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SECTION 16.1 (PAGE 858)

CHAPTER 16. VECTOR CALCULUS

Section 16.1 Gradient, Divergence, and Curl

(page 858)
F=xi+yj
. d a9 a
divF=— () +—)+—0)=1+1=2
ax ay 0z
i J k
0 a 0
curlF=| — — — (=0
dx dy 0z
X y 0
F=yi+xj

. 0 a ad
divF=— )+ —x)+—0)=0+0=0
ox ay 0z

i j k
d a a
curlF=|— — —|=(0-Dk=0
x Jdy 0z
y X 0

F=yi+zj+xk

diVF—i( )+i()+i( )=0
_8xy ayz Bzx_

i j k

curlF = N =—i—j—Kk
ox dy 0z
y i x

F=yzi+xzj+xyk

. 0 0 d
divF= — (y2)+ — (x2) + — (xy) =0
dx ay 0z

i j k
curl F = i ﬂ i
ox dy 0z
yz. Xz Xy
=@ —x0i+-MNitz—2k=0
F=xi+xk

d d d
ivF = — — — =1
div i x) + R ) + 32 (x)

i j k

0 ad ad
curlF=|— — —|=—j

dy 0z

X 0 X

F = xy%i — y2%j + 227k
. 0 0 9
divF = — (xyz) + — (—yzz) +— (zxz)

ax ay 0z
=22 412
i j k
0 a 0
curlF = a 5 3_2
xy2 —yz® zx?

=2yzi — 2xzj — 2xyk
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F=f)i+gj+hk
WF = k3 9
divF = ™ fx)+ ayg(y) + azh(z)

=) +gM+h@

i j k
curlF = o032 =0
ax ay 0z

fx) g(») h()

F=f@i- f()j

. d 0
divF = = /() + 5(—f@) =0
i j Kk
r=| 2 2 2 it
e N T e A
f@ —-f@ 0

Since x = rcosf, and y = rsin6, we have r2=x%4 yz,

and so
ar by
— = — =cosf
0x r
0
—r=2=sin9
ay r
. 0y —Xy cosf sinf
—sinf = —= = =
0x ox r r3 r
J . ay 1 2
—s8inf = —= = — — —
ay ay r r r3
_x2_60520
Ty
d 0 x 1 x2
—cosf = ——=—— —
ox axr r r3
_yz_sinze
T
dx  —xy cos 6 sin 6
—cosl=——= — = —— ——.
ay r r3 r

(The last two derivatives are not needed for this exercise,

but will be useful for the next two exercises.) For

F = ri 4 sin6j,
we have
. 9 9 Zg
divF = @ + —sinf = cos 6 + cos
ox  dy
i j k
0 0 0
curlF=|— — —
dx dy 0z
r sind 0

in@ 0
_ (_w _sm@)k_
r
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F =r = cos i + sinfj

divF — sin? 9 n cos2 0 1 1
ooy r T /x2—|—y2
i j k
0 0 0
curlF = | — — —
8 dy 0z
cos sinf 0
cos 6 sinf _ cos 6 sinf
k=0
’
F= é:—sin@i—i—cos@j
divF — cos @ sinf _ cos 6 sin 6 _
r
i j k
0 0 0
curlF=| — — —
ox ay ad
—sinf cosf O

sin“ 6 0 1 1
(sm +cos )k:—kzik
r r r /x2 + y2
We use the Maclaurin expansion of F, as presented in the
proof of Theorem 1:

F=Fo+Fx+Fy+Fzz+---,

where
Fo =F(0,0,0)
0 3F1 0F,, 0F3
Fi = —F(x,y,2) +—J+—k
ax 000 \dx = dx 9x /0,00

0 oF oF, oF;
F2 = —F(x,y,2) = (—li 2j + k)
dy (0,0,0) ay dy ay (0,0,0)

0 oF F F
F3 = —F(x,,2) ( Liv 25+ —3k>
0z (0,0,0) 0z 0z 9z /10,00

and where - - -
X, y, and z. A
On the top of the box By ., we have z = c and N = k.

On the bottom of the box, we have z = —c and N= k.
On both surfaces dS = dxdy. Thus

(L)oo
top bottom
a b
=/ dx/ dy(cF3.k—cF3.(—k)) +
—a —b

0
= 8abc—F3(x,y,2)
0z

represents terms of degree 2 and higher in

= 8abcF3; ek +--- +,

(0,0,0)

where - - - represents terms of degree 4 and higher in a,
b, and c.
Similar formulas obtain for the two other pairs of faces,

and the three formulas combine into

ﬂ F e NdS = 8abcdivF(0,0,0) + - --.
Bab,c
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It follows that

li FeNdS =divF .
a,b,(l‘r—n>0+ Sabe ﬂabl e NdS =divF(0, 0, 0)

13. This proof just mimics that of Theorem 1. F can be ex-
panded in Maclaurin series

F=Fo+Fx+Fy+--,

where
Fo =F(0,0)
0 oF), 0dF,
Fi=—F(x,y) = ( i+ —J>
0x (0,0 ax 0x (0,0)
a oF,, 0F
F, = —F(,y) = (— i+ —J)
dy 0,0 dy 3y /o0
and where - - - represents terms of degree 2 and higher in
x and y.

On the curve G of radius € centred at (0, 0), we have

- 1
N = —(xi+ yj). Therefore,
€
o 1 . . )
FeN= —(Foolx+F()on+F101x
€
+F ojxy+F2.ixy+onjy2+---)

where - - - represents terms of degree 3 or higher in x and

y. Since

% xds:f yds:?g xyds =0
C. C. Ce
2
fxzds:'(ﬁ yzds:/ 2cos’fedd = e,
C. C. 0

we have
1 S 1 nél
—d FeNds=—""(FleitFroj)+-
we? Je, me? €
=divF(0,0) +---
where - - - represents terms of degree 1 or higher in e.

Therefore, taking the limit as € — 0 we obtain

1
lim —zf FeNds = divF(0, 0).
e—~>0 e
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We use the same Maclaurin expansion for F as in Exer-
cises 12 and 13. On G, we have

r =ccosfi+esinfj, (0=<6<2m)
dr = —esinfi+ e cos b
Fedr = (—esiHBF()oi—i—ecos@Fo o]

— &2 sin6 cosOF| e i + €2 cos? OF e

—ezsinZGoni—Fezsin@cos@Fz oj—|—~~~)ds,

where - - - represents terms of degree 3 or higher in €.
Since

2 2 2
/ sin9d9=/ cos@d@:/ sinf cosfdf =0
0 0 0

2 2
/ cos? 6 do = / sin®0df = 7,
0 0

we have

1
— Fedr=Fjej—Frei+ -,
mes Je

€

where - - - represents terms of degree at least 1 in €.
Hence

1
lim —2¢. Fedr=F ej—Frei
e~>0+ e~ J @,

0F, 0F

T oax ay
curlFek = curlF e N.

Section 16.2 Some Identities Involving Grad,
Div, and Curl (page 864)

Theorem 3(a):

] a a
Vgy) = 3—(¢1ﬁ) + —(@Y) + — (V)
X ay 9z
= (¢%+%¢>1++(¢%+%¢/>k
ox  Ox 0z

=¢Vy + ¢y V.
Theorem 3(b):

d ad d
Ve (¢F) = 8—(¢Fl) + —(@F2)+ —-(@F3)
X ay 0z
¢ 9F ¢ F;

=——FN+¢p—+---+—F3+0p—+---
ax ! ¢3x 7 > ¢BZ

=VpeF+¢VeF.
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Theorem 3(d):

d
Ve xG)= a(F2G3—F3G2)+---
8F2 8G3 8F3 862

= —Gi+Fh— — ——Gy— F3—— +---

ax ox ox ax
=(VxF)eG—Fe(VxG).
Theorem 3(f). The first component of V(F e G) is

dF] G, J0F, G, O0F3 0G3
— G +Fh—+—G+h—+——G3+F—.
ox dx ox dax ox dx

We calculate the first components of the four terms on
the right side of the identity to be proved.
The first component of F x (V x G) is

G,  0G aG1 0G3
hrbl——— |- K| ———.
ox dy 0z ax

The first component of G x (V x F) is

F, JdF] dF] dF3
G| ———— |-G |\——-——).
ox ay 9z ax

The first component of (F e V)G is

When we add these four first components, eight of the
fourteen terms cancel out and the six remaining terms
are the six terms of the first component of V(F e G),

as calculated above. Similar calculations show that the
second and third components of both sides of the identity
agree. Thus

V(FeG) =Fx(VXG)+Gx(VxF)+(FeV)G+(GeV)F.

Theorem 3(h). By equality of mixed partials,

i j k
0 0 a
VxVé¢=|09x dy 09z
ap 0d¢p 0¢
X y 0z
] a9
= __¢___¢ i+-.-=0.
dy dz 9z dy

6. Theorem 3(i). We examine the first components of the

terms on both sides of the identity

V x (V xF) = V(V e F) — V°F.
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The first component of V x (V x F) is

9 (0F, OF 9 (0FT 0F3
ady \ 9x ay dz \ 9z ax

_0*F, 0°F1 0*F | 0°F3
T dydx dy? 972 dz0x
The first component of V(V e F) is
9 3’F  °F ’F
—VeF= ! 2 07Fs .
dx ax2  9xdy  dx0z
The first component of —V?2F is
LR PR R

—V?F| =

dx2 dy? 072

Evidently the first components of both sides of the given
identity agree. By symmetry, so do the other compo-
nents.

If the field lines of F(x, y, z) are parallel straight lines, in
the direction of the constant nonzero vector a say, then

F(x,y.2) =¢(x.y.2)a

for some scalar field ¢, which we assume to be smooth.
By Theorem 3(b) and (c) we have

divF =div (¢a) = Vo ea
curl F = curl (¢a) = V¢ x a.

