INSTRUCTOR'S SOLUTIONS MANUAL

APPENDICES

Appendix I. Complex Numbers (page A-10)

- **2.** z = 4 i, $\operatorname{Re}(z) = 4$, $\operatorname{Im}(z) = -1$
- **3.** $z = -\pi i$, $\operatorname{Re}(z) = 0$, $\operatorname{Im}(z) = -\pi$
- 4. z = -6, $\operatorname{Re}(z) = -6$, $\operatorname{Im}(z) = 0$
- 5. z = -1 + i, $|z| = \sqrt{2}$, Arg $(z) = 3\pi/4$ $z = \sqrt{2} (\cos(3\pi/4) + i \sin(3\pi/4))$
- 6. z = -2, |z| = 2, Arg $(z) = \pi$ $z = 2(\cos \pi + i \sin \pi)$
- 7. z = 3i, |z| = 3, Arg $(z) = \pi/2$ $z = 3(\cos(\pi/2) + i\sin(\pi/2))$
- 8. z = -5i, |z| = 5, $\operatorname{Arg}(z) = -\pi/2$ $z = 5(\cos(-\pi/2) + i\sin(-\pi/2))$
- **9.** z = 1 + 2i, $|z| = \sqrt{5}$, $\theta = \text{Arg}(z) = \tan^{-1}2$ $z = \sqrt{5}(\cos \theta + i \sin \theta)$
- **10.** z = -2 + i, $|z| = \sqrt{5}$, $\theta = \operatorname{Arg}(z) = \pi \tan^{-1}(1/2)$ $z = \sqrt{5}(\cos \theta + i \sin \theta)$
- **11.** z = -3 4i, |z| = 5, $\theta = \operatorname{Arg}(z) = -\pi + \tan^{-1}(4/3)$ $z = 5(\cos \theta + i \sin \theta)$
- **12.** z = 3 4i, |z| = 5, $\theta = \operatorname{Arg}(z) = -\tan^{-1}(4/3)$ $z = 5(\cos \theta + i \sin \theta)$
- 13. $z = \sqrt{3} i$, |z| = 2, Arg $(z) = -\pi/6$ $z = 2(\cos(-\pi/6) + i\sin(-\pi/6))$
- 14. $z = -\sqrt{3} 3i$, $|z| = 2\sqrt{3}$, Arg $(z) = -2\pi/3$ $z = 2\sqrt{3}(\cos(-2\pi/3) + i\sin(-2\pi/3))$

- **15.** $z = 3\cos\frac{4\pi}{5} + 3i\sin\frac{4\pi}{5}$ |z| = 3, Arg $(z) = \frac{4\pi}{5}$
- 16. If Arg $(z) = \frac{3\pi}{4}$ and Arg $(w) = \frac{\pi}{2}$, then arg $(zw) = \frac{3\pi}{4} + \frac{\pi}{2} = \frac{5\pi}{4}$, so Arg $(zw) = \frac{5\pi}{4} - 2\pi = \frac{-3\pi}{4}$.
- 17. If Arg $(z) = -\frac{5\pi}{6}$ and Arg $(w) = \frac{\pi}{4}$, then arg $(z/w) = -\frac{5\pi}{6} - \frac{\pi}{4} = -\frac{13\pi}{12}$, so Arg $(z/w) = -\frac{13\pi}{12} + 2\pi = \frac{11\pi}{12}$.
- **18.** |z| = 2, $\arg(z) = \pi \implies z = 2(\cos \pi + i \sin \pi) = -2$
- **19.** |z| = 5, $\theta = \arg(z) = \pi \implies \sin \theta = 3/5$, $\cos \theta = 4/5$ z = 4 + 3i
- **20.** |z| = 1, $\arg(z) = \frac{3\pi}{4} \implies z = \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$ $\implies z = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$
- 21. $|z| = \pi$, $\arg(z) = \frac{\pi}{6} \Rightarrow z = \pi \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$ $\Rightarrow z = \frac{\pi\sqrt{3}}{2} + \frac{\pi}{2}i$
- 22. $|z| = 0 \Rightarrow z = 0$ for any value of arg (z)
- 23. $|z| = \frac{1}{2}, \arg(z) = -\frac{\pi}{3} \implies z = \frac{1}{2} \left(\cos \frac{\pi}{3} i \sin \frac{\pi}{3} \right)$ $\implies z = \frac{1}{4} - \frac{\sqrt{3}}{4}i$
- **24.** $\overline{5+3i} = 5-3i$
- **25.** $\overline{-3-5i} = -3+5i$
- **26.** $\overline{4i} = -4i$
- **27.** $\overline{2-i} = 2+i$
- **28.** |z| = 2 represents all points on the circle of radius 2 centred at the origin.
- **29.** $|z| \le 2$ represents all points in the closed disk of radius 2 centred at the origin.
- **30.** $|z 2i| \le 3$ represents all points in the closed disk of radius 3 centred at the point 2i.
- **31.** $|z-3+4i| \le 5$ represents all points in the closed disk of radius 5 centred at the point 3-4i.
- **32.** arg $(z) = \pi/3$ represents all points on the ray from the origin in the first quadrant, making angle 60° with the positive direction of the real axis.

APPENDIX I. (PAGE A-10)

R. A. ADAMS: CALCULUS

- **33.** $\pi \leq \arg(z) \leq 7\pi/4$ represents the closed wedge-shaped region in the third and fourth quadrants bounded by the ray from the origin to $-\infty$ on the real axis and the ray from the origin making angle -45° with the positive direction of the real axis.
- **34.** (2+5i) + (3-i) = 5+4i
- **35.** i (3 2i) + (7 3i) = -3 + 7 + i + 2i 3i = 4
- **36.** $(4+i)(4-i) = 16 i^2 = 17$
- **37.** $(1+i)(2-3i) = 2 + 2i 3i 3i^2 = 5 i$
- **38.** $(a+bi)(\overline{2a-bi}) = (a+bi)(2a+bi) = 2a^2 b^2 + 3abi$

39.
$$(2+i)^3 = 8 + 12i + 6i^2 + i^3 = 2 + 11i$$

40.
$$\frac{2-i}{2+i} = \frac{(2-i)^2}{4-i^2} = \frac{3-4i}{5}$$

41.
$$\frac{1+3i}{2-i} = \frac{(1+3i)(2+i)}{4-i^2} = \frac{-1+7i}{5}$$

42.
$$\frac{1+i}{i(2+3i)} = \frac{1+i}{-3+2i} = \frac{(1+i)(-3-2i)}{9+4} = \frac{-1-5i}{13}$$

