CHAPTER 16. VECTOR CALCULUS

Section 16.1 Gradient, Divergence, and Curl (page 858)

1. $\quad \mathbf{F}=x \mathbf{i}+y \mathbf{j}$
$\operatorname{div} \mathbf{F}=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)+\frac{\partial}{\partial z}(0)=1+1=2$
$\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & y & 0\end{array}\right|=\mathbf{0}$
2. $\quad \mathbf{F}=y \mathbf{i}+x \mathbf{j}$
$\operatorname{div} \mathbf{F}=\frac{\partial}{\partial x}(y)+\frac{\partial}{\partial y}(x)+\frac{\partial}{\partial z}(0)=0+0=0$
$\mathbf{c u r l F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & x & 0\end{array}\right|=(1-1) \mathbf{k}=\mathbf{0}$
3. $\quad \mathbf{F}=y \mathbf{i}+z \mathbf{j}+x \mathbf{k}$
$\operatorname{div} \mathbf{F}=\frac{\partial}{\partial x}(y)+\frac{\partial}{\partial y}(z)+\frac{\partial}{\partial z}(x)=0$
$\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & z & x\end{array}\right|=-\mathbf{i}-\mathbf{j}-\mathbf{k}$
4. $\quad \mathbf{F}=y z \mathbf{i}+x z \mathbf{j}+x y \mathbf{k}$
$\boldsymbol{\operatorname { d i v }} \mathbf{F}=\frac{\partial}{\partial x}(y z)+\frac{\partial}{\partial y}(x z)+\frac{\partial}{\partial z}(x y)=0$

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y z & x z & x y
\end{array}\right| \\
& =(x-x) \mathbf{i}+(y-y) \mathbf{j}+(z-z) \mathbf{k}=\mathbf{0}
\end{aligned}
$$

5. $\quad \mathbf{F}=x \mathbf{i}+x \mathbf{k}$
$\operatorname{div} \mathbf{F}=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(0)+\frac{\partial}{\partial z}(x)=1$
$\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & 0 & x\end{array}\right|=-\mathbf{j}$
6. $\quad \mathbf{F}=x y^{2} \mathbf{i}-y z^{2} \mathbf{j}+z x^{2} \mathbf{k}$

$$
\operatorname{div} \mathbf{F}=\frac{\partial}{\partial x}\left(x y^{2}\right)+\frac{\partial}{\partial y}\left(-y z^{2}\right)+\frac{\partial}{\partial z}\left(z x^{2}\right)
$$

$$
=y^{2}-z^{2}+x^{2}
$$

$\mathbf{c u r l F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x y^{2} & -y z^{2} & z x^{2}\end{array}\right|$

$$
=2 y z \mathbf{i}-2 x z \mathbf{j}-2 x y \mathbf{k}
$$

7. $\quad \mathbf{F}=f(x) \mathbf{i}+g(y) \mathbf{j}+h(z) \mathbf{k}$
$\boldsymbol{\operatorname { d i v }} \mathbf{F}=\frac{\partial}{\partial x} f(x)+\frac{\partial}{\partial y} g(y)+\frac{\partial}{\partial z} h(z)$

$$
=f^{\prime}(x)+g^{\prime}(y)+h^{\prime}(z)
$$

$\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f(x) & g(y) & h(z)\end{array}\right|=\mathbf{0}$
8. $\quad \mathbf{F}=f(z) \mathbf{i}-f(z) \mathbf{j}$
$\boldsymbol{\operatorname { d i v }} \mathbf{F}=\frac{\partial}{\partial x} f(z)+\frac{\partial}{\partial y}(-f(z))=0$
$\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f(z) & -f(z) & 0\end{array}\right|=f^{\prime}(z)(\mathbf{i}+\mathbf{j})$
9. Since $x=r \cos \theta$, and $y=r \sin \theta$, we have $r^{2}=x^{2}+y^{2}$, and so

$$
\begin{aligned}
\frac{\partial r}{\partial x} & =\frac{x}{r}=\cos \theta \\
\frac{\partial r}{\partial y} & =\frac{y}{r}=\sin \theta \\
\frac{\partial}{\partial x} \sin \theta & =\frac{\partial}{\partial x} \frac{y}{r}=\frac{-x y}{r^{3}}=-\frac{\cos \theta \sin \theta}{r} \\
\frac{\partial}{\partial y} \sin \theta & =\frac{\partial}{\partial y} \frac{y}{r}=\frac{1}{r}-\frac{y^{2}}{r^{3}} \\
& =\frac{x^{2}}{r^{3}}=\frac{\cos ^{2} \theta}{r} \\
\frac{\partial}{\partial x} \cos \theta & =\frac{\partial}{\partial x} \frac{x}{r}=\frac{1}{r}-\frac{x^{2}}{r^{3}} \\
& =\frac{y^{2}}{r^{3}}=\frac{\sin ^{2} \theta}{r} \\
\frac{\partial}{\partial y} \cos \theta & =\frac{\partial}{\partial y} \frac{x}{r}=\frac{-x y}{r^{3}}=-\frac{\cos \theta \sin \theta}{r} .
\end{aligned}
$$

(The last two derivatives are not needed for this exercise, but will be useful for the next two exercises.) For

$$
\mathbf{F}=r \mathbf{i}+\sin \theta \mathbf{j},
$$

we have

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\frac{\partial r}{\partial x}+\frac{\partial}{\partial y} \sin \theta=\cos \theta+\frac{\cos ^{2} \theta}{r} \\
\mathbf{c u r l} \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
r & \sin \theta & 0
\end{array}\right| \\
& =\left(-\frac{\sin \theta \cos \theta}{r}-\sin \theta\right) \mathbf{k} .
\end{aligned}
$$

10. $\quad \mathbf{F}=\hat{\mathbf{r}}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}$

$$
\operatorname{div} \mathbf{F}=\frac{\sin ^{2} \theta}{r}+\frac{\cos ^{2} \theta}{r}=\frac{1}{r}=\frac{1}{\sqrt{x^{2}+y^{2}}}
$$

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\cos \theta & \sin \theta & 0
\end{array}\right| \\
& =-\left(\frac{\cos \theta \sin \theta}{r}-\frac{\cos \theta \sin \theta}{r}\right) \mathbf{k}=\mathbf{0}
\end{aligned}
$$

11. $\mathbf{F}=\hat{\boldsymbol{\theta}}=-\sin \theta \mathbf{i}+\cos \theta \mathbf{j}$

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\frac{\cos \theta \sin \theta}{r}-\frac{\cos \theta \sin \theta}{r}=0 \\
\operatorname{curl} \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-\sin \theta & \cos \theta & 0
\end{array}\right| \\
& =\left(\frac{\sin ^{2} \theta}{r}+\frac{\cos ^{2} \theta}{r}\right) \mathbf{k}=\frac{1}{r} \mathbf{k}=\frac{1}{\sqrt{x^{2}+y^{2}}} \mathbf{k}
\end{aligned}
$$

12. We use the Maclaurin expansion of \mathbf{F}, as presented in the proof of Theorem 1:

$$
\mathbf{F}=\mathbf{F}_{0}+\mathbf{F}_{1} x+\mathbf{F}_{2} y+\mathbf{F}_{3} z+\cdots,
$$

where
$\mathbf{F}_{0}=\mathbf{F}(0,0,0)$
$\mathbf{F}_{1}=\left.\frac{\partial}{\partial x} \mathbf{F}(x, y, z)\right|_{(0,0,0)}=\left.\left(\frac{\partial F_{1}}{\partial x} \mathbf{i}+\frac{\partial F_{2}}{\partial x} \mathbf{j}+\frac{\partial F_{3}}{\partial x} \mathbf{k}\right)\right|_{(0,0,0)}$
$\mathbf{F}_{2}=\left.\frac{\partial}{\partial y} \mathbf{F}(x, y, z)\right|_{(0,0,0)}=\left.\left(\frac{\partial F_{1}}{\partial y} \mathbf{i}+\frac{\partial F_{2}}{\partial y} \mathbf{j}+\frac{\partial F_{3}}{\partial y} \mathbf{k}\right)\right|_{(0,0,0)}$
$\mathbf{F}_{3}=\left.\frac{\partial}{\partial z} \mathbf{F}(x, y, z)\right|_{(0,0,0)}=\left.\left(\frac{\partial F_{1}}{\partial z} \mathbf{i}+\frac{\partial F_{2}}{\partial z} \mathbf{j}+\frac{\partial F_{3}}{\partial z} \mathbf{k}\right)\right|_{(0,0,0)}$
and where \cdots represents terms of degree 2 and higher in x, y, and z.
On the top of the box $B_{a, b, c}$, we have $z=c$ and $\hat{\mathbf{N}}=\mathbf{k}$.
On the bottom of the box, we have $z=-c$ and $\hat{\mathbf{N}}=-\mathbf{k}$.
On both surfaces $d S=d x d y$. Thus

$$
\begin{aligned}
& \left(\iint_{\text {top }}+\iint_{\text {bottom }}\right) \mathbf{F} \bullet \hat{\mathbf{N}} d S \\
& =\int_{-a}^{a} d x \int_{-b}^{b} d y\left(c \mathbf{F}_{3} \bullet \mathbf{k}-c \mathbf{F}_{3} \bullet(-\mathbf{k})\right)+\cdots \\
& =8 a b c \mathbf{F}_{3} \bullet \mathbf{k}+\cdots=\left.8 a b c \frac{\partial}{\partial z} F_{3}(x, y, z)\right|_{(0,0,0)}+\cdots,
\end{aligned}
$$

where \cdots represents terms of degree 4 and higher in a, b, and c.
Similar formulas obtain for the two other pairs of faces, and the three formulas combine into

$$
\oiint_{B_{a, b, c}} \mathbf{F} \bullet \hat{\mathbf{N}} d S=8 a b c \boldsymbol{\operatorname { d i v }} \mathbf{F}(0,0,0)+\cdots
$$

It follows that

$$
\lim _{a, b, c \rightarrow 0+} \frac{1}{8 a b c} \oiint_{B_{a, b, c}} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\operatorname{div} \mathbf{F}(0,0,0)
$$

13. This proof just mimics that of Theorem 1. F can be expanded in Maclaurin series

$$
\mathbf{F}=\mathbf{F}_{0}+\mathbf{F}_{1} x+\mathbf{F}_{2} y+\cdots
$$

where

$$
\begin{aligned}
& \mathbf{F}_{0}=\mathbf{F}(0,0) \\
& \mathbf{F}_{1}=\left.\frac{\partial}{\partial x} \mathbf{F}(x, y)\right|_{(0,0)}=\left.\left(\frac{\partial F_{1}}{\partial x} \mathbf{i}+\frac{\partial F_{2}}{\partial x} \mathbf{j}\right)\right|_{(0,0)} \\
& \mathbf{F}_{2}=\left.\frac{\partial}{\partial y} \mathbf{F}(x, y)\right|_{(0,0)}=\left.\left(\frac{\partial F_{1}}{\partial y} \mathbf{i}+\frac{\partial F_{2}}{\partial y} \mathbf{j}\right)\right|_{(0,0)}
\end{aligned}
$$

and where \cdots represents terms of degree 2 and higher in x and y.
On the curve \mathcal{C}_{ϵ} of radius ϵ centred at $(0,0)$, we have $\hat{\mathbf{N}}=\frac{1}{\epsilon}(x \mathbf{i}+y \mathbf{j})$. Therefore,

$$
\begin{aligned}
\mathbf{F} \bullet \hat{\mathbf{N}}= & \frac{1}{\epsilon} \\
& \left(\mathbf{F}_{0} \bullet \mathbf{i} x+\mathbf{F}_{0} \bullet \mathbf{j} y+\mathbf{F}_{1} \bullet \mathbf{i} x^{2}\right. \\
& \left.+\mathbf{F}_{1} \bullet \mathbf{j} x y+\mathbf{F}_{2} \bullet \mathbf{i} x y+\mathbf{F}_{2} \bullet \mathbf{j} y^{2}+\cdots\right)
\end{aligned}
$$

where \cdots represents terms of degree 3 or higher in x and y. Since

$$
\begin{aligned}
& \oint_{\mathcal{C}_{\epsilon}} x d s=\oint_{\mathcal{C}_{\epsilon}} y d s=\oint_{\mathcal{C}_{\epsilon}} x y d s=0 \\
& \oint_{\mathcal{C}_{\epsilon}} x^{2} d s=\oint_{\mathcal{C}_{\epsilon}} y^{2} d s=\int_{0}^{2 \pi} \epsilon^{2} \cos ^{2} \theta \epsilon d \theta=\pi \epsilon^{3}
\end{aligned}
$$

we have

$$
\begin{aligned}
\frac{1}{\pi \epsilon^{2}} \oint_{\mathcal{C}_{\epsilon}} \mathbf{F} \bullet \hat{\mathbf{N}} d s & =\frac{1}{\pi \epsilon^{2}} \frac{\pi \epsilon^{3}}{\epsilon}\left(\mathbf{F}_{1} \bullet \mathbf{i}+\mathbf{F}_{2} \bullet \mathbf{j}\right)+\cdots \\
& =\operatorname{div} \mathbf{F}(0,0)+\cdots
\end{aligned}
$$

where \cdots represents terms of degree 1 or higher in ϵ. Therefore, taking the limit as $\epsilon \rightarrow 0$ we obtain

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\pi \epsilon^{2}} \oint_{\mathcal{C}_{\epsilon}} \mathbf{F} \bullet \hat{\mathbf{N}} d s=\operatorname{div} \mathbf{F}(0,0)
$$

14. We use the same Maclaurin expansion for \mathbf{F} as in Exercises 12 and 13. On \mathcal{C}_{ϵ} we have

$$
\begin{aligned}
\mathbf{r}= & \epsilon \cos \theta \mathbf{i}+\epsilon \sin \theta \mathbf{j}, \quad(0 \leq \theta \leq 2 \pi) \\
d \mathbf{r}= & -\epsilon \sin \theta \mathbf{i}+\epsilon \cos \theta \mathbf{j} \\
\mathbf{F} \bullet d \mathbf{r}= & \left(-\epsilon \sin \theta \mathbf{F}_{0} \bullet \mathbf{i}+\epsilon \cos \theta \mathbf{F}_{0} \bullet \mathbf{j}\right. \\
& -\epsilon^{2} \sin \theta \cos \theta \mathbf{F}_{1} \bullet \mathbf{i}+\epsilon^{2} \cos ^{2} \theta \mathbf{F}_{1} \bullet \mathbf{j} \\
& \left.-\epsilon^{2} \sin ^{2} \theta \mathbf{F}_{2} \bullet \mathbf{i}+\epsilon^{2} \sin \theta \cos \theta \mathbf{F}_{2} \bullet \mathbf{j}+\cdots\right) d s,
\end{aligned}
$$

where \cdots represents terms of degree 3 or higher in ϵ. Since

$$
\begin{aligned}
& \int_{0}^{2 \pi} \sin \theta d \theta=\int_{0}^{2 \pi} \cos \theta d \theta=\int_{0}^{2 \pi} \sin \theta \cos \theta d \theta=0 \\
& \int_{0}^{2 \pi} \cos ^{2} \theta d \theta=\int_{0}^{2 \pi} \sin ^{2} \theta d \theta=\pi
\end{aligned}
$$

we have

$$
\frac{1}{\pi \epsilon^{2}} \oint_{\mathcal{C}_{\epsilon}} \mathbf{F} \bullet d \mathbf{r}=\mathbf{F}_{1} \bullet \mathbf{j}-\mathbf{F}_{2} \bullet \mathbf{i}+\cdots
$$

where \cdots represents terms of degree at least 1 in ϵ.
Hence

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0+} \frac{1}{\pi \epsilon^{2}} \oint_{\mathfrak{C}_{\epsilon}} \mathbf{F} \bullet d \mathbf{r} & =\mathbf{F}_{1} \bullet \mathbf{j}-\mathbf{F}_{2} \bullet \mathbf{i} \\
& =\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y} \\
& =\mathbf{c u r l} \mathbf{F} \bullet \mathbf{k}=\mathbf{c u r l} \mathbf{F} \bullet \hat{\mathbf{N}} .
\end{aligned}
$$

Section 16.2 Some Identities Involving Grad, Div, and Curl (page 864)

1. Theorem 3(a):

$$
\begin{aligned}
\nabla(\phi \psi) & =\frac{\partial}{\partial x}(\phi \psi)+\frac{\partial}{\partial y}(\phi \psi)+\frac{\partial}{\partial z}(\phi \psi) \\
& =\left(\phi \frac{\partial \psi}{\partial x}+\frac{\partial \phi}{\partial x} \psi\right) \mathbf{i}+\cdots+\left(\phi \frac{\partial \psi}{\partial z}+\frac{\partial \phi}{\partial z} \psi\right) \mathbf{k} \\
& =\phi \nabla \psi+\psi \nabla \phi .
\end{aligned}
$$

2. Theorem 3(b):

$$
\begin{aligned}
\nabla \bullet(\phi \mathbf{F}) & =\frac{\partial}{\partial x}\left(\phi F_{1}\right)+\frac{\partial}{\partial y}\left(\phi F_{2}\right)+\frac{\partial}{\partial z}\left(\phi F_{3}\right) \\
& =\frac{\partial \phi}{\partial x} F_{1}+\phi \frac{\partial F_{1}}{\partial x}+\cdots+\frac{\partial \phi}{\partial z} F_{3}+\phi \frac{\partial F_{3}}{\partial z}+\cdots \\
& =\nabla \phi \bullet \mathbf{F}+\phi \nabla \bullet \mathbf{F} .
\end{aligned}
$$

3. Theorem 3(d):

$$
\begin{aligned}
\nabla \bullet(\mathbf{F} \times \mathbf{G}) & =\frac{\partial}{\partial x}\left(F_{2} G_{3}-F_{3} G_{2}\right)+\cdots \\
& =\frac{\partial F_{2}}{\partial x} G_{3}+F_{2} \frac{\partial G_{3}}{\partial x}-\frac{\partial F_{3}}{\partial x} G_{2}-F_{3} \frac{\partial G_{2}}{\partial x}+\cdots \\
& =(\nabla \times \mathbf{F}) \bullet \mathbf{G}-\mathbf{F} \bullet(\nabla \times \mathbf{G}) .
\end{aligned}
$$

4. Theorem 3(f). The first component of $\nabla(\mathbf{F} \bullet \mathbf{G})$ is
$\frac{\partial F_{1}}{\partial x} G_{1}+F_{1} \frac{\partial G_{1}}{\partial x}+\frac{\partial F_{2}}{\partial x} G_{2}+F_{2} \frac{\partial G_{2}}{\partial x}+\frac{\partial F_{3}}{\partial x} G_{3}+F_{3} \frac{\partial G_{3}}{\partial x}$.
We calculate the first components of the four terms on the right side of the identity to be proved.
The first component of $\mathbf{F} \times(\nabla \times \mathbf{G})$ is

$$
F_{2}\left(\frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}\right)-F_{3}\left(\frac{\partial G_{1}}{\partial z}-\frac{\partial G_{3}}{\partial x}\right)
$$

The first component of $\mathbf{G} \times(\nabla \times \mathbf{F})$ is

$$
G_{2}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)-G_{3}\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right)
$$

The first component of $(\mathbf{F} \bullet \nabla) \mathbf{G}$ is

$$
F_{1} \frac{\partial G_{1}}{\partial x}+F_{2} \frac{\partial G_{1}}{\partial y}+F_{3} \frac{\partial G_{1}}{\partial z}
$$

The first component of $(\mathbf{G} \bullet \nabla) \mathbf{F}$ is

$$
G_{1} \frac{\partial F_{1}}{\partial x}+G_{2} \frac{\partial F_{1}}{\partial y}+G_{3} \frac{\partial F_{1}}{\partial z}
$$

When we add these four first components, eight of the fourteen terms cancel out and the six remaining terms are the six terms of the first component of $\nabla(\mathbf{F} \bullet \mathbf{G})$, as calculated above. Similar calculations show that the second and third components of both sides of the identity agree. Thus

$$
\nabla(\mathbf{F} \bullet \mathbf{G})=\mathbf{F} \times(\nabla \times \mathbf{G})+\mathbf{G} \times(\nabla \times \mathbf{F})+(\mathbf{F} \bullet \nabla) \mathbf{G}+(\mathbf{G} \bullet \nabla) \mathbf{F}
$$

5. Theorem 3(h). By equality of mixed partials,

$$
\begin{aligned}
\nabla \times \nabla \phi & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z}
\end{array}\right| \\
& =\left(\frac{\partial}{\partial y} \frac{\partial \phi}{\partial z}-\frac{\partial}{\partial z} \frac{\partial \phi}{\partial y}\right) \mathbf{i}+\cdots=\mathbf{0} .
\end{aligned}
$$

