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CHAPTER 11. VECTOR FUNCTIONS
AND CURVES

Section 11.1 Vector Functions of
One Variable (page 597)

1. Position: r = i + tj
Velocity: v = j
Speed: v = 1
Acceleration : a = 0
Path: the line x = 1 in the xy-plane.

2. Position: r = t2i + k
Velocity: v = 2t i
Speed: v = 2|t |
Acceleration : a = 2i
Path: the line z = 1, y = 0.

3. Position: r = t2j + tk
Velocity: v = 2tj + k
Speed: v = √

4t2 + 1
Acceleration : a = 2j
Path: the parabola y = z2 in the plane x = 0.

4. Position: r = i + tj + tk
Velocity: v = j + k
Speed: v = √

2
Acceleration : a = 0
Path: the straight line x = 1, y = z.

5. Position: r = t2i − t2j + k
Velocity: v = 2t i − 2tj
Speed: v = 2

√
2t

Acceleration: a = 2i − 2j
Path: the half-line x = −y ≥ 0, z = 1.

6. Position: r = t i + t2j + t2k
Velocity: v = i + 2tj + 2tk
Speed: v = √

1 + 8t2

Acceleration: a = 2j + 2k
Path: the parabola y = z = x2.

7. Position: r = a cos t i + a sin tj + ctk
Velocity: v = −a sin t i + a cos tj + ck
Speed: v = √

a2 + c2

Acceleration: a = −a cos t i − a sin tj
Path: a circular helix.

8. Position: r = a cos ωt i + bj + a sin ωtk
Velocity: v = −aω sin ωt i + aω cos ωtk
Speed: v = |aω|
Acceleration: a = −aω2 cos ωt i − aω2 sin ωtk
Path: the circle x2 + z2 = a2, y = b.

9. Position: r = 3 cos t i + 4 cos tj + 5 sin tk
Velocity: v = −3 sin t i − 4 sin tj + 5 cos tk
Speed: v = √

9 sin2 t + 16 sin2 t + 25 cos2 t = 5
Acceleration : a = −3 cos t i − 4 cos tj − 5 sin tk = −r
Path: the circle of intersection of the sphere
x2 + y2 + z2 = 25 and the plane 4x = 3y.

10. Position: r = 3 cos t i + 4 sin tj + tk
Velocity: v = −3 sin t i + 4 cos tj + k
Speed: v = √

9 sin2 t + 16 cos2 t + 1 = √
10 + 7 cos2 t

Acceleration : a = −3 cos t i − 4 sin tj = tk − r
Path: a helix (spiral) wound around the elliptic cylinder
(x2/9) + (y2/16) = 1.

11. Position: r = aet i + bet j + cetk
Velocity and acceleration: v = a = r
Speed: v = et

√
a2 + b2 + c2

Path: the half-line
x

a
= y

b
= z

c
> 0.

12. Position: r = at cos ωt i + at sin ωtj + b ln tk
Velocity: v = a(cos ωt − ωt sin ωt)i

+ a(sin ωt + ωt cos ωt)j + (b/t)k
Speed: v = √

a2(1 + ω2t2) + (b2/t2)

Acceleration: a = −aω(2 sin ωt + ω cos ωt)i

+ aω(2 cos ωt − ω sin ωt)j − (b/t2)k
Path: a spiral on the surface x2 + y2 = a2ez/b .

13. Position: r = e−t cos(et )i + e−t sin(et )j − et k

Velocity: v = −
(

e−t cos(et ) + sin(et )
)

i

−
(

e−t sin(et ) − cos(et )
)

j − et k

Speed: v = √
1 + e−2t + e2t

Acceleration: a =
(
(e−t − et ) cos(et ) + sin(et )

)
i

+
(
(e−t − et ) sin(et ) − cos(et )

)
j − et k

Path: a spiral on the surface z
√

x2 + y2 = −1.

14. Position: r = a cos t sin t i + a sin2 tj + a cos tk

= a

2
sin 2t i + a

2

(
1 − cos 2t

)
j + a cos tk

Velocity: v = a cos 2t i + a sin 2tj − a sin tk
Speed: v = a

√
1 + sin2 t

Acceleration: a = −2a sin 2t i + 2a cos 2tj − a cos tk
Path: the path lies on the sphere x2 + y2 + z2 = a2, on
the surface defined in terms of spherical polar coordinates
by φ = θ , on the circular cylinder x2 + y2 = ay, and on
the parabolic cylinder ay + z2 = a2. Any two of these
surfaces serve to pin down the shape of the path.

15. The position of the particle is given by

r = 5 cos(ωt)i + 5 sin(ωt)j,

where ω = π to ensure that r has period 2π/ω = 2 s.
Thus

a = d2r
dt2 = −ω2r = −π2r.

At (3, 4), the acceleration is −3π2i − 4π2j.
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16. When its x-coordinate is x , the particle is at position
r = x i + (3/x)j, and its velocity and speed are

v = dr
dt

= dx

dt
i − 3

x2

dx

dt
j

v =
∣∣∣∣
dx

dt

∣∣∣∣

√

1 + 9

x4
.

We know that dx/dt > 0 since the particle is moving to
the right. When x = 2, we have
10 = v = (dx/dt)

√
1 + (9/16) = (5/4)(dx/dt). Thus

dx/dt = 8. The velocity at that time is v = 8i − 6j.

17. The particle moves along the curve z = x2, x + y = 2, in
the direction of increasing y. Thus its position at time t
is

r = (2 − y)i + yj + (2 − y)2k,

where y is an increasing function of time t . Thus

v = dy

dt

[
−i + j − 2(2 − y)k

]

v = dy

dt

√
1 + 1 + 4(2 − y)2 = 3

since the speed is 3. When y = 1, we have
dy/dt = 3/

√
6 = √

3/2. Thus

v =
√

3

2
(−i + j − 2k).

18. The position of the object when its x-coordinate is x is

r = x i + x2j + x3k,

so its velocity is v = dx

dt

[
i + 2xj + 3x2k

]
. Since

dz/dt = 3x2 dx/dt = 3, when x = 2 we have
12 dx/dt = 3, so dx/dt = 1/4. Thus

v = 1

4
i + j + 3k.

19. r = 3ui + 3u2j + 2u3k

v = du

dt
(3i + 6uj + 6u2k)

a = d2u

dt2 (3i + 6uj + 6u2k) +
(

du

dt

)2

(6j + 12uk).

Since u is increasing and the speed of the particle is 6,

6 = |v| = 3
du

dt

√
1 + 4u2 + 4u4 = 3(1 + 2u2)

du

dt
.

Thus
du

dt
= 2

1 + 2u2 , and

d2u

dt2
= −2

(1 + 2u2)2
4u

du

dt
= −16u

(1 + 2u2)3
.

The particle is at (3, 3, 2) when u = 1. At this point
du/dt = 2/3 and d2u/dt2 = −16/27, and so

v = 2

3
(3i + 6uj + 6u2k) = 2i + 4j + 4k

a = −16

27
(3i + 6j + 6k) +

(
2

3

)2

(6j + 12k)

= 8

9
(−2i − j + 2k).

20. r = x i − x2j + +x2k

v = dx

dt
(i − 2xj + 2xk)

a = d2x

dt2
(i − 2xj + 2xk) +

(
dx

dt

)2

(−2j + 2k).

Thus |v| =
∣∣∣∣
dx

dt

∣∣∣∣
√

1 + 4x4 + 4x4 = √
1 + 8x4 dx

dt
,

since x is increasing. At (1, −1, 1), x = 1 and
|v| = 9, so dx/dt = 3, and the velocity at that point
is v = 3i − 6j + 6k. Now

d

dt
|v| =

√
1 + 8x4 d2x

dt2 + 16x3
√

1 + 8x4

(
dx

dt

)2

.

The left side is 3 when x = 1, so 3(d2x/dt2) + 48 = 3,
and d2x/dt2 = −15 at that point, and the acceleration
there is

a = −15(i − 2j + 2k) + 9(−2j + 2k) = −15i + 12j − 12k.

21.
d

dt
|v|2 = d

dt
v • v = 2v • a.

If v • a > 0 then the speed v = |v| is increasing.
If v • a < 0 then the speed is decreasing.

22. If u(t) = u1(t)i + u2(t)j + u3(t)k
v(t) = v1(t)i + v2(t)j + v3(t)k

then u • v = u1v2 + u2v2 + u3v3, so

d

dt
u • v = du1

dt
v1 + u1

dv1

dt
+ du2

dt
v2 + u2

dv2

dt

+ du3

dt
v3 + u3

dv3

dt

= du
dt

• v + u • dv
dt

.
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23.
d

dt

∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣

= d

dt

[
a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31

]

= a′
11a22a33 + a11a′

22a33 + a11a22a′
33

+ a′
12a23a31 + a12a′

23a31 + a12a23a′
31

+ a′
13a21a32 + a13a′

21a32 + a13a21a′
32

− a′
11a23a32 − a11a′

23a32 − a11a23a′
32

− a′
12a21a33 − a12a′

21a33 − a12a21a′
33

− a′
13a22a31 − a13a′

22a31 − a13a22a′
31

=
∣∣∣∣∣

a′
11 a′

12 a′
13

a21 a22 a23
a31 a32 a33

∣∣∣∣∣
+
∣∣∣∣∣

a11 a12 a13
a′

21 a′
22 a′

23
a31 a32 a33

∣∣∣∣∣

+
∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a′

31 a′
32 a′

33

∣∣∣∣∣

24.
d

dt
|r|2 = d

dt
r • r = 2r • v = 0 implies that |r| is constant.

Thus r(t) lies on a sphere centred at the origin.

25.
d

dt
|r − r0|2 = d

dt
(r − r0) • (r − r0)

= 2(r − r0) • dr
dt

= 0

implies that |r − r0| is constant. Thus r(t) lies on a
sphere centred at the point P0 with position vector r0.

26. If r • v > 0 then |r| is increasing. (See Exercise 16
above.) Thus r is moving farther away from the origin.
If r • v < 0 then r is moving closer to the origin.

27.
d

dt

(
du
dt

× d2u
dt2

)
= d2u

dt2 × d2u
dt2 + du

dt
× d3u

dt3

= du
dt

× d3u
dt3 .

28.
d

dt

(
u • (v × w)

)

= u′ • (v × w) + u • (v′ × w) + u • (v × w′).

29.
d

dt

(
u × (v × w)

)

= u′ × (v × w) + u × (v′ × w) + u × (v × w′).

30.
d

dt

(
u ×

(
du
dt

× d2u
dt2

))

= du
dt

×
(

du
dt

× d2u
dt2

)
+ u ×

(
d2u
dt2

× d2u
dt2

)

+ u ×
(

du
dt

× d3u
dt3

)

= du
dt

×
(

du
dt

× d2u
dt2

)
+ u ×

(
du
dt

× d3u
dt3

)
.

31.
d

dt

[
(u + u′′) • (u × u′)

]

= (u′ + u′′′) • (u × u′) + (u + u′′) • (u′ × u′)
+ (u + u′′) • (u × u′′)

= u′′′ • (u × u′).

32.
d

dt

[
(u × u′) • (u′ × u′′)

]

= (u′ × u′) • (u′ × u′′) + (u × u′′) • (u′ × u′′)
+ (u × u′) • (u′′ × u′′) + (u × u′) • (u′ × u′′′)

= (u × u′′) • (u′ × u′′) + (u × u′) • (u′ × u′′′).

33. Since
dr
dt

= v(t) = 2r(t) and r(0) = r0, we have

r(t) = r(0)e2t = r0e2t ,

a(t) = dv
dt

= 2
dr
dt

= 4r0e2t .

The path is the half-line from the origin in the direction
of r0.

34. r = r0 cos ωt +
(v0

ω

)
sin ωt

dr
dt

= −ωr0 sin ωt + v0 cos ωt

d2r
dt2 = −ω2r0 cos ωt − ωv0 sin ωt = −ω2r

r(0) = r0,
dr
dt

∣∣∣∣
t=0

= v0.

Observe that r • (r0 × v0) = 0 for all t . Therefore the
path lies in a plane through the origin having normal
N = r0 × v0.
Let us choose our coordinate system so that r0 = ai
(a > 0) and v0 = ωbi + ωcj (c > 0). Therefore, N is in
the direction of k. The path has parametric equations

x = a cos ωt + b sin ωt

y = c sin ωt.

