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CHAPTER 10. VECTORS AND COORDI-
NATE GEOMETRY IN 3-SPACE

Section 10.1 Analytic Geometry in
Three Dimensions (page 542)

1. The distance between (0, 0, 0) and (2,−1,−2) is

√
22 + (−1)2 + (−2)2 = 3 units.

2. The distance between (−1,−1,−1) and (1, 1, 1) is

√
(1 + 1)2 + (1 + 1)2 + (1 + 1)2 = 2

√
3 units.

3. The distance between (1, 1, 0) and (0, 2, −2) is

√
(0 − 1)2 + (2 − 1)2 + (−2 − 0)2 = √

6 units.

4. The distance between (3, 8,−1) and (−2, 3,−6) is

√
(−2 − 3)2 + (3 − 8)2 + (−6 + 1)2 = 5

√
3 units.

5. a) The shortest distance from (x, y, z) to the xy-plane
is |z| units.

b) The shortest distance from (x, y, z) to the x-axis is√
y2 + z2 units.

6. If A = (1, 2, 3), B = (4, 0, 5), and C = (3, 6, 4), then

|AB| =
√

32 + (−2)2 + 22 = √
17

|AC | =
√

22 + 42 + 12 = √
21

|BC | =
√

(−1)2 + 62 + (−1)2 = √
38.

Since |AB|2 + |AC |2 = 17 + 21 = 38 = |BC |2, the
triangle ABC has a right angle at A.

7. If A = (2, −1,−1), B = (0, 1,−2), and C = (1, −3, 1),
then

c = |AB| =
√

(0 − 2)2 + (1 + 1)2 + (−2 + 1)2 = 3

b = |AC | =
√

(1 − 2)2 + (−3 + 1)2 + (1 + 1)2 = 3

a = |BC | =
√

(1 − 0)2 + (−3 − 1)2 + (1 + 2)2 = √
26.

By the Cosine Law,

a2 = b2 + c2 − 2bc cos � A

26 = 9 + 9 − 18 cos � A

� A = cos−1 26 − 18

−18
≈ 116.4◦.

8. If A = (1, 2, 3), B = (1, 3, 4), and C = (0, 3, 3), then

|AB| =
√

(1 − 1)2 + (3 − 2)2 + (4 − 3)2 = √
2

|AC | =
√

(0 − 1)2 + (3 − 2)2 + (3 − 3)2 = √
2

|BC | =
√

(0 − 1)2 + (3 − 3)2 + (3 − 4)2 = √
2.

All three sides being equal, the triangle is equilateral.

9. IfA = (1, 1, 0), B = (1, 0, 1), and C = (0, 1, 1), then

|AB| = |AC | = |BC | = √
2.

Thus the triangle ABC is equilateral with sides
√

2. Its
area is, therefore,

1

2
× √

2 ×
√

2 − 1

2
=

√
3

2
sq. units.

10. The distance from the origin to (1, 1, 1, . . . , 1) in �n is

√
12 + 12 + 12 + · · · + 1 = √

n units.

11. The point on the x1-axis closest to (1, 1, 1, . . . , 1) is
(1, 0, 0, . . . , 0). The distance between these points is

√
02 + 12 + 12 + · · · + 12 = √

n − 1 units.

12. z = 2 is a plane, perpendicular to the z-axis at (0, 0, 2).

x
y

z

z=2

2

Fig. 10.1.12

13. y ≥ −1 is the half-space consisting of all points on the
plane y = −1 (which is perpendicular to the y-axis at
(0, −1, 0)) and all points on the same side of that plane
as the origin.

x
y

z

y=−1

−1

Fig. 10.1.13

14. z = x is a plane containing the y-axis and making 45◦
angles with the positive directions of the x- and z-axes.
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x
y

z

z=x

(1,0,1)

Fig. 10.1.14

15. x + y = 1 is a vertical plane (parallel to the z-axis)
passing through the points (1, 0, 0) and (0, 1, 0).

x
y

z

x+y=1

1

1

Fig. 10.1.15

16. x2 + y2 + z2 = 4 is a sphere centred at the origin and
having radius 2 (i.e., all points at distance 2 from the
origin).

17. (x − 1)2 + (y + 2)2 + (z − 3)2 = 4 is a sphere of radius 2
with centre at the point (1, −2, 3).

18. x2 + y2 + z2 = 2z can be rewritten

x2 + y2 + (z − 1)2 = 1,

and so it represents a sphere with radius 1 and centre at
(0, 0, 1). It is tangent to the xy-plane at the origin.

x y

z

(0,0,1)

x2+y2+z2=2z

Fig. 10.1.18

19. y2+z2 ≤ 4 represents all points inside and on the circular
cylinder of radius 2 with central axis along the x-axis (a
solid cylinder).

20. x2 + z2 = 4 is a circular cylindrical surface of radius 2
with axis along the y-axis.

x

y

z

2

x2+z2=4

Fig. 10.1.20

21. z = y2 is a “parabolic cylinder” — a surface all of whose
cross-sections in planes perpendicular to the x-axis are
parabolas.

x y

z

z=y2

Fig. 10.1.21

22. z ≥ √
x2 + y2 represents every point whose distance

above the xy-plane is not less than its horizontal distance
from the z-axis. It therefore consists of all points inside
and on a circular cone with axis along the positive z-axis,
vertex at the origin, and semi-vertical angle 45◦.

x y

z

45◦
z=

√
x2+y2

Fig. 10.1.22

23. x + 2y + 3z = 6 represents the plane that intersects the
coordinate axes at the three points (6, 0, 0), (0, 3, 0), and
(0, 0, 2). Only the part of the plane in the first octant is
shown in the figure.

x

y

z
(0,0,2)

(6,0,0)

(0,3,0)

Fig. 10.1.23

24.
{

x = 1
y = 2

represents the vertical straight line in which the

plane x = 1 intersects the plane y = 2.
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x
y

z

y=2

x=1

(1,2,0)

Fig. 10.1.24

25.
{

x = 1
y = z

is the straight line in which the plane z = 1

intersects the plane y = z. It passes through the points
(1, 0, 0) and (1, 1, 1).

x

y

z

x=1

z=y

(1,0,0)

(1,1,1)

Fig. 10.1.25

26.
{

x2 + y2 + z2 = 4
z = 1

is the circle in which the horizontal

plane z = 1 intersects the sphere of radius 2 centred at
the origin. The circle has centre (0, 0, 1) and radius√

4 − 1 = √
3.

x

y

z

√
3

(0,0,1)

1 2

z=1

x2+y2+z2=4

Fig. 10.1.26

27.
{

x2 + y2 + z2 = 4
x2 + y2 + z2 = 4z

is the circle in which the sphere of

radius 2 centred at the origin intersects the sphere of ra-
dius 2 centred at (0, 0, 2). (The second equation can be
rewritten x2 + y2 + (z − 2)2 = 4 for easier recogni-
tion.) Subtracting the equations of the two spheres we
get z = 1, so the circle must lie in the plane z = 1 as
well. Thus it is the same circle as in the previous exer-
cise.

28.
{

x2 + y2 + z2 = 4
x2 + z2 = 1

represents the two circles in

which the cylinder x2 + z2 − 1 intersects the sphere
x2 + y2 + z2 = 4. Subtracting the two equations, we
get y2 = 3. Thus, one circle lies in the plane y = √

3
and has centre (0,

√
3, 0) and the other lies in the plane

y = −√
3 and has centre (0,−√

3, 0). Both circles have
radius 1.

x

y

z

2
1

√
3

Fig. 10.1.28

29.
{

x2 + y2 = 1
z = x

is the ellipse in which the slanted plane

z = x intersects the vertical cylinder x2 + y2 = 1.

x

y

z

z=x

x2+y2=1

Fig. 10.1.29

30.
{ y ≥ x

z ≤ y is the quarter-space consisting of all points lying

on or on the same side of the planes y = x and z = y as
does the point (0, 1, 0).
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31.
{

x2 + y2 ≤ 1
z ≥ y

represents all points which are inside or

on the vertical cylinder x2 + y2 = 1, and are also above
or on the plane z = y.

x y

z

x2+y2=1

z=y

Fig. 10.1.31

32.
{

x2 + y2 + z2 ≤ 1√
x2 + y2 ≤ z

represents all points which are inside

or on the sphere of radius 1 centred at the origin and
which are also inside or on the upper half of the circular
cone with axis along the z-axis, vertex at the origin, and
semi-vertical angle 45◦.

x

y

z

x2+y2+z2=1

z=
√

x2+y2

Fig. 10.1.32

33. S = {(x, y) : 0 < x2 + y2 < 1}
The boundary of S consists of the origin and all points
on the circle x2 + y2 = 1. The interior of S is S, which
is therefore open. S is bounded; all points in it are at
distance less than 1 from the origin.

34. S = {(x, y) : x ≥ 0, y < 0}
The boundary of S consists of points (x, 0) where x ≥ 0,
and points (0, y) where y ≤ 0.
The interior of S consists of all points of S that are not
on the y-axis, that is, all points (x, y) satisfying x > 0
and y < 0.
S is neither open nor closed; it contains some, but not
all, of its boundary points.
S is not bounded; (x,−1) belongs to S for 0 < x < ∞.

35. S = {(x, y) : x + y = 1}
The boundary of S is S. The interior of S is the empty
set. S is closed, but not bounded. There are points on
the line x + y = 1 arbitrarily far away from the origin.

36. S = {(x, y) : |x | + |y| ≤ 1}
The boundary of S consists of all points on the edges of
the square with vertices (±1, 0) and (0, ±1).
The interior of S consists of all points inside that square.
S is closed since it contains all its boundary points. It is
bounded since all points in it are at distance not greater
than 1 from the origin.

37. S = {(x, y, z) : 1 ≤ x2 + y2 + z2 ≤ 4}
Boundary: the spheres of radii 1 and 2 centred at the
origin.
Interior: the region between these spheres. S is closed.

38. S = {(x, y, z) : x ≥ 0, y > 1, z < 2}
Boundary: the quarter planes x = 0, (y ≥ 1, z ≤ 2),
y = 1, (x ≥ 0, z ≤ 2), and z = 2, (x ≥ 0, y ≥ 1).
Interior: the set of points (x, y, z) such that x > 0,
y > 1, z < 2.
S is neither open nor closed.

39. S = {(x, y, z) : (x − z)2 + (y − z)2 = 0}
The boundary of S is S, that is, the line x = y = z. The
interior of S is empty. S is closed.

40. S = {(x, y, z) : x2 + y2 < 1, y + z > 2}
Boundary: the part of the cylinder x2 + y2 = 1 that lies
on or above the plane y + z = 2 together with the part of
that plane that lies inside the cylinder.
Interior: all points that are inside the cylinder x2+ y2 = 1
and above the plane y + z = 2. S is open.

Section 10.2 Vectors (page 551)

1. A = (−1, 2), B = (2, 0), C = (1, −3), D = (0, 4).

(a)
−→
AB = 3i − 2j (b)

−→
B A = −3i + 2j

(c)
−→
AC = 2i − 5j (d)

−→
B D = −2i + 4j

(e)
−→
D A = −i − 2j (f)

−→
AB − −→

BC = 4i + j

(g)
−→
AC − 2

−→
AB + 3

−→
C D = −7i + 20j

(h)
1

3

(−→
AB + −→

AC + −→
AD

)
= 2i − 5

3
j

2. u = i − j
v = j + 2k

a) u + v = i + 2k
u − v = i − 2j − 2k

2u − 3v = 2i − 5j − 6k
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b) |u| = √
1 + 1 = √

2

|v| = √
1 + 4 = √

5

c) û = 1√
2
(i − j)

v̂ = 1√
5
(j + 2k)

d) u • v = 0 − 1 + 0 = −1

e) The angle between u and v is

cos−1 −1√
10

≈ 108.4◦.

f) The scalar projection of u in the direction of v is
u • v
|v| = −1√

5
.

g) The vector projection of v along u is
(v • u)u

|u|2 = −1

2
(i − j).

