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CHAPTER 16. VECTOR CALCULUS

Section 16.1 Gradient, Divergence, and Curl
(page 858)

1. F = x i + yj

div F = ∂

∂x
(x)+ ∂

∂y
(y)+ ∂

∂z
(0) = 1 + 1 = 2

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
x y 0

∣
∣
∣
∣
∣
∣
∣

= 0

2. F = yi + xj

div F = ∂

∂x
(y)+ ∂

∂y
(x)+ ∂

∂z
(0) = 0 + 0 = 0

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
y x 0

∣
∣
∣
∣
∣
∣
∣

= (1 − 1)k = 0

3. F = yi + zj + xk

div F = ∂

∂x
(y)+ ∂

∂y
(z)+ ∂

∂z
(x) = 0

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
y z x

∣
∣
∣
∣
∣
∣
∣

= −i − j − k

4. F = yzi + xzj + xyk

div F = ∂

∂x
(yz)+ ∂

∂y
(xz)+ ∂

∂z
(xy) = 0

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
yz xz xy

∣
∣
∣
∣
∣
∣
∣

= (x − x)i + (y − y)j + (z − z)k = 0

5. F = x i + xk

div F = ∂

∂x
(x)+ ∂

∂y
(0)+ ∂

∂z
(x) = 1

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
x 0 x

∣
∣
∣
∣
∣
∣
∣

= −j

6. F = xy2i − yz2j + zx2k

div F = ∂

∂x

(

xy2
)

+ ∂

∂y

(

−yz2
)

+ ∂

∂z

(

zx2
)

= y2 − z2 + x2

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
xy2 −yz2 zx2

∣
∣
∣
∣
∣
∣
∣

= 2yzi − 2xzj − 2xyk

7. F = f (x)i + g(y)j + h(z)k

div F = ∂

∂x
f (x)+ ∂

∂y
g(y)+ ∂

∂z
h(z)

= f ′(x)+ g′(y)+ h ′(z)

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
f (x) g(y) h(z)

∣
∣
∣
∣
∣
∣
∣

= 0

8. F = f (z)i − f (z)j

div F = ∂

∂x
f (z)+ ∂

∂y

(

− f (z)
)

= 0

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
f (z) − f (z) 0

∣
∣
∣
∣
∣
∣
∣

= f ′(z)(i + j)

9. Since x = r cos θ , and y = r sin θ , we have r2 = x2 + y2,
and so

∂r

∂x
= x

r
= cos θ

∂r

∂y
= y

r
= sin θ

∂

∂x
sin θ = ∂

∂x

y

r
= −xy

r3
= − cos θ sin θ

r
∂

∂y
sin θ = ∂

∂y

y

r
= 1

r
− y2

r3

= x2

r3 = cos2 θ

r
∂

∂x
cos θ = ∂

∂x

x

r
= 1

r
− x2

r3

= y2

r3
= sin2 θ

r
∂

∂y
cos θ = ∂

∂y

x

r
= −xy

r3
= − cos θ sin θ

r
.

(The last two derivatives are not needed for this exercise,
but will be useful for the next two exercises.) For

F = r i + sin θ j,

we have

div F = ∂r

∂x
+ ∂

∂y
sin θ = cos θ + cos2 θ

r

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
r sin θ 0

∣
∣
∣
∣
∣
∣
∣

=
(

− sin θ cos θ

r
− sin θ

)

k.
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10. F = r̂ = cos θ i + sin θ j

div F = sin2 θ

r
+ cos2 θ

r
= 1

r
= 1

√

x2 + y2

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
cos θ sin θ 0

∣
∣
∣
∣
∣
∣
∣

= −
(

cos θ sin θ

r
− cos θ sin θ

r

)

k = 0

11. F = θ̂ = − sin θ i + cos θ j

div F = cos θ sin θ

r
− cos θ sin θ

r
= 0

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
− sin θ cos θ 0

∣
∣
∣
∣
∣
∣
∣

=
(

sin2 θ

r
+ cos2 θ

r

)

k = 1

r
k = 1

√

x2 + y2
k

12. We use the Maclaurin expansion of F, as presented in the
proof of Theorem 1:

F = F0 + F1x + F2 y + F3z + · · · ,
where

F0 = F(0, 0, 0)

F1 = ∂

∂x
F(x, y, z)

∣
∣
∣
∣
(0,0,0)

=
(
∂F1

∂x
i + ∂F2

∂x
j + ∂F3

∂x
k
)∣

∣
∣
∣
(0,0,0)

F2 = ∂

∂y
F(x, y, z)

∣
∣
∣
∣
(0,0,0)

=
(
∂F1

∂y
i + ∂F2

∂y
j + ∂F3

∂y
k
)∣

∣
∣
∣
(0,0,0)

F3 = ∂

∂z
F(x, y, z)

∣
∣
∣
∣
(0,0,0)

=
(
∂F1

∂z
i + ∂F2

∂z
j + ∂F3

∂z
k
)∣

∣
∣
∣
(0,0,0)

and where · · · represents terms of degree 2 and higher in
x , y, and z.
On the top of the box Ba,b,c, we have z = c and N̂ = k.
On the bottom of the box, we have z = −c and N̂ = −k.
On both surfaces d S = dx dy. Thus

(∫∫

top
+

∫∫

bottom

)

F • N̂ d S

=
∫ a

−a
dx

∫ b

−b
dy

(

cF3 • k − cF3 • (−k)
)

+ · · ·

= 8abcF3 • k + · · · = 8abc
∂

∂z
F3(x, y, z)

∣
∣
∣
∣
(0,0,0)

+ · · · ,

where · · · represents terms of degree 4 and higher in a,
b, and c.
Similar formulas obtain for the two other pairs of faces,
and the three formulas combine into

∫

©
∫

Ba,b,c

F • N̂ d S = 8abcdiv F(0, 0, 0)+ · · · .

It follows that

lim
a,b,c→0+

1

8abc

∫

©
∫

Ba,b,c

F • N̂ d S = div F(0, 0, 0).

13. This proof just mimics that of Theorem 1. F can be ex-
panded in Maclaurin series

F = F0 + F1x + F2 y + · · · ,

where

F0 = F(0, 0)

F1 = ∂

∂x
F(x, y)

∣
∣
∣
∣
(0,0)

=
(
∂F1

∂x
i + ∂F2

∂x
j
)∣

∣
∣
∣
(0,0)

F2 = ∂

∂y
F(x, y)

∣
∣
∣
∣
(0,0)

=
(
∂F1

∂y
i + ∂F2

∂y
j
)∣

∣
∣
∣
(0,0)

and where · · · represents terms of degree 2 and higher in
x and y.
On the curve Cε of radius ε centred at (0, 0), we have

N̂ = 1

ε
(x i + yj). Therefore,

F • N̂ = 1

ε

(

F0 • ix + F0 • jy + F1 • ix2

+ F1 • jxy + F2 • ixy + F2 • jy2 + · · ·
)

where · · · represents terms of degree 3 or higher in x and
y. Since

∮

Cε

x ds =
∮

Cε

y ds =
∮

Cε

xy ds = 0

∮

Cε

x2 ds =
∮

Cε

y2 ds =
∫ 2π

0
ε2 cos2 θ ε dθ = πε3,

we have

1

πε2

∮

Cε

F • N̂ ds = 1

πε2

πε3

ε
(F1 • i + F2 • j)+ · · ·

= div F(0, 0)+ · · ·

where · · · represents terms of degree 1 or higher in ε.
Therefore, taking the limit as ε → 0 we obtain

lim
ε→0

1

πε2

∮

Cε

F • N̂ ds = div F(0, 0).
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14. We use the same Maclaurin expansion for F as in Exer-
cises 12 and 13. On Cε we have

r = ε cos θ i + ε sin θ j, (0 ≤ θ ≤ 2π)

dr = −ε sin θ i + ε cos θ j

F • dr =
(

−ε sin θF0 • i + ε cos θF0 • j

− ε2 sin θ cos θF1 • i + ε2 cos2 θF1 • j

− ε2 sin2 θF2 • i + ε2 sin θ cos θF2 • j + · · ·
)

ds,

where · · · represents terms of degree 3 or higher in ε.
Since

∫ 2π

0
sin θ dθ =

∫ 2π

0
cos θ dθ =

∫ 2π

0
sin θ cos θ dθ = 0

∫ 2π

0
cos2 θ dθ =

∫ 2π

0
sin2 θ dθ = π,

we have

1

πε2

∮

Cε

F • dr = F1 • j − F2 • i + · · · ,

where · · · represents terms of degree at least 1 in ε.
Hence

lim
ε→0+

1

πε2

∮

Cε

F • dr = F1 • j − F2 • i

= ∂F2

∂x
− ∂F1

∂y

= curl F • k = curl F • N̂.

Section 16.2 Some Identities Involving Grad,
Div, and Curl (page 864)

1. Theorem 3(a):

∇(φψ) = ∂

∂x
(φψ)+ ∂

∂y
(φψ)+ ∂

∂z
(φψ)

=
(

φ
∂ψ

∂x
+ ∂φ

∂x
ψ

)

i + · · · +
(

φ
∂ψ

∂z
+ ∂φ

∂z
ψ

)

k

= φ∇ψ + ψ∇φ.

2. Theorem 3(b):

∇ • (φF) = ∂

∂x
(φF1)+ ∂

∂y
(φF2)+ ∂

∂z
(φF3)

= ∂φ

∂x
F1 + φ

∂F1

∂x
+ · · · + ∂φ

∂z
F3 + φ

∂F3

∂z
+ · · ·

= ∇φ • F + φ∇ • F.

3. Theorem 3(d):

∇ • (F × G) = ∂

∂x
(F2G3 − F3G2)+ · · ·

= ∂F2

∂x
G3 + F2

∂G3

∂x
− ∂F3

∂x
G2 − F3

∂G2

∂x
+ · · ·

= (∇ × F) • G − F • (∇ × G).

4. Theorem 3(f). The first component of ∇(F • G) is

∂F1

∂x
G1 + F1

∂G1

∂x
+ ∂F2

∂x
G2 + F2

∂G2

∂x
+ ∂F3

∂x
G3 + F3

∂G3

∂x
.

We calculate the first components of the four terms on
the right side of the identity to be proved.
The first component of F × (∇ × G) is

F2

(
∂G2

∂x
− ∂G1

∂y

)

− F3

(
∂G1

∂z
− ∂G3

∂x

)

.

The first component of G × (∇ × F) is

G2

(
∂F2

∂x
− ∂F1

∂y

)

− G3

(
∂F1

∂z
− ∂F3

∂x

)

.

The first component of (F • ∇)G is

F1
∂G1

∂x
+ F2

∂G1

∂y
+ F3

∂G1

∂z
.

The first component of (G • ∇)F is

G1
∂F1

∂x
+ G2

∂F1

∂y
+ G3

∂F1

∂z
.

When we add these four first components, eight of the
fourteen terms cancel out and the six remaining terms
are the six terms of the first component of ∇(F • G),
as calculated above. Similar calculations show that the
second and third components of both sides of the identity
agree. Thus

∇(F•G) = F×(∇×G)+G×(∇×F)+(F•∇)G+(G•∇)F.

5. Theorem 3(h). By equality of mixed partials,

∇ × ∇φ =

∣
∣
∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
∂φ

∂x

∂φ

∂y

∂φ

∂z

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
(
∂

∂y

∂φ

∂z
− ∂

∂z

∂φ

∂y

)

i + · · · = 0.

6. Theorem 3(i). We examine the first components of the
terms on both sides of the identity

∇ × (∇ × F) = ∇(∇ • F)− ∇2F.
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The first component of ∇ × (∇ × F) is

∂

∂y

(
∂F2

∂x
− ∂F1

∂y

)

− ∂

∂z

(
∂F1

∂z
− ∂F3

∂x

)

= ∂2 F2

∂y∂x
− ∂2 F1

∂y2
− ∂2 F1

∂z2
+ ∂2 F3

∂z∂x
.

The first component of ∇(∇ • F) is

∂

∂x
∇ • F = ∂2 F1

∂x2 + ∂2 F2

∂x∂y
+ ∂2 F3

∂x∂z
.

The first component of −∇2F is

−∇2F1 = −∂
2 F1

∂x2 − ∂2 F1

∂y2 − ∂2 F1

∂z2 .

Evidently the first components of both sides of the given
identity agree. By symmetry, so do the other compo-
nents.