- **43.** $\frac{(1+2i)(2-3i)}{(2-i)(3+2i)} = \frac{8+i}{8+i} = 1$
- 44. If z = x + yi and w = u + vi, where x, y, u, and v are real, then

$$\overline{z+w} = \overline{x+u+(y+v)i}$$
$$= x+u-(y+v)i = x-yi+u-vi = \overline{z}+\overline{w}.$$

45. Using the fact that |zw| = |z||w|, we have

$$\overline{\left(\frac{z}{w}\right)} = \overline{\left(\frac{z\overline{w}}{|w|^2}\right)} = \frac{\overline{z}\,\overline{\overline{w}}}{|w|^2} = \frac{\overline{z}w}{\overline{w}w} = \frac{\overline{z}}{\overline{\overline{w}}}$$

46.
$$z = 3 + i\sqrt{3} = 2\sqrt{3}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

 $w = -1 + i\sqrt{3} = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$
 $zw = 4\sqrt{3}\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$
 $\frac{z}{w} = \sqrt{3}\left(\cos\frac{-\pi}{2} + i\sin\frac{-\pi}{2}\right) = -i\sqrt{3}$
47. $z = -1 + i = \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$
 $w = 3i = 3\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$
 $zw = 3\sqrt{2}\left(\cos\frac{5\pi}{4} + i\sin\frac{\pi}{4}\right) = -3 - 3i$
 $\frac{z}{w} = \frac{\sqrt{2}}{3}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \frac{1}{3} + \frac{1}{3}i$

48. $\cos(3\theta) + i\sin(3\theta) = (\cos\theta + i\sin\theta)^3$ = $\cos^3\theta + 3i\cos^2\theta\sin\theta - 3\cos\theta\sin^2\theta - i\sin^3\theta$ Thus

 $\cos(3\theta) = \cos^3\theta - 3\cos\theta\sin^2\theta = 4\cos^3\theta - 3\cos\theta$ $\sin(3\theta) = 3\cos^2\theta\sin\theta - \sin^3\theta = 3\sin\theta - 4\sin^3\theta.$

- **49.** a) $\overline{z} = 2/z$ can be rewritten $|z|^2 = z\overline{z} = 2$, so is satisfied by all numbers z on the circle of radius $\sqrt{2}$ centred at the origin.
 - b) $\overline{z} = -2/z$ can be rewritten $|z|^2 = z\overline{z} = -2$, which has no solutions since the square of |z| is nonnegative for all complex z.
- **50.** If z = w = -1, then zw = 1, so $\sqrt{zw} = 1$. But if we use $\sqrt{z} = \sqrt{-1} = i$ and the same value for \sqrt{w} , then $\sqrt{z}\sqrt{w} = i^2 = -1 \neq \sqrt{zw}$.
- **51.** The three cube roots of $-1 = \cos \pi + i \sin \pi$ are of the form $\cos \theta + i \sin \theta$ where $\theta = \pi/3$, $\theta = \pi$, and $\theta = 5\pi/3$. Thus they are

$$\frac{1}{2} + i\frac{\sqrt{3}}{2}, \quad -1, \quad \frac{1}{2} - i\frac{\sqrt{3}}{2}$$

52. The three cube roots of $-8i = 8\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$ are of the form $2(\cos\theta + i\sin\theta)$ where $\theta = \pi/2$, $\theta = 7\pi/6$, and $\theta = 11\pi/6$. Thus they are

$$2i, \quad -\sqrt{3}-i, \quad \sqrt{3}-i.$$

- 53. The three cube roots of $-1 + i = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$ are of the form $2^{1/6} (\cos \theta + i \sin \theta)$ where $\theta = \pi/4$, $\theta = 11\pi/12$, and $\theta = 19\pi/12$.
- 54. The four fourth roots of $4 = 4(\cos 0 + i \sin 0)$ are of the form $\sqrt{2}(\cos \theta + i \sin \theta)$ where $\theta = 0, \theta = \pi/2, \pi$, and $\theta = 3\pi/2$. Thus they are $\sqrt{2}, i\sqrt{2}, -\sqrt{2}$, and $-i\sqrt{2}$.
- **55.** The equation $z^4 + 1 i\sqrt{3} = 0$ has solutions that are the four fourth roots of $-1 + i\sqrt{3} = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$. Thus they are of the form $2^{1/4}(\cos\theta + i\sin\theta)$, where $\theta = \pi/6, 2\pi/3, 7\pi/6, \text{ and } 5\pi/3$. They are the complex numbers

$$\pm 2^{1/4} \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i \right), \quad \pm 2^{1/4} \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i \right).$$

- **56.** The equation $z^5 + a^5 = 0$ (a > 0) has solutions that are the five fifth roots of $-a^5 = a (\cos \pi + i \sin \pi)$; they are of the form $a(\cos \theta + i \sin \theta)$, where $\theta = \pi/5$, $3\pi/5$, π , $7\pi/5$, and $9\pi/5$.
- 57. The *n* nth roots of unity are

$$\omega_1 = 1$$

$$\omega_2 = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$$

$$\omega_3 = \cos \frac{4\pi}{n} + i \sin \frac{4\pi}{n} = \omega_2^2$$

$$\omega_4 = \cos \frac{6\pi}{n} + i \sin \frac{6\pi}{n} = \omega_2^3$$

$$\vdots$$

$$\omega_n = \cos \frac{2(n-1)\pi}{n} + i \sin \frac{2(n-1)\pi}{n} = \omega_2^{n-1}$$

Hence

$$\omega_1 + \omega_2 + \omega_3 + \dots + \omega_n = 1 + \omega_2 + \omega_2^2 + \dots + \omega_2^{n-1}$$
$$= \frac{1 - \omega_2^n}{1 - \omega_2} = \frac{0}{1 - \omega_2} = 0.$$

Appendix II. Complex Functions (page A-19)

In Solutions 1–12, z = x + yi and w = u + vi, where x, y, u, and v are real.

