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APPENDICES

Appendix I. Complex Numbers
(page A-10)

1. z = −5 + 2i, Re(z) = −5, Im(z) = 2
y

x

z = −5 + 2i

z = −6

z = −π i

z = 4 − i

z-plane

Fig. .1

2. z = 4 − i, Re(z) = 4, Im(z) = −1

3. z = −π i, Re(z) = 0, Im(z) = −π

4. z = −6, Re(z) = −6, Im(z) = 0

5. z = −1 + i, |z| = √
2, Arg (z) = 3π/4

z = √
2 (cos(3π/4) + i sin(3π/4))

6. z = −2, |z| = 2, Arg (z) = π

z = 2(cos π + i sin π)

7. z = 3i, |z| = 3, Arg (z) = π/2

z = 3(cos(π/2) + i sin(π/2))

8. z = −5i, |z| = 5, Arg (z) = −π/2

z = 5(cos(−π/2) + i sin(−π/2))

9. z = 1 + 2i, |z| = √
5, θ = Arg (z) = tan−12

z = √
5(cos θ + i sin θ)

10. z = −2 + i, |z| = √
5, θ = Arg (z) = π − tan−1(1/2)

z = √
5(cos θ + i sin θ)

11. z = −3 − 4i, |z| = 5, θ = Arg (z) = −π + tan−1(4/3)

z = 5(cos θ + i sin θ)

12. z = 3 − 4i, |z| = 5, θ = Arg (z) = −tan−1(4/3)

z = 5(cos θ + i sin θ)

13. z = √
3 − i, |z| = 2, Arg (z) = −π/6

z = 2(cos(−π/6) + i sin(−π/6))

14. z = −√
3 − 3i, |z| = 2

√
3, Arg (z) = −2π/3

z = 2
√

3(cos(−2π/3) + i sin(−2π/3))

15. z = 3 cos
4π

5
+ 3i sin

4π

5

|z| = 3, Arg (z) = 4π

5

16. If Arg (z) = 3π

4
and Arg (w) = π

2
, then

arg (zw) = 3π

4
+ π

2
= 5π

4
, so

Arg (zw) = 5π

4
− 2π = −3π

4
.

17. If Arg (z) = −5π

6
and Arg (w) = π

4
, then

arg (z/w) = −5π

6
− π

4
= −13π

12
, so

Arg (z/w) = −13π

12
+ 2π = 11π

12
.

18. |z| = 2, arg (z) = π ⇒ z = 2(cos π + i sin π) = −2

19. |z| = 5, θ = arg (z) = π ⇒ sin θ = 3/5, cos θ = 4/5

z = 4 + 3i

20. |z| = 1, arg (z) = 3π

4
⇒ z =

(
cos

3π

4
+ i sin

3π

4

)

⇒ z = − 1√
2

+ 1√
2

i

21. |z| = π, arg (z) = π

6
⇒ z = π

(
cos

π

6
+ i sin

π

6

)

⇒ z = π
√

3

2
+ π

2
i

22. |z| = 0 ⇒ z = 0 for any value of arg (z)

23. |z| = 1

2
, arg (z) = −π

3
⇒ z = 1

2

(
cos

π

3
− i sin

π

3

)

⇒ z = 1

4
−

√
3

4
i

24. 5 + 3i = 5 − 3i

25. −3 − 5i = −3 + 5i

26. 4i = −4i

27. 2 − i = 2 + i

28. |z| = 2 represents all points on the circle of radius 2
centred at the origin.

29. |z| ≤ 2 represents all points in the closed disk of radius 2
centred at the origin.

30. |z − 2i | ≤ 3 represents all points in the closed disk of
radius 3 centred at the point 2i .

31. |z − 3 + 4i | ≤ 5 represents all points in the closed disk of
radius 5 centred at the point 3 − 4i .

32. arg (z) = π/3 represents all points on the ray from the
origin in the first quadrant, making angle 60◦ with the
positive direction of the real axis.
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33. π ≤ arg (z) ≤ 7π/4 represents the closed wedge-shaped
region in the third and fourth quadrants bounded by the
ray from the origin to −∞ on the real axis and the ray
from the origin making angle −45◦ with the positive
direction of the real axis.

34. (2 + 5i ) + (3 − i ) = 5 + 4i

35. i − (3 − 2i ) + (7 − 3i ) = −3 + 7 + i + 2i − 3i = 4

36. (4 + i )(4 − i ) = 16 − i 2 = 17

37. (1 + i )(2 − 3i ) = 2 + 2i − 3i − 3i2 = 5 − i

38. (a + bi )(2a − bi) = (a + bi )(2a + bi ) = 2a2 − b2 + 3abi

39. (2 + i )3 = 8 + 12i + 6i2 + i 3 = 2 + 11i

40.
2 − i

2 + i
= (2 − i )2

4 − i 2 = 3 − 4i

5

41.
1 + 3i

2 − i
= (1 + 3i )(2 + i )

4 − i 2 = −1 + 7i

5

42.
1 + i

i (2 + 3i )
= 1 + i

−3 + 2i
= (1 + i )(−3 − 2i )

9 + 4
= −1 − 5i

13

43.
(1 + 2i )(2 − 3i )

(2 − i )(3 + 2i )
= 8 + i

8 + i
= 1

44. If z = x + yi and w = u + vi , where x , y, u, and v are
real, then

z + w = x + u + (y + v)i

= x + u − (y + v)i = x − yi + u − vi = z + w.

