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CHAPTER 12. PARTIAL DIFFERENTIA-
TION

Section 12.1 Functions of Several Variables
(page 645)

X+y

fGx,y) = PR

The domain consists of all points in the xy-plane not on
the line x = y.

fGy) = 3.
Domain is the set of points (x, y) for which xy > 0, that
is, points on the coordinate axes and in the first and third
quadrants.

X, y) = —5—.
fx,y) L)
The domain is the set of all points in the xy-plane except
the origin.
Xy

X, y) = ——"—.
fx,y) P
The domain consists of all points not on the lines
x = =%y.

fx, ) =/4x2 +9y% — 36.

The domain consists of all points (x, y) lying on or out-
side the ellipse 4x2 4 9y? = 36.

[, y) =1/y/x =y
The domain consists of all points in the part of the plane
where |x| > |y].

[ y) =In(l +xy).

The domain consists of all points satisfying xy > —1,
that is, points lying between the two branches of the hy-
perbola xy = —1.

fx,y) =sin~ (x +y).
The domain consists of all points in the strip
—l<x+y=<LlL

xyz
X, )= 55— >5-
[y, 2) P
The domain consists of all points in 3-dimensional space
except the origin.

Xyz

e
fx,y,2)= .
X, 9,2 Nk

Xyz
The domain consists of all points (x, y, z) where

xyz > 0, that is, all points in the four octants x > 0,
y>0,z>0x>0,y<0,z<0;x<0,y>0,z<0;
and x <0,y <0, z>0.

z=f(x,y)=x

SECTION 12.1 (PAGE 645)

Fig. 12.1.11

12. f(x,y)=sinx, 0<x <27, 0<y<1

Fig. 12.1.12

13. z=f(x,y)=y2

Fig. 12.1.13

4. f,y)=4—-x2—y% 2+y2<4, x>0, y>0)
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) 4

X

Fig. 12.1.14 Fig. 12.1.17

18. f(x,y)=6—x—2y

15. z=f(x,y)=V/x2+y2

Fig. 12.1.18
Fig. 12.1.15
19. f(x,y) = x —y = C, a family of straight lines of slope
1.
16. f(x,y)=4—x?2 y
-
o=
c=2
y =3
xX—y=c
Fig. 12.1.16 Fig. 12.1.19

20. f(x,y) = x>+ 2y? = C, a family of similar ellipses
17. z=f(x,y) = x|+ 1yl centred at the origin.
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x242y2=¢

c=9
c=4

S
-

o)

Fig. 12.1.20

21. f(x,y) = xy = C, a family of rectangular hyperbolas
with the coordinate axes as asymptotes.

2\

Fig. 12.1.21

x2

22. f(x,y) = — = C, a family of parabolas, y = x2/C,

with vertices at the origin and vertical axes.

=\

Fig. 12.1.22

SECTION 12.1 (PAGE 645)

23, f(x,y) = g = C, a family of straight lines through
X Ty

the origin, but not including the origin.

yk

c=—1

Fig. 12.1.23
4. fay)=—5—=C.
x2+y?
This is the family x* + ( — %)2 = ﬁ of circles

passing through the origin and having centres on the
y-axis. The origin itself is, however, not on any of the
level curves.

c=—

Fig. 12.1.24

25. f(x,y)=xe ¥ =C.
This is the family of curves y = In %
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c=—1 c=1

c=—2 c=2

Fig. 12.1.25

T, 1
26. f(x,y): ;—x =C=>y=m

27. The landscape is steepest at B where the level curves are
closest together.

28.

Fig. 12.1.26

200

Fig. 12.1.27

C is a “pass” between two peaks to the east and west.
The land is level at C and rises as you move to the east
or west, but falls as you move to the north or south.
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200 100

Fig. 12.1.28

The graph of the function whose level curves are as
shown in part (a) of Figure 12.1.29 is a plane containing
the y-axis and sloping uphill to the right. It is consistent
with, say, a function of the form f(x, y) =y.

(@) Vo4 () Y 4
Cc=10

=y

a (=}
Il
w

~<

fie
A

b
Eq

v

C=0

Fig. 12.1.29

The graph of the function whose level curves are as
shown in part (b) of Figure 12.1.29 is a cylinder paral-
lel to the x-axis, rising from height zero first steeply and
then more and more slowly as y increases. It is consis-
tent with, say, a function of the form f(x,y) =y +5.
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(a) \ (b) V4
Tc=1o
; X
?C:, Cc=5 ’ fc:o
©) A Cc=5 (d) y

Fig. 12.1.30

The graph of the function whose level curves are as

shown in part (c) of Figure 12.1.29 is an upside down
circular cone with vertex at height 5 on the z-axis and
base circle in the xy-plane. It is consistent with, say, a

function of the form f(x,y) =5 —/x2 + y2.
(a) 4 (b) v a
c=10
1 X
?sz c=s’  Teoo
() 4 C=5 () y

e
AN

4

1
W

C=-5
Fig. 12.1.31

The graph of the function whose level curves are as
shown in part (d) of Figure 12.1.29 is a cylinder (possi-
bly parabolic) with axis in the yz-plane, sloping upwards
in the direction of increasing y. It is consistent with, say,
a function of the form f(x,y) =y — x%.

33.

34.

SECTION 12.1 (PAGE 645)
() X (b) v 4
fezio
fC:,S C=5 ! fC:O
©) 4 C=5 (d Y

W

\

The curves y = (x — C )2 are all horizontally shifted
versions of the parabola y = x2, and they all lie in the
half-plane y > 0. Since each of these curves intersects all
of the others, they cannot be level curves of a function
f(x,y) defined in y > 0. To be a family of level curves
of a function f(x,y) in a region, the various curves in
the family cannot intersect one another in that region.

422 = (x — 22+ (y — 2%
If z=c > 0, we have (x — ¢)2 4+ (y — ¢)? = 4¢?, which
is a circle in the plane z = ¢, with centre (c, ¢, ¢) and
radius 2c.

y 'y

=02+ (3 — o) = 4c?
Fig. 12.1.34
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The graph of the function z = z(x, y) > 0 defined
by the given equation is (the upper half of) an elliptic
cone with axis along the line x = y = z, and circular
cross-sections in horizontal planes.

a) f(x,y)=C is x? + y?> = C? implies that
flx,y) =/x2+y2

b) f(x,y)=C is x2 + y2 = C* implies that
fx,y) = &2+ yHl4

¢) f(x,y)=C is x> + y?> = C implies that
[, y) =x24y2

d) f(x,y)=C is x2 4+ y2 = (InC)? implies that
fla,y) =eV¥h?,

If the level surface f(x,y,z) = C is the plane

S
c3 203 " 3c3

that is, x + % + g = C3, then

[y, = (x+ % + %)1/3.

fey. ) =x*+y? 422
The level surface f(x,y,z) = c > 0 is a sphere of radius
/¢ centred at the origin.

fx,y,2) =x+2y+3z.
The level surfaces are parallel planes having common
normal vector i + 2j + 3k.

[,y 2)=x2+y2
The level surface f(x,y,z) =c > 0 is a circular cylinder
of radius /c with axis along the z-axis.
2 2
xX“+y
f(X, v, Z) = -
The equation f(x,y,z) = c¢ can be rewritten

x2 4+ y2 = C2%z2. The level surfaces are circular cones
with vertices at the origin and axes along the z-axis.

Sy, ) = Ixl+ Iyl + Izl

The level surface f(x,y,z) = ¢ > 0 is the surface of
the octahedron with vertices (&£c, 0, 0), (0, &=, 0), and
(0,0, £c¢). (An octahedron is a solid with eight planar
faces.)

fey, 0 =x2+y2+ 22+ 1%

The “level hypersurface” f(x,y,z,t) = ¢ > 0is the
“4-sphere” of radius +/c centred at the origin in R*. That
is, it consists of all points in R* at distance /¢ from the
origin.
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43.
Fig. 12.1.43
44.
< COS x
==
ST ==
e AR
S TR
S
SRR y
X
Fig. 12.1.44
45.
Z
A
_ Y
1+ x2 4+ y2

Fig. 12.1.45
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46. 3.

Jm b

2

X 77 TRZ

1] i
11177 " N, A
i i

27 2
B e T o ay 0 e o

L] R
S S W S
e

22
o e

5.
47.
6.
7.
Fig. 12.1.47
48. The graph is asymptotic to the coordinate planes. S.
9.
10.
Fig. 12.1.48
Section 12.2 Limits and Continuity
(page 650)
1. I fxl=2(-)+22=2
i,y YT =2 11.

2. lim /x24+y2=0
(x,y)—(0,0)

SECTION 12.2 (PAGE 650)

2 2
does not exist.

im
(x,y)—(0.,0)

2 2
+
If (x, y) — (0,0) along x =0, thenx Y =y —0.
y
If (x,y) — (0,0)along y = x2, then
2 2
b R B
Let V)= ——.
et f(x,y) Ziy?

Then |f(x,0)] =|1/x] = o0 as x — 0.
But |f(0,y))]=0—0asy— 0.
Thus lim(y ) 0,0y f(x, y) does not exist.

cos(xy) _ coS T _ 1

—=Um 1 —x—cosy 1 —1—cosm

Ay-1*
im ——— =0, because
=00 x2+ (y — 1)2
Ay —1)? 2
T2+ -0 T

and x2 — 0 as (x, y) = (0, 1).

2

3 y
< < -0
< x2+y2|y| = Iyl

y
x2+y2

3

. y
as (x,y) — (0,0). Thus lim — =
*.9) = 0.0 ()= (0,0) x2 + y?

sin(x — y) _ sin 0 _
()= 0,0) cos(x +y)  cosO

sin(xy)
Let Y= 2
et f(x,y) e
Now f(0,y) =0/x>=0 - 0as x — 0.
sin x2

— —asx — 0.

However, f(x,x)= 5

Therefore lim  f(x,y) does not exist.
(x,y)—>(0,0)

0.

The fraction is not defined at points of the line y = 2x

and so cannot have a limit at (1, 2) by Definition 4.

However, if we use the extended Definition 6, then, can-

celling the common factor 2x — y, we get

2x%2 — xy _

lim —_— = lim = -.
c)—(12) 4x2 —y2 -1 2x+y 4

2,2
X
x2 < x% + y*. Thus 5 Y 4§y2—>0asy—>0. Thus
xX“+y
2.2
X
M)

lim —2 =
)~ (0,00 x2 + y*
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X2y2
Ifx:()andy#O,thenmzo
It £0, th x’y? ! !
X = , then = = _.
Y A+ yr T 2t a3
2.2

Therefore lim Yy

———— does not exist.
(x.)—(0.0) 2x% + y4

2 2 3,3 3,3
X“+y —=x7y x>y
X, = = ——But
ey e e
3.3 2
A7y 3 3
= X <l|xy’| =0
212 x2+y2|y|_|y|

as (x,y) = (0,0). Thus
Define f(0,0) = 1.

lim (x,y)=1-0=1.
(x,y)—(0,0) fly

For x # y, we have

PR
X =y

fx,y)= :x2+xy+y2.

The latter expression has the value 3x2 at points of the
line x = y. Therefore, if we extend the definition of
f(x,y) so that f(x,x) = 3x2, then the resulting func-
tion will be equal to X2+ xy + y2 everywhere, and so
continuous everywhere.

xX—y xX—y
SN = T T ey
Since f(x,y) =1/(x 4+ y) at all points off the line x =y
and so is defined at some points in any neighbourhood of
(1, 1), it approaches 1/(1 +1) = 1/2 as (x,y) — (1, 1);
If we define f(1,1) = 1/2, then f becomes continuous
at (1, 1). Similarly, f(x,y) can be defined to be 1/(2x)
at any point on the line x = y except the origin, and
becomes continuous at such points.

However there is no way to define f(x, —x) so
that f becomes continuous on y = —ux, since
[fGe. )l =1/lx +y| > o0 as y - —x.

Let f be the function of Example 3 of Section 3.2:
2xy
—— if (x, 0,0
F,y) =1 x24y2 iy #0.0
0 if (x, ) =(0,0).
Leta=b=0. If g(x) = f(x,0) and h(y) = (0, y),
then g(x) = O for all x, and #(y) = O for all y, so g

and & are continuous at 0. But, as shown in Example 3
of Section 3.2, f is not continuous at (0, 0).

If f(x,y) is continuous at (a, b), then g(x) = f(x,b) is
continuous at x = a because

;}L“Z gx) = lim f(x, y) = f(a, b).

y=b

Similarly, £(y) = f(a, y) is continuous at y = b.
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fu@®) = f(a + tu, b + tv), where u = ui 4 vj is a unit
vector.

f(x,y) may not be continuous at (a, b) even if fu(¢) is
continuous at t = 0 for every unit vector u. A counterex-
ample is the function f of Example 4 in this section.
Here a = b = 0. The condition that each f, should

be continuous is the condition that f should be contin-
uous on each straight line through (0, 0), which it is if
we extend the domain of f to include (0, 0) by defin-
ing f(0,0) = 0. (We showed that f(x,y) — 0 as
(x,y) — (0,0) along every straight line.) However, we
also showed that lim(y,y)—(0,0) f(x, y) did not exist.

On the other hand, if f(x, y) is continuous at (a, b), then
f(x,y) — f(a,b) if (x,y) approaches (a, b) in any way,
in particular, along the line through (a, b) parallel to u.
Thus all such functions f,(#) must be continuous at
t=0.

Since |x| < v/x%Z+ y? and |y| < v/x2 + y2, we have

(XZ + y2)(m+n)/2
T @2+yHp

xmyn

(x2 4 y2)r

— (xz + y2)7p+(m+n)/2.

The expression on the right — 0 as (x,y) — (0, 0),
provided m +n > 2p. In this case

xmyll
i o G2 D =
(x.)—>(0.0) (x* + y=)P

Suppose (x, y) — (0, 0) along the ray y = kx. Then

Xy _ k
ax?2 +bxy +cy? a4+ bk+ck?’

S, y)=

Thus f(x, y) has different constant values along differ-
ent rays from the origin unless ¢ = ¢ = 0 and b # 0.
If this condition is not satisfied, lim(x, y)— 0,0y f(x, ¥)
does not exist. If the condition is satisfied, then

limy, y)—(0,0) f(x, y) = 1/b does exist.

sinx sin’ y
fx,y) = = cose2 1 32)
so as to become continuous there, because f(x, y) has
no limit as (x, y) — (0,0). To see this, observe that
f(x,0) =0, so the limit must be 0 if it exists at all.
However,

cannot be defined at (0, 0)

sin? x sin® x

—cos(2x2)  2sin2(x2)

fex) =7

which approaches 1/2 as x — 0 by ’Hopital’s Rule or by
using Maclaurin series.



21.

22,

www. nohandesyar . com

INSTRUCTOR’S SOLUTIONS MANUAL

Fig. 12.2.21

The graphing software is unable to deal effectively with
the discontinuity at (x, y) = (0, 0) so it leaves some
gaps and rough edges near the z-axis. The surface lies
between a ridge of height 1 along y = x and a ridge of
height —1 along y = —x. It appears to be creased along
the z-axis. The level curves are straight lines through the
origin.

The graphing software is unable to deal effectively with
the discontinuity at (x, y) = (0, 0) so it leaves some
gaps and rough edges near the z-axis. The surface lies
between a ridge along y = x2, z = 1, and a ridge along
y = —x2, z = —1. It appears to be creased along the
z-axis. The level curves are parabolas y = kx? through
the origin. One of the families of rulings on the surface
is the family of contours corresponding to level curves.

S
ey
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N w—— s
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Fig. 12.2.22

23.
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The graph of a function f(x, y) that is continuous on
region R in the xy-plane is a surface with no breaks or
tears in it and that intersects each line parallel to the z-
axis through a point (x, y) of R at exactly one point.

Section 12.3 Partial Derivatives
(page 656)

fx,y)=x—-y+2,
filx,y) =1= fi(3,2), falx,y) = —1= f2(3,2).

flx,y) =xy +x2,

fix, ) =y+2x, falx,y) =x,
12,00 =4, f(2,0)=2.
3.4.5

fG,y,2) =x"y"2°,
filx,y,2) =3x%y*23,
frlx,y,2) = 4x3y32,

f(x, v, 2) =553 y*z*,

f100, -1, 1) =0,
f200,-1,-1) =0,
£0,—-1,—-1) =0.