- 1. The function $w = \overline{z}$ transforms the closed rectangle $0 \le x \le 1, 0 \le y \le 2$ to the closed rectangle $0 \le u \le 1, -2 \le v \le 0.$
- 2. The function $w = \overline{z}$ transforms the line x + y = 1 to the line u v = 1.
- 3. The function $w = z^2$ transforms the closed annular sector $1 \le |z| \le 2$, $\pi/2 \le \arg(z) \le 3\pi/4$ to the closed annular sector $1 \le |w| \le 4$, $\pi \le \arg(w) \le 3\pi/2$.
- 4. The function $w = z^3$ transforms the closed quartercircular disk $0 \le |z| \le 2$, $0 \le \arg(z) \le \pi/2$ to the closed three-quarter disk $0 \le |w| \le 8$, $0 \le \arg(w) \le 3\pi/2$.
- 5. The function $w = 1/z = \overline{z}/|z|^2$ transforms the closed quarter-circular disk $0 \le |z| \le 2$, $0 \le \arg(z) \le \pi/2$ to the closed region lying on or outside the circle |w| = 1/2 and in the fourth quadrant, that is, having $-\pi/2 \le \arg(w) \le 0$.
- 6. The function w = -iz rotates the z-plane -90° , so transforms the wedge $\pi/4 \le \arg(z) \le \pi/3$ to the wedge $-\pi/4 \le \arg(z) \le -\pi/6$.
- 7. The function $w = \sqrt{z}$ transforms the ray $\arg(z) = -\pi/3$ (that is, $\operatorname{Arg}(z) = 5\pi/3$) to the ray $\arg(w) = 5\pi/6$.

- 8. The function $w = z^2 = x^2 y^2 + 2xyi$ transforms the line x = 1 to $u = 1 y^2$, v = 2y, which is the parabola $v^2 = 4 4u$ with vertex at w = 1, opening to the left.
- 9. The function $w = z^2 = x^2 y^2 + 2xyi$ transforms the line y = 1 to $u = x^2 1$, v = 2x, which is the parabola $v^2 = 4u + 4$ with vertex at w = -1 and opening to the right.
- **10.** The function $w = 1/z = (x yi)/(x^2 + y^2)$ transforms the line x = 1 to the curve given parametrically by

$$u = \frac{1}{1+y^2}, \qquad v = \frac{-y}{1+y^2}.$$

This curve is, in fact, a circle,

$$u^{2} + v^{2} = \frac{1 + y^{2}}{(1 + y^{2})^{2}} = u,$$

with centre w = 1/2 and radius 1/2.

- 11. The function $w = e^z = e^x \cos y + ie^x \sin y$ transforms the horizontal strip $-\infty < x < \infty$, $\pi/4 \le y \le \pi/2$ to the wedge $\pi/4 \le \arg(w) \le \pi/2$, or, equivalently, $u \ge 0$, $v \ge u$.
- 12. The function $w = e^{iz} = e^{-y}(\cos x + i \sin x)$ transforms the vertical half-strip $0 < x < \pi/2$, $0 < y < \infty$ to the first-quadrant part of the unit open disk $|w| = e^{-y} < 1$, $0 < \arg(w) = x < \pi/2$, that is u > 0, v > 0, $u^2 + v^2 < 1$.

13.
$$f(z) = z^{2} = (x + yi)^{2} = x^{2} - y^{2} + 2xyi$$
$$u = x^{2} - y^{2}, \quad v = 2xy$$
$$\frac{\partial u}{\partial x} = 2x = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -2y = -\frac{\partial v}{\partial x}$$
$$f'(z) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = 2x + 2yi = 2z.$$

14. $f(z) = z^{3} = (x + yi)^{3} = x^{3} - 3xy^{2} + (3x^{2}y - y^{3})i$ $u = x^{3} - 3xy^{2}, \quad v = 3x^{2}y - y^{3}$ $\frac{\partial u}{\partial x} = 3(x^{2} - y^{2}) = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -6xy = -\frac{\partial v}{\partial x}$ $f'(z) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = 3(x^{2} - y^{2} + 2xyi) = 3z^{2}.$

15.
$$f(z) = \frac{1}{z} = \frac{x - yi}{x^2 + y^2}$$
$$u = \frac{x}{x^2 + y^2}, \quad v = \frac{-y}{x^2 + y^2}$$
$$\frac{\partial u}{\partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = \frac{-2xy}{(x^2 + y^2)^2} = -\frac{\partial v}{\partial x}$$
$$f'(z) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{-(x^2 - y^2) + 2xyi}{(x^2 + y^2)^2} = \frac{-(\overline{z})^2}{(z\overline{z})^2} = -\frac{1}{z^2}.$$

APPENDIX II. (PAGE A-19)

16.
$$f(z) = e^{z^2} = e^{x^2 - y^2} (\cos(2xy) + i \sin(2xy))$$
$$u = e^{x^2 - y^2} \cos(2xy), \quad v = e^{x^2 - y^2} \sin(2xy)$$
$$\frac{\partial u}{\partial x} = e^{x^2 - y^2} (2x \cos(2xy) - 2y \sin(2xy)) = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -e^{x^2 - y^2} (2y \cos(2xy) + 2x \sin(2xy)) = -\frac{\partial v}{\partial x}$$
$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$
$$= e^{x^2 - y^2} [2x \cos(2xy) - 2y \sin(2xy) + i (2y \cos(2xy) + 2x \sin(2xy))]$$
$$= (2x + 2yi)e^{x^2 - y^2} (\cos(2xy) + i \sin(2xy)) = 2ze^{z^2}.$$

17. $e^{yi} = \cos y + i \sin y$ (for real y). Replacing y by -y, we get $e^{-yi} = \cos y - i \sin y$ (since $\cos i$ s even and $\sin i$ s odd). Adding and subtracting these two formulas gives

$$e^{yi} + e^{-yi} = 2\cos y, \qquad e^{yi} - e^{-yi} = 2i\sin y.$$

Thus
$$\cos y = \frac{e^{yi} + e^{-yi}}{2}$$
 and $\sin y = \frac{e^{yi} - e^{-yi}}{2i}$

18. $e^{z+2\pi i} = e^x (\cos(y+2\pi) + i\sin(y+2\pi))$ = $e^x (\cos y + i\sin y) = e^z$.

