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CHAPTER 15. VECTOR FIELDS

Section 15.1 Vector and Scalar Fields
(page 811)

F = xi + xj.
. . dx dy .
The field lines satisfy — = —, i.e., dy = dx. The field
X

x
lines are y = x + C, straight lines parallel to y = x.
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Fig. 15.1.1

F = xi + yj.
. . dx dy
The field lines satisfy — = —.
X
Thus Iny = Inx +1InC, or y = Cx. The field lines are
straight half-lines emanating from the origin.
y
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Fig. 15.1.2
F = yi+ xj.
d d
The field lines satisfy g —y.
y X

Thus x dx = ydy. The field lines are the rectangular
hyperbolas (and their asymptotes) given by x> — y2 = C.
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4. F =i+ sinxj.
dy

The field lines satisfy dx = ——.
sin x

d
Thus d_y = sinx. The field lines are the curves
x

y=—cosx + C.
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Fig. 15.1.4

5. F=e'i+ej.

The field lines satisfy °~ = 42
et et
Th dY_ —2x :
us Ix = ¢ “'. The field lines are the curves
= Legc
y= 2e .
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Fig. 15.1.5
6. F=V(x?—y)=2xi—j.
. . X dy
The field lines satisfy > = I They are the curves
X _
1
yz—ilnx—i—C.
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Fig. 15.1.6
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2xi+2yj
F=Vinx?+y})="5—=°.
(x=+y7) 212
d d
The field lines satisfy o _y. Thus they are radial
x y

lines y = Cx (and x = 0)
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Fig. 15.1.7
F = cos yi — cos xj.
d
The field lines satisfy -2 , that is,
cosy coS X

cosx dx +cosydy = 0. Thus they are the curves
sinx +siny = C.

Fig. 15.1.8

v(x, y,z) = yi—yj — yk.

The streamlines satisfy dx = —dy = —dz. Thus

v+ x = C1, 2+ x = Cp. The streamlines are straight
lines parallel to i — j — k.

v(x,y,z) =xi+ yj— xk.

d_y = —%. Thus

X y x

z+4+x = C1, y = Cox. The streamlines are straight half-
lines emanating from the z-axis and perpendicular to the
vector i + k.

dx
The streamlines satisfy — =

vix,y,z) =yi—xj+ k.
. . dx y
The streamlines satisfy — = —— = dz. Thus
y X
xdx +ydy=0,s0 x>+ y>= C12. Therefore,

dz 1 1

C12 —x2

dx y

12.

13.

14.
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This implies that z = sin~! Ci + C>. The streamlines

1
are the spirals in which the surfaces x = Cj sin(z — C»)
intersect the cylinders x> + y> = C 12

v xi+ yj
1+ +yD’ P
The streamlines satisfy dz = 0 and & _y. Thus
X

y
z = C1 and y = Cax. The streamlines are horizontal
half-lines emanating from the z-axis.

v = xzi + yzj + xk. The field lines satisfy

dy dz

’

dx
Xz yz
or, equivalently, dx/x = dy/y and dx = zdz. Thus the

field lines have equations y = Cyx, 2x = 22+ Cy, and are
therefore parabolas.

v = "% (xi 4+ y%j + zk). The field lines satisfy

so they are given by z = C1x, In|x| =In|C2| — (1/y) (or,
equivalently, x = Cye™1/).

v(x,y) = x% — yj. The field lines sat-
isfy dx/x2 = —dy/y, so they are given by
In|y| = (1/x) +In|C|, or y = Ce'/*.

v(x,y) =xi+ (x + y)j. The field lines satisfy

dx dy
X _x—i—y
d
_y:x+y Let y = xv(x)
dx X d d
dy o
dx d
d 1
v—i—x—v ad +v)=1+
dx X

Thus dv/dx = 1/x, and so v(x) = In|x| 4+ C. The field
lines have equations y = x In |x| 4+ Cx.

F = £ + r0. The field lines satisfy dr = d6, so they are
the spirals r =60 + C.

F = t + 00. The field lines satisfy dr = rd6/6, or
dr/r =d0 /0, so they are the spirals r = C6.

F = 2t + 00. The ficld lines satisfy dr/2 = r d6/6, or
dr/r =2d6/0, so they are the spirals r = C62.

F = rf — 0. The field lines satisfy dr/r = —rd®, or
—dr/r? = d0, so they are the spirals 1/r = 6 + C, or
r=1/0+C).
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Section 15.2 Conservative Fields
(page 819)

F =xi—2yj+3zk, F1 = x, F», = =2y, F3 = 3z. We
have

0F] 0= 0F>
dy  oax’
oF F
2= 25
0z ax
aF oF
a2 _ 5= 23
9z ay

Therefore, F may be conservative. If F = V¢, then

d¢ d¢ d¢
— =x, — =-2y, — =3z
ax ay 0z
2 2
. X 2 3z° .
Evidently ¢ (x,y,z) = 5 yo 4+ > is a potential for F.

Thus F is conservative on R°.

F=yi+xj+z2k, Fi=y, Fb=x, F3 = 72, We have

0F] _1_3F2
ay  ax’
dF) F
A _ oy
0z ax
JdF F
0h _,_9F
9z ay

Therefore, F may be conservative. If F = V¢, then

L] _ ap _ ap )
— =y, —=x, —=z.
ax ay 0z
Therefore,
dx,y,2) = /ydx =xy+Ci1(y,2)
0 aC
_0_ 3G G
dy dy dy
Ci1(y,2) = C2(2), o(x,y,2) =xy+Ca(2)
¢ &
2 /
= =C C = —.
z a2 2(@) = Ca(2) 3

3
Thus ¢(x,y,z) = xy + % is a potential for F, and F is

conservative on R3.

xi—yj x y
=——-—=,FI=———, Fh=————. We have
PRI A B A 242
o 2xy aF 2xy
dy 249927 ax T (k24922

Thus F cannot be conservative.
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xi+ yj x y
= _— = = , Fo = . We have
2oy Ty P T 2
d0F] _ 2xy _ 0F>
ay 24y ax

Therefore, F may be conservative. If F = V¢, then

0y by 9o y
ax  xZ4y2 dy  xZ4y?

Therefore,
X In(x% + y?)
y = d = C
d(x, ) /x2+y2 x 5 + Ci(y)
y ¢ y

— _ / / _
212 = 9y = 212 +c1(y) = c(y) =0.

Thus we can choose Ci(y) = 0, and

1
(6, 3) = S In(? + %)
is a scalar potential for F, and F is conservative every-
where on R? except at the origin.

F = 2xy — 22)i+ Qyz +x2)j — Qzx — y>)k,
F1 =2xy — 2, F = 2yz +x%, 3= y2 — 2zx. We have

0F] 0F>
— =2x = —,
ay ox
oF oF
R _ L, B
9z 0x
F, _ _ 0F3
0z T y

Therefore, F may be conservative. If F = V¢, then

d d
—¢=2xy—zz, —¢=2yz+x2,
ax ay
¢ 2
— =y~ —2zx.
3z y X

Therefore,

d(x,y,2) = /(ny — ) dx =x*y —x22 + Ci1(y, 2)

9 aC
2yz+xz:—¢:x2—|——1
ay ay
aC
= a—yl =2yz= Ci(y,2) = ¥’z + C2(2)

d(x,y,2) =x2y —xz> + y’z + C2(2)
0
y2 —2zx = a—f =—2xz+ y2 + C5(2)
= C5(z) = 0.

Thus ¢ (x, y,z) = x2y — xz + y?z is a scalar potential
for F, and F is conservative on R3.
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2,22 . .
F =P (xzi + yzj + xyk).

2 2 2 2 2
F1 :xzex +y +z , F2 — yzex +y +z ,
2,242
F3 = xye* V"7 We have

ah _ 2xyzet HYHT = i)

ay ax’

an _ (x + 2xz2)e T

dz '

aF 2,22  OF
Sk (v +2x2y)e HVHT £ S
0x 0z

Thus F cannot be conservative.

o) = ——
Ir — ro|?
8(}')_ 2 Ir — ro|
ax  |r—ro? 9x 0
( ) ar
r—ro)e —
— _ 2 0% ox
Ir—rol® |r—rol
_ 2(x = x0)
© r—rol*’

Since similar formulas hold for the other first partials of
¢, we have

F=V¢

2
= L T O = 0) + G - z0)k]

r—ro

Ir —rol*

This is the vector field whose scalar potential is ¢.

, ar
o
—Injr|= — dx X
d [r| |r| Ir|2
. P
Vln|r|zwzi
|r|? |r|2
2 2 2 2
S A Rk
Z Z Z 5 5
2 2
Flz—x, Fzz—y, F3:—x —Zy . We have
Z Z
oF oF
2= 222
dy ox
IF  2x  OF3
9z 22 ax’
oF, 2y 0F3
dz 2 dy

Therefore, F may be conservative in R® except on the
plane z = 0 where it is not defined. If F = V¢, then

9 2x 3¢ 2y

%__XZ_i_yZ
, dy P .

9z 72

ax  z

10.
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Therefore,

2x x2
d(x,y,2) = / ?dx =7 +C1(v,2)

2 9 aC] 2
D _0_30 =L 40
z ay ay z
2 2
X<+
b0y, = — 2 4 Ca(2)
_x2+y2 _ 99 __x2—|—y2 +CL)
72 9z 72 2
= C2(z) = 0.
2 2

x°+

Thus ¢(x, y,z) = is a potential for F, and F is
conservative on R except on the plane z = 0.
The equipotential surfaces have equations
X2+ y2
b4

=C, or Cz:x2—|—y2.

Thus the equipotential surfaces are circular paraboloids.

The field lines of F satisfy

dx dy dz
2x T 2y T x2gy?
z z )
d d
From the first equation, @ —y, so y = Ax for an
x

arbitrary constant A. Therefore

dx zdz _ zdz
2x  —(x2+y?)  —xX(1+ A%

so —(1 + A®)x dx = 2zdz. Hence

’

1+4%2, , B
2X+Z—E

or x2 + y2 4+ 2z2 = B, where B is a second arbitrary
constant. The field lines of F are the ellipses in which
the vertical planes containing the z-axis intersect the el-
lipsoids x2 + y2 + 2z2 = B. These ellipses are orthogonal
to all the equipotential surfaces of F.

