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11.

12.

13.
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APPENDICES
Appendix . Complex Numbers
(page A-10)
z=-5+2i, Re(z)=-5, Im(z) =2
=542
o z-plane
.Z - +
- x
z=4—1ie
Fig. .
z=4—i, Re(x) =4, Im(z)=-
z=—-mi, Re(z) =0, Im(z)=-—
z=—-6, Re(z)=—-6, Im(z)=0

z=—1+i, |z2=~2, Arg(z)=3n/4
z = V2 (cos(37/4) + i sin(37/4))

z=-2, |z]=2,

z=2(cosm +isinm)

Arg(z) =m

z=3i, |z1=3, Arg(x) =m/2
z = 3(cos(r/2) + i sin(mw/2))

z=-5i, |z|=5, Arg(zx)=—-m/2
z = 5(cos(—m/2) + i sin(—m /2))
z=142i, |z1=+/5 6=Arg(z)=tan"!2

7= «/g(cose +isinf)

2=-2+i, |z1=+/5,
7 =+/5(cos6 +i sin@)

0 =Arg(z) =7 —tan"'(1/2)

1=-3—4i, |z]=5, 0 =Arg(z)=—m+tan"'(4/3)
z =15(cos 0 +isinf)
z=3—4i, |zl=5, 0=Arg(z)=—tan"'(4/3)
z = 5(cosO +isinf)
=V3—i, |z1=2, Arg(x)=-7/6
z = 2(cos(—m /6) + i sin(—m /6))
—V3-3i, |z1=2V3, Arg(z) = —2n/3

z = 23/3(cos(—27/3) + i sin(—27/3))

15.

16.

17.

18.
19.

20.

21.
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23.

24,
25.
26.
27.
28.

29.

30.

31.
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3 4 4 3isi 4
= J53C0S — 1 S1In —
¢ 5 5

T
lz| =3, Arg(z) = ——
5
3 T
If Arg(z) = T and Arg (w) = 7 then
(zw) 3 " T S5t
I = _ — = _—,
arg (zw 1 > ) SO
T —3r
Arg (zw) = — — 27 =
4
S
If Arg(z) = s and Arg (w) = —, then
@/w) St 0w 137
T —_——_—— — = -
e le/w 6 4 %
Arg (2/w) = 137 P llrr
iy - .
gle/w 12 E

[zl =2, arg(z) = = z=2(cosmw +isinmw)=—

|zl =5, 0 =arg(z) =7 = sinf =3/5, cosfd =4/5
z=4+43i

3n 37 .. 37w
|z| =1, arg(z) = — = z=|cos— +isin—

4 4 4
N 1 1
I=——+ —=
V2 ﬁ
2l @=2 = z=x(cos T +isinZ)
=, ar — =m (cos — +1isin —
¢ BT T 6 6
/3
= = —F 5 +2z
|z] =0 = z =0 for any value of arg (z)
N 1 @ T N 1( T 7'[)
= 5, ar =—% = - (COS— —1isIn—
R N A A 3
I BREEY
YTET:
54+3i=5-3i
—3—-5i=-3+4+5i
4i = —4i
2—i=2+i
|z|] = 2 represents all points on the circle of radius 2

centred at the origin.

|z| < 2 represents all points in the closed disk of radius 2
centred at the origin.

|z — 2i] < 3 represents all points in the closed disk of
radius 3 centred at the point 2i.

|z —3 +4i| <5 represents all points in the closed disk of
radius 5 centred at the point 3 — 4i.

arg (z) = m/3 represents all points on the ray from the
origin in the first quadrant, making angle 60° with the
positive direction of the real axis.
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37.
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40.

41.

42,
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44.

45.

46.

47.
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m < arg(z) < Tm/4 represents the closed wedge-shaped
region in the third and fourth quadrants bounded by the
ray from the origin to —oco on the real axis and the ray
from the origin making angle —45° with the positive
direction of the real axis.