The curve is a conic section since it has a quadratic
equation:

1

a2

(
x − by

c

)2

+ y2

c2 = 1.

Since the path is bounded (|r(t)| ≤ |r0| + (|v0|/ω)), it
must be an ellipse.

If r0 is perpendicular to v0, then b = 0 and the path is
the ellipse (x/a)2 + (y/c)2 = 1 having semi-axes a = |r0|
and c = |v0|/ω.

35.
d2r
dt2 = −gk − c

dr
dt

r(0) = r0,
dr
dt

∣∣∣∣
t=0

= v0.
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Let w = ect dr
dt

. Then

dw
dt

= cect dr
dt

+ ect d2r
dt2

= cect dr
dt

− ect gk − cect dr
dt

= −ect gk

w(t) = −
∫

ect gk dt = − ect

c
gk + C.

Put t = 0 and get v0 = − g

c
k + C, so

ect dr
dt

= w = v0 + g

c
(1 − ect )k

dr
dt

= e−ct v0 − g

c
(1 − e−ct )k

r = − e−ct

c
v0 − g

c

(
t + e−ct

c

)
k + D

r0 = r(0) = −1

c
v0 − g

c2 k + D.

Thus we have

r = r0 + 1 − e−ct

c
v0 − g

c2 (ct + e−ct − 1)k.

The limit of this solution, as c → 0, is calculated via
l’Hôpital’s Rule:

lim
c→0

r(t) = r0 + v0 lim
c→0

te−ct

1
− gk lim

c→0

t − te−ct

2c

= r0 + v0t − gk lim
c→0

t2e−ct

2

= r0 + v0t − 1

2
gt2k,

which is the solution obtained in Example 4.

Section 11.2 Some Applications of Vector
Differentiation (page 604)

1. It was shown in the text that

v(T ) − v(0) = − ln

(
m(0)

m(T )

)
ve.

If v(0) = 0 and v(T ) = −ve then ln(m(0)/m(T )) = 1
and m(T ) = (1/e)m(0). The rocket must therefore

burn fraction
e − 1

e
of its initial mass to accelerate to

the speed of its exhaust gases.

Similarly, if v(T ) = −2ve, then m(T ) = (1/e2)m(0), so

the rocket must burn fraction
e2 − 1

e2 of its initial mass to

accelerate to twice the speed of its exhaust gases.

2. Let v(t) be the speed of the tank car at time t seconds.
The mass of the car at time t is m(t) = M − kt kg.
At full power, the force applied to the car is F = Ma
(since the motor can accelerate the full car at a m/s2).
By Newton’s Law, this force is the rate of change of the
momentum of the car. Thus

d

dt

[
(M − kt)v

]
= Ma

(M − kt)
dv

dt
− kv = Ma

dv

Ma + kv
= dt

M − kt
1

k
ln(Ma + kv) = −1

k
ln(M − kt) + 1

k
ln C

Ma + kv = C

M − kt
.

At t = 0 we have v = 0, so Ma = C/M . Thus
C = M2a and

kv = M2a

M − kt
− Ma = Makt

M − kt
.

The speed of the tank car at time t (before it is empty) is

v(t) = Mat

M − kt
m/s.

3. Given:
dr
dt

= k × r, r(0) = i + k.

Let r(t) = x(t)i + y(t)j + z(t)k. Then x(0) = z(0) = 1
and y(0) = 0.
Since k • (dr/dt) = k • (k × r) = 0, the velocity is always
perpendicular to k, so z(t) is constant: z(t) = z(0) = 1
for all t . Thus

dx

dt
i + dy

dt
j = dr

dt
= k × r = xj − yi.

Separating this equation into components,

dx

dt
= −y,

dy

dt
= x .

Therefore,
d2x

dt2 = −dy

dt
= −x,

and x = A cos t + B sin t . Since x(0) = 1 and y(0) = 0,
we have A = 1 and B = 0. Thus x(t) = cos t and
y(t) = sin t . The path has equation

r = cos t i + sin tj + k.
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Remark: This result also follows from comparing
the given differential equation with that obtained for cir-
cular motion in the text. This shows that the motion is
a rotation with angular velocity k, that is, rotation about
the z-axis with angular speed 1. The initial value given
for r then forces

r = cos t i + sin tj + k.

4. First observe that

d

dt
|r− b|2 = 2(r− b)• dr

dt
= 2(r− b)•

(
a× (r− b)

)
= 0,

so |r − b| is constant; for all t the object lies on the
sphere centred at the point with position vector b having
radius r0 − b.
Next, observe that

d

dt
(r − r0) • a =

(
a × (r − b)

)
• a = 0,

so r − r0 ⊥ a; for all t the object lies on the plane
through r0 having normal a. Hence the path of the ob-
ject lies on the circle in which this plane intersects the
sphere described above. The angle between r − b and a
must therefore also be constant, and so the object’s speed
|dr/dt | is constant. Hence the path must be the whole
circle.

5. Use a coordinate system with origin at the observer, i
pointing east, and j pointing north. The angular velocity
of the earth is 2π/24 radians per hour northward:

Ω = π

12
j.

Because the earth is rotating west to east, the true north
to south velocity of the satellite will appear to the ob-
server to be shifted to the west by π R/12 km/h, where R
is the radius of the earth in kilometres. Since the satellite
circles the earth at a rate of π radians/h, its velocity, as
observed at the moving origin, is

vR = −π Rj − π R

12
i.

vR makes angle tan−1
(

π R/12

π R

)
= tan−1(1/12) ≈ 4.76◦

with the southward direction. Thus the satellite appears
to the observer to be moving in a direction 4.76◦ west of
south.

The apparent Coriolis force is

−2Ω × vR = −2π

12
j ×

(
−π Rj − π R

12
i
)

= −π2 R

72
k,

which is pointing towards the ground.

6. We use the fixed and rotating frames as described in
the text. Assume the satellite is in an orbit in the plane
spanned by the fixed basis vectors I and K. When the
satellite passes overhead an observer at latitude 45◦, its
position is

R = R
I + K√

2
,

where R is the radius of the earth, and since it circles the
earth in 2 hours, its velocity at that point is

V = π R
I − K√

2
.

The angular velocity of the earth is Ω = (π/12)K.

The rotating frame with origin at the observer’s position
has, at the instant in question, its basis vectors satisfying

I = − 1√
2

j + 1√
2

k

J = i

K = 1√
2

j + 1√
2

k.

As shown in the text, the velocity v of the satellite as it
appears to the observer is given by V = v + Ω × R. Thus

v = V − Ω × R

= π R√
2

(I − K) − pi

12
K × R√

2
(I + K)

= π R√
2

(I − K) − π R

12
√

2
J

= −π Rj − π R

12
√

2
i.

v makes

angle tan−1

(
π R/12

√
2

π R

)

= tan−1(1/(12
√

2) ≈ 3.37◦

with the southward direction. Thus the satellite appears
to the observer to be moving in a direction 3.37◦ west of
south.

The apparent Coriolis force is

−2Ω × v = −2
π

12
K ×

(
π R√

2
(I − K − π R

12
√

2
J
)

= −π2 R

6
√

2

(
J + 1

12
I
)

= −π2 R

6
√

2

(
i + 1

12
√

2
(−j + k)

)
.
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7. The angular velocity of the earth is Ω, pointing due
north. For a particle moving with horizontal velocity
v, the tangential and normal components of the Coriolis
force C, and of Ω, are related by

CT = −2ΩN × v, CN = −2ΩT × v.

At the north or south pole, ΩT = 0 and ΩN = Ω. Thus
CN = 0 and CT = −2Ω × v. The Coriolis force is
horizontal. It is 90◦ east of v at the north pole and 90◦
west of v at the south pole.

At the equator, ΩN = 0 and ΩT = Ω. Thus CT = 0 and
CN = −2Ω × v. The Coriolis force is vertical.

8. We continue with the same notation as in Example 4.
Since j points northward at the observer’s position,
the angle µ between the direction vector of the sun,
S = cos σ I + sin σJ and north satisfies

cos µ = S • j = − cos σ cos φ cos θ + sin σ sin φ.

For the sun, θ = 0 and at sunrise and sunset we have, by
Example 4, cos θ = − tan σ/ tan φ, so that

cos µ = cos σ cos φ
tan σ

tan φ
+ sin σ sin φ

= sin σ
cos2 φ

sin φ
+ sin σ sin φ

= sin σ

sin φ
.

9. At Vancouver, φ = 90◦ − 49.2◦ = 40.8◦. On June
21st, σ = 23.3◦. Ignoring the mountains and the rain, by
Example 4 there will be

24

π
cos−1

(
− tan 23.3◦

tan 40.8◦
)

≈ 16

hours between sunrise and sunset. By Exercise 8, the sun
will rise and set at an angle

cos−1
(

sin 23.3◦

sin 40.8◦
)

≈ 52.7◦

to the east and west of north.

10. At Umeå, φ = 90◦ − 63.5◦ = 26.5◦. On June 21st,
σ = 23.3◦. By Example 4 there will be

24

π
cos−1

(
− tan 23.3◦

tan 26.5◦
)

≈ 20

hours between sunrise and sunset. By Exercise 8, the sun
will rise and set at an angle

cos−1
(

sin 23.3◦

sin 26.5◦
)

≈ 27.6◦

to the east and west of north.

Section 11.3 Curves and Parametrizations
(page 611)

1. On the first quadrant part of the circle x2 + y2 = a2

we have x = √
a2 − y2, 0 ≤ y ≤ a. The required

parametrization is

r = r(y) =
√

a2 − y2i + yj, (0 ≤ y ≤ a).

2. On the first quadrant part of the circle x2 + y2 = a2

we have y = √
a2 − x2, 0 ≤ x ≤ a. The required

parametrization is

r = r(x) = x i +
√

a2 − x2j, (0 ≤ x ≤ a).

3. From the figure we see that

φ = θ + π

2
, 0 ≤ θ ≤ π

2

x = a cos θ = a cos
(
φ − π

2

)
= a sin φ

y = a sin θ = a sin
(
φ − π

2

)
= −a cos φ.

The required parametrization is

r = a sin φi − a cos φj,
(π

2
≤ φ ≤ π

)
.

y

x

θ

(x,y)

φ

a

a

Fig. 11.3.3

4. x = a sin
s

a
, y = a cos

s

a
, 0 ≤ s

a
≤ π

2

r = a sin
s

a
i + a cos

s

a
j,

(
0 ≤ s ≤ aπ

2

)
.
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y

x

s
a

s

(x,y)

a

a

Fig. 11.3.4

5. z = x2, z = 4y2. If t = y, then z = 4t2, so x = ±2t .
The curve passes through (2,−1, 4) when t = −1, so
x = −2t . The parametrization is r = −2t i + tj + 4t2k.

6. z = x2, x + y + z = 1. If t = x , then
z = t2 and y = 1 − t − t2. The parametrization is
r = t i + (1 − t − t2)j + t2k.

7. z = x + y, x2 + y2 = 9. One possible parametrization is
r = 3 cos t i + 3 sin tj + 3(cos t + sin t)k.

8. x + y = 1, z = √
1 − x2 − y2. If x = t , then y = 1 − t

and
z = √

1 − t2 − (1 − t)2 = √
2(t − t2). One possible

parametrization is

r = t i + (1 − t)j +
√

2(t − t2)k.

9. z = x2 + y2, 2x − 4y − z − 1 = 0. These surfaces intersect
on the vertical cylinder

x2 + y2 = 2x − 4y − 1, that is

(x − 1)2 + (y + 2)2 = 4.

One possible parametrization is

x = 1 + 2 cos t

y = −2 + 2 sin t

z = −1 + 2(1 + 2 cos t) − 4(−2 + 2 sin t) = 9 + 4 cos t − 8 sin t

r = (1 + 2 cos t)i − 2(1 − sin t)j + (9 + 4 cos t − 8 sin t)k.

10. yz + x = 1, xz − x = 1. One possible parametrization is
x = t , z = (1 + t)/t , and y = (1 − t)/z = (1 − t)t/(1 + t),
that is,

r = t i + t − t2

1 + t
j + 1 + t

t
k.