Thus e^z is periodic with period $2\pi i$. So is $e^{-z} = 1/e^z$. Since $e^{i(z+2\pi)} = e^{zi+2\pi i} = e^{zi}$, therefore e^{zi} and also e^{-zi} are periodic with period 2π . Hence

$$\cos z = \frac{e^{zi} + e^{-zi}}{2}$$
 and $\sin z = \frac{e^{zi} - e^{-zi}}{2i}$

are periodic with period 2π , and

$$\cosh z = \frac{e^z + e^{-z}}{2}$$
 and $\sinh z = \frac{e^z - e^{-z}}{2}$

are periodic with period $2\pi i$.

19.
$$\frac{d}{dz}\cos z = \frac{d}{dz}\frac{e^{zi} + e^{-zi}}{2} = \frac{ie^{zi} - e^{-zi}}{2} = -\sin z$$
$$\frac{d}{dz}\sin z = \frac{d}{dz}\frac{e^{zi} - e^{-zi}}{2i} = \frac{ie^{zi} + e^{-zi}}{2i} = \cos z$$
$$\frac{d}{dz}\cosh z = \frac{d}{dz}\frac{e^{z} + e^{-z}}{2} = \frac{e^{z} - e^{-z}}{2} = \sinh z$$
$$\frac{d}{dz}\sinh z = \frac{d}{dz}\frac{e^{z} - e^{-z}}{2} = \frac{e^{z} + e^{-z}}{2} = \cosh z$$
20.
$$\cosh(iz) = \frac{e^{iz} + e^{-iz}}{2} = \cosh z$$

$$-i\sinh(iz) = \frac{1}{i} \frac{e^{iz} - e^{-iz}}{2} = \sin z$$

$$\cos(iz) = \frac{e^{-z} + e^{z}}{2} = \cosh z$$

$$\sin(iz) = \frac{e^{-z} - e^{z}}{2i} = i \frac{-e^{-z} + e^{z}}{2} = i \sinh z$$

21.
$$\cos z = 0 \Leftrightarrow e^{zi} = -e^{-zi} \Leftrightarrow e^{2zi} = -1$$

 $\Leftrightarrow e^{-2y}[\cos(2x) + i\sin(2x)] = -1$
 $\Leftrightarrow \sin(2x) = 0, \quad e^{-2y}\cos(2x) = -1$
 $\Leftrightarrow y = 0, \quad \cos(2x) = -1$
 $= \Leftrightarrow y = 0, \quad x = \pm \frac{\pi}{2}, \quad \pm \frac{3\pi}{2}, \ldots$

Thus the only complex zeros of $\cos z$ are its real zeros at $z = (2n + 1)\pi/2$ for integers *n*.

22.
$$\sin z = 0 \Leftrightarrow e^{zi} = e^{-zi} \Leftrightarrow e^{2zi} = 1$$

 $\Leftrightarrow e^{-2y}[\cos(2x) + i\sin(2x)] = 1$
 $\Leftrightarrow \sin(2x) = 0, \quad e^{-2y}\cos(2x) = 1$
 $\Leftrightarrow y = 0, \ \cos(2x) = 1$
 $= \Leftrightarrow y = 0, \ x = 0, \pm \pi, \ \pm 2\pi, \dots$

Thus the only complex zeros of $\sin z$ are its real zeros at $z = n\pi$ for integers *n*.

23. By Exercises 20 and 21, cosh z = 0 if and only if cos(iz) = 0, that is, if and only if z = (2n + 1)πi/2 for integer n. Similarly, sinh z = 0 if and only if sin(iz) = 0, that is, if and only if z = nπi for integer n.

24.
$$e^{z} = e^{x+yi} = e^{x} \cos y + ie^{x} \sin y$$

 $e^{-z} = e^{-x-yi} = e^{-x} \cos y - e^{-x} \sin y$
 $\cosh z = \frac{e^{z} + e^{-z}}{2} = \frac{e^{x} + e^{-x}}{2} \cos y + i \frac{e^{x} - e^{-x}}{2} \sin y$
 $= \cosh x \cos y + i \sinh x \sin y$

 $\operatorname{Re}(\cosh z) = \cosh x \cos y$, $\operatorname{Im}(\cosh z) = \sinh x \sin y$.

25.
$$\sinh z = \frac{e^z - e^{-z}}{2} = \frac{e^x - e^{-x}}{2} \cos y + i \frac{e^x + e^{-x}}{2} \sin y$$
$$= \sinh x \cos y + i \cosh x \sin y$$
$$\operatorname{Re}(\sinh z) = \sinh x \cos y, \quad \operatorname{Im}(\cosh z) = \cosh x \sin y$$

26.
$$e^{iz} = e^{-y+xi} = e^{-y}\cos x + ie^{-y}\sin x$$

 $e^{-iz} = e^{y-xi} = e^{y}\cos x - ie^{y}\sin x$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = \frac{e^{-y} + e^{y}}{2} \cos x + i \frac{e^{-y} - e^{y}}{2} \sin x$$
$$= \cos x \cosh y - i \sin x \sinh y$$
$$\operatorname{Re}(\cos z) = \cos x \cosh y, \quad \operatorname{Im}(\cos z) = -\sin x \sinh y$$
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \frac{e^{-y} - e^{y}}{2i} \cos x + i \frac{e^{-y} + e^{y}}{2i} \sin x$$
$$= \sin x \cosh y + i \cos x \sinh y$$
$$\operatorname{Re}(\sin z) = \sin x \cosh y, \quad \operatorname{Im}(\sin z) = \cos x \sinh y.$$

27.
$$z^2 + 2iz = 0 \Rightarrow z = 0$$
 or $z = -2i$

28.
$$z^2 - 2z + i = 0 \Rightarrow (z - 1)^2 = 1 - i$$

= $\sqrt{2} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right)$
 $\Rightarrow z = 1 \pm 2^{1/4} \left(\cos \frac{7\pi}{8} + i \sin \frac{7\pi}{8} \right)$

INSTRUCTOR'S SOLUTIONS MANUAL

29.
$$z^2 + 2z + 5 = 0 \Rightarrow (z + 1)^2 = -4$$

 $\Rightarrow z = -1 \pm 2i$

30. $z^2 - 2iz - 1 = 0 \Rightarrow (z - i)^2 = 0$ $\Rightarrow z = i$ (double root)

