MECHANICAL ENGINEERING
A Series of Textbooks and Reference Books

Founding Editor
L. L. Faulkner
Columbus Division, Battelle Memorial Institute
and Department of Mechanical Engineering
The Ohio State University
Columbus, Ohio

1. Spring Designer's Handbook, Harold Carlson
3. Lubrication Fundamentals, J. George Wills
6. Centrifugal Pump Clinic, Igor J. Karassik
10. Vibrations of Shells and Plates, Werner Soedel
11. Flat and Corrugated Diaphragm Design Handbook, Mario Di Giovanni
12. Practical Stress Analysis in Engineering Design, Alexander Blake
13. An Introduction to the Design and Behavior of Bolted Joints, John H. Bickford
15. Spring Manufacturing Handbook, Harold Carlson
17. Gears and Their Vibration: A Basic Approach to Understanding Gear Noise, J. Derek Smith
18. Chains for Power Transmission and Material Handling: Design and Applications Handbook, American Chain Association
20. Gear Drive Systems: Design and Application, Peter Lynwander
22. CAD/CAM Systems Planning and Implementation, Charles S. Knox
24. Traction Drives: Selection and Application, Frederick W. Heilich III and Eugene E. Shube
25. Finite Element Methods: An Introduction, Ronald L. Huston and Chris E. Passerello

Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved
28. Principles of Automated Drafting, Daniel L. Ryan
30. Engineering Documentation for CAD/CAM Applications, Charles S. Knox
32. Mechanism Analysis: Simplified Graphical and Analytical Techniques, Lyndon O. Barton
33. CAD/CAM Systems: Justification, Implementation, Productivity Measurement, Edward J. Preston, George W. Crawford, and Mark E. Coticchia
34. Steam Plant Calculations Manual, V. Ganapathy
35. Design Assurance for Engineers and Managers, John A. Burgess
36. Heat Transfer Fluids and Systems for Process and Energy Applications, Jasbir Singh
39. Electronically Controlled Proportional Valves: Selection and Application, Michael J. Tonyan, edited by Tobi Goldoftas
41. Fabric Filtration for Combustion Sources: Fundamentals and Basic Technology, R. P. Donovan
42. Design of Mechanical Joints, Alexander Blake
43. CAD/CAM Dictionary, Edward J. Preston, George W. Crawford, and Mark E. Coticchia
44. Machinery Adhesives for Locking, Retaining, and Sealing, Girard S. Haviland
45. Couplings and Joints: Design, Selection, and Application, Jon R. Mancuso
46. Shaft Alignment Handbook, John Piotrowski
47. BASIC Programs for Steam Plant Engineers: Boilers, Combustion, Fluid Flow, and Heat Transfer, V. Ganapathy
49. Plastics Gearing: Selection and Application, Clifford E. Adams
50. Clutches and Brakes: Design and Selection, William C. Orthwein
51. Transducers in Mechanical and Electronic Design, Harry L. Trietley
52. Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, edited by Lawrence E. Murr, Karl P. Staudhammer, and Marc A. Meyers
53. Magnesium Products Design, Robert S. Busk
55. Cam Design and Manufacture: Second Edition; with cam design software for the IBM PC and compatibles, disk included, Preben W. Jensen
56. Solid-State AC Motor Controls: Selection and Application, Sylvester Campbell
57. Fundamentals of Robotics, David D. Ardayfio
58. Belt Selection and Application for Engineers, edited by Wallace D. Erickson
59. Developing Three-Dimensional CAD Software with the IBM PC, C. Stan Wei
60. Organizing Data for CIM Applications, Charles S. Knox, with contributions by Thomas C. Boos, Ross S. Culverhouse, and Paul F. Muchnicki
61. Computer-Aided Simulation in Railway Dynamics, by Rao V. Dukkipati and Joseph R. Amyot
63. Photoelectric Sensors and Controls: Selection and Application, Scott M. Juds
64. Finite Element Analysis with Personal Computers, Edward R. Champion, Jr., and J. Michael Ensminger
66. Applied Finite Element Modeling: Practical Problem Solving for Engineers, Jeffrey M. Steele
67. Measurement and Instrumentation in Engineering: Principles and Basic Laboratory Experiments, Francis S. Tse and Ivan E. Morse
72. Pressure Sensors: Selection and Application, Duane Tandeske
74. Thermal Fatigue of Metals, Andrzej Weronski and Tadeusz Hejwowski
75. Classical and Modern Mechanisms for Engineers and Inventors, Preben W. Jensen
76. Handbook of Electronic Package Design, edited by Michael Pecht
77. Shock-Wave and High-Strain-Rate Phenomena in Materials, edited by Marc A. Meyers, Lawrence E. Murr, and Karl P. Staudhammer
78. Industrial Refrigeration: Principles, Design and Applications, P. C. Koelet
79. Applied Combustion, Eugene L. Keating
80. Engine Oils and Automotive Lubrication, edited by Wilfried J. Bartz
82. Fundamental Fluid Mechanics for the Practicing Engineer, James W. Murdock
86. Vibrations of Shells and Plates: Second Edition, Revised and Expanded, Werner Soedel
89. Finite Elements: Their Design and Performance, Richard H. MacNeal
91. Mechanical Wear Prediction and Prevention, Raymond G. Bayer

Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved
92. Mechanical Power Transmission Components, edited by David W. South and Jon R. Mancuso
95. Refractory Linings Thermomechanical Design and Applications, Charles A. Schacht
96. Geometric Dimensioning and Tolerancing: Applications and Techniques for Use in Design, Manufacturing, and Inspection, James D. Meadows
100. Friction Science and Technology, Peter J. Blau
101. Introduction to Plastics and Composites: Mechanical Properties and Engineering Applications, Edward Miller
102. Practical Fracture Mechanics in Design, Alexander Blake
103. Pump Characteristics and Applications, Michael W. Volk
104. Optical Principles and Technology for Engineers, James E. Stewart
105. Optimizing the Shape of Mechanical Elements and Structures, A. A. Seireg and Jorge Rodriguez
106. Kinematics and Dynamics of Machinery, Vladimir Stejškal and Michael Valášek
107. Shaft Seals for Dynamic Applications, Les Horve
108. Reliability-Based Mechanical Design, edited by Thomas A. Cruse
109. Mechanical Fastening, Joining, and Assembly, James A. Speck
110. Turbomachinery Fluid Dynamics and Heat Transfer, edited by Chunill Hah
112. Geometric Dimensioning and Tolerancing: Workbook and Answerbook, James D. Meadows
114. Handbook of Thermoplastic Piping System Design, Thomas Sixsmith and Reinhard Hanselka
117. Fluid Sealing Technology, Heinz K. Müller and Bernard S. Nau
118. Friction and Lubrication in Mechanical Design, A. A. Seireg
119. Influence Functions and Matrices, Yuri A. Melnikov
120. Mechanical Analysis of Electronic Packaging Systems, Stephen A. McKeown
123. Gear Noise and Vibration, J. Derek Smith
124. Practical Fluid Mechanics for Engineering Applications, John J. Bloomer
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>Designing for Product Sound Quality</td>
<td>Richard H. Lyon</td>
</tr>
<tr>
<td>128</td>
<td>Probability Applications in Mechanical Design</td>
<td>Franklin E. Fisher and Joy R. Fisher</td>
</tr>
<tr>
<td>129</td>
<td>Nickel Alloys</td>
<td>edited by Ulrich Heubner</td>
</tr>
<tr>
<td>130</td>
<td>Rotating Machinery Vibration: Problem Analysis and Troubleshooting</td>
<td>Maurice L. Adams, Jr.</td>
</tr>
<tr>
<td>131</td>
<td>Formulas for Dynamic Analysis</td>
<td>Ronald L. Huston and C. Q. Liu</td>
</tr>
<tr>
<td>132</td>
<td>Handbook of Machinery Dynamics</td>
<td>Lynn L. Faulkner and Earl LOGAN, Jr.</td>
</tr>
<tr>
<td>133</td>
<td>Rapid Prototyping Technology: Selection and Application</td>
<td>Kenneth G. Cooper</td>
</tr>
<tr>
<td>134</td>