11. z2 = x2 + y2, z = 1 + x .

a) If t = x , then z = 1+ t , so 1+ 2t + t2 = t2 + y2, and
y = ±√

1 + 2t . Two parametrizations are needed to
get the whole parabola, one for y ≤ 0 and one for
y ≥ 0.

b) If t = y, then x2 + t2 = z2 = 1 + 2x + x2, so
2x + 1 = t2, and x = (t2 − 1)/2. Thus
z = 1 + x = (t2 + 1)/2. The whole parabola is
parametrized by

r = t2 − 1

2
i + tj + t2 + 1

2
k.

c) If t = z, then x = t − 1 and t2 = t2 − 2t + 1 + y2,
so y = ±√

2t − 1. Again two parametrizations are
needed to get the whole parabola.

12. By symmetry, the centre of the circle C of intersection of
the plane x + y + z = 1 and the sphere x2 + y2 + z2 = 1
must lie on the plane and must have its three coordinates
equal. Thus the centre has position vector

r0 = 1

3
(i + j + k).

Since C passes through the point (0, 0, 1), its radius is

√(
0 − 1

3

)2

+
(

0 − 1

3

)2

+
(

1 − 1

3

)2

=
√

2

3
.

Any vector v that satisfies v • (i + j + k) = 0 is parallel to
the plane x + y + z = 1 containing C. One such vector is
v1 = i − j. A second one, perpendicular to v1, is

v2 = (i + j + k) × (i − j) = i + j − 2k.

Two perpendicular unit vectors that are parallel to the
plane of C are

v̂1 = i − j√
2

, v̂2 = i + j − 2k√
6

.

Thus one possible parametrization of C is

r = r0 +
√

2

3
(cos t v̂1 + sin t v̂2)

= i + j + k
3

+ cos t√
3

(i − j) + sin t

3
(i + j − 2k).

13. r = t2i + t2j + t3k, (0 ≤ t ≤ 1)

v =
√

(2t)2 + (2t)2 + (3t2)2 = t
√

8 + 9t2

Length =
∫ 1

0
t
√

8 + 9t2 dt Let u = 8 + 9t2

du = 18t dt

= 1

18

2

3
u3/2

∣∣∣∣

17

8
= 17

√
17 − 16

√
2

27
units.
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14. r = t i + λt2j + t3k, (0 ≤ t ≤ T )

v =
√

1 + (2λt)2 + 9t4 =
√

(1 + 3t2)2

if 4λ2 = 6, that is, if λ = ±√
3/2. In this case, the

length of the curve is

s(T ) =
∫ T

0
(1 + 3t2) dt = T + T 3.

15. Length =
∫ T

1

∣∣∣∣
dr
dt

∣∣∣∣ dt

=
∫ T

1

√

4a2t2 + b2 + c2

t2 dt units.

If b2 = 4ac then

Length =
∫ T

1

√(
2at + c

t

)2
dt

=
∫ T

1

(
2at + c

t

)
dt

= a(T 2 − 1) + c ln T units.

16. x = a cos t sin t = a

2
sin 2t ,

y = a sin2 t = a

2
(1 − cos 2t),

z = bt .
The curve is a circular helix lying on the cylinder

x2 +
(

y − a

2

)2 = a2

4
.

Its length, from t = 0 to t = T , is

L =
∫ T

0

√
a2 cos2 2t + a2 sin2 2t + b2 dt

= T
√

a2 + b2 units.

17. r = t cos t i + t sin tj + tk, 0 ≤ t ≤ 2π

v = (cos t − t sin t)i + (sin t + t cos t)j + k

v = |v| =
√

(1 + t2) + 1 =
√

2 + t2.
The length of the curve is

L =
∫ 2π

0

√
2 + t2 dt Let t = √

2 tan θ

dt = √
2 sec2 θ dθ

= 2
∫ t=2π

t=0
sec3 θ dθ

=
(

sec θ tan θ + ln | sec θ + tan θ |
)∣∣∣∣

t=2π

t=0

= t
√

2 + t2

2
+ ln

(√
2 + t2
√

2
+ t√

2

)∣∣∣∣

2π

0

= π
√

2 + 4π2 + ln
(√

1 + 2π2 + √
2π
)

units.

The curve is called a conical helix because it is a spiral
lying on the cone x2 + y2 = z2.

18. One-eighth of the curve C lies in the first octant. That
part can be parametrized

x = cos t, z = 1√
2

sin t, (0 ≤ t ≤ π/2)

y =
√

1 − cos2 t − 1

2
sin2 t = 1√

2
sin t.

Since the first octant part of C lies in the plane y = z, it
must be a quarter of a circle of radius 1. Thus the length
of all of C is 8 × (π/2) = 4π units.
If you wish to use an integral, the length is

8
∫ π/2

0

√

sin2 t + 1

2
cos2 t + 1

2
cos2 t dt

= 8
∫ π/2

0
dt = 4π units.

x
y

z

x2 + y2 + z2 = 1

x2 + 2z2 = 1

C

Fig. 11.3.18

19. If C is the curve

x = et cos t, y = et sin t, z = t, (0 ≤ t ≤ 2π),

then the length of C is

L =
∫ 2π

0

√(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt

=
∫ 2π

0

√
e2t (cos t − sin t)2 + e2t (sin t + cos t)2 + 1 dt

=
∫ 2π

0

√
2e2t + 1 dt Let 2e2t + 1 = v2

2e2t dt = v dv

=
∫ t=2π

t=0

v2 dv

v2 − 1
=
∫ t=2π

t=0

(
1 + 1

v2 − 1

)
dv

=
(

v + 1

2
ln

∣∣∣∣
v − 1

v + 1

∣∣∣∣

)∣∣∣∣

t=2π

t=0
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=
√

2e4π + 1 − √
3 + 1

2
ln

√
2e2t + 1 − 1√
2e2t + 1 + 1

∣∣∣∣

2π

0

=
√

2e4π + 1 − √
3 + ln

√
2e2t + 1 − 1√

2et

∣∣∣∣

2π

0

=
√

2e4π + 1 − √
3 + ln

(√
2e4π + 1 − 1

)

− 2π − ln(
√

3 − 1) units.

Remark: This answer appears somewhat different
from that given in the answers section of the text. The
two are, however, equal. Somewhat different simplifica-
tions were used in the two.

20. r = t3i + t2j

v = 3t2i + 2tj

v = |v| =
√

9t4 + 4t2 = |t |
√

9t2 + 4

The length L between t = −1 and t = 2 is

L =
∫ 0

−1
(−t)

√
9t2 + 4 dt +

∫ 2

0
t
√

9t2 + 4 dt.

Making the substitution u = 9t2 + 4 in each integral, we
obtain

L = 1

18

[∫ 13

4
u1/2 du +

∫ 40

4
u1/2 du

]

= 1

27

(
133/2 + 403/2 − 16

)
units.

21. r1 = t i + tj, (0 ≤ t ≤ 1) represents the straight line
segment from the origin to (1, 1) in the xy-plane.

r2 = (1 − t)i + (1 + t)j, (0 ≤ t ≤ 1) represents the straight
line segment from (1, 1) to (0, 2).

Thus C = C1 + C2 is the 2-segment polygonal line from
the origin to (1, 1) and then to (0, 2).

22. (Solution due to Roland Urbanek, a student at Okanagan
College.) Suppose the spool is vertical and the cable
windings make angle θ with the horizontal at each point.

b a

2a

θ

H

Fig. 11.3.22

The centreline of the cable is wound around a cylinder of

radius a+b and must rise a vertical distance
2a

cos θ
in one

revolution. The figure below shows the cable unwound
from the spool and inclined at angle θ . The total length
of spool required is the total height H of the cable as
shown in that figure.

θ

2a
cos θ

a
a

L sin θ

2a cos θ

L

2π(a + b)
one revolution

Fig. 11.3.22

Observe that tan θ = 2a

cos θ
× 1

2π(a + b)
. Therefore

sin θ = a

π(a + b)

cos θ =
√

1 − a2

π2(a + b)2 =
√

π2(a + b)2 − a2

π(a + b)
.

The total length of spool required is

H = L sin θ + 2a cos θ

= a

π(a + b)

(
L + 2

√
π2(a + b)2 − a2

)
units.

23. r = At i + Btj + Ctk.
The arc length from the point where t = 0 to the point
corresponding to arbitrary t is

s = s(t) =
∫ t

0

√
A2 + B2 + C2 du =

√
A2 + B2 + C2 t.

Thus t = s/
√

A2 + B2 + C2. The required parametriza-
tion is

r = Asi + Bsj + Csk√
A2 + B2 + C2

.

24. r = et i + √
2tj − e−t k

v = et i + √
2j + e−t k

v = |v| = √
e2t + 2 + e−2t = et + e−t .

The arc length from the point where t = 0 to the point
corresponding to arbitrary t is

s = s(t) =
∫ t

0
(eu + e−u) du = et − e−t = 2 sinh t.
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Thus t = sinh−1(s/2) = ln

(
s + √

s2 + 4

2

)

,

and et = s + √
s2 + 4

2
. The required parametrization is

r = s + √
s2 + 4

2
i+√

2 ln

(
s + √

s2 + 4

2

)

j− 2k

s + √
s2 + 4

.

25. r = a cos3 t i + a sin3 tj + b cos 2tk, 0 ≤ t ≤ π

2
v = −3a cos2 t sin t i + 3a sin2 t cos tj − 4b sin t cos tk

v =
√

9a2 + 16b2 sin t cos t

s =
∫ t

0

√
9a2 + 16b2 sin u cos u du

= 1

2

√
9a2 + 16b2 sin2 t = K sin2 t

where K = 1

2

√
9a2 + 16b2

Therefore sin t =
√

s

K
, cos t =

√
1 − s

K
,

cos 2t = 1 − 2 sin2 t = 1 − 2s

K
.

The required parametrization is

r = a
(

1 − s

K

)3/2
i + a

( s

K

)3/2 + b

(
1 − 2s

K

)
k

for 0 ≤ s ≤ K , where K = 1

2

√
9a2 + 16b2.

26. r = 3t cos t i + 3t sin tj + 2
√

2t3/2k, (t ≥ 0)

v = 3(cos t − t sin t)i + 3(sin t + t cos t)j + 3
√

2
√

tk

v = |v| = 3
√

1 + t2 + 2t = 3(1 + t)

s =
∫ t

0
3(1 + u) du = 3

(
t + t2

2

)

Thus t2+2t = 2s

3
, so t = −1+

√

1 + 2s

3
since t ≥ 0. The

required parametrization is the given one with t replaced
by −1 + √

1 + (2s)/3.

27. As claimed in the statement of the problem,

r1(t) = r2

(
u(t)

)
, where u is a function from [a, b] to

[c, d], having u(a) = c and u(b) = d . We assume u
is differentiable. Since u is one-to-one and orientation-
preserving, du/dt ≥ 0 on [a, b]. By the Chain Rule:

d

dt
r1(t) = d

du
r2(u)

du

dt
,

and so

∫ b

a

∣∣∣∣
d

dt
r1(t)

∣∣∣∣ dt =
∫ b

a

∣∣∣∣
d

du
r2

(
u(t)

)∣∣∣∣
du

dt
dt =

∫ d

c

∣∣∣∣
d

du
r2(u)

∣∣∣∣ du.

28. If r = r(t) has nonvanishing velocity v = dr/dt on
[a, b], then for any t0 in [a, b], the function

s = g(t) =
∫ t

t0
|v(u)| du,

which gives the (signed) arc length s measured from r(t0)
along the curve, is an increasing function:

ds

dt
= g′(t) = |v(t)| > 0

on [a, b], by the Fundamental Theorem of Calculus.
Hence g is invertible, and defines t as a function of arc
length s:

t = g−1(s) ⇔ s = g(t).

Then
r = r2(s) = r

(
g−1(s)

)

is a parametrization of the curve r = r(t) in terms of arc
length.

Section 11.4 Curvature, Torsion, and the
Frenet Frame (page 619)

1. r = t i − 2t2j + 3t3k

v = i − 4tj + 9t2k

v =
√

1 + 16t2 + 81t4

T̂ = v
v

= i − 4tj + 9t2k√
1 + 16t2 + 81t4

.

2. r = a sin ωt i + a cos ωtk
v = aω cos ωt i − aω sin ωtk, v = |aω|
T̂ = sgn(aω)

[
cos ωt i − sin ωtk

]
.

3. r = cos t sin t i + sin2 t + cos tk

= 1

2
sin 2t i + 1

2
(1 − cos 2t)j + cos tk

v = cos 2t i + sin 2tj − sin tk

v = |v| =
√

1 + sin2 t

T̂ = 1√
1 + sin2 t

(
cos 2t i + sin 2tj − sin tk

)
.

