APPENDICES

Appendix I. Complex Numbers (page A-10)

1. $z=-5+2 i, \quad \operatorname{Re}(z)=-5, \quad \operatorname{Im}(z)=2$

Fig. . 1
2. $z=4-i, \quad \operatorname{Re}(z)=4, \quad \operatorname{Im}(z)=-1$
3. $z=-\pi i, \quad \operatorname{Re}(z)=0, \quad \operatorname{Im}(z)=-\pi$
4. $z=-6, \quad \operatorname{Re}(z)=-6, \quad \operatorname{Im}(z)=0$
5. $\quad z=-1+i, \quad|z|=\sqrt{2}, \quad \operatorname{Arg}(z)=3 \pi / 4$ $z=\sqrt{2}(\cos (3 \pi / 4)+i \sin (3 \pi / 4))$
6. $\quad z=-2, \quad|z|=2, \quad \operatorname{Arg}(z)=\pi$ $z=2(\cos \pi+i \sin \pi)$
7. $z=3 i, \quad|z|=3, \quad \operatorname{Arg}(z)=\pi / 2$ $z=3(\cos (\pi / 2)+i \sin (\pi / 2))$
8. $\quad z=-5 i, \quad|z|=5, \quad \operatorname{Arg}(z)=-\pi / 2$ $z=5(\cos (-\pi / 2)+i \sin (-\pi / 2))$
9. $z=1+2 i, \quad|z|=\sqrt{5}, \quad \theta=\operatorname{Arg}(z)=\tan ^{-1} 2$ $z=\sqrt{5}(\cos \theta+i \sin \theta)$
10. $z=-2+i, \quad|z|=\sqrt{5}, \quad \theta=\operatorname{Arg}(z)=\pi-\tan ^{-1}(1 / 2)$ $z=\sqrt{5}(\cos \theta+i \sin \theta)$
11. $\quad z=-3-4 i, \quad|z|=5, \quad \theta=\operatorname{Arg}(z)=-\pi+\tan ^{-1}(4 / 3)$ $z=5(\cos \theta+i \sin \theta)$
12. $z=3-4 i, \quad|z|=5, \quad \theta=\operatorname{Arg}(z)=-\tan ^{-1}(4 / 3)$ $z=5(\cos \theta+i \sin \theta)$
13. $z=\sqrt{3}-i, \quad|z|=2, \quad \operatorname{Arg}(z)=-\pi / 6$
$z=2(\cos (-\pi / 6)+i \sin (-\pi / 6))$
14. $z=-\sqrt{3}-3 i, \quad|z|=2 \sqrt{3}, \quad \operatorname{Arg}(z)=-2 \pi / 3$
$z=2 \sqrt{3}(\cos (-2 \pi / 3)+i \sin (-2 \pi / 3))$
15. $z=3 \cos \frac{4 \pi}{5}+3 i \sin \frac{4 \pi}{5}$

$$
|z|=3, \quad \operatorname{Arg}(z)=\frac{4 \pi}{5}
$$

16. If $\operatorname{Arg}(z)=\frac{3 \pi}{4}$ and $\operatorname{Arg}(w)=\frac{\pi}{2}$, then
$\arg (z w)=\frac{3 \pi}{4}+\frac{\pi}{2}=\frac{5 \pi}{4}$, so
$\operatorname{Arg}(z w)=\frac{5 \pi}{4}-2 \pi=\frac{-3 \pi}{4}$.
17. If $\operatorname{Arg}(z)=-\frac{5 \pi}{6}$ and $\operatorname{Arg}(w)=\frac{\pi}{4}$, then $\arg (z / w)=-\frac{5 \pi}{6}-\frac{\pi}{4}=-\frac{13 \pi}{12}$, so $\operatorname{Arg}(z / w)=-\frac{13 \pi}{12}+2 \pi=\frac{11 \pi}{12}$.
18. $|z|=2, \arg (z)=\pi \Rightarrow z=2(\cos \pi+i \sin \pi)=-2$
19. $|z|=5, \theta=\arg (z)=\pi \Rightarrow \sin \theta=3 / 5, \cos \theta=4 / 5$ $z=4+3 i$
20. $|z|=1, \arg (z)=\frac{3 \pi}{4} \Rightarrow z=\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$ $\Rightarrow z=-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$
21. $|z|=\pi, \arg (z)=\frac{\pi}{6} \Rightarrow z=\pi\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
$\Rightarrow z=\frac{\pi \sqrt{3}}{2}+\frac{\pi}{2} i$
22. $|z|=0 \Rightarrow z=0$ for any value of $\arg (z)$
23. $|z|=\frac{1}{2}, \arg (z)=-\frac{\pi}{3} \Rightarrow z=\frac{1}{2}\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)$ $\Rightarrow z=\frac{1}{4}-\frac{\sqrt{3}}{4} i$
24. $\overline{5+3 i}=5-3 i$
25. $\overline{-3-5 i}=-3+5 i$
26. $\overline{4 i}=-4 i$
27. $\overline{2-i}=2+i$
28. $|z|=2$ represents all points on the circle of radius 2 centred at the origin.
29. $|z| \leq 2$ represents all points in the closed disk of radius 2 centred at the origin.
30. $|z-2 i| \leq 3$ represents all points in the closed disk of radius 3 centred at the point $2 i$.
31. $|z-3+4 i| \leq 5$ represents all points in the closed disk of radius 5 centred at the point $3-4 i$.
32. $\arg (z)=\pi / 3$ represents all points on the ray from the origin in the first quadrant, making angle 60° with the positive direction of the real axis.
33. $\pi \leq \arg (z) \leq 7 \pi / 4$ represents the closed wedge-shaped region in the third and fourth quadrants bounded by the ray from the origin to $-\infty$ on the real axis and the ray from the origin making angle -45° with the positive direction of the real axis.
34. $(2+5 i)+(3-i)=5+4 i$
35. $i-(3-2 i)+(7-3 i)=-3+7+i+2 i-3 i=4$
36. $(4+i)(4-i)=16-i^{2}=17$
37. $(1+i)(2-3 i)=2+2 i-3 i-3 i^{2}=5-i$
38. $(a+b i)(\overline{2 a-b i})=(a+b i)(2 a+b i)=2 a^{2}-b^{2}+3 a b i$
39. $(2+i)^{3}=8+12 i+6 i^{2}+i^{3}=2+11 i$
40. $\frac{2-i}{2+i}=\frac{(2-i)^{2}}{4-i^{2}}=\frac{3-4 i}{5}$
41. $\frac{1+3 i}{2-i}=\frac{(1+3 i)(2+i)}{4-i^{2}}=\frac{-1+7 i}{5}$
42. $\frac{1+i}{i(2+3 i)}=\frac{1+i}{-3+2 i}=\frac{(1+i)(-3-2 i)}{9+4}=\frac{-1-5 i}{13}$
43. $\frac{(1+2 i)(2-3 i)}{(2-i)(3+2 i)}=\frac{8+i}{8+i}=1$
44. If $z=x+y i$ and $w=u+v i$, where x, y, u, and v are real, then

$$
\begin{aligned}
\overline{z+w} & =\overline{x+u+(y+v) i} \\
& =x+u-(y+v) i=x-y i+u-v i=\bar{z}+\bar{w} .
\end{aligned}
$$