2 2 2 2
S W x—‘;yk:G-{—k,
b4
where G is the vector field F of Exercise 9. Since G is
conservative (except on the plane z = 0), so is F, which
has scalar potential

2,2 224 ,2
X7+ X"+ y +z
Px,y,2) = Zy +z= yZ ;
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) x2 + 2
sice

is a potential for G and z is a potential for
Z
the vector k.

The equipotential surfaces of F are ¢(x,y,z) = C,
or

x2+y2+z2=Cz

which are spheres tangent to the xy-plane having centres
on the z-axis.

The field lines of F satisty

dx dy dz
Ty T A
JE— [ 1_

z z 72

As in Exercise 9, the first equation has solutions y = Ax,
representing vertical planes containing the z-axis. The
remaining equations can then be written in the form

dz  22—x?—y? 22— (14 A)x?
dx — 2xz - 2zx '

This first order DE is of homogeneous type (see Section
9.2), and can be solved by a change of dependent vari-
able: z = xv(x). We have

dv  dz  x2?— (1 + A?)x2
v +x— =
dx dx 2x2v
dv  vE—(1+A? V2 + (1 + A?)
X = -
dx 2v 2v
2vdv _ dx
V+(1+A2)  x
ln<v2 T+ AZ)) = _Inx+InB

B
X

V414 A=

These are spheres centred on the x-axis and passing
through the origin. The field lines are the intersections
of the planes y = Ax with these spheres, so they are ver-
tical circles passing through the origin and having centres
in the xy-plane. (The technique used to find these circles
excludes those circles with centres on the y-axis, but they
are also field lines of F.)

Note: In two dimensions, circles passing through the
origin and having centres on the x-axis intersect perpen-
dicularly circles passing through the origin and having
centres on the y-axis. Thus the nature of the field lines
of F can be determined geometrically from the nature of
the equipotential surfaces.
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The scalar potential for the two-source system is

m m

Ir—¢k| |r+¢k|’

¢(xvyﬂz) :¢(r) =

Hence the velocity field is given by

v(r) = Vo(r)
_ m(r —¢k) m(r+ ¢Kk)
T or— k3 Ir + ¢k|3

_ mxit+yj+ (- 0k)
2y 42— 02P2

m(xi+ yj+ (z + k)
2+ y2 4 (2 = 022

Observe that v; = 0 if and only if x = 0, and v, = 0 if
and only if y =0. Also
z+1
+ = )k
Iz + )3 )

which is 0 if and only if z = 0. Thus v = 0 only at the
origin.

z—4¢
lz — |3

v(0,0,2) =m (

At points in the xy-plane we have

2m(xi+ yj)

v(x,y,0) = Tyl

The velocity is radially away from the origin in the
xy-plane, as is appropriate by symmetry. The speed at
(x,y,0) is

2my/x2 4 y2 2ms

G2 F 21232~ (524232

v(x,y,0) = = g(s),

where s = /x2 + y2. For maximum g(s) we set

3
(52 + )2 = Zs(s? + 631225

0=g'(s) =2m EEwEE

_ 2m(0? = 2%
- (s2 4 £2)5/2 )

Thus, the speed in the xy-plane is greatest at points of
the circle x2 + y2 = £2/2.

The scalar potential for the source-sink system is

Py D) = D) = —— 4 —
= = T T ek

Thus, the velocity field is

Ve 2r r—k
V= = = —
[r®  r—kp?
2(xi+ yj +zk) xi+yj+(z— Dk

B R D L C R e FR VO Pk
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For vertical velocity we require
2x _ x
@2+ Y2423 (2424 @ - DD
and a similar equation for y. Both equations will be sat-
isfied at all points of the z-axis, and also wherever

3/2
Z(x2 +y2 4@z - 1)2) = (x2 +y? +Z2)
22/3(x2+y2+(z— 1)2> =x?+y7+ 22
4y +(@-K)?=K>—K,

3/2

where K = 22/3/(22/3—1). This latter equation represents
a sphere, S, since K 2_K >0. The velocity is vertical at
all points on S, as well as at all points on the z-axis.

Since the source at the origin is twice as strong as
the sink at (0, 0, 1), only half the fluid it emits will be
sucked into the sink. By symmetry, this half will the half
emitted into the half-space z > 0. The rest of the fluid
emitted at the origin will flow outward to infinity. There
is one point where v = 0. This point (which is easily
calculated to be (0, 0,2 4+ +/2)) lies inside S. Streamlines
emerging from the origin parallel to the xy-plane lead to
this point. Streamlines emerging into z > 0 cross S and
approach the sink. Streamlines emerging into z < 0 flow
to infinity. Some of these cross S twice, some others are

tangent to S, some do not intersect S anywhere.
Z| 4

Fig. 15.2.12

Fluid emitted by interval Az in time interval [0, 7] occu-
pies, at time ¢, a cylinder of radius r, where

7r’AZ = vol. of cylinder = 2mrmtAz.

dr .
Thus r2 = 2mt, and r— = m. The surface of this
cylinder is moving away from the z-axis at rate

dr m m

dr —r 2y

SECTION 15.2 (PAGE 819)
so the velocity at any point (x, y, z) is
V = ————— X unit vector in direction xi+ yj
Va2 4+ y?
m(xi+ yj)
Tox24 y?
14. For v(x,y) = M, we have

X< +y
R 2mxy vy

By (24y2)?2 ox’
so v may be conservative, except at (0, 0). We have

xdx m
P(x,y) = m/ ek 5ln(x2 +y) +Ci1y)

my 03¢  my dC
x24+y2 7 9y x24y2 dy

Thus we may take C1(y) = 0, and obtain
m 2 2
$(x,y) = Eln(x +y7) =mln|r|,

as a scalar potential for the velocity field v of a line
source of strength of m.

15. The two-dimensional dipole of strength p has potential

d(x,y)

m 5 £\? 5 e\?
lim — |1 - = —1 =
nf;:n(i > n|x —|—(y 2) n|x —|—(y+2)

I G G R G GE)

1
=0 4
(apply I’Hopital’s Rule)

=21 -

€0 2 2

x2+(y——> x2+(y+§>
oy W
X242 2"

Now

¢  2uy or  2pxy

ox 3 ax 4
2 9y
%__ r 2yrr _M(yz—xz)
dy ® r4 r4 )
Thus
14 . .
F = V¢ = m(nyl + (y2 - xz).]>.

575
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The equipotential curves for the two-dimensional dipole
have equations y = 0 or

w1
x24+y2 C
x2+y2+uCy:O

2 2,2
2 uC\~  pC
x+(y+—2> =

These equipotentials are circles tangent to the x-axis at
the origin.

All circles tangent to the y-axis at the origin intersect all
circles tangent to the x-axis at the origin at right angles,
so they must be the streamlines of the two-dimensional
dipole.

As an alternative derivation of this fact, the streamlines
must satisfy

dx  dy

2y y2—x2
or, equivalently,

dy y2 —x2

dx 2xy

This homogeneous DE can be solved (as was that in
Exercise 10) by a change in dependent variable. Let
y = xv(x). Then

dv dy vix?—x?
U+XE E_ 2vx2
dv_v2—1 _ v2 41
dx ~ v v
2vdv  dx
v+1 x
Inw?+1)=—Inx+InC

o) 2 c
PHl== = L41=2
X X X

x2+ y2 =Cx
(x—C)P+y>=C2
These streamlines are circles tangent to the y-axis at the

origin.

The velocity field for a point source of strength m dt at
0,0,1) is

m(xi +yj+(z— t)k)

vi(x, y,2) = 3
(x2 + 324z - t)z)
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Hence we have

o0
/ Vi(x,y,2)dt
o0

*  xityj+ -1k
=m 3/2dt
o <x2+y2+(z—l)2)

dt
(x2 +y2+(z— t)2>3/2

Let z —t =/x2+ y2tanf

—dt = /x2 4+ y2sec?0 df

_ mxi+yj) [T

x24+y2 Jap
2m(xi+ yj)
=TT

= m(xi+ yj)/

cos6 db

which is the velocity field of a line source of strength 2m
along the z-axis.

The definition of strength of a point source in 3-space
was made to ensure that the velocity field of a source
of strength 1 had speed 1 at distance 1 from the source.
This corresponds to fluid being emitted from the source
at a volume rate of 4sr. Similarly, the definition of
strength of a line source guaranteed that a source of
strength 1 gives rise to fluid speed of 1 at unit distance
1 from the line source. This corresponds to a fluid
emission at a volume rate 27 per unit length along the
line. Thus, the integral of a 3-dimensional source gives
twice the volume rate of a 2-dimensional source, per unit
length along the line.

The potential of a point source m dt at (0,0, ¢) is
m

VAT —1)?

This potential cannot be integrated to give the potential
for a line source along the z-axis because the integral

¢(xsyﬂz) = -

/— v
m

does not converge, in the usual sense in which conver-
gence of improper integrals was defined.

Since x = rcosf and y = rsinf, we have

el 0 ]
—¢ = cos@—¢ —|—sin0—¢
ar dax ay

ad ad 0
—4) = —rsin9—¢ +rcos€—¢.
a0 ox ay

Also,

r

; .
Mty = (cos )i+ (sinh)j
-

_—yitxj

D>

—(sin )i + (cos 0)j.



20.

21.

22,

www. nohandesyar . com

INSTRUCTOR’S SOLUTIONS MANUAL
Therefore,

= 00529% + sinf cose% i
0x ay

¢
+( wog )
+ (Sinzeg —sin6 cos@—¢>

d¢
+ [ — cos@ sin6— + cos? z9 j
ox 8y

_ e, 0,
= o 1+3J—V¢

If F= F,(r,0)r + Fy(r, 6)6 is conservative, then F = V¢
for some scalar field ¢ (r, 6), and by Exercise 19,

R10) 193¢

— =F, = Fp.

o " roae '
For the equality of the mixed second partial derivatives of
¢, we require that

d0F;, ( Fo) = Fy + d0Fy
= —( = r —
30 or= T
0F, JF
that is, 4 —r—9 = Fy.
20 ar

If F = rsin(20)r + rcos(20)é = V¢ (r, 0), then we must
have

9 19
% _ rsin(20), - % _ r cos(20).
ar r 00

Both of these equations are satisfied by

¢(ro) = lr sin(260) + C,

so F is conservative and this ¢ is a potential for it.

If F = r2cosOf + arfsinfd = Vo (r,6), then we must

have 5 1 )
—¢ =r20056, ¢ ar® sing.
or r a0

From the first equation

3
o (r,0) = —cos@ + C(0).