<td>Reciprocating Machinery Dynamics: Design and Analysis</td>
<td>Abdulla S. Rangwala</td>
</tr>
<tr>
<td>136</td>
<td>Practical Guide to Industrial Boiler Systems</td>
<td>Ralph L. Vandagriff</td>
</tr>
<tr>
<td>137</td>
<td>Lubrication Fundamentals: Second Edition, Revised and Expanded</td>
<td>D. M. Pirro and A. A. Wessol</td>
</tr>
<tr>
<td>138</td>
<td>Mechanical Life Cycle Handbook: Good Environmental Design and Manufacturing</td>
<td>edited by Mahendra S. Hundal</td>
</tr>
<tr>
<td>139</td>
<td>Micromachining of Engineering Materials</td>
<td>edited by Joseph McGeough</td>
</tr>
<tr>
<td>141</td>
<td>Practical Guide to Pressure Vessel Manufacturing</td>
<td>Sunil Pullarcot</td>
</tr>
<tr>
<td>142</td>
<td>Nondestructive Evaluation: Theory, Techniques, and Applications</td>
<td>edited by Peter J. Shull</td>
</tr>
<tr>
<td>143</td>
<td>Diesel Engine Engineering: Thermodynamics, Dynamics, Design, and Control</td>
<td>André Makarchouk and Andrei Makarchouk</td>
</tr>
<tr>
<td>144</td>
<td>Handbook of Machine Tool Analysis</td>
<td>Ioan D. Marinescu, Constantin Ispas, and Dan Boboc</td>
</tr>
<tr>
<td>145</td>
<td>Implementing Concurrent Engineering in Small Companies</td>
<td>Susan Carlson Skalak</td>
</tr>
<tr>
<td>146</td>
<td>Practical Guide to the Packaging of Electronics: Thermal and Mechanical Design and Analysis</td>
<td>Ali Jamnia</td>
</tr>
<tr>
<td>147</td>
<td>Bearing Design in Machinery: Engineering Tribology and Lubrication</td>
<td>Avraham Harroy</td>
</tr>
<tr>
<td>148</td>
<td>Mechanical Reliability Improvement: Probability and Statistics for Experimental Testing</td>
<td>R. E. Little</td>
</tr>
<tr>
<td>149</td>
<td>Industrial Boilers and Heat Recovery Steam Generators: Design, Applications, and Calculations</td>
<td>V. Ganapathy</td>
</tr>
<tr>
<td>151</td>
<td>Industrial Noise Control and Acoustics</td>
<td>Randall F. Barron</td>
</tr>
<tr>
<td>152</td>
<td>Mechanical Properties of Engineered Materials</td>
<td>Wolé Soboyejo</td>
</tr>
<tr>
<td>153</td>
<td>Reliability Verification, Testing, and Analysis in Engineering Design</td>
<td>Gary S. Wasserman</td>
</tr>
<tr>
<td>155</td>
<td>Intermediate Heat Transfer</td>
<td>Kau-Fui Vincent Wong</td>
</tr>
<tr>
<td>156</td>
<td>HVAC Water Chillers and Cooling Towers: Fundamentals, Application, and Operation</td>
<td>Herbert W. Stanford III</td>
</tr>
</tbody>
</table>
159. Piping and Pipeline Engineering: Design, Construction, Maintenance, Integrity, and Repair, George A. Antaki
160. Turbomachinery: Design and Theory, Rama S. R. Gorla and Aijaz Ahmed Khan