( )_
X, ¥,2 s
8 y

z
a1x,y,0)=——, a1(1,1,1) =
y+z

s

N =

(30 = — (11 =
X, ¥, 0) = —>> » 1, =
g(x,y oroE & 2
Xy 1
X,y,2) = ) LL1=-.
g3(x,y.2) 0122 83( )=
cmant (2)
X
0z 1 ( Yy y
ax 2 _ﬁ) T2+ 42
1+ y_z Y
x
9z 1 (1) X
ay 2\x/) " X242
y 1+ y_2 y
X
0z 1 0z 1
ox 11 27 3y 11 2
ow yze *
=In(l + &%%), — = ,
w = In(1 4 e™%) " T
ow xze'* dw  xye”?

By T4ent 9z 14end
F) 3 3
A0, 1) Yo, oy 2
0x dy 0z
fx,y) =sin(x/y),
S1(x, y) = /ycos(x/y), f1( ,4):—1,

r
X 37'[ T
falx,y) = Wi cos(x/y), f2 (5, 4) =07
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S, y)=

s

)C2+ 2

y

1 _ X
= -5 +y) e =

fix, y) —m,

By symmetry, fz(x, y)=-—

(x 2_|_y2)3/2’
3,4 3,4
f1(=3,4) = , 2(=3,4) = 15
w=xYnz,
0 0
w _ylnzxvlnz 1, _w = 2e,
ax dx (e,2,e)
dw =Inxlnzx*"? dw = e2,
3)} 3)} (e,2,e)
0 0
w lnxxvmz, el = 2e.
31 8Z (e,2,e)
X1 —x%
If g(x1,x2,x3, x4) = ounpe then
x3+x;
1
X1, X2, X3,X4) = ———— 3,1,—1,-2) = =
g1(x1, X2, X3, X4) e g1 ( )
—2x7
82(x1, X2, X3, X4) = 3 86,1, -1,-2) = —2
X3 + X}
2 _
G(x1 x5, x4) = 2 g3, 1,-1,-2) = - =
()C3 +)C4)2
(x — x1)2x4
g4(x17x25x37-x4)= I g4(3,1,—1,—2)= —
(x3 + x3)?
23—y
faen=137132 if (x,y) # (0,0)
0 if (x,y) =(0,0)
70.0) = 1 2h3 -0
. m ———
o Sormz10)
k-0 1
0,0 L
£0.0) = lim 3% = 73
x2—2y2 i
fx,y)= —y ifx#y
0 ifx=y
h h—
£1(0,0) = lim G0 -70.0 _ 5, 20 _ 1,
’ h—0 h h—0 h
f@©,k)— f0,00 2k
,0) = lim ——————— = lim — =2.
0.0 kgr(l) k kgr(l) k
fy)y=x*—y>  f(=2,1)=3
filx, y) =2x fi(=2,1) = —4
falx,y) =— fr(=2,1)= -2

Tangent plane: z =3 —4(x +2) —2(y — 1), or
4x +2y +z = -3,

. x+2 y—1 z—3

ormal line: — ) —
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X—y
S, y) Ty . fA, D=0
x4y ==y _1
Silx,y T, f1(l,l)—2
_ G+ yED - —y) _ 1
falx,y) = 2 . LD = 5
Tangent plane to z = f(x, y) at (1,1) has equation
x—1 _ y—1

= 2 ,or2z=x—y.
Normal line: 2(x — 1) = -2(y — 1) = —z.

£, y) =cos§ flr.4) = %

fite ) =—ssind findy =1
he y oy RRTE 4ﬁ
falx,y) = —smx fo(m, 4) = 16«/_

The tangent plane atx=m,y=41is

_1 | 1 T 4
Z—E(—Z(X—ﬂ)‘i‘ﬁ()’— )>,

or 4x — y + 16+/27 = 16.
Normal line:

- = 20 - (- VD).
T

f.y)=eY, filx,y) =ye?, falx,y) =xe",

f2,00=1, f12,0) =0, £(2,0) =2.

y

Tangent plane to z = e*”
Normal line: x =2, y =2 —2z.

f,y) = %
_ 6Py —x@y)  yP 2P
fitey (x2 4 y2)? T (422
2xy
fz(x, y) = —m
fa 2)=l fid 2)=i £1,2) = :
’ 5’ ’ 25’ 25

The tangent plane at x =1, y =2 is

L 2o (- 2)
= — —x— —_—— J— N
‘T57os 25"
or 3x —4y — 25z = —10.

x—=1 y—=2 5z-1

Normal line: = .
—4 —125

42 42 42
f(-xay)zye * s fl =_2-xye * s f2=e i 5
fO. D=1, f1i0,1)=0, £0,1=1
Tangent plane to z = f(x, y) at (0, 1) has equation
z=14+1( —-1,o0rz=y.

Normal line: x =0, y +z = 2.

at (2,0) has equation z = 142y.
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fe, ) =lnG*+y)  f(1,-2) =5
2x 2

fl(x,)’)zm f1(1,—2):§
2y oy 4

fz(x,y): m fZ(la 2) = 3

The tangent plane at (1, —2,1n5) is
2 4
z:ln5—|—§(x— 1) — g(y+2),

or 2x —4y — 5z =10 —51In5.
-1 y+2 z-—In5

Normal line: al

2/5  —4/5 -1
fo =2 £0.2)=0
X,y)= xz T yz, s =
A y) = (o2 4912y —20y(2x)  2y(y* —xP)
Jix. y) = 2 +2) T 222
_ 2x(x% — y?)
falx,y) = I (by symmetry)
f10,2) =1, £2(0,2) = 0.

Tangent plane at (0, 2): z = x.
Normal line: z+x =0, y =2.

feryy=tan~t (2), fa-n=-2,
17 y y
X, = - =,
Ay 1 y2( %) PR
T
1 1 X
xX,y) = - )=
f2(x, y) 1 7 <x> Zry?
T
X

1
i, =) = f(1,-1) = 3 The tangent plane is

I leonslornoi=—Zilaty
=TT T orr= sy

Normal line: 2(x = 1) =2(y+1) = —z — %

flx,y) =4/1+x3y2 f2,1)=3
3x2y2 f12,1)=2
filey) = ——=2— g
21+ x3y2 (2, 1):§
ey = — 22
x’ =
Py 24/1 4 x3y2

Tangent plane: z =3 +2(x —2) + %(y — 1), or
6x +8y —3z=11.

Normal line: x; = =

23.

24,

25.

26.

27.
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Z=x4—4xy3+6y2—2
0z
ox
82 2
5 = —12xy" + 12y = 12y(1 — xy).

The tangent plane will be horizontal at points where both
first partials are zero. Thus we require x = y and either
y=0orxy=1.

If x =y and y =0, then x = 0.

If x=yand xy=1, then x> =1, s0 x = y = £1.

The tangent plane is horizontal at the points (0, 0), (1, 1),
and (—1, —1).

=4 =4y’ =4(x — ))& + xy + 37

7= )c))e_("2'~'y2)/2

S_Z e CPHD/2 | 20— (] 2~ D)2
x

0z

3= x(1— yz)ef()‘zﬂz)/2 (by symmetry)
y

The tangent planes are horizontal at points where both
of these first partials are zero, that is, points satisfying
2y _ 2y

y(1—x%)=0 and x(1—y9)=0.

These points are (0, 0), (1, 1), (—1, —1), (1, —1) and

(-1, 1).

At (0,0) the tangent plane is z = 0.

At (1, 1) and (—1, —1) the tangent plane is z = 1/e.

At (1, —1) and (—1, 1) the tangent plane is z = —1/e.

B ! a ,
If z = xe”, then % e’ and % =xe’.
dax dy

0 0
Thus x—z =xe’ = ‘
0x

= @

X+y
= ,

X =y
8z G-pM -GN -2y
dx (x —y)? (x = )72
2 G-pM-GENED  u
dy (x —y)? (x =%
Therefore

0z 0z 2x 2x
pepyt o 2 T,
ax dy x—=y)> -y
a9z X

_ /2 2 9< _
If z=+/x%+ y?, then oy \/m, and
0z y
— = —=——. Thus
ay /x2_|_y2

9z dz  x*+y?
_ =z

ox ey T P2

453
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w=x2tyz mar, Moomy, Wy
ax ay 0z
Therefore
ow ow ow
ox ey T
=22+ yz+yz

= 2()c2 + yz) = 2w.

2x
- — then —=——%-—-—-—_——,
x2 4 y2 + 22 dx (2 +y2 + 22)?

Bw:_ 2y anda_w:_ 2z

If w=

1? (2 +y2 4222’ 3z (2 +y2 4222
us
ow ow ow x24+y2 472
X—+y—+z1—=-2-—F—"F——5 =—2w.
a Y dy 0z (x2 4 y2 4 z2)2 35,
= f(x*+y9),
z 0z
5 =/ yHe, = F& 4+ yHey).
0z 0z
Thus Yoy —xg =2xyf (2 +yH) = 2xyf (x> +yH) = 0.
2= fx? =Y,
0z 0z
5 =/t —yHew, = @ = yH=2y).
ad d
Thus y— + x5 = 2xy — 2xy) f'(x2 — y2) = 0.
dax dy
. f(x+h’y,2)—f(x,y,2)
=1
fi(x,y,2) lim A
, k,z) — Vs
fole, . 2) = tim LEIHRD Z S0
k=0 k
Y.z + 0 — fx,y,
fate,v,2) = tim JER TR DT D

At (a,b, c, f(a,b,c)) the graph of w = f(x, y, z) has
tangent hyperplane

w= f(a,b,0)+ fila,b,0)(x —a)+ fala, b, c)(y — D)
+f3(a!bvc)(z_c)'

If 0 = (X,Y, Z) is the point on the surface z = x? + y?
that is closest to P = (1, 1, 0), then

50—

must be normal to the surface at Q, and hence must be

36.

(X — Di+ (Y — Dj + Zk

parallel to n = 2Xi+2Yj — k. Hence PQ = n for some
real number ¢, so
X—-1=2tX, Y —1=2tY, Z = —t.

454
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1
Thus X =Y = T2 and, since Z = X2+ Y2, we must

have
2

ST -
. . L L.
Evidently this equation is satisfied by t = ——. Since the

left and right sides of the equation have graphs similar
to those in Figure 12.18(b) (in the text), the equation has

only this one real solution. Hence X = Y = —, and so
1

Z=-.
2

The distance from (1, 1,0) to z = x2 is the distance from
(1,1,0) to (i 7 i) which is +/3/2 units.

(X, Y, Z) is the point on the surface z = x2 + 2y2
0,0, 1), then

If Q=

that is closest to P =
PO =Xi+Yj+ (Z- Dk

must be normal to the surface at Q, and hence must be

parallel to n = 2Xi+ 4Yj — k. Hence @ = tn for some

real number ¢, so
X =2tX,

Y =4rY, Z—-1=-t.

><

# 0,thent = 1/2,s0Y =0, Z = 1/2, and
=JZ = 1/\/— The distance from (1/«/_ 0,1/2) to
(O, 0, 1) is +/3/2 units.
IfY;éO then t =1/4,s0 X =0, Z =3/4, and
=./Z/2 = /3/8. The distance from (0, \/3/8, 3/4) to
(O, 0,1) is «/_/4 units.
If X =Y =0,then Z = 0 (and t+ = 1). The distance
from (0, 0,0) to (0,0, 1) is 1 unit.

Since
f V3

—<l

the closest point to (0,0,1) on z = x2 + 2y2
(0, 4/3/8,3/4), and the distance from (0, 0, 1) to that
surface is ~/7/4 units.

=2y 0,0 0,0) =0
f(xsy)_m 1 (X,.Y)#(, )7 f(v )_
SO =FO0 . 0-0
71,0 = i h = fim =~ =0
f(o k)= f(0,0) 0-0

£200,0) =

h
Thus f7(0, 0) and f2(0, 0) both exist even though f is
not continuous at (0, 0) (as shown in Example 2 of Sec-
tion 3.2).
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1
fx,y) = { (x3 + y)sin m if (x,y) # (0,0)
0 if (x,y) = (0,0)

£1(0,0) = li L ()3 gin
= lim — sin —
JIE h—0h h?

. 5 . 1
= lim A“sin — =0
h—0 h?

o1 o1
£2(0,0) = ]}gno % (k sin k—2>

o1 .
= lim sin 2 does not exist.

k—0 2
If (x,y) # (0, 0), then

(3 + y)2x 1
— 0s .
xZ _|_ yZ (x2 + y2)2 xZ _|_ y2

filx, y) = 3x?sin

The first term on the right — 0 as (x,y) — (0, 0),
but the second term has no limit at (0, 0). (It is O along
x =0, but along x =y it is

20t 4 2x2 L 11 1
T T\ Ta)er

which has no limit as x — 0.) Thus f(x, y) has no
limit at (0, 0) and is not continuous there.
3 3
x7 =y’
fay =] ay TEn#00
0 if (x, ) = (0, 0).
If (x,y) # (0, 0), then

2+ )}2)3362 — (3= y3)2x

Six,y)

(2 +y?)?
x* 4 3x2y2 4 2xy3
= 2+ y2)2
) = (2 + 3D (=3yD) — (& —yh2y
2+ y2)2
y* 4+ 3x2y2 +2x3y
R
Also, at (0, 0),
) h3 ) 13
J1(0,0) = }}E}})m =1, f(0,0)= kh—%m = -

Neither fi; nor f; has a limit at (0, 0) (the limits along
x = 0 and y = 0 are different in each case), so neither
function is continuous at (0, 0). However, f is continu-
ous at (0, 0) because

3 3

y
x2+y2

|f(x, )| < < |x|+ Iyl

X
xZ+y?

which — 0 as (x, y) — (0, 0).

40.
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)Cyzz

PR if (x,y,2) #(0,0,0)
0

if (x,y,z) = (0,0,0).

flx,y,2) =

By symmetry we have

0
0,0,0) = f1(0,0,0) = lim — = 0.
£30.0,0) = £1(0,0,0) = lim

Also,

0
0,0,0) = lim — = 0.
fa( ) fim -5
f 1is not continuous at (0, 0, 0); it has different limits as
(x,v,z) = (0,0,0) along x =0 and along x =y = z.
None of fi, f2, and f3 is continuous at (0, 0, 0) either.
For example,

* + 2% = 3xHy%z
(x4 4 y* +24)?

fikx,y,2) =

which has no limit as (x, y,z) — (0, 0, 0) along the line
X = y =Z.

Section 12.4 Higher-Order Derivatives
(page 662)

z=x2(1 +y?)
0 0
Lo 4D, = =2y,
ox dy
822 2 2Z 2
— =2(1 , — =2x°,
52 = 2 +y9) 2 =
92z 92z

=4xy = .
ayox axay
f,y)=x2+y2  filkx,y)=2x, frlx,y) =2y,

St y) = fot,y) =2, fiake,y) = farlx,y) =0.

w = x3y3z3,
0
ow _ 3x2y3z3, w_ 3x3y2z3, w 3x3y3z2,
0x dy z
92 2w 2w
— =6xy’7}, — =6x%y7}, — =6x’yz,
dx2 Y y2 Y 972 Y
92 92
wo_ 9x2yzz% w ’
axay ayox
92 92
wo_ 9x2y372 v
0x0z 0z0x
8%w 8w
ow _ %yzzz _ow
dydz 9zdy

455
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7=1/3x2+y2, 9.

0z 3x a9z y
0x  /3x2 4 yz’ y  /3x24 yz’

3
/3x2 + y2(3) _ 3x7x

9? V3x24+yr 3y? 10
0x2 3x2 4 y? T (Bx2 4+ y2)3/2 )
y
I S —
9z _ V3x24+y? 3x2
dy? 3x2 +y2 (3x2 + y2)3/2°
3%z _ 82z _ 3xy
axdy  dydx  (3x2 4 y2)3/2°
z=xe’ — ye',
ad 0
—Z:ey—yex, —Z:xey—ex,
dax dy
92z 82z ,
ol A
827 oy 92z
dydx dxdy’

f(x,y) =1In(1 + sin(xy))

_ycos(xy)
fikx,y) = T3 sinGoy)’
Sux,y)

(1 +sin(xy))(—y?sin(xy)) — (y cos(xy)) (y cos(xy))
o (1 + sin(xy))2

folx,y) = m

_ v

T 1 +sin(xy)
2

X
Sk, y) = —m

Si2(x, y) =
(1 + sin(xy))(cos(xy) — xy sin(xy)) — (y cos(xy))(x cos(xy))
(1 + sin(xy))?
_ cos(xy) — x

Yy _
T+ sin(xy) = fou(x,y).