7. If the field lines of F(x, y, z) are parallel straight lines, in
the direction of the constant nonzero vector a say, then

F(x, y, z) = φ(x, y, z)a

for some scalar field φ, which we assume to be smooth.
By Theorem 3(b) and (c) we have

div F = div (φa) = ∇φ • a
curl F = curl (φa) = ∇φ × a.

Since ∇φ is an arbitrary gradient, div F can have any
value, but curl F is perpendicular to a, and thereofore to
F.

8. If r = x i + yj + zk and r = |r|, then

∇ • r = 3, ∇ × r = 0, ∇r = r
r
.

If c is a constant vector, then its divergence and curl are
both zero. By Theorem 3(d), (e), and (f) we have

∇ • (c × r) = (∇ × c) • r − c • (∇ × r) = 0
∇ × (c × r) = (∇ • r)c + (r • ∇)c − (∇ • c)r − (c • ∇)r

= 3c + 0 − 0 − c = 2c

∇(c • r) = c × (∇ × r)+ r × (∇ × c)+ (c • ∇)r + (r • ∇)c
= 0 + 0 + c + 0 = c.

9. ∇ •
(

f (r)r
)

=
(

∇ f (r)
)

• r + f (r)(∇ • r)

= f ′(r)r • r
r

+ 3 f (r)

= r f ′(r)+ 3 f (r).

If f (r)r is solenoidal then ∇ •
(

f (r)r
)

= 0, so that

u = f (r) satisfies

r
du

dr
+ 3u = 0

du

u
= −3 dr

r
ln |u| = −3 ln |r | + ln |C |
u = Cr−3.

Thus f (r) = Cr−3, for some constant C .

10. Given that div F = 0 and curl F = 0, Theorem 3(i)
implies that ∇2F = 0 too. Hence the components of F
are harmonic functions.
If F = ∇φ, then

∇2φ = ∇ • ∇φ = ∇ • F = 0,

so φ is also harmonic.

11. By Theorem 3(e) and 3(f),

∇ × (F × r) = (∇ • r)F + (r • ∇)F − (∇ • F)r − (F • ∇)r
∇(F • r) = F × (∇ × r)+ r × (∇ × F)

+ (F • ∇)r + (r • ∇)F.

If r = x i + yj + zk, then ∇ • r = 3 and ∇ × r = 0. Also,

(F • ∇)r = F1
∂r
∂x

+ F2
∂r
∂y

+ F3
∂r
∂z

= F.

Combining all these results, we obtain

∇ × (F × r)− ∇(F • r) = 3F − 2(F • ∇)r
− (∇ • F)r − r × (∇ × F)

= F − (∇ • F)r − r × (∇ × F).

In particular, if ∇ • F = 0 and ∇ × F = 0, then

∇ × (F × r)− ∇(F • r) = F.

12. If ∇2φ = 0 and ∇2ψ = 0, then

∇ • (φ∇ψ − ψ∇φ)
= ∇φ • ∇ψ + φ∇2ψ − ∇ψ • ∇φ − ψ∇2φ = 0,

so φ∇ψ − ψ∇φ is solenoidal.

13. By Theorem 3(c) and (h),

∇ × (φ∇ψ) = ∇φ × ∇ψ + φ∇ × ∇ψ = ∇φ × ∇ψ
−∇ × (ψ∇φ) = −∇ψ × ∇φ − ψ∇ × ∇φ = ∇φ × ∇ψ.
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14. By Theorem 3(b), (d), and (h), we have

∇ •
(

f (∇g × ∇h)
)

= ∇ f • (∇g × ∇h)+ f ∇ • (∇g × ∇h)

= ∇ f • (∇g × ∇h)+ f
(

(∇ × ∇g) • ∇h − ∇g • (∇ × ∇h)
)

= ∇ f • (∇g × ∇h)+ 0 − 0 = ∇ f • (∇g × ∇h).

15. If F = ∇φ and G = ∇ψ , then ∇ × F = 0 and ∇ × G = 0
by Theorem 3(h). Therefore, by Theorem 3(d) we have

∇ • (F × G) = (∇ × F) • G + F • (∇ × G) = 0.

Thus F × G is solenoidal. By Exercise 13,

∇ × (φ∇ψ) = ∇φ × ∇ψ = F × G,

so φ∇ψ is a vector potential for F × G. (So is −ψ∇φ.)

16. If ∇ × G = F = −yi + xj, then

∂G3

∂y
− ∂G2

∂z
= −y

∂G1

∂z
− ∂G3

∂x
= x

∂G2

∂x
− ∂G1

∂y
= 0.

As in Example 1, we try to find a solution with G2 = 0.
Then

G3 = −
∫

y dy = − y2

2
+ M(x, z).

Again we try M(x, z) = 0, so G3 = − y2

2
. Thus

∂G3

∂x
= 0 and

G1 =
∫

x dz = xz + N(x, y).

Since
∂G1

∂y
= 0 we may take N(x, y) = 0.

G = xzi − 1

2
y2k is a vector potential for F. (Of course,

this answer is not unique.)

17. If F = xe2zi + ye2zj − e2zk, then

div F = e2z + e2z − 2e2z = 0,

so F is solenoidal.
If F = ∇ × G, then

∂G3

∂y
− ∂G2

∂z
= xe2z

∂G1

∂z
− ∂G3

∂x
= ye2z

∂G2

∂x
− ∂G1

∂y
= −e2z .

Look for a solution with G2 = 0. We have

G3 =
∫

xe2z dy = xye2z + M(x, z).

Try M(x, z) = 0. Then G3 = xye2z, and

∂G1

∂z
= ye2z + ∂G3

∂x
= 2ye2z.

Thus

G1 =
∫

2ye2z dz = ye2z + N(x, y).

Since

−e2z = −∂G1

∂y
= −e2z − ∂N

∂y
,

we can take N(x, y) = 0.
Thus G = ye2zi + xye2zk is a vector potential for F.

18. For (x, y, z) in D let v = x i + yj + zk. The line segment
r(t) = tv, (0 ≤ t ≤ 1), lies in D, so div F = 0 on the
path. We have

G(x, y, z) =
∫ 1

0
tF

(

r(t)
)

× v dt

=
∫ 1

0
tF

(

ξ(t), η(t), ζ(t)
)

× v dt

where ξ = t x, η = t y, ζ = t z. The first component of
curl G is

(curl G)1

=
∫ 1

0
t
(

curl (F × v)
)

1
dt

=
∫ 1

0
t

(
∂

∂y
(F × v)3 − ∂

∂z
(F × v)2

)

dt

=
∫ 1

0
t

(
∂

∂y
(F1 y − F2x)− ∂

∂z
(F3x − F1z)

)

dt

=
∫ 1

0

(

t F1 + t2 y
∂F1

∂η
− t2x

∂F2

∂η
− t2x

∂F3

∂ζ

+ t F1 + t2z
∂F1

∂ζ

)

dt

=
∫ 1

0

(

2t F1 + t2x
∂F1

∂ξ
+ t2 y

∂F1

∂η
+ t2z

∂F1

∂ζ

)

dt.

604

www.mohandesyar.com



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 16.3 (PAGE 868)

To get the last line we used the fact that divF = 0 to

replace −t2x
∂F2

∂η
− t2x

∂F3

∂ζ
with t2x

∂F1

∂ξ
. Continuing the

calculation, we have

(curl G)1 =
∫ 1

0

d

dt

(

t2 F1(ξ, η, ζ )
)

dt

= t2 F1(t x, t y, t z)

∣
∣
∣
∣

1

0
= F1(x, y, z).

Similarly, (curl G)2 = F2 and (curl G)3 = F3. Thus
curl G = F, as required.

19. In the following we suppress output (which for some
calculations can be quite lengthy) except for the final
check on each inequality. You may wish to use semi-
colons instead of colons to see what the output actually
looks like.

> with(VectorCalculus):

>

SetCoordinates(’cartesian’[x,y,z]):

> F := VectorField
(<u(x,y,z),v(x,y,z),w(x,y,z)>):

> G := VectorField
(<a(x,y,z),b(x,y,z),c(x,y,z)>):

(a) LHS := Del(phi(x,y,z)*psi(x,y,z)):
RHS := phi(x,y,z)*Del(psi(x,y,z))
+ psi(x,y,z)*Del(phi(x,y,z)):
simplify(LHS - RHS);

0 ēx

(b) LHS := Del . (F*phi(x,y,z)):
RHS := (Del(phi(x,y,z))).F +
phi(x,y,z)*(Del.F):
simplify(LHS - RHS);

0

(c) LHS := Del &x (phi(x,y,z)*F):
RHS := RHS := (Del(phi(x,y,z))) &x
F + phi(x,y,z)*(Del &x F):
simplify(LHS - RHS);

0 ēx

(d) LHS := Del . (F &x G):
RHS := (Del &x F) . G - F . (Del &x
G):
simplify(LHS - RHS);

0

(e) LHS := Del &x (F &x G):
RHS1 := (Del . G)*F:
RHS2 := G[1]*diff(F,x)
+G[2]*diff(F,y)+G[3]*diff(F,z):
RHS3 := (Del . F)*G:
RHS4 := F[1]*diff(G,x)
+F[2]*diff(G,y)+F[3]*diff(G,z):
RHS := RHS1 + RHS2 - RHS3 - RHS4:
simplify(LHS - RHS);

0 ēx

(f) LHS := Del(F . G):
RHS1 := F &x (Del &x G):
RHS2 := G &x (Del &x F):
RHS3 := F[1]*diff(G,x)
+F[2]*diff(G,y)+F[3]*diff(G,z):
RHS4 := G[1]*diff(F,x)
+G[2]*diff(F,y)+G[3]*diff(F,z):
RHS := RHS1 + RHS2 + RHS3 + RHS4:
simplify(LHS - RHS);

0 ēx

All these zero outputs indicate that the inequalities
(a)–(f) of the theorem are valid.

Section 16.3 Green’s Theorem in the Plane
(page 868)

1.
∮

C
(sin x + 3y2) dx + (2x − e−y2

) dy

=
∫∫

R

[
∂

∂x
(2x − e−y2

)− ∂

∂y
(sin x + 3y2)

]

d A

=
∫∫

R
(2 − 6y) d A

=
∫ π

0
dθ

∫ a

0
(2 − 6r sin θ)r dr

= πa2 − 6
∫ π

0
sin θ dθ

∫ a

0
r2 dr

= πa2 − 4a3.

y

x−a a

C

R

Fig. 16.3.1
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2.
∮

C
(x2 − xy) dx + (xy − y2) dy

= −
∫∫

T

[
∂

∂x
(xy − y2)− ∂

∂y
(x2 − xy)

]

d A

= −
∫∫

T
(y + x) d A

= −(ȳ + x̄)× (area of T ) = −
(

1

3
+ 1

)

× 1 = −4

3
.

y

x

(1,1)

C
T

2

Fig. 16.3.2

3.
∮

C
(x sin y2 − y2) dx + (x2 y cos y2 + 3x) dy

=
∫∫

T

[

2xy cos y2 + 3 − (2xy cos y2 − 2y)
]

d A

=
∫∫

T
(3 + 2y) d A = 3

∫∫

T
d A + 0 = 3 × 3 = 9.

y

x

2

(1,1)

CT

(1,−1)

−2

Fig. 16.3.3

4. Let D be the region x2 + y2 ≤ 9, y ≥ 0. Since C is the
clockwise boundary of D,

∮

C
x2 y dx − xy2 dy

= −
∫∫

D

[
∂

∂x
(−xy2)− ∂

∂y
(x2 y)

]

dx dy

=
∫∫

D
(y2 + x2) d A =

∫ π

0
dθ

∫ 3

0
r3 dr = 81π

4
.

5. By Example 1,

Area = 1

2

∮

C
x dy − y dx

= 1

2

∫ 2π

0

[

a cos3 t 3b sin2 t cos t

− b sin3 t (−3a cos2 t sin t)
]

dt

= 3ab

2

∫ 2π

0
sin2 t cos2 t dt

= 3ab

2

∫ 2π

0

sin2(2t)

4
dt = 3πab

8
.

6. Let R, C, and F be as in the statement of Green’s The-
orem. As noted in the proof of Theorem 7, the unit
tangent T̂ to C and the unit exterior normal N̂ satisfy
N̂ = T̂ × k. Let

G = F2(x, y)i − F1(x, y)j.