The second equation then gives

r 3¢ Bl

C’(Q)—?sm9=%=ar siné.

SECTION 15.3 (PAGE 824)

This equation can be solved for a function C(6) indepen-
dent of r only if « = —1/3 and 8 = 2. In this case,
C(0) = C (a constant). F is conservative if o and 8 have
these values, and a potential for it is ¢ = 3r3 cosf + C.

Section 15.3 Line Integrals (page 824)

1. @ r=acostsinti+asin®tj+acosrk, 0 <t < /2.
Since

2 2

Ir|” = az(cos2 tsin®t + sin* 7 + cos® ty=a

for all ¢, C must lie on the sphere of radius a centred at
the origin. We have

ds = av/(cos? t — sin2 )2 + 4sin2 f cos? ¢ + sin? ¢ dt

— av/cos? 2t + sin2 2t + sin? ¢ dt

=ay/1+sin?tdt.

Thus

/2
/zds:/ acostav 1 +sin2tdt Let u =sint
e 0

du = costdt
= / V14+u?du Letu_tan¢
du = sec? ¢do
/4
= a2/ sec3¢d¢
0

/4

o

3l
= 9ec¢tan¢+ln|sec¢+tan¢|]

0

2
%(\/——Fln(l—l—\/—))

2. G x=tcost,y=tsint,z=1, (0 <t <2mw). We have

ds = \/(cost — tsint)2 + (sint + tcost)2 + 1 dt

=2 +12dt.

Thus

2
/zds: tV24+12dr Letu=2+1¢*
e 0

du =2t dt
1 2+4JT2
= —/ u'? du
2 )2
2
_ LT _dntr oo
= . = 3 .
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Wire: r=3ri+3j+2k, 0<r<1)
v = 3i + 61j + 61’k

v=3V1+42 + 4 =31 +2%).
If the wire has density §(f) = 1 + ¢ g/unit length, then its
mass is

1
m =3/ A +22(1 + 1) dt
0

=3 t+t2+2t3+[4
- 2 3 2

1
=8 g

0

The wire of Example 3 lies in the first octant on the sur-
faces z = x2 and z = 2 — x2 — 2y?, and, therefore, also on
the surface x2 =2 — x2 — 2y2, or x2 + y2 =1, a circular
cylinder. Since it goes from (1,0, 1) to (0, 1, 0) it can be
parametrized

r = costi+ sintj +coszk, O<t<mn/2)
v = —sinti+ costj — 2cost sintk

v =+/1+sin2(2t) = V2 — cos2(21).

Since
the wire has density § = xy = sinfcost = %sin(2t),
its mass is

1 /2
m=— V2 —cos2(2t)sin(2t) dt  Let v = cos(2t)

2 Jo .
dv = —25sin(2t) dt

1! 1!
:4_1/ \/2—v2dv:5/ V2 —v2dv,
-1 0

which is the same integral obtained in Example 3, and
has value (7 +2)/8.

C: r=celcosti+e' sintj+1rk, 0 <t <2m).

ds = /e (cost — sint)2 + e (sint + cost)2 + 1 dt

=1+ 2e¥dt.

The moment of inertia of C about the z-axis is

I:8/(x2+y2)ds
C

27
=4 V1 +2e2dt Letu =1+ 2%
0

du = 4e dt
5 [l+2e7
= - Judu
4 J3
14247
_ §M3/2 _ 6[(1 +2647)32 _ 33/2]'
3

578

R. A. ADAMS: CALCULUS

6. C is the same curve as in Exercise 5. We have

21
/ efds = e'V1+42e2dr Let +/2¢' = tan6
¢ 0 V2e' dt = sec? 0 do

1 t=2m
= — sec>0.do
V2 Jizo
1 t=2m
= —[sec@tan@ + In|secf +tan0|]

272 =0
V2 T+ 26 4 In(v2e' + VT 287 |7
B 232 0
_ 21 +2e%7 — /3
B 2

R V27 + 1+ 2657
——1n .
2V2 V2+43

The line of intersection of the planes x —y +z = 0
and x + y + 2z = 0 from (0,0, 0) to (3, 1, —2) can be
parametrized

r = 3ti +1j — 2tk, O=<r<l).

Thus ds = +/14dt and

1
/xzds =14 | 92dr = 3/14.
C

0

The curve € of intersection of x2 +z2 = 1 and y = x2

can be parametrized
r = costi + cos® tj +sintk, (0 <t <2m).

Thus

ds = +/sin2 ¢ + 4sin2 1 cos? ¢ +cos2tdt = /1 + sin? 2t dt.

We have

/ V14 4x272ds
C

2
= V1 +4cos?tsin?ty/1 + sin? 2t dt

0
2
= (1 + sin®2¢) dt
0
2
1 — cosdt
= / (1 + 7008 ) dl
o 2
3
= ~(27) = 37.
2( ) T
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9. r=costi+sinrj+rk, (0<t<2m)

v=—sinti+costj+k, v =2
If the density is § = z = ¢, then

2
mzx/E/ tdt =212
0
2
M,—o =x/§/ tcostdt =0
0

= 272

8732
3

tsint dt

2
My—o = NG)
0

2
M,—o =2 2dt =
0

(We have omitted the details of the evaluation of these

1 4rn
integrals.) The centre of mass is (O, -, T)
b4

10. Here the wire of Exercise 9 extends only from ¢ = 0 to
t=m: )
T
2
m= \/5/ tdr == V2
0 2
T
My—o = «/5/ tcostdt = —23/2
0

b
Myzo:\/i/ tsintdt = 72
0
732
3

T
M. =\/§/ 2dt =
0

4 2 2
The centre of mass is (— 7'[)

27 3
11. r=c'i++2tj+ e 'k,
v=r¢i+2j—e'k

v=vVell +24+e % =¢' + 7!
1

/()c2 +zY)ds = / @ +e M) (e +e N dr
e 0

O=r=1

1
= @+ +e+e N dr
0

e3+ 11
=—+4+e——— —.
3 e 3e
1 2
-1
12. m=/ (et—l—e*t)dt:e
0 e
1 2
+1
Mx=o=f e +eydi =1
0 2

1
24/2(e — 1
My_o = / V2t +edt = 2Vae- 1
) b e
1 2
3e= — 1
Mo = / e e +e)dt = ¢ 5
0 2e
3 272 21
The centroid is e te s V2 s 3e
2e2 -2 e+1"2e3—2¢

SECTION 15.3 (PAGE 824)

13. The first octant part € of the curve x% + y? = a2, z = x,

14.

15.

can be parametrized

r =acosti+ asintj+ acostk,

We have ds = a~/1 +sin2 ¢ dt, so
/2
/xds:azf costv 1 +sin2trdt Letsint = tané
¢} 0

costdt = sec? 0 do
t=m/2
2 / sec® 6 do

O0<t<mn/2).

I
2

t=m/2

secftan6 + In | sec +tan0|]

a
2 =0
72

|5, S,

[
[smzv1+sm2 +1n|smt+m|]
[\/——Fln(l—l—\/—)]

On G, we have

=J1=x2—y2=1-x2— (1 —x)? =2(x —x2).

Thus € can be parametrized

r=t+ 1 -0j+vV20t —tDk, O0<t<1).
Hence
ds = 1+1+(1_2t)2dz: a__
2= -
We have

/zds_/ V2(t —t2) \/Tzz)

The parabola z? = x2+y?, x+z = 1, can be parametrized
in terms of y = ¢ since

AexP=2=x>+y2=x2+47

1—1¢2
= 1-2x=1 = x= 2
. | 1412
=]1—-—x=
¢ 2
Thus ds = V12 + 1 +2dt = +/1 +2¢2dt, and
/ ds _/00 V11272
e 2y24+ 1327 J_ o @224 1)32
/°° dt
:2 _
0 1+2t2
o0
= +/2tan"' (v/21) zﬁzzl.
0 2 V2

579
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€y = x%,z = y% from (0,0,0) to (2,4, 16).
Parametrize C by

r=ri+12j+ 1k, 0<t<2).

Since ds = v/1 + 42 + 161% dt, we have
2
/xyzds:/ 1"V + 412 + 1616 dr.
e 0

Helix: x =acost, y=bsint, z=ct (0 <a < b).

ds = va2sin2t + b2 cos2 ¢ + c2 dt
=2+ b2 — (b2 — a?)sinltdt

b2 —a?

=Vh2+ V1 —K2sin2tdr (K = b2—+62).

One complete revolution of the helix corresponds to
0 <t <2m, and has length

2
L:\/bz—}—czf V1 — k2 sin2 ¢ dt
0

/2
—4Vb2 + 2 V1= k2sin2tdt
0

2 2

b —
— 4VD2 + CE(k) = 4/b? + C2E b2—+“2 units.
C

The length of the part of the helix from # =0 to
t=T<m/2is

T
L :\/b2+02/ V1 — k2 sin2 ¢t dt
0

T B T) =it [ |
: et

The straight line L with equation Ax + By = C, (C # 0),
lies at distance D = +/|C|/+/ A2 + B2 from the origin.
So does the line L; with equation y = D. Since x2 + y2
depends only on distance from the origin, we have, by
symmetry,

/ ds _/ ds
Lx2 4y Jr a4 y?

_/OO dx
T ) X2+ D2

2 * 2
=—tan_li =—<£—0)
D pl, D\2
. avA2+ B?
D IC] '

580
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Section 15.4 Line Integrals of Vector Fields
(page 831)

F=xyi—x2j.
C: r=ti+r4, O=<r=<l.

1 1
1
/Fodr:/ [t3—12(2t)]dz:—/ Bdt = —-.
e 0 0 4

y2
F=cosxi—yj=V (sinx — 7)

C: y=sinx from (0,0) to (7, 0).

yz (7,0)
/Fodr: (sinx——)
e 2

F =yi+zj—xk.
C: r=ti+tj+tk, O<tr<l).

1 2!
/Fodr:/ (t+t—t)dt =—
e 0 2

F=zi— yj+2xk.
Cr=ti+2j+1k 0<t<1).

=0.
0,0)

1
o 2

1
/ Fedr = / [ — 221) 4+ 2t (3t3)1 dt
C 0

1 514
= 53dt=—
| ;

F = yzi+ xzj+ xyk = V(xyz).
C: a curve from (—1,0,0) to (1,0, 0). (Since F is con-
servative, it doesn’t matter what curve.)