6. Theorem 3(i). We examine the first components of the terms on both sides of the identity

$$
\nabla \times(\nabla \times \mathbf{F})=\nabla(\nabla \bullet \mathbf{F})-\nabla^{2} \mathbf{F}
$$

The first component of $\nabla \times(\nabla \times \mathbf{F})$ is

$$
\begin{aligned}
& \frac{\partial}{\partial y}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)-\frac{\partial}{\partial z}\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right) \\
& =\frac{\partial^{2} F_{2}}{\partial y \partial x}-\frac{\partial^{2} F_{1}}{\partial y^{2}}-\frac{\partial^{2} F_{1}}{\partial z^{2}}+\frac{\partial^{2} F_{3}}{\partial z \partial x} .
\end{aligned}
$$

The first component of $\nabla(\nabla \bullet \mathbf{F})$ is

$$
\frac{\partial}{\partial x} \nabla \bullet \mathbf{F}=\frac{\partial^{2} F_{1}}{\partial x^{2}}+\frac{\partial^{2} F_{2}}{\partial x \partial y}+\frac{\partial^{2} F_{3}}{\partial x \partial z}
$$

The first component of $-\nabla^{2} \mathbf{F}$ is

$$
-\nabla^{2} F_{1}=-\frac{\partial^{2} F_{1}}{\partial x^{2}}-\frac{\partial^{2} F_{1}}{\partial y^{2}}-\frac{\partial^{2} F_{1}}{\partial z^{2}}
$$

Evidently the first components of both sides of the given identity agree. By symmetry, so do the other components.
7. If the field lines of $\mathbf{F}(x, y, z)$ are parallel straight lines, in the direction of the constant nonzero vector a say, then

$$
\mathbf{F}(x, y, z)=\phi(x, y, z) \mathbf{a}
$$

for some scalar field ϕ, which we assume to be smooth. By Theorem 3(b) and (c) we have

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\operatorname{div}(\phi \mathbf{a})=\nabla \phi \bullet \mathbf{a} \\
\operatorname{curl} \mathbf{F} & =\operatorname{curl}(\phi \mathbf{a})=\nabla \phi \times \mathbf{a}
\end{aligned}
$$

Since $\nabla \phi$ is an arbitrary gradient, $\operatorname{div} \mathbf{F}$ can have any value, but curl \mathbf{F} is perpendicular to \mathbf{a}, and thereofore to F.
8. If $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $r=|\mathbf{r}|$, then

$$
\nabla \bullet \mathbf{r}=3, \quad \nabla \times \mathbf{r}=\mathbf{0}, \quad \nabla r=\frac{\mathbf{r}}{r}
$$

If \mathbf{c} is a constant vector, then its divergence and curl are both zero. By Theorem 3(d), (e), and (f) we have

$$
\begin{aligned}
\nabla \bullet(\mathbf{c} \times \mathbf{r}) & =(\nabla \times \mathbf{c}) \bullet \mathbf{r}-\mathbf{c} \bullet(\nabla \times \mathbf{r})=\mathbf{0} \\
\nabla \times(\mathbf{c} \times \mathbf{r}) & =(\nabla \bullet \mathbf{r}) \mathbf{c}+(\mathbf{r} \bullet \nabla) \mathbf{c}-(\nabla \bullet \mathbf{c}) \mathbf{r}-(\mathbf{c} \bullet \nabla) \mathbf{r} \\
& =3 \mathbf{c}+\mathbf{0}-\mathbf{0}-\mathbf{c}=2 \mathbf{c}
\end{aligned}
$$

$$
\begin{aligned}
\nabla(\mathbf{c} \bullet \mathbf{r}) & =\mathbf{c} \times(\nabla \times \mathbf{r})+\mathbf{r} \times(\nabla \times \mathbf{c})+(\mathbf{c} \bullet \nabla) \mathbf{r}+(\mathbf{r} \bullet \nabla) \mathbf{c} \\
& =\mathbf{0}+\mathbf{0}+\mathbf{c}+\mathbf{0}=\mathbf{c} .
\end{aligned}
$$

9. $\nabla \bullet(f(r) \mathbf{r})=(\nabla f(r)) \bullet \mathbf{r}+f(r)(\nabla \bullet \mathbf{r})$

$$
=f^{\prime}(r) \frac{\mathbf{r} \bullet \mathbf{r}}{r}+3 f(r)
$$

$$
=r f^{\prime}(r)+3 f(r)
$$

If $f(r) \mathbf{r}$ is solenoidal then $\nabla \bullet(f(r) \mathbf{r})=0$, so that $u=f(r)$ satisfies

$$
\begin{aligned}
& r \frac{d u}{d r}+3 u=0 \\
& \frac{d u}{u}=-\frac{3 d r}{r} \\
& \ln |u|=-3 \ln |r|+\ln |C| \\
& u=C r^{-3} .
\end{aligned}
$$

Thus $f(r)=C r^{-3}$, for some constant C.
10. Given that $\operatorname{div} \mathbf{F}=0$ and $\mathbf{c u r l} \mathbf{F}=\mathbf{0}$, Theorem 3(i) implies that $\nabla^{2} \mathbf{F}=0$ too. Hence the components of \mathbf{F} are harmonic functions.
If $\mathbf{F}=\nabla \phi$, then

$$
\nabla^{2} \phi=\nabla \bullet \nabla \phi=\nabla \bullet \mathbf{F}=0
$$

so ϕ is also harmonic.
11. By Theorem 3(e) and 3(f),

$$
\begin{aligned}
& \nabla \times(\mathbf{F} \times \mathbf{r})=(\nabla \bullet \mathbf{r}) \mathbf{F}+(\mathbf{r} \bullet \nabla) \mathbf{F}-(\nabla \bullet \mathbf{F}) \mathbf{r}-(\mathbf{F} \bullet \nabla) \mathbf{r} \\
& \nabla(\mathbf{F} \bullet \mathbf{r})= \mathbf{F} \times(\nabla \times \mathbf{r})+\mathbf{r} \times(\nabla \times \mathbf{F}) \\
&+(\mathbf{F} \bullet \nabla) \mathbf{r}+(\mathbf{r} \bullet \nabla) \mathbf{F} . \\
& \text { If } \mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \text {, then } \nabla \bullet \mathbf{r}=3 \text { and } \nabla \times \mathbf{r}=\mathbf{0} . \text { Also, } \\
& \quad(\mathbf{F} \bullet \nabla) \mathbf{r}=F_{1} \frac{\partial \mathbf{r}}{\partial x}+F_{2} \frac{\partial \mathbf{r}}{\partial y}+F_{3} \frac{\partial \mathbf{r}}{\partial z}=\mathbf{F} .
\end{aligned}
$$

Combining all these results, we obtain

$$
\begin{aligned}
\nabla \times(\mathbf{F} \times \mathbf{r})-\nabla(\mathbf{F} \bullet \mathbf{r})= & 3 \mathbf{F}-2(\mathbf{F} \bullet \nabla) \mathbf{r} \\
& -(\nabla \bullet \mathbf{F}) \mathbf{r}-\mathbf{r} \times(\nabla \times \mathbf{F}) \\
= & \mathbf{F}-(\nabla \bullet \mathbf{F}) \mathbf{r}-\mathbf{r} \times(\nabla \times \mathbf{F}) .
\end{aligned}
$$

In particular, if $\nabla \bullet \mathbf{F}=0$ and $\nabla \times \mathbf{F}=\mathbf{0}$, then

$$
\nabla \times(\mathbf{F} \times \mathbf{r})-\nabla(\mathbf{F} \bullet \mathbf{r})=\mathbf{F}
$$

12. If $\nabla^{2} \phi=0$ and $\nabla^{2} \psi=0$, then

$$
\begin{aligned}
& \nabla \bullet(\phi \nabla \psi-\psi \nabla \phi) \\
& =\nabla \phi \bullet \nabla \psi+\phi \nabla^{2} \psi-\nabla \psi \bullet \nabla \phi-\psi \nabla^{2} \phi=0
\end{aligned}
$$

so $\phi \nabla \psi-\psi \nabla \phi$ is solenoidal.
13. By Theorem 3(c) and (h),

$$
\begin{aligned}
\nabla \times(\phi \nabla \psi) & =\nabla \phi \times \nabla \psi+\phi \nabla \times \nabla \psi=\nabla \phi \times \nabla \psi \\
-\nabla \times(\psi \nabla \phi) & =-\nabla \psi \times \nabla \phi-\psi \nabla \times \nabla \phi=\nabla \phi \times \nabla \psi .
\end{aligned}
$$

14. By Theorem 3(b), (d), and (h), we have

$$
\begin{aligned}
& \nabla \bullet(f(\nabla g \times \nabla h)) \\
& =\nabla f \bullet(\nabla g \times \nabla h)+f \nabla \bullet(\nabla g \times \nabla h) \\
& =\nabla f \bullet(\nabla g \times \nabla h)+f((\nabla \times \nabla g) \bullet \nabla h-\nabla g \bullet(\nabla \times \nabla h)) \\
& =\nabla f \bullet(\nabla g \times \nabla h)+\mathbf{0}-\mathbf{0}=\nabla f \bullet(\nabla g \times \nabla h) .
\end{aligned}
$$

15. If $\mathbf{F}=\nabla \phi$ and $\mathbf{G}=\nabla \psi$, then $\nabla \times \mathbf{F}=\mathbf{0}$ and $\nabla \times \mathbf{G}=\mathbf{0}$ by Theorem 3(h). Therefore, by Theorem 3(d) we have

$$
\nabla \bullet(\mathbf{F} \times \mathbf{G})=(\nabla \times \mathbf{F}) \bullet \mathbf{G}+\mathbf{F} \bullet(\nabla \times \mathbf{G})=\mathbf{0} .
$$

Thus $\mathbf{F} \times \mathbf{G}$ is solenoidal. By Exercise 13,

$$
\nabla \times(\phi \nabla \psi)=\nabla \phi \times \nabla \psi=\mathbf{F} \times \mathbf{G}
$$

so $\phi \nabla \psi$ is a vector potential for $\mathbf{F} \times \mathbf{G}$. (So is $-\psi \nabla \phi$.)
16. If $\nabla \times \mathbf{G}=\mathbf{F}=-y \mathbf{i}+x \mathbf{j}$, then

$$
\begin{aligned}
& \frac{\partial G_{3}}{\partial y}-\frac{\partial G_{2}}{\partial z}=-y \\
& \frac{\partial G_{1}}{\partial z}-\frac{\partial G_{3}}{\partial x}=x \\
& \frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}=0
\end{aligned}
$$

As in Example 1, we try to find a solution with $G_{2}=0$. Then

$$
G_{3}=-\int y d y=-\frac{y^{2}}{2}+M(x, z)
$$

Again we try $M(x, z)=0$, so $G_{3}=-\frac{y^{2}}{2}$. Thus $\frac{\partial G_{3}}{\partial x}=0$ and

$$
G_{1}=\int x d z=x z+N(x, y)
$$

Since $\frac{\partial G_{1}}{\partial y}=0$ we may take $N(x, y)=0$.
$\mathbf{G}=x z \mathbf{i}-\frac{1}{2} y^{2} \mathbf{k}$ is a vector potential for \mathbf{F}. (Of course, this answer is not unique.)
17. If $\mathbf{F}=x e^{2 z} \mathbf{i}+y e^{2 z} \mathbf{j}-e^{2 z} \mathbf{k}$, then

$$
\operatorname{div} \mathbf{F}=e^{2 z}+e^{2 z}-2 e^{2 z}=0
$$

so \mathbf{F} is solenoidal.
If $\mathbf{F}=\nabla \times \mathbf{G}$, then

$$
\begin{aligned}
& \frac{\partial G_{3}}{\partial y}-\frac{\partial G_{2}}{\partial z}=x e^{2 z} \\
& \frac{\partial G_{1}}{\partial z}-\frac{\partial G_{3}}{\partial x}=y e^{2 z} \\
& \frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}=-e^{2 z}
\end{aligned}
$$

Look for a solution with $G_{2}=0$. We have

$$
G_{3}=\int x e^{2 z} d y=x y e^{2 z}+M(x, z)
$$

Try $M(x, z)=0$. Then $G_{3}=x y e^{2 z}$, and

$$
\frac{\partial G_{1}}{\partial z}=y e^{2 z}+\frac{\partial G_{3}}{\partial x}=2 y e^{2 z}
$$

Thus

$$
G_{1}=\int 2 y e^{2 z} d z=y e^{2 z}+N(x, y)
$$

Since

$$
-e^{2 z}=-\frac{\partial G_{1}}{\partial y}=-e^{2 z}-\frac{\partial N}{\partial y},
$$

we can take $N(x, y)=0$.
Thus $\mathbf{G}=y e^{2 z} \mathbf{i}+x y e^{2 z} \mathbf{k}$ is a vector potential for \mathbf{F}.
18. For (x, y, z) in D let $\mathbf{v}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. The line segment $\mathbf{r}(t)=t \mathbf{v},(0 \leq t \leq 1)$, lies in D, so $\operatorname{div} \mathbf{F}=0$ on the path. We have

$$
\begin{aligned}
\mathbf{G}(x, y, z) & =\int_{0}^{1} t \mathbf{F}(\mathbf{r}(t)) \times \mathbf{v} d t \\
& =\int_{0}^{1} t \mathbf{F}(\xi(t), \eta(t), \zeta(t)) \times \mathbf{v} d t
\end{aligned}
$$

where $\xi=t x, \eta=t y, \zeta=t z$. The first component of $\operatorname{curl} \mathbf{G}$ is
$(\operatorname{curl} \mathbf{G})_{1}$

$$
\begin{aligned}
& =\int_{0}^{1} t(\mathbf{c u r l}(\mathbf{F} \times \mathbf{v}))_{1} d t \\
& =\int_{0}^{1} t\left(\frac{\partial}{\partial y}(\mathbf{F} \times \mathbf{v})_{3}-\frac{\partial}{\partial z}(\mathbf{F} \times \mathbf{v})_{2}\right) d t \\
& =\int_{0}^{1} t\left(\frac{\partial}{\partial y}\left(F_{1} y-F_{2} x\right)-\frac{\partial}{\partial z}\left(F_{3} x-F_{1} z\right)\right) d t \\
& =\int_{0}^{1}\left(t F_{1}+t^{2} y \frac{\partial F_{1}}{\partial \eta}-t^{2} x \frac{\partial F_{2}}{\partial \eta}-t^{2} x \frac{\partial F_{3}}{\partial \zeta}\right. \\
& \left.\quad+t F_{1}+t^{2} z \frac{\partial F_{1}}{\partial \zeta}\right) d t \\
& =\int_{0}^{1}\left(2 t F_{1}+t^{2} x \frac{\partial F_{1}}{\partial \xi}+t^{2} y \frac{\partial F_{1}}{\partial \eta}+t^{2} z \frac{\partial F_{1}}{\partial \zeta}\right) d t
\end{aligned}
$$

To get the last line we used the fact that $\operatorname{div} \mathbf{F}=0$ to replace $-t^{2} x \frac{\partial F_{2}}{\partial \eta}-t^{2} x \frac{\partial F_{3}}{\partial \zeta}$ with $t^{2} x \frac{\partial F_{1}}{\partial \xi}$. Continuing the calculation, we have

$$
\begin{aligned}
(\operatorname{curl} \mathbf{G})_{1} & =\int_{0}^{1} \frac{d}{d t}\left(t^{2} F_{1}(\xi, \eta, \zeta)\right) d t \\
& =\left.t^{2} F_{1}(t x, t y, t z)\right|_{0} ^{1}=F_{1}(x, y, z)
\end{aligned}
$$

Similarly, $(\operatorname{curl} \mathbf{G})_{2}=F_{2}$ and $(\operatorname{curl} \mathbf{G})_{3}=F_{3}$. Thus $\operatorname{curl} \mathbf{G}=\mathbf{F}$, as required.
19. In the following we suppress output (which for some calculations can be quite lengthy) except for the final check on each inequality. You may wish to use semicolons instead of colons to see what the output actually looks like.

```
> with(VectorCalculus):
>
SetCoordinates('cartesian'[x,y,z]):
> F := VectorField
(<u(x,y,z),v(x,y,z),w(x,y,z)>):
> G := VectorField
(<a (x,y,z),b(x,y,z),c(x,y,z)>):
```

(a) LHS := $\operatorname{Del}(\operatorname{phi}(x, y, z) * p s i(x, y, z)):$ RHS := phi (x,y,z)*Del(psi(x,y,z)) $+\operatorname{psi}(x, y, z) * \operatorname{Del}(p h i(x, y, z)):$ simplify(LHS - RHS);

$$
0 \bar{e}_{x}
$$

(b) LHS := Del . (F*phi $(x, y, z))$: RHS $:=(\operatorname{Del}(\operatorname{phi}(x, y, z))) . F+$ phi (x, y, z) * (Del.F) : simplify(LHS - RHS);

0
(c) LHS := Del \&x (phi $(x, y, z) * F):$ RHS := RHS := (Del (phi $(x, y, z))) ~ \& x$ F + phi (x,y,z) *(Del \&x F): simplify(LHS - RHS);
(d) LHS := Del . (F \& X G) :

RHS := (Del \&x F) . G - F . (Del \&x G) :

```
simplify(LHS - RHS);
```

0
(e) LHS := Del $\& x(F \& x G):$
RHS1 : $=$ (Del . G) *F:
RHS2 : $=\mathrm{G}[1] * \operatorname{diff}(\mathrm{~F}, \mathrm{x})$
$+G[2] * \operatorname{diff}(F, y)+G[3] * \operatorname{diff}(F, z):$
RHS3 : = (Del . F) *G:
RHS4 : $=\mathrm{F}[1] * \operatorname{diff}(\mathrm{G}, \mathrm{x})$
$+F[2] * \operatorname{diff}(G, y)+F[3] * \operatorname{diff}(G, z):$
RHS := RHS1 + RHS2 - RHS3 - RHS4:
simplify(LHS - RHS);
$0 \bar{e}_{x}$
(f) LHS := $\operatorname{Del}(\mathrm{F} . \mathrm{G}):$
RHS1 := F \& X (Del $\& x G):$
RHS2 := G \&x (Del \&x F) :
RHS3 : $=\mathrm{F}[1] * \operatorname{diff}(\mathrm{G}, \mathrm{x})$
$+F[2] * \operatorname{diff}(G, Y)+F[3] * \operatorname{diff}(G, z):$
RHS4 : $=G[1] * \operatorname{diff}(F, x)$
$+G[2] * \operatorname{diff}(F, Y)+G[3] * \operatorname{diff}(F, z):$
RHS := RHS1 + RHS2 + RHS3 + RHS4:
simplify(LHS - RHS);

$$
0 \bar{e}_{x}
$$

All these zero outputs indicate that the inequalities (a)-(f) of the theorem are valid.

Section 16.3 Green's Theorem in the Plane (page 868)

1. $\oint_{\mathcal{C}}\left(\sin x+3 y^{2}\right) d x+\left(2 x-e^{-y^{2}}\right) d y$
$=\iint_{R}\left[\frac{\partial}{\partial x}\left(2 x-e^{-y^{2}}\right)-\frac{\partial}{\partial y}\left(\sin x+3 y^{2}\right)\right] d A$
$=\iint_{R}(2-6 y) d A$
$=\int_{0}^{\pi} d \theta \int_{0}^{a}(2-6 r \sin \theta) r d r$
$=\pi a^{2}-6 \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{a} r^{2} d r$
$=\pi a^{2}-4 a^{3}$.