45. Using the fact that $|z w|=|z||w|$, we have

$$
\overline{\left(\frac{z}{w}\right)}=\overline{\left(\frac{z \bar{w}}{|w|^{2}}\right)}=\frac{\bar{z} \overline{\bar{w}}}{|w|^{2}}=\frac{\bar{z} w}{\bar{w} w}=\frac{\bar{z}}{\bar{w}} .
$$

46. $z=3+i \sqrt{3}=2 \sqrt{3}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
$w=-1+i \sqrt{3}=2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$
$z w=4 \sqrt{3}\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$
$\frac{z}{w}=\sqrt{3}\left(\cos \frac{-\pi}{2}+i \sin \frac{-\pi}{2}\right)=-i \sqrt{3}$
47. $z=-1+i=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
$w=3 i=3\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$
$z w=3 \sqrt{2}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)=-3-3 i$
$\frac{z}{w}=\frac{\sqrt{2}}{3}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\frac{1}{3}+\frac{1}{3} i$
48. $\quad \cos (3 \theta)+i \sin (3 \theta)=(\cos \theta+i \sin \theta)^{3}$ $=\cos ^{3} \theta+3 i \cos ^{2} \theta \sin \theta-3 \cos \theta \sin ^{2} \theta-i \sin ^{3} \theta$ Thus

$$
\begin{aligned}
\cos (3 \theta) & =\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta=4 \cos ^{3} \theta-3 \cos \theta \\
\sin (3 \theta) & =3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta=3 \sin \theta-4 \sin ^{3} \theta
\end{aligned}
$$

49. a) $\bar{z}=2 / z$ can be rewritten $|z|^{2}=z \bar{z}=2$, so is satisfied by all numbers z on the circle of radius $\sqrt{2}$ centred at the origin.
b) $\bar{z}=-2 / z$ can be rewritten $|z|^{2}=z \bar{z}=-2$, which has no solutions since the square of $|z|$ is nonnegative for all complex z.
50. If $z=w=-1$, then $z w=1$, so $\sqrt{z w}=1$. But if we use $\sqrt{z}=\sqrt{-1}=i$ and the same value for \sqrt{w}, then $\sqrt{z} \sqrt{w}=i^{2}=-1 \neq \sqrt{z w}$.
51. The three cube roots of $-1=\cos \pi+i \sin \pi$ are of the form $\cos \theta+i \sin \theta$ where $\theta=\pi / 3, \theta=\pi$, and $\theta=5 \pi / 3$. Thus they are

$$
\frac{1}{2}+i \frac{\sqrt{3}}{2}, \quad-1, \quad \frac{1}{2}-i \frac{\sqrt{3}}{2}
$$

52. The three cube roots of $-8 i=8\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)$ are of the form $2(\cos \theta+i \sin \theta)$ where $\theta=\pi / 2$, $\theta=7 \pi / 6$, and $\theta=11 \pi / 6$. Thus they are

$$
2 i, \quad-\sqrt{3}-i, \quad \sqrt{3}-i .
$$

53. The three cube
roots of $-1+i=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$ are of the form $2^{1 / 6}(\cos \theta+i \sin \theta)$ where $\theta=\pi / 4, \theta=11 \pi / 12$, and $\theta=19 \pi / 12$.
54. The four fourth roots of $4=4(\cos 0+i \sin 0)$ are of the form $\sqrt{2}(\cos \theta+i \sin \theta)$ where $\theta=0, \theta=\pi / 2$, π, and $\theta=3 \pi / 2$. Thus they are $\sqrt{2}, i \sqrt{2},-\sqrt{2}$, and $-i \sqrt{2}$.
55. The equation $z^{4}+1-i \sqrt{3}=0$ has solutions that are the four fourth roots of $-1+i \sqrt{3}=2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$. Thus they are of the form $2^{1 / 4}(\cos \theta+i \sin \theta)$, where $\theta=\pi / 6,2 \pi / 3,7 \pi / 6$, and $5 \pi / 3$. They are the complex numbers

$$
\pm 2^{1 / 4}\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right), \quad \pm 2^{1 / 4}\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)
$$

56. The equation $z^{5}+a^{5}=0(a>0)$ has solutions that are the five fifth roots of $-a^{5}=a(\cos \pi+i \sin \pi)$; they are of the form $a(\cos \theta+i \sin \theta)$, where $\theta=\pi / 5,3 \pi / 5, \pi$, $7 \pi / 5$, and $9 \pi / 5$.
57. The $n n$th roots of unity are

$$
\begin{aligned}
& \omega_{1}=1 \\
& \omega_{2}=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n} \\
& \omega_{3}=\cos \frac{4 \pi}{n}+i \sin \frac{4 \pi}{n}=\omega_{2}^{2} \\
& \omega_{4}=\cos \frac{6 \pi}{n}+i \sin \frac{6 \pi}{n}=\omega_{2}^{3} \\
& \vdots \\
& \omega_{n}=\cos \frac{2(n-1) \pi}{n}+i \sin \frac{2(n-1) \pi}{n}=\omega_{2}^{n-1} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\omega_{1}+\omega_{2}+\omega_{3}+\cdots+\omega_{n} & =1+\omega_{2}+\omega_{2}^{2}+\cdots+\omega_{2}^{n-1} \\
& =\frac{1-\omega_{2}^{n}}{1-\omega_{2}}=\frac{0}{1-\omega_{2}}=0
\end{aligned}
$$

Appendix II. Complex Functions (page A-19)

In Solutions $1-12, z=x+y i$ and $w=u+v i$, where x, y, u, and v are real.