(1,0,0)
/ Fedr=uxyz
e

F=Gx-2i+(—-2j-G&+yk
2 2
xX°+
=v( 2.
C is a given polygonal path from (0,0,0) to (1,1,1) (but

any other piecewise smooth path from the first point to
the second would do as well).

2 2
/Fodrz(x ty —(x+y)z>
e 2

F=x+yi+x—2j+—yk
x2 422
2

The work done by F in moving an object from (1, 0, —1)
to (0, —2,3) is

2.2
W=/Fodr=(x +2 +y(x—Z)>
e 2

s

0 4’

=0-0=0.
(~1,0,0)

(1,1,1)
=1-2=-1
(0,0,0)

=V +y(x—z)>.

0,-2,3)

(1,0,—1)

9 19
= 3~ 2(=3)— (140 = > units.
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8. € is made up of four segments as shown in the figure.
On G, y =0, dy =0, and x goes from O to 1.
On G, x =1,dx =0, and y goes from 0O to 1.
On C3, y=1,dy =0, and x goes from 1 to 0.
On G4, x =0, dx =0, and y goes from 1 to 0.
Thus

/xzyzdx+x3ydy=0
Ci
! 1
/xzyzdx+x3ydy=/ ydy = =
(&) 0 2
0 1
/xzyzdx+x3ydy:/ 2dx = ——
e 1 3
/xzyzdx+x3ydy:0.
Cy

Finally, therefore,

/xz 2dx+x3 d _0+l_l+0—l
e y yay = ) 3 =6

y 4

G (11

(G5}
¢,

¢

Fig. 15.4.8
9. Observe that if ¢ = e sin(y + z), then
V¢ = e sin(y + 2)i + (sin(y +2) 4+ cos(y + Z))j
+ "V cos(y + 2)k.

Thus, for any piecewise smooth path from (0, 0, 0) to
(1.%.%). we have

/ e tsin(y +z)dx + e (sin(y +2) +cos(y + z)) dy
e

+ e cos(y 4+ 2) dz
(1,7 /47 /4)
_ /A

=/V¢odr=¢(x,y,z)
C

(0,0,0)

10. F = (axy + 2)i + x%j + (bx 4 22)k is conservative if

dF] F,

— =7 & a=2
ay dax

dF _ 0F3 o bl
9z ox -
oF oF

0z ay

SECTION 15.4 (PAGE 831)

If a =2 and b =1, then F = V¢ where

¢ = /(ny +2)dx = x%y +x24 Ca(y, 2)

ac
a—yl+x2=F2=x2 = C0.29=00)
dcC
d—Z2+x:F3:x+2z = G =22+C.

Thus ¢ = x%y + xz 4 z> + C is a potential for F.

2
11. F= Axlnzi+ By%zj+ (x_ + y3> k is conservative if
z

d0F] 0F,

— =— & 0=0
dy ox
d0F] J0F3
—=— & A=2
0z ox
oF oF
AR _ 0k B—3
9z ay

If A=2 and B =3, then F = V¢ where

¢ = x%Inz + y3z. If € is the straight line x = ¢ + 1,
y=1,z=t+1,0=<t<1),from (1,1,1) to (2,1, 2),
then

folnzdx+2y2zdy+y3dz
e

xZ
=/V¢odr—/y2zdy+—dz

¢ C Z
2,1,2)

1
= 2Inz + y’2) / [(t + D) + (r + D] dt
0

(1,1,1)
1

4In2+2-1 zz—i—t 4In2 !
=4In o Bl =4In2 — -.
2 2

0

12. F=(y2cosx +2%)i+ Qysinx — 4)j + 3xz> + 2)k
= V(y2 sinx + xz° — 4y 4 27).
The curve C: x = sin"'t, y = 1 — 21,z = 3t — 1,
0 <t <1), goes from (0,1, —1) to (w/2,—1,2). The
work done by F in moving a particle along € is

W:/Fodr
e
(/2,~1,2)

= (y2 sinx + xz° — 4y +27)
0,1,—1)

= 1447 +44+4—-0-0+4+2=15+4r.
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13. For z =In(l +x), y =x, from x =0 to x = 1, we have

/ [(Zx sin(zry) — e*) dx
e

+ (mx2cos(my) — 3¢¥) dy — xé° dz]

=/V(xzsin(rry)—xez)odr—3/ezdy
C C

(1,1,In2) 1
= ( 2sin(rry) - xez) -3 (I14+x)dx
(0,0,0) 0
2 1
1
—aa(xp ) 22228
2 ), 2- 2

14. a) S ={(x,y) :
domain.

b) S={(x,y) : x =0,y > 0} is not a domain. (It has
empty interior.)

x > 0,y > 0} is a simply connected

c) § ={(x,y) : x #0,y > 0} is a domain but is
not connected. There is no path in S from (—1, 1)
to (1, 1).

d) S ={x,y,2 : x2 > 1} is a domain but is not
connected. There is no path in S from (-2, 0, 0) to
(2,0,0).

e) S={(x,y,2) : x4+ y2 > 1} is a connected domain
but is not simply connected. The circle x* + y? = 2,
z = 0 lies in S, but cannot be shrunk through S to
a point since it surrounds the cylinder x% + y? < 1
which is outside S.

f) S ={(x,y,2) : x>+ y*+z> > 1} is a simply
connected domain even though it has a ball-shaped
“hole” in it.

15. € is the curve r = acosti+ asintj, (0 <t < 2m).

2
?gxdy:/ acostacostdt = ma®
¢ 0

2
fydx =/ asint(—asint)dt = —wa>.
C 0

16. C is the curve r = acosti+ bsintj, (0 <t < 2m).

2

xdy = acostbcostdt = mab

g
ﬁydxz

2
bsint(—asint)dt = —mab.

S— 55—
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17. € consists of two parts:
On G, y=0,dy =0, and x goes from —a to a.
On G, x =acost, y =asint, t goes from O to .

%xdy:/ xdy—i—/ xdy
¢ Cy (&)
2

T
=0+/ a?cos?tdt = K,
0 2
2

%ydx:/ ydx—i—/ ydx
C Cy C
Ta

T
= O—|—/ (—azcoszz)dt = ——.
0 2

Fig. 15.4.17

18. € is made up of four segments as shown in the figure.
On G, y =0, dy =0, and x goes from O to 1.
On G, x =1,dx =0, and y goes from O to 1.
On CG3, y=1,dy =0, and x goes from 1 to 0.
On G4, x =0, dx =0, and y goes from 1 to 0.

fras=[ L+
e e, Je, Jes Je,
1

=o+/ dy+0+0=1
0

foa=[ L)+
e Cy (3 C3 Cy

0
=0+0+/ dx +0=—-1.
1

yl

Z (L

(67}
(N

Y

Fig. 15.4.18
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19. C is made up of three segments as shown in the figure.
On G, y =0, dy =0, and x goes from 0 to a.
On G2, y =bt, x =a(l —t), and t goes from O to 1.
On CG3, x =0, dx =0, and y goes from b to 0.

¢ Ci C C3
1 ab

:0+/ a(l—t)bdt +0=—
0 2

cC C (6] C3
ab

1
:0+/ bt (—adt) +0=——.
0 2

y A

¢

Fig. 15.4.19

20. Conjecture: If D is a domain in R?> whose boundary is
a closed, non-self-intersecting curve C, oriented counter-
clockwise, then

%xdy = area of D,
e

?gydx = —area of D.
¢

Proof for a domain D that is x-simple and y-simple:
Since D is x-simple, it can be specified by the inequali-
ties

c<y=d, fO) <x=<g.

Let C consist of the four parts shown in the figure. On
Cy and Gz, dy = 0.

On G2, x = g(y), where y goes from c¢ to d.

On Gz, x = f(y), where y goes from d to c. Thus

fra=f 4+ [+
¢ Cy [ C3 Cy

d c
=0+/ 8(y)dY+0+/d Fdy

= (g(y) — f(y)) dy = area of D.

The proof that 7{ ydx = —(area of D) is similar, and
¢
uses the fact that D is y-simple.

com
SECTION 15.4 (PAGE 831)
y A
(&
d
&
D
e x=g(y)
. 1
X
Fig. 15.4.20

a a ad a
2 Vi =+ (s + e)it (155 + )
o) a
+(f8_§+8_];g>k

=gVf+fVg.
Thus, since € goes from P to Q,

/ngodr-{—/gi.dr
C C
0
=/WﬁhM=U@
e P

= f(Q)g(Q) — f(P)g(P).

22. a) C. x =acost, x =asint, 0 <t < 2.

1 xdy —ydx
2 Jo  x24y?

1 (2 q%cos®t 4 a?sin? ¢
= — —— —— dt = 1.
2w Jo accos*t+ a-sin-t
y y
A 11
(¢ C,
(o8
a —1 r
X X
C;
| e

Fig. 15.4.22(a) Fig. 15.4.22(b)
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b) See the figure. C has four parts.
On G, x=1,dx =0, y goes from 1 to —1.
On G, y=—-1,dy =0, x goes from 1 to —1.
On CG3, x = —1,dx =0, y goes from —1 to 1.
On G4, x =1,dx =0, y goes from 1 to —1.

1 xdy —ydx
27 Jo  xZ4+y?

1 /*1 dy +/*1 dx
Tom |l 142 i X241
1 1
—dy —dx
L+ [=5i)
1 1+y 1 xc+1

_ 2/1 dt
N e _11+t2

Fig. 15.4.22

c) See the figure. C has four parts.
On G, y=0,dy =0, x goes from 1 to 2.
On G2, x =2cost, y =2sint, t goes from O to .
On CG3, y =0, dy =0, x goes from —2 to —1.
On C4, x =cost, y =sint, t goes from m to 0.

1 xdy —ydx
E e x2+y2
—L[O /” 4cos’t + 4sin’ ¢t
T2 o 4cos?t+4sin?t

0 2 )
cos“t + sin“ ¢t
+0+/ ﬁdi
7 COS“t + sin“t

1
:E(n—n)zo.

ad -y 0 X
ay \x24+y2 T ox x2 +y2

for all (x,y) # (0,0), Theorem 1 does not imply that
dy —yd
?g % is zero for all closed curves € in R,
c X +ty
The set consisting of points in R except the origin is not
simply connected, and the vector field

23. Although

F— —yi+Xx]
x2 4 y2

584
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is not conservative on any domain in R? that contains

the origin in its interior. (See Example 5.) However, the
integral will be O for any closed curve that does not con-
tain the origin in its interior. (An example is the curve in
Exercise 22(c).)

