## CHAPTER 1. LIMITS AND CONTINUITY

## Section 1.1 Examples of Velocity, Growth Rate, and Area (page 61)

1. Average velocity $=\frac{\Delta x}{\Delta t}=\frac{(t+h)^{2}-t^{2}}{h} \mathrm{~m} / \mathrm{s}$.
2. 

| $h$ | Avg. vel. over $[2,2+h]$ |
| :---: | :---: |
| 1 | 5.0000 |
| 0.1 | 4.1000 |
| 0.01 | 4.0100 |
| 0.001 | 4.0010 |
| 0.0001 | 4.0001 |

3. Guess velocity is $v=4 \mathrm{~m} / \mathrm{s}$ at $t=2 \mathrm{~s}$.
4. Average volocity on $[2,2+h]$ is

$$
\frac{(2+h)^{2}-4}{(2+h)-2}=\frac{4+4 h+h^{2}-4}{h}=\frac{4 h+h^{2}}{h}=4+h .
$$

As $h$ approaches 0 this average velocity approaches 4 $\mathrm{m} / \mathrm{s}$
5. $x=3 t^{2}-12 t+1 \mathrm{~m}$ at time $t \mathrm{~s}$.

Average velocity over interval [1,2] is $\frac{\left(3 \times 2^{2}-12 \times 2+1\right)-\left(3 \times 1^{2}-12 \times 1+1\right)}{2-1}=-3$ $\mathrm{m} / \mathrm{s}$.
Average velocity over interval [2,3] is $\frac{\left(3 \times 3^{2}-12 \times 3+1\right)-\left(3 \times 2^{2}-12 \times 2+1\right)}{3-2}=3 \mathrm{~m} / \mathrm{s}$.
Average velocity over interval [1,3] is $\frac{\left(3 \times 3^{2}-12 \times 3+1\right)-\left(3 \times 1^{2}-12 \times 1+1\right)}{3-1}=0 \mathrm{~m} / \mathrm{s}$.
6. Average velocity over $[t, t+h]$ is

$$
\begin{aligned}
& \frac{3(t+h)^{2}-12(t+h)+1-\left(3 t^{2}-12 t+1\right)}{(t+h)-t} \\
& =\frac{6 t h+3 h^{2}-12 h}{h}=6 t+3 h-12 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

This average velocity approaches $6 t-12 \mathrm{~m} / \mathrm{s}$ as $h$ approaches 0 .
At $t=1$ the velocity is $6 \times 1-12=-6 \mathrm{~m} / \mathrm{s}$.
At $t=2$ the velocity is $6 \times 2-12=0 \mathrm{~m} / \mathrm{s}$.
At $t=3$ the velocity is $6 \times 3-12=6 \mathrm{~m} / \mathrm{s}$.
7. At $t=1$ the velocity is $v=-6<0$ so the particle is moving to the left.
At $t=2$ the velocity is $v=0$ so the particle is stationary.
At $t=3$ the velocity is $v=6>0$ so the particle is moving to the right.
8. Average velocity over $[t-k, t+k]$ is

$$
\begin{aligned}
& \frac{3(t+k)^{2}-12(t+k)+1-\left[3(t-k)^{2}-12(t-k)+1\right]}{(t+k)-(t-k)} \\
& =\frac{1}{2 k}\left(3 t^{2}+6 t k+3 k^{2}-12 t-12 k+1-3 t^{2}+6 t k-3 k^{2}\right. \\
& \quad+12 t-12 k+1) \\
& =\frac{12 t k-24 k}{2 k}=6 t-12 \mathrm{~m} / \mathrm{s},
\end{aligned}
$$

which is the velocity at time $t$ from Exercise 7.
9.


Fig. 1.1.9
At $t=1$ the height is $y=2 \mathrm{ft}$ and the weight is moving downward.
10. Average velocity over $[1,1+h]$ is

$$
\begin{aligned}
& \frac{2+\frac{1}{\pi} \sin \pi(1+h)-\left(2+\frac{1}{\pi} \sin \pi\right)}{h} \\
& =\frac{\sin (\pi+\pi h)}{\pi h}=\frac{\sin \pi \cos (\pi h)+\cos \pi \sin (\pi h)}{\pi h} \\
& =-\frac{\sin (\pi h)}{\pi h}
\end{aligned}
$$

| $h$ | Avg. vel. on $[1,1+h]$ |
| :---: | :---: |
| 1.0000 | 0 |
| 0.1000 | -0.983631643 |
| 0.0100 | -0.999835515 |
| 0.0010 | -0.999998355 |

11. The velocity at $t=1$ is about $v=-1 \mathrm{ft} / \mathrm{s}$. The "-" indicates that the weight is moving downward.
12. We sketched a tangent line to the graph on page 55 in the text at $t=20$. The line appeared to pass through the points $(10,0)$ and $(50,1)$. On day 20 the biomass is growing at about $(1-0) /(50-10)=0.025 \mathrm{~mm}^{2} / \mathrm{d}$.
13. The curve is steepest, and therefore the biomass is growing most rapidly, at about day 45 .
14. a)


Fig. 1.1.14
b) Average rate of increase in profits between 2002 and 2004 is
$\frac{174-62}{2004-2002}=\frac{112}{2}=56$ (thousand $\$ / \mathrm{yr}$ ).
c) Drawing a tangent line to the graph in (a) at $t=2002$ and measuring its slope, we find that the rate of increase of profits in 1992 is about 43 thousand\$/year.

## Section 1.2 Limits of Functions (page 68)

1. From inspecting the graph


Fig. 1.2.1
we see that

$$
\lim _{x \rightarrow-1} f(x)=1, \quad \lim _{x \rightarrow 0} f(x)=0, \quad \lim _{x \rightarrow 1} f(x)=1
$$

2. From inspecting the graph


Fig. 1.2.2
we see that

$$
\lim _{x \rightarrow 1} g(x) \text { does not exist }
$$

(left limit is 1 , right limit is 0 )

$$
\lim _{x \rightarrow 2} g(x)=1, \quad \lim _{x \rightarrow 3} g(x)=0
$$

3. $\lim _{x \rightarrow 1-} g(x)=1$
4. $\lim _{x \rightarrow 1+} g(x)=0$
5. $\lim _{x \rightarrow 3+} g(x)=0$
6. $\lim _{x \rightarrow 3-} g(x)=0$
7. $\lim _{x \rightarrow 4}\left(x^{2}-4 x+1\right)=4^{2}-4(4)+1=1$
8. $\lim _{x \rightarrow 2} 3(1-x)(2-x)=3(-1)(2-2)=0$
9. $\lim _{x \rightarrow 3} \frac{x+3}{x+6}=\frac{3+3}{3+6}=\frac{2}{3}$
10. $\lim _{t \rightarrow-4} \frac{t^{2}}{4-t}=\frac{(-4)^{2}}{4+4}=2$
11. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x+1}=\frac{1^{2}-1}{1+1}=\frac{0}{2}=0$
12. $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=\lim _{x \rightarrow-1}(x-1)=-2$
13. $\lim _{x \rightarrow 3} \frac{x^{2}-6 x+9}{x^{2}-9}=\lim _{x \rightarrow 3} \frac{(x-3)^{2}}{(x-3)(x+3)}$
$=\lim _{x \rightarrow 3} \frac{x-3}{x+3}=\frac{0}{6}=0$
14. $\lim _{x \rightarrow-2} \frac{x^{2}+2 x}{x^{2}-4}=\lim _{x \rightarrow-2} \frac{x}{x-2}=\frac{-2}{-4}=\frac{1}{2}$
15. $\lim _{h \rightarrow 2} \frac{1}{4-h^{2}}$ does not exist; denominator approaches 0 but numerator does not approach 0 .
16. $\lim _{h \rightarrow 0} \frac{3 h+4 h^{2}}{h^{2}-h^{3}}=\lim _{h \rightarrow 0} \frac{3+4 h}{h-h^{2}}$ does not exist; denominator approaches 0 but numerator does not approach 0 .
17. $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}=\lim _{x \rightarrow 9} \frac{(\sqrt{x}-3)(\sqrt{x}+3)}{(x-9)(\sqrt{x}+3)}$

$$
=\lim _{x \rightarrow 9} \frac{x-9}{(x-9)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{1}{\sqrt{x}+3}=\frac{1}{6}
$$

18. $\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}$
$=\lim _{h \rightarrow 0} \frac{4+h-4}{h(\sqrt{4+h}+2)}$
$=\lim _{h \rightarrow 0} \frac{1}{\sqrt{4+h}+2}=\frac{1}{4}$
19. $\lim _{x \rightarrow \pi} \frac{(x-\pi)^{2}}{\pi x}=\frac{0^{2}}{\pi^{2}}=0$
20. $\lim _{x \rightarrow-2}|x-2|=|-4|=4$
21. $\lim _{x \rightarrow 0} \frac{|x-2|}{x-2}=\frac{|-2|}{-2}=-1$
22. $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}=\lim _{x \rightarrow 2} \begin{cases}1, & \text { if } x>2 \\ -1, & \text { if } x<2 .\end{cases}$