Since V¢ is an arbitrary gradient, divF can have any
value, but curlF is perpendicular to a, and thereofore to
F.

If r=xi+ yj+ zk and r = |r|, then

r
Vr = —.
r

Ver=3, Vxr=0,

If c is a constant vector, then its divergence and curl are
both zero. By Theorem 3(d), (e), and (f) we have

Ve(exr)=(Vxc)er—ce(Vxr)=0
Vx(exr)=(Ver)c+(reV)c— (Vec)r—(ceV)r
=3¢+0—-0—c=2c

V(cer)=cx (VXr)+rx (Vxe)+(ceV)r+ (reV)e
=0+0+c+0=c.
Ve (f(r)r) - (Vf(r)) er+ f(r)(Ver)
= f) == +3f ()
=rf'(r) +3f(r).

10.

11.

12.

13.
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If f(r)r is solenoidal then V e (f(r)r) = 0, so that
u = f(r) satisfies

In|u| ==3In|r| +1n|C|

u=Cr3.

Thus f(r) = Cr3, for some constant C.

Given that divF = 0 and curl F = 0, Theorem 3(i)
implies that V2F = 0 too. Hence the components of F
are harmonic functions.

If F = V¢, then

Vi) =VeVp=VeF=0,

so ¢ is also harmonic.

By Theorem 3(e) and 3(f),

VXEFEXxr)=NVer)F+(reV)F— (VeF)r— (FeV)r
VFer)=Fx (Vxr)4+rx (VxF)
+ (FeV)r+ (re V)F.

Ifr=xi+ yj+zKk, then Ver =3 and V x r = 0. Also,

ar or ar
FeV)r=F—+F,—+F;— =F.
ox dy a9z

Combining all these results, we obtain

VX Fxr)—V(Fer)=3F—-2(FeV)r
—(VeF)r—rx (VxF)
=F—-NVeF)r—rx (VxF).

In particular, if Ve F =0 and V x F = 0, then

VxFEFxr)—V({Fer)=F.

If V2 =0 and V¢ = 0, then

Ve (@VYy —yVe)
=VpeVy + VY — Vi eV — Yy V2 =0,

so ¢V — Y V¢ is solenoidal.
By Theorem 3(c) and (h),

V X (¢pV) = V¢ x Vi + ¢V x Vi = Ve x VI
—V x (YV) = —Vi x Vo — ¥V x Vop = Vo x V).
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By Theorem 3(b), (d), and (h), we have

Ve (f(vg x Vh))
—Vfe(VgxVh)+ fVe(VgxVh)

:Vfo(VgxVh)—{—f((Vng)th—Vgo(VxVh))

=V fe(VgxVh) +0—0=Vfe(Vgx Vh).

fF=Vgpand G=Vy,then VxF=0and VxG =0
by Theorem 3(h). Therefore, by Theorem 3(d) we have

Ve FxG) =(VxF)eG+Fe(VxG)=0.
Thus F x G is solenoidal. By Exercise 13,
V x (¢Vy) = V¢ x Vi =F x G,

so ¢V is a vector potential for F x G. (So is —yV¢.)
If Vx G =F = —yi+xj, then

9Gs 3Gy _
By ez Y
9G1  9G3
9z ax
3Gy 3G,
x oy

As in Example 1, we try to find a solution with G, = 0.
Then

32
G3=—/ydy=—7+M(x,z)-

2

Again we try M(x,z) = 0,s0 G3 = _y?. Thus
G

23 _0and

ox

G :/xdzzxz+N(x,y).

G
Since 8—1 = 0 we may take N(x, y) =0.
y

G =xzi — 3 y2k is a vector potential for F. (Of course,
this answer is not unique.)
If F = xe?i + ye*j — >k, then

divF = % + % — 2% = 0,

so F is solenoidal.
If F=V x G, then

G G
3Gy 3Gy _ o

ay 0z
G G

[ 3 _ yezz
0z ax
G,  3G1 5,
ox ay '
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Look for a solution with G, = 0. We have
Gz = /xeZZ dy = xye2Z + M(x, z).

Try M(x,z) =0. Then G3 = xyezz, and

0G 0G
21 ye¥ + 8 2yet.
9z 0x
Thus
G| = /Zye2Z dz = ye* + N(x, y).
Since
_ 2z__aG1 _ ZZ_Q
dy dy’

we can take N(x,y) =0.
Thus G = ye*i + xye*Kk is a vector potential for F.

For (x, y,z) in D let v = xi+ yj+ zk. The line segment
r(t) =tv, (0 <t < 1), liesin D, so divF = 0 on the
path. We have

1
G(x,y,2) = F d
(x,y,2) /(; t (r(t)) x vdt

1
=f (50 (0. £0)) x vdi
0

where £ = tx, n =ty, ¢ = tz. The first component of
curl G is

(curl G);

1
=/0 t(curl(va))ldt
1
:/ Z(i(FXV)3—i(FXV)2) dt
0 ay 9z

L 79 9
=/ I(—(F1y—F2x)——(F3x—F1z)> dt
0 ay 0z

1
d0F 0F d0F

:/ (zF1 42yl 2,02 2,008
0 an an ¢

oF
+tF + zzz—l) dt
¢

1
8F] 2 8F] 2 8F1
= 2F) 4+ 12x— + 12y— + t2z— | dr.
/o ( € an ¢
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To get the last line we used the fact that divF = 0 to
oF, 5, oF; .

2 2 9F o
replace —t“x — —t“x—— with t“*x ——. Continuing the
il a &

n
calculation, we have

1 d )
(curl G); =/0 E<I Fl(E,rl,é“))df

1

=?Fi(tx, 1y, 12)| = Fi(x, y,2).
0

Similarly, (curlG); = F; and (curl G); = F3. Thus
curl G = F, as required.

In the following we suppress output (which for some
calculations can be quite lengthy) except for the final
check on each inequality. You may wish to use semi-
colons instead of colons to see what the output actually
looks like.

> with (VectorCalculus) :

>
SetCoordinates (’cartesian’ [x,y,2z]):

> F t= VectorField
(cu(x,y,2z),v(xX,v,2),w(x,y,2z)>):

> G t= VectorField
(ca(x,y,2z),b(x,y,2),c(x,y,2)>):

(a) LHS := Del (phi(x,y,z) *psi(x,y,2z)):

RHS := phi(x,y,z)*Del(psi(x,y,2z))
+ psi(x,y,z)*Del(phi(x,y,z)):
simplify (LHS - RHS) ;

Oex

(b) LHS := Del (F*phi (x,y,2)) :
RHS := (Del(phi(x,y,z))).F +
phi(x,y,z)*(Del.F):
simplify (LHS - RHS) ;

0
(¢) LHS := Del &x (phi(x,y,z)*F):
RHS := RHS := (Del(phi(x,y,z))) &x

F + phi(x,y,z)*(Del &x F) :
simplify (LHS - RHS) ;

Oey

SECTION 16.3 (PAGE 868)

(d LHS :=Del . (F &x G) :
RHS := (Del &x F) . G - F . (Del &x
G) :
simplify (LHS - RHS);
0
() LHS := Del &x (F &x G):
RHS1 := (Del . G)*F:
RHS2 := G[1]*diff(F,x)
+G[2] *diff (F,y)+G[3]*diff (F, z) :
RHS3 := (Del . F)*G:
RHS4 := F[1]*diff (G, x)

+F[2]1*diff (G,y) +F[3]1*diff (G, z) :
RHS := RHS1 + RHS2 - RHS3 - RHS4:
simplify (LHS - RHS) ;

Oey
(f) LHS := Del(F . G):

RHS1 := F &x (Del &x G) :
RHS2 := G &x (Del &x F):

RHS3 := F[1]1*diff (G, x)
+F[2]*diff(G,y)+F[3]1*diff (G, z):
RHS4 := G[1l]*diff (F,x)

+G[2] *diff (F,y)+G[3]*diff (F, z) :
RHS := RHS1 + RHS2 + RHS3 + RHS4:
simplify (LHS - RHS);

Oey

All these zero outputs indicate that the inequalities
(a)—(f) of the theorem are valid.

Section 16.3 Green’s Theorem in the Plane
(page 868)

1. % (sinx + 3y dx + 2x — e ) dy
e

[3 2 J . 2]
=// —@x—e¢ ) — —(sinx +3y7) | dA
R O0x dy
://(2—6y)dA

R
:/ d9/ (2 — 6rsinf)rdr

0 0

b a
:na2—6/ sinOd@/ r2dr
0 0

= wa® —4a>.
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fé(xz — xy)dx + (xy — yH dy

=—(§+)E)x(areaofT)=—(é+l>><1=—

9 9
—//T [a(xy—yz) - 5()62 —xy)] dA

—/ (v +x)dA
T

% (x siny2 — yz) dx + (xzy cos y2 +3x)dy
¢

= // [ny cos y2 +3 — (2xycos y2 - 2y)] dA
T

=/ (3+2y)dA=3//dA+0=3x3=9.
T T

Let D be the region x4+ y2 <9,y > 0. Since C is the

y A
2

1,1

1,-1

Fig. 1633

clockwise boundary of D,

?g x2y dx — )cy2 dy
C

606
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5. By Example 1,

1
Area = —% xdy —ydx
2Je

1 2
= 3 / [a cos’ t3bsin®t cost
0

— bsin® t(—3a cos? ¢ sin t)] dt

3ab
= 240 sin ¢ cos? ¢ dt
2 Jo
_ 3ab [ sin’@n) - 3mab
2 f 4 o8

Let R, C, and F be as in the statement of Green’s The-
orem. As noted in the proof of Theorem 7, the unit
tangent T to € and the unit exterior normal N satisfy
N=Txk. Let

G = Fa(x, y)i — Fi(x, y)j.
Then FeT = G o N. Applying the 2-dimensional Diver-
gence Theorem to G, we obtain

/Fldx—l—dey:/Fo’i‘ds:/GoNds
(€] (]

/ divGdA
oF. dF
SR
as required
r = sinti 4+ sin 2¢j, O<t=<2m)
y 4
(G
R R>
X
Fig. 16.3.7

ye Py 0
Observe that € bounds two congruent regions, R;
and R, one counterclockw1se and the other clockwise.
For R;, N = k; for Ry, N = —k. Since R; and Ry
are mirror images of each other in the y-axis, and since
curl F is an even function of x, we have

// curlF.NdS:—// curl F e Nd5S.
R R
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Thus

fF.dr:(/f +// )curlF.NdS:O.
C Ri Ry
a) F=x?