1. The function $w=\bar{z}$ transforms the closed rectangle $0 \leq x \leq 1,0 \leq y \leq 2$ to the closed rectangle $0 \leq u \leq 1$, $-2 \leq v \leq 0$.
2. The function $w=\bar{z}$ transforms the line $x+y=1$ to the line $u-v=1$.
3. The function $w=z^{2}$ transforms the closed annular sector $1 \leq|z| \leq 2, \pi / 2 \leq \arg (z) \leq 3 \pi / 4$ to the closed annular sector $1 \leq|w| \leq 4, \pi \leq \arg (w) \leq 3 \pi / 2$.
4. The function $w=z^{3}$ transforms the closed quartercircular disk $0 \leq|z| \leq 2,0 \leq \arg (z) \leq \pi / 2$ to the closed three-quarter disk $0 \leq|w| \leq 8,0 \leq \arg (w) \leq 3 \pi / 2$.
5. The function $w=1 / z=\bar{z} /|z|^{2}$ transforms the closed quarter-circular disk $0 \leq|z| \leq 2,0 \leq \arg (z) \leq \pi / 2$ to the closed region lying on or outside the circle $|w|=1 / 2$ and in the fourth quadrant, that is, having $-\pi / 2 \leq \arg (w) \leq 0$.
6. The function $w=-i z$ rotates the z-plane -90°, so transforms the wedge $\pi / 4 \leq \arg (z) \leq \pi / 3$ to the wedge $-\pi / 4 \leq \arg (z) \leq-\pi / 6$.
7. The function $w=\sqrt{z}$ transforms the ray $\arg (z)=-\pi / 3$ (that is, $\operatorname{Arg}(z)=5 \pi / 3)$ to the ray $\arg (w)=5 \pi / 6$.
8. The function $w=z^{2}=x^{2}-y^{2}+2 x y i$ transforms the line $x=1$ to $u=1-y^{2}, v=2 y$, which is the parabola $v^{2}=4-4 u$ with vertex at $w=1$, opening to the left.
9. The function $w=z^{2}=x^{2}-y^{2}+2 x y i$ transforms the line $y=1$ to $u=x^{2}-1, v=2 x$, which is the parabola $v^{2}=4 u+4$ with vertex at $w=-1$ and opening to the right.
10. The function $w=1 / z=(x-y i) /\left(x^{2}+y^{2}\right)$ transforms the line $x=1$ to the curve given parametrically by

$$
u=\frac{1}{1+y^{2}}, \quad v=\frac{-y}{1+y^{2}} .
$$

This curve is, in fact, a circle,

$$
u^{2}+v^{2}=\frac{1+y^{2}}{\left(1+y^{2}\right)^{2}}=u
$$

with centre $w=1 / 2$ and radius $1 / 2$.
11. The function $w=e^{z}=e^{x} \cos y+i e^{x} \sin y$ transforms the horizontal strip $-\infty<x<\infty, \pi / 4 \leq y \leq \pi / 2$ to the wedge $\pi / 4 \leq \arg (w) \leq \pi / 2$, or, equivalently, $u \geq 0$, $v \geq u$.
12. The function $w=e^{i z}=e^{-y}(\cos x+i \sin x)$ transforms the vertical half-strip $0<x<\pi / 2,0<y<\infty$ to the first-quadrant part of the unit open disk $|w|=e^{-y}<1$, $0<\arg (w)=x<\pi / 2$, that is $u>0, v>0, u^{2}+v^{2}<1$.
13. $f(z)=z^{2}=(x+y i)^{2}=x^{2}-y^{2}+2 x y i$
$u=x^{2}-y^{2}, \quad v=2 x y$
$\frac{\partial u}{\partial x}=2 x=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-2 y=-\frac{\partial v}{\partial x}$
$f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=2 x+2 y i=2 z$.
14. $f(z)=z^{3}=(x+y i)^{3}=x^{3}-3 x y^{2}+\left(3 x^{2} y-y^{3}\right) i$
$u=x^{3}-3 x y^{2}, \quad v=3 x^{2} y-y^{3}$
$\frac{\partial u}{\partial x}=3\left(x^{2}-y^{2}\right)=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-6 x y=-\frac{\partial v}{\partial x}$
$f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=3\left(x^{2}-y^{2}+2 x y i\right)=3 z^{2}$.
15. $f(z)=\frac{1}{z}=\frac{x-y i}{x^{2}+y^{2}}$
$u=\frac{x}{x^{2}+y^{2}}, \quad v=\frac{-y}{x^{2}+y^{2}}$
$\frac{\partial u}{\partial x}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{\partial v}{\partial x}$
$f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{-\left(x^{2}-y^{2}\right)+2 x y i}{\left(x^{2}+y^{2}\right)^{2}}=\frac{-(\bar{z})^{2}}{(z \bar{z})^{2}}=-\frac{1}{z^{2}}$.
16. $f(z)=e^{z^{2}}=e^{x^{2}-y^{2}}(\cos (2 x y)+i \sin (2 x y))$
$u=e^{x^{2}-y^{2}} \cos (2 x y), \quad v=e^{x^{2}-y^{2}} \sin (2 x y)$
$\frac{\partial u}{\partial x}=e^{x^{2}-y^{2}}(2 x \cos (2 x y)-2 y \sin (2 x y))=\frac{\partial v}{\partial y}$
$\frac{\partial u}{\partial y}=-e^{x^{2}-y^{2}}(2 y \cos (2 x y)+2 x \sin (2 x y))=-\frac{\partial v}{\partial x}$
$f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$
$=e^{x^{2}-y^{2}}[2 x \cos (2 x y)-2 y \sin (2 x y)$
$+i(2 y \cos (2 x y)+2 x \sin (2 x y))]$
$=(2 x+2 y i) e^{x^{2}-y^{2}}(\cos (2 x y)+i \sin (2 x y))=2 z e^{z^{2}}$.
17. $e^{y i}=\cos y+i \sin y$ (for real y). Replacing y by $-y$, we get $e^{-y i}=\cos y-i \sin y$ (since \cos is even and \sin is odd). Adding and subtracting these two formulas gives

$$
e^{y i}+e^{-y i}=2 \cos y, \quad e^{y i}-e^{-y i}=2 i \sin y
$$

Thus $\cos y=\frac{e^{y i}+e^{-y i}}{2}$ and $\sin y=\frac{e^{y i}-e^{-y i}}{2 i}$.
18. $e^{z+2 \pi i}=e^{x}(\cos (y+2 \pi)+i \sin (y+2 \pi))$

$$
=e^{x}(\cos y+i \sin y)=e^{z}
$$

Thus e^{z} is periodic with period $2 \pi i$. So is $e^{-z}=1 / e^{z}$. Since $e^{i(z+2 \pi)}=e^{z i+2 \pi i}=e^{z i}$, therefore $e^{z i}$ and also $e^{-z i}$ are periodic with period 2π. Hence

$$
\cos z=\frac{e^{z i}+e^{-z i}}{2} \text { and } \sin z=\frac{e^{z i}-e^{-z i}}{2 i}
$$

are periodic with period 2π, and

$$
\cosh z=\frac{e^{z}+e^{-z}}{2} \text { and } \sinh z=\frac{e^{z}-e^{-z}}{2}
$$