3. u = 3i + 4j − 5k
v = 3i − 4j − 5k

a) u + v = 6i − 10k
u − v = 8j

2u − 3v = −3i + 20j + 5k

b) |u| = √
9 + 16 + 25 = 5

√
2

|v| = √
9 + 16 + 25 = 5

√
2

c) û = 1

5
√

2
(3i + 4j − 5k)

v̂ = 1

5
√

2
(3i − 4j − 5k)

d) u • v = 9 − 16 + 25 = 18

e) The angle between u and v is

cos−1 18

50
≈ 68.9◦.

f) The scalar projection of u in the direction of v is
u • v
|v| = 18

5
√

2
.

g) The vector projection of v along u is
(v • u)u

|u|2 = 9

25
(3i + 4j − 5k).

4. If a = (−1, 1), B = (2, 5) and C = (10, −1), then−→
AB = 3i + 4j and

−→
BC = 8i − 6j. Since

−→
AB • −→

BC = 0,
therefore,

−→
AB ⊥ −→

BC . Hence, 
ABC has a right angle at
B.

5. Let the triangle be ABC . If M and N are the midpoints
of AB and AC respectively, then

−−→
AM = 1

2
−→
AB, and−→

AN = 1
2
−→
AC . Thus

−−→M N = −→AN − −−→AM =
−→
AC − −→

AB

2
=

−→
BC

2
.

Thus M N is parallel to and half as long as BC .

A M
B

N

C

Fig. 10.2.5

6. We have

−→
P Q = −→

P B + −→
B Q = 1

2
−→
AB + 1

2
−→
BC = 1

2
−→
AC;

−→
S R = −→

S D + −→
DR = 1

2
−→
AD + 1

2
−→
DC = 1

2
−→
AC .

Therefore,
−→
P Q = −→

S R. Similarly,

−→
Q R = −→

QC + −→
C R = 1

2
−→
B D;

−→
PS = −→

P A + −→
AS = 1

2
−→
B D.

Therefore, −→Q R = −→PS. Hence, P Q RS is a parallelogram.

C

R

D
A

S

P

B
Q

Fig. 10.2.6

7. Let the parallelogram be ABC O. Take the origin at O.
The position vector of the midpoint of O B is

−→
O B

2
=

−→
O B + −→

C B

2
=

−→
OC + −→

O A

2
.

The position vector of the midpoint of C A is

−→
OC +

−→
C A

2
= −→

OC +
−→
O A − −→

OC

2

=
−→
OC + −→

O A

2
.

Thus the midpoints of the two diagonals coincide, and
the diagonals bisect each other.
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C B

AO

Fig. 10.2.7

8. Let X be the point of intersection of the medians AQ
and B P as shown. We must show that C X meets AB
in the midpoint of AB. Note that

−→
P X = α

−→
P B and−→

Q X = β
−→
Q A for certain real numbers α and β. Then

−→C X = 1

2
−→C B + β

−→Q A = 1

2
−→C B + β

(
1

2
−→C B + −→B A

)

= 1 + β

2
−→
C B + β

−→
B A;

−→
C X = 1

2
−→
C A + α

−→
P B = 1

2
−→
C A + α

(
1

2
−→
C A + −→

AB

)

= 1 + α

2
−→
C A + α

−→
AB.

Thus,

1 + β

2
−→
C B + β

−→
B A = 1 + α

2
−→
C A + α

−→
AB

(β + α)
−→
B A = 1 + α

2
−→
C A − 1 + β

2
−→
C B

(β + α)(
−→
C A − −→

C B) = 1 + α

2
−→
C A − 1 + β

2
−→
C B

(
β + α − 1 + α

2

)−→
C A =

(
β + α − 1 + β

2

)−→
C B.

Since
−→
C A is not parallel to

−→
C B,

β + α − 1 + α

2
= β + α − 1 + β

2
= 0

⇒ α = β = 1

3
.

Since α = β, x divides AQ and B P in the same ratio.
By symmetry, the third median C M must also divide the
other two in this ratio, and so must pass through X and
M X = 1

3 MC .

C

P

Q
B

M

A

X

Fig. 10.2.8

9. Let i point east and j point north. Let the wind velocity
be

vwind = ai + bj.

Now vwind = vwind rel car + vcar.
When vcar = 50j, the wind appears to come from the
west, so vwind rel car = λi. Thus

ai + bj = λi + 50j,

so a = λ and b = 50.
When vcar = 100j, the wind appears to come from the
northwest, so vwind rel car = µ(i-j). Thus

ai + bj = µ(i − j) + 100j,

so a = µ and b = 100 − µ.
Hence 50 = 100 − µ, so µ = 50. Thus a = b = 50. The
wind is from the southwest at 50

√
2 km/h.

10. Let the x-axis point east and the y-axis north. The veloc-
ity of the water is

vwater = 3i.

If you row through the water with speed 5 in the direc-
tion making angle θ west of north, then your velocity
relative to the water will be

vboat rel water = −5 sin θ i + 5 cos θ j.

Therefore, your velocity relative to the land will be

vboat rel land = vboat rel water + vwater

= (3 − 5 sin θ)i + 5 cos θ j.

To make progress in the direction j, choose θ so that
3 = 5 sin θ . Thus θ = sin−1(3/5) ≈ 36.87◦. In this case,
your actual speed relative to the land will be

5 cos θ = 4

5
× 5 = 4 km/h.

To row from A to B, head in the direction 36.87◦ west
of north. The 1/2 km crossing will take (1/2)/4 = 1/8
of an hour, or about 71

2 minutes.

θ
j

i

B

A

vwater

vboat rel water

Fig. 10.2.10
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11. We use the notations of the solution to Exercise 4. You

now want to make progress in the direction ki + 1

2
j, that

is, in the direction making angle

φ = tan−1 1

2k

with vector i. Head at angle θ upstream of this direction.
Since your rowing speed is 2, the triangle with angles θ

and φ has sides 2 and 3 as shown in the figure. By the

Sine Law,
3

sin θ
= 2

sin φ
, so

sin θ = 3

2
sin φ = 3

2

1

2
√

k2 + 1
4

= 3

2
√

4k2 + 1
.

This is only possible if
3

2
√

4k2 + 1
≤ 1, that is, if

k ≥
√

5

4
.

Head in the direction θ = sin−1 3

2
√

4k2 + 1
upstream of

the direction of AC , as shown in the figure. The trip is
not possible if k <

√
5/4.

3i

φ

φ

θ

3

2
1
2

B
k

C

A

Fig. 10.2.11

12. Let i point east and j point north. If the aircraft heads in
a direction θ north of east, then its velocity relative to the
air is

750 cos θ i + 750 sin θ j.

The velocity of the air relative to the ground is

−100√
2

i + −100√
2

j.

Thus the velocity of the aircraft relative to the ground is

(
750 cos θ − 100√

2

)
i +

(
750 sin θ − 100√

2

)
j.

If this velocity is true easterly, then

750 sin θ = 100√
2

,

so θ ≈ 5.41◦. The speed relative to the ground is

750 cos θ − 100√
2

≈ 675.9 km/h.

The time for the 1500 km trip is
1500

675.9
≈ 2.22 hours.

y

x

750

100

θ

Fig. 10.2.12

13. The two vectors are perpendicular if their dot product is
zero:

(2t i + 4j − (10 + t)k) • (i + tj + k) = 0

2t + 4t − 10 − t = 0 ⇒ t = 2.

The vectors are perpendicular if t = 2.

14. The cube with edges i, j, and k has diagonal i + j + k.
The angle between i and the diagonal is

cos−1 i • (i + j + k)√
3

= cos−1 1√
3

≈ 54.7◦.

x
y

z

θ

i

i + j + k

Fig. 10.2.14
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15. The cube of Exercise 10 has six faces, each with 2 diag-
onals. The angle between i + j + k and the face diagonal
i + j is

cos−1 (i + j) • (i + j + k)√
2
√

3
= cos−1 2√

6
≈ 35.26◦.

Six of the face diagonals make this angle with i + j + k.
The face diagonal i − j (and five others) make angle

cos−1 (i − j) • (i + j + k)√
2
√

3
= cos−1 0 = 90◦

with the cube diagonal i + j + k.

16. If u = u1i + u2j + u3k, then cos α
u • i
|u| = u1

|u| .

Similarly, cos β = u2

|u| and cos γ = u3

|u| .

Thus, the unit vector in the direction of u is

û = u
|u| = cos αi + cos βj + cos γ k,

and so cos2 α + cos2 β + cos2 γ = |û|2 = 1.

17. If û makes equal angles α = β = γ with the coordinate
axes, then 3 cos2 α = 1, and cos α = 1/

√
3. Thus

û = i + j + k√
3

.

18. If A = (1, 0, 0), B = (0, 2, 0), and C = (0, 0, 3), then

� ABC = cos−1
−→
B A • −→

BC

|B A||BC | = cos−1 4√
5
√

13
≈ 60.26◦

� BC A = cos−1
−→
C B • −→

C A

|C B||C A| = cos−1 9√
10

√
13

≈ 37.87◦

� C AB = cos−1
−→
AC • −→

AB

|AC ||AB| = cos−1 1√
10

√
5

≈ 81.87◦.

19. Since r − r1 = λr1 + (1 − λ)r2 − r1 = (1 − λ)(r1 − r2),
therefore r − r1 is parallel to r1 − r2, that is, parallel to
the line P1 P2. Since P1 is on that line, so must P be on
it.

If λ = 1

2
, then r = 1

2
(r1 + r2), so P is midway between

P1 and P2.

If λ = 2

3
, then r = 2

3
r1 + 1

3
r2, so P is two-thirds of the

way from P2 towards P1 along the line.
If λ = −1, the r = −r1 + 2r2 = r2 + (r2 − r1), so P is
such that P2 bisects the segment P1 P.
If λ = 2, then r = 2r1 − r2 = r1 + (r1 − r2), so P is such
that P1 bisects the segment P2 P.

20. If a �= 0, then a • r = 0 implies that the position vector
r is perpenducular to a. Thus the equation is satisfied by
all points on the plane through the origin that is normal
(perpendicular) to a.

21. If r • a = b, then the vector projection of r along a is the
constant vector

r • a
|a|

a
|a| = b

|a|2 a = r0, say.

Thus r • a = b is satisfied by all points on the plane
through r0 that is normal to a.

In Exercises 22–24, u = 2i + j − 2k, v = i + 2j − 2k,
and w = 2i − 2j + k.

22. Vector x = x i + yj + zk is perpendicular to both u and v
if

u • x = 0 ⇔ 2x + y − 2z = 0

v • x = 0 ⇔ x + 2y − 2z = 0.

Subtracting these equations, we get x − y = 0, so x = y.
The first equation now gives 3x = 2z. Now x is a unit
vector if x2 + y2 + z2 = 1, that is, if x2 + x2 + 9

4 x2 = 1,

or x = ±2/
√

17. The two unit vectors are

x = ±
(

2√
17

i + 2√
17

j + 3√
17

k
)

.