F.dr:f xzdy=// 2xdA = 2AX.
C R

b) F = xyi

Fodr:% xydx:—//di:—Ai.
e R

c) F=y2i+3xyj
%Fodr:% yzdx+3xydy
c c

://(3y—2y)dA:A)7.
R

The circle G, of radius r and centre at ry has
parametrization

&~ | 3%

r =rg + r costi+ rsintj, 0 <t =<2m).
Note that dr/dt = costi+ sintj = N, the unit normal to

C, exterior to the disk D, of which G, is the boundary.
The average value of u(x, y) on G, is

2
U = —/ u(xop +rcost, yo+rsint)dt,
27 Jo

and so

di, 1 [ (au du )
= — —cost + —sint | dt
dy

dr 2w ox
1 ~
— Vu e Nds
27rr G,

since ds = rdt. By the (2-dimensional) divergence theo-
rem, and since u is harmonic,

du,
= VeVudxdy
dr ~ 2mr

27'[r // <3x2 ) dxdy =0.

Thus u, = lim,_ou, = u(xo, y0)-

Section 16.4 The Divergence Theorem
in 3-Space (page 873)

In this exercise, the sphere 4 bounds the ball B of radius
a centred at the origin.
If F=xi—2yj+4zk, then divF =1 —2+4 = 3. Thus

#FoNdS:/// 3dV = dna’.
8 B

SECTION 16.4 (PAGE 873)

If F = yeli + x2e%j + xyk, then divF = 0, and
ﬂF.NdS:/// 0dV =0.
E B

If F = (x2 + y?)i+ (2 — z))j + zk, then
divF =2x +2y + 1, and

- 4
ﬂ FoNdS:// 2x+2y+1)dV :/// 1dV = —ma
8 B B 3

If F = x3i+3yz%j + (3y%z + x2)k, then
divF = 3x2 + 3z% + 3y2, and

#gF.NdS=3// 4 y*+2Hav
2w
_3/ d@/ sm¢d¢/,odp

——7'(61 .

5

If F = x% 4 y%j + 2%k, then divF = 2(x + y + 2).
Therefore the flux of F out of any solid region R is

Flux = // divFdV
R

:2// (x+y+2dV =2G+7+2)V
R

where (x,y, z) is the centroid of R and V is the volume
of R.

If R is the ball (x —2)> + y?>+ (z —3)> <9, then ¥ =2,
$=0,7Z=3,and V = (4/3)3> = 367. The flux of F
out of R is 2(2+ 0+ 3)(36r) = 3607.

If F = x% 4 y%j + 2%k, then divF = 2(x + y + 2).
Therefore the flux of F out of any solid region R is

Flux = // divFdv
R

:2///(x—|—y+z)dV:2()E+)7+Z)V
R

where (x,y, z) is the centroid of R and V is the volume
of R.

If R is the ellipsoid x2 + y2 +4(z — 1)2 < 4, then ¥ = 0,
7=0,7z=1and V = (47/3)(2)(2)(1) = 167/3. The
flux of F out of R is 2(0 + 0 + 1)(167/3) = 327/3.
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If F = x%i + y%j + z°k, then divF = 2(x + y + z).
Therefore the flux of F out of any solid region R is

Flux = // divFdVv
R

:2// G4+y+2dV =2+ +2V
R

where (x, y, 7) is the centroid of R and V is the volume
of R.

If R is the tetrahedron with vertices (3, 0, 0), (0, 3, 0),
(0,0, 3), and (0,0, 0), then x =y =z =3/4, and

V =(01/6)3)3)(3) =9/2. The flux of F out of R is
2((3/4) + B/4) + (3/4))(9/2) = 81/4.

If F = x%i + y%j + 2%k, then divF = 2(x + y + 2).
Therefore the flux of F out of any solid region R is

Flux = // divFdv
R

=2// x+y+2)dV=2x+y+27)V
R

where (x, y, 7) is the centroid of R and V is the volume
of R.

If R is the cylinder X2+ y2 < 2y (or, equivalently,
2+ —-1)2<1),0<z<4,theni=0,75=1,
z=2,and V = (m1%)(4) = 4x. The flux of F out of R
is 204+ 14 2)(4r) = 24x.

If F = xi+ yj + zk, then divF = 3. If C is any solid
region having volume V, then

// divFdVv =3V.
c

The region C described in the statement of the problem
is the part of a solid cone with vertex at the origin that
lies inside a ball of radius R with centre at the origin.
The surface 4 of C consists of two parts, the conical
wall 41, and the region D on the spherical boundary

of theAball. At any point P on 4, the outward normal
field N is perpendicular to the line O P, that is, to F, so
FeN = 0. At any point P on D, N is parallel to F, in
fact N = F/|F| = F/R. Thus

#F.me:/f FoNdS—i—//FoNdS
8 /31 D
FeF R2
=0+// dS:—//dS:AR
p R R JJp

where A is the area of D. By the Divergence Theorem,
3V = AR, so V = AR/3.

The required surface integral,

1=//5V¢0NdS,
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can be calculated directly by the methods of Section 6.6.
We will do it here by using the Divergence Theorem
instead. & is one face of a tetrahedral domain D whose
other faces are in the coordinate planes, as shown in the
figure. Since ¢ = xy + z2, we have

V¢ = yi + xj + 22k, VeVp=Vip=2

abc abc
/// VeVpdV =2 x — = —,
D 6 3

the volume of the tetrahedron D being abc/6 cubic units.

Thus

x bottom
Fig. 16.4.10

The flux of V¢ out of D is the sum of its fluxes out of
the four faces of the tetrahedron.

On the bottom, N=-kand z = 0,s0 Vo e N = 0, and
the flux out of the bottom face is 0.

On the side, y = 0 and N = —j, so V¢ oN = —x. The
flux out of the side face is

A ac a azc
Vq,’)oNdS:—// xdxdz=——X=-=——.
//side side 2 3 6

(We used the fact that M,—¢ = area x x and x = a/3 for
that face.)

On the back face, x = 0 and N = —1i, so the flux out of
that face is

o be b b?
/f V¢>oNdS:—// ydydz = —2Xx2=_2¢€
back back 2 3 6

Therefore, by the Divergence Theorem

[ _Fe | abe
6 6 T3
A b 24 p?
so//Vd)oNdS:I:E—i—M.
S 3 6

F=(x+y)i+G3y+y —xd)j+ @+ Dk
divF =1+302+y) +1=2430x2+y?).
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Fig. 16.4.11

Let D be the conical domain, 4§ its conical surface, and
B its base disk, as shown in the figure. We have

2 a b(1—(r/a))
/f dideV:/ d@/ ra’r/ 2 +3rY)dz
D 0 0 0

a
_ 2nb/ r@+3r?) (1 — 5) dr
0 a

a 22 34
:2nb/ (2r+3r3—L—L> dr
0 a a

_ 2ma’b N 3ma*h
3 10

On B wehavez:O,N:—k,FoN:—l, SO
// FeNdS = —area of B = —wa?.
B

By the Divergence Theorem,

//FoNdS+//FoNdS:// divFdv,
8 B D

so the flux of F upward through the conical surface 4 is

// 2w a’b n 3ra*b 4 d?
=——+——+ma".
8 3 10

F=(+x2i+(y+y)j— Qx+z2k
divF =z + (1 +z) — 2z = 1. Thus

7'(613

// divFdV = volume of D = —,
D 6

where D is the region in the first octant bounded by the
sphere and the coordinate planes. The boundary of D
consists of the spherical part 4 and the four planar parts,
called the bottom, side, and back in the figure.

13.

com
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bottom

Fig. 16.4.12

On the side, y=0, N=—j, FeN =0, so

// FeNdS =0.
side

On the back,x:O,N:—i,FoN:—y, SO

R /2 a
// FoNdS:—/ d@/ rcosfrdr
back 0 0

/2
/ 03 03
X = ——.

= —sinf —
0 3 3

On the bottom, z = 0, N= -k, FeN= 2x, SO

. /2 a 2a3
// FoNdS=2/ d9/ rcos@rdr = —.
bottom 0 0 3

By the Divergence Theorem
- a® 2a° ndd
FeNdS+0— — 4+ — = —.
8 3 3 6
Hence the flux of F upward through 4§ is

3 3

A~ ma a
FeRNds= "% _ %~
//5 * 6 3

F=x+y)i+(y—x2)j+ @z —e"sinyk
divF=1+1+1=3.

Z
y

S

Z>

4

Fig. 16.4.13
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a) The flux of F out of D through 8 = 4 U 4, is

ﬂF.NdS:/f divFdVv
8 D

2 2a A 4a?—r?
:3/ d@/ rdr/ 2dz
0 a 0

2a
=127 rv4a? —rtdr

a
Let u = 4a® — r2
du = —2rdr

2

3a
= 671/ w2 du = 12/3nd°.
0

b) On &, N= 2 o 1 40dz. The flux of F

a
out of D through 4 is

2 32
// FoNdS:// Al S e sA LR P
8 s

1 a
2 \/§a
=—a? / do / dz = —437d°.
0 —3a

¢) The flux of F out of D through the spherical part 4
is

// F.NdS:#F.NdS—// FeNdsS
52 4 51

= 12v/37a’ + 4V/37a® = 16v/37d>.