are periodic with period $2 \pi i$.
19. $\frac{d}{d z} \cos z=\frac{d}{d z} \frac{e^{z i}+e^{-z i}}{2}=\frac{i e^{z i}-e^{-z i}}{2}=-\sin z$
$\frac{d}{d z} \sin z=\frac{d}{d z} \frac{e^{z i}-e^{-z i}}{2 i}=\frac{i e^{z i}+e^{-z i}}{2 i}=\cos z$
$\frac{d}{d z} \cosh z=\frac{d}{d z} \frac{e^{z}+e^{-z}}{2}=\frac{e^{z}-e^{-z}}{2}=\sinh z$
$\frac{d}{d z} \sinh z=\frac{d}{d z} \frac{e^{z}-e^{-z}}{2}=\frac{e^{z}+e^{-z}}{2}=\cosh z$
20. $\cosh (i z)=\frac{e^{i z}+e^{-i z}}{2}=\cosh z$
$-i \sinh (i z)=\frac{1}{i} \frac{e^{i z}-e^{-i z}}{2}=\sin z$

$$
\cos (i z)=\frac{e^{-z}+e^{z}}{2}=\cosh z
$$

$$
\sin (i z)=\frac{e^{-z}-e^{z}}{2 i}=i \frac{-e^{-z}+e^{z}}{2}=i \sinh z
$$

21. $\cos z=0 \Leftrightarrow e^{z i}=-e^{-z i} \Leftrightarrow e^{2 z i}=-1$

$$
\begin{aligned}
& \Leftrightarrow e^{-2 y}[\cos (2 x)+i \sin (2 x)]=-1 \\
& \Leftrightarrow \sin (2 x)=0, \quad e^{-2 y} \cos (2 x)=-1 \\
& \Leftrightarrow y=0, \quad \cos (2 x)=-1 \\
& =\Leftrightarrow y=0, \quad x= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots
\end{aligned}
$$

Thus the only complex zeros of $\cos z$ are its real zeros at $z=(2 n+1) \pi / 2$ for integers n.
22. $\sin z=0 \Leftrightarrow e^{z i}=e^{-z i} \Leftrightarrow e^{2 z i}=1$

$$
\begin{aligned}
& \Leftrightarrow e^{-2 y}[\cos (2 x)+i \sin (2 x)]=1 \\
& \Leftrightarrow \sin (2 x)=0, \quad e^{-2 y} \cos (2 x)=1 \\
& \Leftrightarrow y=0, \cos (2 x)=1 \\
& =\Leftrightarrow y=0, \quad x=0, \pm \pi, \pm 2 \pi, \ldots
\end{aligned}
$$

Thus the only complex zeros of $\sin z$ are its real zeros at $z=n \pi$ for integers n.
23. By Exercises 20 and $21, \cosh z=0$ if and only if $\cos (i z)=0$, that is, if and only if $z=(2 n+1) \pi i / 2$ for integer n.
Similarly, $\sinh z=0$ if and only if $\sin (i z)=0$, that is, if and only if $z=n \pi i$ for integer n.
24. $e^{z}=e^{x+y i}=e^{x} \cos y+i e^{x} \sin y$

$$
e^{-z}=e^{-x-y i}=e^{-x} \cos y-e^{-x} \sin y
$$

$\cosh z=\frac{e^{z}+e^{-z}}{2}=\frac{e^{x}+e^{-x}}{2} \cos y+i \frac{e^{x}-e^{-x}}{2} \sin y$
$=\cosh x \cos y+i \sinh x \sin y$
$\operatorname{Re}(\cosh z)=\cosh x \cos y, \quad \operatorname{Im}(\cosh z)=\sinh x \sin y$.
25. $\sinh z=\frac{e^{z}-e^{-z}}{2}=\frac{e^{x}-e^{-x}}{2} \cos y+i \frac{e^{x}+e^{-x}}{2} \sin y$
$=\sinh x \cos y+i \cosh x \sin y$
$\operatorname{Re}(\sinh z)=\sinh x \cos y, \quad \operatorname{Im}(\cosh z)=\cosh x \sin y$.
26. $e^{i z}=e^{-y+x i}=e^{-y} \cos x+i e^{-y} \sin x$
$e^{-i z}=e^{y-x i}=e^{y} \cos x-i e^{y} \sin x$
$\cos z=\frac{e^{i z}+e^{-i z}}{2}=\frac{e^{-y}+e^{y}}{2} \cos x+i \frac{e^{-y}-e^{y}}{2} \sin x$
$=\cos x \cosh y-i \sin x \sinh y$
$\operatorname{Re}(\cos z)=\cos x \cosh y, \quad \operatorname{Im}(\cos z)=-\sin x \sinh y$
$\sin z=\frac{e^{i z}-e^{-i z}}{2 i}=\frac{e^{-y}-e^{y}}{2 i} \cos x+i \frac{e^{-y}+e^{y}}{2 i} \sin x$
$=\sin x \cosh y+i \cos x \sinh y$
$\operatorname{Re}(\sin z)=\sin x \cosh y, \quad \operatorname{Im}(\sin z)=\cos x \sinh y$.
27. $z^{2}+2 i z=0 \Rightarrow z=0$ or $z=-2 i$
28. $z^{2}-2 z+i=0 \Rightarrow(z-1)^{2}=1-i$

$$
\begin{aligned}
& =\sqrt{2}\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right) \\
\Rightarrow z & =1 \pm 2^{1 / 4}\left(\cos \frac{7 \pi}{8}+i \sin \frac{7 \pi}{8}\right)
\end{aligned}
$$

29. $z^{2}+2 z+5=0 \Rightarrow(z+1)^{2}=-4$

$$
\Rightarrow z=-1 \pm 2 i
$$

30. $z^{2}-2 i z-1=0 \Rightarrow(z-i)^{2}=0$

$$
\Rightarrow z=i \quad \text { (double root) }
$$

31. $z^{3}-3 i z^{2}-2 z=z\left(z^{2}-3 i z-2\right)=0$
$\Rightarrow z=0$ or $z^{2}-3 i z-2=0$
$\Rightarrow z=0$ or $\left(z-\frac{3}{2} i\right)^{2}=-\frac{1}{4}$
$\Rightarrow z=0$ or $z=\left(\frac{3}{2} \pm \frac{1}{2}\right) i$
$\Rightarrow z=0$ or $z=i$ or $z=2 i$
32. $z^{4}-2 z^{2}+4=0 \Rightarrow\left(z^{2}-1\right)^{2}=-3$
$z^{2}=1-i \sqrt{3} \quad$ or $\quad z^{2}=1+i \sqrt{3}$
$z^{2}=2\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right), \quad z^{2}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
$z= \pm \sqrt{2}\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right), \quad$ or
$z= \pm \sqrt{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
$z= \pm\left(\sqrt{\frac{3}{2}}-\frac{i}{\sqrt{2}}\right), \quad z= \pm\left(\sqrt{\frac{3}{2}}+\frac{i}{\sqrt{2}}\right)$
33. $z^{4}+1=0 \Rightarrow z^{2}=i$ or $z^{2}=-i$