4. r = a cos t i + b sin tj + tk
v = −a sin t i + b cos tj + k

v =
√

a2 sin2 t + b2 cos2 t + 1

T̂ = v
v

= −a sin t i + b cos tj + k√
a2 sin2 t + b2 cos2 t + 1

.
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5. If κ(s) = 0 for all s, then
dT̂
ds

= κN̂ = 0, so

T̂(s) = T̂(0) is constant. This says that
dr
ds

= T̂(0), so

r = T̂(0)s + r(0), which is the vector parametric equation
of a straight line.

6. If τ(s) = 0 for all s, then
dB̂
ds

= −τ N̂ = 0, so B̂(s) = B̂(0) is constant. Therefore,

d

ds

(
r(s) − r(0)

)
• B̂(s) = dr

ds
• B̂(s) = T̂(s) • B̂(s) = 0.

It follows that
(

r(s) − r(0)
)

• B̂(0) =
(

r(s) − r(0)
)

• B̂(s) = 0

for all s. This says that r(s) lies in the plane through
r(0) having normal B̂(0).

7. The circle C1 given by

r = 1

C
cos Csi + 1

C
sin Csj

is parametrized in terms of arc length, and has curvature
C and torsion 0. (See Examples 2 and 3.)
If curve C has constant curvature κ(s) = C and constant
torsion τ(s) = 0, then C is congruent to C1 by Theorem
3. Thus C must itself be a circle (with radius 1/C).

8. The circular helix C1 given by

r = a cos t i + a sin tj + btk

has curvature and torsion given by

κ(s) = a

a2 + b2
, τ (s) = b

a2 + b2
,

by Example 3.
if a curve C has constant curvature κ(s) = C > 0, and
constant torsion τ(s) = T 
= 0, then we can choose a and
b so that

a

a2 + b2 = C,
b

a2 + b2 = T .

(Specifically, a = C

C2 + T 2 , and b = T

C2 + T 2 .) By

Theorem 3, C is itself a circular helix, congruent to C1.

Section 11.5 Curvature and Torsion for
General Parametrizations (page 625)

1. For y = x2 we have

κ(x) = |d2 y/dx2|
(1 + (dy/dx)2)3/2 = 2

(1 + 4x2)3/2 .

Hence κ(0) = 2 and κ(
√

2) = 2/27. The radii of cur-
vature at x = 0 and x = √

2 are 1/2 and 27/2, respec-
tively.

2. For y = cos we have

κ(x) = |d2 y/dx2|
(1 + (dy/dx)2)3/2 = | cos x |

(1 + sin2 x)3/2 .

Hence κ(0) = 1 and κ(π/2) = 0. The radius of curvature
at x = 0 is 1. The radius of curvature at x = π/2 is
infinite.

3. r = 2t i + (1/t)j − 2tk

v = 2i − (1/t2)j − 2k

a = (2/t3)j

v × a = (4/t3)i + (4/t3)k
At (2, 1,−2), that is, at t = 1, we have

κ = κ(1) = |v × a|
v3

= 4
√

2

27
.

Thus the radius of curvature is 27/(4
√

2).

4. r = t3i + t2j + tk

v = 3t2i + 2tj + k
a = 6t i + 2j

v(1) = 3i + 2j + k, a(1) = 6i + 2j
v(1) × a(1) = −2i + 6j − 6k

κ(1) =
√

4 + 36 + 36

(9 + 4 + 1)3/2
= 2

√
19

143/2

At t = 1 the radius of curvature is 143/2/(2
√

19).

5. r = t i + t2j + 2k
v = i + 2tj
a = 2j

v × a = 2k
At (1, 1, 2), where t = 1, we have

T̂ = v/|v| = (i + 2j)/
√

5

B̂ = (v × a)/|v × a| = k

N̂ = B̂ × T̂ = (−2i + j)/
√

5.
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6. r = t i + t2j + tk
v = i + 2tj + k
a = 2j

v × a = −2i + 2k
At (1, 1, 1), where t = 1, we have

T̂ = v/|v| = (i + 2j + k)/
√

6

B̂ = (v × a)/|v × a| = −(i − k)/
√

2

N̂ = B̂ × T̂ = −(i − j + k)/
√

3.

7. r = t i + t2

2
j + t3

3
k

v = i + tj + t2k

a = j + 2tk,
da
dt

= 2k

v × a = t2i − 2tj + k

v = |v| =
√

1 + t2 + t4, |v × a| =
√

1 + 4t2 + t4

(v × a) • da
dt

= 2

T̂ = v
v

= i + tj + t2k√
1 + t2 + t4

B̂ = v × a
|v × a| = t2i − 2tj + k√

1 + 4t2 + t4

N̂ = B̂ × T̂ = −(2t3 + t)i + (1 − t4)j + (t3 + 2t)k
√

(1 + t2 + t4)(1 + 4t2 + t4)

κ = |v × a|
v3 =

√
1 + 4t2 + t4

(1 + t2 + t4)3/2

τ =
(v × a) • da

dt
|v × a|2 = 2

1 + 4t2 + t4 .

8. r = et cos t i + et sin tj + et k
v = et (cos t − sin t)i + et (sin t + cos t)j + et k
a = −2et sin t i + 2et cos tj + et k

da
dt

= −2et (cos t + sin t)i + 2et (cos t − sin t)j + et k

v × a = e2t (sin t − cos t)i − e2t (cos t + sin t)j + 2e2t k

v = |v| = √
3et , |v × a| = √

6e2t

(v × a) • da
dt

= 2e3t

T̂ = v
v

= (cos t − sin t)i + (cos t + sin t)j + k√
3

B̂ = v × a
|v × a| = (sin t − cos t)i − (cos t + sin t)j + 2k√

6

N̂ = B̂ × T̂ = − (cos t + sin t)i − (cos t − sin t)j√
2

κ = |v × a|
v3

=
√

2

3et

τ =
(v × a) • da

dt
|v × a|2 = 1

3et
.

9. r = (2 + √
2 cos t)i + (1 − sin t)j + (3 + sin t)k

v = −√
2 sin t i − cos tj + cos tk

v =
√

2 sin2 t + cos2 t + cos2 t = √
2

a = −√
2 cos t i + sin tj − sin tk

da
dt

= √
2 sin t i + cos tj − cos tk

v × a = −√
2j − √

2k

κ = |v × a|
v3 = 2

2
√

2
= 1√

2

(v × a) • da
dt

= −√
2 cos t + √

2 cos t = 0

τ = 0.

Since κ = 1/
√

2 is constant, and τ = 0, the curve is a
circle. Its centre is (2, 1, 3) and its radius is

√
2. It lies

in a plane with normal j + k(= −√
2B̂).

10. r = x i + sin xj

v = dx

dt
i + cos x

dx

dt
j = k(i + cos xj)

v = k
√

1 + cos2 x

a = −k sin x
dx

dt
j = −k2 sin xj

v × a = −k3 sin xk

κ = |v × a|
v3 = | sin x |

(1 + cos2 x)3/2 .
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The tangential and normal components of acceleration are

dv

dt
= k

2
√

1 + cos2 x
2 cos x)(− sin x)

dx

dt
= − k2 cos x sin x√

1 + cos2 x

v2κ = k2| sin x |√
1 + cos2 x

.

11. r = sin t cos t i + sin2 tj + cos tk
v = cos 2t i + sin 2tj − sin tk
a = −2 sin 2t i + 2 cos 2tj − cos tk

da
dt

= −4 cos 2t i − 4 sin 2tj + sin tk.

At t = 0 we have v = i, a = 2j − k,
da
dt

= −4i,

v × a = j + 2k, (v × a) • da
dt

= 0.

Thus T̂ = i, B̂ = (j + 2k)/
√

5, N̂ = (2j − k)/
√

5,
κ = √

5, and τ = 0.

At t = π/4 we have v = j − 1√
2

k, a = −2i − 1√
2

k,

da
dt

= −4j + 1√
2

k, v × a = − 1√
2

i + √
2j + 2k,

(v × a) • da
dt

= −3
√

2.

Thus

T̂ = 1√
3
(
√

2j − k)

B̂ = 1√
13

(−i + 2j + 2
√

2k)

N̂ = − 1√
39

(6i + j + √
2k)

κ = 2
√

39

9
, τ = −6

√
2

13
.

12. r = a cos t i + b sin tj
v = −a sin t i + b cos tj
a = −a cos t i − b sin tj

v × a = abk

v =
√

a2 sin2 t + b2 cos2 t .

The tangential component of acceleration is

dv

dt
= (a2 − b2) sin t cos t√

a2 sin2 t + b2 cos2 t
,

which is zero if t is an integer multiple of π/2, that is, at
the ends of the major and minor axes of the ellipse.
The normal component of acceleration is

v2κ = v2 |v × a|
v3

= ab√
a2 sin2 t + b2 cos2 t

.

13. The ellipse is the same one considered in Exercise 16, so
its curvature is

κ = ab

(a2 sin2 t + b2 cos2 t)3/2

= ab
(
(a2 − b2) sin2 t + b2

)3/2 .

If a > b > 0, then the maximum curvature occurs when
sin t = 0, and is a/b2. The minimum curvature occurs
when sin t = ±1, and is b/a2.

14. By Example 2, the curvature of y = x2 at (1, 1) is

κ = 2

(1 + 4x2)3/2

∣∣∣∣
x=1

= 2

5
√

5
.

Thus the magnitude of the normal acceleration of the
bead at that point is v2κ = 2v2/(5

√
5).

The rate of change of the speed, dv/dt , is the tan-
gential component of the acceleration, and is due entirely
to the tangential component of the gravitational force
since there is no friction:

dv

dt
= g cos θ = g(−j) • T̂,

where θ is the angle between T̂ and −j. (See the fig-
ure.) Since the slope of y = x2 at (1, 1) is 2, we have
T̂ = −(i + 2j)/

√
5, and therefore dv/dt = 2g/

√
5.

y

x

v2κN̂

−gj

(1, 1)

dv

dt
T̂

y = x2

θ

Fig. 11.5.14

15. Curve: r = x i + ex j.
Velocity: v = i + ex j. Speed: v = √

1 + e2x .
Acceleration: a = ex j. We have

v × a = exk, |v × a| = ex .

The curvature is κ = ex

(1 + e2x)3/2 . Therefore, the radius

of curvature is ρ = (1 + e2x )3/2

ex
.
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The unit normal is

N̂ = B̂ × T̂ = (v × a) × v
|(v × a) × v| = −ex i + j√

1 + e2x
.

The centre of curvature is

rc = r + ρN̂

= x i + ex j + (1 + e2x)

(
−i + 1

ex
j
)

= (x − 1 − e2x )i + (2ex + e−x )j.

This is the equation of the evolute.

16. The curve with polar equation r = f (θ) is given para-
metrically by

r = f (θ) cos θ i + f (θ) sin θ j.

Thus we have

v =
(

f ′(θ) cos θ − f (θ) sin θ
)

i

+
(

f ′(θ) sin θ + f (θ) cos θ
)

j

a =
(

f ′′(θ) cos θ − 2 f ′(θ) sin θ − f (θ) cos θ
)

i

+
(

f ′′(θ) sin θ + 2 f ′(θ) cos θ − f (θ) sin θ
)

j

v = |v| =
√(

f ′(θ)
)2 +

(
f (θ)

)2

v × a =
[
2
(

f ′(θ)
)2 +

(
f (θ)

)2 − f (θ) f ′′(θ)
]
k.

The curvature is, therefore,

|2
(

f ′(θ)
)2 +

(
f (θ)

)2 − f (θ) f ′′(θ)|
[(

f ′(θ)
)2 +

(
f (θ)

)2]3/2 .

17. If r = a(1 − cos θ), then r ′ = a sin θ , and r ′′ = a cos θ .
By the result of Exercise 20, the curvature of this car-
dioid is

κ = 1
(

a2 sin2 θ + a2(1 − cos θ)2
)3/2 ×

∣∣∣2a2 sin2 θ

+ a2(1 − cos θ)2 − a2(cos θ − cos2 θ)

∣∣∣

= 3a2(1 − cos θ)
(

2a2(1 − cos θ)
)3/2 = 3

2
√

2ar
.