Additional Volumes in Preparation

Theory of Dimensioning: An Introduction to Parameterizing Geometric Models, Vijay Srinivasan

Fluidized Bed Combustion, Simeon N. Oka

Structural Analysis of Polymeric Composite Materials, Mark E. Tuttle

Handbook of Pneumatic Conveying Engineering, David Mills, Mark G. Jones, and Vijay K. Agarwal

Handbook of Mechanical Design Based on Material Composition, George E. Totten, Lin Xie, and Kiyoshi Funatani

Progressing Cavity Pumps, Downhole Pumps, and Mudmotors, Lev Nelik

Mechanical Engineering Software

Spring Design with an IBM PC, Al Dietrich

Mechanical Design Failure Analysis: With Failure Analysis System Software for the IBM PC, David G. Ullman
To my parents, Tirupelamma and Subba Reddy Gorla, who encouraged me to strive for excellence in education

—R. S. R. G.

To my wife, Tahseen Ara, and to my daughters, Shumaila, Sheema, and Afifa

—A. A. K.
Preface

Turbomachinery: Design and Theory offers an introduction to the subject of turbomachinery and is intended to be a text for a single-semester course for senior undergraduate and beginning graduate students in mechanical engineering, aerospace engineering, chemical engineering, design engineering, and manufacturing engineering. This book is also a valuable reference to practicing engineers in the fields of propulsion and turbomachinery.

A basic knowledge of thermodynamics, fluid dynamics, and heat transfer is assumed. We have introduced the relevant concepts from these topics and reviewed them as applied to turbomachines in more detail. An introduction to dimensional analysis is included. We applied the basic principles to the study of hydraulic pumps, hydraulic turbines, centrifugal compressors and fans, axial flow compressors and fans, steam turbines, and axial flow and radial flow gas turbines. A brief discussion of cavitation in hydraulic machinery is presented.

Each chapter includes a large number of solved illustrative and design example problems. An intuitive and systematic approach is used in the solution of these example problems, with particular attention to the proper use of units, which will help students understand the subject matter easily. In addition, we have provided several exercise problems at the end of each chapter, which will allow students to gain more experience. We urge students to take these exercise problems seriously: they are designed to help students fully grasp each topic.
and to lead them toward a more concrete understanding and mastery of the techniques presented.

This book has been written in a straightforward and systematic manner, without including irrelevant details. Our goal is to offer an engineering textbook on turbomachinery that will be read by students with enthusiasm and interest—we have made special efforts to touch students’ minds and assist them in exploring the exciting subject matter.

R.S.R.G. would like to express thanks to his wife, Vijaya Lakshmi, for her support and understanding during the preparation of this book. A.A.K. would like to extend special recognition to his daughter, Shumaila, a practicing computer engineer, for her patience and perfect skills in the preparation of figures; to Sheema Aijaz, a civil engineer who provided numerous suggestions for enhancement of the material on hydraulic turbomachines; and to M. Sadiq, who typed some portions of the manuscript. A.A.K. is also indebted to Aftab Ahmed, Associate Professor of Mechanical Engineering at N.E.D. University of Engineering and Technology, for his many helpful discussions during the writing of this book.

We would like to thank Shirley Love for her assistance in typing portions of the manuscript. We also thank the reviewers for their helpful comments, and we are grateful to John Corrigan, editor at Marcel Dekker, Inc., for encouragement and assistance.

Rama S. R. Gorla
Aijaz A. Khan
Contents

Preface

1. Introduction: Dimensional Analysis—Basic Thermodynamics and Fluid Mechanics
 1.1 Introduction to Turbomachinery
 1.2 Types of Turbomachines
 1.3 Dimensional Analysis
 1.4 Dimensions and Equations
 1.5 The Buckingham Π Theorem
 1.6 Hydraulic Machines
 1.7 The Reynolds Number
 1.8 Model Testing
 1.9 Geometric Similarity
 1.10 Kinematic Similarity
 1.11 Dynamic Similarity
 1.12 Prototype and Model Efficiency
 1.13 Properties Involving the Mass or Weight of the Fluid
 1.14 Compressible Flow Machines
 1.15 Basic Thermodynamics, Fluid Mechanics, and Definitions of Efficiency
1.16 Continuity Equation
1.17 The First Law of Thermodynamics
1.18 Newton’s Second Law of Motion
1.19 The Second Law of Thermodynamics: Entropy
1.20 Efficiency and Losses
1.21 Steam and Gas Turbines
1.22 Efficiency of Compressors
1.23 Polytropic or Small-Stage Efficiency
1.24 Nozzle Efficiency
1.25 Diffuser Efficiency
1.26 Energy Transfer in Turbomachinery
1.27 The Euler Turbine Equation
1.28 Components of Energy Transfer
 Examples
 Problems
 Notation