Fig. 16.3.1
2. $\oint_{\mathcal{C}}\left(x^{2}-x y\right) d x+\left(x y-y^{2}\right) d y$

$$
\begin{aligned}
& =-\iint_{T}\left[\frac{\partial}{\partial x}\left(x y-y^{2}\right)-\frac{\partial}{\partial y}\left(x^{2}-x y\right)\right] d A \\
& =-\iint_{T}(y+x) d A \\
& =-(\bar{y}+\bar{x}) \times(\text { area of } T)=-\left(\frac{1}{3}+1\right) \times 1=-\frac{4}{3} .
\end{aligned}
$$

Fig. 16.3.2
3. $\oint_{\mathcal{C}}\left(x \sin y^{2}-y^{2}\right) d x+\left(x^{2} y \cos y^{2}+3 x\right) d y$

$$
\begin{aligned}
& =\iint_{T}\left[2 x y \cos y^{2}+3-\left(2 x y \cos y^{2}-2 y\right)\right] d A \\
& =\iint_{T}(3+2 y) d A=3 \iint_{T} d A+0=3 \times 3=9
\end{aligned}
$$

Fig. 16.3.3
4. Let D be the region $x^{2}+y^{2} \leq 9, y \geq 0$. Since \mathcal{C} is the clockwise boundary of D,

$$
\begin{aligned}
& \oint_{\mathcal{C}} x^{2} y d x-x y^{2} d y \\
& \quad=-\iint_{D}\left[\frac{\partial}{\partial x}\left(-x y^{2}\right)-\frac{\partial}{\partial y}\left(x^{2} y\right)\right] d x d y \\
& \quad=\iint_{D}\left(y^{2}+x^{2}\right) d A=\int_{0}^{\pi} d \theta \int_{0}^{3} r^{3} d r=\frac{81 \pi}{4} .
\end{aligned}
$$

5. By Example 1,

$$
\begin{aligned}
\text { Area }= & \frac{1}{2} \oint_{\mathcal{C}} x d y-y d x \\
= & \frac{1}{2} \int_{0}^{2 \pi}\left[a \cos ^{3} t 3 b \sin ^{2} t \cos t\right. \\
& \left.\quad-b \sin ^{3} t\left(-3 a \cos ^{2} t \sin t\right)\right] d t \\
= & \frac{3 a b}{2} \int_{0}^{2 \pi} \sin ^{2} t \cos ^{2} t d t \\
= & \frac{3 a b}{2} \int_{0}^{2 \pi} \frac{\sin ^{2}(2 t)}{4} d t=\frac{3 \pi a b}{8} .
\end{aligned}
$$

6. Let R, \mathcal{C}, and \mathbf{F} be as in the statement of Green's Theorem. As noted in the proof of Theorem 7, the unit tangent $\hat{\mathbf{T}}$ to \mathcal{C} and the unit exterior normal $\hat{\mathbf{N}}$ satisfy $\hat{\mathbf{N}}=\hat{\mathbf{T}} \times \mathbf{k}$. Let

$$
\mathbf{G}=F_{2}(x, y) \mathbf{i}-F_{1}(x, y) \mathbf{j} .
$$

Then $\mathbf{F} \bullet \hat{\mathbf{T}}=\mathbf{G} \bullet \hat{\mathbf{N}}$. Applying the 2-dimensional Divergence Theorem to \mathbf{G}, we obtain

$$
\begin{aligned}
\int_{\mathcal{C}} F_{1} d x+F_{2} d y & =\int_{\mathcal{C}} \mathbf{F} \bullet \hat{\mathbf{T}} d s=\int_{\mathcal{C}} \mathbf{G} \bullet \hat{\mathbf{N}} d s \\
& =\iint_{R} \operatorname{div} \mathbf{G} d A \\
& =\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A
\end{aligned}
$$

as required
7. $\mathbf{r}=\sin t \mathbf{i}+\sin 2 t \mathbf{j}$,

$$
(0 \leq t \leq 2 \pi)
$$

Fig. 16.3.7

$$
\begin{aligned}
\mathbf{F} & =y e^{x^{2}} \mathbf{i}+x^{3} e^{y} \mathbf{j} \\
\operatorname{curl} \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y e^{x^{2}} & x^{3} e^{y} & 0
\end{array}\right|=\left(3 x^{2} e^{y}-e^{x^{2}}\right) \mathbf{k} .
\end{aligned}
$$

Observe that \mathcal{C} bounds two congruent regions, R_{1} and R_{2}, one counterclockwise and the other clockwise. For $R_{1}, \hat{\mathbf{N}}=\mathbf{k}$; for $R_{2}, \hat{\mathbf{N}}=-\mathbf{k}$. Since R_{1} and R_{2} are mirror images of each other in the y-axis, and since curl F is an even function of x, we have

$$
\iint_{R_{1}} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S=-\iint_{R_{2}} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S
$$

Thus

$$
\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=\left(\iint_{R_{1}}+\iint_{R_{2}}\right) \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S=0
$$

8. a) $\mathbf{F}=x^{2} \mathbf{j}$

$$
\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=\oint_{\mathcal{C}} x^{2} d y=\iint_{R} 2 x d A=2 A \bar{x}
$$

b) $\mathbf{F}=x y \mathbf{i}$

$$
\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=\oint_{\mathcal{C}} x y d x=-\iint_{R} x d A=-A \bar{x}
$$

c) $\mathbf{F}=y^{2} \mathbf{i}+3 x y \mathbf{j}$

$$
\begin{aligned}
& \oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=\oint_{\mathcal{C}} y^{2} d x+3 x y d y \\
& =\iint_{R}(3 y-2 y) d A=A \bar{y}
\end{aligned}
$$

9. The circle \mathcal{C}_{r} of radius r and centre at \mathbf{r}_{0} has parametrization

$$
\mathbf{r}=\mathbf{r}_{0}+r \cos t \mathbf{i}+r \sin t \mathbf{j}, \quad(0 \leq t \leq 2 \pi)
$$

Note that $d \mathbf{r} / d t=\cos t \mathbf{i}+\sin t \mathbf{j}=\hat{\mathbf{N}}$, the unit normal to \mathcal{C}_{r} exterior to the disk D_{r} of which \mathcal{C}_{r} is the boundary. The average value of $u(x, y)$ on \mathcal{C}_{r} is

$$
\bar{u}_{r}=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(x_{0}+r \cos t, y_{0}+r \sin t\right) d t
$$

and so

$$
\begin{aligned}
\frac{d \bar{u}_{r}}{d r} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{\partial u}{\partial x} \cos t+\frac{\partial u}{\partial y} \sin t\right) d t \\
& =\frac{1}{2 \pi r} \oint_{\mathcal{C}_{r}} \nabla u \bullet \hat{\mathbf{N}} d s
\end{aligned}
$$

since $d s=r d t$. By the (2-dimensional) divergence theorem, and since u is harmonic,

$$
\begin{aligned}
\frac{d \bar{u}_{r}}{d r} & =\frac{1}{2 \pi r} \iint_{D_{r}} \nabla \bullet \nabla u d x d y \\
& =\frac{1}{2 \pi r} \iint_{D_{r}}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) d x d y=0 .
\end{aligned}
$$

Thus $\bar{u}_{r}=\lim _{r \rightarrow 0} \bar{u}_{r}=u\left(x_{0}, y_{0}\right)$.

Section 16.4 The Divergence Theorem in 3-Space (page 873)

1. In this exercise, the sphere s bounds the ball B of radius a centred at the origin.
If $\mathbf{F}=x \mathbf{i}-2 y \mathbf{j}+4 z \mathbf{k}$, then $\operatorname{div} \mathbf{F}=1-2+4=3$. Thus

$$
\oiint_{S} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\iiint_{B} 3 d V=4 \pi a^{3}
$$

2. If $\mathbf{F}=y e^{z} \mathbf{i}+x^{2} e^{z} \mathbf{j}+x y \mathbf{k}$, then $\operatorname{div} \mathbf{F}=0$, and

$$
\oiint_{\delta} \mathbf{F} \cdot \hat{\mathbf{N}} d S=\iiint_{B} 0 d V=0 .
$$

3. If $\mathbf{F}=\left(x^{2}+y^{2}\right) \mathbf{i}+\left(y^{2}-z^{2}\right) \mathbf{j}+z \mathbf{k}$, then $\operatorname{div} \mathbf{F}=2 x+2 y+1$, and

$$
\oiint_{\delta} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\iiint_{B}(2 x+2 y+1) d V=\iiint_{B} 1 d V=\frac{4}{3} \pi a^{3} .
$$

4. If $\mathbf{F}=x^{3} \mathbf{i}+3 y z^{2} \mathbf{j}+\left(3 y^{2} z+x^{2}\right) \mathbf{k}$, then $\operatorname{div} \mathbf{F}=3 x^{2}+3 z^{2}+3 y^{2}$, and

$$
\begin{aligned}
\oiint_{s} \mathbf{F} \bullet \hat{\mathbf{N}} d S & =3 \iiint_{B}\left(x^{2}+y^{2}+z^{2}\right) d V \\
& =3 \int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \sin \phi d \phi \int_{0}^{a} \rho^{4} d \rho \\
& =\frac{12}{5} \pi a^{5} .
\end{aligned}
$$

5. If $\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$, then $\operatorname{div} \mathbf{F}=2(x+y+z)$. Therefore the flux of \mathbf{F} out of any solid region R is

$$
\begin{aligned}
\text { Flux } & =\iiint_{R} \boldsymbol{\operatorname { d i v }} \mathbf{F} d V \\
& =2 \iiint_{R}(x+y+z) d V=2(\bar{x}+\bar{y}+\bar{z}) V
\end{aligned}
$$

where $(\bar{x}, \bar{y}, \bar{z})$ is the centroid of R and V is the volume of R.
If R is the ball $(x-2)^{2}+y^{2}+(z-3)^{2} \leq 9$, then $\bar{x}=2$, $\bar{y}=0, \bar{z}=3$, and $V=(4 \pi / 3) 3^{3}=36 \pi$. The flux of \mathbf{F} out of R is $2(2+0+3)(36 \pi)=360 \pi$.
6. If $\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$, then $\operatorname{div} \mathbf{F}=2(x+y+z)$. Therefore the flux of \mathbf{F} out of any solid region R is

$$
\begin{aligned}
\text { Flux } & =\iiint_{R} \boldsymbol{\operatorname { d i v }} \mathbf{F} d V \\
& =2 \iiint_{R}(x+y+z) d V=2(\bar{x}+\bar{y}+\bar{z}) V
\end{aligned}
$$

where $(\bar{x}, \bar{y}, \bar{z})$ is the centroid of R and V is the volume of R.
If R is the ellipsoid $x^{2}+y^{2}+4(z-1)^{2} \leq 4$, then $\bar{x}=0$, $\bar{y}=0, \bar{z}=1$, and $V=(4 \pi / 3)(2)(2)(1)=16 \pi / 3$. The flux of \mathbf{F} out of R is $2(0+0+1)(16 \pi / 3)=32 \pi / 3$.
7. If $\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$, then $\operatorname{div} \mathbf{F}=2(x+y+z)$. Therefore the flux of \mathbf{F} out of any solid region R is

$$
\begin{aligned}
\text { Flux } & =\iiint_{R} \boldsymbol{\operatorname { d i v }} \mathbf{F} d V \\
& =2 \iiint_{R}(x+y+z) d V=2(\bar{x}+\bar{y}+\bar{z}) V
\end{aligned}
$$

where $(\bar{x}, \bar{y}, \bar{z})$ is the centroid of R and V is the volume of R.

If R is the tetrahedron with vertices $(3,0,0),(0,3,0)$, $(0,0,3)$, and $(0,0,0)$, then $\bar{x}=\bar{y}=\bar{z}=3 / 4$, and $V=(1 / 6)(3)(3)(3)=9 / 2$. The flux of \mathbf{F} out of R is $2((3 / 4)+(3 / 4)+(3 / 4))(9 / 2)=81 / 4$.
8. If $\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$, then $\operatorname{div} \mathbf{F}=2(x+y+z)$. Therefore the flux of \mathbf{F} out of any solid region R is

$$
\begin{aligned}
\text { Flux } & =\iiint_{R} \boldsymbol{\operatorname { d i v }} \mathbf{F} d V \\
& =2 \iiint_{R}(x+y+z) d V=2(\bar{x}+\bar{y}+\bar{z}) V
\end{aligned}
$$

where $(\bar{x}, \bar{y}, \bar{z})$ is the centroid of R and V is the volume of R.
If R is the cylinder $x^{2}+y^{2} \leq 2 y$ (or, equivalently, $\left.x^{2}+(y-1)^{2} \leq 1\right), 0 \leq z \leq 4$, then $\bar{x}=0, \bar{y}=1$,
$\bar{z}=2$, and $V=\left(\pi 1^{2}\right)(4)=4 \pi$. The flux of \mathbf{F} out of R is $2(0+1+2)(4 \pi)=24 \pi$.
9. If $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, then $\operatorname{div} \mathbf{F}=3$. If C is any solid region having volume V, then

$$
\iiint_{C} \boldsymbol{\operatorname { d i v }} \mathbf{F} d V=3 V
$$

The region C described in the statement of the problem is the part of a solid cone with vertex at the origin that lies inside a ball of radius R with centre at the origin. The surface δ of C consists of two parts, the conical wall s_{1}, and the region D on the spherical boundary of the ball. At any point P on s_{1}, the outward normal field $\hat{\mathbf{N}}$ is perpendicular to the line $O P$, that is, to \mathbf{F}, so $\mathbf{F} \bullet \hat{\mathbf{N}}=0$. At any point P on $D, \hat{\mathbf{N}}$ is parallel to \mathbf{F}, in fact $\hat{\mathbf{N}}=\mathbf{F} /|\mathbf{F}|=\mathbf{F} / R$. Thus

$$
\begin{aligned}
\oiint_{S} \mathbf{F} \bullet \hat{\mathbf{N}} d S & =\iint_{S_{1}} \mathbf{F} \bullet \hat{\mathbf{N}} d S+\iint_{D} \mathbf{F} \bullet \hat{\mathbf{N}} d S \\
& =0+\iint_{D} \frac{\mathbf{F} \bullet \mathbf{F}}{R} d S=\frac{R^{2}}{R} \iint_{D} d S=A R
\end{aligned}
$$

where A is the area of D. By the Divergence Theorem, $3 V=A R$, so $V=A R / 3$.
10. The required surface integral,

$$
I=\iint_{\delta} \nabla \phi \bullet \hat{\mathbf{N}} d S
$$

can be calculated directly by the methods of Section 6.6. We will do it here by using the Divergence Theorem instead. $\&$ is one face of a tetrahedral domain D whose other faces are in the coordinate planes, as shown in the figure. Since $\phi=x y+z^{2}$, we have

$$
\nabla \phi=y \mathbf{i}+x \mathbf{j}+2 z \mathbf{k}, \quad \nabla \bullet \nabla \phi=\nabla^{2} \phi=2
$$

Thus

$$
\iiint_{D} \nabla \cdot \nabla \phi d V=2 \times \frac{a b c}{6}=\frac{a b c}{3}
$$

the volume of the tetrahedron D being $a b c / 6$ cubic units.

Fig. 16.4.10
The flux of $\nabla \phi$ out of D is the sum of its fluxes out of the four faces of the tetrahedron.
On the bottom, $\hat{\mathbf{N}}=-\mathbf{k}$ and $z=0$, so $\nabla \phi \bullet \hat{\mathbf{N}}=0$, and the flux out of the bottom face is 0 .
On the side, $y=0$ and $\hat{\mathbf{N}}=-\mathbf{j}$, so $\nabla \phi \bullet \hat{\mathbf{N}}=-x$. The flux out of the side face is
$\iint_{\text {side }} \nabla \phi \bullet \hat{\mathbf{N}} d S=-\iint_{\text {side }} x d x d z=-\frac{a c}{2} \times \frac{a}{3}=-\frac{a^{2} c}{6}$.
(We used the fact that $M_{x=0}=\operatorname{area} \times \bar{x}$ and $\bar{x}=a / 3$ for that face.)
On the back face, $x=0$ and $\hat{\mathbf{N}}=-\mathbf{i}$, so the flux out of that face is
$\iint_{\text {back }} \nabla \phi \bullet \hat{\mathbf{N}} d S=-\iint_{\text {back }} y d y d z=-\frac{b c}{2} \times \frac{b}{3}=-\frac{b^{2} c}{6}$.

Therefore, by the Divergence Theorem

$$
I-\frac{a^{2} c}{6}-\frac{b^{2} c}{6}+0=\frac{a b c}{3}
$$

so $\iint_{S} \nabla \phi \bullet \hat{\mathbf{N}} d S=I=\frac{a b c}{3}+\frac{c\left(a^{2}+b^{2}\right)}{6}$.
11. $\mathbf{F}=\left(x+y^{2}\right) \mathbf{i}+\left(3 x^{2} y+y^{3}-x^{3}\right) \mathbf{j}+(z+1) \mathbf{k}$ $\operatorname{div} \mathbf{F}=1+3\left(x^{2}+y^{2}\right)+1=2+3\left(x^{2}+y^{2}\right)$.

Fig. 16.4.11
Let D be the conical domain, $\&$ its conical surface, and B its base disk, as shown in the figure. We have

$$
\begin{aligned}
\iiint_{D} \operatorname{div} \mathbf{F} d V & =\int_{0}^{2 \pi} d \theta \int_{0}^{a} r d r \int_{0}^{b(1-(r / a))}\left(2+3 r^{2}\right) d z \\
& =2 \pi b \int_{0}^{a} r\left(2+3 r^{2}\right)\left(1-\frac{r}{a}\right) d r \\
& =2 \pi b \int_{0}^{a}\left(2 r+3 r^{3}-\frac{2 r^{2}}{a}-\frac{3 r^{4}}{a}\right) d r \\
& =\frac{2 \pi a^{2} b}{3}+\frac{3 \pi a^{4} b}{10}
\end{aligned}
$$

On B we have $z=0, \hat{\mathbf{N}}=-\mathbf{k}, \mathbf{F} \bullet \hat{\mathbf{N}}=-1$, so

$$
\iint_{B} \mathbf{F} \bullet \hat{\mathbf{N}} d S=- \text { area of } B=-\pi a^{2}
$$

By the Divergence Theorem,

$$
\iint_{S} \mathbf{F} \bullet \hat{\mathbf{N}} d S+\iint_{B} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\iiint_{D} \operatorname{div} \mathbf{F} d V
$$

so the flux of \mathbf{F} upward through the conical surface s is

$$
\iint_{8}=\frac{2 \pi a^{2} b}{3}+\frac{3 \pi a^{4} b}{10}+\pi a^{2}
$$

12. $\mathbf{F}=(y+x z) \mathbf{i}+(y+y z) \mathbf{j}-\left(2 x+z^{2}\right) \mathbf{k}$ $\boldsymbol{\operatorname { d i v }} \mathbf{F}=z+(1+z)-2 z=1$. Thus

$$
\iiint_{D} \operatorname{div} \mathbf{F} d V=\text { volume of } D=\frac{\pi a^{3}}{6}
$$

where D is the region in the first octant bounded by the sphere and the coordinate planes. The boundary of D consists of the spherical part $\&$ and the four planar parts, called the bottom, side, and back in the figure.

Fig. 16.4.12
On the side, $y=0, \hat{\mathbf{N}}=-\mathbf{j}, \mathbf{F} \bullet \hat{\mathbf{N}}=0$, so

$$
\iint_{\text {side }} \mathbf{F} \bullet \hat{\mathbf{N}} d S=0
$$

On the back, $x=0, \hat{\mathbf{N}}=-\mathbf{i}, \mathbf{F} \bullet \hat{\mathbf{N}}=-y$, so

$$
\begin{aligned}
\iint_{\text {back }} \mathbf{F} \bullet \hat{\mathbf{N}} d S & =-\int_{0}^{\pi / 2} d \theta \int_{0}^{a} r \cos \theta r d r \\
& =-\left.\sin \theta\right|_{0} ^{\pi / 2} \times \frac{a^{3}}{3}=-\frac{a^{3}}{3}
\end{aligned}
$$

On the bottom, $z=0, \hat{\mathbf{N}}=-\mathbf{k}, \mathbf{F} \bullet \hat{\mathbf{N}}=2 x$, so

$$
\iint_{\text {bottom }} \mathbf{F} \bullet \hat{\mathbf{N}} d S=2 \int_{0}^{\pi / 2} d \theta \int_{0}^{a} r \cos \theta r d r=\frac{2 a^{3}}{3} .
$$

By the Divergence Theorem

$$
\iint_{s} \mathbf{F} \bullet \hat{\mathbf{N}} d S+0-\frac{a^{3}}{3}+\frac{2 a^{3}}{3}=\frac{\pi a^{3}}{6}
$$

Hence the flux of \mathbf{F} upward through $\&$ is

$$
\iint_{S} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\frac{\pi a^{3}}{6}-\frac{a^{3}}{3}
$$

13. $\quad \mathbf{F}=(x+y z) \mathbf{i}+(y-x z) \mathbf{j}+\left(z-e^{x} \sin y\right) \mathbf{k}$ $\operatorname{div} \mathbf{F}=1+1+1=3$.