31.
$$z^{3} - 3iz^{2} - 2z = z(z^{2} - 3iz - 2) = 0$$
$$\Rightarrow z = 0 \text{ or } z^{2} - 3iz - 2 = 0$$
$$\Rightarrow z = 0 \text{ or } \left(z - \frac{3}{2}i\right)^{2} = -\frac{1}{4}$$
$$\Rightarrow z = 0 \text{ or } z = \left(\frac{3}{2} \pm \frac{1}{2}\right)i$$
$$\Rightarrow z = 0 \text{ or } z = i \text{ or } z = 2i$$

32.
$$z^4 - 2z^2 + 4 = 0 \implies (z^2 - 1)^2 = -3$$

 $z^2 = 1 - i\sqrt{3}$ or $z^2 = 1 + i\sqrt{3}$
 $z^2 = 2\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right), \quad z^2 = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$
 $z = \pm\sqrt{2}\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right), \text{ or }$
 $z = \pm\sqrt{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$
 $z = \pm\left(\sqrt{\frac{3}{2}} - \frac{i}{\sqrt{2}}\right), \quad z = \pm\left(\sqrt{\frac{3}{2}} + \frac{i}{\sqrt{2}}\right)$

33.
$$z^4 + 1 = 0 \Rightarrow z^2 = i \text{ or } z^2 = -i$$

 $\Rightarrow z = \pm \frac{1+i}{\sqrt{2}}, \quad z = \pm \frac{1-i}{\sqrt{2}}$
 $z^4 + 1 = \left(z - \frac{1+i}{\sqrt{2}}\right) \left(z - \frac{1-i}{\sqrt{2}}\right)$
 $\times \left(z + \frac{1+i}{\sqrt{2}}\right) \left(z + \frac{1-i}{\sqrt{2}}\right)$
 $= \left(\left[z - \frac{1}{\sqrt{2}}\right]^2 + \frac{1}{2}\right) \left(\left[z + \frac{1}{\sqrt{2}}\right]^2 + \frac{1}{2}\right)$
 $= (z^2 - \sqrt{2}z + 1)(z^2 + \sqrt{2}z + 1)$

34. Since $P(z) = z^4 - 4z^3 + 12z^2 - 16z + 16$ has real coefficients, if $z_1 = 1 - \sqrt{3}i$ is a zero of P(z), then so is $\overline{z_1}$. Now

$$(z - z_1)(z - \overline{z_1}) = (z - 1)^2 + 3 = z^2 - 2z + 4.$$

By long division (details omitted) we discover that

$$\frac{z^4 - 4z^3 + 12z^2 - 16z + 16}{z^2 - 2z + 4} = z^2 - 2z + 4.$$

Thus z_1 and $\overline{z_1}$ are both *double zeros* of P(z). These are the only zeros.

35. Since $P(z) = z^5 + 3z^4 + 4z^3 + 4z^2 + 3z + 1$ has real coefficients, if $z_1 = i$ is a zero of P(z), then so is $z_2 = -i$. Now

$$(z - z_1)(z - z_2) = (z - i)(z + i) = z^2 + 1.$$

By long division (details omitted) we discover that

$$\frac{z^5 + 3z^4 + 4z^3 + 4z^2 + 3z + 1}{z^2 + 1} = z^3 + 3z^2 + 3z + 1$$
$$= (z+1)^3.$$

Thus P(z) has the five zeros: i, -i, -1, -1, and -1.

36. Since $P(z) = z^5 - 2z^4 - 8z^3 + 8z^2 + 31z - 30$ has real coefficients, if $z_1 = -2 + i$ is a zero of P(z), then so is $z_2 = -2 - i$. Now

$$(z - z_1)(z - z_2) = z^2 + 4z + 5.$$

By long division (details omitted) we discover that

$$\frac{z^5 - 2z^4 - 8z^3 + 8z^2 + 31z - 30}{z^2 + 4z + 5}$$

= $z^3 - 6z^2 + 11z - 6$.

Observe that $z_3 = 1$ is a zero of $z^3 - 6z^2 + 11z - 6$. By long division again:

$$\frac{z^3 - 6z^2 + 11z - 6}{z - 1} = z^2 - 5z + 6 = (z - 2)(z - 3).$$

Hence P(z) has the five zeros -2 + i, -2 - i, 1, 2, and 3.

37. If $w = z^4 + z^3 - 2iz - 3$ and |z| = 2, then $|z^4| = 16$ and

$$|w - z^4| = |z^3 - 2iz - 3| \le 8 + 4 + 3 = 15 < 16.$$

By the mapping principle described in the proof of Theorem 2, the image in the *w*-plane of the circle |z| = 2 is a closed curve that winds around the origin the same number of times that the image of z^4 does, namely 4 times. APPENDIX II. (PAGE A-19)

Appendix III. Continuous Functions (page A-25)

1. To be proved: If a < b < c, $f(x) \le g(x)$ for $a \le x \le c$, $\lim_{x\to b} f(x) = L$, and $\lim_{x\to b} g(x) = M$, then $L \le M$.

Proof: Suppose, to the contrary, that L > M. Let $\epsilon = (L - M)/3$, so $\epsilon > 0$. There exist numbers $\delta_1 > 0$ and $\delta_2 > 0$ such that if $a \le x \le b$, then

$$|x - b| < \delta_1 \Rightarrow |f(x) - L| < \epsilon$$
$$|x - b| < \delta_2 \Rightarrow |g(x) - M| < \epsilon.$$

Thus if $|x - b| < \delta = \min\{\delta_1, \delta_2, b - a, c - b\}$, then

$$f(x) - g(x) > L - \epsilon - M - \epsilon = L - M - 2\epsilon = \frac{L - M}{3} > 0$$

This contradicts the fact that $f(x) \leq g(x)$ on [a, b]. Therefore $L \leq M$.

2. To be proved: If $f(x) \le K$ on [a, b) and (b, c], and if $\lim_{x\to b} f(x) = L$, then $L \le K$.

Proof: If L > K, then let $\epsilon = (L - K)/2$; thus $\epsilon > 0$. There exists $\delta > 0$ such that $\delta < b - a$ and $\delta < c - b$, and such that if $0 < |x - b| < \delta$, then $|f(x) - L| < \epsilon$. In this case

$$f(x) > L - \epsilon = L - \frac{L - K}{2} > K$$

which contradicts the fact that $f(x) \leq K$ on [a, b) and (b, c]. Therefore $L \leq K$.