Hence, $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$ does not exist.
23. $\lim _{t \rightarrow 1} \frac{t^{2}-1}{t^{2}-2 t+1}$
$\lim _{t \rightarrow 1} \frac{(t-1)(t+1)}{(t-1)^{2}}=\lim _{t \rightarrow 1} \frac{t+1}{t-1}$ does not exist
(denominator $\rightarrow 0$, numerator $\rightarrow 2$.)
24. $\lim _{x \rightarrow 2} \frac{\sqrt{4-4 x+x^{2}}}{x-2}$
$=\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$ does not exist.
25. $\lim _{t \rightarrow 0} \frac{t}{\sqrt{4+t}-\sqrt{4-t}}=\lim _{t \rightarrow 0} \frac{t(\sqrt{4+t}+\sqrt{4-t})}{(4+t)-(4-t)}$

$$
=\lim _{t \rightarrow 0} \frac{\sqrt{4+t}+\sqrt{4-t}}{2}=2
$$

26. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{\sqrt{x+3}-2}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)(\sqrt{x+3}+2)}{(x+3)-4}$

$$
=\lim _{x \rightarrow 1}(x+1)(\sqrt{x+3}+2)=(2)(\sqrt{4}+2)=8
$$

27. $\lim _{t \rightarrow 0} \frac{t^{2}+3 t}{(t+2)^{2}-(t-2)^{2}}$
$=\lim _{t \rightarrow 0} \frac{t(t+3)}{t^{2}+4 t+4-\left(t^{2}-4 t+4\right)}$
$=\lim _{t \rightarrow 0} \frac{t+3}{8}=\frac{3}{8}$
28. $\lim _{s \rightarrow 0} \frac{(s+1)^{2}-(s-1)^{2}}{s}=\lim _{s \rightarrow 0} \frac{4 s}{s}=4$
29. $\lim _{y \rightarrow 1} \frac{y-4 \sqrt{y}+3}{y^{2}-1}$
$=\lim _{y \rightarrow 1} \frac{(\sqrt{y}-1)(\sqrt{y}-3)}{(\sqrt{y}-1)(\sqrt{y}+1)(y+1)}=\frac{-2}{4}=\frac{-1}{2}$
30. $\lim _{x \rightarrow-1} \frac{x^{3}+1}{x+1}$
$=\lim _{x \rightarrow-1} \frac{(x+1)\left(x^{2}-x+1\right)}{x+1}=3$
31. $\lim _{x \rightarrow 2} \frac{x^{4}-16}{x^{3}-8}$
$=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)\left(x^{2}+4\right)}{(x-2)\left(x^{2}+2 x+4\right)}$
$=\frac{(4)(8)}{4+4+4}=\frac{8}{3}$
32. $\lim _{x \rightarrow 8} \frac{x^{2 / 3}-4}{x^{1 / 3}-2}$
$=\lim _{x \rightarrow 8} \frac{\left(x^{1 / 3}-2\right)\left(x^{1 / 3}+2\right)}{\left(x^{1 / 3}-2\right)}$
$=\lim _{x \rightarrow 8}\left(x^{1 / 3}+2\right)=4$
33. $\lim _{x \rightarrow 2}\left(\frac{1}{x-2}-\frac{4}{x^{2}-4}\right)$
$=\lim _{x \rightarrow 2} \frac{x+2-4}{(x-2)(x+2)}=\lim _{x \rightarrow 2} \frac{1}{x+2}=\frac{1}{4}$
34. $\lim _{x \rightarrow 2}\left(\frac{1}{x-2}-\frac{1}{x^{2}-4}\right)$
$=\lim _{x \rightarrow 2} \frac{x+2-1}{(x-2)(x+2)}$
$=\lim _{x \rightarrow 2} \frac{x+1}{(x-2)(x+2)}$ does not exist.
35. $\lim _{x \rightarrow 0} \frac{\sqrt{2+x^{2}}-\sqrt{2-x^{2}}}{x^{2}}$
$=\lim _{x \rightarrow 0} \frac{\left(2+x^{2}\right)-\left(2-x^{2}\right)}{x^{2}\left(\sqrt{2+x^{2}}+\sqrt{2-x^{2}}\right)}$
$=\lim _{x \rightarrow 0} \frac{2 x^{2}}{\left.x^{2}\left(\sqrt{2+x^{2}}\right)+\sqrt{2-x^{2}}\right)}$
$=\frac{2}{\sqrt{2}+\sqrt{2}}=\frac{1}{\sqrt{2}}$
36. $\lim _{x \rightarrow 0} \frac{|3 x-1|-|3 x+1|}{x}$
$=\lim _{x \rightarrow 0} \frac{(3 x-1)^{2}-(3 x+1)^{2}}{x(|3 x-1|+|3 x+1|)}$
$=\lim _{x \rightarrow 0} \frac{-12 x}{x(|3 x-1|+|3 x+1|)}=\frac{-12}{1+1}=-6$
37. 

$$
\begin{aligned}
f(x) & =x^{2} \\
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h}=\lim _{h \rightarrow 0} 2 x+h=2 x
\end{aligned}
$$

38. 
39. 

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x-(x+h)}{h(x+h) x} \\
& =\lim _{h \rightarrow 0}-\frac{1}{(x+h) x}=-\frac{1}{x^{2}}
\end{aligned}
$$

40. 

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}-\left(x^{2}+2 x h+h^{2}\right)}{h(x+h)^{2} x^{2}} \\
& =\lim _{h \rightarrow 0}-\frac{2 x+h}{(x+h)^{2} x^{2}}=-\frac{2 x}{x^{4}}=-\frac{2}{x^{3}}
\end{aligned}
$$

41. 

$$
f(x)=\sqrt{x}
$$

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

42. 

$$
f(x)=1 / \sqrt{x}
$$

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x}-\sqrt{x+h}}{h \sqrt{x} \sqrt{x+h}} \\
& =\lim _{h \rightarrow 0} \frac{x-(x+h)}{h \sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =\lim _{h \rightarrow 0} \frac{-1}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =\frac{-1}{2 x^{3 / 2}}
\end{aligned}
$$

43. $\lim _{x \rightarrow \pi / 2} \sin x=\sin \pi / 2=1$
44. $\lim _{x \rightarrow \pi / 4} \cos x=\cos \pi / 4=1 / \sqrt{2}$
45. $\lim _{x \rightarrow \pi / 3} \cos x=\cos \pi / 3=1 / 2$
46. $\lim _{x \rightarrow 2 \pi / 3} \sin x=\sin 2 \pi / 3=\sqrt{3} / 2$
47. 

| $x$ | $(\sin x) / x$ |
| :---: | :---: |
| $\pm 1.0$ | 0.84147098 |
| $\pm 0.1$ | 0.99833417 |
| $\pm 0.01$ | 0.99998333 |
| $\pm 0.001$ | 0.99999983 |
| 0.0001 | 1.00000000 |

It appears that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
48.

| $x$ | $(1-\cos x) / x^{2}$ |
| :---: | :---: |
| $\pm 1.0$ | 0.45969769 |
| $\pm 0.1$ | 0.49958347 |
| $\pm 0.01$ | 0.49999583 |
| $\pm 0.001$ | 0.49999996 |
| 0.0001 | 0.50000000 |

It appears that $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{1}{2}$.
49. $\lim _{x \rightarrow 2-} \sqrt{2-x}=0$
50. $\lim _{x \rightarrow 2+} \sqrt{2-x}$ does not exist.
51. $\lim _{x \rightarrow-2-} \sqrt{2-x}=2$
52. $\lim _{x \rightarrow-2+} \sqrt{2-x}=2$
53. $\lim _{x \rightarrow 0} \sqrt{x^{3}-x}$ does not exist.
$\left(x^{3}-x<0\right.$ if $\left.0<x<1\right)$
54. $\lim _{x \rightarrow 0-} \sqrt{x^{3}-x}=0$
55. $\lim _{x \rightarrow 0+} \sqrt{x^{3}-x}$ does not exist. (See \# 9.)
56. $\lim _{x \rightarrow 0+} \sqrt{x^{2}-x^{4}}=0$
57. $\lim _{x \rightarrow a-} \frac{|x-a|}{x^{2}-a^{2}}$
$=\lim _{x \rightarrow a-} \frac{|x-a|}{(x-a)(x+a)}=-\frac{1}{2 a} \quad(a \neq 0)$
58. $\lim _{x \rightarrow a+} \frac{|x-a|}{x^{2}-a^{2}}=\lim _{x \rightarrow a+} \frac{x-a}{x^{2}-a^{2}}=\frac{1}{2 a}$
59. $\lim _{x \rightarrow 2-} \frac{x^{2}-4}{|x+2|}=\frac{0}{4}=0$
60. $\lim _{x \rightarrow 2+} \frac{x^{2}-4}{|x+2|}=\frac{0}{4}=0$
61. $f(x)= \begin{cases}x-1 & \text { if } x \leq-1 \\ x^{2}+1 & \text { if }-1<x \leq 0 \\ (x+\pi)^{2} & \text { if } x>0\end{cases}$
$\lim _{x \rightarrow-1-} f(x)=\lim _{x \rightarrow-1-} x-1=-1-1=-2$
62. $\lim _{x \rightarrow-1+} f(x)=\lim _{x \rightarrow-1+} x^{2}+1=1+1=2$
63. $\lim _{x \rightarrow 0+} f(x)=\lim _{x \rightarrow 0+}(x+\pi)^{2}=\pi^{2}$
64. $\lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0-} x^{2}+1=1$
65. If $\lim _{x \rightarrow 4} f(x)=2$ and $\lim _{x \rightarrow 4} g(x)=-3$, then
a) $\lim _{x \rightarrow 4}(g(x)+3)=-3+3=0$
b) $\lim _{x \rightarrow 4} x f(x)=4 \times 2=8$
c) $\lim _{x \rightarrow 4}(g(x))^{2}=(-3)^{2}=9$
d) $\lim _{x \rightarrow 4} \frac{g(x)}{f(x)-1}=\frac{-3}{2-1}=-3$
66. If $\lim x \rightarrow a f(x)=4$ and $\lim _{x \rightarrow a} g(x)=-2$, then
a) $\lim _{x \rightarrow a}(f(x)+g(x))=4+(-2)=2$
b) $\lim _{x \rightarrow a} f(x) \cdot g(x)=4 \times(-2)=-8$
c) $\lim _{x \rightarrow a} 4 g(x)=4(-2)=-8$
d) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{4}{-2}=-2$
67. If $\lim _{x \rightarrow 2} \frac{f(x)-5}{x-2}=3$, then
$\lim _{x \rightarrow 2}(f(x)-5)=\lim _{x \rightarrow 2} \frac{f(x)-5}{x-2}(x-2)=3(2-2)=0$.
Thus $\lim _{x \rightarrow 2} f(x)=5$.
68. If $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=-2$ then
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{2} \frac{f(x)}{x^{2}}=0 \times(-2)=0$, and similarly,
$\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} x \frac{f(x)}{x^{2}}=0 \times(-2)=0$.
69.
72.


Fig. 1.2.72

$$
\lim _{x \rightarrow 0+} \frac{x-\sqrt{x}}{\sqrt{\sin x}}=-1
$$

73. 