Q+45)+@B—i)=5+4i
i—(B—=20)4+T—=3)=-34+T+i+2—3i=4
@G+id—i)=16—i>=17
(14+i)2—3i)=2+42i —3i —3i>=5—i

(a + bi)(2a — bi) = (a + bi)(2a + bi) = 2a*> — b* + 3abi
Q4P =8412i4+6i>+i*=2+11i

2—-i  (2-i)? 34

240 4—i2 7 5

143 (1+30)Q+i) —1+7i

2—i  4-iz 5

1+i I+i  (+i)(=3-2) —1-5i

iQ+3i) —3+2
(1+2)2-3) 8+i
Q2—-—@+2) 8+i

If z=x+ yi and w = u + vi, where x, y, u, and v are
real, then

9+4 13

z+w=x+u+ (y+v)i
=x+4+u—Qy+vi=x—yi+u—vi=z+w.

Using the fact that |zw| = |z||w|, we have

~
Il
. D
I
%Js
N——
Il
sl
| &l
|
Sl
Sl S
Il
S| el

z=3+i\/§=2\/§<cos%+isin%)

2 2
w:—1+i\/§:2(cos% —|—isin%>
5 5
Zw:4\/§(cos?n+isin?n>

izx/g cosi—kisin_—n =—iV3
w 2 2

3 3
z=—1+i=+2 cos—ﬂ—|—isin—7[
4 4
T T
23.23( T _)
w i cosz—i—zsm2
5 5
zw=3x/§(cosTn+isinTn> =-3-3i
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cos(36) 4+ i sin(30) = (cosO + i sin@)3

= cos> 6 + 3i cos? O sin® — 3cos 6 sin® O — i sin 6
Thus

cos(30) = cos> 0 — 3cosOsin*O = 4cos’> @ — 3cos

sin(30) = 3 cos2 6 sinf — sin® 6 = 3sinO — 4sin’ 6.

a) 7 = 2/z can be rewritten lz> = 27 = 2,50 s
satisfied by all numbers z on the circle of radius /2
centred at the origin.

b) 7 = —2/z can be rewritten |z|*> = zZ = —2, which
has no solutions since the square of |z| is nonnega-
tive for all complex z.

If z=w = —1, then zw = 1, so /zw = 1. But if we
use /7 = /—1 = i and the same value for /w, then
VIvw =i% = —1 # Jzw.

The three cube roots of —1 = cosmw + i sinz are of the
form cosf+isin6d where 0 = /3,60 =m, and 6 = 57 /3.
Thus they are

5

3 3
The three cube roots of —8i = 8| cos 771 + i sin ;)

are of the form 2(cosf + isin6) where § = /2,
6 =Tm /6, and
6 = 117 /6. Thus they are

2i, —3—i, J3-i.

The three cube
. 37 . . 3w
roots of —1 4+ i = +/2 COST—HSIHT are of the

form 21/6(cos 6 + i sin@) where 6 = /4, 0 = 117/12,
and 0 = 197/12.

The four fourth roots of 4 = 4(cos0 + i sin0) are of the
form \/E(cose +isinf) where 0 =0, 6 = /2, w, and
6 = 37 /2. Thus they are v/2, iv/2, —v/2, and —i/2.

The equation z* + 1 — i+/3 = 0 has solutions that are the

2 2
four fourth roots of —1 4+ iv/3 =2 (cos ?ﬂ + i sin %)
Thus they are of the form 21/4(cos 6 + i sin), where
0 =m/6, 2r/3, Tm /6, and 57 /3. They are the complex
numbers

1 1
+21/4 £+—i . 24 ——éi .
2 "2 2 2
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The equation 22 +a° =0 (a > 0) has solutions that are
the five fifth roots of —a® = a (cos 7 + i sin7); they are
of the form a(cos® + i sinf), where 6 = w /5, 3n/5, =,
Tr /S, and 97/5.

The n nth roots of unity are

w =1
2 .. 27w
wy = COS — —+18In —
n n
dr . . 4w 5
w3 = COS — + 18I — = W)
n n
6r . . 6w 3
W4 = COS — + 18I — = W)
n n

-1

2(n — 1 2(n — 1
2= m +isin 2= Dm = o

n n

w;, = COS
Hence
ot o+ top=ldtoto o+

_l—wg_ 0

_l—a)z_l—a)z

Appendix II.
(page A-19)

Complex Functions

In Solutions 1-12, z = x + yi and w = u + vi, where x,
v, u, and v are real.

The function w = 7 transforms the closed rectangle
0<x<1,0<y<2to the closed rectangle 0 < u < 1,
—2<v<0.