Then F • T̂ = G • N̂. Applying the 2-dimensional Diver-
gence Theorem to G, we obtain

∫

C
F1 dx + F2 dy =

∫

C
F • T̂ ds =

∫

C
G • N̂ ds

=
∫∫

R
div G d A

=
∫∫

R

(
∂F2

∂x
− ∂F1

∂y

)

d A

as required

7. r = sin t i + sin 2tj, (0 ≤ t ≤ 2π)
y

x

C

R1 R2

Fig. 16.3.7

F = yex2
i + x3eyj

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
yex2

x3ey 0

∣
∣
∣
∣
∣
∣
∣

= (3x2ey − ex2
)k.

Observe that C bounds two congruent regions, R1
and R2, one counterclockwise and the other clockwise.
For R1, N̂ = k; for R2, N̂ = −k. Since R1 and R2
are mirror images of each other in the y-axis, and since
curl F is an even function of x , we have

∫∫

R1

curl F • N̂ d S = −
∫∫

R2

curl F • N̂ d S.
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Thus
∮

C
F • dr =

(∫∫

R1

+
∫∫

R2

)

curl F • N̂ d S = 0.

8. a) F = x2j
∮

C
F • dr =

∮

C
x2 dy =

∫∫

R
2x d A = 2Ax̄ .

b) F = xyi
∮

C
F • dr =

∮

C
xy dx = −

∫∫

R
x d A = −Ax̄ .

c) F = y2i + 3xyj
∮

C
F • dr =

∮

C
y2 dx + 3xy dy

=
∫∫

R
(3y − 2y) d A = Aȳ.

9. The circle Cr of radius r and centre at r0 has
parametrization

r = r0 + r cos t i + r sin tj, (0 ≤ t ≤ 2π).

Note that dr/dt = cos t i + sin tj = N̂, the unit normal to
Cr exterior to the disk Dr of which Cr is the boundary.
The average value of u(x, y) on Cr is

ūr = 1

2π

∫ 2π

0
u(x0 + r cos t, y0 + r sin t) dt,

and so

dūr

dr
= 1

2π

∫ 2π

0

(
∂u

∂x
cos t + ∂u

∂y
sin t

)

dt

= 1

2πr

∮

Cr

∇u • N̂ ds

since ds = r dt . By the (2-dimensional) divergence theo-
rem, and since u is harmonic,

dūr

dr
= 1

2πr

∫∫

Dr

∇ • ∇u dx dy

= 1

2πr

∫∫

Dr

(
∂2u

∂x2
+ ∂2u

∂y2

)

dx dy = 0.

Thus ūr = limr→0 ūr = u(x0, y0).

Section 16.4 The Divergence Theorem
in 3-Space (page 873)

1. In this exercise, the sphere S bounds the ball B of radius
a centred at the origin.
If F = x i − 2yj + 4zk, then div F = 1 − 2 + 4 = 3. Thus

∫

©
∫

S
F • N̂ d S =

∫∫∫

B
3 dV = 4πa3.

2. If F = yezi + x2ezj + xyk, then div F = 0, and

∫

©
∫

S
F • N̂ d S =

∫∫∫

B
0 dV = 0.

3. If F = (x2 + y2)i + (y2 − z2)j + zk, then
div F = 2x + 2y + 1, and

∫

©
∫

S
F•N̂ d S =

∫∫∫

B
(2x+2y+1) dV =

∫∫∫

B
1 dV = 4

3
πa3.

4. If F = x3i + 3yz2j + (3y2z + x2)k, then
div F = 3x2 + 3z2 + 3y2, and

∫

©
∫

S
F • N̂ d S = 3

∫∫∫

B
(x2 + y2 + z2) dV

= 3
∫ 2π

0
dθ

∫ π

0
sinφ dφ

∫ a

0
ρ4 dρ

= 12

5
πa5.

5. If F = x2i + y2j + z2k, then div F = 2(x + y + z).
Therefore the flux of F out of any solid region R is

Flux =
∫∫∫

R
div F dV

= 2
∫∫∫

R
(x + y + z) dV = 2(x̄ + ȳ + z̄)V

where (x̄, ȳ, z̄) is the centroid of R and V is the volume
of R.

If R is the ball (x − 2)2 + y2 + (z − 3)2 ≤ 9, then x̄ = 2,
ȳ = 0, z̄ = 3, and V = (4π/3)33 = 36π . The flux of F
out of R is 2(2 + 0 + 3)(36π) = 360π .

6. If F = x2i + y2j + z2k, then div F = 2(x + y + z).
Therefore the flux of F out of any solid region R is

Flux =
∫∫∫

R
div F dV

= 2
∫∫∫

R
(x + y + z) dV = 2(x̄ + ȳ + z̄)V

where (x̄, ȳ, z̄) is the centroid of R and V is the volume
of R.

If R is the ellipsoid x2 + y2 + 4(z − 1)2 ≤ 4, then x̄ = 0,
ȳ = 0, z̄ = 1, and V = (4π/3)(2)(2)(1) = 16π/3. The
flux of F out of R is 2(0 + 0 + 1)(16π/3) = 32π/3.
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7. If F = x2i + y2j + z2k, then div F = 2(x + y + z).
Therefore the flux of F out of any solid region R is

Flux =
∫∫∫

R
div F dV

= 2
∫∫∫

R
(x + y + z) dV = 2(x̄ + ȳ + z̄)V

where (x̄ , ȳ, z̄) is the centroid of R and V is the volume
of R.

If R is the tetrahedron with vertices (3, 0, 0), (0, 3, 0),
(0, 0, 3), and (0, 0, 0), then x̄ = ȳ = z̄ = 3/4, and
V = (1/6)(3)(3)(3) = 9/2. The flux of F out of R is
2((3/4) + (3/4) + (3/4))(9/2) = 81/4.

8. If F = x2i + y2j + z2k, then div F = 2(x + y + z).
Therefore the flux of F out of any solid region R is

Flux =
∫∫∫

R
div F dV

= 2
∫∫∫

R
(x + y + z) dV = 2(x̄ + ȳ + z̄)V

where (x̄ , ȳ, z̄) is the centroid of R and V is the volume
of R.

If R is the cylinder x2 + y2 ≤ 2y (or, equivalently,
x2 + (y − 1)2 ≤ 1), 0 ≤ z ≤ 4, then x̄ = 0, ȳ = 1,
z̄ = 2, and V = (π12)(4) = 4π . The flux of F out of R
is 2(0 + 1 + 2)(4π) = 24π .

9. If F = x i + yj + zk, then div F = 3. If C is any solid
region having volume V , then

∫∫∫

C
div F dV = 3V .

The region C described in the statement of the problem
is the part of a solid cone with vertex at the origin that
lies inside a ball of radius R with centre at the origin.
The surface S of C consists of two parts, the conical
wall S1, and the region D on the spherical boundary
of the ball. At any point P on S1, the outward normal
field N̂ is perpendicular to the line O P, that is, to F, so
F • N̂ = 0. At any point P on D, N̂ is parallel to F, in
fact N̂ = F/|F| = F/R. Thus
∫

©
∫

S
F • N̂ d S =

∫∫

S1

F • N̂ d S +
∫∫

D
F • N̂ d S

= 0 +
∫∫

D

F • F
R

d S = R2

R

∫∫

D
d S = AR

where A is the area of D. By the Divergence Theorem,
3V = AR, so V = AR/3.

10. The required surface integral,

I =
∫∫

S
∇φ • N̂ d S,

can be calculated directly by the methods of Section 6.6.
We will do it here by using the Divergence Theorem
instead. S is one face of a tetrahedral domain D whose
other faces are in the coordinate planes, as shown in the
figure. Since φ = xy + z2, we have

∇φ = yi + xj + 2zk, ∇ • ∇φ = ∇2φ = 2.

Thus ∫∫∫

D
∇ • ∇φ dV = 2 × abc

6
= abc

3
,

the volume of the tetrahedron D being abc/6 cubic units.

x

y

z

back

bottom

b
a

side

c

S
D

Fig. 16.4.10

The flux of ∇φ out of D is the sum of its fluxes out of
the four faces of the tetrahedron.

On the bottom, N̂ = −k and z = 0, so ∇φ • N̂ = 0, and
the flux out of the bottom face is 0.

On the side, y = 0 and N̂ = −j, so ∇φ • N̂ = −x . The
flux out of the side face is

∫∫

side
∇φ • N̂ d S = −

∫∫

side
x dx dz = −ac

2
× a

3
= −a2c

6
.

(We used the fact that Mx=0 = area × x̄ and x̄ = a/3 for
that face.)

On the back face, x = 0 and N̂ = −i, so the flux out of
that face is

∫∫

back
∇φ•N̂ d S = −

∫∫

back
y dy dz = −bc

2
× b

3
= −b2c

6
.

Therefore, by the Divergence Theorem

I − a2c

6
− b2c

6
+ 0 = abc

3
,

so
∫∫

S
∇φ • N̂ d S = I = abc

3
+ c(a2 + b2)

6
.

11. F = (x + y2)i + (3x2 y + y3 − x3)j + (z + 1)k

div F = 1 + 3(x2 + y2)+ 1 = 2 + 3(x2 + y2).
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x
y

z

N̂

S

D

B

−k

aa

b

Fig. 16.4.11

Let D be the conical domain, S its conical surface, and
B its base disk, as shown in the figure. We have

∫∫∫

D
div F dV =

∫ 2π

0
dθ

∫ a

0
r dr

∫ b(1−(r/a))

0
(2 + 3r2) dz

= 2πb
∫ a

0
r(2 + 3r2)

(

1 − r

a

)

dr

= 2πb
∫ a

0

(

2r + 3r3 − 2r2

a
− 3r4

a

)

dr

= 2πa2b

3
+ 3πa4b

10
.

On B we have z = 0, N̂ = −k, F • N̂ = −1, so

∫∫

B
F • N̂ d S = −area of B = −πa2.

By the Divergence Theorem,

∫∫

S
F • N̂ d S +

∫∫

B
F • N̂ d S =

∫∫∫

D
div F dV ,

so the flux of F upward through the conical surface S is

∫∫

S
= 2πa2b

3
+ 3πa4b

10
+ πa2.

12. F = (y + xz)i + (y + yz)j − (2x + z2)k
div F = z + (1 + z)− 2z = 1. Thus

∫∫∫

D
div F dV = volume of D = πa3

6
,

where D is the region in the first octant bounded by the
sphere and the coordinate planes. The boundary of D
consists of the spherical part S and the four planar parts,
called the bottom, side, and back in the figure.

x

y

z

a

back

D
S

side

bottom

a
a

Fig. 16.4.12

On the side, y = 0, N̂ = −j, F • N̂ = 0, so
∫∫

side
F • N̂ d S = 0.

On the back, x = 0, N̂ = −i, F • N̂ = −y, so
∫∫

back
F • N̂ d S = −

∫ π/2

0
dθ

∫ a

0
r cos θ r dr

= − sin θ

∣
∣
∣
∣

π/2

0
× a3

3
= −a3

3
.

On the bottom, z = 0, N̂ = −k, F • N̂ = 2x , so
∫∫

bottom
F • N̂ d S = 2

∫ π/2

0
dθ

∫ a

0
r cos θ r dr = 2a3

3
.

By the Divergence Theorem

∫∫

S
F • N̂ d S + 0 − a3

3
+ 2a3

3
= πa3

6
.

Hence the flux of F upward through S is

∫∫

S
F • N̂ d S = πa3

6
− a3

3
.

13. F = (x + yz)i + (y − xz)j + (z − ex sin y)k
div F = 1 + 1 + 1 = 3.

x

y

z

N̂

D

N̂
S1

S2
2a

a

Fig. 16.4.13
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a) The flux of F out of D through S = S1 ∪ S2 is

∫

©
∫

S
F • N̂ d S =

∫∫∫

D
div F dV

= 3
∫ 2π

0
dθ

∫ 2a

a
r dr

∫
√

4a2−r2

0
2 dz

= 12π
∫ 2a

a
r
√

4a2 − r2 dr

Let u = 4a2 − r2

du = −2r dr

= 6π
∫ 3a2

0
u1/2 du = 12

√
3πa3.

b) On S1, N̂ = − x i + yj
a

, d S = a dθ dz. The flux of F

out of D through S1 is

∫∫

S1

F • N̂ d S =
∫∫

S1

−x2 − xyz − y2 + xyz

a
a dθ dz

= −a2
∫ 2π

0
dθ

∫
√

3a

−√
3a

dz = −4
√

3πa3.

c) The flux of F out of D through the spherical part S2
is

∫∫

S2

F • N̂ d S =
∫

©
∫

S
F • N̂ d S −

∫∫

S1

F • N̂ d S

= 12
√

3πa3 + 4
√

3πa3 = 16
√

3πa3.