$$
\Rightarrow \quad z= \pm \frac{1+i}{\sqrt{2}}, \quad z= \pm \frac{1-i}{\sqrt{2}}
$$

$$
z^{4}+1=\left(z-\frac{1+i}{\sqrt{2}}\right)\left(z-\frac{1-i}{\sqrt{2}}\right)
$$

$$
\times\left(z+\frac{1+i}{\sqrt{2}}\right)\left(z+\frac{1-i}{\sqrt{2}}\right)
$$

$$
=\left(\left[z-\frac{1}{\sqrt{2}}\right]^{2}+\frac{1}{2}\right)\left(\left[z+\frac{1}{\sqrt{2}}\right]^{2}+\frac{1}{2}\right)
$$

$$
=\left(z^{2}-\sqrt{2} z+1\right)\left(z^{2}+\sqrt{2} z+1\right)
$$

34. Since $P(z)=z^{4}-4 z^{3}+12 z^{2}-16 z+16$ has real coefficients, if $z_{1}=1-\sqrt{3} i$ is a zero of $P(z)$, then so is $\overline{z_{1}}$. Now

$$
\left(z-z_{1}\right)\left(z-\overline{z_{1}}\right)=(z-1)^{2}+3=z^{2}-2 z+4
$$

By long division (details omitted) we discover that

$$
\frac{z^{4}-4 z^{3}+12 z^{2}-16 z+16}{z^{2}-2 z+4}=z^{2}-2 z+4
$$

Thus z_{1} and $\overline{z_{1}}$ are both double zeros of $P(z)$. These are the only zeros.
35. Since $P(z)=z^{5}+3 z^{4}+4 z^{3}+4 z^{2}+3 z+1$ has real coefficients, if $z_{1}=i$ is a zero of $P(z)$, then so is $z_{2}=-i$. Now

$$
\left(z-z_{1}\right)\left(z-z_{2}\right)=(z-i)(z+i)=z^{2}+1
$$

By long division (details omitted) we discover that

$$
\begin{aligned}
\frac{z^{5}+3 z^{4}+4 z^{3}+4 z^{2}+3 z+1}{z^{2}+1} & =z^{3}+3 z^{2}+3 z+1 \\
& =(z+1)^{3}
\end{aligned}
$$

Thus $P(z)$ has the five zeros: $i,-i,-1,-1$, and -1 .
36. Since $P(z)=z^{5}-2 z^{4}-8 z^{3}+8 z^{2}+31 z-30$ has real coefficients, if $z_{1}=-2+i$ is a zero of $P(z)$, then so is $z_{2}=-2-i$. Now

$$
\left(z-z_{1}\right)\left(z-z_{2}\right)=z^{2}+4 z+5
$$

By long division (details omitted) we discover that

$$
\begin{aligned}
& \frac{z^{5}-2 z^{4}-8 z^{3}+8 z^{2}+31 z-30}{z^{2}+4 z+5} \\
& =z^{3}-6 z^{2}+11 z-6
\end{aligned}
$$

Observe that $z_{3}=1$ is a zero of $z^{3}-6 z^{2}+11 z-6$. By long division again:

$$
\frac{z^{3}-6 z^{2}+11 z-6}{z-1}=z^{2}-5 z+6=(z-2)(z-3)
$$

Hence $P(z)$ has the five zeros $-2+i,-2-i, 1,2$, and 3.
37. If $w=z^{4}+z^{3}-2 i z-3$ and $|z|=2$, then $\left|z^{4}\right|=16$ and

$$
\left|w-z^{4}\right|=\left|z^{3}-2 i z-3\right| \leq 8+4+3=15<16 .
$$

By the mapping principle described in the proof of Theorem 2, the image in the w-plane of the circle $|z|=2$ is a closed curve that winds around the origin the same number of times that the image of z^{4} does, namely 4 times.

Appendix III. Continuous Functions (page A-25)

1. To be proved: If $a<b<c, f(x) \leq g(x)$ for $a \leq x \leq c$, $\lim _{x \rightarrow b} f(x)=L$, and $\lim _{x \rightarrow b} g(x)=M$, then $L \leq M$.
Proof: Suppose, to the contrary, that $L>M$. Let $\epsilon=(L-M) / 3$, so $\epsilon>0$. There exist numbers $\delta_{1}>0$ and $\delta_{2}>0$ such that if $a \leq x \leq b$, then

$$
\begin{aligned}
& |x-b|<\delta_{1} \Rightarrow|f(x)-L|<\epsilon \\
& |x-b|<\delta_{2} \Rightarrow|g(x)-M|<\epsilon
\end{aligned}
$$

Thus if $|x-b|<\delta=\min \left\{\delta_{1}, \delta_{2}, b-a, c-b\right\}$, then
$f(x)-g(x)>L-\epsilon-M-\epsilon=L-M-2 \epsilon=\frac{L-M}{3}>0$.
This contradicts the fact that $f(x) \leq g(x)$ on $[a, b]$. Therefore $L \leq M$.
2. To be proved: If $f(x) \leq K$ on $[a, b)$ and $(b, c]$, and if $\lim _{x \rightarrow b} f(x)=L$, then $L \leq K$.
Proof: If $L>K$, then let $\epsilon=(L-K) / 2$; thus $\epsilon>0$. There exists $\delta>0$ such that $\delta<b-a$ and $\delta<c-b$, and such that if $0<|x-b|<\delta$, then $|f(x)-L|<\epsilon$. In this case

$$
f(x)>L-\epsilon=L-\frac{L-K}{2}>K
$$

which contradicts the fact that $f(x) \leq K$ on $[a, b)$ and ($b, c]$. Therefore $L \leq K$.
3. Let $\epsilon>0$ be given. Let $\delta=\epsilon^{1 / r},(r>0)$. Then

$$
0<x<\delta \quad \Rightarrow \quad 0<x^{r}<\delta^{r}=\epsilon
$$

Thus $\lim _{x \rightarrow 0+} x^{r}=0$.
4. a) Let $f(x)=C, g(x)=x$. Let $\epsilon>0$ be given and let $\delta=\epsilon$. For any real number x, if $|x-a|<\delta$, then

$$
\begin{aligned}
& |f(x)-f(a)|=|C-C|=0<\epsilon \\
& |g(x)-g(a)|=|x-a|<\delta=\epsilon
\end{aligned}
$$

Thus $\lim _{x \rightarrow a} f(x)=f(a)$ and $\lim _{x \rightarrow a} g(x)=g(a)$, and f and g are both continuous at every real number a.
5. A polynomial is constructed by adding and multiplying finite numbers of functions of the type of f and g in Exercise 4. By Theorem 1(a), such sums and products are continuous everywhere, since their components have been shown to be continuous everywhere.
6. If P and Q are polynomials, they are continuous everywhere by Exercise 5. If $Q(a) \neq 0$, then $\lim _{x \rightarrow a} \frac{P(x)}{Q(x)}=\frac{P(a)}{Q(a)}$ by Theorem 1(a). Hence P / Q is continuous everywhere except at the zeros of Q.
7. Suppose n is a positive integer and $a>0$.