45. Using the fact that |zw| = |z||w|, we have

( z

w

)
=

(
zw

|w|2
)

= z w

|w|2 = zw

ww
= z

w
.

46. z = 3 + i
√

3 = 2
√

3
(

cos
π

6
+ i sin

π

6

)

w = −1 + i
√

3 = 2

(
cos

2π

3
+ i sin

2π

3

)

zw = 4
√

3

(
cos

5π

6
+ i sin

5π

6

)

z

w
= √

3

(
cos

−π

2
+ i sin

−π

2

)
= −i

√
3

47. z = −1 + i = √
2

(
cos

3π

4
+ i sin

3π

4

)

w = 3i = 3
(

cos
π

2
+ i sin

π

2

)

zw = 3
√

2

(
cos

5π

4
+ i sin

5π

4

)
= −3 − 3i

z

w
=

√
2

3

(
cos

π

4
+ i sin

π

4

)
= 1

3
+ 1

3
i

48. cos(3θ) + i sin(3θ) = (cos θ + i sin θ)3

= cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ
Thus

cos(3θ) = cos3 θ − 3 cos θ sin2 θ = 4 cos3 θ − 3 cos θ

sin(3θ) = 3 cos2 θ sin θ − sin3 θ = 3 sin θ − 4 sin3 θ.

49. a) z = 2/z can be rewritten |z|2 = zz = 2, so is
satisfied by all numbers z on the circle of radius

√
2

centred at the origin.

b) z = −2/z can be rewritten |z|2 = zz = −2, which
has no solutions since the square of |z| is nonnega-
tive for all complex z.

50. If z = w = −1, then zw = 1, so
√

zw = 1. But if we
use

√
z = √−1 = i and the same value for

√
w, then√

z
√

w = i 2 = −1 �= √
zw.

51. The three cube roots of −1 = cos π + i sin π are of the
form cos θ+i sin θ where θ = π/3, θ = π , and θ = 5π/3.
Thus they are

1

2
+ i

√
3

2
, −1,

1

2
− i

√
3

2
.

52. The three cube roots of −8i = 8

(
cos

3π

2
+ i sin

3π

2

)

are of the form 2(cos θ + i sin θ) where θ = π/2,
θ = 7π/6, and
θ = 11π/6. Thus they are

2i, −√
3 − i,

√
3 − i.

53. The three cube

roots of −1 + i = √
2

(
cos

3π

4
+ i sin

3π

4

)
are of the

form 21/6(cos θ + i sin θ) where θ = π/4, θ = 11π/12,
and θ = 19π/12.

54. The four fourth roots of 4 = 4(cos 0 + i sin 0) are of the
form

√
2(cos θ + i sin θ) where θ = 0, θ = π/2, π , and

θ = 3π/2. Thus they are
√

2, i
√

2, −√
2, and −i

√
2.

55. The equation z4 + 1 − i
√

3 = 0 has solutions that are the

four fourth roots of −1 + i
√

3 = 2

(
cos

2π

3
+ i sin

2π

3

)
.

Thus they are of the form 21/4(cos θ + i sin θ), where
θ = π/6, 2π/3, 7π/6, and 5π/3. They are the complex
numbers

±21/4

(√
3

2
+ 1

2
i

)
, ±21/4

(
1

2
−

√
3

2
i

)
.
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56. The equation z5 + a5 = 0 (a > 0) has solutions that are
the five fifth roots of −a5 = a (cos π + i sin π); they are
of the form a(cos θ + i sin θ), where θ = π/5, 3π/5, π ,
7π/5, and 9π/5.

57. The n nth roots of unity are

ω1 = 1

ω2 = cos
2π

n
+ i sin

2π

n

ω3 = cos
4π

n
+ i sin

4π

n
= ω2

2

ω4 = cos
6π

n
+ i sin

6π

n
= ω3

2

...

ωn = cos
2(n − 1)π

n
+ i sin

2(n − 1)π

n
= ωn−1

2 .

Hence

ω1 + ω2 + ω3 + · · · + ωn = 1 + ω2 + ω2
2 + · · · + ωn−1

2

= 1 − ωn
2

1 − ω2
= 0

1 − ω2
= 0.

Appendix II. Complex Functions
(page A-19)

In Solutions 1–12, z = x + yi and w = u + vi , where x ,
y, u, and v are real.

1. The function w = z transforms the closed rectangle
0 ≤ x ≤ 1, 0 ≤ y ≤ 2 to the closed rectangle 0 ≤ u ≤ 1,
−2 ≤ v ≤ 0.

