inx > —1, that is, if
x > e L. Thus x* is increasing on [e!, 00).
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b) Being increasing on [e~!, 00), f(x) = x* is invert-
ible on that interval. Let g = f~!. If y = x¥, then

x = g(y). Note that y — oo if and only if x — ooc.

We have

Iny=xInx
In(In y) = Inx + In(Inx)
. gn(ny) . x(nx+In(nx))
im ~——“"=1lm —M =
y—>00 ll’ly xX—00 xInx

. In(In x)
= lim (1+ .
X—>00 Inx

Now Inx < 4/x for sufficiently large x, so
In(Inx) < +/Inx for sufficiently large x.

In(l 1
Therefore, 0 < n(in x) < — 0 as x — oo,
Inx VIn x
and so
In(1
lim M:l—i—O:l.
y—>00 ]ny
dv r
— = —g —kv.
a8
) Let u(t) ko). Then &4 — k9% _ 4
a) Le = —g — kv(t). en — = —k— = —ku,
! § dr dr !
and

u(t) = O = ~(g + kup)e ™
1 1
v(t) = —%(g +”(t)) = _E<8 - (g +kv0)e_k’).

b) lim; 00 v(t) = _g/k

dy g+kv0 okt
— =(t , 0) =
©) 7 v(t) = Z y(0) = yo
gt g+kvo okt
f)=—->— C
y() e ¢ T
+k + kv
o=-0-8T o o c=y+ 20
k k2
_ 8t g+ kvg ket
y0 =0 -+ S (1-e)
dv 2
— =—g+k* k>0
0 g+kv (k>0)
1 —e*
a) Let u =2t /gk. If v(z)_\/;l—i— - , then
(1 + eu)(_eu) _ (1 _ eu)eu
2./gk
\f (T +e)? ¢
—4ge*
T +en?
(1—e")?
P—g=g|l—= —1
vE g((1+e">2
_ —4ge"  dv
T 4en)?2 T dt’

g 1— 2/ek
108 Thus v(z) = \/ji
k 1+ eZt\/g—k
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—21/gk _
b) hm v(t) = hm \/ge 1 _ /&

72t\/— _|_1 k
g 1 1+ 2V/ek
o) If y() = yo+\/jz—— In ———, then y(0) = yo
k k 2
and

dy_\/E 1 2/gke sk
“Vk

dt _E 1+€2t‘/_

\/E 1 — e2/ek ®

= /= — =v().

Koy 4 ouv/ek

Thus y(¢) gives the height of the object at time ¢
during its fall.

dt dt
dp
The DE — =kp (1 —
¢ dt p(

d d
If p=e""y, then &P _ b (_y - by)

bL) therefore transforms to
e 'M

dy _ bt p
i by + kpe (1 — e—’”M)
2

=(b+k)y—%=Ky(l—%),

b+k ..
where K = b+ k and L = —— M. This is a standard

Logistic equation with solution (as obtained in Section
3.4) given by

y= Lyo
yo + (L — yo)e=K1’
where yo = y(0) = p(0) = po. Converting this solution
back in terms of the function p(r), we obtain
Lpoe_bt
po + (L — po)e=&+hr
(b + k)Mpo

poke?® + ((b + k)M — kpo)e—k’ .

p(t) =

Since p represents a percentage, we must have
b+ kM/k < 100.

Ifk =10,b = 1, M = 90, and pp = 1, then

b+k
2K M =99 < 100. The numerator of the final expres-

sion for p(¢) given above is a constant. Therefore p(t)
will be largest when the derivative of the denominator,

£(6) = poke” + ((b +IOM — kpo)e*k’ — 10e' 4 980¢~1%"

is zero. Since f'(r) = 10e’ — 9, 800e~ 1% this will
happen at + = 1n(980)/11. The value of p at this ¢ is
approximately 48.1. Thus the maximum percentage of
potential clients who will adopt the technology is about
48.1%.