23. Let x = x i + yj + zk. Then

x • u = 9 ⇔ 2x + y − 2z = 9

x • v = 4 ⇔ x + 2y − 2z = 4

x • w = 6 ⇔ 2x − 2y + z = 6.

This system of linear equations has solution x = 2,
y = −3, z = −4. Thus x = 2i − 3j − 4k.

24. Since u, v, and w all have the same length (3), a vector
x = x i + yj + zk will make equal angles with all three if
it has equal dot products with all three, that is, if

2x + y − 2z = x + 2y − 2z ⇔ x = y = 0

2x + y − 2z = 2x − 2y + z ⇔ 3y − 3z = 0.

Thus x = y = z. Two unit vectors satisfying this condi-
tion are

x = ±
(

1√
3

i + 1√
3

j + 1√
3

k
)

.

25. Let û = u/|u| and v̂ = v/|v|.
Then û + v̂ bisects the angle between u and v. A unit
vector which bisects this angle is

û + v̂
|û + v̂| =

u
|u| + v

|v|∣∣∣∣
u
|u| + v

|v|
∣∣∣∣

= |v|u + |u|v
∣∣∣|v|u + |u|v

∣∣∣
.
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u

v

û + v̂
û

v̂

Fig. 10.2.25

26. If u and v are not parallel, then neither is the zero vec-
tor, and the origin and the two points with position
vectors u and v lie on a unique plane. The equation
r = λu + µv (λ, µ real) gives the position vector of
an arbitrary point on that plane.

27. a) |u + v|2 = (u + v) • (u + v)

= u • u + u • v + v • u + v • v

= |u|2 + 2u • v + |v|2.
b) If θ is the angle between u and v, then cos θ ≤ 1, so

u • v = |u||v| cos θ ≤ |u||v|.

c) |u + v|2 = |u|2 + 2u • v + |v|2
≤ |u|2 + 2|u||v| + |v|2
= (|u| + |v|)2.

Thus |u + v| ≤ |u| + |v|.

28. a) u, v, and u + v are the sides of a triangle. The trian-
gle inequality says that the length of one side cannot
exceed the sum of the lengths of the other two sides.

b) If u and v are parallel and point in the same direc-
tion, (or if at least one of them is the zero vector),
then |u + v| = |u| + |v|.

29. u = 3
5 i + 4

5 j, v = 4
5 i − 3

5 j, w = k.

a) |u| =
√

9
25 + 16

25 = 1, |v| =
√

16
25 + 9

25 = 1, |w| = 1,

u • v = 12
25 − 12

25 = 0, u • w = 0, v • w = 0.

b) If r = x i + yj + zk, then

(r • u)u + (r • v)v + (r • w)w

=
(

3

5
x + 4

5
y

)(
3

5
i + 4

5
j
)

+
(

4

5
x − 3

5
y

)(
4

5
i − 3

5
j
)

+ zk

= 9x + 16x

25
i + 16y + 9y

25
j + zk

= x i + yj + zk = r.

30. Suppose |u| = |v| = |w| = 1, and u•v = u•w = v•w = 0,
and let r = au + bv + ww. Then

r • u = au • u + bv • u + cw • u = a|u|2 + 0 + 0 = a.

Similarly, r • v = b and r • w = c.

31. Let u = w • a
|a|2 a, (the vector projection of w along a).

Let v = w − u. Then w = u + v. Clearly u is parallel to
a, and

v • a = w • a − w • a
|a|2 a • a = w • a − w • a = 0,

so v is perpendicular to a.

v

w

u

a

Fig. 10.2.31

32. Let n̂ be a unit vector that is perpendicular to u and lies
in the plane containing the origin and the points U , V ,
and P. Then û = u/|u| and n̂ constitute a standard ba-
sis in that plane, so each of the vectors v and r can be
expressed in terms of them:

v = sû + tn̂
r = x û + yn̂.

Since v is not parallel to u, we have t �= 0. Thus
n̂ = (1/t)(v − sû) and

r = x û + y

t
(v − sû) = λu + µv,

where λ = (t x − ys)/(t |u|) and µ = y/t .

33. Let |a|2 − 4rst = K 2, where K > 0. Now

|a|2 = a • a = (rx + sy) • (rx + sy)

= r2|x|2 + s2|y|2 + 2rsx • y

K 2 = |a|2 − 4rsx • y

= |rx − sy|2

(since x • y = t).
Therefore rx − sy = K û, for some unit vector û.
Since rx + sy = a, we have

2rx = a + K û
2sy = a − K û.

Thus

x = a + K û
2r

, y = a − K û
2s

,
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where K = √|a|2 − 4rst , and û is any unit vector. (The
solution is not unique.)

34. The derivation of the equation of the hanging cable given
in the text needs to be modified by replacing W = −δgsj
with W = −δgxj. Thus Tv = δgx , and the slope of the
cable satisfies

dy

dx
= δgx

H
= ax

where a = δg/H . Thus

y = 1

2
ax2 + C;

the cable hangs in a parabola.

35. If y = 1

a
cosh(ax), then y′ = sinh(ax), so

s =
∫ x

0

√
1 + sinh2(au) du =

∫ x

0
cosh(au) du

= sinh(au)

a

∣∣∣∣

x

0
= 1

a
sinh(ax).

As shown in the text, the tension T at P has horizontal

and vertical components that satisfy Th = H = δg

a
and

Tv = δgs = δg

a
sinh(ax). Hence

|T| =
√

T 2
h + T 2

v = δg

a
cosh(ax) = δgy.

36. The cable hangs along the curve y = 1

a
cosh(ax), and

its length from the lowest point at x = 0 to the support
tower at x = 45 m is 50 m. Thus

50 =
∫ 45

0

√
1 + sinh2(ax) dx = 1

a
sinh(45a).

The equation sinh(45a) = 50a has approximate solution
a ≈ 0.0178541. The vertical distance between the lowest
point on the cable and the support point is

1

a

(
cosh(45a) − 1

)
≈ 19.07 m.

37. The equation of the cable is of the form y = 1

a
cosh(ax).

At the point P where x = 10 m, the slope of the cable is
sinh(10a) = tan(55◦). Thus

a = 1

10
sinh−1(tan(55◦) ≈ 0.115423.

The length of the cable between x = 0 and x = 10 m is

L =
∫ 10

0

√
1 + sinh2(ax) dx

=
∫ 10

0
cosh(ax) dx = 1

a
sinh(ax)

∣∣∣∣

10

0

= 1

a
sinh(10a) ≈ 12.371 m.

Section 10.3 The Cross Product in 3-Space
(page 559)

1. (i − 2j + 3k) × (3i + j − 4k) = 5i + 13j + 7k

2. (j + 2k) × (−i − j + k) = 3i − 2j + k

3. If A = (1, 2, 0), B = (1, 0, 2), and C = (0, 3, 1), then−→AB = −2j+2k, −→AC = −i+ j+k, and the area of triangle
ABC is

|−→AB × −→
AC |

2
= | − 4i − 2j − 2k|

2
= √

6 sq. units.

4. A vector perpendicular to the plane containing the three
given points is

(−ai + bj) × (−ai + ck) = bci + acj + abk.

A unit vector in this direction is

bci + acj + abk√
b2c2 + a2c2 + a2b2

.

The triangle has area
1

2

√
b2c2 + a2c2 + a2b2.

5. A vector perpendicular to i + j and j + 2k is

±(i + j) × (j + 2k) = ±(2i − 2j + k),

which has length 3. A unit vector in that direction is

±
(

2

3
i − 2

3
j + 1

3
k
)

.

6. A vector perpendicular to u = 2i − j − 2k and to
v = 2i − 3j + k is the cross product

u × v =
∣∣∣∣∣

i j k
2 −1 −2
2 −3 1

∣∣∣∣∣
= −7i − 6j − 4k,

which has length
√

101. A unit vector with positive k
component that is perpenducular to u and v is

−1√
101

u × v = 1√
101

(7i + 6j + 4k).
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7. Since u makes zero angle with itself, |u × u| = 0 and
u × u = 0.

8. u × v =
∣∣∣∣∣

i j k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣

= −
∣∣∣∣∣

i j k
v1 v2 v3
u1 u2 u3

∣∣∣∣∣
= −v × u.

9. (u + v) × w =
∣∣∣∣∣

i j k
u1 + v1 u2 + v2 u3 + v3

w1 w2 w3

∣∣∣∣∣

=
∣∣∣∣∣

i j k
u1 u2 u3
w1 w2 w3

∣∣∣∣∣
+
∣∣∣∣∣

i j k
v1 v2 v3
w1 w2 w3

∣∣∣∣∣

= u × w + v × w.

10. (tu) × v =
∣∣∣∣∣

i j k
tu1 tu2 tu3
v1 v2 v3

∣∣∣∣∣

= t

∣∣∣∣∣

i j k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣
= t (u × v),

u × (tv) = −(tv) × u
= −t (v × u) = t (u × v).

11. u • (u × v)

= u1

∣∣∣∣
u2 u3
v2 v3

∣∣∣∣− u2

∣∣∣∣
u1 u3
v1 v3

∣∣∣∣+ u3

∣∣∣∣
u1 u2
v1 v2

∣∣∣∣

= u1u2v3 − u1v2u3 − u2u1v3

+ u2v1u3 + u3u1v2 − u3v1u2 = 0,

v • (u × v) = −v • (v × u) = 0.

12. Both u = cos β i + sin β j and v = cos α i + sin α j are
unit vectors. They make angles β and α, respectively,
with the positive x-axis, so the angle between them is
|α − β| = α − β, since we are told that 0 ≤ α − β ≤ π .
They span a parallelogram (actually a rhombus) having
area

|u × v| = |u||v| sin(α − β) = sin(α − β).

But

u × v =
∣∣∣∣∣

i j k
cos β sin β 0
cos α sin α 0

∣∣∣∣∣
= (sin α cos β − cos α sin β)k.

Because v is displaced counterclockwise from u, the
cross product above must be in the positive k direction.
Therefore its length is the k component. Therefore

sin(α − β) = sin α cos β − cos α sin β.

13. Suppose that u + v + w = 0. Then

u × v + v × v + w × v = 0 × v = 0.

Thus u × v + w × v = 0.
Thus u × v = −w × v = v × w.
By symmetry, we also have v × w = w × u.

14. The base of the tetrahedron is a triangle spanned by v
and w, which has area

A = 1

2
|v × w|.

The altitude h of the tetrahedron (measured perpendicular
to the plane of the base) is equal to the length of the pro-
jection of u onto the vector v × w (which is perpendicular
to the base). Thus

h = |u • (v × w)|
|v × w| .

The volume of the tetrahedron is

V = 1

3
Ah = 1

6
|u • (v × w)|

= 1

6
|
∣∣∣∣∣

u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣
|.

h

u

w

v

h

u × v

Fig. 10.3.14

15. The tetrahedron with vertices (1, 0, 0), (1, 2, 0), (2, 2, 2),
and (0, 3, 2) is spanned by u = 2j, v = i + 2j + 2k, and
w = −i + 3j + 2k. By Exercise 14, its volume is

V = 1

6
|
∣∣∣∣∣

0 2 0
1 2 2

−1 3 2

∣∣∣∣∣
| = 4

3
cu. units.

16. Let the cube be as shown in the figure. The required
parallelepiped is spanned by ai+ aj, aj+ ak, and ai+ ak.
Its volume is

V = |
∣∣∣∣∣

a a 0
0 a a
a 0 a

∣∣∣∣∣
| = 2a3 cu. units.