2. The function w = z transforms the line x + y = 1 to the
line u − v = 1.

3. The function w = z2 transforms the closed annular sector
1 ≤ |z| ≤ 2, π/2 ≤ arg (z) ≤ 3π/4 to the closed annular
sector 1 ≤ |w| ≤ 4, π ≤ arg (w) ≤ 3π/2.

4. The function w = z3 transforms the closed quarter-
circular disk 0 ≤ |z| ≤ 2, 0 ≤ arg (z) ≤ π/2 to the closed
three-quarter disk 0 ≤ |w| ≤ 8, 0 ≤ arg (w) ≤ 3π/2.

5. The function w = 1/z = z/|z|2 transforms the closed
quarter-circular disk 0 ≤ |z| ≤ 2, 0 ≤ arg (z) ≤ π/2
to the closed region lying on or outside the circle
|w| = 1/2 and in the fourth quadrant, that is, having
−π/2 ≤ arg (w) ≤ 0.

6. The function w = −i z rotates the z-plane −90◦, so trans-
forms the wedge π/4 ≤ arg (z) ≤ π/3 to the wedge
−π/4 ≤ arg (z) ≤ −π/6.

7. The function w = √
z transforms the ray arg (z) = −π/3

(that is, Arg (z) = 5π/3) to the ray arg (w) = 5π/6.

8. The function w = z2 = x2 − y2 + 2xyi transforms the
line x = 1 to u = 1 − y2, v = 2y, which is the parabola
v2 = 4 − 4u with vertex at w = 1, opening to the left.

9. The function w = z2 = x2 − y2 + 2xyi transforms the
line y = 1 to u = x2 − 1, v = 2x , which is the parabola
v2 = 4u + 4 with vertex at w = −1 and opening to the
right.

10. The function w = 1/z = (x − yi )/(x2 + y2) transforms
the line x = 1 to the curve given parametrically by

u = 1

1 + y2 , v = −y

1 + y2 .

This curve is, in fact, a circle,

u2 + v2 = 1 + y2

(1 + y2)2
= u,

with centre w = 1/2 and radius 1/2.

11. The function w = ez = ex cos y + i ex sin y transforms
the horizontal strip −∞ < x < ∞, π/4 ≤ y ≤ π/2 to
the wedge π/4 ≤ arg (w) ≤ π/2, or, equivalently, u ≥ 0,
v ≥ u.

12. The function w = eiz = e−y(cos x + i sin x) transforms
the vertical half-strip 0 < x < π/2, 0 < y < ∞ to the
first-quadrant part of the unit open disk |w| = e−y < 1,
0 < arg (w) = x < π/2, that is u > 0, v > 0, u2 +v2 < 1.

13. f (z) = z2 = (x + yi )2 = x2 − y2 + 2xyi

u = x2 − y2, v = 2xy
∂u

∂x
= 2x = ∂v

∂y
,

∂u

∂y
= −2y = − ∂v

∂x

f ′(z) = ∂u

∂x
+ i

∂v

∂x
= 2x + 2yi = 2z.

14. f (z) = z3 = (x + yi )3 = x3 − 3xy2 + (3x2 y − y3)i

u = x3 − 3xy2, v = 3x2 y − y3

∂u

∂x
= 3(x2 − y2) = ∂v

∂y
,

∂u

∂y
= −6xy = − ∂v

∂x

f ′(z) = ∂u

∂x
+ i

∂v

∂x
= 3(x2 − y2 + 2xyi ) = 3z2.

15. f (z) = 1

z
= x − yi

x2 + y2

u = x

x2 + y2 , v = −y

x2 + y2

∂u

∂x
= y2 − x2

(x2 + y2)2 = ∂v

∂y
,

∂u

∂y
= −2xy

(x2 + y2)2 = − ∂v

∂x

f ′(z) = ∂u

∂x
+ i

∂v

∂x
= −(x2 − y2) + 2xyi

(x2 + y2)2 = −(z)2

(zz)2 = − 1

z2 .
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16. f (z) = ez2 = ex2−y2
(cos(2xy) + i sin(2xy))

u = ex2−y2
cos(2xy), v = ex2−y2

sin(2xy)

∂u

∂x
= ex2−y2

(2x cos(2xy) − 2y sin(2xy)) = ∂v

∂y
∂u

∂y
= −ex2−y2

(2y cos(2xy) + 2x sin(2xy)) = − ∂v

∂x

f ′(z) = ∂u

∂x
+ i

∂v

∂x

= ex2−y2
[2x cos(2xy) − 2y sin(2xy)

+ i (2y cos(2xy) + 2x sin(2xy))]

= (2x + 2yi )ex2−y2
(cos(2xy) + i sin(2xy)) = 2zez2

.

17. eyi = cos y + i sin y (for real y). Replacing y by −y, we
get e−yi = cos y − i sin y (since cos is even and sin is
odd). Adding and subtracting these two formulas gives

eyi + e−yi = 2 cos y, eyi − e−yi = 2i sin y.