18. By Exercise 8 of Section 2.4, the required curve must be
a circular helix with parameters a = 1/2 (radius), and
b = 1/2. Its equation will be

r = 1

2
cos t i1 + 1

2
sin tj1 + 1

2
tk1 + r0

for some right-handed basis {i1, j1, k1}, and some con-
stant vector r0. Example 3 of Section 2.4 provides values
for T̂(0), N̂(0), and B̂(0), which we can equate to the
given values of these vectors:

i = T̂(0) = 1√
2

j1 + 1√
2

k1

j = N̂(0) = −i1

k = B̂(0) = − 1√
2

j1 + 1√
2

k1.

Solving these equations for i1, j1, and k1 in terms of the
given basis vectors, we obtain

i1 = −j

j1 = 1√
2

i − 1√
2

k

k1 = 1√
2

i + 1√
2

k.

Therefore

r(t) = t + sin t

2
√

2
i − cos t

2
j + t − sin t

2
√

2
k + r0.

We also require that r(0) = i, so r0 = i + 1

2
j. The

required equation is, therefore,

r(t) =
(

t + sin t

2
√

2
+ 1

)
i + 1 − cos t

2
j + t − sin t

2
√

2
k.

19. Given that
dr
dt

= c × r(t), we have

d

dt
|r|2 = d

dt
r • r = 2r • (c × r) = 0

d

dt

(
r(t) − r(0)

)
• c = dr

dt
• c = (c × r) • c = 0.

Thus |r(t)| = |r(0)| is constant, and
(

r(t) − r(0)
)

• c = 0

is constant. Thus r(t) lies on the sphere centred at the
origin with radius |r(0)|, and also on the plane through
r(0) with normal c. The curve is the circle of intersec-
tion of this sphere and this plane.

20. For r = a cos t i + a sin tj + btk, we have, by Example 3
of Section 2.4,

N̂ = − cos t i − sin tj, κ = a

a2 + b2 .
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The centre of curvature rc is given by

rc = r + ρN̂ = r + 1

κ
N̂.

Thus the evolute has equation

r = a cos t i + a sin tj + btk

− a2 + b2

a
(cos t i + sin tj)

= −b2

a
cos t i − b2

a
sin tj + btk.

The evolute is also a circular helix.

21. The parabola y = x2 has curvature

κ = 2

(1 + 4x2)3/2
,

by Exercise 18. The normal at (x, x2) is perpendicular to
the tangent, so has slope −1/(2x). Since the unit normal
points upward (the concave side of the parabola), we
have

N̂ = −2x i + j√
1 + 4x2

.

Thus the evolute of the parabola has equation

r = x i + x2j + (1 + 4x2)3/2

2

( −2x i + j√
1 + 4x2

)

= x i + x2j − (1 + 4x2)x i + 1 + 4x2

2
j

= −4x3i +
(

3x2 + 1

2

)
j.

22. For the ellipse r = 2 cos t i + sin tj, we have

v = −2 sin t i + cos tj
a = −2 cos t i − sin tj
v × a = 2k

v =
√

4 sin2 t + cos2 t =
√

3 sin2 t + 1.

The curvature is κ = 2

(3 sin2 t + 1)3/2
, so the radius of

curvature is ρ = (3 sin2 t + 1)3/2

2
. We have

T̂ = −2 sin t i + cos tj√
3 sin2 t + 1

, B̂ = k

N̂ = − cos t i + 2 sin tj√
3 sin2 t + 1

.

Therefore the evolute has equation

r = 2 cos t i + sin tj − 3 sin2 t + 1

2
(cos t i + 2 sin tj)

= 3

2
cos3 i − 3 sin3 tj.

23. We require that

f (1) = 1,

f (−1) = −1,

f ′(1) = 0,

f ′(−1) = 0,

f ′′(1) = 0,

f ′′(−1) = 0.

As in Example 5, we try a polynomial of degree 5. How-
ever, here it is clear that an odd function will do, and we
need only impose the conditions at x = 1. Thus we try

f (x) = Ax + Bx3 + Cx5

f ′(x) = A + 3Bx2 + 5Cx4

f ′′(x) = 6Bx + 20Cx3.

The conditions at x = 1 become

A + B + C = 1
A + 3B + 5C = 0

6B + 20C = 0.

This system has solution A = 15/8, B = −5/4, and
C = 3/8. Thus

f (x) = 15

8
x − 5

4
x3 + 3

8
x5

is one possible solution.
y

x

y=1

y=−1

y= f (x)

(−1,−1)

(1,1)

Fig. 11.5.23

24. We require

f (0) = 1,

f (−1) = 1,

f ′(0) = 0,

f ′(−1) = 0,

f ′′(0) = −1,

f ′′(−1) = 0.

The condition f ′′(0) = −1 follows from the fact that

d2

dx2

√
1 − x2

∣∣∣∣
x=0

= −1.
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As in Example 5, we try

f (x) = A + Bx + Cx2 + Dx3 + Ex4 + Fx5

f ′(x) = B + 2Cx + 3Dx2 + 4Ex3 + 5Fx4

f ′′ = 2C + 6Dx + 12Ex2 + 20Fx3.

The required conditions force the coefficients to satisfy
the system of equations

A − B + C − D + E − F = 1

B − 2C + 3D − 4E + 5F = 0

2C − 6D + 12E − 20F = 0

A = 1

B = 0

2C = −1

which has solution A = 1, B = 0, C = −1/2, D = −3/2,
E = −3/2, F = −1/2. Thus we can use a track section
in the shape of the graph of

f (x) = 1 − 1

2
x2 − 3

2
x3 − 3

2
x4 − 1

2
x5 = 1 − 1

2
x2(1 + x)3.

y

x

(−1,1)

x2+y2=1

y=1 y= f (x)

Fig. 11.5.24

25. Given: a(t) = λ(t)r(t) + µ(t)v(t), v × a 
= 0. We have

v × a = λv × r + µv × v = λv × r
da
dt

= λ′r + λv + µ′v + µa

= λ′r + (λ + µ′)v + µ(λr + µv)

= (λ′ + µλ)r + (λ + µ′ + µ2)v.

Since v × r is perpendicular to both v and r, we have

(v × a) • da
dt

= 0.

Thus the torsion τ(t) of the curve is identically zero.
It remains zero when expressed in terms of arc length:
τ(s) = 0. By Exercise 6 of Section 2.4, r(t) must be a
plane curve.

26. After loading the LinearAlgebra and VectorCalculus pack-
ages, issue the following commands:

> R := t -> <cos(t), 2*sin(t),
cos(t)>;
> assume(t::real):
> interface(showassumed=0):
> V := t -> diff(R(t),t):
> A := t -> diff(V(t),t):
> v := t -> Norm(V(t),2):
> VxA := t -> V(t) &x A(t):
> vxa := t -> Norm(VxA(t),2):
> Ap := t -> diff(A(t),t):
> Curv := t ->
> simplify(vxa(t)/(v(t))ˆ3):
> Tors := t -> simplify(
> (VxA(t).Ap(t))/(vxa(t))ˆ2):
> Curv(t); Tors(t);

This leads to the values

√
2

(cos(t)2 + 1)
√

2 cos(t)2 + 2
and 0

for the curvature and torsion, respectively. Maple
doesn’t seem to recognize that the curvature simplifies
to 1/(cos2 t +1)3/2. The torsion is zero because the curve
is lies in the plane z = x . It is the ellipse in which this
plane intersects the ellipsoid 2x2 + y2 + 2z2 = 4. The
maximum and minimum values of the curvature are 1
and 1/23/2, respectively, at the ends of the major and
minor axes of the ellipse.

27. After loading the LinearAlgebra and VectorCalculus pack-
ages, issue the following commands:

> R := t -> <t-sin(t), 1-cos(t), t>;
> assume(t::real):
> interface(showassumed=0):
> V := t -> diff(R(t),t):
> A := t -> diff(V(t),t):
> v := t -> Norm(V(t),2):
> VxA := t -> V(t) &x A(t):
> vxa := t -> Norm(VxA(t),2):
> Ap := t -> diff(A(t),t):
> Curv := t ->
> simplify(vxa(t)/(v(t))ˆ3):
> Tors := t -> simplify(
> (VxA(t).Ap(t))/(vxa(t))ˆ2):
> Curv(t); Tors(t);

This leads to the values

√
cos(t)2 + 2 − 2 cos(t)

(3 − 2 cos(t))3/2
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and

− 1

2 cos(t)2 + sin(t)2 − 2 cos(t) + 1

for the curvature and torsion, respectively. Each of these
formulas can be simplified somewhat:

Curv(t) =
√

2 − 2 cos t + cos2 t

(3 − 2 cos t)3/2

Tors(t) = −1

2 − 2 cos t + cos2 t
.

Since 3 − 2 cos t > 0
and 2 − 2 cos t + cos2 t = 1 + (1 − cos t)2 > 0 for
all t , the curvature and torsion are both continuous for all
t . The curve appears to be some sort of helix (but not
a circular one) with central axis along the line x = z,
y = 1.

28. After loading the LinearAlgebra and VectorCalculus pack-
ages, issue the following commands:

> R := t -> <cos(t)*cos(2*t),
cos(t)*sin(2*t), sin(t)>;
> assume(t::real):
> interface(showassumed=0):
> V := t -> diff(R(t),t):
> A := t -> diff(V(t),t):
> v := t -> Norm(V(t),2):
> VxA := t -> V(t) &x A(t):
> vxa := t -> Norm(VxA(t),2):
> Ap := t -> diff(A(t),t):
> Curv := t ->
> simplify(vxa(t)/(v(t))ˆ3):
> Tors := t -> simplify(
> (VxA(t).Ap(t))/(vxa(t))ˆ2):
> Curv(t); Tors(t);
> simplify(%,trig);

The last line simplifies the rather complicated expression
that Tors(t) returns by applying some trigonometric
identities. The values for the curvature and torsion are

Curv(t) =
√

17 + 60 cos(t)2 + 48 cos(t)4

(
4 cos(t)2 + 1

)3/2

Tors(t) = 12 cos t (2 cos(t)2 + 3)

17 + 60 cos(t)2 + 48 cos(t)4 .

Plotting the curvature as a function of t ,
(plot(Curv(t),t=-2*Pi..2*Pi)), shows
that the minimum curvature occurs at t = 0 (and
any integer multiple of π ). The minimum curvature is√

125/53/2 = 1.

The command simplify(Norm(R(t),2));
gives output 1, indicating that the curve lies on the
sphere x2 + y2 + z2 = 1.

29. After loading the LinearAlgebra and VectorCalculus pack-
ages, issue the following commands:

> R := t -> <t+cos(t), t+sin(t), 1+t-
cos(t)>;
> assume(t::real):
> interface(showassumed=0):
> V := t -> diff(R(t),t):
> A := t -> diff(V(t),t):
> v := t -> Norm(V(t),2):
> VxA := t -> V(t) &x A(t):
> vxa := t -> Norm(VxA(t),2):
> Ap := t -> diff(A(t),t):
> Curv := t ->
> simplify(vxa(t)/(v(t))ˆ3):
> Tors := t -> simplify(
> (VxA(t).Ap(t))/(vxa(t))ˆ2):
> Curv(t); Tors(t);

This leads to the values

Curv(t) = 2
√

cos(t)2 + cos t + 1
(
5 − cos(t)2 + 2 cos t

)3/2

Tors(t) = 1

2(cos(t)2) + cos t + 1

This appears to be an elliptical helix with central axis
along the line x = y = z − 1.

30. evolute := R -> (t ->
R(t)+TNBFrame(R)[2](t)
*(1/Curvature(R)(t)));

31. tanline := R ->
((t,u) ->

R(t)+TNBFrame(R)[1](t)*u);

Section 11.6 Kepler’s Laws of
Planetary Motion (page 634)

1. r = 


1 + ε cos θ
�⇒ r + εx = 


r = 
 − εx

x2 + y2 = r2 = 
2 − 2
εx + ε2x2

(1 − ε2)x2 + 2
εx + y2 = 
2

(1 − ε2)

(
x + 
ε

1 − ε2

)2

+ y2 = 
2 + 
2ε2

1 − ε2 = 
2

1 − ε2

(
x + 
ε

1 − ε2

)2

(



1 − ε2

)2 + y2

(

√

1 − ε2

)2 = 1.
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2. Position: r = r r̂ = kr̂.
Velocity: v = k ˙̂r = kθ̇ θ̂; speed: v = kθ̇ .