14. Let D be the domain bounded by S, the coordinate
planes, and the plane x = 1. If

F = 3xz2i − xj − yk,

then div F = 3z2, so the total flux of F out of D is

∫

©
∫

bdry of D
F • N̂ d S =

∫∫∫

D
3z2 dV

= 3
∫ 1

0
dx

∫ π/2

0
dθ

∫ 1

0
r2 cos2 θ r dr

= 3 × 1

4
× π

4
= 3π

16
.

The boundary of D consists of the cylindrical surface
S and four planar surfaces, the side, bottom, back, and
front.

x
y

z

1

back

side

front

1

bottom

1

D

S

Fig. 16.4.14

On the side, y = 0, N̂ = −j, F • N̂ = x , so
∫∫

side
F • N̂ d S =

∫ 1

0
x dx

∫ 1

0
dz = 1

2
.

On the bottom, z = 0, N̂ = −k, F • N̂ = y, so
∫∫

bottom
F • N̂ d S =

∫ 1

0
y dy

∫ 1

0
dx = 1

2
.

On the back, x = 0, N̂ = −i, F • N̂ = 0, so
∫∫

back
F • N̂ d S = 0.

On the front, x = 1, N̂ = i, F • N̂ = 3z2, so
∫∫

front
F • N̂ d S = 3

∫ π/2

0
dθ

∫ 1

0
r2 cos2 θ r dr = 3π

16
.

Hence,
∫∫

S
(3xz2i−xj− yk)•N̂ d S = 3π

16
− 1

2
− 1

2
−0− 3π

16
= −1.

15. F = (x 2 − x − 2y)i + (2y2 + 3y − z)j − (z2 − 4z + xy)k
div F = 2x − 1 + 4y + 3 − 2z + 4 = 2x + 4y − 2z + 6.

The flux of F out of R through its surface S is
∫

©
∫

S
F • N̂ d S =

∫∫∫

R
(2x + 4y − 2z + 6) dV .

Now
∫∫∫

R
x dV = Mx=0 = V x̄ , where R has volume

V and centroid (x̄, ȳ z̄). Similar formulas obtain for the
other variables, so the required flux is

∫

©
∫

S
F • N̂ d S = 2V x̄ + 4V ȳ − 2V z̄ + 6V .

16. F = x i + yj + zk implies that div F = 3. The total flux of
F out of D is

∫

©
∫

bdry of D
F • N̂ d S = 3

∫∫∫

D
dV = 12,
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since the volume of D is half that of a cube of side 2,
that is, 4 square units.
D has three triangular faces, three pentagonal faces, and
a hexagonal face. By symmetry, the flux of F out of each
triangular face is equal to that out of the triangular face
T in the plane z = 1. Since F • N̂ = k • k = 1 on that
face, these fluxes are

∫∫

T
dx dy = area of T = 1

2
.

Similarly, the flux of F out of each pentagonal face is
equal to the flux out of the pentagonal face P in the
plane z = −1, where F • N̂ = −k • (−k) = 1; that
flux is

∫∫

P
dx dy = area of P = 4 − 1

2
= 7

2
.

Thus the flux of F out of the remaining hexagonal face
H is

12 − 3 ×
(

1

2
+ 7

2

)

= 0.

(This can also be seen directly, since F radiates from
the origin, so is everywhere tangent to the plane of the
hexagonal face, the plane x + y + z = 0.)

x

y

z

P

D

H

T (−1,0,1)
(−1,−1,1)

(0,−1,1)

Fig. 16.4.16

17. The part of the sphere S: x2 + y2 + (z − a)2 = 4a2

above z = 0 and the disk D: x2 + y2 = 3a2 in the xy-
plane form the boundary of a region R in 3-space. The
outward normal from R on D is −k. If

F = (x2 + y + 2 + z2)i + (ex2 + y2)j + (3 + x)k,

then divF = 2x + 2y. By the Divergence Theorem,

∫∫

S
F • N̂ d S +

∫∫

D
F • (−k) dx dy =

∫∫∫

R
div F dV = 0

because R is symmetric about x = 0 and y = 0. Thus
the flux of F outward across S is

∫∫

S
F • N̂ d S =

∫∫

D
(3 + x) dx dy = 3π(3a2) = 9πa2.

18. φ = x2 − y2 + z2, G = 1
3 (−y3i + x3j + z3k).

F = ∇φ + µcurl G.

Let R be the region of 3-space occupied by the sandpile.
Then R is bounded by the upper surface S of the sand-
pile and by the disk D: x2 + y2 ≤ 1 in the plane z = 0.
The outward (from R) normal on D is −k. The flux of
F out of R is given by

∫∫

S
F • N̂ d S +

∫∫

D
F • (−k) d A =

∫∫∫

R
div F dV .

Now div curl G = 0 by Theorem 3(g). Also
div ∇φ = div (2x i−2yj+2zk) = 2−2+2 = 2. Therefore

∫∫∫

R
div F dV =

∫∫∫

R
(2 + µ× 0) dV = 2(5π) = 10π.

In addition,

curl G = 1

3

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
−y3 x3 z3

∣
∣
∣
∣
∣
∣
∣

= 3(x2 + y2)k,

and ∇φ • k = 2z = 0 on D, so

∫∫

D
F • k d A = 3µ

∫ 2π

0
dθ

∫ 1

0
r3 dr = 3πµ

2
.

The flux of F out of S is 10π + (3πµ)/2.

19.
∫

©
∫

S
curl F • N̂ d S =

∫∫∫

D
div curl F = 0, by Theorem

3(g).

20. If r = x i + yj + zk, then div r = 3 and

1

3

∫

©
∫

S
r • N̂ d S = 1

3

∫∫∫

D
3 dV = V .

21. We use Theorem 7(b), the proof of which is given in
Exercise 29. Taking φ(x, y, z) = x2 + y2 + z2, we have

1

2V

∫

©
∫

S
(x2 + y2 + z2)N̂ d S = 1

2V

∫

©
∫

S
φN̂ d S

= 1

2V

∫∫∫

D
gradφ dV

= 1

V

∫∫∫

(x i + yj + zk) dV

= r̄,

since
∫∫

x dV = Mx=0 = V x̄ .
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22. Taking F = ∇φ in the first identity in Theorem 7(a), we
have

∫

©
∫

S
∇φ × N̂ d S = −

∫∫∫

D
curl ∇φ dV = 0,

since ∇ × ∇φ = 0 by Theorem 3(h).

23. div (φF) = φdiv F + ∇φ • F by Theorem 3(b). Thus

∫∫∫

D
φdiv F dV +

∫∫∫

D
∇φ • F dV =

∫∫∫

D
div (φF) dV

=
∫

©
∫

S
φF • N̂ d S

by the Divergence Theorem.

24. If F = ∇φ in the previous exercise, then div F = ∇2φ

and
∫∫∫

D
φ∇2φ dV +

∫∫∫

D
|∇φ|2 dV =

∫

©
∫

S
φ∇φ • N̂ d S.

If ∇2φ = 0 in D and φ = 0 on S, then

∫∫∫

D
|∇φ|2 dV = 0.

Since φ is assumed to be smooth, ∇φ = 0 throughout D,
and therefore φ is constant on each connected component
of D. Since φ = 0 on S, these constants must all be 0,
and φ = 0 on D.

25. If u and v are two solutions of the given Dirichlet prob-
lem, and φ = u − v, then

∇2φ = ∇2u − ∇2v = f − f = 0 on D

φ = u − v = g − g = 0 on S.

By the previous exercise, φ = 0 on D, so u = v on D.
That is, solutions of the Dirichlet problem are unique.

26. Re-examine the solution to Exercise 24 above. If
∇2φ = 0 in D and ∂φ/∂n = ∇φ • N̂ = 0 on S, then we
can again conclude that

∫∫∫

D
|∇φ| dV = 0

and ∇φ = 0 throughout D. Thus φ is constant on the
connected components of D. (We can’t conclude the con-
stant is 0 because we don’t know the value of φ on S.)
If u and v are solutions of the given Neumann problem,
then φ = u − v satisfies

∇2φ = ∇2u − ∇2v = f − f = 0 on D
∂φ

∂n
= ∂u

∂n
− ∂v

∂n
= g − g = 0 on S,

so φ is constant on any connected component of S, and u
and v can only differ by a constant on S.

27. Apply the Divergence Theorem to F = ∇φ:

∫∫∫

D
∇2φ dV =

∫∫∫

D
∇ • ∇φ dV

=
∫

©
∫

S
∇φ • N̂ d S =

∫

©
∫

S

∂φ

∂n
d S.

28. By Theorem 3(b),

div (φ∇ψ − ψ∇φ)
= ∇φ • ∇ψ + φ∇2ψ − ∇ψ • ∇φ − ψ∇2φ

= φ∇2ψ − ψ∇2φ.

Hence, by the Divergence Theorem,

∫∫∫

D
(φ∇2ψ − ψ∇2φ) dV =

∫∫∫

D
div (φ∇ψ − ψ∇φ) dV

=
∫

©
∫

S
(φ∇ψ − ψ∇φ) • N̂ d S

=
∫

©
∫

S

(

φ
∂ψ

∂n
− ψ

∂φ

∂n

)

d S.

29. If F = φc, where c is an arbitrary, constant vector, then
div F = ∇φ • c, and by the Divergence Theorem,

c •
∫∫∫

D
∇φ dV =

∫∫∫

D
div F dV

=
∫

©
∫

S
F • N̂ d S

=
∫

©
∫

S
φc • N̂ d S = c •

∫

©
∫

S
φN̂ d S.

Thus

c •
(∫∫∫

D
∇φ dV −

∫

©
∫

S
φN̂ d S

)

= 0.

Since c is arbitrary, the vector in the large parentheses
must be the zero vector. Hence

∫∫∫

D
∇φ dV =

∫

©
∫

S
φN̂ d S.
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30.
1

vol(Dε)

∫

©
∫

Sε
F • N̂ d S = 1

vol(Dε)

∫∫∫

Dε
div F dV

= 1

vol(Dε)

[∫∫∫

Dε
div F(P0) dV

+
∫∫∫

Dε

(

div F − div F(P0)
)

dV

]

= div F(P0)+ 1

vol(Dε)

∫∫∫

Dε

(

div F − div F(P0)
)

dV .

Thus

∣
∣
∣
∣

1

vol(Dε )

∫

©
∫

Sε
F • N̂ d S − div F(P0)

∣
∣
∣
∣

≤ 1

vol(Dε)

∫∫∫

Dε
|div F − div F(P0)| dV

≤ max
P in Dε

|div F − div F(P0)|
→ 0 as ε → 0 + assuming div F is continuous.

lim
ε→0+

1

vol(Dε)

∫

©
∫

Sε
F • N̂ d S = div F(P0).

Section 16.5 Stokes’s Theorem (page 878)

1. The triangle T lies in the plane x + y + z = 1. We use
the downward normal

N̂ = − i + j + k√
3

on T , because of the given orientation of its boundary.
If F = xyi + yzj + zxk, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
xy yz zx

∣
∣
∣
∣
∣
∣
∣

= −yi − zj − xk.

Therefore

∮

C
xy dx + yz dz + zx dz =

∮

C
F • dr

=
∫∫

T
curl F • N̂ d S =

∫∫

T

y + z + x√
3

d S

= 1√
3

∫∫

T
d S = 1√

3
× (area of T )

= 1√
3

×
(

1

2
× √

2 ×
√

3√
2

)

= 1

2
.

x

y

z

1

1

T

C

1

Fig. 16.5.1

2. Let S be the part of the surface z = y2 lying inside the
cylinder x2 + y2 = 4, and having upward normal N̂.
Then C is the oriented boundary of S. Let D be the disk
x2 + y2 ≤ 4, z = 0, that is, the projection of S onto the
xy-plane.

x

y

z

S

D

C N̂

Fig. 16.5.2

If F = yi − xj + z2k, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
y −x z2

∣
∣
∣
∣
∣
∣
∣

= −2k.