Thus cos y = eyi + e−yi

2
and sin y = eyi − e−yi

2i
.

18. ez+2π i = ex(cos(y + 2π) + i sin(y + 2π))

= ex(cos y + i sin y) = ez .

Thus ez is periodic with period 2π i . So is e−z = 1/ez .
Since ei(z+2π) = ezi+2π i = ezi , therefore ezi and also
e−zi are periodic with period 2π . Hence

cos z = ezi + e−zi

2
and sin z = ezi − e−zi

2i

are periodic with period 2π , and

cosh z = ez + e−z

2
and sinh z = ez − e−z

2

are periodic with period 2π i .

19.
d

dz
cos z = d

dz

ezi + e−zi

2
= i ezi − e−zi

2
= − sin z

d

dz
sin z = d

dz

ezi − e−zi

2i
= i ezi + e−zi

2i
= cos z

d

dz
cosh z = d

dz

ez + e−z

2
= ez − e−z

2
= sinh z

d

dz
sinh z = d

dz

ez − e−z

2
= ez + e−z

2
= cosh z

20. cosh(i z) = eiz + e−i z

2
= cosh z

−i sinh(i z) = 1

i

eiz − e−i z

2
= sin z

cos(i z) = e−z + ez

2
= cosh z

sin(i z) = e−z − ez

2i
= i

−e−z + ez

2
= i sinh z

21. cos z = 0 ⇔ ezi = −e−zi ⇔ e2zi = −1

⇔ e−2y[cos(2x) + i sin(2x)] = −1

⇔ sin(2x) = 0, e−2y cos(2x) = −1

⇔ y = 0, cos(2x) = −1

=⇔ y = 0, x = ±π

2
, ±3π

2
, . . .

Thus the only complex zeros of cos z are its real zeros at
z = (2n + 1)π/2 for integers n.

22. sin z = 0 ⇔ ezi = e−zi ⇔ e2zi = 1

⇔ e−2y[cos(2x) + i sin(2x)] = 1

⇔ sin(2x) = 0, e−2y cos(2x) = 1

⇔ y = 0, cos(2x) = 1

=⇔ y = 0, x = 0,±π, ±2π, . . .

Thus the only complex zeros of sin z are its real zeros at
z = nπ for integers n.

23. By Exercises 20 and 21, cosh z = 0 if and only if
cos(i z) = 0, that is, if and only if z = (2n + 1)π i/2
for integer n.
Similarly, sinh z = 0 if and only if sin(i z) = 0, that is, if
and only if z = nπ i for integer n.

24. ez = ex+yi = ex cos y + i ex sin y

e−z = e−x−yi = e−x cos y − e−x sin y

cosh z = ez + e−z

2
= ex + e−x

2
cos y + i

ex − e−x

2
sin y

= cosh x cos y + i sinh x sin y

Re(cosh z) = cosh x cos y, Im(cosh z) = sinh x sin y.

25. sinh z = ez − e−z

2
= ex − e−x

2
cos y + i

ex + e−x

2
sin y

= sinh x cos y + i cosh x sin y

Re(sinh z) = sinh x cos y, Im(cosh z) = cosh x sin y.

26. eiz = e−y+xi = e−y cos x + i e−y sin x

e−i z = ey−xi = ey cos x − i ey sin x

cos z = eiz + e−i z

2
= e−y + ey

2
cos x + i

e−y − ey

2
sin x

= cos x cosh y − i sin x sinh y

Re(cos z) = cos x cosh y, Im(cos z) = − sin x sinh y

sin z = eiz − e−i z

2i
= e−y − ey

2i
cos x + i

e−y + ey

2i
sin x

= sin x cosh y + i cos x sinh y

Re(sin z) = sin x cosh y, Im(sin z) = cos x sinh y.

27. z2 + 2i z = 0 ⇒ z = 0 or z = −2i

28. z2 − 2z + i = 0 ⇒ (z − 1)2 = 1 − i

= √
2

(
cos

7π

4
+ i sin

7π

4

)

⇒ z = 1 ± 21/4
(

cos
7π

8
+ i sin

7π

8

)
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29. z2 + 2z + 5 = 0 ⇒ (z + 1)2 = −4

⇒ z = −1 ± 2i

30. z2 − 2i z − 1 = 0 ⇒ (z − i )2 = 0

⇒ z = i (double root)

31. z3 − 3i z2 − 2z = z(z2 − 3i z − 2) = 0

⇒ z = 0 or z2 − 3i z − 2 = 0

⇒ z = 0 or

(
z − 3

2
i

)2

= −1

4

⇒ z = 0 or z =
(

3

2
± 1

2

)
i

⇒ z = 0 or z = i or z = 2i

32. z4 − 2z2 + 4 = 0 ⇒ (z2 − 1)2 = −3

z2 = 1 − i
√

3 or z2 = 1 + i
√

3

z2 = 2

(
cos

5π

3
+ i sin

5π

3

)
, z2 = 2

(
cos

π

3
+ i sin

π

3

)

z = ±√
2

(
cos

5π

6
+ i sin

5π

6

)
, or

z = ±√
2

(
cos

π

6
+ i sin

π

6

)

z = ±
(√

3

2
− i√

2

)
, z = ±

(√
3

2
+ i√

2

)