Acceleration: kθ̈ θ̂ + kθ̇
˙̂
θ = −kθ̇2r̂ + kθ̈ θ̂.

Radial component of acceleration: −kθ̇2.
Transverse component of acceleration: kθ̈ = v̇ (the rate
of change of the speed).

3. Position: on the curve r = eθ .
Radial velocity: ṙ = eθ θ̇ .
Transverse velocity: r θ̇ = eθ θ̇ .
Speed v = √

2eθ θ̇ = 1 �⇒ θ̇ = (1/
√

2)e−θ .
Thus θ̈ = −(1/

√
2)e−θ θ̇ = −e−2θ /2.

Radial velocity = transverse velocity = 1/
√

2.
Radial acceleration:
r̈ − r θ̇2 = eθ θ̇2 + eθ θ̈ − eθ θ̇2 = eθ θ̈ = −e−θ /2.
Transverse acceleration:
r θ̈ + 2ṙ θ̇ = −(e−θ )/2 + e−θ = e−θ /2.

4. Path: r = θ . Thus ṙ = θ̇ , r̈ = θ̈ .
Speed: v =

√
(ṙ)2 + (r θ̇ )2 = θ̇

√
1 + r2.

Transverse acceleration = 0 (central force). Thus
r θ̈ + 2ṙ θ̇ = 0, or θ̈ = −2θ̇2/r .
Radial acceleration:

r̈ − r θ̇2 = θ̈ − r θ̇2

= −
(

2

r
+ r

)
θ̇2 = − (2 + r2)v2

r(1 + r2)
.

The magnitude of the acceleration is, therefore,
(2 + r2)v2

r(1 + r2)
.

5. For a central force, r2θ̇ = h (constant), and the accelera-
tion is wholly radial, so

|a| = |r̈ − r θ̇2|.

For r = θ−2, we have

ṙ = −2θ−3θ̇ = −2θ−3 h

r2
= −2hθ.

Thus r̈ = −2h θ̇ = −2h2/r2. The speed v is given by

v2 = ṙ2 + r2θ̇2 = 4h2θ2 + (h2/r2).

Since the speed is v0 when θ = 1 (and so r = 1), we
have v2

0 = 5h2, and h = v0/
√

5. Hence the magnitude of
the acceleration at any point on the path is

|a| =
∣∣∣∣−2

h2

r2 − r
h2

r4

∣∣∣∣ = v2
0

5

(
2

r2 + 1

r3

)
.

6. Let the period and the semi-major axis of the orbit of
Halley’s comet be TH = 76 years and aH km respec-
tively. Similar parameters for the earth’s orbit are TE = 1
year and aE = 150 × 106 km. By Kepler’s third law

T 2
H

a3
H

= T 2
E

a3
E

.

Thus

aH = 150 × 106 × 762/3 ≈ 2.69 × 109.

The major axis of Halley’s comet’s orbit is
2aH ≈ 5.38 × 109 km.

7. The period and semi-major axis of the moon’s orbit
around the earth are

TM ≈ 27 days, aM ≈ 385, 000 km.

The satellite has a circular orbit of radius aS and period
TS = 1 day. (If the orbit is in the plane of the equa-
tor, the satellite will remain above the same point on the
earth.) By Kepler’s third law,

T 2
S

a3
S

= T 2
M

a3
M

.

Thus aS = 385, 000 × (1/27)2/3 ≈ 42, 788. The satellite’s
orbit should have radius about 42,788 km, and should lie
in the equatorial plane.

8. The period T (in years) and radius R (in km) of the as-
teroid’s orbit satisfies

T 2

R3
= T 2

earth

R3
earth

= 12

(150 × 106)3
.

Thus the radius of the asteroid’s orbit is
R ≈ 150 × 106T 2/3 km.

9. If R is the radius and T is the period of the asteroid’s
circular orbit, then almost stopping the asteroid causes
it to drop into a very eccentric elliptical orbit with major
axis approximately R. (Thus, a = R/2.) The period Te

of the new elliptical orbit satisfies

T 2
e

T 2
= (R/2)3

R3
= 1

8
.

Thus Te = T/(2
√

2). The time the asteroid will take to
fall into the sun is half of Te . Thus it is T/(4

√
2).

R

Fig. 11.6.9
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10. At perihelion, r = a − c = (1 − ε)a.
At aphelion r = a + c = (1 + ε)a.
Since ṙ = 0 at perihelion and aphelion, the speed is
v = r θ̇ at each point. Since r2θ̇ = h is constant over the
orbit, v = h/r . Therefore

vperihelion = h

a(1 − ε)
, vaphelion = h

a(1 + ε)
.

If vperihelion = 2vaphelion then

h

a(1 − ε)
= 2h

a(1 + ε)
.

Hence 1 + ε = 2(1 − ε), and ε = 1/3. The eccentricity of
the orbit is 1/3.

11. The orbital speed v of a planet satisfies (by conservation
of energy)

v2

2
− k

r
= K (total energy).

If v is constant so must be r , and the orbit will therefore
be circular.

12. Since r 2θ̇ = h = constant for the planet’s orbit, and since
the speed is v = r θ̇ at perihelion and at aphelion (the
radial velocity is zero at these points), we have

rpvp = rava,

where the subscripts p and a refer to perihelion and
aphelion, respectively. Since rp/ra = 8/10, we must
have vp/va = 10/8 = 1.25. Also,

rp = 


1 + ε cos 0
= 


1 + ε
, ra = 


1 + ε cos π
= 


1 − ε
.

Thus 
/(1+ε) = (8/10)
/(1−ε), and so 10−10ε = 8+8ε.
Hence 2 = 18ε. The eccentricity of the orbit is
ε = 1/9.

13. Let the radius of the circular orbit be R, and let the pa-
rameters of the new elliptical orbit be a and c, as shown
in the figure. Then R = a + c. At the moment of the
collision, r does not change (r = R), but the speed r θ̇
is cut in half. Therefore θ̇ is cut in half, and so h = r2θ̇

is cut in half. Let H be the value of r2θ̇ for the circular
orbit, and let h be the value for the new elliptical orbit.
Thus h = H/2. We have

R = H2

k
, a = h2

k(1 − ε2)
= H2

4k(1 − ε2)
= R

4(1 − ε2)
.

Similarly, c = εa = εR

4(1 − ε2)
, so

R = c + a = (1 + ε)R

4(1 − ε2)
= R

4(1 − ε)
.

It follows that 1 = 4 − 4ε, so ε = 3/4. The new elliptical
orbit has eccentricity ε = 3/4.

S

c a

R

Fig. 11.6.13

14. As in Exercise 12, rPvP = rAvA, where rA = 
/(1 − ε)

and rP = 
/(1 + ε), ε being the eccentricity of the orbit.
Thus

vP

vA
= rA

rP
= 1 + ε

1 − ε
.

Solving this equation for ε in terms of vP and vA, we
get

ε = vP − vA

vP + vA
.

By conservation of energy the speed v at the ends of the
minor axis of the orbit (where r = a) satisfies

v2

2
− k

a
= v2

P

2
− k

rP
= v2

A

2
− k

rA
.

The latter equality shows that

v2
P − v2

A = 2k

(
1

rP
− 1

rA

)
= 4kε



.

Using this result and the parameters of the orbit given in
the text, we obtain

v2 = v2
P + 2k

(
1

a
− 1

rP

)

= v2
P + 2k




(
1 − ε2 − (1 + ε)

)

= v2
P − 2kε



(1 + ε)

= v2
P − v2

P − v2
A

2

(
1 + vP − vA

vP + vA

)

= v2
P − vP − vA

2
(2vP ) = vPvA.

Thus v = √
vPvA.
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15. Since the radial line from the sun to the planet sweeps
out equal areas in equal times, the fraction of the planet’s
period spend on the same side of the minor axis as the
sun is equal to the shaded area in the figure to the total
area of the ellipse, that is,

1
2πab − 1

2 (2bc)

πab
=

1
2πab − εab

πab
= 1

2
− ε

π
,

where ε = c/a is the eccentricity of the orbit.

b a

c

A

Fig. 11.6.15

16. By conservation of energy, we have

k

r
− 1

2

(
ṙ2 + h2

r2

)
= −K

where K is a constant for the orbit (the total energy).
The term in the parentheses is v2, the square of the
speed. Thus

k

r
− 1

2
v2 = −K = k

r0
− 1

2
v2

0,

where r0 and v0 are the given distance and speed. We
evaluate −K at perihelion.
The parameters of the orbit are


 = h2

k
, a = h2

k(1 − ε2)
, b = h2

k
√

1 − ε2
, c = εa.

At perihelion P we have

r = a − c = (1 − ε)a = h2

k(1 + ε)
.

Since ṙ = 0 at perihelion, the speed there is v = rθ̇ . By
Kepler’s second law, r2θ̇ = h, so v = h/r = k(1 + ε)/h.
Thus

−K = k

r
− v2

2

= k2

h2
(1 + ε) − 1

2

k2

h2
(1 + ε)2

= k2

2h2
(1 + ε)

[
2 − (1 + ε)

]

= k2

2h2 (1 − ε2) = k

2a
.

Thus a = k

−2K
. By Kepler’s third law,

T 2 = 4π2

k
a3 = 4π2

k

(
k

−2K

)3

.

Thus T = 2π√
k

(
2

r0
− v2

0

k

)−3/2

.

y

x
a c

a

S P

b

Fig. 11.6.16

17. Let r1(s) and r2(s) be the distances from the point
P = r(s) on the ellipse E to the two foci. (Here s de-
notes arc length on E, measured from any convenient
point.) By symmetry

∫

E
r1(s) ds =

∫

E
r2(s) ds.

But r1(s) + r2(s) = 2a for any s. Therefore,

∫

E
r1(s) ds +

∫

E
r2(s) ds =

∫

E
2a ds = 2ac(E).

Hence
∫
E r1(s) ds = ac(E), and

1

c(E)

∫

E
r1(s) ds = a.

y

x

P

F2 F1

r2 r1

E

Fig. 11.6.17
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18. Start with

r̈ − h2

r3 = − k

r2 .

Let r(t) = 1

u(θ)
, where θ = θ(t). Since r2θ̇ = h

(constant), we have

ṙ = − 1

u2

du

dθ
θ̇ = −r2 du

dθ

h

r2 = −h
du

dθ

r̈ = −h
d2u

dθ2
θ̇ = −h2

r2

d2u

dθ2
= −h2u2 d2u

dθ2
.

Thus −h2u2 d2u

dθ2
− h2u3 = −ku2, or

d2u

dθ2 + u = k

h2 .

This is the DE for simple harmonic motion with a con-
stant forcing term (nonhomogeneous term) on the right-
hand side. It is easily verified that

u = k

h2

(
1 + ε cos(θ − θ0)

)

is a solution for any choice of the constants ε and θ0.
Expressing the solution in terms of r , we have

r = h2/k

1 + ε cos(θ − θ0)
,

which is an ellipse if |ε| < 1.

19. For inverse cube attraction, the equation of motion is

r̈ − h2

r3 = − k

r3 ,

where r2θ̇ = h is constant, since the force is central.
Making the same change of variables used in Exercise
18, we obtain

−h2u2 d2u

dθ2
− h2u3 = −ku3,

or
d2u

dθ2 − k − h2

h2 u = 0.

There are three cases to consider.

CASE I. If k < h2 the DE is
d2u

dθ2
+ ω2u = 0, where

ω2 = (h2 − k)/h2. This has solution u = A cos ω(θ − θ0).
Thus

r = 1

A cos ω(θ − θ0)
.

Note that r → ∞ as θ → θ0+ π

2ω
. There are no bounded

orbits in this case.

CASE II. If k > h2 the DE is
d2u

dθ2 −ω2u = 0, where

ω2 = (k − h2)/h2. This has solution u = Aeωθ + Be−ωθ .
Since u → 0 or ∞ as θ → ∞, the corresponding solu-
tion r = 1/u cannot be both bounded and bounded away
from zero. (Note that θ̇ = h/r2 ≥ K > 0 for any or-
bit which is bounded away from zero, so we can be sure
θ → ∞ on such an orbit.)

CASE III. If k = h2 the DE is
d2u

dθ2 = 0, which has

solutions u = Aθ + B, corresponding to

r = 1

Aθ + B
.

Such orbits are bounded away from zero and infinity only
if A = 0, in which case they are circular.