If € is a closed, piecewise smooth curve in R? having
equation r = r(t),a < t < b, and if C does not
pass through the origin, then the polar angle function
6 = 9<x(t), y(t)) = 6(t) can be defined so as to vary
continuously on €. Therefore,

t=>b
=27 x w(C),

t=a

0(x,y)

where w(C€) is the number of times C winds around the
origin in a counterclockwise direction. For example,
w(C) equals 1, —1 and O respectively, for the curves C
in parts (a), (b) and (c) of Exercise 22. Since

20, 00,
—al—F a,]
_—yitxj

T

Y

we have

1 dy — 1
L frdy=ydx 1 [on 0o
21 Jo  x24y? 21 Je
t=b
= w(C).

t=a

1
= —9 ,
o (x,y)

Section 15.5 Surfaces and Surface Integrals
(page 842)

The polar curve r = g(6) is parametrized by
x = g(@)cosb, y = g(0)sinf.

Hence its arc length element is

dx\? dy 2
ds= (= 2 ae
g (d@) +(d9)

2 2
- \/(g/(e) cos6 — g(6) sin9) n (g’(@) sin6 + g(e)cose) o

= / (g(@))2 + (g’(@))zde.
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The area element on the vertical cylinder r = g (@) is

dS = dsdz = \/(g(0)>2 + (g’(@))zdé dz.

The area element dS is bounded by the curves in which
the coordinate planes at 6 and 6 + df and the coordinate
cones at ¢ and ¢ + d¢ intersect the sphere R = a. (See
the figure.) The element is rectangular with sides a d¢
and asing df. Thus

dS =a’singde do.

Fig. 1552

The plane Ax + By + Cz = D has normal
n = Ai + Bj + CK, and so an area element on it is
given by

n] VA2 + B+ C?
dS = dxdy = — dxdy.
mek “* Y IC] T

Hence the area S of that part of the plane lying inside
the elliptic cylinder

2 2
y
2 Tr=!
is given by
~AZ+ B2+ C?
S://z 5 ;dxdy
XY C|
+msl |
waby/ A? + B2 + C? )
= ] $q. units.

One-quarter of the required area is shown in the figure.
It lies above the semicircular disk R bounded by
x2 4 y2 = 2ay, or, in terms of polar coordinates,
r = 2asinf. On the sphere x4+ y2 +72= 4a2, we have
9z 0z X
Z

27— = —2x, or — =—
dax ox

SECTION 15.5 (PAGE 842)

L 0z
Similarly, 3 = —X, so the surface area element on the

y <
sphere can be written

2 2
2adxd
x+ydxdy adxdy

22 - /4a? —x2 — 32’

The required area is

2a
S:4// X ixdy
R /4a% —x2 —y2

/2 2asin6@ rdr 5 5
=8a/ d@/ —— letu=4a"—r
0 0 V4a? —r?
du = —2rdr

/2 442
=4a/ d@/ uV? du
0 4a2 cos? 6

/2
= Sa/ (2a — 2a cosH) db
0

/2
= 8a2(7r — 2) sq. units.

dS=,/1+

= 164%(© — sin0)

0

r=2asin0
Fig. 1554
VF(x,y,
ds = ’ﬂ dxdz
Fo(x,y,2)
VF(x,y,
dS = ’ﬂ dydz
Fi(x,y,2)
The cylinder x> + y?> = 2ay intersects the sphere
x2 4+ y2 + z2 = 44’ on the parabolic cylinder

2ay + z2 = 4a®. By Exercise 5, the area element on
x2+y%—2ay=0is

2xi+ 2y — 2a)j

ds = dyd
2x ‘ yae
(v —a)?
14+ ———dyd
+2ay—y2 yaz

_\/2ay—y2+y2—2ay+a2

2ay — y? V2ay — y?

585
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The area of the part of the cylinder inside the sphere
is 4 times the part shown in Figure 15.23 in the text,
that is, 4 times the double integral of dS over the region

0<y<2a,0<z</4a% - 2ay, or

A 4a?—-2ay
dz

2a ady
S=4 —_—
0 +/2ay—y%Jo

2a 2a
J2aQa — d
— 4q Mdy =4\/§a3/2/ ay
0 ~yQRa-—y) VAY
2a
= 4\/§a3/2(2ﬁ) = 164> sq. units.
0
On the surface § with equation z = x2/2 we have

dz/0x = x and dz/dy = 0. Thus

dS =+1+x%dxdy.

If R is the first quadrant part of the disk x2 + y2 < 1,
then the required surface integral is

//;de://l;x\/l—l-—xzdxdy

1 1—x2
= / xvV1+x2dx / dy
0 0

1
:/ xvV1—x*dx Letu=x?
0

du = 2xdx

1! 1 T
= V1i—uldu=-===.
2 Jo 24 8

The normal to the cone z> = x? + y% makes a 45° angle

with the vertical, so dS = +/2dx dy is a surface area
element for the cone. Both nappes (halves) of the cone
pass through the interior of the cylinder x*> + y* = 2ay,
so the area of that part of the cone inside the cylinder is
2+/2ma? square units, since the cylinder has a circular
cross-section of radius a.

One-quarter of the required area lies in the first octant.
(See the figure.) In polar coordinates, the Cartesian equa-
tion x2 4 y2 = 2ay becomes r = 2asinf. The arc length
element on this curve is

d 2
ds = [r? + (é) d6 = 2a do.

Thus dS = /x2 + y2ds = 2ard6 = 4a*sin®do on
the cylinder. The area of that part of the cylinder lying
between the nappes of the cone is

/2
4 / 4a®sin6 do = 164> sq. units..
0
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One-eighth of the required area lies in the first octant,
above the triangle T with vertices (0, 0, 0), (a, 0, 0) and
(a, a, 0). (See the figure.)

The surface x2 + z2 = a2 has normal n = xi + zK, so an
area element on it can be written

[n] a

dxd
= dxdy:—dxdy:u
In e K| V4

2 2’

as —x

The area of the part of that cylinder lying inside the
cylinder y2 + 22 = a? is

s 8// adxdy 8 /“ dx /xd
= —_— = 8d —_— y
T ~/a? —x2 0 vaz—x2Jo
/“ xdx
=8a —_—
0 Va2 —x2

a
= —8ava? —x2

0

= 84> Sg. units.

x24z2=a? y*+z?=a

(a,a,0)
Fig. 15.5.10
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Let the sphere be x2 + y2 + z2 = R?, and the cylinder be

x2 + y2 = R%. Let 8 and 4, be the parts of the sphere
and the cylinder, respectively, lying between the planes
z=a and z =b, where —R <a <b <R.

Evidently, the area of 4, is So = 27 R(b—a) square units.
An area element on the sphere is given in terms of spher-

ical coordinates by
dS = R*sing de db.

On 4§; we have z = Rcos¢, so 41 lies between
¢ = cosfl(b/R) and ¢ = cosfl(a/R). Thus the area of
81 1s

2 cos’l(a/R)
Sy = R2/ d@/ sing de
0 cos

“1/R)
cos_l(a/R)

=27 R(b — a) sq. units.
cos~1(b/R)

=27 R%(— cos §)

Observe that §; and 4, have the same area.

Z
A

T R

é% -
X /i7Z

< T

Fig. 15.5.11

7=—

We want to find Aj, the area of that part of the cylinder

x2 + 72 = a? inside the cylinder y2 + z2 = b%, and A,,
2

the area of that part of y? +z> = b? inside x? + 7> = a>.

We have
A1 = 8 x (area of 4),
Ay = 8 x (area of 4»),

where 41 and 4, are the parts of these surfaces lying in
the first octant, as shown in the figure.
A normal to 4; is n; = xi + zk, and the area element on
81 1s
as; = Mgy g, = 49d¥dz
[n i a? —z2

com
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Fig. 15.5.12

A normal to 4> is m» = xj + zk, and the area element on
485 is

n bdxd

[ dxdz xdz

T V2

Let R; be the region of the first quadrant of the yz-plane
bounded by y>+z2=5% y=0,z=0, and z = a.

Let R, be the quarter-disk in the first quadrant of the xz-
plane bounded by x*> + z> = a%, x = 0, and z = 0.
Then

as,

T m e

a dz A/ b2—72
A1=8// dS1=8a/ 7/ dy
Ry 0 va?—-2z2Jo
a b2—22
:8a/ v — &
0

dz Letz=asint
W — 2
dz =acostdt
/2

= 8a Vb? —a?sin?tdt
0

72 2
:8ab/ (1= % sin’ rdi
0 b

= 8abE (%) $q. units.

a dz A a?—72
A2=8// dSz:Sb/ 7/ dx
R 0 vb2—22Jo

a 2_ .2
:8b/ udz Let z = bsint
0o Vbr-2z2 _
dz = bcostdt

sin~!(a/b)
=8b/ Va2 — b2sin?tdt
0
sin_l(a/h) b2
=8ab/ I — = sin® ¢ dt
0 a

b
= 8abE (—, sin~! Z) Sg. units.
a b
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13. The intersection of the plane z = 1 + y and the cone

7z = /2(x%2 + y?2) has projection onto the xy-plane the
elliptic disk E bounded by

1+ )7 =207+

142y +y2 =2x%242y°

224y —2y4+1=2

G-
2

x2 4+ 1.

Note that £ has area A = rr(l)(«/ E) and centroid (0, 1).
If & is the part of the plane lying inside the cone, then
the area element on 4 is

9 2
s =|1+ (a—z) dx dy = /2 dx dy.
y

//;de:ﬁ//Eydxdy:ﬁA)?:%t.

14. Continuing the above solution, the cone z = /2(x2 + y?)
has area element

3z \* 92\
dS=,/1+{—) +| ) dxdy
ax dy

4x2 4 y?
n ( 2y)

Thus

=1 dxdy = v3dxdy.

If & is the part of the cone lying below the plane
z=1+y, then

//;dezx/g//Eydxdyzx/gAyzx/gn.