396

www.mohandesyar.com



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 10.3 (PAGE 559)

x
y

z

(0,a,a)

(a,a,0)

(a,0,a)

Fig. 10.3.16

17. The points A = (1, 1, −1), B = (0, 3,−2),
C = (−2, 1, 0), and D = (k, 0, 2) are coplanar if
(
−→
AB × −→

AC) • −→
AD = 0. Now

−→
AB × −→

AC =
∣∣∣∣∣

i j k
−1 2 −1
−3 0 1

∣∣∣∣∣
= 2i + 4j + 6k.

Thus the four points are coplanar if

2(k − 1) + 4(0 − 1) + 6(2 + 1) = 0,

that is, if k = −6.

18. u • (v × w) =
∣∣∣∣∣

u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣

= −
∣∣∣∣∣

v1 v2 v3
u1 u2 u3
w1 w2 w3

∣∣∣∣∣

=
∣∣∣∣∣

v1 v2 v3
w1 w2 w3
u1 u2 u3

∣∣∣∣∣

= v • (w × u)

= w • (u × v) (by symmetry).

19. If u • (v × w) �= 0, and x = λu + µv + νw, then

x • (v × w)

= λu • (v × w) + µv • (v × w) + νw • (v × w)

= λu • (v × w).

Thus

λ = x • (v × w)

u • (v × w)
.

Since u • (v × w) = v • (w × u) = w • (u × v), we have,
by symmetry,

µ = x • (w × u)

u • (v × w)
, ν = x • (u × v)

u • (v × w)
.

20. If v × w �= 0, then (v × w) • (v × w) �= 0. By the previous
exercise, there exist constants λ, µ and ν such that

u = λv + µw + ν(v × w).

But v × w is perpendicular to both v and w, so

u • (v × w) = 0 + 0 + ν(v × w) • (v × w).

If u • (v × w) = 0, then ν = 0, and

u = λv + µw.

21. u = i + 2j + 3k
v = 2i − 3j
w = j − k
u × (v × w) = u × (3i + 2j + 2k) = −2i + 7j − 4k
(u × v) × w = (9i + 6j − 7k) × w = i + 9j + 9k.

u × (v × w) lies in the plane of v and w;

(u × v) × w lies in the plane of u and v.

22. u • v × w makes sense in that it must mean u • (v × w).
((u • v) × w makes no sense since it is the cross product
of a scalar and a vector.)

u × v × w makes no sense. It is ambiguous, since
(u × v) × w and u × (v × w) are not in general equal.

23. As suggested in the hint, let the x-axis lie in the direction
of v, and let the y-axis be such that w lies in the xy-
plane. Thus

v = v1i, w = w1i + w2j.

Thus v × w = v1w2i × j = v1w2k, and

u × (v × w) = (u1i + u2j + u3k) × (v1w2k)

= u1v1w2i × k + u2v1w2j × k
= −u1v1w2i − u1v1w2j.

But
(u • w)v − (u • v)w
= (u1w1 + u2w2)v1i − u1v1(w1i + w2j)
= u2v1w2i − u1v1w2j.

Thus u × (v × w) = (u • w)v − (u • v)w.

24. If u, v, and w are mutually perpendicular, then v × w is
parallel to u, so u × (v × w) = 0. In this case,
u • (v × w) = ±|u||v||w|; the sign depends on whether u
and v × w are in the same or opposite directions.

25. Applying the result of Exercise 23 three times, we obtain

u × (v × w) + v × (w × u) + w × (u × v)

= (u • w)v − (u • v)w + (v • u)w − (v • w)u
+ (w • v)u − (w • u)v

= 0.
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26. If a = −i + 2j + 3k and x = x i + yj + zk, then

a × x =
∣∣∣∣∣

i j k
−1 2 3
x y z

∣∣∣∣∣

= (2z − 3y)i + (3x + z)y − (y + 2x)k
= i + 5j − 3k,

provided 2z − 3y = 1, 3x + z = 5, and −y − 2x = −3.
This system is satisfied by x = t , y = 3 − 2t , z = 5 − 3t ,
for any real number t . Thus

x = t i + (3 − 2t)j + (5 − 3t)k

gives a solution of a × x = i + 5j − 3k for any t . These
solutions constitute a line parallel to a.

27. Let a = −i + 2j + 3k and b = i + 5j. If x is a solution of
a × x = b, then

a • b = a • (a × x) = 0.

However, a • b �= 0, so there can be no such solution x.

28. The equation a × x = b can be solved for x if and only
if a • b = 0. The “only if” part is demonstrated in the
previous solution. For the “if” part, observe that if
a • b = 0 and x0 = (b × a)/|a|2, then by Exercise 23,

a × x0 = 1

|a|2 a × (b × a) = (a • a)b − (a • b)a
|a|2 = b.

The solution x0 is not unique; as suggested by the exam-
ple in Exercise 26, any multiple of a can be added to it
and the result will still be a solution. If x = x0 + ta, then

a × x = a × x0 + ta × a = b + 0 = b.

Section 10.4 Planes and Lines (page 567)

1. a) x2+ y2+z2 = z2 represents a line in 3-space, namely
the z-axis.

b) x + y + z = x + y + z is satisfied by every point in
3-space.

c) x2 + y2 + z2 = −1 is satisfied by no points in (real)
3-space.

2. The plane through (0, 2,−3) normal to 4i − j − 2k has
equation

4(x − 0) − (y − 2) − 2(z + 3) = 0,

or 4x − y − 2z = 4.

3. The plane through the origin having normal i − j + 2k has
equation x − y + 2z = 0.

4. The plane passing through (1, 2, 3), parallel to the plane
3x + y − 2z = 15, has equation 3z + y − 2z = 3 + 2 − 6,
or 3x + y − 2z = −1.

5. The plane through (1, 1, 0), (2, 0, 2), and (0, 3, 3) has
normal

(i − j + 2k) × (i − 2j − 3k) = 7i + 5j − k.

It therefore has equation

7(x − 1) + 5(y − 1) − (z − 0) = 0,

or 7x + 5y − z = 12.

6. The plane passing through (−2, 0, 0), (0, 3, 0), and
(0, 0, 4) has equation

x

−2
+ y

3
+ z

4
= 1,

or 6x − 4y − 3z = −12.

7. The normal n to a plane through (1, 1, 1) and (2, 0, 3)

must be perpendicular to the vector i − j + 2k joining
these points. If the plane is perpendicular to the plane
x + 2y − 3z = 0, then n must also be perpendicular to
i + 2j − 3k, the normal to this latter plane. Hence we can
use

n = (i − j + 2k) × (i + 2j − 3k) = −i + 5j + 3k.

The plane has equation

−(x − 1) + 5(y − 1) + 3(z − 1) = 0,

or x − 5y − 3z = −7.

8. Since (−2, 0,−1) does not lie on x − 4y + 2z = −5, the
required plane will have an equation of the form

2x + 3y − z + λ(x − 4y + 2z + 5) = 0

for some λ. Thus

−4 + 1 + λ(−2 − 2 + 5) = 0,

so λ = 3. The required plane is 5x − 9y + 5z = −15.

9. A plane through the line x + y = 2, y − z = 3 has
equation of the form

x + y − 2 + λ(y − z − 3) = 0.

This plane will be perpendicular to 2x + 3y + 4z = 5 if

(2)(1) + (1 + λ)(3) − (λ)(4) = 0,
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that is, if λ = 5. The equation of the required plane is

x + 6y − 5z = 17.

10. Three distinct points will not determine a unique plane
through them if they all lie on a straight line. If the
points have position vectors r1, r2, and r3, then they will
all lie on a straight line if

(r2 − r1) × (r3 − r1) = 0.

11. If the four points have position vectors ri , (1 ≤ i ≤ 4),
then they are coplanar if, for example,

(r2 − r1) •
[
(r3 − r1) × (r4 − r1)

]
= 0

(or if they satisfy any similar such condition that asserts
that the tetrahedron whose vertices they are has zero vol-
ume).

12. x + y + z = λ is the family of all (parallel) planes normal
to the vector i + j + k.

13. x + λy + λz = λ is the family of all planes containing the
line of intersection of the planes x = 0 and y + z = 1,
except the plane y + z = 1 itself. All these planes pass
through the points (0, 1, 0) and (0, 0, 1).

14. The distance from the planes

λx +
√

1 − λ2 y = 1

to the origin is 1/
√

λ2 + 1 − λ2 = 1. Hence the equation
represents the family of all vertical planes at distance 1
from the origin. All such planes are tangent to the cylin-
der x2 + y2 = 1.

15. The line through (1, 2, 3) parallel to 2i − 3j − 4k has
equations given in vector parametric form by

r = (1 + 2t)i + (2 − 3t)j + (3 − 4t)k,

or in scalar parametric form by

x = 1 + 2t, y = 2 − 3t, z = 3 − 4t,

or in standard form by

x − 1

2
= y − 2

−3
− z − 3

−4
.

16. The line through (−1, 0, 1) perpendicular to the plane
2x − y + 7z = 12 is parallel to the normal vector
2i − j + 7k to that plane. The equations of the line are, in
vector parametric form,

r = (−1 + 2t)i − tj + (1 + 7t)k,

or in scalar parametric form,

x = −1 + 2t, y = −t, z = 1 + 7t,

or in standard form

x + 1

2
= y

−1
= z − 1

7
.

17. A line parallel to the line with equations

x + 2y − z = 2, 2x − y + 4z = 5

is parallel to the vector

(i + 2j − k) × (2i − j + 4k) = 7i − 6j − 5k.

Since the line passes through the origin, it has equations

r = 7t i − 6tj − 5tk (vector parametric)

x = 7t, y = −6t, z = −5t (scalar parametric)
x

7
= y

−6
= z

−5
(standard form).

18. A line parallel to x + y = 0 and to x − y + 2z = 0
is parallel to the cross product of the normal vectors to
these two planes, that is, to the vector

(i + j) × (i − j + 2k) = 2(i − j − k).

Since the line passes through (2,−1,−1), its equations
are, in vector parametric form

r = (2 + t)i − (1 + t)j − (1 + t)k,

or in scalar parametric form

x = 2 + t, y = −(1 + t), z = −(1 + t),

or in standard form

x − 2 = −(y + 1) = −(z + 1).

19. A line making equal angles with the positive directions
of the coordinate axes is parallel to the vector i + j + k.
If the line passes through the point (1, 2,−1), then it has
equations

r = (1 + t)i + (2 + t)j + (−1 + t)k (vector parametric)

x = 1 + t, y = 2 + t, z = −1 + t (scalar parametric)

x − 1 = y − 2 = z + 1 (standard form).
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20. The line r = (1 − 2t)i + (4 + 3t)j + (9 − 4t)k has standard
form

x − 1

−2
= y − 4

3
= z − 9

−4
.

21. The line

{
x = 4 − 5t
y = 3t
z = 7

has standard form

x − 4

−5
= y

3
, z = 7.

22. The line

{
x − 2y + 3z = 0
2x + 3y − 4z = 4

is parallel to the vector

(i − 2j + 3k) × (2i + 3j − 4k) = −i + 10j + 7k.

We need a point on this line. Putting z = 0, we get

x − 2y = 0, 2x + 3y = 4.