Since d S = dx dy

k • N̂
on S, we have

∮

C
y dx − x dy + z2 dz =

∮

C
F • dr =

∫∫

S
curl F • N̂ d S

=
∫∫

D
−2k • N̂

dx dy

k • N̂
= −8π.

3. Let C be the circle x2 + y2 = a2, z = 0, oriented
counterclockwise as seen from the positive z-axis. Let D
be the disk bounded by C, with normal k. We have

F = 3yi − 2xzj + (x2 − y2)k

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
3y −2xz x2 − y2

∣
∣
∣
∣
∣
∣
∣

= 2(x − y)i − 2xj − (2z + 3)k.
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Applying Stokes’s Theorem (twice) we calculate

∫∫

S
=

∮

C
F • dr =

∫∫

D
curl F • k d A

= −
∫∫

D
3 d A = −3πa2.

x

y

z

k

D

S

N̂

C

Fig. 16.5.3

4. The surface S with equation

x2 + y2 + 2(z − 1)2 = 6, z ≥ 0,

with outward normal N̂, is that part of an ellipsoid of
revolution about the z-axis, centred at (0, 0, 1), and lying
above the xy-plane. The boundary of S is the circle C:
x2 + y2 = 4, z = 0, oriented counterclockwise as seen
from the positive z-axis. C is also the oriented boundary
of the disk x2 + y2 ≤ 4, z = 0, with normal N̂ = k.
If F = (xz − y3 cos z)i + x3ezj + xyzex2+y2+z2

k, then, on
z = 0, we have

curl F • k =
(
∂

∂x
x3ez − ∂

∂y
(xz − y3 cos z)

)∣
∣
∣
∣
z=0

=
(

3x2ez + 3y2 cos z
)
∣
∣
∣
∣
z=0

= 3(x2 + y2).

Thus

∫∫

S
curl F • N̂ d S =

∮

C
F • dr =

∫∫

D
curl F • k d A

=
∫ 2π

0
dθ

∫ 2

0
3r2 r dr = 24π.

5. The circle C of intersection of x2 + y2 + z2 = a2 and
x + y + z = 0 is the boundary of a circular disk of radius
a in the plane x + y + z = 0.
If F = yi + zj + xk, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
y z x

∣
∣
∣
∣
∣
∣
∣

= −(i + j + k).

If C is oriented so that D has normal

N̂ = − i + j + k√
3

,

then curl F • N̂ = √
3 on D, so

∮

C
y dx + z dy + x dz =

∮

C
F • dr =

∫∫

D
curl F • N̂ d S

= √
3

∫∫

D
d S = √

3πa2,

since D has area πa2.

6. The curve C:

r = cos t i + sin tj + sin 2tk, 0 ≤ t ≤ 2π,

lies on the surface z = 2xy, since sin 2t = 2 cos t sin t . It
also lies on the cylinder x2+y2 = 1, so it is the boundary
of that part of z = 2xy lying inside that cylinder. Since
C is oriented counterclockwise as seen from high on the
z-axis, S should be oriented with upward normal,

N̂ = −2yi − 2xj + k
√

1 + 4(x2 + y2)
,

and has area element

d S =
√

1 + 4(x2 + y2) dx dy.

If F = (ex − y3)i + (ey + x3)j + ezk, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
ex − y3 ey + x3 ez

∣
∣
∣
∣
∣
∣
∣

= 3(x2 + y2)k.

If D is the disk x2 + y2 ≤ 1 in the xy-plane, then
∮

C
F • dr =

∫∫

S
curl F • N̂ d S =

∫∫

D
3(x2 + y2) dx dy

= 3
∫ 2π

0
dθ

∫ 1

0
r2 r dr = 3π

2
.

7. The part of the paraboloid z = 9 − x2 − y2 lying above
the xy-plane having upward normal N̂ has boundary the
circle C: x2 + y2 = 9, oriented counterclockwise as seen
from above. C is also the oriented boundary of the plane
disk x2 + y2 ≤ 9, z = 0, oriented with normal field
N̂ = k.

If F = −yi + x2j + zk, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
−y x2 z

∣
∣
∣
∣
∣
∣
∣

= (2x + 1)k.
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By Stokes’s Theorem, the circulation of F around C is

∮

C
F • dr =

∫∫

D
(curl F • k) d A

=
∫∫

D
(2x + 1) d A = 0 + π(32) = 9π.

8. The closed curve

r = (1 + cos t)i + (1 + sin t)j + (1 − cos t − sin t)k,

(0 ≤ t ≤ 2π), lies in the plane x + y + z = 3 and is
oriented counterclockwise as seen from above. Therefore
it is the boundary of a region S in that plane with normal
field N̂ = (i + j + k)/

√
3. The projection of S onto the

xy-plane is the circular disk D of radius 1 with centre at
(1, 1).

If F = yex i + (x2 + ex)j + z2ezk, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
yex x2 + ex z2 + ez

∣
∣
∣
∣
∣
∣
∣

= 2xk.

By Stokes’s Theorem,

∮

C
F • dr =

∫∫

S
curl F • N̂ d S

=
∫∫

S

2x√
3

d S =
∫∫

D

2x√
3
(
√

3) dx dy

= 2x̄ A = 2π,

where x̄ = 1 is the x-coordinate of the centre of D, and
A = π12 = π is the area of D.

9. If S1 and S2 are two surfaces joining C1 to C2, each hav-
ing upward normal, then the closed surface S3 consisting
of S1 and −S2 (that is, S2 with downward normal) bound
a region R in 3-space. Then

∫∫

S1

F • N̂ d S −
∫∫

S2

F • N̂ d S

=
∫∫

S1

F • N̂ d S +
∫∫

−S2

F • N̂ d S

=
∫

©
∫

S3

F • N̂ d S = ±
∫∫∫

R
div F dV = 0,

provided that div F = 0 identically. Since

F = (αx2 − z)i + (xy + y3 + z)j + βy2(z + 1)k,

we have div F = 2αx + x + 3y2 + βy2 = 0 if α = −1/2
and β = −3. In this case we can evaluate

∫∫

S F•N̂ d S for
any such surface S by evaluating the special case where
S is the half-disk H : x2 + y2 ≤ 1, z = 0, y ≥ 0, with
upward normal N̂ = k. We have

∫∫

S
F • N̂ d S = −3

∫∫

H
y2 dx dy

= −3
∫ π

0
sin2 θ dθ

∫ 1

0
r3 dr = −3π

8
.

10. The curve C: (x − 1)2 + 4y2 = 16, 2x + y + z = 3,
oriented counterclockwise as seen from above, bounds an
elliptic disk S on the plane 2x + y + z = 3. S has normal
N̂ = (2i + j + k)/

√
6. Since its projection onto the xy-

plane is an elliptic disk with centre at (1, 0, 0) and area
π(4)(2) = 8π , therefore S has area 8

√
6π and centroid

(1, 0, 1). If

F = (z2 + y2 + sin x2)i + (2xy + z)j + (xz + 2yz)k,
then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
z2 + y2 + sin x2 2xy + z xz + 2yz

∣
∣
∣
∣
∣
∣
∣

= (2z − 1)i + zj.

By Stokes’s Theorem,

∮

C
F • dr =

∫∫

S
curl F • N̂ d S

= 1√
6

∫∫

S
(2(2z − 1)+ z) d S

= 5z̄ − 2√
6
(8

√
6π) = 24π.

11. As was shown in Exercise 13 of Section 7.2,

∇ × (φ∇ψ) = −∇ × (ψ × φ) = ∇φ × ∇ψ.

Thus, by Stokes’s Theorem,

∮

C
φ∇ψ =

∫∫

S
∇ × (φ∇ψ) • N̂ d S

=
∫∫

S
(∇φ × ∇ψ) • N̂ d S

−
∮

C
ψ∇φ =

∫∫

S
−∇ × (ψ∇φ) • N̂ d S

=
∫∫

S
(∇φ × ∇ψ) • N̂ d S.

∇φ × ∇ψ is solenoidal, with potential φ∇ψ , or −ψ∇φ.
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12. We are given that C bounds a region R in a plane P
with unit normal N̂ = ai + bj + ck. Therefore,
a2 + b2 + c2 = 1.
If F = (bz − cy)i + (cx − az)j + (ay − bx)k, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
bz − cy cx − az ay − bx

∣
∣
∣
∣
∣
∣
∣

= 2ai + 2bj + 2ck.

Hence curl F • N̂ = 2(a2 + b2 + c2) = 2. We have

1

2

∮

C
(bz − cy) dx + (cx − az) dy + (ay − bx) dz

= 1

2

∮

C
F • dr = 1

2

∫∫

R
curl F • N̂ d S

= 1

2

∫∫

R
2 d S = area of R.

13. The circle Cε of radius ε centred at P is the oriented
boundary of the disk Sε of area πε2 having constant nor-
mal field N̂. By Stokes’s Theorem,

∮

Cε

F • dr =
∫∫

Sε
curl F • N̂ d S

=
∫∫

Sε
curl F(P) • N̂ d S

+
∫∫

Sε

(

curl F − curl F(P)
)

• N̂ d S

= πε2curl F(P) • N̂

+
∫∫

Sε

(

curl F − curl F(P)
)

• N̂ d S.

Since F is assumed smooth, its curl is continuous at P.
Therefore

∣
∣
∣
∣

1

πε2

∮

Cε

F • dr − curl F(P) • N̂

∣
∣
∣
∣

≤ 1

πε2

∫∫

Sε

∣
∣
∣

(

curl F − curl F(P)
)

• N̂
∣
∣
∣ d S

≤ max
Q on Sε

|curl F(Q)− curl F(P)|
→ 0 as ε → 0+.

Thus lim
ε→0+

∮

Cε

F • dr = curl F(P) • N̂.

Section 16.6 Some Physical Applications of
Vector Calculus (page 885)

1. a) If we measure depth in the liquid by −z, so that the z-
axis is vertical and z = 0 at the surface, then the pressure
at depth −z is p = −δgz, where δ is the density of the
liquid. Thus

∇ p = −δgk = δg,

where g = −gk is the constant downward vector acceler-
ation of gravity.
The force of the liquid on surface element d S of the
solid with outward (from the solid) normal N̂ is

dB = −pN̂ d S = −(−δgz)N̂ d S = δgzN̂ d S.

Thus, the total force of the liquid on the solid (the buoy-
ant force) is

B =
∫

©
∫

S
δgzN̂ d S

=
∫∫∫

R
∇(δgz) dV (see Theorem 7)

= −
∫∫∫

R
δg dV = −Mg,

where M =
∫∫∫

R
δ dV is the mass of the liquid

which would occupy the same space as the solid. Thus
B = −F, where F = Mg is the weight of the liquid
displaced by the solid.

x

y
z

N̂

S
R

z

d S

Fig. 16.6.1

b) The above argument extends to the case where the
solid is only partly submerged. Let R∗ be the part
of the region occupied by the solid that is below
the surface of the liquid. Let S∗ = S1 ∪ S2 be the
boundary of R∗, with S1 ⊂ S and S2 in the plane of
the surface of the liquid. Since p = −δgz = 0 on
S2, we have ∫∫

S2

δgzN̂ d S = 0.
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Therefore the buoyant force on the solid is

B =
∫∫

S1

δgzN̂ d S

=
∫∫

S1

δgzN̂ d S +
∫∫

S2

δgzN̂ d S

=
∫

©
∫

S∗ δgzN̂ d S

= −
∫∫∫

R∗
δg dV = −M∗g,

where M∗ =
∫∫∫

R∗
δ dV is the mass of the liquid

which would occupy R∗. Again we conclude that
the buoyant force is the negative of the weight of the
liquid displaced.

S2

S1
R∗

Fig. 16.6.1

2. The first component of F(G • N̂) is (F1G) • N̂. Applying
the Divergence Theorem and Theorem 3(b), we obtain

∫

©
∫

S
(F1G) • N̂ d S =

∫∫∫

D
div (F1G) dV

=
∫∫∫

D

(

∇F1 • G + F1∇ • G
)

d S.

But ∇F1 • G is the first component of (G • ∇)F, and
F1∇ • G is the first component of Fdiv G. Similar results
obtain for the other components, so

∫

©
∫

S
F(G • N̂) d S =

∫∫∫

D

(

Fdiv G + (G • ∇)F
)

dV .