15. If 4 is the part of z = x? in the first octant and inside
(that is, below) z = 1 — 3x% — y2, then 4§ has projection
E onto the xy-plane bounded by x> = 1 — 3x2 — y2, or
4x2 4+ y2 =1, an ellipse. Since z = x2 has area element
dS =+/1+4x2dxdy, we have

//xzdS:// x3\/l+4x2dxdy
E E

1/2 A 1—4x2
= x3\/1+4x2dx/
0

1/2
=/ V1 —16x%dx Letu=1—16x*
0

du = —64x3 dx
1 1
=—/ ul/zduzi.
64 Jo 96

dy
0
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16. The surface z = +/2xy has area element
y X
dS= |1+ —+ —dxd
2x + 2y ray
2xy + 2 +x? lx + y|
=,|————dxdy = dxdy.
2xy V2xy

If its density is kz, the mass of the specified part of the
surface is

5 2
x+y
m= dx/ ky/2xy dy
/() 0 V2xy

5 2
:k/ dx/ x+y)dy
0 0

5
= k/ (2x + 2) dx = 35k units.
0

17. The surface & is given by x = e cosv, y = e sinv,
z=u,for0<u<1,0<v <mw. Since

(y,z) |e'sinv e"cosv

u
= = —e"cosv

a(u, v) 1 0
a(z, x) 1 0 "y
—=| . "y = —e"sinv
a(u, v) e'cosv —e'sinv
A(x,y) |e"cosv —esinv| Q2
d(u,v) |e'sinv  efcosv |

the area element on 4 is

dS = e cos2 v+ e2sin2 v + e* dudv = e/ 1 + €2 du dv.

If the charge density on 4 is /1 + 2%, then the total
charge is

1 T
// \/1+ez”dS:/ e (1 +62”)du/ dv
N 0 0

1

3u
=7 <e” +%> = %(3e+e3—4).
X2y g2
18. The upper half of the spheroid — + — + - =1 has a

2 a2
circular disk of radius a as projection onto the xy-plane.
Since
2x 2z 0z 0z c2x
St55.=0 = —=-—
a cs ox ax a
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B 2 2_ 2

and, similarly, &z —Q, the area element on the k= i . Then
ay a’z a’c?

spheroid is

S = 477,'6/ V1+k2u?du Let ku =tanv

_ c* x? +y kdu = sec?> vdv
dS=,/1+ 3 dxdy e tan—" (ka)
> > > = sec” vdv
c X< +y 0
\/l LA e y2 dx dy e tan™! (ka)
= — (sec vtanv + In(sec v + tan v))
_ a* + (¢? — a®)r? dr do k 0
N a(a? —r?) rar 2mac? ava? —c? a a? —c?
= +In|l-+ —+—
a2 — 2 c? c c
in polar coordinates. Thus the area of the spheroid is 5 2mac a+aZ =2 )
=2ma” + In $q. units
a2 —c2 c
2
a*+(c
el =
—r
Let u> = a® —r?
uc(llu:—rdr 20. x = aucosv, y = ausinv, z = bv,
— _7[/ Va* + (2 — a®)(a? — u?) du 0O <u=<1 0 <v < 2m). This surface is a spiral
0 (helical) ramp of radius a and height 27rb, wound around
T (¢ the z-axis. (It’s like a circular staircase with a ramp in-
o 202 — (¢2 — a2)y2
/ \/a ¢ cf —a’u”du stead of stairs.) We have
a C2 _ (12
:471c/ I—Tuzdu. d(x,y) |acosv —ausinv 2
0 a*c = . =a‘u
A(u, v) asinv  aucosv
d(y,z) _|asinv aucosv| bsi
For the case of a prolate spheroid 0 < a < ¢, let ) 0 b =absinv
5 )
, C¢“—a 9
k* = A Then @x) _| 0 b. — —abcosv
a(u, v) acosv —ausinv

dS = va*u? + a2bh? sin? v + a2b? cos? v du dv

S = 4710/ V1 —k2u?du Let ku = sinv — ava2u? + b du dv.

kdu = cosvdv

-
4 (S (ka) The area of the ramp is
= cos“vdv
0
1 1 2
sin~! ka)
_2770( + sin ) A=a/ a2u2+b2du/ dv
= —— (v +sinvecosv . 0 1 0
2rac® | V2 —a? ) ) = 2na/ a*u? +b*du Let au = btan@
= sin + 2ma“ sq. units. 0 )
2 —a? c adu = bsec*0do
u=1
=21b? / sec 0 do
u=0

u=1

= nbz(secetane + In|sec6 +tan9|)

5 [ auv/a?u® + b?
=mb +1In

u=0
au +

b2

N

0

19. We continue from the formula for the surface area of a Ny
spheroid developed part way through the solution above. =mava?+ b2+ 7b%In (w> $qg. units.
For the case of an oblate spheroid 0 < ¢ < a, let b
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Fig. 15.5.20

21. The distance from the origin to the plane & with equation
Ax +By+Cz=D, (D #0) is

5= DI
VA2 + B2+ C?

If # is the plane z = &, then, since the integrand de-
pends only on distance from the origin, we have

ds
//:7) (xz + y2 + 12)3/2
B ds
-l e
B /271 ” /oo rdr
IR RNCE T DR
1

_5 * du
B nXE 52 u3?

[e.¢]

Let u =r2 +§2
du =2rdr

82
2 2n+/A? 4+ B2 4 C?

5 DI

22. Use spherical coordinates. The area of the eighth-sphere
4 is
A= Lray = T2 it
= —(4ma”) = —— sq. units.
8 2 M

The moment about z = 0 is

M,—o =//zdS
8
/2 /2
/ dO/ acosd)a2 sin¢ d¢
0 0

zn_az n/Zsin2¢d¢:n_a3.
2 Jo 2 4
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M=o

Thus z =

so the centroid of that part of the surface of the sphere
a a a

x2 4+ y2 + z2 = 4® lying in the first octant is ( )

2°2°2

a

= g. By symmetry, x = y = Z,

The cone z =h (1 — ) has normal

so its surface area element is

02 /2 h2
dS == +ldxdy= VN v dy.
a a

The mass of the conical shell is
/A2 h2
m:a// dS:u(naz)zﬂalk/aZ_i_hZ.
x2+y25a a

The moment about z = 0 is

21,2 242
Mz:()=0// h(l—‘/x +y>\/a * dxdy
x24y2<q? a a

2nohva? +h? [¢ r
= (1 — —)rdr
a 0 a
_ nohava? + h?
=

h
Thus 7 = —. By symmetry, x = y = 0. The centre

of mass is on the axis of the cone, one-third of the way
from the base towards the vertex.

Fig. 15.5.23

By symmetry, the force of attraction of the hemisphere
shown in the figure on the mass m at the origin is verti-
cal. The vertical component of the force exerted by area
element dS = a?sing d¢ df at the position with spheri-
cal coordinates (a, ¢, 0) is

_ kmo dS

dF
a2

cos¢ = kmo singcospdepdo.
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Thus, the total force on m is

2 /2
F =kmo / d9/ sin ¢ cos ¢ d¢p = wkmo units.
0 0

26.
Fig. 15.5.24
25. The surface element dS = adf dz at the point with
cylindrical coordinates (a, 0, z) attracts mass m at point
(0, 0, b) with a force whose vertical component (see the 27.
figure) is
kmo dS kmoa(b —z)d0dz
dF = cosy =
D? D3
kmoa(b —z)d0dz
= 32
(@+®-22)
The total force exerted by the cylindrical surface on the
mass m is
2 h
k b—2z)d
F:—/ d@/ moa( 2) 31/2 Let b —z = atant
0 0 <a2 + (b - 2)2) —dz = asec*tdt
=h gtanrasec?tdt
=2wkmoa e
=0 a’ sec
—h 28.
= 2nkma/ sint dt
z=0
z=h
= 2mkmo (— cost)
z=0
u h
=2mkmo ———
Va+ b —2)21
1 1
=2wkmoa — .
Va2 + B —h)?  Nar+b?

SECTION 15.5 (PAGE 842)

Fig. 15.5.25

4 is the cylindrical surface x> 4+ y> = a%, 0 < z < h,
with areal density o. Its mass is m = 2mwaho. Since all
surface elements are at distance a from the z-axis, the
radius of gyration of the cylindrical surface about the z-
axis is D = a. Therefore the moment of inertia about
that axis is

I = mD? = ma® = 2noa’h.

4 is the spherical shell, xZ4+ y2 +z72 = az, with areal den-
sity o. Its mass is 4woa?. Its moment of inertia about
the z-axis is

I=a//(x2+y2)dS
¥
2 T
:U/ dO/ azsinzq’)azsin(bdd)
0 0

e
= 27raa4/ sing(1 — cos>¢)dp Let u = cosé
0 du = —sing de
8roat
T

1
= 2naa4/ (1— uz)du =
—1

_ 2
The radius of gyration is D = /I/m = \/;a.

The surface area element for a conical surface 4§,

z=h|l-——],

a

having base radius a and height &, was determined in the
solution to Exercise 23 to be

va* +h?

a

ds = dxdy.

591
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The mass of 4, which has areal density o, was also de-
termined in that exercise: m = mwoava? + h2. The
moment of inertia of & about the z-axis is

I:a//(x2+y2)d5
8

ova® + h? /2” " /“
a 0 0

r2rdr

_ 2noa + h? a* roa’va? + h?
- a Z - 2 )

a

The radius of gyration is D = /T/m =

S

By Exercise 27, the moment of inertia of a spherical

2
shell of radius @ about its diameter is I = —ma>. Fol-

lowing the argument given in Example 4(b) of Section
5.7, the kinetic energy of the sphere, rolling with speed
v down a plane inclined at angle o above the horizontal
(and therefore rotating with angular speed Q2 = v/a) is

1
K.E. = Emv2+§192
1, 12 5,0
_2mv +23ma )
5 2
_gmv

The potential energy is P.E. = mgh, so, by conservation
of total energy,

5
gmu2 + mgh = constant.

Differentiating with respect to time 7, we get

0 5 ) dv n dh 5 v v n sin
= —MmM 2LV — mg— = —mv— mguv o.
8 =30 T8

Thus the sphere rolls with acceleration
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Section 15.6 Oriented Surfaces and
Flux Integrals (page 848)

F =xi+zj.

The surface 4§ of the tetrahedron has four faces:
On 8, x=0,N=—i, FeN=0.

On 45, y =0, ISI: —Jj, Folil: —z,dS =dxdz.
On 83, z2=0,N=—-k, FeN=0.