The solution of this system is y = 4/7, x = 8/7. A
possible standard form for the given line is

x − 8

7
−1

=
y − 4

7
10

= z

7
,

though, of course, this answer is not unique as the coor-
dinates of any point on the line could have been used.

23. The equations
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x = x1 + t (x2 − x1)

y = y1 + t (y2 − y1)

z = z1 + t (z2 − z1)

certainly represent a straight line. Since
(x, y, z) = (x1, y1, z1) if t = 0, and
(x, y, z) = (x2, y2, z2) if t = 1, the line must pass
through P1 and P2.

24. The point on the line corresponding to t = −1 is the
point P3 such that P1 is midway between P3 and P2.
The point on the line corresponding to t = 1/2 is the
midpoint between P1 and P2.
The point on the line corresponding to t = 2 is the point
P4 such that P2 is the midpoint between P1 and P4.

25. Let ri be the position vector of Pi (1 ≤ i ≤ 4). The
line P1 P2 intersects the line P3 P4 in a unique point if
the four points are coplanar, and P1 P2 is not parallel to
P3 P4. It is therefore sufficient that

(r2 − r1) × (r4 − r3) �= 0, and

(r3 − r1) •
[
(r2 − r1) × (r4 − r3)

]
= 0.

(Other similar answers are possible.)

26. The distance from (0, 0, 0) to x + 2y + 3z = 4 is

4√
12 + 22 + 32

= 4√
14

units.

27. The distance from (1, 2, 0) to 3x − 4y − 5z = 2 is

|3 − 8 − 0 − 2|√
32 + 42 + 52

= 7

5
√

2
units.

28. A vector parallel to the line x + y+z = 0, 2x − y−5z = 1
is

a = (i + j + k) × (2i − j − 5k) = −4i + 7j − 3k.

We need a point on this line: if z = 0 then x + y = 0
and 2x − y = 1, so x = 1/3 and y = −1/3. The position
vector of this point is

r1 = 1

3
i − 1

3
j.

The distance from the origin to the line is

s = |r1 × a|
|a| = |i + j + k|√

74
=
√

3

74
units.

29. The line

{
x + 2y = 3
y + 2z = 3

contains the points (1, 1, 1) and

(3, 0, 3/2), so is parallel to the vector 2i − j + 1

2
k, or to

4i − 2j + k.

The line
{ x + y + z = 6

x − 2z = −5
contains the points (−5, 11, 0)

and (−1, 5, 2), and so is parallel to the vector 4i−6j+2k,
or to 2i − 3j + k.
Using the values

r1 = i + j + k
r2 = −i + 5j + 2k

a1 = 4i − 2j + k
a2 = 2i − 3j + k,

we calculate the distance between the two lines by the
formula in Section 10.4 as

s = |(r1 − r2) • (a1 × a2)|
|a1 × a2|

= |(2i − 4j − k) • (i − 2j − 8k)|
|i − 2j − 8k|

= 18√
69

units.
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30. The line x − 2 = y + 3

2
= z − 1

4
passes through the point

(2, −3, 1), and is parallel to a = i + 2j + 4k.
The plane 2y − z = 1 has normal n = 2j − k.
Since a • n = 0, the line is parallel to the plane.
The distance from the line to the plane is equal to the
distance from (2, −3, 1) to the plane 2y − z = 1, so is

D = | − 6 − 1 − 1|√
4 + 1

= 8√
5

units.

31. (1 − λ)(x − x0) = λ(y − y0) represents any line in the
xy-plane passing through (x0, y0). Therefore, in 3-space
the pair of equations

(1 − λ)(x − x0) = λ(y − y0), z = z0

represents all straight lines in the plane z = z0 which
pass through the point (x0, y0, z0).

32.
x − x0√
1 − λ2

= y − y0

λ
= z − z0 represents all lines through

(x0, y0, z0) parallel to the vectors

a =
√

1 − λ2i + λj + k.

All such lines are generators of the circular cone

(z − z0)
2 = (x − x0)

2 + (y − y0)
2,

so the given equations specify all straight lines lying on
that cone.

33. The equation

(A1x + B1y + C1z + D1)(A2x + B2y + C2z + D2) = 0

is satisfied if either A1x + B1y + C1z + D1 = 0 or
A2x + B2y + C2z + D2 = 0, that is, if (a, y, z) lies on
either of these planes. It is not necessary that the point
lie on both planes, so the given equation represents all
the points on each of the planes, not just those on the
line of intersection of the planes.

Section 10.5 Quadric Surfaces (page 570)

1. x2 + 4y2 + 9z2 = 36

x2

62 + y2

32 + z2

22 = 1

This is an ellipsoid with centre at the origin and semi-
axes 6, 3, and 2.

2. x2 + y2 + 4z2 = 4 represents an oblate spheroid, that is,
an ellipsoid with its two longer semi-axes equal. In this
case the longer semi-axes have length 2, and the shorter
one (in the z direction) has length 1. Cross-sections in
planes perpendicular to the z-axis between z = −1 and
z = 1 are circles.

3. 2x2 + 2y2 + 2z2 − 4x + 8y − 12z + 27 = 0

2(x2 − 2x + 1) + 2(y2 + 4y + 4) + 2(z2 − 6z + 9)

= −27 + 2 + 8 + 18

(x − 1)2 + (y + 2)2 + (z − 3)2 = 1

2

This is a sphere with radius 1/
√

2 and centre (1, −2, 3).

4. x2 + 4y2 + 9z2 + 4x − 8y = 8

(x + 2)2 + 4(y − 1)2 + 9z2 = 8 + 8 = 16

(x + 2)2

42 + (y − 1)2

22 + z2

(4/3)2 = 1

This is an ellipsoid with centre (−2, 1, 0) and semi-axes
4, 2, and 4/3.

5. z = x2 + 2y2 represents an elliptic paraboloid with vertex
at the origin and axis along the positive z-axis. Cross-
sections in planes z = k > 0 are ellipses with semi-axes√

k and
√

k/2.

x y

z

z=x2+2y2

Fig. 10.5.5

6. z = x2 − 2y2 represents a hyperbolic paraboloid.

x
y

z

z=x2−2y2

Fig. 10.5.6

7. x2 − y2 − z2 = 4 represents a hyperboloid of two sheets
with vertices at (±2, 0, 0) and circular cross-sections in
planes x = k, where |k| > 2.
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x

y

z

x2−y2−z2=4

Fig. 10.5.7

8. −x2 + y2 + z2 = 4 represents a hyperboloid of one sheet,
with circular cross-sections in all planes perpendicular to
the x-axis.

x

y

z

y

−x2+y2+z2=4

Fig. 10.5.8

9. z = xy represents a hyperbolic paraboloid containing the
x- and y-axes.

x

y

z

z=xy

Fig. 10.5.9

10. x2 + 4z2 = 4 represents an elliptic cylinder with axis
along the y-axis.

x

y

z

x2+4z2=4

Fig. 10.5.10

11. x2 − 4z2 = 4 represents a hyperbolic cylinder with axis
along the y-axis.

x

y

z

x

x2−4z2=4

Fig. 10.5.11

12. y = z2 represents a parabolic cylinder with vertex line
along the x-axis.

x
y

z

y=z2

Fig. 10.5.12

13. x = z2+z =
(

z + 1

2

)2

− 1

4
represents a parabolic cylinder

with vertex line along the line z = −1/2, x = −1/4.
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x

y

z

x=z2+z

Fig. 10.5.13

14. x2 = y2 + 2z2 represents an elliptic cone with vertex at
the origin and axis along the x-axis.

x

y

z

x2=y2+2z2

Fig. 10.5.14

15. (z − 1)2 = (x − 2)2 + (y − 3)2 represents a circular
cone with axis along the line x = 2, y = 3, and vertex at
(2, 3, 1)

x

y

z

(2,3,1)

(z−1)2=(x−2)2+(y−3)2

Fig. 10.5.15

16. (z −1)2 = (x −2)2 + (y −3)2 +4 represents a hyperboloid
of two sheets with centre at (2, 3, 1), axis along the line
x = 2, y = 3, and vertices at (2, 3,−1) and (2, 3, 3).

x

y

z

(2,3,1)

(z−1)2=(x−2)2+(y−3)2+4

Fig. 10.5.16

17.
{

x2 + y2 + z2 = 4
x + y + z = 1

represents the circle of intersection of

a sphere and a plane. The circle lies in the plane
x + y + z = 1, and has centre (1/3, 1/3, 1/3) and radius√

4 − (3/9) = √
11/3.

x
y

z

(
1
3 ,

1
3 ,

1
3

)

x2+y2+z2=4

x+y+z=1

Fig. 10.5.17

18.
{

x2 + y2 = 1
z = x + y

is the ellipse of intersection of the plane

z = x + y and the circular cylinder x2 + y2 = 1. The
centre of the ellipse is at the origin, and the ends of the
major axis are ±(1/

√
2, 1/

√
2,

√
2).

x

y

z

z=x+y

x2+y2=1

Fig. 10.5.18
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19.
{

z2 = x2 + y2

z = 1 + x
is the parabola in which the plane

z = 1 + x intersects the circular cone z2 = x2 + y2. (It
is a parabola because the plane is parallel to a generator
of the cone, namely the line z = x , y = 0.) The vertex
of the parabola is (−1/2, 0, 1/2), and its axis is along the
line y = 0, z = 1 + x .

x y

z

z=1+x

z2=x2+y2

Fig. 10.5.19

20.
{

x2 + 2y2 + 3z2 = 6
y = 1

is an ellipse in the plane

y = 1. Its projection onto the xz-plane is the ellipse
x2 + 3z2 = 4. One quarter of the ellipse is shown in the
figure.

x
y

z

y=1

√
2

√
3

x2+2y2+3z2=6
√

6

Fig. 10.5.20

21.
x2

a2 + y2

b2 − z2

c2 = 1

x2

a2 − z2

c2 = 1 − y2

b2
( x

a
+ z

c

)( x

a
− z

c

)
=
(

1 + y

b

)(
1 − y

b

)

Family 1:

⎧
⎨

⎩

x

a
+ z

c
= λ

(
1 + y

b

)

λ
( x

a
− z

c

)
= 1 − y

b
.

Family 2:

⎧
⎨

⎩

x

a
+ z

c
= µ

(
1 − y

b

)

µ
( x

a
− z

c

)
= 1 + y

b
.
.

22. z = xy

Family 1:

{
z = λx
λ = y.

Family 2:
{ z = µy

µ = x .

23. The cylinder 2x2 + y2 = 1 intersects horizontal planes
in ellipses with semi-axes 1 in the y direction and 1/

√
2

in the x direction. Tilting the plane in the x direction
will cause the shorter semi-axis to increase in length.
The plane z = cx intersects the cylinder in an ellipse
with principal axes through the points (0,±1, 0) and
(±1/

√
2, 0,±c/

√
2). The semi-axes will be equal (and

the ellipse will be a circle) if (1/2) + (c2/2) = 1, that is,
if c = ±1. Thus cross-sections of the cylinder perpendic-
ular to the vectors a = i ± k are circular.

24. The plane z = cx + k intersects the elliptic cone
z2 = 2x2 + y2 on the cylinder

c2x2 + 2ckx + k2 = 2x2 + y2

(2 − c2)x2 − 2ckx + y2 = k2

(2 − c2)

(
x − ck

2 − c2

)2

+ y2 = k2 + c2k2

2 − c2 = 2k2

2 − c2

(x − x0)
2

a2 + y2

b2 = 1,

where x0 = ck

2 − c2 , a2 = 2k2

(2 − c2)2 , and b2 = 2k2

2 − c2 .