33. z4 + 1 = 0 ⇒ z2 = i or z2 = −i

⇒ z = ±1 + i√
2

, z = ±1 − i√
2

z4 + 1 =
(

z − 1 + i√
2

)(
z − 1 − i√

2

)

×
(

z + 1 + i√
2

)(
z + 1 − i√

2

)

=
([

z − 1√
2

]2

+ 1

2

) ([
z + 1√

2

]2

+ 1

2

)

= (z2 − √
2z + 1)(z2 + √

2z + 1)

34. Since P(z) = z4 − 4z3 + 12z2 − 16z + 16 has real
coefficients, if z1 = 1 − √

3i is a zero of P(z), then so is
z1. Now

(z − z1)(z − z1) = (z − 1)2 + 3 = z2 − 2z + 4.

By long division (details omitted) we discover that

z4 − 4z3 + 12z2 − 16z + 16

z2 − 2z + 4
= z2 − 2z + 4.

Thus z1 and z1 are both double zeros of P(z). These
are the only zeros.

35. Since P(z) = z5 + 3z4 + 4z3 + 4z2 + 3z + 1 has real
coefficients, if z1 = i is a zero of P(z), then so is
z2 = −i . Now

(z − z1)(z − z2) = (z − i )(z + i ) = z2 + 1.

By long division (details omitted) we discover that

z5 + 3z4 + 4z3 + 4z2 + 3z + 1

z2 + 1
= z3 + 3z2 + 3z + 1

= (z + 1)3.

Thus P(z) has the five zeros: i , −i , −1, −1, and −1.

36. Since P(z) = z5 − 2z4 − 8z3 + 8z2 + 31z − 30 has real
coefficients, if z1 = −2 + i is a zero of P(z), then so is
z2 = −2 − i . Now

(z − z1)(z − z2) = z2 + 4z + 5.

By long division (details omitted) we discover that

z5 − 2z4 − 8z3 + 8z2 + 31z − 30

z2 + 4z + 5
= z3 − 6z2 + 11z − 6.

Observe that z3 = 1 is a zero of z3 − 6z2 + 11z − 6. By
long division again:

z3 − 6z2 + 11z − 6

z − 1
= z2 − 5z + 6 = (z − 2)(z − 3).

Hence P(z) has the five zeros −2 + i , −2 − i , 1, 2, and
3.

37. If w = z4 + z3 − 2i z − 3 and |z| = 2, then |z4| = 16 and

|w − z4| = |z3 − 2i z − 3| ≤ 8 + 4 + 3 = 15 < 16.

By the mapping principle described in the proof of Theo-
rem 2, the image in the w-plane of the circle |z| = 2 is a
closed curve that winds around the origin the same num-
ber of times that the image of z4 does, namely 4 times.
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Appendix III. Continuous Functions
(page A-25)

1. To be proved: If a < b < c, f (x) ≤ g(x) for a ≤ x ≤ c,
limx→b f (x) = L , and limx→b g(x) = M , then L ≤ M .

Proof: Suppose, to the contrary, that L > M . Let
ε = (L − M)/3, so ε > 0. There exist numbers δ1 > 0
and δ2 > 0 such that if a ≤ x ≤ b, then

|x − b| < δ1 ⇒ | f (x) − L | < ε

|x − b| < δ2 ⇒ |g(x) − M| < ε.

Thus if |x − b| < δ = min{δ1, δ2, b − a, c − b}, then

f (x)−g(x) > L −ε− M −ε = L − M −2ε = L − M

3
> 0.

This contradicts the fact that f (x) ≤ g(x) on [a, b].
Therefore L ≤ M .

2. To be proved: If f (x) ≤ K on [a, b) and (b, c], and if
limx→b f (x) = L , then L ≤ K .

Proof: If L > K , then let ε = (L − K )/2; thus ε > 0.
There exists δ > 0 such that δ < b − a and δ < c − b, and
such that if 0 < |x − b| < δ, then | f (x) − L | < ε. In this
case

f (x) > L − ε = L − L − K

2
> K ,

which contradicts the fact that f (x) ≤ K on [a, b) and
(b, c]. Therefore L ≤ K .

3. Let ε > 0 be given. Let δ = ε1/r , (r > 0). Then

0 < x < δ ⇒ 0 < xr < δr = ε.

Thus limx→0+ xr = 0.

4. a) Let f (x) = C , g(x) = x . Let ε > 0 be given and let
δ = ε. For any real number x , if |x − a| < δ, then

| f (x) − f (a)| = |C − C | = 0 < ε,

|g(x) − g(a)| = |x − a| < δ = ε.