Fig. 16.4.13
a) The flux of \mathbf{F} out of D through $s=s_{1} \cup f_{2}$ is

$$
\begin{aligned}
& \oiint_{S} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\iiint_{D} \operatorname{div} \mathbf{F} d V \\
&=3 \int_{0}^{2 \pi} d \theta \int_{a}^{2 a} r d r \int_{0}^{\sqrt{4 a^{2}-r^{2}}} 2 d z \\
&=12 \pi \int_{a}^{2 a} r \sqrt{4 a^{2}-r^{2}} d r \\
& \text { Let } u=4 a^{2}-r^{2} \\
&=6 \pi \int_{0}^{3 a^{2}} u^{1 / 2} d u=-2 r d r
\end{aligned}
$$

b) On $s_{1}, \hat{\mathbf{N}}=-\frac{x \mathbf{i}+y \mathbf{j}}{a}, d S=a d \theta d z$. The flux of \mathbf{F} out of D through \wp_{1} is

$$
\begin{aligned}
\iint_{\ell_{1}} \mathbf{F} \bullet \hat{\mathbf{N}} d S & =\iint_{\mathscr{\Omega}_{1}} \frac{-x^{2}-x y z-y^{2}+x y z}{a} a d \theta d z \\
& =-a^{2} \int_{0}^{2 \pi} d \theta \int_{-\sqrt{3} a}^{\sqrt{3} a} d z=-4 \sqrt{3} \pi a^{3}
\end{aligned}
$$

c) The flux of \mathbf{F} out of D through the spherical part s_{2} is

$$
\begin{aligned}
\iint_{S_{2}} \mathbf{F} \bullet \hat{\mathbf{N}} d S & =\oiint_{S} \mathbf{F} \bullet \hat{\mathbf{N}} d S-\iint_{\delta_{1}} \mathbf{F} \bullet \hat{\mathbf{N}} d S \\
& =12 \sqrt{3} \pi a^{3}+4 \sqrt{3} \pi a^{3}=16 \sqrt{3} \pi a^{3}
\end{aligned}
$$

14. Let D be the domain bounded by δ, the coordinate planes, and the plane $x=1$. If

$$
\mathbf{F}=3 x z^{2} \mathbf{i}-x \mathbf{j}-y \mathbf{k},
$$

then $\operatorname{div} \mathbf{F}=3 z^{2}$, so the total flux of \mathbf{F} out of D is

$$
\begin{aligned}
\oiint_{\text {bdry of } D} \mathbf{F} \bullet \hat{\mathbf{N}} d S & =\iiint_{D} 3 z^{2} d V \\
& =3 \int_{0}^{1} d x \int_{0}^{\pi / 2} d \theta \int_{0}^{1} r^{2} \cos ^{2} \theta r d r \\
& =3 \times \frac{1}{4} \times \frac{\pi}{4}=\frac{3 \pi}{16}
\end{aligned}
$$

The boundary of D consists of the cylindrical surface δ and four planar surfaces, the side, bottom, back, and front.

Fig. 16.4.14
On the side, $y=0, \hat{\mathbf{N}}=-\mathbf{j}, \mathbf{F} \bullet \hat{\mathbf{N}}=x$, so

$$
\iint_{\text {side }} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\int_{0}^{1} x d x \int_{0}^{1} d z=\frac{1}{2}
$$

On the bottom, $z=0, \hat{\mathbf{N}}=-\mathbf{k}, \mathbf{F} \bullet \hat{\mathbf{N}}=y$, so

$$
\iint_{\text {bottom }} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\int_{0}^{1} y d y \int_{0}^{1} d x=\frac{1}{2}
$$

On the back, $x=0, \hat{\mathbf{N}}=-\mathbf{i}, \mathbf{F} \bullet \hat{\mathbf{N}}=0$, so

$$
\iint_{\text {back }} \mathbf{F} \bullet \hat{\mathbf{N}} d S=0
$$

On the front, $x=1, \hat{\mathbf{N}}=\mathbf{i}, \mathbf{F} \bullet \hat{\mathbf{N}}=3 z^{2}$, so

$$
\iint_{\text {front }} \mathbf{F} \bullet \hat{\mathbf{N}} d S=3 \int_{0}^{\pi / 2} d \theta \int_{0}^{1} r^{2} \cos ^{2} \theta r d r=\frac{3 \pi}{16}
$$

Hence,
$\iint_{S}\left(3 x z^{2} \mathbf{i}-x \mathbf{j}-y \mathbf{k}\right) \bullet \hat{\mathbf{N}} d S=\frac{3 \pi}{16}-\frac{1}{2}-\frac{1}{2}-0-\frac{3 \pi}{16}=-1$.
15. $\quad \mathbf{F}=\left(x^{2}-x-2 y\right) \mathbf{i}+\left(2 y^{2}+3 y-z\right) \mathbf{j}-\left(z^{2}-4 z+x y\right) \mathbf{k}$ $\boldsymbol{\operatorname { d i v }} \mathbf{F}=2 x-1+4 y+3-2 z+4=2 x+4 y-2 z+6$.

The flux of \mathbf{F} out of R through its surface s is

$$
\oiint_{S} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\iiint_{R}(2 x+4 y-2 z+6) d V .
$$

Now $\iiint_{R} x d V=M_{x=0}=V \bar{x}$, where R has volume V and centroid $(\bar{x}, \bar{y} \bar{z})$. Similar formulas obtain for the other variables, so the required flux is

$$
\oiint_{8} \mathbf{F} \bullet \hat{\mathbf{N}} d S=2 V \bar{x}+4 V \bar{y}-2 V \bar{z}+6 V
$$

16. $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ implies that $\operatorname{div} \mathbf{F}=3$. The total flux of F out of D is

$$
\oiint_{\text {bdry of } D} \mathbf{F} \bullet \hat{\mathbf{N}} d S=3 \iiint_{D} d V=12
$$

since the volume of D is half that of a cube of side 2 , that is, 4 square units.
D has three triangular faces, three pentagonal faces, and a hexagonal face. By symmetry, the flux of \mathbf{F} out of each triangular face is equal to that out of the triangular face T in the plane $z=1$. Since $\mathbf{F} \bullet \hat{\mathbf{N}}=\mathbf{k} \bullet \mathbf{k}=1$ on that face, these fluxes are

$$
\iint_{T} d x d y=\text { area of } T=\frac{1}{2}
$$

Similarly, the flux of \mathbf{F} out of each pentagonal face is equal to the flux out of the pentagonal face P in the plane $z=-1$, where $\mathbf{F} \bullet \hat{\mathbf{N}}=-\mathbf{k} \bullet(-\mathbf{k})=1$; that flux is

$$
\iint_{P} d x d y=\text { area of } P=4-\frac{1}{2}=\frac{7}{2}
$$

Thus the flux of \mathbf{F} out of the remaining hexagonal face H is

$$
12-3 \times\left(\frac{1}{2}+\frac{7}{2}\right)=0
$$

(This can also be seen directly, since \mathbf{F} radiates from the origin, so is everywhere tangent to the plane of the hexagonal face, the plane $x+y+z=0$.)

Fig. 16.4.16
17. The part of the sphere $8: x^{2}+y^{2}+(z-a)^{2}=4 a^{2}$ above $z=0$ and the disk $D: x^{2}+y^{2}=3 a^{2}$ in the $x y$ plane form the boundary of a region R in 3 -space. The outward normal from R on D is $-\mathbf{k}$. If

$$
\mathbf{F}=\left(x^{2}+y+2+z^{2}\right) \mathbf{i}+\left(e^{x^{2}}+y^{2}\right) \mathbf{j}+(3+x) \mathbf{k}
$$

then $\operatorname{div} \mathbf{F}=2 x+2 y$. By the Divergence Theorem,
$\iint_{\mathcal{S}} \mathbf{F} \bullet \hat{\mathbf{N}} d S+\iint_{D} \mathbf{F} \bullet(-\mathbf{k}) d x d y=\iiint_{R} \operatorname{div} \mathbf{F} d V=0$
because R is symmetric about $x=0$ and $y=0$. Thus the flux of \mathbf{F} outward across $\&$ is

$$
\iint_{\mathcal{S}} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\iint_{D}(3+x) d x d y=3 \pi\left(3 a^{2}\right)=9 \pi a^{2}
$$

18. $\phi=x^{2}-y^{2}+z^{2}, \mathbf{G}=\frac{1}{3}\left(-y^{3} \mathbf{i}+x^{3} \mathbf{j}+z^{3} \mathbf{k}\right)$.
$\mathbf{F}=\nabla \phi+\mu \mathbf{c u r l} \mathbf{G}$.
Let R be the region of 3 -space occupied by the sandpile. Then R is bounded by the upper surface δ of the sandpile and by the disk $D: x^{2}+y^{2} \leq 1$ in the plane $z=0$. The outward (from R) normal on D is $-\mathbf{k}$. The flux of \mathbf{F} out of R is given by

$$
\iint_{\delta} \mathbf{F} \bullet \hat{\mathbf{N}} d S+\iint_{D} \mathbf{F} \bullet(-\mathbf{k}) d A=\iiint_{R} \operatorname{div} \mathbf{F} d V
$$

Now div curl $\mathbf{G}=0$ by Theorem 3(g). Also
$\boldsymbol{\operatorname { d i v }} \nabla \phi=\boldsymbol{\operatorname { d i v }}(2 x \mathbf{i}-2 y \mathbf{j}+2 z \mathbf{k})=2-2+2=2$. Therefore

$$
\iiint_{R} \boldsymbol{\operatorname { d i v }} \mathbf{F} d V=\iiint_{R}(2+\mu \times 0) d V=2(5 \pi)=10 \pi
$$

In addition,

$$
\operatorname{curl} \mathbf{G}=\frac{1}{3}\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-y^{3} & x^{3} & z^{3}
\end{array}\right|=3\left(x^{2}+y^{2}\right) \mathbf{k},
$$

and $\nabla \phi \bullet \mathbf{k}=2 z=0$ on D, so

$$
\iint_{D} \mathbf{F} \bullet \mathbf{k} d A=3 \mu \int_{0}^{2 \pi} d \theta \int_{0}^{1} r^{3} d r=\frac{3 \pi \mu}{2}
$$

The flux of \mathbf{F} out of s is $10 \pi+(3 \pi \mu) / 2$.
19. $\oiint_{\delta} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\iiint_{D} \operatorname{div} \operatorname{curl} \mathbf{F}=0$, by Theorem 3(g).
20. If $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, then $\operatorname{div} \mathbf{r}=3$ and

$$
\frac{1}{3} \oiint_{\delta} \mathbf{r} \bullet \hat{\mathbf{N}} d S=\frac{1}{3} \iiint_{D} 3 d V=V
$$

21. We use Theorem 7(b), the proof of which is given in Exercise 29. Taking $\phi(x, y, z)=x^{2}+y^{2}+z^{2}$, we have

$$
\begin{aligned}
\frac{1}{2 V} \oiint_{S}\left(x^{2}+y^{2}+z^{2}\right) \hat{\mathbf{N}} d S & =\frac{1}{2 V} \oiint_{S} \phi \hat{\mathbf{N}} d S \\
& =\frac{1}{2 V} \iiint_{D} \operatorname{grad} \phi d V \\
& =\frac{1}{V} \iiint(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) d V \\
& =\overline{\mathbf{r}}
\end{aligned}
$$

since $\iint x d V=M_{x=0}=V \bar{x}$.
22. Taking $\mathbf{F}=\nabla \phi$ in the first identity in Theorem 7(a), we have

$$
\oiint_{\delta} \nabla \phi \times \hat{\mathbf{N}} d S=-\iiint_{D} \operatorname{curl} \nabla \phi d V=0
$$

since $\nabla \times \nabla \phi=0$ by Theorem 3(h).
23. $\boldsymbol{\operatorname { d i v }}(\phi \mathbf{F})=\phi \boldsymbol{\operatorname { d i v }} \mathbf{F}+\nabla \phi \bullet \mathbf{F}$ by Theorem 3(b). Thus

$$
\begin{aligned}
\iiint_{D} \phi \boldsymbol{\operatorname { d i v }} \mathbf{F} d V+\iiint_{D} \nabla \phi \bullet \mathbf{F} d V & =\iiint_{D} \boldsymbol{\operatorname { d i v }}(\phi \mathbf{F}) d V \\
& =\oiint_{S} \phi \mathbf{F} \bullet \hat{\mathbf{N}} d S
\end{aligned}
$$

by the Divergence Theorem.
24. If $\mathbf{F}=\nabla \phi$ in the previous exercise, then $\operatorname{div} \mathbf{F}=\nabla^{2} \phi$ and

$$
\iiint_{D} \phi \nabla^{2} \phi d V+\iiint_{D}|\nabla \phi|^{2} d V=\oiint_{s} \phi \nabla \phi \bullet \hat{\mathbf{N}} d S
$$

If $\nabla^{2} \phi=0$ in D and $\phi=0$ on s, then

$$
\iiint_{D}|\nabla \phi|^{2} d V=0
$$

Since ϕ is assumed to be smooth, $\nabla \phi=0$ throughout D, and therefore ϕ is constant on each connected component of D. Since $\phi=0$ on δ, these constants must all be 0 , and $\phi=0$ on D.
25. If u and v are two solutions of the given Dirichlet problem, and $\phi=u-v$, then

$$
\begin{aligned}
\nabla^{2} \phi & =\nabla^{2} u-\nabla^{2} v=f-f=0 \text { on } D \\
\phi & =u-v=g-g=0 \text { on } s .
\end{aligned}
$$

By the previous exercise, $\phi=0$ on D, so $u=v$ on D. That is, solutions of the Dirichlet problem are unique.
26. Re-examine the solution to Exercise 24 above. If $\nabla^{2} \phi=0$ in D and $\partial \phi / \partial n=\nabla \phi \bullet \hat{\mathbf{N}}=0$ on δ, then we can again conclude that

$$
\iiint_{D}|\nabla \phi| d V=0
$$

and $\nabla \phi=0$ throughout D. Thus ϕ is constant on the connected components of D. (We can't conclude the constant is 0 because we don't know the value of ϕ on 8.) If u and v are solutions of the given Neumann problem, then $\phi=u-v$ satisfies

$$
\begin{aligned}
\nabla^{2} \phi & =\nabla^{2} u-\nabla^{2} v=f-f=0 \text { on } D \\
\frac{\partial \phi}{\partial n} & =\frac{\partial u}{\partial n}-\frac{\partial v}{\partial n}=g-g=0 \text { on } s,
\end{aligned}
$$

so ϕ is constant on any connected component of δ, and u and v can only differ by a constant on $\$$.
27. Apply the Divergence Theorem to $\mathbf{F}=\nabla \phi$:

$$
\begin{aligned}
\iiint_{D} \nabla^{2} \phi d V & =\iiint_{D} \nabla \bullet \nabla \phi d V \\
& =\oiint_{S} \nabla \phi \bullet \hat{\mathbf{N}} d S=\oiint_{\delta} \frac{\partial \phi}{\partial n} d S
\end{aligned}
$$

28. By Theorem 3(b),

$$
\begin{aligned}
\operatorname{div}(\phi \nabla \psi & -\psi \nabla \phi) \\
& =\nabla \phi \bullet \nabla \psi+\phi \nabla^{2} \psi-\nabla \psi \bullet \nabla \phi-\psi \nabla^{2} \phi \\
& =\phi \nabla^{2} \psi-\psi \nabla^{2} \phi .
\end{aligned}
$$

Hence, by the Divergence Theorem,

$$
\begin{aligned}
\iiint_{D}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d V & =\iiint_{D} \operatorname{div}(\phi \nabla \psi-\psi \nabla \phi) d V \\
& =\oiint_{S}(\phi \nabla \psi-\psi \nabla \phi) \bullet \hat{\mathbf{N}} d S \\
& =\oiint_{S}\left(\phi \frac{\partial \psi}{\partial n}-\psi \frac{\partial \phi}{\partial n}\right) d S
\end{aligned}
$$

29. If $\mathbf{F}=\phi \mathbf{c}$, where \mathbf{c} is an arbitrary, constant vector, then $\operatorname{div} \mathbf{F}=\nabla \phi \bullet \mathbf{c}$, and by the Divergence Theorem,

$$
\begin{aligned}
\mathbf{c} \bullet \iiint_{D} \nabla \phi d V & =\iiint_{D} \operatorname{div} \mathbf{F} d V \\
& =\oiint_{\delta} \mathbf{F} \bullet \hat{\mathbf{N}} d S \\
& =\oiint_{\delta} \phi \mathbf{c} \bullet \hat{\mathbf{N}} d S=\mathbf{c} \bullet \oiint_{\delta} \phi \hat{\mathbf{N}} d S
\end{aligned}
$$

Thus

$$
\mathbf{c} \bullet\left(\iiint_{D} \nabla \phi d V-\oiint_{\delta} \phi \hat{\mathbf{N}} d S\right)=0 .
$$

Since \mathbf{c} is arbitrary, the vector in the large parentheses must be the zero vector. Hence

$$
\iiint_{D} \nabla \phi d V=\oiint_{\delta} \phi \hat{\mathbf{N}} d S .
$$

30. $\frac{1}{\operatorname{vol}\left(D_{\epsilon}\right)} \oiint_{\delta_{\epsilon}} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\frac{1}{\operatorname{vol}\left(D_{\epsilon}\right)} \iiint_{D_{\epsilon}} \boldsymbol{\operatorname { d i v }} \mathbf{F} d V$
$=\frac{1}{\operatorname{vol}\left(D_{\epsilon}\right)}\left[\iiint_{D_{\epsilon}} \operatorname{div} \mathbf{F}\left(P_{0}\right) d V\right.$
$\left.+\iiint_{D_{\epsilon}}\left(\boldsymbol{\operatorname { d i v }} \mathbf{F}-\operatorname{div} \mathbf{F}\left(P_{0}\right)\right) d V\right]$
$=\operatorname{div} \mathbf{F}\left(P_{0}\right)+\frac{1}{\operatorname{vol}\left(D_{\epsilon}\right)} \iiint_{D_{\epsilon}}\left(\operatorname{div} \mathbf{F}-\operatorname{div} \mathbf{F}\left(P_{0}\right)\right) d V$.
Thus
$\left|\frac{1}{\operatorname{vol}\left(D_{\epsilon}\right)} \oiint_{S_{\epsilon}} \mathbf{F} \bullet \hat{\mathbf{N}} d S-\operatorname{div} \mathbf{F}\left(P_{0}\right)\right|$
$\leq \frac{1}{\operatorname{vol}\left(D_{\epsilon}\right)} \iiint_{D_{\epsilon}}\left|\operatorname{div} \mathbf{F}-\operatorname{div} \mathbf{F}\left(P_{0}\right)\right| d V$
$\leq \max _{P \text { in } D_{\epsilon}}\left|\operatorname{div} \mathbf{F}-\operatorname{div} \mathbf{F}\left(P_{0}\right)\right|$
$\rightarrow 0$ as $\epsilon \rightarrow 0+$ assuming $\operatorname{div} \mathbf{F}$ is continuous.
$\lim _{\epsilon \rightarrow 0+} \frac{1}{\operatorname{vol}\left(D_{\epsilon}\right)} \oiint_{\S_{\epsilon}} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\operatorname{div} \mathbf{F}\left(P_{0}\right)$.

Section 16.5 Stokes's Theorem (page 878)

1. The triangle T lies in the plane $x+y+z=1$. We use the downward normal

$$
\hat{\mathbf{N}}=-\frac{\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}}
$$

on T, because of the given orientation of its boundary. If $\mathbf{F}=x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}$, then

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y & y z & z x
\end{array}\right|=-y \mathbf{i}-z \mathbf{j}-x \mathbf{k}
$$

Therefore

$$
\begin{aligned}
\oint_{\mathcal{C}} x y d x & +y z d z+z x d z=\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r} \\
& =\iint_{T} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\iint_{T} \frac{y+z+x}{\sqrt{3}} d S \\
& =\frac{1}{\sqrt{3}} \iint_{T} d S=\frac{1}{\sqrt{3}} \times(\text { area of } T) \\
& =\frac{1}{\sqrt{3}} \times\left(\frac{1}{2} \times \sqrt{2} \times \frac{\sqrt{3}}{\sqrt{2}}\right)=\frac{1}{2}
\end{aligned}
$$

Fig. 16.5.1
2. Let s be the part of the surface $z=y^{2}$ lying inside the cylinder $x^{2}+y^{2}=4$, and having upward normal $\hat{\mathbf{N}}$. Then \mathcal{C} is the oriented boundary of ς. Let D be the disk $x^{2}+y^{2} \leq 4, z=0$, that is, the projection of s onto the $x y$-plane.