14. Let D be the domain bounded by 4, the coordinate
planes, and the plane x = 1. If

F = 3xz% — xj — yk,

then divF = 3z2, so the total flux of F out of D is

ﬁ FoNdS:/// 3z2dV
bdry of D D

1 /2 1
=3/ dx/ d9/ r2cos? O rdr
0 0 0
3
3 T

1 =
X — X — = —.
4 4 16

The boundary of D consists of the cylindrical surface
4 and four planar surfaces, the side, bottom, back, and
front.

610
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bottom

Fig. 16.4.14

On the side,y:O,N:—j,FoN:x, SO

. 1 1 1
// FoNdS:/xdx/ dz = —.
side 0 0 2

On the bottom, z =0, N= —k, FeN = Y, SO

1 1
N 1
/:/ FoNdS:/ ydy/ dx = —.
bottom 0 0 2

On the back, x =0, N= —i, Fe N = 0, so

/f FeNdS = 0.
back

On the front, x =1, N:i, FoN:3z2, SO

R /2 1 3
// FoNdS:3/ d@/ rzcoszérdr:—ﬂ.
front 0 0 16

Hence,

37 1 1 ki

/f (Bxz%i—xj—yk)eNdS =
5

F:(x2—x—2y)i+(2y2+3y—z)j—(22—4z+xy)k
divF =2x —1+4y+3—-27+4=2x+4y —27+6.
The flux of F out of R through its surface 4§ is

# FoNdS:// Qx +4y —2z4+6)dV.
8 R

Now /// xdV = M;—_9 = Vx, where R has volume
R

V and centroid (x, yz). Similar formulas obtain for the
other variables, so the required flux is

ﬁ%FoNdSzZVi+4V)‘)—2VZ+6V.

F = xi+ yj+ zk implies that divF = 3. The total flux of
F out of D is

# FoNdS:B///dV:lZ,
bdry of D D
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since the volume of D is half that of a cube of side 2,
that is, 4 square units.

D has three triangular faces, three pentagonal faces, and
a hexagonal face. By symmetry, the flux of F out of each
triangular face is equal to that out of the triangular face
T in the plane z = 1. Since FeN = k ek = 1 on that
face, these fluxes are

1
// dxdy =areaof T = =.
T 2

Similarly, the flux of F out of each pentagonal face is
equal to the flux out of the pentagonal face P in the
plane z = —1, where F e N = —k o (—k) = 1; that

flux is
17
// dxdy=areaof P=4— - = —.
P 2 2
Thus the flux of F out of the remaining hexagonal face

H is
12-3 1+7 0
-3x|=z+=)=0.
2 2

(This can also be seen directly, since F radiates from
the origin, so is everywhere tangent to the plane of the
hexagonal face, the plane x + y +z = 0.)

0,—1,1)

Fig. 16.4.16

The part of the sphere 8: x> 4+ y? + (z — a)*> = 4a?
above z = 0 and the disk D: x4+ y? = 342 in the xy-
plane form the boundary of a region R in 3-space. The
outward normal from R on D is —k. If

F=0G24+y+2+i+ € +y)j+ G+ 1k,

then divF = 2x + 2y. By the Divergence Theorem,

//F.NdS+//F.(—k)dxdy=// divFdV =0
4 D R

because R is symmetric about x = 0 and y = 0. Thus
the flux of F outward across 4 is

/AF.NdS:// (3 +x)dxdy =37(3a’) = 9ma>.
D

18.

19.

20.

21.
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p=x>—y+7% G=L(—yli+x+ 7K.

F = V¢ + pcurl G.

Let R be the region of 3-space occupied by the sandpile.
Then R is bounded by the upper surface 4 of the sand-
pile and by the disk D: x?> 4+ y?> < 1 in the plane z = 0.
The outward (from R) normal on D is —k. The flux of
F out of R is given by

//FoNdS—i—// Fo(—k)dA:// divFdv.
8 D R

Now div curl G = 0 by Theorem 3(g). Also
div V¢ = div 2xi—2yj+2zk) = 2—2+2 = 2. Therefore

// diVFdV:// 24+ pux0)dV =2(57) =10m.
R R

In addition,

i j k
1G o002 3(x% + yHk
curlG = - ox 9y 92| x“+y9k,
_y3 x3 Z3

and Vp ek =2z =0 on D, so

2 1
3
//F.de:m/ d@/ Pdr = 2K
D 0 0 2

The flux of F out of 4§ is 107 + B w)/2.

# curlF e Nd5S = / / divcurl F = 0, by Theorem
4 D

3().

If r = xi + yj + zK, then divr = 3 and

1 A 1
—#r.NdS:—/// 3dV =V.
308 3JJ)p

We use Theorem 7(b), the proof of which is given in
Exercise 29. Taking ¢(x, y,z) = x2 4+ y2 + zz, we have

i#(xzﬂzﬂz)ﬁlds: i# oNdS
2V JIs 2V JIs
_ ! /// rad¢ dV
T2V Dg
1
=V///(xi+yj+zk)dv
r,

since //xdv =M;,—9g=Vx.
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Taking F = V¢ in the first identity in Theorem 7(a), we

have
# v¢des:—/// curl Vg dv =0,
8 D

since V x V¢ = 0 by Theorem 3(h).
div (¢F) = ¢divF + V¢ e F by Theorem 3(b). Thus

// q’)diVFdV—{—/f/ Vd)oFdV:// div (¢F)dV
D D D

=# pF e NdS
3

by the Divergence Theorem.

If F = V¢ in the previous exercise, then divF = V3¢

and
/f ¢v2¢dv+// |V¢>|2dV:ﬁ¢>V¢oNdS.
D D 8

If V20 =0in D and ¢ = 0 on 4, then

// IVé|>dV = 0.
D

Since ¢ is assumed to be smooth, V¢p = 0 throughout D,
and therefore ¢ is constant on each connected component
of D. Since ¢ = 0 on 4, these constants must all be 0,
and ¢ =0 on D.

If u and v are two solutions of the given Dirichlet prob-
lem, and ¢ = u — v, then

V¢ =Vu—-Vu=f—f=0onD
¢p=u—v=g—g=0on 4.

By the previous exercise, = 0 on D, so u = v on D.
That is, solutions of the Dirichlet problem are unique.

Re-examine the solution to ExerciseA24 above. If
V2¢ =0 in D and d¢p/on = V¢ ¢ N = 0 on 4, then we
can again conclude that

J[[ w1av =o

and V¢ = 0 throughout D. Thus ¢ is constant on the
connected components of D. (We can’t conclude the con-
stant is 0 because we don’t know the value of ¢ on 4.)

If u and v are solutions of the given Neumann problem,
then ¢ = u — v satisfies

V2% =Vu—-Vu=f—f=0o0nD
ap du v

on on  on £-¢ on <
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S0 ¢ is constant on any connected component of 4§, and u
and v can only differ by a constant on 4.

Apply the Divergence Theorem to F = V¢:

///Dv2¢dV:///Dv.v¢dv
=%v¢.1¢1w:%%d&

By Theorem 3(b),

div (VY — ¥ Vo)
=VoeVy + ¢V — Viy e Vo — V26
=¢VY — YV

Hence, by the Divergence Theorem,

// VY — YY) dV = // div (pVy — V) dV
D D

= ﬁg(«be —yV¢) e NdS

_ o _ 09
_#{‘(%n ¢8n>ds.

If F = ¢¢, where ¢ is an arbitrary, constant vector, then
divF = V¢ e ¢, and by the Divergence Theorem,

c.///Dv¢dV=//Ddidev
:ﬁ%FoNdS
=#g¢e.1¢1d$=coﬁg¢1ﬁd&

c.(///l;v¢dV—ﬁ€g¢NdS):0.

Since c is arbitrary, the vector in the large parentheses
must be the zero vector. Hence

/fAVd)dV:ﬁ&d)NdS.

Thus



30.

www. nohandesyar .

INSTRUCTOR’S SOLUTIONS MANUAL

Rds =1 // divFdv
vol(De) JT'8. vol(Dy) D.
1 i

= —vol(Dg) [/f . divF(Py) dV

+ /f (divF —div F(Po)) dv}

D.
| ) .

B // X (dwF — div F(Po)) dv

=divF(P) +

Thus

)ﬁ FeNdS — divF(P)

Vol(D€
<— divF — divF(Py)|dV
=i JIL (Po)
< max |divF — divF(Py)|

P in D,
— 0 as € > 0+ assuming divF is continuous.

# FeNdS = divF(P).
5(

lim
e—0+ vol(Dy¢)

Section 16.5 Stokes’s Theorem (page 878)

The triangle T lies in the plane x + y +z = 1. We use
the downward normal

. itj+k
N=——°"—
V3

on T, because of the given orientation of its boundary.
If F = xyi+ yzj + zxk, then

i j k
curlF = 9 09 = —yi—zj—xk.
ax dy 0z
Xy Yz X
Therefore

fxydx—l—yzdz—i—zxdz-f Fedr
c

// curlFoNdS_// y+z+x

=ﬁ//;d5=\/—§><(areaofT)

1 1 V3 1
zﬁx<§X\/§Xﬁ)=§.

com
SECTION 16.5 (PAGE 878)
z
1
C
1
y
X 1
Fig. 16.5.1

2. Let 8 be the part of the surface z = y? lying inside the
cylinder x2 4+ y2 = 4, and having upward normal N.
Then C is the oriented boundary of 8. Let D be the disk
x4+ y2 < 4, z = 0, that is, the projection of § onto the
xy-plane.