Fig. 1.2.73
$f(x)=x \sin (1 / x)$ oscillates infinitely often as $x$ approaches 0 , but the amplitude of the oscillations decreases and, in fact, $\lim _{x \rightarrow 0} f(x)=0$. This is predictable because $|x \sin (1 / x)| \leq|x|$. (See Exercise 95 below.)
74. Since $\sqrt{5-2 x^{2}} \leq f(x) \leq \sqrt{5-x^{2}}$ for $-1 \leq x \leq 1$, and $\lim _{x \rightarrow 0} \sqrt{5-2 x^{2}}=\lim _{x \rightarrow 0} \sqrt{5-x^{2}}=\sqrt{5}$, we have $\lim _{x \rightarrow 0} f(x)=\sqrt{5}$ by the squeeze theorem.
75. Since $2-x^{2} \leq g(x) \leq 2 \cos x$ for all $x$, and since $\lim _{x \rightarrow 0}\left(2-\overline{x^{2}}\right)=\lim _{x \rightarrow 0} 2 \cos x=2$, we have $\lim _{x \rightarrow 0} g(x)=2$ by the squeeze theorem.
76. a)


Fig. 1.2.76
b) Since the graph of $f$ lies between those of $x^{2}$ and $x^{4}$, and since these latter graphs come together at $( \pm 1,1)$ and at $(0,0)$, we have $\lim _{x \rightarrow \pm 1} f(x)=1$ and $\lim _{x \rightarrow 0} f(x)=0$ by the squeeze theorem.
77. $x^{1 / 3}<x^{3}$ on $(-1,0)$ and $(1, \infty) \cdot x^{1 / 3}>x^{3}$ on $(-\infty,-1)$ and $(0,1)$. The graphs of $x^{1 / 3}$ and $x^{3}$ intersect at $(-1,-1),(0,0)$, and $(1,1)$. If the graph of $h(x)$ lies between those of $x^{1 / 3}$ and $x^{3}$, then we can determine $\lim _{x \rightarrow a} h(x)$ for $a=-1, a=0$, and $a=1$ by the squeeze theorem. In fact

$$
\lim _{x \rightarrow-1} h(x)=-1, \quad \lim _{x \rightarrow 0} h(x)=0, \quad \lim _{x \rightarrow 1} h(x)=1
$$

78. $f(x)=s \sin \frac{1}{x}$ is defined for all $x \neq 0$; its domain is $(-\infty, 0) \cup(0, \infty)$. Since $|\sin t| \leq 1$ for all $t$, we have $|f(x)| \leq|x|$ and $-|x| \leq f(x) \leq|x|$ for all $x \neq 0$. Since $\lim _{x \rightarrow 0}=(-|x|)=0=\lim _{x \rightarrow 0}|x|$, we have $\lim _{x \rightarrow 0} f(x)=0$ by the squeeze theorem.
79. $|f(x)| \leq g(x) \Rightarrow-g(x) \leq f(x) \leq g(x)$

Since $\lim _{x \rightarrow a} g(x)=0$, therefore $0 \leq \lim _{x \rightarrow a} f(x) \leq 0$.
Hence, $\lim _{x \rightarrow a} f(x)=0$.
If $\lim _{x \rightarrow a} g(x)=3$, then either $-3 \leq \lim _{x \rightarrow a} f(x) \leq 3$ or $\lim _{x \rightarrow a} f(x)$ does not exist.

## Section 1.3 Limits at Infinity and Infinite Limits (page 75)

1. $\lim _{x \rightarrow \infty} \frac{x}{2 x-3}=\lim _{x \rightarrow \infty} \frac{1}{2-(3 / x)}=\frac{1}{2}$
2. $\lim _{x \rightarrow \infty} \frac{x}{x^{2}-4}=\lim _{x \rightarrow \infty} \frac{1 / x}{1-\left(4 / x^{2}\right)}=\frac{0}{1}=0$
3. $\lim _{x \rightarrow \infty} \frac{3 x^{3}-5 x^{2}+7}{8+2 x-5 x^{3}}$
$=\lim _{x \rightarrow \infty} \frac{3-\frac{5}{x}+\frac{7}{x^{3}}}{\frac{8}{x^{3}}+\frac{2}{x^{2}}-5}=-\frac{3}{5}$
4. $\lim _{x \rightarrow-\infty} \frac{x^{2}-2}{x-x^{2}}$

$$
=\lim _{x \rightarrow-\infty} \frac{1-\frac{2}{x^{2}}}{\frac{1}{x}-1}=\frac{1}{-1}=-1
$$

5. $\lim _{x \rightarrow-\infty} \frac{x^{2}+3}{x^{3}+2}=\lim _{x \rightarrow-\infty} \frac{\frac{1}{x}+\frac{3}{x^{3}}}{1+\frac{2}{x^{3}}}=0$
6. $\lim _{x \rightarrow \infty} \frac{x^{2}+\sin x}{x^{2}+\cos x}=\lim _{x \rightarrow \infty} \frac{1+\frac{\sin x}{x^{2}}}{1+\frac{\cos x}{x^{2}}}=\frac{1}{1}=1$

We have used the fact that $\lim _{x \rightarrow \infty} \frac{\sin x}{x^{2}}=0$ (and similarly for cosine) because the numerator is bounded while the denominator grows large.
7. $\lim _{x \rightarrow \infty} \frac{3 x+2 \sqrt{x}}{1-x}$

$$
=\lim _{x \rightarrow \infty} \frac{3+\frac{2}{\sqrt{x}}}{\frac{1}{x}-1}=-3
$$

8. $\lim _{x \rightarrow \infty} \frac{2 x-1}{\sqrt{3 x^{2}+x+1}}$

$$
=\lim _{x \rightarrow \infty} \frac{x\left(2-\frac{1}{x}\right)}{|x| \sqrt{3+\frac{1}{x}+\frac{1}{x^{2}}}} \quad(\text { but }|x|=x \text { as } x \rightarrow \infty)
$$

$$
=\lim _{x \rightarrow \infty} \frac{2-\frac{1}{x}}{\sqrt{3+\frac{1}{x}+\frac{1}{x^{2}}}}=\frac{2}{\sqrt{3}}
$$

9. $\lim _{x \rightarrow-\infty} \frac{2 x-1}{\sqrt{3 x^{2}+x+1}}$

$$
=\lim _{x \rightarrow-\infty} \frac{2-\frac{1}{x}}{-\sqrt{3+\frac{1}{x}+\frac{1}{x^{2}}}}=-\frac{2}{\sqrt{3}}
$$

because $x \rightarrow-\infty$ implies that $x<0$ and so $\sqrt{x^{2}}=-x$.
10. $\lim _{x \rightarrow-\infty} \frac{2 x-5}{|3 x+2|}=\lim _{x \rightarrow-\infty} \frac{2 x-5}{-(3 x+2)}=-\frac{2}{3}$
11. $\lim _{x \rightarrow 3} \frac{1}{3-x}$ does not exist.
12. $\lim _{x \rightarrow 3} \frac{1}{(3-x)^{2}}=\infty$
13. $\lim _{x \rightarrow 3-3} \frac{1}{3-x}=\infty$
14. $\lim _{x \rightarrow 3+} \frac{1}{3-x}=-\infty$
15. $\lim _{x \rightarrow-5 / 2} \frac{2 x+5}{5 x+2}=\frac{0}{\frac{-25}{2}+2}=0$
16. $\lim _{x \rightarrow-2 / 5} \frac{2 x+5}{5 x+2}$ does not exist.
17. $\lim _{x \rightarrow-(2 / 5)-} \frac{2 x+5}{5 x+2}=-\infty$
18. $\lim _{x \rightarrow-2 / 5+} \frac{2 x+5}{5 x+2}=\infty$
19. $\lim _{x \rightarrow 2+} \frac{x}{(2-x)^{3}}=-\infty$
20. $\lim _{x \rightarrow 1-} \frac{x}{\sqrt{1-x^{2}}}=\infty$
21. $\lim _{x \rightarrow 1+} \frac{1}{|x-1|}=\infty$
22. $\lim _{x \rightarrow 1-} \frac{1}{|x-1|}=\infty$
23. $\lim _{x \rightarrow 2} \frac{x-3}{x^{2}-4 x+4}=\lim _{x \rightarrow 2} \frac{x-3}{(x-2)^{2}}=-\infty$
24. $\lim _{x \rightarrow 1+} \frac{\sqrt{x^{2}-x}}{x-x^{2}}=\lim _{x \rightarrow 1+} \frac{-1}{\sqrt{x^{2}-x}}=-\infty$
25. $\lim _{x \rightarrow \infty} \frac{x+x^{3}+x^{5}}{1+x^{2}+x^{3}}$
$=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}+1+x^{2}}{\frac{1}{x^{3}}+\frac{1}{x}+1}=\infty$
26. $\lim _{x \rightarrow \infty} \frac{x^{3}+3}{x^{2}+2}=\lim _{x \rightarrow \infty} \frac{x+\frac{3}{x^{2}}}{1+\frac{2}{x^{2}}}=\infty$
27. $\lim _{x \rightarrow \infty} \frac{x \sqrt{x+1}(1-\sqrt{2 x+3})}{7-6 x+4 x^{2}}$
$=\lim _{x \rightarrow \infty} \frac{x^{2}\left(\sqrt{1+\frac{1}{x}}\right)\left(\frac{1}{\sqrt{x}}-\sqrt{2+\frac{3}{x}}\right)}{x^{2}\left(\frac{7}{x^{2}}-\frac{6}{x}+4\right)}$
$=\frac{1(-\sqrt{2})}{4}=-\frac{1}{4} \sqrt{2}$
28. $\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{x+1}-\frac{x^{2}}{x-1}\right)=\lim _{x \rightarrow \infty} \frac{-2 x^{2}}{x^{2}-1}=-2$
29. $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+2 x}-\sqrt{x^{2}-2 x}\right)$
$=\lim _{x \rightarrow-\infty} \frac{\left(x^{2}+2 x\right)-\left(x^{2}-2 x\right)}{\sqrt{x^{2}+2 x}+\sqrt{x^{2}-2 x}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow-\infty} \frac{4 x}{(-x)\left(\sqrt{1+\frac{2}{x}}+\sqrt{1-\frac{2}{x}}\right)} \\
& =-\frac{4}{1+1}=-2
\end{aligned}
$$

30. $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+2 x}-\sqrt{x^{2}-2 x}\right)$
$=\lim _{x \rightarrow \infty} \frac{x^{2}+2 x-x^{2}+2 x}{\sqrt{x^{2}+2 x}+\sqrt{x^{2}-2 x}}$
$=\lim _{x \rightarrow \infty} \frac{4 x}{x \sqrt{1+\frac{2}{x}}+x \sqrt{1-\frac{2}{x}}}$
$=\lim _{x \rightarrow \infty} \frac{4}{\sqrt{1+\frac{2}{x}}+\sqrt{1-\frac{2}{x}}}=\frac{4}{2}=2$
31. $\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x^{2}-2 x}-x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-2 x}+x}{\left(\sqrt{x^{2}-2 x}+x\right)\left(\sqrt{x^{2}-2 x}-x\right)} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-2 x}+x}{x^{2}-2 x-x^{2}} \\
& =\lim _{x \rightarrow \infty} \frac{x(\sqrt{1-(2 / x)}+1)}{-2 x}=\frac{2}{-2}=-1
\end{aligned}
$$

32. $\lim _{x \rightarrow-\infty} \frac{1}{\sqrt{x^{2}+2 x}-x}=\lim _{x \rightarrow-\infty} \frac{1}{|x|(\sqrt{1+(2 / x)}+1}=0$
33. By Exercise $35, y=-1$ is a horizontal asymptote (at the right) of $y=\frac{1}{\sqrt{x^{2}-2 x}-x}$. Since
$\lim _{x \rightarrow-\infty} \frac{1}{\sqrt{x^{2}-2 x}-x}=\lim _{x \rightarrow-\infty} \frac{1}{|x|(\sqrt{1-(2 / x)}+1}=0$,
$y=0$ is also a horizontal asymptote (at the left).
Now $\sqrt{x^{2}-2 x}-x=0$ if and only if $x^{2}-2 x=x^{2}$, that is, if and only if $x=0$. The given function is undefined at $x=0$, and where $x^{2}-2 x<0$, that is, on the interval $[0,2]$. Its only vertical asymptote is at $x=0$, where $\lim _{x \rightarrow 0-} \frac{1}{\sqrt{x^{2}-2 x}-x}=\infty$.
34. Since $\lim _{x \rightarrow \infty} \frac{2 x-5}{|3 x+2|}=\frac{2}{3}$ and $\lim _{x \rightarrow-\infty} \frac{2 x-5}{|3 x+2|}=-\frac{2}{3}$, $y= \pm(2 / 3)$ are horizontal asymptotes of $y=(2 x-5) /|3 x+2|$. The only vertical asymptote is $x=-2 / 3$, which makes the denominator zero.
35. $\lim _{x \rightarrow 0+} f(x)=1$
36. $\lim _{x \rightarrow 1} f(x)=\infty$
37. 