Thus, the only possible orbits which are bounded
away from zero and infinity (i.e., which do not escape
to infinity or plunge into the sun) in a universe with an
inverse cube gravitational attraction are some circular or-
bits for which h2 = k. Such orbits cannot be considered
“stable” since even slight loss of energy would result in
decreased h and the condition h2 = k would no longer
be satisfied. Now aren’t you glad you live in an inverse
square universe?

20. Since
k

r
= 1

2
v2 − K by conservation of energy, if K < 0,

then
k

r
≥ −K > 0,

so r ≤ − k

K
. The orbit is, therefore, bounded.

21. r = 


1 + ε cos θ
, (ε > 1).

See the following figure.
Vertices: At V1, θ = 0 and r = 
/(1 + ε).
At V2, θ = π and r = 
/(1 − ε) = −
/(ε − 1).
Semi-focal separation:

c = 1

2

(



1 + ε
+ 


1 − ε

)
= 
ε

ε2 − 1
.

The centre is (c, 0).
Semi-transverse axis:

a = 
ε

ε2 − 1
− 


ε + 1
= 


ε2 − 1
.

Semi-conjugate axis:

b =
√

c2 − a2 = 
√
ε2 − 1

.
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Direction of asymptotes (see figure):

θ = tan−1 b

a
= cos−1 a

c
= cos−1 1

ε
.

y

x

θ F2

V2V1F1 C

θ

c b

a

Fig. 11.6.21

22. By Exercise 17, the asymptotes make angle
θ = cos−1(1/ε) with the transverse axis, as shown in the
figure. The angle of deviation δ satisfies 2θ + δ = π , so

θ = π

2
− δ

2
, and

cos θ = sin
δ

2
, sin θ = cos

δ

2
.

y

xS

D

rp

θ 2θ

a

δ

(c,0)

Fig. 11.6.22

By conservation of energy,

v2

2
− k

r
= constant = v2∞

2

for all points on the orbit. At perihelion,

r = rp = c − a = (ε − 1)a = 


ε + 1
,

v = vp = rpθ̇ = h

rp
= h(ε + 1)



.

Since h2 = k
, we have

v2∞ = v2
p − 2k

rp

= h2


2
(ε + 1)2 − 2k



(ε + 1)

= k




[
(ε + 1)2 − 2(ε + 1)

]

= k



(ε2 − 1) = k

a
.

Thus av2∞ = k.

If D is the perpendicular distance from the sun S to
an asymptote of the orbit (see the figure) then

D = c sin θ = εa sin θ = a
sin θ

cos θ

= a
cos(δ/2)

sin(δ/2)
= a cot

δ

2
.

Therefore
Dv2∞

k
= v2∞a

k
cot

δ

2
= cot

δ

2
.

Review Exercises 11 (page 636)

1. Given that a • r = 0 and a • v = 0, we have

d

dt
|r(t) − tv(t)|2

= 2
(

r(t) − tv(t)
)

•
(

v(t) − v(t) − ta(t)
)

= 2
(

r(t) − tv(t)
)

• a(t) = 0 − 0 = 0.

2. r = t cos t i+ t sin tj+ (2π − t)k, (0 ≤ t ≤ 2π) is a conical
helix wound around the cone z = 2π −√

x2 + y2 starting
at the vertex (0, 0, 2π), and completing one revolution to
end up at (2π, 0, 0). Since

v = (cos t − t sin t)i + (sin t + t cos t)j − k,

the length of the curve is

L =
∫ 2π

0

√
2 + t2 dt = π

√
2 + 4π2+ln

(
2π + √

2 + 4π2
√

2

)

units.
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3. The position of the particle at time t is

r = x i + x2j + 2
3 x3k,

where x is an increasing function of t . Thie velocity is

v = dx

dt

(
i + 2xj + 2x2k

)
.

Since the speed is 6, we have

6 = dx

dt

√
1 + 4x2 + 4x4 = (2x2 + 1)

dx

dt
,

so that dx/dt = 6/(2x2 + 1). The particle is at (1, 1, 2
3 )

when x = 1. At this time its velocity is

v(1) = 2(i + 2j + 2k).

Also

d2x

dt2 = − 6

(2x2 + 1)2 (4x)
dx

dt
= − 144x

(2x2 + 1)3

a = d2x

dt2 (i + 2xj + 2x2k)

+ dx

dt

(
2

dx

dt
j + 4x

dx

dt
k
)

.

At x = 1, we have

a(1) = −16

3
(i + 2j + 2k) + 2(4j + 8k)

= 8

3
(−2i − j + 2k).

4. The position, velocity, speed, and acceleration of the par-
ticle are given by

r = x i + x2j

v = dx

dt
(i + 2xj), v =

∣∣∣∣
dx

dt

∣∣∣∣
√

1 + 4x2

a = d2x

dt2 (i + 2xj) + 2

(
dx

dt

)2

j.

Let us assume that the particle is moving to the right, so
that dx/dt > 0. Since the speed is t , we have

dx

dt
= t√

1 + 4x2

d2x

dt2
=

√
1 + 4x2 − 4t x√

1 + 4x2

dx

dt
1 + 4x2

.

If the particle is at (
√

2, 2) at t = 3, then dx/dt = 1 at
that time, and

d2x

dt2 = 3 − 4
√

2

9
.

Hence the acceleration is

a = 3 − 4
√

2

9
(i + 2

√
2j) + 2j.

If the particle is moving to the left, so that dx/dt < 0, a
similar calculation shows that at t = 3 its acceleration is

a = −3 + 4
√

2

9
(i + 2

√
2j) + 2j.

5. r = et i + √
2tj + e−t k

v = et i + √
2j − e−t k

a = et i + e−t k
da
dt

= et i − e−t k

v × a = √
2e−t i − 2j − √

2et k

v =
√

e2t + 2 + e−2t = et + e−t

|v × a| = √
2(et + e−t )

κ = |v × a|
v3 =

√
2

(et + e−t )2

τ =
(v × a) • da

dt
|v × a|2 =

√
2

(et + e−t )2 = κ.

6. Tangential acceleration: dv/dt = et − e−t .
Normal acceleration: v2κ = √

2.
Since v = 2 cosh t , the minimum speed is 2 at time
t = 0.

7. For x(s) =
∫ s

0
cos

kt2

2
dt , y(s) =

∫ s

0
sin

kt2

2
dt , we have

dx

ds
= cos

ks2

2
,

dy

ds
= sin

ks2

2
,

so that the speed is unity:

v =
√(

dx

ds

)2

+
(

dy

ds

)2

= 1.

Since x(0) = y(0) = 0, the arc length along the curve,
measured from the origin, is s. Also,

v = cos
ks2

2
i + sin

ks2

2
j

a = −ks sin
ks2

2
i + ks cos

ks2

2
j

v × a = ksk.

Therefore the curvature at position s is
κ = |v × a|/v3 = ks.
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8. If r = e−θ , and θ̇ = k, then ṙ = −e−θ θ̇ = −kr , and
r̈ = k2r . Since r = r r̂, we have

v = ṙ r̂ + r θ̇ θ̂ = −kr r̂ + kr θ̂

a = (r̈ − r θ̇2)r̂ + (r θ̈ + 2ṙ θ̇ )θ̂

= (k2r − k2r)r̂ + (0 − 2k2r)θ̂ = −2k2r θ̂.

9. r = a(t − sin t)i + a(1 − cos t)j
v = a(1 − cos t)i + a sin tj

v = a
√

1 − 2 cos t + cos2 t + sin2 t

= a
√

2
√

1 − cos t = 2a sin
t

2
if 0 ≤ t ≤ 2π .

The length of the cycloid from t = 0 to t = T ≤ 2π is

s(T ) =
∫ T

0
2a sin

t

2
dt = 4a

(
1 − cos

T

2

)
units.

10. s = 4a

(
1 − cos

t

2

)
⇒ t = 2cos−1

(
1 − s

4a

)
= t (s).

The required arc length parametrization of the cycloid is

r = a
(

t (s) − sin t (s)
)

i + a
(

1 − cos t (s)
)

j.

11. From Exercise 9 we have

T̂(t) = v
v

= (1 − cos t)i + sin tj
2 sin(t/2)

= sin
t

2
i + cos

t

2
j

dT̂
ds

= 1

v

dT̂
dt

=
1

2
cos

t

2
i − 1

2
sin

t

2
j

2a sin
t

2

= 1

4a

(
cot

t

2
i − j

)

κ(t) =
∣∣∣∣∣
dT̂
ds

∣∣∣∣∣
= 1

4a sin(t/2)

rC (t) = r(t) + ρ(t)N̂(t) = r(t) + 1

(κ(t))2

dT̂
ds

= r(t) + 16a2 sin2(t/2)

4a

(
cot

t

2
i − j

)

= r(t) + 4a cos
t

2
sin

t

2
i − 4a sin2 t

2
j

= a(t − sin t)i + a(1 − cos t)j
+ 2a sin t i − 2a(1 − cos t)j

= a(t + sin t)i − a(1 − cos t)j (let t = u − π )

= a(u − sin u − π)i + a(1 − cos u − 2)j.

This is the same cycloid as given by r(t) but translated
πa units to the right and 2a units downward.

12. Let P be the point with position vector r(t)
on the cycloid. By Exercise 9, the arc O P has
length 4a − 4a cos(t/2), and so P Q has length
4a - arc O P = 4a cos(t/2) units. Thus

−→
P Q = 4a cos

t

2
T̂(t)

= 4a cos
t

2

(
sin

t

2
i + cos

t

2
j
)

= 2a sin t i + 2a(1 + cos t)j.

It follows that Q has position vector

rQ = r + −→P Q

= a(t − sin t)i + a(1 − cos t)j + 2a sin t i + 2a(1 + cos t)j
= a(t + sin t)i + a(1 + cos t + 2)j (let t = u + π )

= a(u − sin u + π)i + a(1 − cos u + 2)j.

Thus rQ(t) represents the same cycloid as r(t), but trans-
lated πa units to the left and 2a units upward. From
Exercise 11, the given cycloid is the evolute of its invo-
lute.

y

x

A

Q

P

O

Fig. R-11.12

13. The position vector of P is given by

r = ρ sin φ cos θ i + ρ sin φ sin θ j + ρ cos φk.

Mutually perpendicular unit vectors in the directions of
increasing ρ, φ and θ can be found by differentiating r
with respect to each of these coordinates and dividing the
resulting vectors by their lengths. They are

ρ̂ = dr
dρ

= sin φ cos θ i + sin φ sin θ j + cos φk

φ̂ = 1

ρ

dr
dφ

= cos φ cos θ i + cos φ sin θ j − sin φk

θ̂ = 1

ρ sin φ

dr
dθ

= − sin θ i + cos θ j.

The triad{ρ̂, φ̂, θ̂} is right-handed. This is the reason for
ordering the spherical polar coordinates (ρ, φ, θ) rather
than (ρ, θ, φ).

437



REVIEW EXERCISES 11 (PAGE 636) R. A. ADAMS: CALCULUS

14. By Kepler’s Second Law the position vector r from the
origin (the sun) to the planet sweeps out area at a con-
stant rate, say h/2:

d A

dt
= h

2
.

As observed in the text, d A/dt = r2θ̇/2, so r2θ̇ = h, and

r × v = (r r̂) × (ṙ r̂ + r θ̇ θ̂) = r2θ̇ r̂ × θ̂ = hk = h

is a constant vector.

15. By Exercise 14, r × ṙ = r × v = h is constant, so, by
Newton’s second law of motion,

r × F(r) = mr × r̈ = m
d

dt
(r × ṙ) = 0.

Thus F(r) is parallel to r, and therefore has zero trans-
verse component:

F(r) = − f (r)r̂

for some scalar function f (r).

16. By Exercise 15, F(r) = m(r̈ − r θ̇2)r̂ = − f (r)r̂. We are
given that r = 
/(1 + ε cos θ). Thus

ṙ = − 


(1 + ε cos θ)2 (−ε sin θ)θ̇

= ε
 sin θ

(1 + ε cos θ)2
θ̇

= ε sin θ



r2θ̇ = hε



sin θ

r̈ = hε



(cos θ)θ̇ = h2ε cos θ


r2 .

It follows that

r̈ − r θ̇2 = h2ε cos θ


r2
− h2

r3

= h2


r2

(
ε cos θ − 


r

)
= − h2


r2 ,

(because (
/r) = 1 + ε cos θ ). Hence

f (r) = mh2


r2 .