A

:

Fig. 16.5.2
If F = yi — xj + z%k, then
i j k
1F 0 0 0 2k
=15 a8y 8z | T ¢
y —x z2
dxd
Since dS = kx Ay on 4, we have
)

?gydx—xdyﬂzdz:f Fodr:// curl F e NdS
e e 8

3. Let C be the circle x> + y2 = a2, z = 0, oriented
counterclockwise as seen from the positive z-axis. Let D
be the disk bounded by €, with normal k. We have

F = 3yi — 2xzj + (x2 — yD)k

i k
IF ad 0 ad
cartl=1ox dy 9z

3y —2xz x?—y?
=2(x — y)i—2xj— 2z +3)k.

613
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Applying Stokes’s Theorem (twice) we calculate

// jﬁp.dr—// curl F e kdA
_ //DadA__sm

Fig. 16.5.3

The surface 8 with equation

Py 42e - 1) = 220,

with outward normal N, is that part of an ellipsoid of
revolution about the z-axis, centred at (0, 0, 1), and lying
above the xy-plane. The boundary of 4§ is the circle C:
x2 + y2 = 4, z = 0, oriented counterclockwise as seen
from the positive z-axis. C is also the oriented boundary
of the disk x2 + y2 <4, z =0, with normal N =k.

If F = (xz — y3cos2)i + x3ej + xyze* ’+Zk, then, on
z =0, we have

d d
curlFek = [ —x3e? — —(xz — y3 cos 7)
dax dy

z=0

=32+ y?).

= (3xzeZ +3y%cos z)
z=0

Thus

// curlF.NdS:yg Fodr:// curlF e kdA
5 C D
2 2
=/ d@/ 3rtrdr = 247,
0 0

The circle € of intersection of x% 4+ y2 + z2 = a2 and

x + y +z = 0 is the boundary of a circular disk of radius
a in the plane x +y +z =0.

If F = yi+ zj + xk, then

curlF = =—({+j+k.

‘<g|®—
2| e
S

614
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If € is oriented so that D has normal

. Lk
fo _ititk
V3
then curl F e N = +/3 on D, so

%ydx—i—zdy—i—xdz:% Fodr:// curlFe NdS
C C D

zﬁ//D dS =~/3ma?,

since D has area wa?.

The curve C:

r = costi + sintj + sin 2¢k, 0<t<2m,

lies on the surface z = 2xy, since sin2¢ = 2costsint. It
also lies on the cylinder x24y2 = 1, so it is the boundary
of that part of z = 2xy lying inside that cylinder. Since
C is oriented counterclockwise as seen from high on the
z-axis, 4 should be oriented with upward normal,

—2yi—2xj+k

VI+4G2+y?)

N:

and has area element

dS =/1+4(x2+y2)dxdy.

If F = (e — y3)i+ (¢¥ + x7)j + €%k, then
i j k
IF 0 0 d 302 2k
cur - Ox ay BZ - (X +y) .
e —y3 e 4x3 et

If D is the disk x> + y2 < 1 in the xy-plane, then

fF.dr:// curlF-NdS:// 3(x2 + yY) dx dy
C 8 D
2 1
3
=3/ d@/ P2rdr=22.
0 0 2

The part of the paraboloid z = 9 — xA2 — y? lying above
the xy-plane having upward normal N has boundary the
circle @: x2 + y2 = 9, oriented counterclockwise as seen
from above. C is also the oriented boundary of the plane
disk x2 4+ y2 < 9,z = 0, oriented with normal field
N=k.

If F = —yi+ x2j + zk, then
i

curlF = P

-y

— | =(@x+ Dk
Z

XN%| Qe
QJ
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By Stokes’s Theorem, the circulation of F around € is

%Fodr:// (curlFek)dA
(6] D

:// x4+ 1)dA =0+ 7(3%) = 97.
D

The closed curve
r=(1+4cost)i+ (1+sint)j+ (1 —cost —sint)k,

(0 <t < 2m), lies in the plane x + y + z = 3 and is
oriented counterclockwise as seen from above. Therefore
it is the boundary of a region 4 in that plane with normal
field N = (i + j + K)/+/3. The projection of § onto the
xy-plane is the circular disk D of radius 1 with centre at

a, 1.
If F = yei+ (x + e)j + z%e%k, then

= 2xk.

j k
IF 0 d
curtl = dy 9z

i
a
0x

ye£ xZ4et ZZ4et

By Stokes’s Theorem,

f Fodr:// curlF e NdS
e 5

:/A%dS://D%(«/?)dxdy

=2xA =2m,

where x = 1 is the x-coordinate of the centre of D, and
A =7n1%2 =7 is the area of D.

If 81 and 4, are two surfaces joining C; to C, each hav-
ing upward normal, then the closed surface 43 consisting
of 4 and —4&, (that is, §, with downward normal) bound
a region R in 3-space. Then

// FoNdS—// FeNdS
51 52
=// F.Nds+// FeNdsS
/31 —’32
:ﬂ FoNdS:j:// divFdV =0,
3, R

provided that divF = 0 identically. Since

F = (ax? — )i+ (xy +y* + 2)j + By*(z + DK,

10.

11.

SECTION 16.5 (PAGE 878)

we have divF = 2ax +x +3y2+8y2 =0 if o = —1/2
and B = —3. In this case we can evaluate ﬂ5 FeNdS for
any such surface 4 by evaluating the special case where
S is the half-disk H: x>+ y> < 1,z =0, y > 0, with
upward normal N =Kk. We have

//FoNdS:—3// y2dxdy
8 H

b4 1
3
:—3/ sin20d0/ Pdr=—22,
0 0 8

The curve C: (x — )2 4+4y2 =16, 2x + y+z = 3,
oriented counterclockwise as seen from above, bounds an
elliptic disk 4 on the plane 2x + y +z = 3. 4§ has normal
N = Qi+ j + k)/+/6. Since its projection onto the xy-
plane is an elliptic disk with centre at (1,0, 0) and area
7(4)(2) = 87, therefore § has area 84/67 and centroid
(1,0, 1). If

F = (22 + y? +sinx?)i+ Qxy 4+ 2)j + (xz + 2y2)k,

then
i j K
IF d d d
curtl = 0x dy 9z

22 4+ y2 4 sinx?
= 2z — Di+zj.

2xy+z xz+42yz

By Stokes’s Theorem,

f Fodr:// curl Fe NdS
e 3

1
= — 22z — 1 as
%/A((Z )+2)

= 52\/_62(8%71) = 24

As was shown in Exercise 13 of Section 7.2,
VX (@Vy) =—-V Xy x¢p) =V x V.

Thus, by Stokes’s Theorem,

%@ww:/fgvuww.ﬁms
:/A(V¢xV¢)oNdS

_jﬁ wwsz _V x (yV¢) e NdS
e ¥
=//5(v¢wi).Nds.

V¢ x Vi is solenoidal, with potential Vs, or —y V.
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12. We are given that C bounds a region R in a plane P
with unit normal N = ai + bj + ck. Therefore,
a4+t =1
If F= (bz — cy)i+ (cx —az)j + (ay — bx)K, then

i j k
curlF = i i i
dx ay 0z

bz—cy cx—az ay—bx
= 2ai + 2bj + 2ck.

Hence curl F ¢ N = 2(a2 + b2 + ¢2) = 2. We have

1
— ?%(bz —cy)dx + (cx —az)dy + (ay — bx) dz

2
| 1 )
:—f Fodr:—// curlFe NdS
2 Je 2 JJr

1
:—// 2dS = area of R.
2 JJr

13. The circle G of radius € centred at P is the oriented
boundary of the disk 4¢ of area me? having constant nor-
mal field N. By Stokes’s Theorem,

f Fodr:// curlF e NdS
C. 3.
:// curl F(P) e NdS
56

+ // (curlF - curlF(P)) oNds
4.
= nelcurl F(P) o N

+ // (curlF — curlF(P)) e Nds.
kS

Since F is assumed smooth, its curl is continuous at P.
Therefore

1
me?

< é //5 ’(curlF— curlF(P)) oN‘ ds

max |curl F(Q) — curl F(P)|

Q on ¢

— 0 as € —» 0+.

jﬁ F e dr — curl F(P) .N‘
Ce

IA

Thus lim Fedr = curl F(P) o N.

e—0+ J@
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Section 16.6 Some Physical Applications of
Vector Calculus (page 885)

a) If we measure depth in the liquid by —z, so that the z-
axis is vertical and z = O at the surface, then the pressure
at depth —z is p = —3gz, where § is the density of the
liquid. Thus

Vp = —égk = dg,

where g = —gk is the constant downward vector acceler-
ation of gravity.

The force of the liquid on surface element dS of the
solid with outward (from the solid) normal N is

dB = —pNdS = —(—8gz)NdS = 6gzNds.

Thus, the total force of the liquid on the solid (the buoy-
ant force) is

B= ﬂ 8gzNdS
3

=/// V(6gz)dV (see Theorem 7)
R

:_///Ragdvz—Mg,

where M = 8dV is the mass of the liquid

R
which would occupy the same space as the solid. Thus
B = —F, where F = Mg is the weight of the liquid
displaced by the solid.

Fig. 16.6.1

b) The above argument extends to the case where the
solid is only partly submerged. Let R* be the part
of the region occupied by the solid that is below
the surface of the liquid. Let 8* = §; U 4, be the
boundary of R*, with §; C 4§ and 43 in the plane of
the surface of the liquid. Since p = —8gz = 0 on

8>, we have
/ / 5gzNdS = 0.
4,
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Therefore the buoyant force on the solid is

B=// 5gzNdS
8
:// ngNdS—{—// ngNdS
/S] ’32
=# 5gzNdS
5*
N TE—

where M* = // 8dV is the mass of the liquid
R*

which would occupy R*. Again we conclude that
the buoyant force is the negative of the weight of the
liquid displaced.