~  1+2j+3k ~ x+2z
On 84, x+2y+3z=6,N= ————, FeN = ,
BT 14 14
dxd V14
S = Ax y:—dxdz.
IN o j 2
We have

// FoNdS:// FeNdS=0
81 43
. 2 6—-3z
// FeNdS=— zdz/ dx
ED 0 0

2
= —/ (6z —3z%)dz = —4
0

R \/ﬁ 1 /2 6—3z
FeNdS= — — dz/ (x +2z)dx
//44 2 V14 Jo 0

126 32)?
_5/0 (72 —|—2z(6—3z)> dz

1 2

:—/ 6—32)(6+2z2)dz
4 Jo

2

= 10.
0

1
= 4 (362 — 622 — 2°)

The flux of F out of the tetrahedron is

//F.Nd3=0—4+0+10=6.
P

x 6 83
Fig. 15.6.1
On the sphere § with equation x>+ y% +z2 = a® we have
- i j+ zk
N= X1+ y)J+z .
a
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If F = xi+ yj+ zKk, then FeN =g on 4. Thus the flux
of F out of § is

//FoNdS:aX4na2:4rra3.
F]

F =xi+ yj+ zk. .
The box has six faces. F ¢ N = 0 on the three faces
x =0,y =0, and z = 0. On the face x = a, we have
N = i,soFe N = 4. Thus the flux of F out of that face
is

a x (area of the face) = abc.
By symmetry, the flux of F out of the faces y = b and

z = ¢ are also each abc. Thus the total flux of F out of
the box is 3abc.

Z

Fig. 15.6.3

F = yi+ zk. Let 481 be the conical surface and 4 be the
base disk. The flux of F outward through the surface of

the cone is
s 4 ff,
8 8 £5
. 1 xi+yj
On $;: N = — | ——== +k|, dS = +2dxdy.
\/§<\/x2+y2 )
Thus

// FeNds
8
Xy
= ———— +1—/x2+y?) dxdy
//x2+y251 <\/x2+y2

On 4;: N = —k and z=0,s0Fe N=0. Thus, the total
flux of F out of the cone is /3.

SECTION 15.6 (PAGE 848)

Fig. 15.6.4

The part 8 of z = a — x> — y? lying above z = b < a
lies inside the vertical cylinder x> + y> = a — b. For
7z =a— x* — y?, the upward vector surface element is
- 2xi+2yj+k
Nds = + dx dy.

Thus the flux of F = xi + yj + zk upward through 4§ is

[ﬁFoNdS

:// [2(x2+y2)+a—x2—y2]dxdy
x24+y2<a—b

2w Va—b
= / do / r* +ayrdr
0 0

B (a—b)*  ala—b)
_27'r< 7 + >

T
) = E(a —b)(3a —b).

For z = x2 — y? the upward surface element is
i+ 2yj+k
B 1

The flux of F = xi + xj + k upward through 4, the part
of z = x? — y? inside x> + y? = a? is

//F.NdS:// (=2x% +2xy + D dx dy
5 x2+y2<a?

2 a
=—/ cos29d9/ P dr+0+ ma®
0 0

Nds dx dy.

4
=ma® — 2(71)% = %a2(2 - az).

The part § of z = 4 — x> — y? lying above z = 2x + 1 has
projection onto the xy-plane the disk D bounded by
2x—|—1:4—x2—y2, or (x+1)2+y2=4.

Note that D has area 47 and centroid (—1, 0). For
7=4—x%— yz, the downward vector surface element is
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Thus the flux of F = y3i + z2j + xk downward through §
is
11.

/fFoNdS: —// (2xy3+2y(4—x2—y2)2+x)dxdy
E] D

(use the symmetry of D about the x-axis)
= —// xdA = —4mr)(—1) =4m.
D

8. The upward vector surface element on the top half of
2492+ =d%1is

Nds

2xi 4+ 2yj + 2zk xi+ yj
== =7 ™ dxdy=
2z Z

+k> dxdy.

The flux of F = z2k upward through the first octant part
4 of the sphere is

R /2 a 4
//FoNdS:/ d@/(cﬂ—ﬂ)rdr:ﬂ,
5 0 0 8

9. The upward vector surface element on z = 2 — x* — 2y?
is

12.

2xi+4yj+k
1

NdS = dxdy.

2
If E is the elliptic disk bounded by % + y2 =1, then the

flux of F = xi + yj through the required surface 4§ is

//FoNdS
8
Letx:x/iu, y=v

= // x% +4y* dxdy
E dxdy = 2 dudv

=42 // (u2 + vz) dudv (now use polars)
u2+u2§1

2 1
=4ﬁ/ d9/ rdr = 2v27.
0 0 13.

10. 8 r=uvi+uv?j+v’k, O<u <1, 0<v <1), has

upward surface element

Nas =25« 2 qua
Ju v

= Quvi + v2j) X (uzi + 2uvj + 3v’K) du dv
= 3v*i — 6uv’j + 3u*vk) du dv.

The flux of F = 2xi + yj + zk upward through 4 is

[LFoNdS

1 1
:/ du/ (61421)5 —6uv’ +3u2v5)dv
0 0

1! 1
=—/ u?du = —.
2 Jo 6
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8 r=ucosvi+usinvj+uk, (0 <u <2, 0<v<m),
has upward surface element

. ar 9
Nas =25 « & gudv
u v

= (—ucosvi — usinvj + uk) du dv.

The flux of F = xi + yj + z2k upward through & is

//FoNdS
E]

2 T
= / du/ (—u2 cos? v — u? sin2v+u3) dv
0 0

2 b4
4
= (u3—u2)du/ dv:—n.
0 0 3

8 r=e"cosvi+esinvjtuk, O<u<1, 0<v<m),
has upward surface element

d
Nas =2« & qudv
dv
= (—e" cos vi — " sin vj + e?“K) du dv.

The flux of F = yzi — xzj+ (x> + y*)k upward through 4§
is

[ZF-NdS

1 T
= / du/ (—ue sinvcos v + ue™ sinvcos v + ¢*) dv
0 0

1 T 4
-1
=/e4”du/ dv:rr(e ).
0 0 4
mr

_mr _ m(xi+ yj+ zk)
- |1.|3 - (x2 _|_y2+22)3/2'
By symmetry, the flux of F out of the cube
—a < x,y,z < aAis 6 times the flux out of the top
face, z = a, where N =k and dS = dx dy. The total flux
is

VA
a

—a

Fig. 15.6.13
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6 dxdy
ma —ozvze (2 y2 +a?)

_ 48 rdrdf
= 48ma 2 +a2)%/2

(R as shown in the figure)

asect rdr
= 48ma / do / (r2 )

Let u = r2 + a2
du =2rdr

/4 a?(14sec? 0) du
= 24ma do
/ / u3?

/4
= 48ma/ (— - 7> do
0 a a+1+sec?6
(7‘[ /”/4 cosf do )
=48m | — — _—
4 0 A/cos2h+1
/4
_ 4%m (1_/ cos @ do )
4 Jo 2 —sinZ @
Let /2 sinv = sin6
V2 cosvdv = cos6 db

b4 7/6 /2 cosvdv
=48m (> — Ahihi
4 0 V2 cosv

— 48m (Z - %) = dzm.

mr
14. The flux of F = W out of the cube 1 < x,y,z <2
K

is equal to three times the total flux out of the pair of
opposite faces z = 1 and z = 2, which have outward
normals —k and k respectively. This latter flux is
2ml, — ml{, where

2 2 dy
I = d _—
¢ /1 x/l (x2 + y2 +k2)3/2

Let y = v/x2 + k% tanu
dy = Vx2 + k2 sec* udu

2 dx y=2
= =03 cosudu
1 x*+k y=1

=2
= /;2 —xza—tkz (sin u) }

_/2 dx y
AR SR A W ey

y=1

2
) = Ji2 — Jx1,
1

SECTION 15.6 (PAGE 848)

/2 dx

Jin=n

1 (2 +k2)Vx2 +n? + k2
Let x = +/n2 +k2tanv
dx = v/n2 + k2sectvdv

/x:Z sec” vdv
n
x=1 [(n2 +k2)tanZ v + k2] secv

/x:Z cosvdv
n -
1 (%2 +k2)sin?v + k2 cos?v

/x:Z cosvdv Let .
n ————— Let w=nsinv
=1 k%4 n2sin2v

dw =ncosvdv

/":2 dw I w =2
= ——— = —tan~ —
o K rw? ok k

2

x=1
. X=

1 _ hsinv
= —tan= ———

k k1=

1 1 nx 2
=—tan —————

k kvx2 4+ n?2 +k2 1|

1

k

( 1 2n ~1 n )
tan — —tan E——
k4 4+ n? + k2 kv 1+ n? + k2

Thus

1 4 2
I = —|:tan’1 - —2fan ' ——
k k/8 + k2 kN5 + k2

+ tan~!

1
2+ K2 ]
The contribution to the total flux from the pair of sur-
faces z =1 and z = 2 of the cube is

2mly — mIy
[t LI P RS
=m|tan~ — —2tan” = +tan= ——=
V3 3 27/6
4 2 1
-1 -1 -1
—tan~ - 4+ 2tan” — —tan~  — |.
3 V6 ﬁ]

Using the identities

1

2tan” a =tan~ , and
1—a?
1 T 1
tan” 'a = — —tan~ " —,
2
we calculate
1 3 4
—2tan ' =—tan ' > = -2 +tan' =
3 4 3
12 b4 1
2tan™! — =tan”' = == —tan"! —.
NG N 2:/6

Thus the net flux out of the pair of opposite faces is 0.

By symmetry this holds for each pair, and the total flux
out of the cube is 0. (You were warned this would be a
difficult calculation!)
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15. The flux of the plane vector field F across the piecewise
smooth curve C, in the direction of the unit normal N to

the curve, is
/ Fends.
C

The flux of F = xi + yj outward across

a) the circle x2 4+ y2 = a2 is

N . 2
?g Fe (M> ds = @ x 2a = 2mwa’.
C a a

b) the boundary of the square —1 <x,y <1 is

1 1
4/ (i—|—yj)oidy:4/ dy =8.
—1 —1

xi+yj
x2 4+ y2
a) The flux of F inward across the circle of Exercise

7(a) is
fﬁ( xi-i—yj) xi+ yj
- - 5 . ds
e a a
?§—3dv —><27Ta—27t
Ca

b) The flux of F inward across the boundary of the

16. F=-—

square of Exercise 7(b) is four times the flux inward

across the edge x =1, —1 <y < 1. Thus it is

1 0 . 1
d
_4/ <_Lylz>.idy=4/ Ay
-1 l+y _11+y

1

1

=4tan” y| =2m.