The function w = 7 transforms the line x + y = 1 to the
line u —v =1.

The function w = z2 transforms the closed annular sector
1 <|z] <2, n/2 < arg(z) < 3m/4 to the closed annular
sector 1 < |w| <4, 7 <arg(w) <3m/2.

The function w = z> transforms the closed quarter-
circular disk 0 < |z] <2, 0 < arg(z) < /2 to the closed
three-quarter disk 0 < |w| <8, 0 < arg(w) < 37w/2.

The function w = 1/z = 7/|z|* transforms the closed
quarter-circular disk 0 < |z] < 2,0 < arg(z) < 7/2
to the closed region lying on or outside the circle

|w| = 1/2 and in the fourth quadrant, that is, having
—m/2 < arg(w) <0.

The function w = —iz rotates the z-plane —90°, so trans-
forms the wedge w/4 < arg(z) < m/3 to the wedge
—m/4 <arg(z) < —m/6.

The function w = /7 transforms the ray arg (z) = —n /3
(that is, Arg (z) = 57/3) to the ray arg (w) = 5x/6.

10.

11.

12.

13.

14.

15.
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The function w = z2 = x% — y2 + 2xyi transforms the

line x = 1 to u = 1 — y2, v = 2y, which is the parabola
v2 =4 — 4u with vertex at w = 1, opening to the left.
The function w = z2 = x% — y2 + 2xyi transforms the
liney=1tou = x2 - 1, v = 2x, which is the parabola
v2 = 4u + 4 with vertex at w = —1 and opening to the
right.

The function w = 1/z = (x — yi)/()c2 + y?) transforms
the line x = 1 to the curve given parametrically by

1 -y

M=Ty2, U=l+y2.

This curve is, in fact, a circle,

1 2
u2+v2:7+y22:u,
d+y9

with centre w = 1/2 and radius 1/2.

The function w = e¢* = e*cosy + ie* siny transforms
the horizontal strip —oo0 < x < 00, /4 <y < mw/2 to
the wedge /4 < arg (w) < m/2, or, equivalently, u > O,
V> u.

The function w = ¢!* = ¢ (cosx + i sinx) transforms
the vertical half-strip 0 < x < 7/2,0 < y < oo to the
first-quadrant part of the unit open disk |w| = ™ < 1,
0<arg(w) =x <m/2, thatis u > 0, v > 0, u? +v% < 1.

f@) =2 = (x +yi)? = x> — y> + 2xyi
2

u=x>—y2 v =2xy
ou ov ou dv
_— = = —, _—= —zy = ——
ox ay ay ox
, du . dv .
@ =—+i—=2x+2yi =2z
0x 0x

f@ =2 =@+yi)?=x>=3xy* + B2y — y)i

u=x3—3xy2, v=3xzy—y3
d 0 d 0
) =, = —bxy =
ox ay dy dax
, du . dv 2 2 . 5
ff@)=—+i— =3(x"—y +2xyi) =3z".
ax ax
1 X —yi
)= —=
F@ z x24y?
X -y
. — V= — 2
x2+y2 )C2+y2
ou y2 — x2 v ou  —2xy  dv
ax  (x24yD2 7 ay’  dy  (xZ4+yHT T ax
@ ou n v ==y +2xyi —@)? 1
= — 11— = = = ——.
< dx dx (x2 4 y2)2 (z2)? 72
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f@= ¢ = (cos(2xy) + i sin(2xy))
2_2 2_y2 .
u=e" 7 cos(2xy), v=-¢e" 7Y sin(2xy)
ad : . a
U o= (2x cos(2xy) — 2y sin(2xy)) = =
ax dy
u 22 . v
— = —e" 77 (2ycos(2xy) + 2xsin(2xy)) = ——
ay ox
ou av
! — e
= ox i ox
= ¢ [2x cos(2xy) — 2y sin(2xy)
+i(2ycos(2xy) 4 2x sin(2xy))]
=(2x + 2yi)e)‘27~"2 (cos(2xy) + i sin(2xy)) = 2zezz.
e¥' = cosy +isiny (for real y). Replacing y by —y, we

get e = cosy — isiny (since cos is even and sin is
odd). Adding and subtracting these two formulas gives

e’ +e =2cosy, e’ —e ' =2isiny.

yi efyi yi
——— and siny= ———

2 Y 2i
T2 = ¥ (cos(y + 27) + i sin(y + 27))

=e*(cosy +isiny) = €.