A function f(x,y,z) of three variables can have

33 =27 partial derivatives of order 3. Of these, ten can
have different values, namely fi11, f222, 333, f112, f122,
223, f233, f113, f133, and fi23.

For f(x,y,z) = xe™ cos(xz), we have 13.

il ,
f133 = f313 = f331 = a(—x%” cos(xz))

= —Bx> +x3y)e™ cos(xz) + x3z¢™ sin(xz).

x cos(xy) 1

(by symmetry) 12.

R. A. ADAMS: CALCULUS

[, y)=3x%y =y,

Silx,y)=6xy, fu(x,y) =06y,
fax,y) =3xT=3y% falx,y) = —6y.
Thus f11 + f22 =0 and f is harmonic.
Also g(x,y) = x> — 3xy? is harmonic.

x
fx,y)= 21,2
2 2 _ 9,2 2_ 2
f](x,y)zx +y 2x _ o
(2 +yH2 (2 +yH?
2 B
f2(x7 )’)— (X2+y2)2
P (o2 4+ yH(=20) — (2 = 69207 + yH(2x)
11, y) = (2 + y2)4
_ 2x3 — 6xy?
RN
s 3 = — (% 4+ yH)7@x) — 2xy2(x* + y*)(2y)
20X, y) = (2 + y2)f
_ —2x3 + 6xy?
DR

Evidently fi1(x, y) + fa2(x, y) = 0 for (x,y) # (0,0).
Hence f is harmonic except at the origin.

2x 2y
faen = +yD, fi= ey Py
@ yH) —2x2x) 2072 =D
fu= @2 422 T a2
2()C2 _ 2)
o = m (by symmetry)

Thus f11 4+ f22 = 0 (everywhere except at the origin), and
f is harmonic.

1 (Y
f(x,y) =tan 1(;), (x #0).
1 y y
filey) = —— (-3) =7
1+ =
x
1 1 X
falx,y) = y2 (;) —m,
1+ =
x
2xy 2xy
i =—5—"55. fo=—F—"""—.
@2+ @2+ y22
Thus f11 + f22 =0 and f is harmonic.
w = > sin(52),
w; =3w, wy=4w, wi; =%, wy = 16w,
w3 = 563 cos(52), w3z = —25w.

Thus wi1 + w2 + w3z = 9+ 16 —25)w = 0, and w is
harmonic in 3-space.

14. Let g(x,y,z) = zf(x,y). Then

fx, ) = A? = y») + Bxy,
f» = —2Ay + Bx,

fi1 =24, S =24,
Thus fi1 + f2» =0, and f is harmonic.

f1 =2Ax + By,

456

g11(x,y,2) = zf11(x, y)
gn(x,y,2) = zfnx, y)
g33(x,y,2) =0.

g1(x,y,2) =zf1(x, ),
82(x,y,2) = z2f2(x,y),
g3(x,y,2) = f(x,y),



15.

16.
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Thus g11 + g2 + g33 = z(f11 + f22) = O and g is
harmonic because f is harmonic. This proves (a). The
proofs of (b) and (c) are similar.

If h(x,y.2) = f(ax + by, cz), then h1y = a® fi1,
hy = b*f11 and h33 = 2 f. I a®> +b*> = ¢ and f is
harmonic then

Rt + ho 4 has = A (fil + f) =0,

so h is harmonic.

0 ov 9 0

2 = _v, == ——v, and the second partials of
0x ay dy 0x

u are continuous, we have

u 9 dv 9 v 9%u

9x2  axdy ayox 0y

92u 92u
Thus — + —
ax2 9y
v is harmonic is similar.

=0, and u is harmonic. The proof that

Let 5
Xy .

2152 if (x,y) #(0,0)

0 if (x,y)=(0,0).

For (x, y) # (0, 0), we have

S, y)=

G y) = (o 4+ 992y —20y(2x)  2y(y* —xP)
Ty (2472

_ 2x()c2 — yz)
fx,y) = Iy

(by symmetry).

Let F(x,y) = (x2 — y2) f(x, y). Then we calculate

Fi(x,y) =2xf(x,y)+ &> = y) filx, »)
_ 2y(y* —x)?
=2xf(x,y) — m

Fr(x,y) = =2yf(x, ) + (> =) fo(x, y)
B 2x(x2 — y2)2

==2yf(x,y)+ T

2(x% + 9x4y2 — 9x2y4 — y6)
(2 +y2)3

Fia(x,y) = = F1(x, ).

For the values at (0, 0) we revert to the definition of
derivative to calculate the partials:

F(h,0) — F(0,0)

F1(0,0) = li =0=F(0,0
1(0, 0) Jim 7 2(0,0)
. Fi(0,k) — Fi (0,00 = —2k(k*)
F = l = =
12(0,0) = limy K 00 kG
Fr(h,0) — F»(0,0 2h(h*
F21(0,0) = lim 29 =200 _ . 2hE)
h—0 h h—0 h(h?*)

17.

18.

19.

20.
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This does not contradict Theorem 1 since the partials
F17 and F;; are not continuous at (0, 0). (Observe, for
instance, that Fip(x,x) = 0, while Fj2(x,0) = 2 for
x #0.)

2
M(x, z) — t*l/zefx /4t

ou _ _lt73/2+ ltfs/zxz et
ot 4

2
ou — _lxt—3/26—x2/4t
0x 2
9%u 1 1
P (_Et_3/2 + ZZ—S/2x2> e
X
_ ou
TR
ulx,y,r) = ~lem Py A
2 2
o _ 1@t XY ety
ot 12 473
du _ L
0x 2t
2 2
Fu Lt Xt
0x 2t 4t
2 2
O 1 ety Y A
FIEERYS) Tt
u 9%u 9%u
Thus — =

or ~ ox2 Loy

For ou_ 0 + P + P the solution is
o ox2 9y? 822

2 24 .2
u(x, y,z, 1) = 1732

which is verified similarly to the previous Exercise.

L , Pu  u ,
u(x,y) is biharmonic < 5 to5 s harmonic
ox ay
- 32+32 82u+82u —o
0x2  9y? ax2 - 9y?)
0%u 0%u %u

< =0

—+t2——=+—
ox4 0x20y2 = oy*

by the equality of mixed partials.

457
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If ux,y)= xt— 3x2y2, then

u 9 3 2 2 2
Pyl a(4)5 — 6xy”) = 12x“ — 6y
92 ]
22— L(—6x?y) = —6x
dy dy
*u 9
— = —4x) =24
x4 Bx( %)
3*u ]
— = —(—12x) = -12
0x20y2 Bx( %)
34
Fu_
dy
Pu p Tu My aamo
x4 ax29y2 9yt -
Thus u is biharmonic.
?u  9?
If u is harmonic, then au + gu_ 0. If
ax2  9y?

v(x, y) = xu(x, y), then

2v 9 N du 28u N 92u

— =—\utx— | =2—+x—

ax2  ox x dx 9x2

v 9 [ du 9%u

IV _ 9 (o) "

ay> 9y \ 9y dy?

9%v N 9%v 28u N 9%u N 9%u 28u
—St—=2—+x|—+—=|)=2—.
9x2  3y? ox ax2  9y? ax

Since u is harmonic, so is du/dx:

32+32 du 9 82u+82u _ 3 o=o0
ax2  9y?) ax  ox \9x2  9y2)  ox o
2 2,
Thus — 4+ — is harmonic, and so v is biharmonic.
dx2 dy?

The proof that w(x, y) = yu(x, y) is biharmonic is simi-
lar.

By Example 3, e”* sin y is harmonic. Therefore xe* siny
is biharmonic by Exercise 22.

By Exercise 11, In(x2 + y?) is harmonic (except at the
origin). Therefore y In(x2+ y?) is biharmonic by Exercise
22.

x
By Exercise 10, ——
y Exercise 77

5 is harmonic (except at the ori-
y

gin). Therefore zx—y is biharmonic by Exercise 22.
X

+y2?

o , 2u  %u  u _
u(x, y,z) is biharmonic < m + 8_)/2 + 8_z2 is harmonic
o 32+32+32 82u+82u+82u _o
ax2  9y? 972 ax2 o 9y? o 9z2)

9%u %u 9%u 9%u

PRI AL AP
axt  ay*+ 9zt 9x29y2

458

, 0
9x29z2  9y20z2)

27.
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by the equality of mixed partials.

If u(x, y, z) is harmonic then the functions xu(x, y, z),
yu(x,y,z), and zu(x, y, z) are all biharmonic. The proof
is almost identical to that given in Exercise 22.

> f := x*y/(x72+y72) ;
Xy

T2y
> simplify(diff (£,x$4) +

2*diff (£,x$2,y$2) + diff(f,ys$4));
0

Section 12.5 The Chain Rule (page 671)

If w= f(x,y,z) where x = g(s,1), y = h(s,t), and
z = k(s, t), then

d
a_l;) = filx, y, 28205, 1) + falx, ¥, 2)ha(s, 1)
+ f3(x, y, Dka(s, 1).

Ifw = f(x,y,z) where x =
z = k(t), then

g(s), y = h(s,t) and

w

oy = 20y Dha(s 1) + f3x.y, 2)k' (7).

If z=g(x,y) where y = f(x) and x = h(u, v), then

)
a—i = g1(x, Whi(u,v) + g2(x, ¥) f' ()1 (u, v).

If w= f(x,y) where x = g(r,s), y = h(r,t), r = k(s,t)
and s = m(t), then

d

= = fiy)|@ie (k. om'@)
+a(s.0) + 820 m' (1)
+ L2, ) (ks om' @)

+ ko s, t)) + ha(r, t)].
If w= f(x,y,z) where x = g(y,z) and y = h(z), then

d
d—w = filx,y, z)[g1(y,z)h’(z) + g2(y, z)]
Z
+ folx, y, Dh' (@) + f3(x,y,2)

Jw

—| = folx,y, D0 (@) + f3(x,y,2)
0z |,

Jw

o = .fB(Xay7Z)~

a9z %,y
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If u =/x2+y2, where x = ¢ and y = 1 + s>cost,
then

Method 1.

ou X

Y
— = se’ + (
ot /x2+y2 /x2_|_y2

xse’t — ys?sint

—s2sin 1)

Method 1I.

u=+e + (1+s2cost)?
du  2se®! —25%sint(1 + s2cost)

a 2/ + (1 4 s2cost)?

x2s — ysZsint

u
If z=tan"! =, where u = 2x 4+ y and v = 3x — y, then
v

Method 1.
0z 0z du 0z Qv
dx  du dx v dx
. 1 1 @+ 1 —u 3)
- W2\ W2\ 2
I+ I+
_ 2v—-3u Sy
w2 +v2 " 13x2 — 2xy +2y?°
Method 1I.
2
= tan-! XY
3x —y
9z 1 Bx —y)(2) - 2x+y)(3)
ax 2x + y)? (Bx — y)?
1+ ( y)2 y
(Bx —y)
=5y =5y

T Bx— )2+ Qx+y)?  13x2—2xy+2y2

If z = txy?, where x =7+ In(y + %) and y = ¢, then
Method L.
dz 9z 9z (dx  dxdy
dt — 9r  ax \ ot 3y dt
az dy
dy ot

2 2 y+2t 2
=xy“ +t 1+ + 2txy“.
y y ( y+12) y

10.

11.

12.

13.

14.

15.
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Method 1II.
7= t(z +1In(e" + 12))62’

9z ro 24\ 2 2t el +2t
5=<t+ln(e +t))€ +te 1+m
+ 2t (t + In(e’ + t2)>

+ 2t
= xy2 + ty2 (1 + h) + 2txy2.

0
a—f(Zx, 3y) =2f1(2x, 3y).
X
0
3—.f(2y, 3x) =322y, 3x).
X
d
a—f(yz, x%) =222, 1.
X

S f (o0, £00)

= Fe 0 fi(3f . f0.0)
+ A1 0 f2(f 0. f D)

T =e~ 'z, where z = f(t).

dT 8T

8sz_
dr

—+— —=—e"f(t ).
8t+81dt e fO)+e [

! ! t dT
If f(r) = €', then f'(t) = ¢' and T = 0. The tem-
perature is rising with respect to depth at the same rate at
which it is falling with respect to time.

It E=f(x,y,z,t), where x =sint, y =cost and z = ¢,
then the rate of change of E is

dE oE oE . oE oE
— = — CO0St — — sint + — + —.
dt ax ay 0z ot

z= f(x,y), where x =25 4+ 3¢ and y = 3s — 2.

92 9
D) o = (200 +3000)
=22 fi1 +3f12) +3Q2f21 +3f2)
=4fm+12fi+9fn
b 92z _ 9%z _ 0 ) 3
) 5ot " oras  ar PN TR
=23 fi1 —2f12) +3B f21 — 2 /)
=6f11+5f12—6f2
2z _ 0 .,
c) W = 5( fi—=2/)

=30Gfi1 —2f12) — 2B f21 — 2 /)
=9fu1—12fi2+4/n
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16. Letu= —— v Then X Y : :
. X2+ y2’ P and f (x2 e o y2> is harmonic for
. (x,7) # (0,0).
du  y —x v 2xy
dx  (x24y2)? x (x4 y2)?
du 2xy v y? —x?
ay (2422 ay Tt V2 17. If x =¢sins and y =t cos s, then
We have

2 ) = = (sinsfi ) + cossa(x. )

d ou dv dsdt
af(u, v) = filu, U)a + falu, v)a = cossfi +ts1nscossf11 —tsin®sfin
if(u’ v) = fi(u, U)a_” + fru, U)% —sinsf2 +t0052 Sf12 — ¢ sins cos sf22
82)7 8)72 =cossf1 —sinsfa +tcosssins(fi1 — f22)
] ] ou 0 .
Ty = fu (o + g R +f +t(cos s —sin’s) fia,
ox2 ox
+ fo1 3_@ + fn av + fzaz_” where all partials of f are evaluated at (¢ sins, f coss).
dOx 0x dx2
92 du\? du dv 9%u
a—yzf(u,v)—fn (5) +f125£+f1w N
du ov v\’ 3%y 18. 2x +3y,x ———3 +x
Ty, + et 0 away ! BX N = g  Ghi A
ay dy ay ay
. = L 01 + 312+ 3 +x2f22)
Noting that Bax
= —(Of11 +6x +x2
o o\’ | o . o fu f12 f22)
9x + ay) — Z+y22 " \ox + ay = 18 f111 +9yf112 + 6 f12 + 12x f121 + 6xyf122
du dv Lo du dv —0 +2xf2 + 2x% fao1 + X2y fom
ox 9x ' dy dy = 18 fi11 + (12x + 9y) fi12 + (6xy + 2x%) fizo + X%y f202
we have + 6 f12 + 2x f22,
5 5 where all partials are evaluated at (2x + 3y, xy).

ad ad
Wf(u’ U) + Wf(ua U)

[(8u> (Bu)z}
= fu +| =
dx ay 19- f(y , XY, —X ) - _(yfz - 2xf3)

5 Byax
+ f2 [(81;) + (@) } = fr+2y* fr +xyfn —4XYf31 —2x% f3,

dx dy where all partials are evaluated at (yz, Xy, —xz).
ou dv du v
+2f12
ax ax By By
u  0%u ] [82 a2u]
+ + + f2 + 33 9?
f1|:8 2 9y2 . ax2  9y? 20. > f(sz—t,s+12):—2(2Sf1+f2)
_ 0“u 0“u v d“v 9
=hi oz TRt = o (2 +dstfia = for + 2 f0)
0
because we are given that f is harmonic, that is, = 5(—25f11 + (4st — 1) f12 + 2t f22)

S, v) + faolu, v) =

Finally, u# is harmonic by Exercise 10 of Section 3.4, and,
by symmetry, so is v. Thus

= 2sf111 — 4stfii2 +4sfio — (st — 1) fin
+21(4st — 1) fiza + 2 f20 — 2t foo1 + 417 oo
= 2sf111 + (1 — 8s1) fi12 + 4t (2st — 1) fioa + 412 fomo

+4sf12 + 2 f,
where all partials are evaluated at (s2—1,5+12).