3. Let $\epsilon > 0$ be given. Let $\delta = \epsilon^{1/r}$, (r > 0). Then

$$0 < x < \delta \implies 0 < x^r < \delta^r = \epsilon$$

Thus $\lim_{x\to 0+} x^r = 0$.

4. a) Let f(x) = C, g(x) = x. Let $\epsilon > 0$ be given and let $\delta = \epsilon$. For any real number x, if $|x - a| < \delta$, then

$$|f(x) - f(a)| = |C - C| = 0 < \epsilon, |g(x) - g(a)| = |x - a| < \delta = \epsilon.$$

Thus $\lim_{x\to a} f(x) = f(a)$ and $\lim_{x\to a} g(x) = g(a)$, and f and g are both continuous at every real number a.

- 5. A polynomial is constructed by adding and multiplying finite numbers of functions of the type of f and g in Exercise 4. By Theorem 1(a), such sums and products are continuous everywhere, since their components have been shown to be continuous everywhere.
- 6. If *P* and *Q* are polynomials, they are continuous everywhere by Exercise 5. If $Q(a) \neq 0$, then P(x) = P(a)

 $\lim_{x \to a} \frac{P(x)}{Q(x)} = \frac{P(a)}{Q(a)}$ by Theorem 1(a). Hence P/Q is continuous everywhere except at the zeros of Q.

7. Suppose *n* is a positive integer and a > 0. Let $\epsilon > 0$ be given. Let $b = a^{1/n}$, and let $\delta = \min\{a(1-2^{-n}), b^{n-1}\epsilon\}$. If $|x-a| < \delta$, then $x > a/2^n$, and if $y = x^{1/n}$, then y > b/2. Thus

$$\begin{aligned} x^{1/n} - a^{1/n} &| = |y - b| \\ &= \frac{|y^n - b^n|}{y^{n-1} + y^{n-2}b + \dots + b^{n-1}} \\ &< \frac{|x - a|}{b^{n-1}} < \frac{b^{n-1}\epsilon}{b^{n-1}} = \epsilon. \end{aligned}$$

Thus $\lim_{x\to a} x^{1/n} = a^{1/n}$, and $x^{1/n}$ is continuous at x = a.

8. By Exercise 5, x^m is continuous everywhere. By Exercise 7, $x^{1/n}$ is continuous at each a > 0. Thus for a > 0 we have

$$\lim_{x \to a} x^{m/n} = \lim_{x \to a} \left(x^{1/n} \right)^m = \left(\lim_{x \to a} x^{1/n} \right)^m$$
$$= (a^{1/n})^m = a^{m/n}$$

and $x^{m/n}$ is continuous at each positive number.

9. If *m* and *n* are integers and *n* is odd, then $(-x)^{m/n} = cx^{m/n}$, where $c = (-1)^{m/n}$ is either -1 or 1 depending on the parity of *m*. Since $x^{m/n}$ is continuous at each positive number *a*, so is $cx^{m/n}$. Thus $(-x)^{m/n}$ is continuous at each positive number, and $x^{m/n}$ is continuous at each negative number.

If r = m/n > 0, then $\lim_{x\to 0+} x^r = 0$ by Exercise 3. Hence $\lim_{x\to 0-} x^r = (-1)^r \lim_{x\to 0+} x^r = 0$, also. Therefore $\lim_{x\to 0} x^r = 0$, and x^r is continuous at x = 0.

10. Let $\epsilon > 0$ be given. Let $\delta = \epsilon$. If *a* is any real number then

$$||x|-|a|| \le |x-a| < \epsilon$$
 if $|x-a| < \delta$.

Thus $\lim_{x\to a} |x| = |a|$, and the absolute value function is continuous at every real number.

11. By the definition of sin, $P_t = (\cos t, \sin t)$, and $P_a = (\cos a, \sin a)$ are two points on the unit circle $x^2 + y^2 = 1$. Therefore

$$|t - a| = \text{length of the arc from } P_t \text{ to } P_a$$

> length of the chord from P_t to P_a
 $= \sqrt{(\cos t - \cos a)^2 + (\sin t - \sin a)^2}.$

If $\epsilon > 0$ is given, and $|t - a| < \delta = \epsilon$, then the above inequality implies that

$$|\cos t - \cos a| \le |t - a| < \epsilon,$$

$$|\sin t - \sin a| \le |t - a| < \epsilon.$$

INSTRUCTOR'S SOLUTIONS MANUAL

Thus sin is continuous everywhere.

- **12.** The proof that cos is continuous everywhere is almost identical to that for sin in Exercise 11.
- **13.** Let a > 0 and $\epsilon > 0$. Let $\delta = \min\left\{\frac{a}{2}, \frac{\epsilon a}{2}\right\}$. If $|x - a| < \delta$, then $x > \frac{a}{2}$, so $\frac{1}{t} < \frac{2}{a}$ whenever t is between a and x. Thus

$$|\ln x - \ln a|$$

= area under $y = \frac{1}{t}$ between $t = a$ and $t = x$
 $< \frac{2}{a}|x - a| < \frac{2}{a}\frac{\epsilon a}{2} = \epsilon.$

Thus $\lim_{x\to a} \ln x = \ln a$, and \ln is continuous at each point *a* in its domain $(0, \infty)$.

14. Let *a* be any real number, and let $\epsilon > 0$ be given. Assume (making ϵ smaller if necessary) that $\epsilon < e^a$. Since

$$\ln\left(1-\frac{\epsilon}{e^a}\right) + \ln\left(1+\frac{\epsilon}{e^a}\right) = \ln\left(1-\frac{\epsilon^2}{e^{2a}}\right) < 0,$$

we have $\ln\left(1+\frac{\epsilon}{e^a}\right) < -\ln\left(1-\frac{\epsilon}{e^a}\right).$
Let $\delta = \ln\left(1+\frac{\epsilon}{e^a}\right)$. If $|x-a| < \delta$, then
 $\ln\left(1-\frac{\epsilon}{e^a}\right) < x-a < \ln\left(1+\frac{\epsilon}{e^a}\right)$
 $1-\frac{\epsilon}{e^a} < e^{x-a} < 1+\frac{\epsilon}{e^a}$
 $|e^{x-a}-1| < \frac{\epsilon}{e^a}$
 $|e^x-e^a| = e^a|e^{x-a}-1| < \epsilon.$

Thus $\lim_{x\to a} e^x = e^a$ and e^x is continuous at every point a in its domain.