Let $\epsilon>0$ be given. Let $b=a^{1 / n}$, and let
$\delta=\min \left\{a\left(1-2^{-n}\right), b^{n-1} \epsilon\right\}$.
If $|x-a|<\delta$, then $x>a / 2^{n}$, and if $y=x^{1 / n}$, then $y>b / 2$. Thus

$$
\begin{aligned}
\left|x^{1 / n}-a^{1 / n}\right| & =|y-b| \\
& =\frac{\left|y^{n}-b^{n}\right|}{y^{n-1}+y^{n-2} b+\cdots+b^{n-1}} \\
& <\frac{|x-a|}{b^{n-1}}<\frac{b^{n-1} \epsilon}{b^{n-1}}=\epsilon
\end{aligned}
$$

Thus $\lim _{x \rightarrow a} x^{1 / n}=a^{1 / n}$, and $x^{1 / n}$ is continuous at $x=a$.
8. By Exercise 5, x^{m} is continuous everywhere. By Exercise $7, x^{1 / n}$ is continuous at each $a>0$. Thus for $a>0$ we have

$$
\begin{aligned}
\lim _{x \rightarrow a} x^{m / n}=\lim _{x \rightarrow a}\left(x^{1 / n}\right)^{m} & =\left(\lim _{x \rightarrow a} x^{1 / n}\right)^{m} \\
& =\left(a^{1 / n}\right)^{m}=a^{m / n}
\end{aligned}
$$

and $x^{m / n}$ is continuous at each positive number.
9. If m and n are integers and n is odd, then
$(-x)^{m / n}=c x^{m / n}$, where $c=(-1)^{m / n}$ is either -1 or 1 depending on the parity of m. Since $x^{m / n}$ is continuous at each positive number a, so is $c x^{m / n}$. Thus $(-x)^{m / n}$ is continuous at each positive number, and $x^{m / n}$ is continuous at each negative number.
If $r=m / n>0$, then $\lim _{x \rightarrow 0+} x^{r}=0$ by Exercise
3. Hence $\lim _{x \rightarrow 0-} x^{r}=(-1)^{r} \lim _{x \rightarrow 0+} x^{r}=0$, also.

Therefore $\lim _{x \rightarrow 0} x^{r}=0$, and x^{r} is continuous at $x=0$.
10. Let $\epsilon>0$ be given. Let $\delta=\epsilon$. If a is any real number then

$$
||x|-|a|| \leq|x-a|<\epsilon \quad \text { if } \quad|x-a|<\delta
$$

Thus $\lim _{x \rightarrow a}|x|=|a|$, and the absolute value function is continuous at every real number.
11. By the definition of $\sin , P_{t}=(\cos t, \sin t)$, and $P_{a}=(\cos a, \sin a)$ are two points on the unit circle $x^{2}+y^{2}=1$. Therefore

$$
\begin{aligned}
|t-a| & =\text { length of the arc from } P_{t} \text { to } P_{a} \\
& >\text { length of the chord from } P_{t} \text { to } P_{a} \\
& =\sqrt{(\cos t-\cos a)^{2}+(\sin t-\sin a)^{2}} .
\end{aligned}
$$

If $\epsilon>0$ is given, and $|t-a|<\delta=\epsilon$, then the above inequality implies that

$$
\begin{aligned}
|\cos t-\cos a| & \leq|t-a|<\epsilon, \\
|\sin t-\sin a| & \leq|t-a|<\epsilon .
\end{aligned}
$$

Thus sin is continuous everywhere.
12. The proof that cos is continuous everywhere is almost identical to that for \sin in Exercise 11.
13. Let $a>0$ and $\epsilon>0$. Let $\delta=\min \left\{\frac{a}{2}, \frac{\epsilon a}{2}\right\}$. If $|x-a|<\delta$, then $x>\frac{a}{2}$, so $\frac{1}{t}<\frac{2}{a}$ whenever t is between a and x. Thus

$$
\begin{aligned}
& |\ln x-\ln a| \\
& =\text { area under } y=\frac{1}{t} \text { between } t=a \text { and } t=x \\
& <\frac{2}{a}|x-a|<\frac{2}{a} \frac{\epsilon a}{2}=\epsilon
\end{aligned}
$$

Thus $\lim _{x \rightarrow a} \ln x=\ln a$, and \ln is continuous at each point a in its domain $(0, \infty)$.
14. Let a be any real number, and let $\epsilon>0$ be given. Assume (making ϵ smaller if necessary) that $\epsilon<e^{a}$. Since

$$
\ln \left(1-\frac{\epsilon}{e^{a}}\right)+\ln \left(1+\frac{\epsilon}{e^{a}}\right)=\ln \left(1-\frac{\epsilon^{2}}{e^{2 a}}\right)<0
$$

we have $\ln \left(1+\frac{\epsilon}{e^{a}}\right)<-\ln \left(1-\frac{\epsilon}{e^{a}}\right)$.
Let $\delta=\ln \left(1+\frac{\epsilon}{e^{a}}\right)$. If $|x-a|<\delta$, then

$$
\begin{aligned}
& \ln \left(1-\frac{\epsilon}{e^{a}}\right)<x-a<\ln \left(1+\frac{\epsilon}{e^{a}}\right) \\
& 1-\frac{\epsilon}{e^{a}}<e^{x-a}<1+\frac{\epsilon}{e^{a}} \\
& \left|e^{x-a}-1\right|<\frac{\epsilon}{e^{a}} \\
& \left|e^{x}-e^{a}\right|=e^{a}\left|e^{x-a}-1\right|<\epsilon .
\end{aligned}
$$

Thus $\lim _{x \rightarrow a} e^{x}=e^{a}$ and e^{x} is continuous at every point a in its domain.
15. Suppose $a \leq x_{n} \leq b$ for each n, and $\lim x_{n}=L$. Then $a \leq L \leq b$ by Theorem 3. Let $\epsilon>0$ be given. Since f is continuous on $[a, b]$, there exists $\delta>0$ such that if $a \leq x \leq b$ and $|x-L|<\delta$ then $|f(x)-f(L)|<\epsilon$. Since $\lim x_{n}=L$, there exists an integer N such that if $n \geq N$ then $\left|x_{n}-L\right|<\delta$. Hence $\left|f\left(x_{n}\right)-f(L)\right|<\epsilon$ for such n. Therefore $\lim \left(f\left(x_{n}\right)=f(L)\right.$.
16. Let $g(t)=\frac{t}{1+|t|}$. For $t \neq 0$ we have $g^{\prime}(t)=\frac{1+|t|-t \operatorname{sgn} t}{(1+|t|)^{2}}=\frac{1+|t|-|t|}{(1+|t|)^{2}}=\frac{1}{(1+|t|)^{2}}>0$.