92 92
@f(“’v)’La_yzf(”’”):O
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Let g(x,y) = f(u,v), where u = u(x, y), v = v(x,y).
Then

g1(x,y) = filu, Vui(x, y) + frlu, v)vi(x, y)
@, y) = filu, Vuz(x, y) + fru, v)va(x, y)
g, ¥) = fiu, vyury(x, ) + fir @, v)(u (x, y)*

+ fr2(u, v)uy(x, y)vi(x, y) + fa(u, v)vii(x, y)

+ P1u, vur (x, Ivi(x, ¥) + fou, v)(V1(x, )
g22(x, ¥) = fiu, Vun(x, y) + fir(u, v)(uz(x, y))?

+ fra(u, v)ua(x, y)vo(x, y) + f2(u, v)vaa(x, y)

+ o1, vuz (x, Yva(x, ¥) + far(u, v)(Wa(x, ¥))
gri(x,y) + gn(x,y)

= filu, v)[ur(x, y) + uxnx, y)]

+ fa(u, v)[vi1(x, y) + va2(x, )]

+ [ (e, )2+ 2 (x, )1 i1 (u, v)

+ (1, )2 4 2 0x, )21 2w, v)

+ 2[u1 (x, y)vi(x, y) + u2(x, y)va(x, )1 f12(u, v).

The first two terms on the right are zero because u

and v are harmonic. The next two terms simplify to
[(w)? + ()21 fi1 + f22] = 0 because u and v satisfy the
Cauchy-Riemann equations and f is harmonic. The last
term is zero because u and v satisfy the Cauchy-Riemann
equations. Thus g is harmonic.

d 0
If r2 = x% + y% + 22, then 2r—r = 2x, so T f.
5 N ax dx r
Similarly, — =2 and & = %, If u = -, then
ay r dz r r
ou 1 ar  x
ox r2ax 13
8%u 1 3x x 3x2 — 12
ax2 3 T r3
Similarly,
9%u _ 3y2 —r2 92u _ 372 — 2
ay2 rd 8z2 — 5

Adding these three expressions, we get

9%u " 9%u " 9%u _0
ax2 = 9y?  9z2 7
so u is harmonic except at r = 0.
If x =e*cost and y = ¢'sint, then
0x .
— =e¢'cost —y:exsmz
as as
0x .
— = —e*sint 2 e’ cost
ot

SECTION 12.5 (PAGE 671)

Therefore we have

0z s 0z s . 0z
— =e’cost— + e sint—
as dax dy
0z s . 0z ¢ 0z
— = —e’sint— + e cost—
ot ox dy
3%z s 0z . 0z
T, =€ CoSt— + e sint—
as dax dy
+ée*cost | € cost& +e*sint 9%
dx2 dydx
. s Pz . %z
+ e’ sint | e’ cost + e’ sint—
axay 0y?2

82z R 9z s . 0z
— = —e’cost— — ¢’ sinr—
02 ox dy

g . ‘. 3%z s 2z
—e sint | —e’ s1nz‘—2 + e’ cost
0x

ayox
+e*cost | —e’sint 9% +éf costa—zz
dxay 0y2 )’
It follows that
322 822 2 2 ) aZZ 822
2tz =¢ *(cos” 1 + sin t)(w—i—a—);z)
3%z 9%z
2 2
=@+ (= +
("t )(sz 8y2>

24. If x = rcos6 and y = rsin6, then r2 = x% + y2 and
0 0
tand = y/x. Thus 2r—r = 2x, SO a = il = cos @, and
0x 0x r
.. or y .
similarly, — = = =sinf. Also
ay r
0 a0 1
seczé—:—l sec?f— = —
ax x2 ay x
_ v 0 x
dax x2+y2 a_xz—kyz
__ sin® cosf
= . — ;
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Now
ou ou dr  ou 90 du  sinf ou
— = ——+4+ —— =cosfh— — —
0x Jdr dx 00 dx ar r a0
ou ou or du 00 . ou cosO du
— = —— 4+ —— =sinf— + —
dy ar dy 06 dy ar r 00
92 ] ] 92 ing 92
_u= — cos 6 —u—i—cosa cos&—u—& u
ax2 0x ar ar? r 000r
d sinf\ du  sinf 92%u sin® 9%u
—| = — - cos 6 - —
ox r 200 r daraf r 062
sin®@ du  2sinfcosf du 5 0%u
= — — 0s“ 0 —
r or r? 20 or?
2sin6 cos® 92u n sin? 6 9%u
r aroo r2 962
9%u

d o 8u+,9 ,082u+005982u
— = — SIn —_— Sin s —s;x E—
ay? dy or ar2 r 309r

" d cosf 8u+
ady r a0

cosf [ . o 9%u cos @ 32u
aroo r 062

cos’0 du  2sinfcosf du ., d*u
B e VL
2sinf cosf 8%u cos?6 9%u
r 8r89+ 2 992"
Therefore
2u 3% 2u 1 du 1 9%u
2 T T2 Trar T2 aer

as was to be shown.

If u=r2Inr, where r2 = x2 + yz, then, since
or/dx = x/r and dr/dy = y/r, we have

0
M Q2rnr —}—r)i =x(1+2Inr)
ax r
U oyt 2
= nr+ —
dx2 r2
32 2y?
— L — 1 42Inr + 2 (similarly)
ay r
%2u  3%u 2(x2 4+ y?)
The constant 4 is harmonic, and so is 4Inr by Exercise
32 2
11 of Section 3.4. Therefore ou + — is harmonic, and
ax2  9y?

so u is biharmonic.

Flx,ty) =t f(x,y)
xfi(tx, ty) + yfaltx, ty) = ki f(x, y)

x (¥ ex, ) + yfiaex, 1))
3 (2210, 1) + e, 1) )

= k(k = DI*72 f(x, y)
Put t =1 and get

2 fr, )2y 120, V) +y  fa(x, ) = kk—1) f(x, ).
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If f(x1,---,xy) is positively homogeneous of degree k
and has continuous partial derivatives of second order,
then

S xS ) = k= DG ).

i j=1

Proof: Differentiate f(¢txy,---,tx,) = tkf(xl, S, Xp)

twice with respect to ¢:
n
Y oxifilxy, - 1x) = k7! f/xn
i=1

n
D xixj fijexn, o tx) = k(k = D2 f (e, x),
i,j=1

and then put 7 = 1.

If f(x1,---,x,) is positively homogeneous of degree k
and has continuous partial derivatives of mth order, then

n
D iy Xy fir i (1, X0)

i1yeenim=1

=ktk—=1)---(k—m+1)f(x1,---, xn).

The proof is identical to those of Exercises 26 or 27, ex-
cept that you differentiate m times before putting ¢ = 1.

2xy(x* — y%)

Ty e £0.0

if (x,y)=1(0,0)

F(x,y) =

a) For (x,y) # (0,0),

e 2y —y?)  2xy(y?—xd)
(o, y) = 212 T a2

Since 0 = —0, this holds for (x, y) = (0, 0) also.
b) For (x, y) # (0,0),

0 0
Fi(x,y) = aF(x,y) = —5F(y,x) =—-F(,x)

0 0
Fa(x,y) = aﬂ(x, y) = —an(y,x) = -1y, x).

o If x,y) # (0, 02), , .
2y(x® —y°) d x~—y
then Fj(x,y) = T 52 + 2xyax2 e
Thus F1(0,y) = —2y + 0 = -2y for

y # 0. This result holds for y = 0 also, since
F1(0,0) = limy0(0—0)/h =0..

= _F(y’x)
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d) By (b) and (c), F2(x,0) = —F1(0,x) = 2x, and and hence 5
F»1(0,0) =2. 07w _
30.  a) Since Fia(r.y) = —Fai(y. x) for (x.y) # (0.0), oros
we have Fia(x,x) = —Fy1(x, x) for x # 0. How- By Exercise 38, w(r,s) = f(r) + g(s), where f and
ever, all partial derivatives of the rational function F g are arbitrary twice differentiable functions. Hence the
are continuous except possibly at the origin. Thus original differential equation has solution
Fio(x,x) = Fp1(x,x) for x # 0. Therefore,
Fia(x, x) =0 for x # 0. u(x,t) = f(x +ct) + g(x — ct).

b) Fj»> cannot be continuous at (0, 0) because its
value there (which is —2) differs from the value of
F21(0, 0) (which is 2). Alternatively, Fi2(0, 0) is not 34.

By Exercise 39, the DE u; = c%u,, has solution
the limit of Fi(x, x) as x — O.

31. If &§ =x+ct, n=x, and v(§, n) = v(x +ct, x) = u(x, r), ulx,t) = f(x+ct)+gkx —ct),
then
8_” - %% - c@ for arbitrary sufficiently smooth functions f and g. The
dr 9§ ot 0 initial conditions imply that
ou dv d€  dv dn dv  dv
ox 9fox omox 09 dn p(x) = u(x,0) = f(x) + g(x)

0 d x) = us(x,0) = cf'(x) — cg’'(x).
If u satisfies 8_? = ca—u, then v satisfies () (0 fix) —eg @)
X
Integrating the second of these equations, we get
v v v . v
— =c— +c¢c—, that is, — =0.
i3 95~ 9n an 1 [
fx)—glx) = —/ q(s)ds,
Thus v is independent of 7, so v(§,n) = f(§) for an ¢ Ja
arbitrary differentiable function f of one variable. The

original differential equation has solution where a is a constant. Solving the two equations for f

and g we obtain
u(x,r) = f(x+cn). 1 1 [*
fx) = =px) + Z/ q(s)ds

2
X
32. If w(r) = fr) + g(s), where f and g are arbitrary twice g(x) = lp(x) _ L/ q(s)ds.
differentiable functions, then 2 2¢ Jq
2w a , Thus the solution to the initial-value problem is
=—g(s)=0.
aras ar

1) =
u@x, 1) 2 a3

_ 1 x+ct
px +ct)+ p(x —ct) 1 / 4(s) ds.
x—ct

33. Ifr=x+ct,s=x—ct, and
w(r,s) = w(x +ct,x —ct) = u(x,t), then

ou Jw  dw 35. > f := ul(r*cos(t),r*sin(t)):
% o > simplify( diff(f,r$2) +
52 52 52 52 (1/xr)*diff (£, r)
Wf:&a—r’f— c2ar;‘; cza—sf > +(1/1"2) *diff (F,£52)) ;
ou  dw ow Dy o (u)(r cos(t), rsin(t)) + Di,1(u)(r cos(t), r sin(t))
9 or  os which confirms the identity.
2 2 2 2
8_1;):8_1;)+28_w+3_1§' 36. > g := £(x/(x"2+y72),y/ (X"2+y"2)):
dx ar ards ~ ds > simplify (diff (g,x$2)+diff (g,y$2));
82 32 D X ; y D X i y
If u satisfies ?Z = czﬁz, then w satisfies 1) (x2 + 32" x2 4 y2 + D22(f) x24y2 x2 442
(2 +y?2)?
2 32_’” ) 0w 32_’” =2 9w ) *w + 32_’” If f is harmonic, then the numerator is zero so g is har-
or2 ords  9s? or? ords  9s? monic.
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> simplify (diff (diff (
> f(y"2,x*y,-x"2),x),v));
2y2D12(f) + xyDa22(f) + D2(f)
—4xy D1 3(f) — 2x* D2 3(f)

where all terms are evaluated at (yZ, xy, —x2).

> simplify(diff (diff

> (fE(s”2-t,s+t"2),8),ts$2));

25D1,1,1(f) — 8stDi,12(f) + 85t2D125(f) + 4s D1 2(f)
+D1,12(f) —4tD122(f) + 412 D22 2(f) + 2D22(f)

where all terms are evaluated at (s2 — ¢, s + 2).

> z :=u(x,y):

> x := exp(s)*cos(t):
exp (s) *sin(t) :

> simplify(

y =

> (diff (z,s$2)+diff (z,t$2))/(x"2+y"2)) ;

D;2(u)(e’ cost, e’ sint) + Dy, (u)(e’® cost, e’ sint),

which confirms the identity in Exercise 23.

> u := (x,t) -> (p(x-c*t)+p(x+c*t)) /2
> +(1/((2*c)) *int (g(s) , x=x-
c*t..x+C*t) :
> simplify(diff (u(x,t),ts$2)
> -¢™2*diff (u(x,t),x82));
0
> simplify(u(x,0));
p(x)
>
simplify(subs(t=0,diff (u(x,t),t)));
q(x)

so u satisfies the PDE and initial conditions given in Ex-
ercise 34.

Section 12.6 Linear Approximations,
Differentiability, and Differentials

(page 679)

flx,y) =x%y° f3.1)=9
filx,y) = 2xy? G, D=6
folx,y) =3xy? £3,1) =27

f(3.1,09) =f3+0.1,1-0.1)
~ f3,1)+0.1/@3,1)—-0.1£@3,1)
=9406-27=69
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faey=tn 'l r33=2
X 4
y 1
fl(x,y)z—m f1(3’3):_8
X 1
falx,y) = m £(3,3) = g

£(3.01,2.99) = f(3+0.01,3 —0.01)
~ f(3,3) +0.01£1(3,3) — 0.01 (3, 3)

7 001 001 7z 001

4 6 6 4 3

~ (0.7820648

N

f(x,y)=sin(mxy+1Iny), f(0,1) =0
fix,y)=mycos(mxy +1Iny), f1(0,1)=m

falx,y) = )COS(ﬂxy +1Iny), £2(0,1) =1

f(0.01,1.05) = f(0,1) 4+ 0.01£(0, 1) +0.05£2(0, 1)
=0+40.017 + 0.05 ~ 0.081416

1
X+ —
y

(x,y) = L
R T

_ ANty _ TR+
fl(xﬁy)_ (x2—|—xy+y2)2’ f2(x7 )’)— (x2+xy+y2)2
f2,2)=12, f12,2) = -1, 22,2)=-1

F2.1,1.8) ~ f(2,2) +0.1£1(2,2) — 0.2/(2,2)
=2-0.1402=2.1

f(x,y,z)z«/x+2y1+3 , f(2,2,1)=3

filx,y,2) = m, folx,y,2) =
3

fx,y,2) = m

1
VX +2y+3z2

f(1.9,18,1.1) =~ f(2,2,1)
-0.1£2,2,1)-02/£2,2,1)4+0.1/3(2,2,1)

0.1 0.2 0.1
=3 — = 4 = A~2967
3 3 3 + 7 96
fx,y) = xed ™ @2 —4) =2

filx,y) = e,\'+x2(1 +2x%) 12, -4 =9

Flx,y) = xe?+s H2, —4) =2
£(2.05, —3.92) &~ £(2, —4) + 0.05 i (2, —4) + 0.08 />(2, —4)

=2+4045+0.16 =2.61

d
If the edges are x, y, and z, and @y _
x
then
a) V=xyz=dV =yzdx +xzdy+xydz
dv dx dy dz 3
= —=—+——+—=

\% X z 100°
The volume can be in error by about 3%.
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b) A=xy=dA=ydx+xdy
dA  dx dy 2
A x y 100
The area of a face can be in error by about 2%.

) D?=x"+y*+2’ = 2DdD =2xdx +2ydy +2zdz

dD_)c2 dx y*dy z? dz 1
D DXx D2y D2z 100
The diagonal can be in error by about 1%.
8. V=1nr’h=dV =inrhdr+ taridh. If r =25 fi,
h =21 ft, and dr = dh = 0.5/12 ft, then

T 5. 0.5
dv = §(2 x 25 x 21 4+ 25 )E ~ 73.08.

The calculated volume can be in error by about 73 cubic
feet.

9. S=anarvr2+h2, so

h
dr+ -2 ap

wr? )
Vr? + h? NVr? +h?