Thus e is periodic with period 27i. So is e™% = 1/e*.
Since ¢!@t27) = QU+2Ti — o2l therefore ¢ and also
e~ are periodic with period 2. Hence

Thus cosy =

ezi + efzi ezi _ efzi
cosz = ——— and sing = —————
2 2i
are periodic with period 27, and
eZ + e*Z . eZ _ e*Z
coshz = ——— and sinhz = 5
are periodic with period 2mi.
d d ezi + e iezi _ efzi
—C0SZ7 = — = = —sing
dz dz 2 2
d ezi _ efzi iezi + efzi
—sing = — - = - =cosz
dz dz 2i 2i
d e*+e % et —e ¢ .
—coshz = — = =sinhz
dz dz 2 2
d de—e* e4e?
—sinhz = — = = coshz
dz dz 2 2
14 _;’_e 154
cosh(iz) = 2 =coshz
1 eiz — iz
—isinh(iz) = - =sinz
i 2
Z _;’_ez
cos(iz) = > = coshz
. et — ¢t —e 4 ¢t .
sin(iz) = - =i =isinhz
2i 2
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cosz=0&¢¥ = —¢7% & X — |

& e P[cos(2x) +isin2x)] = —1

& sinx) =0, e ¥ cos(2x) = —1

<y =0, cos(2x) = —1

b4 3r

= y=0, x=:|:5, :i:T,...
Thus the only complex zeros of cosz are its real zeros at
z = (2n + 1) /2 for integers n.
sinz=0w ¥ =¥ & X =1

& e P[cos(2x) +isin2x)] = 1

& sin(2x) =0, e ¥ cos(2x) = 1

< y=0, cos(2x) =1

=y=0, x=0,%n, £2x,...
Thus the only complex zeros of sinz are its real zeros at

z = nm for integers n.

By Exercises 20 and 21, coshz = 0 if and only if
cos(iz) = 0, that is, if and only if z = 2n + )i /2
for integer n.

Similarly, sinhz = 0 if and only if sin(iz) = 0, that is, if
and only if z = nmi for integer n.

e ="M = ¥ cosy+iesiny
e l=e¢ Y = ¢ Fcosy—e Fsiny
N _ez+efz_ex+efx e —e*
coshz = > = ) cosy—{—lfsmy

= coshxcosy+isinhxsiny

Re(coshz) = coshxcosy, Im(coshz) = sinhxsiny.
ec — e—z ex — e—X X e—X
sinhz = = cos —
¢ 2 2 yHi—,;
=sinhxcosy +icoshxsiny

siny

Re(sinh z) = sinhx cosy, Im(coshz) = coshx siny.

et = eV = ¢V cosx +ie Vsinx
et =¥ = ¢V cosx —ie¥sinx
et 4 iz eV +e eV —eb .
CcCoSzZ = > = cosx +1 sin x
= cosx coshy — i sinx sinhy
Re(cosz) = cosxcoshy, Im(cosz)= —sinxsinhy
) eiz _ efiz e Y —¢Y . -y y .
sinz = % = % COS X _HT sin x

= sinxcoshy +icosxsinhy
Re(sinz) = sinx coshy, Im(sinz) = cosx sinhy.
2 42iz=0=z=0o0rz=-2i

=2 4+i=0=>(@—-1)2=1-i

T I
= V2 (cos Z 4 isin Z
cos4+ls1n4

7 7
=z=1+2/4 (cos% —|—isin%)
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33.
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24245=0=(z+1)2=—4
=z=—1+%2i

2 —2iz—1=0=(z—i)*=0
= z =1 (double root)

2 —3iz? =27 =2(:*-3iz—-2)=0

=z=00rz2—3iz—2=0

0 3\? 1
=z=0or ——i|] =—=
¢ ) 4

0] —:l:—l ]
= = () =
Z Z 2 2 l

= z=0orz=iorz=2i

4 =22+4=0 = (>-1)%=-3
Z=1-iv3 or Z2=1+iv3
5 5
Z2:2(cosg+isin?n>, 22:2(cos%+isin%>
5 5
z::l:«/i(cos?n—i—isin%[), or