Fig. 16.5.2
If $\mathbf{F}=y \mathbf{i}-x \mathbf{j}+z^{2} \mathbf{k}$, then

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y & -x & z^{2}
\end{array}\right|=-2 \mathbf{k}
$$

Since $d S=\frac{d x d y}{\mathbf{k} \bullet \hat{\mathbf{N}}}$ on δ, we have

$$
\begin{aligned}
\oint_{\mathcal{C}} y d x-x d y+z^{2} d z & =\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=\iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S \\
& =\iint_{D}-2 \mathbf{k} \bullet \hat{\mathbf{N}} \frac{d x d y}{\mathbf{k} \bullet \hat{\mathbf{N}}}=-8 \pi
\end{aligned}
$$

3. Let \mathcal{C} be the circle $x^{2}+y^{2}=a^{2}, z=0$, oriented counterclockwise as seen from the positive z-axis. Let D be the disk bounded by \mathcal{C}, with normal \mathbf{k}. We have

$$
\begin{aligned}
\mathbf{F} & =3 y \mathbf{i}-2 x z \mathbf{j}+\left(x^{2}-y^{2}\right) \mathbf{k} \\
\operatorname{curl} \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
3 y & -2 x z & x^{2}-y^{2}
\end{array}\right| \\
& =2(x-y) \mathbf{i}-2 x \mathbf{j}-(2 z+3) \mathbf{k} .
\end{aligned}
$$

Applying Stokes's Theorem (twice) we calculate

$$
\begin{aligned}
\iint_{S} & =\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=\iint_{D} \operatorname{curl} \mathbf{F} \bullet \mathbf{k} d A \\
& =-\iint_{D} 3 d A=-3 \pi a^{2}
\end{aligned}
$$

Fig. 16.5.3
4. The surface $\&$ with equation

$$
x^{2}+y^{2}+2(z-1)^{2}=6, \quad z \geq 0
$$

with outward normal $\hat{\mathbf{N}}$, is that part of an ellipsoid of revolution about the z-axis, centred at $(0,0,1)$, and lying above the $x y$-plane. The boundary of s is the circle \mathcal{C} : $x^{2}+y^{2}=4, z=0$, oriented counterclockwise as seen from the positive z-axis. \mathcal{C} is also the oriented boundary of the disk $x^{2}+y^{2} \leq 4, z=0$, with normal $\hat{\mathbf{N}}=\mathbf{k}$.
If $\mathbf{F}=\left(x z-y^{3} \cos z\right) \mathbf{i}+x^{3} e^{z} \mathbf{j}+x y z e^{x^{2}+y^{2}+z^{2}} \mathbf{k}$, then, on $z=0$, we have

$$
\begin{aligned}
\operatorname{curlF} \bullet \mathbf{k} & =\left.\left(\frac{\partial}{\partial x} x^{3} e^{z}-\frac{\partial}{\partial y}\left(x z-y^{3} \cos z\right)\right)\right|_{z=0} \\
& =\left.\left(3 x^{2} e^{z}+3 y^{2} \cos z\right)\right|_{z=0}=3\left(x^{2}+y^{2}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\iint_{S} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S & =\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=\iint_{D} \operatorname{curl} \mathbf{F} \bullet \mathbf{k} d A \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{2} 3 r^{2} r d r=24 \pi
\end{aligned}
$$

5. The circle \mathcal{C} of intersection of $x^{2}+y^{2}+z^{2}=a^{2}$ and $x+y+z=0$ is the boundary of a circular disk of radius a in the plane $x+y+z=0$.
If $\mathbf{F}=y \mathbf{i}+z \mathbf{j}+x \mathbf{k}$, then

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y & z & x
\end{array}\right|=-(\mathbf{i}+\mathbf{j}+\mathbf{k})
$$

If \mathcal{C} is oriented so that D has normal

$$
\hat{\mathbf{N}}=-\frac{\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}}
$$

then $\operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}}=\sqrt{3}$ on D, so

$$
\begin{aligned}
\oint_{\mathbb{C}} y d x+z d y+x d z & =\oint_{\mathbb{C}} \mathbf{F} \bullet d \mathbf{r}=\iint_{D} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S \\
& =\sqrt{3} \iint_{D} d S=\sqrt{3} \pi a^{2}
\end{aligned}
$$

since D has area πa^{2}.
6. The curve \mathcal{C} :

$$
\mathbf{r}=\cos t \mathbf{i}+\sin t \mathbf{j}+\sin 2 t \mathbf{k}, \quad 0 \leq t \leq 2 \pi,
$$

lies on the surface $z=2 x y$, $\operatorname{since} \sin 2 t=2 \cos t \sin t$. It also lies on the cylinder $x^{2}+y^{2}=1$, so it is the boundary of that part of $z=2 x y$ lying inside that cylinder. Since \mathcal{C} is oriented counterclockwise as seen from high on the z-axis, $\&$ should be oriented with upward normal,

$$
\hat{\mathbf{N}}=\frac{-2 y \mathbf{i}-2 x \mathbf{j}+\mathbf{k}}{\sqrt{1+4\left(x^{2}+y^{2}\right)}}
$$

and has area element

$$
\begin{array}{r}
d S=\sqrt{1+4\left(x^{2}+y^{2}\right)} d x d y . \\
\text { If } \mathbf{F}=\left(e^{x}-y^{3}\right) \mathbf{i}+\left(e^{y}+x^{3}\right) \mathbf{j}+e^{z} \mathbf{k}, \text { then }
\end{array}
$$

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
e^{x}-y^{3} & e^{y}+x^{3} & e^{z}
\end{array}\right|=3\left(x^{2}+y^{2}\right) \mathbf{k} .
$$

If D is the disk $x^{2}+y^{2} \leq 1$ in the $x y$-plane, then

$$
\begin{aligned}
\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r} & =\iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\iint_{D} 3\left(x^{2}+y^{2}\right) d x d y \\
& =3 \int_{0}^{2 \pi} d \theta \int_{0}^{1} r^{2} r d r=\frac{3 \pi}{2}
\end{aligned}
$$

7. The part of the paraboloid $z=9-x^{2}-y^{2}$ lying above the $x y$-plane having upward normal $\hat{\mathbf{N}}$ has boundary the circle $\mathcal{C}: x^{2}+y^{2}=9$, oriented counterclockwise as seen from above. \mathcal{C} is also the oriented boundary of the plane disk $x^{2}+y^{2} \leq 9, z=0$, oriented with normal field $\hat{\mathbf{N}}=\mathbf{k}$.
If $\mathbf{F}=-y \mathbf{i}+x^{2} \mathbf{j}+z \mathbf{k}$, then

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-y & x^{2} & z
\end{array}\right|=(2 x+1) \mathbf{k} .
$$

By Stokes's Theorem, the circulation of \mathbf{F} around \mathcal{C} is

$$
\begin{aligned}
\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r} & =\iint_{D}(\mathbf{c u r l} \mathbf{F} \bullet \mathbf{k}) d A \\
& =\iint_{D}(2 x+1) d A=0+\pi\left(3^{2}\right)=9 \pi
\end{aligned}
$$

8. The closed curve

$$
\mathbf{r}=(1+\cos t) \mathbf{i}+(1+\sin t) \mathbf{j}+(1-\cos t-\sin t) \mathbf{k}
$$

$(0 \leq t \leq 2 \pi)$, lies in the plane $x+y+z=3$ and is oriented counterclockwise as seen from above. Therefore it is the boundary of a region s in that plane with normal field $\hat{\mathbf{N}}=(\mathbf{i}+\mathbf{j}+\mathbf{k}) / \sqrt{3}$. The projection of s onto the $x y$-plane is the circular disk D of radius 1 with centre at $(1,1)$.
If $\mathbf{F}=y e^{x} \mathbf{i}+\left(x^{2}+e^{x}\right) \mathbf{j}+z^{2} e^{z} \mathbf{k}$, then

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y e^{x} & x^{2}+e^{x} & z^{2}+e^{z}
\end{array}\right|=2 x \mathbf{k} .
$$

By Stokes's Theorem,

$$
\begin{aligned}
\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r} & =\iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S \\
& =\iint_{S} \frac{2 x}{\sqrt{3}} d S=\iint_{D} \frac{2 x}{\sqrt{3}}(\sqrt{3}) d x d y \\
& =2 \bar{x} A=2 \pi
\end{aligned}
$$

where $\bar{x}=1$ is the x-coordinate of the centre of D, and $A=\pi 1^{2}=\pi$ is the area of D.
9. If ℓ_{1} and ℓ_{2} are two surfaces joining \mathcal{C}_{1} to \mathcal{C}_{2}, each having upward normal, then the closed surface δ_{3} consisting of s_{1} and $-s_{2}$ (that is, s_{2} with downward normal) bound a region R in 3 -space. Then

$$
\begin{aligned}
\iint_{\Omega_{1}} \mathbf{F} \bullet \hat{\mathbf{N}} d S & -\iint_{\Omega_{2}} \mathbf{F} \bullet \hat{\mathbf{N}} d S \\
& =\iint_{\Omega_{1}} \mathbf{F} \bullet \hat{\mathbf{N}} d S+\iint_{-\Omega_{2}} \mathbf{F} \bullet \hat{\mathbf{N}} d S \\
& =\oiint_{\Omega_{3}} \mathbf{F} \bullet \hat{\mathbf{N}} d S= \pm \iiint_{R} \boldsymbol{\operatorname { d i v }} \mathbf{F} d V=0
\end{aligned}
$$

provided that $\boldsymbol{\operatorname { d i v }} \mathbf{F}=0$ identically. Since

$$
\mathbf{F}=\left(\alpha x^{2}-z\right) \mathbf{i}+\left(x y+y^{3}+z\right) \mathbf{j}+\beta y^{2}(z+1) \mathbf{k},
$$

we have $\operatorname{div} \mathbf{F}=2 \alpha x+x+3 y^{2}+\beta y^{2}=0$ if $\alpha=-1 / 2$ and $\beta=-3$. In this case we can evaluate $\iint_{\delta} \mathbf{F} \bullet \hat{\mathbf{N}} d S$ for any such surface $\&$ by evaluating the special case where S is the half-disk $H: x^{2}+y^{2} \leq 1, z=0, y \geq 0$, with upward normal $\hat{\mathbf{N}}=\mathbf{k}$. We have

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \hat{\mathbf{N}} d S & =-3 \iint_{H} y^{2} d x d y \\
& =-3 \int_{0}^{\pi} \sin ^{2} \theta d \theta \int_{0}^{1} r^{3} d r=-\frac{3 \pi}{8}
\end{aligned}
$$

10. The curve $\mathcal{C}:(x-1)^{2}+4 y^{2}=16,2 x+y+z=3$, oriented counterclockwise as seen from above, bounds an elliptic disk $\&$ on the plane $2 x+y+z=3$. $\&$ has normal $\hat{\mathbf{N}}=(2 \mathbf{i}+\mathbf{j}+\mathbf{k}) / \sqrt{6}$. Since its projection onto the $x y$ plane is an elliptic disk with centre at $(1,0,0)$ and area $\pi(4)(2)=8 \pi$, therefore δ has area $8 \sqrt{6} \pi$ and centroid $(1,0,1)$. If

$$
\mathbf{F}=\left(z^{2}+y^{2}+\sin x^{2}\right) \mathbf{i}+(2 x y+z) \mathbf{j}+(x z+2 y z) \mathbf{k}
$$

then

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
z^{2}+y^{2}+\sin x^{2} & 2 x y+z & x z+2 y z
\end{array}\right| \\
& =(2 z-1) \mathbf{i}+z \mathbf{j} .
\end{aligned}
$$

By Stokes's Theorem,

$$
\begin{aligned}
\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r} & =\iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S \\
& =\frac{1}{\sqrt{6}} \iint_{\mathcal{S}}(2(2 z-1)+z) d S \\
& =\frac{5 \bar{z}-2}{\sqrt{6}}(8 \sqrt{6} \pi)=24 \pi
\end{aligned}
$$

11. As was shown in Exercise 13 of Section 7.2,

$$
\nabla \times(\phi \nabla \psi)=-\nabla \times(\psi \times \phi)=\nabla \phi \times \nabla \psi .
$$

Thus, by Stokes's Theorem,

$$
\begin{aligned}
\oint_{\mathcal{C}} \phi \nabla \psi & =\iint_{\mathcal{S}} \nabla \times(\phi \nabla \psi) \bullet \hat{\mathbf{N}} d S \\
& =\iint_{\mathcal{S}}(\nabla \phi \times \nabla \psi) \bullet \hat{\mathbf{N}} d S \\
-\oint_{\mathcal{C}} \psi \nabla \phi & =\iint_{\mathcal{S}}-\nabla \times(\psi \nabla \phi) \bullet \hat{\mathbf{N}} d S \\
& =\iint_{\mathcal{S}}(\nabla \phi \times \nabla \psi) \bullet \hat{\mathbf{N}} d S
\end{aligned}
$$

$\nabla \phi \times \nabla \psi$ is solenoidal, with potential $\phi \nabla \psi$, or $-\psi \nabla \phi$.
12. We are given that \mathcal{C} bounds a region R in a plane P with unit normal $\hat{\mathbf{N}}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$. Therefore, $a^{2}+b^{2}+c^{2}=1$.
If $\mathbf{F}=(b z-c y) \mathbf{i}+(c x-a z) \mathbf{j}+(a y-b x) \mathbf{k}$, then

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
b z-c y & c x-a z & a y-b x
\end{array}\right| \\
& =2 a \mathbf{i}+2 b \mathbf{j}+2 c \mathbf{k}
\end{aligned}
$$

Hence curl $\mathbf{F} \bullet \hat{\mathbf{N}}=2\left(a^{2}+b^{2}+c^{2}\right)=2$. We have

$$
\begin{aligned}
\frac{1}{2} \oint_{\mathcal{C}}(b z-c y) d x & +(c x-a z) d y+(a y-b x) d z \\
& =\frac{1}{2} \oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=\frac{1}{2} \iint_{R} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S \\
& =\frac{1}{2} \iint_{R} 2 d S=\text { area of } R .
\end{aligned}
$$

13. The circle \mathcal{C}_{ϵ} of radius ϵ centred at P is the oriented boundary of the disk δ_{ϵ} of area $\pi \epsilon^{2}$ having constant normal field $\hat{\mathbf{N}}$. By Stokes's Theorem,

$$
\begin{aligned}
\oint_{\mathcal{C}_{\epsilon}} \mathbf{F} \bullet d \mathbf{r}= & \iint_{\delta_{\epsilon}} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S \\
= & \iint_{\delta_{\epsilon}} \operatorname{curl} \mathbf{F}(P) \bullet \hat{\mathbf{N}} d S \\
& +\iint_{\delta_{\epsilon}}(\operatorname{curl} \mathbf{F}-\operatorname{curl} \mathbf{F}(P)) \bullet \hat{\mathbf{N}} d S \\
= & \pi \epsilon^{2} \mathbf{c u r l} \mathbf{F}(P) \bullet \hat{\mathbf{N}} \\
& +\iint_{\delta_{\epsilon}}(\operatorname{curl} \mathbf{F}-\operatorname{curl} \mathbf{F}(P)) \bullet \hat{\mathbf{N}} d S
\end{aligned}
$$

Since \mathbf{F} is assumed smooth, its curl is continuous at P. Therefore

$$
\begin{aligned}
& \left|\frac{1}{\pi \epsilon^{2}} \oint_{\mathcal{C}_{\epsilon}} \mathbf{F} \bullet d \mathbf{r}-\operatorname{curl} \mathbf{F}(P) \bullet \hat{\mathbf{N}}\right| \\
& \leq \frac{1}{\pi \epsilon^{2}} \iint_{\delta_{\epsilon}}|(\operatorname{curl} \mathbf{F}-\operatorname{curl} \mathbf{F}(P)) \bullet \hat{\mathbf{N}}| d S \\
& \leq \max _{Q \text { on } \Omega_{\epsilon}}|\operatorname{curl} \mathbf{F}(Q)-\operatorname{curl} \mathbf{F}(P)| \\
& \rightarrow 0 \text { as } \epsilon \rightarrow 0+.
\end{aligned}
$$

Thus $\lim _{\epsilon \rightarrow 0+} \oint_{\mathcal{C}_{\epsilon}} \mathbf{F} \bullet d \mathbf{r}=\operatorname{curl} \mathbf{F}(P) \bullet \hat{\mathbf{N}}$.

Section 16.6 Some Physical Applications of Vector Calculus (page 885)

1. a) If we measure depth in the liquid by $-z$, so that the z axis is vertical and $z=0$ at the surface, then the pressure at depth $-z$ is $p=-\delta g z$, where δ is the density of the liquid. Thus

$$
\nabla p=-\delta g \mathbf{k}=\delta \mathbf{g}
$$

where $\mathbf{g}=-g \mathbf{k}$ is the constant downward vector acceleration of gravity.
The force of the liquid on surface element $d S$ of the solid with outward (from the solid) normal $\hat{\mathbf{N}}$ is

$$
d \mathbf{B}=-p \hat{\mathbf{N}} d S=-(-\delta g z) \hat{\mathbf{N}} d S=\delta g z \hat{\mathbf{N}} d S
$$

Thus, the total force of the liquid on the solid (the buoyant force) is

$$
\begin{aligned}
\mathbf{B} & =\oiint_{\delta} \delta g z \hat{\mathbf{N}} d S \\
& =\iiint_{R} \nabla(\delta g z) d V \quad \text { (see Theorem 7) } \\
& =-\iiint_{R} \delta \mathbf{g} d V=-M \mathbf{g}
\end{aligned}
$$

where $M=\iiint_{R} \delta d V$ is the mass of the liquid which would occupy the same space as the solid. Thus $\mathbf{B}=-\mathbf{F}$, where $\mathbf{F}=M \mathbf{g}$ is the weight of the liquid displaced by the solid.

Fig. 16.6.1
b) The above argument extends to the case where the solid is only partly submerged. Let R^{*} be the part of the region occupied by the solid that is below the surface of the liquid. Let $s^{*}=s_{1} \cup s_{2}$ be the boundary of R^{*}, with $s_{1} \subset \delta$ and s_{2} in the plane of the surface of the liquid. Since $p=-\delta g z=0$ on s_{2}, we have

$$
\iint_{\delta_{2}} \delta g z \hat{\mathbf{N}} d S=0
$$

Therefore the buoyant force on the solid is

$$
\begin{aligned}
\mathbf{B} & =\iint_{\delta_{1}} \delta g z \hat{\mathbf{N}} d S \\
& =\iint_{\Omega_{1}} \delta g z \hat{\mathbf{N}} d S+\iint_{\delta_{2}} \delta g z \hat{\mathbf{N}} d S \\
& =\oiint_{\delta^{*}} \delta g z \hat{\mathbf{N}} d S \\
& =-\iiint_{R^{*}} \delta \mathbf{g} d V=-M^{*} \mathbf{g}
\end{aligned}
$$

where $M^{*}=\iiint_{R^{*}} \delta d V$ is the mass of the liquid which would occupy R^{*}. Again we conclude that the buoyant force is the negative of the weight of the liquid displaced.