252 +25 x 21\ 0.5
=x (V252 42124+ = — =" ) 2= A 8.88.
n( e 252 4212 ) 12

The surface area can be in error by about 9 square feet.

dS:(rr r24+h%+

10. If the sides and contained angle of the triangle are x and
y m and 6 radians, then its area A satisfies

1
A=— in
2xysm
1. | 1
dA=Eysm@dx—i—Exsmedy—i—zxycosede
dA d
dA _dx (A oo,
A X y

For x =224, y = 158, 6 = 64° = 647 /180,
dx =dy =04, and d6 = 2° =27 /180, we have

dA 04 04 2
ar _ 1” ~ 0.0213.

28 0a 40y 2
A~ 224 T 1sg T o655

The calculated area of the plot can be in error by a little
over 2%.

11. From the figure we have

h =stan6

h=(+x)tan¢g = (tL +x> tan ¢.

an6
Solving the latter equation for /, we obtain

_ xtangtand
" tanf —tang’

SECTION 12.6 (PAGE 679)

We calculate the values of 4 and its first partials at
x =100, 8 =50°, ¢ = 35°:

h =~ 170
dh  tangtan6
dx  tanf —tang -~
oh (tan @ — tan ¢) sec2 0 — tan 6 sec? 0
— =Xxtan¢
96 (tan @ — tan ¢)?2

1.70

2 2
__ X tan” ¢ sec” 6 ~ —49]1.12
(tan @ — tan ¢)?
oh x tan? 0 sec? ¢

— = —— % §876.02.
¢  (tan6 — tan ¢)?

Thus dh ~ 1.70dx —491d6 + 876d¢. For dx = 0.1 m
and |d0| = |d¢| = 1° = /180, the largest value of dh
will come from taking df negative and d¢ positive:

dh ~ (1.70)(0.1) + (491 + 876)% ~ 24.03.
The calculated height of the tower is 170 m and can

be in error by as much as 24 m. The calculation of the
height is most sensitive to the accuracy of the measure-

ment of ¢.
h
0 ¢
s A X B
Fig. 12.6.11
2. w2 dw _ 2wy 2w
74 0x 7 X
ow 3x2y? _ 3w dw 4x2y3 4w
ay ¢ 0z 2 x
J ow dx + ow dy + ow J
w=—dx+ — —
ox 3y a7 °
d d d d
dw _,dx . dy _,dz
X y b4
. . dx 1 L
Since x increases by 1%, then — = ——. Similarly,
4 5 4 X 100
i = — and & ——. Therefore
y 100 Z 100
Adew_2+6—12_ 4
w w100 100’

and w decreases by about 4%.
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13. f(r,0) = (r cos@,rsinf)

cosf —rsinf
Di(r, 0) = (sin@ rcosf )

14. f(p,¢p,0) = (psingcosh, psingsind, p cos @)

singpcosf pcospcosd —psingsinh
Df(p,¢,9)=<sin¢>sin9 pcosgsing  psing cosod
cos ¢ —p sin ¢ 0
2
_ X< +yz
15. f(x,y,2) = (yz—xlnz>
Df(x,y,z) = 2x . Y
T —Inz 2y —x/z

Df(2,2,1)=(3 i _22>

—0.02
£(1.98,2.01,1.03) ~£(2,2,1) + Df(2,2, 1) ( 0.01 >

0.03
(6 —0.01) _ (5.99
= (4) + (—0.02) = (3.98)
}"2S
16. g(r, s, t) = < r2t >
s2_ 2
2rs 2 0
Dg(r,s.1) = <2rt 0 r? )
0 25 -2t
6 1 0
Dg(1,3,3) = <6 0 1 )
06 —6

—0.01
2(0.99,3.02,2.97) ~ g(1, 3,3) + Dg(1, 3, 3) < 0.02 )
—0.03

3 —0.04 2.96
= (3) + <—0.09> = <2.91)
0 0.30 0.30
17. If f is differentiable at (a, b), then

fla+hb+k)— f(a,b)—hfi(a,b) —kfr(a, D)
N

approaches 0 as (h, k) — (0, 0). Since the denominator
of this fraction approaches zero, the numerator must also
approach 0 or the fraction would not have a limit. Since
the terms A fi(a, b) and kf>(a, b) both approach 0, we
must have

lim [f(a+h,b+k)— f(a,b)]=0.
(h,k)—(0,0)

Thus f is continuous at (a, b).

18. Let g(t) = f(a + th, b+ tk). Then

g ) =hfi(a+th,b+tk)+kfs(a+th, b+ tk).
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If & and k are small enough that (a + &, b+ k) belongs to
the disk referred to in the statement of the problem, then
we can apply the (one-variable) Mean-Value Theorem to
g(t) on [0, 1] and obtain

g(1) = g(0) + £'(0),
for some 6 satisfying 0 <6 < 1, i.e.,

f@a+h,b+k) = f(a,b)+hfi(a+6h, b+ 0k
+kfa(a + 0h, b+ 0k).

Apply Taylor’s Formula:

g"(0)

g(1) =g(0) +g'(0) + 2

for some 6 between 0 and 1 to g(¢) = f(a +th, b+ tk).
We have

g'(t) = hfi(a+th,b+tk) + kfr(a + th, b+ tk)

g'(0) = hfi(a, b) + kf2(a, b)

g @) = h*fi1(a + th, b+ tk) + 2hkfiz(a + th, b + tk)
+ k2 fo(a + th, b + tk).

Thus

fla+h,b+k)= f(a,b)+ hfi(a,b) +kfa(a,b)

1
+ E(hzfn(a + 0h, b + 0k) + 2hkfi2(a + O0h, b + 0k)

+ K2 faa(a +0h, b+ 6k)>

Af = fla+h,b+k)— f(a,b)
df =hfi(a,b) +kfr(a, b)

‘Af—df‘
1
< E‘hz_f”(a + 0h, b+ 0k) + 2hkfiz(a + Oh, b + 0k)

+ k2 fao(a + Oh, b + 6k)

< K> +Kk*  (since 2hk < h* +k?),
for some K depending on f, and valid in some disk
h2 + k% < R? of positive radius R.

Section 12.7 Gradients and Directional
Derivatives (page 688)

fa.y=x2=y2  f@.-1)=3

Vf(x,y) =2xi— 2yj, V@2, —1)=4i+2j.
Tangent plane to z = f(x, y) at (2, —1, 3) has equation
4x —=2)+2(y+1)=z—-3,0ordx +2y —z=3.
Tangent line to f(x,y) =3 at (2, —1) has equation

4x —2)+2(y+1)=0,0r 2x +y = 3.
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fay=""2 ra.n=o0.
2 ix_{2—x)ji
i

Vf=—"F"—+

f TR

1
Vi, 1) = E(i — j). Tangent plane to z = f(x,y)

at (1, 1,0) has equation $(x — 1) — 2(y — 1) = z, or
x—y—2z=0.

Tangent line to f(x,y) =0 at (1, 1) has equation
Te—=1D -3 -1, orx=y.

X
foy) = e
Py —x@2x) P -a?

fite,y) = e =7

2xy
fHlx,y) = —m-

1 2 24 .
Vi, y)= m(()’ —x7)i— 2x}’.]>,

VI(1,2) = 2i— %j.
Tangent plane to z = f(x, ) at (1,2, §) has equation
3 4 1
—E(y—2)=z—§, or 3x —4y —257 = —10.

—~@x—=1
25
Tangent line to f(x,y) = 1/5 at (1, 2) has equation

3
—(x-1D—-=@Hr-2)= —4y = -5.
2S(x ) 25()/ ) =0, or 3x y 5

f,y)=¢€Y, Vf=yeVi+xe},
Vf(2,0) = 2j. Tangent plane to z = f(x, y) at (2,0, 1)

has equation 2y =z —1, or 2y —z = —1.
Tangent line to f(x,y) =1 at (2, 0) has equation y = 0.

2xi+ 2yj
Fo) =G24y, Vi y) = 523
xX“+y

vVid,-2) = %i — ‘5—‘j. Tangent plane to z = f(x, y) at

2 4
(1, —2,1n5) has equation g(x —-1) - g(y +2)=z—1In5,
or2x —4y — 5z =10—5In5.
Tangent line to f(x,y) =In5 at (1, —2) has equation
g(x—l)—g(y+2):O, or x —2y =235.

f(x,y)=v1;rxy2, f2,-2)=3.
yoi+42xyj

Vfey) = 2o,

fx,y) Wiy

ViR, -=2)= %i— gj.

Tangent plane to z = f(x, y) at (2, —2, 3) has equation
%(x—Z)—i(y+2):z—3, or 2x —4y — 3z =3.
Tangent line to f(x, y) = 3 at (2, —2) has equation

2 4
g(x—Z)—g(y—i—Z):0,0rx—2y=6.

10.

11.

12.

13.
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fe,y, 0 =x>y+y*2+2%x, f(l,—-1,)=1.
Vi, y,2) = Qxy+z)i+ (24 2y2)j + (% + 2z0)k,
vid,—1,1)=—-i—j+ 3k

Tangent plane to f(x,y,z) =1 at (1, —1, 1) has equation
—x—D—-@+D+3z—1)=0,orx+y—3z=-3.

f(x,y,2) =cos(x + 2y + 3z),
f(zﬂﬂ)—c()sll_n_o

gmA)=es =0
V(xy.2) = —sin( + 2y + 320+ 2§ + 3K),

b4 1, . . .
Vf(E,n,rr> = —sin ==+ 2+ 3K) =i+2j + 3k
Tangent plane to f(x,y,z) = 0 at (%, T, n) has equa-

tion -
x =242y —m) 3@ - 1) =0,

18F;4
0rx+2y+3z:T.

fx,y,2) =ye™ sinz,  f0.1.7/3) = 3/2,

Vfx,y,z) = —2xye ¥ sinzi+e ™ sinzj+ye ™™ coszk,
3 1

V0. 1,7/3) = %j + 5k

3
The tangent plane to f(x,y,z) = % at 0, 1, w/3) has
equation

V3
2

s
orﬁy+z=x/§+§.

o0 b 7)o

Sfx,y)=3x —4y, Vf(0,2) =Vfx,y)=3i—4j
D_if(0,2) = —ie (3i — 4j) = —3.

fl,y)=x%y, Vf=2xyi+x?%,
Vf(—1,-1)=2i+]j.

Rate of change of f at (—1, —1) in the direction of i+ 2j
is

i+2j .. 4
2i+j) = —.
NG e (214}) 7
X 1 X
5 = —, \Y% N :—'_7"
fx,y Ty fx,y) 1+yl (l+y)2J
V£(0,0) =i, u=%,
Duf(0,0) =i (i_j> !
u s =l —— | = —.
V2 V2
fl,y)=x2+y%  Vf=2xi+2yj,

V (1, =2) =2i—4j.

A unit vector in the direction making a 60° angle with
the positive x-axis is u = %i + ‘/ng.

The rate of change of f at (1, —2) in the direction of u
isueVf(l,—2)=1-—2/3.

467
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f(x,y) =1In|r|, where r = xi+yj. Since |r| = /x2 + y2,
we have

ViGy) =~ (ii+ 1j) -

LI I Ir|?

f(x,y,z) = |r|™", where r = xi + yj + zk. Since

Ir| = v/x2 4+ y2 + 22, we have

18.
—n— X, . Z
Vfx,y,z)=—nlr|""! (—1+ l,] + —k>
vl |r|”  Ir]
_ nr
G
Since x = rcos6 and y = rsinf, we have
a a 0
—f = cos@—f + sinO—f
ar dax ay
a a
—f =—r sin&—f +rcos9%.
a0 ax dy
Also,
fo N 060)i + (sin0)j
r
~ —vi j
0= At = —(sin6)i + (cos 0)j. 19.
r
Therefore,
of . 109f
- ——0
or 796
a 0
= 00529—f+sin90056'—f i
ax ay
0 0
+ cos&sin&—f—i—sinze—f j
ox ay
0 0
+ sinze—f—sinécose—f i 20.
ox ay
0 a
+ —cos@sin@—f +cos20—f j
ox dy
af,  of
=—i+—j=V/ .
ox 8y'] £
f,y)=xy, Vfx,y)=yi+xj, Vf(Z,0) =2j
Let u = uji + upj be a unit vector. Thus u% + u% = 1.
We have
—1=Dyf(2,0)ue V(2,0 =2uy
1 3
if up = —5 and therefore u; = i%. At (2,0), f has
3 1
rate of change —1 in the directions iTi —5 j. 1.
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3
If =3 = Duf(2,0) = 2uy, then up = 5 This is

not possible for a unit vector u, so there is no direction
at (2,0) in which f changes at rate —3.

If =2 = Dyf(2,0) = 2uy, then up = —1 and
u; = 0. At (2,0), f has rate of change —2 in the direc-
tion —j.

flx,y,2) =x2+y> - 22

Vf(a,b,c) = 2ai + 2bj — 2ck. The maximum rate of
change of f at (a, b, ¢) is in the direction of V f(a, b, ¢),
and is equal to |V f(a, b, c)|.

Let u be a unit vector making an angle 6 with

V f(a, b, c). The rate of change of f at (a, b, c) in

the direction of u will be half of the maximum rate of
change of f at that point provided

%Wf(a, b,c)|=ueVf(a,b,c)=|Vf(a,b,c) cosb,

1
that is, if cos® = —, which means 6 = 60°. At (a, b, ¢),

f increases at half its maximal rate in all directions mak-
ing 60° angles with the direction ai + bj — ck.

Let V f(a, b) = ui+ vj. Then

i+j o utv

32 =D,y @ b) = i (ui + vj) = =
3i—4j .o Bu—4v
5 = Dgi-4j)/5f (a, b) = 1 (ui + vj) = —

Thus u + v = 6 and 3u — 4v = 25. This system has
solution u =7, v=—1. Thus V f(a, b) =7i —j.

Given the values Dy, f(a, b) and Dy, f(a, b), we can
solve the equations

fi(a, b)cos¢1 + fa(a, b) singy = Dy, f (a, b)
fi(a, b)cos ¢z + fa(a, b) singp = Dy, f (a, b)

for unique values of fi(a, b) and f2(a, b) (and hence
determine V f(a, b) uniquely), provided the coefficients
satisfy

sin ¢
sin ¢

cos ¢
cos ¢

0 #

= sin(¢2 — ¢1).

Thus ¢; and ¢» must not differ by an integer multiple of
.

a) T(x,y) = x2— 2y2.
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Fig. 12.7.21

b) VT =2xi—4yj, VT (2, —1) = 4i + 4j.
An ant at (2, —1) should move in the direction of
—VT (2, —1), that is, in the direction —i — j, in order
to cool off as rapidly as possible.

c) If the ant moves at speed k in the direction
—i — j, it will experience temperature decreasing at
rate |VT (2, —1)|k = 4/2k degrees per unit time.

d) If the ant moves at speed k in the direction
—i — 2j, it experiences temperature changing at rate

—i—2j @i+ 4k 12k
o (4i+4jk = ——,
V5 V5
that is, decreasing at rate 12k/+/5 degrees per unit

time.

e) To continue to experience maximum rate of cooling,
the ant should crawl along the curve x = x(¢),
y = y(t), which is everywhere tangent to VT (x, y).
Thus we want

dX.+ dy. 7(2xi — dyj)

—it+ —j= i— .

ar " ar? SRERAL
1d 2d

Thus it = ———x, from which we obtain, on
y dt x dt

integration,

In|y@®)|=-2In|x®)| + In|C]|,

or yx? = C. Since the curve passes through (2, —1),
we have yx2 = —4. Thus, the ant should crawl
along the path y = —4/x2.

Let the curve be y = g(x). At (x, y) this curve has

normal V(g(x) - y) =g'(x)i—j.

A curve of the family x* 4+ y? = C has normal

V(x* 4 y?) = 4x3i + 2yj.

These curves will intersect at right angles if their normals

are perpendicular. Thus we require that

0=4x’g'(x) — 2y = 4x’g (x) — 28 (x),

23.

24.
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or, equivalently,
g 1
glx)  2x3
. . 1
Integration gives In|g(x)| = ——= + In|C]|,
4x2

or g(x) = Ce— (/4%

Since the curve passes through (1, 1), we must have
1=g()=Ce 4 s0o C=el/4

The required curve is y = e(1/H=(1/4x),

Let the curve be y = f(x). At (x, y) it has normal

dy. .

—i—j.

dx J

The curve x2y? = K has normal 2xy3i + 3x2y2j.