Zz:l:\/i(cos%—i—isin%)

) el

P 41=0 = P2=iort=—i
14 1—1i
:>Z=:l:—, = _
V2 V2

()R
()
(-l 8) (il +3)

=@ - V2 +DE+V2z+ 1)

Since P(z) = z* — 423 4+ 1272 — 16z + 16 has real
coefficients, if z; = 1 — +/3i is a zero of P(z), then so is
Z1. Now

E-)e-D=@E-1)*+3=2"-2+4.
By long division (details omitted) we discover that

-4 41222 — 162+ 16

2
—2z4+4.
2—2z7+4 Gt

Thus z; and z7 are both double zeros of P(z). These
are the only zeros.

3s.

36.

37.
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Since P(z) = z° + 3z* + 423 + 422 + 3z + 1 has real
coefficients, if z; =i is a zero of P(z), then so is
72 = —i. Now

G- —2)=G@—i)+i)=2"+1
By long division (details omitted) we discover that

D432 +43 4422 432+ 1

3 =23 +32+43z+1
z2+1

=@+

Thus P(z) has the five zeros: i, —i, —1, —1, and —1.

Since P(z) = z° — 2z* — 823 + 822 + 31z — 30 has real
coefficients, if z1 = —2 + i is a zero of P(z), then so is
722 =—2—1i. Now

(z—21)(z —22) =22 + 4z +5.
By long division (details omitted) we discover that
25 —2z% — 823 + 822 + 31z — 30

2 +4z+5
=72 — 622+ 11z — 6.

Observe that z3 = 1 is a zero of z> — 6z2 + 11z — 6. By
long division again:

23 —6z24+11z -6
z—1

=722—57+6=(z—2)(z—3).

Hence P(z) has the five zeros —2 +i, —2 — i, 1, 2, and
3.

If w=z*+2>—2iz—3 and |z| = 2, then |z*| = 16 and
lw—z=12-2iz—3/ <844+3=15< l6.

By the mapping principle described in the proof of Theo-
rem 2, the image in the w-plane of the circle |z| =2 is a
closed curve that winds around the origin the same num-
ber of times that the image of z* does, namely 4 times.
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Appendix lll. Continuous Functions
(page A-25)

To be proved: If a < b < ¢, f(x) < g(x) fora <x <ec,
limy_,p f(x) = L, and lim,_,, g(x) = M, then L < M.

Proof: Suppose, to the contrary, that L > M. Let
€ = (L —M)/3, so € > 0. There exist numbers §; > 0
and 87 > O such that if a < x < b, then

lx —bl <é1 = [f(x)—L| <e
[x —bl <ér=|glx) — M| <e.

Thus if |x — b| < § = min{é1, §2, b — a, ¢ — b}, then

L-M
3

f(x)_g(x)>L—€—M—6:L—M—26: > 0.

This contradicts the fact that f(x) < g(x) on [a, b].
Therefore L < M.

To be proved: If f(x) < K on [a, b) and (b, c], and if
limy_,p f(x) =L, then L < K.

Proof: If L > K, then let ¢ = (L — K)/2; thus € > 0.
There exists § > 0 such that § < b —a and § < ¢ — b, and
such that if 0 < |x — b| < §, then | f(x) — L| < €. In this
case

f(x)>L—e:L—L_K

> K,

which contradicts the fact that f(x) < K on [a, b) and
(b, c]. Therefore L < K.

Let € > 0 be given. Let § = €'/ (r > 0). Then

0<x<d§ = 0<x' <8 =e

Thus limy_04+ x" = 0.

a) Let f(x) =C, g(x) =x. Let € > 0 be given and let
8 = €. For any real number x, if |[x — a| < &, then

[f(x) — fl@=]C—-C|=0<e,
lgx) —g@)|=Ix —al <d=e.

Thus limy_,, f(x) = f(a) and limy_,, g(x) = g(a),
and f and g are both continuous at every real num-
ber a.

A polynomial is constructed by adding and multiplying
finite numbers of functions of the type of f and g in
Exercise 4. By Theorem 1(a), such sums and products
are continuous everywhere, since their components have
been shown to be continuous everywhere.