Fig. 16.6.1
2. The first component of $\mathbf{F}(\mathbf{G} \bullet \hat{\mathbf{N}})$ is $\left(F_{1} \mathbf{G}\right) \bullet \hat{\mathbf{N}}$. Applying the Divergence Theorem and Theorem 3(b), we obtain

$$
\begin{aligned}
\oiint_{s}\left(F_{1} \mathbf{G}\right) \bullet \hat{\mathbf{N}} d S & =\iiint_{D} \operatorname{div}\left(F_{1} \mathbf{G}\right) d V \\
& =\iiint_{D}\left(\nabla F_{1} \bullet \mathbf{G}+F_{1} \nabla \bullet \mathbf{G}\right) d S .
\end{aligned}
$$

But $\nabla F_{1} \bullet \mathbf{G}$ is the first component of $(\mathbf{G} \bullet \nabla) \mathbf{F}$, and $F_{1} \nabla \bullet \mathbf{G}$ is the first component of Fdiv G. Similar results obtain for the other components, so

$$
\oiint_{S} \mathbf{F}(\mathbf{G} \bullet \hat{\mathbf{N}}) d S=\iiint_{D}(\mathbf{F d i v} \mathbf{G}+(\mathbf{G} \bullet \nabla) \mathbf{F}) d V
$$

3. Suppose the closed surface $\&$ bounds a region R in which charge is distributed with density ρ. Since the electric field \mathbf{E} due to the charge satisfies $\operatorname{div} \mathbf{E}=k \rho$, the total flux of \mathbf{E} out of R through $\&$ is, by the Divergence Theorem,

$$
\oiint_{S} \mathbf{E} \bullet \hat{\mathbf{N}} d S=\iiint_{R} \operatorname{div} \mathbf{E} d V=k \iiint_{R} \rho d V=k Q
$$

where $Q=\iiint_{R} \rho d V$ is the total charge in R.
4. If f is continuous and vanishes outside a bounded region (say the ball of radius R centred at \mathbf{r}), then $|f(\xi, \eta, \zeta)| \leq K$, and, if (ρ, ϕ, θ) denote spherical coordinates centred at \mathbf{r}, then

$$
\begin{aligned}
\iiint_{\mathbb{R}^{3}} \frac{|f(\mathbf{s})|}{|\mathbf{r}-\mathbf{s}|} d V_{s} & \leq K \int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \sin \phi d \phi \int_{0}^{R} \frac{\rho^{2}}{\rho} d \rho \\
& =2 \pi K R^{2} \quad \text { a constant. }
\end{aligned}
$$

5. This derivation is similar to that of the continuity equation for fluid motion given in the text. If $\&$ is an (imaginary) surface bounding an arbitrary region D, then the rate of change of total charge in D is

$$
\frac{\partial}{\partial t} \iiint_{D} \rho d V=\iiint_{D} \frac{\partial \rho}{\partial t} d V
$$

where ρ is the charge density. By conservation of charge, this rate must be equal to the rate at which charge is crossing s into D, that is, to

$$
\oint_{\delta}(-\mathbf{J}) \bullet \hat{\mathbf{N}} d S=-\iiint_{D} \operatorname{div} \mathbf{J} d V
$$

(The negative sign occurs because $\hat{\mathbf{N}}$ is the outward (from D) normal on f.) Thus we have

$$
\iiint_{D}\left(\frac{\partial \rho}{\partial t}+\operatorname{div} \mathbf{J}\right) d V=0
$$

Since D is arbitrary and we are assuming the integrand is continuous, it must be 0 at every point:

$$
\frac{\partial \rho}{\partial t}+\operatorname{div} \mathbf{J}=0
$$

6. Since $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$, we have

$$
\begin{aligned}
& |\mathbf{r}-\mathbf{b}|^{2}=\left(x-b_{1}\right)^{2}+\left(y-b_{2}\right)^{2}+\left(z-b_{3}\right)^{2} \\
& 2|\mathbf{r}-\mathbf{b}| \frac{\partial}{\partial x}|\mathbf{r}-\mathbf{b}|=2\left(x-b_{1}\right) \\
& \frac{\partial}{\partial x}|\mathbf{r}-\mathbf{b}|=\frac{x-b_{1}}{|\mathbf{r}-\mathbf{b}|}
\end{aligned}
$$

Similar formulas hold for the other first partials of $|\mathbf{r}-\mathbf{b}|$, so

$$
\begin{aligned}
& \nabla\left(\frac{1}{|\mathbf{r}-\mathbf{b}|}\right) \\
& =\frac{-1}{|\mathbf{r}-\mathbf{b}|^{2}}\left(\frac{\partial}{\partial x}|\mathbf{r}-\mathbf{b}| \mathbf{i}+\cdots+\frac{\partial}{\partial z}|\mathbf{r}-\mathbf{b}| \mathbf{k}\right) \\
& =\frac{-1}{|\mathbf{r}-\mathbf{b}|^{2}} \frac{\left(x-b_{1}\right) \mathbf{i}+\left(y-b_{2}\right) \mathbf{j}+\left(z-b_{3}\right) \mathbf{k}}{|\mathbf{r}-\mathbf{b}|} \\
& =-\frac{\mathbf{r}-\mathbf{b}}{|\mathbf{r}-\mathbf{b}|^{3}} .
\end{aligned}
$$

7. Using the result of Exercise 4 and Theorem 3(d) and (h), we calculate, for constant a,

$$
\begin{aligned}
& \operatorname{div}\left(\mathbf{a} \times \frac{\mathbf{r}-\mathbf{b}}{|\mathbf{r}-\mathbf{b}|^{3}}\right) \\
& =-\operatorname{div}\left(\mathbf{a} \times \nabla \frac{1}{|\mathbf{r}-\mathbf{b}|}\right) \\
& =-(\nabla \times \mathbf{a}) \bullet \nabla \frac{1}{|\mathbf{r}-\mathbf{b}|}+\mathbf{a} \bullet \nabla \times \nabla \frac{1}{|\mathbf{r}-\mathbf{b}|}=0+0=0
\end{aligned}
$$

8. For any element $d \mathbf{s}$ on the filament \mathcal{F}, we have

$$
\operatorname{div}\left(d \mathbf{s} \times \frac{\mathbf{r}-\mathbf{s}}{|\mathbf{r}-\mathbf{s}|^{3}}\right)=0
$$

by Exercise 5, since the divergence is taken with respect to \mathbf{r}, and so \mathbf{s} and $d \mathbf{s}$ can be regarded as constant. Hence

$$
\operatorname{div} \oint_{\mathcal{F}} \frac{d \mathbf{s} \times(\mathbf{r}-\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}}=\oint_{\mathcal{F}} \operatorname{div}\left(d \mathbf{s} \times \frac{\mathbf{r}-\mathbf{s}}{|\mathbf{r}-\mathbf{s}|^{3}}\right)=0
$$

9. By the result of Exercise 4 and Theorem 3(e), we calculate

$$
\begin{aligned}
\operatorname{curl} & \left(\mathbf{a} \times \frac{\mathbf{r}-\mathbf{b}}{|\mathbf{r}-\mathbf{b}|^{3}}\right) \\
= & -\mathbf{c u r l}\left(\mathbf{a} \times \nabla \frac{1}{|\mathbf{r}-\mathbf{b}|}\right) \\
= & -\left(\nabla \bullet \nabla \frac{1}{|\mathbf{r}-\mathbf{b}|}\right) \mathbf{a}-\left(\nabla \frac{1}{|\mathbf{r}-\mathbf{b}|} \bullet \nabla\right) \mathbf{a} \\
& +(\nabla \bullet \mathbf{a}) \nabla \frac{1}{|\mathbf{r}-\mathbf{b}|}+(\mathbf{a} \bullet \nabla) \nabla \frac{1}{|\mathbf{r}-\mathbf{b}|}
\end{aligned}
$$

Observe that $\nabla \bullet \nabla \frac{1}{|\mathbf{r}-\mathbf{b}|}=0$ for $\mathbf{r} \neq \mathbf{b}$, either by direct calculation or by noting that $\nabla \frac{1}{|\mathbf{r}-\mathbf{b}|}$ is the field of a point source at $\mathbf{r}=\mathbf{b}$ and applying the result of Example 3 of Section 7.1.
Also $-\left(\nabla \frac{1}{|\mathbf{r}-\mathbf{b}|} \bullet \nabla\right) \mathbf{a}=\mathbf{0}$ and $\nabla \bullet \mathbf{a}=0$, since \mathbf{a} is constant. Therefore we have

$$
\begin{aligned}
\operatorname{curl}\left(\mathbf{a} \times \frac{\mathbf{r}-\mathbf{b}}{|\mathbf{r}-\mathbf{b}|^{3}}\right) & =(\mathbf{a} \bullet \nabla) \nabla \frac{1}{|\mathbf{r}-\mathbf{b}|} \\
& =-(\mathbf{a} \bullet \nabla) \frac{\mathbf{r}-\mathbf{b}}{|\mathbf{r}-\mathbf{b}|^{3}} .
\end{aligned}
$$

10. The first component of $(d \mathbf{s} \bullet \nabla) \mathbf{F}(s)$ is $\nabla F_{1}(s) \bullet d \mathbf{s}$. Since \mathcal{F} is closed and ∇F_{1} is conservative,

$$
\mathbf{i} \bullet \oint_{\mathcal{F}}(d \mathbf{s} \bullet \nabla) \mathbf{F}(s)=\oint_{\mathcal{F}} \nabla F_{1}(s) \bullet d \mathbf{s}=0
$$

Similarly, the other components have zero line integrals, so

$$
\oint_{\mathcal{F}}(d \mathbf{s} \bullet \nabla) \mathbf{F}(s)=\mathbf{0} .
$$

11. Using the results of Exercises 7 and 8, we have

$$
\operatorname{curl} \oint_{\mathcal{F}} \frac{d \mathbf{s} \times(\mathbf{r}-\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}}=\oint_{\mathcal{F}} \operatorname{curl}\left(d \mathbf{s} \times \frac{\mathbf{r}-\mathbf{s}}{|\mathbf{r}-\mathbf{s}|^{3}}\right)=\mathbf{0}
$$

for \mathbf{r} not on \mathcal{F}. (Again, this is because the curl is taken with respect to \mathbf{r}, so \mathbf{s} and $d \mathbf{s}$ can be regarded as constant for the calculation of the curl.)
12. By analogy with the filament case, the current in volume element $d V$ at position \mathbf{s} is $\mathbf{J}(\mathbf{s}) d V$, which gives rise at position \mathbf{r} to a magnetic field

$$
d \mathbf{H}(\mathbf{r})=\frac{1}{4 \pi} \frac{\mathbf{J}(\mathbf{s}) \times(\mathbf{r}-\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}} d V
$$

If R is a region of 3 -space outside which \mathbf{J} is identically zero, then at any point \mathbf{r} in 3 -space, the total magnetic field is

$$
\mathbf{H}(\mathbf{r})=\frac{1}{4 \pi} \iiint_{R} \frac{\mathbf{J}(\mathbf{s}) \times(\mathbf{r}-\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}} d V
$$

Now $\mathbf{A}(\mathbf{r})$ was defined to be

$$
\mathbf{A}(\mathbf{r})=\frac{1}{4 \pi} \iiint_{R} \frac{\mathbf{J}(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|} d V
$$

We have

$$
\begin{aligned}
& \operatorname{curl} \mathbf{A}(\mathbf{r})= \frac{1}{4 \pi} \iiint_{R} \nabla_{\mathbf{r}} \times\left(\frac{1}{|\mathbf{r}-\mathbf{s}|} \mathbf{J}(\mathbf{s})\right) d V \\
&= \frac{1}{4 \pi} \iiint_{R} \nabla_{\mathbf{r}} \frac{1}{|\mathbf{r}-\mathbf{s}|} \times \mathbf{J}(\mathbf{s}) d V \\
&=-\frac{1}{4 \pi} \iiint_{R} \frac{(\mathbf{r}-\mathbf{s}) \times \mathbf{J}(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}} d V \\
& \quad=\mathbf{H}(\mathbf{r}) .
\end{aligned}
$$

13. $\quad \mathbf{A}(\mathbf{r})=\frac{I}{4 \pi} \oint_{\mathcal{F}} \frac{d \mathbf{s}}{|\mathbf{r}-\mathbf{s}|}$
$\begin{aligned} \operatorname{div} \mathbf{A}(\mathbf{r}) & =\frac{I}{4 \pi} \oint_{\mathcal{F}} \operatorname{div}_{\mathbf{r}}\left(\frac{1}{|\mathbf{r}-\mathbf{s}|} d \mathbf{s}\right) \\ & =\frac{I}{4 \pi} \oint_{\mathcal{F}} \nabla\left(\frac{1}{|\mathbf{r}-\mathbf{s}|}\right) \bullet d \mathbf{s}\end{aligned}$
(by Theorem 3(b))
$=0$ for \mathbf{r} not on \mathcal{F},
since $\nabla(1 /|\mathbf{r}-\mathbf{s}|)$ is conservative.
14. $\mathbf{A}(\mathbf{r})=\frac{1}{4 \pi} \iiint_{R} \frac{\mathbf{J}(\mathbf{s}) d V}{|\mathbf{r}-\mathbf{s}|}$, where R is a region of 3space such that $\mathbf{J}(\mathbf{s})=\mathbf{0}$ outside R. We assume that $\mathbf{J}(\mathbf{s})$ is continuous, so $\mathbf{J}(\mathbf{s})=\mathbf{0}$ on the surface $\&$ of R. In the following calculations we use subscripts \mathbf{s} and \mathbf{r} to denote the variables with respect to which derivatives are taken. By Theorem 3(b),

$$
\begin{aligned}
\operatorname{div}_{\mathbf{s}} \frac{\mathbf{J}(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|} & =\left(\nabla_{\mathbf{s}} \frac{1}{|\mathbf{r}-\mathbf{s}|}\right) \bullet \mathbf{J}(\mathbf{s})+\frac{1}{|\mathbf{r}-\mathbf{s}|} \nabla_{\mathbf{s}} \bullet \mathbf{J}(\mathbf{s}) \\
& =-\nabla_{\mathbf{r}}\left(\frac{1}{|\mathbf{r}-\mathbf{s}|}\right) \bullet \mathbf{J}(\mathbf{s})+0
\end{aligned}
$$

because $\nabla_{\mathbf{r}}|\mathbf{r}-\mathbf{s}|=-\nabla_{\mathbf{s}}|\mathbf{r}-\mathbf{s}|$, and because
$\nabla \bullet \mathbf{J}=\nabla \bullet(\nabla \times \mathbf{H})=0$ by Theorem 3(g). Hence

$$
\begin{aligned}
\operatorname{div} \mathbf{A}(\mathbf{r}) & =\frac{1}{4 \pi} \iiint_{R}\left(\nabla_{\mathbf{r}} \frac{1}{|\mathbf{r}-\mathbf{s}|}\right) \bullet \mathbf{J}(\mathbf{s}) d V \\
& =-\frac{1}{4 \pi} \iiint_{R} \nabla_{\mathbf{s}} \bullet \frac{\mathbf{J}(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|} d V \\
& =-\frac{1}{4 \pi} \oiint_{\delta} \frac{\mathbf{J}(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|} \bullet \hat{\mathbf{N}} d S=0
\end{aligned}
$$

since $\mathbf{J}(\mathbf{s})=\mathbf{0}$ on s.
By Theorem 3(i),
$\mathbf{J}=\nabla \times \mathbf{H}=\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \bullet \mathbf{A})-\nabla^{2} \mathbf{A}=-\nabla^{2} \mathbf{A}$.
15. By Maxwell's equations, since $\rho=0$ and $\mathbf{J}=\mathbf{0}$,

$$
\begin{aligned}
\operatorname{div} \mathbf{E} & =0 & \operatorname{div} \mathbf{H} & =0 \\
\operatorname{curl} \mathbf{E} & =-\mu_{0} \frac{\partial \mathbf{H}}{\partial t} & \operatorname{curl} \mathbf{H} & =\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \text { curl curl } \mathbf{E}=\operatorname{grad} \operatorname{div} \mathbf{E}-\nabla^{2} \mathbf{E}=-\nabla^{2} \mathbf{E} \\
& \nabla^{2} \mathbf{E}=-\operatorname{curl} \operatorname{curl} \mathbf{E}=\mu_{0} \frac{\partial}{\partial t} \operatorname{curl} \mathbf{H}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
\end{aligned}
$$

Similarly,

$$
\nabla^{2} \mathbf{H}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \mathbf{H}}{\partial t^{2}}
$$

Thus $\mathbf{U}=\mathbf{E}$ and $\mathbf{U}=\mathbf{H}$ both satisfy the wave equation

$$
\frac{\partial^{2} \mathbf{U}}{\partial t^{2}}=c^{2} \nabla^{2} \mathbf{U}, \quad \text { where } \quad c^{2}=\frac{1}{\mu_{0} \epsilon_{0}}
$$

16. The heat content of an arbitrary region R (with surface 8) at time t is

$$
H(t)=\delta c \iiint_{R} T(x, y, z, t) d V
$$

This heat content increases at (time) rate

$$
\frac{d H}{d t}=\delta c \iiint_{R} \frac{\partial T}{\partial t} d V
$$

If heat is not "created" or "destroyed" (by chemical or other means) within R, then the increase in heat content must be due to heat flowing into R across δ.
The rate of flow of heat into R across surface element $d S$ with outward normal $\hat{\mathbf{N}}$ is

$$
-k \nabla T \bullet \hat{\mathbf{N}} d S
$$

Therefore, the rate at which heat enters R through $\&$ is

$$
k \oiint_{S} \nabla T \bullet \hat{\mathbf{N}} d S
$$

By conservation of energy and the Divergence Theorem we have

$$
\begin{aligned}
\delta c \iiint_{R} \frac{\partial T}{\partial t} d V & =k \oiint_{\delta} \nabla T \bullet \hat{\mathbf{N}} d S \\
& =k \iiint_{R} \nabla \bullet \nabla T d V \\
& =k \iiint_{R} \nabla^{2} T d V
\end{aligned}
$$

Thus, $\iiint_{R}\left(\frac{\partial T}{\partial t}-\frac{k}{\delta c} \nabla^{2} T\right) d V=0$.
Since R is arbitrary, and the temperature T is assumed to be smooth, the integrand must vanish everywhere. Thus

$$
\frac{\partial T}{\partial t}=\frac{k}{\delta c} \nabla^{2} T=\frac{k}{\delta c}\left[\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}\right]
$$

Section 16.7 Orthogonal Curvilinear Coordinates (page 896)

1. $f(r, \theta, z)=r \theta z \quad$ (cylindrical coordinates). By Example 9 ,

$$
\begin{aligned}
\nabla f & =\frac{\partial f}{\partial r} \hat{\mathbf{r}}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\boldsymbol{\theta}}+\frac{\partial f}{\partial z} \mathbf{k} \\
& =\theta z \hat{\mathbf{r}}+z \hat{\boldsymbol{\theta}}+r \theta \mathbf{k}
\end{aligned}
$$

2. $f(\rho, \phi, \theta)=\rho \phi \theta$ (spherical coordinates). By Example 10 ,

$$
\begin{aligned}
\nabla f & =\frac{\partial f}{\partial \rho} \hat{\boldsymbol{\rho}}+\frac{1}{\rho} \frac{\partial f}{\partial \phi} \hat{\boldsymbol{\phi}}+\frac{1}{\rho \sin \phi} \frac{\partial f}{\partial \theta} \hat{\boldsymbol{\theta}} \\
& =\phi \theta \hat{\boldsymbol{\rho}}+\theta \hat{\boldsymbol{\phi}}+\frac{\phi}{\sin \phi} \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

3. $\mathbf{F}(r, \theta, z)=r \hat{\mathbf{r}}$

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r^{2}\right)\right]=2 \\
\operatorname{curl} \mathbf{F} & =\frac{1}{r}\left|\begin{array}{ccc}
\hat{\mathbf{r}} & r \hat{\boldsymbol{\theta}} & \mathbf{k} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
r & 0 & 0
\end{array}\right|=\mathbf{0} .
\end{aligned}
$$

4. $\mathbf{F}(r, \theta, z)=r \hat{\boldsymbol{\theta}}$

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\frac{1}{r}\left[\frac{\partial}{\partial \theta}(r)\right]=0 \\
\operatorname{curl} \mathbf{F} & =\frac{1}{r}\left|\begin{array}{ccc}
\hat{\mathbf{r}} & r \hat{\boldsymbol{\theta}} & \mathbf{k} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
0 & r^{2} & 0
\end{array}\right|=2 \mathbf{k} .
\end{aligned}
$$

5. $\mathbf{F}(\rho, \phi, \theta)=\sin \phi \hat{\boldsymbol{\rho}}$

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\frac{1}{\rho^{2} \sin \phi}\left[\frac{\partial}{\partial \rho}\left(\rho^{2} \sin ^{2} \phi\right)\right]=\frac{2 \sin \phi}{\rho} \\
\operatorname{curl} \mathbf{F} & =\frac{1}{\rho^{2} \sin \phi}\left|\begin{array}{ccc}
\hat{\boldsymbol{\rho}} & \rho \hat{\boldsymbol{\phi}} & \rho \sin \phi \hat{\boldsymbol{\theta}} \\
\frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\
\sin \phi & 0 & 0
\end{array}\right| \\
& =-\frac{\cos \phi}{\rho} \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

6. $\mathbf{F}(\rho, \phi, \theta)=\rho \hat{\boldsymbol{\phi}}$

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\frac{1}{\rho^{2} \sin \phi}\left[\frac{\partial}{\partial \phi}\left(\rho^{2} \sin \phi\right)\right]=\cot \phi \\
\operatorname{curl} \mathbf{F} & =\frac{1}{\rho^{2} \sin \phi}\left|\begin{array}{ccc}
\hat{\boldsymbol{\rho}} & \rho \hat{\boldsymbol{\phi}} & \rho \sin \phi \hat{\boldsymbol{\theta}} \\
\frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\
0 & \rho^{2} & 0
\end{array}\right|=2 \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

7. $\mathbf{F}(\rho, \phi, \theta)=\rho \hat{\boldsymbol{\theta}}$

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\frac{1}{\rho^{2} \sin \phi}\left[\frac{\partial}{\partial \theta}\left(\rho^{2}\right)\right]=0 \\
\operatorname{curl} \mathbf{F} & =\frac{1}{\rho^{2} \sin \phi}\left|\begin{array}{ccc}
\hat{\boldsymbol{\rho}} & \rho \hat{\boldsymbol{\phi}} & \rho \sin \phi \hat{\boldsymbol{\theta}} \\
\frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\
0 & 0 & \rho^{2} \sin \phi
\end{array}\right| \\
& =\cot \phi \hat{\boldsymbol{\rho}}-2 \hat{\boldsymbol{\phi}} .
\end{aligned}
$$