Fig. 1.3.37

$$
\lim _{x \rightarrow 2+} f(x)=1
$$

38. $\lim _{x \rightarrow 2-} f(x)=2$
39. $\lim _{x \rightarrow 3-} f(x)=-\infty$
40. $\lim _{x \rightarrow 3+} f(x)=\infty$
41. $\lim _{x \rightarrow 4+} f(x)=2$
42. $\lim _{x \rightarrow 4-} f(x)=0$
43. $\lim _{x \rightarrow 5-} f(x)=-1$
44. $\lim _{x \rightarrow 5+} f(x)=0$
45. $\lim _{x \rightarrow \infty} f(x)=1$
46. horizontal: $y=1$; vertical: $x=1, x=3$.
47. $\lim _{x \rightarrow 3+}\lfloor x\rfloor=3$
48. $\lim _{x \rightarrow 3-}\lfloor x\rfloor=2$
49. $\lim _{x \rightarrow 3}\lfloor x\rfloor$ does not exist
50. $\lim _{x \rightarrow 2.5}\lfloor x\rfloor=2$
51. $\lim _{x \rightarrow 0+}\lfloor 2-x\rfloor=\lim _{x \rightarrow 2-}\lfloor x\rfloor=1$
52. $\lim _{x \rightarrow-3-}\lfloor x\rfloor=-4$
53. $\lim _{t \rightarrow t_{0}} C(t)=C\left(t_{0}\right)$ except at integers $t_{0}$
$\lim _{t \rightarrow t_{0}-} C(t)=C\left(t_{0}\right)$ everywhere
$\lim _{t \rightarrow t_{0}+} C(t)=C\left(t_{0}\right)$ if $t_{0} \neq$ an integer
$\lim _{t \rightarrow t_{0}+} C(t)=C\left(t_{0}\right)+1.5$ if $t_{0}$ is an integer


Fig. 1.3.53
54. $\lim _{x \rightarrow 0+} f(x)=L$
(a) If $f$ is even, then $f(-x)=f(x)$.

Hence, $\lim _{x \rightarrow 0-} f(x)=L$.
(b) If $f$ is odd, then $f(-x)=-f(x)$.

Therefore, $\lim _{x \rightarrow 0-} f(x)=-L$.
55. $\lim _{x \rightarrow 0+} f(x)=A, \quad \lim _{x \rightarrow 0-} f(x)=B$
a) $\lim _{x \rightarrow 0+} f\left(x^{3}-x\right)=B\left(\right.$ since $x^{3}-x<0$ if $\left.0<x<1\right)$
b) $\lim _{x \rightarrow 0-} f\left(x^{3}-x\right)=A$ (because $x^{3}-x>0$ if $-1<x<0$ )
c) $\lim _{x \rightarrow 0-} f\left(x^{2}-x^{4}\right)=A$


## Section 1.4 Continuity (page 85)

1. $g$ is continuous at $x=-2$, discontinuous at $x=-1,0,1$, and 2 . It is left continuous at $x=0$ and right continuous at $x=1$.


Fig. 1.4.1
2. $g$ has removable discontinuities at $x=-1$ and $x=2$. Redefine $g(-1)=1$ and $g(2)=0$ to make $g$ continuous at those points.
3. $g$ has no absolute maximum value on $[-2,2]$. It takes on every positive real value less than 2 , but does not take the value 2 . It has absolute minimum value 0 on that interval, assuming this value at the three points $x=-2$, $x=-1$, and $x=1$.
4. Function $f$ is discontinuous at $x=1,2,3,4$, and 5. $f$ is left continuous at $x=4$ and right continuous at $x=2$ and $x=5$.


Fig. 1.4.4
5. $\quad f$ cannot be redefined at $x=1$ to become continuous there because $\lim _{x \rightarrow 1} f(x)(=\infty)$ does not exist. ( $\infty$ is not a real number.)
6. $\operatorname{sgn} x$ is not defined at $x=0$, so cannot be either continuous or discontinuous there. (Functions can be continuous or discontinuous only at points in their domains!)
7. $f(x)=\left\{\begin{array}{ll}x & \text { if } x<0 \\ x^{2} & \text { if } x \geq 0\end{array}\right.$ is continuous everywhere on the real line, even at $x=0$ where its left and right limits are both 0 , which is $f(0)$.
8. $f(x)=\left\{\begin{array}{ll}x & \text { if } x<-1 \\ x^{2} & \text { if } x \geq-1\end{array}\right.$ is continuous everywhere on the real line except at $x=-1$ where it is right continuous, but not left continuous.

$$
\begin{aligned}
\lim _{x \rightarrow-1-} f(x) & =\lim _{x \rightarrow-1-} x=-1 \neq 1 \\
& =f(-1)=\lim _{x \rightarrow-1+} x^{2}=\lim _{x \rightarrow-1+} f(x)
\end{aligned}
$$

9. $f(x)=\left\{\begin{array}{ll}1 / x^{2} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ is continuous everywhere except at $x=0$, where it is neither left nor right continuous since it does not have a real limit there.
10. $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \leq 1 \\ 0.987 & \text { if } x>1\end{array}\right.$ is continuous everywhere except at $x=1$, where it is left continuous but not right continuous because $0.987 \neq 1$. Close, as they say, but no cigar.
11. The least integer function $\lceil x\rceil$ is continuous everywhere on $\mathbb{R}$ except at the integers, where it is left continuous but not right continuous.
12. $C(t)$ is discontinuous only at the integers. It is continuous on the left at the integers, but not on the right.
13. Since $\frac{x^{2}-4}{x-2}=x+2$ for $x \neq 2$, we can define the function to be $2+2=4$ at $x=2$ to make it continuous there. The continuous extension is $x+2$.
14. Since $\frac{1+t^{3}}{1-t^{2}}=\frac{(1+t)\left(1-t+t^{2}\right)}{(1+t)(1-t)}=\frac{1-t+t^{2}}{1-t}$ for $t \neq-1$, we can define the function to be $3 / 2$ at $t=-1$ to make it continuous there. The continuous extension is $\frac{1-t+t^{2}}{1-t}$.
15. Since $\frac{t^{2}-5 t+6}{t^{2}-t-6}=\frac{(t-2)(t-3)}{(t+2)(t-3)}=\frac{t-2}{t+2}$ for $t \neq 3$, we can define the function to be $1 / 5$ at $t=3$ to make it continuous there. The continuous extension is $\frac{t-2}{t+2}$.
16. Since
$\frac{x^{2}-2}{x^{4}-4}=\frac{(x-\sqrt{2})(x+\sqrt{2})}{(x-\sqrt{2})(x+\sqrt{2})\left(x^{2}+2\right)}=\frac{x+\sqrt{2}}{(x+\sqrt{2})\left(x^{2}+2\right)}$
for $x \neq \sqrt{2}$, we can define the function to be $1 / 4$ at $x=\sqrt{2}$ to make it continuous there. The continuous extension is $\frac{x+\sqrt{2}}{(x+\sqrt{2})\left(x^{2}+2\right)}$. (Note: cancelling the $x+\sqrt{2}$ factors provides a further continuous extension to $x=-\sqrt{2}$.
17. $\lim _{x \rightarrow 2+} f(x)=k-4$ and $\lim _{x \rightarrow 2-} f(x)=4=f(2)$.

Thus $f$ will be continuous at $x=2$ if $k-4=4$, that is, if $k=8$.
18. $\lim _{x \rightarrow 3-} g(x)=3-m$ and
$\lim _{x \rightarrow 3+} g(x)=1-3 m=g(3)$. Thus $g$ will be continuous at $x=3$ if $3-m=1-3 m$, that is, if $m=-1$.
19. $x^{2}$ has no maximum value on $-1<x<1$; it takes all positive real values less than 1 , but it does not take the value 1 . It does have a minimum value, namely 0 taken on at $x=0$.
20. The Max-Min Theorem says that a continuous function defined on a closed, finite interval must have maximum and minimum values. It does not say that other functions cannot have such values. The Heaviside function is not continuous on $[-1,1]$ (because it is discontinuous at $x=0$ ), but it still has maximum and minimum values. Do not confuse a theorem with its converse.
21. Let the numbers be $x$ and $y$, where $x \geq 0, y \geq 0$, and $x+y=8$. If $P$ is the product of the numbers, then

$$
P=x y=x(8-x)=8 x-x^{2}=16-(x-4)^{2} .
$$

Therefore $P \leq 16$, so $P$ is bounded. Clearly $P=16$ if $x=y=4$, so the largest value of $P$ is 16 .
22. Let the numbers be $x$ and $y$, where $x \geq 0, y \geq 0$, and $x+y=8$. If $S$ is the sum of their squares then

$$
\begin{aligned}
S=x^{2}+y^{2} & =x^{2}+(8-x)^{2} \\
& =2 x^{2}-16 x+64=2(x-4)^{2}+32 .
\end{aligned}
$$