Thus limx→a f (x) = f (a) and limx→a g(x) = g(a),
and f and g are both continuous at every real num-
ber a.

5. A polynomial is constructed by adding and multiplying
finite numbers of functions of the type of f and g in
Exercise 4. By Theorem 1(a), such sums and products
are continuous everywhere, since their components have
been shown to be continuous everywhere.

6. If P and Q are polynomials, they are continuous every-
where by Exercise 5. If Q(a) �= 0, then

limx→a
P(x)

Q(x)
= P(a)

Q(a)
by Theorem 1(a). Hence P/Q is

continuous everywhere except at the zeros of Q.

7. Suppose n is a positive integer and a > 0.
Let ε > 0 be given. Let b = a1/n , and let
δ = min{a(1 − 2−n), bn−1ε}.
If |x − a| < δ, then x > a/2n , and if y = x1/n , then
y > b/2. Thus

∣∣∣x1/n − a1/n
∣∣∣ = |y − b|

= |yn − bn|
yn−1 + yn−2b + · · · + bn−1

<
|x − a|
bn−1 <

bn−1ε

bn−1 = ε.

Thus limx→a x1/n = a1/n , and x1/n is continuous at
x = a.

8. By Exercise 5, xm is continuous everywhere. By Exer-
cise 7, x1/n is continuous at each a > 0. Thus for a > 0
we have

lim
x→a

xm/n = lim
x→a

(
x1/n

)m =
(

lim
x→a

x1/n
)m

= (a1/n)m = am/n ,

and xm/n is continuous at each positive number.

9. If m and n are integers and n is odd, then
(−x)m/n = cxm/n , where c = (−1)m/n is either −1 or 1
depending on the parity of m. Since xm/n is continuous
at each positive number a, so is cxm/n . Thus (−x)m/n is
continuous at each positive number, and xm/n is continu-
ous at each negative number.

If r = m/n > 0, then limx→0+ xr = 0 by Exercise
3. Hence limx→0− xr = (−1)r limx→0+ xr = 0, also.
Therefore limx→0 xr = 0, and xr is continuous at x = 0.

10. Let ε > 0 be given. Let δ = ε. If a is any real number
then

∣∣∣|x | − |a|
∣∣∣ ≤ |x − a| < ε if |x − a| < δ.

Thus limx→a |x | = |a|, and the absolute value function is
continuous at every real number.

11. By the definition of sin, Pt = (cos t, sin t), and
Pa = (cos a, sin a) are two points on the unit circle
x2 + y2 = 1. Therefore

|t − a| = length of the arc from Pt to Pa

> length of the chord from Pt to Pa

=
√

(cos t − cos a)2 + (sin t − sin a)2.

If ε > 0 is given, and |t − a| < δ = ε, then the above
inequality implies that

| cos t − cos a| ≤ |t − a| < ε,

| sin t − sin a| ≤ |t − a| < ε.
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Thus sin is continuous everywhere.

12. The proof that cos is continuous everywhere is almost
identical to that for sin in Exercise 11.

13. Let a > 0 and ε > 0. Let δ = min
{a

2
,
εa

2

}
.

If |x − a| < δ, then x >
a

2
, so

1

t
<

2

a
whenever t is

between a and x . Thus

| ln x − ln a|
= area under y = 1

t
between t = a and t = x

<
2

a
|x − a| <

2

a

εa

2
= ε.

Thus limx→a ln x = ln a, and ln is continuous at each
point a in its domain (0,∞).

14. Let a be any real number, and let ε > 0 be given. As-
sume (making ε smaller if necessary) that ε < ea . Since

ln
(

1 − ε

ea

)
+ ln

(
1 + ε

ea

)
= ln

(
1 − ε2

e2a

)
< 0,

we have ln
(

1 + ε

ea

)
< − ln

(
1 − ε

ea

)
.

Let δ = ln
(

1 + ε

ea

)
. If |x − a| < δ, then

ln
(

1 − ε

ea

)
< x − a < ln

(
1 + ε

ea

)

1 − ε

ea
< ex−a < 1 + ε

ea∣∣ex−a − 1
∣∣ <

ε

ea

|ex − ea | = ea|ex−a − 1| < ε.

Thus limx→a ex = ea and ex is continuous at every point
a in its domain.

15. Suppose a ≤ xn ≤ b for each n, and lim xn = L . Then
a ≤ L ≤ b by Theorem 3. Let ε > 0 be given. Since
f is continuous on [a, b], there exists δ > 0 such that if
a ≤ x ≤ b and |x − L | < δ then | f (x)− f (L)| < ε. Since
lim xn = L , there exists an integer N such that if n ≥ N
then |xn − L | < δ. Hence | f (xn) − f (L)| < ε for such n.
Therefore lim( f (xn) = f (L).

16. Let g(t) = t

1 + |t | . For t �= 0 we have

g′(t) = 1 + |t | − t sgn t

(1 + |t |)2 = 1 + |t | − |t |
(1 + |t |)2 = 1

(1 + |t |)2 > 0.