8. $\mathbf{F}(\rho, \phi, \theta)=\rho^{2} \hat{\boldsymbol{\rho}}$

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\frac{1}{\rho^{2} \sin \phi}\left[\frac{\partial}{\partial \rho}\left(\rho^{4} \sin \phi\right)\right]=4 \rho \\
\operatorname{curl} \mathbf{F} & =\frac{1}{\rho^{2} \sin \phi}\left|\begin{array}{ccc}
\hat{\boldsymbol{\rho}} & \rho \hat{\boldsymbol{\phi}} & \rho \sin \phi \hat{\boldsymbol{\theta}} \\
\frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\
\rho^{2} & 0 & 0
\end{array}\right|=\mathbf{0} .
\end{aligned}
$$

9. Let $\mathbf{r}=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}$. The scale factors are

$$
h_{u}=\left|\frac{\partial \mathbf{r}}{\partial u}\right| \quad \text { and } \quad h_{v}=\left|\frac{\partial \mathbf{r}}{\partial v}\right| .
$$

The local basis consists of the vectors

$$
\hat{\mathbf{u}}=\frac{1}{h_{u}} \frac{\partial \mathbf{r}}{\partial u} \quad \text { and } \quad \hat{\mathbf{v}}=\frac{1}{h_{v}} \frac{\partial \mathbf{r}}{\partial v} .
$$

The area element is $d A=h_{u} h_{v} d u d v$.
10. Since (u, v, z) constitute orthogonal curvilinear coordinates in \mathbb{R}^{3}, with scale factors h_{u}, h_{v} and $h_{z}=1$, we have, for a function $f(u, v)$ independent of z,

$$
\begin{aligned}
\nabla f(u, v) & =\frac{1}{h_{u}} \frac{\partial f}{\partial u} \hat{\mathbf{u}}+\frac{1}{h_{v}} \frac{\partial f}{\partial v} \hat{\mathbf{v}}+\frac{1}{1} \frac{\partial f}{\partial z} \mathbf{k} \\
& =\frac{1}{h_{u}} \frac{\partial f}{\partial u} \hat{\mathbf{u}}+\frac{1}{h_{v}} \frac{\partial f}{\partial v} \hat{\mathbf{v}} .
\end{aligned}
$$

For $\mathbf{F}(u, v)=F_{u}(u, v) \hat{\mathbf{u}}+F_{v}(u, v) \hat{\mathbf{v}}$ (independent of z and having no \mathbf{k} component), we have

$$
\begin{aligned}
\operatorname{div} \mathbf{F}(u, v) & =\frac{1}{h_{u} h_{v}}\left[\frac{\partial}{\partial u}\left(h_{u} F_{u}\right)+\frac{\partial}{\partial v}\left(h_{v} F_{v}\right)\right] \\
\operatorname{curl} \mathbf{F}(u, v) & =\frac{1}{h_{u} h_{v}}\left[\left.\begin{array}{ccc}
h_{u} \hat{\mathbf{u}} & h_{v} \hat{\mathbf{v}} & \mathbf{k} \\
\frac{\partial}{\partial u} & \frac{\partial}{\partial v} & \frac{\partial}{\partial z} \\
h_{u} F_{u} & h_{v} F_{v} & 0
\end{array} \right\rvert\,\right. \\
& =\frac{1}{h_{u} h_{v}}\left[\frac{\partial}{\partial u}\left(h_{v} F_{v}\right)-\frac{\partial}{\partial v}\left(h_{u} F_{u}\right)\right] \mathbf{k} .
\end{aligned}
$$

11. We can use the expressions calculated in the text for cylindrical coordinates, applied to functions independent of z and having no \mathbf{k} components:

$$
\begin{aligned}
\nabla f(r, \theta) & =\frac{\partial f}{\partial r} \hat{\mathbf{r}}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\boldsymbol{\theta}} \\
\operatorname{div} \mathbf{F}(r, \theta) & =\frac{\partial F_{r}}{\partial r}+\frac{F_{r}}{r}+\frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta} \\
\operatorname{curl} \mathbf{F}(r, \theta) & =\left[\frac{\partial F_{\theta}}{\partial r}+\frac{F_{\theta}}{r}-\frac{1}{r} \frac{\partial F_{r}}{\partial \theta}\right] \mathbf{k} .
\end{aligned}
$$

12. $x=a \cosh u \cos v, \quad y=a \sinh u \sin v$.
a) u-curves: If $A=a \cosh u$ and $B=a \sinh u$, then

$$
\frac{x^{2}}{A^{2}}+\frac{y^{2}}{B^{2}}=\cos ^{2} v+\sin ^{2} v=1
$$

Since $A^{2}-B^{2}=a^{2}\left(\cosh ^{2} u-\sinh ^{2} u\right)=a^{2}$, the u-curves are ellipses with foci at $(\pm a, 0)$.
b) v-curves: If $A=a \cos v$ and $B=a \sin v$, then

$$
\frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=\cosh ^{2} u-\sinh ^{2} u=1
$$

Since $A^{2}+B^{2}=a^{2}\left(\cos ^{2} v+\sin ^{2} v\right)=a^{2}$, the v-curves are hyperbolas with foci at $(\pm a, 0)$.
c) The u-curve $u=u_{0}$ has parametric equations

$$
x=a \cosh u_{0} \cos v, \quad y=a \sinh u_{0} \sin v
$$

and therefore has slope at $\left(u_{0}, v_{0}\right)$ given by

$$
m_{u}=\frac{d y}{d x}=\frac{d y}{d v} /\left.\frac{d x}{d v}\right|_{\left(u_{0}, v_{0}\right)}=\frac{a \sinh u_{0} \cos v_{0}}{-a \cosh u_{0} \sin v_{0}}
$$

The v-curve $v=v_{0}$ has parametric equations

$$
x=a \cosh u \cos v_{0}, \quad y=a \sinh u \sin v_{0}
$$

and therefore has slope at $\left(u_{0}, v_{0}\right)$ given by

$$
m_{v}=\frac{d y}{d x}=\frac{d y}{d u} /\left.\frac{d x}{d u}\right|_{\left(u_{0}, v_{0}\right)}=\frac{a \cosh u_{0} \sin v_{0}}{a \sinh u_{0} \cos v_{0}} .
$$

Since the product of these slopes is $m_{u} m_{v}=-1$, the curves $u=u_{0}$ and $v=v_{0}$ intersect at right angles.
d) $\quad \mathbf{r}=a \cosh u \cos v \mathbf{i}+a \sinh u \sin v \mathbf{j}$

$$
\begin{aligned}
& \frac{\partial \mathbf{r}}{\partial u}=a \sinh u \cos v \mathbf{i}+a \cosh u \sin v \mathbf{j} \\
& \frac{\partial \mathbf{r}}{\partial v}=-a \cosh u \sin v \mathbf{i}+a \sinh u \cos v \mathbf{j}
\end{aligned}
$$

The scale factors are

$$
\begin{aligned}
& h_{u}=\left|\frac{\partial \mathbf{r}}{\partial u}\right|=a \sqrt{\sinh ^{2} u \cos ^{2} v+\cosh ^{2} u \sin ^{2} v} \\
& h_{v}=\left|\frac{\partial \mathbf{r}}{\partial v}\right|=a \sqrt{\sinh ^{2} u \cos ^{2} v+\cosh ^{2} u \sin ^{2} v}=h_{u}
\end{aligned}
$$

The area element is

$$
\begin{aligned}
d A & =h_{u} h_{v} d u d v \\
& =a^{2}\left(\sinh ^{2} u \cos ^{2} v+\cosh ^{2} u \sin ^{2} v\right) d u d v
\end{aligned}
$$

13. $x=a \cosh u \cos v$
$y=a \sinh u \sin v$
$z=z$.
Using the result of Exercise 12, we see that the coordinate surfaces are
$u=u_{0}$: vertical elliptic cylinders with focal axes
$x= \pm a, y=0$.
$v=v_{0}$: vertical hyperbolic cylinders with focal axes
$x= \pm a, y=0$.
$z=z_{0}$: horizontal planes.
The coordinate curves are
u-curves: the horizontal hyperbolas in which the $v=v_{0}$ cylinders intersect the $z=z_{0}$ planes.
v-curves: the horizontal ellipses in which the $u=u_{0}$ cylinders intersect the $z=z_{0}$ planes.
z-curves: sets of four vertical straight lines where the elliptic cylinders $u=u_{0}$ and hyperbolic cylinders $v=v_{0}$ intersect.
14. $\nabla f(r, \theta, z)=\frac{\partial f}{\partial r} \hat{\mathbf{r}}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\boldsymbol{\theta}}+\frac{\partial f}{\partial z} \mathbf{k}$

$$
\begin{aligned}
& \nabla^{2} f(r, \theta, z)=\operatorname{div}(\nabla f(r, \theta, z)) \\
& =\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\frac{1}{r} \frac{\partial f}{\partial \theta}\right)+\frac{\partial}{\partial z}\left(r \frac{\partial f}{\partial z}\right)\right] \\
& =\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
\end{aligned}
$$

15. $\nabla f(\rho, \phi, \theta)=\frac{\partial f}{\partial \rho} \hat{\boldsymbol{\rho}}+\frac{1}{\rho} \frac{\partial f}{\partial \phi} \hat{\boldsymbol{\phi}}+\frac{1}{\rho \sin \phi} \frac{\partial f}{\partial \theta} \hat{\boldsymbol{\theta}}$ $\nabla^{2} f(\rho, \phi, \theta)=\operatorname{div}(f(\rho, \phi, \theta))$
$=\frac{1}{\rho^{2} \sin \phi}\left[\frac{\partial}{\partial \rho}\left(\rho^{2} \sin \phi \frac{\partial f}{\partial \rho}\right)+\frac{\partial}{\partial \phi}\left(\rho \sin \phi \frac{1}{\rho} \frac{\partial f}{\partial \phi}\right)\right.$
$\left.+\frac{\partial}{\partial \theta}\left(\frac{\rho}{\rho \sin \phi} \frac{\partial f}{\partial \theta}\right)\right]$
$=\frac{\partial^{2} f}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial f}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}$

$$
+\frac{\cot \phi}{\rho^{2}} \frac{\partial f}{\partial \phi}+\frac{1}{\rho^{2} \sin ^{2} \phi} \frac{\partial^{2} f}{\partial \theta^{2}}
$$

16. $\nabla f(u, v, w)=\frac{1}{h_{u}} \frac{\partial f}{\partial u} \hat{\mathbf{u}}+\frac{1}{h_{v}} \frac{\partial f}{\partial v} \hat{\mathbf{v}}+\frac{1}{h_{w}} \frac{\partial f}{\partial w} \hat{\mathbf{w}}$

$$
\nabla^{2} f(u, v, w)=\operatorname{div}(\nabla f(u, v, w))
$$

$$
=\frac{1}{h_{u} h_{v} h_{w}}\left[\frac{\partial}{\partial u}\left(\frac{h_{v} h_{w}}{h_{u}} \frac{\partial f}{\partial u}\right)+\frac{\partial}{\partial v}\left(\frac{h_{u} h_{w}}{h_{v}} \frac{\partial f}{\partial v}\right)\right.
$$

$$
\left.+\frac{\partial}{\partial w}\left(\frac{h_{u} h_{v}}{h_{w}} \frac{\partial f}{\partial w}\right)\right]
$$

$$
=\frac{1}{h_{u}^{2}}\left[\frac{\partial^{2} f}{\partial u^{2}}+\left(\frac{1}{h_{v}} \frac{\partial h_{v}}{\partial u}+\frac{1}{h_{w}} \frac{\partial h_{w}}{\partial u}-\frac{1}{h_{u}} \frac{\partial h_{u}}{\partial u}\right) \frac{\partial f}{\partial u}\right]
$$

$$
+\frac{1}{h_{v}^{2}}\left[\frac{\partial^{2} f}{\partial v^{2}}+\left(\frac{1}{h_{u}} \frac{\partial h_{u}}{\partial v}+\frac{1}{h_{w}} \frac{\partial h_{w}}{\partial v}-\frac{1}{h_{v}} \frac{\partial h_{v}}{\partial v}\right) \frac{\partial f}{\partial v}\right]
$$

$$
+\frac{1}{h_{w}^{2}}\left[\frac{\partial^{2} f}{\partial w^{2}}+\left(\frac{1}{h_{u}} \frac{\partial h_{u}}{\partial w}+\frac{1}{h_{v}} \frac{\partial h_{v}}{\partial w}-\frac{1}{h_{w}} \frac{\partial h_{w}}{\partial w}\right) \frac{\partial f}{\partial w}\right]
$$

Review Exercises 16 (page 896)

1. The semi-ellipsoid $\&$ with upward normal $\hat{\mathbf{N}}$ specified in the problem and the disk D given by $x^{2}+y^{2} \leq 16, z=0$, with downward normal $-\mathbf{k}$ together bound the solid region R : $0 \leq z \leq \frac{1}{2} \sqrt{16-x^{2}-y^{2}}$. By the Divergence Theorem:

$$
\iint_{\mathcal{S}} \mathbf{F} \bullet \hat{\mathbf{N}} d S+\iint_{D} \mathbf{F} \bullet(-\mathbf{k}) d A=\iiint_{R} \operatorname{div} \mathbf{F} d V
$$

For $\mathbf{F}=x^{2} z \mathbf{i}+\left(y^{2} z+3 y\right) \mathbf{j}+x^{2} \mathbf{k}$ we have

$$
\begin{aligned}
\iiint_{R} \boldsymbol{\operatorname { d i v } \mathbf { F } d V} & =\iiint_{R}(2 x z+2 y z+3) d V \\
& =0+0+3 \iiint_{R} d V=3 \times(\text { volume of } R) \\
& =\frac{3}{2} \frac{4}{3} \pi 4^{2} 2=64 \pi
\end{aligned}
$$

The flux of \mathbf{F} across $\&$ is

$$
\begin{aligned}
\iint_{S} \mathbf{F} \bullet \hat{\mathbf{N}} d S & =64 \pi+\iint_{D} \mathbf{F} \bullet \mathbf{k} d A \\
& =64 \pi+\iint_{D} x^{2} d A \\
& =64 \pi+\int_{0}^{2 \pi} \cos ^{2} \theta d \theta \int_{0}^{4} r^{3} d r=128 \pi
\end{aligned}
$$

2. Let R be the region inside the cylinder δ and between the planes $z=0$ and $z=b$. The oriented boundary of R consists of $\&$ and the disks D_{1} with normal $\hat{\mathbf{N}}_{1}=\mathbf{k}$ and D_{2} with normal $\hat{\mathbf{N}}_{2}=-\mathbf{k}$ as shown in the figure. For $\mathbf{F}=x \mathbf{i}+\cos \left(z^{2}\right) \mathbf{j}+e^{z} \mathbf{k}$ we have $\operatorname{div} \mathbf{F}=1+e^{z}$ and

$$
\begin{aligned}
\iiint_{R} \operatorname{div} \mathbf{F} d V & =\iint_{D_{2}} d x d y \int_{0}^{b}\left(1+e^{z}\right) d z \\
& =\iint_{D_{2}}\left[b+\left(e^{b}-1\right)\right] d x d y \\
& =\pi a^{2} b+\pi a^{2}\left(e^{b}-1\right)
\end{aligned}
$$

Also $\iint_{D_{2}} \mathbf{F} \bullet(-\mathbf{k}) d A=-\iint_{D_{2}} e^{0} d A=-\pi a^{2}$

$$
\iint_{D_{1}} \mathbf{F} \cdot \mathbf{k} d A=\iint_{D_{1}} e^{b} d A=\pi a^{2} e^{b}
$$

By the Divergence Theorem

$$
\begin{aligned}
\iint_{\mathcal{S}} \mathbf{F} \bullet \hat{\mathbf{N}} d S & +\iint_{D_{1}} \mathbf{F} \bullet \mathbf{k} d A+\iint_{D_{2}} \mathbf{F} \bullet(-\mathbf{k}) d A \\
& =\iiint_{R} \operatorname{div} \mathbf{F} d V=\pi a^{2} b+\pi a^{2}\left(e^{b}-1\right)
\end{aligned}
$$

Therefore, $\iint_{\mathcal{S}} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\pi a^{2} b$.

Fig. R-16.2
3. $\oint_{\mathcal{C}}\left(3 y^{2}+2 x e^{y^{2}}\right) d x+\left(2 x^{2} y e^{y^{2}}\right) d y$
$=\iint_{P}\left[4 x y e^{y^{2}}-\left(6 y+4 x y e^{y^{2}}\right)\right] d A$
$=-6 \iint_{P} y d A=-6 \bar{y} A=-6$,
since P has area $A=2$ and its centroid has y-coordinate $\bar{y}=1 / 2$.

Fig. R-16.3
4. If $\mathbf{F}=-z \mathbf{i}+x \mathbf{j}+y \mathbf{k}$, then

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-z & x & y
\end{array}\right|=\mathbf{i}-\mathbf{j}+\mathbf{k} .
$$

The unit normal $\hat{\mathbf{N}}$ to a region in the plane $2 x+y+2 z=7$ is

$$
\hat{\mathbf{N}}= \pm \frac{2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}}{3}
$$

If \mathcal{C} is the boundary of a disk D of radius a in that plane, then

$$
\begin{aligned}
\oint_{C} \mathbf{F} \bullet d \mathbf{r} & =\iint_{D} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S \\
& = \pm \iint_{D} \frac{2-1+2}{3} d S= \pm \pi a^{2}
\end{aligned}
$$

5. If f_{a} is the sphere of radius a centred at the origin, then

$$
\begin{aligned}
\operatorname{div} \mathbf{F}(0,0,0) & =\lim _{a \rightarrow 0+} \frac{1}{\frac{4}{3} \pi a^{3}} \oiint_{S_{a}} \mathbf{F} \bullet \hat{\mathbf{N}} d S \\
& =\lim _{a \rightarrow 0+} \frac{3}{4 \pi a^{3}}\left(\pi a^{3}+2 a^{4}\right)=\frac{3}{4} .
\end{aligned}
$$

6. If s is any surface with upward normal $\hat{\mathbf{N}}$ and boundary the curve $\mathcal{C}: x^{2}+y^{2}=1, z=2$, then \mathcal{C} is oriented counterclockwise as seen from above, and it has parametrization

$$
\mathbf{r}=\cos t \mathbf{i}+\sin t \mathbf{j}+2 \mathbf{k} \quad(0 \leq 2 \leq 2 \pi)
$$

Thus $d \mathbf{r}=(-\sin t \mathbf{i}+\cos t \mathbf{j}) d t$, and if $\mathbf{F}=-y \mathbf{i}+x \cos \left(1-x^{2}-y^{2}\right) \mathbf{j}+y z \mathbf{k}$, then the flux of curl \mathbf{F} upward through δ is

$$
\begin{aligned}
\iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S & =\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r} \\
& =\int_{0}^{2 \pi}\left(\sin ^{2} t+\cos ^{2} t+0\right) d t=2 \pi
\end{aligned}
$$

7. $\mathbf{F}(\mathbf{r})=r^{\lambda} \mathbf{r}$ where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $r=|\mathbf{r}|$. Since $r^{2}=x^{2}+y^{2}+z^{2}$, therefore $\partial r / \partial x=x / r$ and

$$
\frac{\partial}{\partial x}\left(r^{\lambda} x\right)=\lambda r^{\lambda-1} \frac{x^{2}}{r}+r^{\lambda}=r^{\lambda-2}\left(\lambda x^{2}+r^{2}\right)
$$

Similar expressions hold for $(\partial / \partial y)\left(r^{\lambda} y\right)$ and $(\partial / \partial z)\left(r^{\lambda} z\right)$, so

$$
\operatorname{div} \mathbf{F}(\mathbf{r})=r^{\lambda-2}\left(\lambda r^{2}+3 r^{2}\right)=(\lambda+3) r^{\lambda}
$$

\mathbf{F} is solenoidal on any set in \mathbb{R}^{3} that excludes the origin if an only if $\lambda=-3$. In this case \mathbf{F} is not defined at $\mathbf{r}=\mathbf{0}$. There is no value of λ for which \mathbf{F} is solenoidal on all of \mathbb{R}^{3}.
8. If curl $\mathbf{F}=\mu \mathbf{F}$ on \mathbb{R}^{3}, where $\mu \neq 0$ is a constant, then

$$
\operatorname{div} \mathbf{F}=\frac{1}{\mu} \operatorname{div} \operatorname{curl} \mathbf{F}=0
$$

by Theorem 3(g) of Section 7.2. By part (i) of the same theorem,

$$
\begin{aligned}
\nabla^{2} \mathbf{F} & =\nabla(\operatorname{div} \mathbf{F})-\operatorname{curl} \operatorname{curl} \mathbf{F} \\
& =0-\mu \mathbf{c u r l} \mathbf{F}=-\mu^{2} \mathbf{F}
\end{aligned}
$$