15. Suppose $a \le x_n \le b$ for each n, and $\lim x_n = L$. Then $a \le L \le b$ by Theorem 3. Let $\epsilon > 0$ be given. Since f is continuous on [a, b], there exists $\delta > 0$ such that if $a \le x \le b$ and $|x - L| < \delta$ then $|f(x) - f(L)| < \epsilon$. Since $\lim x_n = L$, there exists an integer N such that if $n \ge N$ then $|x_n - L| < \delta$. Hence $|f(x_n) - f(L)| < \epsilon$ for such n. Therefore $\lim(f(x_n) = f(L))$.

16. Let
$$g(t) = \frac{t}{1+|t|}$$
. For $t \neq 0$ we have

$$g'(t) = \frac{1+|t|-t\,\mathrm{sgn}\,t}{(1+|t|)^2} = \frac{1+|t|-|t|}{(1+|t|)^2} = \frac{1}{(1+|t|)^2} > 0.$$

If t = 0, g is also differentiable, and has derivative 1:

$$g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{1}{1 + |h|} = 1.$$

Thus g is continuous and increasing on \mathbb{R} . If f is continuous on [a, b], then

$$h(x) = g\left(f(x)\right) = \frac{f(x)}{1 + |f(x)|}$$

is also continuous there, being the composition of continuous functions. Also, h(x) is bounded on [a, b], since

$$\left|g\Big(f(x)\Big)\right| \le \frac{|f(x)|}{1+|f(x)|} \le 1.$$

By assumption in this problem, h(x) must assume maximum and minimum values; there exist *c* and *d* in [*a*, *b*] such that

$$g(f(c)) \le g(f(x)) \le g(f(d))$$

for all x in [a, b]. Since g is increasing, so is its inverse g^{-1} . Therefore

$$f(c) \le f(x) \le f(d)$$

for all x in [a, b], and f is bounded on that interval.

Appendix IV. The Riemann Integral (page A-30)

1.
$$f(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1\\ 0 & \text{if } 1 < x \le 2\\ \text{Let } 0 < \epsilon < 1. \text{ Let } P = \{0, 1 - \frac{\epsilon}{3}, 1 + \frac{\epsilon}{3}, 2\}. \text{ Then} \\ L(f, P) = 1\left(1 - \frac{\epsilon}{3}\right) + 0 + 0 = 1 - \frac{\epsilon}{3}\\ U(f, P) = 1\left(1 - \frac{\epsilon}{3}\right) + 1\left(\frac{2\epsilon}{3}\right) + 0 = 1 + \frac{\epsilon}{3}. \end{cases}$$

Since $U(f, P) - L(f, P) < \epsilon$, f is integrable on [0, 2]. Since L(f, P) < 1 < U(f, P) for every ϵ , therefore $\int_{0}^{2} f(x) dx = 1$.

2.
$$f(x) = \begin{cases} 1 & \text{if } x = 1/n \quad (n = 1, 2, 3, ...) \\ 0 & \text{otherwise} \end{cases}$$

If *P* is any partition of [0, 1] then $L(f, P) = 0$. Let
 $0 < \epsilon \le 2$. Let *N* be an integer such that
 $N + 1 > \frac{2}{\epsilon} \ge N$. A partition *P* of [0, 1]
can be constructed so that the first two points of *P*
are 0 and $\frac{\epsilon}{2}$, and such that each of the *N* points $\frac{1}{n}$
 $(n = 1, 2, 3, ..., n)$ lies in a subinterval of *P* having
length at most $\frac{\epsilon}{2N}$. Since every number $\frac{1}{n}$ with *n* a pos-
itive integer lies either in $\left[0, \frac{\epsilon}{2}\right]$ or one of these other
N subintervals of *P*, and since max $f(x) = 1$ for these
subintervals and max $f(x) = 0$ for all other subintervals
of *P*, therefore $U(f, P) \le \frac{\epsilon}{2} + N \frac{\epsilon}{2N} = \epsilon$. By Theorem
3, *f* is integrable on [0, 1]. Evidently

$$\int_0^1 f(x) \, dx = \text{least upper bound } L(f, P) = 0.$$

3. $f(x) = \begin{cases} 1/n & \text{if } x = m/n \text{ in lowest terms} \\ 0 & \text{otherwise} \end{cases}$

Clearly L(f, P) = 0 for every partition P of [0, 1]. Let $\epsilon > 0$ be given. To show that f is integrable we must exhibit a partition P for which $U(f, P) < \epsilon$. We can assume $\epsilon < 1$. Choose a positive integer N such that $2/N < \epsilon$. There are only finitely many integers n such that $1 \le n \le N$. For each such n, there are only finitely many integers m such that $0 \le m/n \le 1$. Therefore there are only finitely many points x in [0, 1] where $f(x) > \epsilon/2$. Let P be a partition of [0, 1] such that all these points are contained in subintervals of the partition having total length less than $\epsilon/2$. Since $f(x) \le 1$ on these subintervals, and $f(x) < \epsilon/2$ on all other subintervals P, therefore $U(f, P) \le 1 \times (\epsilon/2) + (\epsilon/2) \times 1 = \epsilon$, and f is integrable on [0, 1]. Evidently $\int_0^1 f(x) dx = 0$, since all lower sums are 0.

4. Suppose, to the contrary, that $I_* > I^*$. Let $\epsilon = \frac{I_* - I^*}{3}$, so $\epsilon > 0$. By the definition of I_* and I^* , there exist partitions P_1 and P_2 of [a, b], such that $L(f, P_1) \ge I_* - \epsilon$ and $U(f, P_2) \le I^* + \epsilon$. By Theorem 2, $L(f, P_1) \le U(f, P_2)$, so

$$3\epsilon = I_* - I^* \le L(f, P_1) + \epsilon - U(f, P_2) + \epsilon \le 2\epsilon.$$

Since $\epsilon > 0$, it follows that $3 \le 2$. This contradiction shows that we must have $I_* \le I^*$.