Since $0 \leq x \leq 8$, the maximum value of $S$ occurs at $x=0$ or $x=8$, and is 64 . The minimum value occurs at $x=4$ and is 32 .
23. Since $T=100-30 x+3 x^{2}=3(x-5)^{2}+25, T$ will be minimum when $x=5$. Five programmers should be assigned, and the project will be completed in 25 days.
24. If $x$ desks are shipped, the shipping cost per desk is

$$
\begin{aligned}
C=\frac{245 x-30 x^{2}+x^{3}}{x} & =x^{2}-30 x+245 \\
& =(x-15)^{2}+20 .
\end{aligned}
$$

This cost is minimized if $x=15$. The manufacturer should send 15 desks in each shipment, and the shipping cost will then be $\$ 20$ per desk.
25. $f(x)=\frac{x^{2}-1}{x}=\frac{(x-1)(x+1)}{x}$
$f=0$ at $x= \pm 1 . f$ is not defined at 0.
$f(x)>0$ on $(-1,0)$ and $(1, \infty)$.
$f(x)<0$ on $(-\infty,-1)$ and $(0,1)$.
26. $f(x)=x^{2}+4 x+3=(x+1)(x+3)$
$f(x)>0$ on $(-\infty,-3)$ and $(-1, \infty)$
$f(x)<0$ on $(-3,-1)$.
27. $f(x)=\frac{x^{2}-1}{x^{2}-4}=\frac{(x-1)(x+1)}{(x-2)(x+2)}$
$f=0$ at $x= \pm 1$.
$f$ is not defined at $x= \pm 2$.
$f(x)>0$ on $(-\infty,-2),(-1,1)$, and $(2, \infty)$.
$f(x)<0$ on $(-2,-1)$ and $(1,2)$.
28. $f(x)=\frac{x^{2}+x-2}{x^{3}}=\frac{(x+2)(x-1)}{x^{3}}$
$f(x)>0$ on $(-2,0)$ and $(1, \infty)$
$f(x)<0$ on $(-\infty,-2)$ and $(0,1)$.
29. $f(x)=x^{3}+x-1, f(0)=-1, f(1)=1$.

Since $f$ is continuous and changes sign between 0 and 1 , it must be zero at some point between 0 and 1 by IVT.
30. $f(x)=x^{3}-15 x+1$ is continuous everywhere. $f(-4)=-3, f(-3)=19, f(1)=-13, f(4)=5$.
Because of the sign changes $f$ has a zero between -4 and -3 , another zero between -3 and 1 , and another between 1 and 4 .
31. $F(x)=(x-a)^{2}(x-b)^{2}+x$. Without loss of generality, we can assume that $a<b$. Being a polynomial, $F$ is continuous on $[a, b]$. Also $F(a)=a$ and $F(b)=b$. Since $a<\frac{1}{2}(a+b)<b$, the Intermediate-Value Theorem guarantees that there is an $x$ in $(a, b)$ such that $F(x)=(a+b) / 2$.
32. Let $g(x)=f(x)-x$. Since $0 \leq f(x) \leq 1$ if $0 \leq x \leq 1$, therefore, $g(0) \geq 0$ and $g(1) \leq 0$. If $g(0)=0$ let $c=0$, or if $g(1)=0$ let $c=1$. (In either case $f(c)=c$.) Otherwise, $g(0)>0$ and $g(1)<0$, and, by IVT, there exists $c$ in $(0,1)$ such that $g(c)=0$, i.e., $f(c)=c$.
33. The domain of an even function is symmetric about the $y$-axis. Since $f$ is continuous on the right at $x=0$, therefore it must be defined on an interval $[0, h]$ for some $h>0$. Being even, $f$ must therefore be defined on $[-h, h]$. If $x=-y$, then

$$
\lim _{x \rightarrow 0-} f(x)=\lim _{y \rightarrow 0+} f(-y)=\lim _{y \rightarrow 0+} f(y)=f(0) .
$$

Thus, $f$ is continuous on the left at $x=0$. Being continuous on both sides, it is therefore continuous.
34. $f$ odd $\Leftrightarrow f(-x)=-f(x)$
$f$ continuous on the right $\Leftrightarrow \lim _{x \rightarrow 0+} f(x)=f(0)$
Therefore, letting $t=-x$, we obtain

$$
\begin{aligned}
\lim _{x \rightarrow 0-} f(x) & =\lim _{t \rightarrow 0+} f(-t)=\lim _{t \rightarrow 0+}-f(t) \\
& =-f(0)=f(-0)=f(0) .
\end{aligned}
$$

Therefore $f$ is continuous at 0 and $f(0)=0$.
35. max 1.593 at $-0.831, \min -0.756$ at 0.629
36. max 0.133 at $x=1.437$; min -0.232 at $x=-1.805$
37. max 10.333 at $x=3$; min 4.762 at $x=1.260$
38. max 1.510 at $x=0.465$; min 0 at $x=0$ and $x=1$
39. root $x=0.682$
40. root $x=0.739$
41. roots $x=-0.637$ and $x=1.410$
42. roots $x=-0.7244919590$ and $x=1.220744085$
43. fsolve gives an approximation to the single real root to 10 significant figures; solve gives the three roots (including a complex conjugate pair) in exact form involving the quantity $(108+12 \sqrt{69})^{1 / 3}$; evalf(solve) gives approximations to the three roots using 10 significant figures for the real and imaginary parts.

## Section 1.5 The Formal Definition of Limit (page 90)

1. We require $39.9 \leq L \leq 40.1$. Thus

$$
\begin{aligned}
39.9 & \leq 39.6+0.025 T \leq 40.1 \\
0.3 & \leq 0.025 T \leq 0.5 \\
12 & \leq T \leq 20
\end{aligned}
$$

The temperature should be kept between $12^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$.
2. Since $1.2 \%$ of 8,000 is 96 , we require the edge length $x$ of the cube to satisfy $7904 \leq x^{3} \leq 8096$. It is sufficient that $19.920 \leq x \leq 20.079$. The edge of the cube must be within 0.079 cm of 20 cm .
3. $3-0.02 \leq 2 x-1 \leq 3+0.02$

$$
3.98 \leq 2 x \leq 4.02
$$

$$
1.99 \leq x \leq 2.01
$$

4. $4-0.1 \leq x^{2} \leq 4+0.1$
$1.9749 \leq x \leq 2.0024$
5. $1-0.1 \leq \sqrt{x} \leq 1.1$

$$
0.81 \leq x \leq 1.21
$$

6. $-2-0.01 \leq \frac{1}{x} \leq-2+0.01$

$$
-\frac{1}{2.01} \geq x \geq-\frac{1}{1.99}
$$

$$
-0.5025 \leq x \leq-0.4975
$$

7. We need $-0.03 \leq(3 x+1)-7 \leq 0.03$, which is equivalent to $-0.01 \leq x-2 \leq 0.01$ Thus $\delta=0.01$ will do.
8. We need $-0.01 \leq \sqrt{2 x+3}-3 \leq 0.01$. Thus

$$
\begin{aligned}
2.99 & \leq \sqrt{2 x+3} \leq 3.01 \\
8.9401 & \leq 2 x+3 \leq 9.0601 \\
2.97005 & \leq x \leq 3.03005 \\
3-0.02995 & \leq x-3 \leq 0.03005
\end{aligned}
$$

Here $\delta=0.02995$ will do.
9. We need $8-0.2 \leq x^{3} \leq 8.2$, or $1.9832 \leq x \leq 2.0165$. Thus, we need $-0.0168 \leq x-2 \leq 0.0165$. Here $\delta=0.0165$ will do.
10. We need $1-0.05 \leq 1 /(x+1) \leq 1+0.05$, or $1.0526 \geq x+1 \geq 0.9524$. This will occur if $-0.0476 \leq x \leq 0.0526$. In this case we can take $\delta=0.0476$.
11. To be proved: $\lim _{x \rightarrow 1}(3 x+1)=4$.

Proof: Let $\epsilon>0$ be given. Then $|(3 x+1)-4|<\epsilon$ holds if $3|x-1|<\epsilon$, and so if $|x-1|<\delta=\epsilon / 3$. This confirms the limit.
12. To be proved: $\lim _{x \rightarrow 2}(5-2 x)=1$.

Proof: Let $\epsilon>0$ be given. Then $|(5-2 x)-1|<\epsilon$ holds if $|2 x-4|<\epsilon$, and so if $|x-2|<\delta=\epsilon / 2$. This confirms the limit.
13. To be proved: $\lim _{x \rightarrow 0} x^{2}=0$.

Let $\epsilon>0$ be given. Then $\left|x^{2}-0\right|<\epsilon$ holds if
$|x-0|=|x|<\delta=\sqrt{\epsilon}$.
14. To be proved: $\lim _{x \rightarrow 2} \frac{x-2}{1+x^{2}}=0$.

Proof: Let $\epsilon>0$ be given. Then

$$
\left|\frac{x-2}{1+x^{2}}-0\right|=\frac{|x-2|}{1+x^{2}} \leq|x-2|<\epsilon
$$

provided $|x-2|<\delta=\epsilon$.
15. To be proved: $\lim _{x \rightarrow 1 / 2} \frac{1-4 x^{2}}{1-2 x}=2$.

Proof: Let $\epsilon>0$ be given. Then if $x \neq 1 / 2$ we have
$\left|\frac{1-4 x^{2}}{1-2 x}-2\right|=|(1+2 x)-2|=|2 x-1|=2\left|x-\frac{1}{2}\right|<\epsilon$
provided $\left|x-\frac{1}{2}\right|<\delta=\epsilon / 2$.
16. To be proved: $\lim _{x \rightarrow-2} \frac{x^{2}+2 x}{x+2}=-2$.

Proof: Let $\epsilon>0$ be given. For $x \neq-2$ we have

$$
\left|\frac{x^{2}+2 x}{x+2}-(-2)\right|=|x+2|<\epsilon
$$

provided $|x+2|<\delta=\epsilon$. This completes the proof.
17. To be proved: $\lim _{x \rightarrow 1} \frac{1}{x+1}=\frac{1}{2}$.

Proof: Let $\epsilon>0$ be given. We have

$$
\left|\frac{1}{x+1}-\frac{1}{2}\right|=\left|\frac{1-x}{2(x+1)}\right|=\frac{|x-1|}{2|x+1|}
$$

If $|x-1|<1$, then $0<x<2$ and $1<x+1<3$, so that $|x+1|>1$. Let $\delta=\min (1,2 \epsilon)$. If $|x-1|<\delta$, then

$$
\left|\frac{1}{x+1}-\frac{1}{2}\right|=\frac{|x-1|}{2|x+1|}<\frac{2 \epsilon}{2}=\epsilon .
$$

This establishes the required limit.
18. To be proved: $\lim _{x \rightarrow-1} \frac{x+1}{x^{2}-1}=-\frac{1}{2}$.