81

Fig. 16.6.1

The first component of F(G e N) is (F1G) o N. Applying
the Divergence Theorem and Theorem 3(b), we obtain

#(FlG)oNdS= // div (F,G)dV
5 D

:///L)(VFI.G+F1V.G)dS.

But VF] e G is the first component of (G e V)F, and
F1V ¢ G is the first component of FdivG. Similar results
obtain for the other components, so

ﬁF(GoN)dS:/// (FdivG+(G.V)F)dV.
P D

Suppose the closed surface § bounds a region R in which
charge is distributed with density p. Since the electric
field E due to the charge satisfies divE = kp, the to-

tal flux of E out of R through 4 is, by the Divergence
Theorem,

%EoNdS://RdiVEdV=k///R,odV=kQ,

SECTION 16.6 (PAGE 885)

where Q = m g pdV is the total charge in R.

If f is continuous and vanishes outside a bounded
region (say the ball of radius R centred at r), then
|f(&,n,0)| < K, and, if (p, ¢, 6) denote spherical co-
ordinates centred at r, then

2 T R 2
/// SO 4y, < K/ d@/ sind)dd)/ P ap
R? Ir —s| 0 0 0o P

=27KR? a constant.

This derivation is similar to that of the continuity equa-
tion for fluid motion given in the text. If & is an (imag-
inary) surface bounding an arbitrary region D, then the
rate of change of total charge in D is

i lllyer= I, v

where p is the charge density. By conservation of charge,
this rate must be equal to the rate at which charge is
crossing 4 into D, that is, to

f(—J) eNdS = —// divJdv.
8 D

(The negative sign occurs because N is the outward (from
D) normal on 4.) Thus we have

///D (?9_';) +diVJ> dv =0.

Since D is arbitrary and we are assuming the integrand is
continuous, it must be 0 at every point:

9
9 L divy=o.
o1

Since r = xi+ yj + zk and b = bji + b2j + b3k, we have
IF=bl> = (x —b)>+ (y = b2)* + (z — b3)*
R
2Ir —b| —|r —b| =2(x — by)
0x
0 x — by

r = .
0x [r — b

Similar formulas hold for the other first partials of [r—Db|,

SO
1
v
(Ir—bl>

—! a| bli + +3| bk
= —| —|r— 1 —|r —
Ir— b2 \ax 9z
-1 (x—=bDi+ (y—>0b2)j+ (z—b3)k

~r—bp Ir— b
. r—b
BT

617
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Using the result of Exercise 4 and Theorem 3(d) and (h),
we calculate, for constant a

. r—b
div (a X —lr—b|3)
=—div(axV !
B [r —b|

=—(Vxa)eV

1
+aeV XV
r—b " °° r —b]

For any element ds on the filament #, we have

div [ ds x LI
Ir—s|3

by Exercise 5, since the divergence is taken with respect
to r, and so s and ds can be regarded as constant. Hence

div %dsx(r_s)_%div@sxi):
F r —s|3

Ir—s|3
By the result of Exercise 4 and Theorem 3(e), we calcu-

late
curl r-b
o r=b
=P
curl v !
= — X
SRR

1 1
=—|VeV— —|V \Y%
( |1r—b|>a ( r—b° )a

1

Observe that V e V

1
= 0 for r # b, either by direct
Ir —b]

calculation or by noting that V

1
b is the field of a

point source at r = b and applying the result of Example
3 of Section 7.1.

Also — (V

| bloV)a:OandVoa:O,sinceais
r—
constant. Therefore we have

r—b 1
curl (a X —) =(@eV)V——
Ir—b? Ir —bl
—b
——(aoV)l “oF

The first component of (dse V)F(s) is VFi(s) eds. Since
F is closed and V F| is conservative,

10% (ds e V)F(s) :fﬁ VFi(s)eds=0.
F F

618

=0+0=0.
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Similarly, the other components have zero line integrals,
SO

?g (ds @ V)F(s) = 0.
F

11. Using the results of Exercises 7 and 8, we have

curlf ds x (r —s) _?§ curl (dsxi>:0
F Ir—s|3

Cr—sP
for r not on F. (Again, this is because the curl is taken
with respect to r, so s and ds can be regarded as constant
for the calculation of the curl.)

12. By analogy with the filament case, the current in volume
element dV at position s is J(s) dV, which gives rise at
position r to a magnetic field

dH(r) = L M dv.
47 r—s)3

If R is a region of 3-space outside which J is identically
zero, then at any point r in 3-space, the total magnetic

field is
//‘ J(s) x (r—s) av.
Cor—sp

Now A(r) was defined to be

0!
so= g e

1 1

—/// Vi X (—J(S)) av
7 JJJR [r —s|

1 1

—//f v, « J(s)dV

T R Ir—s|

(by Theorem 3(c))

Sl

(by Exercise 4)
= H(r).

We have

curlA(r) =

13. A@r) = Lf ds
4 Jg |r —s|
L% divr( ! ds)
4 Jg [r —s|
1 ()
= — \Y o ds
4 Jg [r —s|

(by Theorem 3(b))

=0 for r not on ¥,
since V(1/|r —s|) is conservative.

divA(r) =
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Ar) = // Jl(s) v where R is a region of 3-
r f—

space such that J (s) = 0 outside R. We assume that J(s)
is continuous, so J(s) = 0 on the surface § of R.

In the following calculations we use subscripts s and r to
denote the variables with respect to which derivatives are
taken. By Theorem 3(b),

J(s)
[r —s]

ey = (B 0+
div =|Vs—— o J(s) + —— Vs e J(s)
[r — s [r —s|

=—Vr< ! >0J(S)+0
Ir— s

because Vi|r —s| = —Vi|r — s|, and because
VeJ=Ve(VxH)=0 by Theorem 3(g). Hence

divaw - /// (et ) esar
A=

1
- IS Ras=0
C4m 8 Ir —s|

since J(s) = 0 on 4.

By Theorem 3(i),

J=VxH=Vx(VxA)=V(VeA) — VA = —V?A.

By Maxwell’s equations, since p =0 and J =0,

divH=0

oH E
curlE = —pg — curlH = ¢y —
Ho 57 0 5z

divE =0

Therefore,

curlcurlE = graddivE — V’E = —V’E

V2E = —curlcurlE = 9 curl H = pp¢ O’E
Similarly,
9°H
VZH = —_—.
P00~

Thus U = E and U = H both satisfy the wave equation

92U 1
w3 = c2V2U, where ¢* = .
at Ho€0

The heat content of an arbitrary region R (with surface
&) at time ¢ is

H(t) :8c/// T(x,y,z,t)dV.
R

SECTION 16.7 (PAGE 896)

This heat content increases at (time) rate

aH _ g /f SLav.

If heat is not “created” or “destroyed” (by chemical or
other means) within R, then the increase in heat content
must be due to heat flowing into R across 4.

The rate of flow of heat into R across surface element
dS with outward normal N is

—kVT e NdS.

Therefore, the rate at which heat enters R through 4 is

k# VT e NdS.
5

By conservation of energy and the Divergence Theorem

we have
oT N

8c// —dV:kﬂVToNdS

R 01 8

=k///VoVTdV

R
=k/// V2T dV.

R

o ] (5 £ v

Since R is arbitrary, and the temperature 7 is as-
sumed to be smooth, the integrand must vanish every-
where. Thus

Tk _, k [92T 3T 9°T
= VT = —
at 8¢ 8¢

- 8x2+3y2+3—22

Section 16.7 Orthogonal Curvilinear
Coordinates (page 896)

f(r,0,z) = rfz (cylindrical coordinates). By Example

9,
af . 1 afs  9f
Vfi=LTi+-2T0+ =k
U P AR

=078+ 204 r0k.

f(p,9,0) = pp0d (spherical coordinates). By Example

10,
af . 1 af - LA,
V=9 556 piing 06°
—0p+0h+ -2 b,
sin ¢

619
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3. F(r,0,2)=rr
179
divF = — —(rz):|:2
r[or ]|
r r0 Kk
curlF—l 9 0 9 =0
T rlor 90 az|
r 0 0
4. F@r0,7)=rb
. 1Ta
divF=-|—(@)|=0
r 00
r r0 Kk
1F 1o o8 0 2k
art="1% 90 9z |=°"
0 2 0

5. F(p,¢,0) =singp
divF = o [i (,02 sin2¢) = 2sing

p?sing | dp o
P pd psingd
1
curlF = ——— 93 K3
plsing | dp ap a0
sing 0 0
:_cos¢é'
0

6. F(p,0.0)=pod

divF = m _% (,ozsimp)] = cot¢
p pd psingd
1 0 d d o
curlF = m % % Y =260.
0 o2 0
7. F(p,$,0)=p0
. 1 M9
divi = p2sing _@ (p2>] =0
p pd psingd
1 a d d
curlF = m % % 7
0 0 p2sing
=cotpp—26¢
8. F(p,¢.0)=p"p
. 1 el .
divF = —,02 o [% (,04 smq))] =4p
p pd psingd
1 0 d d
curlF:m % % 30 =0.
2 0 0

620
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Let r = x(u, v)i+ y(u, v)j. The scale factors are

ar ar
hy, = ‘a—u‘ and h, = F™
The local basis consists of the vectors
a 1 or PR 1 or
= — — an = — —.
hy, Ou hy O0v

The area element is dA = h,h, du dv.