As in the previous exercise, z = cx + k intersects the
cylinder (and hence the cone) in an ellipse with principal
axes joining the points

(x0 − a, 0, c(x0 − a) + k) to (x0 + a, 0, c(x0 + a) + k),

and (x0,−b, cx0 + k) to (x0, b, cx0 + k).

The centre of this ellipse is (x0, 0, cx0 + k). The ellipse
is a circle if its two semi-axes have equal lengths, that is,
if

a2 + c2a2 = b2,

that is,

(1 + c2)
2k2

(2 − c2)2
= 2k2

2 − c2
,

or 1 + c2 = 2 − c2. Thus c = ±1/
√

2. A vector normal
to the plane z = ±(x/

√
2) + k is a = i ± √

2k.

Section 10.6 A Little Linear Algebra
(page 579)

1.

( 3 0 −2
1 1 2

−1 1 −1

)( 2 1
3 0
0 −2

)

=
( 6 7

5 −3
1 1

)

2.

( 1 1 1
0 1 1
0 0 1

)( 1 1 1
0 1 1
0 0 1

)

=
( 1 2 3

0 1 2
0 0 1

)

3.
(

a b
c d

)(
w x
y z

)
=
(

aw + by ax + bz
cw + dy cx + dz

)
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4.
(

w x
y z

)(
a b
c d

)
=
(

aw + cx bw + dx
ay + cz by + dz

)

5. AAT =
⎛

⎜
⎝

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎞

⎟
⎠

=
⎛

⎜
⎝

4 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1

⎞

⎟
⎠

A2 =
⎛

⎜
⎝

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

⎞

⎟
⎠

=
⎛

⎜
⎝

1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1

⎞

⎟
⎠

6. x =
( x

y
z

)

, A =
( a p q

p b r
q r c

)

xxT =
( x

y
z

)

(x, y, z) =
( x2 xy xz

xy y2 yz
xz yz z2

)

xT x = (x, y, z)

( x
y
z

)

= (x2 + y2 + z2)

xT Ax = (x, y, z)

( a p q
p b r
q r c

)( x
y
z

)

= (x, y, z)

( ax + py + qz
px + by + r z
qx + r y + cz

)

= ax2 + by2 + cz2 + 2pxy + 2qxz + 2r yz

7.

∣∣∣∣∣∣∣

2 3 −1 0
4 0 2 1
1 0 −1 1

−2 0 0 1

∣∣∣∣∣∣∣
= −3

∣∣∣∣∣

4 2 1
1 −1 1

−2 0 1

∣∣∣∣∣

= −3

(
−2

∣∣∣∣
1 1

−2 1

∣∣∣∣− 1

∣∣∣∣
4 1

−2 1

∣∣∣∣

)

= 6(3) + 3(6) = 36

8.

∣∣∣∣∣∣∣

1 1 1 1
1 2 3 4

−2 0 2 4
3 −3 2 −2

∣∣∣∣∣∣∣

= −2

∣∣∣∣∣

1 1 1
2 3 4

−3 2 −2

∣∣∣∣∣
+ 2

∣∣∣∣∣

1 1 1
1 2 4
3 −3 −2

∣∣∣∣∣

− 4

∣∣∣∣∣

1 1 1
1 2 3
3 −3 2

∣∣∣∣∣

= −2

∣∣∣∣∣

1 1 1
0 1 2
0 5 1

∣∣∣∣∣
+ 2

∣∣∣∣∣

1 1 1
0 1 3
0 −6 −5

∣∣∣∣∣

− 4

∣∣∣∣∣

1 1 1
0 1 2
0 −6 −1

∣∣∣∣∣

= −2

∣∣∣∣
1 2
5 1

∣∣∣∣+ 2

∣∣∣∣
1 3

−6 −5

∣∣∣∣− 4

∣∣∣∣
1 2

−6 −1

∣∣∣∣

= −2(−9) + 2(13) − 4(11) = 0

9.

∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

∣∣∣∣∣∣∣∣∣∣

= a11

∣∣∣∣∣∣∣∣

a22 a23 · · · a2n

0 a33 · · · a3n
...

...
. . .

...

0 0 · · · ann

∣∣∣∣∣∣∣∣

= a11a22

∣∣∣∣∣∣

a33 · · · a3n
...

. . .
...

0 · · · ann

∣∣∣∣∣∣

= a11a22a33 · · · ann

(or use induction on n)

10.
∣∣∣∣

1 1
x y

∣∣∣∣ = y − x . If

f (x, y, z) =
∣∣∣∣∣

1 1 1
x y z
x2 y2 z2

∣∣∣∣∣
,

then f is a polynomial of degree 2 in z.
Since f (x, y, x) = 0 and f (x, y, y) = 0, we must have
f (x, y, z) = A(z − x)(z − y) for some A independent of
z. But

Axy = f (x, y,0) =
∣∣∣∣∣

1 1 1
x y 0
x2 y2 0

∣∣∣∣∣
= xy(y − x),

so A = y − x and

f (x, y, z) = (y − x)(z − x)(z − y).
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Generalization:

∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n
...

...
...

. . .
...

xn−1
1 xn−1

2 xn−1
3 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣

=
∏

1≤i< j≤n

(xj − xi ).

11. Let A =
(

a b
c d

)
, B =

(

 m
n p

)
, C =

(
w x
y z

)
. Then

(AB)C =
(

a
 + bn am + bp
c
 + dn cm + dp

)(
w x
y z

)

=
(

a
w + bnw + amy + bpy a
x + bnx + amz + bpz
c
w + dnw + cmy + dpy c
x + dnx + cmz + dpz

)

A(BC) =
(

a b
c d

)(

w + my 
x + mz
nw + py nx + pz

)

=
(

a
w + amy + bnw + bpy a
x + amz + bnx + bpz
c
w + cmy + dnw + dpy c
x + cmz + dnx + dpz

)

Thus (AB)C = A(BC).

12. If A =
(

a b
c d

)
, then AT =

(
a c
b d

)
, and

det(A) = ad − bc = det(AT ).

We generalize this by induction.
Suppose det(BT )=det(B) for any (n − 1)× (n − 1) matrix,
where n ≥ 3. Let

A =

⎛

⎜⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

⎞

⎟⎟
⎠

be an n × n matrix. If det(A) is expanded in minors
about the first row, and det(AT ) is expanded in minors
about the first column, the corresponding terms in these
expansions are equal by the induction hypothesis. (The
(n − 1) × (n − 1) matrices whose determinants appear
in one expansion are the transposes of those in the other
expansion.) Therefore det(AT )=det(A) for any square
matrix A.

13. Let A =
(

a b
c d

)
and B =

(
w x
y z

)
. Then

AB =
(

aw + by ax + bz
cw + dy cx + dz

)
.

Therefore,

det(A)det(B) = (ad − bc)(wz − xy)

= adwz − adxy − bcwz + bcxy

det(AB) = (aw + by)(cx + dz) − (ax + bz)(cw + dy)

= awcx + awdz + bycx + bydz

− axwc − axdy − bzcw − bzdy

= adwz − adxy − bcwz + bcxy

= det(A)det(B).

14. If Aθ =
(

cos θ sin θ

− sin θ cos θ

)
, then

A−θ =
(

cos(−θ) sin(−θ)

− sin(−θ) cos(−θ)

)
=
(

cos θ − sin θ

sin θ cos θ

)
,

and

AθA−θ =
(

1 0
0 1

)
= I .

Thus A−θ = (Aθ )
−1.

15. Let A =
( 1 1 1

0 1 1
0 0 1

)

, A−1 =
( a b c

d e f
g h i

)

. Since

AA−1 = I we must have

a + d + g = 1

d + g = 0

g = 0

b + e + h = 0

e + h = 1

h = 0

c + f + i = 0

f + i = 0

i = 1.

Thus a = 1, d = g = 0, h = 0, e = 1, b = −1, i = 1,
f = −1, c = 0, and so

A−1 =
( 1 −1 0

0 1 −1
0 0 1

)

.

16. Let A =
( 1 0 −1

−1 1 0
2 1 3

)

, A−1 =
( a b c

d e f
g h i

)

. Since

AA−1 = I we must have

a − g = 1

−a + d = 0

2a + d + 3g = 0

b − h = 0

−b + e = 1

2b + e + 3h = 0

c − i = 0

−c + f = 0

2c + f + 3i = 1.

Solving these three systems of equations, we get

A−1 =
⎛

⎝

1
2 − 1

6
1
6

1
2

5
6

1
6

− 1
2 − 1

6
1
6

⎞

⎠ .

17. The given system of equations is

A

( x
y
z

)

=
(−2

1
13

)

.
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Thus ( x
y
z

)

= A−1

(−2
1
13

)

=
( 1

2
3

)

,

so x = 1, y = 2, and z = 3.

18. If A is the matrix of Exercises 16 and 17 then
det(A) = 6. By Cramer’s Rule,

x = 1

6

∣∣∣∣∣

−2 0 −1
1 1 0
13 1 3

∣∣∣∣∣
= 6

6
= 1

y = 1

6

∣∣∣∣∣

1 −2 −1
−1 1 0
2 13 3

∣∣∣∣∣
= 12

6
= 2

z = 1

6

∣∣∣∣∣

1 0 −2
−1 1 1
2 1 13

∣∣∣∣∣
= 18

6
= 3.

19. A =
⎛

⎜
⎝

1 1 1 1
1 1 1 −1
1 1 −1 −1
1 −1 −1 −1

⎞

⎟
⎠

det(A) =

∣∣∣∣∣∣∣

0 0 0 2
0 0 2 0
0 2 0 0
1 −1 −1 −1

∣∣∣∣∣∣∣

= −2

∣∣∣∣∣

0 0 2
0 2 0
1 −1 −1

∣∣∣∣∣
= −4

∣∣∣∣
0 2
1 −1

∣∣∣∣ = 8

x1 = 1

8

∣∣∣∣∣∣∣

0 1 1 1
4 1 1 −1
6 1 −1 −1
2 −1 −1 −1

∣∣∣∣∣∣∣

= 1

8

∣∣∣∣∣∣∣

0 1 1 1
4 0 0 −2
6 2 0 0
2 0 0 0

∣∣∣∣∣∣∣

= −2

8

∣∣∣∣∣

1 1 1
0 0 −2
2 0 0

∣∣∣∣∣
= −4

8

∣∣∣∣
1 1
0 −2

∣∣∣∣ = 1

x2 = 1

8

∣∣∣∣∣∣∣

1 0 1 1
1 4 1 −1
1 6 −1 −1
1 2 −1 −1

∣∣∣∣∣∣∣

= 1

8

∣∣∣∣∣∣∣

2 0 0 1
0 4 2 −1
0 6 0 −1
0 2 0 −1

∣∣∣∣∣∣∣

= 2

8

∣∣∣∣∣

4 2 −1
6 0 −1
2 0 −1

∣∣∣∣∣
= −4

8

∣∣∣∣
6 −1
2 −1

∣∣∣∣ = 2

x3 = 1

8

∣∣∣∣∣∣∣

1 1 0 1
1 1 4 −1
1 1 6 −1
1 −1 2 −1

∣∣∣∣∣∣∣

= 1

8

∣∣∣∣∣∣∣

0 2 0 1
0 0 4 −1
0 0 6 −1
2 −2 2 −1

∣∣∣∣∣∣∣

= −2

8

∣∣∣∣∣

2 0 1
0 4 −1
0 6 −1

∣∣∣∣∣
= −4

8

∣∣∣∣
4 −1
6 −1

∣∣∣∣ = −1

x4 = −(x1 + x2 + x3) = −2.