- 5. Theorem 3 of Section 6.4: Proofs of parts (c)-(h).
 - c) Multiplying a function by a constant multiplies all its Riemann sums by the same constant. If the constant is positive, upper and lower sums remain upper and lower; if the constant is negative upper sums become lower and vice versa. Therefore

$$\int_{a}^{b} Af(x) \, dx = A \int_{a}^{b} f(x) \, dx$$

It therefore remains to be proved only that the integral of a sum of functions is the sum of the integrals. Suppose that

$$\int_{a}^{b} f(x) \, dx = I, \quad \text{and} \quad \int_{a}^{b} g(x) \, dx = J.$$

If $\epsilon > 0$, then there exist partitions P_1 and P_2 of [a, b] such that

$$\begin{split} U(f,P_1) &- \frac{\epsilon}{2} \leq I < L(f,P_1) + \frac{\epsilon}{2} \\ U(g,P_2) &- \frac{\epsilon}{2} \leq J < L(g,P_2) + \frac{\epsilon}{2}. \end{split}$$

Let *P* be the common refinement of *P*₁ and *P*₂. Then the above inequalities hold with *P* replacing *P*₁ and *P*₂. If $m_1 \leq f(x) \leq M_1$ and $m_2 \leq g(x) \leq M_2$ on any interval, then $m_1 + m_2 \leq f(x) + g(x) \leq M_1 + M_2$ there. It follows that

$$U(f+g, P) \le U(f, P) + U(g, P),$$

$$L(f, P) + L(g, P) \le L(f+g, P).$$

Therefore

$$U(f+g, P) - \epsilon \le I + J \le L(f+g, P) + \epsilon.$$

Hence $\int_{a}^{b} (f(x) + g(x)) dx = I + J.$

d) Assume a < b < c; the other cases are similar. Let $\epsilon > 0$. If

$$\int_{a}^{b} f(x) \, dx = I, \quad \text{and} \quad \int_{b}^{c} f(x) \, dx = J,$$

then there exist partitions P_1 of [a, b], and P_2 of [b, c] such that

$$L(f, P_1) \le I < L(f, P_1) + \frac{\epsilon}{2}$$
$$L(f, P_2) \le J < L(f, P_2) + \frac{\epsilon}{2}$$

(with similar inequalities for upper sums). Let P be the partition of [a, c] formed by combining all the subdivision points of P_1 and P_2 . Then

$$L(f, P) = L(f, P_1) + L(f, P_2) \le I + J < L(f, P) + \epsilon.$$

Similarly, $U(f, P) - \epsilon < I + J \le U(f, P)$. Therefore

$$\int_{a}^{c} f(x) \, dx = I + J$$

e) Let

$$\int_{a}^{b} f(x) \, dx = I, \quad \text{and} \quad \int_{a}^{b} g(x) \, dx = J,$$

where $f(x) \le g(x)$ on [a, b]. We want to show that $I \le J$. Suppose, to the contrary, that I > J. Then there would exist a partition *P* of [a, b] for which

$$I < L(f, P) + \frac{I-J}{2}$$
, and $U(g, P) - \frac{I-J}{2} < J$.

Thus $L(f, P) > \frac{I+J}{2} > U(g, P) \ge L(g, P)$. However, $f(x) \le g(x)$ on [a, b] implies that $L(f, P) \le L(g, P)$ for any partition. Thus we have a contradiction, and so $I \le J$. f) Since $-|f(x)| \le f(x) \le |f(x)|$ for any x, we have by part (e), if $a \le b$,

$$-\int_{a}^{b} |f(x)| \, dx \le \int_{a}^{b} f(x) \, dx \le \int_{a}^{b} |f(x)| \, dx.$$

Therefore
$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

g) By parts (b), (c) and (d), (d)

$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx$$
$$= \int_{0}^{a} f(-x) dx + \int_{0}^{a} f(x) dx$$
$$= \int_{0}^{a} [f(-x) + f(x)] dx.$$

If f is odd, the last integral is 0. If f is even, the last integral is $\int_0^a 2f(x) dx$. Thus both (g) and (h) are proved.

6. Let $\epsilon > 0$ be given. Let $\delta = \epsilon^2/2$. Let $0 \le x \le 1$ and $0 \le y \le 1$. If $x < \epsilon^2/4$ and $y < \epsilon^2/4$ then $|\sqrt{x} - \sqrt{y}| \le \sqrt{x} + \sqrt{y} < \epsilon$. If $|x - y| < \delta$ and either $x \ge \epsilon^2/4$ or $y \ge \epsilon^2/4$ then

$$|\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} < \frac{2}{\epsilon} \times \frac{\epsilon^2}{2} = \epsilon.$$

Thus $f(x) = \sqrt{x}$ is uniformly continuous on [0, 1].

Suppose *f* is uniformly continuous on [*a*, *b*]. Taking ε = 1 in the definition of uniform continuity, we can find a positive number δ such that |f(x) - f(y)| < 1 whenever x and y are in [*a*, *b*] and |x-y| < δ. Let N be a positive integer such that h = (b - a)/N satisfies h < δ. If x_k = a + kh, (0 ≤ k ≤ N), then each of the subintervals of the partition P = {x₀, x₁, ..., x_N} has length less than δ. Thus

$$|f(x_k) - f(x_{k-1})| < 1$$
 for $1 \le k \le N$.

By repeated applications of the triangle inequality,

$$|f(x_{k-1}) - f(a)| = |f(x_{k-1}) - f(x_0)| < k - 1.$$

If x is any point in [a, b], then x belongs to one of the intervals $[x_{k-1}, x_k]$, so, by the triangle inequality again,

$$|f(x) - f(a)| \le |f(x) - f(x_{k-1})| + |f(x_{k-1}) - f(a)| < k \le N$$

Thus |f(x)| < |f(a)| + N, and f is bounded on [a, b].

8. Suppose that $|f(x)| \leq K$ on [a, b] (where K > 0), and that f is integrable on [a, b]. Let $\epsilon > 0$ be given, and let $\delta = \epsilon/K$. If x and y belong to [a, b] and $|x - y| < \delta$, then

$$\begin{aligned} F(x) - F(y) &= \left| \int_{a}^{x} f(t) \, dt - \int_{a}^{y} f(t) \, dt \right| \\ &= \left| \int_{y}^{x} f(t) \, dt \right| \le K |x - y| < K \frac{\epsilon}{K} = \epsilon. \end{aligned}$$

(See Theorem 3(f) of Section 6.4.) Thus F is uniformly continuous on [a, b].