This says that the magnitude of the force on the planet is
inversely proportional to the square of its distance from
the sun. Thus Newton’s law of gravitation follows from
Kepler’s laws and the second law of motion.

Challenging Problems 11 (page 636)

1. a) The angular velocity Ω of the earth points north-
ward in the direction of the earth’s axis; in terms of
the basis vectors defined at a point P at 45◦ north
latitude, it points in the direction of j + k:

Ω = 

j + k√

2
, 
 = 2π

24 × 3,600
rad/s.

b) If v = −vk, then

aC = 2Ω × v = −2
v√
2

(j + k) × k = −√
2
vi.

c) If r(t) = x(t)i + y(t)j + z(t)k is the position of the
falling object at time t , then r(t) satisfies the DE

d2r
dt2 = −gk + 2Ω × dr

dt

and the initial conditions r(0) = 100k, r′(0) = 0. If
we use the approximation

dr
dt

≈ dz

dt
k,

which is appropriate since 
 is much smaller than g,
then

2Ω × dr
dt

≈ √
2


dz

dt
i.

Breaking the DE into its components, we get

d2x

dt2 = √
2


dz

dt
,

d2 y

dt2 = 0,
d2z

dt2 = −g.

Solving these equations (beginning with the last
one), using the initial conditions, we get

z(t) = 100 − gt2

2
, y(t) = 0, x(t) = −
gt3

3
√

2
.

Since g ≈ 9.8 m/s2, the time of fall is

t =
√

200

g
≈ 4.52,

at which time we have

x ≈ − 2π

24 × 3,600

9.8

3
√

2
(4.52)3 ≈ −0.0155 m.

The object strikes the ground about 15.5 cm west of
P.
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2.

⎧
⎨

⎩

dv
dt

= k × v − 32k

v(0) = 70i

a) If v = v1i+v2j+v3k, then k×v = v1j−v2i. Thus the
initial-value problem breaks down into component
equations as

⎧
⎨

⎩

dv1

dt
= −v2

v1(0) = 70

⎧
⎨

⎩

dv2

dt
= v1

v2(0) = 0

⎧
⎨

⎩

dv3

dt
= −32

v3(0) = 0.

b) If r = x i+yj+zk denotes the position of the baseball
t s after it is thrown, then x(0) = y(0) = z(0) = 0
and we have

dz

dt
= v3 = −32t ⇒ z = −16t2.

Also,
d2v1

dt2
= −dv2

dt
= −v1 (the equation of simple

harmonic motion), so

v1(t) = A cos t + B sin t, v2(t) = A sin t − B cos t.

Since v1(0) = 70, v2(0) = 0, x(0) = 0, and
y(0) = 0, we have

dx

dt
= v1 = 70 cos t

x(t) = 70 sin t

dy

dt
= v2 = 70 sin t

y(t) = 70(1 − cos t).

At time t seconds after it is thrown, the ball is at
position

r = 70 sin t i + 70(1 − cos t)j − 16t2k.

c) At t = 1/5 s, the ball is at about (13.9, 1.40,−0.64).
If it had been thrown without the vertical spin, its
position at time t would have been

r = 70t i − 16t2k,

so its position at t = 1/5 s would have been
(14, 0, −0.64). Thus the spin has deflected the ball
approximately 1.4 ft to the left (as seen from above)
of what would have been its parabolic path had it
not been given the spin.

3.

⎧
⎨

⎩

dv
dt

= ωv × k, ω = q B

m
v(0) = v0

a)
d

dt
(v • k) = dv

dt
• k = ω(v × k) • k = 0.

Thus v • k = constant = v0 • k.

Also,
d

dt
|v|2 = 2

dv
dt

• v = 2ω(v × k) • v = 0,

so |v| = constant = |v0| for all t .

b) If w(t) = v(t)− (v0 • k)k, then w • k = 0 by part (a).
Also, using the result of Exercise 23 of Section 1.3,
we have

d2w
dt2

= d2v
dt2

= ω
dv
dt

× k = ω2(v × k) × k

= −ω2
[
(k • k)v − (k • v)k

]

= −ω2
[
v − (v0 • k)k

]
= −ω2w,

the equation of simple harmonic motion. Also,

w(0) = v0 − (v0 • k)k
w′(0) = ωv0 × k.

c) Solving the above initial-value problem for w, we
get

w = A cos(ωt) + B sin(ωt), where

A = w(0) = v0 − (v0 • k)k, and

ωB = w′(0) = ω × k.

Therefore,

v(t) = w(t) + (v0 • k)k

=
[
v0 − (v0 • k)k

]
cos(ωt) + (v0 × k) sin(ωt)

+ (v0 • k)k.

d) If dr/dt = v and r(0) = 0, then

r(t) = v0 − (v0 • k)k
ω

sin(ωt)

+ v0 × k
ω

(
1 − cos(ωt)

)
+ (v0 • k)tk.

Since the three constant vectors

v0 − (v0 • k)k
ω

,
v0 × k

ω
, and (v0 • k)k

are mutually perpendicular, and the first two have the
same length because

|v0 − (v0 • k)k| = |v0| sin θ = |v0 × k|,

where θ is the angle between v0 and k, the curve
r(t) is generally a circular helix with axis in the z
direction. However, it will be a circle if v0 • k = 0,
that is, if v0 is horizontal, and it will be a straight
line if v0 × k = 0, that is, if v0 is vertical.
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4. The arc length element on x = a(θ − sin θ),
y = a(cos θ − 1) is (for θ ≤ π )

ds = a
√

(1 − cos θ)2 + sin2 θ dθ

= a
√

2(1 − cos θ) dθ = 2a sin(θ/2) dθ.

If the bead slides downward from rest at height y(θ0)

to height y(θ), its gravitational potential energy has de-
creased by

mg
[

y(θ0) − y(θ)
]

= mga(cos θ0 − cos θ).

Since there is no friction, all this potential energy is con-
verted to kinetic energy, so its speed v at height y(θ) is
given by

1

2
mv2 = mga(cos θ0 − cos θ),

and so v = √
2ga(cos θ0 − cos θ). The time required for

the bead to travel distance ds at speed v is dt = ds/v, so
the time T required for the bead to slide from its starting
position at θ = θ0 to the lowest point on the wire, θ = π ,
is

T =
∫ θ=π

θ=θ0

ds

v
=
∫ π

θ0

1

v

ds

dθ
dθ

=
√

2a

g

∫ π

θ0

sin(θ/2)√
cos θ0 − cos θ

dθ

=
√

2a

g

∫ π

θ0

sin(θ/2)
√

2 cos2(θ0/2) − 2 cos2(θ/2)
dθ

Let u = cos(θ/2)

du = − 1
2 sin(θ/2) dθ

= 2
√

a

g

∫ cos(θ0/2)

0

du
√

cos2(θ0/2) − u2

= 2
√

a

g
sin−1

(
u

cos(θ0/2)

)∣∣∣∣

cos(θ0/2)

0

= π
√

ag

which is independent of θ0.

y
x

θ = θ0 starting point

θ = π

Fig. C-11.4

5. a) The curve BC D is the graph of an even function; a
fourth degree polynomial with terms of even degree
only will enable us to match the height, slope, and
curvature at D, and therefore also at C . We have

f (x) = ax4 + bx2 + c

f ′(x) = 4ax3 + 2bx

f ′′(x) = 12ax2 + 2b.

At D we have x = 2, so we need

2 = f (2) = 16a + 4b + c

1 = f ′(2) = 32a + 4b

0 = f ′′(2) = 48a + 2b.

These equations yield a = −1/64, b = 3/8, c = 3/4,
so the curved track BC D is the graph of

y = f (x) = 1

64
(−x4 + 24x2 + 48).

b) Since we are ignoring friction, the speed v of the
car during its drop is given by v = √

2gs, where s
is the vertical distance dropped. (See the previous
solution.) At B the car has dropped about 7.2 m, so
its speed there is v ≈ √

2(9.8)(7.2) ≈ 11.9 m/s. At
C the car has dropped 10 − (c/

√
2) ≈ 9.47 m, so

its speed there is v = 13.6 m/s. At D the car has
dropped 10 m, so its speed is v = 14.0 m/s.

c) At C we have x = 0, f ′(0) = 0, and
f ′′(0) = 2b = 3/4. Thus the curvature of the track
at C is

κ = | f ′′(0)|
(1 + ( f ′(0))2)3/2 = 3

4
.

The normal acceleration is v2κ ≈ 138.7 m/s2 (or
about 14g). Since v = √

2gs, we have

dv

dt
=

√
2g

2
√

s

ds

dt
=

√
2g

2
√

s
v ≈

√
19.6

2
√

9.47
(13.6) ≈ 9.78 m/s2,

so the total acceleration has magnitude approxi-
mately

√
(138.7)2 + (9.78)2 ≈ 139 m/s2,

which is again about 14g.
y

x

B

A E

D

C

(2, 2)(−2, 2)

g = (g/
√

2)(i − j)

vertical section horizontal section

Fig. C-11.5
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6. a) At time t , the hare is at P = (0, vt) and the fox is

at Q =
(

x(t), y(t)
)

, where x and y are such that the

slope dy/dx of the fox’s path is the slope of the line
P Q:

dy

dx
= y − vt

x
.

b) Since
d

dt

dy

dx
= d2 y

dx2

dx

dt
, we have

dx

dt

d2 y

dx2 = d

dt

(
y − vt

x

)

=
x

(
dy

dt
− v

)
− (y − vt)

dx

dt
x2

= 1

x

(
dy

dx

dx

dt
− v

)
− 1

x2
(y − vt)

dx

dt

= 1

x2 (y − vt)
dx

dt
− v

x
− 1

x2 (y − vt)
dx

dt

= − v

x
.

Thus x
d2 y

dx2 = − v

dx/dt
.

Since the fox’s speed is also v, we have

(
dx

dt

)2

+
(

dy

dt

)2

= v2.

Also, the fox is always running to the left (towards
the y-axis from points where x > 0), so dx/dt < 0.
Hence

v

−
(

dx

dt

) =
√

1 + (dy/dt)2

(dx/dt)2
=
√

1 +
(

dy

dx

)2

,

and so the fox’s path y = y(x) satisfies the DE

x
d2 y

dx2 =
√

1 +
(

dy

dx

)2

.

c) If u = dy/dx , then u = 0 and y = 0 when x = a,
and

x
du

dx
=
√

1 + u2

∫
du√

1 + u2
=
∫

dx

x
Let u = tan θ

du = sec2 θ dθ∫
sec θ dθ = ln x + ln C

ln(tan θ + sec θ) = ln(Cx)

u +
√

1 + u2 = Cx .

Since u = 0 when x = a, we have C = 1/a.

√
1 + u2 = x

a
− u

1 + u2 = x2

a2 − 2xu

a
+ u2

2xu

a
= x2

a2 − 1

dy

dx
= u = x

2a
− a

2x

y = x2

4a
− a

2
ln x + C1.

Since y = 0 when x = a, we have

C1 = −a

4
+ a

2
ln a, so

y = x2 − a2

4
− a

2
ln

x

a

is the path of the fox.

7. a) Since you are always travelling northeast at speed v,
you are always moving north at rate v/

√
2. There-

fore you will reach the north pole in finite time

T = πa/2

v/
√

2
= πa√

2v
.

b) Since your velocity at any point has a northward
component v/

√
2, and progress northward is mea-

sured along a circle of radius a (a meridian), your
colatitude φ(t) satisfies

a
dφ

dt
= − v√

2
.

Since φ(0) = π/2, it follows that

φ(t) = π

2
− vt

a
√

2
.

Since your velocity also has an eastward component
v/

√
2 measured along a parallel of latitude that is a

circle of radius a sin φ, your longitude coordinate θ

satisfies

(a sin φ)
dθ

dt
= v√

2(
cos

vt

a
√

2

)
dθ

dt
= v

a
√

2

θ = v

a
√

2

∫
sec

(
vt

a
√

2

)
dt

= ln

(
sec

vt

a
√

2
+ tan

vt

a
√

2

)
+ C.

As θ = 0 at t = 0, we have C = 0, and so

θ(t) = ln

(
sec

vt

a
√

2
+ tan

vt

a
√

2

)
.

c) As t → T = πa/(
√

2v), the expression for
θ(t) → ∞, so your path spirals around the north
pole, crossing any meridian infinitely often.
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