If P and Q are polynomials, they are continuous every-
where by Exercise 5. If Q(a) # 0, then

Px)  P(a) .
— = by Theorem 1(a). Hence P/Q is
o) Q)

continuous everywhere except at the zeros of Q.

limy_ 4
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Suppose 7 is a positive integer and a > 0.

Let € > 0 be given. Let b = !/, and let

§ = minf{a(l —27"), " le}.

If |x —a| < &, then x > a/2", and if y = x!/", then
y > b/2. Thus

‘xl/n_al/n — |y —b]
_ ly" ="
- yn=1 —|—y"_2b—|—"'+bn_l
x—a| b le

pn—1 < pn—1

Thus limy_. 4 x'/" = a!/", and x/" is continuous at
X =a.

By Exercise 5, x™ is continuous everywhere. By Exer-

cise 7, x!/" is continuous at each a > 0. Thus for a > 0
we have
m m
lim x™/" = lim (xl/”) = (lim xl/")
X—a X—a X—a
— (al/n)m — am/n’

and x™/" is continuous at each positive number.

If m and n are integers and n is odd, then

(—x)™" = cx™" where ¢ = (—1)"™/" is either —1 or 1
depending on the parity of m. Since x™/" is continuous

at each positive number a, so is cx™m . Thus (—x)™/" is
continuous at each positive number, and x™/" is continu-
ous at each negative number.

If r = m/n > 0, then limy_,0+ x” = 0 by Exercise
3. Hence limy_,o— x" = (=1)" limy_0+ x" = 0, also.
Therefore lim,_. o x” = 0, and x" is continuous at x = 0.

Let € > 0 be given. Let 6 = €. If a is any real number
then

‘|x| —|a|‘ <l|lx—al<e if |x—a|<3$.
Thus lim,_,, |x| = |a|, and the absolute value function is

continuous at every real number.

By the definition of sin, P; = (cost, sint), and
P, = (cosa, sina) are two points on the unit circle
x2 4+ y%? = 1. Therefore

|t — a| = length of the arc from P; to P,
> length of the chord from P to P,

= /(cost — cosa)? + (sint — sina)2.

If € > 0 is given, and |t — a| < § = ¢, then the above
inequality implies that

|cost —cosal < |t —al <e,

|sint —sinal| < |t —al < e.
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Thus sin is continuous everywhere.

The proof that cos is continuous everywhere is almost
identical to that for sin in Exercise 11.
. [(a €a
Leta >0and € > 0. Let § = mm[i, 7]
a 2 .
If [x —a|] < &, then x > > SO ? < — whenever ¢ is
a

between a and x. Thus

[Inx — Inal|

1
= area under y = " between t =a and t = x

2 €a
< —|lx—al<—-—=¢€.
a a 2
Thus limy_,, Inx = Ina, and In is continuous at each
point a in its domain (0, 00).

Let a be any real number, and let € > 0 be given. As-
sume (making € smaller if necessary) that € < ¢%. Since

ln(l—:—a>+ln(l+eia>=ln<l—:%> <0,

we have In (1 + i) < —1In (1 — i)
e(l

ea

Let § =1n(1+ia). If |x —a| <4, then
e

€ €
ln(l—e—a)<x—a<ln(1—|—e—a>

€ . €
l—-— < <14+ —
ed ed

_ €
|ex “—1|<—
ea

|eX _e(l| :e(l|eX—a

— 1| <e.
Thus lim,_,, ¢ = ¢ and e* is continuous at every point
a in its domain.

Suppose a < x, < b for each n, and limx, = L. Then
a < L < b by Theorem 3. Let € > 0 be given. Since
f is continuous on [a, b], there exists § > 0 such that if
a<x<band |x—L| <4 then |f(x)— f(L)| <e. Since
limx, = L, there exists an integer N such that if n > N
then |x, — L| < §. Hence |f(x,) — f(L)| < € for such n.
Therefore lim(f (x,) = f(L).

Let g(r) = ———. For t # 0 we have
g(") 5] #
14 t| —tsgnt 14t — |z 1
/
g1 = = = >0
(14 [2])? (1 + [2])? (14 [2])?