These curves will intersect at right angles if their normals

are perpendicular, that is, if

d
2xy3—y —3)62y2 =0
dx
dy 3x
dx 2y
2ydy =3xdx
3
y2 ==x>4C.

2

Since the curve must pass through (2, —1), we have
1=64+C,soC=-5.
The required curve is 3x2 — 2y2 = 10.

Let f(x,y) = e~* ™% Then

Vi, y) =2~ (xi 4 yj).

ai + bj
o a’+b>
tion directly away from the origin at (a, b).
The first directional derivative of f at (x, y) in the direc-
tion of u is

The vector u = is a unit vector in the direc-

ueVf(x,y)=— (ax + by)e= &),

2
va? 4+ b?

The second directional derivative is

2 2.2
eV |———(ax + by)e " )>
( va? + b?

2 ,
= (@it b e e~ (@)
a

|:(a —2x(ax + by))i + (b —2y(ax + by))j].

469
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At (a, b) this second directional derivative is

9~ (@ +b%)
242
2
0 (z(az n bz)z —2 bz)e—(a2+h2)
a

_ 2(2(a2 +b%) — 1)e—(“2+”2>.

(a2 —2a* —2a%b? + b* — 2% — 2b4)

Remark: Since f(x,y) = e ? (expressed in terms of

polar coordinates), the second directional derivative of f
at (a, b) in the direction directly away from the origin
(i.e., the direction of increasing r) can be more easily
calculated as

d? 2

m e .
r2=a?+b?

fle,y,2) =xyz, Vf(x,y,2) = yzi + xzj + xyk.
The first directional derivative of f in the direction
i—j—Kkis

i_ji_k.vf(x )_L( — X7 —xY)
NG ,y,z—\/gyz z ).

The second directional derivative in that direction is

i_ji_k ° LV(yz—xz—xy)

3 V3
= #o[—(y+z)i+(z—x)j+(y—x)k]

1 26 —2y —2
=3[-0+9-Gc-n-0-n]=FF—.

At (2, 3, 1) this second directional derivative has value
—4/3.

At (1, —1, 1) the surface xZ 4+ y2 = 2 has normal

n = Vi?+y?) =2i - 2j,
(1,—1,1)
and y% + z2 = 2 has normal
_ 2.2 —
n =Vy°+z9) = —2j+2k.
(1,—1,1)

A vector tangent to the curve of intersection of the two
surfaces at (1, —1, 1) must be perpendicular to both these
normals. Since

i-jpxEj+k)=—-(>(+j+k),

the vector i + j + Kk, or any scalar multiple of this vector,
is tangent to the curve at the given point.
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The vector nj = i+ j + k is normal to the plane
x+y+z = 6at(l,2,3). Anormal to the sphere
x2 4+ y2 4+ z2 = 14 at that point is

m=vVi2+y>+2%) = 2i + 4j + 6k.

(1,2,3)

A vector tangent to the circle of intersection of the two
surfaces at (1,2, 3) is

i j k
nxm=|1 1 1{=2i—4j+2k.
2 4 6

Any vector parallel to i —2j + Kk is tangent to the circle at
1,2,3).

A vector tangent to the path of the fly at (1, 1,2) is
given by

v=V(@3x? - y2 — ) x VQx* + 2y2 )

(1,1,2)

= (6xi —2yj — k) x (4xi+4yj — 2zk)

(1,1,2)
= (61 — 2j — K) x (4i + 4j — 4k)

i j K
—4[6 —2 —1|=4Qi+5j+8k).
11 -1

The temperature 7 = x% — y2 + z2 4 xz? has gradient at
(1, 1,2) given by

VT(1,1,2) = 2x 4 z2)i — 2yj + 2z(1 + x)k
(1,1,2)

= 6i — 2j + 8k.

Thus the fly, passing through (1, 1,2) with speed 7, expe-
riences temperature changing at rate

v 3i 4 5§ + 8k
7Tx — eVT(1,1,2) = 7223 0% o (6i — 2j + 8K)
v ( ) 5% ( J
—Las—10464= 2
V2 V2

We don’t know which direction the fly is moving along
the curve, so all we can say is that it experiences temper-
ature changing at rate 364/2 degrees per unit time.

If f(x,y,z) is differentiable at the point (a, b, ¢) and
Vf(a,b,c) # 0, then V f(a, b, c) is normal to the level
surface of f which passes through (a, b, c).
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The proof is very similar to that of Theorem 6 of Section
3.7, modified to include the extra variable. The angle 6
between V f(a, b, ¢) and the secant vector from (a, b, ¢)
to a neighbouring point (a + h, b + k, c 4+ £) on the level
surface of f passing through (a, b, ¢) satisfies

V f(a,b,c) e (hi+ kj+ €Kk)

cosf =
IV f(a,b,c)vVh2+k2+¢2
__hfita,b,c) +kfr(a,b,c)+£f3(a, b, c)
IVf(a,b,c)|Vh%+k? 4 2

T Vi@ b.o) h2+k2+z2[f(“+h’b+k’c”)

— Fa, b, ¢) — hfi(a, b, ¢) — kf>(a, b, ¢) —ef3(a,b,c)]
=0 as (h.k. £) = (0,0,0)

because f is differentiable at (a, b, ¢). Thus 6 — z, and

V f(a, b, c) is normal to the level surface of f through
(a,b,c).

The level surface of f(x,y,z) = cos(x +2y+3z) through
(mr, , ) has equation cos(x + 2y + 3z) = cos(6r) = 1,
which simplifies to x + 2y + 3z = 6mr. This level sur-
face is a plane, and is therefore its own tangent plane.
We cannot determine this plane by the method used to
find the tangent plane to the level surface of f through
(7 /2, m, w) in Exercise 10, because V f (7, w,7) = 0, so
the gradient does not provide a usable normal vector to
define the tangent plane.

By the version of the Mean-Value Theorem in Exercise
18 of Section 3.6,

f@x,y) = f(0,0) + xfi(6x,0y) + yf2(0x, 0y)
for some 6 between 0 and 1. Since V f is assumed to
vanish throughout the disk x% + y2 < r2, this implies
that f(x,y) = f(0,0) throughout the disk, that is, f
is constant there. (Note that Theorem 3 of Section 3.6

can be used instead of Exercise 18 of Section 3.6 in this
argument.)

Let f(x,y) = x> — y2. Then Vf(x,y) = 3x% — 2yj
exists everywhere, but equals 0 at O, O) The level curve
of f passing through (0, 0) is y> = x3, which has a cusp
at (0, 0), so is not smooth there.

Fig. 12.7.32
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33. Let v=wvji+ vpj+ vsk. Thus
f af af
Dyf = vj—= S S
v/ Ulax +v23y tv 0z
a2 f 0 22 f
V(D
(Dy f) (132—1- 88 +v38x8z>l
52 2 2
8 0
+{ v o7 f + v f j
dyox 8y 3y8z
92 f 92 f 92 f
P k
+<vlax8z+ 2ayoz Y 3az2>
Dy(Dy f) =veV(Dyf)
52 2 2
o f o f
= 2 20jv3 ——
v182+ v1v28 8y—i— 138 oz
202 f O’ f 202 f
2
+v 23 3 + 2vpv 3a 9z +v 3 32

(assuming all second partials are continuous).

Dy(Dy f) gives the second time derivative of the
quantity f as measured by an observer moving with con-
stant velocity Vv.

34. T =T(x,y,z). As measured by the observer,

d—T = DyyyT =v(t) e VT

dt
d>T d
ﬁ =a(t)eVT +v(t) e EVT

DayT + [ v1 (1) I
= v _—
a) W ox
aT
= Daiyh T + (vl(t)V(t) . Va— + - )

292T 02T
= Dup T+ () 5 + vl(t)vz(t)— +
= DaiyT + Dy (DyyT)

(as in Exercise 37 above).

35. T = T(x,y,z,t). The calculation is similar to that of
Exercise 38, but produces a few more terms because of
the dependence of T explicitly on time 7. We continue to
use V to denote the gradient with respect to the spatial
variables only. Using the result of Exercise 38, we have

aC_ T | yyevr
“@ %y
dr ot *
d’T doT d
= 4 V@0 eVT
dt2  dtr ot + ()
82T+V(z) aT
= .—
912 ot
0
+v()e §VT + DagyT + Dy(r)(DyyT)
32

oT
=52 " 2Dy ( a1 ) + Day T + Dy (Dy)T).
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M if (x,y) # (0, 0)
36. fay =1 J2rye 7 e
0 if (x,y) = (0,0)

@) f10,0) = lim % = 0 = £(0,0). Thus
V£(0,0) =0.

b) If u = (i + j)/~/2, then

Duf(0.0) = I 1 sin(h?/2) 1
,0)=Im - —— = —.
" =0+ h  Ji2 2

c) f cannot be differentiable at (0, 0); if it were, then
the directional derivative obtained in part (b) would
have been ue V £(0,0) = 0.

2%y
37. fx,y)= m if (x,y) #(0,0)
0 if (x, y) =(0,0)
Let u = ui 4 vj be a unit vector. If v # 0, then

o1 22 (ho)
Duf(0,0)= lim — ——~ -
uf (0, 0) hiI& h h*u* + h2?

. 2u?vy 2u?
= lim —— = —.
h—0+ h2u* + 02 v
If v=0, then u = +1 and
Dy f(0,0) li 10 0
,00)= lim = - — =0.
b h—0+ h h?

Thus f has a directional derivative in every direction at
the origin even though it is not continuous there.

Section 12.8 Implicit Functions (page 698)

1. xy3 +x*y =2 defines x as a function of y.
3dx 2, 4.3,9% a4
y —4+3xy"+4x"y— +x" =0
dy dy

dx x* 4 3xy?
dy ¥y +4x3y’
The given equation has a solution x = x(y) with this
derivative near any point where y* + 4x3y # 0, i.e.,

y # 0 and y? +4x3 £ 0.

2. xy=y-—z x=x(,2)
a

ad + 3)cy2 =1

dy

ox  1-— 3xy?

dy oy

The given equation has a solution x = x(y, z) with this
partial derivative near any point where y # 0.

y3
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24xyi="22 z=12z(x,y)
0
2 4y =28
y yay vy
2
dz 2 T3 _ xz+3xy?
dy L xy —2y%z’

Yy
The given equation has a solution z = z(x, y) with this
derivative near any point where y # 0 and x # 2yz.

e’?—x2zlny =m: y=y(x,2)
dy 2 x%z 9y
e*lz=—=+4+y)—x"Iny———=0
0z y 0z
dy  xZIny —ye’®  x%ylny — yZed?
3z 2z yzeYi—x2z
zevi— ==

y
The given equation has a solution y = y(x, z) with this
derivative near any point where y > 0, z # 0, and
yed? £ x2.

x2y2+y212+12t2+t2w2—xw =0: x=x(y,z,t, w)
ad 0

2xy2—x + 217w — w—x —x =
Jw ow

ox  x— 212w

w  2xy2—w’
The given equation has a solution with this derivative
wherever w # 2xy2.

F(x,y,xz—yz) =0: y=yx)
dy dy

F+Fh—+F|2x—2y— ) =0
dx dx

dy  Fi(x,y, x> —y) +2xF3(x, y, x> = y?)

dx  2yF3(x,y,x2 —y2) — Fa(x, y,x2 — y2)’

The given equation has a solution with
this derivative near any point where
Fa(x, y,x* = y?) # 2y F3(x, y, x* = y?).

Gx,y,z,u,v)=0: u=ulx,y,z,v)

ou
G+ Gs—
0x

du  Gilx,y,z,u,v)

ox  Galx,y,z,u,v)’

The given equation has a solution with this derivative
near any point where Ga(x, y, z,u, v) # 0.

F(xz—zz,yz—i—xz):O: z=2z(x,y)
F (Zx — 2z%> + P (xa—z +Z> =0

ax ox
9z 2xF 1 (x2 =22, y2 +x2) + 2F (2% — 22, y2 4+ x2)
dx  22F (2 — 22,92 ¥ x2) —x (22— 22, y2 + x2)
The given equation has a solution with this derivative

near any point where
xFy(x% — 72, y2 + x7) # 2zF) (x2 = 22, y2 + x2).
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H(uzw, vzt, wt) = 0: w=w(u,v,t)

s 0w 5 ow
Hu"— + Hyw "+ H3|t—+w ) =0
ot ot
ow Ho (uw, v?t, w)v? + Hy(u?w, v2, w)w
ot Hi(ulw, v, wHu? + Hywlw, v2t, wi)t

The given equation has a solution with this derivative
near any point where
t Hxy(u?w, v2t, wr) #* —u?H ?w, v2, wi).

xyuv =1 N Y=y, u)
x+y+u+v=0 v=uvx,u)

Differentiate the given equations with respect to x:

y dv
yuv + xuv— + xyu— = 0
ax ox
T R A U
ax ox N

Multiply the last equation by xyu and subtract the two
equations:

0
yuv — xyu + (xuv — xyu)—y =0
ax

(3_y> _Yx—v)
ax/), x(w—y)

13.

SECTION 12.8

Multiply the first equation by u and the second by
x2 4+ 2yu and subtract:

d
2x(x? + yu) + (xzy + yzu + 3u3)d—u =0
X
du 2x(x2 4+ yu) _ X

dx _3u3+x2y+y2u w3

The given equations have a solution with the indicated
derivative near any point where u # 0.

x =u’ + 3 u=u(x,y)
2 = _
y=uv—v v=v(x,y)

Take partials with respect to x:

ou dv
1 = 3u>— + 30—
uaax v Bxa
u v
0 = — 4+ —2v)—.
vax (u U)ax
At u = v =1 we have
ou dv
1 = 3— + 3—
aax aax
0 - dwo v
0x 0x
ou ov 1

Thus — = — = —

(PAGE 698)

The given equations have a solution

X x 6
Similarly, differentiating the given equations with respect

of the indicated form

with this derivative near any point where u # 0, x # 0

Il
w

N — O\ —

and y # v. 0
1 Py rwi=1 x=x(y,2) 1 =
) X+2y+3z+4w =2 w = w(y,z)
ou v 1
Thus — = —— = —.
ax ] . Oy dy 2
2x— + 2y + 2w— = 0 x 2 Finally,
dy 0
a(u, v)
ax L o2 4 48w 0 y 3 =
i -~ _ w
3y 3y (x,y)
2
9 x=r"+2s
(4x—w)a—x+4y—2w:O 14. {y=52—2r
y
(3_)‘) _ -4y a(x.y)
ay/, dx —w ar,s)

The given equations have a solution

with this derivative near any point where w # 4x.

2y+yu—ut=0

12. {

2 +yu=1 =
d
2xy + (x2+2yu)—y + (&
J dx
y
2 + — +
X udx

of the indicated form

We have
{u:u(x) 1 =
y=yx)
0 =
du _
2 2 0 =
3us)y— = 0
du)dx
u
- = 0 =
ydx

2r
-2

2
2s

to y and putting u = v = 1, we get

=4(rs +1).

The given system can be solved for r and s as functions
of x and y near any point (r, s) where rs # —1.
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Thus
or S or 1
ax  20rs+ 1) ay  20rs+1)
as _ 1 as _ r
ax ~ 20rs+1) dy  2rs+1)°
X =rcosf, y =rsinf
a(x, y) cosf —rsiné
=", =r.
ar, 0) sinf  rcosf

The transformation is one-to-one (and hence invertible)
near any point where r # 0, that is, near any point except
the origin.

x =psingcos, y = psingsinf, z = pcos¢.

x,y,2)
Ip, $,0)

singpcosf pcos¢pcosd —psingsind
singsinf pcos¢sind  psingcos6
cos ¢ —psin¢g 0
pcos¢pcosd —psingsinf
pcos¢singd  psingcosb

= cos ¢

sin ¢ cos

+psing sin ¢ sin 0

p sing cosf

—psingsind ‘

= ,02 cos ¢[cos ¢ sin g cos? 6 + sin ¢ cos ¢ sin? 9]
+ ,02 sin ¢[sin2 1) cos? 6 + sin? ¢ sin? 6]

= p2 cos2¢sin¢ + p2 sin3¢> = p2 sin .