-1

17. The flux of N across 4 is

//NoNdS://dS:areaof&
¥ ¥

18. Let F = Fyi + F>j + F3k be a constant vector field.

a) If R is a rectangular box, we can choose the origin
and coordinate axes in such a way that the box is
0<x=<a0=<y=<b0=z=c Onthe faces
x =0andx = awehave N = —iand N =i
respectively. Since Fj is constant, the total flux out
of the box through these two faces is

//;)<\v<b (F1 — F1)dydz =0.

0<z=c
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The flux out of the other two pairs of opposite faces
is also 0. Thus the total flux of F out of the box is
0.

b) If & is a sphere of radius a we can choose the origin
so that 8 has equation x2 + y2 + z2 = @2, and so its
outward normal is

xi+yj+zk
—

N =
Thus the flux out of § is
1
P / (Fix + Foy + F3z)ds =0,
¥

since the sphere 4 is symmetric about the origin.

Review Exercises 15 (page 848)

C: x=1 y=2¢, z=€", (-1<1<1)

= V1 +4e2 +4e¥ =1+ 2%
/d /1 1+232’
e 26’

=(‘7+ )

C can be parametrized x = t,y =
(0 <t <2). Thus

b3 -

1 - 2e

2,7 = t + 442,

/2ydx+xdy+2dz
e
2
=/ [4¢(1) +¢(2) +2(1 + 81)] dt
0

2
:/ (22t +2)dt = 48.
0

The cone z = v/x2 + y2 has area element

2 2
ds =1+ 22 g dy = Vadxay.

If & is the part of the cone in the region 0 < x < 1 — y?
(which itself lies between y = —1 and y = 1), then

1 1—y2
//de:\/i/ dy/ xdx
3 —1 0

L1 —2y2 4 y* 82
f/o 2 T
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The plane x +y+2z = 1 has area element dS = /3 dx dy.
If & is the part of the plane in the first octant, then the
projection of § on the xy-plane is the triangle 0 < x <1,
0<y<1-—x. Thus

1 1—x
//xyzdSzﬁ/ xdx/ y(l—x—y)dy
3 0 0

1 1— 3
:\/5/ %dx Letu=1-—x
0

du = —dx
3 (! 3/1 1 3
:£/ u3(1—u)du:£ -z :i.
6 Jo 6 \4 5 120

For z = xy, the upward vector surface element is

A ik
NdS:%dxdy.

The flux of F = x2yi—10xy2j upward through 4§, the part
of z=xy satisfying 0 <x <land0<y <1is

1 1
//FoNdS:/ dx [ (=x*y*+10x2y*) dy
8 0 0

1 1
=/ 3x2dx/ 3y2dy = 1.
0 0

The plane x 4 2y + 3z = 6 has downward vector surface
element o3k

Nds = % dx dy.
If & is the part of the plane in the first octant, then the
projection of 4 on the xy-plane is the triangle 0 <y < 3,
0<x<6-2y. Thus

/(xi+yj+zk)oNdS
3
1 62y
=——/ dy/ (x+2y+6—x—2y)dx
3 Jo 0

3
:—2/ (6—2y)=—36+18 = —18.
0

r =asinti+acostj+ btk, (0 <t < 6m)
r(0) = aj, r(6m) = aj + 6w bk.

a) The force F = —mgk = —V(mgz) is conserva-
tive, so the work done by F as the bead moves from
r(6z) to r(0) is

z=0
= 6mmgb.

t=0
W= / Fedr=—-mgz
7=6mb

REVIEW EXERCISES 15 (PAGE 848)

b) v =acosti —asintj + bk, |v| = v/a? + b2. A force
of constant magnitude R opposing the motion of the
bead is in the direction of —v, so it is

v R
F=—-R—=———.
[v] va? + b?
Since dr = vdt, the work done against the resistive

force is
6
W /
az

8. f@ F e dr can be determined using only the endpoints of
C, provided

|v|2dz = 67 RV a2 + b2.

= (axy 4+ 3yz)i+ (x> + 3xz + by?2)j + (bxy + cy>)k

is conservative, that is, if

oF dF,

ax +3z = 1:—2:2)c—|—3z
ay ax
dF] J0F3

3 = =" —— = b
Y 0z dax Y

oF oF

3x—|—by2: 205 :bx+3cy2.
9z ay

Thus we need a =2, b =3, and ¢ = 1.
With these values, F = V(x2y + 3xyz + y3z). Thus

2,1,1,)
=11—(=1) =12.

/ Fedr = (x2y+3xyz+ y32)
e ©,1,—1)

9. F=x%/yi+yj+k o
The field lines satisfy u L dz. Thus
y

dx/x* = dy/y* and the ﬁeld lines are given by

l =l+C1, Iny =z+Cs.

x oy

The field line passes through (1, 1, 0) provided

Ci = 0and C; = 0. In this case the field
line also passes through (e, e, 1), and the seg-
ment from (1, 1,0) to (e, e, 1) can be parametrized
r(t) =e'i+e'j+tk, (0<t<1). Then

1
/Fodr:/ (€ + e +1)dt
C 0

1
= (le +1)| = 2.

0

10. a) F=(1+x)e" i+ (xe’™ +2y)j — 27k

— v(xeery + y2 _ 12).
Thus F is conservative.
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b) G=(14+x)e"Pi4+ xe™ +22)j — 2yk

=F+2z—-y([+k).
C:r=(0-0ei+tj+2tk, O<t<1).
r(0) =(1,0,0), r(l)=(0,1,2). Thus

/Godr:/Fodr—i—/Z(z—y)(j—i—k)odr
(6] (6] (6]

0,1,2)
= (e +y? — 2

(1,0,0)

1
+2/ 2t —1)(1 +2)dt
0

1

:—3—€+312 = —e.

0

11. Since the field lines of F are xy = C, and so satisfy

d d
ydx +xdy =0, or el :——y,
X y

thus F = A(x, y)(xi — yj). Since |F(x,y)| =1 if
(x,y) # (0,0), A(x, y) = £1/y/x* + y2, and

i vi
Flx,y) =+

x2 4+ y2
Since F(1,1) = (i —j)/ﬁ, we need the plus sign. Thus

xi—yj

which is continuous everywhere except at (0, 0).

F(x,y) =

12. The first octant part of the cylinder y*> + z> = 16 has
outward vector surface element

. 2yj + 22k
Nds = 2122 gy = <Lj+k) dx dy.

V16 — y2

The flux of 3z%xi — xj— yk outward through the specified
surface 4 is

A 5 4 xy
FoNdS:/ dx/ 0— ——— —y | dy
0 0 V16 — y2
5 2 |y=4
y
= V16 —y2 — — d
/0 (x Y 2) !

y=0

5
- _/ (4x 4 8) dx = —90.
0
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Challenging Problems 15 (page 849)

Given: x = (2 4+ cosv)cosu, y = (2 + cosv) sinu,
z=sinvfor0<u <27,0<v <m.
The cylindrical coordinate r satisfies

r2:x2—l—y2=(2+cosv)2

r=24cosv
r—2%+z2=1.

This equation represents the surface of a torus, obtained
by rotating about the z-axis the circle of radius 1 in the
xz-plane centred at (2,0,0). Since 0 < v < 7 implies
that z > 0, the given surface is only the top half of the
toroidal surface.

By symmetry, x =0 and y = 0.

A ring-shaped strip on the surface at angular position v
with width dv has radius 24 cos v, and so its surface area
is dS = 27(2 + cosv) dv. The area of the whole given
surface is

b
S=/ 2n(2+cosv)dv=4n2.
0

The strip has moment zdS = 27 (2 + cos v) sin v dv about
z = 0, so the moment of the whole surface about z = 0 is

s
M=o =27T/ (2 4+ cosv) sinvdv
0
T

= 8.

1
=2 (—2 cosv — 7 cos(2v)>

0

8
Thus 7 = —=

2
= —. The centroid is (0, 0, 2/m).
472 7w

This is a trick question. Observe that the given
parametrization r(u, v) satisfies

r(u+m,v) =ru, —v).

Therefore the surface 4 is traced out twice as u goes
from O to 2. (It is a Mobius band. See Figure 15.28
in the text.) If 4; is the part of the surface correspond-
ingto 0 < u < m, and 4 is the part corresponding to
m < u < 2m, then 4; and 4, coincide as point sets,
but their normals are oppositely oriented: N, = —N; at
corresponding points on the two surfaces. Hence

// F.NldS=—// FeN,dS,
4 %
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for any smooth vector field, and We have made the change of variable + = cos ¢ to get
R R R the last integral. This integral can be evaluated by using
//JF eNdS = //; FeN;dS + //; FeNydS =0. another substitution. Let u = +/a? — 2abt + b%. Thus
1 2
a? +b? —u? udu u? + b2 —a?
=—— dt=———, b—at=——"-——.
2ab ab 2b
Whent = —landt = 1 we have u = a + b and

u = |a — b| respectively. Therefore

F = anmo-az /‘aib‘ M( udu)
a

+b 2bu3 ~ ab
k a+b b2 _ 2

= —n n’;O‘a / (1 + Za )du
b la—b| u

wkmoa b2 —a? ath
= u —
b2 u

There are now two cases to consider. If the mass m is
outside the sphere, so that b > a and |a — b| = b — a,
Fig. C-15.3 then

la—b|

The mass element o dS at position [a, ¢, 0] on the
sphere is at distance D = /a2 + b2 — 2ab cos ¢ from the kmoa a2
mass m located at (0, 0, b), and thus it attracts m with a F = 5 ((a+b)—(b—a)—(b—a)—i—(b—i—a)) = 47'rkmaﬁ.
force of magnitude dF = kmodS/D*. By symmetry,

the horizontal components of d F' coresponding to mass
elements on opposite sides of the sphere (i.e., at [a, ¢, 0]
and [a, ¢, 0 4+ 7]) cancel, but the vertical components

kmo dS b —acos¢

However, if m is inside the sphere, so that b < a and
la — b| = a — b, then

dF =
cos Y D2 D
reinforce. The total force on the mass m is the sum of wkmoa
all such vertical components. Since dS = asin¢ d¢ d6, F= b2 @t+b)+@=b)—(a=b)—(a+b)) =0.

it is

2 T .
(b—acos¢)singdep
F =kmoad® | dé
mea /) o (a%+b% —2ab cos $)3/2

ok 2/1 (b — at)dt
= sZTKmMmoa .
_1 (a2 = 2abt + b2)3/2
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