If t =0, g is also differentiable, and has derivative 1:

. gh)—gO) . 1
'0) = 1im &2 80 _ —1
§(O) = lim = 0 1+ ||
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Thus g is continuous and increasing on R.
If f is continuous on [a, b], then
f @)
he) = g(f) = ==
1+ [f(x)l
is also continuous there, being the composition of contin-
uous functions. Also, 4 (x) is bounded on [a, b], since

lo(rw)] = AL <
L+ f )l
By assumption in this problem, A (x) must assume max-

imum and minimum values; there exist ¢ and d in [a, b]
such that

¢(1@) g(rm) =e(r@)

for all x in [a, b]. Since g is increasing, so is its inverse
g~ !. Therefore

fo) = fx) = f(d)

for all x in [a, b], and f is bounded on that interval.

Appendix IV. The Riemann Integral
(page A-30)

1 if0o<x<l1
f(")_{o ifl<x<2
Let) <e < 1. LetP:{O,l—%,l—i—%,Z}. Then

L(f,P)=1(1—5)+0+0=1——
) 3
€ 2¢ €
U(f,Pp)=1(1-= ) — 0=1+-.
ap=1(=5) 1 (5) ro=145
Since U(f, P) — L(f, P) <€, f is integrable on [0, 2].
Since L(f, P) < 1 < U(f, P) for every ¢, therefore
2
/f(x)dx:l.
0

ifx=1/n (n=1,2,3,..)

1
Fx) - {O otherwise
If P is any partition of [0, 1] then L(f, P) = 0. Let

0 < € < 2. Let N be an integer such that
2
N+1 > — > N. A partition P of [0, 1]
€
can be constructed so that the first two points of P

1
are 0 and %, and such that each of the N points —
n

(n =1,2,3, ..., n) lies in a subinterval of P having

€ 1
length at most N Since every number — with n a pos-
n

e . . . €
itive integer lies either in [0, —] or one of these other

N subintervals of P, and since max f(x) = 1 for these
subintervals and max f(x) = O for all other subintervals

of P, therefore U(f, P) < % + N% = €. By Theorem
3, f is integrable on [0, 1]. Evidently

1
/ f(x)dx = least upper bound L(f, P) = 0.
0

667
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_[1/n if x =m/n in lowest terms
fo = [0 otherwise

Clearly L(f, P) = O for every partition P of [0, 1].

Let € > 0 be given. To show that f is integrable we
must exhibit a partition P for which U(f, P) < €. We
can assume € < 1. Choose a positive integer N such
that 2/N < €. There are only finitely many integers n
such that 1 < n < N. For each such n, there are only
finitely many integers m such that 0 < m/n < 1. There-
fore there are only finitely many points x in [0, 1] where
f(x) > €/2. Let P be a partition of [0, 1] such that all
these points are contained in subintervals of the partition
having total length less than €/2. Since f(x) < 1 on
these subintervals, and f(x) < €/2 on all other subinter-
vals P, therefore U(f, P) <1 x (€/2) + (€/2) x 1 =€,
and f is integrable on [0, 1]. Evidently fol fx)dx =0,
since all lower sums are 0.

I.—TI*
Suppose, to the contrary, that I, > I*. Let € = * R

so € > 0. By the definition of I, and I'*, there exist
partitions Py and P, of [a, b], such that L(f, P|) > I, —¢
and U(f, P,) < I* + €. By Theorem 2,

L(f, P1) <U(f, P2), so

3e =L, —I" < L(f,P\)+e—U(f, ) +€ <2e.

Since € > 0, it follows that 3 < 2. This contradiction
shows that we must have I, < I'*.

Theorem 3 of Section 6.4: Proofs of parts (c)-(h).

¢) Multiplying a function by a constant multiplies all
its Riemann sums by the same constant. If the con-
stant is positive, upper and lower sums remain upper
and lower; if the constant is negative upper sums
become lower and vice versa. Therefore

b b
/ Af(x)dx =A/ f(x)dx.

It therefore remains to be proved only that the in-
tegral of a sum of functions is the sum of the inte-
grals. Suppose that

b b
/f(x)dx:[, and /g(x)dx:].