The transformation is one-to-one (and invertible) near any
point where p?sing # 0, that is, near any point not on

18.
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Let F(x,y,z,u,v) =xe” +uz—cosv—2

G(x7 yv,2,u, v) =ucosy +X21) _ yZ2 _ 1.
If Py is the point where (x, y,z) = (2,0,1) and

(u,v) = (1,0), then

Ja(F, G)
a(u, v)

Py

z sinv
cos y x2 Po
1 0

\1 4]_4.

Since this Jacobian is not zero, the equations F = G = 0
can be solved for u, and v in terms of x, y and z near

Py. Also,

(%)
0z Xy

(2,0,1)

__‘10

o(F, G)
a(z, v)
u
—2yz X

Py

sinv
2

Py

1
4
1
4
1
410 4

=t

the z-axis.

Let F(x,y,z,u,v) =xy> +zu+v> -3
G(x,y,z,u,v) = x>z +2y —uv —2
H(x,y,z,u,v) = xu+yv—xyz— .

Then

2
oG |, Y
—_— = X“Z X
(x. y,2) U—yz v—xz —xy

At point Py where x =y =z =u =v =1, we have

3(X,y,z) 00 —1 '

Since this Jacobian is not zero, the equations
F = G = H = 0 can be solved for x, y, and z as
functions of u and v near Py. Also,

474

(8y> __1(F.G, H)
o/l 4 d(x,u,2) |p,
Yooz ou
=—=1|3x%; —v x3
u—yz x —xyl'P
1 1 1
1 3
0o 1 -1

F(x,y,z,w) =0
Gx,y,z,w) =0
Hx,y,x,w) =0

. |

By Cramer’s Rule,

o(F, G, H)
dx 3@y, z,w)
dy o0(F,G,H)"

d(x, z, w)

=x(y)
=z(y)
=w(y)
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20. F(x,y,z,u,v) =0 Similarly,
Gx,y,z,u,v) =0
— 3%z 1
H(x,y,Z,M,g))C—O Py =—F[FzzFf—2F2F3F23+F22F33]-
To calculate P we require that x be one of three de- Y 3
Yy
pendent variables, and y be one of two independent vari- Also,
ables. The other independent variable can be z or u or
v. The possible interpretations for this partial, and their 9z 9z\ 9z 927
values, are Fio + FlBa— + <F32 + F333_> P + F3a o
o(F,G, H) y y/ oax yox
X\ _ (. u,v) Therefore
ay).” " (F.G.H)
d(x, u, v) 3%z e L PY.k Fi
o(F,G,H) dxdy - h 12 13 s 23 2
X\ _ 9(.z.v) P E
ay ), 9(F.G,H) +F33< 122)]
d(x, z,v) k3
1
M =——2[F32F12—F2F3F13—F1F3F23+F1F2F33].
ax\ Ay, z,u) £
ay),” 8(F.G.H)
a(x, z,u)

23. x=u+v, y=uv, z=u?+0v%

21. F(x1,x2,...,x3) =0 The first two equations define u and v as functions of x
and y, and therefore derivatives of z with respect to x
and y can be determined by the Chain Rule.
Differentiate the first two equations with respect to x:

G(x1,x2,...,x8) =0
H(xy,x2,...,x3) =0

a
To find a—xl we require that x; be one of three depen-
X

d a
dent variables, and that x, be one of five independent 1 = a_u + a_v
variables. The other four independent variables must be 3xu 3),3
chosen from among the six remaining variables. This can 0 = Ua + Ma
be done in 6 ol
= —— =15 ways. Th 8_u: “ d%: v d
(4> 412! o ax u—v an ax v—u’ an
ad
There are 15 possible interpretations for 8—2 9z 9z du . 9z dv
We have dx  dudx v dx
2 2 _ .2
a(F,G, H) = 2u u + 20 v (u v):Z(u—i—v):Zx.
(@) __ 9(x2,x3, x5) u—v vou u—v
0% ) o OF. G H) - e .
Similarly, differentiating the first two of the given equa-
d(x1, X3, X5) i :
ions with respect to y, we get
22, If F(x,y,2)=0 = z=z(x,y), then du v
0z 0z 0 = ay + ay
FitFee =0, Pt P =0 o o
ox dy _ u v
1 = v— + u—.
0z 0z 9z \ 3%z dy dy
Fu+Fi—+FBi—+F3(—) +F;5=0
ox ox ox dax Ju 1 v 1
Thus — = and — = , and
Thus dy v—u ay u—v
92 1 F )\
_i:__ |:F11—|—2F13 (——1)+F33 (__1> :| 0z _ 2u N v 2u—v) _ 5
dx F3 F3 F3 0y v—u u-—v v—u
1 2
:——3[F11F32—2F1F3F13+F12F33]. 97z —
F; 0xdy

475



www. nohandesyar . com

SECTION 12.8 (PAGE 698) R. A. ADAMS: CALCULUS
24, pV = _%, T =T(p. V) 26. Given F(x,y,u,v) =0,  G(x,y,u,v) =0, let
o7 4 8y aT A_E)(F,G) _QF 3G OF 3G
a)V:———2+—l;— T 3(x,y)  ax dy  dy ox
op T T3 ap . . . .
aT  8p T Then, regarding the given equations as defining x and y
p=—+-=—. as functions of u and v, we have
9V T3V .
Putting p =V =1 and T = 2, we obtain 0x _ 1 9(F, G) ay _ 1 a(F, G)
du A dw,y) du A, u)
T, ox __13(F.G) 3y __13(F.G)
ap v w A,y v Adxv)
9T 9T 1 Therefore,
soazlandwzz. Ix,y) 1 ((F,G)d(F,G) 9(F,G)IF,G)
Au,v) A2\ d(u,y) 9(x,v) a(v,y) 9(x,u)
oT oT A
b) dTZdeﬂLWdV. 1 (BFBG BFBG) (aFaG 8F8G>
If p=1,|dp] <0.001, V =1, and |dV]| < 0.002, A2\ du By dy du ax dv v 9x
then 7' =2 and dF 3G IF 3G\ (dF 3G IF 3G
1 dv dy dy dv ox du ou 0x
dT| = (1)(0.001) + 5(0.002) = 0.002. _ 1 [dF3GOFAG 9F 9G OF 0G
T OA2| du 9y dx dv By du dx dv
The approximate maximum error in 7 is 0.002. 0F 0GOF 0G  0F 0G 0F 0G
_ _|_ —_—
ou dy dv 0x dy du dv dx
25. F(x,y,2)=0 dF 3G dF 3G N dF 3G dF 3G
9 9x P dv dy 0x du dv dy Ju Bx_
Fl—) +F~=0 = - =— dF 0GAF 0G 9F G 9F aG
ay ), /., Fi - =
dy dv d0x du dy 0v du dx |
G (B B () _ B _ L[2FIGOFIG | 9F DG IF IG
imilarly, 32 ) =5 and | =~ , = TE ence A2 du dy 9x dv  dy du v Ix
' 0F 0GOF 0G dF G 9F 0G|
ox ay 0z 3 dv dy 0x Ju dy dv du Jx |
av) o) ) == 0 _ 1 (DFIG _9FIGY (9FIG _ DF G
A2\ 9x 3y 9y ox du dv v Ju
1 a(F,G)d(F,G
For F(x,y,z,u) = 0 we have, similarly, =— ( ) 3( )
A% d(x,y) 9(u,v)
(8x> (8y> <8z> (au> PR _LIFG) _F.G) [o(F,.G)
ay z,u aZ u,x ou X,y dx y.Z . A a(u’v) a(u’v) a(x’y)
L 27. By Exercise 26, with the roles of (x, y) and (u, v) re-
For F(x,y, z,u,v) =0 we have, similarly, versed. we have
<3x> (ay> <8z> (au> (au> du,v) _ I(F, G) B(F,G).
ay Z,U,v 0z U,v,x du v,X,y v X,¥,2 dx y,2,u B(x, y) B(x, y) 3(”, U)
= (-1’ =—1. Apply this with
Fx,y,u,v)= f(u,v) —x=0
In general, if F(xy, x2,...,x,) =0, then Gx,y,u,v) =g, v) —y=0
so that
(), (), ) 2[5 o)
axz X3 e X ax3 Xdyeeny Xpn X1 axl X2, Xn—1 8(X, y) 0 -1
= (=" and
= =D" I(F.G) _d(f.g)  dx.y)

o, v)  du,v) 9, v)
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and we obtain and
(8u> f _of dy
— =2 4 =
a(u, v) -1 a(x,y) ox /), Ox ay ax
o, y) [ ) _ L (fds _9r0g _
~0g \axay adyox)
dy
28. By the Chain Rule, This says that © = u(x, v) is independent of x, and so

depends only on v: u = k(v) for some function k of one

8_x B_x variable. Thus f(x,y) = k(g(x,y)), so f and g are
g; g; functionally dependent.
o, as
21%3_” z_x? 2_“;_” z_x? Section 12.9 Taylor Series and
= 3'; o 3; o 3'; & 3; i Approximations (page 704)
gu Brax v 8514 85,485 v s

is

1. Since the Maclaurin series for 1

_|ou av ar  ds
— | oy Oy v Jdv

_ 7 _ _ o0
ou v or  Os 1_;_;_;2_...:2(_1)";”,
Since the determinant of a product of matrices is the n=0
product of their determinants, we have the Taylor series for
1 1
d(x, d(x,y) d(u, v L y) = [
(e y) _ 3, y) 3 v). feN =T =1
a(r,s) a(u,v) 9, s) 1+ >
y2n
Vl
29. If f(x,y) = k(g(x, y)), then about (0,0) is Zo( D on+l "
n
2. Si ,y) =In(1
U (een) () AR
ox oy oy’ =In((1+2)(1+))
Theref =In(1 4+ x) + In(1 4 y),
eretore, the Taylor series for f about (0, 0) is
a(f, 0 00
(/.9 :k/< . )) 6.8 _, Z(_I)Hxn +y"
a(x, y) ar, s) ‘ n
n=
3. Since f(x,y) = tan~'(x + xy) = tan~!(ux), where
30. Letu= f(x,y) and v=g(x,y), and suppose that u =y + 1, the Taylor series for f about (0, —1) is
a(u, v) a(f’ g) (Mx)2n+l 00 nx2n+1(1 + y)2n+1
= =0 Z( 1" =Y -y
ax,y)  9x,y) IS 2n+1
for all (x, y). Thus 4., letu=x—1,v=y+ 1. Thus
afog _dfos fe=x>+xy+y°
dx dy  dy dx =u+D>+w+Ho—-D+@w-1)>

_ 2 _ _ 3_ 4.2 _
Now consider the equations u = f(x,y) and v = g(x, y) =1+2u+tu T+v—utuv+v” =307 +3v -1

as defining u and y as functions of x and v. Holding v = —1+u+4v+u® +uv — 30> + 03
constant and differentiating with respect to x, we get =—1l+Gx-D+4y+D+@x— D2
9 dgdy +Ha =D+ D =30+ D+ 6+
ax  dyoax This is the Taylor series for f about (1, —1).
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fx,y)=¢€"T The Taylor polynomial of degree 3 for f near (1,0) is
0 2 2\n
=ZM 2 —1) = (x = D2 +y2 —2(x — 1)3
n!
n=0

—2(x — Dy* + g(x -

1
n!
= 2
o0 n 2j.,2n=2j 9 f(x )— " e*fzdl‘
S appa =),

| — |
preardy I(n— !

x+y
This is the Taylor series for f about (0, 0). = /0 (l T ) dt
o
. x + 3y)2n+1 3 -ty
_ _ ATy t
f(x,y)—sm(2x+3y)—Z( iy )] =(t—?+-~->
n=0 0
o) 2n+1 1
Z —" Z @n+ D! (2x)! 3y)2rti-i =x+y -+ +
2+ 1) &~ j1@n+1—))! 3
n:O 2 )C3
S (— 1)”2132”+11 jy2n+l—j =xty _?—i_'”.
Z Z mx y2t=s, The Taylor polynomial of degree 3 for f near (0, 0) is
J:\an —J):
n=0 j=0
This is the Taylor series for f about (0, 0). 42 x3
x+y - —.
Letu=x—2,v=y—1 Then 3
Fle,y) = 1 _ 1 10.  f(x,y) = cos(x +siny)
24x—-2y 24 Q+u)—-2w+1 (x +siny)?  (x +siny)?
B 1 B 1 =1- o + -
T 24u-—2v u—2v ' 2
s 2(1+ . ) U
| "6 y—-)t

=l 1_u—2v+ u—2v 2_ u—2v 3+'” =1~ ) + 4
2 2 2 2 3 4

Lo 2 Xy Y
=1l—-c|x"+y +2xy—— — >+
1w v > w 2( 3 3
=7 3ttty o7 Loa .3 2.2 3,4
8 + (" +4x7y +6xTyT +4xyT +y 4.
v oW 3wty 3w VP 4
+ 2T 16 s 4 B o The Taylor polynomial of degree 4 for f near (0, 0) is
The Taylor polynomial of degree 3 for f about (2, 1) is x2 yvooxt oy
l———xy—"—4+—+x"y
5 2 2 4
l_x—2+y—1+(x—1) 3)C2y2 7)Cy Sy
2 4 2 8 T s T 12
x=2G-D - «-2
a 2 L T w
3()6—2)2(_))—1)_3()6—2)(_))—1)2 (y—l)3 11. Letu:x—z,vzy—l. Then
8 4 2 sinx  sin(u + w/2) cosu
fo,y) = =T 13rv " 11v
Let u = x — 1. Then Yo
f@y) =62+ 3D = In(1+2u +u’ + %) ( 2 )( )
2 22 w2
:(2u+uz+yz)_<2u+u+w I
2 2)3
+ w — The Taylor polynomial of degree 2 for f near (7/2,1) is
8u’ 1 T2
=2u+u2+y2—2u2—2u3—2uy2+T+---. 1—(y—1)—§<x—5) + (-1
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£y 1+x

X, y) = ——5—

YET A
=(+0(1- 6 +yh+)
=1+4+x—x>— ..

The Taylor polynomial of degree 2 for f near (0, 0) is

14 x —x2.

The equation x siny = y + sinx can be written
F(x,y) =0 where F(x,y)=xsiny —y —sinx.

Since F(0,0) = 0, and F>(0,0) = —1 # 0, the given
equation has a solution of the form y = f(x) where
f©0) =0.

Try y =aix + a2x2 + a3x3 + a4x4 + ---. Then

. s,
siny =y — —
y=y 6y
1
=a1x+a2x2+a3x3+a4x4+---—g(a1x+---)3+---

Substituting into the given equation we obtain

1
a1x2 +azx3 + (a3 — ga%> x4

1
=a1x+a2x2+03x3+a4x4+---+x—6x3+---.

Comparing coefficients of various powers of x on both
sides, we get

1
a+1=0, a =a, a3 —c=a
Thus a; = —1, a = —1, and a3 = —5/6. The required
solution is
y:—x—x2—§x3—|—---
5 .

The equation /T +xy = 1+x+In(1+y) can be rewritten
F(x,y) =0, where F(x,y) = /T+xy—1—x—In(1+y).
Since F(0,0) = 0 and F>(0,0) = —1 # 0, the given
equation has a solution of the form y = f(x) where

f(@©0)=0.
Try y =aix + azx2 +a3x3 + asx* 4+ ---. We have

V1+xy

=\/1+a1x2+a2x3+a3x4+---

1
=1+ 5(a1x2+a2x3—|—a3x4+---)

1
_g(a1x2+...)2_|_...
14+x+1In(1+y)
=l+x+(a1x+a2x2+a3x3+a4x4+---)

1 1
- E(alx +ax® +azx® +-- )7 + g(alx +ax?. ) —

15.

16.

SECTION 12.9 (PAGE 704)

Thus we must have

0=14a

1 1

Ea] =day) — Ea%

1 1 5

Eaz =a3 —ayay + gal

1 1 1

§a3 - galz = a4 — Ea% —ayas + alzaz,

d =—1 =0 = ! = ! Th ired
an 6.11 — ,a2 =0, a3 = 3,614— % e require
solution is

1 5 T 4
y=-—-x++ gx - ﬂx +

The equation x + 2y + z + % = 1 can be written
F(x,y,z) =0, where F(x,y,2) =x +2y +z+e% —1.
Since F(0,0,0) = 0 and F3(0,0,0) = 3 # 0, the given
equation has a solution of the form z = f(x, y), where
f£(0,0)=0.