3. Suppose the closed surface S bounds a region R in which
charge is distributed with density ρ. Since the electric
field E due to the charge satisfies div E = kρ, the to-
tal flux of E out of R through S is, by the Divergence
Theorem,

∫

©
∫

S
E • N̂ d S =

∫∫∫

R
div E dV = k

∫∫∫

R
ρ dV = kQ,

where Q = ∫∫∫

R ρ dV is the total charge in R.

4. If f is continuous and vanishes outside a bounded
region (say the ball of radius R centred at r), then
| f (ξ, η, ζ )| ≤ K , and, if (ρ, φ, θ) denote spherical co-
ordinates centred at r, then

∫∫∫

�
3

| f (s)|
|r − s| dVs ≤ K

∫ 2π

0
dθ

∫ π

0
sinφ dφ

∫ R

0

ρ2

ρ
dρ

= 2πK R2 a constant.

5. This derivation is similar to that of the continuity equa-
tion for fluid motion given in the text. If S is an (imag-
inary) surface bounding an arbitrary region D, then the
rate of change of total charge in D is

∂

∂t

∫∫∫

D
ρ dV =

∫∫∫

D

∂ρ

∂t
dV ,

where ρ is the charge density. By conservation of charge,
this rate must be equal to the rate at which charge is
crossing S into D, that is, to

∮

S
(−J) • N̂ d S = −

∫∫∫

D
div J dV .

(The negative sign occurs because N̂ is the outward (from
D) normal on S.) Thus we have

∫∫∫

D

(
∂ρ

∂t
+ div J

)

dV = 0.

Since D is arbitrary and we are assuming the integrand is
continuous, it must be 0 at every point:

∂ρ

∂t
+ div J = 0.

6. Since r = x i + yj + zk and b = b1i + b2j + b3k, we have

|r − b|2 = (x − b1)
2 + (y − b2)

2 + (z − b3)
2

2|r − b| ∂
∂x

|r − b| = 2(x − b1)

∂

∂x
|r − b| = x − b1

|r − b| .

Similar formulas hold for the other first partials of |r−b|,
so

∇
(

1

|r − b|
)

= −1

|r − b|2
(
∂

∂x
|r − b|i + · · · + ∂

∂z
|r − b|k

)

= −1

|r − b|2
(x − b1)i + (y − b2)j + (z − b3)k

|r − b|
= − r − b

|r − b|3 .
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7. Using the result of Exercise 4 and Theorem 3(d) and (h),
we calculate, for constant a,

div
(

a × r − b
|r − b|3

)

= −div
(

a × ∇ 1

|r − b|
)

= −(∇ × a) • ∇ 1

|r − b| + a • ∇ × ∇ 1

|r − b| = 0 + 0 = 0.

8. For any element ds on the filament F, we have

div
(

ds × r − s
|r − s|3

)

= 0

by Exercise 5, since the divergence is taken with respect
to r, and so s and ds can be regarded as constant. Hence

div
∮

F

ds × (r − s)
|r − s|3 =

∮

F
div

(

ds × r − s
|r − s|3

)

= 0.

9. By the result of Exercise 4 and Theorem 3(e), we calcu-
late

curl
(

a × r − b
|r − b|3

)

= −curl
(

a × ∇ 1

|r − b|
)

= −
(

∇ • ∇ 1

|r − b|
)

a −
(

∇ 1

|r − b| • ∇
)

a

+ (∇ • a)∇ 1

|r − b| + (a • ∇)∇ 1

|r − b| .

Observe that ∇ • ∇ 1

|r − b| = 0 for r �= b, either by direct

calculation or by noting that ∇ 1

|r − b| is the field of a

point source at r = b and applying the result of Example
3 of Section 7.1.

Also −
(

∇ 1

|r − b| • ∇
)

a = 0 and ∇ • a = 0, since a is

constant. Therefore we have

curl
(

a × r − b
|r − b|3

)

= (a • ∇)∇ 1

|r − b|
= −(a • ∇) r − b

|r − b|3 .

10. The first component of (ds •∇)F(s) is ∇F1(s) • ds. Since
F is closed and ∇F1 is conservative,

i •
∮

F
(ds • ∇)F(s) =

∮

F
∇F1(s) • ds = 0.

Similarly, the other components have zero line integrals,
so ∮

F
(ds • ∇)F(s) = 0.

11. Using the results of Exercises 7 and 8, we have

curl
∮

F

ds × (r − s)
|r − s|3 =

∮

F
curl

(

ds × r − s
|r − s|3

)

= 0

for r not on F. (Again, this is because the curl is taken
with respect to r, so s and ds can be regarded as constant
for the calculation of the curl.)

12. By analogy with the filament case, the current in volume
element dV at position s is J(s) dV , which gives rise at
position r to a magnetic field

dH(r) = 1

4π

J(s)× (r − s)
|r − s|3 dV .

If R is a region of 3-space outside which J is identically
zero, then at any point r in 3-space, the total magnetic
field is

H(r) = 1

4π

∫∫∫

R

J(s)× (r − s)
|r − s|3 dV .

Now A(r) was defined to be

A(r) = 1

4π

∫∫∫

R

J(s)
|r − s| dV .

We have

curl A(r) = 1

4π

∫∫∫

R
∇r ×

(
1

|r − s|J(s)
)

dV

= 1

4π

∫∫∫

R
∇r

1

|r − s| × J(s) dV

(by Theorem 3(c))

= − 1

4π

∫∫∫

R

(r − s)× J(s)
|r − s|3 dV

(by Exercise 4)

= H(r).

13. A(r) = I

4π

∮

F

ds
|r − s|

div A(r) = I

4π

∮

F
div r

(
1

|r − s| ds
)

= I

4π

∮

F
∇

(
1

|r − s|
)

• ds

(by Theorem 3(b))

= 0 for r not on F,
since ∇(1/|r − s|) is conservative.
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14. A(r) = 1

4π

∫∫∫

R

J(s) dV

|r − s| , where R is a region of 3-

space such that J(s) = 0 outside R. We assume that J(s)
is continuous, so J(s) = 0 on the surface S of R.
In the following calculations we use subscripts s and r to
denote the variables with respect to which derivatives are
taken. By Theorem 3(b),

div s
J(s)

|r − s| =
(

∇s
1

|r − s|
)

• J(s)+ 1

|r − s|∇s • J(s)

= −∇r

(
1

|r − s|
)

• J(s)+ 0

because ∇r|r − s| = −∇s|r − s|, and because
∇ • J = ∇ • (∇ × H) = 0 by Theorem 3(g). Hence

div A(r) = 1

4π

∫∫∫

R

(

∇r
1

|r − s|
)

• J(s) dV

= − 1

4π

∫∫∫

R
∇s • J(s)

|r − s| dV

= − 1

4π

∫

©
∫

S

J(s)
|r − s| • N̂ d S = 0

since J(s) = 0 on S.

By Theorem 3(i),

J = ∇ × H = ∇ × (∇ × A) = ∇(∇ • A)− ∇2A = −∇2A.

15. By Maxwell’s equations, since ρ = 0 and J = 0,

div E = 0

curl E = −µ0
∂H
∂t

div H = 0

curl H = ε0
∂E
∂t

Therefore,

curl curl E = grad div E − ∇2E = −∇2E

∇2E = −curl curl E = µ0
∂

∂t
curl H = µ0ε0

∂2E
∂t2 .

Similarly,

∇2H = µ0ε0
∂2H
∂t2 .

Thus U = E and U = H both satisfy the wave equation

∂2U
∂t2 = c2∇2U, where c2 = 1

µ0ε0
.

16. The heat content of an arbitrary region R (with surface
S) at time t is

H(t) = δc
∫∫∫

R
T (x, y, z, t) dV .

This heat content increases at (time) rate

d H

dt
= δc

∫∫∫

R

∂T

∂t
dV .

If heat is not “created” or “destroyed” (by chemical or
other means) within R, then the increase in heat content
must be due to heat flowing into R across S.
The rate of flow of heat into R across surface element
d S with outward normal N̂ is

−k∇T • N̂ d S.

Therefore, the rate at which heat enters R through S is

k
∫

©
∫

S
∇T • N̂ d S.

By conservation of energy and the Divergence Theorem
we have

δc
∫∫∫

R

∂T

∂t
dV = k

∫

©
∫

S
∇T • N̂ d S

= k
∫∫∫

R
∇ • ∇T dV

= k
∫∫∫

R
∇2T dV .

Thus,
∫∫∫

R

(
∂T

∂t
− k

δc
∇2T

)

dV = 0.

Since R is arbitrary, and the temperature T is as-
sumed to be smooth, the integrand must vanish every-
where. Thus

∂T

∂t
= k

δc
∇2T = k

δc

[
∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂z2

]

.

Section 16.7 Orthogonal Curvilinear
Coordinates (page 896)

1. f (r, θ, z) = rθ z (cylindrical coordinates). By Example
9,

∇ f = ∂ f

∂r
r̂ + 1

r

∂ f

∂θ
θ̂ + ∂ f

∂z
k

= θ z r̂ + z θ̂ + rθ k.

2. f (ρ, φ, θ) = ρφθ (spherical coordinates). By Example
10,

∇ f = ∂ f

∂ρ
ρ̂ + 1

ρ

∂ f

∂φ
φ̂ + 1

ρ sinφ

∂ f

∂θ
θ̂

= φθ ρ̂ + θ φ̂ + φ

sinφ
θ̂.
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3. F(r, θ, z) = r r̂

div F = 1

r

[
∂

∂r
(r2)

]

= 2

curl F = 1

r

∣
∣
∣
∣
∣
∣
∣

r̂ r θ̂ k
∂

∂r

∂

∂θ

∂

∂z
r 0 0

∣
∣
∣
∣
∣
∣
∣

= 0.

4. F(r, θ, z) = r θ̂

div F = 1

r

[
∂

∂θ
(r)

]

= 0

curl F = 1

r

∣
∣
∣
∣
∣
∣
∣
∣

r̂ r θ̂ k
∂

∂r

∂

∂θ

∂

∂z

0 r2 0

∣
∣
∣
∣
∣
∣
∣
∣

= 2k.

5. F(ρ, φ, θ) = sinφ ρ̂

div F = 1

ρ2 sinφ

[
∂

∂ρ

(

ρ2 sin2 φ
)]

= 2 sinφ

ρ

curl F = 1

ρ2 sinφ

∣
∣
∣
∣
∣
∣
∣
∣

ρ̂ ρ φ̂ ρ sinφ θ̂

∂

∂ρ

∂

∂φ

∂

∂θ

sinφ 0 0

∣
∣
∣
∣
∣
∣
∣
∣

= − cosφ

ρ
θ̂.

6. F(ρ, φ, θ) = ρ φ̂

div F = 1

ρ2 sinφ

[
∂

∂φ

(

ρ2 sinφ
)]

= cotφ

curl F = 1

ρ2 sinφ

∣
∣
∣
∣
∣
∣
∣
∣

ρ̂ ρ φ̂ ρ sinφ θ̂

∂

∂ρ

∂

∂φ

∂

∂θ

0 ρ2 0

∣
∣
∣
∣
∣
∣
∣
∣

= 2 θ̂.

7. F(ρ, φ, θ) = ρ θ̂

div F = 1

ρ2 sinφ

[
∂

∂θ

(

ρ2
)]

= 0

curl F = 1

ρ2 sinφ

∣
∣
∣
∣
∣
∣
∣
∣

ρ̂ ρ φ̂ ρ sinφ θ̂

∂

∂ρ

∂

∂φ

∂

∂θ

0 0 ρ2 sinφ

∣
∣
∣
∣
∣
∣
∣
∣

= cotφ ρ̂ − 2 φ̂.

8. F(ρ, φ, θ) = ρ2 ρ̂

div F = 1

ρ2 sinφ

[
∂

∂ρ

(

ρ4 sinφ
)]

= 4ρ

curl F = 1

ρ2 sinφ

∣
∣
∣
∣
∣
∣
∣
∣

ρ̂ ρ φ̂ ρ sinφ θ̂

∂

∂ρ

∂

∂φ

∂

∂θ

ρ2 0 0

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

9. Let r = x(u, v) i + y(u, v) j. The scale factors are

hu =
∣
∣
∣
∣

∂r
∂u

∣
∣
∣
∣

and hv =
∣
∣
∣
∣

∂r
∂v

∣
∣
∣
∣
.