If € > 0, then there exist partitions P; and P, of
[a, b] such that

u(f, Po—gsl < L(f. P1>+§

€ €
Ug, PZ)_E <J <L, P2)+§~
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Let P be the common refinement of P; and

P,. Then the above inequalities hold with P re-
placing Py and P,. If m; < f(x) < M,

and my < g(x) < M> on any interval, then
mip +my < f(x)+ glx) < My + M> there. It
follows that

U(f+g.P)<U(f.P)+U(g. P),
L(f, P)+ L(g, P) = L(f +¢g, P).

Therefore

U(f+g P)—e<I+J=<L(f+g P)+e

b
Hence / (f(x) +g(x))dx =1+J.

Assume a < b < c; the other cases are similar. Let
e>0. If

b c
/ f(x)dx =1, and / fx)dx=1J,
a b

then there exist partitions P; of [a, b], and P, of
[b, c] such that

L(f.P) <1 < L(f. P1)+§

L(f.P) <J < L(f.P)) + %

(with similar inequalities for upper sums). Let P be
the partition of [a, c¢] formed by combining all the
subdivision points of P; and P,. Then

L(f, P) =L(f, PO+L(f, P») < I+J < L(f, P)+e.

Similarly, U(f, P)—e < I+J < U(f, P). Therefore
C
/ fx)ydx=1+J.
a
Let

b b
/f(x)dx:[, and /g(x)dx:],

where f(x) < g(x) on [a, b]. We want to show that
I < J. Suppose, to the contrary, that / > J. Then
there would exist a partition P of [a, b] for which

< J.

I—1J
I<L(f,P)+—2 , and U(g, P)—

I+7
Thus L(f, P) > LA U(g, P) = L(g, P).

However, f(x) < g(x) on [a, b] implies that
L(f, P) < L(g, P) for any partition. Thus we have
a contradiction, and so I < J.




6.

www. nohandesyar . com

INSTRUCTOR'’S SOLUTIONS MANUAL

f) Since —|f(x)| < f(x) < |f(x)| for any x, we have
by part (e), if a < b,

b b b
—/ If(x)lde/ f(x)dxs/ ()] dox.

b b
/ fx)dx 5/ |f(x)|dx.

g) By parts (b), (c) and (d),

Therefore

a

0 a
fx)dx = f&x)dx +/ fx)dx
—a 0

—a

= f(—x)dx+/ f@)dx
0 0

- /0 Lf (=) + f()]dx.

If f is odd, the last integral is 0. If f is even, the
a

last integral is / 2f(x)dx. Thus both (g) and (h)
0

are proved.

Let € > 0 be given. Let § =62/2. Let 0 < x <1 and
0<y<I1 Ifx <e*/4and y < €?/4 then
WX = S Vx+ Y <e

If |x — y| < § and either x > €2/4 or y > €2 /4 then

2 2
— = €.
€

_ o oyl 2 €
IV/x ﬁl—ﬁ+ﬁ 5

Thus f(x) = +/x is uniformly continuous on [0, 1].
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Suppose f is uniformly continuous on [a, b]. Taking

€ = 1 in the definition of uniform continuity, we can find
a positive number § such that |f(x)— f(y)| < 1 whenever
x and y are in [a, b] and |x—y| < §. Let N be a positive
integer such that & = (b — a)/N satisfies h < §.

If xx =a+kh, (0 <k < N), then each of the subintervals
of the partition P = {xg, x1, ..., xn} has length less than
8. Thus

|fGa) — fOu—Dl <1 for 1<k<N.
By repeated applications of the triangle inequality,
Lf k—1) = f@] = | fOx—1) — fxo)| <k — 1.

If x is any point in [a, b], then x belongs to one of the
intervals [xx—1, xx], so, by the triangle inequality again,

lf@)—=f@] < 1f)—f-DI+|fa-1)—f(@)] <k <N.

Thus |f(x)| < |f(a)| + N, and f is bounded on [a, b].

Suppose that | f(x)| < K on [a, b] (where K > 0), and
that f is integrable on [a, b]. Let € > 0 be given, and let
8 = €¢/K. If x and y belong to [a, b] and |x — y| < &,

then
/X f(@)dt _/,v f(@)dt

/ ’ f)dt
s

(See Theorem 3(f) of Section 6.4.) Thus F is uniformly
continuous on [a, b].

|[F(x) - F(y)l =

€
<Klx—y|<K—=c¢e.
< Klx —y| X
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