20. Let F(x1, x2) = F

(
x1
x2

)
, where F =

(
a b
c d

)
.

Let G(y1, y2) = G

(
y1
y2

)
, where G =

(
p q
r s

)
.

If y1 = ax1 + bx2 and y2 = cx1 + dx2, then

G ◦ F(x1, x2) = G(y1, y2)

=
(

p q
r s

)(
ax1 + bx2
cx1 + dx2

)

=
(

pax1 + pbx2 + qcx1 + qdx2
rax1 + rbx2 + scx1 + sdx2

)

=
(

pa + qc pb + qd
ra + sc rb + sd

)(
x1
x2

)

=
(

p q
r s

)(
a b
c d

)(
x1
x2

)

= GF

(
x1
x2

)
.

Thus, G ◦ F is represented by the matrix GF.

21. A =
(−1 1

1 −2

)
. Use Theorem 8. D1 = −1 < 0,

D2 =
∣∣∣∣
−1 1
1 −2

∣∣∣∣ = 1 > 0. Thus A is negative definite.

22. A =
( 1 2 0

2 1 0
0 0 1

)

. Use Theorem 8.

D1 = 1 > 0, D2 =
∣∣∣∣
1 2
2 1

∣∣∣∣ = −3 < 0,

D3 =
∣∣∣∣∣

1 2 0
2 1 0
0 0 1

∣∣∣∣∣
= −3 < 0.

Thus A is indefinite.

23. A =
( 2 1 1

1 2 1
1 1 2

)

. Use Theorem 8.

D1 = 2 > 0, D2 =
∣∣∣∣
2 1
1 2

∣∣∣∣ = 3 > 0,
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D3 =
∣∣∣∣∣

2 1 1
1 2 1
1 1 2

∣∣∣∣∣
= 4 > 0.

Thus A is positive definite.

24. A =
( 1 1 0

1 1 0
0 0 1

)

. Since D2 =
∣∣∣∣
1 1
1 1

∣∣∣∣ = 0, we cannot

use Theorem 8. The corresponding quadratic form is

Q(x, y, z) = x2 + y2 + 2xy + z2 = (x + y)2 + z2,

which is positive semidefinite. (Q(1, −1, 0) = 0.). Thus
A is positive semidefinite.

25. A =
( 1 0 1

0 1 −1
1 −1 1

)

. Use Theorem 8.

D1 = 1 > 0, D2 =
∣∣∣∣
1 0
0 1

∣∣∣∣ = 1 > 0,

D3 =
∣∣∣∣∣

1 0 1
0 1 −1
1 −1 1

∣∣∣∣∣
= −1 < 0.

Thus A is indefinite.

26. A =
( 2 0 1

0 4 11
1 −1 1

)

. Use Theorem 8.

D1 = 2 > 0, D2 =
∣∣∣∣
2 0
0 4

∣∣∣∣ = 8 > 0,

D3 =
∣∣∣∣∣

2 0 1
0 4 11
1 −1 1

∣∣∣∣∣
= 2 > 0.

Thus A is positive definite.

Section 10.7 Using Maple for Vector and
Matrix Calculations (page 588)

It is assumed that the Maple package LinearAlgebra
has been loaded for all the calculations in this section.

1. We use the result of Example 9 of Section 10.4.

> r1 := <3|0|2>: v1 := <2,1,-2>:
> r2 := <1|2|4>: v2 := <1,3,4>:
> v1xv2 := v1 &x v2:
> dist :=
abs((r2-r1).v1xv2)/Norm(v1xv2,2);

di st := 2

The distance between the two lines is 2 units.

2. The plane P through the origin containing the vectors
v1 = i − 2j − 3k and v2 = 2i + 3j + 4k has normal
n = v1 × v2.

> n := <1|-2|-3> &x <2|3|4>;
n := [1, −10, 7]

The angle between v = i − j + 2k and n (in degrees) is

> angle
:= evalf((180/Pi)*VectorAngle(n,<1,-
1,2>));

angvn := 33.55730975

Since this angle is acute, the angle between v and the
plane P is its complement.

> angle := 90 - angvn;
angle := 56.44269025

3. These calculations verify the identity:

> U := Vector[row](3,symbol=u): V :=
Vector[row](3,symbol=v):

> W := Vector[row](3,symbol=w):

> a := DotProduct(U,(V &x
W),conjugate=false):

> b := DotProduct(V,(W &x
U),conjugate=false):

> c := DotProduct(W,(U &x
V),conjugate=false):

> simplify(a-b); simplify(a-c);

0
0

4. These calculations verify the identity:

> U := Vector[row](3,symbol=u): V :=
Vector[row](3,symbol=v):

> W := Vector[row](3,symbol=w):

> LHS := (U &x V) &x (U &x W):
> RHS := (DotProduct(U,(V &x
W),conjugate=false))*U:

> simplify(LHS-RHS);

[0, 0, 0]

5. sp := (U,V) -> DotProd-
uct(U,Normalize(V,2),conjugate=false)
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6. vp := (U,V) -> DotProd-
uct(U,Normalize(V,2), conju-
gate=false)*Normalize(V,2)

7. ang := (u,v) ->
evalf((180/Pi)*VectorAngle(U,V))

8. unitn := (U,V)->Normalize((U &x V),2)

9. VolT :=
(U,V,W)->(1/6)*abs(DotProduct(U,(V
&x W), conjugate=false))

10. dist:=(A,B)->Norm(A-B,2)

> dist(<1,1,1,1>,<3,-1,2,5>);
5

11. We use LinearSolve.

> A := Matrix([[1,2,3,4,5],
> [6,-1,6,2,-3],[2,8,-8,-2,1],
> [1,1,1,1,1],[10,-3,3,-2,2]]):
> X :=
LinearSolve(A,<20,0,6,5,5>,free=t);

X :=

⎡

⎢⎢⎢
⎣

1
0

−1
3
2

⎤

⎥⎥⎥
⎦

The solution is u = 1, v = 0, x = −1, y = 3, z = 2.

12. We use LinearSolve.

> B := Matrix([[1,1,1,1,0],
> [1,0,0,1,1],[1,0,1,1,0],
> [1,1,1,0,1],[0,1,0,1,-1]]):
> X :=
LinearSolve(B,<10,10,8,11,1>,free=t);

X :=

⎡

⎢⎢⎢
⎣

11 − 2t5
2

−2 + t5
−1 + t5

t5

⎤

⎥⎥⎥
⎦

There is a one-parameter family of solutions: u = 11−2t ,
v = 2, x = −2 + t , y = −1 + t , z = t , for arbitrary t .

13. > A := Matrix([[1,2,3,4,5],
> [6,-1,6,2,-3],[2,8,-8,-2,1],
> [1,1,1,1,1],[10,-3,3,-2,2]]):
> Determinant(A);

−935

14. > B := Matrix([[1,1,1,1,0],
> [1,0,0,1,1],[1,0,1,1,0],
> [1,1,1,0,1],[0,1,0,1,-1]]):
> Digits := 5: evalf(Eigenvalues(B));

⎡

⎢⎢⎢
⎣

0
3.3133 − 0.0000053418I
0.8693 + 0.0000073520I

−1.2728 − 0.0000025143I
−1.9098 + 5.041 10−7 I

⎤

⎥⎥⎥
⎦

The tiny imaginary parts are due to roundoff error in
the calculations. They should all be 0. Since B is a
real, symmetric matrix, its eigenvalues are all real. The
eigenvalues, rounded to 5 decimal places are 0, 3.3133,
0.8693, −1.2728, and −1.9098.

15. > A := Matrix([[1,1/2,1/3],
> [1/2,1/3,1/4],[1/3,1/4,1/5]]):
> Ainv := MatrixInverse(A);

Ainv :=
[ 9 −36 30

−36 192 −180
30 −180 180

]

16. > A := Matrix([[1,1/2,1/3],
> [1/2,1/3,1/4],[1/3,1/4,1/5]]):
> Ainv := MatrixInverse(A):

> Digits := 10:
evalf(Eigenvalues(A));

[ 1.408318927 − 4 10−11 I
0.00268734034 − 5.673502694 10−10 I
0.1223270659 + 5.873502694 10−10 I

]

> evalf(Eigenvalues(Ainv));

[ 372.1151279 − 2 10−9 I
0.710066409 − 5.096152424 10−8 I
8.174805711 + 5.296152424 10−8 I

]

The small imaginary parts are due to round-off errors in
the solution process. The eigenvalues are real since the
matrix and its inverse are real and symmetric.

Although they appear in different orders, each eigenvalue
of A−1 is the reciprocal of an eigenvalue of A. This is to
be expected since

A−1x = λx ≡ (1/λ)x = Ax.

Review Exercises 10 (page 589)

1. x + 3z = 3 represents a plane parallel to the y-axis and
passing through the points (3, 0, 0) and (0, 0, 1).

2. y − z ≥ 1 represents all points on or below the plane par-
allel to the x-axis that passes through the points (0, 1, 0)

and (0, 0,−1).

3. x + y + z ≥ 0 represents all points on or above the plane
through the origin having normal vector i + j + k.

4. x − 2y − 4z = 8 represents all points on the plane
passing through the three points (8, 0, 0), (0, −4, 0), and
(0, 0,−2).
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5. y = 1+ x2 + z2 represents the circular paraboloid obtained
by rotating about the y-axis the parabola in the xy-plane
having equation y = 1 + x2.

6. y = z2 represents the parabolic cylinder parallel to the
x-axis containing the curve y = z2 in the yz-plane.

7. x = y2 − z2 represents the hyperbolic paraboloid whose
intersections with the xy- and xz-planes are the parabolas
x = y2 and x = −z2, respectively.

8. z = xy is the hyperbolic paraboloid containing the x- and
y-axes that results from rotating the hyperbolic paraboloid
z = (x2 − y2)/2 through 45◦ about the z-axis.

9. x2 + y2 + 4z2 < 4 represents the interior of the circu-
lar ellipsoid (oblate spheroid) centred at the origin with
semi-axes 2, 2, and 1 in the x , y, and z directions, re-
spectively.

10. x2 + y2 − 4z2 = 4 represents a hyperboloid of one sheet
with circular cross-sections in planes perpendicular to the
z-axis, and asymptotic to the cone obtained by rotating
the line x = 2z about the z-axis.

11. x2 − y2 − 4z2 = 0 represents an elliptic cone with axis
along the x-axis whose cross-sections in planes x = k
are ellipses with semi-axes |k| and |k|/2 in the y and z
directions, respectively.

12. x2 − y2 − 4z2 = 4 represents a hyperboloid of two sheets
asymptotic to the cone of the previous exercise.

13. (x − z)2 + y2 = 1 represents an elliptic cylinder with
oblique axis along the line z = x in the xz-plane, having
circular cross-sections of radius 1 in horizontal planes
z = k.

14. (x − z)2 + y2 = z2 represents an elliptic cone with oblique
axis along the line z = x in the xz-plane, having circular
cross-sections of radius |k| in horizontal planes z = k.
The z-axis lies on the cone.

15. x + 2y = 0, z = 3 together represent the horizontal
straight line through the point (0, 0, 3) parallel to the
vector 2i − j.

16. x + y + 2z = 1, x + y + z = 0 together represent the
straight line through the points (−1, 0, 1) and (0,−1, 1).