Since (u, v, z) constitute orthogonal curvilinear coordi-
nates in R3, with scale factors h,, hy and h, = 1, we
have, for a function f(u, v) independent of z,
1 af . 1 of . 1of
Vfu,v)=—-—u+——=v+-—Kk
fu,v) hy, Ou hy 0v 1 9z
1 9 10
_ LU LW
hy ou hy v
For F(u, v) = F,(u,v) @+ Fy(u, v) v (independent of z
and having no k component), we have

1 d d
divF(u,v) = —(hy F, —(hy F,
(u, v) i _au( uFu) + 8v( v v)]
hya hyv Kk
1
curl F(u,v) = 9 9 9

huhy | 0 dv  dz
huFy hyFy O

a a
= (thv)_ (huFu) k.
| Ou v

We can use the expressions calculated in the text for
cylindrical coordinates, applied to functions independent
of z and having no k components:

divF(r,0) =

ar r r 00
3Fy Fy 10F
curl F(r, 0) = [—9 o ’] K.

or r r 96

x =a coshu cosv, y =a sinhu sinv.

a) u-curves: If A =a coshu and B = a sinhu, then

xZ 2

F—l—p:coszv—i—sin

2y=1.
Since A2 — B2 = a%(cosh® u — sinh® u) = a2, the
u-curves are ellipses with foci at (+a, 0).
b) v-curves: If A =a cosv and B = a sinv, then
2 2
X
X = cosh®u — sinh®u = 1.
A2 B2
Since A2 + B2 = a?(cos?v + sin?v) = a2, the
v-curves are hyperbolas with foci at (za, 0).
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¢) The u-curve u = ug has parametric equations
x =a coshug cosv, y = a sinhug sinwv,
and therefore has slope at (ug, vg) given by

d_y dy dx
dx dv/ dv

a sinh ug cos vy

my, = = - .
—a cosh ug sin vy

(uo,v0)

The v-curve v = vg has parametric equations
Xx =a coshu cos vy, y = a sinhu sin vy,
and therefore has slope at (ug, vg) given by

d_y dy dx
dx du/ du

a coshug sin vy
my = =

(wowo) @ sinhug cos vy’

Since the product of these slopes is m,m, = —1, the
curves u = ug and v = vg intersect at right angles.

d) r=acoshu cosvi+a sinhu sinvj

ar . .

— =a sinhu cosvi+ a coshu sinvj

ou

ar .. . .

P —a coshu sinvi+ a sinhu cosvj.
v

The scale factors are

r - 5
h, = ‘a—‘ = av/sinh u cos? v + cosh® u sin v
u

ar 3 ]
hy = ‘a— — a/sinh® u cos? v + cosh? u sin? v = hy.
v

The area element is

dA = hyhydudv

=a? (sinh2 u cos® v + cosh? u sin’ v) dudv.

x = a coshu cosv

y = a sinhu sinv

z=2z.

Using the result of Exercise 12, we see that the coordi-
nate surfaces are

u = ug: vertical elliptic cylinders with focal axes

x ==a, y=0.

v = vg: vertical hyperbolic cylinders with focal axes
x ==a, y=0.

z = zo: horizontal planes.

The coordinate curves are

u-curves: the horizontal hyperbolas in which the v = vy
cylinders intersect the z = zo planes.

v-curves: the horizontal ellipses in which the u = ug
cylinders intersect the z = zo planes.

z-curves: sets of four vertical straight lines where the
elliptic cylinders u = up and hyperbolic cylinders v = vy
intersect.

REVIEW EXERCISES 16 (PAGE 896)

4. Viro,z=22L

V276, 2) = div (Vf(r 0, z))

_i[a (s Lary, o (,of
T r |:8r( 3r>+80 (r 30>+3Z (r 8Z>:|

_#p v 1w vy
a2 ror r? 962 972"
f af » L af 4
15. Vv - = -
flp,¢,0) = +,03¢¢ psin¢399

V2f(0.6.0) =div(f(p.$.0))
1@ AWK )
=7 sm¢[ (" 190 ) a¢< esing a¢>

3 ( p of
"0 (psinqﬁ %ﬂ

_0Rf o 20f 1 9%f
C0p*  pip p?0g?
cotp df 1 92 f
p? dp  pZsin2¢ 09602°
Laf. Laf. 1 af
16. Vv Y 2 Y
Fuv ) = Y e a0 T ow

sz(u, v, w) = div (Vf(u, v, w))
1 3 (hvhy Of L2 huhw f
" huhohy | du \ h,  du v\ h, v

y (b 0
ow \ hy ow

:%[32_{+(Lahu+iahw 1ah) ]
hi | du hy Ju hy ou hy, ou ) ou
1 [a%f 1 8k, 1 8hy 1 3Ry Of
Tl T\ o
h3 [ ov h, ov hy OV hy, 0v /) dv
N 1 [8%f N 1 8k, 1 dhy 1 dhy\ of
h2 | dw? hy, dw  hy dw  hy, dw ) dw |’

Review Exercises 16 (page 896)

1. The semi-ellipsoid 4 with upward normal N specified in
the problem and the disk D given by x24+y2 < 16, z = 0,
with downward normal —k together bound the solid re-

gion R: 0 < z < £,/16 —x2 — y2. By the Divergence

Theorem:

//FoNdS—i—// Fo(—k)dA:// divFdv.
8 D R

621
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For F = x%zi + (y2z 4+ 3y)j + x?k we have

// diVFdV:// 2xz+2yz+3)dV
R R

=0+0+3/// dV =3 x (volume of R)
R
4
_ 3 e
23

The flux of F across 4§ is

//FoNdS:64n +// FekdA
8 D
=64n+// x2dA
D

2 4
= 64rn +/ coszedG/ r3dr = 1287.
0 0

Let R be the region inside the cylinder 4 and between
the planes z = 0 and z = b. The oriented boundary of R
consists of 4 and the disks D; with normal N; = k and

D, with normal Nz = —k as shown in the figure. For
F = xi + cos(z2)j + ¢*k we have divF = 1 + ¢? and

b
// diVFdV:// dxdy/ 1+ e¥)dz
R Dy 0

=/ b+ (e’ —1)]dxdy
Dy

= wa*b +ma* (e’ — 1).

Also // FO(—k)dA:—// eOdA:—f[az
Dy Dy
// F.de:// e’ dA = wa2el.
Dy Dy

By the Divergence Theorem

//FoNdS+// F.de+// Fe(—k)dA
8 Dy Dy

= // divFdV = na®b + wa?(” - 1).
R

Therefore, // FeNdS = na®b.
3

lek

D

N>

Fig. R-16.2

622
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3. ?g (3y* + 2xe"'2) dx + (2x2yey2) dy
C

- // [dxye”” — (6y + dxye¥ )] dA
P

:—6// ydA = —65A = —6,
P

since P has area A = 2 and its centroid has y-coordinate
y=1/2.
y A

1,1 @3, 1)

P
()
2.0) o

Fig. R-16.3
If F = —zi + xj + yk, then

i j k

curlF = a9 9 =i—j+k
ox dy 0z
-z X y

The unit normal N to a region in the plane
2x +y+2z="71is

< 2itj+2k
N—i%.

If C is the boundary of a disk D of radius a in that
plane, then

%Fodr:// curlFe NdS
C D

2142
=j:// 2o S = tnd?
b 3

If &, is the sphere of radius a centred at the origin, then

1 N
divF(0,0,0) = lim T # FeNdS
a—0+ §7'[a3 8.

3 3
lim ——(ra’® +24*) = =.
ai%l+ 4mad (wa” +247) 4

If 4§ is any surface with upward normal N and boundary
the curve C: x%+y%> =1, z =2, then € is oriented coun-
terclockwise as seen from above, and it has parametriza-
tion

r=costi+sintj+2k (0<2<2m).
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Thus dr = (—sinti + costj) dt, and if
F = —yi+ xcos(l — x2 — y2)j + yzk, then the flux of
curl F upward through 4 is

/f curlF.NdS:f Fedr
5 e

2
= (sinzt +coszt+0)dt =2m.
0

F(r) = r*r where r = xi 4+ yj + zk and r = |r|. Since
r2 = x% + y2 + 22, therefore dr/dx = x/r and

I x YT S WY U SR S
— ' x)y=ra"""—+rt=r""(Ax" 4+ r9).
ax r

Similar expressions hold for (3/dy)(r*y) and
(3/02)(r*2), so

divF@) = r* 2002 + 32 = (0 + 31t

F is solenoidal on any set in R? that excludes the origin
if an only if A = —3. In this case F is not defined at

r = 0. There is no value of A for which F is solenoidal
on all of R3.

If curl F = uF on R3, where u # 0 is a constant, then
. L.
divF = —divcurlF =0
"

by Theorem 3(g) of Section 7.2. By part (i) of the same
theorem,

V2F = V(divF) — curl curl F
=0— peurl F = — 1 °F.

Thus V2F + 42F = 0.

Apply the variant of the Divergence Theorem given in
Theorem 7(b) of Section 7.3, namely

/f grad¢dV = ﬂ #NdS,
P 8

to the scalar field ¢ = 1 over the polyhedron P. Here
n

8 = U F; is the surface of P, oriented with outward
i=1

normal field Ni on the face F;. If N; = A,Ni, where A;

is the area of Fj, then, since grad ¢ = 0, we have

n N n N n
0= () NdS = —Ldas=Y" L4 =3"N.
#; 2//' Ai ;Al l ; l

10.

11.

12.
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Let C be a simple, closed curve in the xy-plane bounding
a region R. If

F = (2y3 — 3y +xy2)i + (x —x3 +x2y)j,

then by Green’s Theorem, the circulation of F around €
is

%Fodl‘
C
9 3 2 9 3 2
= a(x—x +x y)—$(2y —3y+xy°) | dA
R

://(1—3x2—|—2xy—6y2—|—3—2xy)dA
R

= // (4 —3x2 — 6y*) dxdy.
R

The last integral has a maximum value when the region
R is bounded by the ellipse 3x> + 6y> = 4, oriented
counterclockwise; this is the largest region in the xy-
plane where the integrand is nonnegative.