2. Hydraulic Pumps
 2.1 Introduction
 2.2 Centrifugal Pumps
 2.3 Slip Factor
 2.4 Pump Losses
 2.5 The Effect of Impeller Blade Shape
 on Performance
 2.6 Volute or Scroll Collector
 2.7 Vaneless Diffuser
 2.8 Vaned Diffuser
 2.9 Cavitation in Pumps
 2.10 Suction Specific Speed
 2.11 Axial Flow Pump
 2.12 Pumping System Design
 2.13 Life Cycle Analysis
 2.14 Changing Pump Speed
 2.15 Multiple Pump Operation
 Examples
 Problems
 Notation

3. Hydraulic Turbines
 3.1 Introduction
 3.2 Pelton Wheel
 3.3 Velocity Triangles
 3.4 Pelton Wheel (Losses and Efficiencies)
 Examples
 3.5 Reaction Turbine
3.6 Turbine Losses
3.7 Turbine Characteristics
3.8 Axial Flow Turbine
3.9 Cavitation
 Examples
 Problems
 Notation

4. Centrifugal Compressors and Fans
 4.1 Introduction
 4.2 Centrifugal Compressor
 4.3 The Effect of Blade Shape on Performance
 4.4 Velocity Diagrams
 4.5 Slip Factor
 4.6 Work Done
 4.7 Diffuser
 4.8 Compressibility Effects
 4.9 Mach Number in the Diffuser
 4.10 Centrifugal Compressor Characteristics
 4.11 Stall
 4.12 Surging
 4.13 Choking
 Examples
 Problems
 Notation

5. Axial Flow Compressors and Fans
 5.1 Introduction
 5.2 Velocity Diagram
 5.3 Degree of Reaction
 5.4 Stage Loading
 5.5 Lift-and-Drag Coefficients
 5.6 Cascade Nomenclature and Terminology
 5.7 3-D Consideration
 5.8 Multi-Stage Performance
 5.9 Axial Flow Compressor Characteristics
 Examples
 Problems
 Notation

6. Steam Turbines
 6.1 Introduction
 6.2 Steam Nozzles
 6.3 Nozzle Efficiency

Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved
6.4 The Reheat Factor
6.5 Metastable Equilibrium
 Examples
6.6 Stage Design
6.7 Impulse Stage
6.8 The Impulse Steam Turbine
6.9 Pressure Compounding (The Rateau Turbine)
6.10 Velocity Compounding (The Curtis Turbine)
6.11 Axial Flow Steam Turbines
6.12 Degree of Reaction
6.13 Blade Height in Axial Flow Machines
 Examples
 Problems
 Notation

7. Axial Flow and Radial Flow Gas Turbines
 7.1 Introduction to Axial Flow Turbines
 7.2 Velocity Triangles and Work Output
 7.3 Degree of Reaction (η)
 7.4 Blade-Loading Coefficient
 7.5 Stator (Nozzle) and Rotor Losses
 7.6 Free Vortex Design
 7.7 Constant Nozzle Angle Design
 Examples
 7.8 Radial Flow Turbine
 7.9 Velocity Diagrams and Thermodynamic Analysis
 7.10 Spouting Velocity
 7.11 Turbine Efficiency
 7.12 Application of Specific Speed
 Examples
 Problems
 Notation

8. Cavitation in Hydraulic Machinery
 8.1 Introduction
 8.2 Stages and Types of Cavitation
 8.3 Effects and Importance of Cavitation
 8.4 Cavitation Parameter for Dynamic Similarity
 8.5 Physical Significance and Uses of the Cavitation Parameter
Contents

8.6 The Rayleigh Analysis of a Spherical Cavity in an Inviscid Incompressible Liquid at Rest at Infinity
8.7 Cavitation Effects on Performance of Hydraulic Machines
8.8 Thoma’s Sigma and Cavitation Tests Notation

Appendix
The International System of Units (SI)
Thermodynamic Properties of Water
Thermodynamic Properties of Liquids
Thermodynamic Properties of Air

Bibliography