If $t=0, g$ is also differentiable, and has derivative 1 :

$$
g^{\prime}(0)=\lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h}=\lim _{h \rightarrow 0} \frac{1}{1+|h|}=1
$$

Thus g is continuous and increasing on \mathbb{R}.
If f is continuous on $[a, b]$, then

$$
h(x)=g(f(x))=\frac{f(x)}{1+|f(x)|}
$$

is also continuous there, being the composition of continuous functions. Also, $h(x)$ is bounded on $[a, b]$, since

$$
|g(f(x))| \leq \frac{|f(x)|}{1+|f(x)|} \leq 1
$$

By assumption in this problem, $h(x)$ must assume maximum and minimum values; there exist c and d in $[a, b]$ such that

$$
g(f(c)) \leq g(f(x)) \leq g(f(d))
$$

for all x in $[a, b]$. Since g is increasing, so is its inverse g^{-1}. Therefore

$$
f(c) \leq f(x) \leq f(d)
$$

for all x in $[a, b]$, and f is bounded on that interval.

Appendix IV. The Riemann Integral (page A-30)

1. $f(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { if } 1<x \leq 2\end{cases}$

Let $0<\epsilon<1$. Let $P=\left\{0,1-\frac{\epsilon}{3}, 1+\frac{\epsilon}{3}, 2\right\}$. Then

$$
\begin{aligned}
& L(f, P)=1\left(1-\frac{\epsilon}{3}\right)+0+0=1-\frac{\epsilon}{3} \\
& U(f, P)=1\left(1-\frac{\epsilon}{3}\right)+1\left(\frac{2 \epsilon}{3}\right)+0=1+\frac{\epsilon}{3}
\end{aligned}
$$

Since $U(f, P)-L(f, P)<\epsilon, f$ is integrable on [0, 2]. Since $L(f, P)<1<U(f, P)$ for every ϵ, therefore $\int_{0}^{2} f(x) d x=1$.
2. $f(x)= \begin{cases}1 & \text { if } x=1 / n \quad(n=1,2,3, \ldots) \\ 0 & \text { otherwise }\end{cases}$

If P is any partition of $[0,1]$ then $L(f, P)=0$. Let $0<\epsilon \leq 2$. Let N be an integer such that $N+1>\frac{2}{\epsilon} \geq N$. A partition P of $[0,1]$ can be constructed so that the first two points of P are 0 and $\frac{\epsilon}{2}$, and such that each of the N points $\frac{1}{n}$ ($n=1,2,3, \ldots, n$) lies in a subinterval of P having length at most $\frac{\epsilon}{2 N}$. Since every number $\frac{1}{n}$ with n a positive integer lies either in $\left[0, \frac{\epsilon}{2}\right]$ or one of these other N subintervals of P, and since max $f(x)=1$ for these subintervals and max $f(x)=0$ for all other subintervals of P, therefore $U(f, P) \leq \frac{\epsilon}{2}+N \frac{\epsilon}{2 N}=\epsilon$. By Theorem $3, f$ is integrable on $[0,1]$. Evidently

$$
\int_{0}^{1} f(x) d x=\text { least upper bound } L(f, P)=0
$$

3. $f(x)= \begin{cases}1 / n & \text { if } x=m / n \text { in lowest terms } \\ 0 & \text { otherwise }\end{cases}$

Clearly $L(f, P)=0$ for every partition P of $[0,1]$. Let $\epsilon>0$ be given. To show that f is integrable we must exhibit a partition P for which $U(f, P)<\epsilon$. We can assume $\epsilon<1$. Choose a positive integer N such that $2 / N<\epsilon$. There are only finitely many integers n such that $1 \leq n \leq N$. For each such n, there are only finitely many integers m such that $0 \leq m / n \leq 1$. Therefore there are only finitely many points x in $[0,1]$ where $f(x)>\epsilon / 2$. Let P be a partition of $[0,1]$ such that all these points are contained in subintervals of the partition having total length less than $\epsilon / 2$. Since $f(x) \leq 1$ on these subintervals, and $f(x)<\epsilon / 2$ on all other subintervals P, therefore $U(f, P) \leq 1 \times(\epsilon / 2)+(\epsilon / 2) \times 1=\epsilon$, and f is integrable on $[0,1]$. Evidently $\int_{0}^{1} f(x) d x=0$, since all lower sums are 0 .
4. Suppose, to the contrary, that $I_{*}>I^{*}$. Let $\epsilon=\frac{I_{*}-I^{*}}{3}$, so $\epsilon>0$. By the definition of I_{*} and I^{*}, there exist partitions P_{1} and P_{2} of $[a, b]$, such that $L\left(f, P_{1}\right) \geq I_{*}-\epsilon$ and $U\left(f, P_{2}\right) \leq I^{*}+\epsilon$. By Theorem 2,
$L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)$, so

$$
3 \epsilon=I_{*}-I^{*} \leq L\left(f, P_{1}\right)+\epsilon-U\left(f, P_{2}\right)+\epsilon \leq 2 \epsilon
$$

Since $\epsilon>0$, it follows that $3 \leq 2$. This contradiction shows that we must have $I_{*} \leq I^{*}$.
5. Theorem 3 of Section 6.4: Proofs of parts (c)-(h).
c) Multiplying a function by a constant multiplies all its Riemann sums by the same constant. If the constant is positive, upper and lower sums remain upper and lower; if the constant is negative upper sums become lower and vice versa. Therefore

$$
\int_{a}^{b} A f(x) d x=A \int_{a}^{b} f(x) d x
$$

It therefore remains to be proved only that the integral of a sum of functions is the sum of the integrals. Suppose that

$$
\int_{a}^{b} f(x) d x=I, \quad \text { and } \quad \int_{a}^{b} g(x) d x=J
$$

If $\epsilon>0$, then there exist partitions P_{1} and P_{2} of [$a, b]$ such that

$$
\begin{gathered}
U\left(f, P_{1}\right)-\frac{\epsilon}{2} \leq I<L\left(f, P_{1}\right)+\frac{\epsilon}{2} \\
U\left(g, P_{2}\right)-\frac{\epsilon}{2} \leq J<L\left(g, P_{2}\right)+\frac{\epsilon}{2}
\end{gathered}
$$