If t = 0, g is also differentiable, and has derivative 1:

g′(0) = lim
h→0

g(h) − g(0)

h
= lim

h→0

1

1 + |h| = 1.

Thus g is continuous and increasing on �.
If f is continuous on [a, b], then

h(x) = g
(

f (x)
)

= f (x)

1 + | f (x)|
is also continuous there, being the composition of contin-
uous functions. Also, h(x) is bounded on [a, b], since∣∣∣g(

f (x)
)∣∣∣ ≤ | f (x)|

1 + | f (x)| ≤ 1.

By assumption in this problem, h(x) must assume max-
imum and minimum values; there exist c and d in [a, b]
such that

g
(

f (c)
)

≤ g
(

f (x)
)

≤ g
(

f (d)
)

for all x in [a, b]. Since g is increasing, so is its inverse
g−1. Therefore

f (c) ≤ f (x) ≤ f (d)

for all x in [a, b], and f is bounded on that interval.

Appendix IV. The Riemann Integral
(page A-30)

1. f (x) =
{

1 if 0 ≤ x ≤ 1
0 if 1 < x ≤ 2

Let 0 < ε < 1. Let P = {0, 1 − ε
3 , 1 + ε

3 , 2}. Then

L( f, P) = 1
(

1 − ε

3

)
+ 0 + 0 = 1 − ε

3

U( f, P) = 1
(

1 − ε

3

)
+ 1

(
2ε

3

)
+ 0 = 1 + ε

3
.

Since U( f, P) − L( f, P) < ε, f is integrable on [0, 2].
Since L( f, P) < 1 < U( f, P) for every ε, therefore∫ 2

0
f (x) dx = 1.

2. f (x) =
{

1 if x = 1/n (n = 1, 2, 3, . . .)

0 otherwise
If P is any partition of [0, 1] then L( f, P) = 0. Let
0 < ε ≤ 2. Let N be an integer such that

N + 1 >
2

ε
≥ N . A partition P of [0, 1]

can be constructed so that the first two points of P

are 0 and
ε

2
, and such that each of the N points

1

n
(n = 1, 2, 3, . . . , n) lies in a subinterval of P having

length at most
ε

2N
. Since every number

1

n
with n a pos-

itive integer lies either in
[
0,

ε

2

]
or one of these other

N subintervals of P, and since max f (x) = 1 for these
subintervals and max f (x) = 0 for all other subintervals

of P, therefore U( f, P) ≤ ε

2
+ N

ε

2N
= ε. By Theorem

3, f is integrable on [0, 1]. Evidently∫ 1

0
f (x) dx = least upper bound L( f, P) = 0.
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3. f (x) =
{

1/n if x = m/n in lowest terms
0 otherwise

Clearly L( f, P) = 0 for every partition P of [0, 1].
Let ε > 0 be given. To show that f is integrable we
must exhibit a partition P for which U( f, P) < ε. We
can assume ε < 1. Choose a positive integer N such
that 2/N < ε. There are only finitely many integers n
such that 1 ≤ n ≤ N . For each such n, there are only
finitely many integers m such that 0 ≤ m/n ≤ 1. There-
fore there are only finitely many points x in [0, 1] where
f (x) > ε/2. Let P be a partition of [0, 1] such that all
these points are contained in subintervals of the partition
having total length less than ε/2. Since f (x) ≤ 1 on
these subintervals, and f (x) < ε/2 on all other subinter-
vals P, therefore U( f, P) ≤ 1 × (ε/2) + (ε/2) × 1 = ε,

and f is integrable on [0, 1]. Evidently
∫ 1

0 f (x) dx = 0,
since all lower sums are 0.

4. Suppose, to the contrary, that I∗ > I ∗. Let ε = I∗ − I ∗

3
,

so ε > 0. By the definition of I∗ and I ∗, there exist
partitions P1 and P2 of [a, b], such that L( f, P1) ≥ I∗ −ε

and U( f, P2) ≤ I ∗ + ε. By Theorem 2,
L( f, P1) ≤ U( f, P2), so

3ε = I∗ − I ∗ ≤ L( f, P1) + ε − U( f, P2) + ε ≤ 2ε.

Since ε > 0, it follows that 3 ≤ 2. This contradiction
shows that we must have I∗ ≤ I ∗.

5. Theorem 3 of Section 6.4: Proofs of parts (c)–(h).

c) Multiplying a function by a constant multiplies all
its Riemann sums by the same constant. If the con-
stant is positive, upper and lower sums remain upper
and lower; if the constant is negative upper sums
become lower and vice versa. Therefore

∫ b

a
A f (x) dx = A

∫ b

a
f (x) dx .

It therefore remains to be proved only that the in-
tegral of a sum of functions is the sum of the inte-
grals. Suppose that

∫ b

a
f (x) dx = I, and

∫ b

a
g(x) dx = J.

If ε > 0, then there exist partitions P1 and P2 of
[a, b] such that

U( f, P1) − ε

2
≤ I < L( f, P1) + ε

2

U(g, P2) − ε

2
≤ J < L(g, P2) + ε

2
.