The local basis consists of the vectors

û = 1

hu

∂r
∂u

and v̂ = 1

hv

∂r
∂v
.

The area element is d A = huhv du dv.

10. Since (u, v, z) constitute orthogonal curvilinear coordi-
nates in �3, with scale factors hu , hv and hz = 1, we
have, for a function f (u, v) independent of z,

∇ f (u, v) = 1

hu

∂ f

∂u
û + 1

hv

∂ f

∂v
v̂ + 1

1

∂ f

∂z
k

= 1

hu

∂ f

∂u
û + 1

hv

∂ f

∂v
v̂.

For F(u, v) = Fu(u, v) û + Fv(u, v) v̂ (independent of z
and having no k component), we have

div F(u, v) = 1

huhv

[
∂

∂u
(hu Fu)+ ∂

∂v
(hvFv)

]

curl F(u, v) = 1

huhv

∣
∣
∣
∣
∣
∣
∣
∣

hu û hv v̂ k
∂

∂u

∂

∂v

∂

∂z
hu Fu hvFv 0

∣
∣
∣
∣
∣
∣
∣
∣

= 1

huhv

[
∂

∂u
(hvFv)− ∂

∂v
(hu Fu)

]

k.

11. We can use the expressions calculated in the text for
cylindrical coordinates, applied to functions independent
of z and having no k components:

∇ f (r, θ) = ∂ f

∂r
r̂ + 1

r

∂ f

∂θ
θ̂

div F(r, θ) = ∂Fr

∂r
+ Fr

r
+ 1

r

∂Fθ
∂θ

curl F(r, θ) =
[
∂Fθ
∂r

+ Fθ
r

− 1

r

∂Fr

∂θ

]

k.

12. x = a cosh u cos v, y = a sinh u sin v.

a) u-curves: If A = a cosh u and B = a sinh u, then

x2

A2 + y2

B2 = cos2 v + sin2 v = 1.

Since A2 − B2 = a2(cosh2 u − sinh2 u) = a2, the
u-curves are ellipses with foci at (±a, 0).

b) v-curves: If A = a cos v and B = a sin v, then

x2

A2 − y2

B2 = cosh2 u − sinh2 u = 1.

Since A2 + B2 = a2(cos2 v + sin2 v) = a2, the
v-curves are hyperbolas with foci at (±a, 0).
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c) The u-curve u = u0 has parametric equations

x = a cosh u0 cos v, y = a sinh u0 sin v,

and therefore has slope at (u0, v0) given by

mu = dy

dx
= dy

dv

/
dx

dv

∣
∣
∣
∣
(u0,v0)

= a sinh u0 cos v0

−a cosh u0 sin v0
.

The v-curve v = v0 has parametric equations

x = a cosh u cos v0, y = a sinh u sin v0,

and therefore has slope at (u0, v0) given by

mv = dy

dx
= dy

du

/
dx

du

∣
∣
∣
∣
(u0,v0)

= a cosh u0 sin v0

a sinh u0 cos v0
.

Since the product of these slopes is mumv = −1, the
curves u = u0 and v = v0 intersect at right angles.

d) r = a cosh u cos v i + a sinh u sin v j
∂r
∂u

= a sinh u cos v i + a cosh u sin v j

∂r
∂v

= −a cosh u sin v i + a sinh u cos v j.

The scale factors are

hu =
∣
∣
∣
∣

∂r
∂u

∣
∣
∣
∣
= a

√

sinh2 u cos2 v + cosh2 u sin2 v

hv =
∣
∣
∣
∣

∂r
∂v

∣
∣
∣
∣
= a

√

sinh2 u cos2 v + cosh2 u sin2 v = hu .

The area element is

d A = huhv du dv

= a2
(

sinh2 u cos2 v + cosh2 u sin2 v
)

du dv.

13. x = a cosh u cos v

y = a sinh u sin v

z = z.
Using the result of Exercise 12, we see that the coordi-
nate surfaces are
u = u0: vertical elliptic cylinders with focal axes
x = ±a, y = 0.
v = v0: vertical hyperbolic cylinders with focal axes
x = ±a, y = 0.
z = z0: horizontal planes.

The coordinate curves are
u-curves: the horizontal hyperbolas in which the v = v0
cylinders intersect the z = z0 planes.
v-curves: the horizontal ellipses in which the u = u0
cylinders intersect the z = z0 planes.
z-curves: sets of four vertical straight lines where the
elliptic cylinders u = u0 and hyperbolic cylinders v = v0
intersect.

14. ∇ f (r, θ, z) = ∂ f

∂r
r̂ + 1

r

∂ f

∂θ
θ̂ + ∂ f

∂z
k

∇ 2 f (r, θ, z) = div
(

∇ f (r, θ, z)
)

= 1

r

[
∂

∂r

(

r
∂ f

∂r

)

+ ∂

∂θ

(
1

r

∂ f

∂θ

)

+ ∂

∂z

(

r
∂ f

∂z

)]

= ∂2 f

∂r2
+ 1

r

∂ f

∂r
+ 1

r2

∂2 f

∂θ2
+ ∂2 f

∂z2
.

15. ∇ f (ρ, φ, θ) = ∂ f

∂ρ
ρ̂ + 1

ρ

∂ f

∂φ
φ̂ + 1

ρ sinφ

∂ f

∂θ
θ̂

∇ 2 f (ρ, φ, θ) = div
(

f (ρ, φ, θ)
)

= 1

ρ2 sinφ

[
∂

∂ρ

(

ρ2 sinφ
∂ f

∂ρ

)

+ ∂

∂φ

(

ρ sinφ
1

ρ

∂ f

∂φ

)

+ ∂

∂θ

(
ρ

ρ sinφ

∂ f

∂θ

)]

= ∂2 f

∂ρ2 + 2

ρ

∂ f

∂ρ
+ 1

ρ2

∂2 f

∂φ2

+ cotφ

ρ2

∂ f

∂φ
+ 1

ρ2 sin2 φ

∂2 f

∂θ2 .

16. ∇ f (u, v, w) = 1

hu

∂ f

∂u
û + 1

hv

∂ f

∂v
v̂ + 1

hw

∂ f

∂w
ŵ

∇ 2 f (u, v, w) = div
(

∇ f (u, v, w)
)

= 1

huhvhw

[
∂

∂u

(
hvhw

hu

∂ f

∂u

)

+ ∂

∂v

(
huhw

hv

∂ f

∂v

)

+ ∂

∂w

(
huhv
hw

∂ f

∂w

)]

= 1

h2
u

[
∂2 f

∂u2
+

(
1

hv

∂hv
∂u

+ 1

hw

∂hw
∂u

− 1

hu

∂hu

∂u

)
∂ f

∂u

]

+ 1

h2
v

[
∂2 f

∂v2 +
(

1

hu

∂hu

∂v
+ 1

hw

∂hw
∂v

− 1

hv

∂hv
∂v

)
∂ f

∂v

]

+ 1

h2
w

[
∂2 f

∂w2 +
(

1

hu

∂hu

∂w
+ 1

hv

∂hv
∂w

− 1

hw

∂hw
∂w

)
∂ f

∂w

]

.

Review Exercises 16 (page 896)

1. The semi-ellipsoid S with upward normal N̂ specified in
the problem and the disk D given by x2+y2 ≤ 16, z = 0,
with downward normal −k together bound the solid re-
gion R: 0 ≤ z ≤ 1

2

√

16 − x2 − y2. By the Divergence
Theorem:

∫∫

S
F • N̂ d S +

∫∫

D
F • (−k) d A =

∫∫∫

R
div F dV .
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For F = x2zi + (y2z + 3y)j + x2k we have
∫∫∫

R
div F dV =

∫∫∫

R
(2xz + 2yz + 3) dV

= 0 + 0 + 3
∫∫∫

R
dV = 3 × (volume of R)

= 3

2

4

3
π422 = 64π.

The flux of F across S is
∫∫

S
F • N̂ d S = 64π +

∫∫

D
F • k d A

= 64π +
∫∫

D
x2 d A

= 64π +
∫ 2π

0
cos2 θ dθ

∫ 4

0
r3 dr = 128π.

2. Let R be the region inside the cylinder S and between
the planes z = 0 and z = b. The oriented boundary of R
consists of S and the disks D1 with normal N̂1 = k and
D2 with normal N̂2 = −k as shown in the figure. For
F = x i + cos(z2)j + ezk we have div F = 1 + ez and

∫∫∫

R
div F dV =

∫∫

D2

dx dy
∫ b

0
(1 + ez) dz

=
∫∫

D2

[b + (eb − 1)] dx dy

= πa2b + πa2(eb − 1).

Also
∫∫

D2

F • (−k) d A = −
∫∫

D2

e0 d A = −πa2

∫∫

D1

F • k d A =
∫∫

D1

eb d A = πa2eb.

By the Divergence Theorem
∫∫

S
F • N̂ d S +

∫∫

D1

F • k d A +
∫∫

D2

F • (−k) d A

=
∫∫∫

R
div F dV = πa2b + πa2(eb − 1).

Therefore,
∫∫

S
F • N̂ d S = πa2b.

x y

z

S

N̂1 = k

D1

R

b

D2

N̂2 = −k

N̂

2a

Fig. R-16.2

3.
∮

C
(3y2 + 2xey2

) dx + (2x2 yey2
) dy

=
∫∫

P
[4xyey2 − (6y + 4xyey2

)] d A

= −6
∫∫

P
y d A = −6ȳ A = −6,

since P has area A = 2 and its centroid has y-coordinate
ȳ = 1/2.

y

x

(1, 1) (3, 1)

C
P

(2, 0)

Fig. R-16.3

4. If F = −zi + xj + yk, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z−z x y

∣
∣
∣
∣
∣
∣
∣

= i − j + k.

The unit normal N̂ to a region in the plane
2x + y + 2z = 7 is

N̂ = ± 2i + j + 2k
3

.

If C is the boundary of a disk D of radius a in that
plane, then

∮

C
F • dr =

∫∫

D
curl F • N̂ d S

= ±
∫∫

D

2 − 1 + 2

3
d S = ±πa2.

5. If Sa is the sphere of radius a centred at the origin, then

div F(0, 0, 0) = lim
a→0+

1
4
3πa3

∫

©
∫

Sa

F • N̂ d S

= lim
a→0+

3

4πa3 (πa3 + 2a4) = 3

4
.

6. If S is any surface with upward normal N̂ and boundary
the curve C: x2 + y2 = 1, z = 2, then C is oriented coun-
terclockwise as seen from above, and it has parametriza-
tion

r = cos t i + sin tj + 2k (0 ≤ 2 ≤ 2π).
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Thus dr = (− sin t i + cos tj) dt , and if
F = −yi + x cos(1 − x2 − y2)j + yzk, then the flux of
curl F upward through S is

∫∫

S
curl F • N̂ d S =

∮

C
F • dr

=
∫ 2π

0
(sin2 t + cos2 t + 0) dt = 2π.

7. F(r) = rλr where r = x i + yj + zk and r = |r|. Since
r2 = x2 + y2 + z2, therefore ∂r/∂x = x/r and

∂

∂x
(rλx) = λrλ−1 x2

r
+ rλ = rλ−2(λx2 + r2).

Similar expressions hold for (∂/∂y)(rλy) and
(∂/∂z)(rλz), so

div F(r) = rλ−2(λr2 + 3r2) = (λ + 3)rλ.

F is solenoidal on any set in �3 that excludes the origin
if an only if λ = −3. In this case F is not defined at
r = 0. There is no value of λ for which F is solenoidal
on all of �3.

8. If curl F = µF on �3, where µ �= 0 is a constant, then

div F = 1

µ
div curl F = 0

by Theorem 3(g) of Section 7.2. By part (i) of the same
theorem,

∇2F = ∇(div F)− curl curl F

= 0 − µcurl F = −µ2F.

Thus ∇2F + µ2F = 0.

9. Apply the variant of the Divergence Theorem given in
Theorem 7(b) of Section 7.3, namely

∫∫∫

P
gradφ dV =

∫

©
∫

S
φN̂ d S,

to the scalar field φ = 1 over the polyhedron P. Here

S =
n

⋃

i=1

Fi is the surface of P, oriented with outward

normal field N̂i on the face Fi . If Ni = Ai N̂i , where Ai

is the area of Fi , then, since gradφ = 0, we have

0 =
∫

©
∫

S
N̂ d S =

n
∑

i=1

∫∫

Fi

Ni

Ai
d S =

n
∑

i=1

Ni

Ai
Ai =

n
∑

i=1

Ni .