Let P be the common refinement of P_{1} and P_{2}. Then the above inequalities hold with P replacing P_{1} and P_{2}. If $m_{1} \leq f(x) \leq M_{1}$ and $m_{2} \leq g(x) \leq M_{2}$ on any interval, then $m_{1}+m_{2} \leq f(x)+g(x) \leq M_{1}+M_{2}$ there. It follows that

$$
\begin{aligned}
& U(f+g, P) \leq U(f, P)+U(g, P), \\
& L(f, P)+L(g, P) \leq L(f+g, P) .
\end{aligned}
$$

Therefore

$$
U(f+g, P)-\epsilon \leq I+J \leq L(f+g, P)+\epsilon
$$

Hence $\int_{a}^{b}(f(x)+g(x)) d x=I+J$.
d) Assume $a<b<c$; the other cases are similar. Let $\epsilon>0$. If

$$
\int_{a}^{b} f(x) d x=I, \quad \text { and } \quad \int_{b}^{c} f(x) d x=J
$$

then there exist partitions P_{1} of $[a, b]$, and P_{2} of [b, c] such that

$$
\begin{aligned}
& L\left(f, P_{1}\right) \leq I<L\left(f, P_{1}\right)+\frac{\epsilon}{2} \\
& L\left(f, P_{2}\right) \leq J<L\left(f, P_{2}\right)+\frac{\epsilon}{2}
\end{aligned}
$$

(with similar inequalities for upper sums). Let P be the partition of $[a, c]$ formed by combining all the subdivision points of P_{1} and P_{2}. Then
$L(f, P)=L\left(f, P_{1}\right)+L\left(f, P_{2}\right) \leq I+J<L(f, P)+\epsilon$.
Similarly, $U(f, P)-\epsilon<I+J \leq U(f, P)$. Therefore

$$
\int_{a}^{c} f(x) d x=I+J
$$

e) Let

$$
\int_{a}^{b} f(x) d x=I, \quad \text { and } \quad \int_{a}^{b} g(x) d x=J
$$

where $f(x) \leq g(x)$ on $[a, b]$. We want to show that $I \leq J$. Suppose, to the contrary, that $I>J$. Then there would exist a partition P of $[a, b]$ for which
$I<L(f, P)+\frac{I-J}{2}, \quad$ and $\quad U(g, P)-\frac{I-J}{2}<J$.
Thus $L(f, P)>\frac{I+J}{2}>U(g, P) \geq L(g, P)$.
However, $f(x) \leq g(x)$ on $[a, b]$ implies that $L(f, P) \leq L(g, P)$ for any partition. Thus we have a contradiction, and so $I \leq J$.
f) Since $-|f(x)| \leq f(x) \leq|f(x)|$ for any x, we have by part (e), if $a \leq b$,

$$
-\int_{a}^{b}|f(x)| d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b}|f(x)| d x
$$

Therefore $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$.
g) By parts (b), (c) and (d),

$$
\begin{aligned}
\int_{-a}^{a} f(x) d x & =\int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x \\
& =\int_{0}^{a} f(-x) d x+\int_{0}^{a} f(x) d x \\
& =\int_{0}^{a}[f(-x)+f(x)] d x
\end{aligned}
$$

If f is odd, the last integral is 0 . If f is even, the last integral is $\int_{0}^{a} 2 f(x) d x$. Thus both (g) and (h) are proved.
6. Let $\epsilon>0$ be given. Let $\delta=\epsilon^{2} / 2$. Let $0 \leq x \leq 1$ and $0 \leq y \leq 1$. If $x<\epsilon^{2} / 4$ and $y<\epsilon^{2} / 4$ then $|\sqrt{x}-\sqrt{y}| \leq \sqrt{x}+\sqrt{y}<\epsilon$.
If $|x-y|<\delta$ and either $x \geq \epsilon^{2} / 4$ or $y \geq \epsilon^{2} / 4$ then

$$
|\sqrt{x}-\sqrt{y}|=\frac{|x-y|}{\sqrt{x}+\sqrt{y}}<\frac{2}{\epsilon} \times \frac{\epsilon^{2}}{2}=\epsilon .
$$

Thus $f(x)=\sqrt{x}$ is uniformly continuous on $[0,1]$.
7. Suppose f is uniformly continuous on $[a, b]$. Taking $\epsilon=1$ in the definition of uniform continuity, we can find a positive number δ such that $|f(x)-f(y)|<1$ whenever x and y are in $[a, b]$ and $|x-y|<\delta$. Let N be a positive integer such that $h=(b-a) / N$ satisfies $h<\delta$.
If $x_{k}=a+k h,(0 \leq k \leq N)$, then each of the subintervals of the partition $P=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ has length less than δ. Thus

$$
\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|<1 \quad \text { for } \quad 1 \leq k \leq N .
$$

By repeated applications of the triangle inequality,

$$
\left|f\left(x_{k-1}\right)-f(a)\right|=\left|f\left(x_{k-1}\right)-f\left(x_{0}\right)\right|<k-1
$$

If x is any point in $[a, b]$, then x belongs to one of the intervals $\left[x_{k-1}, x_{k}\right]$, so, by the triangle inequality again,
$|f(x)-f(a)| \leq\left|f(x)-f\left(x_{k-1}\right)\right|+\left|f\left(x_{k-1}\right)-f(a)\right|<k \leq N$.
Thus $|f(x)|<|f(a)|+N$, and f is bounded on $[a, b]$.
8. Suppose that $|f(x)| \leq K$ on $[a, b]$ (where $K>0$), and that f is integrable on $[a, b]$. Let $\epsilon>0$ be given, and let $\delta=\epsilon / K$. If x and y belong to $[a, b]$ and $|x-y|<\delta$, then

$$
\begin{aligned}
|F(x)-F(y)| & =\left|\int_{a}^{x} f(t) d t-\int_{a}^{y} f(t) d t\right| \\
& =\left|\int_{y}^{x} f(t) d t\right| \leq K|x-y|<K \frac{\epsilon}{K}=\epsilon
\end{aligned}
$$

(See Theorem 3(f) of Section 6.4.) Thus F is uniformly continuous on $[a, b]$.