Proof: Let $\epsilon>0$ be given. If $x \neq-1$, we have

$$
\left|\frac{x+1}{x^{2}-1}-\frac{1}{2}\right|=\left|\frac{1}{x-1}-\left(-\frac{1}{2}\right)\right|=\frac{|x+1|}{2|x-1|}
$$

If $|x+1|<1$, then $-2<x<0$, so $-3<x-1<-1$ and $|x-1|>1$. Ler $\delta=\min (1,2 \epsilon)$. If $0<|x-(-1)|<\delta$ then $|x-1|>1$ and $|x+1|<2 \epsilon$. Thus

$$
\left|\frac{x+1}{x^{2}-1}-\frac{1}{2}\right|=\frac{|x+1|}{2|x-1|}<\frac{2 \epsilon}{2}=\epsilon
$$

This completes the required proof.
19. To be proved: $\lim _{x \rightarrow 1} \sqrt{x}=1$.

Proof: Let $\epsilon>0$ be given. We have

$$
|\sqrt{x}-1|=\left|\frac{x-1}{\sqrt{x}+1}\right| \leq|x-1|<\epsilon
$$

provided $|x-1|<\delta=\epsilon$. This completes the proof.
20. To be proved: $\lim _{x \rightarrow 2} x^{3}=8$.

Proof: Let $\epsilon>0$ be given. We have $\left|x^{3}-8\right|=|x-2|\left|x^{2}+2 x+4\right|$. If $|x-2|<1$, then $1<x<3$ and $x^{2}<9$. Therefore $\left|x^{2}+2 x+4\right| \leq 9+2 \times 3+4=19$. If $|x-2|<\delta=\min (1, \epsilon / 19)$, then

$$
\left|x^{3}-8\right|=|x-2|\left|x^{2}+2 x+4\right|<\frac{\epsilon}{19} \times 19=\epsilon
$$

This completes the proof.
21. We say that $\lim _{x \rightarrow a-} f(x)=L$ if the following condition holds: for every number $\epsilon>0$ there exists a number $\delta>0$, depending on $\epsilon$, such that

$$
a-\delta<x<a \quad \text { implies } \quad|f(x)-L|<\epsilon
$$

22. We say that $\lim _{x \rightarrow-\infty} f(x)=L$ if the following condition holds: for every number $\epsilon>0$ there exists a number $R>0$, depending on $\epsilon$, such that

$$
x<-R \quad \text { implies } \quad|f(x)-L|<\epsilon
$$

23. We say that $\lim _{x \rightarrow a} f(x)=-\infty$ if the following condition holds: for every number $B>0$ there exists a number $\delta>0$, depending on $B$, such that

$$
0<|x-a|<\delta \quad \text { implies } \quad f(x)<-B
$$

24. We say that $\lim _{x \rightarrow \infty} f(x)=\infty$ if the following condition holds: for every number $B>0$ there exists a number $R>0$, depending on $B$, such that

$$
x>R \quad \text { implies } \quad f(x)>B
$$

25. We say that $\lim _{x \rightarrow a+} f(x)=-\infty$ if the following condition holds: for every number $B>0$ there exists a number $\delta>0$, depending on $R$, such that

$$
a<x<a+\delta \quad \text { implies } \quad f(x)<-B
$$

26. We say that $\lim _{x \rightarrow a-} f(x)=\infty$ if the following condition holds: for every number $B>0$ there exists a number $\delta>0$, depending on $B$, such that

$$
a-\delta<x<a \quad \text { implies } \quad f(x)>B
$$

27. To be proved: $\lim _{x \rightarrow 1+} \frac{1}{x-1}=\infty$. Proof: Let $B>0$ be given. We have $\frac{1}{x-1}>B$ if $0<x-1<1 / B$, that is, if $1<x<1+\delta$, where $\delta=1 / B$. This completes the proof.
28. To be proved: $\lim _{x \rightarrow 1-} \frac{1}{x-1}=-\infty$. Proof: Let $B>0$ be given. We have $\frac{1}{x-1}<-B$ if $0>x-1>-1 / B$, that is, if $1-\delta<x<1$, where $\delta=1 / B$.. This completes the proof.
29. To be proved: $\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x^{2}+1}}=0$. Proof: Let $\epsilon>0$ be given. We have

$$
\left|\frac{1}{\sqrt{x^{2}+1}}\right|=\frac{1}{\sqrt{x^{2}+1}}<\frac{1}{x}<\epsilon
$$

provided $x>R$, where $R=1 / \epsilon$. This completes the proof.
30. To be proved: $\lim _{x \rightarrow \infty} \sqrt{x}=\infty$. Proof: Let $B>0$ be given. We have $\sqrt{x}>B$ if $x>R$ where $R=B^{2}$. This completes the proof.
31. To be proved: if $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} f(x)=M$, then $L=M$.
Proof: Suppose $L \neq M$. Let $\epsilon=|L-M| / 3$. Then $\epsilon>0$. Since $\lim _{x \rightarrow a} f(x)=L$, there exists $\delta_{1}>0$ such that $|f(x)-L|<\epsilon$ if $|x-a|<\delta_{1}$. Since $\lim _{x \rightarrow a} f(x)=M$, there exists $\delta_{2}>0$ such that $|f(x)-M|<\epsilon$ if $|x-a|<\delta_{2}$. Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. If $|x-a|<\delta$, then

$$
\begin{aligned}
3 \epsilon=|L-M| & =\mid(f(x)-M)+(L-f(x) \mid \\
& \leq|f(x)-M|+|f(x)-L|<\epsilon+\epsilon=2 \epsilon .
\end{aligned}
$$

This implies that $3<2$, a contradiction. Thus the original assumption that $L \neq M$ must be incorrect. Therefore $L=M$.
32. To be proved: if $\lim _{x \rightarrow a} g(x)=M$, then there exists $\delta>0$ such that if $0<|x-a|<\delta$, then $|g(x)|<1+|M|$.
Proof: Taking $\epsilon=1$ in the definition of limit, we obtain a number $\delta>0$ such that if $0<|x-a|<\delta$, then $|g(x)-M|<1$. It follows from this latter inequality that
$|g(x)|=|(g(x)-M)+M| \leq|G(x)-M|+|M|<1+|M|$.
33. To be proved: if $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then $\lim _{x \rightarrow a} f(x) g(x)=L M$.
Proof: Let $\epsilon>0$ be given. Since $\lim _{x \rightarrow a} f(x)=L$, there exists $\delta_{1}>0$ such that $|f(x)-L|<\epsilon /(2(1+|M|))$ if $0<|x-a|<\delta_{1}$. Since $\lim _{x \rightarrow a} g(x)=M$, there exists $\delta_{2}>0$ such that $|g(x)-M|<\epsilon /(2(1+|L|))$ if $0<|x-a|<\delta_{2}$. By Exercise 32, there exists $\delta_{3}>0$ such that $|g(x)|<1+|M|$ if $0<|x-a|<\delta_{3}$. Let $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)$. If $|x-a|<\delta$, then

$$
\begin{aligned}
\mid f(x) g(x)-L M & =|f(x) g(x)-L g(x)+L g(x)-L M| \\
& =|(f(x)-L) g(x)+L(g(x)-M)| \\
& \leq|(f(x)-L) g(x)|+|L(g(x)-M)| \\
& =|f(x)-L||g(x)|+|L||g(x)-M| \\
& <\frac{\epsilon}{2(1+|M|)}(1+|M|)+|L| \frac{\epsilon}{2(1+|L|)} \\
& \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

Thus $\lim _{x \rightarrow a} f(x) g(x)=L M$.
34. To be proved: if $\lim _{x \rightarrow a} g(x)=M$ where $M \neq 0$, then there exists $\delta>0$ such that if $0<|x-a|<\delta$, then $|g(x)|>|M| / 2$.
Proof: By the definition of limit, there exists $\delta>0$ such that if $0<|x-a|<\delta$, then $|g(x)-M|<|M| / 2$ (since $|M| / 2$ is a positive number). This latter inequality implies that
$|M|=|g(x)+(M-g(x))| \leq|g(x)|+|g(x)-M|<|g(x)|+\frac{|M|}{2}$.
It follows that $|g(x)|>|M|-(|M| / 2)=|M| / 2$, as required.
35. To be proved: if $\lim _{x \rightarrow a} g(x)=M$ where $M \neq 0$, then $\lim _{x \rightarrow a} \frac{1}{g(x)}=\frac{1}{M}$.
Proof: Let $\epsilon>0$ be given. Since $\lim _{x \rightarrow a} g(x)=M \neq 0$, there exists $\delta_{1}>0$ such that $|g(x)-M|<\epsilon|M|^{2} / 2$ if $0<|x-a|<\delta_{1}$. By Exercise 34, there exists $\delta_{2}>0$ such that $|g(x)|>|M| / 2$ if $0<|x-a|<\delta_{3}$. Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. If $0<|x-a|<\delta$, then

$$
\left|\frac{1}{g(x)}-\frac{1}{M}\right|=\frac{|M-g(x)|}{|M||g(x)|}<\frac{\epsilon|M|^{2}}{2} \frac{2}{|M|^{2}}=\epsilon
$$

This completes the proof.
36. To be proved: if $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} f(x)=M \neq 0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\stackrel{L}{a}}{M}$.
Proof: By Exercises 33 and 35 we have

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} f(x) \times \frac{1}{g(x)}=L \times \frac{1}{M}=\frac{L}{M}
$$

37. To be proved: if $f$ is continuous at $L$ and $\lim _{x \rightarrow c} g(x)=L$, then $\lim _{x \rightarrow c} f(g(x))=f(L)$.
Proof: Let $\epsilon>0$ be given. Since $f$ is continuous at $L$, there exists a number $\gamma>0$ such that if $|y-L|<\gamma$, then $|f(y)-f(L)|<\epsilon$. Since $\lim _{x \rightarrow c} g(x)=L$, there exists $\delta>0$ such that if $0<|x-c|<\delta$, then $|g(x)-L|<\gamma$. Taking $y=g(x)$, it follows that if $0<|x-c|<\delta$, then $|f(g(x))-f(L)|<\epsilon$, so that $\lim _{x \rightarrow c} f(g(x))=f(L)$.
38. To be proved: if $f(x) \leq g(x) \leq h(x)$ in an open interval containing $x=a$ (say, for $a-\delta_{1}<x<a+\delta_{1}$, where $\delta_{1}>0$ ), and if $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then also $\lim _{x \rightarrow a} g(x)=L$.
Proof: Let $\epsilon>0$ be given. Since $\lim _{x \rightarrow a} f(x)=L$, there exists $\delta_{2}>0$ such that if $0<|x-a|<\delta_{2}$, then $|f(x)-L|<\epsilon / 3$. Since $\lim _{x \rightarrow a} h(x)=L$, there exists $\delta_{3}>0$ such that if $0<|x-a|<\delta_{3}$, then $|h(x)-L|<\epsilon / 3$. Let $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)$. If $0<|x-a|<\delta$, then

$$
\begin{aligned}
|g(x)-L| & =|g(x)-f(x)+f(x)-L| \\
& \leq|g(x)-f(x)|+|f(x)-L| \\
& \leq|h(x)-f(x)|+|f(x)-L| \\
& =|h(x)-L+L-f(x)|+|f(x)-L| \\
& \leq|h(x)-L|+|f(x)-L|+|f(x)-L| \\
& <\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon .
\end{aligned}
$$

Thus $\lim _{x \rightarrow a} g(x)=L$.