Tryz:Ax+By+Cx2+ny+Ey2+---. Then

x+2y—|—Ax+By+Cx2+ny+Ey2+---
+142(Ax + By + Cx> + Dxy + Ey> + ...

+2(Ax +By+-- )+ =1,
Thus
1+A+2A=0 = A=-1/3
2+B+2B=0 = B=-2/3
C+2C0+242=0 = C=-2/27
D+2D+4AB=0 = D=-8/27
E+2E+4+2B*=0 = E=-8/27.

The Taylor polynomial of degree 2 for z is

The coefficient of x?y in the Taylor series for
f(x,y) =tan"!(x + y) about (0, 0) is

1 1
Hfm(O, 0) = §f112(0, 0).

But

1
tan’l(x+y)=x+y—§(x+y)3+---

1
=x+y—g(x3+3x2y+3xy2+y3)+~~

479



17.

www. nohandesyar . com

SECTION 12.9 (PAGE 704)

so the coefficient of xzy is —1. Hence f112(0,0) = —2.

Let f(x,y) = ——>—.
fx,y) T2 1 )2

The coefficient of x2*y2" in the Taylor series for f(x, y)
about (0, 0) is

1 34n
@@t axzaym ! V|
However,
o0
Oy =) (=D +yH
j=0
S L
=S (1) ' L2k 2j 2%k
i —k)!
= kG -k
The coefficient of x2*y2" is
(—1)2” 2n)! _ 2n)!
n'n! (nh?2"
a4n 2 !3
Thus —— f(r,y)| = IC ")2] .
dx“ngy=n (0,0) (n!)

Review Exercises 12 (page 704)

4 2
x4+ nad =C
X
x? —|—4y2 =Cx
2
(x—(C/2)> .

€27 A T
Ellipse: centre ((C/2), 0), semi-axes: C/2, C/4, with the
origin deleted.

C 2 '
=- C=1
C=-3 T

Fig. R-12.1

_— 140 + 30x2 — 60x + 120y2
N 8+ x2 — 2x + 4y2
100
=30-—
(x =12 +4y2+7
Ellipses: centre (1, 0), values of T between 30 — (100/7)
(minimum) at (1, 0) and 30 (at infinite distance from

(1, 0)).
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Fig. R-12.2

3. The graph is a saddle-like surface with downward slopes
for legs and a tail, thus monkey saddle.

Fig. R-12.3

4 fGy)= {83/@2 +y%) if (x.y) # 0.0)

5.

13 —0)/h?
10,0 =h‘£%;.% 1
£2(0,0) = lim —— =0.
For (x, y) # (0, 0), we have
x4 3x2 2
A, y) = (xz++7y2)y2
2x3
falx,y) = —ﬁ
£12(0,0) = kh_I;I(l) f1(0, k) ; 10,00 _ kh_%
£21(0,0) = lim f2(h, 0) - 200.0) _ lim 0 ; 0

3

if (x,y)=1(0,0)"

X =y

3

=& xy+y)H)

SOy =3

_y2_

x =y +y)

does not exist

=0.
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f is continuous except on the lines x = y and x = —y
where it is not defined. It has a continuous extension,
2 2
x“+xy+ .
namely #, to all points of x = y except the
X

origin. It cannot be extended so as to be continuous at
the origin. For example, if (x, y) — (0, 0) along the
curve y = —x + x*, then

22— x4 x5 4+ (x* = x)? _x6—x3+1
= - i

[, y)=

x4 X
which — oo as x — 0.

If we define f(0,0) = 0, then
fh0) = f0.0)  h

0,0)=lm ———=1Ilim—-—=1
50,0 hg% h hl_rf})h

. f0,k) — f(0,0) .k
0,0) = lim —— <~~~ — Jim - = I.
/0.0 kg% k ki%k

Fla,y) = et TS f,-n=1
fl (X, y) — 2(X _ l)ex272x74y2+5 fl(l’ _1) =0

2 2x—4y?45 a0, -1 =8.

falx,y) = —8ye

a) The tangent plane to z = f(x,y) at (1, —1,1) has
equation z =1+ 8(y+ 1), or z =8y +09.

b) fx,y))=C=@x—-1*>—4y’+4=InC

= @x—-12—-4y>=InC —4.
These are hyperbolas with centre (1, 0) and asymp-
totes x = 1 £ 2y.

C=10,000
Fig. R-12.6

7. Let f(x,y,z) = x2> + y?>+ 4z%. Then S has equation

f(x,y,z)=16.

a) Vf(a,b,c)=2ai+ 2bj+ 8ck. The tangent plane to
S at (a, b, c) has equation

2a(x —a) +2b(y —b) +4c(z—c)=0, or
ax + by 4+ 4cz = a® + b* + 4¢* = 16.

b) The tangent plane ax + by +4cz = 16 passes through
(0,0,4) if 16¢ = 16, that is, if ¢ = 1. In this case
a?+b? = 16—4c% = 12. These points (a, b, ¢) lie on
a horizontal circle of radius /12 centred at 0,0,1)
in the plane z = 1.

REVIEW EXERCISES 12 (PAGE 704)

¢) The tangent plane of part (a) is parallel to the plane
X4 y+242z =97 if

ai+ bj + 4ck = t(i +j + 2v2Kk),

that is, a =, b =1, ¢ = t/+/2. Then

16 = a®> + b*> + 4¢*> = 4%, 501 = +2. The
two points on § where the tangent plane is par-
allel to x + y + 242z = 97 are (2,2, +/2) and
(=2, =2, —/2).

11 1
R R R
1 1 1
— —dR=-——dR — —dR,
2 2 2
R R;

1
If R = 100 and R, = 25, so that R = 20, and if
|dR1/R1| =5/100 and |dRy/R>| = 2/100, then

1 |dR - 1 5 +1 2 13

20| R |~ 100 100 25 100 1002
Thus |[dR/R| < 13/500; R can be in error by about
2.6%.

The measured sides of the field are x = 150 m and

y = 200 m with |[dx| = 1 and |dy| = 1, and
the contained angle between them is & = 30° with
|[dO] = 2° = /90 rad. The area A of the field satis-
fies

1
A= Exy sinf ~ 7, 500

dA = %sin@dx—k%sin@dy—!— %cos@d@
175 V3

s
= —~ 115,000=" . — ~ 541.
S +15,000== - o x5

The area is 7,500 m2, accurate to within about 540 m?
for a percentage error of about 7.2%.

10. 7 =x3y+y3z+2%x.

a) VT = (3x%y + )i+ Gy’ z+x)j+ B2x + y)k
vTrQ2,—-1,0) = —-12i+8j— k.
A unit vector in the direction from (2, —1, 0) to-
wards (1, 1, 2) is u = (—i + 2j + 2k)/3. The direc-
tional derivative of T at (2, —1, 0) in the direction of
uis
12+16—-2 26

VT(2,-1,00)= —— = ==,
ue ( ) 3 3

b) Since V(2x% 4 3y? +z%) = 4xi+ 6yj + 27k, at t =0
the fly is at (2, —1,0) and is moving in the direction
+(8i — 6j), so its velocity is

8i — 6
10

+5

= £(4i — 3j).

481
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Since the fly is moving in the direction of increasing
T, the rate at which it experiences T increasing is

dT
=13 e (—12i 4 8j — k)| =48 +24 =72,

11.  f(x,y,2) =x%y + yz + 22

) Vfry.2)=20i+ i+ (v + 20k
Vi, —-1.1)=-2i+2j+k.
The directional derivative of f in the direction i+ k

at (1, —1,1) is
1tk (=2i+2j+k) !

e (—Z1 = ——.

V2 ! V2

b) The plane x+y+z = 1 intersects the level surface of
f through (1, —1, 1) in a curve whose tangent vector
at (1, —1, 1) is perpendicular to both V f(1, —1, 1)
and the normal vector i+j+k to the plane. Thus the
ant is crawling in the direction of the cross product
of these vectors:

i j k
£=2 2 1|=4(+3j—4k).
111

c) The second ant is crawling in the direction of the
vector projection of V f(1, —1, 1) onto the plane
x+y+z =1, which is Vf(1, —1, 1) minus its vector
projection onto the normal to that plane:

vVid,-1,1)e(i+j+k)

VF, —1,1) — - i+j+k
1 ) TR G+j+k
L 1, . ~7i+5j + 2k
=—21+2]+1<—§(1+J+k)=fJ

that is, in the direction —7i + 5j + 2Kk.

. TTX
12. f(x,y,z)=(x2+z2)sm7y+yz2, Py=(1,1,—1).

a) Vf:(2xsin¥+%(x2+zz)cos¥)i
X X
+ (—(x2 + ZZ) cos ™y + 22>j
2 2
+2z (sin% +y)k
Vf(Py) =2i+j—4k.
b) Since f(Po) = 2+ 1 = 3, the linearization of f at
Py is

Lx,y,2)=34+2x—-1)+@G -1 —4@z+1).

482
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c) The tangent plane at Py to the level surface of f
through Py has equation

Vi(Py)e ((x C it (= Dj+ G+ l)k) -0

20—+ (-1 —-4z+1)=0
2x +y—4z="1.

d) The bird is flying in direction
Q2-Di+(-1-Dj+ 1+ Dk =i-2j+ 2k,
a vector of length 3. Since the bird’s speed is 5, its
velocity is
v= g(i —2j + 2Kk).
The rate of change of f as experienced by the bird
is
40

af _ _2p_2-g=-2
T =VeVI(R) =32 -2-8) =——

e) To experience the greatest rate of increase of f
while flying through Py at speed 5, the bird should
fly in the direction of V f(F), that is, 2i + j — 4k.

13. u =k(lncosf — Incos X)
k k

k(= Lean ™ tan >
= _— n— = — n —
h P any

1
uy:k(—tanz> :tanX

k k k
—leec2t
Uyy = ksec X
2Y
= —sec” =
Uyy A
Uyy =0
(1+u§)uyy — unuxuylyxy + (14 u%)um
1 1
= —seczfseczz —0——seczzseczf =0.
k k k k k k
14. If F(x,y,2) =0, G(x,y,z) = 0 are solved for x = x(y),
z = z(y), then

dx dz
— 4+ F F;— =0
dy+ 2+ 3dy

dz
dy

Fi

dx
Gl— 4+ G2+ G3 =0.
dy

Eliminating dz/dy from these equations, we obtain

dx F,G3; — F3G,

dy  FiG3— F;Gi’
Similarly, if the equations are solved for x = x(2),
y = y(z), then

dy _ 3Gy — F1G3
dz = FG|—FG
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and if the equations are solved for y = y(x), z = z(x),

then
dz  FGy— PG
dx ~ F3Gy— F,G3'
Hence
dx dy dz
dy dz dx
_ Gy — F3Gy F3Gp — F1G3 F]Gz—FzGl_
 FiIG3—F3G, F2.G|—FG, F3G,—F2G3

15. x=u’—wv

y = 3uv + 20?
Assume these equations define u = u(x,y)
and v = wv(x,y) near the point P where

w,v,x,y)=(-1,2,1,2).

a) Differentiating both equations with respect to x, we
get
d a d

1=3u2—u—v—u —u—v

ox ax ax
ou av av
0=3v—+3u—+4v—.
v ox . ox v ox

At P, these equations become

a 0 a a
1= % 9=t 4527
dx  0x ax ox
from which we obtain au/ax‘P = 5.

Similarly, differentiating the given equations with
respect to y leads to

d a ad a
0= =+ 22 1=60 452,
dy  dy ay ay

from which we obtain 8u/8y’P =1.

b) Since u(1,2) = —1, we have

3
0(1.02,1.97) ~ —1 + 2
aIx

9
0.02) + 2
P dy

(—0.03)
P

=—1-5(0.02) + 1(-0.03) = —1.13.

16. u=x2+y?

v=1x?— 2)cy2

Assume these equations define x = x(u, v) and

y = y(u, v) near the point (u, v) = (5, —=7), with x =1
and y = 2 at that point.

a) Differentiate the given equations with respect to u to

obtain 5 5
=22 40y
ou

ox ay

0=2(x —y})— —dxy—=.

(x y)8 You

1.

CHALLENGING PROBLEMS 12 (PAGE 705)

Atx=1,y=2,
ox ay
2—+4—=1
ou + du
d d
L2 gy
ou ou
from which we obtain dx/du = —1 and

0y/ou = 3/4 at (5, —17).
b) If z = In(y? — x2), then

0z 1 ax ay
LA ML NN
ou yz—xz[ *au T yau]

At (4, v) = (5, —7), we have (x,y) = (1, 2), and so
0z 1 3 5
2 aena(2)]-2

Challenging Problems 12 (page 705)

a) If f is differentiable at (a, b), then its graph has a
nonvertical tangent plane at (a, b, f(a, b)). Any line
through that point, part of which lies on the surface
z = f(x,y) near (a,b), must be tangent to that
surface at (a, b), so must lie in the tangent plane.

b) The surface S with equation z = y g(x/y) has the
property that if P = (xo, yo, 2o0) is any point on
it, then all points other than the origin on the line
joining Py to the origin also lie on S. Specifically, if
t # 0, then (¢xo, tyo, tzo) lies on S, because

txo X0
tzo=tyog|\— )< z20=y08| — |-
tyo Yo

Thus S consists entirely of lines through the origin;
it is some kind of “cone” with vertex at the origin.

By part (a), all tangent planes to S contain the lines
on § through the points of contact, so all tangent

planes must pass through the origin.
Let the position vector of the particle at time ¢ be
r = x(t)i+ y(t)j+z(¢)k. Then the velocity of the particle
is
dx dy dz
= — i —— j — k
vEa A T

This velocity must be parallel to
Vfx,y,z) =—2xi—4yj+ 6zk
at every point of the path, that is,

dx dy

t t dz 6t
— = —2tx, — = — s — = s
dr dr Yoo T

483
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dx dy dz . .

so that — = —— = —. Integrating these equations,
—2x —4y 62

we get

Inly|=2In|x|+Ci, Inlz|=-3In|x|+ Ca.

Since the path passes through (1, 1, 8), C; and C; are

determined by
Inl=2In1+C;, In8=-3Inl+ Cs.

Thus C; = 0 and C2 = In8. The path therefore has

equations y = x2, z = 8/x3. Evidently (2,4, 1) lies on

the path, and (3,7, 0) does not.

We used Maple V to verify the stated identity. Using
r, p, and t to represent p, ¢, and 6, respectively, we
defined

> v := (r,p,t) ->

> u(r*sin(p)*cos(t),
r*sin(p) *sin(t),

> r*cos (p)) ;

and then asked Maple to calculate and simplify the left
side of the identity:

simplify (diff(v(xr,,p,t),r$2)
+(2/r)*diff(v(r,p,t),r)

+(cot (p) /r"2)*diff (v(r,p,t),p)
+(1/r"2)*diff (v(r,p,t) ,pS$2)
+(

>
>
>
>
>
Maple responded with

Dy, 1(u) + D33(u) + D2n(u),
with all three terms evaluated at

(r sin(p) cos(t), r sin(p) sin(t), r cos(p)), thus confirming
the identity.

484
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1/ (r*sin(p)) "2) *diff (v(r,p,t),ts$2));
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Sfp —ct)
P

fulkx,y,z,t) =v(p,t) = is independent of 6

and ¢, then

2u 07w 2w % 2 v

—St—St—S=—m+=—
0x2  9yr  9z2  9p%  p dp
by Problem 3. We have

w_ fp—ct)  flp—en

ap P p?
v f(p—ct) 2f(p—ct)  2f(p—ci)
I _ +
ap? o p? 03
w _ cf'(p—ct)
ar P
9%v _ 2 f"(p — ct)
a2 p
2y 2 dv
% p op
_ M=ty 2f'(p—ct)  2f(p—ct)
o p? 03
2f'(p—ct)  2f(p—ct)
* p? s
_fp—ct)
0
1% 1 %
T2 92 T2 92

The function f(p — ct)/p represents the shape of a sym-
metrical wave travelling uniformly away from the origin
at speed c. Its amplitude at distance p from the origin
decreases as p increases; it is proportional to the recipro-
cal of p.