Let P be the common refinement of P1 and
P2. Then the above inequalities hold with P re-
placing P1 and P2. If m1 ≤ f (x) ≤ M1
and m2 ≤ g(x) ≤ M2 on any interval, then
m1 + m2 ≤ f (x) + g(x) ≤ M1 + M2 there. It
follows that

U( f + g, P) ≤ U( f, P) + U(g, P),

L( f, P) + L(g, P) ≤ L( f + g, P).

Therefore

U( f + g, P) − ε ≤ I + J ≤ L( f + g, P) + ε.

Hence
∫ b

a

(
f (x) + g(x)

)
dx = I + J .

d) Assume a < b < c; the other cases are similar. Let
ε > 0. If

∫ b

a
f (x) dx = I, and

∫ c

b
f (x) dx = J,

then there exist partitions P1 of [a, b], and P2 of
[b, c] such that

L( f, P1) ≤ I < L( f, P1) + ε

2

L( f, P2) ≤ J < L( f, P2) + ε

2

(with similar inequalities for upper sums). Let P be
the partition of [a, c] formed by combining all the
subdivision points of P1 and P2. Then

L( f, P) = L( f, P1)+L( f, P2) ≤ I + J < L( f, P)+ε.

Similarly, U( f, P)−ε < I + J ≤ U( f, P). Therefore

∫ c

a
f (x) dx = I + J.

e) Let

∫ b

a
f (x) dx = I, and

∫ b

a
g(x) dx = J,

where f (x) ≤ g(x) on [a, b]. We want to show that
I ≤ J . Suppose, to the contrary, that I > J . Then
there would exist a partition P of [a, b] for which

I < L( f, P)+ I − J

2
, and U(g, P)− I − J

2
< J.

Thus L( f, P) >
I + J

2
> U(g, P) ≥ L(g, P).

However, f (x) ≤ g(x) on [a, b] implies that
L( f, P) ≤ L(g, P) for any partition. Thus we have
a contradiction, and so I ≤ J .
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f) Since −| f (x)| ≤ f (x) ≤ | f (x)| for any x , we have
by part (e), if a ≤ b,

−
∫ b

a
| f (x)| dx ≤

∫ b

a
f (x) dx ≤

∫ b

a
| f (x)| dx .

Therefore

∣∣∣∣
∫ b

a
f (x) dx

∣∣∣∣ ≤
∫ b

a
| f (x)| dx .

g) By parts (b), (c) and (d),

∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx +

∫ a

0
f (x) dx

=
∫ a

0
f (−x) dx +

∫ a

0
f (x) dx

=
∫ a

0
[ f (−x) + f (x)] dx .

If f is odd, the last integral is 0. If f is even, the

last integral is
∫ a

0
2 f (x) dx . Thus both (g) and (h)

are proved.

6. Let ε > 0 be given. Let δ = ε2/2. Let 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1. If x < ε2/4 and y < ε2/4 then
|√x − √

y| ≤ √
x + √

y < ε.
If |x − y| < δ and either x ≥ ε2/4 or y ≥ ε2/4 then

|√x − √
y| = |x − y|√

x + √
y

<
2

ε
× ε2

2
= ε.

Thus f (x) = √
x is uniformly continuous on [0, 1].

7. Suppose f is uniformly continuous on [a, b]. Taking
ε = 1 in the definition of uniform continuity, we can find
a positive number δ such that | f (x)− f (y)| < 1 whenever
x and y are in [a, b] and |x − y| < δ. Let N be a positive
integer such that h = (b − a)/N satisfies h < δ.
If xk = a +kh, (0 ≤ k ≤ N ), then each of the subintervals
of the partition P = {x0, x1, . . . , xN } has length less than
δ. Thus

| f (xk) − f (xk−1)| < 1 for 1 ≤ k ≤ N .

By repeated applications of the triangle inequality,

| f (xk−1) − f (a)| = | f (xk−1) − f (x0)| < k − 1.

If x is any point in [a, b], then x belongs to one of the
intervals [xk−1, xk ], so, by the triangle inequality again,

| f (x)− f (a)| ≤ | f (x)− f (xk−1)|+| f (xk−1)− f (a)| < k ≤ N .

Thus | f (x)| < | f (a)| + N , and f is bounded on [a, b].

8. Suppose that | f (x)| ≤ K on [a, b] (where K > 0), and
that f is integrable on [a, b]. Let ε > 0 be given, and let
δ = ε/K . If x and y belong to [a, b] and |x − y| < δ,
then

|F(x) − F(y)| =
∣∣∣∣
∫ x

a
f (t) dt −

∫ y

a
f (t) dt

∣∣∣∣
=

∣∣∣∣
∫ x

y
f (t) dt

∣∣∣∣ ≤ K |x − y| < K
ε

K
= ε.

(See Theorem 3(f) of Section 6.4.) Thus F is uniformly
continuous on [a, b].
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