## Review Exercises 1 (page 91)

1. The average rate of change of $x^{3}$ over $[1,3]$ is

$$
\frac{3^{3}-1^{3}}{3-1}=\frac{26}{2}=13
$$

2. The average rate of change of $1 / x$ over $[-2,-1]$ is

$$
\frac{(1 /(-1))-(1 /(-2))}{-1-(-2)}=\frac{-1 / 2}{1}=-\frac{1}{2} .
$$

3. The rate of change of $x^{3}$ at $x=2$ is

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{(2+h)^{3}-2^{3}}{h} & =\lim _{h \rightarrow 0} \frac{8+12 h+6 h^{2}+h^{3}-8}{h} \\
& =\lim _{h \rightarrow 0}\left(12+6 h+h^{2}\right)=12 .
\end{aligned}
$$

4. The rate of change of $1 / x$ at $x=-3 / 2$ is

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\frac{1}{-(3 / 2)+h}-\left(\frac{1}{-3 / 2}\right)}{h} & =\lim _{h \rightarrow 0} \frac{\frac{2}{2 h-3}+\frac{2}{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2(3+2 h-3)}{3(2 h-3) h} \\
& =\lim _{h \rightarrow 0} \frac{4}{3(2 h-3)}=-\frac{4}{9}
\end{aligned}
$$

5. $\lim _{x \rightarrow 1}\left(x^{2}-4 x+7\right)=1-4+7=4$
6. $\lim _{x \rightarrow 2} \frac{x^{2}}{1-x^{2}}=\frac{2^{2}}{1-2^{2}}=-\frac{4}{3}$
7. $\lim _{x \rightarrow 1} \frac{x^{2}}{1-x^{2}}$ does not exist. The denominator approaches 0 (from both sides) while the numerator does not.
8. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-5 x+6}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)(x-3)}=\lim _{x \rightarrow 2} \frac{x+2}{x-3}=-4$
9. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-4 x+4}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)^{2}}=\lim _{x \rightarrow 2} \frac{x+2}{x-2}$ does not exist. The denominator approaches 0 (from both sides) while the numerator does not.
10. $\lim _{x \rightarrow 2-} \frac{x^{2}-4}{x^{2}-4 x+4}=\lim _{x \rightarrow 2-} \frac{x+2}{x-2}=-\infty$
11. $\lim _{x \rightarrow-2+} \frac{x^{2}-4}{x^{2}+4 x+4}=\lim _{x \rightarrow-2+} \frac{x-2}{x+2}=-\infty$
12. $\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{x-4}=\lim _{x \rightarrow 4} \frac{4-x}{(2+\sqrt{x})(x-4)}=-\frac{1}{4}$
13. $\lim _{x \rightarrow 3} \frac{x^{2}-9}{\sqrt{x}-\sqrt{3}}=\lim _{x \rightarrow 3} \frac{(x-3)(x+3)(\sqrt{x}+\sqrt{3})}{x-3}$

$$
=\lim _{x \rightarrow 3}(x+3)(\sqrt{x}+\sqrt{3})=12 \sqrt{3}
$$

14. $\lim _{h \rightarrow 0} \frac{h}{\sqrt{x+3 h}-\sqrt{x}}=\lim _{h \rightarrow 0} \frac{h(\sqrt{x+3 h}+\sqrt{x})}{(x+3 h)-x}$ $=\lim _{h \rightarrow 0} \frac{\sqrt{x+3 h}+\sqrt{x}}{3}=\frac{2 \sqrt{x}}{3}$
15. $\lim _{x \rightarrow 0+} \sqrt{x-x^{2}}=0$
16. $\lim _{x \rightarrow 0} \sqrt{x-x^{2}}$ does not exist because $\sqrt{x-x^{2}}$ is not defined for $x<0$.
17. $\lim _{x \rightarrow 1} \sqrt{x-x^{2}}$ does not exist because $\sqrt{x-x^{2}}$ is not defined for $x>1$.
18. $\lim _{x \rightarrow 1-} \sqrt{x-x^{2}}=0$
19. $\lim _{x \rightarrow \infty} \frac{1-x^{2}}{3 x^{2}-x-1}=\lim _{x \rightarrow \infty} \frac{\left(1 / x^{2}\right)-1}{3-(1 / x)-\left(1 / x^{2}\right)}=-\frac{1}{3}$
20. $\lim _{x \rightarrow-\infty} \frac{2 x+100}{x^{2}+3}=\lim _{x \rightarrow-\infty} \frac{(2 / x)+\left(100 / x^{2}\right)}{1+\left(3 / x^{2}\right)}=0$
21. $\lim _{x \rightarrow-\infty} \frac{x^{3}-1}{x^{2}+4}=\lim _{x \rightarrow-\infty} \frac{x-\left(1 / x^{2}\right)}{1+\left(4 / x^{2}\right)}=-\infty$
22. $\lim _{x \rightarrow \infty} \frac{x^{4}}{x^{2}-4}=\lim _{x \rightarrow \infty} \frac{x^{2}}{1-\left(4 / x^{2}\right)}=\infty$
23. $\lim _{x \rightarrow 0+} \frac{1}{\sqrt{x-x^{2}}}=\infty$
24. $\lim _{x \rightarrow 1 / 2} \frac{1}{\sqrt{x-x^{2}}}=\frac{1}{\sqrt{1 / 4}}=2$
25. $\lim _{x \rightarrow \infty} \sin x$ does not exist; $\sin x$ takes the values -1 and 1 in any interval $(R, \infty)$, and limits, if they exist, must be unique.
26. $\lim _{x \rightarrow \infty} \frac{\cos x}{x}=0$ by the squeeze theorem, since

$$
-\frac{1}{x} \leq \frac{\cos x}{x} \leq \frac{1}{x} \quad \text { for all } x>0
$$

and $\lim _{x \rightarrow \infty}(-1 / x)=\lim _{x \rightarrow \infty}(1 / x)=0$.
27. $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$ by the squeeze theorem, since

$$
-|x| \leq x \sin \frac{1}{x} \leq|x| \quad \text { for all } x \neq 0
$$

and $\lim _{x \rightarrow 0}(-|x|)=\lim _{x \rightarrow 0}|x|=0$.
28. $\lim _{x \rightarrow 0} \sin \frac{1}{x^{2}}$ does not exist; $\sin \left(1 / x^{2}\right)$ takes the values -1 and 1 in any interval $(-\delta, \delta)$, where $\delta>0$, and limits, if they exist, must be unique.
29. $\lim _{x \rightarrow-\infty}\left[x+\sqrt{x^{2}-4 x+1}\right]$

$$
=\lim _{x \rightarrow-\infty} \frac{x^{2}-\left(x^{2}-4 x+1\right)}{x-\sqrt{x^{2}-4 x+1}}
$$

$$
=\lim _{x \rightarrow-\infty} \frac{4 x-1}{x-|x| \sqrt{1-(4 / x)+\left(1 / x^{2}\right)}}
$$

$$
=\lim _{x \rightarrow-\infty} \frac{x[4-(1 / x)]}{x+x \sqrt{1-(4 / x)+\left(1 / x^{2}\right)}}
$$

$$
=\lim _{x \rightarrow-\infty} \frac{4-(1 / x)}{1+\sqrt{1-(4 / x)+\left(1 / x^{2}\right)}}=2
$$

Note how we have used $|x|=-x$ (in the second last line), because $x \rightarrow-\infty$.
30. $\lim _{x \rightarrow \infty}\left[x+\sqrt{x^{2}-4 x+1}\right]=\infty+\infty=\infty$
31. $f(x)=x^{3}-4 x^{2}+1$ is continuous on the whole real line and so is discontinuous nowhere.
32. $f(x)=\frac{x}{x+1}$ is continuous everywhere on its domain, which consists of all real numbers except $x=-1$. It is discontinuous nowhere.
33. $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x>2 \\ x & \text { if } x \leq 2\end{array}\right.$ is defined everywhere and discontinuous at $x=2$, where it is, however, left continuous since $\lim _{x \rightarrow 2-} f(x)=2=f(2)$.
34. $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x>1 \\ x & \text { if } x \leq 1\end{array}\right.$ is defined and continuous everywhere, and so discontinuous nowhere. Observe that $\lim _{x \rightarrow 1-} f(x)=1=\lim _{x \rightarrow 1+} f(x)$.
35. $f(x)=H(x-1)=\left\{\begin{array}{ll}1 & \text { if } x \geq 1 \\ 0 & \text { if } x<1\end{array}\right.$ is defined everywhere and discontinuous at $x=1$ where it is, however, right continuous.
36. $f(x)=H\left(9-x^{2}\right)=\left\{\begin{array}{ll}1 & \text { if }-3 \leq x \leq 3 \\ 0 & \text { if } x<-3 \text { or } x>3\end{array}\right.$ is defined everywhere and discontinuous at $x= \pm 3$. It is right continuous at -3 and left continuous at 3 .
37. $f(x)=|x|+|x+1|$ is defined and continuous everywhere. It is discontinuous nowhere.
38. $f(x)=\left\{\begin{array}{ll}|x| /|x+1| & \text { if } x \neq-1 \\ 1 & \text { if } x=-1\end{array}\right.$ is defined everywhere and discontinuous at $x=-1$ where it is neither left nor right continuous since $\lim _{x \rightarrow-1} f(x)=\infty$, while $f(-1)=1$.