Thus $\nabla^{2} \mathbf{F}+\mu^{2} \mathbf{F}=\mathbf{0}$.
9. Apply the variant of the Divergence Theorem given in Theorem 7(b) of Section 7.3, namely

$$
\iiint_{P} \operatorname{grad} \phi d V=\oiint_{\delta} \phi \hat{\mathbf{N}} d S
$$

to the scalar field $\phi=1$ over the polyhedron P. Here $\delta=\bigcup_{i=1}^{n} F_{i}$ is the surface of P, oriented with outward normal field $\hat{\mathbf{N}}_{i}$ on the face F_{i}. If $\mathbf{N}_{i}=A_{i} \hat{\mathbf{N}}_{i}$, where A_{i} is the area of F_{i}, then, since $\operatorname{grad} \phi=\mathbf{0}$, we have

$$
\mathbf{0}=\oiint_{\mathcal{S}} \hat{\mathbf{N}} d S=\sum_{i=1}^{n} \iint_{F_{i}} \frac{\mathbf{N}_{i}}{A_{i}} d S=\sum_{i=1}^{n} \frac{\mathbf{N}_{i}}{A_{i}} A_{i}=\sum_{i=1}^{n} \mathbf{N}_{i}
$$

10. Let \mathcal{C} be a simple, closed curve in the $x y$-plane bounding a region R. If

$$
\mathbf{F}=\left(2 y^{3}-3 y+x y^{2}\right) \mathbf{i}+\left(x-x^{3}+x^{2} y\right) \mathbf{j}
$$

then by Green's Theorem, the circulation of \mathbf{F} around \mathcal{C} is

$$
\begin{aligned}
& \oint_{\mathbb{C}} \mathbf{F} \bullet d \mathbf{r} \\
& =\iint_{R}\left[\frac{\partial}{\partial x}\left(x-x^{3}+x^{2} y\right)-\frac{\partial}{\partial y}\left(2 y^{3}-3 y+x y^{2}\right)\right] d A \\
& =\iint_{R}\left(1-3 x^{2}+2 x y-6 y^{2}+3-2 x y\right) d A \\
& =\iint_{R}\left(4-3 x^{2}-6 y^{2}\right) d x d y .
\end{aligned}
$$

The last integral has a maximum value when the region R is bounded by the ellipse $3 x^{2}+6 y^{2}=4$, oriented counterclockwise; this is the largest region in the $x y$ plane where the integrand is nonnegative.
11. Let $\&$ be a closed, oriented surface in \mathbb{R}^{3} bounding a region R, and having outward normal field $\hat{\mathbf{N}}$. If

$$
\mathbf{F}=\left(4 x+2 x^{3} z\right) \mathbf{i}-y\left(x^{2}+z^{2}\right) \mathbf{j}-\left(3 x^{2} z^{2}+4 y^{2} z\right) \mathbf{k}
$$

then by the Divergence Theorem, the flux of \mathbf{F} through s is

$$
\oiint_{\delta} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\iiint_{R} \boldsymbol{\operatorname { d i v }} \mathbf{F} d V=\iiint_{R}\left(4-x^{2}-4 y^{2}-z^{2}\right) d V .
$$

The last integral has a maximum value when the region R is bounded by the ellipsoid $x^{2}+4 y^{2}+z^{2}=4$ with outward normal; this is the largest region in \mathbb{R}^{3} where the integrand is nonnegative.
12. Let \mathcal{C} be a simple, closed curve on the plane $x+y+z=1$, oriented counterclockwise as seen from above, and bounding a plane region s on $x+y+z=1$. Then s has normal $\hat{\mathbf{N}}=(\mathbf{i}+\mathbf{j}+\mathbf{k}) / \sqrt{3}$. If $\mathbf{F}=x y^{2} \mathbf{i}+\left(3 z-x y^{2}\right) \mathbf{j}+\left(4 y-x^{2} y\right) \mathbf{k}$, then

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y^{2} & 3 z-x y^{2} & 4 y-x^{2} y
\end{array}\right| \\
& =\left(1-x^{2}\right) \mathbf{i}+2 x y \mathbf{j}-\left(y^{2}+2 x y\right) \mathbf{k}
\end{aligned}
$$

By Stokes's Theorem we have

$$
\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\iint_{S} \frac{1-x^{2}-y^{2}}{\sqrt{3}} d S
$$

The last integral will be maximum if the projection of s onto the $x y$-plane is the disk $x^{2}+y^{2} \leq 1$. This maximum value is

$$
\begin{aligned}
& \iint_{x^{2}+y^{2} \leq 1} \frac{1-x^{2}-y^{2}}{\sqrt{3}} \sqrt{3} d x d y \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{1}\left(1-r^{2}\right) r d r=2 \pi\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{\pi}{2}
\end{aligned}
$$

Challenging Problems 16 (page 897)

1. By Theorem 1 of Section 7.1, we have

$$
\operatorname{div} \mathbf{v}\left(\mathbf{r}_{1}\right)=\lim _{\epsilon \rightarrow 0+} \frac{3}{4 \pi \epsilon^{3}} \oiint_{S_{\epsilon}} \mathbf{v}(\mathbf{r}) \bullet \hat{\mathbf{N}}(\mathbf{r}) d S
$$

Here δ_{ϵ} is the sphere of radius ϵ centred at the point (with position vector) \mathbf{r}_{1} and having outward normal field $\hat{\mathbf{N}}(\mathbf{r})$. If \mathbf{r} is (the position vector of) any point on ℓ_{ϵ}, then $\mathbf{r}=\mathbf{r}_{1}+\epsilon \hat{\mathbf{N}}(\mathbf{r})$, and

$$
\begin{aligned}
& \oiint_{\delta_{\epsilon}} \mathbf{v}(\mathbf{r}) \bullet \hat{\mathbf{N}}(\mathbf{r}) d S \\
& =\oiint_{\Omega_{\epsilon}}\left[\mathbf{v}\left(\mathbf{r}_{1}\right)+\left(\mathbf{v}(\mathbf{r})-\mathbf{v}\left(\mathbf{r}_{1}\right)\right)\right] \bullet \hat{\mathbf{N}}(\mathbf{r}) d S \\
& =\mathbf{v}\left(\mathbf{r}_{1}\right) \bullet \oiint_{\Omega_{\epsilon}} \hat{\mathbf{N}}(\mathbf{r}) d S \\
& \quad+\oiint_{\Omega_{\epsilon}}\left(\mathbf{v}(\mathbf{r})-\mathbf{v}\left(\mathbf{r}_{1}\right)\right) \bullet \frac{\mathbf{r}-\mathbf{r}_{1}}{\epsilon} d S .
\end{aligned}
$$

But $\oiint_{S_{\epsilon}} \hat{\mathbf{N}}(\mathbf{r}) d S=\mathbf{0}$ by Theorem 7(b) of Section 7.3 with $\phi=1$. Also, since \mathbf{v} satisfies

$$
\mathbf{v}\left(\mathbf{r}_{2}\right)-\mathbf{v}\left(\mathbf{r}_{1}\right)=C\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|^{2}
$$

we have

$$
\begin{aligned}
& \oiint_{\delta_{\epsilon}}\left(\mathbf{v}(\mathbf{r})-\mathbf{v}\left(\mathbf{r}_{1}\right)\right) \bullet \frac{\mathbf{r}-\mathbf{r}_{1}}{\epsilon} d S \\
& =\oiint_{\delta_{\epsilon}} \frac{C \epsilon^{2}}{\epsilon} d S=4 \pi C \epsilon^{3} .
\end{aligned}
$$

Thus

$$
\operatorname{div} \mathbf{v}\left(\mathbf{r}_{1}\right)=\lim _{\epsilon \rightarrow 0+} \frac{3}{4 \pi \epsilon^{3}}\left(0+4 \pi C \epsilon^{3}\right)=3 C .
$$

The divergence of the large-scale velocity field of matter in the universe is three times Hubble's constant C.
2. a) The steradian measure of a half-cone of semi-vertical angle α is

$$
\int_{0}^{2 \pi} d \theta \int_{0}^{\alpha} \sin \phi d \phi=2 \pi(1-\cos \alpha)
$$

b) If s is the intersection of a smooth surface with the general half-cone K, and is oriented with normal field $\hat{\mathbf{N}}$ pointing away from the vertex P of K, and if f_{a} is the intersection with K of a sphere of radius a centred at P, with a chosen so that δ and s_{a} do not intersect in K, then $\&, f_{a}$, and the walls of K bound a solid region R that does not contain the origin. If $\mathbf{F}=\mathbf{r} /|\mathbf{r}|^{3}$, then $\operatorname{div} \mathbf{F}=0$ in R (see Example 3 in Section 7.1), and $\mathbf{F} \bullet \hat{\mathbf{N}}=0$ on the walls of K. It follows from the Divergence Theorem applied to \mathbf{F} over R that

$$
\begin{aligned}
\iint_{\delta} \mathbf{F} \bullet \hat{\mathbf{N}} d S & =\iint_{f_{a}} \mathbf{F} \bullet \frac{\mathbf{r}}{|\mathbf{r}|} d S \\
& =\frac{a^{2}}{a^{4}} \iint_{\delta_{a}} d S=\frac{1}{a^{2}}\left(\text { area of } \delta_{a}\right) \\
& =\text { area of } \delta_{1} .
\end{aligned}
$$

The area of s_{1} (the part of the sphere of radius 1 in K) is the measure (in steradians) of the solid angle subtended by K at its vertex P. Hence this measure is given by

$$
\iint_{s} \frac{\mathbf{r}}{|\mathbf{r}|^{3}} \bullet \hat{\mathbf{N}} d S
$$

3. a) Verification of the identity

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\mathbf{G} \bullet \frac{\partial \mathbf{r}}{\partial s}\right)-\frac{\partial}{\partial s}\left(\mathbf{G} \bullet \frac{\partial \mathbf{r}}{\partial t}\right) \\
& \quad=\frac{\partial \mathbf{F}}{\partial t} \bullet \frac{\partial \mathbf{r}}{\partial s}+\left((\nabla \times \mathbf{F}) \times \frac{\partial \mathbf{r}}{\partial t}\right) \bullet \frac{\partial \mathbf{r}}{\partial s}
\end{aligned}
$$

can be carried out using the following MapleV commands:

```
> with(linalg):
F:=(x,y,z,t) -> [F1(x,y,z,t),
    F2(x,y,z,t),F3(x,y,z,t)];
    r:= (s,t) - > [x(s,t),y(s,t),z(s,t)];
G:=(s,t)->F(x(s,t),Y(s,t),z(s,t),t);
g:=(s,t)-> dotprod(G(s,t),
    map(diff,r(s,t),s));
    h:=(s,t) -> dotprod(G(s,t),
        map(diff,r(s,t),t));
    LH1:=diff(g(s,t),t);
LH2:=diff(h(s,t),s);
    LHS:=simplify(LH1-LH2);
>
RH1:=dotprod(subs(x=x(s,t), Y=y(s,t),
> z=z(s,t), diff(F(x,y,z,t),t)),
> diff(r(s,t),s));
>
RH2:=dotprod(crossprod(subs(x=x(s,t),
> y=y(s,t),z=z(s,t),
```


www. mohandesyar. com

```
> curl(F(x,y,z,t),[x,y,z])),
> diff(r(s,t),t)),diff(r(s,t),s));
> RHS:=RH1+RH2; LHS-RHS; simplify(%);
```

We omit the output here; some of the commands produce screenfulls of output. The output of the final command is 0 , indicating that the identity is valid.
b) As suggested by the hint,

$$
\begin{aligned}
\frac{d}{d t} & \int_{C_{t}} \mathbf{F} \bullet d \mathbf{r}=\int_{a}^{b} \frac{\partial}{\partial t}\left(\mathbf{G} \bullet \frac{\partial \mathbf{r}}{\partial s}\right) d s \\
= & \int_{a}^{b}\left[\frac{\partial}{\partial s}\left(\mathbf{G} \bullet \frac{\partial \mathbf{r}}{\partial t}\right)\right. \\
& \left.+\left(\frac{\partial}{\partial t}\left(\mathbf{G} \bullet \frac{\partial \mathbf{r}}{\partial s}\right)-\frac{\partial}{\partial s}\left(\mathbf{G} \bullet \frac{\partial \mathbf{r}}{\partial t}\right)\right)\right] d s \\
= & \left.\mathbf{G} \bullet \frac{\partial \mathbf{r}}{\partial t}\right|_{s=a} ^{s=b} \\
& +\int_{a}^{b}\left[\frac{\partial \mathbf{F}}{\partial t}+\left((\nabla \times \mathbf{F}) \times \frac{\partial \mathbf{r}}{\partial t}\right)\right] \bullet \frac{\partial \mathbf{r}}{\partial s} d s \\
= & \mathbf{F}(\mathbf{r}(b, t), t) \bullet \mathbf{v}_{C}(b, t)-\mathbf{F}(\mathbf{r}(a, t), t) \bullet \mathbf{v}_{C}(a, t) \\
& +\int_{C_{t}} \frac{\partial \mathbf{F}}{\partial t} \bullet d \mathbf{r}+\int_{C_{t}}\left((\nabla \times \mathbf{F}) \times \mathbf{v}_{C}\right) \bullet d \mathbf{r} .
\end{aligned}
$$

4. a) Verification of the identity

$$
\begin{aligned}
\frac{\partial}{\partial t} & \left(\mathbf{G} \bullet\left[\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right]\right)-\frac{\partial}{\partial u}\left(\mathbf{G} \bullet\left[\frac{\partial \mathbf{r}}{\partial t} \times \frac{\partial \mathbf{r}}{\partial v}\right]\right) \\
& -\frac{\partial}{\partial v}\left(\mathbf{G} \bullet\left[\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial t}\right]\right) \\
= & \frac{\partial \mathbf{F}}{\partial t} \bullet\left[\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right]+(\nabla \bullet \mathbf{F}) \frac{\partial \mathbf{r}}{\partial t} \bullet\left[\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right] .
\end{aligned}
$$

can be carried out using the following MapleV commands:

```
with(linalg):
F:=(x,y,z,t) -> [F1 (x,y,z,t),
    F2(x,y,z,t),F3(x,y,z,t)];
r:=(u,v,t) -> [x(u,v,t),y(u,v,t),
    z(u,v,t)];
ru:=(u,v,t)->diff(r(u,v,t),u);
rv:=(u,v,t) - >diff(r(u,v,t),v);
rt:=(u,v,t) ->diff(r(u,v,t),t);
G:=(u,v,t) ->F (x (u,v,t),
    y(u,v,t),z(u,v,t),t);
ruxv:=(u,v,t) ->crossprod(ru(u,v,t),
> rv(u,v,t));
>
rtxv:=(u,v,t)->crossprod(rt(u,v,t),
> rv(u,v,t));
```

```
>
ruxt:=(u,v,t) - >crossprod(ru(u,v,t),
        rt(u,v,t));
        LH1:=diff(dotprod(G(u,v,t),
        ruxv(u,v,t)),t);
    LH2:=diff(dotprod(G(u,v,t),
        rtxv(u,v,t)),u);
        LH3:=diff(dotprod(G(u,v,t),
        ruxt(u,v,t)),v);
        LHS:=simplify(LH1-LH2-LH3) ;
    RH1:=dotprod(subs (x=x (u,v,t),
        y=y (u,v,t), z=z (u,v,t),
diff(F(x,y,z,t),t)),ruxv(u,v,t));
> RH2:=(divf(u,v,t))*
>
(dotprod(rt(u,v,t),ruxv(u,v,t)));
> RHS:=simplify(RH1+RH2) ;
> simplify(LHS-RHS);
```

Again the final output is 0 , indicating that the identity is valid.
b) If \mathcal{C}_{t} is the oriented boundary of s_{t} and L_{t} is the corresponding counterclockwise boundary of the parameter region R in the $u v$-plane, then

$$
\begin{aligned}
& \oint_{\mathbb{C}_{t}}\left(\mathbf{F} \times \frac{\partial \mathbf{r}}{\partial t}\right) \bullet d \mathbf{r} \\
& =\oint_{L_{t}}\left(\mathbf{G} \times \frac{\partial \mathbf{r}}{\partial t}\right) \bullet\left(\frac{\partial \mathbf{r}}{\partial u} d u+\frac{\partial \mathbf{r}}{\partial v} d v\right) \\
& =\oint_{L_{t}}\left[-\mathbf{G} \bullet\left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial t}\right)+\mathbf{G} \bullet\left(\frac{\partial \mathbf{r}}{\partial t} \times \frac{\partial \mathbf{r}}{\partial v}\right)\right] d t \\
& =\iint_{R}\left[\frac{\partial}{\partial u}\left(\mathbf{G} \bullet\left(\frac{\partial \mathbf{r}}{\partial t} \times \frac{\partial \mathbf{r}}{\partial v}\right)\right)\right. \\
& \left.\quad+\frac{\partial}{\partial v}\left(\mathbf{G} \bullet\left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial t}\right)\right)\right] d u d v
\end{aligned}
$$

by Green's Theorem.
c) Using the results of (a) and (b), we calculate

$$
\begin{aligned}
& \frac{d}{d t} \iint_{S_{t}} \mathbf{F} \bullet \hat{\mathbf{N}} d S=\iint_{R} \frac{\partial}{\partial t}\left[\mathbf{G} \bullet\left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right)\right] d u d v \\
& =\iint_{R} \frac{\partial \mathbf{F}}{\partial t} \bullet\left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right) d u d v \\
& \quad+\iint_{R}(\mathbf{d i v} \mathbf{F}) \frac{\partial \mathbf{r}}{\partial t} \bullet\left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right) d u d v \\
& \quad+\iint_{R}\left[\frac{\partial}{\partial u}\left(\mathbf{G} \bullet\left(\frac{\partial \mathbf{r}}{\partial t} \times \frac{\partial \mathbf{r}}{\partial v}\right)\right)\right. \\
& \left.\quad+\frac{\partial}{\partial v}\left(\mathbf{G} \bullet\left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial t}\right)\right)\right] d u d v \\
& =\iint_{S_{t}} \frac{\partial \mathbf{F}}{\partial t} \bullet \hat{\mathbf{N}} d S+\iint_{S_{t}}(\mathbf{d i v} \mathbf{F}) \mathbf{v}_{S} \bullet \hat{\mathbf{N}} d S
\end{aligned}
$$

$$
+\oiint \mathfrak{c}_{t}\left(\mathbf{F} \times \mathbf{v}_{C}\right) \bullet d \mathbf{r}
$$

5. We have

$$
\begin{aligned}
\frac{1}{\Delta t} & {\left[\iiint_{D_{t+\Delta t}} f(\mathbf{r}, t+\Delta t) d V-\iiint_{D_{t}} f(\mathbf{r}, t) d V\right] } \\
= & \iiint_{D_{t}} \frac{f(\mathbf{r}, t+\Delta t)-f(\mathbf{r}, t)}{\Delta t} d V \\
+ & \frac{1}{\Delta t} \iiint_{D_{t+\Delta t}-D_{t}} f(\mathbf{r}, t+\Delta t) d V \\
& -\frac{1}{\Delta t} \iiint_{D_{t}-D_{t+\Delta t}} f(\mathbf{r}, t+\Delta t) d V \\
= & I_{1}+I_{2}-I_{3} .
\end{aligned}
$$

$$
\text { Evidently } I_{1} \rightarrow \iiint_{D_{t}} \frac{\partial f}{\partial t} d V \text { as } \Delta t \rightarrow 0
$$

I_{2} and I_{3} are integrals over the parts of ΔD_{t} where the surface \S_{t} is moving outwards and inwards, respectively, that is, where $\mathbf{v}_{S} \bullet \hat{\mathbf{N}}$ is, respectively, positive and negative. Since $d V=\left|\mathbf{v}_{S} \bullet \hat{\mathbf{N}}\right| d S \Delta T$, we have

$$
\begin{aligned}
I_{2}-I_{3}= & \iint_{S_{t}} f(\mathbf{r}, t+\Delta t) \mathbf{v}_{S} \bullet \hat{\mathbf{N}} d S \\
= & \iint_{S_{t}} f(\mathbf{r}, t) \mathbf{v}_{S} \bullet \hat{\mathbf{N}} d S \\
& +\iint_{S_{t}}(f(\mathbf{r}, t+\Delta t)-f(\mathbf{r}, t)) \mathbf{v}_{S} \bullet \hat{\mathbf{N}} d S
\end{aligned}
$$

The latter integral approaches 0 as $\Delta t \rightarrow 0$ because

$$
\begin{aligned}
& \left|\iint_{S_{t}}(f(\mathbf{r}, t+\Delta t)-f(\mathbf{r}, t)) \mathbf{v}_{S} \bullet \hat{\mathbf{N}} d S\right| \\
& \leq \max \left|\mathbf{v}_{S}\right|\left|\frac{\partial f}{\partial t}\right|\left(\text { area of } S_{t}\right) \Delta t
\end{aligned}
$$