10. Let C be a simple, closed curve in the xy-plane bounding
a region R. If

F = (2y3 − 3y + xy2)i + (x − x3 + x2 y)j,

then by Green’s Theorem, the circulation of F around C
is

∮

C
F • dr

=
∫∫

R

[
∂

∂x
(x − x3 + x2 y)− ∂

∂y
(2y3 − 3y + xy2)

]

d A

=
∫∫

R
(1 − 3x2 + 2xy − 6y2 + 3 − 2xy) d A

=
∫∫

R
(4 − 3x2 − 6y2) dx dy.

The last integral has a maximum value when the region
R is bounded by the ellipse 3x2 + 6y2 = 4, oriented
counterclockwise; this is the largest region in the xy-
plane where the integrand is nonnegative.

11. Let S be a closed, oriented surface in �3 bounding a
region R, and having outward normal field N̂. If

F = (4x + 2x3z)i − y(x2 + z2)j − (3x2z2 + 4y2z)k,

then by the Divergence Theorem, the flux of F through S
is

∫

©
∫

S
F•N̂ d S =

∫∫∫

R
div F dV =

∫∫∫

R
(4−x2−4y2−z2) dV .

The last integral has a maximum value when the region
R is bounded by the ellipsoid x2 + 4y2 + z2 = 4 with
outward normal; this is the largest region in �3 where the
integrand is nonnegative.

12. Let C be a simple, closed curve on the plane
x + y + z = 1, oriented counterclockwise as seen from
above, and bounding a plane region S on x + y + z = 1.
Then S has normal N̂ = (i + j + k)/

√
3. If

F = xy2i + (3z − xy2)j + (4y − x2 y)k, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
xy2 3z − xy2 4y − x2 y

∣
∣
∣
∣
∣
∣
∣

= (1 − x2)i + 2xyj − (y2 + 2xy)k.

By Stokes’s Theorem we have

∮

C
F • dr =

∫∫

S
curl F • N̂ d S =

∫∫

S

1 − x2 − y2

√
3

d S.
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The last integral will be maximum if the projection of S
onto the xy-plane is the disk x2 + y2 ≤ 1. This maximum
value is

∫∫

x2+y2≤1

1 − x2 − y2
√

3

√
3 dx dy

=
∫ 2π

0
dθ

∫ 1

0
(1 − r2)r dr = 2π

(
1

2
− 1

4

)

= π

2
.

Challenging Problems 16 (page 897)

1. By Theorem 1 of Section 7.1, we have

div v(r1) = lim
ε→0+

3

4πε3

∫

©
∫

Sε
v(r) • N̂(r) d S.

Here Sε is the sphere of radius ε centred at the point
(with position vector) r1 and having outward normal field
N̂(r). If r is (the position vector of) any point on Sε ,
then r = r1 + εN̂(r), and

∫

©
∫

Sε
v(r) • N̂(r) d S

=
∫

©
∫

Sε

[

v(r1)+
(

v(r)− v(r1)
)]

• N̂(r) d S

= v(r1) •
∫

©
∫

Sε
N̂(r) d S

+
∫

©
∫

Sε

(

v(r)− v(r1)
)

• r − r1

ε
d S.

But
∫

©
∫

Sε
N̂(r) d S = 0 by Theorem 7(b) of Section 7.3

with φ = 1. Also, since v satisfies

v(r2)− v(r1) = C |r2 − r1|2,
we have

∫

©
∫

Sε

(

v(r)− v(r1)
)

• r − r1

ε
d S

=
∫

©
∫

Sε

Cε2

ε
d S = 4πCε3.

Thus

div v(r1) = lim
ε→0+

3

4πε3 (0 + 4πCε3) = 3C.

The divergence of the large-scale velocity field of matter
in the universe is three times Hubble’s constant C .

2. a) The steradian measure of a half-cone of semi-vertical
angle α is

∫ 2π

0
dθ

∫ α

0
sinφ dφ = 2π(1 − cosα).

b) If S is the intersection of a smooth surface with the
general half-cone K , and is oriented with normal
field N̂ pointing away from the vertex P of K , and
if Sa is the intersection with K of a sphere of radius
a centred at P, with a chosen so that S and Sa do
not intersect in K , then S, Sa , and the walls of K
bound a solid region R that does not contain the
origin. If F = r/|r|3, then div F = 0 in R (see
Example 3 in Section 7.1), and F • N̂ = 0 on the
walls of K . It follows from the Divergence Theorem
applied to F over R that

∫∫

S
F • N̂ d S =

∫∫

Sa

F • r
|r| d S

= a2

a4

∫∫

Sa

d S = 1

a2 (area of Sa)

= area of S1.

The area of S1 (the part of the sphere of radius 1 in
K ) is the measure (in steradians) of the solid angle
subtended by K at its vertex P. Hence this measure
is given by

∫∫

S

r
|r|3 • N̂ d S.

3. a) Verification of the identity

∂

∂t

(

G • ∂r
∂s

)

− ∂

∂s

(

G • ∂r
∂t

)

= ∂F
∂t

• ∂r
∂s

+
(

(∇ × F)× ∂r
∂t

)

• ∂r
∂s
.

can be carried out using the following MapleV com-
mands:

> with(linalg):
> F:=(x,y,z,t)-> [F1(x,y,z,t),
> F2(x,y,z,t),F3(x,y,z,t)];
> r:=(s,t)->[x(s,t),y(s,t),z(s,t)];
>

G:=(s,t)->F(x(s,t),y(s,t),z(s,t),t);
> g:=(s,t)-> dotprod(G(s,t),
> map(diff,r(s,t),s));
> h:=(s,t)-> dotprod(G(s,t),
> map(diff,r(s,t),t));
> LH1:=diff(g(s,t),t);
> LH2:=diff(h(s,t),s);
> LHS:=simplify(LH1-LH2);
>

RH1:=dotprod(subs(x=x(s,t),y=y(s,t),
> z=z(s,t),diff(F(x,y,z,t),t)),
> diff(r(s,t),s));
>

RH2:=dotprod(crossprod(subs(x=x(s,t),
> y=y(s,t),z=z(s,t),
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> curl(F(x,y,z,t),[x,y,z])),
> diff(r(s,t),t)),diff(r(s,t),s));
> RHS:=RH1+RH2; LHS-RHS; simplify(%);

We omit the output here; some of the commands produce
screenfulls of output. The output of the final command is
0, indicating that the identity is valid.

b) As suggested by the hint,

d

dt

∫

Ct

F • dr =
∫ b

a

∂

∂t

(

G • ∂r
∂s

)

ds

=
∫ b

a

[
∂

∂s

(

G • ∂r
∂t

)

+
(
∂

∂t

(

G • ∂r
∂s

)

− ∂

∂s

(

G • ∂r
∂t

))]

ds

= G • ∂r
∂t

∣
∣
∣
∣

s=b

s=a

+
∫ b

a

[
∂F
∂t

+
(

(∇ × F)× ∂r
∂t

)]

• ∂r
∂s

ds

= F
(

r(b, t), t
)

• vC (b, t)− F
(

r(a, t), t
)

• vC (a, t)

+
∫

Ct

∂F
∂t

• dr +
∫

Ct

(

(∇ × F)× vC

)

• dr.

4. a) Verification of the identity

∂

∂t

(

G •
[
∂r
∂u

× ∂r
∂v

])

− ∂

∂u

(

G •
[
∂r
∂t

× ∂r
∂v

])

− ∂

∂v

(

G •
[
∂r
∂u

× ∂r
∂t

])

=∂F
∂t

•
[
∂r
∂u

× ∂r
∂v

]

+ (∇ • F)
∂r
∂t

•
[
∂r
∂u

× ∂r
∂v

]

.

can be carried out using the following MapleV com-
mands:

> with(linalg):
> F:=(x,y,z,t)->[F1(x,y,z,t),
> F2(x,y,z,t),F3(x,y,z,t)];
> r:=(u,v,t)->[x(u,v,t),y(u,v,t),
> z(u,v,t)];
> ru:=(u,v,t)->diff(r(u,v,t),u);
> rv:=(u,v,t)->diff(r(u,v,t),v);
> rt:=(u,v,t)->diff(r(u,v,t),t);
> G:=(u,v,t)->F(x(u,v,t),
> y(u,v,t),z(u,v,t),t);
>

ruxv:=(u,v,t)->crossprod(ru(u,v,t),
> rv(u,v,t));
>

rtxv:=(u,v,t)->crossprod(rt(u,v,t),
> rv(u,v,t));

>

ruxt:=(u,v,t)->crossprod(ru(u,v,t),
> rt(u,v,t));
> LH1:=diff(dotprod(G(u,v,t),
> ruxv(u,v,t)),t);
> LH2:=diff(dotprod(G(u,v,t),
> rtxv(u,v,t)),u);
> LH3:=diff(dotprod(G(u,v,t),
> ruxt(u,v,t)),v);
> LHS:=simplify(LH1-LH2-LH3);
> RH1:=dotprod(subs(x=x(u,v,t),
> y=y(u,v,t),z=z(u,v,t),
>

diff(F(x,y,z,t),t)),ruxv(u,v,t));
> RH2:=(divf(u,v,t))*
>

(dotprod(rt(u,v,t),ruxv(u,v,t)));
> RHS:=simplify(RH1+RH2);
> simplify(LHS-RHS);

Again the final output is 0, indicating that the identity is
valid.

b) If Ct is the oriented boundary of St and Lt is the
corresponding counterclockwise boundary of the
parameter region R in the uv-plane, then

∮

Ct

(

F × ∂r
∂t

)

• dr

=
∮

Lt

(

G × ∂r
∂t

)

•
(
∂r
∂u

du + ∂r
∂v

dv

)

=
∮

Lt

[

−G •
(
∂r
∂u

× ∂r
∂t

)

+ G •
(
∂r
∂t

× ∂r
∂v

)]

dt

=
∫∫

R

[
∂

∂u

(

G •
(
∂r
∂t

× ∂r
∂v

))

+ ∂

∂v

(

G •
(
∂r
∂u

× ∂r
∂t

))]

du dv,

by Green’s Theorem.

c) Using the results of (a) and (b), we calculate

d

dt

∫∫

St

F • N̂ d S =
∫∫

R

∂

∂t

[

G •
(
∂r
∂u

× ∂r
∂v

)]

du dv

=
∫∫

R

∂F
∂t

•
(
∂r
∂u

× ∂r
∂v

)

du dv

+
∫∫

R
(div F)

∂r
∂t

•
(
∂r
∂u

× ∂r
∂v

)

du dv

+
∫∫

R

[
∂

∂u

(

G •
(
∂r
∂t

× ∂r
∂v

))

+ ∂

∂v

(

G •
(
∂r
∂u

× ∂r
∂t

))]

du dv

=
∫∫

St

∂F
∂t

• N̂ d S +
∫∫

St

(div F)vS • N̂ d S
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+
∫

©
∫

Ct (F × vC) • dr.

5. We have

1

�t

[∫∫∫

Dt+�t

f (r, t +�t) dV −
∫∫∫

Dt

f (r, t) dV

]

=
∫∫∫

Dt

f (r, t +�t)− f (r, t)

�t
dV

+ 1

�t

∫∫∫

Dt+�t −Dt

f (r, t +�t) dV

− 1

�t

∫∫∫

Dt −Dt+�t

f (r, t +�t) dV

= I1 + I2 − I3.

Evidently I1 →
∫∫∫

Dt

∂ f

∂t
dV as �t → 0.

I2 and I3 are integrals over the parts of �Dt where the
surface §t is moving outwards and inwards, respectively,
that is, where vS •N̂ is, respectively, positive and negative.
Since dV = |vS • N̂| d S�T , we have

I2 − I3 =
∫∫

St

f (r, t +�t)vS • N̂ d S

=
∫∫

St

f (r, t)vS • N̂ d S

+
∫∫

St

(

f (r, t +�t)− f (r, t)
)

vS • N̂ d S.

The latter integral approaches 0 as �t → 0 because

∣
∣
∣
∣

∫∫

St

(

f (r, t +�t)− f (r, t)
)

vS • N̂ d S

∣
∣
∣
∣

≤ max |vS |
∣
∣
∣
∣

∂ f

∂t

∣
∣
∣
∣
(area of St )�t.
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