## Challenging Problems 1 (page 92)

1. Let $0<a<b$. The average rate of change of $x^{3}$ over $[a, b]$ is

$$
\frac{b^{3}-a^{3}}{b-a}=b^{2}+a b+a^{2} .
$$

The instantaneous rate of change of $x^{3}$ at $x=c$ is

$$
\lim _{h \rightarrow 0} \frac{(c+h)^{3}-c^{3}}{h}=\lim _{h \rightarrow 0} \frac{3 c^{2} h+3 c h^{2}+h^{3}}{h}=3 c^{2}
$$

If $c=\sqrt{\left(a^{2}+a b+b^{2}\right) / 3}$, then $3 c^{2}=a^{2}+a b+b^{2}$, so the average rate of change over $[a, b]$ is the instantaneous rate of change at $\sqrt{\left(a^{2}+a b+b^{2}\right) / 3}$.
Claim: $\sqrt{\left(a^{2}+a b+b^{2}\right) / 3}>(a+b) / 2$.
Proof: Since $a^{2}-2 a b+b^{2}=(a-b)^{2}>0$, we have

$$
\begin{aligned}
4 a^{2}+4 a b+4 b^{2} & >3 a^{2}+6 a b+3 b^{2} \\
\frac{a^{2}+a b+b^{2}}{3} & >\frac{a^{2}+2 a b+b^{2}}{4}=\left(\frac{a+b}{2}\right)^{2} \\
\sqrt{\frac{a^{2}+a b+b^{2}}{3}} & >\frac{a+b}{2} .
\end{aligned}
$$

2. For $x$ near 0 we have $|x-1|=1-x$ and $|x+1|=x+1$. Thus

$$
\lim _{x \rightarrow 0} \frac{x}{|x-1|-|x+1|}=\lim _{x \rightarrow 0} \frac{x}{(1-x)-(x+1)}=-\frac{1}{2}
$$

3. For $x$ near 3 we have $|5-2 x|=2 x-5,|x-2|=x-2$,
$|x-5|=5-x$, and $|3 x-7|=3 x-7$. Thus

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{|5-2 x|-|x-2|}{|x-5|-|3 x-7|} & =\lim _{x \rightarrow 3} \frac{2 x-5-(x-2)}{5-x-(3 x-7)} \\
& =\lim _{x \rightarrow 3} \frac{x-3}{4(3-x)}=-\frac{1}{4}
\end{aligned}
$$

4. Let $y=x^{1 / 6}$. Then we have

$$
\begin{aligned}
& \lim _{x \rightarrow 64} \frac{x^{1 / 3}-4}{x^{1 / 2}-8}=\lim _{y \rightarrow 2} \frac{y^{2}-4}{y^{3}-8} \\
&=\lim _{y \rightarrow 2} \frac{(y-2)(y+2)}{(y-2)\left(y^{2}+2 y+4\right)} \\
&=\lim _{y \rightarrow 2} \frac{y+2}{y^{2}+2 y+4}=\frac{4}{12}=\frac{1}{3} .
\end{aligned}
$$

5. Use $a-b=\frac{a^{3}-b^{3}}{a^{2}+a b+b^{2}}$ to handle the denominator. We have

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{\sqrt{3+x}-2}{\sqrt[3]{7+x}-2} \\
= & \lim _{x \rightarrow 1} \frac{3+x-4}{\sqrt{3+x}+2} \times \frac{(7+x)^{2 / 3}+2(7+x)^{1 / 3}+4}{(7+x)-8} \\
= & \lim _{x \rightarrow 1} \frac{(7+x)^{2 / 3}+2(7+x)^{1 / 3}+4}{\sqrt{3+x}+2}=\frac{4+4+4}{2+2}=3 .
\end{aligned}
$$

6. $\quad r_{+}(a)=\frac{-1+\sqrt{1+a}}{a}, r_{-}(a)=\frac{-1-\sqrt{1+a}}{a}$.
a) $\lim _{a \rightarrow 0} r_{-}(a)$ does not exist. Observe that the right limit is $-\infty$ and the left limit is $\infty$.
b) From the following table it appears that $\lim _{a \rightarrow 0} r_{+}(a)=1 / 2$, the solution of the linear equation $2 x-1=0$ which results from setting $a=0$ in the quadratic equation $a x^{2}+2 x-1=0$.

| $a$ | $r_{+}(a)$ |
| :---: | :---: |
| 1 | 0.41421 |
| 0.1 | 0.48810 |
| -0.1 | 0.51317 |
| 0.01 | 0.49876 |
| -0.01 | 0.50126 |
| 0.001 | 0.49988 |
| -0.001 | 0.50013 |

$$
\text { c) } \begin{aligned}
\lim _{a \rightarrow 0} r_{+}(a) & =\lim _{a \rightarrow 0} \frac{\sqrt{1+a}-1}{a} \\
& =\lim _{a \rightarrow 0} \frac{(1+a)-1}{a(\sqrt{1+a}+1)} \\
& =\lim _{a \rightarrow 0} \frac{1}{\sqrt{1+a}+1}=\frac{1}{2}
\end{aligned}
$$

## 7. TRUE or FALSE

a) If $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} g(x)$ does not exist, then $\lim _{x \rightarrow a}(f(x)+g(x))$ does not exist. TRUE, because if $\lim _{x \rightarrow a}(f(x)+g(x))$ were to exist then

$$
\begin{aligned}
\lim _{x \rightarrow a} g(x) & =\lim _{x \rightarrow a}(f(x)+g(x)-f(x)) \\
& =\lim _{x \rightarrow a}(f(x)+g(x))-\lim _{x \rightarrow a} f(x)
\end{aligned}
$$

would also exist.
b) If neither $\lim _{x \rightarrow a} f(x)$ nor $\lim _{x \rightarrow a} g(x)$ exists, then $\lim _{x \rightarrow a}(f(x)+g(x))$ does not exist.
FALSE. Neither $\lim _{x \rightarrow 0} 1 / x$ nor $\lim _{x \rightarrow 0}(-1 / x)$ exist, but $\lim _{x \rightarrow 0}((1 / x)+(-1 / x))=\lim _{x \rightarrow 0} 0=0$ exists.
c) If $f$ is continuous at $a$, then so is $|f|$.

TRUE. For any two real numbers $u$ and $v$ we have

$$
||u|-|v|| \leq|u-v|
$$

This follows from

$$
\begin{aligned}
& |u|=|u-v+v| \leq|u-v|+|v|, \quad \text { and } \\
& |v|=|v-u+u| \leq|v-u|+|u|=|u-v|+|u| .
\end{aligned}
$$

Now we have

$$
||f(x)|-|f(a)|| \leq|f(x)-f(a)|
$$

so the left side approaches zero whenever the right side does. This happens when $x \rightarrow a$ by the continuity of $f$ at $a$.
d) If $|f|$ is continuous at $a$, then so is $f$.

FALSE. The function $f(x)=\left\{\begin{array}{ll}-1 & \text { if } x<0 \\ 1 & \text { if } x \geq 0\end{array}\right.$ is discontinuous at $x=0$, but $|f(x)|=1$ everywhere, and so is continuous at $x=0$.
e) If $f(x)<g(x)$ in an interval around $a$ and if $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$ both exist, then $L<M$.
FALSE. Let $g(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{array}\right.$ and let $f(x)=-g(x)$. Then $f(x)<g(x)$ for all $x$, but $\lim _{x \rightarrow 0} f(x)=0=\lim _{x \rightarrow 0} g(x)$. (Note: under the given conditions, it is TRUE that $L \leq M$, but not necessarily true that $L<M$.)
8. a) To be proved: if $f$ is a continuous function defined on a closed interval $[a, b]$, then the range of $f$ is a closed interval.
Proof: By the Max-Min Theorem there exist numbers $u$ and $v$ in $[a, b]$ such that $f(u) \leq f(x) \leq f(v)$ for all $x$ in $[a, b]$. By the Intermediate-Value Theorem, $f(x)$ takes on all values between $f(u)$ and $f(v)$ at values of $x$ between $u$ and $v$, and hence at points of $[a, b]$. Thus the range of $f$ is [ $f(u), f(v)$ ], a closed interval.
b) If the domain of the continuous function $f$ is an open interval, the range of $f$ can be any interval (open, closed, half open, finite, or infinite).
9. $f(x)=\frac{x^{2}-1}{\left|x^{2}-1\right|}=\left\{\begin{array}{ll}-1 & \text { if }-1<x<1 \\ 1 & \text { if } x<-1 \text { or } x>1\end{array}\right.$. $f$ is continuous wherever it is defined, that is at all points except $x= \pm 1 . f$ has left and right limits -1 and 1 , respectively, at $x=1$, and has left and right limits 1 and -1 , respectively, at $x=-1$. It is not, however, discontinuous at any point, since -1 and 1 are not in its domain.
10. $f(x)=\frac{1}{x-x^{2}}=\frac{1}{\frac{1}{4}-\left(\frac{1}{4}-x+x^{2}\right)}=\frac{1}{\frac{1}{4}-\left(x-\frac{1}{2}\right)^{2}}$. Observe that $f(x) \geq f(1 / 2)=4$ for all $x$ in $(0,1)$.
11. Suppose $f$ is continuous on $[0,1]$ and $f(0)=f(1)$.
a) To be proved: $f(a)=f\left(a+\frac{1}{2}\right)$ for some $a$ in $\left[0, \frac{1}{2}\right]$. Proof: If $f(1 / 2)=f(0)$ we can take $a=0$ and be done. If not, let

$$
g(x)=f\left(x+\frac{1}{2}\right)-f(x)
$$

Then $g(0) \neq 0$ and
$g(1 / 2)=f(1)-f(1 / 2)=f(0)-f(1 / 2)=-g(0)$.

Since $g$ is continuous and has opposite signs at $x=0$ and $x=1 / 2$, the Intermediate-Value Theorem assures us that there exists $a$ between 0 and $1 / 2$ such that $g(a)=0$, that is, $f(a)=f\left(a+\frac{1}{2}\right)$.
b) To be proved: if $n>2$ is an integer, then $f(a)=f\left(a+\frac{1}{n}\right)$ for some $a$ in $\left[0,1-\frac{1}{n}\right]$.
Proof: Let $g(x)=f\left(x+\frac{1}{n}\right)-f(x)$. Consider the numbers $x=0, x=1 / n, x=2 / n, \ldots$, $x=(n-1) / n$. If $g(x)=0$ for any of these numbers, then we can let $a$ be that number. Otherwise, $g(x) \neq 0$ at any of these numbers. Suppose that the values of $g$ at all these numbers has the same sign (say positive). Then we have

$$
f(1)>f\left(\frac{n-1}{n}\right)>\cdots>f\left(\frac{2}{n}\right)>\frac{1}{n}>f(0),
$$

which is a contradiction, since $f(0)=f(1)$. Therefore there exists $j$ in the set $\{0,1,2, \ldots, n-1\}$ such that $g(j / n)$ and $g((j+1) / n)$ have opposite sign. By the Intermediate-Value Theorem, $g(a)=0$ for some $a$ between $j / n$ and $(j+1) / n$, which is what we had to prove.