17. x2 + y2 + z2 = 4, x + y + z = 3 together represent
the circle in which the sphere of radius 2 centred at the
origin intersects the plane through (1, 1, 1) with normal
i + j + k. Since this plane lies at distance

√
3 from the

origin, the circle has radius
√

4 − 3 = 1.

18. x2 + z2 ≤ 1, x − y ≥ 0 together represent all points
that lie inside or on the circular cylinder of radius 1 and
axis along the y-axis and also either on the vertical plane
x − y = 0 or on the side of that plane containing the
positive x-axis.

19. The given line is parallel to the vector a = 2i − j + 3k.
The plane through the origin perpendicular to a has equa-
tion 2x − y + 3z = 0.

20. A plane through (2, −1, 1) and (1, 0,−1) is parallel to
b = (2 − 1)i + (−1 − 0)j + (1 − (−1))k = i − j + 2k. If
it is also parallel to the vector a in the previous solution,
then it is normal to

a × b =
∣∣∣∣∣

i j k
2 −1 3
1 −1 2

∣∣∣∣∣
= i − j − k.

The plane has equation (x − 1) − (y − 0) − (z + 1) = 0, or
x − y − z = 2.

21. A plane perpendicular to x−y+z = 0 and 2x+y−3z = 2
has normal given by the cross product of the normals of
these two planes, that is, by

∣∣∣∣∣

i j k
1 −1 1
2 1 −3

∣∣∣∣∣
= 2i + 5j + 3k.

If the plane also passes through (2, −1, 1), then its equa-
tion is

2(x − 2) + 5(y + 1) + 3(z − 1) = 0,

or 2x + 5y + 3z = 2.

22. The plane through A = (−1, 1, 0), B = (0, 4,−1) and
C = (2, 0, 0) has normal

−→
AC × −→

AB =
∣∣∣∣∣

i j k
3 −1 0
1 3 −1

∣∣∣∣∣
= i + 3j + 10k.

Its equation is (x −2)+3y +10z = 0, or x +3y +10z = 2.

23. A plane containing the line of intersection of the planes
x + y + z = 0 and 2x + y − 3z = 2 has equation

2x + y − 3z − 2 + λ(x + y + z − 0) = 0.

This plane passes through (2, 0, 1) if −1 + 3λ = 0. In
this case, the equation is 7x + 4y − 8z = 6.

24. A plane containing the line of intersection of the planes
x + y + z = 0 and 2x + y − 3z = 2 has equation

2x + y − 3z − 2 + λ(x + y + z − 0) = 0.

This plane is perpendicular to x − 2y − 5z = 17 if their
normals are perpendicular, that is, if

1(2 + λ) − 2(1 + λ) − 5(−3 + λ) = 0,

or 9x + 7y − z = 4.
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25. The line through (2, 1,−1) and (−1, 0, 1) is parallel to
the vector 3i + j − 2k, and has vector parametric equation

r = (2 + 3t)i + (1 + t)j − (1 + 2t)k.

26. A vector parallel to the planes x − y = 3 and
x + 2y + z = 1 is (i − j) × (i + 2j + k) = −i − j + 3k. A
line through (1, 0,−1) parallel to this vector is

x − 1

−1
= y

−1
= z + 1

3
.

27. The line through the origin perpendicular to the plane
3x − 2y + 4z = 5 has equations x = 3t , y = −2t , z = 4t .

28. The vector

a = (1 + t)i − tj − (2 + 2t)k −
(

2si + (s − 2)j − (1 + 3s)k
)

= (1 + t − 2s)i − (t + s − 2)j − (1 + 2t − 3s)k

joins points on the two lines and is perpendicular to both
lines if a • (i − j − 2k) = 0 and a • (2i + j − 3k) = 0, that
is, if

1 + t − 2s + t + s − 2 + 2 + 4t − 6s = 0

2 + 2t − 4s − t − s + 2 + 3 + 6t − 9s = 0,

or, on simplification,

6t − 7s = −1

7t − 14s = −7.

This system has solution t = 1, s = 1. We would expect
to use a as a vector perpendicular to both lines, but, as it
happens, a = 0 if t = s = 1, because the two given lines
intersect at (2, −1,−4). A nonzero vector perpendicular
to both lines is

∣∣∣∣∣

i j k
1 −1 −2
2 1 −3

∣∣∣∣∣
= 5i − j + 3k.

Thus the required line is parallel to this vector and passes
through (2, −1,−4), so its equation is

r = (2 + 5t)i − (1 + t)j + (−4 + 3t)k.

29. The points with position vectors r1, r2, and r3 are
collinear if the triangle having these points as vertices
has zero area, that is, if

(r2 − r1) × (r3 − r1) = 0.

(Any permutation of the subscripts 1, 2, and 3 in the
above equation will do as well.)

30. The points with position vectors r1, r2, r3, and r4 are
coplanar if the tetrahedron having these points as vertices
has zero volume, that is, if

[
(r2 − r1) × (r3 − r1)

]
• (r4 − r1) = 0.

(Any permutation of the subscripts 1, 2, 3, and 4 in the
above equation will do as well.)

31. The triangle with vertices A = (1, 2, 1), B = (4, −1, 1),
and C = (3, 4,−2) has area

1

2
|−→AB × −→

AC | = 1

2
|
∣∣∣∣∣

i j k
3 −3 0
2 2 −3

∣∣∣∣∣
|

= 1

2
|9i + 9j + 12k| = 3

√
34

2
sq. units.

32. The tetrahedron with vertices A = (1, 2, 1),
B = (4,−1, 1), C = (3, 4, −2), and D = (2, 2, 2) has
volume

1

6
|(−→AB × −→

AC) • −→
AD| = 1

6
|(9i + 9j + 12k) • (i + k)|

= 9 + 12

6
= 7

2
cu. units.

33. The inverse of A satisfies
⎛

⎜
⎝

1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1

⎞

⎟
⎠

⎛

⎜
⎝

a b c d
e f g h
i j k l
m n o p

⎞

⎟
⎠ =

⎛

⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎠ .

Expanding the product on the left we get four systems of
equations:

a = 1,

b = 0,

c = 0,

d = 0,

2a + e = 0,

2b + f = 1,

2c + g = 0,

2d + h = 0,

3a + 2e + i = 0,

3b + 2 f + j = 0,

3c + 2g + k = 1,

3d + 2h + l = 0,

4a + 3e + 2i + m = 0.

4b + 3 f + 2 j + n = 0.

4c + 3g + 2k + o = 0.

4d + 3h + 2l + p = 1.

These systems have solutions

a = 1,

b = 0,

c = 0,

d = 0,

e = −2,

f = 1,

g = 0,

h = 0,

i = 1,

j = −2,

k = 1,

l = 0,

m = 0,

n = 1,

o = −2,

p = 1.

Thus

A−1 =
⎛

⎜
⎝

1 0 0 0
−2 1 0 0
1 −2 1 0
0 1 −2 1

⎞

⎟
⎠ .
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34. Let A =
( 1 1 1

2 1 0
1 0 −1

)

, x =
( x1

x2
x3

)

, and b =
( b1

b2
b3

)

.

Then
Ax = b ⇔ x1 + x2 + x3 = b1

2x1 + x2 = b2

x1 − x3 = b3.

The sum of the first and third equations is
2x1 + x2 = b1 +b3, which is incompatible with the second
equation unless b2 = b1 + b3, that is, unless

b • (i − j + k) = 0.

If b satisfies this condition then there will be a line of
solutions; if x1 = t , then x2 = b2 − 2t , and x3 = t − b3,
so

x =
( t

b2 − 2t
t − b3

)

is a solution for any t .

35. A =
( 3 −1 1

−1 1 −1
1 −1 2

)

. We use Theorem 8.

D1 = 3 > 0, D2 =
∣∣∣∣

3 −1
−1 3

∣∣∣∣ = 2 > 0,

D3 =
∣∣∣∣∣

3 −1 1
−1 1 −1
1 −1 2

∣∣∣∣∣
= 2 > 0.

Thus A is positive definite.

Challenging Problems 10 (page 589)

1. If d is the distance from P to the line AB, then d is the
altitude of the triangle AP B measured perpendicular to
the base AB. Thus the area of the triangle is

(1/2)d|−→B A| = (1/2)d|rA − rB |.

On the other hand, the area is also given by

(1/2)|−→P A × −→
P B| = (1/2)|(rA − rP) × (rB − rP )|.

Equating these two expressions for the area of the trian-
gle and solving for d we get

d = |(rA − rP) × (rB − rP)|
|rA − rB | .

2. By the formula for the vector triple product given in Ex-
ercise 23 of Section 1.3,

(u × v) × (w × x) = [(u × v) • x]w − [(u × v) • w]x
(u × v) × (w × x) = −(w × x) × (u × v)

= −[(w × x) • v]u + [(w × x) • u]v.

In particular, if w = u, then, since (u × v) • u = 0, we
have

(u × v) × (u × x) = [(u × v) • x]u,

or, replacing x with w,

(u × v) × (u × w) = [(u × v) • w]u.

3. The triangle with vertices (x1, y1, 0), (x2, y2, 0), and
(x3, y3, 0), has two sides corresponding to the vectors
(x2 − x1)i + (y2 − y1)j and (x3 − x1)i + (y3 − y1)j. Thus
the triangle has area given by

A = 1

2
|
∣∣∣∣∣

i j k
x2 − x1 y2 − y1 0
x3 − x1 y3 − y1 0

∣∣∣∣∣
|

= 1

2
|[(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)]k|

= 1

2
|x2 y3 − x2 y1 − x1 y3 − x3 y2 + x3 y1 + x1 y2|

= 1

2
|
∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣
|.

4. a) Let Q1 and Q2 be the points on lines L1 and L2,
respectively, that are closest together. As observed in
Example 9 of Section 1.4,

−−−→
Q1 Q2 is perpendicular to

both lines.
Therefore, the plane P1 through Q1 having normal−−−→
Q1 Q2 contains the line L1. Similarly, the plane P2
through Q2 having normal

−−−→
Q1 Q2 contains the line

L2. These planes are parallel since they have the
same normal. They are different planes because
Q1 �= Q2 (because the lines are skew).
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b) Line L1 through (1, 1, 0) and (2, 0, 1) is parallel to
i − j + k, and has parametric equation

r1 = (1 + t)i + (1 − t)j + tk.

Line L2 through (0, 1, 1) and (1, 2, 2) is parallel to
i + j + k, and has parametric equation

r2 = si + (1 + s)j + (1 + s)k.

Now r2 − r1 = (s − t − 1)i + (s + t)j + (1 + s − t)k.

To find the points Q1 on L1 and Q2 on L2 for
which

−−−→
Q1 Q2 is perpendicular to both lines, we solve

(s − t − 1) − (s + t) + (1 + s − t) = 0

(s − t − 1) + (s + t) + (1 + s − t) = 0.

Subtracting these equations gives s + t = 0, so
t = −s. Then substituting into either equation
gives 2s − 1 + 1 + 2s = 0, so s = −t = 0.
Thus Q1 = (1, 1, 0) and Q2 = (0, 1, 1), and−−−→
Q1 Q2 = −i + k. The required planes are x − z = 1
(containing L1) and x − z = −1 (containing L2).

5. This problem is similar to Exercise 28 of Section 1.3.
The equation a×x = b has no solution x unless a•b = 0.
If this condition is satisfied, then x = x0 + ta is a solution
for any scalar t , where x0 = (b × a)/|a|2.
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