Let 8 be a closed, oriented surface in R3 boynding a
region R, and having outward normal field N. If

F = (4x + 2x32)i — y(x2 + 22)j - (3x222 + 4yzz)k,

then by the Divergence Theorem, the flux of F through 4
is

# F.NdS:// dideV:// (4—x*—4y2—z%Hdv.
8 R R

The last integral has a maximum value when the region
R is bounded by the ellipsoid x% + 4y% + z2 = 4 with
outward normal; this is the largest region in R? where the
integrand is nonnegative.

Let C be a simple, closed curve on the plane

x + y+ z = 1, oriented counterclockwise as seen from
above, and bounding a plane region § on x +y +z = 1.
Then 8 has normal N = (i + j + k)//3. If

F = xy%i + 3z — xy)j + (4y — x%y)k, then

i i k
IF a a a
curti = ox dy 9z

xy? 3z —xy? 4y —x2y
=1 —-x)i+ 2xyj — (y2 + 2xy)k.

By Stokes’s Theorem we have

A 1—x2—y2
Fedr = curlFeNdS = — = 7 4s.
e 8 ¥ V3

623
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The last integral will be maximum if the projection of 4 b) If 4 is the intersection of a smooth surface with the
onto the xy-plane is the disk x2+ y2 < 1. This maximum general half-cone K, and is oriented with normal
value is field N pointing away from the vertex P of K, and
) ) if 4, is the intersection with K of a sphere of radius
// 71 Y V3dx dy a centred at P, with a chosen so that § and 4§, do
x24+y2<1 V3 not intersect in K, then 4, &, and the walls of K
2 1 ) 1 1 T bound a solid region R that does not contain the
=/0 d9/0 (I=r9rdr =2n (5 - Z) =7 origin. If F = r/|r, then divF = 0 in R (see

Example 3 in Section 7.1), and F e N = 0 on the
walls of K. It follows from the Divergence Theorem

Challenging Problems 16 (page 897) applied to F over R that

By Theorem 1 of Section 7.1, we have // FeNdsS = // Fe ﬁdS
3 8, r
divv(r) = lim — ﬂ v(r) e N(r) d§ a? !
= lim . . - & -
! e—0+ 4 e’ 8. A ///:ﬁ ds = 2 (area of 4,)

Here 4. is the sphere of radius € centred at the point = area of 4.

(with position vector) r; and having outward normal field
N(r). If r is (the position vector of) any point on 4,
then r = r; + eN(r), and

The area of 4; (the part of the sphere of radius 1 in
K) is the measure (in steradians) of the solid angle
subtended by K at its vertex P. Hence this measure
is given by

# v(r) e N(r) dS ro o
5 // — oNds.
8 Ir?

- #g [v(rl) n (v(r) - V(r1)>] e N(r)ds

‘ . 3. a) Verification of the identity
=v(ry) e ﬂ N(r)dS
3

_ d or 0 or
+#&(v(r)—v(r1)).r6r‘ ds. 5(‘“5)‘5(‘“5)

oF or (<P or or
= — o — XF)yx — ) e —.
Jat  ds at as

But # N(r) dS = 0 by Theorem 7(b) of Section 7.3
8

with ¢ = 1. Also, since v satisfies can be carried out using the following MapleV com-
mands:

v(r2) —v(r) = Clry — 1y %, with(linalg) :

F:=(x,y,2z,t)-> [F1(x,y,2,t),
F2(x,y,z,t),F3(x,y,z,t)1;
r:=(s,t)->[x(s,t),y(s,t),z(s,t)];

we have

#& (v(r) - V(rl)) ol - M as

C 2
:ﬂ £ dS = 47 Cé.
8. €

:=(s,t)->F(x(s,t),y(s,t),z(s,t),t);
g:=(s,t)-> dotprod(G(s,t),
map (diff,r(s,t),s));
h:=(s,t)-> dotprod(G(s,t),
map (diff,r(s,t),t));
LH1:=diff (g(s,t),t);
LH2:=diff (h(s,t),s);
LHS:=simplify (LH1-LH2) ;

Thus
. ) 3 3
divv(r)) = lim ——= (0 +4nxCe’) = 3C.
e—0+ 4med

The divergence of the large-scale velocity field of matter
in the universe is three times Hubble’s constant C.

AV VVVVVVVQVVVVYV

H1l:=dotprod(subs (x=x(s,t) ,y=y (s, t),
t r

a) The steradian measure of a half-cone of semi-vertical > z=z(s,t),diff(F(x,y,z,t),t))
angle « is > diff(r(s,t),s));
>
2 o
/ d@/ singdep = 27(1 — cosa). RH2 : =dotprod (crossprod (subs (x=x (s, t),
0 0 > y=y(s,t),z=2z(s,t),

624
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> curl(F(x,y,z,t), [x,y,2])),
> diff(r(s,t),t)),diff(r(s,t),s));
> RHS:=RH1+RH2; LHS-RHS; simplify (%) ;

We omit the output here; some of the commands produce
screenfulls of output. The output of the final command is
0, indicating that the identity is valid.

b) As suggested by the hint,

b
i Fodr:/ 3(Go§> ds
dt Je, . 0t as
b
:/ i(Gog>
« LOs at
0 d a a
+<—(Go—r>——(Go—r)> ds
at as as at

S=a

broF or or
— VxF)x — —d
+/a [ar+(( x )Xazﬂ'as s

=F(r(b 0, z) eve(b, 1) —F(r(a,t),t) evel(a, )

/ —odr—i—/ ((VXF)xvc>odr.

a) Verification of the identity

(el N\ _ 2 (golF, 0F
at ou dv ou at dv
-2 (ae [ )
dv ou at

JoF or or or ar ar
=—eo|—xXx— |+ (VeF)—e| — x —|.
at ou dv at ou av

can be carried out using the following MapleV com-
mands:

with(linalg)
F:=(x,y,2z,t)->[Fl(x,y,2z,t),
F2(x,y,z,t) ,F3(x,y,z,t)];
r:=(u,v,t)->[x(u,v,t),y(u,v,t),
z(u,v,t)];
ru:=(u,v,t)->diff (r(u,v,t),u);
rv:=(u,v,t)->diff(r(u,v,t),v);
rt:=(u,v,t)->diff (r(u,v,t),t);
G:=(u,v,t)->F(x(u,v,t),
y(u,v,t),z(u,v,t),t);

VVVVVVVVYVVY

=
c
b
<

=(u,v,t)->crossprod (ru(u,v,t),
v(u,v,t));

\

>
rtxv:=(u,v,t)->crossprod (rt (u,v,t),
> rv(u,v,t));

CHALLENGING PROBLEMS 16 (PAGE 897)

>
ruxt:=(u,v,t)->crossprod(ru(u,v,t),
> rt(u,v,t));

> LH1:=diff (dotprod(G(u,v,t),
> ruxv(u,v,t)),t);

> LH2:=diff (dotprod(G(u,v,t),
> rtxv(u,v,t)),u);

> LH3:=diff (dotprod(G(u,v,t),
> ruxt (u,v,t)),v);

> LHS:=simplify (LH1-LH2-LH3) ;

> RHI1: _dotprod(subs(x x(u,v,t),
> y=y(u,v,t),z=z(u,v,t),

>
di
>
>

(

( (x y,z,t),t)), ruxv(u,v,t));
R =(divf(u,v,t))*

dotprod (rt(u,v,t),ruxv(u,v,t)));

> RHS:=simplify (RH1+RH2) ;
> simplify (LHS-RHS) ;

Again the final output is 0, indicating that the identity is

valid.

b) If ¢ is the oriented boundary of §; and L, is the
corresponding counterclockwise boundary of the
parameter region R in the uv-plane, then

% (F X i) odr
- (Gxar> (8rd +§d>
Lt ou ad
G.(ar 3r>+G.(gxﬁ> di
L; du  Jt ot dv
/‘/ ad Br or
RrLOu ar 81}
+ — 0 (G (E x§>> dudv,
dv ou at

by Green’s Theorem.

¢) Using the results of (a) and (b), we calculate

// FoNdS—/ [ (ﬁxﬁ>] dudv
: av
YEREE B
R v
/ (leF)—r . (ﬁ X —) dudv
ar  or
SAEACH )
+ i (Go (ﬁ X E>>:|dudv
av ou at
oF . . A
=// —oNdS+/ (divF)vs e NdS
8, ot 8,
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CHALLENGING PROBLEMS 16 (PAGE 897) R. A. ADAMS: CALCULUS
+ ﬂ C;(F x v¢) edr.
5. We have L -1 =// f(r,t—‘rAt)VSONdS
1 St
—[/// f(r,t—i—At)dV—// f(r,t)dv] .
At Diyar D, = / fr,t)vs e NdS
/‘/‘ fa,t+ Ar) — f(r, t) Y
D, At +// (f(r,t—f—At)—f(r, t))vS.Nds.
Si
/ / / Flet+ AV
Dt+At Dt
_ / / / fr,t+ At)dV The latter integral approaches 0 as At — 0 because
DI DI+AI
=L+ -1
Evidently I — // —dV as At — 0. ’//S (f(r,t—l—At)—f(r, t)>VS.NdS‘
Dy !

3f
I, and I3 are integrals over the parts of AD; where the < max |vg| (area of S;)Ar.
surface §, is moving outwards and inwards, respectively,
that is, where vgeN is, respectively, positive and negative.

Since dV = |vs ¢ N|dS AT, we have

626



